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Abstract

Biomechanical Models and Robotic Systems for Human Motion Assessment

by

Sarah Seko

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

Over the past several decades, there have been advances in the development of complex
robotic devices for daily assistance or rehabilitation. The use of such devices, however, has
largely remained limited to a research setting due to the prohibitive cost and required opera-
tional engineering expertise. Likewise, dedicated biomechanics facilities perform quantitative
motion analysis, contrasting the qualitative and static imaging methods which are standard
in clinical care. The aim of this dissertation is to develop and validate affordable methods
and devices for assessing and assisting human motion.

We first present a framework for improved estimation of whole-body human kinematics
with data from a single depth-camera. The algorithm incorporates biomechanical and dy-
namic constraints for near-real time analysis of human motion. The approach is validated
against data from a ground-truth motion capture system on sit-to-stand (STS), an activity
of daily living which requires significant torque generation and coordinated movement of
multiple joints. We additionally present two methods for modeling the torso: a generalized
relationship for the lower-lumbar angle and an optimization-based method for estimating a
subject-specific model. Building on these modeling methods, we introduce a passive elastic
knee orthotic device which provides bilateral knee assistance during STS. The device design
and analysis integrate models of the human and device dynamics. Preliminary human sub-
jects tests demonstrate a decrease in the human knee torque as well as positive changes in
whole-body biomechanics. Finally, we introduce an affordable planar robotic manipulandum
for upper limb assessment and assistance. The mechanical, electrical, and control architec-
tures are presented, along with preliminary human subjects tests of reaching and elliptical
trajectories with force field assistance under an admittance controller. A protocol for the
assessment of strength and coordination is introduced and integrated with a biomechanical
model of the arm. With a total material cost of less than $800, this device provides an
accessible platform for clinical robotic assessment and rehabilitation.
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Chapter 1

Introduction

Motion of the human body is achieved through the complex and coordinated control of the
elements of the musculoskeletal system by the central nervous system. Typical biomechanical
function can be disrupted by neuromusculoskeletal injury or disease resulting in deficits in
areas such as strength, coordination, and range of motion. These decreases in motor function
affect the ability to complete activities of daily living (ADLs), fundamental actions necessary
to care for oneself independently [1].

The quantitative assessment of motoric ability and impairment is useful for diagnosis, re-
covery tracking, and the prescription of medical intervention and treatment. Human motion
analysis utilizes quantitative methods for tracking kinematics and developing biomechanical
models, estimating internal forces and torques during movement. These methods often rely
on sophisticated and expensive motion capture technology, which require specialized facili-
ties and expertise. The clinical standard of care does not typically incorporate these tools,
relying on qualitative and subjective measures of motion or static medical imaging.

The field of assistive or rehabilitation robotics is inherently connected to motion assess-
ment, providing technologies for both collecting quantitative data of human motion and
administering assistance. These devices mechanically connect to the subject, enabling mea-
surement of interactions forces which can inform biomechanical models. Additionally, quan-
titative assessment of a subject’s ability or performance can drive individualized models
or therapy protocols. Despite significant engineering advances in the field of rehabilitation
robotics over the last decades, we have not seen a widespread implementation of these com-
plex robotic mechanisms in clinical or home care. While several factors inhibit the adoption
of rehabilitation robotics, an undeniable barrier results from high device cost and complexity.
This inaccessibility further contributes to a limited understanding of models of recovery and
optimal robotic rehabilitation protocols.
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Figure 1.1: Thesis overview

1.1 Thesis Overview and Contributions

The focus of this dissertation is the development and validation of affordable methods and
devices for assessing and assisting human motion with the future aim of translation to clinical
or home settings. We utilize tools from rigid-body modeling, kinematic and dynamic analysis,
optimization, and interaction control. An emphasis is placed on empirical validation through
hardware characterization and human subjects studies which compare our technologies to
ground truth measures. The organization and key contributions of the thesis are summarized
below and shown in Figure 1.1.

Human Motion Analysis (Chapters 2 and 3)

We first present a framework for accurate and fast recovery of joint kinematics using a
single-depth camera [2]. This method incorporates biomechanical and dynamical constraints
into the recovery of joint kinematics from unconstrained joint center positions measured by
a depth camera. Our method is validated on 10 subjects completing sit-to-stand (STS),
an ADL and action of clinical interest. When compared against a gold-standard, marker-
based, motion capture system, our method was found to produce accurate, reproducible, and
consistent estimates of joint center positions and kinematics. The single depth camera can
be used in a clinical or home space with a total test time of less than one minute and near
real-time processing, providing an affordable and fast tool for clinical motion assessment.
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While it was applied to STS and the single-leg squat motions, the method is extendable to
other motions.

In whole-body motion analysis, the human torso is often modeled as a single rigid seg-
ment. More detailed modeling of the low back allows for the analysis of posture and loading
on the spine. In Chapter 1, we present a method for a generalized relationship for the lum-
bosacral joint position. We expand on this in Chapter 2 with a method for estimating a
subject-specific model of joint positions from observed marker-based motion data [3]. This
optimization-method builds on existing functional methods for joint center recovery. We
compare models generated from human subjects during sit-to-stand and a flexion-extension
motion against a model generated from an allometrically-scaled measurement. An analysis
of the marker residuals finds that the proposed functional models have lower residuals and
phase-dependency, indicating a better fit for the analysis of torso kinematics.

Passive Knee Assistance (Chapter 4)

Building on our work in biomechanical modeling, we present a novel passive knee orthotic
which provides bilateral knee extension assistance during STS [4]. This device utilizes an
elastic element to store energy when the knee is flexed during sitting which is released during
standing. By modeling the device and human kinematics and dynamics, we study the effect
of single-joint assistance on the control strategy adopted by human subjects. We find that
assistance results in a decrease in the human knee torque as well as changes in whole-body
biomechanics, notably an increase in the linear momentum of the upper body and a decrease
in the anterior excursion of the center of mass. These results indicate that single-joint
assistance at the knee has the potential to both facilitate successful STS and positively alter
whole-body biomechanics.

Active Upper Limb Assistance (Chapters 5 and 6)

Finally, we present the design, analysis, and validation of a planar robotic manipulandum
for upper limb assessment and assistance. Connected at the wrist, the device enables end-
effector control of the human arm, operating under position and velocity control as well as
force-based admittance control for volitional motion. The device can move the arm through a
large workspace with resistive and assistive forces applied along linear or curved trajectories.
The mechanical, electrical, and control systems are presented, along with preliminary human
subjects tests of reaching trajectories in a control population with case study data from two
subjects with upper-limb impairment. We present a novel solution for 3-D upper limb inverse
kinematic recovery, utilizing the device constraints. A 2-D model and a simple 6-muscle
model of the upper limb are also discussed. Hardware validation and initial human subject
results demonstrate device accuracy and functionality. We note differences in the interaction
force, trajectory smoothness and velocity, and ability to stabilize between control subjects
and subjects with upper-limb impairment .
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In Chapter 6, we explore two algorithms for upper-limb assessment with the device de-
tailed in Chapter 5: 1) the exploitation of assistive spring force-fields in tracking an elliptical
trajectory and 2) the assessment of strength and coordination through isolated joint motion.
These new methods demonstrate additional device functionality.
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Chapter 2

Depth Camera Motion Assessment

The study of joint kinematics and dynamics has broad clinical applications including the
identification of pathological motions or compensation strategies and the analysis of dynamic
stability. High-end motion capture systems, however, are expensive and require dedicated
camera spaces with lengthy set-up and data processing commitments. Depth cameras, such
as the Microsoft Kinect, provide an inexpensive, marker-free alternative at the sacrifice of
joint-position accuracy. In this work, we present a fast framework for adding biomechanical
constraints to the joint estimates provided by a depth camera system. We also present a
new model for the lower lumbar joint angle. We validate key joint position, angle, and
velocity measurements against a gold standard active motion-capture system on ten healthy
subjects performing sit-to-stand (STS). Our method showed significant improvement in Mean
Absolute Error (MAE) and Intraclass Correlation Coefficients (ICC) for the recovered joint
angles and position-based metrics. These improvements suggest that depth cameras can
provide an accurate and clinically viable method of rapidly assessing the kinematics and
kinetics of the STS action, providing data for further analysis using biomechanical or machine
learning methods.

2.1 Overview of Clinical Motion Assessment

Musckuloskeletal disorders of the spine and knee lead to approximately 39 million visits
to clinical care facilities each year in the United States [5]. Despite the prevalence of these
conditions, there remains a lack of scalable, accessible, and quantitative assessments for whole
body biomechanics in clinic. The current clinical gold standard for documenting functional
spine impairment is the measurement of Cobb angles in flexion and extension [6, 7], or
the Sagittal Vertical Axis (SVA) from radiographs [8]. Such radiographs are inexpensive
and offer a precise measurement of vertebral range of motion, but they only assess static
postures. During daily functional activities such as sit-to-stand (STS), the strategy used to
stand can vary [9, 10, 11], potentially changing the loads experienced by the joints. This
results in both inconsistencies in patient care throughout the recovery process and challenges
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in understanding the relationship between static observations and functional abilities.
Full-body motion analysis can provide insight into pathological motions and compensa-

tion strategies. This analysis is performed in biomechanics labs using gold-standard tech-
niques such as motion capture, force platforms, and surface electromyography. This data can
be processed using full-body biomechanics software such as Anybody [12] or OpenSIM [13].
While these systems are a staple in obtaining high resolution kinematic, force, and muscular
measurements, their application to regular clinical practice is limited by the time required
to setup these measurements, the cost of the equipment, required expertise, and the need
for a dedicated motion-capture space.

This has resulted in a dichotomy in analysis, with patients assessed with static measures
focused at a particular body segment, while biomechanical labs are able to track and analyze
the dynamic motion of the whole-body. Some researchers have explored the use of special-
ized wearable sensing systems for tracking spine function. Marras developed an exoskeletal
tracking system for the lumbar spine to identify motions during occupational tasks, and to
identify differences in individuals with low back pain [14, 15]. This system was shown to
provide a quantitative kinematic measure of dysfunction based on a specific set of flexion
tasks. Taylor and Consmüller developed a system for non-invasive back measurement using
flexible strain gauges to measure the curvature of the spine [16, 17]. This system was shown
to provide a reliable quantitative assessment of spine shape and range of motion when com-
pared to X-ray. While these systems have been shown to provide good estimates of spine
motion and can discriminate between pain and asymptomatic subjects, as they only track
spine motion, they are not able to assess changes in full-body motion.

Depth cameras such as the Microsoft Kinect have been used as a marker-less method
for assessing function. Unlike the prior motion capture strategies, no hardware (markers,
sensors etc.) needs to be attached to the subject. This allows for rapid testing and sim-
plifies clinical deployment. One of the disadvantages of the use of depth cameras is the
method used to identify subject landmarks. As no markers are placed on the subject, the
location of a subject’s joint centres (Fig 2.1) relies on machine learning to label the pixels
corresponding to each body segment. The intersection between body segments is then taken
to be the estimated joint location [18]. This form of joint centre data from a depth cam-
era is not unique to the Kinect; alternative depth camera sensors (Orbec, Intel RealSense,
VicoVR, Depthsense, PMD, SIC), as well as skeletal tracking systems (Nuitrack, OpenNI)
are commercially available. As there is no underlying rigid-body model, the estimated joint
centres may be biologically inconsistent. This can lead to errors at the ankle, knee, and hip
which complicate the use of depth sensors for later analysis [19]. Researchers have found
that retro-reflective markers could be used to supplement the recovery process [20]. The
addition of these markers adds to the experiment setup time, and sensitivity to the accuracy
of marker placement.

An important distinction between this work and the work performed in the computer
vision community is the underlying assumptions and goals of the final system. We develop
a tool for rapid clinical assessment by applying a biomechanically realistic model to impose
constraints on unconstrained estimates of joint position for a controlled task and environ-
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ment. In contrast, the problem tackled by a number of these other works are the estimation
of human poses across a wide range of tasks while being robust to real-world situations and
environments [21].

Two approaches are generally taken when performing pose estimation: creating a skeletal
model with a prior on the associated surface geometry, or the generation of a direct map
between camera inputs and pose using machine learning. Pavlakos [22] uses convolutional
neural networks to estimate the likelihood that a voxel contains a joint. This method resulted
in an average 3D joint error of 9.6 cm for the Human3.6M sitting down motion and an average
marker reconstruction error of 5 cm. This outperforms a number of other deep learning
methods [23, 24] yet still highlights the inherent challenges in joint estimation, particularly
in self-occluding tasks such as sitting. This is consistent with the work by Mehta [25] who
adopted a similar approach at the pixel level providing a real time (30 fps) system, but with
a mean joint position error of 14-15 cm for the sit-down task. While these methods offer
a promising method for versatile estimation of human motion, the current joint estimation
error is high relative to the surface fitting methods.

Surface fitting methods usually use a simplified approximation of human shape, consisting
of scaled cylinders or ellipsoids that are adjusted to a subjects body morphology. This
simplified model is then used to estimate pose by relating these volumes to camera depth
data. Recent advances have involved the use of Gaussian models to approximate body shape
[26], with Ding [27] developing a method that can estimate joint centre position at 20 fps with
an associated position error of 3.5 cm. Shuai [28] used spherical harmonic decomposition
rather than Gaussians to track subjects with multiple depth cameras. The resulting model
exhibited low marker re-projection error, though this error increased in actions with self
occlusion such as sitting. Zhang [18] used a full-body skinned mesh model in conjunction
with multiple depth cameras and force sensing shoes to estimate kinematic and dynamic
state. The resulting system was slow, but accurate with a mean joint error of 3.8 cm at
6 fps. Unfortunately no results were published for any sitting or standing actions, but the
authors do state the the system performance did decrease on self-occluding activities. The
lower errors and potential for these methods to run in real time suggests that these methods
may be suitable for clinical use, but the need for initial calibration of the shape model
by performing an explicit calibration motion [26, 18, 27] or through manual labelling [28]
detracts from their use. Similarly, the use of multiple cameras suggests a requirement of a
dedicated motion capture space where the system can be setup and left undisturbed between
sessions.

Contributions

In this chapter, we assesses the feasibility of using a single depth camera as a clinical assess-
ment tool for whole-body kinematic and kinetic assessment. As such, we prioritize:

1. Accurate anatomical joint center locations and joint angles which are needed for clinical
assessment and future dynamic/musculoskeletal modeling.
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2. Fast computation time to allow for immediate review by the clinician.

3. Ease of use by non-specialists in a clinical environment to perform a rapid motion
assessment.

To these aims, we present a simple, fast method for taking any pre-estimated joint center
locations, automatically scaling skeletal parameters based on the subject height and recov-
ering kinematic and kinetic measures from the biomechanical model. This system provides
accurate, reproducible, and consistent estimates of anatomical joint center locations, with a
mean joint position error of 2.63 cm. An additional estimate of L5S1 location is added to the
kinematic model allowing for assessment of the lower back, an important site of analysis in
clinical and occupational health scenarios. The proposed system is used as a post-processing
step on the raw Kinect 2 skeleton, with the mean computation speed of 524 frames per sec-
ond. This suggests this method can be incorporated into many existing real-time methods
without a significant drop in frame-rate. Only a single RGB-D camera is used, allowing for
deployment clinical space without the need of a dedicated, calibrated motion capture space.
The extraction of kinematic states is performed only requiring the user to specify the sub-
ject’s height, without any manual model tuning, or joint labeling. The entire time to setup
the camera, coach the subject to perform the STS action, data collection, and kinematic
recovery takes under 1 minute.

2.2 Rigid-Body Modeling Framework

Rigid-body models are commonly used in biomechanics research to estimate joint kinematics
and loading [29, 30, 31, 32, 33]. The mathematical formulations for the kinematics, kinetics,
and dynamics of these systems can be taken from the robotics literature [34], providing a
versatile method for analyzing arbitrary rigid-body systems. In this work, we present and
evaluate two rigid-body models:

1. Floating pelvis rigid-body model : constrained body segment lengths. This form of
model is typically used in motion analysis, with no environmental constraints.

2. Fixed-ankle rigid-body model : constrained body segment lengths and angle-ground
contact. As the ankles do not move in the sit-to-stand action, a kinematic constraint
on ankle position can be used to determine the effect on the recovered kinematic and
kinetic measures.

The models are driven by the raw Kinect shoulder, hip, knee, and ankle joint center positions.
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Raw Kinect

Model

Floating Pelvis

Model

Fixed Ankle

Model

Figure 2.1: The three skeletal models. Left: Raw Kinect Skeleton. The joint centers obtained
from the Kinect are shown as crosses. The markers which are not used in this work are shown
in the dashed blue. A cartoon outline of a subject is shown for reference. Center: Model I:
Floating Pelvis Rigid-body Model. The pelvis is defined as the base link, with three serial
chain branches. The sequence of revolute joints are shown as cylinders. Right: Model II:
Fixed-ankle Rigid-body Model. The right ankle is fixed to the ground and used as the base
link. The revolute joint sequence and segment lengths are the same as in the center figure.

Model I: Floating pelvis rigid-body model

Model structure

The human body is commonly modeled as a floating tree system, consisting of a pelvic base-
link with serial chains that terminate at the head, hands, and feet [35]. In this work, we
study the kinematics of the lower limbs and trunk during STS, neglecting the motion of the
arms. We consider a 3D rigid-body model with six segments: (left and right) lower leg, (left
and right) upper leg, pelvis, and torso (Figure 2.1). The corresponding joint centers are at
the ankle, knee, hip, and lower-lumbar joints. The knee joint is modeled as a cylindrical
joint. The ankles, hips, and lower-lumbar (L5S1) joint are modeled as spherical joints with
three successive rotations. The order of these rotations is based on relations to common
range of motion measures [36].

Segment lengths are determined by recommended height-scaled, sex-specific, allometric
relations [37]. These relations provide estimated link length for the upper and lower leg, (lUL

and lLL), shoulder width and hip width, (wS and wP ), the length between the midpoint of
the hip centers and L5S1 (hP ) and the length between L5S1 and midpoint of the shoulder
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Figure 2.2: The frame labeling and key lengths for the floating pelvis model. Left: Frontal
plane view showing shoulder and pelvic width wS, wP , coordinate frames for the torso T ,
pelvis P , the upper and lower legs (UL, LL), and the world frame W . Axes are aligned with
the Z axis lying along the primary axis of the segment. Right: Sagittal plane view showing
torso and pelvis heights hT and hP , and the upper and lower leg lengths, lUL and lLL.

centers (hT ).

