
Co-design of�Algorithms, Hardware, and Scheduling

for Deep Learning Applications

Qijing Huang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-202

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-202.html

August 16, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Co-design of Algorithms, Hardware, and Scheduling for Deep Learning Applications

by

Qijing Huang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Wawrzynek, Chair
Professor Yakun Sophia Shao
Professor Joseph E. Gonzalez

Doctor Aravind Kalaiah

Summer 2021

Co-design of Algorithms, Hardware, and Scheduling for Deep Learning Applications

Copyright 2021
by

Qijing Huang

1

Abstract

Co-design of Algorithms, Hardware, and Scheduling for Deep Learning Applications

by

Qijing Huang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John Wawrzynek, Chair

For decades, ever-increasing computing power has been a driving force behind many technology
revolutions, including the recent advances in artificial intelligence. However, due to the
slowing of integrated circuit process scaling, for system architects to continue to satisfy the
ever-growing compute appetite of today’s applications, they must now resort to employing
heterogeneous systems with specialized accelerators.

Building these accelerator systems, though, is extremely expensive and time-consuming. First,
the development cycle for hardware is notoriously long, making it difficult to keep up with the
rapid progress in algorithms. Meanwhile, existing compilers are incapable of navigating the
intractable mapping space exposed by the novel accelerator architectures. Lastly, algorithms
are often designed without hardware efficiency as a key metric, and therefore, pose extra
challenges in designing efficient hardware.

This thesis tackles the significant challenges in jointly designing and optimizing algorithms,
scheduling, and hardware designs for acceleration. We aim to advance the state-of-the-
art through a three-pronged approach: the development of methodologies and tools that
automatically generate accelerator systems from high-level abstractions, shortening the
hardware development cycle; the adaptation of machine learning and other optimization
techniques to improve accelerator design and compilation flows; and the co-design of algorithms
and accelerators to exploit more optimization opportunities.

The target application domain of this thesis is deep learning which has achieved unprecedented
success in a wide range of tasks such as computer vision, neural language processing, etc. As
intelligent devices prevail, deep learning is foreseeably becoming a major computation demand
in our everyday life. Therefore, by performing end-to-end system optimization with hardware
acceleration, the dissertation aims to unleash the ubiquitous adoption of cutting-edge deep
learning algorithms to transform various aspects of life.

i

To my parents Shaobin and Lianhua, who taught me about love and faith.
To my friends, who taught me that giving is receiving.

ii

Contents

Contents ii

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Challenges and Opportunities . 2
1.2 Thesis Contributions . 3

1.2.1 Hardware and Software Co-Design . 3
1.2.2 Algorithm and Hardware Co-Design 4
1.2.3 Scheduling and Hardware Co-Design 4
1.2.4 Machine Learning for Hardware . 5

2 Hardware and Software Co-Design 6
2.1 Accelerator Design Methodology . 6
2.2 Background and Motivation . 7

2.2.1 Related Work . 8
2.3 Centrifuge Overview . 9
2.4 Centrifuge Design Flow . 9

2.4.1 Generating a Base SoC with Rocket Chip 10
2.4.2 Integrating Accelerators into the SoC 11

2.4.2.1 RoCC Accelerators . 11
2.4.2.2 TileLink-attached accelerators 11
2.4.2.3 Network-attached accelerators 12

2.4.3 Generating Accelerators with Vivado HLS 12
2.4.4 Generating the software stack for a complete SoC 13

2.4.4.1 Running Bare-metal . 13
2.4.4.2 Running on Linux . 14

2.5 Centrifuge Case Studies . 14
2.5.1 Smart-House Hub . 16

2.5.1.1 Evaluating the Baseline Application 16

iii

2.5.1.2 Generating Accelerators . 17
2.5.1.3 Evaluating Accelerators . 17
2.5.1.4 Continue Hardware and Software Development 18

2.5.2 Distributed Matrix Multiplication Accelerator 18
2.5.3 Deep Learning Accelerators . 21

2.5.3.1 Design for New Algorithms 21
2.5.3.2 Distributed Accelerators . 22

2.5.4 Graph Accelerator . 22
2.6 Parallel Abstraction for HLS . 25

2.6.1 Communicating Sequential Processes 25
2.6.2 Go-to-Verilog HLS . 25
2.6.3 Discussion . 27

2.7 Conclusion . 27

3 Algorithm and Hardware Co-Design 28
3.1 Co-design for Image Classification . 30
3.2 Synetgy Background and Motivation . 30

3.2.1 Efficient CNN Models . 30
3.2.2 CNN Quantization . 31
3.2.3 Hardware Designs . 31

3.3 Synetgy CNN Design . 32
3.3.1 ShuffleNetV2 . 32
3.3.2 DiracDeltaNet . 34
3.3.3 CNN Quantization . 38

3.4 Synetgy Hardware Design . 40
3.4.1 The accelerator architecture . 40

3.4.1.1 Dataflow Architecture . 41
3.4.1.2 Convolution Unit . 42
3.4.1.3 Conversion Unit . 44
3.4.1.4 Pooling Unit . 45
3.4.1.5 Shift Unit . 45
3.4.1.6 Shuffle Unit . 45
3.4.1.7 Fully Connected Unit . 45

3.4.2 Software . 45
3.5 Synetgy Experimental Results . 46
3.6 Co-design for Object Detection . 48
3.7 CoDeNet Background and Motivation . 50

3.7.1 Object Detection . 50
3.7.2 Deformable Convolution . 51
3.7.3 Algorithm-hardware Co-design for Object Detection 53
3.7.4 Quantization . 53

3.8 CoDeNet Deformable Operation Co-design 54

iv

3.8.1 Algorithm Modifications . 54
3.8.2 Hardware Optimizations . 57

3.9 CoDeNet Detection System Co-Design . 58
3.9.1 CoDeNet Neural Network Design . 58
3.9.2 Dataflow Accelerator . 61

3.10 CoDeNet Experimental Results . 64
3.11 Conclusion . 66

4 Scheduling and Hardware Co-design 68
4.1 Hardware-Aware Scheduling . 68
4.2 Background and Motivation . 70

4.2.1 DNN Scheduling Space . 70
4.2.2 State-of-the-art Schedulers . 71

4.2.2.1 Brute-force Approaches . 71
4.2.2.2 Feedback-based Approaches 71
4.2.2.3 Constrained-optimization Approaches 72

4.3 The CoSA Framework . 74
4.3.1 CoSA Overview . 74

4.3.1.1 Target Workload . 75
4.3.1.2 Target Architecture . 75
4.3.1.3 Target Scheduling Decisions 76

4.3.2 CoSA Variables and Constants . 77
4.3.2.1 Variable Representation . 77
4.3.2.2 Constant Parameters . 79

4.3.3 CoSA Constraints . 80
4.3.3.1 Buffer Capacity Constraint 80
4.3.3.2 Spatial Resource Constraint 80

4.3.4 Objective Functions . 81
4.3.4.1 Utilization-Driven Objective 81
4.3.4.2 Compute-Driven Objective 81
4.3.4.3 Traffic-Driven Objective . 82
4.3.4.4 Overall Objective . 84

4.3.5 Limitation of CoSA . 84
4.4 Methodology . 85

4.4.1 Evaluation Platforms . 85
4.4.2 Baseline Schedulers . 86
4.4.3 Experiment Setup . 86

4.5 Evaluation . 87
4.5.1 Time to Solution . 87
4.5.2 Evaluation on Timeloop Performance and Energy Models 87

4.5.2.1 Performance . 88
4.5.2.2 Energy . 89

v

4.5.2.3 Objective Breakdown . 89
4.5.2.4 Different HW Architectures 89

4.5.3 Evaluation on NoC Simulator . 91
4.5.4 Evaluation on GPU . 92

4.6 Scheduling-Informed Hardware Design . 93
4.7 On-chip Memory Partitioning with CoSA . 93

4.7.0.1 Formulation . 93
4.7.0.2 Evaluation on On-chip Memory Partitioning 94

4.8 Conclusion . 94

5 Machine Learning for Hardware Design 96
5.1 Machine Learning for Phase Ordering . 96
5.2 Background and Motivation . 99

5.2.1 Compiler Phase-ordering . 99
5.2.2 Reinforcement Learning Algorithms 100
5.2.3 Evolutionary Algorithms . 101

5.3 AutoPhase Framework for Automatic Phase Ordering 102
5.3.1 HLS Compiler . 102
5.3.2 Clock-cycle Profiler . 103
5.3.3 IR Feature Extractor . 103
5.3.4 Random Program Generator . 104
5.3.5 Overall Flow of AutoPhase . 104

5.4 Correlation of Passes and Program Features 104
5.4.1 Importance of Program Features . 106
5.4.2 Importance of Previously Applied Passes 108

5.5 Problem Formulation . 108
5.5.1 The RL Environment Definition . 108
5.5.2 Applying Multiple Passes per Action 109
5.5.3 Normalization Techniques . 109

5.6 Evaluation . 109
5.6.1 Performance . 109
5.6.2 Generalization . 111

5.7 Conclusions . 114

6 Discussion and Future Work 115
6.1 Discussion . 115

6.1.1 Co-design of algorithm, software, and hardware 115
6.1.2 Automatic Design and Verification Methodology 116
6.1.3 Machine Learning and Optimization for Hardware 117

6.2 Future Work . 117
6.2.1 Co-Design for Broader Applications 118
6.2.2 Programming Abstraction for Heterogeneous Systems 118

vi

6.2.3 Machine Learning and Optimization for Systems 118
6.3 Closing Remarks . 119

Bibliography 120

vii

List of Figures

2.1 Block Diagram of FireSim Simulating Centrifuge-generated SoC with Accelerators 10
2.2 Centrifuge HLS Flow, C to Acclerator RTL + Software Driver/Application . . . 13
2.3 RoCC Accelerators SpeedUp Compared to Software(* indicates accelerator with

pointer type inputs) . 15
2.4 Tilelink Accelerators with Linux Driver . 16
2.5 Different Coupling for vadd Accelerator . 16
2.6 Breakdown of key computational kernels in a hypothetical smart-house assis-

tant SoC. The top-3 accelerators for end-to-end performance are adpcm_encode,
gemm_256, and encrypt . 17

2.7 CPU Roofline Model . 19
2.8 Accelerator Roofline Model . 19
2.9 Scaling Efficiency . 20
2.10 DGEMM Runtime Breakdown for 1024×1024 Tiles 20
2.11 DiracDeltaNet . 21
2.12 Hardware Design . 21
2.13 Multi-node accelerators, connected via Ethernet 23

3.1 ShuffleNetV2 blocks vs. DiracDeltaNet blocks 33
3.2 Additive Skip Connections vs. Concatenative Skip Connections. Rectangles

represent data tensors. 34
3.3 3×3 Convolution vs. Shift. In 3×3 convolutions, pixels in a 3×3 region are

aggregated to compute one output pixel at the center position. In the shift
operation, a neighboring pixel is directly copied to the center position. 35

3.4 Using shift and 1×1 convolutions to replace 3×3 convolutions. This figure is
from [206]. 35

3.5 Transpose Based Shuffle (ShuffleNetV2) vs. Our HW Efficient Shuffle (DiracDeltaNet) 36
3.6 Quantization Grid . 38
3.7 Accelerator Architecture . 41
3.8 1×1 Convolution . 42
3.9 Pseudo Code for Kernel Compute Scheduling 43
3.10 Input Layout in DRAM . 44

viii

3.11 Deformable convolution with input-adaptive displacement offsets generation. De-
formable convolution in our design first generates the sampling offsets from the
input feature map a using a 1×1 convolution. Then it samples the same input
feature map based on the generated offsets and performs a 3×3 convolution to
aggregate the corresponding spatial features. 50

3.12 Example for the input-adaptive deformable convolution sampling locations and
offset range distribution for different active detection units. (a) the sampling
locations for the car as an active unit. (b) the sampling locations for lawn in the
background. 52

3.13 Major algorithm modifications for deformable convolution operational co-design.
(a) is the default 3×3 convolutional filter. (b) is the original deformable convolution
with unconstrained non-integer offsets. (c) sets an upper bound to the offsets. (d)
limits the geometry to a square shape. (e) shows that the predicted offsets are
rounded to integers. 55

3.14 Hardware engine for deformable convolution. 56
3.15 The architecture diagrams of our building blocks and model architecture.See

section 3.9.1 for more details. 59
3.16 The output heads of CenterNet for object detection. See section 3.9.1 for more

details. 60
3.17 Architectural diagram of the FPGA accelerator. 62
3.18 Latency-accuracy trade-off on VOC. 66

4.1 Execution latency histogram of 40K valid scheduling choices for a ResNet-50 layer on a
spatial accelerator. 70

4.2 DNN scheduling problem formulation with CoSA. CoSA takes 1) DNN layer dimen-
sions and 2) DNN accelerator parameters and expresses the scheduling problem into a
constrained optimization problem to produce a performant schedule in one shot. . . . 73

4.3 Performance comparison of schedules with different loop permutations for a convolution
operator with the layer dimensions of R = S = 3, P = Q = 8, C = 32, K = 1024. The
leftmost schedule (CKP) refers to a relative ordering where the input channel dimension
(C) is the outermost loop and the output height dimension (P) is the innermost loop.
Since this layer is weight-heavy, loop permutations that emphasize weight reuse, e.g.,
PCK and PKC, are more efficient. 75

4.4 Performance comparison of schedules with different spatial mappings for a convo-
lution operator with the layer dimensions of R = S = 1, P = Q = 16, C = 256,
K = 1024. Factors in s list are for spatial mapping, and factors in t list are
for temporal mapping. For example, s:P4C4,t:K4 represents a mapping where
a factor 4 of the P dimension and a factor 4 of the C dimension are mapped to
spatial execution in a system with 16 PEs, leaving K’s factor 4 to temporal mapping. 76

ix

4.5 Different traffic patterns based on the constant matrix A. The two figures (top)
show how the constant A encodes the traffic types (multicast, unicast, reduction)
for different data tensors from the global buffer to PEs. The figures on the bottom
show its implication on output tensor reduction traffics. 83

4.6 Speedup of different schedules relative to Random search on the baseline 4×4 NoC
architecture. X-axis labels follow the naming convention R_P_C_K_Stride where
S = R and Q = P in all workloads. CoSA achieves 5.2× and 1.5× higher geomean
speedup across four DNN workloads compared to the Random and Timeloop
Hybrid search. 88

4.7 Improvements in total network energy reported by the Timeloop energy model. Energy
estimations are normalized to results from Random search and are evaluated on the
baseline 4×4 NoC. 89

4.8 Objective function breakdown for ResNet-50 layer 3_7_512_512_1. The goal is to
minimize the total objective in Eq. 4.12. CoSA achieves the lowest values for all objective
functions on this layer among all approaches. 90

4.9 Speedup relative to Random search reported by Timeloop model on different
hardware architectures. CoSA’s performance generalizes across different hardware
architectures with different computing and on-chip storage resources. 90

4.10 Speedup reported by NoC simulator relative to Random search on the baseline 4×4
NoC architecture. CoSA achieves 3.3× and 2.5× higher geomean speedup across four
DNN workloads compared to the Random and Timeloop Hybrid search on the more
communication sensitive NoC simulator. 91

4.11 Speedup relative to TVM reported on K80 GPU. 92

5.1 A simple program to normalize a vector. 98
5.2 Progressively applying LICM (left) then inlining (right) to the code in Figure 5.1. 98
5.3 Progressively applying inlining (left) then LICM (right) to the code in Figure 5.1. 99
5.4 The block diagram of AutoPhase. The input programs are compiled to an LLVM

IR using Clang/LLVM. The feature extractor and clock-cycle profiler are used
to generate the input features (state) and the runtime improvement (reward),
respectively, from the IR. The program features and runtime improvement are fed
to the deep RL agent as input data to train on. The RL agent predicts the next
best optimization passes to apply. After convergence, the HLS compiler is used to
compile the LLVM IR to hardware RTL. 103

5.5 Heat map illustrating the importance of feature and pass indices. 106
5.6 Heat map illustrating the importance of indices of previously applied passes and

the new pass to apply. 107
5.7 Circuit Speedup and Sample Size Comparison. 111
5.8 Episode reward mean as a function of step for the original approach where we use

all the program features and passes and for the filtered approach where we filter
the passes and features (with different normalization techniques). Higher values
indicate faster circuit speed. 112

x

5.9 Circuit Speedup and Sample Size Comparison for deep RL Generalization. . . . 113

xi

List of Tables

2.1 Accelerator Performance (The workload size is represented as image_width ×
channel_depth) . 22

3.1 Macro-structure of DiracDeltaNet . 37
3.2 ShuffleNetV2-1.0x vs. DiracDeltaNet . 37
3.3 Quantization Result on DiracDeltaNet . 38
3.4 Notations . 41
3.5 Resource Usage . 46
3.6 Performance comparison of Synetgy and the previous works. 46
3.7 Frame Rate on Different Batch Size . 46
3.8 Runtime Analysis for the First and Last DiracDeltaNet Blocks in Different Oper-

ator Configurations (Batch=10) . 47
3.9 Ablation study of operation choices for object detection on VOC and COCO. The

top half shows the baselines with various kernel sizes, from 3×3 to 9×9. The
bottom half shows the comparison of different designs for deformable convolution. 55

3.10 Co-designed hardware performance comparison. The top half shows the perfor-
mance of codesigned hardware corresponding to each algorithmic changes to the
default 3×3 convolution. The bottom half shows the results for the depthwise
3×3 convolution. 57

3.11 Quantized CoDeNet on VOC object detection. 63
3.12 Quantized CoDeNet on COCO object detection. 64
3.13 Performance comparison with prior works. 65
3.14 FPGA resource utilization. 65

4.1 State-of-the-art DNN accelerator schedulers. 72
4.2 CoSA Notations. 77
4.3 Example binary matrix X representing a schedule. A checkmark in s, t indicates

spatial or temporal mapping. A checkmark in O0, ..., OZ indicates the rank for
loop permutation. In this schedule, the loop tile of size 3 from problem dimension
N is allocated within the GlobalBuf at the innermost loop level, assigned for
temporal execution. Both loop tiles from K are mapped to spatial resources. . . 78

xii

4.4 Constant binary matrices A (left) and B (right). A encodes how different layer
dimensions associate with data tensors. B encodes which data tensor can be
stored in which memory hierarchy. 79

4.5 The baseline DNN accelerator architecture. 85
4.6 Summary of DNN workloads used in this study 86
4.7 Time-to-solution Comparison. CoSA outputs only one valid schedule per layer.

CoSA’s runtime is 1.1× and 90× shorter than the Random and Timeloop Hybrid
search, respectively. 87

5.1 LLVM Transform Passes. 105
5.2 Program Features. 105
5.3 The observation and action spaces used in the different deep RL algorithms. . . 110

xiii

Acknowledgments

This thesis would not have been possible without the help, support, and guidance of many
wonderful individuals.

First and foremost, I want to thank my advisor, John Wawrzynek. My journey at Berkeley
would not have started without John, who recruited me to his research group. He has been
very kind and supportive and has taught me many important lessons in research and life. He
has frequently encouraged me to express my opinions and patiently listened to my immature
research thoughts in the early years. His patience makes it possible for me to mature as
an engineer and a researcher who can think critically and articulate ideas confidently. He
allowed me to pursue my interests without questioning my ability to work on new topics. His
trust and support have made my Ph.D. incredibly enjoyable and rewarding. His fundamental
and insightful research advice has taught me how to view and approach novel problems
in hardware design and computer architecture. Besides research, he truly cares about my
well-being and makes active efforts to create a friendly environment for me to thrive. I
learned to keep an easy mind in graduate school from the life wisdom he shared in various
conversations. I’m grateful to have John as my advisor and wish I could keep him as a
lifetime mentor and friend.

I would also like to express my gratitude to other faculty members at Berkeley, especially
Yakun Sophia Shao, Joseph Gonzalez, Kurt Keutzer, Krste Asanovic, James Demmel, Ion
Stoica, and Alan Mishchenko. Sophia has had numerous meetings with me to provide detailed
feedback and guidance for my research and career. She is an exceptional academic model
to me. Joey has always been very kind and resourceful. He has offered me a lot of helpful
advice for academic career development. Kurt has given me insightful feedback from the
machine learning perspective and set up a welcoming environment for collaboration with
his group. Krste has generously shared his experience in computer architecture and circuit
design. Jim has given me his detailed and helpful advice on optimization problems. Ion has
helped us proofread papers and recommended me good career development strategies. Alan
has discussed many of his high-impact projects with me and has helped broaden my horizon.
I appreciate all their time and effort in sharing their expertise with junior researchers like
me. Outside of school, I’m fortunate to have many amazing industrial mentors, who have
introduced me to challenging research problems, and generously shared their advice in various
areas of life and research: Aravind Kalaiah, Hamid Shojaei, Azade Nazi, Sat Chatterjee,
Shobha Vasudevan, Azalia Mirhoseini, Yuandong Tian, and Randy Huang. I want to thank
them for positively influencing me in various ways. I also want to give special thanks to
Aravind, Sophia, and Joey, for agreeing to be on my qualify and dissertation committee.

I’m thankful to have opportunities to collaborate with many bright and dedicated re-
searchers during graduate school time. I also would like to thank them for their contributions
to the projects:

1. On Algorithm-Hardware Co-design: Zhen Dong, Yizhao Gao, Bichen Wu, Yifan Yang,
Amir Golami, Dequan Wang, Zhewei Yao, Tianjun Zhang, Yaohui Cai, Tian Li. I

xiv

learned a great deal about the advancement in machine learning and computer vision
from them.

2. On High-Level Synthesis and Centrifuge: Christopher Yarp, Sagar Karandikar, Nathan
Pemberton, Benjamin Brock, Liang Ma, Guohao Dai, Robert Quitt, Shaoyi Cheng,
Tan Nguyen, Arya Reais-Parsi. They showed their exceptional engineering skills and
expertise in subjects including HLS, hardware, systems, and compilers.

3. On Machine Learning for Hardware and AutoPhase: Ameer Haj-Ali, William Moses,
John Xiang, Keertana Settaluri, Hasan Genc. It was a great pleasure exploring new
topics with these creative and productive individuals.

4. On integer linear programming and CoSA Scheduling: Grace Dinh, Josh Kang, Thomas
Norell, Charles Hong. I learned many optimization techniques from them.

My growth as a graduate student has been dependent on many of my colleagues who
generously share their compassion and technical expertise. I want to thank James Martin,
Angie Wang, David Biancolin, Howard Mao, Albert Magyar, Lisa Wu, Seah Kim, Adam
Izraelevitz, Dayeol Lee, Yang You, Marquita Ellis, Alon Amid, Albert Ou, Colin Schmidt,
Jerry Zhao, Gilbert Bernstein, and many others, for creating an inclusive lab and department
environment. I would like to express my gratitude to Kosta Ilov, who was always there to
help me with various infrastructure issues.

Outside of research, I gained tremendous support from my friends at Berkeley. I want to
thank Cecilia Zhang, Xin Wang, Tianjun Zhang, Zhewei Yao, Zixi Hu, Nathan Pemberton,
Ameer Haj-Ali, Sagar Karandikar, Paras Jain, Biye Jiang, Isla Yang, Alice Ye, Cindy Chen,
Jessica Zhou, Daniel Seita, Michael Chang, and Danyang Zhuo. I appreciate their company
in various activities, including the numerous boba trips. I also gain lots of care and love from
my IGSM friends: Sara Hong, Wenxia Lin, Jenny Chung, Grace Borja, and many others.

I’d also like to thank my friends from the University of Toronto: Angela Xu, Anqi Duan,
Joshua Chou, Chain Zhang, Jack Luo, Suya Liu, Jenny Ren, Jacky Liu, Lucia Xu, Dean
Xu, Xiang Chen. They showed extraordinary kindness to me, and I always think of them as
family. In addition, I want to thank my undergraduate research group, led by Prof. Jason
Anderson, for offering research opportunities for undergraduate students and being incredibly
encouraging and supportive to us.

