3D Building Detection and Reconstruction from Aerial
Drone Imagery

Marc WuDunn
Avideh Zakhor, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-230
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-230.html

December 1, 2021




Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



3D Building Detection and Reconstruction from Aerial Drone Imagery

by Marc WuDunn

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Avideh Zakhor
Research Advisor

8/15/2020

(Date)

Sk ok sk ok ok sk ok

2 DR S

Professor James F. O’Brien
Second Reader

August 14, 2020
(Date)



job
Blue Sig.

job
Text Box
August 14, 2020 


3D Building Detection and Reconstruction from Aerial Drone
Imagery

Marc WuDunn

August, 2020



Abstract

In recent years, the ubiquity of drones equipped with RGB cameras has made aerial 3D point cloud and
model generation significantly more cost effective than with traditional aerial LiDAR-based methods.
Most existing aerial 3D point cloud building reconstruction and segmentation approaches use geometric
methods that are tailored to 3D LiDAR data. However, point clouds generated from drone imagery
generally have a much different structure than the ones constructed through LiDAR imaging systems,
for which these methods are not as suitable. In this thesis we present two methods: (a) an approach
for segmenting building and vegetation points in a 3D point cloud; (b) a pipeline for extracting a
building footprint with height information from aerial images. For both approaches, we leverage the
commercial software Pix4D to construct a 3D point cloud from RGB drone imagery.

To segment the point cloud, our basic approach is to directly apply deep learning segmentation methods
to the very RGB images used to create the point cloud itself, followed by back-projecting the pixel
class in segmented images onto the 3D points. This is a particularly attractive solution, since deep
learning methods for image segmentation are more mature and advanced as compared to 3D point
cloud segmentation. Furthermore, GPU engines for 2D image convolutions are likely to result in
higher processing speeds than could be achieved using 3D point cloud data. We compute F1 and
Jaccard similarity coefficient scores for the building and vegetation point classifications to show that our
methodology outperforms existing methods such as PointNet++4 and commercially available packages
such as Pix4D.

For building footprint extraction, the 3D point cloud is used in conjunction with image processing and
geometric methods to extract a building footprint. The footprint is then extruded vertically based on
the heights of the extracted rooftops. The footprint extraction involves two main steps, line segment
detection and polygonization of the lines. To detect line segments, we project the point cloud onto
a regular grid, detect preliminary lines using the Hough transform, refine them via RANSAC, and
convert them into line segments by checking the density of the points surrounding the line. In the
polygonization step, we convert detected line segments into polygons by constructing and completing
partial polygons, and then filter them by checking for support in the point cloud. The polygons are
then merged based on their respective height profiles to create a full building footprint, which can be
used to construct a 3D model of the building. Notably, an application of the extracted 3D building
model is the computation of the window-to-wall ratio of the building. Given a set of detected windows
on a 2D image, we can project them onto the extracted 3D model and compute their area to obtain
the window-to-wall ratio. We have tested our system on two buildings of several thousand square feet
in Alameda, CA, and obtained an F1 score of 0.93 and 0.95 respectively as compared to the ground
truth.



Contents

1 Introduction

1.1 Related Work on Point Cloud Segmentation . . . . . . .. ... .. ... ... .. ... ..
1.2 Related Work on Building Footprint Extraction . . . . . . ... ... ... ... ... ..
1.3 Contribution of this Thesis . . . . . . . . . . . . . . .

2 Vegetation and Building Segmentation in Point Clouds

2.1 Methodology . . . . . . . . e e
2.2 Segmentation of Undistorted RGB Images . . . . . . . ... ... ... ... ...
2.3 Projection of 3D Points to Classified 2D Pixels . . . . . . . . . ... ... ... ...
2.4 Occlusion Detection . . . . . . . . . L
2.5 Efficient Occlusion Detection . . . . . . . . .. . .

3 Building Footprint Extraction

3.1 Line Detection . . . . . . . . . e e e
3.2 Line Segmentation . . . . . . . . . . e
3.3 Line Processing . . . . . . . . . e e
3.4 Polygon Extraction . . . . . . . . . .. e
3.5 Partial-Polygon Construction . . . . . . . . . ... . L
3.6 Polygon Completion . . . . . . . . e
3.7 Polygon Merging . . . . . . . . .
3.8 3D Building Reconstruction . . . . . . .. ... Lo
4 Experimental Results
4.1 Data Collection and Photogrammetry . . . . . . ... . ... . ... .. .. ... ... ...
4.2 Building and Vegetation Segmentation Results . . . . . ... ... ... ... ... ......
4.3 Building Footprint Evaluation . . . . . . . . . . ...
4.4 Window-to-Wall Ratio Estimation . . . . . . .. .. ... ... ... ... ...
4.5 Thermal Image Overlay . . . . . . . . . . . e

5 Conclusions and Future Work

A Appendix
A.1 RGB Point Cloud Generation . . . . . . . . . . . . . . i i e e
A.2 Merged RGB and Thermal Image Projects . . . . . . . .. .. .. ... ... ... ...
A.3 3D Model with Thermal Textures . . . . . . . . . . . . . . .. . . .

10
10
13

14
14
16
16
18
19
19
21
21

23
23
24
26
26
29

31



List of Figures

2.1
2.2
2.3

24

2.5

3.1
3.2

3.3

3.4
3.5
3.6

3.7

4.1

4.2

4.3

4.4
4.5

4.6

Block diagram of proposed pipeline. . . . . . . . . . ... 9
2D segmentation for a single image of Dataset 1. . . . . . . . . ... ... L. 10
(a) Segmented point cloud with occlusion artifacts present. (b) Segmented point cloud with

occlusion artifacts removed. . . . . . ... oL Lo 11

Three points Py, P>, and Ps that that project to a pixel (ip,jp). Point P; is the "hit’ point,
point Pj is ’occluded’ while the other point P, is within the allowable range of P; and so is

‘unoccluded’”. . . . ... ... I F T T 11
(a) Quantization example for d(1) and d(2). (b) Block-Reduce example with r.(1). . . . . . . 13
(a) A circular flight path in DJI GS Pro. (b) The full flight plan. . . . . ... ... ... ... 15
RGB Drone imagery for (a) Building 1. (b) Building 2. (c¢) Grid with points accumulated by

grid cell for building 1. (d) Lines detected in the first iteration. . . . . . ... ... ... ... 15

(a) Example of the ’gridded’ line. (b) The line segment in (a) thresholded by density. (c)
One of the detected lines, trimmed to match the support in the grid. (d) The extracted line

SEGMENtS. . . . . .. e e e e 17
(a) Merging endpoints close together. (b) Splitting a nearby line segment. (c¢) Detected lines

after post-processing. . . . . . . .. L 18
(a) Example of a ’partial’ polygon in Building 1. (b) Counter-clockwise traversal. . . . . . . . 18

(a) Completion process for a partial polygon with 3 corners. (b) Propagation effect of complet-
ing one partial polygon to the completion of another in a subsequent iteration. (c¢) Completion
process for a partial polygon with 1 corner. . . . . . . . . . . . ... ... ... ... .. 20
Example of the completed (unmerged) polygons after all iterations have completed. . . . . . . 21

(a) The example point clouds. Classification results from: (b) our method; (¢) Pix4D; (d)

PointNet++; (e) The ground truth. Green: Vegetation, Red: Building, White: Other . ... 25
(a) Histogram of number of unique votes per point. (b) Histogram of winning vote’s confidence
Per point. . . . .o e e 26

(a) Polygons for Building 1 after the merge process has completed. Heatmap of the heights
of merged polygons for (b) Building 1. (c¢) Building 2. 3D Rendering of Alameda Buildings
(d) 1 and (e) 2, from the extracted 2D polygon footprints, with polygons extruded by height. 27
Flowchart for the window-to-wall ratio extraction process. . . . . . . . . .. ... ... .... 28
(a) 3D building model projected onto a 2D image, with roof polygons overlaid in blue and
facades in red; (b) The corresponding window mask; (c¢) Facade (red) with its corresponding
windows (blue). . . . . . . L 29
Triangulation of the projected facade points with the facade in red and window in blue. . . . 29



4.7 3D building model overlaid on top of several thermal (IR) images, with the roof facade in
blue and wall facades inred. . . . . . . . . ... 30

A.1 (a) Settings for the ’Initial Processing’ step. (b) Settings for the 'Point Cloud and Mesh’ step. 36

A.2 Point cloud generated from RGB images in Pix4d. . . ... ... ... ... ... ....... 36

A.3 (a) Manual Tie Points (MTPs) for the RGB project shown as green arrows. (b) The merged
point cloud with RGB (outer circle) and Thermal (inner circle) drone flights overlaid. . . . . 37

A4 Settings used to generate the textured 3D mesh. . . . . ... ... . 37

A5 3D Mesh textured with thermal imagery (a) Top view. (b) Side view with windows. . . . . . 38



Chapter 1

Introduction

In recent years, the ubiquity of drones equipped with RGB cameras has made aerial 3D point cloud and
model generation significantly more cost effective than with traditional aerial LIDAR~based methods. Most
existing aerial 3D point cloud building reconstruction and segmentation approaches use geometric methods
that are tailored to 3D LiDAR data. However, point clouds generated from drone imagery generally have
a much different structure than the ones constructed through LiDAR imaging systems, for which these
methods are not as suitable. This thesis explores two methods that aid in analysis of envelope thermal
efficiency of buildings. In particular we develop methods for 3D building reconstruction and 3D point cloud
segmentation, which are important steps for thermal anomaly detection and extracting the window-to-wall
ratio of buildings. Both can be useful in a wide variety of application areas, including urban planning,
energy modeling, and disaster planning. These methods are also interrelated: point cloud segmentation can
be used to directly improve the results of the footprint generation and vice-versa. The goal of this thesis
is twofold: to present a method to segment the building and vegetation points in a point cloud, and to
present a pipeline for extracting building footprints from drone imagery, including facade information, the
building components, and the height information for each component. For both methods we first construct
a point cloud using aerial RGB drone images, processed in Pix4D to create a point cloud. For experimental
verification, we collected 2 datasets, each with several hundred images each, of two different buildings in
Alameda, California.