Kinematic Formulation

The following mathematical formulation utilizes relative coordinate frame transformations
to relate the observed Kinect joint center positions to corresponding joint angles in the
rigid-body model. Local coordinate frames are defined in Fig. 2.2. The origin of the base
pelvic frame (P ) is located at the midpoint between the hip joint centers. All other frame
origins are located at the joint center with Z axis pointing along the segment length in the
sagittal plane. We represent the position and orientation of the pelvic frame as an X, Y ,
Z translation (tP ), and three sequential rotations about the X, Y , and Z axes (θPX , θPY ,
θPZ). This is formulated as the homogeneous transformation between the World and Pelvic
frames gW,P :

gW,P (tP , θPX , θPY , θPZ) =

[
RXRYRZ tP

0 1

]
(2.1)

where RX , RY , and RZ are the standard rotation matrices about the X, Y , and Z axes,
respectively.
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The relative transformations between each adjacent segment are defined in the same
notation. For example, the transformation between the Pelvis and Torso (T ) frames, gP,T
can be written:

gP,T (hP , θTX , θTY , θTZ) =

RXRYRZ

 0
0
hP


0 1

 (2.2)

using the coordinate frames and segment lengths defined in Figure 2.2.
These homogeneous pose matrices are used to estimate the World frame locations of the

left and right shoulder centers from their local positions and relative frame transformations:

[
psho left psho right

1 1

]
= gW,PgP,T



−wS

0
hT
1




+wS

0
hT
1


 (2.3)

This process can be repeated for each joint center to create the observation model for all
joints: 

psho left

psho right

phip left

phip right

pknee left

pknee right

pankle left

pankle right


= hobs (η,X) (2.4)

where η are the model parameters:

η =
[
hP , hT , lUL, lLL, wS, wP

]
(2.5)

and XI ∈ R17 is the state vector containing the corresponding translations and rotations:

XI =
[tP ,θP ,θT ,θUL left,θUL right,

θLL left, θLL right]
T (2.6)

Model II: Rigid-body model with fixed-ankle

Our second rigid-body model introduces an additional constraint by fixing the position of
the ankle joint centers. The raw joint centers from the depth camera are not constrained
by the ground plane, allowing the ankle to phase through the floor or hover above the floor
while the person is standing. During STS, we assume the position of the ankle remains
fixed and can be constrained at a fixed position throughout the motion. To implement this
constraint, we select the base link to be one of the feet and fix this position to the ground.
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The mathematical formulation of the observation model is similar to Section 2.2, with the
model starting at one foot and moving up the leg, before branching at the pelvis into the
torso and second leg branches.

The state vector XII ∈ R14 for the fixed ankle model has three fewer states when
compared to the floating pelvis model, with the addition of the ipsilateral ankle rotation
θA ipsi ∈ R3 and the removal of the pelvis translation and orientation (R6):

XII =
[θA ipsi, θLL ipsi,θUL ipsi,θUL contra,

θLL contra,θT ]T
(2.7)

where the subscripts ipsi and contra refer to the ipsilateral and contralateral sides to the
base foot.

In our model, the ankle joint center is fixed at a position based on the observed motion.
The X and Z coordinates are taken to be the mean observed position throughout the motion.
The Y coordinate is fixed to be equal to the mean anterior-posterior position of the knee at
a standing posture.

Inverse Kinematics

The kinematic recovery process allows for the estimation of joint angles from observations
of joint position. We use two methods of kinematic recovery are: Non-linear Least Squares
(NLS) and Unscented Kalman Filtering (UKF).

Non-linear Least Squares (NLS)

The error between the observed joint centers q and the expected joint centers hobs (η,X) is
minimized for each frame k:

min
Xk

‖qk − hobs (η,Xk)‖22 (2.8)

Unscented Kalman Filtering (UKF)

While the NLS method allows for the estimation of the state at each frame, it does not enforce
any relationship between sequential states. The UKF balances inaccuracies in measurement
with an estimate of the change in state between two successive states [38, 39]. Using the
notation for Kalman filters, every observed joint center at frame k can be written:

qk = hobs
(
η, X̄k

)
+ vk (2.9)

where vk is a model of the sensor noise which is taken to be white noise: vk ∼ N (0,Rk),
Rk is the covariance matrix of the Kinect, and the state X̄k is the true state that underlies
each observation.

This observation model is combined with a process model fproc which relates previous
estimates of the the true state X̄k−1 to the current true state:

X̄k = fproc
(
X̄k−1

)
+wk (2.10)
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Figure 2.3: Left: Model used for L5S1 angle estimation. The sagittal location of the shoulder,
L5S1, hip, and knee are shown. The included angle at the hip is used to predict the angle
at L5S1. Right: sagittal plane model. Joint centers and angle definitions are shown. The
definition of the Sagittal Vertical Axis (SVA) metric is also shown.

where wk is a model of the process noise which is taken to be white noise: wk ∼ N (0,Qk).
To set limits on the variation of each of the states between samples, the process covariance
Q is fixed to be the expected change due to the velocities σV . This allows the process
covariance to be written explicitly as the diagonal matrix:

Q = ∆t2diag
(
σ2

V

)
(2.11)

where ∆t is the time between samples, and the process model as the identity matrix.

Planarization

The recovered 3D kinematic data is planarized for analysis of the sagittal kinematics. A
plane is fit to the motion of the Kinect joint centers and the data is projected onto the
plane. For the symmetric joint centers (ankles, knees, hips, shoulders), the mean of the
sagittal plane positions is taken.

Lower lumbar joint (L5S1) estimation

The raw Kinect skeleton provides a single joint center along the spine. We found the position
of this joint center to be inconsistent between subjects and within single trials. Due to this
unreliability and lack of relation to an anatomical landmark, we disregard the mid-spine
marker in our kinematic analysis and consider an alternate method for determining a joint
between the hip and shoulders in the sagittal plane.

From marker-based motion capture data, the position of the lower lumbar joint, located
at L5S1, can be estimated from pelvic landmarks. An allometric model for the position of
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L5S1 in a pelvic frame is presented in Reed et al. [40] Unfortunately, the pelvic orientation
is not observable from the Kinect data, so we cannot apply this method.

A model for lumbosacral orientation using knee flexion and trunk inclination is presented
by Anderson et al. [41]. In that work, a quadratic model was trained on four subjects in
multiple static lifting postures. This model was not assessed on any test data. Using active
motion capture data, we tested the Anderson model against the marker-based Reed method.
We found that the model did not accurately predict the sacral orientation during STS.

In this work, we present a new regression model for KHL5, the angle formed by the knee,
hip, and L5S1 joints, driven by KHS, the angle formed by the knees, hips, and shoulders
(joints present in the Kinect data). This model assumes that coordination between the hip
and L5S1 joints follows a predictable pattern across subjects.

The model is trained using marker-based motion capture data (protocol detailed in Sec-
tion 2.3). We define the pelvic frame by anterior and posterior superior iliac spine (ASIS
and PSIS) markers shown in Fig. 2.5. The location of the L5S1 joint center is based on
the model presented in Reed, in which the L5S1 joint center in given a frame defined by the
ASIS and pubic symphysis (PS) landmarks. The PS landmark is not possible to mark on a
clothed subject or easily observable from motion capture data. Using dry pelvis data from
Reynolds, et al. [42], we re-derived the position of the L5S1 joint in the ASIS-PSIS pelvic
frame:

L5S1 =
[
0 0 .11PW

]T
(2.12)

where the pelvic width PW is the distance between the left and right ASIS landmarks. From
the observed L5S1 joint center, we compute the joint angles in the sagittal plane. A linear
model was fit to the data:

KHL5 = αSHK + β (2.13)

with derived model parameters α = 0.82, β = 0.54 and r-squared 0.9784. This model
was trained on four subjects performing STS and tested against six subjects. Each subject
performed STS three times. The fitted model and test data are shown in Fig. 2.4. The
mean absolute error (MAE) between the predicted and observed L5S1 angles was 3.63±1.72
degrees for the test set 4.21± 2.73 degrees for the training set.

From Eq. 2.13 and an allometrically scaled pelvic height, hp, we can express the position
of the L5S1 joint center. In our recovery framework, this L5S1 model is used after the
kinematic recovery and planarization steps are performed.

2.3 Experimental Validation

The modeling and kinematic recovery methods introduced in Section 2.2 were tested exper-
imentally and validated against marker-based motion capture data on non-clinical subjects.
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Figure 2.4: Linear regression for L5S1, the angle formed by the knee, hip, and L5S1, joints,
from KHS, the angle formed by the knee, hip, and shoulder joints. The model is shown in
solid black. Data from the test set of 6 subjects is shown in dotted color.

Experimental Protocol

Ten subjects (3F/7M, age: 30.9 ± 9.6, height: 1.76 ± 0.12 m, mass: 67.4 ± 11.2 kg) were
recruited under informed consent (UCSF IRB 16-21015). Subjects wore close fitting exercise
clothing (sports bra, exercise shorts). The chair height was adjusted so that the subject’s
thighs were parallel to the ground, and their knees directly above their ankles during natural
sitting. Subjects were asked to perform STS with their arms folded across their chest, hands
touching the opposite elbow. The standing action was otherwise non-coached, with subjects
performing the action naturally. Three trials, each consisting of three STS, were recorded
for each subject.

Active Motion Capture Model

An 8-camera active motion capture system was used in this study to provide a ground-
truth estimate of position and orientation of each body segment. Motion data of STS was
simultaneously recorded from the Kinect and the motion capture system. The Kinect camera
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Figure 2.5: Motion capture marker protocol used in this work. Markers (red) are shown
superimposed on the standard Plug-in-Gait model.

was located 2.5 meters directly in-front of the subject. The Kinect joint centers were streamed
at 30Hz and saved with a UNIX timestamp onto a desktop computer. Each trial consisted of
883± 87 frames of Kinect depth data, and 14224± 1548 frames of Phasespace data for three
successive stand-sit-stand motions (around 30 seconds). The Kinect and motion capture
systems were time synchronized using a network time protocol server.

Thirty-two LED markers (Phasespace, San Leandro, CA) were recorded at 480Hz with
an associated UNIX timestamp. Kinematic recovery was performed offline in MATLAB. The
markers were placed onto the subjects skin using adhesive Velcro® based on the Plug-in-Gait
markers set [43] (Figure 2.5). Additional markers were placed on the medial elbow, knee,
and ankle positions to allow for estimates of joint center from the medio-lateral marker pairs.
In cases where the subject’s shorts or sports bra obscured the ASIS, PSIS, or XP landmarks,
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Figure 2.6: Left: Torso and pelvis frames are highlighted, with markers shown as crosses,
and joint centers shown as circles. Right: Segment-marker definitions used for NLS recovery.
The sagittal view of the torso frame, and caudal view of the pelvis frame are shown. Torso
markers were located at the Incisura jugularis sternalis (IJ), Xiphoid Process (XP), and at
the C7 and T8 spinous processes which were found during standing. Pelvis markers were
located at the right and left Anterior Superior Iliac Spines (ASIS) and Posterior Superior
Iliac Spines (PSIS).

a clip was used to secure the marker to the clothes band at the desired landmark.
In addition to the STS protocol, a data set was collected for identifying the functional

joint centers for each segment using the Recap2 protocol. Subjects were asked to move
each joint through its full range of motion three times, starting with the wrists, elbows, and
shoulders, before moving the ankles, knees, and hips. The Recap2 protocol was only used to
find the functional centers for the ground truth motion capture model.

NLS (Section 2.2) was used to recover the instantaneous position and orientation of each
limb segment in 3D coordinates. Each limb segment was recovered independently without
any modeling of the connection between connected limbs.

The rigid-body models used for each each segment are shown in Figure 2.6. The coordi-
nate system is based on Wu [44], with the exception of the pelvis segment where the origin is
located at the midpoint of the ASIS and PSIS markers. The labeling of the coordinate axes
were also modified to simplify plotting and analysis in MATLAB. NLS was used to estimate
the marker positions in the local coordinate frame for each subject.
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The joint centers for the ground-truth model were recovered using functional methods
(hip and shoulder), and marker-based methods (ankle, knee, and L5S1). Geometric sphere
fitting for the hip was chosen based on the recommendation by the ISB [44] and as all subjects
were able to move sufficiently [45]. The inter-malleolar point was selected for the ankles from
Wu [44], the inter-epicondyle point for the knee [46], and L5S1 from the allometric model
described in Section 2.2. The recovered joint-centers were planarized and the relative angles
were determined at each frame.

Data Analysis

All data processing was performed on previously stored Kinect 2 data on an Intel i7-5820K
processor, with 32GB of RAM running Windows 7 Enterprise. Each trial of three stand-sit-
stand actions consisted of roughly 880 frames and was post-processed at 524 ± 140 fps. A
graphics card was not used to aid computation.

The joint angles recovered from each method were filtered and numerically differentiated
to obtain joint velocity estimates. A first-order, low-pass Butterworth filter at 5 Hz was
applied to the active motion capture and both rigid-body Kinect models [47, 48]. The raw
kinect data was filtered more heavily, using a first-order low-pass Butterworth filter at 2 Hz.
This was to account for significant noise in the raw joint angles leading to unrealistic velocity
estimates.

We compute the horizontal distance between the shoulder joint and hip joint centers at
each frame as well as its velocity. This is a surrogate for the Sagittal Vertical Axis (SVA), a
metric for spinal alignment, measured by static radiographs as the distance between C7 and
L5S1 [8]. We also compare recovered peak values for several metrics during STS: flexion and
extension velocities of the torso, torso inclination angle, and SVA.

We consider each combination of sensor and model (raw Kinect, floating rigid-body
Kinect, fixed-ankle rigid-body Kinect, and active motion capture) to be a different rater,
allowing for the use of inter-rater reliability assessment methods. Three statistical measures
were used to analyze the performance of the raw and rigid-body Kinect models against the
active motion capture ground truth:

1. Absolute Error (MAE) identifies the raw position or velocity error between meth-
ods.

2. Lin’s Concordance Correlation Coefficient (CCC) assesses inter-rater reliability
between methods [49]

3. Inter-class Correlations Coefficients (ICC) identifies the absolute agreement
(ICC(2,1)) and relative consistency (ICC(3,1)) between methods [50, 51, 52]. ICC
values were interpreted as poor (< 0.4), fair (0.4− 0.59), good (0.6− 0.74), and excel-
lent (≥ 0.75) based on the treatment by [53, 54].



CHAPTER 2. DEPTH CAMERA MOTION ASSESSMENT 19

2.4 Algorithm Performance

MAE, CCC, and ICC statistics are given for joint center positions (Table 2.1), joint trajec-
tories (Table 2.2), velocity trajectories (Table 2.3), and selected peak metrics (Table 2.4). A
representative motion capture trace is shown in Figure 2.7.
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Figure 2.7: Sagittal views of a representative subject performing the STS action. Left:
Subject in the seated position. Black triangles outline the subject joint position from the
active motion capture system. Red crosses show the raw Kinect 2 joint positions. Blue circles
show the estimates from the proposed method. Middle: Motion traces for the entire STS
action. L5S1 joints for the Phasespace and proposed models are hidden for clarity. Right:
Subject in the near standing position. Note that the raw Kinect 2 skeleton does not provide
an estimate for the L5S1 joint center.

Both rigid-body Kinect models (floating and fixed-ankle) achieved significantly lower
MAE than the raw Kinect for all joint angle and position measures (Tables 2.1, 2.2). In
comparison to the floating model, the fixed-ankle model had significantly less error in the
ankle and knee positions and angles, and comparable error in all other measures.

Higher CCC and ICC values indicate greater reliability, relative consistency, and absolute
agreement. For the position measures, the fixed-ankle model has higher CCC and ICC values
than the raw Kinect in all cases. The floating pelvis model was better than the raw Kinect
model, but has poor performance in recovering the ankle positions and angle.
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Table 2.4: Inter-rater assessments for peak measures. The angle at L5S1 is modeled using
the author’s proposed method. Mean absolute errors (MAE), concordance correlation coef-
ficient (CCC), and interclass correlation coefficients (ICC) are given for selected trajectory
measures. Mean Absolute Errors are stated as mean with the standard deviation in paren-
thesis. Asterisks indicate that the absolute errors were significantly different from the raw
Kinect model at the 5% (*) and 1% (**) significance levels. Correlation coefficients are given
with the 95% confidence interval in parenthesis.

Measure Model
Peak Trunk

Flexion Angle (deg)
Peak SVA

Position (cm)

Peak Trunk
Flexion Angular

Velocity (deg/s)

Peak Trunk
Extension Angular

Velocity (deg/s)

Typical Value

Mocap 61.8 (4.9) 24.1 (3.6) 73.3 (10.0) 55.4 (10.8)
Raw 60.4 (3.5) 25.1 (2.9) 58.8 (11.0) 50.5 (7.2)

Floating 57.6 (6.2) 24.5 (4.1) 76.3 (17.0) 65.1 (15.4)
Fixed 57.2 (6.2) 24.9 (4.0) 75.7 (16.3) 67.7 (14.1)

MAE
Raw 3.1 (2.5) 2.9 (2.4) 16.7 (9.4) 6.1 (5.3)

Floating 4.2 (3.1)** 1.9 (1.6)** 11.1 (9.9)** 8.8 (12.7)**
Fixed 4.6 (3.1)** 1.9 (1.7)** 8.2 (11.4)** 12.6 (7.5)**

CCC
Raw 0.58 (0.44 - 0.69) 0.35 (0.17 - 0.51) 0.15 (0.04 - 0.25) 0.66 (0.56 - 0.74)

Floating 0.65 (0.55 - 0.73) 0.79 (0.70 -0.85) 0.40 (0.24 - 0.53) 0.51 (0.38 - 0.61)
Fixed 0.63 (0.54 - 0.71) 0.78 (0.69 - 0.85) 0.47 (0.31 - 0.59) 0.54 (0.43 - 0.63)

ICC(2,1)
Raw 0.58 (0.40 - 0.71) 0.36 (0.16 - 0.52) 0.15 (-0.07 - 0.36) 0.66 (0.27 - 0.82)

Floating 0.65 (-0.03 - 0.86) 0.79 (0.70 - 0.86) 0.40 (0.21 - 0.56) 0.51 (0.08 - 0.73)
Fixed 0.64 (-0.01 - 0.87) 0.78 (0.68 - 0.86) 0.47 (0.29 - 0.62) 0.54 (-0.09 - 0.82)

ICC(3,1)
Raw 0.61 (0.46 - 0.73) 0.96 (0.95 - 0.96) 0.28 (0.09 - 0.46) 0.75 (0.64 - 0.83)

Floating 0.83 (0.75 - 0.88) 0.97 (0.97 - 0.97) 0.41 (0.22 - 0.57) 0.64 (0.50 - 0.75)
Fixed 0.84 (0.77 - 0.89) 0.80 (0.71 - 0.86) 0.47 (0.30 - 0.62) 0.79 (0.70 - 0.86)

The MAE of the velocity trajectories shown in Table 2.3 are comparable between the
raw, floating, and fixed-ankle models. This similarity in performance was also seen in the
CCC and ICC values, with the knee, hip, trunk and SVA velocities showing high agreement
and repeatability for all methods. The estimated ankle velocities had lower ICC and CC
values across the methods, but showed an improvement using the fixed-ankle model. The
recovery of the angles and angular velocities at L5S1 were consistently worse than that of
the other joints, classified as good-excellent instead of excellent.