I am extremely thankful to have the opportunity to interact with many extraordinary
individuals and form a community together. I might not have mentioned all of you here,
but you have made my journey full of fun and inspired me in various ways. Through you, I
learned that we are all connected people and that something we do will affect others. Moving
forward, I hope I could be like you and do my little things to enlighten the days of others.

Lastly, I cannot thank my family enough for their unceasing support and inspiration from
the beginning, in ways and depths that no words can express. They have taught me to work
hard, persevere, and seek truth in all circumstances.

1

Chapter 1

Introduction

I started my graduate study aiming to answer the following question:

How do we design the most efficient hardware possible?

Such a question would not be meaningful without defining the proper context. To start
the research, we first identified four necessary contexts for understanding efficient hardware
development.

Degree of Specializaton. The hardware efficiency is limited by the inherent workload
properties, i.e., whether general function support is required. The more functions to support,
the more complex the logic needs to be. There is a inherent trade-off between generality and
efficiency in hardware architecture design. General-purpose processors, such as CPU and
GPU, are Turing-complete and flexible enough to accomplish arbitrary functions. Accelerators,
contrarily, do not guarantee Turing completeness, and only support specific functions. The
benefits of specialization include minimization of overhead in control logic, more aggressive
domain-specific optimizations, etc. Given the same technology node and physical constraints,
accelerators can achieve a significant performance improvement compared to general-purpose
processors.

Development Cycle and Cost. The second context to consider is the expected time-
to-market and costs. Generally speaking, the more human hours and resources spent in
development, the more optimized the hardware is likely to be. However, too long of a
development cycle can cause the products to be irrelevant by the time they go on the market
because many applications are rapidly evolving. In addition, there is an associated non-
recurring engineering (NRE) cost that restricts the resources we can dedicate to hardware
design and optimization. As a result, we cannot assume unlimited time and resources for
hardware development.

End-to-end Systems. Hardware does not work in isolation. Its compatibility with
algorithms and software also significantly impacts the overall task execution performance
and efficiency. The commonly used hardware specifications (e.g., FLOPs, TOPs) do not
reflect the actual performance for running specific algorithms. Depending on the operational
intensity of the algorithm design, the peak hardware performance can differ. Similarly, we

CHAPTER 1. INTRODUCTION 2

cannot evaluate the hardware performance properly without an optimized software stack.
Therefore, in addition to improving the theoretical hardware peak performance, we should co-
consider the algorithm design and software optimization to achieve more powerful system-level
performance.

Target Application Domains. Different application domain presents different optimiza-
tion opportunities for exploiting parallelism and data locality. The theoretically attainable
speedup of different functions in an application is bounded by their inherent degrees of
parallelism and operational intensity. According to Amdahl’s law, the overall maximum
speedup for the application is limited by its non-parallelizable portion. Furthermore, the
popularity of the applications justifies whether it is cost-effective to develop specialized
hardware support for the application. We need to closely examine the achievable speedup,
cost, and demand for the application to make careful design tradeoffs.

1.1 Challenges and Opportunities
In this thesis, our target application domain is deep learning (DL). Deep learning has made
a revolutionary impact on numerous real-world applications, making it a staple workload
in modern-day computation. Since the major computation in deep learning comes from
a fixed set of operations, developing accelerators for DL has become feasible and popular.
DL accelerators have achieved remarkable advancement in performance in terms of latency,
throughput, power efficiency, etc. According to a Google paper [98], the TOPs per watt of
TPUv2 is 30 to 80 times better than the contemporary CPU or GPU. In this section, we
identify three challenges from the modern-day development of the deep learning acceleration
system.

Fast Algorithm Evolvement. The first challenge comes from the rapidly evolving
algorithms. There has been an explosion in deep learning algorithm designs since 2012 to suit
the needs of various tasks and deployment scenarios. The neural network structures have
become deeper with more complex and dynamic connections among layers [78,110,198,200,209].
According to the OpenAI’s AI Moore’s Law, the computation required by the largest AI
training doubles every 3.5 months, outpacing the actual hardware Moore’s Law [144]. The
time-to-market of deep learning accelerator is thus critical to its success. Hence, in addition to
the original goal of improving hardware efficiency, we think optimizing the overall development
cycle and design flow is as important.

Accuracy-driven Algorithm Design. Besides, algorithms are designed with task
accuracy as the key metric, paying secondary attention to their efficiency and compatibility
running on hardware. Meanwhile, the hardware designers often develop accelerators without
modifications to the algorithms. Such practice leaves a large room for improvement on the
table. Here, we notice an obvious optimization opportunity if we tailor the algorithm designs
to hardware features and co-optimize the algorithms and accelerators.

Intractable Scheduling Space. Another challenge stems from the more complex and
diverse deep learning algorithms and hardware accelerator designs. Scheduling, which maps

CHAPTER 1. INTRODUCTION 3

the algorithmic states to various hardware resources, has become both resource and time-
consuming. The scheduling space is exponentially increasing with the ever-growing complexity
of the algorithm and hardware designs. However, we must be able to navigate this intractable
search space as the best schedule and worst schedule can result in orders of magnitudes
difference in performance. Therefore, we should also pay attention to the software stack
optimization for finding schedules that maximize the overall system performance.

To refine the original research question, here is the topic this thesis aims to discuss:

How to develop the most efficient accelerator systems for deep learning in a timely
and cost-effective manner?

1.2 Thesis Contributions
This thesis advances the state-of-the-art through a three-pronged approach: 1) the devel-
opment of methodologies and tools that automatically generate accelerator systems from
high-level abstractions, shortening the hardware development cycle, 2) the co-design of
algorithms and accelerators to exploit more optimization opportunities, and 3) adaptation of
optimization and machine learning techniques to improve accelerator design and compilation
flows.

1.2.1 Hardware and Software Co-Design

In chapter 2, we introduce an automatic accelerator system generation flow to assist hardware
and software co-design in exploiting optimization opportunities. Design automation eliminates
mundane tasks and allows users to focus on tasks that are more challenging and creative.
The first step towards an intelligent design flow for hardware acceleration is to automatically
realize repetitious implementation details starting from a high-level abstraction, which can be
achieved via High-Level Synthesis (HLS). Taking a systems perspective, we have developed
an agile hardware development flow to automatically generate full-stack acceleration solutions
leveraging HLS.

Centrifuge: Auto RISC-V Accelerator-SoC Generation via HLS. Today’s systems-
on-chips (SoCs) contain a multitude of accelerators to optimize for common workloads.
However, this heterogeneity comes at the expense of increased hardware development time,
not only including the design of individual accelerators, but also the selection and evaluation
of the set of accelerators that should be included in a particular system. While analytical
modeling can provide early insights into a new system, they generally do not account for
effects that only manifest when an accelerator is integrated into a complex system. Therefore,
we developed a flow called Centrifuge [92] that rapidly produces complete SoC systems
with many integrated HLS-generated accelerators as specified by the user. It simulates the
design quickly and cycle-accurately on FPGAs and generates complete software stacks on
top, including Linux and full application frameworks. The generated accelerator system
can be emulated and run interactively on cloud FPGAs through a simulation infrastructure

CHAPTER 1. INTRODUCTION 4

we built called FireSim [102]. Both works allow for agile design-space exploration of novel
accelerator-based systems by enabling the users to easily explore and evaluate a variety of
accelerators with different integration techniques. To further relieve the design burden for
the user, we implemented Golang HLS, aiming to facilitate the use of FPGA accelerators for
parallel workloads by domain experts without any background in hardware.

1.2.2 Algorithm and Hardware Co-Design

Chapter 3 introduces the hardware and algorithm co-design we performed and the corre-
sponding observations. Deep Neural Networks (DNNs) have achieved unmatched accuracy in
computer vision tasks at the expense of increased computational requirements. To deploy
these computationally demanding DNNs in resource-constrained edge systems while satisfying
real-time requirements, we perform algorithm-hardware co-design to improve the efficiency
without compromising the accuracy. We had two works in co-designing the algorithms and
hardware for embedded FPGA accelerators. Both aim to answer the same question: what are
the most effective operations the hardware should support to achieve the highest efficiency
given a specific computer vision task?

Synetgy: Image Classification with Shift Operation. In this work [218], we studied
the existing algorithms and hardware design for image classification and found that the
shift operation can be as competitive as the spatial aggregation in convolution. We thus
co-designed a shift-only accelerator pipeline without any spatial convolution and achieved
the state-of-art framerate on an embedded FPGA.

CoDeNet: Object Detection with Input-Adaptive Deformable Convolution.
Unlike image classification, object detection problems are more sensitive to the spatial variance
of objects, and therefore, require specialized convolutions to aggregate spatial information.
To address this need, recent work introduces dynamic deformable convolution to augment
regular convolutions with learned input-dependent access patterns. In CoDeNet [157], we
developed a novel object detection pipeline with deformable convolutions. We performed a
set of algorithm modifications, including irregular-access versus limited-range and fixed-shape,
to allow for corresponding hardware improvements on a flexible hardware accelerator.

In both works, our high-efficiency accelerators solution reaches real-time inference speed
with a tiny high-accuracy model.

1.2.3 Scheduling and Hardware Co-Design

With the emergence of numerous DNN accelerators with diverse architectures, there is a need
for a fast, performant, and explainable approach to scheduling. As system design problems
come with constraints, explicitly expressing these constraints as part of an optimization
problem and solving the optimization allow us to decisively prune the search space. In chapter
4, we introduce a new optimization framework called CoSA [88] to schedule DNN accelerators
and co-optimize the accelerator design with scheduling.

CHAPTER 1. INTRODUCTION 5

CoSA: Constrained Optimization for Scheduling Accelerators. The motivation
for CoSA was to prune the invalid scheduling space that is commonly present for feedback-
driven or ML-based scheduling. CoSA leverages the regularities in DNN operators and
hardware to formulate the DNN scheduling space as a mixed-integer programming (MIP)
problem with algorithmic and architectural constraints, where it can automatically generate
a highly efficient schedule in a single pass. We demonstrated that our framework generates
schedules that significantly outperform the state-of-the-art approaches by 2.5× across a
wide range of DNN networks while improving the time-to-solution by 90× and the energy
efficiency by 22%. In addition, we extended CoSA to optimize the hardware design and
scheduling in unison and have seen promising results. The CoSA work presented a brand new
optimization framework to address the limitations of traditional polyhedral transformation
and showed significant improvement in the compilation time and performance over existing
ML or exhaustive search approaches.

1.2.4 Machine Learning for Hardware

In addition to developing acceleration systems for deep learning, we are also interested in
studying how to apply different machine learning techniques to challenging problems in
hardware design and compiler optimizations. In Chapter 5, we discuss AutoPhase [73,156],
one of our works in applying deep RL to compilers and exploring the possibility of transfer
learning with program features.

AutoPhase: Reinforcement Learning for Compiler Phase-Ordering. Prior solu-
tions to phase-ordering have relied on heuristics or hand engineering to tackle this NP-hard
problem. To achieve human-level performance, the compilers and design tools need to be
able to capture the optimization heuristics and make sequential decisions by learning the
important features of the programs and the underlying platforms. This behavior is attainable
with the recent advancements in deep reinforcement learning (RL). In AutoPhase [73, 156],
we formulate the problem as a Markov Decision Process (MDP) and solve it with RL. In our
approach, the state is the current program intermediate representation. The action is the
next pass to apply, and the reward is the improvement in the number of cycles. Augmented
with an HLS compiler, AutoPhase improves generated circuit performance by 28% compared
to using the -O3 compiler flag and shows promising results generalizing to thousands of
different randomly generated programs.

6

Chapter 2

Hardware and Software Co-Design

Due to the end of Moore’s law and classical scaling, architects today must resort to building
heterogeneous and specialized systems to continue to satisfy the ever-growing appetite for
compute of today’s applications. Today’s systems-on-chips (SoCs) contain a multitude of
accelerators to optimize for common workloads. Building and evaluating these systems
are extremely expensive and time-consuming, even in the early stages of development. In
addition, software integration and optimization for the accelerator SoC often come after the
chip tape-out, making it infeasible to modify the current hardware for critical performance
improvement. We start this work by asking: What is a good methodology for designing
accelerator SoCs that leads to 1) high end-to-end system performance, 2) low NRE costs,
and 3) short time-to-market?

In this chapter, we describe a methodology and implement an open-source flow (“Cen-
trifuge”) that can rapidly generate and evaluate heterogeneous SoCs by combining an HLS
toolchain with the open-source FireSim FPGA-accelerated simulation.

Our system can quickly produce complete SoC systems with many integrated HLS-
generated accelerators, simulate them quickly and cycle-accurately on FPGAs, and run
complete software stacks on top, including booting Linux and running full application
frameworks. By integrating these tools, our methodology allows users to rapidly generate an
entire hardware/software stack for a customized SoC and evaluate its end-to-end performance
using cycle-exact FPGA simulation, allowing for agile design-space exploration of novel
accelerator-based systems.

2.1 Accelerator Design Methodology
Modern SoC systems consist of general-purpose compute augmented with large numbers
of specialized accelerators. However, this heterogeneity comes at the expense of increased
hardware development time, not only including the design of individual accelerators, but also
the selection and evaluation of the set of accelerators that should be included in a particular
system. Early in the process of selecting a set of accelerators to include in a system, architects

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 7

frequently rely on high-level/abstract software modeling. While this kind of modeling is
sufficient for early design space exploration and saves the time of traditional cycle-accurate
modeling or RTL design entry, it generally does not account for effects that only manifest
when an accelerator is integrated into a complex system.

To achieve a greater level of detail in evaluation, architects frequently use cycle-accurate
full-system simulation platforms. These simulators span a wide range of design points, making
tradeoffs in simulation accuracy, simulation performance, and ease of use. Broadly speaking,
these simulators can be broken into software-based simulators and hardware-accelerated
simulators. In comparison with hardware-accelerated simulation, software-based simulation
is simpler to use, but requires significant modeling expertise and validation. Furthermore,
due to low simulation performance, software-based cycle-accurate simulation is unable to run
long-running workloads, which makes it difficult to determine if an accelerator is actually
beneficial when deployed in a system. In comparison, FPGA-accelerated simulators are able
to simulate systems at much higher simulation rates, but require specifying an accelerator
design by writing RTL, which drastically slows down early design-space exploration. With
either of these simulation techniques, a key hurdle is the fact that a design must be developed
and converted into RTL or a software model, which requires a significant time investment.

To bypass this issue, High-Level Synthesis (HLS) tools have been developed, which allow
users to specify designs in a more software-centric manner but produce an RTL design that
can later be used in hardware-accelerated simulation. While HLS tools have traditionally
been restricted to producing accelerators that run on FPGAs, recently there has been an
explosion in the use of HLS tools to generate and refine accelerator designs that are ultimately
integrated into a complex system and taped-out, including those at Google, NVIDIA, Bosch,
Qualcomm, etc [132]. A key advantage of using HLS to generate accelerators is that the
accelerators can be verified at the C-code level, and the HLS tool can be trusted to produce
correct output. Verification in this form is considerably faster and more productive than
traditional hardware verification [104].

2.2 Background and Motivation
With the increasing complexity of workload and systems in the datacenter, hardware-software
co-design is becoming critical to truly optimize full-systems. Several projects have explored
high-level modeling for accelerator design. Aladdin [176] is a software simulator that takes C
code as input and estimates performance, power, and area of a target accelerator design. The
program behavior is modeled with dynamic data dependence graphs (DDDG), which can be
generated from C code directly. This model assumes that all data can be preloaded into the
local scratchpads, which falls short for real designs with limited on-chip memory budget and
complex memory access patterns. [177] addresses this issue by extending Aladdin with the
gem5 full-system simulator [18] to provide support for simulating complex accelerator-system
interactions. This work shows that the pareto-optimal Energy-Delay Product (EDP) points
for accelerators evaluated in isolation differ from ones explored through full-system co-design.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 8

While this approach is fast and easy to deploy, detailed accelerator design insights are difficult
to gain as no true hardware is generated. Besides, its simulator speed (∼50KIPS) limits the
deployment of full-stack software, whereas in our system that runs at tens of MIPS [17,105],
the real impact of accelerators can be manifested at the application level. PARADE [40]
is another extension to gem5 that leverages HLS to generate accurate accelerator models
for accelerator-rich architecture(ARA) on complex network-on-chips (NoCs). It provides a
global accelerator manager to manage the accelerator runtime. In all of these cases however,
the prior work does not move the designer towards obtaining an actual implementation—
once these tools generate an accelerator design and a designer selects a particular set of
accelerators, the designer must then write RTL or HLS for the accelerators or the glue
logic. [151,152] proposed a approach to design accelerator SoCs using HLS. Differing from
prior works, we aim to provide a fast simulation environment to evaluate an accelerator
in a full-stack setting. Our framework quickly provides a baseline set of interfaces and an
easy-to-use simulation environment that software developers can program against and use for
performance optimization of the software stack, even before real silicon is available.

2.2.1 Related Work

With the increasing complexity of workload and systems in the datacenter, hardware-software
co-design is becoming critical to truly optimize full-systems. Several projects have explored
high-level modeling for accelerator design. Aladdin [176] is a software simulator that takes C
code as input and estimates performance, power, and area of a target accelerator design. The
program behavior is modeled with dynamic data dependence graphs (DDDG), which can be
generated from C code directly. This model assumes that all data can be preloaded into the
local scratchpads, which falls short for real designs with limited on-chip memory budget and
complex memory access patterns. [177] addresses this issue by extending Aladdin with the
gem5 full-system simulator [18] to provide support for simulating complex accelerator-system
interactions. This work shows that the Pareto-optimal Energy-Delay Product (EDP) points
for accelerators evaluated in isolation differ from ones explored through full-system co-design.
While this approach is fast and easy to deploy, detailed accelerator design insights are difficult
to gain as no true hardware is generated. Besides, its simulator speed (∼50KIPS) limits the
deployment of full-stack software, whereas in our system that runs at tens of MIPS [17,105],
the real impact of accelerators can be manifested at the application level. PARADE [40]
is another extension to gem5 that leverages HLS to generate accurate accelerator models
for accelerator-rich architecture(ARA) on complex network-on-chips (NoCs). It provides a
global accelerator manager to manage the accelerator runtime. In all of these cases, however,
the prior work does not move the designer towards obtaining an actual implementation—
once these tools generate an accelerator design and a designer selects a particular set of
accelerators, the designer must then write RTL or HLS for the accelerators or the glue
logic. [151, 152] proposed an approach to design accelerator SoCs using HLS. Differing from
prior works, we aim to provide a fast simulation environment to evaluate an accelerator
in a full-stack setting. Our framework quickly provides a baseline set of interfaces and an

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 9

easy-to-use simulation environment that software developers can program against and use for
performance optimization of the software stack, even before real silicon is available.

2.3 Centrifuge Overview
In this chapter, we introduce our methodology and flow for agile generation and evaluation
of multi-accelerator SoCs, named Centrifuge1 In Centrifuge, we proposed a methodology and
developed an open-source toolchain to rapidly generate and evaluate heterogeneous SoCs by
combining an HLS toolchain with the open-source FireSim [102] FPGA-accelerated simulation
platform:

1. We provide a flow that generates full SoC systems containing user-defined accelerators
written in HLS. This flow integrates the Rocket Chip SoC generator with custom
accelerators generated with Vivado HLS. Accelerators in the generated system can
be attached to the system in three ways: 1○ coprocessor-style RoCC accelerators,
2○ accelerators that connect to the SoC’s on-chip network, and 3○ disaggregated
accelerators that attach directly to Ethernet.

2. We provide a flow that automatically generates software infrastructure to interact with
the accelerators on the generated SoC systems from within accelerators.

3. We add a Verilog FAME-1 [193] pass to the open-source FireSim [102] simulator to
support simulating designs that contain Chisel blackboxes of Verilog designs, in our
case, the accelerator designs produced by Vivado HLS.

4. We generate SoCs with several integrated accelerators and evaluate accelerators with
different coupling and software stacks. In addition, we conduct three case studies to
demonstrate the capability of the toolchain.

With this methodology, we can rapidly generate an entire hardware/software stack for a
customized SoC that can be fabricated as an ASIC and evaluate its end-to-end performance
using FPGA simulation, allowing for rapid design-space exploration of novel accelerator-based
systems, while providing cycle-exact performance measurements with little user effort. We
call our implementation of this approach Centrifuge. Once a user is satisfied with the baseline
accelerated system produced by Centrifuge, they can then continue to hand-optimize the
design, as if they had written RTL from scratch.

2.4 Centrifuge Design Flow
In this section, we detail the key components of Centrifuge. We first describe how we build an
SoC with integrated HLS-generated accelerators, then outline our extensions to the FireSim

1Our tool is named Centrifuge because it lets us rapidly iterate on novel many-accelerator SoCs and
separates the good accelerators from the bad.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 10

FAME-1 Transformed SoC

FP
G

A
-A

tta
ch

ed
 D

R
A

M

S
im

ul
at

io
n

E
nd

po
in

ts

FPGA

S
im

ul
at

io
n

C
on

tro
lle

r
To

R
 S

w
itc

h

CPU

R
oo

t S
w

itc
h

F1 Instance M4
Inst-
ance

Rocket
RV64GC +

Custom Instructions

L1I L1D

①

Ti
gh

tly
-c

ou
pl

ed

R
oC

C

A
cc

el
er

at
or

s

NIC
② TileLink-

attached
Accelerators

AXI/TL2

③ Network-
attached

Accelerators

TL2 Bus(Optional)
AXI/TL2

RTL

O
th

er
 P

er
ip

he
ra

ls

(U
A

R
T,

 B
lo

ck

D
ev

ic
e,

 e
tc

.)

O
ff-

ch
ip

 P
er

ip
he

ra
l I

/O

LLCMemory Controller

DDR3 DRAM Model

FPGA
Models

Figure 2.1: Block Diagram of FireSim Simulating Centrifuge-generated SoC with Accelerators

FPGA-accelerated simulation platform [102] to enable fast cycle-exact simulation of our
generated SoCs.

2.4.1 Generating a Base SoC with Rocket Chip

As the basis for our SoC system, we use the Rocket Chip generator [8], an open-source SoC
generator written in Chisel that provides standard SoC components, including the RISC-
V Rocket Core (replaceable with the BOOM Out-of-Order core) and uncore components.
FireSim provides several standard peripherals, including a UART, Block Device, and NIC [102].
Altogether, this produces a Linux-capable RISC-V SoC that can interface with a standard
Ethernet network. The base SoC components are shown in the “RTL” box in Figure 2.1,
excluding the gray accelerator boxes. We configure the system to have 16 KB L1 I/D Caches,
a 4 MiB LLC, 16GB of DDR memory, and a 200 Gbit/s Ethernet NIC. The gray boxes in
Figure 2.1 show three methods for integrating accelerators into the SoC. We detail these in
the following section.

..--

~

- I+-,

I+- _ _, ~
~

~ 0 a- f
1 ~ ' ~ ~

~ J_ ' ' l l : l

i. - ~
I+-◄

.___

'---

I ,.__
1

1- ➔

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 11

2.4.2 Integrating Accelerators into the SoC

To enable exploration of various accelerator designs, we supply shim infrastructure to incor-
porate HLS-generated accelerators into the aforementioned SoC in three distinct ways:

1. RoCC accelerators (coprocessor sharing L1 and LLC with the processor, invoked by
RoCC instruction)

2. TileLink accelerators (closely-coupled accelerator sharing LLC with the processor,
invoked by either RoCC instruction or memory-mapped I/Os(MMIO))

3. Network-attached accelerators (TileLink accelerators with direct connection to the
Ethernet)

These three models are representative of recent academic and commercial designs.

2.4.2.1 RoCC Accelerators

The RoCC accelerator interface provided by Rocket Chip allows a user to integrate an
accelerator closely with the processor in the SoC. The accelerator can receive commands
directly from the general-purpose processor through a dedicated command queue. Programs
can issue these commands using custom RoCC instructions that fit within the RISC-V
ISA. RoCC accelerators also have ports directly into the private L1 data cache of the
general-purpose core and a port into the next-level cache in the system.