The semantic understanding of 3D point clouds provides valuable information to many disciplines that
model outdoor environments. After generating the 3D point cloud generated from Pix4D, we use state-of-
the-art deep learning frameworks pre-trained on large datasets to segment the images, which we then use
to assign labels to each of the points. To do so, we back-project the segmented pixels onto the points in
the point cloud. In doing so, we develop geometric techniques to deal with occlusion issues. This pipeline
is applied to aerial imagery collected by a commercial UAV of an urban outdoor scene, segmenting objects
based on the classes ‘building’ and ‘vegetation’.

Our approach for the building footprint extraction consists of two overarching steps, line segment extrac-
tion and polygonization of the lines. In the line segment detection step, the point cloud is projected onto a
regular grid, preliminary lines are detected using the Hough transform, subsequently refined with RANSAC,
and then converted into line segments by checking the density of the points surrounding the line. In the
polygonization step, detected line segments are converted into polygons, by constructing and completing
partial polygons, and filtering them by checking for support in the point cloud. The height of each polygon
is estimated, and then the polygons are merged based on their respective height profiles. After merging
these polygons, we can create a 3D model by extruding the footprint with the estimated heights of each



CHAPTER 1. INTRODUCTION 6

polygon. From this 3D model, and given the locations of windows on the 2D drone images, we can compute
the window-to-wall ratio.

1.1 Related Work on Point Cloud Segmentation

A large body of research has investigated semantic segmentation of 3D point clouds. Early learning-based
methods used principle component analysis to segment based on learned spatial distributions of points [1].
However, the associated eigen-decomposition is computationally expensive. Recent state-of-the-art methods
utilize deep learning applied to different forms of input data. [2, 3, 4, 5] demonstrated the application of a
deep net directly to point clouds for the task of segmentation, while [6, 7] applied such geometric methods
to aerial point clouds. However, purely geometric methods struggle with the fine details of outdoor imagery
unless extremely dense LiDAR data is available. Collection of such data is often prohibitively expensive
and time-consuming. Networks that jointly learn from geometric and color data have been proposed [8,
9, 10], as well as methods that flatten 3D surfaces to apply 2D CNNs [11, 12]. These approaches also
assume availability of dense 3D data. Our work most closely resembles [13, 14], in which 2D segmentation
methods are combined with photogrammetry reconstruction. However, [13, 14] mesh, texture-map, and
create a synthetic view of the scene, which is then segmented and back-projected, thus introducing additional
computationally complex steps.

1.2 Related Work on Building Footprint Extraction

Existing 3D reconstruction methods typically involve the use of satellite imagery, terrestrial laser scanning,
or top-down Light Detection and Ranging (LiDAR) data [15]. Terrestrial laser scanning and LiDAR require
costly equipment [16]. LiDAR suffers from limited range data. Terrestrial laser scanning does not easily scale
to large areas. Building footprint extraction from a single satellite image is scalable and could be applied to
large areas, but typically does not result in building facade information or accurate height information [17].

Several geometric approaches have been proposed using satellite imagery, [18, 19, 20, 21] but they only
detect building outlines, as extracting height information from a single satellite image is difficult. They
also tend to perform well for relatively simple building structures, such as those composed of few facades.
Methods utilizing convolutional neural networks (CNNs) on satellite images have also been proposed [22].
Additionally, Microsoft [23] released a dataset containing over 100 million building footprints in the United
States generated using neural networks. Although CNNs have been reported to work well for satellite data,
they are difficult to apply to drone imagery or point cloud data, since they suffer from a lack of labeled
training datasets. As a result, generating building footprints which also contain height information is difficult
using deep learning methods.

Many 3D reconstruction methods utilize 3D data such as LIDAR or Digital Surface Models (DSMs) in
order to construct footprints. Even though LiDAR can produce reasonable results [24, 25], LIDAR sensor
sets for UAVs can be prohibitively expensive. Methods that utilize DSMs [26, 27, 28] allow building height
information to be extracted, as height is encoded into the data model.

In general, the use of geometric features of buildings, such as their shape and their shadows, are useful
for the extraction of building footprints. For instance, Lin and Nevatia [29] propose a method to detect
simple, rectangular building roofs from a single oblique image, using edge detectors and 3D evidence present
in the image. Their approach involves generating a number of hypotheses for building footprints which are
then pruned to create the final one. They additionally estimate building height from the shadows. Shadow
information is used in several other approaches[30, 31] for the extraction of footprints or their heights. The
pipeline proposed by San et. al. [32] utilizes the Hough transform for the extraction of building edges, but



CHAPTER 1. INTRODUCTION 7

is limited to simple rectangular structures or circular structures. Likewise, Hammoudi et al. [33] employ
the Hough transform for the extraction of edges corresponding to building facades, though they fall short
of extracting an actual building footprint. Our method also employs the Hough Transform to generate 2D
line segment candidates, which we augment to construct a full building footprint.

1.3 Contribution of this Thesis

This thesis explores two pipelines: (a) an approach for segmenting building and vegetation points in a 3D
point cloud; (b) a pipeline for extracting a building footprint with height information from aerial images. For
both pipelines, we opted use the Pix4D software suite [34] to generate a dense 3D point cloud and calculate
the internal and external parameters for camera calibration from our collection of input images. In order to
segment the point cloud we use a multiview-based approach, in which we perform 2D semantic segmentation
on the drone images we captured, and then projecting the points onto the images. Pix4D provides a set of
camera pose matrices as output based on the internal and external camera parameters calculated for each
input image, which we use to project the points onto the camera images. This matrix is used to convert the
3D coordinates of a point in the generated dense cloud to the 2D coordinate of a pixel in an undistorted
input image. In order to facilitate the segmentation, we develop a novel approach for efficiently detecting
points in the point cloud that are visible from a camera image, and ones that are occluded by other points.

The pipeline for extracting polygonal building footprints with height information from 3D point clouds
consists of two overarching steps: line segment extraction and a polygonization step where the extracted
line segments are converted into polygons. This is used to construct a 3D model of the building, and can
also be used to extract the window-to-wall ratio of a building, given an algorithm that detects the windows
on the 2D images.

The outline of this thesis is as follows: In Chapter 2 we detail our approach for the segmentation of
3D point clouds, in Chapter 3 we detail our pipeline for extracting a building footprint from a 3D point
cloud, in Chapter 4 we show our results for both the 3D point cloud segmentation and the building footprint
extraction, and in Chapter 5 we summarize our main conclusions and areas of future work.



Chapter 2

Vegetation and Building
Segmentation in Point Clouds

In this chapter, we will discuss the semantic segmentation of 3D point clouds to segment building and
vegetation points, by utilizing state-of-the-art 2D semantic segmentation methods on images. This has
applications in areas such as fire prevention, for which the distance between buildings and surrounding
vegetation is very important. Section 2.1 provides an overview for our pipeline. Section 2.2 discusses our
approach for segmenting the 2D drone images. Section 2.3 describes our approach for generating labels for
the 3D points from the 2D drone images. Since at any given view, some points may not be visible due to
occlusions, Section 2.4 explains our approach for detecting points that are occluded by other points, from the
perspective of the camera image. Finally, Section 2.5 describes an approximation method that significantly
improves the performance for detecting point occlusions.

2.1 Methodology

The semantic understanding of 3D point clouds provides valuable information to many disciplines that model
outdoor environments. Urban planning, wireless communications engineering, and wildfire abatement are
applications aided immensely by information on the structure and classification of environmental objects.
The advent of increasingly accessible and accurate methods of surveying environments, combined with
powerful computational methods for representing and processing surveyed data, have led to a large body
of research into the task of semantic segmentation, producing a variety of approaches to this problem [35].
These approaches differ in complexity, accuracy, and data collection requirements. Two increasingly powerful
tools that aid in this task are a) photogrammetry, which creates structure from 2D image collections [36],
and b) deep networks, capable of accurately segmenting images that form the basis for 3D structure [37].
Combined, these tools provide a simple yet powerful method of generating and semantically segmenting 3D
point clouds.

