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Abstract

Unsupervised Text Generation and its Application to News Interfaces

by

Philippe Laban

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Marti A. Hearst, Co-chair

Professor John Canny, Co-chair

Recent progress in automated text generation relies predominantly on the use of large datasets,
sometimes requiring millions of examples for each application setting. In the first part of this thesis,
we advance the field by developing novel text generation methods that balance the goals of fluency,
consistency, and relevancy without requiring any training data. We achieve this objective on tasks
such as text summarization and simplification by directly defining a multi-component reward, and
training text generators to optimize this objective. The novel approaches that we introduce perform
better than all existing unsupervised approaches and in many cases outperform those that rely on
large datasets.

The second part of the thesis incorporates text generation into interfaces to help news readers
navigate complex, unfolding news topics. We build a novel representation of news stories at
scale and integrate new summarization, question generation and question answering modules into
a chatbot and an automated interactive podcast. Human evaluations confirm that even though
imperfect systems introduce friction for the user, they can serve as powerful tools to stimulate reader
curiosity and help readers dive deeper into unfolding topics.
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Chapter 1

Introduction

Natural language processing (NLP), the sub-area in computer science tasked with the processing
and generation of text, has been going through a period of rapid progress. This advance is fueled by
the growing computational budgets to train large neural networks, as well as the curation of massive
corpora of text, often containing billions of sentences.

Even though the abundance of data has led to improvements in the field across the board, there
remain scenarios in which data is sparse, of low-quality, or costly to obtain. In this work, we make
progress on creating unsupervised methods for several tasks in NLP, which do not rely on curated
datasets and show that they can be competitive and sometimes outperform supervised methods.

In order to do more with less data, the methods we introduce rely on complex, hand-crafted
rewards that encapsulate the essence of the task. We create rewards to automatically measure the
quality of text summaries and simplifications, and then train modern text generators to optimize
such rewards, through self-critical reinforcement learning, encouraging the writing of high-scoring
texts.

As NLP technology matures, it is getting integrated into many user-facing products, most
prominently through dialogue interfaces such as chatbots, auto-completion of emails, and the
automatic captioning of images, and translation of texts. I focus my interest on the placement of
NLP into interfaces for news reading.

Although today most news in consumed online through media devices [134], many popular
news platforms are designed with the newspaper format in mind [58], and a focus on the latest
breaking news. The atomic unit on a news website, a news article, is often organized into a headline,
a lead image and static body of content. Although often rich in information, many news readers do
not go past the information in the headline [134] which can be opinionated or exaggerated [38].

Furthermore, a person reading news should ideally take the time to get informed from several
news sources for a given topic to gain an informed and nuanced opinion [60]. News aggregators,
such as Yahoo and Google News, offer seamless access to lists of sources that cover a news articles,
but leave the work of comparing and contrasting on the reader, requiring the reader’s effort in
selecting sources to read for each topic.

In this thesis, we present several prototype interfaces which were designed, built, and tested
through human studies. We integrate state-of-the-art NLP technology into the interfaces, and
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(a) Visualization-centric Interface (b) Text-centric Interface

Figure 1.1: Prior work on news reading interfaces is predominantly visualization-centric [142,
33, 66]: users must interact with complex visualizations to access text. In this thesis, we build
text-centric interfaces, using natural language for interaction.

compare with simpler baseline or human-generated content to assess the usefulness of using NLP in
a news reading interface.

Some prior work has built advanced interfaces for the news domain, often involving panels of
rich visualizations. Due to the abundance of text, the news articles are used to generate interactive
visualizations which can be operated to access individual news articles. Interacting with such
visualization-centric interfaces is non-trivial, and specialized training is often required for proper
use.

In contrast with prior work, we build prototypes of text-centric interfaces for news reading. The
interfaces are kept simple, and user-interaction occurs through a textual interface (spoken or written),
facilitating the use for non-experts. We validate our designs through human evaluation, performed
with crowd-workers without particular qualifications beyond fluency in English. In Figure 1.1, we
show an example of the visualization-centric Leadline [33] interface, as well as screenshot of the
text-centric NewsChat interface presented in this thesis.
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Publication Venue Publication Title Author List
Workshop on Events
and Stories in the News,
ACL, 2017

newsLens: building and visualizing
long-ranging news stories

Philippe Laban, Marti
Hearst

System Demonstration
at ACL, 2020

What’s The Latest? A Question-
driven News Chatbot

Philippe Laban, John
Canny, Marti Hearst

ACL, 2020, Long Paper The Summary Loop: Learning to
Write Abstractive Summaries With-
out Examples

Philippe Laban, Andrew
Hsi, John Canny, Marti
Hearst

ACL, 2021, Long Paper Keep It Simple: Unsupervised Sim-
plification of Multi-Paragraph Text

Philippe Laban, Tobias
Schnabel, Paul N. Ben-
nett, Marti A. Hearst

Table 1.1: List of publications whose work overlaps with content on the thesis, each listed with a
paper title and the list of co-authors.

The interfaces we build, such as a chatbot and an automatic podcast, rely on imperfect NLP
components that can make factual mistakes that would be unacceptable in a product deployed to
a large audience. The interfaces are built and tested as advanced research prototypes, intended to
question the place of advanced NLP machinery, such as automated question-generation, answering
and speech synthesis, in the activity of news reading.

The human evaluation we perform reveal that even though deep-learning based models indeed
introduce imperfections which create friction in the user interaction, the technology can still benefit
many. For example, questions generated and used as prompts can help a reader deepen their
knowledge on a given news topic, and a majority of news readers opt to interact with news content
and ask their own questions when given the opportunity, even when the automated answer can be
erroneous.

The work in this thesis aims to provide evidence that as automatic text generation becomes more
fluent and consistent, it can serve as a useful tool in helping citizens of the world stay informed on
complex, unfolding news events.

1.1 Prior Publications and Authorship
Part of the content in this dissertation was published prior to the writing of the thesis, and details of
all published work is listed in Table 1.1. Although I was the first author on all published work, wrote
the code-base used in all projects, and was in charge of running experiments and human evaluation,
I list the contributions of my co-authors. John Canny and Marti Hearst, my advisors during the
Ph.D. program, were close collaborators throughout the Ph.D., and were instrumental in helping
with conceptualizing, framing, and describing the work clearly. Work described in Chapter 2 was
partly completed during an internship at Bloomberg, in collaboration with my mentor Andrew Hsi.
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Finally, Chapters 3 and 4 are the result of a year-long collaboration with Tobias Schnabel and Paul
Bennett from Microsoft Research through the BAIR Commons project. All co-authors gave written
approval for the work they participated in to be included in this thesis.

To reflect my collaborators’ contributions, I use the pronoun ‘we’ in Chapters 2-7.

1.2 Structure of the Thesis
The thesis is divided into two parts, each consisting of three chapters.

Part I (Chapters 2-4) focuses on unsupervised approaches applied to text generation tasks.
Although some attention is placed in Chapter 3 on human evaluation, the main contribution of these
chapters is in NLP, more particularly in methods for text generation. The target audience for these
chapters is NLP researchers, and the writing assumes some background knowledge (e.g., the inner
works of the Transformer [159] architecture).

In Chapter 2, we introduce the Summary Loop. First, we define a summary as a brief, fluent
text that covers the main points of an original document. We design reward components to measure
coverage and fluency, which can be optimized using reinforcement learning to train a summarization
model. An important contribution lies in the reward design not requiring reference summaries
to be computed, rendering the Summary Loop the first abstractive and unsupervised approach to
summarization. We show that Summary Loop trained models outperform previous unsupervised
methods, and approach but do not exceed in performance state-of-the-art supervised methods. The
summaries produced are more abstractive than ones generated by supervised methods, and can be
controlled for attributes such as length.

In Chapter 3, we extend the Summary Loop and adapt it to the domain of text simplification
in the Keep it Simple procedure. We introduce novel rewards to measure text simplicity and
adapt others from the Summary Loop, which we optimize jointly. Unlike summarization, text
simplification is a nascent domain with less readily available parallel data, and we are able to
show that a Keep it Simple trained model outperforms both unsupervised and supervised prior
work, setting a new state-of-the-art. We further iterate on the design of human evaluation for text
simplification, and produce a evaluation protocol with which we demonstrate that a participant can
complete a reading comprehension task faster with simplified texts, compared to the original text.

In Chapter 4, we address a major limitation of the current text generation models (including
the Summary Loop and Keep it Simple models): their lack of factual consistency with respect to
their original document. We show that models trained for the task of Natural Language Inference
(NLI), can be adapted to the task of inconsistency detection, as long as they are used at the
appropriate textual granularity. We build a benchmark dataset regrouping the six largest dataset
for inconsistency detection, and find that our Zero-Shot NLI-adapted model outperforms all prior
work. Adding a trained convolution layer finetuned on synthetic data further increases performance
on the benchmark, demonstrating the usefulness of NLI in adjacent fields. We perform thorough
experiments to validate the approach and find the most compatible adaptation of NLI models to the
inconsistency detection task.
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In Part II (Chapter 5-7), we change gears to focus on applying modern NLP pipelines to the news
domain, incorporating question generation/answering, summarization, simplification, and speech
recognition/synthesis into news reading interfaces. The target audience for Part II are individuals
interested in news consumption, or applications of NLP, and does not require advanced knowledge
of NLP.

Chapter 5 sets the foundation for the interfaces by describing the NewsLens system. NewsLens
consists of a database of around seven million English news articles that were collected over a
period of 13 years (2009-2021), as well as a pipeline of NLP that processes the individual news
articles. Individual news articles is first merged into an event: which we define as a group of news
articles from different sources that describe the same physical event in space and time. Events are
further assigned to a story, a timeline of related events over time. This organization is intended to
enable story-centered interfaces, that can surface past related events to the reader, and combine
content from diverse news sources.

In Chapter 6 we introduce NewsChat. Each story in NewsLens with a recent event is instantiated
as a chatroom, which news readers can enter to read and converse about the news story. News
readers can ask open-ended questions, which the system attempts to answer with an automatic
extractive question-answering system. The system also recommends automatically generated
questions, and a human evaluation study determines that recommending relevant questions can
lead participants to read more deeply into the news story, when compared to not recommending
questions, or recommending questions without selecting them by relevance.

In Chapter 7, we expand the chatbot into an automated interactive podcast we name NewsPod.
Through automatic speech synthesis, we generate news podcasts by concatenating podcast segments
each focused on a single news story from NewsLens. The podcast is composed by the listener,
who stories to include in the podcast, and a target podcast duration in minutes. The listener can
interrupt the podcasts during any segment to ask open-ended questions. Unlike the chatbot in
which the content is built through interaction with the user, content in the podcast must be outlined
ahead of time by the system with the desired duration in mind. We compose the podcast with
three distinct synthesized voices, each taking on a specific role (e.g, questioner vs. responder), to
simulate a conversation and reduce monotony. A large-scale human study finds that using several
voices and setting the podcast in a conversational setting is favored by listeners, and that a majority
of participants intervene to ask their own questions, when the podcast includes sufficient inviting
pauses.

Finally, Chapter 8 summarizes the contribution of the thesis, and presents next directions for
future work that can bring the presented work further and address current limitations.

1.3 Research Contributions
The key contributions of this thesis include:

• The design and implementation of unsupervised rewards to measure coverage, fluency
and simplicity for text generation tasks. In Chapters 2 and 3, we design conceptually simple
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rewards intended to measure a specific quality in generated text. The reward component
designed follow several uniforming rules: (1) they can be computed without the need of a
reference text and (2) computationally inexpensive, such that several hundred scores can
be computed on a single machine per minute, permitting the use of the scores in RL-based
unsupervised learning.

• k-SCST, an improved RL-optimization method to train text generators to optimize
multi-component rewards. The optimization algorithm introduced in Chapter 3 is a simple
improvement of the standard Self-Critical Sequence Training (SCST). In k-SCST, a larger
number of text candidates are generated and scored avoiding a common issue of null-gradients
which can occur and slow down training in SCST. Experiments validate that k-SCST stabilizes
and speeds up training as the number of candidates is increased.

• State-of-the-art text generation model for the news domain. The Summary Loop model
introduced in Chapter 2 outperforms all previous unsupervised summarization models on a
common news summarization dataset, the Keep it Simple model in Chapter 3 outperforms all
supervised and unsupervised prior work for text simplification, and the SUMMAC model of
Chapter 4 sets a new state-of-the-art on the eponymous benchmark for inconsistency detection
in summarization. These models are released publicly, with links available in the respective
chapters.

• A task-based human evaluation protocol for text simplification. The protocol is based on
the assumption that when completing a comprehension questionnaire about a text, reading a
simplified version of the text leads to a speed-up in the completion time of the questionnaire,
at equal accuracy. An experiment with the protocol confirms this assumption on several
documents and simplification algorithm. The protocol can be used to evaluate and compare
simplification models, and get a direct estimate of the usefulness of generated simplifications.

• A benchmark for inconsistency detection in summarization. The SUMMAC benchmark
introduced in Chapter 4 puts together the six largest datasets of inconsistency detection for
summarization, and standardizes them into a binary classification task. Because each of the
datasets in the benchmark was produced with summaries of different models, on differing
articles, and created under distinct procedures, the benchmark is more general than individual
datasets.

• The design and implementation of two text-centric, NLP-powered news interfaces. Chap-
ters 6-7 introduce the NewsChat and NewsPod systems, both interactive interfaces for news
reading. Emphasis is put on scalability, as both interfaces function source the information in a
large, evolving dataset containing more than 7 million news articles, and function in real-time
with minimal delay. Details on the back-end system and processing steps are described in
Chapter 5.

• The evaluation of varying news interfaces, giving insights on which design elements
add value to a user’s news-reading experience. The human evaluations performed are
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conducted by including a system with all features, as well as several baselines with a specific
feature removed. Participants are observed while freely using the interface in one setting,
and usage signals are recorded. By measuring statistical difference in usage signals between
variants of the interface, the effect of a feature on usage can be established. For example,
recommending automatically generated questions in NewsChat leads to longer and more
in-depth conversations for participants on average, and in NewsPod, generating podcast
sections in conversational format with multiple voices leads to an increase in engagement and
satisfaction.
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Part I

Unsupervised Text Generation
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Chapter 2

The Summary Loop: Unsupervised
Summarization
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2.1 Introduction
Summarization, or the task of condensing a document’s main points into a shorter document, is
important for many text domains, such as headlines for news and abstracts for research papers.

This chapter presents a novel unsupervised abstractive summarization method that generates
summaries directly from source documents, without the aid of example summaries. This approach
simultaneously optimizes for the following important properties of a good summary:

• coverage of the keywords of the document,

• fluency of generated language, and

• brevity of generated summaries.

One of the main contributions of this work is a novel method of inducing good coverage of
important concepts from the original article. The coverage model we propose takes as input the
original document with keywords masked out (see Figure 2.1). It uses the current best automatically
generated summary to try to uncover the missing keywords. The more informative the current
summary is, the more successful the coverage model is at guessing the blanked out keywords from
the original document. A resulting coverage score is fed back into the training process of the
summarization model with the objective of producing summaries with high coverage.

A second contribution is our unsupervised training procedure for summarization, the Summary
Loop, which leverages the coverage model as well as a simple fluency model to generate and score
summaries. During training, the procedure is conditioned on a desired summary length, forcing
the Summarizer model to adapt to a length budget. Figure 2.1 shows Summary Loop summaries
obtained for the same document under three different length budgets.

A third contribution is a set of specialized techniques employed during training to guide the
model away from pathological behavior. These guard rails include a method for reducing repetition,
for encouraging the model to complete sentences, and to avoid frame filling patterns.

The models trained through the Summary Loop outperform all prior unsupervised summarization
methods by at least 2 ROUGE-1 points on common news summarization datasets (CNN/DM and
Newsroom), and achieve within a few points of state-of-the-art supervised algorithms, without ever
being exposed to any summaries. In addition, summaries generated by our method use 50% more
summarization techniques (compression, merging, etc.) than prior automatic work and achieve
higher levels of abstraction, reducing by almost half the gap between human-generated summaries
and automatic summaries in terms of length of copied spans.

2.2 Related Work
Supervised Abstractive Summarization. Sequence-to-sequence (seq2seq) [152] models trained
using teacher-forcing are the most common approach to abstractive summarization [104]. A
common architecture is the Pointer-Generator [140]. Performance can further be improved by
constraining the attention [47, 54, 164] and using pretrained Transformer-based language models
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Original Document: Chilean President announced Wednesday that his country, which has been
paralyzed by protests over the last two weeks, will no longer host two major international summits. [...]
The President has now canceled the hosting of the economic APEC forum and COP25 environmental
summit, which were both due to take place later this year. [...]

Masked Document: ____ ____ announced Wednesday that his country, which has been ____ by ____
over the last two weeks, will no longer ____ two major international ____. [...] The ____ has now ____
the ____ of the ____ ____ ____ and ____ ____ ____, which were both due to take place later this ____.
[...]

Summary Loop [10 word constraint]: Pinera cancelled the APEC summit at Santiago.
Coverage Score: 0.22

Summary Loop [24 word constraint]: Pinera said Chileans have been canceled the hosting of the
APEC summit, which was scheduled to take place in November.
Coverage score: 0.33

Summary Loop [45 word constraint]: Sebastian Pinera announced Wednesday that his country will
not hold the APEC summit, which was scheduled to take place in Santiago. Pinera said that Chileans had
been paralyzed by protests over the last two weeks.
Coverage score: 0.39

Figure 2.1: Motivating example. A document from CNN.com (keywords generated by masking
procedure are bolded), the masked version of the article, and generated summaries by three Summary
Loop models under different length constraints.

[88, 23, 39]. Through architectural changes, the training procedure remains constant: using a large
corpus of document-summary pairs, the model is trained to reproduce target summaries.

Unsupervised Summarization. Most unsupervised summarization work is extractive: sen-
tences deemed relevant are pulled out of the original document and stitched into a summary, based
on a heuristic for a sentence’s relevance [101, 6, 166]. Nikolov and Hahnloser [109]’s abstractive
approach is partially unsupervised, not requiring parallel data, but only a group of documents and a
group of summaries. In contrast, our work does not require any summaries, and is trained using
only documents.

Radford et al. [128] summarize documents using a language model (GPT2) in a Zero-shot
learning setting. The model reads the document followed by a special token “TL/DR”, and is tasked
with continuing the document with a summary. Our work is an extension of this work: we initialize
our Summarizer model with a GPT2 and specialize it with a second unsupervised method.

Summarization and Q&A. Eyal, Baumel, and Elhadad [41] and Arumae and Liu [5] turn
reference summaries into fill-in-the-blank (FIB) questions, either as an evaluation metric or to
train an extractive summarization model. In this work, we directly generate FIB questions on the
document being summarized, bypassing the need for a reference summary.

Scialom et al. [138]’s work stays closer to a Q&A scenario, and uses a Question Generation
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module to generate actual questions about the document, answered by a Squad-based [129] model
using the generated summary. We refrain from using actual questions because question generation
remains a challenge, and it is unclear how many questions should be generated to assess the quality
of a summary.

RL in Summarization. Paulus, Xiong, and Socher [119] introduced Reinforcement Learning
(RL) to neural summarization methods by optimizing for ROUGE scores, leading to unreadable
summaries. Since then, Reinforcement Learning has been used to select sentences with high
ROUGE potential [22], or optimize modified versions of ROUGE that account for readability
[118]. In all cases, the reward being computed relies on a reference summary, making the methods
supervised. We craft a reward that does not require a target summary allowing our training process
to remain unsupervised.

2.3 The Summary Loop
For this work, the definition of a summary is:

“A summary is a brief, fluent text that covers the main points of an original document.”

Brevity, fluency and coverage are the three pillars of a good summary. Under a length constraint,
a good quality summary should contain as much information about the original document as possible
while retaining fluent and coherent English.

Subsection 2.3 lays out the steps in the Summary Loop. Subsections 2.3–2.3 specify how each
component is represented by a neural network. Section 2.4 shows how to train a summarizer model
using this architecture in an unsupervised manner.1

Summary Loop Steps
Numbers in Figure 2.2 correspond to the following steps:

1. Summarizer receives a document D and length-constraint L, and produces a summary S
fulfilling the length constraint.

2. Using a Masking Procedure, D is modified into a masked document M, where important
words have been replaced with blanks.

3. Coverage receives S and M, and uses them to fill in each blank in M with a word, producing
F. F and D are compared, and the resulting fill-in accuracy is called the Coverage Score.

4. Fluency receives S, and gives a Fluency Score based on its assessment of the quality of the
Summary’s writing.

1The code, model checkpoints and other resources are available at https://github.com/CannyLab/
summary_loop .

https://github.com/CannyLab/summary_loop
https://github.com/CannyLab/summary_loop
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Figure 2.2: The Summary Loop involves three neural models: Summarizer, Coverage and Fluency.
Given a document and a length constraint, the Summarizer writes a summary. Coverage receives the
summary and a masked version of the document, and fills in each of the masks. Fluency assigns a
writing quality score to the summary. The Summarizer model is trained, other models are pretrained
and frozen.

5. The Fluency Score is added to the Coverage Score (as a weighed sum) into a Summary Score
for the (D, S) pair.

6. Reinforcement Learning is used to train the Summarizer to produce summaries with high
Summary Score.

The Summary Loop does not rely on the use of a target/reference/human-written summary, but
only the summaries produced by the Summarizer model. The process can therefore be iterated upon
without supervision from Summarization datasets.

Summarization Model
We use a Generative Transformer [128] as the model architecture of the summarizer. We make
this choice for two reasons. First, Generative Transformers can produce text one word at a time,
allowing the system to produce abstractive summaries. Second, we use the pretrained Generative
Transformer to initialize the Summarizer.

Practically, the Summarizer first reads through the entire document, followed by a special START
token, signaling summarization. The Summarizer produces a probability distribution over words in
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Summarizer Architecture

GPT2-base: 12-layer, 768-hidden, 12-heads

Summarizer Initialization

GPT2 base model from Radford et al. [128]

Coverage Architecture

BERT-base: 12-layer, 768-hidden, 12-heads

Coverage Initialization

Pretrained model obtained in Section 2.3

Fluency Architecture

GPT2-base: 12-layer, 768-hidden, 12-heads

Fluency Initialization

GPT2 base model from [128], finetuned with Language modeling on news text.

Figure 2.3: The model size choice as well as initialization method for the Summarizer, Coverage
and Fluency models in the Summary Loop. Each model leverages a pretrained Transformer.

its vocabulary, and a word is picked from the distribution and fed back as an input into the model.
This procedure is repeated and halts either when the summary reaches a length constraint, or when
the Summarizer produces a special END token. See

Figure 2.3 shows the model size and initialization model used for each of the Summarizer,
Coverage and Fluency models.

Masking Procedure
The Masking Procedure decides on a set of keywords that are important elements in the document
that should be recoverable using a summary. The keywords are replaced with blanks, indirectly
indicating which information should be present in the summary. We use a tf-idf-based approach to
decide on the set of masked keywords, as it is both simple and has been shown to represent word
relevance to a document [130].

The masking procedure follows these steps:
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1. We randomly sample 5,000 documents in the domain being summarized (e.g. News) as a
training corpus,

2. The training corpus is tokenized using the tokenizer of the Coverage model. In our case, we
tokenize with the Word Piece model of the BERT Base model [30],

3. We train a tf-idf transformation model using the tokenized training corpus using default
parameters of scikit-learn’s tf-idf implementation [120],

4. Given a document to be masked, we use the trained tf-idf model to produce a tf-idf for the
document,

5. The words present in the document are ranked in decreasing order of tf-idf score, and the k
words with highest tf-idf form the masking set,

6. All occurrences of the words in the masking set are replaced by a mask in the document,
creating the masked document.

We select the k words with highest tf-idf score for the document to serve as the masked words.
The k parameter represents a balance: if too many words are masked, the filling-in becomes
impossible, but if too few are masked, the Summarizer model will not be encouraged to include
sufficient content in its summary. Varying the value of k (10,12,15,20) yielded only small discernible
difference in the Summarizers produced, and we use k = 15 in all our final experiments.

The masking procedure can be adapted to a specific domain. For instance, if summarizing
financial documents, the masking procedure could systematically mask all numbers, encouraging
the Summarizer model to add numbers to its summary.

Coverage Model
The Coverage Model receives a computationally generated summary and the masked document
and attempts to fill in each blank word. The task of filling in blanks is similar to masked language
modeling (MLM), used to pretrain BERT-like [30] models. In MLM, some of the words are replaced
with a special MASK token, and the model must use other information (unmasked words) to fill
in the masked words. Because of the similarity to our task, we use a BERT-based neural network
as the architecture for the coverage model. However, the coverage task differs from MLM in two
ways. First, we modify the masking procedure: instead of masking a random percentage of the
words (often 15% for BERT), we mask all appearances of the keywords selected by the masking
procedure described in Section 2.3. Second, the input to the coverage model is a concatenation
of the unmasked summary, a separator token and the masked document. The model can leverage
unmasked information available in the summary to fill in the masked document. The Coverage
Model is illustrated in Figure 2.4.
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Figure 2.4: The Coverage model uses a finetuned BERT model. The summary is concatenated to the
masked document as the input, and the model predicts the identity of each blank from the original
document. The accuracy obtained is the raw coverage score.

Computing a Coverage Score

Using the masking procedure, we obtain M = f(D), the masked document. The coverage model
produces the filled document F = g(M,S). Raw coverage score is the fraction of correctly filled in
words in F. Let Di, Fi and Mi correspond to the ith word in their respective document, IM the set
indices of words that have been masked. Then:

RawCov(D,S) =
‖i ∈ IM if Di = Fi‖

‖IM‖
(2.1)

The model can use information in the unmasked (visible) words of M to predict the masked
words. For instance, if the word “Chile” is visible, then “Santiago” would be a well-informed guess
near the word “capital”, which might not be masked out. This is undesirable, because coverage
should account for what information the model can learn from the summary S, not what it can guess
from the unmasked portion of D. To counteract this problem, we modify the raw coverage score
by computing how much information the model can guess without the summary present, using an
empty string summary: F∅ = g(M, “ ”). We then normalize a summary’s coverage by subtracting
the empty string coverage from the raw coverage, leaving only filled-in words answerable using S,
as shown in Equation 2.2.

NormCov(D,S) = RawCov(D,S)− RawCov(D, “ ”) (2.2)
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Summary
Dataset

Summary
Length

Raw
Coverage

Norm.
Coverage

Empty String 0 0.334 0
Headline 9.59 0.478 0.144

First 10 words 10.0 0.428 0.094
Newsroom 23.41 0.525 0.191

First 24 words 24.0 0.537 0.203
CNN/DM 45.75 0.726 0.392

First 46 words 46.0 0.649 0.315

Table 2.1: Analysis of the raw and normalized coverage of three existing human-written summary
datasets, as well as first-k word baselines.

In a nutshell, raw coverage score answers the question: “What fraction of blanked words can
be correctly filled in with this summary?” and normalized coverage score answers: “What is the
increase in the fraction of blanks that can be correctly filled in with this summary, compared to
having no summary?” In the rest of this thesis, Coverage Score refers to Normalized Coverage
Score.

Training the Coverage Model

We train the Coverage Model once, and its weights are then fixed during the training of the
Summarizer. In order to train the Coverage Model, we need pairs of documents (D) and summaries
(S). However, we operate under the assumption that we do not have access to summaries (to keep
the procedure unsupervised). In order to remove this dependency, we use the first 50 words of
the unmasked document (D[: 50]) as a proxy for document summaries. The Coverage Model is
initialized with a trained BERT model [30], and trained using (D,D[: 50]) pairs on the coverage
task. Because BERT is already trained on the similar MLM task, the Coverage model is able to
leverage knowledge accrued by BERT. The Coverage Model converges after roughly 5 hours of
training on a Titan X GPU.

Analysis of Coverage

We present properties of the raw and normalized coverage through the analysis of existing human-
written summary datasets. We focus our analysis on three datasets in the news domain: (1) a
headline dataset obtained from common US news websites [83], (2) the Newsroom dataset [53],
and (3) the CNN/DM dataset [104].

For each dataset, we take document/summary pairs and obtain raw and normalized coverage
score through our Coverage model, reported in Table 2.1.

First, longer summaries obtain higher coverage scores: a CNN/DM summary with an average of
45 words can be used to fill in 73% of the blanks correctly, compared to 48% for a 9 word headline.
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Across datasets, the correlation between summary length and raw coverage score is 0.56, confirming
that longer summaries contain more information, according to coverage.

Second, we simulate the first k words2 of the document as a summary. We use k = 10, 24, 46 to
match average word length in the three datasets. For two of the three values (10 and 46), the coverage
of human-written summaries is higher than the first-k word counterpart. This is remarkable: even
though the summary is farther away lexically (i.e., is not a subset of the original words), it obtains
higher coverage, demonstrating that the coverage model can account for reworded information.

Fluency Model
A model solely trained to optimize coverage has no incentive to write in good English, use punctua-
tion, determinants or pronouns, as these are not words removed by the masking procedure. The
objective of a Fluency Model is to judge the writing quality of the summary, independent of its
coverage.

Given the right corpus, we argue that a language model’s probability can be modified into a
Fluency Score. Therefore, we adapt a language model into the Fluency Model.

We choose the generative Transformer [128] architecture for our Fluency model, as it can be
trained into a powerful language model. Just as with the Summarizer, by using a standardized
architecture and model size, we can make use of pretrained models. However, it is important for
Fluency to fine tune the language model on the target domain, so that the Summarizer is rewarded
for generating text similar to target content.

To produce a uniform Fluency Score, we linearly scale the language model’s log-probability of
a given summary (LM(S)) between an ideal value LPlow and a maximum value LPhigh:

Fluency(S) = 1− LM(S)− LPlow

LPhigh − LPlow

(2.3)

This ensures that the Fluency(S) is usually in the range [0, 1]. LPlow and LPhigh are picked
specifically for a particular language model, and ensure that the log-probability magnitudes of a
specific language model do not affect the overall scores.

Table 2.2 provides examples from the Headline dataset of sampled headlines and their corre-
sponding Fluency Score. The Fluency Score, a normalized language model log-perplexity, ranges
from 0 to 1. Even though all these headlines are written by a human, the Fluency scores vary, with
the higher-scoring headlines using more standard grammatical constructs. Note that the use of
complex entity names does not prevent the model from obtaining a high Fluency score.