2.4.2.2 TileLink-attached accelerators

Looser coupling of accelerators to a local application core’s LLC is achieved by attaching
accelerators to the on-chip TileLink interconnect [181] in Rocket Chip. TileLink is an open and
free chip-scale cache-coherent interconnect standard used by the Rocket Chip SoC-generator
to connect devices on low-latency SoC buses. It supports a MOESI-equivalent protocol to
provide coherent access for an arbitrary mix of caching or non-caching masters. There are
three levels of conformance protocols and five channels implemented as five physically distinct
unidirectional parallel buses with one sender and one receiver on each. The completion of
data transactions is out-of-order to improve throughput.

The Rocket Chip generator also takes advantage of a library called Diplomacy [127],
which supports automatic parameter negotiation and checking between SoC components. In
HLS C programs, pointer-type arguments to a C function are synthesized into AXI4 master
ports when the m_axi interface pragma is specified. Each memory access in the C code is
turned into an AXI4 request in the generated hardware. To attach accelerators with these
AXI-4 memory systems generated by Vivado HLS, we use an open TileLink-to-AXI4 bridge
adapter [181] to connect accelerators to the Rocket Chip SoC.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 12

2.4.2.3 Network-attached accelerators

The last accelerator-integration option we provide is to allow accelerators to directly interface
with an external Ethernet network by directly communicating with the in-SoC NIC to
send/receive packets, without the intervention of the general-purpose processor. There are
two ways for the accelerator to directly send and receive data to and from the network.

Accelerator MMIO to NIC. The accelerator can directly post send and receive com-
mands to the NIC in the SoC by accessing the NIC’s MMIO control registers in the HLS code.
The send and receive buffers are pre-allocated as local buffers and set to the s_axilite interface
in the HLS wrapper, so both buffers appear to be memory-mapped slaves on the TileLink
bus. The accelerator can issue a send command by telling the NIC the base address and the
length of the data it intends to send and a destination MAC address. If the accelerator is
expecting incoming data, it issues a post_recv command to the NIC with the address of the
receive buffer. Currently, we require that the general-purpose processor not simultaneously
access the network interface while the accelerator is using the NIC.

Dedicated Send/Receive Queues. Accelerators can also directly communicate with
the NIC and thus the external Ethernet network through dedicated send and receive queue
pairs. To implement this functionality, we extend the NIC design with routing/tagging based
on the Ethernet Ethertype field. The NIC automatically directs network packets to the
accelerator’s queues if the Ethertype value is “ACCEL_ONLY”.

In this mode, rather than issuing commands and polling the NIC, the accelerator can
directly send and receive the Ethernet packets through decoupled FIFO queues. We split
each queue into two sub-queues, one for passing the Ethernet header and one for passing the
payload. We can then treat the payload queue as a data stream in a dataflow programming
model with blocking read and non-blocking write. This allows us to take a design written
in the Vivado HLS dataflow model and split it into multiple network-attached accelerators.
Currently, the flow requires that you have sufficient buffering and that the send and receive
rate are matched. In future work, we plan to add a flow-control mechanism to designs.

2.4.3 Generating Accelerators with Vivado HLS

We generate accelerator RTL by taking advantage of Vivado High-Level Synthesis (HLS)
rather than requiring users to manually write RTL for accelerator designs. While HLS tools
have previously been relegated to FPGA-based deployment [211], ASIC CAD tool vendors
have begun to ship HLS tools geared towards ASIC designers. The process of converting a
high-level (C) description of an application to a hardware accelerator in Centrifuge is detailed
in Figure 2.2.

At a high-level, the flow to integrate HLS-generated accelerators into the SoC is as follows:
1. The programmer develops a standard C program and identifies a function to accelerate

(HLS-compatible).
2. Our LLVM pass replaces all calls to the accelerated function with calls to a new

wrapper function. This wrapper function calls the accelerator.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 13

C Source File
● fns with

#pragma
● Other fns

LLVM
Pass

C Src File
● Drivers
● SW fnsRISC-V LLVM

RISC-V Binary

C Src (HLS)
● Accelerated fns

HDL Accel. Verilog
Implementation

Centrifuge SoC Accel
Blackbox

Runs on
Centrifuge

Accelerated SoC

Figure 2.2: Centrifuge HLS Flow, C to Acclerator RTL + Software Driver/Application

3. LLVM writes a RISC-V assembly file which is assembled and linked by the standard
RISC-V GCC toolchain.

4. The function name to be accelerated is placed into a tcl script that is used to drive
HLS.

5. Vivado HLS produces a Verilog implementation of the accelerated function.
6. Our custom FAME-1 transformation is applied to the generated Verilog.
7. A pair of controllers are attached to the accelerator and act as bridges between the

accelerator and the RoCC/TileLink2/Network interfaces. They handle the command/response
messages between the processor and the accelerator and memory request/response messages.

8. The accelerator is added to the SoC and the design is elaborated by Chisel.

2.4.4 Generating the software stack for a complete SoC

To complete the generation of our SoC system, we need to produce software shims that
provide access to the generated accelerators from various levels of the software stack. In the
previous section, we discussed how our LLVM pass will generate workload binaries with calls
to the accelerator, either as bare-metal programs or programs that expect to run on Linux.
Below, we outline the system-level software shims to provide access to accelerators.

2.4.4.1 Running Bare-metal

In a bare-metal environment, the interaction between software and accelerators is straightfor-
ward. In order to invoke a RoCC accelerator, the custom instruction assigned to the target
accelerator needs to be called with arguments stored in processor registers. For TileLink

· 1L.....,...._~-I
L v1V6QQ. 7

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 14

accelerators, we need to perform store operations to the memory-mapped registers to pass
function arguments and control commands. In both cases, similar to a software function call,
we pass in scalar arguments directly and pointer arguments as physical memory addresses.
The accelerator can directly access memory through the caches (L1 for RoCC, L2 for Tilelink).
All requests are serviced by the memory controller without directly involving the processor.

2.4.4.2 Running on Linux

In Linux, RoCC-based accelerators are invoked using custom instructions and can use
the processor TLB to perform translations; they do not require special operating system
drivers. Tilelink accelerators, however, become more complex with an operating system
due to virtual memory handling. Specifically, the drivers and software wrappers for an
accelerator/application must support the following three features:

Accessing MMIO from user space. TileLink accelerators are controlled through
memory-mapped physical addresses. In order for the application to access these addresses,
they must first be mapped into the application’s virtual address space. On Linux, physical
memory can be accessed through the “/dev/mem/” special file. By calling mmap with the
offset set to the desired physical address, we can map any physical address into our virtual
memory. This procedure is handled automatically in our generated wrapper code.

Translating from virtual to physical addresses. To handle address translation, the
software wrappers for TileLink accelerators call an automatically-generated RoCC accelerator
that interacts with the hardware page-table walker to translate from virtual to physical
addresses.

Ensuring physically contiguous data-layout. For pointer arguments that fit within
a single page, translation alone is sufficient. However, if the argument spans multiple pages,
the allocated memory may not be physically contiguous. In lieu of maintaining a TLB in
each accelerator, Centrifuge requires that all arguments be made physically contiguous before
invoking an accelerator. To allow this, we provide a Linux driver that allocates a large,
physically-contiguous, region of memory at boot time and exposes it to users through a
modified mmap system call. Users can allocate space for their arguments using this system
call (minimizing overheads). If the user would prefer to not modify their source, the generated
function wrappers can copy arguments into contiguous memory automatically when the
accelerator is invoked.

2.5 Centrifuge Case Studies
In this section, we evaluate several microbenchmarks and perform three case studies to
demonstrate the capability of our methodology. We ran our experiments on FireSim on
Amazon F1 instances and used Vivado HLS to synthesize application C code into hardware as
it is stable and free to the community. Our microbenchmarks are adapted from CHStone [77]

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 15

adpcm
 en

cod
e

adpcm
 deco

de

adpcm
 log

sch

adpcm
 quantl

adpcm
 log

scl

adpcm
 sc

ale
l

dfad
d flo

at6
4_ad

d

dfad
d ullon

g_to
_double

dfdiv f
loa

t64_div

dfm
ul flo

at6
4_m

ul

dfsin
 int32_to

_flo
at6

4

dfsin
 flo

at6
4_le

dfsin
 loc

al_
sin

dfsin
 flo

at6
4_ab

s

gsm
 gsm

_ad
d

gsm
 gsm

_m
ult

gsm
 gsm

_norm

vad
d_80*

encry
pt*

decr
ypt*

gsm
*

sor
t_8

*

sor
t_5

12*
0

2

4

6

8

10

Sp
ee

du
p 6.6

1.0 1.0 1.0 1.0 1.0

3.9

1.0

3.1 3.6

1.1 1.1

10.6

1.0 1.0 1.0 1.0 0.9

4.5 4.0 4.1

5.9
5.2

Figure 2.3: RoCC Accelerators SpeedUp Compared to Software(* indicates accelerator with
pointer type inputs)

and HLSpolito on GitHub [167]. With the microbenchmarks, we demonstrate that Centrifuge
can be used to evaluate the following design tradeoffs:

Acceleration Region. We first conducted a sweep to extract functions from the mi-
crobenchmarks and compiled them to the RoCC accelerators with Centrifuge. Results in
Figure 2.3 showing the accelerator speedup can be used to direct decision on which code
region to accelerate. For example, the adpcm example should be accelerated at the encode
level instead of at the basic operation level (e.g. logsch, quantl, logscl) .

Software Stack. We then generated five TileLink accelerators and ran them under
Linux. Figure 2.4 shows the runtime breakdown of the accelerators normalized to the software
performance. The slowdown of Tilelink accelerators on Linux is primarily due to performing
address translation on each argument. Note that RoCC accelerators do not experience any
slowdown on Linux because they are virtually addressed. With Centrifuge, we can evaluate
and optimize the physically-addressed TileLink accelerator and its Linux driver together.

Accelerator Coupling. Lastly, we show how different coupling affects the accelerator
performance with Centrifuge by accelerating a communication-bound kernel vadd in different
sizes. From Figure 2.5, we see that the RoCC accelerator outperforms software when the
vector size is small. As we increase the vector size, the TileLink accelerator gets a higher
speedup compared to the software. Three main factors affect the accelerator speedup: the
interface bandwidth, the cache hit latency, and the cache size. The TileLink system bus is
512-bit wide, whereas the RoCC memory interface is 64-bit wide. The L2 hit latency is 20×
longer than L1 hit latency. For the RoCC accelerator, once it starts to miss in L1 cache, it will
suffer from a similar cache access latency as the TileLink accelerator. However, since TileLink
accelerator has wider memory accesses, it performs better in a more bandwidth-bound
scenario.

~

~ ,,
.. ~
~ s:: ~ ~

~ ' '\ , .. C

' ~ ~ -

N ~ ~ ~~~ ~ ~ ,,
N,- ~~~ ,'\ ~ '~ ' ~ ~ -

~ (''1 i;:;::i R's!~ r(1 [:::: ~;;;i ~ RI l"J ~ lvl 1\.1 r(1 ('\J ""l ~ ~ ~ ~ 0

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 16

encode
encrypt

decrypt gsm sha
sort8

sort_5
12

gemm_256
0

1

2

3

4

5
No

rm
al

ize
d

W
al

lti
m

e

37%

12% 7%
9%

9%

334%

0.6%

39%
0.006

TileLink Accelerator Linux Overhead

Figure 2.4: Tilelink Accelerators with Linux Driver

vadd_8 vadd_80 vadd_800 vadd_8000
0

1

2

Sp
ee

du
p

2.2

0.8 0.7 0.8
1.0 1.0 1.0 1.0

0.8
1.0

1.3

2.6
RoCC SW TileLink

Figure 2.5: Different Coupling for vadd Accelerator

2.5.1 Smart-House Hub

In this case study, we demonstrate Centrifuge using a hypothetical SoC intended for a
smart-house assistant (e.g., Alexa, Google Home, etc). Our device will need to listen for
user audio commands, encode them into an appropriate format, perform machine-learning
inference to detect commands, and finally encrypt the command for transfer to the cloud
over a wireless network.

2.5.1.1 Evaluating the Baseline Application

We begin by measuring runtimes for each of these kernels without accelerators. Figure 2.6
shows how the runtimes of these steps might compare in a typical deployment ("Software
Only"). Notice that the lion’s share of time is spent in audio preprocessing (adpcm_encode)
and the matrix-multiply underlying command classification (gemm_256). The remaining time

- IZZl

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 17

0.0 0.5 1.0 1.5 2.0 2.5
Number of Cycles 1e8

Software Only

All Accelerators

Top-3 Accelerators

adpcm_encode encrypt gemm_256 gsm sha

Figure 2.6: Breakdown of key computational kernels in a hypothetical smart-house assistant
SoC. The top-3 accelerators for end-to-end performance are adpcm_encode, gemm_256, and
encrypt

.

is split roughly evenly between hashing (sha), encryption (encrypt), and wireless encoding
(gsm).

2.5.1.2 Generating Accelerators

Having identified the key kernels in our application, we begin by adding HLS annotations
to each function. This mostly involves identifying inputs and outputs, and ensuring the
function prototype has the correct number of arguments. By modifying the source code and
annotations, the design can be further specialized for hardware deployment if appropriate.
We then run Centrifuge on our annotated application, specifying each kernel. The result is
RTL for a new SoC with the specified accelerators and a new application binary with each
accelerated function replaced with a call to an accelerator.

2.5.1.3 Evaluating Accelerators

The next step is to evaluate our accelerators in an end-to-end system using FireSim. With
FireSim, we can run our code as if it were on a real machine, including any timing mea-
surements. Figure 2.6 shows the runtime breakdown using our new accelerators ("All
Accelerators"). We notice that gemm_256 shows the greatest improvement, both local
(250×) and end-to-end (11.5×), and should likely be included. The adpcm encoder shows
a more modest local improvement (about 5×) but has the second largest impact on total
runtime (6% end-to-end improvement). Both encryption and gsm-encoding show 4-5x im-
provements in local runtime, but have a modest 1% impact on end-to-end performance; we
may choose to include these if power and area permit. Finally, the sha accelerator sees little
improvement locally, and has a very small impact on end-to-end runtime; we would likely
choose not to accelerate that function.

- ~ J
'-t:::.-m ,~:--+------+-----1-------+-----+---i

~...P,'.; ,>-' --+-------+-----+------+-----I----< '~

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 18

Algorithm 1 DGEMM Algorithm: PREFETCH(X,M) will begin loading M into X for the
next iteration. OWN(X) determines if this node owns X.
1: k′(k)← (k + j) mod Kblocks

2: for all i in Mblock do
3: for all j in Nblock do
4: if own(Ci,j) then
5: prefetch(lA, Ai,k′(0))
6: prefetch(lB, Bk′(0),j)
7: for all k in Kblock do
8: prefetch(lA, Ai,k′(k+1))
9: prefetch(lB, Bk′(k+1),j)

10: Ci,j += lA × lB
11: end for
12: end if
13: end for
14: end for

2.5.1.4 Continue Hardware and Software Development

Putting it all together, we decide to include the gemm_256, adpcm_encode, and encrypt
accelerators and leave the remaining kernels to the CPU. This results in an 8x improvement
in end-to-end runtime (including all the accelerators would result in an 11.5% improvement).
In addition, we now have a consistent hardware/software interface and a high-performance
simulator for use by our software team, while hardware engineers can continue to optimize
the kernels, using either HLS or hand-written RTL.

2.5.2 Distributed Matrix Multiplication Accelerator

We applied Centrifuge to a MPI-based distributed matrix multiplication implementation [24].
This algorithm employs MPI’s one-sided communication protocol, along with extensive tiling
and prefetching. We used two separate implementations for the core matrix-multiplication
algorithm; an HLS-optimized kernel (adapted from [210]), and a CPU-optimized tiling
algorithm. The accelerator is integrated as a TileLink accelerator. It runs 441 × faster than
the CPU for performing 8-bit integer matrix multiplication.

In this workload, the MPI processes can read and write directly into each others memory
using one-sided MPI_Get and MPI_Put operations. We divide up our distributed matrices into
tiles, with one tile per CPU/accelerator pair. Algorithm 1 describes our algorithm, which
is typical of one-sided matrix multiplication, each process is responsible for computing the
output block of the resultant C matrix that it owns. In order to compute this output block,
we iterate through the corresponding row of A tiles and column of B tiles, pull them into
memory, multiply the matrices together, accumulating the result into the local tiles of the C

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 19

0 100 200 300 400 500
Operational Intensity (Ops/Byte)

0

1

2

3
Op

er
at

io
ns

/N
od

e
(G

Op
/s

)

DRAM Roofline
Network Roofline
1 Node
4 Nodes
256x256 Tile
512x512 Tile

Figure 2.7: CPU Roofline Model

0 500 1000 1500 2000
Operational Intensity (Ops/Byte)

0

100

200

300

Op
er

at
io

ns
/N

od
e

(G
Op

/s
)

DRAM Roofline
Network Roofline
1 Node
4 Nodes
16 Nodes
256x256 Tile
512x512 Tile
1024x1024 Tile
2048x2048 Tile

Figure 2.8: Accelerator Roofline Model

matrix. We use one level of prefetching to allow overlap of communication and computation,
and we also offset the order of iteration in order to provide load balance. Tiles are stored in
an MPI window so that they can be accessed using MPI’s one-sided primitives. The MPI
window is created inside a pinned memory region that is visible to the accelerator so that the
accelerator can directly read local tiles stored in distributed memory without copying them.
When we retrieve local copies of matrix blocks lA and lB, we also store them inside pinned
accelerator-accessible memory that we allocate using a C++ allocator.

We first validated the HLS design by running the C simulation and comparing the output
against a golden reference. This takes less than a minute for each debugging iteration. We
then used Centrifuge to generate the SoC and simulated the accelerator on FireSim. It took
∼3 hours to generate the FPGA images and seconds to return the test results for multiplying
matrices of size 256×256. In comparison, it would take around half a day to run the bare-
metal program on a commercial software-based RTL simulator. Using a software-based RTL
simulator, it would be infeasible to validate the design in a more realistic setting, for example,
using a larger input size, running under Linux, and in a network environment.

We can further evaluate the complex interaction between the accelerator, CPU, and the

' ' ' ' I

' I

' ' I

' I

' I

' ' I

' I

' ' I

' I
0 • D,. •

• •
□
■

. ----------------· . . -----
...
□
■
I]

~

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 20

1 4 16
0.0

0.2

0.4

0.6

0.8

1.0
Strong Scaling Efficiency

1024
2048
4096

1 4 16
0.0

0.2

0.4

0.6

0.8

1.0
Weak Scaling Efficiency

256
512
1024

Figure 2.9: Scaling Efficiency

0.0 0.2 0.4 0.6 0.8 1.0

16

4

1

0.16

0.24

0.40

0.16

0.25

0.57

0.68

0.51

0.02

Compute Issue Sync

Figure 2.10: DGEMM Runtime Breakdown for 1024×1024 Tiles

network by employing Centrifuge. To evaluate the design, we first calculate peak performance
using a roofline model [204]. Because we are running a full-system cycle-level simulator, we
were able to use standard evaluation tools like STREAM [131] and iperf [65] to find the
actual bounds for the roofline model. The distributed dgemm framework described above
was taken from an existing high-performance library and run unmodified (except for calls to
the accelerator and special memory allocation of arguments as described in section 2.4.4.1).
We ran the experiments on 1, 4, and 16-node configurations with 2.0 GB/s measured DRAM
bandwidth and 1.2 Gbit/s measured network bandwidth.

Figure 2.7 shows that the performance of the workload on CPU is dominated by a lower
bound than its peak compute bound. As shown in Figure 2.8, by running the accelerator,
the workload becomes communication bound, and our accelerator performance matches the
measured roofline. The accelerator achieves a peak throughput of 344 GOp/s for 16-bit
integer multiply-accumulates (a ∼ 600× improvement compared to our processor). On one
node, the accelerator’s performance follows the DRAM roofline (memory communication
bound), while on four or sixteen nodes, its performance tracks the network roofline instead
(network communication bound). Therefore, for the distributed workload in this example,

I, -
-·- '

-
-·-

~

~

~
~ ~,

"-'., , ,.__ ~---- --
~,

~'-..
!ii;~ ·~-,,,..,.,, -r-·- ·-■- ·-

-

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 21

Conv 1x1

Max pooling

Shift

Conv 1x1

Max pooling

Concat & Shuffle

Conv 1x1

Figure 2.11: DiracDeltaNet

Split

DRAM

Conv 1x1

FIFO

Conv 1x1

Max pooling
FIFO

Shift

FIFO

Concat & Shuffle

Max pooling

Conv 1x1

FIFO

FIFO

FIFO FIFO

FIFO

Figure 2.12: Hardware Design

major improvements should be made to the network bandwidth instead of the accelerator
itself. Figure 2.9 shows the strong and weak scaling efficiency of the distributed workload
running on the accelerators. A detailed runtime breakdown for the distributed workload with
tile size 1024×1024 is shown Figure 2.10.

2.5.3 Deep Learning Accelerators

With fast design feedback, our flow is particularly suited for developing accelerators for
rapidly changing deep learning algorithms. In this section, we will describe several deep
learning accelerators developed with Centrifuge. Note that all the accelerators in this section
took less than one month to implement.

2.5.3.1 Design for New Algorithms

Figure 2.11 shows the basic building block for a new efficient network design called DiracDeltaNet [219].
In this design, all 3x3 convolutions are replaced with a 1x1 convolution and shift operation,

while the addition-skip connection is replaced with concatenation and shuffle operations.
Figure 2.12 shows our hardware dataflow design for the building block. In the design,
all layers are spatially mapped to corresponding hardware units. There are three 8×8
Multiply-Accumulate(MAC) units to support the three 1x1 convolution layers. The weights
are pre-fetched into the on-chip buffers. The input activations are loaded to the FIFOs
from DRAM. Each hardware unit starts its execution based on the arrival of data. Since
we preload all the weights, each input activation can be reused output_channel_size times
after it is fetched from DRAM. Table 2.1 shows the Ops/cycle for different DiracDeltaNet
subgraphs on our TileLink accelerator. As the compute-to-communication ratio varies among

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 22

Table 2.1: Accelerator Performance
(The workload size is represented as image_width × channel_depth)

Workload Size Total Ops Ops/cycle
32×16 196608 4.55
32×32 786432 15.12
32×64 3145728 20.59
16×128 3145728 21.35
8×64 196608 17.09

different subgraphs, the empirical performance of the accelerator varies drastically (∼4×).
The algorithm designer can then leverage the information from current hardware architecture
to optimize the DNN design to include more hardware-efficient layers.

2.5.3.2 Distributed Accelerators

The dataflow architecture with large weight buffers mentioned in the previous example is
also known to have low latency for inference with a small batch size. However, it might not
be economical to have such a large design with all the layers hard wired together.

Instead, we can have many composable deep neural network accelerators with differ-
ent dataflow modules, and have them directly communicate with each other through a
high-performance network as shown in Figure 2.13. We implement this design based on
VGG16 [183]. We first tested the idea with a small 2-layer neural network with two 16×16
Conv3×3. By replacing the data stream with the Ethernet connection, we reduced the total
latency by 1.5%. This indicates that the overhead from the direct network connection is
tolerable. We then prototyped two accelerators with our framework: one with only the
convolution clusters, and one with both convolution and fully connected layers for reducing
the results. Both designs can directly send and receive Ethernet packets to the network
through the NIC. The weights are 2-bits, and the activations are 4-bits in the hardware.
Assuming the chip is running at 3.2 GHz, for a 64 × 64 large images, it takes 13191136 cycles
(4.1ms) to classify one frame on a single node accelerator, and 11151953 cycles (3.5ms) to
finish the same task on a two-node system that has direct accelerator-to-accelerator network
connections. While both designs have the same number of compute units, the two-node
design benefits from increased aggregate memory bandwidth. In this case, the benefits of
increased memory bandwidth outweigh any overheads from the network.