The peak measures in Table 2.4 show the performance of the different methods in ex-
tracting candidate performance metrics from the trajectory data. The MAE for the floating
and fixed-ankle models are significantly lower than the raw Kinect for the peak SVA and
peak flexion velocity, but significantly higher for the flexion angle, and the extension angular
velocity. The CCC and ICC values for the fixed-ankle model show fair-excellent perfor-
mance, compared to the raw Kinect which had poor performance measuring the peak SVA
and trunk flexion velocity. The peak trunk flexion angle and extension velocity were found
to be consistent (ICC(3,1): excellent), but with lower agreement (ICC(2,1): good/fair).
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2.5 Discussion

The introduction of segment length constraints in the floating rigid-body model resulted in
significant improvement in all joint position and angle measures. The fixed-ankle model,
which combined segment length constraints with an ankle contact constraint, further im-
proved the recovery of the ankle and knee joint angles. Accurate lower-limb recovery is
essential for performing whole-body dynamic analysis. This model had excellent estimates
of joint position and velocity trajectories when compared to the gold-standard motion cap-
ture. The peak metrics associated with the position data were found to provide good to
excellent agreement and consistency. These improvements are also seen peak metrics ob-
tained from the floating-pelvis model, though the MAE, CCC, and ICC values for the ankle,
knee, and hip are comparable or worse than the fixed-ankle model. In contrast, the raw
Kinect had higher MAE in recovered joint angles, notably at the ankle, knee, and hip, and
poor-fair agreement for the peak position metrics.

The mean joint position error of 2.63 cm (in the sagittal plane) is substantially lower
than those seen in more generalized camera methods. In comparison to the joint errors
on the Human3.6m data set presented by Mehta [25], the lowest mean joint position error
for the sit-down action was found to be 10.4 cm reported by Pavlakos [22]. The approach
proposed by Shuai [28] for the used of multiple depth cameras resulted in marker residuals
of approximately 3.5 cm for the sit down then stand up action (MHAD action 9 [55]), but
requires the use of three synchronized Kinect 2 cameras.

The trunk angle trajectory and peak trunk flexion angle were found to be consistent
(ICC(3,1): 0.95, 0.84) for the fixed-ankle model, but with lower absolute agreements (ICC(2,1):
0.95, 0.64). This indicates that there may be a consistent offset between the motion-capture
and the Kinect models. The MAE for these values suggest that there is an approximately
4 degree offset in the trunk angles between the active motion capture model and the fixed-
ankle model. This offset may be based on the difference in the location of the shoulder center
between the motion capture and the Kinect models. The motion capture model defines the
shoulder as the functional center of the arm which is then fixed in the torso frame. This
functional center was estimated from the subject performing arm windmills in the sagittal
plane. This motion also includes motion of the scapula, translating the location of the gleno-
humeral center (GHC). The estimated shoulder center is likely to be in the center of that
space. During the sit to stand action, the subject’s arms were placed across their chest, with
their hands touching the opposite elbows. This action protracts the scapula, moving the
GHC anteriorly. The Kinect however is estimating the location of the GHC for each frame
accounting for this new location for the GHC.

The error in angular velocities were comparable across the raw Kinect and rigid-body
methods. To obtain the velocities, the raw Kinect position data was heavily filtered. There
is a notable trade-off in the performance of the models between the joint angle and angular
velocity MAEs. In particular, the angular velocities of the floating-pelvis model outperforms
the fixed-ankle model for all joints other than the ankle. As the floating-model is not
constrained the model is able to respond rapidly to changes in observed position, resulting
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Figure 2.8: Example visualization of the single-leg squat motion as recorded with the depth
camera and filtered with the rigid-body algorithm.

in lower velocity errors. In contrast, these rapid changes are moderated by the constraints
imposed by the fixed-ankle model.

The improved position accuracy from the models, combined with accurate angular ve-
locities suggests the suitability of using the fixed-ankle model for further dynamic analysis.
This is not possible using the original raw Kinect data due to the inaccurate joint center
positions and corresponding angle errors.

It is important to note that this study was conducted with the person directly in front
of the depth camera. From a previous study [56], the authors did find that there is an
increase in estimated joint center position when the camera is set at increasing angles from
the subject. These joint center errors were found to be higher in the lower limbs (+1.5
cm) in both standing and sitting activities, with higher error seen in the limb distal to the
camera. While this issue could arise in clinic, especially in cases where the system may be
rapidly set-up, the 30 degree offset used in the study is larger than a reasonably expected
set-up error. Furthermore, the addition of an constraints to the ankle may improve recovery
performance in the lower limbs.

2.6 Extension to Single-leg Squat

The single leg squat (SLS) test is useful for clinical assessment of strength, flexibility, balance
and motor control. In contrast to STS, which can be modeled in the sagittal place, accurate
measurements of 3-D joint kinematics are necessary for detailed analysis of the motion.
Utilizing the methods described in Section 2.2, we assess the utility of a depth sensor in
capturing knee kinematics during SLS by direct comparison with a ground-truth motion
capture system. The single-leg squat motion is challenging due to potential occlusion of the
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Figure 2.9: Example knee flexion angles (deg) recovered from the ground truth motion
capture system (black), raw Kinect depth camera (red), rigid-body algorithm (blue).

base (standing leg) by the leg off the ground. This can result in additional inaccuracies and
noise in the raw data from the Kinect.

Time-synchronized squat data were simultaneously recorded by a single depth camera
(Kinect 2, 30Hz) and an active marker motion capture system (Phasespace, 480 Hz). Forty-
nine LED markers were placed on anatomical landmarks, following a modified Plugin-Gait
marker protocol. Functional joint centers were computed from the active marker trajectories,
providing a ground truth measurement of joint angles. Subject-specific limb lengths were
estimated using height-scaled allometry. Six healthy subjects (age 29.5± 6.3 years, 1F, 5M)
were recruited under IRB approval. Each performed three trials consisting of three single-
leg-squats on each foot (108 total motions). Subjects were instructed to squat as low as
comfortably possible at their own pace.

Figure 2.8 shows a representative still image of the 3D skeleton during the SLS motion.
Peak knee flexion and frontal-plane knee position (relative to a pelvic coordinate system)
were evaluated. The knee displacement was measured along an axis running through the
hip joint centers. The error of the raw and filtered Kinect data was computed against the
ground truth. The proposed method shows improvement in the peak knee flexion error:
filtered (5.38 ± 5.31 degrees) vs raw (9.57 ± 5.70 degrees), and comparable frontal plane
displacement error: filtered (2.61 ± 2.17 cm), raw (2.80 ± 2.34 cm). A comparison of the
knee flexion angles for a representative trial is shown in Figure 2.9. These results demonstrate
the efficacy of using low-cost depth cameras for the clinical analysis of the SLS motion. The
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proposed method of applying rigid-body constraints has been shown to improve the accuracy
of the recovered 3D motion metrics.

2.7 Chapter Summary

In this chapter, we presented a framework for improving kinematic recovery from depth-
camera data through the use of rigid-body modeling. We validated the performance of our
proposed method and raw Kinect data through comparison against a ground-truth active
motion capture system on the sit-to-stand and single-leg-squat motions. The use of a rigid-
body model and contact constraints significantly were found to improve the accuracy of joint
kinematics and metrics of clinical interest. This framework enhances the utility of a depth-
camera for quantitative motion analysis with accurate kinematic and kinetic measurements
allow for the expansion to dynamic analysis of joint torques. The proposed system has low
cost, space, and time requirements and can be easily deployed in clinic, with the total time to
setup, collect, and process the motion data taking less than a minute. While this framework
is validated against specific motions of clinical interest with a single depth-camera system,
the method presented is extensible to additional actions and sensing devices.
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Chapter 3

Recovering a Rigid-Body Model of
the Spine

A representative model is necessary for the analysis of spine kinematics and dynamics during
motion. Existing models, based on stationary imaging or cadaveric data, may not be accurate
through the full range of spinal motion or for clinical populations. In this chapter, we
propose a functional method for estimating subject-specific spinal joint centers, generating a
one-joint or two-joint kinematic model of the spine. These models are driven by the motion
of the thorax and pelvis as observed by eight surface landmarks. We apply this method to
experimental data from ten subjects performing flexion/extension and sit-to-stand motions.
The recovered functional models are assessed against an allometric model though the analysis
of marker residuals. We found that the functional models provide lower residuals than the
allometric methods. Between the functional models, the two-joint model provided lower
residuals with less sensitivity to the training action, while the one-joint model should be
trained on the motion of interest.

3.1 Torso Models in Motion Assessment

The biomechanical modeling process allows for analysis of movement through the creation
and use of representative models. These models can be relatively simple template models,
designed to describe key behaviors, or more detailed anchor models [57]. Rigid body models
are often used for the analysis of human movement, allowing for the estimation of joint angles
and loads from observed motions. To account for individual variation, joint center locations
and segment lengths may be adjusted with allometric or functional methods.

Allometric methods scale key dimensions and inertias by measurable lengths and masses,
typically the standing height and mass of the subject [31]. These methods allow for the
estimation of internal joint centers from external anatomical landmarks. These relationships
may be based on imaging studies on living subjects or from the measurement of dry cadaver
specimens [42, 58, 59]. While these methods provide a powerful tool for creating rigid body
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models, the underlying scaling assumptions may not hold for clinical populations or capture
the full variations between individual.

Functional methods estimate the location of joint centers by performing spherical (or
circular) fits on observed motion capture data. These methods are well suited for the recovery
of joints with a large range of motion that can be appropriately simplified to a spherical or
cylindrical surface such as the hip [46, 60] and glenohumeral rotation of the shoulder [61].
The use of functional methods for these joints has been shown to provide higher accuracy
estimates of joint centers when compared to allometric methods [60]. However, functional
methods have been limited to joints that can be independently excited such as the upper
and lower limbs.

Spinal joint centers are difficult to identify due to the compound motion of multiple
vertebrae, relatively low intervertebral ranges of motion, and difficulty obtaining ground-
truth values. In the analysis of motion, the torso is often modeled as a rigid body with
a single lumbosacral joint [62], with a number of models omitting spinal motion entirely
[63]. An allometric estimate of the lumbosacral joint from pelvic markers is presented in the
study by Reed et al. [40], and a predictive relationship based on knee and torso angles is
presented in the study by Anderson et al. [64]. More complex regression models of individual
intervertebral joint locations from surface data have been presented. However, these methods
are limited by small datasets or only applicable to a single posture [58, 65].

Contributions

In this chapter, we present a functional method for generating a subject-specific model of
the spine. Joint centers are derived for a one-joint and two-joint spine model that best
describes the motion of the pelvis and thorax as observed from eight surface landmarks.
These simplified models allow for the application of the functional method and for subsequent
work in dynamic modeling. We compare functional models derived from flexion-extension
(FE) and sit-to-stand (STS) actions to an allometric model. The STS action is both an
activity of daily living as well as a well studied biomechanical and clinical test for motion
and stability in healthy and clinical populations [10, 47]. The FE action, another clinical
test, was chosen to maximize the observed range of spinal motion.

3.2 Recovering a Functional Spine Model

This section outlines the proposed functional method to identify rigid-body model parameters
from motion capture data. The algorithm consists of the following steps:

A) Identification of marker coordinates in local pelvic and thoracic frames from marker
trajectories measured in the world frame

B) Transformation of thoracic markers to the pelvic frame using the recovered pelvis
configuration.
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Figure 3.1: Definition of pelvic (P ) and thoracic (T ) coordinate systems. Left: 3D cartoon
of a standing figure with pelvis and torso frames highlighted. Middle: Isolated 3D cartoon
of pelvis and torso. Right: Flattened pelvic and thoracic frames with anatomical landmarks,
coordinate definitions, and segment lengths.

C ) Identification of rigid-body model parameters which define the functional joint centers
and segment lengths

Local marker parameter identification

We consider the motion of the pelvis and upper thorax, assuming the thorax behaves as
a single rigid-body above T8 [58]. Each local coordinate system is defined by four motion
capture markers at anatomical landmarks (Figure 3.1). The pelvic coordinate system is de-
fined by left and right ASIS (anterior superior iliac spines) and left and right PSIS (posterior
superior iliac spines) [44]. The thoracic coordinate system is defined by C7, T8, IJ (Incisura
Jugularis), and XP (xiphoid process) [66]. Minor modifications were made to the origins of
these coordinate systems to reduce the effect of individual marker error through the addition
of the fourth (redundant) marker.

The pelvic markers q have fixed coordinates qP in the local pelvic (P ) frame. Likewise,
the thoracic markers r have fixed coordinates rT in the local thoracic (T ) frame. Local
marker coordinates are parameterized by φP and φT , vectors of length parameters illustrated
in Figure 3.1. Given local coordinates qP (φP ), we can express the coordinates of the marker
in the world (W ) frame, qW (t):
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qW (t) = gWP (t)qP (φP ) (3.1)

where gWP (t) is the rigid body transformation between the world and pelvic frames at time
t [67]. The transformation is defined by a linear translation and rotation:

gWP (t) =

[
RWP (t) pWP (t)

0 1

]
(3.2)

where RWP (t) is a rotation matrix, and pWP (t) are the coordinates of the center of rotation
as viewed in the W frame.

The rigid-body transform can be described by the translation pWP and scaled axis of
rotation ωWP written as the vector ξ ∈ R6 where ξ = [ωWP ,pWP ]T which gives the trans-
formation:

gWP (ξ) =

[
eω̂WP pWP

0 1

]
. (3.3)

The best fit local marker parameters φP and the corresponding states ξ are recovered
from n samples of observed marker positions in the world frame. This can be written as the
optimization:

min
φP ,ξ1···ξn

n∑
i=1

‖gWP (ξP (i))qP (φP )− qW (i)‖ (3.4)

where qW (i) are the observed markers in world coordinates and ξP (i) is the corresponding
state at the ith sample.

These parameters were optimized over 20 sample frames from the flexion-extension mo-
tion to find the best fit local marker coordinates, using the non-linear least squares (NLS)
solver in MATLAB, obtaining the marker parameters φp and local marker coordinates, qP .
This process was repeated to determine the local thoracic marker positions rT . This opti-
mization was performed for each subject, obtaining subject-specific pelvis and torso local
marker locations.

Transformation to the local pelvic frame

During the flexion-extension and sit to stand motions, a significant portion of the observed
rotation is due to motion of the pelvis. To isolate the motion of the spine, we transform the
observed world-frame motion of the thoracic markers rW into pelvic frame coordinates rP
shown in Figure 3.2. The configuration of the pelvis gWP at each frame i is recovered using
the fixed marker model identified in Section II-A:

min
ξi
‖gWP (ξ(i)qP )− qW )‖ . (3.5)
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Figure 3.2: Visualization of transformation of the motion capture markers from the World
frame (left) into the recovered Pelvic frame (right). Data from the eight markers used in the
model recovery algorithm as well as three additional markes on the lumbar spine is shown.

This allows for the transformation of the thoracic markers from the world frame into the
pelvic frame:

rP = g−1
WP (ξ(i))rW (i). (3.6)

Spine model parameter identification

We consider a one-joint and two-joint rigid-body model of the spine (Figure 3.3). The
motion of the torso during FE and STS actions are assumed to be constrained to the sagittal
plane, allowing the joints to be simplified to rotations about the x-axis. The one-joint model
contains a single joint center JC between the pelvic and thoracic frames. The intermediate
coordinate frame J is defined with origin at the JC. The length parameter lJT is the distance
between the JC and the origin of the thoracic frame. The forward kinematics of the one-joint
model can be expressed as a series of relative rigid-body transforms:

gPT = gPJgJT

=

[
Rxθ JCP

0 1

] [
I3 pJT
0 1

]
(3.7)

where Rx is the standard rotation matrix about the x-axis, θ is the angle of rotation at the

JC, JCP is the location of the JC in pelvic frame coordinates, and pJT =
[
0 0 lJT

]T
is

the fixed translation from the joint center to the thoracic frame.
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Figure 3.3: Rigid-body spine models in the pelvic (P ) coordinate system. Local coordinate
frames and surface markers are labeled.

The two-joint model contains a lower joint center LJC fixed in the pelvic frame and an
upper joint center UJC fixed in the thoracic frame. The intermediate coordinate frames L
and U are defined with origins at the LJC and the UJC, respectively. The length parameter
lLU is the distance between the LJC and the UJC. The forward kinematics of two-joint
model can be expressed as a series of relative rigid-body transforms:

gPT = gPLgLUgUT

=

[
Rxθ1 LJP

0 1

] [
Rxθ2 pLU

0 1

] [
I3 −UJT
0 1

]
(3.8)

where θ1 and θ2 are the angles of rotation at the LJC and the UJC, LJP is the location of

the LJC in the P frame, UJT is the location of UJC in the T frame and pLU =
[
0 0 lLU

]T
is the fixed translation from the LJC to the UJC.

By grouping the joint center and length parameters for each model into a parameter
vector ψs (single-joint) or ψd (double-joint) the optimization problem for each model can be
written:

min
ψs,θ

n∑
i=1

‖gPT (ψs,θ(i))rT − rp(i)‖ (3.9)

min
ψd,θ1,θ2

n∑
i=1

‖gPT (ψd,θ1(i),θ2(i))rT − rp(i)‖ (3.10)

where rp are the observed thoracic markers transformed to the pelvic frame using Eq. 3.6.
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Figure 3.4: Representative example of rigid-body models recovered from flexion-extension
(top) and sit-to-stand (bottom). The models from each method are shown in the sagittal
plane: functional two-joint (left), functional one-joint (center), and allometric one-joint
(right). Models are plotted in the local pelvic coordinate frame with the subjects facing left.
In each plot, full flexion is the left-most configuration and full-extension is the right-most
configuration. The ground truth thoracic frame is plotted in black.

Allometric Model

For comparison, height-based allometric relationships for the model parameters of a single-
joint spine were derived using the methodology from Reed [40], the original dry pelvis data
from Reynolds [42], and surface to spine models from Snyder [58] and Robbins [59, 68].
These relationships were recomputed for the pelvic and thoracic coordinate frames specified
in Section II-A.