Summary Score
The final Summary Score is a weighed sum of the Coverage and Fluency Scores:

SummaryScore(D,S) = α · NormCov(D,S) + β · Fluency(S) (2.4)
2We choose the first k words due to the similarity to Lede 3 (first 3 sentences), a common baseline in news.
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Example Headline Fluency Score
Henry’s Monaco recruit giant Brazilian Naldo for relegation
scrap

0.16

Tesla shares dive after price cut, production numbers 0.41
French police arrest gilets jaunes protests leader Eric Drouet 0.59
Carlos Ghosn will appear in public for the first time since
his arrest

0.75

Table 2.2: Example selected headlines and their Fluency score. The headlines were picked from a
corpus of human-written news headlines. The average Fluency in the corpus is 0.479.

α, β are hyperparameters giving relative importance to Coverage and Fluency. We set α = 5, β = 1
in all our experiments. Model choice, size, and initialization are summarized in Figure 2.3.

2.4 Training Procedure
We first outline the training procedure and then detail several guard-rail mechanisms used during
training to prevent the Summarizer from learning pathological writing strategies.

Training with Reinforcement Learning
We use Reinforcement Learning to train the Summarizer component (agent), such that it achieves
high summary score (reward). Note that the Coverage and Fluency models are frozen, and their
weights are not trained. We make this choice as allowing Fluency and Coverage models to evolve
could enable the models to coordinate and cheat.

We use the Self-critical sequence training (SCST) method [133], as it has been shown to perform
well on similar text generation tasks optimizing BLEU for image captioning or ROUGE scores in
summarization.

In SCST, the Summarizer is used to produce two summaries of document D: a greedy summary
Ŝ, using a decoding strategy that always picks the most likely next word, and a sampled summary
Ss, picking the next word in the summary by sampling from the word distribution.

Summaries are scored using the Summary Loop:

R̂ = SummaryScore(D, Ŝ)
Rs = SummaryScore(D,Ss)

Then we minimize the following loss:

L = (R̂−Rs)
N∑
i=0

log p(ws
i |ws

1, ..., w
s
i−1, D)
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Method R-1 R-2 R-L Coverage
Score

Fluency
Score

Brevity
(avg words)

Baselines
Human-written Summaries 100 100 100 0.392 0.612 58.5
X Lead-3 baseline 40.3 17.7 36.6 0.421 0.656 84.0

Supervised Methods
Pointer Generator [140] 36.4 15.7 33.4 0.342 0.547 55.6
PG + Coverage [140] 39.5 17.3 36.4 0.377 0.508 61.7
Bottom-Up [47] 41.2 18.7 38.3 0.378 0.538 73.9
PEGASUSBASE [173] 41.8 18.8 38.9 - - -
PEGASUSLARGE [173] 44.1 21.3 40.9 - - -

Unsupervised Methods
X TextRank [101] 35.2 12.9 28.7 0.370 0.612 49.62
GPT2 Zero-Shot [128] 29.3 8.3 26.6 - - -
Summary Loop 45 37.7 14.8 34.7 0.404 0.627 47.0

Table 2.3: ROUGE Results (F-1) on the non-anonymized CNN/DM test-set for supervised and
unsupervised methods. Extractive methods indicated with X. Our ROUGE scores have a 95%
confidence interval of at most ±0.30. Coverage, Fluency and Brevity (average number of words)
included for systems where summaries are available, using Coverage and Fluency models from our
work.

Where p(ws
i |...) represent the probability of the ith word conditioned on previously generated word,

according to the model.
Intuitively, ifRs > R̂, minimizing L maximizes the likelihood of the sampled sequence — which

is desired because it outperformed the greedy summary — and increases expected reward of the
model.

Training guard rails
During training, the Summarizer model learns pathological summarization strategies. We build
training guard rails to detect the pathological behavior and penalize the model during training.

A guard rail has a binary effect: if a pathology is detected in a summary, its Summary Score is
reduced by a penalty amount δ. We use δ = 2 for all experiments. We found three training guard
rails to be useful: No-repetition, Finish-your-sentence, and No-frame-filling.
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No-repetition

A common problem in neural text generation is repetition of text. Based on the observation that
3-grams seldom repeat in common summarization datasets, the “No-repetition” training guard rail
raises a penalty on a summary when it contains any repeated 3-gram.

Finish-your-sentence

When generating a summary, the model can either produce the END token, or generate a number of
words up to the length constraint. We observe that if the model does not produce the END token, it
often generates partial sentences, which is undesirable. Because we want to encourage the model
to generate an END token, the “Finish-your-sentence” raises a penalty if a summary has no END
token.

No-frame-filling

During training, the model sometimes learns to overly rely on sentence patterns that achieves high
reward as a one size fits all summary. In one example the model learns to produce summaries solely
of the form: “X talks with Y about the Z”. The model uses this frame, filling in the X, Y and Z
slots with relevant keywords and entities to achieve a small but positive coverage. This form of
frame-filling is undesirable, as the model often produces inaccurate information to fit the entities to
the pattern.

We implement a guard rail to penalize the model when frame-filling patterns are observed.
During training, we keep track of the last 100 summaries produced by the model. We then aggregate
the frequency of words for each word position in the 100 summaries. If any word appears more
than 50% of the time at a specific word position, we raise the “No-frame-filling” penalty. In the
example given above, the word “talks” appeared in the second word position in more than 50% of
the summaries, as well as the word “about” in the fifth position.

These rule-based training guard rails are simple and effective. In our finalized trained models,
very few summaries exhibit penalized behavior: 2% for no-repetition, 5% for finish-your-sentence,
and 2.5% for no-frame-filling.

Figure 2.5 presents the plots of key variables we obtain during the training of the length 10
Summary Loop model. The training occurred over 10 days using a single Titan X GPU. During
a first phase which occurs in the first 2 days of training, the model learns to copy content from
the news article, which helps it achieve high Fluency and Coverage. In a second phase starting
around the second day, the Summarizer learns to gain Coverage which maintaining Fluency mostly
constant, which makes the overall Summary Score rise. The Summarizer model quickly learns to
use its word budget, and after 10 days of training, the model uses an average of 9.7 words in its
summaries.
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(a) Fluency score (b) Coverage score

(c) Summary Score (d) #Words in summary

Figure 2.5: Plots of key variables during the training of the length 10 Summary Loop: (a) is a plot
of the average Fluency Score, (b) is a plot of the average normalized Coverage Score, (c) is a plot
of the average Summary Score (taking guard-rails into account), and (d) is a plot of the average
number of words in summaries produced.
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Supervised Methods R-1 R-2 R-L
X Lead-3 baseline 32.0 21.1 29.6
PG + Coverage 27.5 13.3 23.5
Unsupervised Methods R-1 R-2 R-L
X TextRank 24.5 10.1 20.1
Summary Loop 24 27.0 9.6 26.4

Table 2.4: ROUGE Results on the released test set of Newsroom. X indicate extractive methods.
Summary Loop outperforms other unsupervised method, is competitive with supervised Pointer-
Generator.

2.5 Results
We present results for Summary Loop models trained in the news domain under three different
length constraints: 10, 24, and 46 words, matching the distributions of the Headline, Newsroom
[53] and CNN/DM [104] datasets. We compare our summaries using the standard ROUGE metric,
and by analyzing summaries for the errors made, the technique used and the level of abstraction.
Finally, we show the Summary Loop can be complemented with supervision, reducing the amount
of data needed to achieve comparable ROUGE results.

News ROUGE Scores
Table 2.3 and Table 2.4 present ROUGE results on the CNN/DM and Newsroom datasets respectively.
In both cases, Summary Loop outperforms other unsupervised methods, and is competitive with
supervised methods despite not being exposed to any example summaries. On CNN/DM, Summary
Loop performs in between the Pointer Generator and Bottom Up architecture in terms of ROUGE-1.
On the Newsroom, Summary Loop is within 0.6 ROUGE-1 points of the Pointer-Generator with
Coverage and surpasses it by 2 ROUGE-L points.

Recent breakthroughs in pretrained Transformer models have shown that using larger models in
Summarization can lead to large improvements. For instance, a “large” version of the PEGASUS
model [173] outperforms the “base” version by 2.3 ROUGE-1 points. Because Summary Loop
experiments were performed using “base” models, we expect that using larger Transformer models
could lead to similar gains.

Table 2.3 confirms that human-written summaries obtain amongst the highest Fluency and
Coverage scores. Human-written summaries are only outperformed by Summary Loop summaries,
and the Lede-3 baseline. However, the Summary Loop summaries are obtained by directly opti-
mizing for Fluency and Coverage, and Lede-3 baseline summaries achieve their higher Coverage
at the expense of being much longer (i.e. 84 words on average compared to 58 in human-written
summaries).
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Error Made PGC BU SL
Inaccurate (%) 11 31 24
Ungrammatical (%) 7 15 18
Technique Used
(Success/Total)

PGC
(S/T)

BU
(S/T)

SL
(S/T)

Sent. Compression 86 / 110 96 / 177 118 / 194
Sent. Merging 13 / 27 29 / 65 71 / 121
Novel Sentence 0 / 1 4 / 18 33 / 70
Entity Manipulation 7 / 10 15 / 27 27 / 40
Total Technique 106 / 148 144 / 287 249 / 425

Table 2.5: Error and Technique analysis on 200 randomly selected summaries on the CNN/DM
test-set for the Point-Gen with Cov. (PGC), Bottom-Up (BU) and unsupervised Summary Loop (SL).
For each summarization technique, we report two numbers: the number of successful occurrences
in summaries with no error, and the total number of occurrences in the 200 summaries.

Technique and Error Analysis
We perform a manual analysis of 200 randomly-selected summaries on the test set of CNN/DM from
the Pointer-Generator with Coverage (PGC), Bottom-Up (BU) and the unsupervised Summary Loop
(SL). We annotated each summary with two types of errors: Inaccurate (information in summary
contradicts document), Ungrammatical (one sentence or more is not properly constructed), and four
summarization techniques: Sentence Compression (summary sentence is a document sentence with
words removed), Sentence Merging (2 or more document sentences are merged into a summary
sentence), Novel Sentence (original sentence in the summary), and Entity Manipulation (a named
entity is modified or simplified, e.g. changing a full name to a last name). We present Summary
Loop examples illustrating each error and technique in Figures 2.7 – 2.12.

The analysis was performed by the first author of the paper, labeling article/summary pairs
without knowledge of model origin. A summary can manifest any number of summarization
Techniques, or none. Labeling is binary: if a summary exhibits more than one or instances of a
Technique, it receives a 1, otherwise it receives a 0. Results of the analysis are summarized in
Table 2.5.

SL uses significantly more summarization techniques (425) than PGC (148) and BU (287)
summaries. Beyond raw counts, SL is more successful at applying summarization techniques (59%
success) than BU (50% success), but less successful than PGC (72%). Note however that PGC takes
little risk: 19% of the summaries go beyond sentence compression, and 39% are extractive, using
none of the summarization techniques.
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Figure 2.6: Histogram and average copied span lengths for abstractive summaries. A summary is
composed of novel words and word spans of various lengths copied from the document. Summary
Loop summaries copy shorter spans than prior automatic systems, but do not reach abstraction
levels of human-written summaries.

Level of Abstraction
All methods generating summaries one word at a time have potential for abstraction. In Figure 2.6
we analyze human and system written summaries for abstraction level. We measure a summary’s
level of abstraction by looking at the length of spans copied from the document. Summary Loop is
the most abstractive automated method, although less so than human written summaries. SL cuts
nearly in half the length of copied spans compared to other automated methods.

Supervision is not the enemy
If summaries are available, we show that they can complement the unsupervised Summary Loop. We
run supervised experiments on CNN/DM using a generative Transformer architecture and varying
the initialization. We compare initializing with (1) random weights, (2) the original GPT2 weights,
and (3) the Summary Loop weights of target length 45. We train each model with teacher forcing,
comparing using the entire CNN/DM training set to just 10% of it. The results are summarized in
Table 2.6.

First, initializing with the Summary Loop leads to higher ROUGE score both in the 10% and full
dataset setting. As expected, results improve when using the entirety of the data, and the Summary
Loop initialized model trained with the entirety of CNN/DM obtains a ROUGE-1 F1-score of 41.0,
within the confidence interval of the supervised Bottom Up [47] architecture. This is a strong result
as the Transformer we use is a generic language model, and is not specialized for summarization.

Second, initializing with Summary Loop and training with 10% of CNN/DM yields comparable
ROUGE scores to initializing with GPT2 and using the entire CNN/DM, showing that Summary
Loop can be useful when fewer summaries are available.
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Initialization Method R-1 R-2 R-L Test Loss
28k samples from CNN/DM (10%)

Random Initialization 7.0 0.9 8.8 6.05
GPT2 37.1 15.9 31.9 2.21
Summary Loop S10 38.7 16.2 35.1 2.07

All of CNN/DN (100%)
Random Weights 20.4 4.1 19.1 4.22
GPT2 38.4 17.2 35.0 2.02
Summary Loop S100 41.0 18.1 37.3 1.89

Table 2.6: ROUGE Results on the CNN/DM test-set for supervised generative Transformers.
Initializing with the unsupervised Summary Loop outperforms random and GPT2 initializations.

2.6 Example Annotated Summaries
Figures 2.7, 2.8, 2.9, 2.10, 2.11, and 2.12 show example documents and the generated Summary
Loop summary from the error and technique analysis of Section 2.5. Each summary manifests a
summarization technique or error observed.

2.7 Discussion
Customizing summaries. In Figure 2.1, we illustrate the effect of the length constraint by summa-
rizing the same document under three different length constraints. Each model adapts to its word
budget. However, length is only one way to customize summaries. One might want to summarize
based on point of view, chronology, theme, etc.

Fluency vs. Grammaticality. By choosing to represent the validity of summaries with a
Language model, we encourage fluent summaries (i.e., with likely sequences of words) but not
necessarily grammatical ones. Extending the scoring to include grammaticality, either by using a
parsing model, or leveraging the Corpus of Linguistic Acceptability [165] could prove useful.

Summarization in the wild. Because our method is unsupervised, it can be applied to new
domains and languages. In this work, we benefited from pretrained BERT and GPT2 models in
English, which do not yet exist publicly for other languages. Once they become available in other
languages, the Summary Loop can be ported over.

Abstraction dangers. Recent work around measuring factuality in generated text, using Natural
Language Inference [57] or rule-based fact extraction [178] becomes increasingly important with
summaries that are more abstractive. This work can be naturally included into the Summary Loop,
with a fact-checker model generating an accuracy score.
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Sentence Compression Example

Document: He has long struggled to convince voters that he is a suitable choice for prime
minister. Now Ed Miliband has hired a leadership coaching firm that helps people overcome
anxiety and find their “inner voice”. The consultants drafted in by the Labour leader
claim to work with politicians to build "leadership skills" using “neuroscience” and “business
psychology”. Ed Miliband, pictured, has hired a US guru who can help him convince himself
that he can be Prime Minister. [...]

Summary: Ed Miliband has hired a US guru who can help politicians on their leadership
skills using neuroscience. Mr Miliband has hired the firm that can help politicians to build
their leadership skills. The consultants drafted in by the Labour leader claim to work with
politicians.

Figure 2.7: Summary Loop summary from the Error and Technique analysis (Section 2.5) illustrating
the Sentence Compression technique. The blue boldface highlight is an example of sentence
compression.

2.8 Conclusion
In this work we present a new approach to unsupervised abstractive summarization based on
maximizing a combination of coverage and fluency for a given length constraint. When tested on
common news summarization datasets, our method significantly outperforms previous unsupervised
methods, and gets within the range of competitive supervised methods. Our models attain levels of
abstraction closer to human-written summaries, although with more abstraction, more potential for
factual inaccuracies arise.
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Sentence Merging Example

Document: A single mom and her three kids who “lost everything but their lives” in the
East Village apartment explosion last week are getting an incredible outpouring of support
from their fellow New Yorkers. [...] Dr McLean, a 58-year-old child psychiatrist in the South
Bronx, says she and daughter Rose, 8, and twins James and Annabelle, 5, had nothing more
than the clothes on their backs after the disaster. Diane McLean, 58, and her three children lost
“everything but their lives” when fire destroyed their apartment last week. Rose, 8, ( left ) and
twins James and Annabelle, 5, lost everything except the clothes on their backs in the fire that
destroyed their apartment building. [..] A GoFundMe campaign has raised nearly $ 90,000. [...]

Summary: Diane McLean says she and daughter Rose, 8, and twins James and Annabelle,
lost everything but their lives at East Village apartment explosion last week. Diane
McLean and her three kids had the clothes on their backs. A GoFundMe campaign has
raised nearly $ 90,000.

Figure 2.8: Summary Loop summary from the Error and Technique analysis (Section 2.5) illustrating
the Sentence Merging technique. The bold blue and italicized red selections are two examples
of sentence merging. In the blue example “Dr McLean” is replaced by “Diane McLean” in the
summary, an example of entity manipulation.
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Novel Sentence Example

Document: For most of us, the dream of a holiday home is one that will probably never be
realised. But for the lucky minority with a few extra million in the bank, its seems the world
is quite literally your oyster when looking for property around the world. From a Lake Garda
mansion with a pool overlooking the water to an Italian villa that looks like a castle and an
Antigua retreat with Giorgio Armani as a neighbour, these are some of the most spectacular
holiday homes on the market at the moment. On the Lombardy side of Lake Garda, this
Lionard property is a luxurious villa with one serious waterfront view. Lake Garda. On the
Lombardy side of Lake Garda, in northern Italy, lies a luxury villa with a view - just several
miles north of Brescia. And for e 18 million ( about £13 million or $20 million ) it can all be
yours. Not only is there a large swimming pool looking out on the water, but also a large deck
with plenty of space for sun beds, gazebos and al fresco dining spots, overlooking a 4000 square
metre garden. Inside, the house is just as breathtaking. For about 18 million Euros ( or $ 13
million ), the modern home, complete with pool, gazebo, and al fresco dining options, can be
yours. [...]

Summary: The Lake Garda home is a luxury villa with a view on the Lombardy side of
Lake Garda. This villa with gazebo and al fresco dining options. Inside, the house is just as
breathtaking. For about 18 million Euros.

Figure 2.9: Summary Loop summary from the Error and Technique analysis (Section 2.5) illustrating
the Novel Sentence technique. The first sentence of the summary uses pieces from the original
document (in boldface blue) to form a sentence with an alternative but correct meaning.
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Entity Manipulation Example

Document: Sipping a glass of glorious red wine which has been carefully aged in a hand-crafted
oak barrel is my idea of heaven. [...] A $ 5 bottle has suddenly become $ 12 because the wine
has lingered in an oak barrel before bottling. So when I read this week about a new gadget that
claims to be able to “oak age” wine in hours rather than years, my curiosity was seriously
roused. The Oak Bottle promises to impart an authentic aged flavour – a process that can take
up to two years – in just a day or two. Who wouldn’t drink to that ? Scroll down for video.
TV wine expert Oz Clarke puts to the test this oak bottle that claims to “oak age” wine in
hours rather than years. The product, which retails at $ 50, is the brainchild of 30-year-old
entrepreneur Joel Paglione. [...]

Summary: Joel Paglione said the Oak Bottle promises to be able to oak age wine in hours
rather than years. The Oak Bottle promises an authentic aged flavour that can take up to two
years. A bottle has been made in an oak barrel.

Figure 2.10: Summary Loop summary from the Error and Technique analysis (Section 2.5) illus-
trating the Entity Manipulation technique. The entity Joel Paglione (in boldface blue) is correctly
inserted to represent the company.
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Inaccurate Example

Document: The traditional cookie cutter wedding no longer exists - new reports suggest Brits
are ditching tradition in favour of alternative practices when it comes to getting hitched. Two
of the biggest changes are the fact that religious services have fallen out of favour and that
brides are opting for bold colour schemes for their big day. A new study, which has tracked
the decisions of brides and grooms over the past five years interviewed 1,893 newlyweds and
compared them to answers they have collated since 2010. Scroll down for video. [...]

Summary: The new study showed that British couples are opting for religious ceremonies
when it comes to their big day with services falling from 40 per cent of the past five years. The
study showed that couples are opting to holiday in the UK.

Figure 2.11: Summary Loop summary from the Error and Technique analysis (Section 2.5) illustrat-
ing the Inaccurate error. The summary inaccurately claims religious ceremonies are increasing,
when the document says they are in decline. Key phrases are highlighted in boldface blue.
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Ungrammatical Example

Document: Despite his daughter remaining in a medically induced coma since she was found
unresponsive in a bathtub at her Atlanta home in January, singer Bobby Brown told an audience
on Saturday night that she is “awake.”. Bobby was performing at the Verizon Theatre in Dallas
when he told the stunned audience that “Bobbi is awake. She’s watching me.” The singer didn’t
elaborate on if his daughter had regained consciousness or if he was talking instead about her
spirit. After the 46-year-old’s comment, his sister Tina posted on Facebook," [...] Whitney
Houston’s family insists the 22-year-old is not awake and is the same condition she was when
she entered the facility. "She’s in the exact same condition she was in when she went into
the facility." a source told the site [...]

Summary: Bobby Brown was performing at the Verizon Theatre in Dallas when Bobbi was
awake. He said that Tina posted on Facebook that her daughter was awake. She was the singer.
She was going to be awake. She is the same condition.

Figure 2.12: Summary Loop summary from the Error and Technique analysis (Section 2.5) illustrat-
ing the Ungrammatical error. The last short summary sentence (in boldface blue) is not properly
constructed, based on an unsuccessful attempt to compress a sentence in the document (also in
boldface blue).
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Chapter 3

Keep it Simple: Unsupervised Simplification
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3.1 Introduction
The main objective of text simplification is to make a complex text accessible to a wide audience by
increasing its readability. In contrast with text summarization – in which key content is selected
to remain in the summary and other content is elided – in text simplification, ideally all relevant
content is preserved.

Original: NASA's Curiosity rover just celebrated a major
milestone — 3,000 days on the surface of Mars. To mark the
occasion, the space agency has released a stunning new
panorama of the red planet, captured by the rover.

Model Full: NASA's Curiosity rover has now passed 3,000
days of travel on the surface of Mars. To mark the milestone,
the space agency released a huge panorama of Mars, as
seen by the rover.
Model No Fluency: NASA's Curiosity rover. celebrated. A
major milestone — 3,000 days on. The of.. To mark. The
space agency has. a stunning new panorama.. red planet.
captured by. The rover. However
Model No Salience: NASA's Curiosity rover just celebrated a
major milestone. The space agency has released a stunning
new panoramic of the red planet, captured by the team. It
was by the rover's panoramic camera.

Model No Simplicity: NASA's Curiosity rover has celebrated
a major milestone, 3,000 days on the ground of Mars. To
mark the occasion, the space agency has unveiled a stunning
new panoramic view of the red planet, captured by the rover.

Figure 3.1: Motivating example for the KiS method, based on a CBS article [89]. We optimize a
three-component reward: fluency, salience and simplicity. We show model outputs when trained
with all three components, and with a missing component.

We propose that text simplification algorithms need to balance three properties: (1) fluency:
the simplified text should use well-formed English sentences, (2) salience: the simplified text
should relay the same information as the original, and (3) simplicity: the simplified text should be
syntactically and lexically simpler than the original.

Figure 3.1 provides intuition for the necessity of each of the three properties. It shows the
original text and the output of the full proposed model compared to three reduced versions:

Without Fluency, the generator has no incentive to generate full sentences, and learns it can
boost the simplicity score by generating short phrases with excessive punctuation.



CHAPTER 3. KEEP IT SIMPLE: UNSUPERVISED SIMPLIFICATION 35

Without Salience, the generator does not gain by covering facts in the original text, and can
improve the simplicity score by learning to remove facts (e.g., not mentioning planet Mars by
name).

Without Simplicity, the generator is not guided to favor syntactically and lexically simpler
re-writes. In Figure 3.1, Model No Simplicity is in fact more complex than the original according to
readability measures.

As we show in the related work section (Section 3.2), there are no high-quality, large datasets
publicly released for text simplification. In this work, we build on recent progress of reinforcement
learning (RL)-based training of text generators: we formulate a reference-free reward for text
simplification and directly optimize it, circumventing the need for aligned data.

Our main contribution is the Keep it Simple (KiS) procedure, a novel unsupervised method
for text simplification. Applied to the English news domain, KiS outperforms several supervised
models on common simplification metrics such as SARI [171] and the Flesch-Kincaid Grade Level
[74].

A second contribution is a new algorithm for RL-based training of text generators, k-SCST,
which is an extension of Self-Critical Sequence Training [133]. For each input, we generate k
sampled outputs (vs. 2 in SCST), and use the mean population reward as a baseline. We show in
Section 3.4 that in our domain, k-SCST outperforms models trained with SCST.

A third contribution is a novel evaluation method for text simplification. Based on the assumption
that simplified text should enable faster reading with better understanding, we propose a realistic
Text Comprehension task. We show that people reading texts simplified by KiS are able to complete
comprehension tasks faster than comparison texts.

Another departure from previous work is that we work with paragraphs as units of text. Most
work in text simplification is done at the sentence level, despite work such as Zhong et al. [183]
showing that common simplification phenomena occur at the level of the paragraph, (e.g., the
deletion, insertion or re-ordering of full sentences). Specifically, we train our models to simplify
full paragraphs, and evaluate our models in a human evaluation on short documents (i.e., 3-4
paragraphs).

Through rigorous empirical evaluation, we demonstrate the strong performance of our approach;
automated results show that this unsupervised approach is able to outperform strong supervised
models by 4 SARI points or more. We publicly released the code and model checkpoints1.

3.2 Related Work
Simplification Datasets. Early datasets were first based on Simple Wikipedia2: WikiSmall [184],
later expanded into WikiLarge [177]. Xu, Callison-Burch, and Napoles [170] show there are quality
concerns with Simple Wikipedia datasets, and propose Newsela3 as a replacement. Newsela is a
project led by educators re-writing news articles targeting different school grade levels. We view

1https://github.com/tingofurro/keep_it_simple
2https://simple.wikipedia.org/
3https://newsela.com/

https://github.com/tingofurro/keep_it_simple
https://simple.wikipedia.org/
https://newsela.com/
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Newsela as the gold-standard for our work, and use the public Newsela release of 1,911 groups
of articles to design and evaluate our work. Using a coarse paragraph alignment algorithm, we
extract 40,000 paired simple/complex paragraphs targeting a separation of 4 grade levels. We call
this dataset the paired Newsela dataset, which we use for analysis and baseline training.

Seq2Seq for Simplification. Text simplification is most commonly framed as a sequence-to-
sequence (seq2seq) task, leveraging model architectures of other seq2seq tasks, such as natural
machine translation [184, 169]. Martin et al. [98] introduce ACCESS, a finetuned Transformer model
that achieves state-of-the-art performance on WikiLarge. ACCESS can customize simplifications
on parameters such as compression rate and paraphrase amount. We directly compare our approach
to ACCESS.

Data availability remains one of the main limitations to seq2seq-based text simplification. We
side-step this issue entirely by working with unsupervised data, only requiring a small dataset with
coarse-level alignments for calibration.

Lexical Simplification focuses on the substitution of single words or phrases with simpler
equivalents, with diverse approaches using lexical databases such as WordNet [156], to using
contextualized word vectors [127]. These methods tend to be limited, as they do not consider
syntactic complexity, and have no direct way of modeling deletions and insertions. We incorporate
a lexical score (LScore) as one of the rewards in our simplicity component.

Text-edit for Simplification. Recent work [31, 148] has modeled text simplification as a
text-edit task, learning sequences of word-edits that transform the input into the output. Text
editing offers explainability, at the cost of added model complexity. We find that without explicitly
representing edits, the KiS model easily learns to copy (using attention heads) and deviate from the
original text. Outputs can be post-processed into edits, if desired.

Unsupervised Simplification has mostly been limited to lexical simplification. Recently Surya
et al. [151] (Unsup NTS) proposed a system that can perform both lexical and syntactic simplifi-
cation, with a joint encoder, and two decoders (simple and complex). We directly compare our
unsupervised approach to Unsup NTS.

RL for Simplification. Prior work [177, 56] used Reinforcement Learning (RL)-based simplifi-
cation. However, in both cases, components of the reward or training procedure involved reference
simplifications, requiring an aligned dataset. By designing a reference-free reward, we are able to
train our model with RL without supervision.

Evaluation of Simplification. This usually falls into two categories: automatic offline evalua-
tion, and human evaluation. Automatic evaluations usually involve using n-gram overlap calculations
such as BLEU [116] and SARI [171]). SARI was shown to correlate better with human judgements
of simplicity than BLEU, and it has since become a standard [177, 151, 98]. In our experiments, we
report both SARI and BLEU.

Human evaluation is typically done in an intrinsic way – e.g., by directly rating factors like
fluency, simplicity and relevance of model outputs [151, 169]. In this work, we propose an extrinsic,
task-based protocol. In our comprehension study, we directly measure how much simplified texts
can help a human reader answer questions more efficiently. The closest to our evaluation design
is that of Angrosh, Nomoto, and Siddharthan [3] with the important difference that we require
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     Generator

           SalienceOriginal
Text

       Simplicity
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Optimization

       Fluency

           GuardrailsSimplified
Text

Figure 3.2: Keep it Simple is an unsupervised training procedure for text simplification. The
text generator (GPT-2) produces candidate simplifications, scored according to fluency, simplicity,
salience. Guardrails enforce the model does not learn high-scoring shortcuts.

participants to resubmit after erroneous answers. In pilot studies, we found this step to be crucial
for high-quality responses.

3.3 KiS Components
In KiS, we approach unsupervised simplification as a (non-differentiable) reward maximization
problem. As shown in Figure 3.2, there are four components to the reward: simplicity, fluency,
salience and guardrails which are jointly optimized. This is essential to avoid trivial solutions that
only consider subsets. We therefore use the product of all components as the total reward, because
the product is sensitive to the sharp decrease of a single component. For example, the triggering
of a single guardrail leads to the zeroing of the total reward. Each component is normalized to the
[0, 1] range.

Simplicity
The simplicity score should establish whether the generator’s output uses simpler language than the
original text. We follow prior work [45] and organize our score into a syntactic score SScore, and a
lexical score LScore. Syntactic simplification focuses on reducing the complexity of a sentence, for
example by reducing the number of words in a clause, or reducing distant dependencies. In lexical
simplification, the objective is to replace complex phrases with simpler synonyms. To produce a
single simplicity score, we take the product of SScore and LScore (both in [0, 1]).
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def S_Score(original,simple):
Fstart = fkgl(original)
tgt = target_delta(Fstart)
Fend = fkgl(simple)
D = Fend-Fstart
return clip(1-((D-tgt)/tgt),0,1)

def target_delta(Fstart):
# Line-fitted from analysis
if Fstart < 4.0:

return 0.1
if Fstart < 12:

return 0.5*Fstart-1.9
return 0.8*Fstart-5.6

Figure 3.3: SScore algorithm. fkgl computes the Flesch-Kincaid grade level.
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Figure 3.4: Analysis (Kernel Density Estimate plot) of change in Flesch-Kincaid Grade Level in the
paired Newsela dataset. Most simple paragraphs have lower FKGL than the original paragraphs
(positive ∆FKGL). When the original paragraph’s FKGL is higher (x-axis), the change in FKGL
tends to be larger (y-axis). We fit a linear approximation, which we use to compute the Sscore.