In this chapter, we present a pipeline for the generation of semantically-segmented 3D point clouds
from aerial RGB imagery of outdoor environments. The outline for this pipeline is presented in Figure 2.1.
By combining commercially-available photogrammetry software with open-source state-of-the-art deep net
frameworks pre-trained on large datasets, our pipeline is simple, accurate, and accessible. The basic idea
behind our approach is to apply deep learning methods to segment the very RGB images that are used to
create the 3D point cloud, and to back-project the segmented pixels onto the points in the point cloud. In



CHAPTER 2. VEGETATION AND BUILDING SEGMENTATION IN POINT CLOUDS 9

doing so, we develop geometric techniques to deal with occlusion issues. This pipeline is applied to aerial
imagery collected by a commercial UAV of an urban outdoor scene, segmenting objects based on the classes
‘building’ and ‘vegetation’. For applications such as fire prevention, the distance between vegetation and
building is an important quantity to estimate.

Input Imag

Projection Majority Occlusion
Operations Voting Detection

Segmented Point Cloud, Segmented Point Cloud,
Occlusion Artifacts Present Occlusion Artifacts Removed

Unsegmented Point Cloud

GPS, MU ——

Camera Matrix

Figure 2.1: Block diagram of proposed pipeline.

A large body of research has investigated semantic segmentation of 3D point clouds. Early learning-
based methods used principle component analysis to segment based on learned spatial distributions of
points [1]. However, the associated eigendecomposition is computationally expensive. Recent state-of-
the-art methods utilize deep learning applied to different forms of input data. [2, 3, 4, 5] demonstrated
the application of a deep net directly to point clouds for the task of segmentation, while [6, 7] applied
such geometric methods to aerial point clouds. However, purely geometric methods struggle with the fine
details of outdoor imagery unless extremely dense LiIDAR data is available. Collection of such data is often
prohibitively expensive and time-consuming. Networks that jointly learn from geometric and color data
have been proposed [8, 9, 10], as well as methods that flatten 3D surfaces to apply 2D CNNs [11, 12]. These
approaches also assume availability of dense 3D data. Our work most closely resembles [13, 14], in which
2D segmentation methods are combined with photogrammetry reconstruction. However, [13, 14] mesh,
texture-map, and create a synthetic view of the scene, which is then segmented and back-projected, thus
introducing additional computationally complex steps.

2.2 Segmentation of Undistorted RGB Images

We segment RGB images with UPerNet [38], a framework based on a 50-layer ResNet [39] convolutional
neural net architecture. The UPerNet framework was chosen for its flexibility in semantically segmenting
scenes based on object, material, or texture. We use existing models pre-trained by the UPerNet authors
on the ADE20K dataset [39]. We pass the undistorted images produced by Pix4D to the segmentation
network after downsampling the resolution by a factor of 4. The output of the segmentation network is a 2D
array corresponding to the pixel dimensions of the input image, with each element containing a class label
for the pixel. The ADE20K output classes fall into multiple categories, which we condense into ‘building’,
‘vegetation’, and ‘other’. An output from the 2D image segmentation network is shown in Figure 2.2.



CHAPTER 2. VEGETATION AND BUILDING SEGMENTATION IN POINT CLOUDS 10

i
2

Figure 2.2: 2D segmentation for a single image of Dataset 1.

2.3 Projection of 3D Points to Classified 2D Pixels

We next project each 3D coordinate in the generated point cloud to the 2D coordinate of all segmented
images using the camera pose matrices provided by Pix4D, and retrieve the pixel classes corresponding to
the 2D coordinates.

Given the set of segmented 2D images I = {I1, Is, ..., I,,}, where each image I, consists of a list of
pixel coordinates {(u1,v1), (u2,v2), ..., (un,vn)}, a list of corresponding pixel classes {c1,ca,...,c,}, and a
corresponding camera pose matrix P,,; and, given a point cloud
C = {(z1,y1,21), (x2,Y2, 22), s (Toy Yo, 20) }, We determine (w0, Um o) for each point (z,,yo, z0) in C and
each image I, via that image’s camera matrix Pp,:

(umﬁ? ”Um’o) = P’m ! (xov Yo, zo) (21)

If (Um0, Vm,0) is within the pixel coordinate range of the image, it is a valid projection. We then index to
find the corresponding pixel class ¢, , for that coordinate, and add it to a stored dictionary of pixel classes
per 3D point. We take the majority vote of all ¢, for each point, and assign this value as the final point
class. A fundamental limitation of this projection method is as follows: 3D points which are occluded from
the perspective of a 2D image map to the same pixel on that image if the points lie along the same ray
of projection. This leads to highly inaccurate point class assignment, as any two points along the ray of
projection are assigned to the same class. For example, with aerial imagery, the large amount of ground
occluded by a building could erroneously be classified as building.

2.4 Occlusion Detection

When projecting pixel classes in captured images onto the point cloud, multiple 3D points with different
distances might be affiliated with a given pixel. The purpose of occlusion detection is to choose the 3D point
that is closest to the camera image under consideration. This way, more distant 3D points corresponding
to the same pixel will not be assigned a class from that pixel, since they are occluded by closer 3D points.
An example of a point cloud segmentation in which occlusion is not taken into account is shown in Figure
2.3(a), where a large number of points are mis-classified.

A standard approach for detecting occlusions is to trace a ray through the scene and check for a ’hit’, i.e.
an intersection within a 3D bounding shape. However, tracing rays can be quite costly from a computational



CHAPTER 2. VEGETATION AND BUILDING SEGMENTATION IN POINT CLOUDS 11

(a) (b)

Figure 2.3: (a) Segmented point cloud with occlusion artifacts present. (b) Segmented point cloud with
occlusion artifacts removed.

point of view, especially for several hundred images. Rather, we iterate over each captured image, and in
each iteration we project all 3D points in the point cloud onto the image and compare projective distances.

In what follows, we describe our approach for determining whether a given 3D point P is visible in a
given image. Let the closest point along the camera ray be denoted as Pj;:. Let dp denote the projective
distance of P with respect to the camera optical center, and (ip, jp) denote the pixel upon which P projects

Pixels

min Optical Center

Points

a= dp,,, tan(r.d)
®
Ps

dei,n

Allowable Range

Figure 2.4: Three points P;, P», and P3 that that project to a pixel (ip,jp). Point P; is the "hit’ point,
point Pj is ’occluded’ while the other point P, is within the allowable range of P; and so is 'unoccluded’.



CHAPTER 2. VEGETATION AND BUILDING SEGMENTATION IN POINT CLOUDS 12

onto. We project each 3D point in the point cloud using the camera pose matrix, filtering out the points
that lie outside of the camera image. We then round the resulting coordinates of the projection to the
nearest integer (i, j) values; this corresponds to assigning each point projection to the nearest pixel in the
camera image. Next, we compute the minimum projective distance d,,;,(i,7) for all 3D points projected
onto the pixel coordinates (i, j), which will correspond to the projective distance of Pj;;. This results in a
matrix A,,;, of the minimum projective distances, whose size is the same as the size of the camera image.

The most obvious way to determine whether P is occluded is to directly compare dp with the associated
entry in A, for pixel (ip,jp). However, the extremely high resolution of the camera imagery coupled
with the sparsity of the point cloud can result in many pixels having only a small number of 3D points
projected onto them. This would render the comparison between dp and the associated minimum value
in A,.;» meaningless, and could result in an inaccurate occlusion detection. To circumvent this problem,
we instead compare dp with the distances of a set of 3D points S(ip,jp) that project to the ‘vicinity’ of
(ip,jp), where vicinity is defined as a circle of radius r.. We declare P as ‘unoccluded’ if its projective
distance dp is ‘close’ to the minimum projective distance of all 3D points in set S(ip,jp). We denote the
3D point in the set S(ip,jp) with such minimum distance as Py,.n, and its associated distance with dp,_,. .
Roughly speaking, we need to determine whether dp is close enough to dp, ;. , and if it is, we can declare P
to be unoccluded. We perform this check for each 3D point in the point cloud whose projection lies in the
bounds of the given camera image.

The radius r. should ideally vary with the projective distance dp of the point, since at a point further
away from the camera image, the physical distance between two adjacent rays passing between neighboring
pixels increases. Thus, we propose the following relationship for r.:

1

Te X @ (2.2)

Figure 2.4 provides a visualization of how to determine whether d, is close enough to dp,,,, , where P;
corresponds to both Py and P,,;,. The figure shows a side view of the camera pixels and the optical
center. The red pixels depict the pixels within radius r. of pixel (ip, jp). Point Ps is labeled as 'unoccluded’
due to its proximity to P;, while point P5 is labeled as ’occluded’ as it is far away from P;. The black
spherical cone (SC) in the figure depicts the extrusion of the circle of radius 7. in the image plane outward
by the distance dp,,,, , with the apex of the SC corresponding to the optical center of the camera. Similarly,
the red SC in the figure corresponds to the extrusion of the SC associated with pixel (ip,jp), again with
the apex of the SC at the optical center of the camera. If we denote the angle between the rays that pass
through successive pixels as 0, then the angles for the red and black SC are 6 and 2r.0 respectively. The
quantity a in the figure is the base radius of the black SC, and is given by a = tan(r.0)dp,,, . We construct
the red zone in Figure 2.4 by extruding the red SC beyond the black SC by an amount a, and declare all
points that fall into the red zone to be unoccluded. Intuitively, this makes sense since the lateral dimension
of the red zone should be approximately proportional to the base radius of the black SC. In a way, as the
distance dp increases, we need to be more ‘lenient’ in declaring P as unoccluded. To summarize, we

min

declare P to be unoccluded if:

dp - dein > dPnLin tan(?ﬂee) (23)

Then, for all unoccluded points, we take the class label for the corresponding pixel in the segmented
image, and add it to the stored dictionary of pixel classes for that 3D point, much like in Section 2.3.