3.3 Experimental Validation

Experimental Protocol

The method was evaluated on ten healthy subjects (3F/7M age: 30.9 ± 9.6 years, height:
1.76 ± .12 m, mass: 67.4 ± 11.2 kg) under approval of informed consent (UCSF IRB:
12-10253).
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Table 3.1: Parameter and state constraints for one-joint (left) and two-joint (right) models.

Variable Range
JCY [−0.05, 0.05]m
JCZ [0, 0.2]m
lJT [0, 0.5]m
θ [−π/2, π/4] rad

Variable Range
LJCY [−0.05, 0.05]m
LJCZ [0, 0.1]m
UJCY [−0.05, 0.05]m
UJCZ [−0.2, 0.5]m
lLU [0, 0.25]m

θ1 (LJC) [−π/2, π/4] rad
θ2 (UJC) [−π/6, π/6] rad

An 8-camera PhaseSpace active motion capture system (480 Hz) was used to track the
motion of the surface landmarks detailed in Section II-A. LED markers were placed directly
on the skin with adhesive Velcro.

The protocol consisted of three self-paced standing FE motions and three sit-to-stand and
stand-to-sit actions. During FE, subjects were instructed to bend forward and backward as
far as comfortable with arms at their sides. During STS, subjects were instructed to perform
the action naturally with arms at their sides.

Model Recovery and Evaluation

The methods outlined in Section II were applied to recover parameters for the one-joint and
two-joint models. Models were separately recovered from FE and STS data, using twenty
frames of data, sampled across the full range of each motion. No constraints were applied
during step A or B of Section II. Loose constraints were applied during the optimization of
model parameters and joint states in step C (Table 3.1).

The recovered functional models and the allometric one-joint model were tested on FE
and STS data sets, each consisting of 300 samples with training data excluded. Given fixed
model parameters, we recover the joint angles using Equation 3.9 or 3.10. An example of
the generated rigid-body models for a single subject is presented in Figure 3.4. Each plot
displays the recovered spinal configuration at positions sampled across the motion. Note
that we observe a smaller range of spinal motion in STS compared to FE.

Results

From the joint state recovery process, we compute the thoracic marker residuals, the distance
between the observed and predicted (best fit) marker locations. The mean marker residual
for each model is presented in Table 3.2. The residual plots in Figure 3.5 allow for visual
inspection of the marker residuals dependence on the spine configuration (from fully extended
to fully flexed). The mean recovered subject-specific parameters for the one-joint and two-
joint models are given in Table 3.3.
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Table 3.2: Mean thoracic marker residuals (mm) for functional and allometric models.
Bolded entries indicate models trained and tested on the same motion (different data set).

Test action
Model (training action) Flexion/Extension Sit-to-Stand
Functional 2-Joint (FE) 6.0 ± 3.7 7.9 ± 5.3
Functional 1-Joint (FE) 9.0 ± 5.7 12.6 ± 7.3
Functional 2-Joint (STS) 9.0 ± 6.4 5.3 ± 3.1
Functional 1-Joint (STS) 13.6 ± 8.7 7.5 ± 4.8
Allometric 1-Joint 27.2 ± 15.4 27.7 ± 14.4

Table 3.3: Mean recovered parameters for functional models. Values represent the parameter
as a percentage of subject height.

Parameter Functional FE Functional STS Allometric
JCY -1.4 ± 1.1 1.2 ± 1.5 1.1
JCZ 4.6 ± 1.6 2.7 ± 2.7 1.84
lJT 21.5 ± 1.7 23.8 ± 3.0 25.10

LJCY -1.2 ± 0.9 -0.7 ± 0.8 –
LJCZ 1.6 ± 1.2 0.9 ± 1.3 –
lLU 10.3 ± 2.6 8.1 ± 4.6 –
UJCY -1.1 ± 0.7 -0.7 ± 1.0 –
UJCZ -14.2 ± 1.5 -16.6 ± 4.6 –

3.4 Discussion

While the proposed kinematic models are representative of the observed aggregate motion
of the spine, we make no claims on the relationship between the recovered joint centers and
the internal anatomy. Therefore, it is not appropriate to compare the recovered joint centers
to internal imaging studies of static postures. Rather, we consider the marker residuals as
an indication of the goodness-of-fit of each model.

The marker residuals of the functional methods were lower than those of the allometric
model across both motions and all subjects (Table 3.2). The two-joint model outperformed
the one-joint model both when the models were trained and tested on the same action and
when the models were trained and tested on a different actions. As expected, there was
a decline in performance when the functional models were trained and tested on different
motions, though the decline was smaller for the two-joint model.

Visual analysis of the residual plots in Figure 3.5 provides additional insight into the
fit of the models. The plots show the mean residual against the % of the phase (ie. the
proportion of the motion completed). For a perfectly fit model, we expect to see a horizontal
line, meaning the marker residuals do not vary predictable with the motion of the spine. For
the allometric model, we observe a dependency on the phase, with greater marker residuals
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Figure 3.5: Marker residual plots for three models for FE and STS. The vertical axis is the
mean distance between the observed and predicted thoracic markers, averaged across ten
subjects. The horizontal axis is the percent of phase of each motion, where 0 corresponds
to full-extension and 100 corresponds to full-flexion. Two-degree polynomials were fitted to
the data for visualization.

with higher flexion in the FE action. While significantly less pronounced in the functional
methods, we also see an increase in marker residuals during the higher flexion portion of the
FE action. Soft tissue artifacts, particularly the stretching of the skin, may account for some
of this increased error. We also see a greater dependency on the phase when the functional
methods are tested on a different action. However, there is less variation in the two-joint
model, indicating that the recovered model may be less action-specific.

Although the goal of this work is not to suggest new allometric scaling relationships, we
present the mean recovered model parameters in Table 3.3. We observe variations across
subjects and within subjects for models trained on FE and STS. For the one-joint model,
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there is a statistically significant (p = .009) difference between the recovered joint location
from FE and STS. The lower joint center in STS may be a result of less motion in the upper
lumbar or thoracic vertebrae. It is necessary to train the simplified one-joint model on the
test action of interest.

3.5 Chapter Summary

The functional joint center method presented in this chapter provides a quick method for
generating a subject-specific model of the spine for use in analysis of motion. This method
does not require internal imaging or rely on allometric relationships. When compared to an
allometric model, the functional models result in lower marker residuals with less dependency
on the phase of the motion. This method does not provide the location of intervertebral joint
center locations, but rather presents joint centers for a representative kinematic model of
the aggregate motion of the spine. The formulation of the optimization limits the structure
of the rigid-body model to a maximum of two joints. However, the method could be applied
to motions outside of the plane, such as lateral bending.

Future work may explore the application of this method to the analysis of spinal motion
and loading in a clinical population. In contrast to allometric models or regression equations,
this functional method is not based on data from a healthy population. Thus, it may have
greater applicability to a clinical population, such as subjects with spinal deformity or spinal
fusion. Known fusion geometry may be incorporated into the model parameter constraints
to derive subject-specific models.
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Chapter 4

A Passively Assistive Knee Orthotic

As described in Chapter 2, the sit-to-stand motion is an activity of daily living which requires
significant torque generation and coordinated movement at multiple joints. It is therefore
important to consider the whole-body biomechanics when designing an assistive device for
STS. In this chapter, we present a passive elastic orthotic was developed which provides
bilateral knee extension assistance. Initial human experiments were conducted with two
subjects under two foot-placement conditions. The human and device kinematics and dy-
namics were modelled, allowing for the assessment of the biomechanical effects of the device.
The assistance resulted in a decrease in the human knee torque as well as changes in whole-
body biomechanics, notably an increase in the linear momentum of the upper body and a
decrease in the anterior excursion of the center of mass. These results indicate that single-
joint assistance at the knee has the potential to both facilitate successful STS and positively
alter whole-body biomechanics.

4.1 Motivation and Overview

Sit-to-stand (STS) is both an activity of daily living and a common clinical test of strength
and balance. Rising from a chair requires coordinated joint motion: extension of the knees,
coupled with an initial flexion and then extension of the hips [69]. The biomechanics of the
motion are well-studied, including the analysis of failed STS and the identification of STS
strategies in elderly and pathological populations [70]. When compared to the momentum-
transfer strategy adopted by most healthy, younger adults, elderly subjects have been found
to lean forward more, moving their center of mass over their ankles quasi-statically before
rising [71]. Conversely, individuals with low back pain rise with less hip swing and torso
inclination [72]. Although the motion can be successfully completed under these strategies,
they may result in greater joint loads or a higher likelihood of STS failure. Building on these
strategy studies, this work aims to study how passive knee assistance will affect whole-body
biomechanics. Primarily, the goal of the device is to facilitate successful STS. However, we
also hypothesize that, in addition to reducing the required human knee torque, assistance
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at the knee will alter full-body biomechanics, potentially encouraging a STS strategy with
a desirable biomechanical outcome (e.g. decreased spinal loading or greater momentum).

While most lower-limb exoskeleton development has focused on gait assistance, a number
of devices have been designed specifically for STS assistance and assistance at the knee
[73]. These systems are actively actuated by DC motors, series elastic actuators (SEA), or
pneumatic artificial muscles, typically operating under position, force or impedance control.
After a reference position or torque trajectory has been identified, a low level controller is
used to provide feedback based on observed center of pressure or estimates of torque from
EMG or SEA deflection [74, 75, 76]. While these systems are able to provide a standing assist,
the changes to the subject’s biomechanics and joint loads are under-studied, with analysis
constrained to predicted changes in knee torque and power. The effects of compensation and
adaptation to the device are therefore neglected, with potentially beneficial factors being
omitted from the analysis. As active systems usually exhibit delays or adaptions to the user,
the coupled system may behave differently to that of the individual components, so analysis
of the knee joint in isolation is insufficient.

In addition, these powered systems require complex controllers and are limited by cost,
weight, and energy consumption. In contrast, passive or passive/active systems utilize ad-
justable energy storage mechanisms such as electrostatically clutched elastics or pneumatics
to adjust the dynamic response of the human-device system, providing assistance for upper
or lower limbs [77, 78, 79]. Notably, a quasi-passive knee exoskeleton has been developed to
provide various levels of assistive stiffness in parallel with the knee during gait with analy-
sis of the biomechanical effects at the ankle, knee, and hip joints [80], [81]. Tuned passive
devices have also been shown to provide super-human ability in the form of decreased VO2

consumption during gait [82]. As a measure of endurance, VO2 is not an appropriate met-
ric for an activity such as STS which is not aerobically limited. This we therefore present
changes in the observed biomechanics, specifically the joint torque, body momentum, and
center of mass trajectory which may correspond to limitations in strength, coordination, or
speed.

Contributions

We introduce a passive knee orthotic designed to provide bilateral assistance in knee exten-
sion during STS. The system utilizes an elastic element to generate an assistive torque with
a fraction of the mass required by an equivalent active system. The device and resulting
motion are assessed on two healthy subjects performing STS under two initial foot placement
conditions. Initial analysis demonstrates the feasibility of the device to induce changes in
knee and whole-body biomechanics.
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Figure 4.1: Assistive knee orthotic. Left: Device worn by a subject on their left knee (right
knee hidden). Center: Schematic of knee assistive system. Elastic band, pulley, and brace
as indicated. Right: Characterization curve for the knee orthotic. Flexion and extension
directions are as shown.

4.2 Methods

Mechanism Design

A knee orthosis (Figure 4.1) was developed to provide passive assistance at the knee during
the STS motion. The angular trajectory of the knee joint during a typical STS consists of
exclusively knee extension, whereas the ankle and hip exhibit a combination of flexion and
extension. This pure knee extension facilitates the application of a simple passive component
without a clutch or other complex mechanism or control scheme. Assistance at the knee is
generated by the linear extension of an elastic component which wraps around the knee to
produce a torque. Exerting no torque at a full standing position, the device stores energy as
the knee is flexed during sitting. This energy is then released during standing, providing an
assistive torque in knee extension.

The device was developed by augmenting a commercially available knee brace (DonJoy
Legend SE-4) which is used to provide stability following knee injury. The brace was selected
for its recommended use during sports activities, allowing for a full range of motion. A 78
mm diameter, 15 mm thick Delrin puck was added onto the knee center of the brace to act
as a fixed pulley. Two guides were fabricated out of aluminium and fixed to either side of
the pulley.

The elastic band was constructed from a 5/8” outer diameter, 1/8” inner diameter rub-
ber tube (Primeline Industries, Ohio) which was cut into a 1” length. Two stainless steel
wishbone inserts were used to attach 2.5 mm Spectra line to each end. The band was secured
onto the wishbone insert using a constrictor knot made from 1 mm braided Kevlar. The
band was secured onto the brace so that there was slight pre-tension in the line when fully
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extended. An R-clip was used to constrain the Spectra to lie between the pulley guides. The
total mass of each orthotic was 0.81 ± 0.01 kg.

It is important to note that the device was designed to enable the study of biomechanical
effect of assistance during STS, rather than to be worn in daily assistance in its current
form. As the mechanism of assistance is designed with consideration for STS, the device
would likely inhibit knee motion during gait or other activities.

Device Characterization

Bench-top characterization of the device torque-angle relationship was performed immedi-
ately prior to and after each human experiment. With one side of the brace clamped, the
contact force at the opposing side was measured using a 6-axis force/torque sensor (ATI
Mini-45, ATI Industrial Automation), recording the force measurements at 1000 Hz as the
device was manually moved through its full range of motion five times at a gentle pace.
Motion capture data of the brace was simultaneously collected to measure the knee flexion
angle. The resulting torque-angle curve is shown in Figure 4.1. While hysteresis was ob-
served between flexion and extension, the device was found to provide a repeatable torque
response. The maximum assistance provided by the device was measured to be 12 Nm at a
knee flexion of 1.5 rad with an approximately linear relationship. The amount of assistance
can be adjusted by changing the length or material properties of the band. During testing,
a brace is worn on both the left and right legs, providing total assistance equal to twice the
characterized value.

Human-Device Model

To assess the motion and analyze the contribution of the knee assistance, it is necessary
to model the kinematics and dynamics of the STS motion. A sagittal-plane rigid-body
model is used to perform planar inverse kinematic and inverse dynamic analysis. The model
consists of revolute joints at the ankle, knee, hip, and lower-lumbar (L5-S1). Length and
body segment center of mass parameters were allometrically-scaled by the subject’s height
and mass [2]. The recovered joint angles can be converted to velocities and accelerations
which are propagated through each segment. The wrench in the local body-frame can then
be computed to provide estimates of joint torques and powers [83]. The estimated resultant
knee torque τr obtained through this method is then decomposed into the device τd and
human τh components based on the prior device characterization:

τh = τr − τd (4.1)

4.3 Experiment

Motion capture and force data were collected to study the effect of bilateral knee assistance
on full-body biomechanics during STS. This preliminary data was collected from two healthy
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young-adult subjects (S01: male, age 30, 1.78 m height, 65 kg weight, and S02: female, age
26, 1.55 m height, 56 kg weight) under informed consent (UCB IRB protocol 2018-04-10940).

Kinematic data was collected from an 8-camera motion capture system (PhaseSpace
Impulse X2, PhaseSpace Inc., San Leandro, CA, USA) at 480 Hz. Markers were placed
directly on the skin using adhesive Velcro according to an augmented Plug-In Gait protocol
[43], allowing for recovery of the sagittal plane human model. Additional markers were
placed on triads mounted on the knee brace. Ground reaction forces were collected with a
6-axis force platform (AMTI, Massachusetts). Additional forces were collected from a 6-axis
force/torque sensor (ATI Industrial Automation) mounted inside of a custom chair.

The STS motion was performed under two initial kinematic configurations: natural foot
placement and anterior foot placement. The natural position was self-selected by each subject
as a comfortable standing position. The anterior foot position was selected at a knee flexion
angle of approximately 1.2 rad. This position was chosen to make the STS motion more
biomechanically challenging.

STS motions at each foot position were tested under two device conditions, unassisted
and assisted, resulting in four total testing conditions. In the unassisted mode, the subject
wore the brace with the band disengaged.

For each of the four testing modes, the subject completed three trials consisting of seven
STS motions. The subject began each trial in a seated position and was instructed to fold
their arms across their chest. The subject was otherwise not coached on how to stand. A
metronome at 30 beats per minute was used to indicate when to stand and sit. This allowed
for a period of quiet sitting and quiet standing between each sitting or standing action.

Joint positions were estimated from motion capture data using an allometrically-scaled
model [2]. The resulting joint angles were then repeatedly filtered and numerically differ-
entiated (Butterworth, 2nd order, 6 Hz) to obtain the corresponding angular velocity and
acceleration trajectories.

4.4 Biomechanical Effects of Assistance

This section introduces key biomechanical features for the assisted and unassisted standing
actions. Analysis is performed at the knee specifically (Section 4.4) as well the whole-body
motion (Section 4.4).

Knee Torque

The torque response curves for the knee are shown in Figure 4.2 with knee extension cor-
responding to a negative torque. The knee torque is evaluated from the moment of seat
off (defined as the point at which the vertical force in the chair is less than 20 N) to quiet
standing (defined by zero torso velocity). For the assisted mode, the resultant torque (red) is
decomposed into the predicted device torque (black) and human torque (green). It is shown
alongside the human torque from the unassisted motion (blue).
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Figure 4.2: Knee torque during sit-to-stand as a function of time (left) and knee angle (right).
Each plot has three lines for the assistive mode: the resultant torque from the human and
device (red), the device torque (black), and the remaining human torque (green). Addition-
ally, the human torque in the unassistive mode is plotted in blue. The trace represents the
mean trajectory across all trials with the standard deviation shown as a shaded region of the
same colour. The plots are shown for each subject and separated by the natural foot (top
row) and anterior foot placement (bottom row) conditions.

Under assistance, there is an expected decrease in the human torque required. In the
torque-angle curves, we observe that the human torque during the assisted mode initially
aligns with the unassisted human torque. At a knee angle of approximately -1 radians, the
assisted human torque decreases so that the resultant torque matches the unassisted human
torque. This suggests that the subjects may exploit the assistance partway through the
action. This pattern is consistent across trials, suggesting that subjects are not adapting to
the assistance over trials. An exception is seen in the anterior foot placement condition for
S02, in which the human provides an abating knee torque in the second half of the motion.
This observed torque in the knee flexion direction appears to compensate for greater trunk
momentum. The whole-body biomechanical analysis (4.4) indicates that the subject changed
their standing strategy under these conditions.



CHAPTER 4. A PASSIVELY ASSISTIVE KNEE ORTHOTIC 45

Figure 4.3: Trajectory of the center of mass (COM) of the head-arms-trunk segment during
STS with natural foot placement (top) and anterior foot placement (bottom). Trajectories
are normalized by subject height with the average taken across all trials for each subject.
Blue lines denote assisted trajectory and Red lines denote unassisted trajectory.