Syntactic Simplicity: SScore

We measure syntactic complexity via the Flesch-Kincaid grade level (FKGL) as it is easy to compute
and maps to a grade-level which also corresponds to the scale used by Newsela. Other readability
metrics such as Dale-Chall formula [28], or the Gunning-Fog index [55] could be used, and future
work could examine the effect of choosing one readability metric over the other. Another viable
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option is the Lexile score [146], however, because its implementation is not publicly released, we
cannot use it during training and we report it only for evaluation (done manually on the Lexile
Hub4).

Figure 3.3 shows the SScore algorithm. We compute the original paragraph’s FKGL (FStart),
used to compute a target FKGL (tgt). The score is a linear ramp measuring how close the achieved
FKGL (Fend) is to the target, clipped to [0, 1].

In the initial design, the target drop was a constant: 4 grade levels, independent of FStart.
However, analysis on the paired Newsela corpus revealed that the target FKGL should depend on
the initial FKGL. This makes sense intuitively: an already syntactically simple paragraph should
not require further simplification, while more complex paragraphs require more simplification.
Figure 3.4 shows the positive correlation between the original paragraph’s FKGL and the drop of
FKGL in the simplified text. We fit a piece-wise linear function to calculate the target FKGL drop
from the initial paragraph.

Lexical Simplicity: LScore

Lexical simplicity focuses on whether words in the input paragraph (W1) are more complex than
ones in the output paragraph (W2). We rely on the observation that word frequency and difficulty
are correlated [13], and use word frequency in a large corpus of text [16] to determine simplicity.

Because word frequency follows a Zipf power law, we use Speer et al. [147]’s log normalization,
adjusting the frequency on a [0, 8] range, with words at 0 being non-existent in the corpus, and 8 for
most common words. As an example, the word vigorous has a frequency of 3.54, while its more
common synonym strong obtains 5.23.

We compute the average Zipf frequency of the set of inserted words (Z(W2 −W1)), and the set
of deleted words (Z(W1 −W2)). The difference

∆Z(W1,W2) = Z(W2 −W1)− Z(W1 −W2) (3.1)

should be positive. Analysis of the paired Newsela corpus reveals that 91% of pairs have a positive
∆Z(W1,W2), with a median value of 0.4. We use this median as the target Zipf shift in the LScore,
and use a ramp shape similar to the SScore, clipped between 0 and 1 (denoted as [·]+):

LScore(W1,W2) =

[
1− |∆Z(W1,W2)− 0.4|

0.4

]+
(3.2)

Fluency
We use two sub-components for the fluency component: a pre-trained language-model, and a
discriminator trained dynamically with the generator.

4https://hub.lexile.com
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Language-Model Fluency

Language models assign a probability to a sequence of words. This probability is often used
to measure fluency of generated text [68, 136]. The KiS fluency score is based on a language
model in a way similar to Chapter 2. The language model is used to obtain a likelihood of the
original paragraph (LM(p)) and of the generated output LM(q). We use average log-likelihood,
for numerical stability. The language model fluency score is then:

LMScore(p, q) =
[
1− LM(p)− LM(q)

λ

]+
(3.3)

λ is a tunable hyper-parameter. If the LM(q) is lower than LM(p) by λ or more, LMScore(p, q) = 0.
If LM(q) is above or equal to LM(p), then LMScore(p, q) = 1, and otherwise, it is a linear
interpolation.

We set λ = 1.3 as it is the value for which the paired Newsela dataset achieves an average
LMScore of 0.9.

Discriminator Fluency

The LMScore is static and deterministic, which can be limiting, as the generator can learn during
training how to adapt and exploit flaws in the language-model (e.g., learning to alter capitalization).

Inspired from the Generative Adversarial Network (GAN) framework [50], we create a dynamic
discriminator, trained in conjunction with the generator, dynamically adapting the fluency score
during training.

Specifically, we use a RoBERTa model [93] as the basis for the discriminator, a classifier with
two labels: 1 for authentic paragraphs, and 0 for generator outputs.

As the generator produces outputs, they are assigned a label of 0 and added to a training buffer,
while the original paragraphs are assigned a label of 1 and added to the training buffer as well.

Once the training buffer reaches a size of 2,000 samples, the discriminator is trained, using 90%
of the training buffer. We train the discriminator for 5 epochs (details of training are in Section 3.5).
At the end of each epoch, we checkpoint the discriminator model. We compare the 5 checkpoints in
terms of F-1 performance on the remaining 10% of the training buffer, and keep the best checkpoint
as the new discriminator.

The discriminator’s probability that a paragraph (q) is authentic is the discriminator score:

DScore(q) = pdisc(Y = 1|X = q) (3.4)

As with GANs, there is an equilibrium between the generator attempting to maximize the
probability of generating real outputs (“fooling” the discriminator), and the discriminator succeeding
at distinguishing generated and authentic texts.

Salience
For the salience component, we use the coverage model introduced in Chapter 2 for the domain of
text summarization, and adapt it to the simplification domain.
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The coverage model is a Transformer-based model trained to look at generated text and answer
fill-in-the-blank questions about the original text. The score is based on model accuracy at filling in
the blanks: the more is filled in, the more relevant the generated content is, and the higher the score.

A key element of the coverage model is its masking procedure, which decides which words to
mask. In the summary loop, a limited number of extracted keywords (up to 15 words) are masked.
By contrast, for simplification, we mask all non-stop words, amounting to a masking rate of about
40%.

This change reflects a difference in expectation between summarization and simplification: in
summarization, only key components are expected to be recovered from a summary, whereas in
simplification most of the original paragraph should be recoverable. Coverage ranges in [0, 1], and
reference simplifications in the paired Newsela corpus obtain an average score of 0.76, confirming
that manual simplification can achieve high coverage.

Guardrails
We use guardrails as simple pattern-based scores to avoid common pathological generation problems
that we observed. Unlike the main components, guardrails are binary, giving a score of 1 (pass)
unless they trigger (score of 0). We use two guardrails: brevity and inaccuracy.

Brevity guardrail

The brevity guardrail ensures the length of generated paragraph (L2) falls in a range around the
original paragraph’s length (L1). We compute a compression ratio: C = L2/L1. If Cmin ≤ C ≤
Cmax, the guardrail passes, otherwise it triggers.

We set [Cmin, Cmax] = [0.6, 1.5], because these values ensure the guardrail is not triggered on
98% of the paired Newsela dataset; this can be adapted depending on the application.

Inaccuracy guardrail

Modern text generation models are known to hallucinate facts [63], which has led the community
to create models to detect and correct hallucinations [18, 179, 163].

We propose a light-weight inaccuracy detector as a guardrail. We use a Named Entity Recogni-
tion (NER) model [62] to extract entities present in the original paragraph (E1) and the model’s
output (E2). We trigger the guardrail if an entity present in E2 is not in E1.

Even though human writers can successfully introduce new entities without creating inaccuracies
(e.g., replacing the city La Paz with the country Bolivia), we find that text generators predominantly
introduce inaccuracies with novel entities. This simple heuristic can eventually be replaced once
inaccuracy detection technology matures.
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Figure 3.5: Training KiS models comparing SCST with k-SCST. We try 4, 6 and 8 as values for k.
Increasing k improves performance and stability.

3.4 KiS Training
Rennie et al. [133] introduced Self-Critical Sequence Training (SCST) as an effective algorithm for
reward-based training of text generators, successfully applying it to image captioning. The efficacy
of SCST was later confirmed on other text generation tasks such as question generation [176], and
summarization [20, 84]. In SCST, a probabilistic model is used to generate two distinct candidates:
CS , a candidate constructed by sampling the word distribution at each step, and Ĉ, by taking the
argmax of the word distribution at each step. Each candidate is scored, obtaining rewards of RS

and R̂, respectively, and the loss is:

L = (R̂−RS)
N∑
i=0

log p(wS
i |wS

1 ...w
S
i−1, P ) (3.5)

where p(wS
i |...) represents the probability of the i-th word conditioned on previously generated

sampled sequence according to the model, P is the input paragraph, and N the number of words in
the generated sequence. Intuitively, minimizing this loss increases the likelihood of the sampled
sequence if RS > R̂, and decreases it otherwise, both increasing the expected total reward.

One limitation in SCST occurs when the two sequences achieve comparable rewards (RS ' R̂):
the loss nears zero, and the model has little to learn, wasting a training sample. In our experiments
with SCST, this can occur with 30% of samples.

We propose an extension of SCST, which we call k-SCST. We generate k sampled candidates
(k > 2), compute the rewards of each candidate RS1, ..., RSk, as well as the mean reward achieved
by this sampled population: R̄S = (RS1 + ...+RSk)/k, which we use as the baseline, instead of R̂.
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The loss L becomes:

L =
k∑

j=1

(R̄S −RSj)
N∑
i=0

log p(wSj
i |w

Sj
1 ...w

Sj
i−1, P ) (3.6)

We use a GPT2-medium for the generator, initialized with the released pre-trained checkpoint.
Experimental details such as data and optimizer used are provided in Section 3.5.

In Figure 3.5, we show results of a direct comparison of SCST (k = 2) with k-SCST varying k
in {4, 6, 8}, while keeping other components of the training fixed. Because of the variance involved
in RL training, we recorded six independent training runs for each setting (for a total of 24 runs),
and plot the average reward across runs of a setting, as well as the standard error of the mean (SEM).

We observe that increasing k leads to higher average reward, and less variation in the reward. In
our setting, k-SCST boosts performance and stabilizes training. We use k = 8 in all final models,
as increasing k further is impractical due to GPU memory limitations.

We believe k-SCST’s advantage stems from two factors: first, obtaining a better estimate of the
distribution of rewards by sampling more outputs, second, by using the mean reward as the baseline,
saving on computation of a separate baseline generation. We believe k-SCST can also improve
learning in other text generation applications and plan to pursue this in future work.

3.5 Training Details
We detail the model architecture size, data, optimizer of the models we train in the paper. All models
were trained using Pytorch and HuggingFace’s Transformers library5. We use the Apex6 library to
enable half-precision training.

The KiS procedure was trained on a single GPU, either an Nvidia V-100 (16Gb memory) or a
Quadro RTX 8000 (48 Gb memory). We ran a total of around 200 experiments, with an average
run-time of one week.

Because the procedure is unsupervised, the model was trained using a large unreleased corpus
of news articles, containing 7 million news articles in English.

KiS Model is initialized with a GPT2-medium model. We used the Adam optimizer, with a
learning rate of 10−6, a batch-size of 1, using k-SCST with k = 8.

Finetune Baseline is initialized with a GPT2-medium model. We train using using standard
teacher forcing on the 40,000 samples in the paired Newsela dataset, reserving 2,000 samples for
validation. We use the Adam optimizer, and use the validation set to choose a learning rate of 10−5,
and a batch-size of 8, and run for 3 epochs before seeing a plateau in the validation loss.

Discriminator Model is initialized with a Roberta-base, and retrained every time the training
buffer reaches 2,000 samples. The discriminator is reset to the original Roberta-base each time the
training buffer is full. We use a standard cross-entropy loss, the ADAM optimizer with a learning
rate of 10−5 and a batch size of 8. Each time we retrain, we run for 5 epochs, and checkpoint one

5https://github.com/huggingface/transformers
6https://github.com/nvidia/apex
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Model SARI BLEU %FKGL %Lexile Comp. Cov.

Newsela - - 87 79 .918 .754
Finetune Baseline .470 .719 68 52 .903 .894
ACCESS Default .666 .649 86 63 .958 .805
ACCESS 90 .674 .644 93 64 .921 .789
Unsup NTS .677 .535 48 57 .753 .618
KiS Model .709 .526 100 72 .852 .640

Table 3.1: Automatic results on Newsela test-set. SARI and BLEU are reference-based metrics.
%FKGL and %Lexile are percentages of model outputs lowering the grade level. Comp. is the
average compression ratio (# words), and Cov. the output’s average coverage score.

model after each epoch. The checkpoint that achieves the highest performance on a validation set
becomes the new discriminator for the next round.

3.6 Experiments
We present results experimentally validating the KiS procedure for text simplification. We give
results based on automatic metrics, on a novel human comprehension task, and from an ablation
study.

Models Compared
We compare the KiS Model to three strong supervised models, and an unsupervised approach.

ACCESS from [98], is a state-of-the-art Transformer model trained on WikiLarge (300,000 pairs
of complex/simple sentences). This model uses default parameters (NBChar=0.95, LevSim=0.75).

ACCESS90 is identical to ACCESS, with different parameters (NBChar=0.90, LevSim=0.75),
reducing target compression from 95% to 90%, matching the average compression rate in Newsela.

Finetune Baseline is a GPT2-medium model finetuned on the paired Newsela dataset. Large
pre-trained models often perform competitively in low-resource environments, making this a strong
point of comparison.

Unsup NTS from [151] is an unsupervised approach based on successively encoding and
denoising text using a GRU architecture.

Training details for the KiS Model and Finetune Baseline are in Section 3.5.

Automatic Results
We put aside 500 samples from the paired Newsela dataset as a test set to compare models on
automatic metrics. We compare models on SARI and BLEU, report the percentage when readability
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measures see an improvement in readability: %FKGL, and %Lexile and compute the average
compression rate (Comp.), and coverage (Cov.). Results are summarized in Table 3.1.

The KiS model achieves the highest SARI score by a margin of 0.04, even though it is an
unsupervised approach.

Finetune Baseline achieves the highest BLEU and salience scores, but lowest SARI score. We
interpret this as showing the model takes the least risk: high salience, with little simplification.

We observe that all models are able to increase readability in terms of FKGL and Lexile
compared to original paragraphs. We note that for almost all models, the percentage is lower for the
Lexile measure than for FKGL, showing that an improvement in Lexile score is more difficult to
achieve than FKGL. The KiS model achieves an increase in Lexile readability 72% of the time, the
closest figure to 79% of the Newsela human-written reference.

We note that the perfect performance of KiS on %FKGL could be explained by the fact that
FKGL is a part of a component being optimized (SScore), however Lexile was not.

In terms of compression, the KiS model compresses the second most, most likely hurting its
coverage. Adjusting the Brevity guardrail could encourage the model to compress less. ACCESS90
has the compression rate closest to Newsela references, but this only leads to a modest improvement
in SARI when compared to ACCESS.

Overall, the Newsela references achieve the best percentage of Lexile readability improvement,
while outperforming the KiS model at coverage: there is still a gap between human-written
simplifications and model-generated ones.

Human Comprehension Study
We propose a human comprehension study to evaluate the usefulness of simplification results.
Simplified text should be easier to read than the original text, while retaining accuracy and under-
standing. We design a task to evaluate how well both manual and automated simplifications achieve
this objective. The main idea is to show readers a text and ask them to answer multiple-choice
questions, evaluating the texts based on time and retries needed to select the correct answer.

Study Design

Five different versions of each document were generated as stimuli: the original document, the
Newsela reference, and versions from the three best-performing methods from the last section:
KiS, Finetune Baseline, and ACCESS. We did not include Unsup NTS in our analysis, because
of its low performance on %FKGL and %Lexile metrics. Associated with each document are five
manually generated multiple-choice questions, each with one or more correct answers and one
to four distractors. The original and the Newsela texts were checked manually by experimenters
to ensure that all allow for questions to be answered correctly. Crowd-workers were shown four
documents in succession, in a between-participants design. Order of document and stimuli type
were randomized. Figure 3.6 shows two stimuli of a document (original and KiS) along with the
comprehension questions. The entire set of five stimuli can be found in Figure 3.7.

After several rounds of pilot testing, we arrived at the following design choices:
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ORIGINAL [Lexile Grade 11] Each summer, libraries in St. Louis,
Missouri, host many types of free camps — yoga, chess and even a
Harry Potter “Sorting Hat Camp.” In 2020, camp dreams seemed far-
fetched given the global coronavirus pandemic. That didn’t stop St.
Louis libraries, though.
Instead of canceling, they brought camp into kids’ homes. So children
who signed up for ukulele camp got a beginner’s guidebook,
instructional DVD and an actual ukulele in the mail. It was all free. In
addition, camp sessions still occurred. Advisers met with kids using
virtual formats.
Joe Monahan, manager of youth services for the St. Louis library
system, says that of the 70 camps originally scheduled, 54 were held
virtually.
Paula Langsam, a youth services manager at the soon-to-reopen
Martin Luther King Junior Memorial Library in Washington, D.C., says,
“In a way, our work has changed a lot. We didn’t used to do videos a
lot.”

KIS MODEL [Lexile Grade 9] In the summer months, St. Louis
has many free classes for kids, including yoga, chess and a Harry
Potter “Sorting Hat Camp.” In 2020, camp dreams again seemed
far-fetched given the crisis. That didn’t stop St. Louis libraries,
though.
They brought camp in. So kids who signed up for ukulele camp got
a beginner’s guidebook, a lesson DVD and a real ukulele in the
mailbox. It was all free. In addition, camp sessions continued.
Advisers tried out a virtual format.

Joe Monahan, the manager of youth services for the St. Louis
library system, says that of the 70 camps originally scheduled, 54
were held mostly.

Paula Langsam, a youth services manager at the Martin Luther
King Junior library, says, “In a way, our work changed a lot. We
didn’t do videos a lot.”

Who manages the St Louis library kids programs?
Joe Monahan, Paula Langsam, St. Louis Camp Leaders

Were any camps in St. Louis cancelled?
Yes, No

How many camps were scheduled, how many were run?
54 and 70, 70 and 54, 70 and 0, 54 and 0

How did the Ukulele camp meet?
In the park, Virtually, Did not meet

What camps did the libraries host?
Yoga, Chess, Pottery, Ukulele

Figure 3.6: Example Task (from a Washington Post article [72]) for the Comprehension Study.
Shown are two of five stimuli: original document (left), and KiS model output (right). Participants
read a text and answered comprehension questions (bottom). Average completion time was 160
seconds (original) and 136 seconds (KiS model output).

Document theme. We chose recent news articles involving complex themes (e.g., trajectory of
iceberg) as the source of documents. For news articles, recency seems to engage participants, and
technical terms increase the impact of simplification.

Section length. We chose document length of 3-4 paragraphs (or 200 words), and five compre-
hension questions. Document length should not be too W (makes some questions trivial), or too
long (adds a retrieval component to the task).

Selection of questions. Questions were generated via a GPT2 question generation model
finetuned on the NewsQA dataset [158]. We select questions answerable by both the original and
Newsela references, attempting to have both factoid (answer is entity) and reasoning questions.

Re-submission until correct. When submitting answers, participants received feedback on
which were incorrect, and were required to re-submit until all answers were correct. This aligns the
objective of the participant (i.e., finishing the task rapidly), with the task’s objective (i.e., measuring
participant’s efficiency at understanding). This also gives a way to discourage participants from
“brute-forcing” the task, re-submitting many combinations until one works.

We note that some components of the study such as the choice of document themes and the
selection of comprehension questions are elements that create variability in the results. We release
the models used in the study, as well all generated texts that were evaluated to enable follow-up
research and to aid reproducibility.
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ORIGINAL [Lexile Grade 11] Each summer, libraries in St. Louis, Missouri, host many types of free camps — yoga, chess and even a
Harry Potter “Sorting Hat Camp.” In 2020, camp dreams seemed far-fetched given the global coronavirus pandemic. That didn’t stop
St. Louis libraries, though.
Instead of canceling, they brought camp into kids’ homes. So children who signed up for ukulele camp got a beginner’s guidebook,
instructional DVD and an actual ukulele in the mail. It was all free. In addition, camp sessions still occurred. Advisers met with kids
using virtual formats.
Joe Monahan, manager of youth services for the St. Louis library system, says that of the 70 camps originally scheduled, 54 were held
virtually.
Paula Langsam, a youth services manager at the soon-to-reopen Martin Luther King Junior Memorial Library in Washington, D.C.,
says, “In a way, our work has changed a lot. We didn’t used to do videos a lot.”

Who manages the St Louis library kids programs?
Joe Monahan, Paula Langsam, St. Louis Camp Leaders

Were any camps in St. Louis cancelled?
Yes, No

How many camps were scheduled, how many were run?
54 and 70, 70 and 54, 70 and 0, 54 and 0

How did the Ukulele camp meet?
In the park, Virtually, Did not meet

What camps did the libraries host?
Yoga, Chess, Pottery, Ukulele

KIS MODEL [Lexile Grade 9] In the summer months, St. Louis has many free classes for kids, including yoga, chess and a Harry
Potter “Sorting Hat Camp.” In 2020, camp dreams again seemed far-fetched given the crisis. That didn’t stop St. Louis libraries, though.
They brought camp in. So kids who signed up for ukulele camp got a beginner’s guidebook, a lesson DVD and a real ukulele in the
mailbox. It was all free. In addition, camp sessions continued. Advisers tried out a virtual format.
Joe Monahan, the manager of youth services for the St. Louis library system, says that of the 70 camps originally scheduled, 54 were
held mostly.
Paula Langsam, a youth services manager at the Martin Luther King Junior library, says, “In a way, our work changed a lot. We didn’t
do videos a lot.”

NEWSELA [Lexile Grade 7] In St. Louis, Missouri, libraries hold many types of free camps in the summer. They have yoga, chess and
even a Harry Potter camp. In 2020, camp ideas seemed unlikely due to the spread of COVID-19. That did not stop St. Louis libraries,
though. They did not cancel their programs. They brought camp into kids' homes.
Children who signed up for ukulele camp got a beginner's book, instructional video and a ukulele in the mail. It was all free. In addition,
camp sessions still went on. Camp leaders met with kids over video calls.
Joe Monahan runs the kids programs for the St. Louis libraries. He said 70 camps were scheduled at first. Some were dropped but 54
were still held online.
Paula Langsam works at the Martin Luther King Junior Memorial Library in Washington, D.C. It reopened on September 24. She said,
"Our work has changed a lot. We didn't used to do videos a lot."

FINETUNE BASELINE [Lexile Grade 9] Each summer, St. Louis libraries host many types of free camps — yoga, chess and even a
Harry Potter "Sorting Hat Camp." In 2020, camp dreams seemed far-fetched given the global cough . However , the future looked
bright for libraries in St. Louis.
Instead of canceling, they brought camp into kids' homes. This is called ukulele camp. Kids signed up for it in the mail. They got a
beginner's guidebook, video and an actual ukulele to play. It was all free. Advisers met with kids using virtual formats.
Joe Monahan, manager of youth services for the St. Louis library system, says that 70 camps were originally planned. Of those, 54
were held mostly.
Paula Langsam is a youth services manager who works at the Martin Luther King Junior Memorial Library in Washington, D.C. She
says, "In a way, our work has changed a lot. We didn't used to do videos a lot."

ACCESS [Lexile Grade 11] Each summer, libraries in St. Louis, Missouri, has many different types of free camps that are yoga, chess
and even a Harry Potter gang Sorting Hat Camp. In 2020, camp dreams seemed far-fetched that there was the global coronavirus
pandemic. That did not stop St. Louis libraries, though.
Instead of being canceled, they brought camp into children's homes. So children who signed up for ukulele camp got a guidebook.
They also had an actual ukulelele in the mail. It was all free. In addition, camp meetings still happened. Advisers met with new children
using virtual formats.
Joe Monahan, also known as Joe Monahan, has youth services for the St. Louis library system says that of the 70 camps first started,
54 were held.
Paula Langsam, also known as Paula Langsam, is a youth services manager at the soon-to-reopen Martin Luther King Junior Library in
Washington, D. We did not use to do many videos a lot.

Figure 3.7: Complement to Figure 3.6. Example Task for the Comprehension Study. Participants
were assigned to one of five settings: original, Newsela, KiS, Finetune Baseline, and ACCESS.
Participants were instructed to answer the five comprehension questions.
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Study Results

Table 3.2 details the timing and number of participants for each combination of document and
stimuli.

Simplification Model
Document Id Original Newsela Sup. Base. ACCESS KiS
Marvel Show 152 (12) 209 (11) 140 (11) 209 (14) 126 (13)
Covid Libraries 167 (14) 180 (12) 182 (10) 190 (13) 171 (12)
Sustainable Food 163 (13) 144 (10) 181 (13) 242 (13) 154 (12)
Iceberg Collision 208 (14) 116 (11) 139 (12) 104 (12) 119 (12)
Version Aggregate 174 (53) 163 (44) 161 (46) 188 (52) 143 (49)

Table 3.2: Average time taken and number of participants in each of the document/stimuli combina-
tions. Also shown are aggregates (mean time taken and total number of participants).

We ran the study on Mechanical Turk, accepting crowd-workers with 1700+ completed tasks,
and an acceptance rate of 97%+. The study was active for two weeks in December 2020, and
remunerated participants completing all four sections at a rate of $10/hour. When removing “brute-
forced” submissions (10+ re-submissions), we are left with 244 submissions, used for result analysis
reported in Table 3.3. A more detailed results table is included in Table 3.6.

Figure 3.8 shows the instructions given to crowd-worker participants for the manual evaluation.

• The entire HIT should take no more than 15 minutes:
(1) You will answer a pre-questionnaire.
(2) Read 4 short news stories and answer comprehension questions about each.
• If you believe the answer is not in the document, you can select the option “Answer not in
document”.
• There is no time limit for each individual document or question.
• You can leave at any point but will not complete the HIT.
• You can complete this task at most once.
• If you have a question/problem, contact us at email.

Figure 3.8: Instructions given to participants of the comprehension evaluation. Participants were
recruited on Amazon Mechanical Turk (MTurk), on which jobs are named “HIT”.

We measure two outcomes: question completion time (in seconds), and number of submissions
to correctness. We performed a Kruskal-Wallis test [79] with a Dunn post-hoc test [36] for statistical
significance between pairs of conditions.

In line with study objectives, simplified texts help participants complete the task faster than
reading original texts, with three of the four simplified versions leading to improvements in
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Model Time (sec) # Subs. Comp. CASpeed

[ Original 174.0 4.23 1.0 1.00
\ Newsela 163.3 5.10 1.08 1.15
∀ ACCESS 188.5 6.69 0.96 0.88
∃ Finetune Baseline 161.0 ∀ 4.70 0.97 1.04
∇ KiS Model 142.6 [ \ ∀ 4.10 ∀ 0.87 1.06

Table 3.3: Results of the Human Comprehension Study. We measure average completion time
(Time), number of submissions (#Subs.), compression ratio (Comp.) and a compression-accounted
speed-up (CASpeed). Each text version is assigned a symbol used to indicate statistical significance
(p < 0.05).

completion times. Participants were fastest with KiS simplifications (18% faster). The KiS
model led to a statistically significant speed-up compared to the originals, Newsela references, and
ACCESS simplifications. ACCESS simplifications surprisingly led to a non-significant slow-down,
which we attribute to a potential loss in fluency that might have confused participants.

One important factor we consider is that shorter passages (i.e., smaller compression) might
lead to a speed-up regardless of simplicity. We confirm this by finding a small positive correlation
between passage length and completion time of 0.09. We compute a compression-adjusted speed-up
(CASpeed) ratio by: (1) computing the passage length of each simplified version, (2) linearly
extrapolating the expected completion time for this passage length for original paragraphs, and
(3) computing the ratio of the extrapolation to the observed completion time. If CASpeed > 1,
participants were faster than expected for the passage length. Newsela reference paragraphs achieve
the best CASpeed, followed by the KiS model. This suggests that good simplification can involve
making texts longer.

Ablation Study
We train three ablated models, each missing a reward component to gain understanding in the value
of each component of the KiS procedure.

Figure 3.1 gives a qualitative perspective on each ablation. Without fluency, the generator learns
to generate incomplete sentences, without salience, it omits important information, and without
simplicity, it can sometimes “complexify”.

We computed complete automatic results for the ablated models, and find that each ablation
leads to a decrease on an evaluation metric, confirming that all three components are necessary to
generate high-quality simplifications (details in Table 3.4).

Table 3.4 details the metric results of the three ablated models, an extension to Table 3.1. An
example output of each ablated model, illustrating the limitation when a score component is missing,
is given in Figure 3.1.
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Model SARI BLEU %FKGL %Lexile Comp. Cov.
KiS Full 0.709 0.526 100 72 0.85 0.636
KiS No Fluency 0.718 0.611 99 95 1.02 0.901
KiS No Salience 0.695 0.591 100 65 1.01 0.701
KiS No Simplicity 0.672 0.617 51 23 0.92 0.809

Table 3.4: Automatic results of the three ablation models. SARI and BLEU are reference-based
metrics. % FKGL and % Lexile are the percentage of simplified paragraphs with a lower FKGL and
Lexile score than the original paragraph. Comp. is the average compression ratio (# of words), and
Cov. is the average coverage score of the simplifications.

One surprising element is that the model trained without fluency achieves higher scores on
almost all metrics, compared to the full model. This surprising fact is due to the fact that without
fluency, the model does not learn to generate full sentences (see the example in Figure 3.1). Instead,
the model learns to concatenate high-scoring phrases together, which can boost automatic metrics
artificially. In fact, the strong performance of a model generating incomplete sentences reveals a
limitation of current automatic metrics, such as BLEU and SARI.

3.7 Limitations and Future Work
Improved Accuracy Scoring. The current guardrail for inaccuracy is rudimentary; trained models
still generate non-factual simplifications. Recent work in fact-checking for the summarization
domain [80, 90] could be adapted to the simplification domain to improve this.

Inclusion of Supervised Signal. In this work, we establish that text simplification can be
approached in an unsupervised manner. In future work, Keep it Simple could be used as a pre-
training strategy, or used jointly with supervised training.

Reproducibility of Human Evaluation. Even though we release the models, stimuli and
comprehension questions used in the human evaluation, some elements of the procedure introduce
randomness. Participating crowd-workers differ in literacy level which may have an effect on their
performance at the task [2].

New Settings, Domains and Languages. We limited our experiments to the simplification
of English news articles following prior work, but plan to pursue other languages in the future.
Similarly, because Keep it Simple does not require labeled data, it can be applied to new settings
(e.g., rewriting to inverse the effects of simplification), or to new domains (e.g., legal texts).

3.8 Conclusion
We have shown that text simplification can be approached in an unsupervised manner via KiS.
By optimizing a reward comprised of simplicity, fluency and salience components, KiS is able to
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outperform strong supervised models on automatic metrics (+0.04 in SARI). We propose a human
comprehension task to evaluate the usefulness of simplification and show that simplifications tend
to lead to a measurable speed-up in task completion, with KiS texts producing the best speed-up
of 18% on average. These are first steps for unsupervised text simplification, and we suggest that
future work should focus on adapting the methodology to new domains (i.e., legal), non-English
languages, and refining optimized rewards to take factuality into account.
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Chapter 4

SummaC: Summary Consistency
Benchmark
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One possible site, known as
Arcadia Planitia, is covered in
strange sinuous features. 