2.5.4 Graph Accelerator

For data-dependent workloads or applications that have intricate synchronization patterns
with other system components, it is challenging to derive an analytical model for deciding

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 23

DRAM

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

FC Clusters

Soft-max

On-
chip

BRAM

Feature maps inputs

Output classification

On-
chip

BRAM
DRAM

Ethernet

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

Conv Clusters

FC Clusters

Output classification

Soft-max

DRAM

Conv 3x3

ReLu

FIFO

Conv 3x3

FIFO

ReLu

FIFO

FIFO

Max pooling

FIFO

Weights

Weights

FIFO

Single Node Node 1

Node 0On-
chip

BRAM

Feature maps inputs

Figure 2.13: Multi-node accelerators, connected via Ethernet

whether accelerators are needed. One advantage of our framework is that the user can quickly
generate the accelerator and evaluate it with the rest of the system.

This section demonstrates this capability by adding a graph accelerator to run the con-
nected components (CC) algorithm concurrently with the CPU. Connected Components [83]
is a widely used graph algorithm that detects all connected regions in a graph.

As there are two compute nodes (CPU and accelerator) in the heterogeneous system, the
two-node algorithm listed in Algorithm 2 is used.

In the algorithm, all edges should be directed. The vertices are divided into two parts, V0
and V1, and each compute node is responsible for updating one part of them. The update
steps are as follows:

1. All vertices in V0 and V1 are initialized to a unique label.

2. Each compute node scans the edges it owns. For each edge, if the label of the destination
vertex is smaller than the label of the source vertex, it should be updated to the label
of the source vertex. If this destination vertex belongs to the remote node, the vertex
and its corresponding label should be stored into a send buffer.

3. The send buffer will be shared to the remote node once it is full.

4. After sharing the data with the remote node, each node will be blocked until they
receive data from the remote node.

5. Both nodes start to process the receive buffer and repeat steps 1 to 5 until it converges.

~-----------------

·-------- ------- -------

II

.._______,,_:: ____JI :
I

.._______,,_:: ____JI :

.._______,,_:: ____JI !-+~::-
• I
I I

II

--------------- I ------

- - - - - - - - - -· ------- ---.

--------------- I --------------·

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 24

Algorithm 2 Connected Components
Require: G = (V,E)
Ensure: label for each vertex, label(vi)
1: for each vi ∈ V do
2: label(vi) = i
3: end for
4: while not finished do
5: for each e ∈ E do
6: // e is from vi to vj
7: if (label(vj) > label(vi)) then
8: label(vj) = label(vi)
9: end if

10: end for
11: end while

The local node has a receive buffer to buffer the incoming updates. Before updating, the
label of each vertex is set to a unique value (e.g., index), representing each vertex as an
individual component. Then, updating is executed in iterations. During an iteration, the
value of V1 is transferred to the node. Then, edges in E0 are scanned one by one. If the label
of the destination vertex is smaller than that of the source vertex, it will be updated to the
label of the source vertex. We allocate a local buffer for remote vertices V1. When a remote
vertex is updated, it will be stored in the local buffer. When the buffer is full, the updating
function is blocked until all updated vertices are transferred to another computation node.
There is also another local buffer for receiving an updated value of V0 from other computation
nodes. We can easily extend this design to multiple computation nodes by allocating more
buffers for sending and receiving updated vertices.

In the hardware design, we store all edges in the off-chip DRAM. The graph accelerator
is a Tilelink accelerator that shares the L2 cache with the processor. The accelerator has
three large local buffers to store the labels of vertices it owns, the send data, and the receive
data. The communication between the accelerator and the processor is through shared
memory. Based on the design above, we ran the igo-Facebook graph from the Stanford
Network Analysis Project (SNAP) [117].

In our evaluation, the workload runs 5× slower on the CPU-accelerator implementation
compared to the CPU-only implementation. We found that the overhead of synchronizing with
the accelerator outweighs the benefits of having more compute resources. This demonstrates
the case in which adding more loosely coupled accelerator nodes can be a bad idea, even on a
system with only one single-issue in-order processor.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 25

2.6 Parallel Abstraction for HLS
In Centrifuge, the sequential nature of the high-level C/C++ language has posed a challenge
in adequately describing the concurrency of the workloads and supporting various forms
of parallelism in hardware. In existing HLS frameworks like Vivado HLS [211], Altera
OpenCL [94], and LegUp [27], the support of sequential C is maturing but the high-level
abstraction to support concurrent models of computation is still limited. Therefore, in
this exploratory work, we performed a study to investigate the feasibility of supporting
arbitrary forms of concurrency in HLS. We map concurrency described in Communicating
Sequential Processes (CSP) to hardware through HLS. We select a subset of features from
the CSP-inspired language Go [52] to our high-level HLS abstraction.

2.6.1 Communicating Sequential Processes

CSP is an established formalism for concurrency in computer programs. Since its introduction
by Hoare in 1977 [84], it has been an active area of research. CSP is similar in many respects
to the Actor model. Traditionally, concurrently executing programs must negotiate access to
shared memory in the presence of arbitrary interleaving, usually requiring careful management
of locks around critical sections. Under CSP and the Actor model, processes within programs
execute as if independently, concerned only with their local state. In CSP these processes are
anonymous, while under the Actor model, they are themselves named actors. To communicate
with each other or share information, CSP uses synchronized unbuffered channels. Under
the Actor model, the channel is implicit (Actors send messages to each other by name) and
unbuffered. Under CSP, writes to a channel cannot complete until another process is ready
to read the value, whereas Actors do not need to synchronous message writes to others read.

Modern programming languages like Go and Rust [106] embed ideas from CSP and Actor
systems as higher-level interfaces to concurrency. Using channels as a first-class concurrency
primitive avoids the difficulty of (and the human errors introduced by) managing lower-level
primitives like mutexes, conditions variables, and so on. These channels can be buffered or
unbuffered, with multiple producers and consumers. Crucially, this general idea seems to map
neatly to hardware logic implementation. Independent actors/processes can be implemented
as separate hardware modules, and the channels interconnecting them as fixed FIFO channels.
Since the abstraction has forced the user to restrict the processes’ states and boundaries
more cleanly than lower-level concurrency models, asking programmers to write in a CSP
model can make it easier to synthesize hardware for concurrent processes.

2.6.2 Go-to-Verilog HLS

Leveraging existing HLS tools, an LLVM compiler for Go (llgo), and an LLVM C-backend
(llvm-cbe), we implement a Go-to-Verilog HLS compiler. Given a program written in Go,
our tool first compiles it with llgo and emits LLVM IR. The C-Backend of LLVM then takes
the generated LLVM IR and decompiles it to C code. The C code is later fed into the HLS

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 26

tools for Verilog generation. As a GC language, Go has a runtime system, whereas in C,
everything is statically scheduled during compile time. When a Go program is compiled into
LLVM IR, particular operations are transformed into function calls to interface with the Go
runtime system. The difference in the language features of Go and C imposes the first set of
requirements our tool needs to handle:

1. Replace the function calls to the runtime system with C functions that perform the
same task.

2. Change the Go channel interface to equivalent constructs in C.

3. Remove the initialization of the runtime system from the generated C code.

In addition, current HLS tools only support a subset of features in the C/C++ language.
This limitation imposes a second set of requirements on the form of C code we generate as
input to HLS tools. The common constructs that are not supported by HLS in C include:

1. Dynamic allocation of variables/arrays

2. Dereferencing pointers that are not resolvable during compile time

3. Recursion

4. Indirect function calls

Current HLS tools do not have mature support for any features that would involve the
use of dynamic memory. This is mainly due to the lack of a central, shared stack or heap
memory system in the statically scheduled HLS accelerators for holding intermediate values.
With the addition of a similar memory system, those features can be potentially supported.
In this project, we confine our goal to the source-to-source transformation from Go to the
HLS-compatible C code. There are two commercial HLS tools that we target: LegUp HLS [27]
and Vivado HLS [211]. LegUp HLS provides APIs for a multi-sender and multi-receiver
FIFOs abstraction. We can map the Go channel interface to the FIFO APIs of LegUp in a
straightforward manner. A major difference is that the Go Runtime takes a pointer to the
variable of random size as the input, whereas LegUp only takes a 64-bit value as the input to
their send interface. For the intrinsic variables smaller than 64-bit in Go, we can dereference
its pointer and send its value over LegUp FIFOs. For a struct variable in a larger size, a
wrapper is created to serialize it and instantiate several FIFO write transactions. On the
receiver end, another wrapper needs to be created to receive the data until a done token
is seen. Similar to LegUp, Vivado HLS also supports the streaming interface by using the
hls::stream data type. However, the Vivado HLS dataflow cannot support multiple producers
or consumers. We expand this capability in our tool flow by installing arbiters to arbitrate
concurrent requests during system integration. Lastly, we verify that our flow produces
correct RTL and works on an FPGA by system integration. Our target device is Zedboard
System-on-Chip. This platform has a ZC7020 FPGA device with an ARM A9 CPU.

CHAPTER 2. HARDWARE AND SOFTWARE CO-DESIGN 27

2.6.3 Discussion

This study demonstrated a working end-to-end toolchain for synthesizing a subset of Go to
hardware in LegUp and Vivado HLS environments. In particular, we show that CSP-style
algorithms built with Go’s channels and goroutines can be straightforwardly mapped to
hardware. First, we modified our Go compiler to generate LLVM IR to use types and
functions available in the LegUp environment. Second, we changed the LLVM C backend
to generate satisfactory C from that IR for the HLS toolchain. We enabled the feature to
synthesize generated program to a Vivado FPGA/SoC development board. We verified the
toolchain by synthesizing a few examples; our preliminary benchmarks confirm that there
is a significant performance advantage when the independent processes perform sufficiently
complex operations.

The most difficult part of this project was understanding the requirements at each of the
component boundaries. What subset of valid C does the HLS suite support? How different
are Vivado’s expectations? What form of the LLVM IR does the C backend understand?
What are the assumptions behind the design decisions made in the Go compiler, and how far
can we stretch them to mutate types and the IR?

Although our support for Go features is incomplete, it is sufficiently cohesive to demon-
strate how programs written with Go’s CSP-style concurrency model naturally fit hardware
acceleration. The semantics of our Go programs from the view of the programmer are carried
through to the hardware unchanged; the intermediate forms simply have to get out of the
way.

2.7 Conclusion
In this chapter, we described a methodology and flow, Centrifuge, that can rapidly generate
and evaluate heterogeneous SoCs by combining an HLS toolchain with the open-source
FireSim FPGA-accelerated simulation platform. Our system can quickly produce complete
SoC systems with many integrated HLS-generated accelerators as specified by the user,
simulate them quickly and cycle-accurately on FPGAs, and run complete software stacks on
top, including booting Linux and running full application frameworks. Our system allows users
to easily explore a variety of accelerator integration techniques, by automatically integrating
accelerators in several ways—as tightly coupled RoCC accelerators, as accelerators that
communicate over the standard on-chip network, and lastly as “disaggregated” accelerators
that are directly attached to an Ethernet network between SoCs. We extended the FireSim
simulation platform with a new FAME-1 transformation that operates on the Verilog designs
emitted by Vivado HLS rather than Chisel RTL. By integrating these tools, our methodology
allows users to rapidly generate an entire hardware/software stack for a customized SoC
that can be fabricated as an ASIC and evaluate its end-to-end performance using cycle-exact
FPGA simulation, allowing for agile design-space exploration of novel accelerator-based
systems.

28

Chapter 3

Algorithm and Hardware Co-Design

Deep convolutional neural networks (CNNs) power state-of-the-art solutions on a wide range
of computer vision tasks. However, deploying them on edge devices where computational
resources are limited has been challenging due to their high computational demand. Using
FPGAs to accelerate CNNs has attracted significant research attention in recent years.
FPGAs excel at low-precision computation, and their adaptability to new algorithms lends
themselves to supporting rapidly changing CNN models. This chapter summarizes two of our
works on co-designing algorithms and hardware to achieve high-accuracy real-time low batch
size inference for two different commonly used computer vision tasks on embedded FPGAs.

Despite recent efforts to use FPGAs to accelerate CNNs, as [113] points out, there still
exists a wide gap between accelerator architecture design and CNN model design. The
computer vision community has been primarily focusing on improving the accuracy of CNNs
on target benchmarks with only secondary attention to the computational cost of CNNs.
As a consequence, recent CNNs have been trending toward more layers [79], more complex
structures [87, 242], and more complicated operations [220].

On the other hand, FPGA accelerator design has not leveraged the latest progress of
CNNs. Many FPGA designs still focus on networks trained on CIFAR10 [109], a small
dataset consisting of 32x32 thumbnail images. This dataset is usually used for experimental
purposes and is too small to have practical value. More recent designs aim to accelerate
inefficient CNNs such as AlexNet [110] or VGG16 [183], both of which have fallen out of
use in state-of-the-art computer vision applications. In addition, we observe that in many
previous designs, key application characteristics such as frames-per-second (FPS) are ignored
in favor of simply counting GOPs, and accuracy, which is critical to applications, is often not
even reported.

Specifically, we see gaps between CNN architectures and accelerator design in the following
areas:

Inefficient CNN models: Many FPGA accelerators still target older, inefficient models
such as AlexNet and VGG16, which require orders-of-magnitude greater storage and com-
putational resources than newer, efficient models that achieve the same accuracy. With an
inefficient model, an accelerator with high throughput in terms of GOPs can actually have

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 29

low inference speed in terms of FPS, where FPS is the more essential metric of efficiency. To
achieve AlexNet-level accuracy, SqueezeNet [93] is 50x smaller than AlexNet; SqueezeNext [62]
is 112x smaller; ShiftNet-C [206], with 1.6% higher accuracy, is 77x smaller. However, not
many designs target those efficient models. Additionally, techniques for accelerating older
models may not generalize to newer CNNs.

CNN structures: Most CNNs are structured solely for better accuracy. Some CNNs
are structured for optimal GPU efficiency, but few, if any, are designed for optimal FPGA
efficiency. For example, the commonly used additive skip connection [78] alleviates the
difficulty of training deep CNNs and significantly boosts accuracy. Despite its mathematical
simplicity, the additive skip connection is difficult to implement on FPGAs efficiently. Additive
skip connections involve adding the output data from a previous layer to the current layer,
which requires either using on-chip memory to buffer the previous layer’s output or fetching
the output from off-chip memory. Both options are inefficient on FPGAs.

CNN operators: CNN models contain many different types of operators. Commonly
used operators include 1×1, 3×3, 5×5 convolutions, 3×3 max-pooling, etc. More recent
models also contain the depth-wise, group, dilated, and factorized convolutions. Not all of
these operators can be efficiently implemented on FPGAs. If a CNN contains many different
types of operators, one must either allocate more dedicated compute units or make the compute
unit more general. Either solution can potentially lead to high resource requirements, limited
parallelism, and more complicated control flow. Also, hardware development will require
more engineering effort.

Quantization: CNN quantization has been widely used to convert weights and activations
from floating-point to low-precision numbers to reduce the computational cost. However,
many of the previous methods are not practically useful for FPGAs due to the following
problems: 1) Quantization can lead to serious accuracy loss, especially if the network is
quantized to low precision numbers (less than 4 bits). Accuracy is vital for many computer
vision applications. Unfortunately, carefully reporting accuracy has not been the norm in
the FPGA community. 2) Many of the previously presented quantization methods are only
effective on large CNN models such as VGG16, AlexNet, ResNet, etc. Since those models are
known to be redundant, quantizing those to low-precision is much easier. We are not aware
of any previous work tested on efficient models such as MobileNet or ShuffleNet. 3) Many
methods do not quantize weights and activations directly to fixed-point numbers. Usually,
quantized weights and activations are represented by fixed-point numbers multiplied by some
shared floating-point coefficients. Such representation requires more complicated computation
than purely fixed-point operations and is more expensive.

To bridge these gaps, we investigated various opportunities to co-design algorithms and
hardware targeting two major computer vision tasks: image classification (Synetgy) and
objective detection (CoDeNet).

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 30

3.1 Co-design for Image Classification
Image classification is the process of assigning labels to images. It is one of the most
fundamental tasks in computer vision and is widely adopted in various applications, such as
autonomous driving, medical imaging, robotics, etc. Supervised learning is an effective way to
approach image classification tasks. It trains the classification algorithm with sets of images
and their corresponding labels. Deep convolutional neural networks (CNN) [78, 110,184, 192]
are the most popular supervised learning algorithms for image classification since their
groundbreaking advancement in 2012. However, the success comes at the cost of the ever-
increasing computation requirements. In this work, we adopt an algorithm-hardware co-
design approach to develop a CNN accelerator called Synetgy and a novel CNN model called
DiracDeltaNet. Both the accelerator and the CNN are tailored to FPGAs and are optimized
for ImageNet classification accuracy and inference speed (in terms of FPS).

Our co-design approach produces a novel CNN architecture DiracDeltaNet that is based
on ShuffleNetV2 [128], one of the state-of-the-art efficient models with small model size, low
FLOP counts, hardware friendly skip connections, and competitive accuracy. We optimize the
network by replacing all 3×3 convolutions with shift operations [206] and 1×1 convolution,
enabling us to implement a compute unit customized for 1×1 convolutions for better efficiency.
The name “DiracDeltaNet” comes from the fact that the network only convolves input feature
maps with 1×1 kernels. Such kernel functions can be seen as discrete 2D Dirac Delta functions.
We further quantize the network to 4-bit weights and 4-bit activations, exploiting the strengths
of FPGAs, with only a less than 1% accuracy drop. In short, DiracDeltaNet’s small model
size, low operation count, low precision and simplified operators allow us to co-design a highly
customized and efficient FPGA accelerator. Furthermore, the implementation only took two
people working for one month using High-Level Synthesis (HLS).

We trained DiracDeltaNet on ImageNet, implemented it on our accelerator architec-
ture, Synetgy, and deployed it on a low-cost FPGA board (Ultra96). Our inference
speed reaches 66.3 FPS, surpassing previous works with similar accuracy by at least 11.6x.
The DiracDeltaNet on our accelerator architecture also achieves 88.1% top-5 classification
accuracy—the highest among all the previously reported embedded FPGA accelerators.

3.2 Synetgy Background and Motivation

3.2.1 Efficient CNN Models

For the task of image classification, improving accuracy on the ImageNet [47] dataset has been
the primary focus of the computer vision community. For accuracy-sensitive applications, even
a 1% improvement in accuracy on ImageNet is worth doubling or tripling model complexity.
As a concrete example, ResNet152 [78] achieves 1.36% higher ImageNet accuracy than
ResNet50 at the cost of 3x more layers. In recent years, efficient CNN models have begun
to receive more research attention. SqueezeNet [93] is one of the early models focusing on

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 31

reducing the parameter size. While SqueezeNet is designed for image classification, later
models, including SqueezeDet [205] and SqueezeSeg [207, 208], extend the scope to object
detection and point-cloud segmentation. More recent models such as MobileNet [86, 171] and
ShuffleNet [128,228] further reduce model complexity. However, without a target computing
platform in mind, most models designed for “efficiency” can only target intermediate proxies
to efficiency, such as parameter size or FLOP count, instead of focusing on more salient
efficiency metrics, such as speed and energy. Recent works also try to bring in hardware
insight to improve the actual efficiency. SqueezeNext [62] uses a hardware simulator to
adjust the macro-architecture of the network for better efficiency. ShiftNet [206] proposes a
hardware-friendly shift operator to replace expensive spatial convolutions. AddressNet [232]
designed three shift-based primitives to accelerate GPU inference.

3.2.2 CNN Quantization

CNN quantization aims to convert full-precision weights and activations of a network to low-
precision representations to reduce the computation and storage cost. Early works [75,238]
mainly focus on quantizing weights while still using full-precision activations. Later works
[37, 162,235,241] quantize both weights and activations. Many previous works [162,235,238]
see serious accuracy loss if the network is quantized to low precisions. Normally, an accuracy
loss of more than 1% is already considered significant. Also, in many works [37,238], quantized
weights or activations are represented by low-precision numbers multiplied with some floating-
point coefficients. This can bring several challenges to hardware implementation. Last but
not least, most of the previous works report quantization results on inefficient models such as
VGG, AlexNet, and ResNet. Given that those models are redundant, quantizing them to
lower precisions is much easier. We have not yet seen any work which successfully applies
quantization to efficient models.

3.2.3 Hardware Designs

Most existing CNN hardware research has focused on improving the performance of either
standalone 3× 3 convolution layers or a full-fledged, large CNN on large FPGA devices. [222]
quantitatively studies the computation throughput and memory bandwidth requirement for
CNNs. [129,226] present their own optimizations for CNNs based on analytical performance
models. They achieve high throughput on VGG16 using their proposed design methodology
with OpenCL. [223] designs convolution in the frequency domain to reduce the compute
intensity of the CNN. They demonstrate good power performance results on VGG16, AlexNet,
and GoogLeNet. [142] implements a ternary neural network on high-end Intel FPGAs and
achieves higher performance/Watt than Titan X GPU. Most of the works mentioned above
and others [10,118,202], target inefficient CNNs on the middle to high-end FPGA devices.
For compact CNNs, [196] demonstrates a binary neural network(BNN) FPGA design that
performs CIFAR10 classification at 21906 frames per second(FPS) with 283 µs latency on
Xilinx ZC706 device. The BNN reports an accuracy of 80.1%. [137,231] run the BNN on a

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 32

smaller device ZC7020. Although all three works achieve promising frame rates, they have
not implemented more extensive neural networks for the ImageNet classification. It should be
noted that classification on CIFAR10 dataset is orders of magnitude simpler than ImageNet,
since CIFAR10 contains 100x fewer classes, 26x fewer images, and 49x fewer pixels in each
image. Networks trained on CIFAR10 dataset also have way smaller complexity compared to
those trained on ImageNet. In comparison, networks for ImageNet classification are closer to
real-world applicability. [159] first attempted to deploy VGG16 for ImageNet classification on
embedded device zc7020 and achieved a frame rate of 4.45 fps. Later [66] improved the frame
rate to 5.7 fps. However, their frame rate was relatively low for real-time image classification
tasks. [19, 97, 159] have achieved a high frame rate on smaller devices, however, the accuracy
of their network is not on par with [66] for ImageNet classification.

3.3 Synetgy CNN Design
We discuss the CNN design in this section. The design of our CNN incorporates the feedback
from both the computer vision applications and hardware accelerator design. Specifically,
an ideal CNN model for embedded FPGA acceleration should satisfy the following aspects:
1) The network should not contain too many parameters or FLOPs but should maintain
a competitive accuracy. 2) The network structure should be hardware friendly to allow
efficient scheduling. 3) The network’s operation set should be simplified for efficient FPGA
implementation. 4) The network’s weights and activations should be quantized to low-precision
fixed-point numbers without much accuracy loss.

3.3.1 ShuffleNetV2

We select ShuffleNetV2-1.0x [128] as our starting point. ShuffleNetV2 is one of the state-
of-the-art efficient models. It has a top-1 accuracy of 69.4% on ImageNet (2% lower than
VGG16), but contains only 2.3M parameters (60x smaller than VGG16) and 146M FLOPs
(109x smaller than VGG16).

The block-level structure of ShuffleNetV2 is illustrated in Fig. 3.1a. The input feature
map of the block is first split into two parts along the channel dimension. The first branch
of the network does nothing to the input data and directly feeds the input to the output.
The second branch performs a series of 1×1 convolutions, 3×3 depth-wise convolutions,
and another 1×1 convolution operations on the input. Outputs of two branches are then
concatenated along the channel dimension. Channel shuffle [228] is then applied to exchange
information between branches. In down-sampling blocks, depth-wise 3×3 convolutions with
a stride of 2 are applied to both branches of the block to reduce the spatial resolution. 1×1
convolutions are used to double the channel size of input feature maps. These blocks are
cascaded to build a deep CNN. We refer readers to [128] for the macro-structure description
of the ShuffleNetV2.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 33

1x1	Conv

3x3	DWConv

1x1	Conv

Channel	Split

Concat &	Shuffle

BN	ReLU

BN

BN	ReLU

1x1	Conv

3x3	DWConv
Stride=2

1x1	Conv

Concat &	Shuffle

BN	ReLU

BN

BN	ReLU

1x1	Conv

BN	ReLU

3x3	DWConv
Stride=2

(a) ShuffleNetV2 blocks [128].