CHAPTER 2. VEGETATION AND BUILDING SEGMENTATION IN POINT CLOUDS 13

Pixels

Figure 2.5: (a) Quantization example for d(1) and d(2). (b) Block-Reduce example with 7(1).

2.5 Efficient Occlusion Detection

Though the qualitative results are acceptable for the aforementioned method, the running time is fairly
high. Specifically, on an Intel Core i5-8600K CPU and for a point cloud with 6 million points, it requires
several minutes per camera image. Though this method can be done in parallel, we opt to improve efficiency
by implementing an approximation to the above method instead.

Rather than computing r. as a function of dp for each point P, we first quantize the projective distances
d into N discrete sections cf(l), ey (Z(N) throughout the range of the projective distances in A,,;,. Then,
each of the N corresponding 7. (i) values can be computed as well, using the relationship of Equation 2.2 for
each of the d(i) values. This is shown in Figure 2.5(a) for distances d(1) and d(2), with corresponding r. of
2 and 1 pixel(s) respectively. Using these r.(i) values, we can perform a block-reduce operation on A, ;p,
for each such r.(i), to obtain N matrices Bq,Ba, ..., By. By applying the block-reduce operation, we are
assigning each pixel a particular neighborhood for which to compare projective distances, for each r. (7).

The block-reduce operation, or equivalently min-pooling in this case, downsamples the A,,;, matrix by
applying a min function to each "block’ of A,,;,, where the block size by, is a square 1 + (2r.(i)) pixels
wide. This creates a new matrix B; with the width and height dimensions reduced by a factor of bs;... We
opted to use the min function described here in a per-block fashion rather than sliding window similar to
the method in Section 2.4. Using the block-reduce operation is an additional approximation that is more
computationally efficient, for which we did not notice a significant difference in the correctness of the results
as compared to using the sliding window.

An example of block reduce operation from matrix A,,;, to Bj is shown in Figure 2.5(b) for .(1). Next,
for each 3D point P, we compute its projective distance dp, and compute its closest quantized distance a?(z)
and the corresponding r,.(7). We then simply index into the matrix B, and check whether Equation 2.3 holds
for the projective distance at the corresponding coordinate in B;. While this may lead to some artifacts as
a result of the spatial discretization, in practice we do not find this to be a significant problem. However, by
using this approximation we achieve a significant speed-up, with running time on the order of seconds per
image rather than several minutes. The resulting segmentation with the occlusion errors removed is shown
in 2.3(b).



Chapter 3

Building Footprint Extraction

In this chapter, we describe our pipeline for building footprint extraction. This process involves several
steps. In Section 3.1 we perform a line detection step, where we project points along the Z-axis onto a 2D
grid and count the number of points that fall into each grid cell. We then use the Hough Transform to
extract candidate lines, which mainly correspond to facades in the image, as these will have a high number
of points along the Z-axis. In Section 3.2 we convert these lines into line segments, by using a 1D median
filter along the line and checking for support from the underlying points. In Section 3.3 we post-process
the line segments. This is done by making the line segments intersect if they are nearly intersecting and
moving endpoints to the same location if they are near each other. We then construct the edges and assign
neighbors. Section 3.4 provides an overview for the polygonization, and explains our approach for converting
the line segments into edges. Sections 3.5 and 3.6 then proceed in an iterative fashion. We extract 'partial’
polygons in Section 3.5, by traversing along the edges. Then, in Section 3.6 we create full polygons by
‘completing’ the partial polygons, which creates new edges and hence new partial polygons. In Section
3.7 we merge the resulting polygonal footprint based on the respective heights of the polygons. Finally, in
Section 3.8 we estimate the heights of the merged polygons and construct a 3D building model.

Each of these circular flights shown in Figure 3.1 takes on the order of 40 minutes, including 10 minutes
to recover the drone and to replace the batteries. These images are then input to Pix4D in order to produce
a 3D point cloud. Figures 3.2(a) and 3.2(b) show the point clouds of two buildings we will be processing
throughout this chapter.

3.1 Line Detection

After constructing the point cloud, we detect lines in the point cloud, using a process similar to Hammoudi
et al.[33] of accumulating points in grid cells and applying the Hough Transform to detect lines. The points
are first projected onto a 2D grid, with a resolution of 0.1m. The number of points in each cell is counted
and then the value is normalized to be between 0 and 1. Projection along the z or height axis results in
cells containing portions of a facade to have a much higher point count than those without them. We apply
a threshold 7 to the cells of this grid, so that cells not corresponding to a wall, i.e. those with a low point
count are set to 0. For the first iteration, 7 is set to a high, fixed value - for example, 5% of the normalized
maximum number of points in any cell. After the first line segment is extracted, the average point density
of the extracted line segment or facade can be used to update 7. This ensures that only cells with similar

14



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 15

(a) (b)

Figure 3.1: (a) A circular flight path in DJI GS Pro. (b) The full flight plan.

(d)

Figure 3.2: RGB Drone imagery for (a) Building 1. (b) Building 2. (¢) Grid with points accumulated by
grid cell for building 1. (d) Lines detected in the first iteration.



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 16

densities to those corresponding to walls have a value of 1. We opt to use,

1

T = ipavgh’rnin
where pqyg is the running average density and hy,;y, is the minimum wall height given as input. The factor
of 2 is added because a wall may be split between two adjacent grid cells. Figure 3.2(c) shows an example
of the accumulated grid.

Next, we apply the Hough transform to the accumulated grid. We found the approach by Hammoudi
et al. [33] of clustering in Hough space to be fairly unreliable with the relatively high number of walls in
our dataset, so we instead opt to find local peaks in Hough space and filter out spurious and duplicate lines
later in the pipeline. For each line, we extract all points within a small perpendicular distance around the
line, say 0.2m, which mostly corresponds to the points on the wall. We further refine the line orientation
by applying RANSAC to these extracted points to find the best-fit line corresponding to the wall points.
Figure 3.2(d) shows an example of the detected lines.

3.2 Line Segmentation

The walls lie along the detected lines, and so we wish to determine the exact portion of each line overlapping
a wall. To do so, we accumulate the points along the detected line into a 1D grid, with cells of length 0.3m.
Then, we once again threshold the 1D grid cells using the running average point density of all previously
extracted walls, or 5% of the cells’ maximum point count for the first iteration. A diagram showing a gridded
line and the thresholded result is shown in Figures 3.3(a) and 3.3(b) respectively. Figure 3.3(c) shows one
of the detected lines in Figure 3.2(d), trimmed so that its endpoints lie on the first and last grid cell with a
value greater than the threshold.

After thresholding the grid, we apply a 1D median filter to the grid, whose size is twice the minimum
wall length [,,;, given as input. This has the dual purpose of removing noise along the line, as well as
filtering out wall fragments that lie perpendicular to the line, whose corresponding cells would still have
high point counts in the image, but only for a few successive cells.

Next, we extract all contiguous sections of the grid with non-zero values to form line segments. The
corresponding line segments for the trimmed line in Figure 3.3(c) is shown in 3.3(d). In each iteration, we
repeatedly apply the line detection and line segmentation process, while removing the points associated with
each detected line from consideration. This ensures that the Hough transform detects different lines at each
iteration. This process continues until no more line segments are extracted.

3.3 Line Processing

We next post-process the extracted walls, in order to ensure they meet at endpoints. We first determine
whether any endpoints of two different line segments are close together, and if so we close the gap between
them by connecting them together, as shown in Figure 3.4(a). We also check whether by extending a line
segment L; a fixed fraction, say 15%, of the length of the line, would cause it to intersect another line,
Ls. If so, we extend L; and split Ly at the point of intersection into two segments, as shown in Figure
3.4(b). Finally, we delete duplicate segments by checking whether the endpoints of any pair of lines are close
together. An example of the post-processed output for the data in Figure 3.3 is shown in Figure 3.4(c).



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 17

Figure 3.3: (a) Example of the ’gridded’ line. (b) The line segment in (a) thresholded by density. (¢) One
of the detected lines, trimmed to match the support in the grid. (d) The extracted line segments.



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 18

(a) (b)

Figure 3.4: (a) Merging endpoints close together. (b) Splitting a nearby line segment. (c) Detected lines
after post-processing.

(b)

Figure 3.5: (a) Example of a ’partial’ polygon in Building 1. (b) Counter-clockwise traversal.