Arcadia Planitia is in Mars'
northern lowlands.

The shapes could be signs that the
area is actually made of glaciers,
which are large masses of slow-
moving ice.

Scientists are studying Mars to learn
about the Red Planet and find
landing sites for future missions. 

D1

D3

D4

There are strange
shape patterns on
Arcadia Planitia. 

Document Summary

0.98

0.99

0.02

Sentence-Level NLI

Document-Level NLI
P(Y = entail | document, summary) = 0.91

This makes Arcadia
Planitia ideal for
future missions.

The shapes could
indicate the area might
be made of glaciers.

D2

S2

S1

S3

P(Y = entail | Di, Sj)

Figure 4.1: Example document with an inconsistent summary. When running each sentence pair
(Di, Sj) through an NLI model, S3 is not entailed by any document sentence. However, when
running the entire (document, summary) at once, the NLI model incorrectly predicts the document
highly entails the entire summary.

4.1 Introduction
Recent progress in text summarization has been remarkable, with ROUGE record-setting mod-
els published every few months, and human evaluations indicating that automatically generated
summaries are matching human-written summaries in terms of fluency and informativeness [175].

A major limitation of current summarization models is their inability to remain factually
consistent with the respective input document. Summary inconsistencies are diverse, from inversions
(i.e. negation), the wrong use of an entity (i.e. subject, object swapping), or hallucinations
introducing entities not in the original document. Recent studies have shown that in some scenarios,
even state-of-the-art pre-trained language models can generate inconsistent summaries in more
than 70% of all cases [114]. This has led to accelerated research around summary inconsistency
detection.

A closely related task to inconsistency detection is textual entailment, also referred to as Natural
Language Inference (NLI) in which a hypothesis sentence needs to be classified as either entailed
by, neutral or contradicting a premise sentence. Due to the crowd-sourcing of large NLI datasets
such as SNLI [11] and MNLI [167], modern architectures have been shown to perform close to
human performance at the task.
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The similarity of NLI to inconsistency detection, as well as the availability of high-performing
NLI models led to early attempts at using NLI to detect consistency errors in summaries. These
early attempts were unsuccessful, finding that re-ranking summaries according to an NLI model
can lead to an increase in consistency errors [43], or that out-of-the-box NLI models obtain 52%
accuracy at the binary classification task of inconsistency detection, only slightly above random
guessing [80].

In this work, we revisit this approach, showing that NLI models can successfully be used for
inconsistency detection, as long as they are used at the appropriate granularity. Figure 4.1 shows
how crucial using the correct granularity as input to NLI models is. An inconsistency checker
should flag the last sentence in the summary (shown right) as problematic. When treating the entire
document as the premise and the summary as the hypothesis, a competitive NLI model predicts
with probability of 0.91 that the summary is entailed by the document. However, when splitting the
documents up into premise-hypothesis pairs sentences as (visualized as edges in Figure 4.1) the
NLI model correctly determines that S3 is not supported by any document sentence. This illustrates
that working with sentence pairs is a crucial part for making NLI models work for inconsistency
detection.

Our contributions are two-fold. First, we introduce a new approach for inconsistency detection
based on the aggregation of sentence-level entailment scores for each pair of input document
and summary sentences. We present two model variants that differ in the way they aggregate
sentence-level scores into a single score. SCZeroShot performs a zero-shot aggregation by combining
sentence-level scores using max and mean operators. SCConv is a trained model consisting of a
single learned convolution layer compiling the distribution of entailment scores of all document
sentences into a single score.

Second, to evaluate our approach, we introduce the SUMMAC Benchmark by standardizing
existing datasets. Because the benchmark contains the six largest summary consistency datasets, it
is more comprehensive and includes a broader range of inconsistency errors than prior work.

The SUMMAC models outperform existing inconsistency detection models on the benchmark,
with the SCConv obtaining an overall balanced accuracy of 74.5%, 5% above prior work. We publicly
release the models and dataset1.

4.2 Related Work
We briefly survey existing methods and datasets for fact checking, inconsistency detection, and
inconsistency correction.

Fact Checking and Verification
Fact checking is a related task in which a model receives an input claim along with a corpus of
ground truth information. The model must then retrieve relevant evidence and decide whether
the claim is supported, refuted or if there is not enough information in the corpus [157]. A key

1Code will be released when the work is published.
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difference from our task lies in the distinction between consistency and accuracy. If a summary
adds novel and accurate information not present in the original document (e.g., adding background
information), the summary is accurate but inconsistent. In the summary inconsistency detection
domain, the focus is on detecting any inconsistency, regardless of its accuracy, as prior work has
shown that current automatic summarizers are predominantly inaccurate when inconsistent [100].

Datasets for Inconsistency Detection
Several datasets have been annotated to evaluate model performance in inconsistency detection,
typically comprising up to two thousand annotated summaries. Datasets are most commonly crowd-
annotated with three judgements each, despite some work showing that as many as eight annotators
are required to achieve high inter-annotator agreement [43].

Reading the entire original document being summarized is time-consuming, and to amortize
this cost, consistency datasets often contain multiple summaries, generated by different models, for
the same original document.

Some datasets consist of an overall consistency label for a summary (e.g., FactCC [80]), while
others propose a finer-grained typology with up to 8 types of consistency errors [63].

We include the six largest summary consistency datasets in the SUMMAC Benchmark, and
describe them more in detail in Section 4.4.

Methods for Inconsistency Detection
Due to data limitations, most inconsistency detection methods adapt NLP pipelines from other tasks
including QAG models, synthetic classifiers, and parsing-based methods.

QAG methods follow three steps: (1) question generation (QG), (2) question answering (QA)
with the document and the summary, (3) matching document and summary answers. A summary is
considered consistent if few or no questions have differing answer with the document. A key design
choice for these methods lies in the source for question generation. Durmus, He, and Diab [37]
generate questions using the summary as a source, making their FEQA method precision-oriented.
Scialom et al. [138] generate questions with the document as a source, creating a recall-focused
measure. Scialom et al. [139] unite both in QuestEval, by generating two sets of questions, sourced
from the summary and document respectively. We include FEQA and QuestEval in our benchmark
results.

Synthetic classifiers rely on large, synthetic datasets of summaries with inconsistencies, and
use those to train a classifier with the expectation that the model generalizes to non-synthetic
summaries. To generate a synthetic dataset, Kryscinski et al. [80] propose a set of semantically
invariant (e.g., paraphrasing) and variant (e.g., sentence negation) text transformations that they
apply to a large summarization dataset. FactCC-CLS, the classifier obtained when training on the
synthetic dataset, is included in our benchmark results for comparison.

Parsing-based methods generate relations through parsing and compute the fraction of summary
relations that are compatible with document relations as a precision measure of summary factuality.
[51] parse extract (subject, relation, object) tuples most commonly using OpenIE
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[40]. In the recent DAE model, Goyal and Durrett [52] propose to use arc labels from a dependency
parser instead of relation triplet. We include the DAE model in our benchmark results.

Methods for Consistency Correction
Complementary to inconsistency detection, some work focused on the task of mitigating inconsis-
tency errors during summarization. Approaches fall in two categories: Reinforcement Learning
(RL) methods to improve models and stand-alone re-writing methods.

RL-methods often rely on an out-of-the-box inconsistency detection model and use reinforce-
ment learning to optimize a reward with a consistency component. Arumae and Liu [4] optimize a
QA-based consistency reward, and Nan et al. [105] streamline a QAG reward by combining the
QG and QA model, making it more efficient for RL training. Pasunuru and Bansal [118] leverage
an NLI-based component as part of an overall ROUGE-based reward, and Zhang et al. [179] use a
parsing-based measure in the domain of medical report summarization.

Re-writing methods typically operate as a modular component that is applied after an existing
summarization model. Cao et al. [18] use a synthetic dataset of rule-corrupted summaries to train
a post-corrector model, but find that this model does not transfer well to real summarizer errors.
Dong et al. [32] propose to use a QAG model to find erroneous spans, which are then corrected
using a post-processing model.

Since all methods discussed above for consistency correction rely on a model to detect inconsis-
tencies, they will naturally benefit from more accurate inconsistency detectors.

4.3 SUMMAC Models
We now introduce the SUMMAC Models for summarization inconsistency detection. We first show
how we apply an NLI model out-of-the-box to generate an NLI Pair Matrix for a (document,
summary) pair. We then describe two models that process the Pair Matrix and produce a single
consistency score for a given summary. We describe the SUMMAC evaluation benchmark, a set of
inconsistency detection datasets in Section 4.4. In Section 4.5, we measure the performance of the
SUMMAC models on this benchmark and investigate components of the models, including which
NLI model achieves highest performance, which NLI categories should be used, and what textual
granularity is most effective.

Generating the NLI Pair Matrix
NLI datasets are predominantly represented at the sentence level. In our pilot experiments, we
found that this causes the resulting NLI models to fail in assessing consistency for documents with
50 sentences and more.

This motivates the following approach. We generate a NLI Pair Matrix by splitting a (document,
summary) pair into sentence blocks. The document is split into M blocks, each considered a
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Dataset Size %+ IAA Src #Sum #L
Valid. Test

CoGenSumm 1281 400 49.8 0.65 C 3 0
XSumFaith 1250 1250 10.2 0.80 X 5 2
Polytope 634 634 6.6 - C 10 8
FactCC 931 503 85.0 - C 10 0
SummEval 850 850 90.6 0.7 C 23 4
FRANK 671 1575 33.2 0.53 C+X 9 7

Table 4.1: Statistics of the six datasets in the SUMMAC Benchmark. For each dataset, we report the
validation and test set sizes, the percentage of summaries with positive (consistent) labels (%+),
the inter-annotator agreement (when available, IAA), the source of the documents (Source: C
for CNN/DM, X for XSum), the number of summarizers evaluated (#Sum), and the number of
sublabels annotated (#L).

premise labeled from D1, ..., DM , and the summary is split into N blocks, each considered a
hypothesis labeled from S1, ..., SN .

EachDi, Sj combination is run through the NLI model, which produces a probability distribution
over the three NLI categories (Eij, Cij, Nij) for entailment, contradiction and neutral, respectively.
If not specified otherwise, the pair matrix is an M ×N matrix consisting of the entailment scores
Eij . In Section 4.5, we examine the effect of granularity in by splitting texts at the paragraph level
or binning two sentences at a time. In Section 4.5, we explore the use of the contradiction and
neutral categories in our experiments .

The example in Figure 4.1 has M = 4 document sentences, and N = 3 summary sentences, and
the corresponding NLI Pair Matrix is the following:

Xpair =


0.02 0.02 0.04
0.98 0.00 0.00
0.43 0.99 0.00
0.00 0.00 0.01


The pair matrix can be interpreted as the weights of a bipartite graph, which corresponds to the
illustration in Figure 4.1, with the opacity of each edge (i, j) representing the value Eij .

The two SUMMAC models take as input the same NLI Pair Matrix, but differ in the aggregation
method to transform the pair matrix into a score. Figure 4.2 presents an overview of SCZeroShot and
SCConv.

SCZeroShot: Zero-Shot
In the SCZeroShot model, the first step consists of reducing the matrix to a one-dimensional vector by
taking the maximum (max) value of each column. At a high-level, for each summary sentence, this
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Figure 4.2: Diagram of the SCZeroShot (top) and SCConv (bottom) models. Both models utilize the
same NLI Pair Matrix (middle) but differ in its processing to obtain a score. The SCZeroShot is
Zero-Shot, and does not have trained parameters. SCConv has a convolutional layer trained on a
binned version of the NLI Pair Matrix.

step consists of retaining the score for the document sentence that provides the strongest support for
each summary sentence. For the example in Figure 4.1:

max(Xpair, axis=‘col’) =
[
0.98 0.99 0.04

]
The second step consists of taking the mean of the produced vector, reducing the vector to a

scalar which is used as the final model score. At a high level, this step aggregates sentence-level
information into a single score for the entire summary. In the example of Figure 4.1, the score
produced by SCZeroShot would be 0.67, however when removing the third sentence from the summary,
the score would increase to 0.985. We experiment with replacing the max and mean operators with
other operators.

Table 4.2 measures the effect of the choice of the two operators in the SCZeroShot model. We
explore three options (min, mean and max) for each operator. We find that the choice of max for
Operator 1 and mean for Operator 2 achieves the highest performance and use these choices in our
model.
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Operator 2
Op. 1 Min Mean Max
Min 53.1 55.7 57.4

Mean 60.5 62.8 62.0
Max 68.8 72.1 69.1

Table 4.2: Effect of the choice of operator on the performance of the SCZeroShot model on the
SUMMAC Benchmark. Operator 1 reduces the row dimension of the NLI Pair Matrix, and
Operator 2 reduces the column dimension.

SCConv: Convolution
One limitation of SCZeroShot is that it is highly sensitive to extrema, which can be noisy due to the
presence of outliers and the imperfect nature of NLI models. In SCConv, we reduce the reliance
on extrema values by instead taking into account the entire distribution of entailment scores for
each summary sentence. For each summary sentence, a learned convolutional layer is in charge of
converting the entire distribution into a single score.

The first step of the SCConv algorithm is to turn each column of the NLI Pair Matrix into a
fixed-size histogram that represents the distribution of scores for that given summary sentence.

We bin the NLI scores into H evenly spaced bins (e.g., if H = 5, the bins are [0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8), [0.8, 1)). Thus the first summary sentence of the example in Figure 4.1 would
have the following histogram: [2, 0, 1, 0, 1], because there are two values between [0.0, 0.2] in the
first column, one in [0.4, 0.6] and one in [0.8, 1.0].

By producing one histogram for each summary sentence, the binning process in the example of
Figure 4.1 would produce:

bin(Xpair) =


2 3 4
0 0 0
1 0 0
0 0 0
1 1 0


The binned matrix is then passed through a 1-D convolution layer with a kernel size of H . The

convolution layer scans the summary histograms one at a time, and compiles each into a scalar
value for each summary. Finally, the scores of each summary sentence are averaged to obtain the
final summary-level score.

In order to learn the weights of the convolution layer, we train the SCConv model end-to-end
with the synthetic training data in FactCC [80]. The original training dataset contains one million
(document, summary) pairs evenly distributed with consistent and inconsistent summaries.
Because we are only training a small set of H parameters (we use H = 50), we find that using a
10,000 sub-sample is sufficient. We train the model using a cross-entropy loss, the Adam optimizer,
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a batch size of 32 and a learning rate of 10−2. We perform hyper-parameter tuning on a validation
set from the FactCC dataset.

The number of bins used in the binning process, which corresponds to the number of parameters
in the convolution layer, is also a hyper-parameter we tune on the validation set. We find that
performance increases until 50 bins (i.e., a bin width of 0.02) and then plateaus. We use 50 bins in
all our experiments.

4.4 SUMMAC Benchmark
To rigorously evaluate the SUMMAC models on a diverse set of summaries with consistency
judgements, we constructed a new large benchmark dataset, the SUMMAC Benchmark. It comprises
the six largest available datasets for summary inconsistency detection, which we standardized to the
same classification task.

Benchmark Standardization
We standardize the task of summary inconsistency detection to a binary classification task. Each
dataset contains (document, summary, label) samples, where the label can either be
consistent or inconsistent.

Each dataset is divided into a validation and test split, with the validation being available for
parameter tuning. We used existing validation/test splits created by dataset authors when available.
We did not find a split for XSumFaith, Polytope, and SummEval, and created one by putting
even-indexed samples in a validation split, and odd-indexed samples in the test split. This method
of splitting maintains similar class imbalance and summarizer identity with the entire dataset.

We computed inter-annotator agreement on the dataset as an estimate for dataset quality, skipping
datasets for which summaries received a single annotation (Polytope and FactCC). Table 4.1
summarizes dataset statistics and properties.

Benchmark Datasets
We introduce each dataset in the benchmark chronologically, and describe the standardizing proce-
dure.

CoGenSumm (Correctness of Generated Summaries, CGS) [43] is the first introduced dataset
for summary inconsistency detection, based on models trained on the CNN/DM dataset [104]. The
authors proposed that consistency detection should be approached as a ranking problem: given a
consistent and inconsistent summary for a common document, a ranking model should score the
consistent summary higher. Although innovative, other datasets in the benchmark do not always
have positive and negative samples for a given document. We convert the dataset to the classification
format by including all inconsistent and consistent summaries as individual samples.

XSumFaith (eXtreme Summarization Faithfulness, XSF) [100] is a dataset with models trained
on the XSum dataset [106], which consists of more abstractive summaries than CoGenSumm. The
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authors find that standard generators remain consistent for only 20-30% of generated summaries. The
authors differentiate between extrinsic and intrinsic hallucinations (which we call inconsistencies in
this work). Extrinsic hallucinations, which involve words or concepts not in the original document
can nonetheless be accurate or inaccurate. In order for a summarizer to generate an accurate
extrinsic hallucination, the summarizer must possess external world knowledge. Because the
authors found that the models are primarily inaccurate in terms of extrinsic hallucinations, we
standardize both extrinsic and intrinsic hallucinations into one inconsistent label.

Polytope [63] introduces a more extensive typology of summarization errors, based on the
Multi-dimensional Quality Metric [97]. Each summary is annotated with eight possible errors,
as well as a severity level for the error. We standardize this dataset by labeling a summary as
inconsistent if it was annotated with any of the five accuracy errors (and disregarded the three
fluency errors). Each summary in Polytope was labeled by a single annotator, and it is not possible
to measure inter-annotator agreement.

FactCC [80] contains validation and test splits that are entirely annotated by authors of the
paper, because attempts at crowd-sourced annotation yielded low inter-annotator agreement. Prior
work [48] shows that there can be divergence in annotations between experts and non-experts
in summarization, and because the authors of the paper are NLP researchers familiar with the
limitations of automatic summarizations, we expect that FactCC annotations differs in quality from
other datasets. FactCC also introduces a synthetic dataset by modifying consistent summaries with
semantically variant rules. We use a sub-portion of this synthetic dataset to train the SCConv model.

SummEval [42] contains summarizer outputs from seven extractive models and sixteen ab-
stractive models. Each summary was labeled using a 5-point Likert scale along four categories:
coherence, consistency, fluency, and relevance by 3 annotators. We label summaries as consistent if
all annotators gave a score of 5 in consistency, and inconsistent otherwise.

FRANK [114] contains annotations for summarizers trained on both CNN/DM and XSum, with
each summary annotated by three crowd-workers. The authors propose a new typology with seven
error types, organized into semantic frame errors, discourse errors and content verifiability errors.
The authors confirm that models trained on the more abstractive XSum dataset generate a larger
proportion of inconsistent summaries, compared to models trained on CNN/DM.

Benchmark Evaluation Metrics
With each dataset in the SUMMAC Benchmark converted into a binary classification task, we now
discuss the choice of appropriate evaluation metrics for the benchmark. Datasets in the benchmark
each proposed an evaluation method, falling in three main categories.

First, CoGenSumm proposes a re-ranking based measure, requiring pairs of consistent and
inconsistent summaries for any document evaluated; this information is not available in several
datasets in the benchmark.

Second, XSumHallu, SummEval and FRANK report on correlation of various metrics with
human annotations. Correlation has some advantages, such as not requiring a threshold and being
compatible with the Likert-scale annotations of SummEval, however it is an uncommon choice to
measure performance of a classifier due to the discrete and binary label.



CHAPTER 4. SUMMAC: SUMMARY CONSISTENCY BENCHMARK 62

Model Type Model Name CGS XSF Polytope FactCC SummEval FRANK Benchmark
Baseline NER-Overlap 53.0 63.3 52.0 55.0 56.8 60.9 56.8

MNLI-doc 57.6 57.5 61.0 61.3 66.6 63.6 61.3
Classifier FactCC-CLS 63.1 57.6 61.0 75.9 60.1 59.4 62.8
Parsing DAE 63.4 50.8 62.8 75.9 70.3 61.7 64.2
QAG FEQA 61.0 56.0 57.8 53.6 53.8 69.9 58.7

QuestEval 62.6 62.1 70.3 66.6 72.5 82.1 69.4
NLI SCZeroShot 70.4 58.4 62.0 83.8 78.7 79.0 72.1

SCConv 62.7 67.3 63.5 90.6 81.2 81.5 74.5

Table 4.3: Performance of Summary Inconsistency Detection models on the test set of the SUMMAC
Benchmark. Balanced accuracy is computed for each model on the six datasets in the benchmark,
and the average is computed as the overall performance on the benchmark.

Third, authors of FactCC measured model performance using binary F1 score, and balanced
accuracy, which corrects unweighed accuracy with the class imbalance ratio, so that majority class
voting obtains a score of 50%.

The datasets have widely varying class imbalances, ranging from 6% to 91% positive samples.
Therefore, we select balanced accuracy [14] as the primary evaluation metric for the SUMMAC
Benchmark. This choice is based on the fact that accuracy is a conceptually simple, interpretable
metric, and that adjusting the class imbalance out of the metric makes the score more uniform across
datasets.

The balanced accuracy metric requires models to output a binary label (i.e., not a scalar score),
which for most model requires the selection of a threshold in the score. The threshold is selected
using the validation set, allowing for a different threshold for each dataset in the benchmark.
Performance on the benchmark is the unweighted average of performance on the six datasets.

We choose Area Under the Curve of the Receiver Operating Chart (ROC-AUC) as a secondary
evaluation metric, a common metric to summarize a classifier’s performance at different threshold
levels [12].

4.5 Results
We compared the SUMMAC models against a wide array of baselines and state-of-the-art methods.

Baselines
We evaluated the following models on the SUMMAC Benchmark:

NER Overlap uses an the spaCy named entity recognition (NER) model [62] to detect when
an entity present in the summary is not present in the document. This model, adapted from
Chapter 3, considers only a subset of entity types as hallucinations (i.e., PERSON, LOCATION,
ORGANIZATION, etc.)
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MNLI-doc is a Roberta [94] model finetuned on the MNLI dataset [167]. The document is used
as the premise and the summary as a hypothesis, and we use the predicted probability of entailment
as a score, similar to prior work on using NLI models for inconsistency detection [80].

FactCC-CLS is a Roberta-base model finetuned on the synthetic training portion of the FactCC
dataset. Although trained solely on artificially created inconsistent summaries, prior work showed
the model to be competitive on the FactCC and FRANK datasets.

DAE [52] is a parsing-based model using the default model and hyper-parameters provided by
the authors of the paper2.

FEQA [37] is a QAG method, using the default model and hyper-parameters provided by the
authors of the paper3.

QuestEval [139] is a QAG method taking both precision and recall into account. We use the
default model and hyper-parameters provided by the authors of the paper4. The model has an option
to use an additional question weighter, however experiments revealed that the weighter lowered
overall performance on the validation portion of the SUMMAC Benchmark, and we use the model
without the weighter.

SUMMAC Benchmark Results
Balanced accuracy results are summarized in Table 4.3. We find that the SUMMAC models achieve
the two best performances in the benchmark. SCConv achieves the best benchmark performance at
74.5%, more than 5 points above QuestEval, the best method not involving NLI.

Looking at the models’ ability to generalize across datasets and varying scenarios of inconsis-
tency detection provides interesting insights. For example, the FactCC-CLS model achieves strong
performance on the FactCC dataset, but close to lowest performance on FRANK and XSumFaith.
In comparison, SUMMAC model performance is strong across the board.

The strong improvement from the SCZeroShot to SCConv also shines a light on the importance of
considering the entire distribution of document scores for each summary sentence, instead of taking
only the maximum score: the SCConv model learns to look at the distribution and makes more robust
decisions, leading to gains in performance.

Table 4.4 presents results with the ROC-AUC metric, the secondary metric of the SUMMAC
Benchmark, echoing the trends seen with the balanced accuracy metric.

Table 4.4 details results of models on the benchmark according to the ROC-AUC metric,
confirming that the SUMMAC models achieve the two best accuracy results on the benchmark.

Although SUMMAC models require processing all pairs of sentences through an NLI model,
we find that the models are computationally tractable when compared to QAG methods. On a
single GPU (Titan V100), SUMMAC can score 433 (document, summary) pairs per minute,
compared to 20-30 for FEQA and QuestEval, due to their requirement to run QG and QA modules.

2https://github.com/tagoyal/dae-factuality
3https://github.com/esdurmus/feqa
4https://github.com/ThomasScialom/QuestEval
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Model Type Model Name CGS XSF Polytope FactCC SummEval FRANK Benchmark
Baseline NER-Overlap 53.0 61.7 51.6 53.1 56.8 60.9 56.2

MNLI-doc 59.4 59.4 62.6 62.1 70.0 67.2 63.4
Classifier FactCC-CLS 65.0 59.2 63.5 79.6 61.4 62.7 65.2
Parsing DAE 67.8 41.3 64.1 82.7 77.4 64.3 66.3
QAG FEQA 60.8 53.4 54.6 50.7 52.2 74.8 57.7

QuestEval 64.4 66.4 72.2 71.5 79.0 87.9 73.6
NLI SCZeroShot 73.1 58.0 60.3 83.7 85.5 85.3 74.3

SCConv 66.9 65.6 62.6 93.0 86.1 88.7 77.2

Table 4.4: Performance of Summary Inconsistency Detection models on the test portion of the
SUMMAC Benchmark with the ROC-AUC metric. The metric is computed for each model on
the six datasets in the benchmark, and the average is computed as the overall performance on the
benchmark.

Benchmark (B Acc.)
Architecture NLI Dataset ZS Conv
Dec. Attn SNLI 56.9 56.4

SNLI 66.6 64.0
BERT Base MNLI 69.5 69.8

MNLI+VitaminC 67.9 71.2
SNLI 66.6 62.4

SNLI+MNLI+ANLI 69.9 71.7
BERT Large VitaminC 71.1 72.8

MNLI 70.9 73.0
MNLI+VitaminC 72.1 74.5

Table 4.5: Effect of NLI model choice on SUMMAC models performance on the benchmark. For
each NLI model, we include SCZeroShot and SCConv performance. BERT* corresponds to a BERT or
other pre-trained models of similar size.

Further Results
We now examine how different components and design choices affect SUMMAC model performance.

Choice of NLI Model

SUMMAC models rely on an NLI model at their core, which consists of choosing two main
components: a model architecture, and a dataset to train on. We investigate the effect of both of
these choices on the performance of SUMMAC models on the benchmark.

Regarding model architectures, we experiment with the decomposable attention model [117],
which is a pre-Transformer architecture model that was shown to achieve high performance on
SNLI, as well as Transformer base and Transformer Large architectures.
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With respect to datasets, we include models trained on standard NLI datasets such as SNLI [11]
and MNLI [167], as well as more recent datasets such as Adversarial NLI [108] and Vitamin C
[137].

Results are summarized in Table 4.5, and we emphasize three trends. First, the low performance
of the decomposable attention model used in experiments in prior work [43], confirms that less
recent NLI models did not transfer well to summary inconsistency detection.

Second, NLI models based on pre-trained Transformer architectures all achieve strong perfor-
mance on the benchmark, and average increase of 1.3 percentage points when going from a base to
a large architecture.

Third, the choice of NLI dataset has a strong influence on overall performance. SNLI leads to
lowest performance, which is expected as its textual domain is based on image captions, which are
dissimilar to the news domain. MNLI and VitamincC trained models both achieve close to the best
performance, and training on both jointly leads to the best model, which we designate as the default
NLI model for the SUMMAC models (i.e., the model included in Table 4.3).

The latter two trends point to the fact that improvements in the field of NLI lead to improvements
in the SUMMAC models, and we can expect that future progress in the NLI community will translate
to gains of performance when integrated into the SUMMAC model.

We did not train the NLI models, and instead relied on models available in HuggingFace’s
Model Hub [168]. We list the NLI models we used throughout the paper, which can be retrieved
on HuggingFace’s model hub5. BERT stands for any Pre-trained bi-directional Transformer of an
equivalent size:

• boychaboy/SNLI_roberta-base BERT Base+SNLI
• microsoft/deberta-base-mnli BERT Base+MNLI
• tals/albert-base-vitaminc-mnli BERT Base + MNLI + VitaminC
• boychaboy/SNLI_roberta-large BERT Large+SNLI
• tals/albert-xlarge-vitaminc Bert Large+VitaminC
• roberta-large-mnli Bert Large+MNLI
• tals/albert-xlarge-vitaminc-mnli BERT Large+MNLI+VitaminC

Choice of NLI Category

The NLI task is a three-way classification task, yet most prior work has limited usage of the model
to the use of the entailment probability for inconsistency detection [80, 43]. We run a systematic
experiment by training multiple SCConv models which have access to varying subsets of the NLI
labels, and measure the impact on overall performance. Results are summarized in Table 4.6.
Using solely the entailment category leads to strong performance for all models, however, explicitly
including the contradiction label as well leads to small boosts in performance for the ANLI and
MNLI models.

With future NLI models being potentially more nuanced and calibrated, it is possible that
inconsistency detectors models will be able to rely on scores from several categories.

5https://huggingface.co/models
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Benchmark (B. Acc.)
E N C VITC+MNLI ANLI MNLI
3 74.5 69.2 72.6

3 71.2 55.8 66.4
3 72.5 69.2 72.6

3 3 73.1 69.6 72.6
3 3 74.0 70.2 73.0

3 3 72.5 69.2 72.6
3 3 3 74.0 69.7 73.0

Table 4.6: Effect of NLI categories on the performance of the SCConv in the benchmark. Models
had access to different subsets of the three category predictions (entailment, neutral, contradiction).
Experiments were performed with 3 NLI models: Vitamic C + MNLI, ANLI and MNLI.

MNLI MNLI + VitC
Granularity ZS Conv. ZS Conv.
Sentence 70.3 73.2 72.1 74.5
Two Sents. 69.7 72.9 71.4 73.2
Paragraph 62.1 62.3 70.6 72.5

Table 4.7: Effect of the granularity on the performance of the SUMMAC models on the benchmark.
Experiments include three distinct granularities: sentence, two sentences, and paragraph splitting.

Choice of Granularity

So far, we’ve conducted experiments primarily with a sentence-level granularity, as it matches the
granularity of NLI datasets. One can imagine cases where sentence-level granularity might be
limiting. For example, in the case of a summary performing a sentence fusion operation, an NLI
might not be able to correctly predict entailment of the fused sentence, seeing only one document
sentence at a time.