1x1	Conv

Shift

1x1	Conv

Channel	Split

ActQuant

ActQuant

Concat &	Shuffle

1x1	Conv

Shift

1x1	Conv

Concat &	Shuffle

ActQuant

ActQuant

1x1	Conv

ActQuant

2x2	Maxpool
Stride=2 2x2	Maxpool

Stride=2

(b) Our modified DiracDeltaNet blocks. We replace depth-wise convolutions with shift operations.
In the downsampling blocks, we use stride-2 max-pooling and shift operations to replace stride-2
depth-wise convolutions. We also double the filter number of the 1st 1×1 convolution on the non-skip
branch in each module.

Figure 3.1: ShuffleNetV2 blocks vs. DiracDeltaNet blocks

We select ShuffleNetV2-1.0x not only because of its small model size and low FLOP count
but also because it uses concatenative skip connections instead of additive skip connections.
Additive skip connections, as illustrated in Fig. 3.2(a), were first proposed in [78]. It effectively
alleviates the difficulty of training deep neural networks and therefore improves accuracy. It
is widely used in many CNN designs. However, additive skip connections are not efficient on
FPGAs. As illustrated in Fig. 3.2(a), both the skip and the residual branches’ data need
to be fetched on-chip to conduct the addition. Though addition does not cost too much

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 34

+

(a)	Additive	skip	connection (b)	Concatenative	skip	connection

Skip	branch Residual	branch
Skip	branch Residual	branch

Fetch Fetch

Write Write

Figure 3.2: Additive Skip Connections vs. Concatenative Skip Connections. Rectangles
represent data tensors.

computation, the data movement is expensive. Concatenative skip connections, as illustrated
in Fig. 3.2(b), were first proposed in [87]. It has a similar positive impact on CNN training.
With concatenative skip connections, data from the skip branch is already in off-chip DRAMs.
So we can concatenate the two branches simply by writing the residual branch data next to
the skip branch data. This avoids the extra memory access in additive skip connections and
alleviates the memory bandwidth pressure.

3.3.2 DiracDeltaNet

Based on ShuffleNetV2, we build DiracDeltaNet through the following modifications: 1) we
replace all the 3×3 convolutions with shift and 1×1 convolutions; 2) we reduce the kernel
size of max-pooling from 3×3 to 2×2; 3) we modify the order of channel shuffle.

We replace all 3×3 convolutions and 3×3 depth-wise convolutions with shift operations and
1×1 convolutions. The motivation is that smaller convolution kernel sizes require less reuse
of the feature map, resulting in a simpler data movement schedule, control flow, and timing
constraint. As pointed out by [206], CNNs rely on spatial convolutions (3×3 convolutions
and 3×3 depth-wise convolutions) to aggregate spatial information from neighboring pixels
to the center position. However, spatial convolutions can be replaced by a more efficient
operator called shift. The shift operator aggregates spatial information by copying nearby
pixels directly to the center position. This is equivalent to shifting one channel of feature
map towards a certain direction. When we shift different channels in different directions, the
output feature map’s channel will encode all the spatial information. A comparison between
3×3 convolution and shift is illustrated in Fig. 3.3. A module containing a shift and 1×1
convolution is illustrated in Fig. 3.4.

For 3×3 depth-wise convolutions, we directly replace them with shift operations, as shown

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 35

(a)	3x3	convolution (b)	Shift

Figure 3.3: 3×3 Convolution vs. Shift. In 3×3 convolutions, pixels in a 3×3 region are
aggregated to compute one output pixel at the center position. In the shift operation, a
neighboring pixel is directly copied to the center position.

Shift

…

N

N

DF

DF

…

1x1	conv

M

DF

DF

M

DF

DF

⨷

………
M

Figure 3.4: Using shift and 1×1 convolutions to replace 3×3 convolutions. This figure is
from [206].

in Fig. 3.1b. This direct replacement can lead to some accuracy loss. To mitigate this,
we double the output filter number of the first 1×1 convolution on the non-skip branch
from Fig. 3.1b. Nominally, doubling the output channel size increases both FLOP count
and parameter size by a factor of 2. However, getting rid of 3×3 convolutions allows us to
design a computing unit customized for 1×1 convolutions with higher execution efficiency
than a comparable unit for 3×3 depth-wise convolutions. In the downsample block, we
directly replace the stridden 3×3 depth-wise convolutions with a stride-2 2×2 max-pooling.
Unlike [206], our shift operation only uses four cardinal directions (up, down, left, right) in
addition to the identity mapping (no-shift). This simplifies our hardware implementation of

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 36

(a) Transpose based channel shuffle

(b) Our channel shuffle

Figure 3.5: Transpose Based Shuffle (ShuffleNetV2) vs. Our HW Efficient Shuffle
(DiracDeltaNet)

the shift operation without hurting accuracy.
The first stage of ShuffleNetV2 consists of a 3×3 convolution with a stride of 2 and filter

number of 24. It is then followed by a 3×3 max-pooling with a stride of 2. We replace these
two layers with a module consisting of a series of 1×1 convolution, 2×2 max-pooling, and
shift operations, as shown in Table 3.1. Compared with the original 3×3 convolutions, our
proposed module has more parameters (2144 vs. 648) and FLOPs (30.5M vs. 8.1M). But the
implementation and execution cost of the proposed first stage is negligible compared to a
3×3 convolution layer. After training the network, we find that this module gives near equal
accuracy to the original 3×3 convolution module. With our new module, we can eliminate the
remaining 3×3 convolutions from our network, enabling us to allocate more computational
resources to 1×1 convolutions and thereby increasing parallelism and throughput.

In addition to replacing all 3×3 convolutions, we also reduce the max-pooling kernel size
from 3×3 to 2×2. Using the same pooling kernel size as the stride eliminates the need to
buffer extra data on the pooling kernel boundaries, thereby achieving better efficiency. Our
experiments also show that reducing the max-pooling kernel size does not impact accuracy.

We also modify the channel shuffle’s order to make it more hardware efficient. ShuffleNetV2
uses transpose operation to mix channels from two branches. This is illustrated in Fig. 3.5(a),
where blue and red rectangles represent channels from different branches. The transpose-based
shuffling is not hardware friendly since it breaks the contiguous data layout. Performing
channel shuffle in this manner will require multiple passes of memory read and write. We

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 37

Table 3.1: Macro-structure of DiracDeltaNet

Layer Output
size

Kernel
size Stride #Repeat Output

channel
Image 224 3
Conv1

Maxpool
shift
Conv2

Maxpool
shift

224
112
112
112
56
56

1
2
3
1
2
3

1
2
1
1
2
1

1
1
1
1
1
1

32

64

Stage 2 28
28

2
1

1
3 128

Stage 3 14
14

2
1

1
7 256

Stage 4 7
7

2
1

1
3 512

Conv5 7 1 1 1 1024
GlobalPool 1 7 1 1024

FC 1 1000

Table 3.2: ShuffleNetV2-1.0x vs. DiracDeltaNet

MACs #Params Top-1 acc Top-5 acc
ShuffleNetV2-1.0x 146M 2.3M 69.4% -
DiracDeltaNet 330M 3.3M 68.9% 88.7%

propose a more efficient channel shuffle showed in Fig. 3.5(b). We perform a circular shift to
the feature map along the channel dimension. We can have the same number of channels
exchanged between two branches while preserving the contiguity of the feature map and
minimizing the memory accesses.

We name the modified ShuffleNetV2-1.0x model as DiracDeltaNet. The name comes from
the fact that our network only contains 1×1 convolutions. With a kernel size of 1, the kernel
functions can be seen as discrete 2D Dirac Delta functions. DiracDeltaNet’s macro-structure
is summarized in Table 3.1. Stage 2,3, 4 consist of chained DiracDeltaNet blocks depicted in
Fig. 3.1 with different feature map sizes, channel sizes, and strides. We adopt the training
recipe and hyperparameters described in [128]. We train DiracDeltaNet for 90 epochs with
linear learning rate decay, the initial learning rate of 0.5, 1024 batch size, and 4e-5 weight
decay. A comparison between ShuffleNetV2-1.0x and our DiracDeltaNet is summarized in
Table 3.2.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 38

Weight 32 16 8 4 3 2 1

activation

16

8

4

3

2

1

Ours

2-Stage [26]

Progressive [26]

Figure 3.6: Quantization Grid

Table 3.3: Quantization Result on DiracDeltaNet

full w4a4
Top-1 Acc 68.9% 68.3%
Top-5 Acc 88.7% 88.1%

3.3.3 CNN Quantization

To further reduce the cost of DiracDeltaNet, we apply quantization to convert floating point
weights and activations to low-precision integer values. For network weights, we follow
DoReFa-Net [235] to quantize full-precision weights as

wk = 2Qk(
tanh(w)

2max(| tanh(w)|)
+ 0.5)− 1. (3.1)

Here, w denotes the latent full-precision weight of the convolution kernel. Qk(·) is a function
that quantizes its input in the range of [0, 1] to its nearest neighbor in { i

2k−1 |i = 0, · · · 2k−1}.
We follow PACT [37] to quantize each layer’s activation as

yl = PACT
(
xl
)

=

∣∣xl∣∣− ∣∣xl − ∣∣αl∣∣∣∣+
∣∣αl∣∣

2
,

yl = Qk

(
yl/
∣∣αl∣∣) · ∣∣αl∣∣ . (3.2)

~
• "' ~ -

~

I I

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 39

xl is the activation of layer-l. PACT (·) is a function that clips the activation xl to the range
between [0,

∣∣αl∣∣]. αl is a layer-wise trainable upper bound, determined by the training of the
network. It is observed that during training αl can sometimes become a negative value, which
affects the correctness of the PACT [37] function. To ensure αl is always positive and to
increase training stability, we use the absolute value of the trainable parameter αl rather than
its original value. yl is the clipped activation from layer-l and it is further quantized to ylk, a
k-bit activation tensor. Note that activations from the same layer share the same floating
point coefficient αl, but activations from different layers can have different coefficients. This
is problematic for the concatenative skip connection, since if the coefficients αl and αl−1 are
different, we need to first cast yl−1k and ylk from fixed-point to floating point, re-calculate a
coefficient for the merged activation, and quantize it again to new fixed-point numbers. This
process is very inefficient.

In our experiment, we notice that most of the layers in the DiracDeltaNet have similar
coefficients with values. Therefore, we rewrite equation (3.2) as

yl = Qk

(
yl/
∣∣αl∣∣) · |s|. (3.3)

where s is a coefficient shared by the entire network. This step ensures that activations from
different layers of the network are quantized and normalized to the same scale of [0, |s|]. As a
result, we can concatenate activations from different layers directly without extra computation.
Moreover, by using the same coefficient s across the entire network, the convolution can be
computed completely via fixed-point operations. The coefficient s can be fixed before or leave
it as trainable. A general rule is that we should let s have similar values of αl from different
layers. Otherwise, if s/αl is either too small or too large, it can cause gradient vanishing or
exploding problems in training, which leads to a worse accuracy of the network.

In our network, we merge the PACT function and activation quantization into one module
and name it ActQuant. The input to ActQuant is the output of 1×1 convolutions. Since the
input and weight of the convolution are both quantized into fixed-point integers, the output
is also integers. Then, ActQuant is implemented as a look-up table whose parameters are
determined during training and fixed during inference.

We follow [241] to quantize the network progressively from full-precision to the desired
low-precision numbers. The process is illustrated in Fig. 3.6, where the x-axis denotes
bit-width of weights and the y-axis denotes the bit-width of activations. We start from the
full-precision network, train the network to convergence, and follow a path to progressively
reduce the precision for weights or activations. At each point, we fine-tune the network
for 50 epochs with step learning rate decay. Formally, we denote each point in the grid
as a quantization configuration Cw,a (Nw). Here w represents the bitwidth of weight. a is
the bitwidth of activation. Nw is the network containing the quantized parameters. The
starting configuration would be the full precision network C32,32 (N32). Starting from this
configuration, one can either go down to quantize the activation or go right to reduce the
bitwidth of weight. More aggressive steps can be taken diagonally or even across several grids.
The two-stage and progressive optimization methods proposed in [241] can be represented as
two paths in Fig. 3.6.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 40

In our work, we start from C32,32 (N32). Then we use N32 to initialize N16 and obtain
C16,16 (N16). And we apply step lr decay fine-tuning onto N16 to recover the accuracy loss
due to the quantization. After several epochs of fine-tuning, we get the desired low-precision
configuration C16,16 (N ′16) with no accuracy loss. Following the same procedures, we are able
to first go diagonally in the quantization grid to C4,4 (N4) with less than 1% top-5 accuracy
loss compared to its full precision counterpart.

We use a pre-trained ResNet50 label-refinery [13] to boost the accuracy of the quantized
model. Even with such low-precision quantization, our quantized model still preserves a very
competitive top-5 accuracy of 88.1%. Most of the previous quantization works [37,235,241]
are only effective on large models such as VGG16, AlexNet, or ResNet50. Our quantization
result is summarized in Table 3.3.

3.4 Synetgy Hardware Design
As mentioned in section 3.3.2, we aggressively simplified ShuffleNetV2’s operator set. Our
modified network is mainly composed of the following operators:

• 1× 1 convolution

• 2× 2 max-pooling

• shift

• shuffle and concatenation

Our accelerator, Synetgy, is tailored to support only the operators above. This allows us to
design more specialized compute units with simpler control and further improve hardware
efficiency. The compute of the fully connected layer can be mapped onto our convolution
unit. Shuffle operation is not fully supported on FPGA. CPU-based memory copy is needed
to maintain the memory layout. And the remaining average-pooling layer, which is not
supported on the FPGA is offloaded to the ARM processor on the SoC platform. Algorithm-
hardware co-design results in simplified operators and increased productivity for hardware
implementation. The accelerator implementation only took two people working for one month
using HLS.

3.4.1 The accelerator architecture

Fig. 3.7 shows the overall accelerator architecture design. Our accelerator, highlighted in
light yellow, can be invoked by the CPU for computing one 1× 1 Conv-Pooling-Shift-Shuffle
subgraph at a time. The CPU provides supplementary support to the accelerator. Both the
FPGA and the CPU are used to run the network.

In quantized DiracDeltaNet, weights are 4-bit, input and output activations are 4-bit, and
the largest partial sum is 17-bit. The width of partial sum is determined by the input feature

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 41

Conversion

Pooling

in_fmap_stream

CPU

D
D

R
 D

R
AM

Shift

Shuffle

Controller

Weights
On-Chip Buffer

...

...
...... ...

1 x 1 Conv Units

32

32

out_fmap_stream 13-bit

4-bit

4-bit

1-bit

Figure 3.7: Accelerator Architecture

Table 3.4: Notations

Notation Type Description
WIDTH variable width of feature map
HEIGHT variable height of feature map
IC_TOTAL variable total input channel size
OC_TOTAL variable total output channel size
IC constant: 32 parallelism on input channel dimension
OC constant: 32 parallelism on output channel dimension

bit width and the largest channel size. Given that the largest channel size is 512, there are
24 × 24 × 512 possible outcomes from the convolution, which requires 17 bits to represent.

3.4.1.1 Dataflow Architecture

Our hardware design is based on the dataflow architecture template [35,213]. As illustrated
in Fig. 3.7, we first extract a few process functions from the major operations including 1× 1
convolution, 2× 2 max-pooling, shift, shuffle and the memory load and store. We then chain

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 42

O
C
_T
O
TA

L

IC_TOTAL IC_TOTAL

...

OC_TOTAL

1x1

H
EI
G
H
T

WIDTH WIDTH

H
EI
G
H
T

Weights Input Feature
Maps

Output Feature
Maps

Figure 3.8: 1×1 Convolution

them together using FIFOs with blocking read and non-blocking write. Note that the write is
blocking once the FIFO is full. All the process functions are running concurrently. The arrival
of the data triggers the execution of each function. Therefore, more task-level parallelism can
be explicitly exposed to the HLS tool in addition to the instruction-level parallelism.

3.4.1.2 Convolution Unit

The notations used in this section are listed in Table 3.4. As shown in Fig. 3.8, given
an input feature map of size WIDTH ×HEIGHT × IC_TOTAL and a weight kernel of
size IC_TOTAL×OC_TOTAL, the generated output feature map is of size WIDTH ×
HEIGHT ×OC_TOTAL in 1×1 convolution. The 1×1 convolution is essentially a matrix-
matrix multiplication.

Although [113] suggests a weight-stationary dataflow for 1 × 1 convolution dominant
CNNs, we find it not applicable to our design as the bit width of weights is much smaller
than the partial sums (4 bit vs. 17 bits). Transferring the partial sums on and off-chip will
incur more traffic on the memory bus. Therefore, we adopt the output-stationary dataflow
by retaining the partial sums in the local register file until an output feature is produced.

Fig. 3.9 shows how we schedule the workload onto the accelerator. Note that the nested
loops starting at lines 17, 19 are automatically unrolled. Weights are prefetched onto on-chip
BRAM weight_buf . We first block our inputs so IC ×OC multiplications can be mapped
onto the compute units at each iteration (Line 13∼21). In every iteration, IC input features
are fetched from the DRAM. They are convolved with OC number of weights of size IC and
produce OC partial sums. Each iteration of the loop nest along the input channel dimension

-

:__~~~~~~~ ..

IA ·-~ " """""'

WC]

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 43

Figure 3.9: Pseudo Code for Kernel Compute Scheduling

at line 12 takes 7 ∼ 38 cycles to finish based on the Vivado HLS report. Equivalently, it
takes 7 ∼ 38 cycles to finish IC ×OC 4/4 bit multiplication. The partial sums are stored in
the registers, which can be simultaneously accessed in every cycle. The parameter IC and
OC were tuned for the area performance tradeoff. Increasing them increases overall resource
utilization but helps to reduce the total number of execution cycles.

Based on the roofline model [204], the attainable throughput is the compute-to-communication
(CTC) ratio multiplied by the bandwidth when it is bandwidth bound. The CTC ratio
of our compute unit for the input feature is OC_TOTAL (maximum number is 512 in
DiracDeltaNet), which is a variable. A larger output channel size indicates a higher CTC
ratio. According to our measurement, the maximum bandwidth of the DDR channel is 6GB/s,
which means 6×2 Giga input features (1 Byte contains two 4-bit features) can be loaded. The
theoretical memory bound throughput should be 512× 6× 2 = 6144GMACs = 12288GOPs.
For compute bound problems, the attainable throughput is dependent on the compute capa-
bility. In our case, it is IC × OC × freq = 32× 32× 250MHz = 256GMACs=512GOPs.
Based on the analysis, the convolution unit will reach the bandwidth bound before it hits the
computation roofline.

I b"'<4> i n_ fmap_dram(~IIDTH.ttE IGHTJ IIC_TOTAL/!C J (!CJ
2 b"'<4> out_fmap_dras [WIOTH><HEIGHT) (OC_TOTAL/OC) [OC)
3 b"'<4> weight_buf(OC_TOTAL/OC) [I C_TOTAL/IC) (OC) [IC)
4 bw<4> i n_ trr·ap_st ream (IC)
5 b"'< I> weight_s trea, IOCl flCl
ti b...,•<13> p(lr l i ()l _su1n_rc9 IOU
7 bw.;:4> out_fmap_stream (OC)
8 #pragma HLS dat aflow
9 for idx in (0 , l~IOTH * HEIGHT):

10 tor oc t in [0 . DC TOTAL/QC):
11 I partial _s um_reg <- 0
12) for ;c_1 ;n 10 , ,~_TOTAL/ I(} :
13) #Jl rag ma HLS pipe line
14)) i n_ fmap_stream <- i n_fmap_dra, [idx) [ic_tl (: I
15)) weight_strea, <- weight_buf(ic_t)ioc_t) (:)[:)
16 I I tor ic in (0 , IC):
17 I I •pragsa HLS) unroll
18 I I I ror oc in 10 . OCJ :
19))) #pragma HLS) unroll
20 I I) I partial_sum_reg (oc I ~=
21 I I I I I i n_fmap_stream(i c) • weight _stream[oc)(i c)
22 out tmap st ream <- tune: convert (pa rt ia l sum reg)
23 out fma d ramlidx l foe t lf ; I <- out fma stream

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 44

O
C

IC_TOTAL

IC_TOTAL
...

H
EI

G
H

T

WIDTH

Weights

Input Feature
Maps

IC

1

Memory Layout

0Addr

...

...

IC IC_TOTAL - 1

Addr

...

IC_TOTAL + ICIC_TOTAL 2 x IC_TOTAL - 1

1

W
ID

TH

H
EI

G
H

T

...

...

IC

1 x 1

1 x 1

Memory Layout

0Addr

OC

...

...

IC IC x (OC - 1)

Addr

...

IC x (OC + 1) IC x (2 x OC - 1)
IC

_T
O

TA
L

/ I
C

O
C

_T
O

TA
L

/ O
C

...

O
C

_T
O

TA
L

...
IC x OC

IC_TOTAL / IC

Text

Figure 3.10: Input Layout in DRAM

3.4.1.3 Conversion Unit

The high bitwidth to low bitwidth conversion is performed immediately after the kernel
computation. It is a step function with 16 intervals that converts 17-bit partial sum to 4-bit
activation. The threshold values are different for each layer. All of the read-only threshold
values are stored in on-chip BRAMs. An index number should be specified by the user
function to select which set of threshold values to use for the compute of the current layer.
In hardware, this unit is implemented by using 16 comparators. They are mapped onto a
binary tree structure to reduce the circuit latency.

't
0'

/
◊
 I

D
 I I

I
L_

__
__

W
I

◊
 I

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 45

3.4.1.4 Pooling Unit

We adopt the line buffer design described in [231] to implement the 2× 2 max-pooling layer.
For every iteration, (WIDTH + 1) of IC deep pixels are first fetched into the line buffers.
Once the next pixel value is fetched, a 2× 2 large sliding window is formed. For every two
cycles, we compare the values in the 2× 2 sliding window, output the largest one, and fetch
the next two values. It takes IC_TOTAL/IC iterations to finish the compute.

3.4.1.5 Shift Unit

The line buffer design is also used for the shift operation. In the shift unit, the input images
are first padded with one zero-value pixel at the width and height dimension. (2×(WIDTH+
2) + 2) of pixels are then buffered, and a 3× 3 sliding window is formed. The shift direction
is different for different input channels. It is calculated based on the input channel index.
After initialization, the unit is able to produce 1 output pixel per cycle.

3.4.1.6 Shuffle Unit

Shuffle is implemented by changing the address offset of output features during the writeback
phase. Since the shuffle operation still requires us to concatenate the outputs from the
previous DiracDeltaNet block to the current DiracDeltaNet block outputs, the CPU is used
to copy the output from the previous DiracDeltaNet unit to the shuffled address. The
memory copy operation should be done concurrently with the computation of the current
DiracDeltaNet unit.

3.4.1.7 Fully Connected Unit

We don’t explicitly design a dedicated unit to compute the FC layer. Instead, we map the
compute of the FC layer onto our existing hardware convolution unit. The feature map size
is 1 for the FC layer. While the convolution unit only supports 4-bit weight, the FC layer’s
computation is mapped in a bit-serial like manner. The convolution unit processes each bit
of the FC weight iteratively, and bit shift is done by configuring the step function in the
conversion unit.

3.4.2 Software

We use the ARM processor to control the layer-based accelerator and to compute the last
7×7 average-pooling layer that is not supported by the accelerator. The host application runs
on a full Linux system on the ARM CPU, which controls the memory-mapped accelerator
through the UIO driver interface. The Xilinx python-based PYNQ APIs [212] are used for
fast deployment of the host software code on the Ultra 96 board.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 46

Table 3.5: Resource Usage

LUT FF BRAM DSP
51776 (73.4%) 42257 (29.9%) 159 (73.6%) 360 (100%)

Table 3.6: Performance comparison of Synetgy and the previous works.