Whole-body Biomechanics

Center of Mass

For both foot configurations, the assistance at the knee resulted in a steeper vertical rise of
the head-arms-trunk (HAT) body segment. This can be observed in the trajectory of the
HAT center of mass (COM) shown in Figure 4.3. This smaller anterior excursion of the
COM corresponds to less trunk inclination during the motion.

Torso Momenta

The torso momenta p are computed from the body velocities of the torso and the torso
inertia tensor Itorso:

p = ItorsoV
b
torso (4.2)

Figure 4.4 shows the vertical component of the linear momentum of the HAT segment.
Under all conditions, the peak vertical linear momentum increases with the assistance at
the knee. With normal foot placement, the momentum consists of a single peak, suggesting
a single momentum transfer action, moving the COM forward and up vertically. This is
seen in the assisted and unassisted modes for both subjects. For the anterior foot placement
condition, the unassisted mode appears to consist of two separate sections. This may indicate
a leaning strategy where the first peak corresponds to the initial movement of the torso,
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Figure 4.4: Vertical linear momentum of the head-arms-trunk segment. Unassisted motion
is shown in red dashed line with assisted motion in blue solid line. The values are normalized
by subject height and mass and shown for S01 (left) and S02 (right) under the natural foot
placement (top row) and anterior foot placement (bottom row). In each plot, the mean over
21 motions is shown with the standard deviation in shaded bounds.
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before there is a second separate rise. For S02 in the anterior foot condition, a transition
is seen from a lean strategy to a momentum transfer strategy in the assisted mode. This
change in strategy is not seen in S01.

The passive orthotic was able to provide assistance which resulted in lower knee loading
and changes in whole-body kinematics and dynamics. This initial biomechanical analysis
supports the hypothesis that passive extension assistance at the knee has the potential to af-
fect full-body biomechanics during STS. The increase in upper body vertical momentum was
observed for both subjects under all assisted testing conditions. This change in momentum,
alongside the corresponding decrease in the anterior excursion of the COM, are promising
for improved motions as low vertical momentum was found to be an indicator of failed STS
[70].

4.5 Chapter Summary

In this chapter, we present a new device for assistance in knee extension during STS. Aug-
menting an existing knee orthotic, the device incorporates a simple elastic elemant to provide
passive assistance. Our results support the hypothesis that assistance at a single joint can
affect whole-body motion. Additionally, our bio-mechanical analysis highlight the varied
effect even simple systems can have on whole-body biomechanics and that, even for simple
systems, people may respond differently. While providing knee extension assistance during
sit-to-stand decreased the average human knee torque for both standing conditions, the effect
on the low-back and hips varied. By studying the full-body biomechanical effects of assistive
systems, simple devices can be developed to encourage specific motions.

Limitations

Only two healthy subjects were tested in this study over a short time horizon, making
generalization on the effect of this system to other subjects, particularly patient groups
unclear. Similarly, analysis only occurred in the sagittal plane with the effect of the motion
of the arms neglected. The validity of these assumptions needs to be tested as part of a
wider study.

Future Work

While this chapter introduces a method for altering whole-body motion, the relationship
between the assistance and the resulting motions is not known. A more detailed study
that builds on a parameterized model of STS, and a variable stiffness actuator would allow
for rapid assessment of the effect of different extension profiles on whole-body standing and
balance. A better understanding of the underlying mechanisms for whole-body biomechanics
changes would be an electromyography(EMG) study, focusing on the differences in muscle
activation in the knee flexors, lower back, and abdominal core muscles. Finally, in order
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to translate this method to provide daily assistance, future work must include mechanism
development to allow for free or assisted motion during gait.
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Chapter 5

An Affordable Device for Robotic
Therapy

Since its inception in the 1980s, the field of rehabilitation robotics has seen significant ad-
vances in the development of complex mechanisms and controllers. These robotic devices
have the potential to facilitate precise, high-intensity, and adaptable rehabilitative tasks
while tracking quantitative measures of subject ability. Studies of robot-assisted therapy,
however, have only demonstrated modest benefits over traditional therapy, and we have
yet to see a widespread adoption of robotic therapy as the standard of care for in-clinic
or at-home therapy. While several factors inhibit the adoption of rehabilitation robotics,
an undeniable barrier results from high device cost and complexity. This inaccessibility
further contributes to a limited understanding of models of recovery and optimal robotic
rehabilitation protocols.

We aim to address the limitation of cost and complexity through the introduction of an
affordable planar manipulanda for upper limb assessment and therapy. With a total part
cost of less than $800, the device utilizes inexpensive and off-the-shelf components to provide
active assistance and resistance. It is capable of guiding the arm through trajectories, fol-
lowing the subject’s intended motion through force-based admittance control, and imposing
assistive or resistive force-fields while tracking the position and force exerted by the subject.
In this chapter, we present our design objectives and outline the mechanical, electrical, and
software systems. We validate the device performance and present a new method for deter-
mining the human arm 3D upper-limb inverse kinematics with the device. Finally, we show
initial data from human subjects interacting with the developed system.
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Figure 5.1: Examples of upper-limb robotic rehabilitation devices. A: In-Motion Arm, the
commercial version of the MIT-MANUS [84], B: ARMin 4 [85], C: H-Man [86], D: NeRoBot
[87].

5.1 Overview of Upper Limb Rehabilitation Robotics

During robot-assisted therapy, a robotic device provides continuous physical interaction with
a subject to complete a rehabilitation protocol. This therapy can be incorporated into reha-
bilitation for subjects with upper limb impairment due to neurological injury such as stroke
or spinal cord injury [88]. Stroke is a leading cause of disability in the United States, with
many patients experiencing impairment of the upper limb [89]. This motor impairment
can manifest in several ways including weakness, spasticity, loss of coordination, and ab-
normal muscle synergies. The presence of impairments of the upper-limb and hand inhibit
the ability to perform activities of daily living and live independently [90]. The incorpora-
tion of robotic technology into rehabilitation therapy is desirable because of the ability to
provide high-intensity protocols targeted protocols while recording quantitative measures of
performance.

There exists an array of robotic therapy devices targeted at the lower limbs, upper limbs,
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and hands. We focus on devices for the upper-limb with a few examples of devices shown in
Figure 5.1. When describing a robotic therapy device, we can make distinctions based on the
mechanism and control architecture. These design choices impact how the subject interacts
with the device. Upper-limb rehabilitation robots can be classified as an exoskeleton or
end-effector device based on the mechanical structure. Exoskeleton devices have a structure
which allows for the control of individual human joints, with the device structure mimicking
the anatomical structure of the human. An example is the ARMin device shown in Figure
5.1 B [85]. In contrast, end-effector devices only connect to the subject at the human hand,
with the human elbow and shoulder joints moving to achieve the end-effector pose. This
simplification does not allow for individual joint motion, but facilitates the implementation of
less-complex control schemes and less individual mechanical tuning of the device. Examples
include the MIT-MANUS, H-Man, and NeRoRobot shown in Figure 5.1 [84, 86, 87].

Robotic devices can be used to implement a variety of control modalities for robotic
therapy. In describing a controller as assistive, we make a distinction based on how the
subjects interacts with the robotic device. In comparison to are purely passive controller, in
which the robot completes the motion without input from the subject, and a purely active
controller, in which the robot only measures the motion with no impact on the subject’s
motion, an assistive controller requires the motion to be generated by the subject with
varying forms robotic assistance to complete the task or improve performance [90]. Examples
of assistive controllers include force-based impedance controller [84, 85], virtual walls moving
tangent or normal to a trajectory [84, 91], or trigger-based assistance in which a threshold
of subject movement initiates the motion [92].

While there have been numerous studies on the design and control of robotic devices,
an understanding of the clinical effectiveness of different robotic controllers is limited [93].
This is due in part to a limited number of studies and study size. In addition to the high
cost of robotic devices, most are used only in specialized therapeutic institutes and require
operational supervision by expert personnel [94, 95]. To further understand the efficacy of
robotic therapy and develop predictive models for optimal rehabilitation protocols, there
remains a need for simple, inexpensive, robotic devices.

5.2 Device Design

In this section we describe our robotic therapy device shown in Figure 5.2.

Design Objectives

With the aim of developing an affordable manipulanda for robot-assisted therapy and as-
sessment, we first establish a set of design objectives:

1. Produce active motion to move the arm along arbitrary trajectories in the transverse
(horizontal) plane
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Figure 5.2: Subject seated in front of upper-limb planar rehabilitation device

2. Operate under force-based admittance control to facilitate user-initiated motion

a) Apply resistive forces to make motions more challenging

b) Apply force fields to guide movement or assist with error correction

3. Measure end-effector position, velocity, and interaction forces

4. Consist of low-cost off-the-shelf or 3D-printed components

5. Ensure subject safety

6. Have a portable structure

7. Meet the following specifications:

a) Large workspace to allow for full range of shoulder and elbow motion

b) Speed range of 0-500 mm/s

c) Measure and withstand forces up to 50 N

A secondary goal of the device is to be compatible with interfacing with exterior input
signals, including an eye-gaze tracking system and a brain machine interface. These studies
are part of research collaborations with the Department of Mechanical Engineering at the
Hong Kong University of Science and Technology and the Department of Neuroscience at the
University of California, San Francisco. The application of those controllers to this device is
not further described in this thesis.
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Figure 5.3: Diagram of the mechanical structure of the robot

Mechanical Design

The mechanical structure of our device is shown in Figure 5.3. The system consists of a
belt-driven transmission which enables 2D motion in the horizontal plane. This H-shaped
differential drive is heavily inspired by the design of H-man [86], a planar manipulanda for
haptic interaction. The differential transmission allows for a single belt to move a central
platform, while minimizing the inertia of additional transmission elements such as motors
by keeping them fixed. In contrast to linkage-based systems, this mechanical architecture
results in simplified kinematics and high isotrophy. While we utilize the general mechanism
structure of H-man, our mechanical design and control implementation differs to achieve the
aforementioned design criteria. Notably, we alter the mechanism to have a large workspace,
with a new design for the center carriage and human-robot connection at the wrist. The
use inexpensive actuation and force sensing systems require changes throughout the system
architecture which are detailed below.

The transmission controls the motion of the end-effector, a platform onto which the
subject’s forearm is mounted at the wrist. This wrist platform can translate in the x-direction
along two rails via linear bearings mounted in the platform. These rails connect on either
side to a carriage assembly. Each carriage assembly is mounted on a rail via another pair
linear bearings, allowing for translation of the wrist platform and carriages in the y-direction.
The motion of the wrist platform is guided by the transmission belt which is is mounted to
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one side of the platform and has free motion through the other side of the platform. Two
motors connect to the drive pulleys, which move the belt through a pair of idler pulleys in
the opposite corners of the device. Four additional idler pulleys are used to guide the belt
through the side carriages to and from the center platform. This differential configuration
allows for controllable movement through the horizontal plane. The rails, drive pulleys,
linear bearings, and small hardware are all off the shelf components. The wrist platform,
carriage assemblies, idler pulley, and motor mounts are custom, 3D printed parts.

Actuator Selection

Actuators can be one of the most expensive components of a robotic system. We sought a low-
cost actuator which would operate within our desired specifications. The initial system was
designed with brushed DC gear motors. However, the performance did not meet the torque
specification at low speeds. Our final system is driven by two high-torque stepper motors
(Nema 23, 4A, 3Nm), which are typically used for CNC machinery applications. Stepper
motors allow for high-torque, open-loop control control, even at low speeds. The motors
are powered at 24V and controlled by a digital stepper motor driver (DM542T) with anti-
resonance. To achieve a smooth motion, the stepper motors operate at 1/32 microstepping.
Motor control is performed at two levels: motor angular velocities are first computed by
the high-level microcontroller (Teensy 3.6) and then sent to a motor microcontroller (Teensy
3.2) via I2C. The motor microcontroller converts these desired velocities into pulses which
are control the stepper motor driver. In this configuration, the end-effector has a maximum
speed of 500 mm/s. This maximum velocity can be altered by adjusting the microstepping
configuration.

Device Kinematics

The device kinematics match those of the H-man system and are described by the equation:[
ẋ
ẏ

]
= J

[
ωL

ωR

]
(5.1)

where ẋ and ẏ are the end effector velocity in the task space, ωL and ωL are the angular
velocities of the left and right motors, and J is the manipulator Jacobian which can be
written:

J =
rp
2

[
−1 −1
−1 1

]
(5.2)

where rp is the radius of the drive pulley. Note that due to the fixed position of the actuators,
the manipulator Jacobian is not dependent on the device configuration.
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Figure 5.4: CAD model of the wrist platform (left) and interior force system (right)

Wrist Platform

The human subject connects to the device at the wrist platform. We designed the device to
connect at the forearm rather than at a handle gripped by the hand. This allows the hand to
remain free to interact with objects in the environment while engaging in gross upper-limb
motion through the device. This is useful in the study of the reach-to-grasp motion. When
using the device, the subject wears a semi-rigid wrist guard to restrict the flexion-extension of
the wrist, simplifying the upper-limb kinematics. The wrist is then docked into a 3D-printed
semi-circular mount and secured with hook-and-loop straps. The arm may be mounted at
different angles of of forearm pronation, with the palm facing down or to the side. The
wrist-mount is connected to a freely rotating semi-circle which connects to a ball bearing
under the cover. This allows for passive rotation of the forearm relative to the wrist platform
during motion. This configuration can be replaced with a handle to allow for interaction to
occur at the hand rather than the forearm.

Force Measurement

It is important to measure the interaction forces between the human and the device for several
reasons. Interaction forces can be used to assess the subject’s strength and coordination,
implement an admittance controller for volitional movement, and ensure safety of the human
subject. To measure the interaction forces, we designed a novel configuration consisting of
four 5 kg load cells mounted underneath the cover of the wrist platform. These inexpensive
uni-axial load cells are commonly used in weighing scales. Two sensors measure the force in
each the x-direction and y-direction. Forces from the wrist platform are transferred through
a shaft and ball-bearing. The bearing is mounted in a 3D-printed bracket which contacts
the pair of load cells which measure forces in the y-direction. These load cells are mounted
to a second pair of load cells through 3D printed brackets allowing for the measurement of
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Figure 5.5: Top-down view of the force system

force in the x-direction. The force at the contact point can then be resolved as the sum of
all forces:

Fx = F1x + F2x (5.3)

Fy = F1y + F2y (5.4)

The force subsystem electronics are mounted within the wrist platform. The load cell
voltage is measured by an analog-to-digital converter with a programmable gain amplifier
(ADS115). These measurements are then sent to the force microcontroller (Teensy 3.2) via
I2C. The force subsystem is shown in Figure 5.8. The load cell configuration is capable of
measuring a maximum 10 kg, or 98.06 N, in any direction, with a resolution of .074 N. The
ADC chips were selected to maximize the loop speed with a tradeoff in decreased resolution.
The maximum load capacity exceeds the 50 N design objective. While a limitation of the
system is the inability to measure out of plane forces and torques, these are not necessary
given the mechanical design of the system. The device mechanically supports the wrist along
the z-axis. The wrist attachment is designed to minimize torques about the x- and y- axes.
Finally, given the two-link upper limb system enforced by bracing the wrist, it is not possible
for the subject to generate a torque about the z-axis.

Electronics Design

The electronic system architecture (shown in Figure 5.6) consists of a main microcontroller
which connects to a motor subsystem (Figure 5.7), a force subsystem (Figure 5.8), and a
PC user interface. The main microcontroller is a Teensy 3.6 which features a 32 bit ARM
Cortex-M4 processor. This microcontroller operates at a 330 Hz loop frequency. The force
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Figure 5.6: Electronic system architecture

and motor subsystems both use a Teensy 3.2 microcontroller, with connections via I2C.
Separate microcontrollers were used for these subsystems to maximize the main control loop
frequency. The graphical user interface is run in Python and used to set the controller and
experimental parameters and log robot state data. It includes a real time visualization of
the robot state, including end-effector position and force, as well as an interface to save the
data files. The user interface includes a subject-facing display on a separate monitor which
can display the desired task and the real time position of the end-effector. The position of
the wrist platform is measured by absolute magnetic encoders (US Digital MA3) mounted
to each of the drive motor shafts.

Safety Considerations

When designing any system that interacts with a human, it is essential to implement a num-
ber of safeguards to mitigate the risk of injury or discomfort to the subject. Workspace
limitations prevent the device from moving outside of a subjects comfortable reachable
workspace. These are implemented in software as virtual walls which can be customized
to each subject alongside limitations on maximum velocity and force. The device power
runs in series with two emergency stop buttons which are held by the subject and researcher
during experiments. Hitting the button will cut power to the motors. Additionally, there is
a software emergency stop in the graphical user interface which will set all motor velocities
to zero. Mechanical hardware limits are enforced through physical limit switches which are
triggered at the edges of the device workspace. These limit switches are also utilized during
the position calibration procedure.
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Figure 5.7: Diagram of the motor electronics subsystem

Figure 5.8: Diagram of the force measurement electronics subsystem
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Figure 5.9: Sample data comparing the position trajectories as measured by the ground truth
motion capture system and robotic device in the x-direction (top) and y-direction (middle).
The error in both directions is shown on the bottom plot.

5.3 Hardware Validation

We validated the device measurements of end-effector position and force against two gold
standard measures. A marker-based motion capture system (Phasespace Impulse X2) was
used to measure the position of the wrist platform. Phasespace data was recorded at 480 Hz
from four markers rigidly attached to the wrist platform. Additional markers were attached
to the frame of the device to align the device and camera coordinate systems. The Phases-
pace data was transformed into the device frame and interpolated and aligned spatially and
temporally to compare to the simultaneously recorded device measurements. No additional
filtering was applied. Data were collected from ellipsoidal motions completed with a human
subject controlling the motion of the device. The mean absolute error for the measurement
end-effector position was 1.42 ± 0.71 mm. An example of the position trajectories from the
device and Phasespace is shown in Figure 5.9.
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Figure 5.10: Sample data comparing the force trajectories as measured by the ground truth
force/torque sensor and robotic device in the x-direction (top) and y-direction (middle). The
error in both directions is shown on the bottom plot.

The device measurement of the force was compared against a 6-axis force/torque sensor
(ATI Automation). Note that the device load cell configuration does not measure forces
outside of the horizontal plane. The out of plane forces and torques, therefore, are not con-
sidered. To compare the forces, a custom mount was designed to attach the ATI force/torque
sensor directly above the device load cell in place of the wrist mount. A handle was attached
to the opposing side of the force/torque sensor. Forces were manually applied to the handle
by the investigator. Forces were applied in each of the 8 cardinal directions. An example
of the force measurements is shown in Figure 5.10. The mean absolute error for the force
in the x-direction was 0.3 ± 0.2 N and for the y-direction was 0.53 ± 0.31 N. These results
indicate that the position and force measurements are consistent with those measured by
ground truth systems.
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Figure 5.11: Block diagram of the admittance control framework

5.4 Admittance Control Framework

Under an admittance controller, the interaction forces exerted by the subject affect the
motion of the robot though virtual model dynamics. The model dynamics are selected to
achieve a desired interaction between the human and robot. Commonly, the input force is
related to the robot velocity [96]. Our overall admittance control framework is shown in
Figure 5.11.