To explore this facet further, we experiment with two new granularities: (1) paragraph-level
granularity, where both the document and summary are separated into paragraph blocks, (2) two-
sentence granularity, where both the document and summary are separated into blocks of contiguous
sentences of size two (i.e., block 1 contains sentence 1-2, block 2 contains sentence 3-4).

Table 4.7 details results of experiments varying the granularity. We find that for both an NLI
model trained on MNLI, as well as the model trained on MNLI and Vitamin C, the best performance
is achieved with sentence-level granularity.

Overall, sentence-level granularity outperforms coarser granularities, suggesting that sentence-
fusion problems are outweighed by the use of a finer granularity.
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4.6 Discussion And Future Work
Improvements on the Benchmark. The models we introduced in this chapter are just a first step
at harnessing NLI models to do inconsistency detection. Future work could explore a number
improvements: combining multiple NLI models predictions, or multiple granularities, for example
using multi-hop reasoning [182].

Interpretability of model output. If a model can pinpoint which portion of a summary is
inconsistent, some work has shown that corrector models can effectively re-write the problematic
portions and often remove the inconsistency [32]. Furthermore, fine-grained consistency scores can
be incorporated into visual analysis tools for summarization such as SummViz [160]. The SCZeroShot

model is directly interpretable, whereas the SCConv is slightly more opaque, due to the inability
to trace back a low score to a single sentence in the document being invalidated. Improving the
interpretability of the SCConv model is therefore of interest.

Beyond news summarization. The six datasets in the SUMMAC Benchmark contain summaries
from the news domain, one of the most common application of summarization technology. Recent
efforts to expand the application of summarization to new domains such as legal [75] or scholarly
text will hopefully lead to the study of inconsistency detection in these novel domains, and perhaps
even out of summarization on tasks such as text simplification, or code generation.

Towards Consistent Summarization. Inconsistency detection is but a first step in eliminating
inconsistencies from summarization. Future work can include more powerful inconsistency detectors
in the training of next generation summarizers to reduce the prevalence of inconsistencies in
generated text.

4.7 Conclusion
We introduce SCZeroShot and SCConv, two NLI-based models adapted to the task of summary in-
consistency detection based on the key insight that NLI models require sentence-level input to
work best. Both models achieve strong performance on the SUMMAC Benchmark, a new diverse
yet standardized collection of the six largest datasets for inconsistency detection. SCConv outper-
forms all prior work with a benchmark performance of 74.5% in terms of balanced accuracy, an
improvement of more than 5 percentage points. These are first steps in the adaptation of NLI models
for inconsistency detection, and there are many possible avenues for further improvements and
applications of our methods.
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Part II

NLP-Powered Interfaces for News Readers
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NewsLens: Story-Centered News
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5.1 Introduction
Complex news events unfold over months, and the sequence of events over time can be thought of
as forming stories. Our objective is to generate, from publicly available news articles, story outlines
and visualizations that help readers digest and navigate complex, long-lasting stories across a large
number of news articles. We attempt this construction of stories by building a dataset with multiple
news sources, exploiting the overlap in coverage by different sources. Our contributions include:

1. A method for creating a dataset of articles from multiple sources across a decade from scratch,

2. A topic detection method that handles interruption in topics,

3. A novel way to name stories, and

4. A method for clustering, rating, and displaying quotations associated with the stories.

The demo is available at https://newslens.berkeley.edu/.
The remainder of the chapter is organized as follows. Section 5.2 presents current related

research work. The aggregation of the dataset and the creation of the timelines is explained in
Section 5.3. Section 5.4 presents the interface with the created timelines, as well as the extraction
process for the information shown. Finally Section 5.5 concludes the chapter and presents future
work directions.

5.2 Related Work
Related work includes prior methods for generating stories from topics, for visualizing stories, and
for summarizing news.

Topic Detection and Tracking refers to techniques to automatically process a streamable
dataset of text into related groups called topics. In the context of news, the topics detected and
tracked are commonly called stories.

Swan and Allan [153] use the Topic Detection and Tracking (TDT) and TDT2 datasets, con-
sisting of 50,000 news articles to produce 146 stories, called clusters. The clustering process is
done using named entities and noun phrases, as opposed to unigrams. They report an inability to
merge clusters if there are large gaps in time with no articles, and their algorithm does not group
documents in an online fashion.

Pouliquen, Steinberger, and Deguernel [125] build a large dataset of news articles, named the
Europe Media Monitor (EMM). Their topic detection creates local clusters in each language. The
monolingual stories are then linked across languages to form global stories. A reported drawback is
the clustering cannot handle merging and splitting between disparate topics and cannot mend gaps
between stories that last more than 8 days.

Ahmed et al. [1] propose an online inference model named Storylines that clusters articles
into storylines which are assigned to broader topics. Emphasis is put on scalability with a goal of
processing one article per second.

https://newslens.berkeley.edu/
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Poghosyan and Ifrim [122] leverage keywords in social media to generate storylines, and Vossen,
Caselli, and Kontzopoulou [161] propose to use news timelines to build storylines, structured index
of events in the timeline, and event relationships.

Visualizing news stories focuses on building a user interface to present a given story to help the
user digest a complex story. Using the EMM dataset, Krstajić et al. [78] propose a visual analytics
system to represent relationships between news stories and their evolution over time. Each story
element is represented as a tile in a vertical list. Over time (x-axis), the placement of story elements
is adjusted on the vertical axis according to the level of activity in the story.

Shahaf, Guestrin, and Horvitz [141] propose a “Metro map” view for a given story. Article
headlines are selected in the story corpus to maximize coverage of pieces of information. The
selected items are put in different “lines” of the metro maps, showing how the story developed.
Only headline information is accessible on the produced metro map.

Tannier and Vernier [154] build timelines for journalistic use. Based on a user query, documents
are retrieved and dates are extracted from sentences. A timeline is built where peaks represents
important dates, and key dates are annotated with representative article headlines and an image from
the article when available.

5.3 The newsLens pipeline
In order to build news stories over long time spans based on a variety of news sources, there are two
main challenges: an organizational challenge of collecting news articles, and an algorithmic and
computational challenge of building the stories. We describe our solutions to both problems.

We first describe how we use the Internet Archive to recover a dataset of news articles. Given
an article dataset, we propose a lightweight pipeline to process articles into topics in a streamable
fashion, so that timelines can be updated as new articles are added. The pipeline we propose has the
following stages: extracting keywords from articles, creating topics: local groups of articles in time,
solidifying the local topic clusters into stories: long-ranging sets of articles that share a common
theme, and automatically naming the stories. We then present timing measurements for each step of
the pipeline.

Collecting news articles
For each article in our dataset, we require some information, from which we can build the features
needed for our processing. The minimum information required is: the publication date, the url, the
headline, and the content of the article. Most common news sources build their news websites with
specific patterns, to make their articles easier to index. For instance, CNN.com, France24.com and
NYTimes.com article urls match the following regular expressions, respectively:

http://cnn.com/yyyy/mm/dd/*
http://france24.com/en/yyyymmdd*
http://nytimes.com/yyyy/mm/dd/*
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Table 5.1: Number of news articles collected for each source in the Newslens collection.

Source Name # articles
reuters.com 1.2 million
allafrica.com 1 million
foxnews.com 475000
washingtonpost.com 440000
telegraph.co.uk 390000
france24.com 250000
nytimes.com 230000
cnn.com 140000
theguardian.com 51000
Other sources 166000

We collected 20 such patterns from globally recognized English-language news sources, and
collected all news articles matching these patterns through the Internet Archive’s advanced search
interface. We start our collection on January 1st 2010 and collect until the present time. The
publication date is extracted from the url pattern, and we access the news article’s webpage to
extract the headline and content.

A somewhat unexpected complication we faced was the process of deduplicating some articles.
Some news agencies publish up to 7 different versions of a news article, each with a very minor
change (for instance, to the headline, or by adding or removing a single sentence to the content).
Because we use counts of articles to measure importance and create stories, it is important to remove
duplicate articles. We apply a simple but effective method:

1. For a given source, group articles into small ranges of time (e.g. 1 week),

2. Compute bag of word vectors for each article,

3. Transform the bag of words for each group into a tf-idf matrix,

4. If two articles are above a certain cosine similarity, they are assumed to be duplicates,

5. Retain only the most recent article, as it may have corrected information.

Roughly 10% of articles across all sources are deleted in the deduplication process. After
deduplication, our dataset contains 4 million news articles in English, or an average of 1,500 articles
per day. The detail of number of articles per source is given in Table 5.1. A study of how article
duplicates are created and the types of modifications that news sources create would be interesting.
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Figure 5.1: Local topic graph from June 10th 2014 to June 16th 2014. Nodes on the graph are
news articles, edges are placed according to our method. Color of the node represents the topic
assigned by community detection. Even though the Ferguson and Hong Kong protests form a single
connected component, they get assigned to different communities. Keywords are placed on the
display for convenience of the reader.

Generating the topics
Extracting article keywords

We use a standard method to extract keywords from an article’s content. Given a set of articles with
no keywords, we represent each document as a bag of words vector. We apply a tf-idf transform on
the bag of words corpus and select a word wi in document dj as a keyword for the document if the
tf-idf score S(wi, dj) > T , where T is manually set. If we are trying to extract keywords for a large
dataset, we process the articles in batches of a fixed size and randomize the order in which we take
the articles. Each article is processed a single time. The keywords are lemmatized and lowercased.
Although simple, this approach is effective: for the France24 news article with headline:

Battle to retake Mosul from Islamic State group has begun, says Iraqi

the keywords obtained are:
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shiite, force, abadi, militia, mosul, iraq

Local topic graph

There is not one clear definition of when two articles are about the same “story” in news. Our goal
is to cluster articles into local groups we call topics, which are then merged over time into stories.
We define two articles to be in the same topic if they share several keywords, and are published in a
close range of time.

We propose to group articles into common local topics by building a graph of articles. The
algorithm for building the graph is:

1. For each article ai over a small range of N days, prepare keyword set kwi

2. Articles (ai, aj) are assigned an edge between them if ‖kwi ∩ kwj‖ ≥ T2, where T2 is a
manually set threshold.

An example graph obtained over a range of 6 days is shown in Figure 5.1. The graph obtained is
not connected and has several components. One can think at first that each component represents a
story, however, it is possible for different densely connected topics to erroneously connect over a
few edges. This can be seen on Figure 5.1, where two large components: the Ferguson and Hong
Kong protests are loosely connected by a single edge. To avoid the problem of merging topics due to
erroneous edges, we use a community detection algorithm, whose role is to find correct assignment
of the nodes into communities that maximize a quality function on the communities obtained. We
use a standard community detection algorithm, the Louvain method [10], which is both lightweight
and efficient at finding the correct clusters. It can be seen in Figure 5.1 that the Louvain method
correctly assigns the two protests to different communities.

From topics to stories

So far we have presented a method to group articles into topics that are local in time. However,
it is not computationally tractable to process the graph for a large number of days, given that we
have a total of N ' 3000 days to process. Apart from the computational complexity, we would like
a streamable method where adding new articles updates already existing stories and creates new
ones, while avoiding recomputing all stories from scratch. The method we propose to merge topics
into long-ranging stories is two-fold: a sliding window to enlarge the topics, and a topic matching
process for stories that might be interrupted in time.

The first step is to run the local topic assignment in chronological order using a sliding window.
For instance, if we choose N = 5 for the number of days in a local graph, and 50% for the window
overlap, the topic assignment is first run for days 1 to 6, and then run for days 3 to 8, etc. This
sequence of overlapping graph clustering creates interesting dynamics. Linking, splitting, and
merging are three phenomena we believe are important for story generation from topics.

Linking consists of assigning a topic from a preceding graph to a topic in the current graph:
given a cluster in the current graph, if a majority of nodes in the cluster have previously been
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assigned another topic (in a previous graph, because of the sliding window), no new topic is created,
and the cluster is assigned to the old topic, enabling topics to span more than N days. Linking
happens for instance on the story about the French elections, that lasted more than 5 days: the
articles from the first 5 days formed a topic, and as later articles appear, they are linked into this
topic that already exists. The story experiences no interruption greater than 5 days (the span of the
window) from January 15th to May 10th 2017, and linking combines all articles in a single topic.

Splitting occurs when one topic is later on divided into 2 distinct topics: it can happen that
a topic’s start, a few initial articles are clustered together, and then diverge into clusters that are
detected as separate by the community detection. In this case, the smallest cluster gets assigned to a
new topic. An example of splitting: the shooting of Jo Cox (Brexit story), and the Orlando Shooting
occurred within a few days of each other. The first articles covering each topic were at first assigned
in the same topic, due to enough common keywords (shooting, death, killing, etc). However as each
story grew with new articles, the topics became more distinct, at which point the topics were split.

Merging is similar to linking: if a current cluster found contains articles that have already been
assigned to two distinct old topics, both topics are merged. An example of merging: the “Olympics
in Rio” and the topic related to “Athletes worried about the Zika virus” were at first separated, but
as the Athletes arrived in Rio, the stories were merged. This does not occur as often as linking and
splitting.

A story is what emerges when many local topics are linked or merged. With linking, we see
how local topics can be connected into stories with an unbounded time span. As long as a topic has
new articles appearing continuously, all articles are linked to the same topic, and the story grows.

The assumption that a story must be uninterrupted is constraining, as some stories can have
arbitrarily large gaps in time. Consider the “MH317 Malaysia Airline plane crash” story shown in
Figure 5.3b, where new evidence was found a few months after the crash, and then again years after
the crash happened. The second step for creating stories is to merge topics into a common story if
they do not overlap in time but are similar enough in keyword distribution. We build a vector v(ti)
for topic ti which contains the counts of keywords in all articles of topic ti. When a new topic tj is
created, its similarity to old topics is computed using a cosine similarity:

sim(ti, tj) =
v(ti) · v(tj)

‖v(ti)‖‖v(tj)‖

If the similarity is above a threshold T3, and the two topics do not overlap in time significantly,
the topics are merged. The final topics obtained after these two steps represent the stories we will
display in our interface. The choice of T2 and T3 affect the precision and recall of the algorithm.
Increasing T2 reduces the number of edges on the graph, reducing the number of articles placed
in topics. In our implementation, we choose high thresholds (T2 = 4, T3 = 0.8), which limits the
number of errors (high precision). The drawback is that only 10% of articles of the overall dataset
get assigned to topics. When setting T2 = 3, the number of articles in topics raises to 20%, but we
expect more incorrect topics to be created.
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Naming stories

Finding a good name to represent the story that can encompass several thousands of articles is
challenging. We propose a simple system based on observations of what makes a good title for a
topic. Here are examples of good titles we want to be able to pick: “North Korea nuclear tests”,

“Ukraine crisis”, “Ebola outbreak”, “Brexit vote”, “Paris attacks”. The features these names have
in common are:

1. A story name is a noun phrase,

2. It contains a proper noun (entity),

3. It contains a common noun or word, and

4. One of the words is abstract (test, crisis, outbreak, ...).

Figure 5.2: “lanes” interface. The 7 stories with most articles in 2016 are shown in timeline format.

For each headline in our story, we extract all maximal noun phrases and assign a score to each.
For example, in the headline below (from telegraph.co.uk), noun phrases are underlined:

Pakistan frees Taliban prisoners to help Afghan peace process
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(a) “Refugee crisis” story. Top to bottom: time legend, article headlines, timeline, and quote tiles.

(b) Timeline of the “Malaysia Airline flight MH370”, it has large time gaps with no articles.

Figure 5.3: Examples timelines in the NewsLens system.

Notice that noun phrases such as “peace process” and “prisoners” are not proposed as they are
enclosed in a larger (maximal) noun phrase. The highest scoring noun phrase is chosen as the name
of the story. Here are the features used to score a noun phrase p:

1. f1(p) = 1 if there is a proper noun else 0

2. f2(p) = 1 if there is a common noun else 0

3. f3(p) = log10(count(p)), where count(p) is the number of occurrences of phrase p in all
headlines of the story

4. f4(p) =
∑

w∈p f(w), w are the words in p, f(w) is the frequency of w in the titles

5. f5(p) = maxw∈p abstractness(w), where abstractness(w) is a word abstractness measure
[71]
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Process name Time per unit Total time
Internet Archive 4 min / source 80 min

Populating articles 0.05 sec / article 2.3 days
Extracting keywords 0.01 sec / article 12 hrs

Creating stories 2 sec / day 4 hours
Naming stories 0.02 sec / story 20 min

Table 5.2: Timings of the pipeline. Time per unit, is a time per processed element. Total time is
when running the pipeline on the entire dataset.

6. f6(p) = length(p), number of words in p

The final score is then computed as a linear combination of the features:

score(p) =
6∑

i=1

λifi(p)

We choose the λi manually, and pfinal = arg maxp score(p). The five titles presented above are
results for some of the major stories available in the system.

Processing Times
The processing speed determines the system’s capacity, if it is to run in real-time. Table 5.2 presents
the speed per unit for each stage of the pipeline, as well as the total time spent when processing 20
sources, with 4 million articles over 7 years.

5.4 Visualizing stories with lanes
We have now presented a method to retrieve 4 million news articles and organize them into more
than 80000 stories. Many of these stories have hundreds or thousands of articles. We are posed
with the visualization challenge of displaying content in an understandable manner. The following
section introduces lanes, the interface we propose to represent stories. Lanes is composed of three
components: a timeline, article headlines and quotes tiles. Figure 5.3a presents two example lanes
generated by our system.

Story timeline
The overall interface is framed on the x-axis representing time, each element added has a given
x-position representing its occurrence within the story. We use a timeline as the main visual
representation of the topic. The x-axis represents time, and the y-axis represents the number of
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articles in a given short period of time. This timeline creates a shape the user can identify the story
with. Figure 5.2 shows the timelines of the 7 stories in year 2016 with most news articles. The
assumption we follow is that major events in a topic lead to more news articles in a following short
period of time, which can be made prominent in the timeline of the overall topic by a peak. For
example, in Figure 5.2, it appears that the most active periods for the story “Keystone XL pipeline”
are in February, October and November 2016.

The timelines of Figure 5.2 help the user see “when” action occurred in a given story. The
following two subsections present the annotations added when a user clicks on a chosen timeline.
The annotations help understand the “what” and the “who” of the timeline, respectively.

Headline selection
Because we assume that peaks in the timeline of the story correspond to key times in the story, we
propose to annotate these points for the reader. We sample news articles from peak periods of the
story and add their headlines as annotation to the timeline. This allows the user to get an idea of
what occurred during that period of the topic. The headline is clickable and takes the user to the
article’s original URL. This enables the user to access articles about a topic that can be several
years old. When selecting which article to display for a given peak, we randomly sample an article.
Added to the article headline is an image icon representing the logo of the news source, which helps
the user know the source of the headline at a glance.

There can be stories where many peaks happen in a short period of time, in which case the
visualization would become cluttered. We impose a hard constraint in the visualization: headline
annotations cannot overlap, and they are placed on a number of “rows” above the timeline. A
maximum number of headline rows is allowed, and if a headline cannot be placed because of a lack
of space, it is not displayed. Headlines are placed in decreasing order of their peak heights, so that
more “more important” peaks get placed first.

Quote ranking and selection

Figure 5.4: Dependency tree of a quote sentence illustrating how extraction process. This figure
was generated using a modified version of displaCy.
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We assume showing headlines annotations on the timeline helps the news reader answer the
“what” of the story. We are experimenting with adding additional kinds of information to the
interface. The first of these is quotations extracted from the article that are assumed to be important.
Quote extraction is an active field of research [124, 112]. Our objective is to build a simple system
to experiment with ranking and displaying the quotes. This process is done in 3 steps: entities are
extracted, quotes for these entities are extracted and then grouped and scored for importance.

We extract entities from all articles using an NLP library named spaCy. In order to reduce entity
duplication, we proceed with a simple entity linking process leveraging Wikidata [162]. Each entity
string is searched through Wikidata’s search interface. Wikidata provides unique identifiers that
match the search query. The first identifier in the query result is associated with the entity string.
This allows us to merge entities such as: “Obama”, “Barack Obama”, “Mr. Obama”, etc

Entity disambiguation is a complex task, and although Wikidata is a first step in resolving
entities, it also introduces errors. For instance, many news articles mention "Washington" as the
author of a quote. When searching for Washington in Wikidata, the first entry that appears is
“George Washington” instead of the city of Washington D.C. Additional patterns verifying the span
of life and entity types could be put in place, but overall, this is a complex task and we will introduce
more sophisticated entity recognition in future work.

Once entities are extracted, the next step is to attribute quotes to the entities. To extract quotes,
we look at each individual sentence in our corpus and determine whether it is a quote by a known
entity. The method for quote extraction is the following:

1. The sentence is parsed into a dependency tree

2. Check if the subject (NSUBJ) of the root verb of the sentence is a known entity

3. Check if the lemma of the root verb is in a predefined list (say, tell, state, ...)

4. Check if the root has a complementary clause

5. If all checks are validated, extract the pair (entity, quote)

For example given the sentence from a Reuters article:

The self-exiled Dalai Lama says he merely seeks genuine autonomy for his Himalayan
homeland.

The dependency tree for this sentence is shown in Figure 5.4. We can see that for this sentence, all
three conditions are met and the quote pair extracted is: (Dalai Lama, “he merely seeks genuine
autonomy for his Himalayan homeland.”). The dependency parsing is also achieved with the spaCy
library.

This process does not extract all quotes as the pattern recognition we propose is fairly rigid. For
now, we accept the low recall for a high precision in the quotes extracted, as we assume users would
react more negatively to erroneous quotes than missing quotes. This produces on average 2 quotes
per news article, which can represent thousands of quotes for a single story, which is too much to
show to users. We propose a simple way to cluster quotes together to find important quotes.
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Quotes are transformed into bag of words vectors, and the tf-idf transform is applied to the
quote vector corpus. Quotes can then be compared using a cosine similarity measure. Two quotes
are judged to be in the same “quote cluster” if they are from articles that are close in time, and they
meet a minimum cosine similarity.

Once quote clusters are obtained, the size of the cluster is our measure for the quote cluster’s
importance. This assumes that a quote that is mentioned by several journalists from various sources
has more importance in the story.

We can now rank quotes in order of importance and show a limited number of quotes in the
“lanes interface”. Each quote cluster is represented by an image tile of the entity speaking. When
clicking on a tile, a frame showing the list of quotes in the cluster opens. Figure 5.5 shows one
result of opening a quote tile: four quotes from the cluster are displayed, as well as the source from
which the quote is extracted. Clicking on the quote opens the article from which the quote was
extracted. In this example, we can see that the quote cluster contains quotes from Reuters, CNN

Figure 5.5: Interface that opens upon a user’s click on a quote. Quotes shown were assigned to a
common cluster in the story named “Iran nuclear talks”

and the NYTimes. The phrasing of each quote is slightly different, showing that sources modify
and specify detail in their quote.

The lanes interface presents the stories as timelines annotated both with headlines at key times,
as well as quotes representing main actors within the story.

5.5 Conclusion and Future Work
We have presented a method to build a dataset of news articles over a long range of time from
several sources and an efficient, novel algorithm for organizing millions of articles into stories that
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span long time ranges, despite gaps in coverage. These stories are named with a simple but effective
algorithm and visualized using a lanes metaphor, providing the user with a way to view each story
in more detail.

Future work includes an assessment of the accuracy of the story creation algorithm: both the
accuracy within stories, verifying that articles within a given story are related, and across stories,
verifying that story humans would agree with the stories we propose. We also plan to continue
refining the user interface and assess it with journalists, media analysts and other relevant end users:
we will compare our interface with other news aggregator systems such as Google News, to assess
the usability of this approach.

Future work will also leverage the considerable related work on event detection and event pattern
understanding, and incorporating that into the story creation process.

Finally, source bias and information validity are important, in the context of alternative news
sources and social media. An interface that presents the facts with the source of the information in a
transparent way, as well as the results of calculating biases of news sources from a computational
perspective is a future direction of interest.
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Chapter 6

NewsChat: A Question-Driven News
Chatbot
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6.1 Introduction
Chatbots offer the ability for interactive information access, which could be of great value in the
news domain. As a user reads through news content, interaction could enable them to ask clarifying
questions and go in depth on selected subjects. Current news chatbots have minimal capabilities,
with content hand-crafted by members of news organizations, and cannot accept free-form questions.

To address this need, we design a new approach to interacting with large news collections. We
designed, built, and evaluated a fully automated news chatbot that bases its content on a stream of
news articles from a diverse set of English news sources. This in itself is a novel contribution.

Our second contribution is with respect to the scoping of the chatbot conversation. The system
organizes the news articles into chatrooms, each revolving around a story, which is a set of
automatically grouped news articles about a topic (e.g., articles related to Brexit).

The third contribution is a method to keep track of the state of the conversation to avoid repetition
of information. For each news story, we first generate a set of essential questions and link each
question with content that answers it. The motivating idea is: two pieces of content are redundant if
they answer the same questions. As the user reads content, the system tracks which questions are
answered (directly or indirectly) with the content read so far, and which remain unanswered. We
evaluate the system through a usability study.

The remainder of this chapter is structured as follows. Section 6.2 describes the system and
the content sources, Section 6.3 describes the algorithm for keeping track of the conversation state,
Section 6.4 provides the results of a usability study evaluation and Section 6.5 presents relevant
prior work.

The system is publicly available at https://newslens.berkeley.edu/ and a demonstra-
tion video is available at this link: https://www.youtube.com/watch?v=eze9hpEPUgo.

6.2 System Description
This section describes the components of the chatbot: the content source, the user interface, the
supported user actions and the computed system answers. Section 6.6 lists library and data resources
used in the system.

Content Sources
We form the content for the chatbot from a set of news sources. We have collected an average of
2,000 news articles per day from 20 international news sources starting in 2010. The news articles
are clustered into stories: groups of news articles about a similar evolving topic, and each story is
automatically named [83]. Some of the top stories at the time of writing are shown in Figure 6.1a.

https://newslens.berkeley.edu/
https://www.youtube.com/watch?v=eze9hpEPUgo
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(a) (b) (c)

Figure 6.1: Screenshots of the news chatbot. (a) Homepage lists most recently active chatrooms
(Zone 1 is an example chatroom) (b) Newly opened chatroom: Zone 2 is an event message, Zone 3
the Question Recommendation module, and Zone 4 a text input for user-initiated questions. Event
messages are created via abstractive summarization. (c) Conversation continuation with Q&A
examples. Sentences shown are extracted from original articles, whose sources are shown. Answers
to questions are bolded.
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User Interface
The chatbot supports information-seeking: the user is seeking information and the system delivers
information in the form of news content.

The homepage (Figure 6.1a) lists the most active stories, and a user can select a story to enter its
respective chatroom (Figure 6.1b). The separation into story-specific rooms achieves two objectives:
(1) clarity to the user, as the chatrooms allow the user to exit and enter chatrooms to come back
to conversations, and (2) limiting the scope of each dialogue is helpful from both a usability and
a technical standpoint, as it helps reduce ambiguity and search scope. For example, answering a
question like: “What is the total cost to insurers so far?” is easier when knowing the scope is the
Australia Fires, compared to all of news.

Articles in a story are grouped into events, corresponding to an action that occurred in a particular
time and place. For each event, the system forms an event message by combining the event’s news
article headlines generated by an abstractive summarizer model [85].

Zone 2 in Figure 6.1b gives an example of an event message. The event messages form a
chronological timeline in the story.

Because of the difference in respective roles, we expect user messages to be shorter than system
responses, which we aim to be around 30 words.

User Actions
During the conversation, the user can choose among different kinds of actions.

Explore the event timeline. A chatroom conversation starts with the system showing the two
most recent event messages of the story (Figure 6.1b). These messages give minimal context to the
user necessary to start a conversation. When the event timeline holds more than two events, a “See
previous events” button is added at the top of the conversation, allowing the user to go further back
in the event timeline of the story.

Clarify a concept. The user can ask a clarification question regarding a person or organization
(e.g., Who is Dennis Muilenburg?), a place (e.g., Where is Lebanon?) or an acronym (e.g., What
does NATO stand for?). For a predetermined list of questions, the system will see if an appropriate
Wikipedia entry exists, and will respond with the first two paragraphs of the Wikipedia page. For
geographical entities, the system additionally responds with a geographic map when possible.

Ask an open-ended question. A text box (Zone 4 in Figure 6.1b) can be used to ask any
free-form question about the story. A Q&A system described in Section 6.3 attempts to find the
answer in any paragraph of any news article of the story. If the Q&A system reaches a confidence
level about at least one paragraph containing an answer to the question, the chatbot system answers
the question using one of the paragraphs. In the system reply the Q&A selected answer is bolded.
Figure 6.1c shows several Q&A exchanges.

Select a recommended question. A list of three questions generated by the algorithm described
in Section 6.3 is suggested to the user at the bottom of the conversation (Zone 3 in Figure 6.1b).
Clicking on a recommended questions corresponds to asking the question in free-form. However,
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  Since October in Australia, fires scorched
  more than 10.3 million hectares and 27
  people have been killed

 what else should I know 

  The fires, which have been raging since 
  October, have killed at least 24 people and
  burned 10 million hectares

 you said that already...

Figure 6.2: Example of repetition from the system. Repeating facts with different language is
undesirable in a news chatbot. We introduce a novel question tracking method that attempts to
minimize repetition.

because recommended questions are known in advance, we pre-compute their answers to minimize
user waiting times.

6.3 Conversation State
One key problem in dialogue systems is that of keeping track of conveyed information, and avoiding
repetition in system replies (see example in Figure 6.2). This problem is amplified in the news
setting, where different news organizations cover content redundantly.

We propose a solution that takes advantage of a Question and Answer (Q&A) system. As noted
above, the motivating idea is that two pieces of content are redundant if they answer the same
questions. In the example of Figure 6.2, both system messages answer the same set of questions,
namely: “When did the fires start?”, “How many people have died?” and “How many hectares have
burned?”, and can therefore be considered redundant.

Our procedure to track the knowledge state of a news conversation consists of the following
steps: (1) generate candidate questions spanning the knowledge in the story, (2) build a graph
connecting paragraphs with questions they answer, (3) during a conversation, use the graph to track
what questions have been answered already, and avoid using paragraphs that do not answer new
questions.

Question Candidate Generation. We fine-tune a GPT2 language model [128] on the task of
question generation using the SQuAD 2.0 dataset [129]. At training, the model reads a paragraph
from the training set, and learns to generate a question associated with the paragraph. For each
paragraph in each article of the story (the paragraph set), we use beam search to generate K
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Figure 6.3: Conversation state is tracked with the P/Q graph. As the conversation advances, the
system keeps track of answered questions. Any paragraph that does not answer a new question is
discarded. Questions that are not answered yet are recommended.

candidate questions. In our experience, using a large beam size (K=20) is important, as one
paragraph can yield several valid questions. Beam search enforces exploration, with the first step of
beam search often containing several interrogative words (what, where...).