3.4 Polygon Extraction

Once line segments have been extracted, they are converted into a polygonal footprint. Some line segments
may have been missed in the previous steps, so in addition to converting existing line segments into full
polygons, polygons are inferred from the arrangement of line segments, and then checked for underlying
support in the point cloud. Our approach to polygonization can be summarized as follows. We first itera-
tively construct polygons from the line segments. To do so, we extract all closed polygons that are already
present. Next, we determine polygon candidates, called 'partial polygons’, which are sets of consecutive
line segments not forming a closed polygon. An example of a partial polygon is shown in Figure 3.5(a).
Then, we add new line segments following specific rules in order to ’complete’ the partial polygon to form a
closed polygon, and repeat the process. Once no new closed polygons are created, the polygon construction
process terminates, and we estimate the height of all the closed polygons using the points lying inside them.
Finally, we merge the closed polygons based on their height.

To extract the polygons, each line segment is treated as an edge in a planar graph. For two such edges,
if their endpoints overlap, i.e. their endpoints are within an e-distance from one another, we consider the
two edges to be neighbors. Clearly, it is possible to traverse along the edges of any closed polygon until one
returns to the starting node.



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 19

We consider the sequence of edges in a cycle to be an ‘ordering’ of the edges. By ordering edges in this
manner, the edges are either in a clockwise or counter-clockwise ordering around the polygon. If we were to
traverse along any convex polygon in clockwise order, we would only ever make right turns, and vice-versa
for counter-clockwise order. An example of a counter-clockwise traversal of edges is shown in Figure 3.5(b).

Another important property is that an edge can be a part of at most two polygons, one on each side of
the edge. By observing these two properties, we can extract all polygons from the edges. We start at an
edge of a polygon, adding the neighbors connected to one of the ends of the edge. Then, we choose to make
only right or left turns, walking along the edges continuously and adding the rightmost or leftmost edge
until we return to the starting edge. Thus, if we start with an edge and choose to turn only left, we obtain
a polygon on one side, namely the left side of the edge. If we instead choose to turn only right obtain the
polygon on the right side. For a right (left) turn, the angle between two successive edges is defined to be
negative (positive).

3.5 Partial-Polygon Construction

As can be seen in the output of the line processing step in Figure 3.4(c), there are initially only a few closed
polygons present. As a result, in order to construct a polygonal footprint, closed polygons must be created
from the incomplete ’partial’ polygons that are present. We construct the partial polygon such as the one
shown in Figure 3.5(a) by following a similar polygon extraction process described in Section 4.1. These
partial polygons are sets of edges that would be grouped together without actually forming a closed polygon,
i.e. missing a contiguous section. Since a traversal through a partial polygon does not return to the starting
edge, constructing these partial polygons requires some care. Traversing edges in a single direction will not
give us all the edges of a partial polygon unless we start at an edge which contains one of the two endpoints
of the partial polygon. However, we can find such an edge by performing an initial traversal of the polygon
in one direction. Once we reach an edge with no valid neighbors, i.e. one of the edges which contains an
endpoint of the partial polygon, we reverse our traversal direction and the direction of the turns, adding
any edge we visit. In this reversed traversal, we visit all edges from one endpoint to the other, obtaining all
the edges in the partial polygon. An example of a partial polygon ACDEFGHI is shown in Figure 3.6(a).

3.6 Polygon Completion

Once we have constructed the partial polygons, we need to construct closed polygons from them. Given
the partial polygon ACDEFGHI in Figure 3.6(a), there are many potential approaches for constructing a
closed polygon, some leading to higher polygon counts and some to fewer. In the example shown in the
figure, a closed polygon BCDEF is constructed, and a new partial polygon ABFGHI is created. We could
have simply closed the entire partial polygon ACDEFGHI by extending the edges CA and HI so that they
intersect, but this approach would force us to assign only a single height to the entire polygon. By creating
smaller polygons instead, we can achieve finer granularity in height assignment which is useful in the height
based merging step to be described later.

We opt to create an additional edge that closes a portion of the partial polygon. This has the effect of
creating a small closed polygon, and potentially another partial polygon to be completed in future iterations.
The implementation of the polygon completion process proceeds as follows. We consider two distinct classes
of partial polygons: those with 2 or more corners, and those with only one corner. For each partial polygon
with 2 or more corners, where a corner is connected to two edges with a non-zero angle between them,
we first take the two adjacent corners of the polygon with the smallest distance between them. In Figure
3.6(a), this corresponds to corners C' and E. Next, we take the smallest edge connected to either of these



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 20

J K
A B i
New Edges —————
<« New Edges
El i 1C \ _.J\ B_ C_
I D
D H ¢ L ¥ E

(a) (b) (c)

Figure 3.6: (a) Completion process for a partial polygon with 3 corners. (b) Propagation effect of completing
one partial polygon to the completion of another in a subsequent iteration. (c¢) Completion process for a
partial polygon with 1 corner.

corners, such that it does not lie between the two corners. In Figure 3.6(b), this corresponds to edge FE.
From these three resulting endpoints, namely CEF, we then complete the rectangle by adding edge BF and
splitting edge AC into two pieces, namely AB and BC. This process completes a portion of the partial
polygon. In this process, choosing the corners with the smallest distance between them tends to lead to
more proportional polygons. Although we could have conceivably chosen the largest distance instead, this
would have led to long, skinny, small polygons in future iterations, resulting in error prone height estimation
due to a low point count.

For the case where the partial polygon only has one corner, we instead complete the polygon using the
two edges extending from the corner. An example of this is shown in Figure 3.6(b), where the only corner
is endpoint B. As a result, edges AB and BC are selected, and edges CE and AF are created. The reason
we require at least one corner is because any polygon with no corners corresponds to a single line, for which
we have no information how far a polygon might extend.

Figure 3.6(a) shows one iteration of the completion process, where the partial polygon closes at endpoint
F, and the edge BF is added as a result. Note that the addition of an edge in one iteration can lead to new
partial polygons in subsequent iterations, creating a ’domino’ effect, which enables our method to complete
the entire partial polygon ACDEFGHI, while creating several smaller polygons in the process. This allows
us to segment the polygons in a more granular fashion based on their heights, since we can estimate the
height for each polygon individually. We also perform the same process on the already closed polygons,
in order to subdivide them further. For example, in Figure 3.6(a), we add an additional edge starting at
endpoint D and ending on the line segment BF represented by the dashed line.

The newly added edges, such as BF, create new endpoints such as B, which may cause other partial
polygons to close at B in future iterations if they share the edge BC. This is shown in Figure 3.6(c), where B
causes a neighboring partial polygon, namely JABC, to create the edges BK and KJ in the next iteration.
This is useful because facades are often aligned with one another even if they are not directly in contact.
For example, for the partial polygon of Figure 3.5(a) the two facades, whose points of intersection with the
partial polygon are labeled A and B respectively, are aligned vertically but do not come in contact with one
another. If either facade is missing from the line detection step, the other facade is used to recover it.

For each edge we add as a result of the polygon completion process, we check that the height profile of
the points along the edge are consistent and above A,y , and remove it otherwise. This is to ensure that the
edge is not part of the ground and does not lie across rooftops of different heights. To obtain the heights
along each of these newly added edges, we extract the 3D points from the point cloud around each edge



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 21

Figure 3.7: Example of the completed (unmerged) polygons after all iterations have completed.

similar to Section 3.3, segment the points into a 1D grid along the line, and assign to each grid cell the 90"
percentile for the height of the points that lie inside them, as these correspond to the rooftop heights with
high probability. Then, we propose to take the first and third quartiles of the values over all the grid cells
corresponding to the edge under consideration, and verify that they differ no more than a small amount,
e.g. 0.5 meters.

Once all the discovered partial polygons in the iteration have been completed, the iteration is complete.
Since new partial polygons may have been formed as a result of this process, the steps in Sections 4.1,
4.2, and 4.3 are repeated. This creates a ’domino’ effect where the additional edges at each new iteration
allow previously undiscovered partial polygons to be constructed, until no more edges or closed polygons
are added. We then remove all edges that are not part of any closed polygon. An example of the completed
polygons for the point cloud shown in Figure 3.2(a) is shown in Figure 3.7.

3.7 Polygon Merging

Once all the polygons have been completed, we recursively merge adjacent polygons if they are close together
in average height, e.g. within 0.5 meters of each other. To do so, we iterate through each edge that is shared
between two polygons, and check their heights. After merging two polygons, we update the height of the
merged polygon by simply performing a weighted average of the average heights of the two polygons, where
the weighting factor is based on the area of the polygon. Using the average height has only been tested to
work for flat rooftops, though it could conceivably work with non-flat rooftops as well. The merged polygons
for Building 1 is shown in Figure 4.3(a). Figures 4.3(b) and 4.3(c) show the resulting heatmap of the heights
of the merged polygons for Buildings 1 and 2 respectively. Additionally, 3D renderings for the footprint of
the two buildings are shown in Figures 4.3(d) and 4.3(e).