VGG-SVD [159] AlexNet [123] VGG16 [188] VGG16 [66] DoReFa [97] FINN-R [19] Ours
Platform Zynq XC7Z045 Stratix-V Stratix-V Zynq 7Z020 Zynq 7Z020 Zynq ZU3EG Zynq ZU3EG
Frame Rate (fps) 4.5 864.7 3.8 5.7 106.0 200.0 66.3
Top-1 Acc 64.64% 42.90% 66.58% 67.72% 46.10% 50.3% 68.30%
Top-5 Acc 86.66% 66.80% 87.48% 88.06% 73.10% N/A 88.12%
Precision 16b 16b 8-16b 8b 2b 1-2b 4-4b
Frequency(MHz) 150 150 120 214 200 220 250
Power(W) 3.0 26.2 19.1 3.0 2.3 10.2 5.5

Table 3.7: Frame Rate on Different Batch Size

Batch Size 1 2 4 8 16
Frame Rate (fps) 41.4 53.6 62.6 65.6 66.3

3.5 Synetgy Experimental Results
We implement our accelerator, Synetgy, on the Ultra96 development board with Xilinx Zynq
UltraScale+ MPSoC targeted at embedded applications. Table 3.5 shows the overall resource
utilization of our implementation. We utilized 73% of the total LUTs on the FPGA, as
the bit-level 4/4bit multiplications are mapped onto LUTs. BRAMs are mainly used for
implementing the FIFO channels. DSPs are used for the address calculation for the AXI
protocol. Our implementation runs at 250 MHz. Power measurements are obtained via a
power monitor. We measured 5.3W with no workload running on the programming logic side
and 5.5W max power on the Ultra96 power supply line when running our network.

We compare our accelerator against previous work in Table 3.6. As explained before,
CNNs for ImageNet classification are usually orders of magnitude more complex than CI-
FAR10 classification. Therefore, we only compare accelerators targeting CNNs for ImageNet
classification with reasonable accuracy. Our work focuses on achieving competitive accuracy
while improving the actual inference speed in terms of frames per second. Our experiments
show that we successfully achieve those two goals. From the table, we can make the following
observations: 1) Synetgy achieves the highest top-1 and top-5 accuracy on ImageNet. The
only previous work that comes close to our accuracy is [66], but its frame rate is 11.6× slower
than ours. 2) Among the embedded accelerators whose top-1 accuracy is higher than 60%,
which is a loose constraint, our model achieves the fastest inference speed. 3) Without the
accuracy constraint, the speed of [19, 97, 123] can go as fast as 864.7 frames per second. But
their accuracy is rather low. 4) The peak attainable throughput of our accelerator is 418

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 47

Table 3.8: Runtime Analysis for the First and Last DiracDeltaNet Blocks in Different Operator
Configurations (Batch=10)

Runtime (ms)
Block1 Block2

feature map size 28 7
in&out channel 128 512

conv only 1.531 0.989
conv+pool 1.530 0.993
conv+shift 1.537 0.996
conv+shuffle 4.409 1.636

overall 4.364 1.441

GOPs, which is close to the theoretical compute roofline. Our average throughput (47.09
GOPs) is currently limited by the low hardware utilization. The inefficiency is mainly from
the software shuffle operations and the first convolution layer with an input dimension of
3 (much smaller than the hardware tiling factor IC). However, Synetgy still achieves a
competitive frame rate, demonstrating the efficacy of our co-design methodology. We see
the opportunity for significant frame rate improvement through further algorithm-hardware
co-design.

The reported frame rate is achieved with batch size set to 16. There is a fixed software
overhead for invoking the poll-based hardware accelerator. The computation latency of the
DiracDelta Block1 in Table 3.8 is 0.15ms when the batch size is equal to 1. The latency for
a single read on the accelerator control register is 0.40ms, which is greater than the actual
compute time. In order to minimize this software overhead, we increase the batch size to
schedule more computation running on the accelerator per invocation. Furthermore, the
weights stored in on-chip BRAM get reused more when batch size is increased. The frame
rates of implementations with different batch sizes are summarized in Table 3.7.

We break down the runtime of the whole heterogeneous system by bypassing one component
of the system and measure the runtime. We observe that the CPU-based memory copy for
the shuffle operation significantly degrades the performance. However, all other non-CNN
components (sw average pooling, FC, PYNQ API call) impact the overall performance
slightly.

To further understand the efficiency of various operators (1×1 convolution, 2×2 max-
pooling, shift, and shuffle) implemented on FPGA and CPU, we measure the runtime of the
DiracDeltaNet blocks with different configurations on Synetgy. The result is summarized in
Table 3.8. We test 2 blocks with different input feature map and channel sizes. Note that
the theoretical OPs of Block1 and Block2 are the same. As shown in the table, pooling and
shift incur almost no performance drop. This is because the process functions for performing

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 48

these operations do not impose new bottlenecks on the dataflow pipeline. Software memory
copy latency of shuffle is more significant on Block1 than Block2. This is because memory
copy overhead is proportional to HEIGHT ×WIDTH × OC_TOTAL. But total OPs
HEIGHT ×WIDTH × IC_TOTAL×OC_TOTAL remains the same, meaning a smaller
feature map needs less memory copy. The memory copy overhead can be possibly alleviated
by running bare-metal C code on the CPU.

3.6 Co-design for Object Detection
As discussed in the previous section, deploying deep learning models on embedded systems
for computer vision tasks has been challenging due to limited compute resources and strict
energy budgets. The majority of existing work focuses on accelerating image classification,
while other fundamental vision problems, such as object detection, have not been adequately
addressed. Compared with image classification, detection problems are more sensitive to the
spatial variance of objects, and therefore, require specialized convolutions to aggregate spatial
information. To address this need, recent work introduces dynamic deformable convolution
to augment regular convolutions. Regular convolutions process a fixed grid of pixels across all
the spatial locations in an image. In contrast, dynamic deformable convolution may access
arbitrary pixels in the image, with the access pattern being input-dependent and varying with
spatial location. These properties lead to inefficient memory accesses of inputs with existing
hardware. In the CoDeNet work discussed in this chapter, we harness the flexibility of FPGAs
to develop a novel object detection pipeline with deformable convolutions. We show the
speed-accuracy tradeoffs for a set of algorithm modifications, including irregular-access versus
limited-range and fixed-shape on a flexible hardware accelerator. While the use of convolution
kernels for computer vision is well-established, researchers have constantly been proposing
new operations and new network designs to increase the model capability and achieve a better
speed-accuracy tradeoff for various tasks. Deformable convolution [44,239] is one of the novel
operations that leads to state-of-the-art accuracy for object recognition with more effective use
of parameters. Many neural network designs with top accuracy [155,225] for object detection
on the COCO dataset [124] use deformable convolution in their design. Unlike conventional
convolutions with fixed a geometric structure, deformable convolution is an input-adaptive
operation that samples inputs from variable offsets generated based on the input features
during inference. Compared to conventional convolutions, deformable convolution provides
a performance advantage due to: variable sampling scales and variable sampling geometry.
The sampling range at each point varies, allowing the network to capture objects of different
scales. Also, the geometry of the sample points is not fixed, allowing the network to capture
objects of different shapes. Several previous studies [125] [34] [121] [236] have also shown
that deformable convolution design lies on the Pareto-frontier of the speed-accuracy tradeoff
for object detection on GPUs.

There are several challenges in supporting deformable convolution on off-the-shelf em-
bedded deep learning accelerators: (i) The memory accesses for the input feature maps

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 49

are irregular, depending on the dynamically generated offsets. Many existing accelerators’
instruction set architecture and the control logic are insufficient in supporting the random
memory access patterns. In addition, the less contiguous memory access patterns limit the
length of bursting memory accesses and incur more memory requests. (ii) There is less
spatial reuse for the input features. Many accelerators are designed for output-stationary or
row-stationary dataflow, which leverages input reuse. With deformable convolution, due to
the variable filter offsets, the loaded input pixel for the current output pixel can no longer be
reused by its neighboring output pixels. The lack of reuse significantly affects performance.
(iii) There is an increased memory bandwidth requirement for loading the variable offsets.

For this work, we leverage the efficiency and flexibility of FPGA and the readily available
high-level design tools to address the challenges from deformable convolutions. Adopting
theco-design methodology, we develop FPGA accelerators tailored to each algorithmic change
and use these to study the accuracy-efficiency tradeoffs for each algorithmic modification.

We propose the following modifications to the deformable convolution operation to make
it more hardware friendly:

1. Limit the adaptive offsets to a fixed range to allow buffering of inputs and exploit full
input reuse.

2. Constrain the arbitrary offset displacements into a square shape to reduce the overhead
from loading the offsets and to enable parallel accesses to on-chip memory.

3. Round the offset displacements to integers and remove the fractional, bilinear interpo-
lation operation for calculating the final sampling value.

4. Use depth-wise convolution to reduce the total number of Multiply-Accumulate opera-
tions (MACs).

We evaluate each modification on an FPGA System-on-Chip (SoC) that includes both
an FPGA fabric and a hardened CPU core. We leverage the shared last-level cache (LLC)
included in its full hardened processor system to efficiently exploit the locality of deformable
convolution with data-dependent memory access patterns. We then optimize the hardware
based on each algorithm modification to demonstrate its advantage in efficiency over the
original operation. With these proposed algorithm modifications, we devise a line-buffer
design to efficiently support our optimized depthwise deformable convolutional operation.

To demonstrate the full capability of the co-designed operation, we also design an efficient
deep neural network (DNN) model CoDeNet for object detection using ShuffleNetV2 [128] as
the feature extractor. We quantize the network to 4-bit weights and 8-bit activations with a
symmetric uniform quantizer using the block-wise quantization-aware fine-tuning process [51].
Our main contributions include:

1. Co-design of a deformable convolution operation on FPGA with hardware-friendly
modifications (depthwise, rounded-offset, limited-range, limited shape), showing up to
9.76× hardware speedup.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 50

offset conv 1×1

IN OUT

deformable
convolution

Figure 3.11: Deformable convolution with input-adaptive displacement offsets generation.
Deformable convolution in our design first generates the sampling offsets from the input
feature map a using a 1×1 convolution. Then it samples the same input feature map based
on the generated offsets and performs a 3×3 convolution to aggregate the corresponding
spatial features.

2. Development of an efficient DNN model for object detection with co-designed input-
adaptive deformable convolution that achieves 67.1 AP50 on Pascal VOC with 2.9 MB
parameters. The model is 20.9× smaller but 10% more accurate than the Tiny-YOLO.

3. Implementation of an FPGA accelerator to support the target neural network design
that runs at 26 frames per second on Pascal VOC with 61.7 AP50.

3.7 CoDeNet Background and Motivation

3.7.1 Object Detection

Object detection is a more challenging task than image classification as it performs object
localization in addition to object classification and requires prediction on spatially variant
objects. Existing solutions for object detection can be categorized into two approaches: two-

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 51

stage detector and one-stage detector. In two-stage algorithms, the detector first proposes a
set of regions of interest and then performs object classification on the selected regions. Faster
R-CNN [166], a two-stage algorithm, introduces Region Proposal Network (RPN) for efficient
region proposal. RPN is widely adopted in two-stage algorithms as it reduces the overhead
of region proposals by sharing features from the main detection network. On the other
hand, one-stage algorithms skip the region proposal stage and directly run detection over a
dense sampling of all possible regions. Single Shot MultiBox Detector (SSD) [126], a popular
one-stage detector, leverages a pyramidal feature hierarchy in the feature extraction network
to efficiently encode objects in various sizes. You Only Look Once (YOLO) [163] [165] is
another popular one-stage detector using fully convolutional network. The algorithm divides
the input image into a grid with a fixed number of cells. Each cell in the grid predicts the
bounding boxes of objects. A prediction of the bounding box comprises location information,
confidence scores, and the conditional probability of the object class. The location information
consists of the coordinates of the object center and the object size. The confidence scores
indicate the probability of an object in these boxes.

In this work, we use a one-stage anchor-free detector called CenterNet [236] due to its
better Pareto efficiency for the speed-accuracy tradeoff compared to the concurrent works [54]
[115] [116] [237]. In contrast to most anchor-free detectors where Non-Maximum Suppression
(NMS) mechanism is still required to remove the duplicated predictions, CenterNet directly
generates the center points for each object without any post-processing. This property greatly
reduces the complexity of implementing the detector pipeline in hardware.

As for the evaluation metrics for object detection, a common practice is to use the average
precision (AP) and intersection over union (IoU). AP computes the average precision value
achieved with different recall values. The precision value, calculated as

true positive
true positive+false positive , indicates the percentage of predictions that are correct. The recall value,
defined as true positive

true positive+false negative , measures the capability to correctly classify all positives.
IoU is defined as the intersection between the predicted boxes and the target boxes over
the union of the two. The default evaluation metric for VOC dataset [55] is AP50, which
indicates that the prediction would be seen as correct if the corresponding IoU ≥ 0.5. The
main metric for COCO is the mean of the average precisions at IoU from 0.5 to 0.95 with a
step size of 0.05.

3.7.2 Deformable Convolution

Compared to image classification, one challenge in object detection is to capture geometric
variations of each object, such as scale, pose, viewpoint, and part deformation. Besides,
different objects located in different regions of the same image can be geometrically different,
making it hard to capture all features in one pass. State-of-the-art approaches [34] [121]
[125] [178] [236] address these challenges by harnessing deformable convolution [44] [239]. As
demonstrated in Figure 3.11, deformable convolution samples the input feature map using
the offsets dynamically predicted from the same input feature map, after which it performs a

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 52

(a) car (b) lawn

Figure 3.12: Example for the input-adaptive deformable convolution sampling locations and
offset range distribution for different active detection units. (a) the sampling locations for
the car as an active unit. (b) the sampling locations for lawn in the background.

regular convolution over the features sampled from the predicted offsets. The convolution
layer for generating the offsets is typically composed of one 1×1 or 3×3 convolution layer. It is
jointly trained with the rest of the network using standard backpropagation in an end-to-end
manner. This way, the gradient updates not only the weights of the convolutions but also
the sampling locations for the convolutions. Such operation design enables more flexible and
adaptive sampling on different input feature maps.

Unlike the regular convolution with fixed geometry, the receptive fields of deformable
convolution can be of various shapes to capture objects with different scales, aspect ratios, and
rotation angles. In addition, deformable convolution is both spatial-variant and input-adaptive.
In other words, its sampling patterns and offsets vary for different output pixels in the same
input feature map and also vary across different input feature maps. In Figure 3.12(a)(b), we
show how the sampling locations (red dots) change with the different active detection units
(the object with a green dot on it). Most of the offsets are within the [−1, 4] range for the
example image. Albeit the operation augments and enhances the capability of the existing
convolution for object detection, its dynamic nature poses extra challenges to the existing
hardware.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 53

3.7.3 Algorithm-hardware Co-design for Object Detection

Many prior acceleration works [240] [130] [138] [76] [229] [214] [203] have demonstrated the
effectiveness of the co-design methodology for the deployment of real-time object detection on
FPGAs. [130] customizes SSD300 [126] by replacing operations, such as dilated convolutions,
normalization, and convolutions with larger stride, with more efficiently supported ones on
FPGAs. [138] adapts YOLOv2 [165] by introducing a binarized network as the backbone for
feature extraction to leverage the low-precision support of FPGA. Meanwhile, the FINN-R
framework [19] further explores the benefits of integrating quantized neural networks (QNN)
into Yolo-based object detection systems. Real-time object detection for live video streaming
system [154] is developed with the FINN-based QNNs. [76] devised an automatic co-
design flow on embedded FPGAs for the DJI-UAV [215] dataset with 95 categories targeting
unmanned aerial vehicles. The flow first constructs DNN basic building blocks called bundles,
estimates their corresponding latency and cost on hardware, and selects the ones on the
Pareto front for latency and resources trade-off. Then it starts a two-phase DNN evaluation
to search for the bundles on the Pareto front of the accuracy-latency trade-off and then
fine-tune the design of the selected bundles. SkyNet [229] searched by this co-design flow
achieves the best performance (based on a combination of throughput, power, and detection
accuracy) on embedded GPUs and FPGAs. Differing from prior work, we study a novel and
efficient operation, deformable convolution, for object detection. In addition to modifying
the neural network design, we also co-design the operation for better hardware efficiency.

3.7.4 Quantization

Quantization [235] [95] [224] [51] [26] is a critical technique for efficiently deploying neural
network models on embedded devices. It alleviates the memory bottleneck by compressing
the weights in neural network models into ultra-low precision such as 4 bits. Moreover,
quantizing both the weights and activations enables the use of cheaper low-precision integer
arithmetics on hardware. For DNN deployment on embedded FPGAs without floating-point
arithmetic support, quantization is one key and necessary modification.

However, directly performing aggressive layer-wise quantization can result in significant
accuracy degradation [108]. Many prior works have attempted to address this accuracy
drop with various techniques, such as non-uniform learnable quantizer [224], mixed-precision
quantization [50], progressive fine-tuning [233] as well as group-wise [179] and channel-wise
quantization [108]. Although these methods can better preserve the accuracy of the pre-
trained model, they increase the complexity of hardware implementation. They can introduce
non-negligible overhead on both latency and memory usage. Consequently, it is crucial to
carefully consider the trade-off between accuracy and hardware efficiency when quantizing a
model for edge devices. Quality of quantization is also strongly correlated to the network
architecture and the target task. [108] shows that compact models are more difficult to
quantize. Besides, compared to image classification, object detection is a more challenging
task for ultra-low precision quantization because it requires accurate localization of specific

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 54

objects in an image. Even with quantization-aware fine-tuning, quantizing the detection
models with naive quantization schemes can cause around 10% AP degradation on the COCO
dataset [119]. This work takes advantage of mixed-precision quantization, where we have 4-bit
for weights and 8-bit for activations. This can significantly reduce the accuracy degradation
since activations are more sensitive compared to weights in object detectors.

3.8 CoDeNet Deformable Operation Co-design
Although deformable convolution augments the neural network design with input-adaptive
sampling, it is challenging to provide efficient support for the operation in its original form
on hardware accelerators due to the following reasons:

1. the limited reuse of input features

2. the irregular input-dependent memory access patterns

3. the computation overhead from the bilinear interpolation

4. the memory overhead of the deformable offsets

In this work, we perform a series of modifications to deformable convolution to enable
more data reuse and a higher degree of parallelism for FPGA acceleration. A comprehensive
ablation study is done to demonstrate the impact of each algorithmic modification on accuracy.
We perform our study with standard object detection benchmarks, VOC, and COCO. We
then design a specialized hardware engine optimized for each algorithmic modification on
FPGA and show the performance improvement on FPGA from each modification. The
accuracy and hardware efficiency tradeoff is studied for each modification we propose.

We will be using the following notations in the paper: n - batch size, h - height, w - width,
ic - input channel size, oc - output channel size, k - kernel size, ∆p - offsets.

3.8.1 Algorithm Modifications

We choose average precision (AP) as the main metric for benchmarking object detection
performance on VOC and COCO datasets. ShuffleNet V2 [128] is used as the feature extractor
in all experiments. As for decoder, we follow the practice of CenterNet [236] and use the stack
of deformable convolution, nearest 2× upsample, and ReLU activation layers. Table 3.9 lists
the modifications we make to the original deformable convolution as well as a comparison
among deformable convolutions of different forms and regular convolutions with varying sizes
of the kernel. From the comparison, we see that the original deformable convolution achieves
higher accuracy on Pascal VOC compared to convolution with 9× 9 kernel (42.9 vs. 42.3)
while requiring 9×9

3×3 = 9× fewer MACs and weight parameters. Here we discuss how we
further improve the efficiency of deformable convolution for hardware step-by-step.

--

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 55

(a) normal (b) deform (c) bound (d) square (e) round

Figure 3.13: Major algorithm modifications for deformable convolution operational co-design.
(a) is the default 3×3 convolutional filter. (b) is the original deformable convolution with
unconstrained non-integer offsets. (c) sets an upper bound to the offsets. (d) limits the
geometry to a square shape. (e) shows that the predicted offsets are rounded to integers.

Table 3.9: Ablation study of operation choices for object detection on VOC and COCO. The
top half shows the baselines with various kernel sizes, from 3×3 to 9×9. The bottom half
shows the comparison of different designs for deformable convolution.

Operation Depthwise Bound Square VOC COCO
AP AP50 AP75 AP AP50 AP75 APs APm APl

3× 3 39.2 60.8 41.2 21.4 36.5 21.5 7.3 24.1 33.0
3× 3 X 39.1 60.9 40.9 19.8 34.3 19.7 6.3 22.6 31.5
5× 5 X 40.6 62.4 42.6 21.3 36.4 21.3 6.7 23.7 34.2
7× 7 X 41.9 63.8 43.8 21.7 37.2 21.5 6.9 24.0 35.2
9× 9 X 42.3 64.8 44.3 22.2 37.8 22.1 7.0 24.3 35.4
deform X 42.9 64.4 45.7 23.0 38.4 23.3 6.9 24.4 37.8
deform X X 41.0 63.0 42.9 21.3 36.4 21.1 7.2 23.6 34.4
deform X X X 41.1 63.1 43.7 21.5 36.8 21.5 6.5 23.7 34.8

Depthwise Convolution We first replace the full 3×3 deformable convolutions with
3×3 depthwise deformable convolutions and 1×1 convolutions, similar to the depthwise
separable convolution practice in Xception [39]. Such modification makes the whole network
more uniform and smaller, so the weights of the deformable convolution can be all buffered
on-chip for maximal reuse.

Bounded Range Our next algorithmic modification to facilitate efficient hardware
acceleration is to restrict the offsets to a positive range. Such constraint limits the size of
the working set of feature maps so that a pre-defined fixed-size buffer can be added to the
hardware, in order to further exploit the temporal and spatial locality of the inputs. Assume
a uniform distribution for the generated offsets in a 3× 3 convolution kernel with stride 1,
each pixel is expected to be used nine times. If all inputs within the range can be stored in
the buffer, all except the first access to the same address will be from on-chip memory with
1 ∼ 3 cycle latency. We impose this constraint during training by adding a clipping operation
after the offset generation layer to truncate offsets that are smaller than 0 or larger than N ,

---r-,--,--7--T--r--1

: : : : : : : :
I- - -.- - -.- - I - - I - - I - - I - - I

I I I I I I I I

t- - -:- - -:- - :- - : - - : - - : - - :

: I I . I · • . I I I

r--~-~--J--~--L--L--1
: : : . : . : . : : :
r--~-~--~--~--~--1---1

~ -_:_ __ :_~ J _i! l ~ l- -~ -_:
: : : : : : : :
~--r-,--,--7--T--r--1
I I I I I I I I
1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ I

I I I I I I I I

1
__ I __ I __ I __ I ___ 1 __ I __ I

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 56

 LLC

 DDR
Controller

Line 15

Line 2

Line 1

Programmable Logic

Conv
EngineWeight Buffer

 Multi-Ports
 Line Buffer

...

Offset

Input

Pr
oc

es
so

r S
ys

te
m

2

1

3
4

Figure 3.14: Hardware engine for deformable convolution.

so all offsets ∆px,∆py ∈ [0, N]. Table 3.9 shows that setting the bound N to 7 results in 1.9
and 1.7 AP degradation on VOC and COCO respectively.

Square Shape Another obstacle to efficiently supporting the deformable convolution is
its irregular data access patterns, which leads to serialized memory accesses to multi-banked
on-chip memory. To address this issue, we further constrain the offsets to be on the edges of
a square. Instead of using 3× 3× 2 = 18 numbers to represent the ∆px and ∆py offsets for
all nine samples, only one number ∆pd, representing the distance from the center to the sides
of the square needs to be learned. This is similar to a dilated convolution with spatial-variant
adaptive dilation factors. Adding this modification leads to a 0.1 and 0.2 AP increase on
VOC and COCO.

Rounded Offsets In the original deformable design, the generated offsets are typically
fractional, and a bilinear interpolation needs to be performed to produce the target sampling
value. Bilinear interpolation calculates a weighted average of the neighboring pixels for
a fractional offset based on its distance to the neighboring pixels. It introduces at least
six multiplications to the sampling process of each input, which is a significant increase
(6×h×w× ic) to the total FLOPs. We thus round the offsets to be integers during inference
to reduce the total computation. The dynamically generated offsets are thus rounded to
integers. In practice, we round the generated offset during the quantization step.

As shown in Table 3.9, together with the modifications above, our co-designed deformable
convolution achieves 41.1 and 21.5 AP on VOC and COCO, respectively, which is 1.8 and
1.5 lower than the original depthwise deformable convolution. Note that the accuracy of the
modified deformable convolution still achieves higher accuracy compared to the large 5× 5
kernel, while requiring 3×3

5×5 = 36% fewer MACs and parameters.