For a given paragraph, we reduce the set of questions by deduplicating questions that are
lexically close (differ by at most 2 words), and removing questions that are too long (>12 words) or
too short (<5 words).

Building the P/Q graph. We train a standard Q&A model, a Roberta model [94] finetuned on
SQuAD 2.0 [129], and use this model to build a paragraph / question bipartite graph (P/Q graph).
In the P/Q graph, we connect any paragraph (P node), with a question (Q node), if the Q&A model
is confident that paragraph P answers question Q. An example bipartite graph obtained is illustrated
in Figure 6.3, with the question set on the left, the paragraph set on the right, and edges between
them representing model confidence about the answer.

Because we used a large beam-size when generating the questions, we perform a pruning step on
the questions set. Our pruning procedure is based on the realization that two questions are redundant
if they connect to the same subset of paragraphs (they cover the same content). Our objective is to
find the smallest set of questions that cover all paragraphs. This problem can be formulated as a
standard graph theory problem known as the set cover problem, and we use a standard heuristic
algorithm [19]. After pruning, we obtain a final P/Q graph, a subgraph of the original consisting
only of the covering set questions.
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The P/Q graph embodies interesting properties. First, the degree of a question node measures
how often a question is answered by distinct paragraphs, providing a measure of the question’s
importance to the story. The degree of a paragraph node indicates how many distinct questions it
answers, an estimate of its relevance to a potential reader. Finally, the graph can be used to measure
question relatedness: if two questions have non-empty neighboring sets (i.e., some paragraphs
answer both questions), they are likely to be related questions, which can be used as a way to
suggest follow-up questions.

Using the P/Q graph. At the start of a conversation, no question is answered, since no
paragraph has been shown to the user. Therefore, the system initializes a blank P/Q graph (left
graph in Figure 6.3). As the system reveals paragraphs in the conversation, they are marked as
read in the P/Q graph (shaded blue paragraphs in the right graph of Figure 6.3). According to our
Q&A model, any question connected to a read paragraph is answered, so we mark all neighbors of
read paragraphs as answered questions (shaded blue questions on the right graph of Figure 6.3). At
any stage in the conversation, if a paragraph is connected to only answered questions, it is deemed
uninformative, as it will not reveal the answer to a new question.

As the conversation moves along, more paragraphs are read, increasing the number of answered
questions, which in turn, increases the number of uninformative paragraphs. We program the system
to prioritize paragraphs that answer the most unanswered questions, and disregard uninformative
paragraphs. We further use the P/Q graph to recommend questions to the user. We select unanswered
questions and prioritize questions connected to more unread paragraphs, recommending questions
three at a time.

6.4 Study Results
We conducted a usability study in which participants were assigned randomly to one of three
configurations:

• TOPQR: the recommended questions are the most informative according to the algorithm in
Section 6.3 (N=18),

• RANDQR: the recommended questions are randomly sampled from the questions TOPQR
would not select (however, near duplicates will appear in this set) (N=16),

• NOQR: No questions are recommended, and the Question Recommendation module (Zone 3
in Figure 6.1b) is hidden (N=22).

These are contrasted in order to test (a) if showing automatically generated questions is beneficial
to news readers, and (b) to assess the question tracking algorithm against a similar question
recommendation method with no conversation state.
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Measured Value TOPQR RANDQR NOQR
# participants 18 16 22
# chatrooms opened 3.2 2.9 3.1
# msgs. / chatroom 24.9 ∗ 15.3 ∗ 8.1
# rec. questions asked 11.9 ∗ 8.2 ∗ -
# own questions asked 1.5 1.1 2.2
# total questions asked 13.4 ∗ 9.3 ∗ 2.2
latency (seconds) 1.84 ∗ 1.88 ∗ 4.51

Table 6.1: Usage statistics of the news chatbot during the usability study. Participants either saw
most informative recommended questions (TOPQR), randomly selected recommended questions
(RANDQR) or no recommended questions (NOQR). ∗ signifies statistical difference with NOQR (p
< 0.05).

Study Setup
We used Amazon Mechanical Turk to recruit participants, restricting the task to workers in English-
speaking countries having previous completed 1500 tasks (HITs) and an acceptance rate of at least
97%. Each participant was paid a flat rate of $2.50 with the study lasting a total of 15 minutes.
During the study, the participants first walked through an introduction to the system, then read the
news for 8 minutes, and finally completed a short survey.

During the eight minutes of news reading, participants were requested to select at least 2 stories
to read from a list of the 20 most recently active news stories.1 The participants were prompted to
choose stories they were interested in.

The survey consisted of two sections: a satisfaction section, and a section for general free-form
feedback. The satisfaction of the participants was surveyed using the standard Questionnaire for
User Interaction Satisfaction (QUIS) [110]. QUIS is a series of questions about the usability of the
system (ease of use, learning curve, error messages clearness, etc.) answered on a 7-point Likert
scale. We modify QUIS by adding two questions regarding questions and answers: “Are suggested
questions clear?” and “Are answers to questions informative?” A total of fifty-six participants
completed the study. We report on the usage of the system, the QUIS Satisfaction results and textual
comments from the participants.

Usage statistics
We observed that participants in the QR-enabled interfaces (TOPQR and RANDQR) had longer
conversations than the NOQR setting, with an average chatroom conversation length of 24.9

1We manually removed news stories that were predominantly about politics, to avoid heated political questions,
which were not under study here.



CHAPTER 6. NEWSCHAT: A QUESTION-DRIVEN NEWS CHATBOT 91

messages in the TOPQR setting. Even though the TOPQR setting had average conversation length
longer than RANDQR, this was not statistically significant.

This increase in conversation length is mostly due to the use of recommended questions, which
are convenient to click on. Indeed, users clicked on 8.2 questions on average in RANDQR and
11.9 in TOPQR. NOQR participants wrote on average 2.2 of their own questions, which was not
statistically higher than TOPQR (1.5) and RANDQR (1.1), showing that seeing recommended
questions did not prevent participants from asking their own questions.

When measuring the latency of system answers to participant questions, we observe that the
average wait time in TOPQR (1.84 seconds) and RANDQR (1.88 seconds) settings is significantly
lower than NOQR (4.51 seconds). This speedup is due to our ability to pre-compute answers to
recommended questions, an additional benefit of the QR graph pre-computation.

QUIS Satisfaction Scores
Overall, the systems with question recommendation enabled (TOPQR and RANDQR) obtained
higher average satisfaction on most measures than the NOQR setting. That said, statistical signif-
icance was only observed in 4 cases between TOPQR and NOQR, with participants judging the
TOPQR interface to be more stimulating and satisfying.

Although not statistically significant, participants rated the suggested questions for TOPQR
almost 1 point higher than RANDQR, providing some evidence that incorporating past viewed
information into question selection is beneficial.

Participants judged the answers to be more informative in the TOPQR setting. We interpret
this as evidence that the QR module helps teach users what types of questions the system can
answer, enabling them to get better answers. Several NOQR participants asked “What can I ask?”
or equivalent.

Qualitative Feedback
Thirty-four of the fifty-six participants opted to give general feedback via an open ended text box.
We tagged the responses into major themes:

1. 19 participants (7 TOPQR, 7 RANDQR, 5 NOQR) expressed interest in the system (e.g.,
I enjoyed trying this system out. I particularly liked that stories are drawn from various
sources.)

2. 11 participants (4, 3, 4) mentioned the system did not correctly reply to questions asked (e.g.,
Some of the questions kind of weren’t answered exactly, especially in the libya article),

3. 10 participants (2, 3, 5) found an aspect of the interface confusing (e.g., This system has
potential, but as of right now it seems too overloaded and hard to sort through.)

4. 6 participants (4, 2, 0) thought the questions were useful (e.g., I especially like the questions at
the bottom. Sometimes it helps to remember some basic facts or deepen your understanding)
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Measured Value TOPQR RANDQR NOQR
(1) dull ... stimulating (7) 5.28 ∗ 5.06 4.20
(1) frustrating ... satisfying (7) 5.00 ∗ 4.43 4.00
(1) rigid ... flexible (7) 4.71 4.66 4.14
(1) terrible ... wonderful (7) 4.79 4.69 4.20
exploring new features 5.80 5.50 5.14
learning to operate 5.40 5.25 5.06
performing task is
straightforward 5.40 5.56 5.20

system reliability 5.80 5.19 5.67
system speed 6.20 5.87 5.44
rec. questions are clear 5.78 ∗ 4.87 4.28
answers are informative 5.07 ∗ 4.44 3.64

Table 6.2: QUIS satisfaction results. Likert values on a scale from 1 to 7, higher is better unless
stated otherwise. ∗ signifies statistical difference with NOQR (p < 0.05).

The most commonly mentioned limitation was Q&A related errors, a limitation we hope to
mitigate as automated Q&A continues progressing.

6.5 Related Work
News Chatbots. Several news agencies have ventured in the space of dialogue interfaces as a way
to attract new audiences. The chatbots are often manually curated for the dialogue medium and
advanced NLP machinery such as a Q&A systems are not incorporated into the chatbot.

On BBC’s Messenger chatbot2, a user can enter search queries, such as “latest news” or “Brexit
news” and obtain a list of latest BBC articles matching the search criteria. In the chatbot produced
by Quartz3, journalists hand-craft news stories in the form of pre-written dialogues (aka choose-
your-own adventure). At each turn, the user can choose from a list of replies, deciding which track
of the dialogue-article is followed. CNN4 has also experimented with choose-your-own adventure
articles, with the added ability for small talk.

Relevant Q&A datasets. NewsQA [158] collected a dataset by having a crowd-worker read
the summary of a news article and ask a follow-up question. Subsequent crowd-workers answered
the question or marked it as not-answerable. NewsQA’s objective was to collect a dataset, and we
focus on building a usable dialogue interface for the news with a Q&A component.

CoQA [131] and Quac [24] are two datasets collected for questions answering in the context
of a dialogue. For both datasets, two crowd-workers (a student and a teacher) have a conversation

2https://www.messenger.com/t/BBCPolitics
3https://www.messenger.com/t/quartznews
4https://www.messenger.com/t/cnn
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about a piece of text (hidden to the student in Quac). The student must ask questions of the teacher,
and the teacher answers using extracts of the document. In our system, the questions asked by
the user are answered automatically, introducing potential errors, and the user can choose to ask
questions or not.

In this work, the focus is not on the collection of naturally occurring questions, but in putting a
Q&A system in use in a news dialogue system, and observing the extent of its use.

Question Generation (QG) has become an active area for text generation. A common approach
is to use a sequence to sequence model [34], encoding the paragraph (or context), an optional target
answer (answer-aware [150]), and decoding a paired question. This common approach focuses on
the generation of a single article, from a single piece of context, often a paragraph. We argue that
our framing of the QG problem as the generation of a series of questions spanning several (possibly
redundant) documents is a novel task.

Krishna and Iyyer [77] build a hierarchy of questions generated for a single document; the
document is then reorganized into a “Squashed” document, where paragraphs and questions are
interleaved. Because our approach is based on using multiple documents as the source, compiling
all questions into a single document would be long to read, so we opt for a chatbot.

6.6 Resources Used
The libraries and data sources used in the described system are as follows:

Transformers library5 used to train the GPT2-based Question Generation model and the
Roberta-based Q&A model.

spaCy library6 used to do named-entity extraction, phrase and keyword extraction.
Wikidata7 for entity linking and collection of textual content of relevant Wikipedia pages used

in special case questions.
MongoDB8 and Flask9 for storing and serving the content to the user.
SetCoverPy10 for its implementation of standard set cover algorithms in Python.
List of news sources present in the dataset used by the system, in alphabetical order: Aa.com.tr,

Afp.com, Aljazeera.com, Allafrica.com, Apnews.com, Bbc.co.uk, Bloomberg.com, Chicagotri-
bune.com, Chinadaily.com.cn, Cnet.com, Cnn.com, Foxnews.com, France24.com, Independent.co.uk,
Indiatimes.com, Latimes.com, Mercopress.com, Middleeasteye.net, Nytimes.com, Reuters.com,
Rt.com, Techcrunch.com, Telegraph.co.uk, Theguardian.com, Washingtonpost.com

5https://github.com/huggingface/transformers
6https://github.com/explosion/spaCy
7https://www.wikidata.org/
8https://www.mongodb.com/
9https://flask.palletsprojects.com/en/1.1.x/

10https://github.com/guangtunbenzhu/SetCoverPy
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6.7 Discussion
During the usability study, we obtained direct and indirect feedback from our users, and we
summarize limitations that could be addressed in the system.

Inability to Handle Small Talk. 4 participants attempted to have small talk with the chatbot
(e.g. asking “how are you”). The system most often responded inadequately, saying it did not
understand the request. Future work may include gently directing users who engage in small talk to
a chit-chat-style interface.

Inaccurate Q&A system. 32% of the participants mentioned that answers are often off-track
or irrelevant. This suggests that further improvements in Q&A systems are needed.

Dealing with errors. Within the current framework, errors are bound to happen, and easing the
user’s path to recovery could improve the user experience.

6.8 Conclusion
We presented a fully automated news chatbot system, which leverages an average of 2,000 news
articles a day from a diverse set of sources to build chatrooms for important news stories. In each
room, the system takes note of generated questions that have already been answered, to minimize
repetition of information to the news reader.

A usability study reveals that when the chatbot recommends questions, news readers tend to
have longer conversations, with an average of 24 messages exchanged. These conversation consist
of combination of recommended and user-created questions.
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Figure 7.1: In NewsPod, a story is divided into a introductory summary, and an automated Q&A
session. The listener can interact with the podcast by asking custom questions. The system integrates
answers into the podcast when one is available.

7.1 Introduction
In a given week, only 4 in 10 Americans reported that they delved deeper into a particular story
beyond the headlines, according to a report from the American Press Institute [134]. This statistic is
partly explained by the fact that social media has become a significant part of news consumption
habits, but also because reading long texts is challenging for many, with 21% of Americans aged 16
years or older having low English literacy skills [29].

Audio-based interfaces, such as radio programs or podcasts hold promise to bring in-depth news
engagement to a wider audience.

When combining radio and podcast listening, 57% of U.S. adults obtain some of their news
through an audio-only platform [7], in diverse settings including at home, at work, in public and
private transport, while exercising and outdoors [107]. Today, more than 53 million U.S. adults own
a Smart Speaker, with 62% using the speaker one hour a week or more to listen to the news [111].

News podcasts and radio shows are most commonly handcrafted, and curated for the audio
platform, often requiring a team of professionals. For instance, a typical episode of The Daily,
a popular podcast from The New York Times, involves a team with a host, three producers, two
editors and an engineer.1

1https://www.nytimes.com/column/the-daily
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On the other end of the spectrum, automation in speech synthesis has progressed rapidly in
the last decade. Recent advancements in text-to-speech with WaveNet [113] and Tacotron 2 [144]
have created an opportunity for a new generation of automated speech interfaces. Automated
speech technology has become widely available, for instance through the Voice Browser Working
Group of the W3C2, equipping most modern browsers with standardized text-to-speech and speech
recognition interfaces. Natural language understanding (NLU) and generation (NLG) have also
seen accelerated development, with the state-of-the-art matching human-performance in fields such
as summarization [174], question answering [181] and question generation [126].

Some news publications, such as The Economist and Bloomberg News, have leveraged this new
technology to create audio versions of their printed news stories and added playback options, to
enable reading on the go. To generate a playback, a news article is processed unchanged through a
text-to-speech engine to produce an audio article played for its audience.

A playback is inherently limited, because the content is not adapted for the audio format, when
compared to a manually recorded podcast. In this chapter, we build the first automatic attempt at
bridging the gap between automated news reading and curated podcasts.

We present NewsPod, a system to automatically generate news podcasts. NewsPod uses state-of-
the-art text summarization and question generation to create a script consisting of an introductory
summary, followed by a Q&A session involving multiple automated voices. The listener can interact
with the podcast by selecting stories of interest, listening to segments in a non-linear order, and
asking open-ended questions during the podcast, which the system attempts to answer automatically.

We demonstrate the effectiveness of NewsPod through two usability studies. The first study
focuses on evaluating the novel narrative style, which is compared to two automated baselines, and
a hand-written reference. The second study measures how participants interact with the podcast,
and whether including periodic breaks can encourage participant interaction.

The studies found that most participants assessed NewsPod as an efficient and enjoyable way to
get informed on the news, with 80% of participants saying they would use NewsPod again.

Our work makes the following contributions:

• A design space for news podcasts, shining a light on the gap between manually curated and
automated news podcasts.

• A system called NewsPod that automates on-demand news podcasts, featuring multiple
voices to simulate a conversation, and allowing the listener to join the conversation by asking
questions.

• An evaluation of NewsPod based on two usability studies, finding that the conversational
podcast we propose is preferred over a non-conversational baseline, and that a majority of
listeners would like to ask questions and interact with podcasts when given the opportunity.

2https://www.w3.org/Voice/
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7.2 Related Work
Automating News Podcasts. To the best of our knowledge, there is no prior work automating the
creation of news podcasts. The system of Yoshino and Kawahara [172] is closest conceptually. They
present a chat dialogue system using news sources as the subject matter. The system proposes topics
to the listener, who can ask questions about the topic. A key conceptual difference with our work
is that Yoshino and Kawahara [172]’s system is designed for open-ended information navigation,
requiring user input to advance the conversation, while we prepare a script for a podcast targeting
a specific duration, allowing for a sequence of passive listening and active question asking, with
listener interruptions allowed at any point in the conversation. Another important difference is the
use in our work of multiple synthesized voices to simulate a conversation.

Some authors have written position papers and made forecasts about a future that includes
automatically generated and personalized podcasts as is done in NewsPod. For instance, Dubiel,
Cervone, and Riccardi [35] suggest that news presented in a conversational audio form could
increase engagement, allow for the presentation of multiple viewpoints, and allow listeners to ask
follow-up questions to expand their knowledge on the subject. The BBC’s R&D laboratory has
published a series of vision papers on the future of audio broadcasting, including forecasts for a
future in which audio news topics and lengths can be personalized [15].

Lochrie et al. [95] manually built prototypes of news podcasts and performed an evaluation,
which they used to propose seven recommendations for automating news podcasts. NewsPod
follows four of these recommendations, namely: (1) the content should be adapted to the audio
format with bite-size chunks of information (in NewsPod: questions and answers), (2) summarize
key points, (3) leverage several voices specialized, (4) adapt the narrative style to the context.

Conversational Interfaces for News Recommendations. Several systems have been proposed
that retrieve news articles in response to a user’s queries within the format of an interactive dialogue.
Bechberger et al. [8] retrieve a news event based on a user query and the user’s general interests, using
text chat rather than audio. Sahijwani, Choi, and Agichtein [135] investigate different approaches for
recommending news content as part of an Alexa Prize conversational agent. Their system suggests
a news article as part of the conversation, and if the user accepts the recommendation, a search
engine is queried for news on an entity or a trending topic until the user rejects the recommendation.
They find that reducing the formality of the recommendation and increasing their specificity leads
to significantly higher acceptance rate from listeners.

The multiple source effect [60] posits that arguments coming from multiple distinguishable
sources increases persuasion when compared to similar arguments made by a single source. Experi-
ments have also validated the multiple source effect for video [59] as well as audio with synthetic
speech [87]. Most related to our work, Kang and Gretzel [67] find that when visitors of a national
park listen to a podcast tour, including multiple voices in the podcast positively impacts the social
presence and enjoyment of the visitor. In NewsPod, we capitalize on the multiple source effect by
dividing the content amongst several roles, each synthesized by a distinct automated voice.

Conversational Narration Style. Prior work has shown that modifying the narration style of
multimedia content can have an impact on the listener’s understanding, retention, and enjoyment.
Personalization by altering the point of view from neutral (3rd-person) to conversational (1st- and
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2nd-person) has been shown to be effective in many learning domains in reducing cognitive load
and improving listener understanding [103, 99, 49]. Kang and Gretzel [67] find that when podcast
tours follow a conversation format, it has a positive impact on the listener’s enjoyment and social
presence. By simulating a conversation in NewsPod, with voices asking questions answered by
others, we attempt to create an informal environment that is inviting to the listener.

7.3 Background: Natural Language Processing
We provide relevant background on recent progress in the field of natural language processing
(NLP). We leverage several of these components in creating NewsPod, and their capabilities and
limitations shape our choices in the design, as well as the interaction possibilities for users of the
system.

Question Answering
Recently, large neural-network based models [30, 26] have shown remarkable performance at
question-answering, most commonly in the extractive question answering setting: given a paragraph
and a question, extract a span in the paragraph (e.g., an entity, a phrase, etc.) that answers the
question. Additionally, models must provide their confidence in the answer, or else state that the
paragraph does not contain an answer to the question [129].

With models outperforming human performance [181] on answer extraction on the standard
datasets, the community has proposed more challenging settings for question answering. We
introduce two relevant to our work: conversational question answering and open-domain question
answering.

In conversational question answering, introduced by the CoQA [132] and QuAC [24] projects, a
model must answer a user’s question as part of a longer, contextualized conversation. This is more
challenging than answer extraction, because the model must be able to handle phenomena such
as co-reference, and follow-up questions, removing the strong assumption that a question can be
answered correctly regardless of its context.

In open-domain question answering, a model is given a question and must first retrieve relevant
paragraphs from a large corpus of text before attempting to answer the question [102]. Commonly
the corpus of text is very large (e.g., all of English Wikipedia [21]), creating an engineering challenge
in retrieving the needle of relevant paragraphs from the large haystack of paragraphs in the text
corpus. Even though recent work [70] has made great strides in making open-domain question
answering computationally tractable, it still requires specialized equipment (i.e., several GPUs) and
data-storage software.

In NewsPod, we use a standard extractive Q&A model which can base its answers on a limited
set of relevant news articles. This choice’s main advantage is its low computational requirement
and simplicity in setting up, at the cost of limiting the types of questions the system can answer to
factual questions answered in news articles. We discuss this choice further in Section 7.7.
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Summarization
Textual summarization has become one of the most active research areas in automatic text generation,
and is a common application of large language models such as GPT2 [128]. Typically the models
take as input a single text document, and produce a summary by generating it one word at a time
from a fixed vocabulary. The models require as training data large datasets of aligned (article,
summary) pairs, and so the NLP community has curated a diverse family of datasets, ranging from
legal texts [76, 143] to research papers [27] to online forums (i.e., Reddit) [73].

In the news domain, the two most common datasets are CNN/Daily Mail [61] and Newsroom
[53]. The latest models, such as PEGASUS [174], have shown strong performance and have been
validated through human evaluation to produce fluent and informative summaries on par with
human-written summaries.

A known major limitation of automated summarization [64] is the absence of guarantee that
generated summaries are factual: the model can hallucinate content by not faithfully representing
the contents of the document it summarizes. Although the community has proposed methods
to optimize factual correctness [180], the absence of a guarantee limits the usability of neural
summarization at large.

In NewsPod, we use the PEGASUS model, as it is publicly available 3, and is currently the
state-of-the-art for news summarization. In some cases in our dataset, a news source provides a
journalist-written summary alongside with the full body content. When a human-written summary
is available, we prioritize its use, and produce model-generated summaries in the absence of a
human-written one.

Question Generation
In question generation [34, 115], a model is generally given a paragraph and tasked with generating
a question answered by the paragraph. Question generation is generally under-constrained, as a
paragraph typically answers many valid questions. In under-constrained situations, text-generation
models favor most frequent outputs, which can be generic and uninteresting in the case of question
generation (e.g., What happened?).

A standard strategy to constrain text-generation and enable models to be more specific is to
condition the task on a desired first word (i.e., How, Why, etc.), encouraging the model to generate
non-generic questions.

Beyond specificity of questions, current question generation models suffer from three main
limitations. First, questions can lack naturalness (e.g., What is the person ... instead of Who is
...). Second, even though a model might be trained only on questions that are answered by the
corresponding input paragraph, the model can still generate questions that are un-answered by the
input paragraph. Third, questions might focus on un-important aspect of the paragraph (e.g., a
specific figure or the name of a person mentioned).

3https://huggingface.co/models?search=pegasus
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Figure 7.2: A design space of the current landscape of news podcasts. Icons represent three
categories of podcasts: manually recorded podcasts, automated podcasts, and the NewsPod system.

In NewsPod: In order to account for these limitations, we generate a large number of questions,
generating 7 questions for each paragraph. We obtain many more questions than we require, and
use a graph-based method to select questions that are most relevant.

7.4 News Podcast Landscape Analysis
How are news podcasts constructed? In order to gain understanding and draw design principles, we
performed a landscape analysis of existing news podcasts.

We first define three criteria that must be satisfied to qualify as a news podcast. First, the source
of information should be solely conveyed by audio: TV news broadcasts and newspapers do not
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qualify as news podcasts as their primary source of information are video and printed or online
text, respectively. Second, the audio podcast must be available on the internet and downloadable
on-demand: live radio shows that cover the news do not qualify, unless they are a posteriori uploaded
to the internet and available upon user request. Third, a news podcast’s primary subject should
be about the news: covering information about current events. By contrast, literary audio books
(e.g., Harry Potter on Kindle), entertainment (e.g.: NPR’s Wait, Wait, Don’t Tell Me) or health (e.g.:
Oprah’s SuperSoul Conversations) podcasts do not qualify as news podcasts.

A news podcast can optionally belong to a podcast series, a program producing podcasts of a
similar format regularly.

In order to characterize the current state of news podcasts, we compiled a collection of 41 news
podcasts, of which 32 are manually recorded, and 9 use automatic speech generation. We selected
items for this collection through two avenues: (1) online lists of most popular news podcasts4, and
(2) visiting the website of the 20 most visited news organizations and finding the active podcast
series they produce.

Based on an analysis of this news podcast collection, we present a design space [96] for news
podcasts in Figure 7.2. This design space delimits the range of possibilities in news podcasting and
the gap between automated and manually recorded podcasts. It is organized into three categories:
narrative choices, podcast format and podcast features.

Narrative Choices
We found that podcasts use a diversity of narrative devices to convey information and create a
relationship with the listener. We distinguished between three major narrative styles that represented
a majority of podcasts: formal news text, informal conversation, and story-telling. Formal news text
is equivalent to a narrator reading aloud a written news story, without modifying the format for the
audio interface (e.g., BBC’s Flash Briefing). An informal conversation narration will present the
content in a sequence of conversation turns. Participants in the conversation can assist in highlighting
opinions (e.g., an expert’s debate on RFI’s International report) or distinguish between themes (e.g.,
one journalist per story in NPR’s News Now). A story-telling narration can be identified by several
markers as in the true crime genre, including a first-person narrative (e.g., “I am not an investigative
journalist myself, but...” in Serial) or the use of suspense. The objective of story-telling narration is
often to attract a wide range of recurring listeners.

Another component of the design space is the number of voices present in the podcast. Podcasts
mainly fall into two categories: a single voice narrating throughout, or multiple voices, usually with
a main host and specialized “guest” voices, or a panel of speakers with a moderator.

All automated podcasts we analyzed had a formal news text narrative style, using a single voice.
Manually recorded podcasts were more diverse, with a majority following the informal conversation
narrative style and the use of multiple voices.

NewsPod Design: Breaking from previous automatic news podcasts, we adopt a conversational
narration style when constructing the content, involving three voices with distinct roles.

4For example: https://blog.feedspot.com/news_podcasts/

https://blog.feedspot.com/news_podcasts/
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Podcast Format
The overall format of the podcast is shaped by several decisions regarding the podcast length,
number of topics tackled, the frequency of publication, and the type of speech used.

Podcast Length, or duration, of the collection varies widely from five to ninety minutes. Most
podcasts fell into one of three ranges. Podcast briefs range from five to fifteen minutes, often giving
highlights without going in depth into the topic (e.g., Marketplace’s Morning Report). The other
two length ranges are the 20-35 minute range, targeted at the average daily commute time [107],
and the in-depth podcast starting at 50 minutes.

Number of Topics. The podcasts analyzed fell into two categories: single topic podcasts discuss
a unique topic for the entire duration of the podcast, typically exploring the topic more in depth
(e.g., Vox’s Today Explained). Multi-topic podcasts, also referred to as briefings, are partitioned in
time into several sections each covering a different topic (e.g., Fox News’ Hourly Update). In the
case of multi-topic podcasts, it is possible for a podcast to have a main topic, followed by topics
covered with less depth (e.g., Monocle’s The Globalist).

Podcast Frequency. Podcasts series have varying publication frequencies, most commonly
falling into two categories: (1) one or more a day (e.g., The Daily by the NYTimes) which are
typically shorter and/or have a focus on most recent news, (2) weekly and monthly podcasts (e.g.,
NPR’s Embedded). We propose a third frequency type: on-demand, in which a podcast is generated
at the moment a listener requests it, with the ability to pull customized and recent news. In our
landscape analysis, we did not find existing news podcasts produced on-demand.

Speech Source. Speech can be integrated into podcasts in two ways: (1) through a journalist or
voice artist’s manual recording, or (2) synthetically generated by a text-to-speech system. Typically,
synthetically-generated speech is judged to be of lower quality in terms of listening experience,
although recent work has shown that synthetic voices are closing the gap with human voices even
for long-form content [17].

All of the automatic podcasts we analyzed fell into the brief category (5-15 minutes); most
were typically multi-topic briefings, but could also be single topic (e.g., Bloomberg News’ Listen
to Article). All automatic podcasts we analyzed were published at least once a day (with some
exceptions on weekends).

Manually recorded podcasts were more diverse, spanning the entire range in podcast length and
publication frequency.

NewsPod Design: The podcast is generated on demand, with the listener having control over
the podcast format. Specifically, the participant can choose up to five topics to include, and can
choose a desired duration.

Podcast Features
Transcript Availability. A transcript is a full-text version of the podcast content displayed in the
podcast’s graphical interface. It can optionally be synchronized with the audio, with words or
sentences appearing as they are spoken. Transcripts are useful for accessibility purposes, as well as
enabling listeners to skim and decide which portions to listen to [44]. Automatic podcast systems
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are at an advantage with regards to transcript availability, as the speech is generated off of a script
which can directly be used as a transcript. On the other hand, manually recorded podcast require
costly post-processing in order to obtain a transcript, and we find that only eight of the thirty-two
manually recorded podcasts offer a transcript in their interface.

Music and sound use in the podcast can be beneficial, both to create a sense of brand (i.e., NPR’s
Short Wave), or to indicate a transition between sections in multi-topic podcasts (e.g., Monocle 24’s
The Globalist). Some podcasts even use a background music continuously throughout the podcast
(e.g., CNN’s Five Things). In our analysis, none of the automated podcasts made use of any music
or sound beyond generated speech, even though it is common practice in the manually recorded
podcasts (28 out of the 32).