3.8 3D Building Reconstruction

After obtaining a set of closed polygons, we estimate their height by averaging the height of the points that
lie inside it, within a fixed distance of the boundary. We use our 2D grid to compute the average height of
the points in each cell, and also average over the height of the cells. By taking the average over grid cells
rather than directly using point height, the height computation is spread out across the entire area of the



CHAPTER 3. BUILDING FOOTPRINT EXTRACTION 22

polygon, minimizing the effects of objects, such as air conditioning units, that may lie on top of the roof,
while also speeding up computation time. Since we are only interested in the height of the roof, we ignore
cells near the boundary of the polygon as these contain the facade points as well. Using the average height
inherently limits the footprint to flat rooftops, since height for pyramid-shaped rooftops is computed at their
apex. If we were to use the 90" percentile rather than average height, our approach could potentially also
be used for pyramid-shaped rooftops.



Chapter 4

Experimental Results

We collected 2 datasets, each consisting of several hundred images of two buildings in Alameda, California.
Images are captured using the DJI Spark drone with a 12MP RGB camera, 25mm lens, and f/2.6 aperture.
The buildings are captured in a circular pattern, with a 70% overlap between successive images. Images
are then processed using Pix4D as described in Section 4.1 to generate a dense cloud with 6 million points.

This chapter is organized as follows. Section 4.1 details our data collection and processing for the
generation of the point cloud and camera poses. Section 4.2 shows our results for the building and vegetation
segmentation methods of Section 2. Section 4.3 shows our results for the building footprint extraction
methods of Section 3. Section 4.4 explains how we used an extracted building footprint to obtain the
window-to-wall ratio of a facade, given input RGB images with windows already detected. Finally, Section
4.5 shows a set of thermal images that are overlaid with the extracted 3D building model.

4.1 Data Collection and Photogrammetry

After a building is selected, we plan the flight so that the drone captures images at most 30 meters from
the building, following many circular paths with a gimbal angle of -35° off the horizon. This ensures that
captured images are sufficiently close to the building to allow for a high quality reconstruction. Successive
images are captured to have a 85% front overlap with one another and are geo-tagged. Examples of the
flight plan for a portion of a building can be seen in Figures 3.1(a) and 3.1(b). In order to comply with
federal guidelines, the area is scouted so that there are no persons beneath the flight path of the drone.
Flights during rain and heavy wind are avoided, for both safety reasons and to ensure the images are of high
quality.

There exist several commercial applications for the construction of 3D models and 3D point clouds from
a set of images. In order for these applications to work effectively, images generally require high amounts of
both frontal overlap, i.e. successive images in the flight direction, and side overlap, i.e. between flight tracks.
We opted use the Pix4D software suite [34] to generate a dense point cloud and calculate the internal and
external parameters for camera calibration from our collection of input images. Pix4D additionally provides
a set of camera pose matrices as output based on the internal and external camera parameters calculated
for each input image. This matrix is used to convert the 3D coordinates of a point in the generated dense
cloud to the 2D coordinate of a pixel in an undistorted input image.

23



CHAPTER 4. EXPERIMENTAL RESULTS 24

Building Vegetation
Ours Pix4D PointNet++ | Ours Pix4D PointNet+-+
Precision | 0.90 0.98 0.76 0.72 0.42 0.47
Recall |0.90 048 0.90 0.91 0.87 0.47
Jaccard | 0.82 0.48 0.69 0.64 0.41 0.31
F1 0.90 0.64 0.82 0.79 0.58 0.47

Table 4.1: Precision, Recall, F1 scores and Jaccard Similarity Coefficient scores for our methodology on
Dataset 1.

Building Vegetation
Ours Pix4D PointNet++ | Ours Pix4D PointNet++
Precision | 0.90 0.99 0.75 0.83 0.25 0.22
Recall |0.85 0.62 0.73 0.55 0.90 0.63
Jaccard | 0.77 0.58 0.60 0.49 0.24 0.19
F1 0.87 0.76 0.74 0.66 0.39 0.33

Table 4.2: Precision, Recall, F1 scores and Jaccard Similarity Coefficient scores for our methodology on
Dataset 2.

4.2 Building and Vegetation Segmentation Results

Pix4D is used to generate a point classification for each of these points, which we use as a comparison to the
results of our method. For the occlusion detection, we find that using a single block-reduce size of (10,10)
for a 12MP camera image works well for our purposes. We use the full image dataset to generate the dense
point cloud, but only use 1 in 5 of the dataset images for segmentation, to improve runtime. Because we use
a subset of photogrammetry images for segmentation, a percentage of 3D points may not be mapped to any
2D pixels in the segmented images. We find this to be ~7000 points (0.12%) for Dataset 1 and ~34100 points
for Dataset 2 (0.31%). These are small enough to have a negligible impact on the results. An example point
cloud is shown in Figure 4.1(a), with the resulting predictions from our method, Pix4D, and PointNet++
in Figures 4.1(b), 4.1(c), and 4.1(d) respectively, and the ground truth in Figure 4.1(e). Qualitatively, for
both datasets Pix4D and PointNet++ leave a large number of vegetation points unclassified and misclassify
a large number of building points as vegetation points.

To evaluate the performance of our method, we compute the F1 score and Jaccard Similarity Coefficient
score for the two classes: ‘building’ and ‘vegetation’. For comparison, we also compute the scores from
the output of Pix4D’s classifier and for PointNet++ trained on the Semantic3D dataset. Note that for
these classifiers, we combine the LAS classifications of ‘high’, ‘medium’, and ‘low vegetation’ into a singular
‘vegetation’ class, as our work is not focused on distinguishing between the different types of vegetation.
The results are shown in Tables 4.2 and 4.1 for Datasets 1 and 2, respectively. Comparing the accuracy
scores, our method significantly outperforms both Pix4D and PointNet++ in detecting vegetation points for
both Jaccard and F1 scores on both datasets, significantly outperforms both classifiers in detecting building
points for Dataset 2, and modestly outperforms both classifiers in detecting building points for Dataset 2.

Additionally, we evaluate confidence metrics for points in our classified dataset. Figure 4.2a shows a
distribution of the number of unique classes (‘vegetation’, ‘building’, ‘other’) that a point has been assigned
by segmented pixels from separate images. This represents how likely the classified pixels among all images



CHAPTER 4. EXPERIMENTAL RESULTS 25

Figure 4.1: (a) The example point clouds. Classification results from: (b) our method; (¢) Pix4D; (d)
PointNet++; (e) The ground truth. Green: Vegetation, Red: Building, White: Other



CHAPTER 4. EXPERIMENTAL RESULTS 26

107 =
1044 u: 0.81
. 3 £ 5 G:0.16
B 10° 2
E = 1044
o 1044 <
c 51034
T 10 =
E S 1024
= 02—
= 10 z
10! p: 1.8 10t
1 0.49
100 g =
0 1 2 3 PP g - P PR A PR P B T P P S P o]
o N AR A N N S
MNumber of Unique Votes for Point ) _—
Vote Confidence
(a) (b)

Figure 4.2: (a) Histogram of number of unique votes per point. (b) Histogram of winning vote’s confidence
per point.

mapping to a given point agree with one another. The mean of this value is 1.8. We also show a histogram
of ‘vote confidence’ in Figure 4.2b. We define the confidence of a point as the ratio of the number of
majority classifications to the number of total classifications. This represents how ‘strong’ the majority
class is relative to other assigned classes. This distribution has a mean of 0.81, showing that there is often
a strong majority among the classes assigned to a point.

4.3 Building Footprint Evaluation

The proposed footprint extraction has been performed on two buildings in Alameda, with point clouds
shown in Figures 3.2(a) and 3.2(b) using the full pipeline as described in Chapter 3. To evaluate our results
we hand-labeled the two buildings using satellite imagery of the building from Google Earth. We manually
placed markers around the building outline to obtain their coordinates, which we compiled into polygons.
To account for alignment discrepancies, we performed a grid-search to find the best alignment between
the generated footprint and the ground truth. The grid-search was performed by iteratively shifting the
generated footprint at different orders of magnitude, and choosing the one that maximized the intersection
area between the generated building footprint and the ground truth. Next, we computed the F1 and IOU
scores for each building as shown in Table 4.3. Our method achieves F1 scores and IOU scores above 0.9
for both buildings. Alameda Building 1 actually corresponds to a larger building complex, for which only
a section was imaged. For reasonable comparison, the ground truth for Alameda building 1 was cut-off
at the far-left side, since most of its facades were not present in the images, and so the number of points
corresponding to it in the point cloud was low.

4.4 Window-to-Wall Ratio Estimation

The building footprint was additionally used to extract the window-to-wall ratio of the windows and building
facades of an image. A block diagram for the entire process is shown in Figure 4.4. Window-to-wall ratio
is crucial for energy modeling of a building, because it has significant effects on heating, cooling, lighting,



CHAPTER 4. EXPERIMENTAL RESULTS 27

(d) ()

Figure 4.3: (a) Polygons for Building 1 after the merge process has completed. Heatmap of the heights of
merged polygons for (b) Building 1. (c¢) Building 2. 3D Rendering of Alameda Buildings (d) 1 and (e) 2,
from the extracted 2D polygon footprints, with polygons extruded by height.