0

0

0
0

---,

1- - - - -
: f I
' ' ' ' ' '

: _____ ~,_______J1-----CJ
f--:
' '

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 57

Table 3.10: Co-designed hardware performance comparison. The top half shows the perfor-
mance of codesigned hardware corresponding to each algorithmic changes to the default 3×3
convolution. The bottom half shows the results for the depthwise 3×3 convolution.

Operation Deform Bound Square
Without LLC With LLC

Latency (ms) GOPs Latency (ms) GOPs
43.1 112.0 41.6 116.2

default X 59.0 81.8 42.7 113.1
3×3 conv X X 43.4 111.5 41.8 115.5

X X X 43.4 111.5 41.8 115.6
1.9 9.7 2.0 9.6

depthwise X 20.5 0.9 17.8 1.1
3×3 conv X X 3.0 6.2 3.4 5.5

X X X 2.1 9.2 2.3 8.2

3.8.2 Hardware Optimizations

Many hardware optimization opportunities are exposed after we perform the modifications
as mentioned above to deformable convolution. We implement a hardware deformable
convolution engine on FPGA SoC as shown in Figure 3.14 and tailor the hardware engine to
each algorithm modification. The experiments are run on the Ultra96 board featuring a Xilinx
Zynq XCZU3EG UltraScale+ MPSoC platform. The accelerator logic accesses the 1MB 16-
way set-associative LLC through the Accelerator Coherency Port (ACP). The data cache uses
a pseudo-random replacement policy. Table 3.10 lists the speed and throughput performance
for different customized hardware running a kernel of size h = 64, w = 64, k = 256, c = 256.
In all experiments, we round the dynamically generated offsets to integers. We use 8× 8× 9
Multiply-Accumulate (MAC) units in the 3× 3 convolution engine for all full convolution
experiments and 16× 9 MACs for depthwise convolution experiments.

Baseline The baseline hardware implementation for the original 3× 3 deformable con-
volution directly accesses the DRAM without going through any cache or buffering. In
Figure 3.14, the baseline implementation directly accesses the input and output data through
HP ports and 1○ DDR controller. The input addresses are first calculated from the offsets
loaded from DRAM. The 3× 3 Deform M2S engine then fetches and packs the inputs into
parallel data streams to feed into the MAC units in the 3× 3 Conv engine. This baseline
design resembles accelerator designs with only a scratchpad memory that cannot leverage the
temporal locality of the dynamically loaded inputs for deformable convolution.

Caching One hardware optimization to leverage the temporal and spatial locality of
the nonuniform input accesses is to add a cache to the accelerator system. As shown in
Figure 3.14, we load the inputs from 2○ LLC through the ACP port in this implementation
to reduce the memory access latency of the cached values. Since the inputs are sampled from
offsets without specific patterns in the original deformable convolution, the cache provides

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 58

adequate support to buffer inputs that might be reused in the near future. As shown in
Table 3.10, adding LLC results in 27.6% and 13.2% reduction in latency for the original full
and depthwise deformable convolution, respectively.

Buffering With the bounded range modification to the algorithm, we are able to use
the on-chip memory to buffer all possible inputs. Similar to a line-buffer design for the
original 3 × 3 convolution that stores two lines of inputs to exploit all input locality, we
store 2N lines of inputs so that it is sufficient to buffer all possible inputs for reuse. This
implementation includes the 3○ Line Buffer in Figure 3.14. With the effective buffering
strategy, we can see in Table 3.10 that the latency of a bounded deformable is reduced by
26.4% and 85.3% for full and depthwise convolution, respectively, in a system without LLC. In
a system with LLC, the reduction is 2.1% and 80.9%, respectively. The depthwise deformable
convolution benefits more from adding the buffer as it is a more memory-bound operation.
The compute-to-communication ratio for its input is oc times lower than the full convolution.

Parallel Ports The algorithm change to enforce a square-shape sampling pattern not
only reduces the bandwidth requirements for loading the input indices in hardware, but also
helps to improve the on-chip memory bandwidth. With a non-predictable memory access
pattern to the on-chip memory, only one input can be loaded from the buffer at each cycle if
all sampled inputs are store in the same line buffer. By constraining the shape of deformable
convolution to a square with variable dilation, we are guaranteed to have three different line
buffers storing three sampled points. We can thus have three parallel ports (4○ Multi-ports in
Figure 3.14) accessing different line buffers concurrently. This co-optimization improves the
on-chip memory bandwidth and leads to another ∼ 30% reduction in latency for depthwise
deformable convolution.

With the co-design methodology, our final result shows a 1.36× and 9.76× speedup,
respectively, for the full and depthwise deformable convolution on the embedded FPGA
accelerator. These optimizations can also be beneficial to other hardware with line buffer
and parallel ports support.

3.9 CoDeNet Detection System Co-Design
In addition to the deformable convolution operation, the design of feature extractor, detection
heads, and quantization strategy also significantly impact our detection system’s accuracy
and efficiency. In this section, we introduce an efficient detector and a specialized FPGA
accelerator design to support it in CoDeNet.

3.9.1 CoDeNet Neural Network Design

To exploit the full potential of hardware acceleration, we carefully select and integrate the
operations and building blocks in CoDeNet. We devise CoDeNet to have the following
embedded hardware compatible properties compared to other off-the-shelf network designs:
1) more uniform operation types to reduce the control complexity in the accelerator and to

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 59

shuffle block
(a) + (b) ×3

IN

shuffle block
(a) + (b) ×7

shuffle block
(a) + (b) ×3

conv 3×3, s2
maxpool, s2

conv 1×1, s1

dw deform
nearest 2x

dw deform
nearest 2x

dw deform
nearest 2x

output heads
(center + box)

OUT
512×512

128×128

64×64

32×32

16×16 16×16

32×32

64×64

128×128

512×512

IN

conv 1×1 dw conv 3×3, s1 conv 1×1 concat shuffle OUTOUT

(b)split

IN conv 1×1 dw conv 3×3, s2 conv 1×1 concat shuffle OUT

dw conv 3×3, s2 conv 1×1

OUT

(a)

IN conv 1×1 dw deform conv nearest up 2x OUT

offset conv 1×1

OUT

(c)

(i) building blocks (ii) model architecture

Figure 3.15: The architecture diagrams of our building blocks and model architecture.See
section 3.9.1 for more details.

increase the accelerator utilization, 2) less computation to lower the overall latency to run
on the embedded accelerator with limited compute capability, 3) smaller weights and inputs
to be buffered on-chip for maximal reuse on the accelerator. Figure 3.15 shows the basic
building blocks as well as the overall network architecture of CoDeNet.

Building Blocks and Feature Extractor The shaded part of Figure 3.15 shows the
basic building blocks of CoDeNet. Building block (a) is used to down-sample the input images.
A 3×3 depthwise convolution block with stride 2 is added to both of its branches together
with 1×1 convolution to aggregate information across the channel dimension. Building block
(b) splits the input features into two streams across the channel dimension. One branch
is directly fed to the concatenation. The other streams through a sub-block of 1×1, 3×3
depthwise, and 1×1 convolution. This technique is referred to as identity mapping [79], which
is commonly used to address the vanishing gradient problem during deep neural network
training. Building blocks (a) and (b) together form a shuffle block in the ShuffleNetV2 feature
extractor, as shown in the left branch of the overall architecture in Figure 3.15. We choose
ShuffleNetV2 as it is one of the state-of-the-art efficient network design. ShuffleNetV2 1x
configuration only requires 2.3M parameters (4.8× smaller than ResNet-18 [78]) and 146M
FLOPs of compute with resolution 224 × 224 (12.3x smaller than ResNet-18). Its top-1
accuracy is 69.4% on ImageNet (0.36% lower than ResNet-18).

The deformable operation is used in building block (c). Building block (c) is used for
upsampling the backbone features. The first 1×1 convolution is designed to map input
channels to output channels. The following 3×3 depthwise deformable convolution samples
the previous feature map, according to the offsets generated by 1×1 convolution. After that,
a 2× upsampling layer, operated by a nearest neighbor kernel, is utilized to interpolate the
higher resolution features. Note that, aside from the first layer, we only use 1×1 convolution
and 3×3 depthwise (deformable) convolution in our build blocks. This way, the building

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 60

(a) image (b) center heatmap (c) width & height (d) local shift

Figure 3.16: The output heads of CenterNet for object detection. See section 3.9.1 for more
details.

blocks of the whole network become more uniform and simple to support with specialized
hardware.

Detection Heads As mentioned in Section 3.7.1, we use the anchor-free CenterNet [236]
method to directly predict a gaussian distribution for object keypoints over the 2D space
for object detection. Given an image I ∈ RW×H×3, our feature extractor generates the final
feature map F ∈ R

W
R
×H
R
×D, where R is the output stride and D is the feature dimension. We

set R = 4 and D = 64 for all the experiments. As illustrated in Figure 3.16, the outputs
include:

1. the keypoint heatmap Ŷ ∈ [0, 1]
W
R
×H
R
×C

2. the object size Ŝ ∈ R
W
R
×H
R
×2

3. the local offset Ô ∈ R
W
R
×H
R
×2

Here C is pre-defined as 20 and 80 for VOC and COCO, respectively. In order to reduce the
computation, we follow the class-agnostic practice, using the single size and offset predictions
for all categories. To construct bounding boxes from the keypoint prediction, we first collect
the peaks in keypoint heatmap Ŷ for each category independently. Then we only keep the
top 100 responses which are greater than its eight-connected neighborhood. Specifically, we
use the keypoint values Ŷxiyic as the confidence measure of the i-th object for category c. The
corresponding bounding box is decoded as

(x̂i + δx̂i − ŵi/2, ŷi + δŷi − ĥi/2, x̂i + δx̂i + ŵi/2, ŷi + δŷi + ĥi/2),
where (δx̂i, δŷi) = Ôx̂iŷi is the offset prediction and (ŵi, ĥi) = Ŝx̂iŷi is the size prediction.
Quantization Quantization is a crucial step towards the efficient deployment of the GPU

pre-trained model on FPGA accelerators. Although many previous works treat quantization
as a separate process outside the algorithm-hardware co-design loop, we note that quantiza-
tion performance greatly depends on the network architecture. For example, the residual
connection will enlarge the activation range of specific layers, making a uniform quantization
setting sub-optimal. And it requires a special design for addition in int32 format; otherwise,

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 61

extra steps of quantization are needed to support the low-precision addition. With this prior
knowledge, we use concatenation instead of residual connection throughout CoDeNet, and we
do not use techniques such as layer aggregation [221] to achieve a simpler hardware design.

We adopt a symmetric uniform quantizer shown as follows:

X ′ = clamp(X,−t, t), (3.4)

XI = bX
′

∆
e, where ∆ =

t

2k−1 − 1
, (3.5)

Q(X) = ∆XI , (3.6)

where Q stands for quantization operator, X is a floating-point input tensor (activations or
weights), b·e is the round operator, ∆ is the quantization step (the distance between adjacent
quantized points), XI is the integer representation of X, and k is the quantization precision
for a specific layer. Here, threshold value t determines the quantization range of the floating-
point tensor, and the clamp function sets all elements smaller than −t to −t, and elements
larger than t to t. It should be noted that the threshold value t can be smaller than max
or |min| in order to get rid of outliers and better represent the majority of a specific tensor.
In order to achieve better AP, we perform 4-bit channel-wise quantization [108] for weights.
Meanwhile, to ease the hardware design and accelerate the inference, we choose a symmetric
uniform quantizer rather than non-uniform quantizer, and we use 8-bit layer-wise quantization
for activations. During quantization-aware fine-tuning, we use Straight-Through Estimator
(STE) [16] to achieve the backpropagation of gradients through the discrete operation of
quantization.

For the deformable convolution, quantization comprises two parts: 1) quantize the
corresponding weights and activations, and 2) round and bound the sampling offsets of the
deformable convolution. Compared to the standard convolution, the variable offsets will
not significantly change the network’s sensitivity or the allowable quantization bit-width.
Regarding the original fractional offsets, we bound and round them to be integers within the
range [−8, 7]. This modification eliminates the need for bilinear interpolation and results in
a 1.9 AP drop on VOC as shown in Table 3.9.

3.9.2 Dataflow Accelerator

We develop a specialized accelerator to support the aforementioned CoDeNet design on an
FPGA SoC. As shown in Figure 3.17, the FPGA SoC includes the programmable logic (PL),
memory interfaces, a quad-core ARM Cortex-A53 application processor with 1MB LLC, etc.
Our accelerator on the PL side communicates to the processor through an AXI system bus.
The High Performance (HP) and Accelerator Coherency Port (ACP) interfaces on the AXI
bus allow the accelerator to directly access the DRAM or perform cache-coherent accesses to
the LLC and DRAM. The processor provides software support to invoke the accelerator and
run functions not implemented on the accelerator.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 62

 BuffersARM Cortex A53 (APU)

LLC

DDR
Controller

D
M

A

 1MB 16-way
set-associative

Cache Coherent
Interconnect

(CCI)
Crossbar

Line Buffer

15

16

16

Quant
1x1 Weights

3x3 DW Weights

Quant Parameters

Offsets

Inputs

Outputs

9

16

Quant

1x1 Conv 3x3
DW Conv

Programmable Logic

Figure 3.17: Architectural diagram of the FPGA accelerator.

With our co-design methodology, we are able to reduce the types of operations to support
in the accelerator. Excluding the first layer for the full 3 × 3 convolution, CoDeNet only
consists of the following operations: (i) 1× 1 convolution, (ii) 3× 3 depthwise (deformable)
convolution, (iii) quantization, (iv) split, shuffle and concatenation.

This helps us simplify the complexity of the control logic and thus saves more FPGA
resources for the actual computation. We partition the CoDeNet workload so that the
frequently-called compute-intensive operations are offloaded to the FPGA accelerator while
the other operations are run by software on the processor. The operations we choose to
accelerate are 1× 1 convolution, 3× 3 depthwise (deformable) convolution, and quantization,
with the other operations offloaded to the processor.

To leverage both the data-level and the task-level parallelism, we devise a spatial dataflow
accelerator engine to execute a subgraph of the CoDeNet at a time and store the intermediate
outputs to the DRAM. In the dataflow engine, the execution of compute units is determined
by the arrival of the data and thus further reduces the overhead from the control logic.
As illustrated in the architectural diagram in Figure 3.17, our accelerator executes 1 × 1
convolution with quantization and 3×3 depthwise (deformable) convolution with quantization
in order. We implement the accelerator with Vivado HLS and its dataflow template. All
functional engines are connected to each other through data FIFOs. Extra bypass signals
can be asserted if the user would like to bypass either of the main computation blocks. By
co-designing the network to use operations with fewer weight parameters, such as depthwise
convolution, we are able to buffer the weights for all operations in the on-chip memory and
enable the maximal reuse of the weights once they are on-chip. We also add a line buffer for
the 3× 3 depthwise (deformable) convolution to maximize the reuse of inputs on-chip. This
optimization is enabled by the operation co-design discussed in Section 3.8.2. The line buffer
stores 15 rows of the input image. The size of this buffer is larger than 15× w × ic of any
layers in the CoDeNet design. Our input tensors are laid out in the NHWC manner, allowing
the data along the channel dimension C to be stored in contiguous memory blocks.

. ==· ::_"-►:..........-□- :-- :-
··· - ---··es··---------'------------1- D

~ ----- --~:

<(-------------------------------------- '

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 63

Table 3.11: Quantized CoDeNet on VOC object detection.

Detector Resolution DownSample Weights Activations Model Size MACs AP50
Tiny-YOLO 416×416 MaxPool 32-bit 32-bit 60.5 MB 3.49 G 57.1

CoDeNet1× (config a) 256×256 Stride4 32-bit 32-bit 6.06 MB 0.29 G 53.0
4-bit 8-bit 0.76 MB 0.29 G 51.1

CoDeNet1× (config b) 256×256 Stride2+MaxPool 32-bit 32-bit 6.06 MB 0.29 G 57.5
4-bit 8-bit 0.76 MB 0.29 G 55.1

CoDeNet1× (config c) 512×512 Stride4 32-bit 32-bit 6.06 MB 1.14 G 64.6
4-bit 8-bit 0.76 MB 1.14 G 61.7

CoDeNet2× (config d) 512×512 Stride4 32-bit 32-bit 23.2 MB 3.54 G 69.6
4-bit 8-bit 2.90 MB 3.54 G 67.1

CoDeNet2× (config e) 512×512 Stride2+MaxPool 32-bit 32-bit 23.2 MB 3.58 G 72.4
4-bit 8-bit 2.90 MB 3.58 G 69.7

1× 1 convolution The compute engine for the 1× 1 convolution is composed of 16× 16
multiply-accumulate (MAC) units. At each round of the run, the engine takes 16 inputs
along its channel dimension and broadcasts each of them to 16 MAC units. Meanwhile, it
unicasts 16× 16 weights for 16 input channels and 16 output channels to their corresponding
MAC unit. There are 16 reduction trees of size 16 connected with the MAC units to generate
16 partial sums of the products. The partial sums are stored on the output registers and
are accumulated across each round of the run. Every time the engine finishes the reduction
along the input channel dimension, it feeds the values of the output registers to the output
FIFO and resets their values to zero.

3 × 3 depthwise (deformable) convolution This engine directly reads 16 sampled
3 × 3 inputs from the line buffer design and multiplies them by 3 × 3 weights from 16
corresponding channels. Then it computes the outputs with 16 reduction trees to accumulate
the partial sums along 3×3 spatial dimension. Both the original and the deformable depthwise
convolutions can be run on this engine. The original depthwise operation is realized by
hardcoding the offset displacement to be 1.

Quantization To convert the output from the 16-bit sum to 8-bit inputs, we add a
quantization unit at the end of each compute engine. The quantization unit multiplies each
output with a scale, and then adds a bias to it. It returns the lower 8 bits of the result as the
quantized value. The parameters, such as the scale and bias for each channel, are preloaded
to the on-chip buffer to save the memory access time. Note that we also merge the batch
normalization and ReLU in this compute unit. We follow the practice introduced in [95] to
perform integer inference for our quantized model.

Our accelerator design can execute 16× 1× 250× 2 = 128 GOPs for 1×1 convolution
and 9 × 16 × 250 × 2 = 72 GOPs for 3×3 depthwise convolution simultaneously. On our
target FPGA with 6GB/s DDR bandwidth, we can load 4 Giga pairs of 8-bit inputs and
4-bit weights per second. The arithmetic intensity required to reach the compute bound,
is 128/4 = 32 OPs/pair for 1×1 convolution and 72/4 = 18 OPs/pair for 3×3 depthwise
convolution. Our buffering strategy allows us to reach the compute bound through the reuse
of weights and the activations.

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 64

Table 3.12: Quantized CoDeNet on COCO object detection.

Detector Weights Model Size MACs AP AP50 AP75 APs APm APl

CoDeNet1× 32-bit 6.07MB 1.24G 22.2 38.3 22.4 5.6 22.3 38.0
4-bit 0.76MB 1.24G 18.8 33.9 18.7 4.6 19.2 32.2

CoDeNet2× 32-bit 23.4MB 4.41G 26.1 43.3 26.8 7.0 27.9 43.5
4-bit 2.93MB 4.41G 21.0 36.7 21.0 5.8 22.5 35.7

3.10 CoDeNet Experimental Results
We implement CoDeNet in PyTorch, train it with a pretrained ShuffleNetV2 backbone,
and quantize the network to use 8-bit activations and 4-bit weights. We devise several
configurations of CoDeNet to facilitate the latency-accuracy tradeoffs for our final object
detection solution on the embedded FPGAs. Different configurations of the CoDeNet are
listed in Table 3.11 and 3.12 showing the accuracies for object detection on Pascal VOC and
Microsoft COCO 2017 dataset.

In Table 3.11, we show different configurations of CoDeNet with an accuracy-efficiency
trade-off. config c, d and e use image size 512 × 512, which is the default resolution of
CenterNet. Compared to Tiny-YOLO, our config c model is 10× smaller without quantization
and 79.6× smaller with quantization, while achieving higher accuracy. In addition, the total
MACs count of our compact design is 3.1× smaller than Tiny-YOLO. It can be seen that
quantizing the model to 4–8 bits causes a minor accuracy drop, but can significantly reduce
the model size (> 8×). To further save the MACs, we reduce the resolution to be 256× 256,
corresponding to config a, where we can still get 53 AP50 with about 1/4 total MACs
compared with config c. Moreover, we found the downsampling strategy of the first layer
play an important role. A larger stride for the first layer can benefit the speed (shown later
in Table 3.13), but a smaller stride can process more information and therefore improve
accuracy (corresponding to config b). For scenarios that require more accurate detectors, we
expand the channel size of config c (CoDeNet1×) by a factor of 2, which gives us config d
that can achieve 69.6 AP50. After quantization, config d has a 67.1 AP50 with comparable
MACs but 21× smaller memory size compared to Tiny-YOLO. By doubling the channel size
(CoDeNet2×) and using a smaller stride, we have config e, which can achieve the highest 72.4
AP50 among all the configurations.

Table 3.12 shows the accuracy of CoDeNets on the Microsoft COCO 2017 dataset.
Microsoft COCO is a more challenging dataset compared to Pascal VOC. COCO has 80
categories, and Pascal VOC has 20. Our results are obtained with default 512×512 resolution,
with stride 2convolution and maxpooling as the downsampling strategy. Besides AP50, COCO
primarily uses AP as the evaluation metric, which is the average among AP[0.5:0.95] (namely
AP50, AP55, ..., AP95). As shown in the table, CoDeNet1× can achieve 22.2 AP with model
size 6.07 MB. Applying quantization will cause a minor accuracy degradation, but can get an
8× smaller model. The same trend holds for CoDeNet2× where our model can get 26.1 and

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 65

Table 3.13: Performance comparison with prior works.

Platform Input Resolution Framerate (fps) Test Dataset Precision Accuracy
DNN1 [76] Pynq-Z1 - 17.4

DJI-UAV
a8 IoU(68.8)

DNN3 [76] Pynq-Z1 - 29.7 a16 IoU(59.3)
Skynet [229] Ultra96 160 × 360 25.5 w11a9 IoU(71.6)
AP2D [120] Ultra96 224 × 224 30.5 AD2P w(1-24)a3 IoU(55)
Finn-R [19] [154] Ultra96 - 16 VOC07 w1a3 AP50(50.1)
Tiny-Yolo-v2 [56] Zynq-706 XC7Z045 224 × 224 43.1 w16a16 AP50(48.5)
Ours (config a) 256 × 256 32.2 AP50(51.1)
Ours (config b) 256 × 256 26.9 AP50(55.1)
Ours (config c) Ultra96 512 × 512 9.3 VOC07 w4a8 AP50(61.7)
Ours (config d) 512 × 512 5.2 AP50(67.1)
Ours (config e) 512 × 512 4.6 AP50(69.7)

Table 3.14: FPGA resource utilization.

LUT FF BRAM DSP
34144 (48.4%) 41827 (29.6%) 216 (100%) 360 (100%)

21.0 AP, with and without quantization, respectively.
We evaluate our accelerator customized for each CoDeNet configurations on the Ultra96

development board with Xilinx Zynq XCZU3EG UltraScale+ MPSoC device. Our accelerator
design runs at 250 MHz after synthesis, and place and route. Table 3.14 shows the overall
resource utilization of our implementation. We observe a 100% utilization of both DSPs
and BRAMs. Most DSPs are mapped to the 4-8 bit MAC units, and BRAMs are mainly
used for the line buffer design. Our Power measurements are obtained via a power monitor.
We measured 4.3W on the Ultra96 power supply line with no workload running on the
programming logic side and 5.6W power when running our network. On CoDeNet config a,
our accelerator achieves 5.75 fps / W in terms of power efficiency.