Admittance control is the dual of impedance control, a form of interaction control first
presented by Hogan [97]. Impedance control requires a system which is able to apply a
force to the human in response to a displacement. Stepper motors cannot operate under
low-level torque control, and therefore cannot be used to implement an impredance control
architecture. Under an admittance controlled device, it is challenging to render low-inertia
environments due to instability. To achieve free or transparent motion, we seek to achieve a
low-inertia environment, minimizing the interaction force between the subject and device as
they complete a motion. To maintain safe and stable interaction, however, we maintain an
inertia which is lower than the mechanical friction of the system, but greater than a truly
transparent system.

We relate our interaction force F to the robot velocity through the virtual dynamics of
a mass-damper system. From Newton’s 2nd law and a sum of forces, we can derive the
differential equation for the position x:

mẍ(t) + cẋ(t) = F (t) (5.5)
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where m is the mass and c is the damping coefficient. For implementation, we derive the
discrete dynamics via backwards Euler discretization:

ẋk =
4t
m
Fk +

(
1− c4t

m

)
Ẋk−1 (5.6)

where 4t is the control loop time step. We define controller parameters αm and αv to
simplify the discussion of mass and viscosity:

αm =
4t
m

(5.7)

αv =

(
1− c4t

m

)
(5.8)

Adjusting the mass and viscosity parameters affects the virtual dynamics of the human-
robot-interactions. Increasing the mass parameter results in a decrease in the virtual mass
mass. This will result in a more responsive system, requiring less force to achieve a given ve-
locity. Increasing the viscosity parameter results in greater velocity carryover of the previous
velocity state.

Upper Limb Inverse Kinematics

While the device measures end-effector position and forces, knowledge of the corresponding
human joint angles and torques is useful in biomechanical analysis both as an assessment
and as an input into assistive and rehabilitative controllers. In a lab setting, it is possible
to track arm kinematics using an external camera or motion capture system. This increases
the cost and setup time to acquire data in a clinical or home setting. The constraints of
the system allow us to estimate the arm kinematics from minimal additional measurements.
We model the human arm from the shoulder to the wrist as a five degree of freedom linkage
consisting of a spherical shoulder joint, a cylindrical elbow joint, and a cylindrical joint for
wrist pronation as shown in 5.12a. The inverse kinematic problem for this model seeks to
find the joint angles given the position and orientation of the end-effector (wrist). From
the device we have a measurement of the wrist position and an incomplete measurement
of the wrist orientation. The z-axis of the wrist is fixed based on the angle of the wrist in
the device. We can derive a closed-form solution for this IK problem, making the following
assumptions:

1. The length of the upper and lower arm segments are known

2. The glenohumeral shoulder joint center (SJC) remains fixed (no scapular motion) and
known

3. The forearm remains parallel to the horizontal plane
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Figure 5.12: Rigid body models of the upper limb. Left: 5-dof model with a spherical
shoulder joint, a cylindrical joint for elbow flexion/extension, and a cylindrical joint for
wrist pronantion/supination. Right: planar 2-dof model of the arm with cylindrical joints
at the shoulder and elbow for flexion/extension.

4. The orientation of the z-axis of the wrist frame remains remains fixed

We measure the position of the shoulder joint relative to the origin of the device. During
experiments, we instruct subjects to keep their shoulders back to limit the use of scapular
or torso motion. From this incomplete end-effector configuration, we derive a closed-form
solution to the inverse kinematics problem using a Paden-Kahan approach for decomposition
[67]. We break the derivation into down the following steps:

1. Solve for elbow flexion θ4 based on distance from wrist to SJC (Paden-Kahan 3)

2. Project onto horizontal plane to solve for 2D position of elbow joint center

3. Solve for shoulder flexion (θ1) and adduction (θ3) to the set position of the elbow joint
center (Paden-Kahan 2 and 1)

4. Solve for shoulder internal rotation (θ2) to set the position of the wrist joint center

5. Solve for wrist pronation/supination (θ5) to align z-axis of wrist frame
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Figure 5.13: Figures illustrating the steps to solve to the inverse kinematics problem for
the 5-dof upper-limb model. Step 0 shows the initial reference configuration for the arms.
Figures 1 - 5 show the steps outlined in the text.

Operating the device at the subject’s shoulder height simplifies the human kinematics. In
practice, this is achieved by mounting the planar device on top of a variable height table and
adjusting the table to be at shoulder height. We can now model the arm as a two-link planar
linkage with a cylindrical joint at the shoulder and elbow (Figure 5.12b). Again assuming
that the position of the shoulder and linkage lengths are known, we have a closed-form
solution to the inverse kinematics problem [67]:

θ1 = atan2(y, x)± cos−1

(
r2 + l21 − l22

2l1r

)
(5.9)

θ2 = π ± cos−1

(
l21 + l22 − r2

2l1l2

)
(5.10)

where l1 and l2 are the lengths of the upper-arm and lower-arm segments, respectively,
and r =

√
x2 + y2 is the distance from the wrist to the shoulder joint center.
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Figure 5.14: Assistive glove

5.5 Preliminary Human Subjects Experiments

Preliminary experiments were conducted with a prototype version of the device described in
this chapter. The notable differences between the prototype device and the described device
are a slower control loop operating at 70 Hz and stepper motors with lower maximum torque.
An objective of the experiments is to demonstrate the feasibility of the hardware setup and
the use of admittance control for assistive and unconstrained movement. In addition, the
experiments explored:

1. Differences in subject interaction during fully-assisted and admittance control

2. The effect of varying the virtual-mass damper dynamics on the interaction force and
end-effector velocity

3. The effect of reaching verses reach-to-grasp on gross arm motion

4. The detection of the onset of grasp during a reach-to-grasp action

The experiments were conducted with the use of a prototype assistive glove (Figure
5.14), capable of flexing and extending the index finger to complete a pinch grasp while
opposing a braced thumb. The active assistance is provided by a servo motor, whose output
is connected in series with a 3D-printed rotational spring assembly. This configuration allows
for the glove to operate under both an active assist mode and an admittance controller for
volitional motion. While the device is not able to record absolute measurements of finger
position or force, in the admittance control mode, the device is able to measure the times
of grasp onset, peak opening, and closing. This allows for the stages of the grasp motion to
be tracked relative to the gross arm motion. The thumb was braced with a modified finger
splint to keep the thumb supported in opposition to the index finger to provide a precision
pinch grasp.
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Experimental Protocol

Data was collected from four control subjects and two subjects with upper limb impairment
under approval of the UCSF Institutional Review Board with reliance approval by the UC
Berkeley Institutional Review Board.

In the assisted mode, the device completes a linear minimum-jerk trajectory with no
input from the human subject. The minimum-jerk trajectory was selected to follow a smooth
velocity profile which has been found to describe a nominal trajectory for linear reaching
[98]. For known start and end conditions and a specified duration, Hogan formulated the
minimum jerk trajectory:

x(t) = xi + (xf − xi)
(
10(t/d)3 − 15(t/d)4 + 6(t/d)

)
(5.11)

where xi is the initial position, xf is the final position, and d is the total duration of the
motion. Note that we can independently compute the minimum-jerk trajectory for the x
and y dimensions. To implement this we take the first derivative of the discrete-time version
of Equation 5.11 to compute the velocity based on the elapsed time. The trajectory is
computed in real time with a proportional tracking term on the position error. In this mode,
the human motion has no impact on the motion of the device. Subjects were instructed to
follow the motion of the device with their arm, and the interaction forces were recorded.
In the admittance control mode, the subjects control the motion of the device through the
interaction force. Three combinations of mass and viscosity parameters were tested: A1)
m = 3.3 kg, αv = 0.25, A2) m = 3.3 kg, αv = 0.5 A3) m = 2.2 kg, αv = 0.5.

All subjects were tested with their right arm in the device. This was the self-reported
dominant arm for all subjects. The device origin was positioned in front of the subject’s
right shoulder joint center in the transverse plane. Targets were placed at three locations:
at 0 degrees, 45 degrees, and 90 degrees from the origin. A foam ball of 1 in diameter
was connected to a weak magnetic mount. The vertical height of the mount was adjusted
so that subjects could grasp the object when connected to the device. Prior to the start
of the experiment, the reachable workspace of each subject was manually measured by the
experimenter along 8 radial lines from the origin. These measurements were used to set the
reaching target distances along each of the target lines.

Trials were designated as reaching trials or reach-to grasp trials. During a reaching
trial, the subject completed only the gross reaching motion. During a reach-to-grasp trial,
the subject either grasped or released the ball at the end of the reaching trajectory. For
all reach-to-grasp motions, the assistive glove operated under an admittance control mode.
Each trial consisted of three outward reaches and three inward returns for each target.
Each condition, reaching vs reach-to-grasp, assisted (two speeds), and admittance control
parameter (3 combinations) was completed once. Subjects were given time to rest between
sets of three trials.
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Figure 5.15: Top-down view of planar reaching trajectories for control (left), post-stroke
(center), and PLS (right) subjects. The color of each line corresponds to the velocity of the
wrist at that point. Subjects performed series of reaches from the home position to radially
placed targets. The subject’s reachable workspace as measured by clinician is depicted in
gray.

Results

Our analysis of this preliminary protocol is largely qualitative as the primary purpose was
to assess the hardware feasibility. Figure 5.15 shows sample reaching trajectories from trials
under the admittance controller, comparing the motion of a representative control subject,
a subject who is post-stroke, and a subject with early Primary Lateral Sclerosis (PLS). We
observe variation in the velocity profile and peak speed during the gross transport phase, the
ability of the subject to stabilize their arm at the end of the motion, and the linearity and
smoothness of the reaching trajectory. These differences were noted despite the subject with
a diagnosis of PLS having a high level of functional ability. On examination, this participant
had mild bilateral distal upper limb weakness (MRC scale 4/5), mildly elevated tone, and
full passive and active range of motion. Changes in the linearity of a reach or reach-to-grasp
trajectory have been associated with cerebellar pathologies, leading to separation of the
motions of the shoulder and elbow. Prior research has shown that the reaching motions of
post-stroke subjects with upper limb impairment are slower, less accurate, and have poorer
coordination than non-impaired individuals. Our anecdotal results appear to agree with
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Figure 5.16: Preliminary observations from the human subject protocol. Top left: repre-
sentative velocity plots for a single reaching motion for control subject (purple), post-stroke
subject (blue), and subject with Primary Lateral Sclerosis (Red). Bottom left: demonstra-
tion of feasibility to identify key stages of grasp during a reach-to-grasp motion. Right:
representative trajectory for a forward reaching motion for a control subject (left) and a
post-stroke subject (right), illustrating inability to stabilize at the trajectory endpoint.

these findings.
Figure 5.16 summarizes several observations from the protocol. We show a sample veloc-

ity profile for a representative control subject and the two subjects with upper-limb impair-
ment. The velocity profile for the control subjects has a higher peak velocity and exhibits the
expected bell-curve shape associated with a smooth, minimum-jerk trajectory. In contrast,
the velocity of the two subjects with upper limb impairment does not have a single peak,
but rather has a smaller period of acceleration followed by multiple peaks. This is more
pronounced in the post-stroke subject than the subject with early PLS. This behavior is
consistent with the theory of submovments affecting movement smoothness following stroke
[99]. The trajectory plots on the right of Figure 5.16 illustrate instability when the post-
stroke subject attempted to remain steady at the end of a reaching motion. This instability
was not seen in any of the control subjects and indicates decreased ability to perform precise
control and regulate arm stiffness.
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Figure 5.17: Bar charts showing mean peak force (left) and mean peak velocity (right) for
healthy controls subejcts completing reaching trials under the different admittance controller
virtual dynamics. Peak force and velocity values are normalized to the subject mean. Values
represents the mean across the subjects with the error bar corresponding to inter-subject
variance. The admittance mode virtual dynamics were defined by the following parameters:
A1) m = 3.3 kg, αv = 0.25, A2) m = 3.3 kg, αv = 0.5 A3) m = 2.2 kg, αv = 0.5.

We demonstrate the ability to synchronize analysis of the global reaching motion with
the action of the hand (Figure 5.16). Based on position data recorded from the glove device,
we identify four key points in the grasping motion: 1) initial hand motion, 2)begin fully
open, 3) fully open, 4) begin closing. Because of the small difference in position between
beginning to close and the final closed position, it was difficult to identify the time of grasp
completion. This is a limitation of the low resolution of the position sensing of the glove
device. Information of the grasping motion related to the reaching motion is useful in the
study of motor recovery following stroke. In normal reach-to-grasp motion, subjects preshape
the hand prior to reaching the end of the reaching trajectory to prepare to grasp the object.
Quantitative analysis of these onset times is not included.

Finally, we analyze the effect of altering the virtual dynamics for the admittance control
trials for the control subjects. We consider two values: the peak interaction force and the
peak velocity for each reaching motion. We compare the values for outward reaching to
the target at 45 degrees. To analyze trends across subjects, the values for each subject are
normalized with respect to the subjects mean value across each trial. The mean values are
shown in Figure 5.17 with the standard deviation corresponding to the variance between
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subjects. A1, the controller with a heavier virtual mass, has a higher mean peak force and a
lower mean peak velocity. These results demonstrate that it is possible to alter the human
interaction with the device by altering the virtual dynamics. We asked subjects for their
preference among the three admittance control virtual dynamics. Of note, all healthy control
subjects selected either A2 or A3, citing the ability to move at a faster speed. Both subjects
with upper limb impairment selected A1. For both subjects, A1 required more force and
took a longer period of time to complete the motion. However subjects cited feeling more
stable as the reason for their preference.

5.6 Simulation Case Study: Effect of Passive Flexor

Muscle Tightness on Joint Torques During Planar

Arm Reaching

We now consider the incorporation of a muscle model into our analysis with the developed
system. Preliminary reaching data from a Spinal Cord Injury (SCI) subject was collected
under approval of the UCSF Institutional Review Board. Example data is shown in Figure
5.18. With the goal of using this robotic device to assess function and assist motion, this
study implements a simple biomechanical model which can be incorporated in the analysis
of data from the device. Spinal Cord Injury (SCI) may result in impaired function of the
upper limb including decreased range of motion due to an increased passive stiffness of the
flexor muscles accompanied by deficits in strength. In this case study, we utilize a six-muscle
model of the arm to simulate passive muscle forces during reaching motions in the horizontal
plane. We study the effect of muscle-level tightness on the resultant elbow and shoulder
torques throughout the arm workspace. The resulting joint torques exhibit an expected
increase with greater muscle tightness, with this effect most pronounced in lateral reaching
motions. These results demonstrate initial feasibility of the use of a simplified muscle model
to study joint effects of muscle-tightness, providing insight towards the future development
of assessment protocols for generating individualized models of function from task-space
observations. Alongside deficits in strength and motor control, SCI may result in tightness
of the flexor muscles, resulting in a decrease in range of motion [100]. An increase in passive
muscle stiffness and connective tissue of the flexors must be overcome by the active muscle
force of the opposing extensor muscles. In this work, we study the effects of muscle tightness
on the resultant joint-torques from passive muscle forces during static reaching. This analysis
provides insight into how the passive component of muscle force manifests in the joint and
task space.

Methods

We consider a two-link model of the upper-limb (right arm) with rotational joints at the
shoulder and elbow. Motion is constrained to the tranverse plane at shoulder-height, and
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Figure 5.18: Left: representative reaching data from a subject with spinal cord injury un-
dergoing passive reaching to three radial targets. Wrist position is shown in black with the
interaction force shown as the scaled red vector. Right: musculosketal arm model. Figure
from [101].

Figure 5.19: (Left) Passive muscle force vs. muscle length. Relationship is shown for four
values of nominal muscle length l0. (Right) Simulated wrist positions for reaching trajectories
in Cartesian space.
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we assume that the arm is supported vertically, neglecting the effect of gravity. The model
consists of a lumped-muscle model with six redundant muscles: a mono-articular pair of
flexor and extensor at the elbow (brachialis and lateral head of triceps brachii) and at the
shoulder (pectoralis major and posterior deltoid) and one bi-articular pair which spans the
shoulder and elbows (biceps bracii and long head of triceps) specified in [102].The model
geometry is configuration is shown in Figure 5.18. Model parameters including limb length
and muscle origin and insertions were taken from [101]. From the Cartesian wrist position,
we recover the planar kinematics given known shoulder position and arm lengths, using an
analytical inverse kinematic solution. Muscle lengths are computed from the kinematics,
assuming the muscle acts along a straight line between the instantaneous position of the
origin and insertion points. Variable moment arms for the flexor muscles are computed for
the respective elbow and shoulder joints, dependent on the angle between the line of muscle
force and the line between the muscle insertion and joint center. The extensor muscles are
modeled as a pulley with fixed moment arm (2 cm at the elbow and 4 cm at the shoulder).

The passive muscle force F (l) can be expressed as a function of the muscle length with
a Hill-type model as follows:

F (l) =

0 l < l0

F0

eKsh−1

(
e

Ksh(l−l0)
0.5l0 − 1

)
l ≥ l0

(5.12)

where we set stiffness constant Ksh = 1 for all muscles [103]. The passive muscle force has an
exponential relationship with muscle length which begins when the muscle extends beyond
the nominal muscle length l0.

To modify the muscle tightness, we adjust this nominal muscle length. For each of the
flexor muscles, we consider four values of nominal length, equally spaced between the min-
imum and maximum length observed throughout the workspace. For the extensor muscles,
we select a fixed nominal length equal to the mean muscle length throughout the workspace.
Figure 5.19 (left) shows the passive muscle force for a single muscle with the different nom-
inal length. We consider only the passive muscle forces and assume static configuration to
neglect the dynamics and viscous effect of muscle velocity. For each muscle, we can compute
the joint torque τ generated by the muscle force Fm for moment arm r.

τ = Fmr (5.13)

The force at the wrist can then be computed from the combination of the shoulder and
elbow torques, related by the manipulator Jacobian.