CHAPTER 4. EXPERIMENTAL RESULTS 28

F1 Score | IOU Score
Alameda Building 1 0.934 0.901
Alameda Building 2 0.950 0.930

Table 4.3: F1 and IOU scores for our method evaluated on the Alameda datasets

Q) =y = AN - o By -

Input: Window Mask Project Facade Points Triangulate Projected Project Window into 3D Compute Window-to-Wall
Points ratio

(a) (b) (<) (d) (e)
Figure 4.4: Flowchart for the window-to-wall ratio extraction process.

ventilation, and more. For this approach, we assume that windows have already been detected on a 2D
image as depicted in Figure 4.4(a), and we simply wish to compute their areas in 3D along with the area of
their corresponding facades. To do so, we take the facade corner points of the extracted 3D building model,
and project them onto the RGB drone camera image that corresponds to the input image with the detected
windows. This is shown in Figure 4.4(b). The projective distance for each of the corners of the facade is
stored. This will be used to determine the ordering of the facades along the optical axis. An example for
the projection on one RGB image is shown in Figure 4.5(a), with the projected building model overlaid on
top of an RGB image.

We use a window mask for a 2D image as input, shown for the RGB image for Figure 4.5(a) in Figure
4.5(b). Then, for each projected facade onto its corresponding image, we determine if it contains each window
by checking whether the window lies within the 2D facade corners in the image. Since we are not explicitly
determining whether a facade is occluding another, a window may lie on many of the projected facades, so
we need choose the closest such facade to the optical center to find the facade the windows actually lie on.
This is done by choosing the facade with the minimum projective distance for the particular RGB image.
Once we have determined the correspondence between the facades and their respective windows in 2D, we
wish to use this information to back-project the windows into 3D and onto the corresponding 3D facade.
Since the facades could have an arbitrary shape, especially the roof polygons, we perform a triangulation
of all the projected facade corners via Delaunay Triangulation in 2D, as shown in Figure 4.4(c). We then
determine the resulting triangles that each of the window vertices lie within. This allows us to obtain the
position of each window point in barycentric coordinates, i.e. relative to the facade corners, as depicted in
Figure 4.6 where the example window point W can be written in terms of the facade points A, B and C
with the equation:

W =aA+ BB +~C (4.1)

For a+ 8+~ = 1. Then, using the barycentric coordinates of the window points, we can compute a position
for the window points in 3D space, as shown in Figure 4.4(d). This is done by plugging in the coordinates
of the 3D facade points from the 3D building model into the same barycentric equation, i.e. replacing the
2D facade points A, B, C with the corresponding 3D facade points, and using the same «, 8, and 7. Once
we have the 3D coordinates for the window points we can compute the window to wall ratio by simply



CHAPTER 4. EXPERIMENTAL RESULTS 29

oF ™ .y

(b)

Figure 4.5: (a) 3D building model projected onto a 2D image, with roof polygons overlaid in blue and facades
in red; (b) The corresponding window mask; (c¢) Facade (red) with its corresponding windows (blue).

Facade

Window

¢ W=axA+3+«B+yxC D

Figure 4.6: Triangulation of the projected facade points with the facade in red and window in blue.

calculating the surface area of the facade using its 3D coordinates, along with the surface area of each of
its windows with their 3D coordinates. This is shown in 4.4(e). For the facade shown in Figure 4.5(c), the
window-to-wall ratio is 11.01%.

4.5 Thermal Image Overlay

We additionally extracted a point cloud from a project that included both thermal images and RGB images.
The process for creating the point cloud with both types of images is detailed in Appendix A.2. After
generating a 3D model from our building footprint extraction, we additionally projected each of its facades
onto a set of thermal images. A Zenmuse XT camera was used to capture thermal images of one the buildings
in Alameda. Four such images with the 3D model overlaid on top can be seen in Figure 4.7.



CHAPTER 4. EXPERIMENTAL RESULTS 30

(c) (d)

Figure 4.7: 3D building model overlaid on top of several thermal (IR) images, with the roof facade in blue
and wall facades in red.



Chapter 5

Conclusions and Future Work

We have presented two pipelines, one for the semantic segmentation of 3D point clouds and the other for
generating building footprints from 3D point clouds. For both pipelines, we utilized 3D point clouds con-
structed from two buildings in Alameda, California. To do so, we captured RGB images using a drone
and then processed them with photogrammetry software to construct a 3D point cloud. By utilizing pho-
togrammetry to accomplish this task, we avoid the need for LiDAR or other depth information from the
environment.

We address a fundamental limitation of the segmentation approach, namely occlusion, with a novel
occlusion detection method. Results are favorable compared to state-of-the-art semantic segmentation built-
in to an existing photogrammetry software suite as well as compared to the results using PointNet+-+. Future
improvements to this work include a confidence score for point classifications, calculated with a Bayesian
method on the list of classes for each point. This would likely improve results compared to the current
majority vote of pixel classes corresponding to the point. Note that the choice of 2D image segmentation
approach is independent from our pipeline, so as 2D image segmenters improve, so too will the results of
our pipeline.

Our methodology for generating building footprints achieves good results on both point clouds, demon-
strating that the polygonization approach is a promising avenue for generating building footprints. One
shortcoming of our footprint extraction approach is that sparse line segments can cause potential polygons
to be missed. Future work could focus on either improving the line segment detection algorithm or further
developing the polygonization logic. Moreover, tree detection logic for point clouds could be integrated with
our method to improve results, as trees incorrectly result in polygons. Additionally, the method as presented
only accounts for flat rooftops, as non-flat rooftops were not present in our test datasets. However, the only
portion of our method that assumes a flat rooftop is merging polygons, and so our methods could potentially
be extended to non-flat rooftops by adjusting how the height profiling is performed. Finally, our approach
does not readily extend to buildings that are less regular, such as circular or pyramid-shaped buildings.
This is because circular buildings are not easily polygonized. Meanwhile, the facades of a pyramid-shaped
building do not lie along the vertical axis, making their extraction problematic for our method.

31



Bibliography

[1]

M. Carlberg, P. Gao, G. Chen, and A. Zakhor, “Classifying urban landscape in aerial lidar using 3d
shape analysis,” in 2009 16th IEEFE International Conference on Image Processing (ICIP), Nov 2009,
pp. 1701-1704.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” 2016.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” 2017.

Loic Landrieu and Martin Simonovsky, “Large-scale point cloud semantic segmentation with superpoint
graphs,” CoRR, vol. abs/1711.09869, 2017.

Alexandre Boulch, “Convpoint: Continuous convolutions for point cloud processing,” Computers
Graphics, vol. 88, pp. 24 — 34, 2020.

Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese, “Segcloud:
Semantic segmentation of 3d point clouds,” 2017.

E. Ozdemir and F. Remondino, “Classification of aerial point clouds with deep learning,” ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.
XLII-2/W13, pp. 103-110, 2019.

Vishakh Hegde and Reza Zadeh, “Fusionnet: 3d object classification using multiple data representa-
tions,” 2016.

Ji Hou, Angela Dai, and Matthias Niefiner, “3d-sis: 3d semantic instance segmentation of rgh-d scans,”
2018.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,
and Jan Kautz, “SPLATNet: Sparse lattice networks for point cloud processing,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2530-2539.

Hao Pan, Shilin Liu, Yang Liu, and Xin Tong, “Convolutional neural networks on 3d surfaces using
parallel frames,” ArXiv, vol. abs/1808.04952, 2018.

Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou, “Tangent convolutions for dense
prediction in 3d,” 06 2018, pp. 3887-3896.

32



BIBLIOGRAPHY 33

[13]

[19]

[20]

A. Boulch, B. Le Saux, and N. Audebert, “Unstructured point cloud semantic labeling using deep
segmentation networks,” in Proceedings of the Workshop on 3D Object Retrieval, Goslar, DEU, 2017,
3Dor ’17, p. 17-24, Eurographics Association.

Alexandre Boulch, Joris Guerry, Bertrand Saux, and Nicolas Audebert, “Snapnet: 3d point cloud
semantic labeling with 2d deep segmentation networks,” Computers Graphics, vol. 71, 12 2017.

Norbert Haala and Martin Kada, “An update on automatic 3d building reconstruction,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 65, no. 6, pp. 570-580, 2010.

Peter Crawford, “Effects of aerial lidar data density on the accuracy of building reconstruction,” 2018.

Taejung Kim, Ts Javzandulam, and Tae-Yoon Lee, “Semiautomatic reconstruction of building height
and footprints from single satellite images,” in 2007 IEEFE International Geoscience and Remote Sensing
Symposium. IEEE, 2007, pp. 4737-4740.

Nitin L. Gavankar and Sanjay Kumar Ghosh, “Automatic building footprint extraction from high-
resolution satellite image using mathematical morphology,” European Journal of Remote Sensing, vol.
51, no. 1, pp. 182-193, 2018.

Aaron K Shackelford, Curt H Davis, and Xiangyun Wang, “Automated 2-d building footprint extrac-
tion from high-resolution satellite multispectral imagery,” in IGARSS 2004. 2004 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2004, vol. 3, pp. 1996-1999.