Interactivity. All podcasts we analyzed allow some form of basic participant interaction, at
a minimum enabling participants to pause and play, and jump to a specific time-stamp using a
progress bar. We propose that more complex interactions can be conceived, such as the participants
asking questions which the podcast attempts to answer.

NewsPod Design: We make the transcript available to the listener. We do not make use of
music or sound, but consider it for future work in Section 7.10. We enable participants to interact
by asking questions at any point during the podcast, and design a usability study (Section 7.7) to
study podcast listeners’ interest in such interactions.

7.5 Building the Automatic Podcast
We now present the components used in automating the NewsPod podcast. Figure 7.1 gives a
high-level diagram of the components and their relations. We focus on applying our procedure to
the English news domain, noting that the approach could be extended to other languages, since the
majority of components (such as the text-to-speech or the summarizer) have equivalents in other
languages.

We first describe the elements of the NewsPod web interface shown in Figure 7.3. Second, we
outline how scripts for podcast sections are automatically generated by identifying groups of news
articles that can form the basis of a podcast section (§7.5), and generating a section’s Q&A session
(§7.5). In §7.5, we describe how the script is transformed into audio through text-to-speech. Finally
in §7.5 we detail the live Q&A system we developed to respond to listener-prompted questions.

Podcast Interface
A snapshot of the NewsPod graphical user interface (GUI) is shown in Figure 7.3. The interface
contains three main components: the control panel (bottom), the transcript panel (right), and the
decorative wave.

The control panel. The listener has the option to play and pause the podcast, as well as skip
forward and backward across sections of the podcast. A transcript button toggles the transcript panel
to open and close on the right hand side. Finally, a sectioned progress bar indicates the progression
through the podcast, with the beginning of each section indicated. A user can click on the progress
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Progress bar

Current section name

Controls: skip section, pause/play

Open/Close Transcript

Microphone Button
for User Question

Decorative
Waveform

Figure 7.3: NewsPod’s interface resembles other audio playback interfaces: a bottom panel contains
common user controls such as pause and play and move forward and backward between podcast
sections. The user can toggle a Transcript panel that opens on the right-hand side. The listener can
interact with the podcast by clicking on the microphone and asking a question.

bar, which will redirect the podcast to the start of the corresponding section. At any time, the
listener can click on the microphone button, which will pause the podcast and initiate the live Q&A
procedure outlined in Section 7.5.

We considered not requiring the user to click to activate the microphone, and instead continuously
monitor the microphone. However, this led to technical difficulty with the microphone sometimes
detecting questions from the podcast’s voiced text. Continuously monitoring a user’s microphone
is also concerning from a privacy standpoint [86], and we opted for a button-based microphone
activation.

The transcript panel opens on the right-hand side of the interface, with text from the podcast
added one sentence at a time, to allow the listener to follow along in real time as the podcast is
playing. The transcript panel is initially closed, and in the usability study of Section 7.6, we analyze
what fraction of participants opened the transcript once or more.

The decorative wave, an abstract visualization of the generated speech, brings animation to the
interface. The wave changes color, turning blue, red and green based on voice identity. When the
podcast is paused, the wave flattens and turns grey.

The interface is designed with responsive elements [46] and is compatible with desktop, tablet
and mobile environments.
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Podcast Organization
In NewsPod, a user can customize the content of the podcast by selecting which topics to include in
the podcast and selecting a desired podcast duration. Based on those criteria, a podcast is generated
on demand.

The podcast is composed in the following way: (1) a greeting (i.e., “Welcome to NewsPod,
today we’ll be covering ... ”), (2) a sequence of podcast sections, and (3) a closing sentence (i.e.
“That’s it for today, thank you for tuning in”).

Each podcast section is centered around a particular news topic selected by the user. Importantly,
we construct podcast sections in a way that allows for adaption to user-requested duration. As an
example, if a participant selects five sections and a podcast duration of five minutes, each section
must have a duration of one minute. However, if the total podcast duration selected is fifteen
minutes, podcast sessions can span three minutes each.

To accommodate length variability, we construct podcast sections using an inverted pyramid
writing style common in the news domain [123]. The section is composed of an introduction
consisting of a short headline and a multi-sentence summary, followed by a Q&A session revealing
information in order of most important to most specific. An example podcast section with a target
of 200 words is given in Figure 7.4. It contains a headline, a summary, four question/answer pairs
and a quote. If a user desired a podcast half the length, this section would be truncated after 100
words, revealing only the headline, summary and two question/answer pairs.

Identifying Podcast Sections
In order to create a podcast section, we first collect a group of related articles discussing a news
event, which we call the source articles. We then construct an introduction to the section consisting
of a headline and a short summary, with a length requirement of at least two sentences and 20 words.
The introduction is meant to give the listener a high-level understanding of the section before diving
into the Q&A session.

The source article groups are collected by clustering a large news dataset5 based on the live feed
of around 20 international news sources in English, using a graph-based clustering algorithm [10].

We choose the introductory headline from the available headlines in the source articles, choosing
based on simple rules encouraging shorter headlines, and discouraging the presence of special
characters such as “:” or “-”, as they tend to create difficulty in the text-to-speech engine.

The introductory summary can either be selected from an article or generated. A subset of the
sources in our dataset provide hand-written summaries. If one of the source articles contains a
summary that satisfies the length requirement, we select it, otherwise we generate a summary using
the PEGASUS model [174], a neural-network based summarizer.
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Switzerland votes to ban wearing of the burqa or niqab in public spaces
Referendum denounced by rights group as 'needlessly fueling division and
fear', after Swiss right-wing party had framed it as verdict on the role of Islam
in public life

What would the ban mean?
The ban will mean that nobody can cover their face completely in public --
whether in shops or the open countryside.

What percentage of the population are Muslims?
Muslims make up around 5 percent of the Swiss population of 8.6 million, or
about 390,000 people, most of whom have their roots in Turkey, Bosnia and
Kosovo.

When was the veil banned?
France banned the wearing of a full-face veil in public in 2011 and Denmark,
Austria, the Netherlands and Bulgaria have full or partial bans on wearing
face coverings in public.

Which countries have similar bans?
The so-called anti-burqa vote came after years of debate in Switzerland
following similar bans in other European countries -- and in some Muslim-
majority states -- despite women in Islamic full-face veils being an
exceptionally rare sight in Swiss streets.

Ines Al Shikh, spokeswoman for the Purple Headscarves feminist Muslim
women's group said: "This is clearly an attack against the Muslim community
in Switzerland. What is aimed here is to stigmatise and marginalise Muslims
even more"
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Legend: Voice 1: Host Voice 2: Questions Voice 3: Quotations

Figure 7.4: Example Generated Podcast Section generated based on six source news articles
from France24, Aljazeera, the Guardian, the BBC, the Middle East Eye and the Times of India.
The section is composed of an introductory headline and summary, a Q&A session, and a quote
paragraph. Each text color (blue, red, green) indicates a distinct voice.
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Figure 7.5: The process of generating a Q&A session from raw text follows four steps: (1) selecting
paragraphs, (2) generating questions from the paragraphs, (3) using a QA model to detect which
paragraphs answer which questions, and (4) finalizing the Q&A session by selecting several
question/paragraph pairs.
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Generating a Q&A Session
The objective of the Q&A session is to divide the content into modular pieces involving several
voices, simulating a conversation and reducing monotony. The questions particularly can serve as a
device to focus the listener’s attention.

We use two neural network models to process the news articles of a section into a Q&A session:
a question generator (QGen), and an extractive question-answering model (QA).

QGen is a model that takes as input a paragraph of text, and generates a question intended to be
answered by the paragraph. We follow current state-of-the-art methodology for QGen models and
finetune a large pre-trained language model (a GPT2 model [128]) on a (paragraph, question) pair
dataset (in our case, the NewsQA dataset [158]).

The QA model is complementary to the QGen model. It takes as input both a paragraph and a
question, and produces two outputs: (1) whether or not the answer to the question is in the paragraph,
and (2) if it is, what span in the paragraph corresponds to the question. We follow current state-of-
the-art methodology and finetune a pre-trained bi-directional Transformer (a RoBERTa-Large [94])
on two common Q&A datasets: SQuAD V2 [129] and NewsQA [158].

We now describe how we combine the QGen and QA model to transform the content of several
news articles into a Q&A session. The process, illustrated in Figure 7.5 is divided into four steps:
selecting paragraphs, generating questions, building a Q&A graph, and finalizing the Q&A Session.

Selecting Paragraphs. The body content of all news articles in the section serves as the basis
for the creation of the Q&A session. Articles are automatically divided into individual paragraphs,
further filtered down based on two filtering criteria: length (targeting between 10 and 45 words),
and whether or not they contain direct quotations, since quotations will be processed separately.

In our dataset, articles have an average of 15 paragraphs, each containing an average of 33
words. Therefore, a Q&A session being composed from 4 source news articles could be based on
around 50 paragraphs (if 80% pass the filtering criteria).

Generating Questions. We generate seven questions for each valid paragraph of content,
one starting with each of the following words: Who, What, Why, How, When, Where,
Which. This process often generates on the order of hundreds of questions, which is an order of
magnitude above the requirement of a Q&A Section. The next step is to build a graph which can be
used to score question relevance to narrow down which questions to include in the Q&A session.

Building the Q&A Graph. Once questions have been generated, we use the QA model to find
which paragraphs answer each question. Crucially, the model attempts to answer each question with
each of the paragraphs, and we build a bipartite graph between the paragraphs and questions. For
each (paragraph, question) pair input to the QA model, if the QA model finds an answer, we add an
edge in the graph between that paragraph and question (see Figure 7.5 for a visual illustration of the
graph).

The QA graph has mathematical properties of interest: for instance, the degree of the questions
indicate how many times a question was answered by distinct paragraphs. The question’s degree
can therefore indicate whether a question is about a key element of the topic. Vice-versa, the degree
of a paragraph roughly indicates how informative it is: how many distinct questions it answers.

5Reference is omitted for anonymity purposes.
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def build_qa_session(QA_graph, Wtgt=200):
# Initialize output and progress word count
QA_session, Wsofar = [], 0
while Wsofar < Wtgt and len(QA_graph.questions) > 0:

# Find next most answered question
Qi = QA_graph.select_q_highest_degree()
# Select most informative answer paragraph
Pi = Qi.select_answer_p_highest_degree()
QA_session.append((Qi, Pi))
# Update word count
Wsofar += len(Qi.words) + len(Pi.words)
# Remove all answered questions
QA_graph.remove_questions(Pi.neighbors())

return QA_session

Figure 7.6: Pseudocode for greedy selection of question-answer pairs to generate a Q&A Session
from a Q&A graph.

Prior work [82] has presented a similar paragraph-question graph construction to track the state
of conversation in a chatbot. In NewsPod, we use the properties of the graph to rank question and
paragraph relevance.

Selecting the Q&A Session. Figure 7.6 provides pseudocode for the procedure to generate the
Q&A Session from the Q&A Graph, also taking as an input parameter Wtgt, a target length in
number of words. At a high-level, we greedily select questions that are answered the most times
(an approximation for relevance). Once the top-ranked question is selected, the algorithm selects
a paragraph that answers this question, creating a (question, paragraph) pair. It then removes all
questions from the graph that this paragraph answers, to limit repetition of content, and iterates until
reaching a target word length.

We expect that some incoherence and repetition will be present in the Q&A Session. In
Section 7.6, we perform a usability study to evaluate the viability of our content selection procedure,
comparing both automatic and hand-written podcast sessions.

Processing Quotations. Paragraphs that are identified to contain a quote are processed sepa-
rately. Each quote paragraph is processed to extract three components: the author of the quote, a
description of the speaker, and the actual quote. If at least one quote is successfully extracted, a
paragraph is added to the end of the podcast section. If multiple quotes are available, the quote from
the most mentioned speaker is selected.

An example of a generated section, including the introduction, the Q&A session and an extracted
quote is given in Figure 7.4.
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<speak>
    <emphasis level='none'>Ines Al Shikh,</emphasis> 
    <emphasis level='reduced'>spokeswoman for the Purple Headscarves
                                       feminist Muslim women's group said:</emphasis>
    <break time='300ms' />
    <emphasis level='strong'>"This is clearly an attack against the Muslim
     community in Switzerland. What is aimed here is to stigmatise and
     marginalise Muslims even more"</emphasis>
</speak>

Figure 7.7: We use SSML to explicitly define emphasis and silences in quote paragraphs, which is
taken into account by the WaveNet speech engine.

From transcript to speech
Once the podcast’s sections are written, we proceed to generating the audio using Google’s Text-To-
Speech API6, which gives access to several WaveNet-based voices [113].

Of the 90+ voices available, we choose three based on recommendations from the API’s
documentation:

• Voice 1 is assigned to en-US-Wavenet-J, a male-identified voice responsible for voicing
the introductory summary, and the paragraphs answering questions in the Q&A Session.
Voice 1 is the default voice, also responsible for greetings and transitions (e.g. “Next up, ...”)

• Voice 2 is assigned to en-US-Wavenet-H, a female-identified voice responsible for voicing
questions in the Q&A Session.

• Voice 3 is assigned to en-US-Wavenet-D, a male-identified voice responsible for voicing
quotes in the final portion of a section.

In the example podcast section of Figure 7.4, the text is colored according to the assigned
voice, with blue, red and green representing voices 1, 2 and 3 respectively. We note that we select
WaveNet voices with an American English accent, as our usability studies were performed with
crowd-workers mainly from the United States. However, WaveNet supports English accents from
other regions, such as Australia, Great Britain and India, which could be used to further customize
the experience.

The WaveNet model automatically applies some intonation and emphasis based on patterns
learned in its training data (e.g., output a short silence after a comma). On top of that, the WaveNet
API supports the Speech Synthesis Markup Language (SSML) [155], allowing the explicit placement
of emphasis, prosodic and silence markers. We use regex-based rules to apply SSML markers on
a subset of paragraphs, as we found that the markers help reduce monotony. In Figure 7.7, we
illustrate how SSML is applied to paragraphs that match the quote format, in which we vary the
emphasis between the author’s name, their introduction, and the quote itself.

6https://cloud.google.com/text-to-speech/
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Live Q&A Response
Listeners have the option to interact with the podcast by asking free-form questions during a section.

Modern web browsers have an integrated speech recognition engine using a standardized
interface7, which we use to transcribe the user’s speech into text.

We use the same QA model used in Section 7.5 to build the Q&A graph to answer user-prompted
questions. Specifically, we use the QA model to see if any of the section’s paragraphs contain an
answer to the question.

Importantly, the QA model is extractive, and can only answer questions that have answers in
one of the source news articles. The QA model cannot combine information and synthesize text,
which could be required in some open-ended questions.

Running the neural network-based QA model introduces a latency of 4 seconds on average.
Therefore, when the user submits a question, the system notifies the listener with the following
message: “I’ll look into that, give me a moment.”

If the QA model returns an answer, it is used to fill in a reply template. For instance, one of the
participants in Usabilibity Study B asked the question: “Where are Rohingya refugees from?” and
received the following answer:

I think the answer is Myanmar, I got it from the following paragraph. About 170
Rohingya refugees were told they will be forcibly deported back to Myanmar
where they had previously fled genocidal human rights abuses.

On the other hand, if the QA model is not confident that any paragraph contains an answer, the
system informs the listener with: “Sorry. I couldn’t find the answer. If you rephrase I will try again.
Otherwise I’ll keep walking you through the story.”

The podcast then resumes from the interruption point, skipping any sentence that it was in the
midst of.

In order to understand whether a listener would be interested in interrupting the podcast with
custom questions, we design a study (Section 7.7) centered around this interaction, evaluating how
often interruptions occur, whether participants are satisfied with the returned answers, and analyzing
the types of questions participants submit.

Implementation Details
We developed the system back-end in Python, and the interface front-end in HTML, CSS, and
JavaScript. The front-end communicates with the back-end using an API built with the Flask
library8.

For the summarizer, the question generator, and the question answering models, we used
HuggingFace’s Transformer library[168], more specifically leveraging the implementation of
models for the PyTorch library. For the summarizer, we used a pre-trained model [174], but we

7https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognition
8https://github.com/pallets/flask
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trained the Question Generator and Question-Answering models ourselves, using GPT-2 [128] and
Roberta-Large [94] architectures respectively. We use a Tesla V-100 Nvidia GPU to run the models
and to generate summaries and questions.

As news articles are added to our overall collection, we continuously run the pipeline described
in §7.5-7.5. A typical section is based on 5-6 source news articles, with 50-100 paragraphs of
content. Generating the Q&A Session is the most computationally expensive component of the
pipeline, taking on average around 50 seconds. The two most compute-heavy steps are generating
the questions (on average 9 seconds), and running the QA model to build the Q&A graph (on
average 40 seconds), while all other steps are almost instantaneous.

In order to have granular alignment between the transcript and the audio, we generate an
individual audio file for each sentence of the podcast, allowing us to add sentences gradually into
the transcript panel of the graphical interface. We store audio files in the standard OGG file format
[121], an open-source audio file format compatible with HTML5 and most modern web-browsers.

7.6 Usability Study A: Narration Style

Study A Design
We perform a usability study focused on evaluating whether the automatic organization and genera-
tion of content described in §7.5-7.5 produces coherent and interesting news podcast sections.

Keeping other components fixed (such as the interface, the stories described, the speech engine),
we compare four settings: two fully written by hand (Baseline and Reference), and two composed
by an automated algorithm (QA Best and QA Rand). In order to ensure a fair comparison, all
settings must generate sections of the same target length. For the study, we set the target at 200
words, for an expected section duration of 90 seconds, assuming a speech rate of 120-150 words per
minute.

Baseline. We randomly select one of the section’s source articles, and select the first k sentences
such that there is a total of 200 words. We do not generate questions, and the entire section is voiced
by Voice 1. This setting is similar to existing automated podcasts, because the chosen content is
read without being adapted for the audio format.

QA Best. We generate the section following the procedure described in Section 7.5. Specifically,
questions are automatically generated, and the selection and ordering of questions follows the
algorithm illustrated in Figure 7.6.

QA Rand. Similar to QA Best, questions are automatically generated; however, the selection
of questions as well as the answering paragraph are randomized (line 6 and 8 in Figure 7.6 are
replaced by uniform random sampling).

Reference. One of the authors of the paper, with a background in journalism, wrote podcast
sections in the Q&A format. The process involved reading one or more of the source articles, and a
combination of copying content and writing novel sentences (e.g., the questions).

Comparing these four settings, we aim to answer the following three research questions:
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• RQ1: Is the Q&A format adequate for news domain podcasting, compared to top-down
article reading? (Baseline vs. Reference)

• RQ2: How do automated Q&A Sessions compare to hand-written Q&A Sessions? (QA Best
vs. Reference)

• RQ3: How effective is the ordering algorithm in Figure 7.6 at creating a relevant and coherent
Q&A Session? (QA Best vs. QA Rand)

Study A Specifics

♣ Baseline ♦ QA Rand ♥ QA Best ♠ Reference

Section Name #Source #Part. ?I ?C #QA ?I ?C #QA ?I ?C #QA ?I ?C

UK Uber Driver Benefits 7 44 3.1 3.8 5 2.8 3.3 4 3.7 4.0 4 4.1 4.7
Emergency Broadband Subsidies 4 46 3.3 4.2 4 3.6 3.8 4 3.8 4.6 3 4.3 4.5
Greek / Turkish Dispute 2 33 3.4 4.1 4 2.8 2.8 3 3.3 3.4 4 3.4 4.4
Instagram Eating Disorders 3 46 3.6 4.2 3 2.5 3.0 3 3.3 3.9 4 3.8 4.6
Jeep Cherokee Name 5 39 3.7 4.4 3 3.3 3.3 3 3.3 4.3 3 4.1 4.7
Khashoggi Murder 18 40 4.3 4.3 3 3.6 3.7 2 4.2 4.3 2 4.3 4.3
Large Iceberg Break-off 3 54 3.6 3.9 5 3.5 3.2 4 3.7 4.5 4 4.2 4.2

Average 6.0 43.6 3.55 4.10 3.85 3.19 3.32 3.14 3.60 4.15 3.42 4.03 4.48
Statistical Significance (p < 0.05) ♦ ♦ ♦ ♣♦♥ ♣♦♥
Would use for news? (%) 63% 47% 80% 87%

Table 7.1: Detail of the seven podcast sections of Usability Study A. Participants selected 5 preferred
sections (out of 7 possible), and were randomly assigned to a setting: Baseline, QA Rand, QA
Best, or Reference. #Source is the number of source news articles in the section, #Part. the number
of participants that selected each section, ?I the average interestingness rating, ?C the average
coherence rating, and #QA the number of question/answers spoken in the section (Baseline did
not have Q&A). Methods are each assigned a symbol used to indicate a statistically significant
difference (p < 0.05) with other methods.

We recruited participants through Amazon Mechanical Turk, a crowd-sourcing platform. Crowd-
workers participated from their computer, which represents a different setting than an audio-only
setting such as listening to a podcast while driving or cooking. This allows us to first evaluate the
system with participants whose main focus is on the podcast content, and we leave evaluating the
podcast in other settings to future work.

We designed the study to run over fifteen minutes, with the following procedure:

1. Introduction: Participants were introduced to the task, gave their consent to participate, and
viewed slides outlining the capabilities of the podcast interface (i.e. how to pause, open the
transcript, etc.).
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2. Sound Check: Upon clicking on a button, an audio message would be generated: “Click on
button C”. The final letter was randomized, and the user had to click on the correct letter’s
corresponding button (out of four). This was intended to check that participants had sound
enabled.

3. Section Selection: Participants selected 5 sections out of a total of 7 available sections. The
available choices are detailed in Table 7.1. This choice was intended to allow participants to
customize podcast content, and reduce the chances they had to listen to topics they were not
interested in.

4. Podcast Listening: The participant was randomly assigned to one of the four settings for the
entire podcast. Without pausing, the podcast had an expected duration of 7 and 8 minutes.
After each section, participants had to complete a short section satisfaction form, detailed
below.

5. Post-completion questionnaire: participants completed the study with a satisfaction ques-
tionnaire.

Importantly, in this study’s setting, we hid the microphone button in the interface, preventing
participants from interrupting with their own questions. This was intended to focus this study
on the podcast content itself. The subsequent study described in Section 7.7 focuses on listener
interactions.

We created the sections based on news articles from February 27th and 28th, and participants
completed the task between February 28th and March 3rd, within five days of the publication of
the source news articles. We hand-selected the topics of the seven sections that participants chose
from, creating a diverse set ranging from science (e.g., Large Iceberg Break-Off) to international
affairs (e.g., Greek / Turkish Dispute). For the study, we specifically avoided sections that were
predominantly political.

There were three main sources of signal we recorded:

1. Interaction Log: we recorded whether the participant paused the podcast, skipped a section
and opened the transcript.

2. Section Satisfaction Form: upon completing each section, participants answered three
questions: Did you know about this section already? (yes/no) How interesting was the section
(1 to 5 stars)? How coherent was the section? (1 to 5 stars)

3. Post-Completion Questionnaire consisting of two parts: (1) a binary question: “Would you
use this system to get updated on the news?” (yes/no), and (2) an optional free text feedback
on the overall experience.

We used Amazon Mechanical Turk to recruit participants, restricting the task to workers in
English-speaking countries having previously completed 1600 tasks (HITs) and an acceptance rate
of at least 97%. Each participant was paid a flat rate of $2.50 with the study lasting a maximum of
15 minutes.
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The following instructions were given to all participants. Participants were expected to accept
the terms before moving on to the study:

• The entire HIT should take no more than 15 minutes:

• You must use Google Chrome or Mozilla Firefox for this task.

• You will go through a tutorial about the interface.

• Listen to a news podcast for 7 minutes. You must have sound enabled to hear the podcast.

• You can leave at any point but will not complete the HIT.

• You can complete this task at most once.

• If you have a question/problem, contact us at X@email.com

• By clicking “I Accept”, you agree to our terms. Namely: we will use the data will collect for
research purposes. We do not collect any personally identifiable information. You agree to
performing the task to the best of your ability.

Study A Results
We ran the study with a total of 61 participants; 16 were assigned to the Baseline, and 15 each to
QA Best, QA Random and Reference.

Even though section names were listed in shuffled order across participants during section
selection, there were some preferences overall for some sections, with the most popular being about
a Large Iceberg Break-Off and the least popular the Greek / Turkish Dispute.

With regard to the interaction log, 56% of participants opened the transcript at least once, 22%
of participants paused the podcast at least once, and 5% skipped one or more sections, with no
significant difference across settings.

The Section Satisfaction Form results are compiled in the Table 7.1. We measure two outcomes:
average interestingness and average coherence (one to five stars each). Because we are comparing
all pairs of four total settings, we performed a Kruskal-Wallis test [79] with a Dunn post-hoc test
[36] for statistical significance between pairs of conditions.

The Reference outperforms all other methods significantly, both in how interesting and how
coherent the podcast sections are. QA Best achieved the second-best scores in both metrics, narrowly
above the Baseline, without statistical difference between the two settings. Finally, QA Random
comes in last for both metrics, with a large average drop of 0.8 stars on coherence compared to QA
Best, shining a light on the success of QA Best’s selection and ordering of questions.

We measure correlation between Already Know Story and How Interesting, and find a positive
correlation between the two of 0.24: if a listener is already aware of a particular topic, they are
likely to rate it as more interesting. The correlation between Already Know and How Coherent is
small (around 0.1), but the correlation between How Interesting and How Coherent is highest at 0.5:
indeed, the podcast’s coherence can be seen as a prerequisite for it to be interesting.
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Fifty-six of the sixty-one participants opted to give general feedback via an open-ended text box.
We tagged the responses into major themes:

• 30 participants expressed positive interaction with the system (e.g., Nice work, I actually
enjoyed listening to this. The female voice with questions was a nice touch. Good job.,
Participant A4 - Reference)

• 11 participants mentioned that the speech quality was problematic, (e.g., I would like a more
natural voice if possible., Participant A42 - Baseline), with 4 participants mentioning a voice
in particular (e.g. I liked it [...] but didnt like the guy’s voice, A16 - Baseline)

• 9 participants mentioned the interface was easy to use (e.g., I think the system here is a very
simple but easy to use interface that even less tech-savvy users can easily use to obtain the
latest news., A13 - QA Best)

• 3 participants mentioned the generated speech was too fast (e.g., Some of the speech was
too fast to understand., Participant A28 - Reference), 3 participants wished they could select
from more sections (e.g., their was not to many articles to choose from., A38 - Reference), 3
participants mentioned the transcript was useful (e.g., The live transcript feature worked well,
as you’d expect for computer-generated speech), A39 - QA Rand).

With regards to the research questions we posed:

• RQ1: Yes, the Q&A format is adequate for news domain podcasting, with participants
significantly preferring it over a baseline of reading unaltered news articles.

• RQ2: Automated Q&A sessions do not perform as well in terms of coherence and interest-
ingness when compared to hand-written references, but 80% of QA Best listeners said they
would use the system to listen to the news in the future.

• RQ3: The ordering choices based on the greedy traversal of the QA Graph make a significant
difference when choosing questions compared to random sampling in terms of coherence and
interestingness.

7.7 Usability Study B: Interaction

Study B Design
In the Interaction Study, we set the content for all participants to the QA Best setting, and focus on
measuring what kinds of interruptions, if any, listeners of news podcasts might initiate.

Even though there is evidence that using speech recognition can ease user participation [69],
there are limitations to speech input interfaces [145], particularly in the case of crowd-workers who
may be in environments in which they are not willing to speak out loud. Preliminary experiments
with NewsPod’s microphone button visible confirmed that a vast majority of crowd-workers might
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Figure 7.8: For the Interaction Study, we modify the interface, removing the microphone op-
tion (shown in Figure 7.3), allowing the participant to either type a question, or click on two
recommended questions.

not want to enable their microphone for a 15-minute study. We therefore chose to replace the
microphone-enabled interruptions with a text-box for the purpose of the study, allowing participants
to type their questions instead of speaking them.

We also added two suggested questions to each of the podcast section. Participants could choose
at any point during a podcast section to type their own question, or click on a recommended question.
The graphical change to the interface is illustrated in Figure 7.8.

All participants are assigned to the QA Best section content; however, they are randomly split
across two settings:

• With Break: At the end of each section, the following break paragraph is added: We’re
wrapping up this story, if you have a question, now is a good time to ask. Otherwise, we’ll be
moving on to the next story. Each of the two sentences is followed by a five second break.
This adds a 15-second period dedicated to listeners being able to ask a question at the end of
each section.

• Without Break: The podcast sections do not include any built-in breaks for participants to
ask questions.

In both cases, participants can ask a question or click on a recommended question at any point in
the podcast, but in the With Break setting, an additional period is added specifically to encourage
participants to ask questions.

We aim to answer the following research questions:

• RQ4: Are news podcast listeners interested in interacting with the podcast by asking ques-
tions?
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Without Break With Break

Section Name #Part. Own Rec Any Own Rec Any

Amazon Union 37 0.4 0.5 47% 0.3 0.8 60%
Bethesda Acquisition 33 0.2 0.4 41% 0.2 0.9 69%
Rohingya Crisis 20 0.4 0.2 33% 0.6 0.6 64%
Senegal Jailed Leader 15 0.0 0.5 33% 0.2 1.0 67%
Swiss Burqa Ban 23 0.2 0.4 46% 0.1 1.0 80%
Tesla Self Driving Ban 32 0.1 0.2 17% 0.2 0.7 57%

Total 160 0.9 1.5 55% 1.1 3.2* 85%*

Table 7.2: Results of Usability Study B on the six sections, with participants randomly assigned to
Without Break or With Break settings, reporting: #Part. the number of participants that selected
each section, Rec the number of recommended questions clicked, Own the number of own questions
typed, and Any the percentage of participants that asked at least one question. In the total row, *
indicates a statistically significant difference between settings (p<0.05).

• RQ5: Does including breaks specifically designed for listeners to ask questions help increase
user interaction?

• RQ6: Are current automated question-answering models equipped to answer news listeners’
questions?

Study B Specifics
This study was modeled on the previous one, with participants going through an introduction, a
sound check, the section selection, podcast listening, and a post-completion questionnaire.

Because we ran this study two weeks after the initial study, we generated a new set of 6 QA
Best podcast sections in order to maintain high content relevance for the participants. Details of the
six sections options are given in Table 7.2.

In order to keep the study in the fifteen minute window while accommodating for interruptions
from the listener, listeners were asked to choose four sections (out of six total) instead of five (out
of seven total) as in Study A.

We recruited participants on Amazon Mechanical Turk with the same remuneration and the
same selective filters on eligible crowd-workers as in Study A. Crowd-workers that had already
completed Study A were ineligible for Study B.