Static reaching along straight lines was simulated for radial targets defined in the Carte-
sian space with an origin 20 cm directly in front of the shoulder joint center with radii
sampled from 0 to 30 cm at angles between 50 and 180 degrees from the horizontal axis
(Fig 5.19 - right). We compute the passive muscle forces and resultant joint torque for each
static configuration. Along each radial trajectory, we find the maximum elbow and shoulder
joint torque in the extension direction along the line. This analysis is performed for four
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Figure 5.20: Kinematic configuration at three arm configurations along reaching trajectories
in the left, center, and right directions. Arm links are shown in black with flexor muscles in
red and extensor muscles in blue. The reaching trajectory is shown as the dashed line.

nominal muscle for each of the mono-articular elbow flexor, shoulder flexor, and bi-articular
flexor individually and for increased tightness and all three flexors. All computations were
completed in MATLAB 2017a.

Representative kinematic configurations of the arm model are shown in Figure 5.20,
illustrating the changes in muscles length. The maximum resultant joint torques for the
four muscle tightness conditions are shown in Figure 5.21. Adjusting the nominal muscle
length of the shoulder flexors has expected changes in shoulder torque and does not affect the
elbow torque. The same effect is observed when only the elbow flexor tightness is modified.
Adjusting the tightness of the bi-articular muscle results in torque effects in both the shoulder
and elbow. The greatest torque is seen when all three flexor muscles have increased tightness.

Discussion

We implemented an upper limb musculoskeletal model with six muscles to assess the effect
of passive muscle tightness on joint torques. The results demonstrate expected increases
in elbow and shoulder torques with increases in flexor muscle tightness. The effect of the
bi-articular muscle on both elbow and shoulder joints indicates a usefulness in the incorpo-
ration of a muscle-level model in this analysis rather than a simple rotational stiffness at the
joint-level. Additionally, the effects of the muscle parameters are observed to vary within
the workspace, with greater torque at the most lateral target as both the shoulder and elbow
flexors are extended in this arm configuration. This result implies that it is valuable to con-
sider mechanical constraints at the muscle-level effects when developing controllers that will
operate in the Cartesian workspace. Assessment of active range of motion, convey limitations
due to a combination of passive stiffness and deficits in active muscle force generation The
analysis in the study is limited as we consider only the passive component of muscle force
for a simplified muscle model. The total muscle force must be modeled as a combination of
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Figure 5.21: Resultant maximum torques at the elbow (top row) and shoulder (bottom row)
for muscle tightness conditions. The nomical muscle length L1 corresponds to the shortest
muscle length, with L4 being the greatest. Torques are plotted as the maximum value for
a given reaching angle defined in the Cartesian space between the wrist position and the
horizontal line through the center point.
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active and passive muscle forces. While it is straightforward to implement the forward model
with specified values of nominal muscle length, it is difficult to separately assess the passive
and active components of muscle force. However, given the joint-specific and workspace
variations, the preliminary results of this parameter study indicate that for passive motion
we may be able to identify optimal muscle-model parameters which correspond to the ob-
served end-effector forces. Future work will aim to utilize this model of passive muscle forces
to drive subject specific models of impairment using task-space observations of motion and
force with a planar robotic device.

5.7 Chapter Summary

This chapter presented the design, analysis, and validation of an affordable planar robotic
device for upper limb assessment and rehabilitation. With a total material cost of less
than $800, the device was able to meet our design objectives. We introduce a novel con-
figuration for low-cost load cells, enabling measurement of human-robot interaction forces.
The measured forces and positions recorded by the device were experimentally validated
against ground truth measurements. Initial human subjects experiments demonstrated de-
vice feasibility through the subject ability to operate the device under volitional force-based
admittance control. We observed differences in the robot interaction of healthy control sub-
jects and subjects with a low-level of impairment, with notable differences in peak forces
and velocities, motion smoothness, the ability to stabilize, and the self-selected preferable
virtual dynamics.
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Chapter 6

Algorithms for Assistance and
Assessment

In this chapter, we utilize the robotic device developed in Chapter 5 to investigate two meth-
ods for assisting and assessing human motion: 1) the use of lateral spring assistance during
elliptical trajectory tracing and 2) the assessment of arm strength through isolated joint
motions. We describe our motivation, design, and implementation for each of protocol and
present analysis of human subject data. These results further demonstrate the capabilities
of the affordable device for quantitative assessment and robotic therapy applications.

6.1 Exploitation of Assistance During Ellipse Tracing

Motivation and Background

During the preliminary experiments (Section 5.5), we observed a behavior in which subjects
were leaning into a virtual safety wall by exerting a large interaction force in the direction
of the wall, normal to the direction of the desired trajectory. Subjects were not generally
assisted in completing the protocol under an admittance controller. There were, however,
force fields at the edge of the human workspace which prevented the subject from reaching
outside of a safe region. The target to the left was positioned along the virtual wall, with a
straight line from the starting point to the target running along the wall. This unintentionally
resulted in several subjects exploiting the presence of the virtual wall by exerting a force
in the direction of the wall to maintain a stable trajectory. An example of this behavior is
shown in Figure 6.1. This figure shows data from a subject with upper-limb impairment,
following diagnosis of Primary Lateral Sclerosis. Here we observe variance in the position
trajectories for the vertical and 45 degree targets. The left target of interest has almost no
variance. Additionally, from the overlaid velocity profile, we observe higher peak velocities
along the left target, indicating higher forces directed along the line of interest. This can be
explained by the plot to the right which shows the interaction force exerted by the subject.
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Figure 6.1: Sample of the data from preliminary experiment demonstrating subject leaning
into force field during reaching. (Left) Top-down view of reaching trajectories to targets at
0, 45, and 90 degrees from the vertical. The velocity at the point is represented by the color.
(Right) Sampled interaction force overlaid on top of reaching trajectory.

For the targets at 0 and 45 degrees, the force exerted by the subject primarily lies along
the line from the start position to the goal. The interaction force of the lower trajectory,
however, has a large component normal to the desired trajectory, pointing into the wall.

These forces allow the subject to stabilize their trajectory, requiring less precise end-
effector forces. The subject appears to intentionally lean in to the wall, exploiting its unin-
tentional assistance to complete the motion with less precise control. This not only resulted
in greater forces in the normal direction, but also greater forces in the in the correct direction
and a faster total motion. The use of virtual walls along the trajectory or spring forces act-
ing normal to the trajectory is not a new concept and has been seen in several studies [104,
84]. In fact, this behavior of motor slacking to minimize energy resulting in over-reliance
on assistance has been observed [105]. This led to the implementation of virtual tunnels, a
deadband of specified dimensions surrounding the desired trajectory in which no assistive
force is applied. This is one example of an assist-as-needed paradigm for robotic rehabilita-
tion. Subjects are not assisted in completing the task unless they surpass an error threshold
in space or time. This has benefit in promoting subject engagement which has been shown
to be an important factor in treatment efficacy. Other methods have been implemented to
decrease the assistance in response to subject performance in order to promote engagement
in the protocol [84, 106].

While the tunnel method and decreased assistance promote correct motion, we hypoth-
esize that there is benefit in allowing subjects to exploit an assistive force field. Consider
a subject limited by a deficit in muscle synergy coordination but with adequate strength.
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Figure 6.2: Left: drawing of the tangent-normal coordinate frame for linear spring assistance,
showing the unit and normal tangent vectors, un and ut, current position p and desired
position d. Right: plot of the vector field of the linear spring assistance for a linear desired
trajectory.

Operating within the deadband of a tunnel, the subject may complete slow, disjoint motions
due to their inability to precisely regulate the direction of their end-effector force output.
With an assistive wall, we hypothesize that the subject may be able to more confidently
exert greater force and complete a faster, smoother motion. We present an experiment to
investigate this approach when applied to continuous elliptical trajectories.

6.2 Spring Assistance Formulation

Building on the free admittance control framework presented in section 5.4, we incorporate
an assistive spring term into the mass-damper virtual dynamics model. In this section, we
first explain the controller implementation for a linear trajectory and then expand to the
elliptical trajectories studied in this chapter. We consider a desired trajectory with a spatial
component and no specified velocity profile for self-paced motion under admittance control.
The assistance helps the subject follow the desired trajectory by applying a restoring force
when the subject deviates from the trajectory. We implement this through a virtual linear
spring acting in the direction normal to the trajectory. If the subject has no position error,
the spring will provide zero force. Likewise, the spring provides no assistance along the
forward direction of the trajectory. This type of assistance does not perform the task for the
subject but, rather, assists in error correction. A linear spring was selected rather than a
hard virtual wall to allow for some deviation without a strong restoring force. While we did
not implement a virtual tunnel deadband to encourage the exploitation of the assistance, it
would be straightforward to incorporate a deadband as an alternative protocol.
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To implement these dynamics, we first perform a transformation from the device Carte-
sian coordinate system into the instantaneous tangent-normal coordinate frame of the desired
trajectory. The normal vector is perpendicular to the tangent vector at a counterclockwise
rotation of 90 degrees. We define the unit tangent vector ut and unit normal vector un to
be tangent and normal to the trajectory. For a line, the tangent-normal frame has fixed ori-
entation with the tangent axis colinear with the trajectory. The spring acts in the direction
of un with force proportional to the distance from the trajectory along un:

Fspring = −k (p− d) · un (6.1)

where p is the current position, d is the nearest position on the desired trajectory, and k is
a spring constant chosen for selected stiffness level. Note that the formulation of this spring
force differs slightly from the standard form [107] through the vector dot product with the
unit normal vector. Our formulation was selected for expansion to elliptical trajectories
when the approximated unit normal vector may not be collinear with p − d. We now
represent our admittance controller with virtual mass-spring-damper dynamics in tangent
normal coordinates:

Fn = mẍn(t) + cẋn(t)− k(p− d) · un (6.2)

Ft = mẍt(t) + cẋt(t) (6.3)

where the subscripts n and t denote the normal and tangent directions for the force, acceler-
ation, and velocity. Note that there is no spring force in the tangent direction. The virtual
mass and damper constants are the same for the normal and tangent directions. Controller
velocities computed in the normal-tangent frame are transformed to the Cartesian frame.

Spring Assistance for an Elliptical Trajectory

Implementation of the linear spring force on an elliptical trajectory requires computation of
the instantaneous tangent and normal vectors to the ellipse at a given point. Consider a
standard ellipse defined the following parametric equation:[

x
y

]
=

[
a cos (t)
b sin (t)

]
(6.4)

for 0 ≤ t ≤ 2π, where x and y correspond to the position, a is the length of the semi-major
axis, and b is the length of the semi-minor axis. We derive the tangent to an ellipse at a
point d which lies on the ellipse. The slope of the tangent line is the first derivative at the
point. First, take the first derivative of Eq. 6.4:[

ẋ
ẏ

]
=

[
a sin (t)
b cos (t)

]
(6.5)



CHAPTER 6. ALGORITHMS FOR ASSISTANCE AND ASSESSMENT 80

Figure 6.3: Illustration of the method for determining the unit tangent vector ut and unit
normal vectorun at a point p when tracking an elliptical trajectory. (Left) Finding the
desired point d, (Center) Computing the unit tangent and unit normal vectors at the desired
position, (Right) Translating the tangent-normal coordinate frame to the current position.

Rearranging Eq. 6.4, we have cos(t) = x/a and sin(t) = y/b. These relationships are
combined with 6.5 to obtain the tangent vector vt:

vt =

[−ay
b
bx
a

]
(6.6)

and unit tangent vector:

ut =
vt

‖vt‖
=

 −a2y√
a4y2+b4x2

b2x√
a4y2+b4x2

 (6.7)

The unit normal vector is perpendicular to the unit tangent vector, pointing into the
curve. We can compute the unit normal with the following equation:

un =

[
−uty

utx

]
=

 −b2x√
a4y2+b4x2

−a2y√
a4y2+b4x2

 (6.8)

We transform the forces measured in the Cartesian frame into the tangent-normal frame
with the equation: [

ft
fn

]
=
[
ut un

]T [fx
fy

]
(6.9)
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For a point p which does not lie on the ellipse, we select the desired point d on the
ellipse to be the intersection of the ellipse and a line between p and o, the ellipse origin. The
position of the point d is expressed by the equation:

d =

[
abpx

a2p+y2+b2p2x
abpy

a2p+y2+b2p2x

]
(6.10)

Note that for the general case of an ellipse, the point d is not the closest point to the
ellipse, but rather it is along the radial line from the origin. For the specific case of a circle,
these points will be the same. The closest point to the ellipse does not have a closed-form
solution. It can be solved with numerical optimization, but this was not chosen for our
implementation to decrease the computational complexity as these constraints are being
performed in realtime on an inexpensive microcontroller. We compute the unit tangent and
unit normal vectors at the point d. These vectors approximate the unit tangent and normal
vector for the point p which is not on the ellipse. The spring force acts along the unit normal
vector from the point p toward the elliptical path. The vector field of spring force is plotted
in Figure 6.4.

6.3 Experimental Protocol

Our experimental protocol was selected to study human interaction with the system under
assisted and unassisted control. We hypothesize that the presence of a stiff assistive force field
will result in the leaning in behavior observed in the linear reaching experiments. Subjects
completed ellipsoidal trajectories with the device operating under an admittance controller.
We consider three independent variables: admittance control virtual mass, spring assistance,
and ellipse orientation. Two values of virtual mass (0.47 kg and 0.92 kg) were selected. The
lower mass provides a lighter, more transparent motion. This lighter mass was selected to
be so light that it may feel slightly unstable but not result in significant oscillations. The
four ellipse orientations are rotations of 0, 45, 90, and -45 degrees from the vertical. A
single spring constant of ks = 1 was selected for the assisted case. No spring force was
applied for the unassisted case. The combinations of variables correspond to a total of 16
unique test conditions. Subjects completed 3 trials of each of conditions, resulting in 48
total trials. Note that one subject completed only 32 trials (two of each condition) due to a
time constraint on the part of the subject. Trials were broken into blocks of four trials which
consisted of one trial for each ellipse orientation for a given mass and assistance condition.
Subjects were informed if the trial would be assisted or unassisted. The order of the ellipse
orientation was randomized. Each trial consisted of 10 ellipses, beginning and ending at
the vertex. The ellipses were defined by semi-major axis a = 100 and semi-minor axis b
= 50. The first and last ellipse were excluded from each trial during analysis to account
for effects of initial acceleration or adjustment and final deceleration. All trajectories were
completed in a counter-clockwise direction. The desired ellipse was displayed on a monitor



CHAPTER 6. ALGORITHMS FOR ASSISTANCE AND ASSESSMENT 82

Figure 6.4: Vector field plot of the assistive spring force field for an elliptical trajectory.
Arrows indicated the magnitude and direction of the force for the given position error from
the desired trajectory.

in from of the subject, with visual feedback of the current wrist position shown as a red
dot (Figure 6.5). Subjects were instructed to trace the path of the ellipse and move at a
comfortable and continuous pace for the duration of the trial (not stopping at the end of
each ellipse). Position, velocity, and force data was collected from the device. Position data
was also collected from a motion capture system (Phasespace Impulse X2) at 480 Hz.

Data was collected from seven young adult subjects (4 M, 3 F) with no upper-limb
impairment at UC Berkeley under the approval of the UCSF Institutional Review Board
with reliance approval by the UC Berkeley Reliance Registry. The right arm of each subject
was tested. This was the self-identified dominant hand of six of the seven subjects.

6.4 Results

Analysis Methodology

We consider several metrics for analyzing the effect of virtual mass, assistance, and orienta-
tion on the elliptical trajectory tracing. These metrics are computed from the position and
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Figure 6.5: Subject connected to rehabilitation device. The monitor displays the desired
trajectory and real-time feedback of the subject’s wrist position.

force data measured by the device at 330 Hz. The motion capture system was not used in
the computation of these metrics. Analysis was completed offline in MATLAB. A 3rd order
lowpass Butterworth filter with a 6 Hz cutoff frequency was applied to the x and y compo-
nents of the force data. The position data was not filtered. Each trial was segmented into
individual ellipses for analysis. The following metrics were used to process the experimental
data:

� Normalized mean force (NMF). We define the mean force (MF) of an ellipse to
be the mean value of the magnitude of the interaction force vector across time

MF =
1

K

K∑
k=1

‖f(k‖ (6.11)

where f(k) is the force vector at timestep k and K is the number of samples in the
ellipse. Between subjects, there was variation in the mean interaction force. To assess
trends across the subjects, we normalize the mean force for an ellipse by scaling it to
the subjects’s mean force across all trials:

NMF (t) =
MF (t)

MF
(6.12)
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Figure 6.6: Illustration of the interaction force decomposition (Left) and the heading error
(Right)

where NMF (t) and MF (t) are the normalized mean force and mean force for a given
trial t, and MF is the mean of the mean force across all trials.

� Normalized mean duration (NMD). The duration for an ellipse is defined as the
time taken to complete one ellipse as measured by crossing the semi-major axis. As
in Eq. 6.12, we normalize the duration of a given trial relative to the subject’s mean
duration across all trials.

� Mean Heading Error(θh). We define the heading error as the angle between the
interaction force vector and the tangent vector at the current position as shown in
Figure 6.6. To allow for position error correction, we do not penalize interaction
force vectors which point toward the ellipse in the normal direction. For example, if
the subject’s wrist is outside of the desired ellipse path, then a force vector pointing
inward toward the ellipse has zero heading error. Likewise, if the wrist is inside of the
ellipse, a force vector pointing outward toward the desired path has zero heading error.
We formalize this with the equation:

θh =

{
atan2(f ,ut) fn · e > 0

0 else
(6.13)
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where e is the error vector between the current position p and the desired position d.

� Zero crossings of the normal force Zero crossings in the normal force can be
indicative of position error correction. The number of zero crossings is counted per
ellipse.

� Coefficients of velocity-curvature Ellipses provide an opportunity to investigate
the relationship between velocity and path curvature. Studied have found that continu-
ous human movements follows the Two-Thirds Power Law which states that end-point
velocity (V) is a power function of the radius of curvature of the endpoint trajectory.
The kinematics of this relationship have been studied outside of robotic devices [108],
with a study of the relationship in water [109]. The ability of the robotic device to
adjust the virtual mass and viscosity parameters allows for testing of this relationship
under loading. Recently, the interaction forces between a robot and human were stud-
ied when humans follow robot motion along intuitive and unintuitive velocity profiles
[110].