Salman Ahmadi, M.J. Valadan Zoej, Hamid Ebadi, Hamid Abrishami Moghaddam, and Ali Moham-
madzadeh, “Automatic urban building boundary extraction from high resolution aerial images using an
innovative model of active contours,” International Journal of Applied Earth Observation and Geoin-
formation, vol. 12, no. 3, pp. 150 — 157, 2010.

G Sohn and IJ Dowman, “Extraction of buildings from high resolution satellite data,” 2001.

Ksenia Bittner, Fathalrahman Adam, Shiyong Cui, Marco Koérner, and Peter Reinartz, “Building
footprint extraction from vhr remote sensing images combined with normalized dsms using fused fully
convolutional networks,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 11, no. 8, pp. 2615-2629, 2018.

Microsoft, US Building Footprints, 2018.

Ajit Sampath and Jie Shan, “Building boundary tracing and regularization from airborne lidar point
clouds,” Photogrammetric Engineering and Remote Sensing, vol. 73, 07 2007.

Keqi Zhang, Jianhua Yan, and S-C Chen, “Automatic construction of building footprints from airborne
lidar data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 9, pp. 2523-2533, 2006.

Mathieu Brédif, Olivier Tournaire, Bruno Vallet, and Nicolas Champion, “Extracting polygonal building
footprints from digital surface models: A fully-automatic global optimization framework,” ISPRS
journal of photogrammetry and remote sensing, vol. 77, pp. 57-65, 2013.

Ksenia Davydova, Shiyong Cui, and Peter Reinartz, “Building footprint extraction from digital surface
models using neural networks,” in Image and Signal Processing for Remote Sensing XXII. International

Society for Optics and Photonics, 2016, vol. 10004, p. 100040J.



BIBLIOGRAPHY 34

[28]

F Nex and Fabio Remondino, “Automatic roof outlines reconstruction from photogrammetric dsm,”
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 1, no. 3,
pp. 257-262, 2012.

Chungan Lin and Ramakant Nevatia, “Building detection and description from a single intensity
image,” Computer Vision and Image Understanding, vol. 72, no. 2, pp. 101 — 121, 1998.

Ali Ozgun Ok, “Automated detection of buildings from single vhr multispectral images using shadow
information and graph cuts,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 86, pp. 21
— 40, 2013.

R. B. Irvin and D. M. McKeown, “Methods for exploiting the relationship between buildings and their
shadows in aerial imagery,” IEEFE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 6, pp.
1564-1575, 1989.

D Koc San and M Turker, “Building extraction from high resolution satellite images using hough
transform,” 2010.

Karim Hammoudi, Fadi Dornaika, and Nicolas Paparoditis, “Extracting building footprints from 3d
point clouds using terrestrial laser scanning at street level,” 09 2009, vol. 38.

Pix4D SA, “Pix4d,” .

Yuxing Xie, Jiaojiao Tian, and Xiao Xiang Zhu, “A review of point cloud semantic segmentation,”
2019.

J. L. Schonberger and J. Frahm, “Structure-from-motion revisited,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 4104-4113.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 3431—
3440.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun, “Unified perceptual parsing for
scene understanding,” in European Conference on Computer Vision. Springer, 2018.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba, “Scene
parsing through ade20k dataset,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.



Appendix A

Appendix

This appendix describes our process for generating point clouds and 3D meshes from Pix4D. Section A.1
outlines our procedure for generating point clouds from RGB images. Section A.2 additionally outlines the
procedure for merging an RGB project with a thermal project, for the purpose of generating camera pose
matrices for thermal images. Finally, Section A.3 describes the process for creating 3D models with Pix4D
that are texture mapped with thermal images.

A.1 RGB Point Cloud Generation

After capturing a sufficient number of geo-tagged RGB images, we process them in Pix4D to create a point
cloud . In Pix4D, we opted to use the ’3D Models’ template. For the ’Initial Processing’ step, we set the
"Keypoints Image Scale’ to 'Full’, leaving the other settings to their default value, as seen in Figure A.1(a).
For the 'Point Cloud and Mesh’ step, we adjusted the image scale to use the original image sizes, as shown
in Figure A.1(b). Then, we simply run Pix4D to create the point cloud as seen in Figure A.2.

A.2 Merged RGB and Thermal Image Projects

We additionally extracted a point cloud from a project that included both thermal images and RGB images.
We used the Zenmuse XT camera to capture the thermal images. In order to create a point cloud using
both image types in Pix4D, we constructed two separate projects for the thermal images and the RGB
images. After the 'Initial Processing’ step has completed for both projects, we added several Manual Tie
Points (MTPs) for corners of the building in each projects, so that the MTPs corresponded with one another
across the two projects. Manual tie points were added by selecting one of the tie points from the result
of the ’Initial Processing’ step, clicking 'New Tie Point’, and then selecting in several different images the
location of the tie point. An example of the MTPs is shown for the RGB project in Figure A.3. Once the
tie points were added, we merged the two projects into a singular one and ran the "Point Cloud and Mesh’
step for this merged project, obtaining a point cloud and the camera poses for both the RGB and thermal
input images. The settings for the point cloud generation were the same as in A.1. The resulting point
cloud with the drone flight path, i.e. a representation of the camera images, is shown in Figure A.3(b).

35



APPENDIX A. APPENDIX

36

I Procusung Opbony

Geed | Maihng | Calbaten

E@{f)‘_. .

=] '& 2, Paint Cloud and Meh

% 3,06M, Githomasaic and
o Idex

T Pesources and Motfcstions

CuTent Optins; M Template

@ Fa
) Raped
O Gt
e LOngE isge s
Cpaty Repart
] enarata crthamescaic Praview in .ckty Alapert

load Tempiate || | Gave Tempiate . Manage Temptes.

] Advarced

[ el

(a)

B Sl & pont Clootwndbden

o 1 DM, Drthomossic and
= Indes

& ' 5 Fesources and Notrficaones

Cuent Cpiere: Mo Template

FontChud  DTamecdsh  Advancd
Irage Scsat 1 {Crigia nsaga g0z, S
Pt Dty e

P Monber of Matches: (3%

Pt Coud Classicaton
fiose: e e CTR pereraton
Ewert

ELas

[m[Fx

Onr

O

space
[ Merga Thsinitn neFia

LoadTerpisbe || | Ses Tarplain | Murage Tarpiabm...

] atvencad

(b)

7| e

Figure A.1: (a) Settings for the 'Initial Processing’ step. (b) Settings for the 'Point Cloud and Mesh’ step.

Figure A.2: Point cloud generated from RGB images in Pix4d.



APPENDIX A. APPENDIX

(a)

Figure A.3: (a) Manual Tie Points (MTPs) for the RGB project shown as green arrows. (b) The merged
point cloud with RGB (outer circle) and Thermal (inner circle) drone flights overlaid.

Processing Opticra

Fontdowd W TemredWeh  Advenced
Y
u] ﬁ:‘ 1. Inkial Frocessing

Proscessing Optiors
Gararaten
A Geresate 20 Tentued Mesh

x
) FortGowl | MTeweden Al
o BB
O 7 1. Inkial Prozemsing
savigs
= ;;@ 2. Pk Clcud ad Mesh

Port Cioud Dengficaton.
) 1igh Resouten

Viatcharg Winckrn ;B0 el ®
= Imege Grags
H 2. Poink Cloud ard Mesh Pt Coud
) Macum R tion |kt H group? E 1
i (7 Lo Rt O Tharmad B ] Thamal iR
5 z
o g,-’< 3, [5M. Grthamossic and ") Cuntoem o [P 2.om omemosaicand
O (VY e O 14 o
£E12 Peeurces snd toticesans -

Resaurces nd Matificatians

Mesh Tetw
] e Cokor Balancing fie Tewture

 roun!
=] Themal IR
Pt Clud Fibars
Procesang fres
e Armataars
1 Limi Caer et Aurasscaly
= 0 Textredesh Settngs
Savmpie Density Divicert |1 2
Curarn Cotena: o Template Currart Citens: B Tamplate
Lol Turplate | | Savs Tarsciate | | Marage Torscietes... [ e —————
B Asuareed [3 Canesd Hep 2] Advarcad [ Carcal
(a)

(b)

Figure A.4: Settings used to generate the textured 3D mesh.



APPENDIX A. APPENDIX 38

(b)

Figure A.5: 3D Mesh textured with thermal imagery (a) Top view. (b) Side view with windows.

A.3 3D Model with Thermal Textures

Using the same RGB and thermal images, we also constructed a 3D mesh using Pix4D that was texture
mapped with the thermal images. The geometry for the 3D mesh was created from the RGB images inside
Pix4D, with the thermal texture simply projected on top. This was performed using a similar process to
Section A.2 where two individual projects were created, one for the RGB images and one for the thermal,
MTPs were added to both projects, and then the two projects were merged together. Once the two projects
were merged, the Point Cloud and Mesh’ step is run, with the settings shown in Figure A.4. A 3D mesh
textured with thermal images generated as a result of this process is shown in Figure A.5.