We modified the post-completion questionnaire to focus on the interaction from the participant:
for each question asked (recommended and typed), the participant was asked How was the system’s
answer?, and given three options: I don’t remember, Irrelevant/Confusing, and Good/Relevant.
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Study B Results
Participants completed a Section Satisfaction Form identical to the one described for Study A.
Podcast sections in Study B were judged to be roughly as interesting and coherent as in Study
A, averaging 3.9 and 4.1 stars respectively (vs. 3.6 and 4.2 in the Study A). This suggests that,
even though we hand-selected the pool of sections for participants to choose from, performance of
NewsPod is stable across time and does not vary highly with news topics.

Table 7.2 summarizes statistics on questions asked by participants, both clicked recommenda-
tions and typed questions. We find that in the condition without breaks, roughly half the participants
asked a question, while in the condition with breaks, the proportion increases to 85%.

Including breaks also significantly increases the average number of recommended questions
clicked (from 1.5 to 3.2) and in a non-significant way the number of questions typed (0.9 to 1.1).

RQ4, RQ5: When constructing the podcast with breaks, a large majority (85%) of podcast
listeners asked at least one question throughout the podcast.

Next, we report on participant satisfaction of the quality of answers for selected questions.
For those questions that were generated by the system, participants were generally satisfied with
answers, with 79% of the answers rated Good/Relevant.

RQ6: On the other hand, participants were mainly dissatisfied with the automatically generated
answers to their own typed questions: 76% of the answers were rated Irrelevant/Confusing. This
result reveals the limitation of applying an extractive question answering system to open question
answering.

To understand further what types of questions participants formulated, and why the live Q&A
system might be inadequate, we analyzed and categorized the 57 typed questions:

• Factoid Questions make up 36% of questions, asking for a specific detail that can be extracted
from one of the source articles. (e.g., what percent of amazon workers belong to a union?,
Participant B18 - Without Break)

• Synthesis Questions make up 18% of questions and require compiling and summarizing
several elements to answer (e.g., how have people reacted to the ban?, B6 - Without Break)

• Encyclopedic Questions make up 14% of questions and ask for information most likely
present in an encyclopedia such as Wikipedia, or in a knowledge base (e.g., What type of
government does Senegal have?, B23 - With Break)

• Clarification Questions make up 13% of the questions, asking to define a term in the podcast
(e.g. Who is Bethesda, again? B24 - Without Break)

• Prediction Questions make up 9% of questions, asking about hypothetical future events
(e.g., When will Tesla release a new edition? B12 - With Break)

• Rhetorical Questions make up 5% of questions, making a statement not requiring an answer
(e.g., What about driving safety? B14 - With Break)
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• Self Relevance questions make up 5% of questions, relating the event to the listener (e.g.
How can I join in this union?, B36 - With Break)

The QA System we operate is mainly equipped to deal with Factoid Questions, as they represent
the vast majority of questions present in QA datasets used to train the model. This mismatch between
participant expectations and system capabilities leads to the dissatisfaction with most answers to
typed questions.

Further analysis reveals that the inadequacy of the QA responses lead to a reduction in participant
interaction with the system. Even though the model is able to satisfactorily answer comprehension
questions 79% of the time, participants judged that the last question they asked had a satisfying
answer only 57% of the time. We interpret this as evidence that inadequate responses from the QA
system can discourage participants from asking further questions.

7.8 Discussion
Overall, news podcasts in the conversational format were largely enjoyed, with almost 90% of
participants noting they would use our reference system again, compared to 63% for a podcast
based on reading unmodified news articles. Currently, automating the podcast by using neural
network-based methods to generate summaries, questions and ordering the content causes a loss in
quality when compared to manual curation; however, most listeners still enjoy the podcast, with
80% of QA Best participants stating they would use the podcast again. Continual improvements in
NLP technology will gradually reduce this gap, facilitating the construction of automated audio
content for the news and other domains.

Listeners of podcasts are interested in interacting with audio content, with a majority of listeners
interrupting the podcast to ask a question when the option is available. Including appropriate
silences and invitations to participate in the podcast script is essential to increasing interaction, as in
our study this increased the proportion of participants asking questions from 55% to 85%. Though
powerful, current question answering systems are still too limited and specific to deal with the
diversity of questions posed by listeners, and further engineering is required to enable satisfying
interactions with the listener.

The usability studies of our system illustrate the potential of audio interfaces to increase in-depth
news engagement: in a few minutes and potentially while performing another activity, a listener can
obtain detailed information about topics of their choice, from a potentially diverse set of sources.
At any point, the listener can join the conversation and ask questions, clarifying unclear aspects,
and steering the discussion dynamically.

7.9 Limitations
At the desk setting. In our current usability studies, our participants were predominantly using
laptop computers, most likely at a desk. A desk environment is advantageous, as it provides a better
sound system, but is not representative of the large portion of environments for podcast listening
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[107]. Further studies of the usability of NewsPod in the car, or while walking, cooking, or doing
other everyday activities could shine light on other advantages and limitations of the system.

Amazon Mechanical Turk population bias. Even though recruiting through a crowd-sourcing
platform typically leads to more representative participants than on-site recruitment (e.g. undergrad-
uate students at our university) [9], the crowd-sourced population differs from the U.S. population
on many metrics (e.g., age, gender, income level) [65] which would likely have an impact on our
results.

Imperfect Speech and Q&A systems. Recent work [17] has shown that modern text-to-speech
has approached, but not achieved, recorded human speech in quality, and around 15% of our
participants stated in their open feedback that low speech quality was noticeable. Similarly, our
Q&A system was not able to provide satisfying answers to a majority of the participants’ questions.
These imperfect components most certainly had a negative impact on participants’ evaluation of the
system; however, we did not measure the extent of these effect.

7.10 Future Work
Adapting to user interactions. When a listener asks a specific question, the systems attempts to
answer, and then immediately resumes the previous planned section. However, it is likely that an
interaction should lead to changes later on in the podcast, as it might have answered questions
further down in the section, or should lead to follow-ups that would interest the listener more.

Customizing to repeat listeners. A news podcast is an opportunity for a conversational
interaction with the listener. The ability to remember prior podcasts, and integrating them seamlessly
into the generation of future podcasts could lead to exciting interactions: “Hey Robin, we talked
about Brexit last Wednesday, and here’s the update since then...”.

Including Sound and Music. Studies have shown the effectiveness of musical communication
in cinema [92], and more recent work [149] has shown that adding music and sounds to audio-books
increases transportation and fear effects in listeners, both for human-recorded and automated audio-
books. For automated news podcasts, music and sounds could be effective communication tools,
and help soften perceptibility of automated speech flaws.

7.11 Conclusion
This chapter introduced NewsPod, an interactive and automated news podcast. NewsPod organizes
news content into a simulated conversation in which several automated voices ask and answer
questions about a topic. The listener can at any point join the conversation by asking a question,
which the system attempts to answer automatically. We evaluated the Q&A narrative style in
NewsPod through a usability study and found it led to participants finding the content more
enjoyable and less monotonous, with more than 80% of the participants saying they would use
the system again to stay informed on the news. A second usability study, centered on participant
interactions, reveals that when appropriate breaks are included in the podcast, 85% of listeners ask
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questions and interact with the podcast. Participant-prompted questions are found to be diverse,
with a majority tripping up current neural network-based question-answering models, reflecting
current limitations in natural language processing. This alternative approach to news consumption
may eventually serve to broaden the base of users who engage deeply with the news.
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Chapter 8

Conclusion

In this thesis, I propose new unsupervised methods to approach problems such as summarization
and simplification, circumventing the large data requirements of prior work. I then turn my attention
to the use of NLP technology in the practical setting of building news reading interfaces. I first
reflect over the contributions so far and then discuss possible directions for future work.

8.1 Reflection
In this section, I reflect on the work completed during the last five years. I go over some of the
challenges and the high-level lessons learned.

1. Approaching text generation tasks such as summarization and simplification in an un-
supervised way is possible. By explicitly defining attributes of a desired generation, models
can be trained with reinforcement learning to maximize such attributes. Unsupervised learn-
ing is desirable in situations where data is unavailable, but it can also be valuable in cases
when data is limited, as we show in Section 2.5 of the Summary Loop chapter. One caveat is
that text generators trained with reinforcement learning tend to find shortcuts for high-reward
solutions; much of the recipe to success of the Summary Loop and Keep it Simple are in the
iterative debugging and improvement of the reward components. One example of such minor
improvements is the reward guardrails defined to avoid degenerate solutions, forcing the text
generator to stay in an acceptable domain of solutions. I particularly enjoyed training text
generators, and learning to out-maneuver the undesirable solutions found by the generators,
sometimes being surprised and even amused at the generator’s “creativity”.

2. As NLP models become more general, transfer learning becomes within reach, but
requires careful attention and tuning. Many NLP tasks, such as natural language inference,
question answering or summarization are framed as very general tasks. Early in the Ph.D.
however, it was often the case that models achieving high performance in one domain would
see sharp degradation when applied to another domain. This gradually changed, for example
with the famously adaptable BERT [30] model. There are many examples of models becoming
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more general, for example in summarization with the PEGASUS model [175] setting a new
state-of-the-art in ten textual domains. In Chapter 4, I fulfill my objective of using out-of-
the-box NLI models for a practical application. Re-purposing models is particularly exciting,
as we show in Table 4.5 that progress in NLI leads to progress in Inconsistency Detection.
In another project not included in the thesis, I show with my co-authors that a text generator
trained to generate news headlines can be re-used in related tasks, such as headline grouping
[81].

3. Evaluating automated text generation models is immensely challenging, and a rapidly
evolving topic. In 2016, most summarization work limited evaluation to ROUGE scores [91],
and an occasional manual inspection. Soon after, direct crowd-sourced human evaluation
became common, for example measuring summary relevance, fluency, coherence and consis-
tency [42]. Seeing first-hand how these ratings can have large variance, and highly depend
on the quality of annotation of the crowd-workers, I got interested in an alternate human
evaluation paradigm based on the completion of a realistic tasks using the generated text.
The idea is that the quality of the generated text is tied to the ability of completing a task
better, faster, or with more ease for the participant. In Chapter 3.3, I successfully built such an
evaluation for text simplification, after several iterations on the protocol with my co-authors.
This is a step forward in task-based NLP evaluation, but much more remains to be done.

4. Complex visualizations can be daunting, and simple text-centric interfaces relying on
natural language for interaction are powerful. Early in the Ph.D., I built several interfaces
that contained rich visualizations, which were information dense, and could help a potential
reader get in-depth information at a glance. I realized that for the news domain, rich visual-
izations can be limiting, as they require training for proper use, and might not interest more
casual news readers. I became interested in building simple interfaces with a limited density
of information, and that can assist a person reading news through natural language queries. I
find that natural language interfaces allow an interface to be simple and yet interactive, and
often two readers learning about the same news story will quickly diverge and be exposed to
distinct content based on respective interest. As of now, natural language interfaces remain
limited in the queries they can handle, and often do not have appropriate error handling,
limitations that will hopefully be alleviated as NLP technology matures further.

8.2 Future Work
There are several directions that are natural extensions to the work presented in the thesis. I outline
two ideas of interest in unsupervised text generation, and two ideas focused on improving human
evaluation of NLP-based models and interfaces.
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Future Work in Unsupervised Text Generation
Towards Consistent Text Generation. The models we obtain by training with the Summary Loop
and Keep it Simple procedures are affected by a common limitation in most current models for
text generation: they are not factually consistent. In SummaC, we take a first step in solving the
problem, by building a model that can detect the generated inconsistencies with high-precision.
However, detection of a problem is only a first step, and in order to close the loop and solve the
problem, the detection model can be included in the generation and/or training procedures to deter
inconsistent generation. I conducted basic experiments in this promising direction by incorporating
the SummaC model as a reward component of the KiS procedure to train a model. Trained models
tend to achieve a much improved consistency score (from around 0.25 on average to around 0.8
for a score ranging in [0, 1]), but inspection reveals this increase in score comes at the expense of
abstractiveness, with the text generator taking fewer risks, and not producing edits spanning full
sentences. This is a known limitation in text generation: abstractiveness so far comes at the cost
of factual consistency. The path towards truly abstractive and consistent text generators therefore
remains open.

Beyond the News Domain for Text Generation. Text generations experiments described
in this thesis were conducted solely on English news data. This deliberate choice was made
for several reasons. First, news is the most developed domain in summarization, due to the
existence of large datasets (CNN/DM, Newsroom), which means that aligning to this domain would
facilitate comparison with prior work. Second, I have a particular interest in the news domain, and
aligning the domains of the text generation portion of the thesis and the interfaces we built created
possibilities for synergies: for example some Summary Loop generated summaries were included
in the NewsChat user-study interfaces. Nevertheless, the main appeal of the unsupervised methods I
describe is that they can be applied to a domain and language without the presence of aligned data.
Exploring the performance of the Summary Loop and Keep it Simple on novel domains deserves
attention. Examples of particular interest are to apply the Summary Loop to a new language (e.g.,
Estonian summarization), or applying Keep it Simple to legal text (such as legislative bills). Initial
experiments in both reveal that applying the reward functions from the English news setting achieve
limited success, and adaptation of the rewards is necessary.

Future Work Human Evaluation and NLP
Task-based Human Evaluation of Text Generation Models. NLP evaluation is still mostly
performed through automatic, n-gram overlap based metrics, such as ROUGE, BLEU or SARI.
There are known limitations to the metrics, yet they remain ubiquitous (including in our Summary
Loop and Keep it Simple chapters). A proposed replacement has been direct human evaluation,
by asking crowd-workers to evaluate generated texts with a Likert scale along several dimensions
(for instance asses the fluency, relevance and coherence of a summary on a 5-point Likert scale).
However, in Clark et al. [25]’s words, “all that’s human is not gold”, and obtaining high-quality
labels from an untrained, heterogeneous crowd is challenging. In Chapter 3, we take the first steps
towards a task-based human evaluation for text simplification: crowd participants are given a text
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comprehension task to complete, and we measure whether simplified texts lead to a statistically
significant speed-up in the completion of the task. After several iterations on the task, we succeeded
in finding signal, in that most generated text from simplified models lead to a speedup, with varying
effects depending on the model. By directly evaluating whether the generated text can help achieve a
task objective in a concrete setting, we can improve the credibility of model performance. Expanding
this work to other text generation tasks, such as summarization or question generation, and defining
clear, repeatable task protocols merits attention as a viable avenue for text generation evaluation.

Going longitudinal in human evaluation of NLP-powered interfaces. Most of the human
evaluation performed in this thesis were short term, often packaged as a 20 minute task or less.
This choice enables us to lower the cost paid to each participant, in turn allowing us to increase
the participant population size, in order to reduce the variance in results. However this limits the
strength of results, as most participants experience a novelty effect when they are exposed to a
system. Performing a longitudinal study with the interfaces, for example over a period of two weeks,
with required daily use of the interface, might surface unexpected trends, and reveal whether some
of the advanced NLP-based functionalities remain in use beyond the first few interactions.
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[78] Miloš Krstajić et al. “Story Tracker: Incremental visual text analytics of news story develop-
ment”. In: Information Visualization 12.3-4 (2013), pp. 308–323.

[79] William H Kruskal and W Allen Wallis. “Use of ranks in one-criterion variance analysis”.
In: Journal of the American statistical Association 47.260 (1952), pp. 583–621.

http://unfiltered.news/
https://www.washingtonpost.com/lifestyle/kidspost/librarians-find-creative-ways-to-serve-kids-when-buildings-are-closed-for-browsing/2020/09/22/fd6f2db4-f9b6-11ea-a275-1a2c2d36e1f1_story.html
https://www.washingtonpost.com/lifestyle/kidspost/librarians-find-creative-ways-to-serve-kids-when-buildings-are-closed-for-browsing/2020/09/22/fd6f2db4-f9b6-11ea-a275-1a2c2d36e1f1_story.html
https://www.washingtonpost.com/lifestyle/kidspost/librarians-find-creative-ways-to-serve-kids-when-buildings-are-closed-for-browsing/2020/09/22/fd6f2db4-f9b6-11ea-a275-1a2c2d36e1f1_story.html
https://www.washingtonpost.com/lifestyle/kidspost/librarians-find-creative-ways-to-serve-kids-when-buildings-are-closed-for-browsing/2020/09/22/fd6f2db4-f9b6-11ea-a275-1a2c2d36e1f1_story.html


BIBLIOGRAPHY 134

[80] Wojciech Kryscinski et al. “Evaluating the Factual Consistency of Abstractive Text Sum-
marization”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2020, pp. 9332–9346.

[81] Philippe Laban, Lucas Bandarkar, and Marti A Hearst. “News Headline Grouping as a
Challenging NLU Task”. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.
2021, pp. 3186–3198.

[82] Philippe Laban, John Canny, and Marti A Hearst. “What’s The Latest? A Question-driven
News Chatbot”. In: Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations. 2020, pp. 380–387.

[83] Philippe Laban and Marti A Hearst. “newsLens: building and visualizing long-ranging news
stories”. In: Proceedings of the Events and Stories in the News Workshop. 2017, pp. 1–9.

[84] Philippe Laban et al. “The Summary Loop: Learning to Write Abstractive Summaries
Without Examples”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, July 2020, pp. 5135–
5150. DOI: 10.18653/v1/2020.acl-main.460. URL: https://www.aclweb.org/
anthology/2020.acl-main.460.

[85] Philippe Laban et al. “The Summary Loop: Learning to Write Abstractive Summaries
Without Examples”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). to appear. 2020.

[86] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. “Alexa, are you listening?
privacy perceptions, concerns and privacy-seeking behaviors with smart speakers”. In:
Proceedings of the ACM on Human-Computer Interaction 2.CSCW (2018), pp. 1–31.

[87] Kwan Min Lee and Clifford Nass. “The multiple source effect and synthesized speech:
Doubly-disembodied language as a conceptual framework”. In: Human communication
research 30.2 (2004), pp. 182–207.

[88] Mike Lewis et al. “Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension”. In: arXiv preprint arXiv:1910.13461 (2019).

[89] Sophie Lewis. “NASA Curiosity rover celebrates 3,000th day on Mars with stunning
panorama of planet”. In: CBS News (2021). URL: https://www.cbsnews.com/news/
nasa-curiosity-rover-celebrates-3000-day-mars-panorama/.

[90] Haoran Li et al. “Ensure the correctness of the summary: Incorporate entailment knowl-
edge into abstractive sentence summarization”. In: Proceedings of the 27th International
Conference on Computational Linguistics. 2018, pp. 1430–1441.

[91] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text sum-
marization branches out. 2004, pp. 74–81.

[92] Scott D. Lipscomb and David E. Tolchinsky. “The role of music communication in cinema”.
In: Musical communication (2005), pp. 383–404.

https://doi.org/10.18653/v1/2020.acl-main.460
https://www.aclweb.org/anthology/2020.acl-main.460
https://www.aclweb.org/anthology/2020.acl-main.460
https://www.cbsnews.com/news/nasa-curiosity-rover-celebrates-3000-day-mars-panorama/
https://www.cbsnews.com/news/nasa-curiosity-rover-celebrates-3000-day-mars-panorama/


BIBLIOGRAPHY 135

[93] Y. Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: ArXiv
abs/1907.11692 (2019).

[94] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv
preprint arXiv:1907.11692 (2019).

[95] Mark Lochrie et al. “Designing immersive audio experiences for news and information in the
internet of things using text-to-speech objects”. In: Proceedings of the 32nd International
BCS Human Computer Interaction Conference 32. 2018, pp. 1–5.

[96] Allan MacLean et al. “Questions, options, and criteria: Elements of design space analysis”.
In: Human–computer interaction 6.3-4 (1991), pp. 201–250.

[97] Valerie R Mariana. The Multidimensional Quality Metric (MQM) framework: A new frame-
work for translation quality assessment. Brigham Young University, 2014.

[98] Louis Martin et al. “Controllable Sentence Simplification”. In: Proceedings of The 12th
Language Resources and Evaluation Conference. 2020, pp. 4689–4698.

[99] R. Mayer et al. “A Personalization Effect in Multimedia Learning: Students Learn Bet-
ter When Words Are in Conversational Style Rather Than Formal Style.” In: Journal of
Educational Psychology 96 (2004), pp. 389–395.

[100] Joshua Maynez et al. “On faithfulness and factuality in abstractive summarization”. In:
arXiv preprint arXiv:2005.00661 (2020).

[101] Rada Mihalcea and Paul Tarau. “Textrank: Bringing order into text”. In: Proceedings of the
2004 conference on empirical methods in natural language processing. 2004, pp. 404–411.

[102] D. Moldovan et al. “The Structure and Performance of an Open-Domain Question Answer-
ing System”. In: ACL. 2000.

[103] R. Moreno and R. Mayer. “Engaging students in active learning: The case for personalized
multimedia messages.” In: Journal of Educational Psychology 92 (2000), pp. 724–733.

[104] Ramesh Nallapati et al. “Abstractive Text Summarization using Sequence-to-sequence
RNNs and Beyond”. In: CoNLL 2016 (2016), p. 280.

[105] Feng Nan et al. “Improving Factual Consistency of Abstractive Summarization via Question
Answering”. In: arXiv preprint arXiv:2105.04623 (2021).

[106] Shashi Narayan, Shay B Cohen, and Mirella Lapata. “Don’t Give Me the Details, Just the
Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization”. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
2018, pp. 1797–1807.

[107] Nic Newman. Podcasts: Who, Why, What, and Where? 2020. URL: https://www.
digitalnewsreport . org / survey / 2019 / podcasts - who - why - what - and -

where/.

[108] Yixin Nie et al. “Adversarial NLI: A new benchmark for natural language understanding”.
In: arXiv preprint arXiv:1910.14599 (2019).

https://www.digitalnewsreport.org/survey/2019/podcasts-who-why-what-and-where/
https://www.digitalnewsreport.org/survey/2019/podcasts-who-why-what-and-where/
https://www.digitalnewsreport.org/survey/2019/podcasts-who-why-what-and-where/


BIBLIOGRAPHY 136

[109] Nikola I Nikolov and Richard HR Hahnloser. “Abstractive Document Summarization
without Parallel Data”. In: arXiv preprint arXiv:1907.12951 (2019).

[110] Kent L Norman et al. “Questionnaire for user interaction satisfaction”. In: University of
Maryland (Norman, 1989) Disponıével em (1998).

[111] NPR and Edison Research. The Smart Audio Report. Tech. rep. National Public Media, 2020.
URL: https://www.nationalpublicmedia.com/insights/reports/smart-
audio-report/.

[112] Tim O’Keefe et al. “A sequence labelling approach to quote attribution”. In: Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning. Association for Computational Linguistics.
2012, pp. 790–799.

[113] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv preprint
arXiv:1609.03499 (2016).

[114] Artidoro Pagnoni, Vidhisha Balachandran, and Yulia Tsvetkov. “Understanding Factuality
in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics”. In:
NAACL. 2021.

[115] Liangming Pan et al. “Recent Advances in Neural Question Generation”. In: ArXiv abs/1905.08949
(2019).

[116] Kishore Papineni et al. “BLEU: a method for automatic evaluation of machine translation”.
In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics.
2002, pp. 311–318.

[117] Ankur Parikh et al. “A Decomposable Attention Model for Natural Language Inference”. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
2016, pp. 2249–2255.

[118] Ramakanth Pasunuru and Mohit Bansal. “Multi-Reward Reinforced Summarization with
Saliency and Entailment”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers). 2018, pp. 646–653.

[119] Romain Paulus, Caiming Xiong, and Richard Socher. “A Deep Reinforced Model for
Abstractive Summarization”. In: Proceedings of ICLR. 2018.

[120] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[121] Silvia Pfeiffer. “The Ogg Encapsulation Format Version 0”. In: RFC 3533 (Informational)
(2003). URL http://www.ietf.org/rfc/rfc3533.txt. 2003.

[122] Gevorg Poghosyan and Georgiana Ifrim. “Real time News Story Detection and Tracking
with Hashtags”. In: Computing News Storylines Workshop at EMNLP 2016, Austin, Texas.
Nov. 2016.

https://www.nationalpublicmedia.com/insights/reports/smart-audio-report/
https://www.nationalpublicmedia.com/insights/reports/smart-audio-report/


BIBLIOGRAPHY 137

[123] Horst Pöttker. “News and its communicative quality: The inverted pyramid—when and why
did it appear?” In: Journalism Studies 4.4 (2003), pp. 501–511.

[124] Bruno Pouliquen, Ralf Steinberger, and Clive Best. “Automatic detection of quotations in
multilingual news”. In: Proceedings of Recent Advances in Natural Language Processing.
2007, pp. 487–492.

[125] Bruno Pouliquen, Ralf Steinberger, and Olivier Deguernel. “Story tracking: linking similar
news over time and across languages”. In: Proceedings of the workshop on Multi-source
Multilingual Information Extraction and Summarization. Association for Computational
Linguistics. 2008, pp. 49–56.

[126] Weizhen Qi et al. “ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-
training”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: Findings. 2020, pp. 2401–2410.

[127] Jipeng Qiang et al. “Lexical simplification with pretrained encoders”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34. 05. 2020, pp. 8649–8656.

[128] Alec Radford et al. “Language models are unsupervised multitask learners”. In: (2019).

[129] Pranav Rajpurkar, Robin Jia, and Percy Liang. “Know What You Don’t Know: Unanswer-
able Questions for SQuAD”. In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). 2018, pp. 784–789.

[130] Juan Enrique Ramos. “Using TF-IDF to Determine Word Relevance in Document Queries”.
In: 2003.

[131] Siva Reddy, Danqi Chen, and Christopher D Manning. “Coqa: A conversational question
answering challenge”. In: Transactions of the Association for Computational Linguistics 7
(2019), pp. 249–266.

[132] Siva Reddy, Danqi Chen, and Christopher D. Manning. “CoQA: A Conversational Question
Answering Challenge”. In: Transactions of the Association for Computational Linguistics 7
(2019), pp. 249–266.

[133] Steven J Rennie et al. “Self-critical sequence training for image captioning”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 7008–7024.

[134] Tom Rosenstiel et al. “How Americans get their news”. In: American Press Institute (2014).
URL: https://www.americanpressinstitute.org/publications/reports/
survey-research/how-americans-get-news/.

[135] Harshita Sahijwani, Jason Ingyu Choi, and Eugene Agichtein. “Would You Like to Hear the
News?: Investigating Voice-Based Suggestions for Conversational News Recommendation”.
In: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval
(2020).

[136] Julian Salazar et al. “Masked Language Model Scoring”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 2020, pp. 2699–2712.

https://www.americanpressinstitute.org/publications/reports/survey-research/how-americans-get-news/
https://www.americanpressinstitute.org/publications/reports/survey-research/how-americans-get-news/


BIBLIOGRAPHY 138

[137] Tal Schuster, Adam Fisch, and Regina Barzilay. “Get Your Vitamin C! Robust Fact Verifi-
cation with Contrastive Evidence”. In: Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2021, pp. 624–643.

[138] Thomas Scialom et al. “Answers Unite! Unsupervised Metrics for Reinforced Summariza-
tion Models”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 2019, pp. 3237–3247.

[139] Thomas Scialom et al. “Questeval: Summarization asks for fact-based evaluation”. In: arXiv
preprint arXiv:2103.12693 (2021).

[140] Abigail See, Peter J Liu, and Christopher D Manning. “Get To The Point: Summarization
with Pointer-Generator Networks”. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1. 2017, pp. 1073–
1083.

[141] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. “Trains of thought: Generating information
maps”. In: Proceedings of the 21st international conference on World Wide Web. ACM.
2012, pp. 899–908.

[142] Dafna Shahaf et al. “Information cartography: creating zoomable, large-scale maps of
information”. In: Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2013, pp. 1097–1105.

[143] Eva Sharma, Chen Li, and Lu Wang. “BIGPATENT: A Large-Scale Dataset for Abstractive
and Coherent Summarization”. In: ACL. 2019.

[144] Jonathan Shen et al. “Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2018, pp. 4779–4783.

[145] Ben Shneiderman. “The limits of speech recognition”. In: Communication ACM 43 (2000),
pp. 63–65.

[146] Malbert Smith et al. “The Lexile Framework for Reading: An Introduction to What It Is and
How to Use It”. In: 2016.

[147] Robyn Speer et al. LuminosoInsight / wordfreq: v2.2. doi.org/10.5281/zenodo.1443582. Oct.
2018. DOI: 10.5281/zenodo.1443582.

[148] Felix Stahlberg and Shankar Kumar. “Seq2Edits: Sequence Transduction Using Span-level
Edit Operations”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2020, pp. 5147–5159.

[149] Sophia C. Steinhaeusser, Philipp Schaper, and Birgit Lugrin. “Comparing a Robotic Story-
teller versus Audio Book with Integration of Sound Effects and Background Music”. In:
Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction
(2021).

https://doi.org/10.5281/zenodo.1443582


BIBLIOGRAPHY 139

[150] Xingwu Sun et al. “Answer-focused and position-aware neural question generation”. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
2018, pp. 3930–3939.

[151] Sai Surya et al. “Unsupervised Neural Text Simplification”. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. 2019, pp. 2058–2068.

[152] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems. 2014, pp. 3104–3112.

[153] Russell Swan and James Allan. “Automatic generation of overview timelines”. In: Proceed-
ings of the 23rd annual international ACM SIGIR conference on Research and development
in information retrieval. ACM. 2000, pp. 49–56.

[154] Xavier Tannier and Frédéric Vernier. “Creation, Visualization and Edition of Timelines
for Journalistic Use”. In: Proceedings of Natural Language meets Journalism Workshop at
IJCAI 2016. New York, USA, July 2016.

[155] Paul Taylor and Amy Isard. “SSML: A speech synthesis markup language”. In: Speech
communication 21.1-2 (1997), pp. 123–133.

[156] S Rebecca Thomas and Sven Anderson. “WordNet-based lexical simplification of a docu-
ment.” In: KONVENS. 2012, pp. 80–88.

[157] James Thorne et al. “FEVER: a Large-scale Dataset for Fact Extraction and VERification”.
In: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
2018, pp. 809–819.

[158] Adam Trischler et al. “NewsQA: A Machine Comprehension Dataset”. In: Proceedings of
the 2nd Workshop on Representation Learning for NLP. 2017, pp. 191–200.

[159] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems. 2017, pp. 5998–6008.

[160] Jesse Vig et al. “SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for
Text Summarization”. In: arXiv preprint arXiv:2104.07605 (2021).

[161] Piek Vossen, Tommaso Caselli, and Yiota Kontzopoulou. “Storylines for structuring massive
streams of news”. In: Proceedings of the First Workshop on Computing News Storylines.
2015, pp. 40–49.
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