Changes in Ellipse Tracking

We first describe qualitative observations from the experiment. Figure 6.7 shows representa-
tive results from a subject completing elliptical trials under unassisted and assisted conditions
for the light admittance mass. The data represents a single ellipse of each condition for an
ellipse at a rotation of 90 degrees under the light admittance mode. The top row shows an
example position trajectory with the color corresponding to the velocity at that point. The
sampled interaction force exerted by the subject at the wrist is shown by the black vectors.
Comparing the total interaction force in the unassisted and assisted case, we observe that
the magnitude of the interaction force is greater in the assisted case, corresponding to a
higher velocities. Looking at the normal force, in the unassisted case, we observe that the
direction of the force changes sign as the subject adjusts the direction of the interaction force
in order to correct for position error. In the unassisted case, we observe that the normal
force has a greater magnitude when compared to the unassisted case and the direction of the
normal force points outward for the entirety of the trial. This direction indicates that the
subject is not carefully modulating the direction of their exerted force in order to follow the
trajectory, but, rather is leaning into the spring force to achieve smooth motion. We note
that this constant outward direction is not consistent for this subject among all conditions,
or between subjects. In studying these force plots, we observe subjects with normal force
pointed continuously inward, normal force with a bias in the task space (ie. majority directed
upward), or normal force which changes direction throughout the ellipse. For a given trial
of the same orientation and controller parameters, subjects tend to follow the same pattern
of normal force direction for each of the ten ellipses.

These qualitative observations are supported by the quantitative metrics shown in Figure
6.8 and Table 6.1. These mean metrics are averaged across all subjects with standard
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Figure 6.7: Representative data for a subject completing elliptical trajectories under unas-
sisted (left column) and assisted (right column) admittance control. Top row: The end-
effector (wrist) position is plotted with the color corresponding to the velocity at that point.
The end-effector force is shown in the solid black arrows with arrow length and direction
corresponding to the magnitude and direction of the interaction force. Bottom Row: The
normal component of the force, fn is plotted in the red arrows.
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Figure 6.8: Bar charts of the results of of ellipse tracking, showing the mean normalized
force (left), mean normalized duration (center), and mean heading error.

Table 6.1: Quantitative interaction metrics under four virtual dynamic conditions: Light
Unassisted (LU), Light Assisted (LA), Heavy Unassisted (HU), and Heavy Assisted (HA).
The mean is taken across all subjects with the standard deviation corresponding to variance
across subjects.

Metric LU LA HU HA
Norm. Mean Force 0.60 ± 0.06 0.9 ± 0.09 1.07 ± 0.11 1.41 ± 0.08

Norm. Duration 1.14 ± 0.10 0.84 ± 0.07 1.10 ± 0.09 0.90±0.06
Mean Heading Error 4.93 ± 2.97 10.32 ± 4.24 4.21 ± 2.41 8.05 ± 2.21

Zero Crossings 5.77 ± 3.99 3.22 ± 1.35 4.89 ±3.37 3.2 ± 1.39

Table 6.2: Mean force for each subject under four virtual dynamic conditions: Light Unas-
sisted, Light Assisted, Heavy Unassisted, and Heavy Assisted. The mean and standard
deviation are taken across all trials for the condition (all orientations).

Subject Light Unassisted Light Assisted Heavy Unassisted Heavy Assisted
S01 8.14 ± 1.79 16.23 ± 4.94 12.55 ± 1.82 22.30 ± 4.43
S02 2.96 ± 0.34 4.09 ± 0.63 5.04 ± 0.67 6.98±1.28
S03 5.11 ± 1.33 8.37 ± 1.54 10.82 ± 1.79 14.07 ± 2.12
S04 6.70 ± 0.59 8.77 ± 0.93 11.29 ±0.74 13.04 ± 1.47
S05 4.80 ± 0.98 7.98 ±0.87 9.72 ±1.01 12.69 ±1.46
S06 5.85 ± 0.70 8.47 ± 1.64 9.46 ± 0.91 12.99 ±1.57
S07 3.28 ±0.31 4.09 ± 0.47 6.06 ±0.34 6.63 ± 0.53
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deviation representing inter-subject variation. These metrics are also averaged across all
orientations as no significant difference was found between the orientations when averaged
across all subjects. There were significant differences between the orientations for individual
subjects, but these were not found to be trends across subjects. The results show a greater
mean normalized forced in the assisted case than the unassisted case for both the light and
heavy conditions, indicating that subjects are exerting greater active forces with the presence
of spring assistance. The mean normalized duration decreases in the unassisted case for
both light and heavy conditions, corresponding with the increase in interaction force. With
the assistance, subjects are completing each ellipse in less time. The mean heading error
increases in the assisted case for both the light and heavy conditions. When comparing the
light and heavy condition, the normalized total force increases under the heavier condition.
The normalized duration, however, is unaffected by the virtual mass. For the unassisted
case, the mean heading error is unaffected by the virtual mass. However, in the assisted
case, the mean heading error is greater for the lighter mass.

These results support the hypothesis that subjects will exploit assistance when completing
the task as demonstrated by the increase in the heading error. This is also supported by
the decrease in zero-crossings in the assisted case. Figure 6.9 shows an example plot of
the normal force, highlighting the frequency of zeros crossings in the unassisted case. This
varied between subjects with two subjects exhibiting slower, more precise motion. Although
the healthy control subjects are capable of completing the task with minimal heading error
as demonstrated in the unassissted case, we see a reliance on the assistive force field. The
results support the hypothesis that the force field will result in greater exertion as evidenced
by the increase in greater mean force and decreased duration.

We note that there were significant difference in the mean force exerted by each subject
which are shown in Table 6.2. Despite these differences in the magnitude of force, the trends
in the normalized forces were seen across subjects.

Human Arm Inverse Kinematics and Statics Analysis

Thus far, we have only considered metrics relating to the end-effector position, velocity and
force. The end-effector measures correspond to motion and torques exerted by the human
arm. The inverse kinematic method described in section 5.4 can be used to estimate the
joint angles from the device measurement alone (with additional measurement of shoulder
joint center and limb segment length). In this study, however, we use active motion capture
data to recover the joint angles. The method used is similar to that described in Chapter 2.
For each subject, we first utilize an optimization-based parameter identification method to
recover an individualized rigid body model. The recovered model consists of three segments
in the transverse plane with a torso base segment and two segments for the upper and lower
arms which are connected by cylindrical joints corresponding to the shoulder and elbow.
The parameter-identification method optimizes for the rigid body parameters which define
the model and the positions of the motion capture markers in the local segment frame. The
end-effector position recorded by the device was integrated into the optimization and treated
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Figure 6.9: Example plots of normal force for an unconstrained (red) and constrained (blue)
trials.

as an additional marker rigidly affixed to the forearm segment. The model can then be used
to recover the joint angles using frame-wise, non-linear least squares optimization.

With direct measurement of end-effector interaction force, we can estimate the human
joint torques using inverse statics analysis. Our estimation of joint torque results in the net
joint torque which may consist of active joint torque (generated by muscles) and passive
torques due to internal resistances of bones or tissue which must be overcome. From the
known force measured at the end-effector, we can use the following equation to compute the
torques:

τ = JTF (6.14)

where τ is the vector of joint torques, F is the vector of forces in the global frame, and J
is the manipulator Jacobian. For a the two-link upper arm model, we have the manipulator
Jacobian J :

J =

[
[−lsho ∗ sin(θsho)−−lelb ∗ sin(θsho + θelb) −lelb ∗ sin(θsho + θelb)
lsho ∗ cos(θsho) +−lelb ∗ cos(θsho + θelb) −lelb ∗ cos(θsho + θelb)]

]
(6.15)
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Figure 6.10: Example plots for a subject completing unconstrained elliptical tracing with
columns corresponding to the four orientations measured with respect to the vertical. Top
Row: plots of trajectory with interaction force overlaid as black arrows. Center row: joint
angles for the shoulder (blue) and elbow (red) joints. Bottom row: joint torques estimated
from inverse statics analysis for the shoulder (blue) and elbow (red).
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Figure 6.11: Example plots of segmenting ellipse tracking into phases of elbow and shoulder
flexion or extension. Estimated mean joint elbow and shoulder torques are shown for an
ellipse tracing trial. The background shading relates whether each joint is exerting a torque
in flexion (F) or extension (E). The labels indicate the elbow status followed by the shoulder
(e.g. FE indicates elbow flexion and shoulder extension).
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This static analysis neglects forces due to the arm dynamics. For faster motions, this
may result in inaccuracies in the computed joint torque. However, the force due to the
acceleration of the mass of the limb segments is relatively small compared to the exerted
end-effector forces. We additionally assume that the movement at the shoulder is confined
to the glenohumeral joint, with no movement of the scapula or torso.

Figure 6.10 shows example plots of end-effectors forces, estimated joint angles, and esti-
mated joint torques for each orientation. As noted, there were no significant differences in
the selected end-effector-based metrics presented in Section 6.4. As intended, we do observe
differences in the joint range of motion and joint torques for the different orientations. For
example, consider orientation 1 (O1) with semi-major axis aligned with the vertical and
orientation 4 (O4) with semi-major axis aligned with the horizontal. The range of motion
for the elbow joint is much greater in O1 than O4. The joint angles will be different for
reach subjects as they depend on the subjects limb lengths.

From the estimated joint torques, it is straightforward to segment each ellipse trajectory
into times in which each joint producing a flexion or extension torque 6.11. This analysis
is useful because it allows for a combination of isometric and eccentric/concentric testing of
function as part of a higher level task. Additionally, this provides a first step toward designing
protocols which target specific deficits at the joint-level or involving joint synergies. Future
work can explore incorporating this into the selection of desired trajectories.

6.5 Strength Assessment via Joint Motion Isolation

In this section, we present a framework for the assessment of joint strength and coordination
by constraining the end-effector to isolate the motion of a single joint. While it is possible
to attain kinematic isolation of the shoulder or elbow motion, we note that this does not
correspond to isolating the joint torque. In order to produce an end-effector force tangent
to the motion, the immobile joint must produce a torque to balance the torque produced
by the joint in motion. Resolving the joint torques from the measured end-effector forces,
we can gain insight into the elbow strength, shoulder strength, and joint coordination. The
initial feasibility is demonstrated on a single healthy control subject.

Methodology

An illustration of the proposed method for joint isolation is shown in 6.12. For this section,
we assume the device is operating at shoulder height and model the arm as a two-joint planar
linkage. To isolate the motion of the elbow and shoulder joints, we must know the location of
the joint center. This can be accomplished by manual measurement (with a ruler) or through
visual sensing with a top mounted camera or motion capture system. We can alternatively
estimate the joint center from device data alone by performing a calibration procedure with
the device to estimate the joint centers through a functional recovery method. With the
device under an unconstrained admittance controller, the subject can complete isolated joint
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Figure 6.12: Illustration of the joint motion isolation protocol with elbow isolation on the
left and shoulder isolation on the right.

Figure 6.13: Visualization of the motion capture data from the joint isolation trials of the
elbow joint (left) and shoulder joint (right).
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motions. In the case of a subject with limited ability to complete these isolated motions, the
therapist or researcher can guide the arm through these motions. From the position data,
we can compute the best fit joint center location.

During the joint isolation protocol, we enforce a circular trajectory, centered at the
predetermined joint center. We set a hard constraint which locks the end-effector onto the
target trajectory. To implement this, we set our virtual admittance dynamics to have no
velocity response along the direction normal to the trajectory (an infinitely stiff spring).
The viscosity is set such that there is no carry-over velocity from the previous timestep. To
increase the strength required to complete the motion, we make the task more difficult by
setting the virtual mass of the admittance control to be high. For the preliminary test, the
mass was set to be 16 kg. This value can be adjusted for each individual. In future work, we
can expand this by having the mass parameter adjusted in real-time to optimally challenge
the subject. Beginning at a fully flexed position, the subject will extend their joint through
their full range of motion. This will measure the subjects ability to generate joint torque
through a continuous range of joint angles. In the case of a subject with a high level of
spasticity and contracture and decreased ability to produce an active joint torque (such as
the case for some patients with spinal cord injury), the device can be used to measure the
passive stiffness of the arm by moving the subject. This can also be used to identify the
passive range of motion.

For this experiment, a passive support was attached to provide gravity compensation for
the arm. The device, modified from the Wilmington Robotics Exoskeleton [111], supports
the arm just above the elbow. The subject’s left arm was otherwise connected to the device
as described in Section 6.3. Motion capture markers were used to track the motion of the
human and device. The subject, a healthy young adult female, completed trials consisting of
three extension-flexion motions, in which she moved from a fully flexed to a fully extended
position with a small pause after each completed motion. The elbow was tested with the
shoulder at 90 degrees, extended forward in front of the subject. The shoulder was tested
with the elbow flexed at approximately 115 degrees.

Results

To demonstrate feasibility of the method, we first show that the device successfully isolated
the motion of the joint. Motion capture data was collected to validate the motion of the
arm during the joint isolation trials. Figure 6.13 shows traces of the motion capture markers
during elbow and shoulder isolation trials. We observe the task space motion along a circular
arc corresponding to motion of a single joint. We expect the joint center to remain stationary
during the single joint motion. There is, however, some translation of the joint center of
interest in both the shoulder and elbow isolation. Several factors may contribute to this
error. First, the approximate joint center was marked by a single motion capture marker.
For the elbow joint, especially, the position of this marker will be effected by skin motion
artifact due to the changing shape of the muscle belly. We expect this to less pronounced
for the shoulder joint, whose motion may be due to error in the selection of the joint center
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Figure 6.14: Example plots of the end effector forces measured during the joint isolation
protocol for flexion and extension of the elbow and shoulder joints.

or the presence of scapular motion during the motion. Additional error may result from the
subject moving their torso during the trial.

Examples of the recorded end-effector forces are shown in figure 6.14. The direction of
the force is primarily tangent to the joint isolation trajectory, indicating that the subject
was able to regulate the combination of the shoulder and elbow torques to generate an
end-effector force in the correct direction. Joint torques were recovered using the inverse
static analysis method described in Section 6.4. The resultant net joint torques for an elbow
isolation trial and a shoulder isolation trial are shown in Figure 6.15. The torque across the
three trials was averaged by joint angle with the standard deviation at each point denoted
by the shaded region around the mean. We observe good repeatability between the motions
as evidenced by the size of the shaded region. For the elbow isolation trials, we observe a
nearly constant joint torque of 6 Nm in elbow extension and 5 Nm in elbow flexion. To
counterbalance the constant elbow torque, we observe that the shoulder torque must vary
with elbow angle. The shoulder must initially produce an extension torque which varies
to then produce a flexion torque. In the case of isolated shoulder motion, the elbow joint
must produce a torque in the same direction as the shoulder. The shoulder joint torques
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Figure 6.15: Estimated joint torques for shoulder (blue) and elbow (red) joints during elbow
isolation (left) and shoulder isolation (right). Each plot shows the mean for three trials with
the standard deviation shaded.

were relatively constant at approximately 10 Nm in both extension and flexion. In a subject
with deficits in strength or coordination, we would expect to see these manifest in the peak
joint torques or the inability to coordinate the joint torque to produce an end effector force
tangent to the isolated motion trajectory.

6.6 Chapter Summary

In this chapter, we presented two protocols for robot-assisted assessment using the robotic
therapy device described in Chapter 5. These control strategies expand upon the admittance
control framework, incorporating assistive force fields and hard constraints.

In the first method, we add a spring term into the virtual dynamics model, providing a
restoring force in the direction normal to the trajectory. We demonstrate the ability of our
low-cost system to produce force fields on curved trajectories. Human subject experiments
studied the phenomenon of subject reliance on assistance. The results support the hypothesis
that subjects will exploit the assistive force field and lean in to the force field to achieve
a smoother motion. While previous work has found that humans slack to minimize the
energy of the motion, we found that the assistance resulted in greater exertion as evidenced
by greater total force and force in the correct direction. These findings can inform the
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design of robotic rehabilitation therapy protocols for subjects with coordination deficits. By
eliminating the need to produce an end-effector first in a precise direction, assistive force
fields can encourage rehabilitiative exercise with greater force output and faster motion.

The second method presents a protocol for assessment of strength and joint coordination
through isolated joint motions, enabling measurement through a continuous range of joint
angles. Through the implementation of constraints, we can decompose the strength at
each joint with the coordination required to complete the motion. Initial feasibility was
demonstrated through results on a single healthy control subject.
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Chapter 7

Final Thoughts and Future Work

In this dissertation, we explored methods for assessing and assisting human motion with the
aim of developing clinically accessible technologies. Our approach integrated biomechanical
modeling into the design and development of affordable hardware systems and the accom-
panying analysis methods. We placed a large emphasis on experimental validation through
both hardware characterization and human subjects experiments.

We first presented a framework for improved kinematic recovery by imposing a rigid-
body model on noisy data from a single depth camera. A validation study comparing the
algorithm to a marker-based motion capture system demonstrated the feasibility of the
system to be used as an accurate and fast tool for human motion analysis in clinic. This
framework has since been utilized in additional work outside of the scope of this thesis.
Building on the kinematic recovery, a dynamic model was integrated and validated [112].
This work estimated joint torques and back loading computed through inverse dynamics
analysis using the recovered kinematics. Ongoing and future work using this technology will
continue with our clinical collaborators who can utilize the tool for motion analysis studies
in patient populations. These methods have been applied to a longitudinal study of a cohort
of subjects with adult spinal deformity completing sit-to-stand (STS) [113] and are currently
being used as a standard measure in the National Institute of Health REACH Initiative for
understanding low-back pain.

Secondly, we introduced a simple passive device which provides bilateral knee assistance
during STS. Our preliminary results indicated both the ability to aid in completing the mo-
tion by reducing the required human knee torque and the potential to encourage desirable
changes in whole-body motion. A number of future directions would expand on these initial
experiments. First, an electromyography (EMG) study could be used to better understand
how the device and changes in overall strategy affect muscle activity and recruitment. Ad-
ditionally, the effects of the device should be tested on a larger cohort as well as a clinical
cohort. We note that the device was not developed for daily assistance and significant modi-
fications, including the development of a clutch mechanism to disengage the elastic element,
would need to be incorporated to allow for daily use. In its current form, the device is more
suited to rehabilitation protocols.
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Finally, we introduced an affordable upper limb planar robotic manipulandum. Human
subjects studies demonstrated the feasibility of the device to be used for robot-assisted assess-
ment and therapy. Building on the admittance control framework, we proposed a number
of extensions which were not fully explored in this dissertation, including the integration
of a muscle model and a method for the assessment of joint-level range of motion, pas-
sive stiffness, and strength through isolated joint motions. In combination with task-space
rehabilitation protocols, the joint isolation method has the potential provide decipherable
information on the underlying limitations behind functional deficits. This information can
be used to inform subject-specific models of impairment which in turn can determine optimal
protocols for robot-assisted rehabilitation and assistance. These case studies would greatly
benefit from formalized experiments on a larger cohort of patients with upper limb impair-
ment. This is the only way to truly demonstrate the efficacy of the device. Our design has
been replicated by our collaborators at Hong Kong University of Science and Technology as
well as University of California, San Francisco, for the development of eye-gaze and brain-
computer interfaces. Through the development of this low-cost device, we hope to expand
the accessibility of robotic platforms for incorporation in clinical care and research studies.
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