We provide a Pareto curve in Figure 3.18 showing the latency-accuracy tradeoff for various
CoDeNet design points with acceleration. Configuration a and b in this curve are trained and
inferenced with images of size 256× 256 instead of the original size 512× 512. The smaller
input image size leads to ∼4× reduction in MACs. In configuration a, c and d, the stride of
the first layer is increased from 2 to 4, which greatly reduces the first layer runtime on the
processor. In configuration d and e, we use the CoDeNet 2× model, where the channel size is
doubled in the network, to boost the accuracy. The latency evaluation on our accelerator is
done with a batch size equal to 1 without any runtime parallelization. We run the first layer
of the network on the processor for all configurations.

A comparison of our solutions against previous works is shown in Table 3.13. We found
that very few prior works on embedded FPGAs attempt to target the standard dataset like
VOC or COCO for object detection, primarily due to the challenges from limited hardware
resources and inefficient model design. Two state-of-the-art FPGA solutions that meet the
real-time requirement in the DAC-UAV competition target the DJI-UAV dataset for drone

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 66

20 40 60 80 100 120 140 160 180 200 220

50

55

60

65

70 e

d

c

b

a

FINN-R
Tiny-Yolo-v2

Accelerator Inference Time (ms)

V
O
C

A
P
50

Figure 3.18: Latency-accuracy trade-off on VOC.

image detection. However, object detection on DJI-UAV is a less generic and less challenging
task than object detection on VOC or COCO. The images in DJI-UAV dataset are taken
from the top-down view. They typically contain very few overlapped objects. In addition,
the DJI-UAV dataset is designed for single-object detection whereas VOC and COCO can be
used for multi-object detection. Hence, in this work, we target VOC and COCO to provide a
more general solution for multi-object detection and for images taken from the most common
first-person view.

As shown in Figure 3.18 and Table 3.13, compared to the results from FINN-R [19] [154],
the state-of-the-art embedded FPGA accelerator design targeting VOC, our configuration a
and b (with single-batch inference latency of 31ms and 37ms respectively) achieve both higher
accuracy, higher framerate, and lower latency. Another state-of-the-art work Tiny-Yolo-v2 [56]
attains low latency but with lower accuracy. It also runs on a different FPGA platform.

3.11 Conclusion
In Synetgy, we adopt an algorithm-hardware co-design approach to develop a ConvNet
accelerator and a novel ConvNet for image classification. Based on ShuffleNetV2, we optimize
the network’s operators by replacing all the 3×3 convolutions with shift operations and
1×1 convolutions. This allows us to build a compute unit exclusively customized for 1×1
convolutions for better efficiency. We quantize the network’s weights to 4-bit and activations
to 4-bit fixed-point numbers with less than 1% accuracy loss. These quantizations very well
exploit the nature of FPGA hardware. As a result, DiracDeltaNet has a small parameter size,

■

■

CHAPTER 3. ALGORITHM AND HARDWARE CO-DESIGN 67

low computational OPs, hardware-friendly skip connections, low precision, and simplified
operators. These features allow us to implement highly customized and efficient accelerators
on FPGA. We implement the network on Ultra96 Soc systems. The implementation only
took two people one month using HLS tools. Our accelerator, Synetgy, achieves a top-5
accuracy of 88.1% on ImageNet, the highest among all the previously published embedded
FPGA accelerators. It also reaches an inference speed of 66.3 FPS, surpassing prior works
with similar accuracy by 11.6×.

In CoDeNEt, we evaluate algorithmic changes for deformable convolution with correspond-
ing hardware optimizations and show a 1.36× and 9.76× speedup respectively for the full
and depthwise deformable convolution on hardware with minor accuracy loss. We then Co-
Design a Network CoDeNet with the modified deformable convolution for object detection
and quantize the network to 4-bit weights and 8-bit activations. With our high-efficiency
implementation, our solution reaches 26.9 frames per second with a tiny model size of 0.76
MB while achieving 61.7 AP50 on the standard object detection dataset, Pascal VOC. With
our higher-accuracy implementation, our model gets to 67.1 AP50 on Pascal VOC with only
2.9 MB of parameters—20.9× smaller but 10% more accurate than Tiny-YOLO.

In both works, we performed detailed accuracy-efficiency trade-off studies for each
hardware-friendly algorithmic modification with the goal of co-designing an efficient network
and a real-time embedded accelerator optimizing for accuracy, speed, and energy efficiency.
While there are many more opportunities for further optimization, we believe the work
demonstrates the efficacy of our co-design methodology.

Finally, in our follow-up work called HAO [49], instead of manually exploring different
co-design options, we further developed an automatic flow to perform design space search for
both the algorithm design, hardware implementation, and quantization schemes.

68

Chapter 4

Scheduling and Hardware Co-design

Recent advances in Deep Neural Networks (DNNs) have led to active development of special-
ized DNN accelerators, many of which feature a large number of processing elements laid out
spatially, together with a multi-level memory hierarchy and flexible interconnect. While DNN
accelerators improve the peak throughput and data reuse opportunities, they also expose a
large number of runtime parameters to the programmers who need to explicitly manage how
computation is scheduled both spatially and temporally. In fact, different scheduling choices
can lead to widely varying performance and efficiency differences, motivating the need for a
fast and efficient search strategy to navigate the vast scheduling space.

In this chapter, we present CoSA, a constrained-optimization-based approach for scheduling
DNN accelerators to address this challenge. Different from existing approaches that either
rely on designers’ heuristics or expensive iterative methods to prune the search space, the key
idea of CoSA is to express the scheduling decisions as a constrained optimization problem
that can be deterministically solved using advanced optimization techniques. CoSA leverages
the regularities in DNN operators and hardware to formulate the DNN scheduling space into
a mixed integer programming (MIP) problem with algorithmic and architectural constraints,
where it can automatically generate a highly efficient schedule in a single pass.

4.1 Hardware-Aware Scheduling
Deep neural networks (DNNs) have gained major interest in recent years due to their
robust ability to learn based on large amounts of data. DNN-based approaches have been
applied to computer vision [78, 110, 164], machine translation [189, 198], audio synthesis [143],
recommendation models [67, 139], autonomous driving [20] and many other fields. Motivated
by the high computational requirements of DNNs, there have been exciting developments
in both research and commercial spaces in building specialized DNN accelerators for both
edge [30,31,53,63,147,182,186,227] and cloud applications [6, 33, 58,81,98,199].

State-of-the-art DNN accelerators typically incorporate large arrays of processing elements
to boost parallelism, together with a deep multi-level memory hierarchy and a flexible

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 69

network-on-chip (NoC) to improve data reuse. While these architectural structures can
improve the performance and energy efficiency of DNN execution, they also expose a large
number of scheduling parameters to programmers who must decide when and where each
piece of computation and data movement is mapped onto the accelerators both spatially and
temporally. Here, we use schedule to describe how a DNN layer is partitioned spatially and
temporally to execute on specialized accelerators. Given a target DNN layer and a specific
hardware architecture, there could be millions, or even billions, of valid schedules with a
wide range of performance and energy efficiency [146]. Considering the vast range of DNN
layer dimensions and hardware architectures, there is a significant demand for a generalized
framework to quickly produce efficient scheduling options for accelerators of varying hardware
configurations.

Achieving high performance on a spatially distributed architecture requires several factors
to be carefully considered, including tiling for good hardware utilization, pipelining data
movement with compute, and maximizing data re-use. Previous scheduling frameworks have
attempted to reflect these considerations by formulating an analytical cost model, pruning the
scheduling space with known hardware constraints, and then exhaustively searching for the
best candidate based on their cost models [28,45,146,216]. However, navigating the scheduling
space in such a brute-force fashion can easily become intractable for larger DNN layers and
more complex hardware architectures. Other notable efforts have employed feedback-driven
approaches, such as black-box tuning, beam search, and other machine learning algorithms
with iterative sampling [2,29,96]. However, these schedulers typically require massive training
datasets and large-scale simulations to learn performance models, making it infeasible to
extend them to other types of hardware accelerators, especially those still under development.
Hence, there is a clear need for efficient scheduling mechanisms to quickly navigate the search
space and produce performant scheduling options.

This chapter demonstrates CoSA, a constrained-optimization-based approach to schedule
DNN accelerators. In contrast to prior work that either requires exhaustive brute-force-based
or expensive feedback-driven approaches, CoSA expresses the DNN accelerator scheduling
as a constrained-optimization problem that can be deterministically solved using today’s
mathematical optimization libraries in one pass. In particular, CoSA leverages the regularities
in both DNN layers and spatial hardware accelerators where the algorithmic and hardware
parameters can be clearly defined as scheduling constraints. Specifically, CoSA formulates the
DNN scheduling problem as a prime-factor allocation problem that determines 1) tiling sizes
for different memory levels, 2) relative loop ordering to exploit reuse, and 3) how computation
should be executed spatially and temporally. CoSA constructs the scheduling constraints by
exposing both the algorithmic behaviors, e.g., layer dimensions, and hardware parameters, e.g.,
memory and network hierarchies. Together with clearly defined and composable objective
functions, CoSA can solve the DNN scheduling problem in one shot without expensive
iterative search. Our evaluation demonstrates that CoSA-generated schedules outperform
state-of-the-art approaches by 2.5× across different DNN network layers, while requiring 90×
less scheduling time as it does not require iterative search.

In summary, this work makes the following contributions:

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 70

1 2 3+
Latency (MCycles)

0

1000

2000

3000

of

 V
al

id
 S

ch
ed

ul
es

Figure 4.1: Execution latency histogram of 40K valid scheduling choices for a ResNet-50 layer on a
spatial accelerator.

• We formulate DNN accelerator scheduling as a constrained-optimization problem that
can be solved in a single pass. To the best of our knowledge, CoSA is the first
constrained-optimization-based approach to tackle major DNN scheduling decisions in
one shot.

• We take a communication-oriented approach in the CoSA formulation that highlights
the importance of data transfer across different on-chip memories and exposes the cost
through clearly defined objective functions.

• We demonstrate that CoSA can quickly generate high-performance schedules outper-
forming state-of-the-art approaches for different DNN layers across different hardware
architectures.

4.2 Background and Motivation
In this section, we discuss the complexity of DNN scheduling space and the state-of-the-art
schedulers to navigate the space.

4.2.1 DNN Scheduling Space

Scheduling is a crucial decision-making process for the compilers to effectively assign workload
to compute resources. With the emergence of numerous DNN accelerators with diverse

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 71

architectures, there is a need for a fast, performant, and explainable approach to scheduling.
Our work focuses on operator-level scheduling, which aims to optimize the performance of each
operator, i.e. DNN layer, on specific hardware. Operator-level scheduling typically comprises
three key loop optimizations: loop tiling, loop permutation, and spatial mapping. Loop tiling
describes which loops are mapped to which memory hierarchy and the corresponding tile
sizes. Loop permutation determines the relative order of the loops, while spatial mapping
binds one or more loop dimensions to spatial hardware resources, such as parallel processing
elements, instead of mapping them to temporal (i.e. sequential) execution. Each optimization
can have a significant impact on the performance, and all three optimizations need to be
considered together to achieve the best performance.

Consider scheduling a 3×3 convolution layer in ResNet50 [78] with 256 input and output
channels, and an output dimension of 14×14, on an accelerator with five levels of memory. If
we split each individual loop bound into its prime factors and assign each one to a memory
level, we would have billions of schedules to consider. Among the randomly sampled schedules
from all possible loop tilings, half of them fail to satisfy the buffer capacity constraints (e.g.
a schedule is invalid if it requires a 4KB buffer, though the available buffer size is only 2KB.).
Figure 4.1 shows the performance distribution of the valid schedules. We observe a wide
performance difference among the valid schedules, with the best one outperforming the worst
one by 7.2×. In addition, we observe clusters of schedules that have similar latencies in the
Figure 4.1, revealing structure in the solution space.

4.2.2 State-of-the-art Schedulers

Given that the scheduling space for a DNN layer can have billions of valid schedules, finding
a good schedule through exhaustive search can become an intractable problem. Table 4.1
shows some recent efforts to tackle this complexity.

4.2.2.1 Brute-force Approaches

Recent efforts combine exhaustive search with heuristics to manually prune the scheduling
space [28,45,146,194,216]. To lower the cost of exhaustive search, schedulers in this category
typically use a lightweight analytical model to estimate latency, throughput, and power
consumption to compare all valid mappings of a given layer to find the best schedule. The
disadvantages of this approach are two-fold. First, such a brute-force search tends to be
exceedingly expensive for complex hardware architectures, making it infeasible to find a
good schedule quickly. Second, the generated schedules often do not perform optimally since
analytical models may fail to consider the communication latency across the spatial hardware.

4.2.2.2 Feedback-based Approaches

Other recent efforts use feedback-driven approaches along with machine learning or other
statistical methods [2, 29, 80, 96, 101, 160] to improve the accuracy of the cost model and

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 72

Scheduler Search Algorithm

Brute-force Approaches:
Timeloop [146] Brute-force & Random

dMazeRunner [45] Brute-force
Triton [194] Brute-force over powers of two

Interstellar [216] Brute-force
Marvel [28] Decoupled Brute-force

Feedback-based Approaches:
AutoTVM [29] ML-based Iteration

Halide [160] Beamsearch [2], OpenTuner [7, 136]
FlexFlow [96] MCMC
Gamma [101] Genetic Algorithm

Constrained Optimization Approaches:
Polly+Pluto [21,22,64]

Tensor Comprehension [197] Polyhedral Transformations
Tiramisu [11]

CoSA Mixed Integer Programming (MIP)

Table 4.1: State-of-the-art DNN accelerator schedulers.

search for the solution using black-box or gradient-based search. Although such approaches
can potentially learn the distribution of the scheduling space, they typically require a large
amount of training data due to their feedback-driven nature. As a result, these approaches
are mainly applicable to post-silicon hardware where performing a large-scale measurement
is possible but are not feasible for hardware under development.

4.2.2.3 Constrained-optimization Approaches

Constrained-optimization problems, in which objective functions are maximized or minimized
subject to given sets of constraints, have demonstrated the ability to solve many complex
large-scale problems in a reasonable time. Such methods have been widely used in architecture
and systems research for instruction scheduling [36,140,141], high-level synthesis [42], memory
partitioning [9,82] [41], algorithm selection [74,234], and program synthesis [5,14,149,150,185].

In particular, polyhedral transformation has leveraged constrained-optimization-based

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 73

Reduction

W = (P - 1) x Stride + R

∗

H
 =

 (Q
 -

1)
 x

 S
tri

de
 +

 S

C

R

S

...

DNN Layer

C

R, S: weight width and height
P, Q: output width and height
W,H: input width and height
C: input channel size
K: output channel size
N: batch size

K

Q

P

K

R

R R R R

R R R R

R R R R

Processing Element
Router

G
lo

ba
l B

uf
fe

r
D

R
AM

DNN Accelerator

Accumulation
Buffer

Weight Buffer
Inputs Weights Outputs

In
pu

t
Bu

ffe
r

MULT Adder

R R R R

Constraints

Variables

Objectives

CoSA

Schedule

Figure 4.2: DNN scheduling problem formulation with CoSA. CoSA takes 1) DNN layer dimensions
and 2) DNN accelerator parameters and expresses the scheduling problem into a constrained
optimization problem to produce a performant schedule in one shot.

approach for auto-vectorization and loop tiling [1, 12, 22, 64, 107, 148]. Prior work targets
general-purpose CPUs and GPUs that run with fine-grained instructions and hardware-
managed cache, as opposed to the software-managed spatial accelerators that we target. In
addition, existing polyhedral-based approaches [11, 12, 22] lack direct support for tile-size
optimization. Instead, they take the tile size as input and apply a transformation based
on the given tile size. Due to this limitation, the tile size decision cannot be co-optimized
with other loop transformations, e.g. loop permutation, in one pass, leading to sub-optimal
schedules.

To address the drawbacks of existing approaches and leverage the regularities from the
DNN workloads and the accelerator design for optimization, CoSA employs constrained
optimization to tackle the DNN scheduling problem in one pass. CoSA presents a unique
domain-specific representation for DNN scheduling that better captures the utilization
and communication cost and encodes different loop transformations, i.e., tiling size, loop
permutation, and spatial mapping decisions, in one formulation. This unified representation
enables us to solve for all three optimizations in one pass and produce efficient schedules for
a complex accelerator system with a multi-level memory hierarchy.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 74

//DRAM l e v e l
for q2 = [0 : 2) :
// Globa l Buf f er l e v e l
for p2 = [0 : 7) :
for q1 = [0 : 7) :
for n0 = [0 : 3) :
s p a t i a l_ f o r r0 = [0 : 3) :
s p a t i a l_ f o r k1 = [0 : 2) :
// Input Buf fer l e v e l
s pa t i a l_ f o r k0 = [0 : 2) :
// Weight Buf f er l e v e l
for c1 = [0 : 2) :
for p1 = [0 : 2) :
// Accumulation Buf fer l e v e l
for s0 = [0 : 3) :
for p0 = [0 : 2) :
s p a t i a l_ f o r c0 = [0 : 8) :
// Reg i s t e r
for q0 = [0 : 2) :

Listing 4.1: An example schedule using the loop nest representation for a DNN layer of dimension
R = S = 3, P = Q = 28, C = 8,K = 4, N = 3. Same variable prefix indicates tiles from the same
problem dimension.

4.3 The CoSA Framework
To navigate the large scheduling space of DNN accelerators, we develop CoSA, a constrained-
optimization-based DNN scheduler to automatically generate high-performance schedules for
spatially distributed accelerators. CoSA not only deterministically solves for a good schedule
in one pass without the need for exhaustive search or iterative sampling, but can also be
easily applied to different network layers and hardware architectures. This section discusses
the CoSA framework and how CoSA formulates the DNN scheduling problem with mixed
integer programming (MIP).

4.3.1 CoSA Overview

CoSA optimizes operator-level schedules for mapping DNN layers onto spatial DNN acceler-
ators. Specifically, CoSA formulates the scheduling problem as a constrained-optimization
problem with variables representing the schedule, constraints representing DNN dimensions
and hardware parameters, and objective functions representing goals, such as maximizing
buffer utilization or achieving better parallelism. Figure 4.2 shows the target problem space of

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 75

CKP CPK KCP KPC PCK PKC
0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(M
C

yc
le

s)

Figure 4.3: Performance comparison of schedules with different loop permutations for a convolution
operator with the layer dimensions of R = S = 3, P = Q = 8, C = 32, K = 1024. The leftmost
schedule (CKP) refers to a relative ordering where the input channel dimension (C) is the outermost
loop and the output height dimension (P) is the innermost loop. Since this layer is weight-heavy,
loop permutations that emphasize weight reuse, e.g., PCK and PKC, are more efficient.

CoSA. CoSA takes the specifications of the DNN layers and the underlying spatial accelerator
as input constraints and generates a valid and high-performance schedule based on the
objective functions in one pass.

4.3.1.1 Target Workload

The work targets the DNN operators that can be expressed by a nested loop with 7 variables
as loop bounds: R, S, P,Q,C,K,N . R and S refer to the convolution kernel width and
height, P and Q refer to the output width and height, C refers to the input channel size, K
refers to the output channel size, and N refers to the batch size, as illustrated in Figure 4.2.
The convolution operation computes the dot product of the filter size R× S × C of inputs
and weights to generate one point in the output. Matrix multiplications can be expressed in
this scheme as well.

4.3.1.2 Target Architecture

CoSA targets spatial architectures with an array of processing elements (PEs) connected
via an on-chip network and with multiple levels of memory hierarchy, a commonly adopted
architecture template in today’s DNN accelerator designs [32, 33,60, 61,81,112,153,158,175,
199,216].

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 76

s:
, t

:P
4C

4K
4

s:
C

2,
 t:

P4
C

2K
4

s:
P2

, t
:P

2C
4K

4
s:

K2
, t

:P
4C

4K
2

s:
P2

K2
, t

:P
2C

4K
2

s:
P2

C
2,

 t:
P2

C
2K

4
s:

P2
K4

, t
:P

2C
4

s:
K4

, t
:P

4C
4

s:
C

2K
2,

 t:
P4

C
2K

2
s:

P2
C

2K
4,

 t:
P2

C
2

s:
C

4,
 t:

P4
K4

s:
C

2K
4,

 t:
P4

C
2

s:
P2

C
2K

2,
 t:

P2
C

2K
2

s:
P4

, t
:C

4K
4

s:
C

4K
2,

 t:
P4

K2
s:

P2
C

4,
 t:

P2
K4

s:
C

4K
4,

 t:
P4

s:
P4

K4
, t

:C
4

s:
P4

K2
, t

:C
4K

2
s:

P4
C

2,
 t:

C
2K

4
s:

P4
C

4,
 t:

K4
s:

P4
C

2K
2,

 t:
C

2K
2

s:
P2

C
4K

2,
 t:

P2
K2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

La
te

nc
y

(M
C

yc
le

s)

Figure 4.4: Performance comparison of schedules with different spatial mappings for a
convolution operator with the layer dimensions of R = S = 1, P = Q = 16, C = 256,
K = 1024. Factors in s list are for spatial mapping, and factors in t list are for temporal
mapping. For example, s:P4C4,t:K4 represents a mapping where a factor 4 of the P dimension
and a factor 4 of the C dimension are mapped to spatial execution in a system with 16 PEs,
leaving K’s factor 4 to temporal mapping.

4.3.1.3 Target Scheduling Decisions

CoSA-generated schedules describe how a specified DNN layer is executed on a given spatial
architecture. Listing 4.1 shows an example of a schedule. Here, we use a loop-nest repre-
sentation [146] to explicitly describe how the computation of a convolution layer is mapped
to levels of memory hierarchies. We highlight three aspects of the schedule: 1) loop tiling,
which describes which loops are mapped to which memory level and the values of the loop
bounds; 2) loop permutation, which handles the relative ordering between loops in the
same memory hierarchy; and 3) spatial mapping, which defines which loops are mapped to
parallel spatial resources (shown as spatial_for loops in Listing 4.1). All three factors play
a key role in the efficiency of the scheduling choice. Next, we highlight the implications of
loop permutation and spatial mapping, both of which are less explored than the well-studied
loop tiling.

Figure 4.3 illustrates the impact of loop permutation for a convolution layer on a given
hardware design. All the schedules use the same loop tiling and spatial mapping except

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 77

the loop ordering at the global-buffer level, as indicated in the labels of the X-axis, where
CKP means the input channel dimension (C) is the outermost loop, and the output height
dimension (P) is the innermost loop. In this case, selecting P as the outermost loop, i.e.
PCK and PKC, can lead to a 1.7× speedup for this layer, motivating the need to consider the
implications of loop permutation in the scheduling problem.

Figure 4.4 shows the impact of spatial mapping on DNN execution. We notice that
there is a 4.3× gap between best (rightmost) and worst (leftmost) schedules for the layer
in consideration. The fundamental reason for the differences is the different communication
traffic generated by different spatial mapping options. The best schedule, i.e., the rightmost
schedule in the figure (s:P2C4K2, t:P2K2), is obtained when factors P = 2, C = 4, K = 2
are mapped to the spatial loops, which cannot be achieved by simply choosing either model
or data parallelism in the spatial partition. As a result, a systematic evaluation of different
spatial mapping choices is required to find a good schedule.

The rest of the section discusses how CoSA formulates the scheduling variables, constraints,
and objectives to solve the DNN scheduling problem.

4.3.2 CoSA Variables and Constants

This section discusses the variables and constants, summarized in Table 4.2, used in CoSA
formulation.

4.3.2.1 Variable Representation

CoSA Variables CoSA Constants Indices

X
binary matrix
to represent
a schedule

A layer dimension to
data tensor mapping

i memory level
j layer dimension

B memory level to
data tensor mapping

n prime factor index
k mapping choice
z permutation level
v data tensor

Table 4.2: CoSA Notations.

We devise a mathematical representation for the DNN schedules and formulate the
scheduling problem as a prime-factor allocation problem. Given a layer specification, we
first factorize each loop bound into its prime_factors. If the loop bound themselves are
large prime number, we can pad them and then factorize. We assign each prime factor to a
scheduling configuration that is composed of a combination of three decisions: 1) the mapped
memory level, 2) the permutation order, and 3) the spatial mapping. Each prime factor has
exactly one scheduling configuration.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 78

DNN Layer: R = 3, S = 1, P = 1, Q = 1, C = 1, K = 4, N = 3
−→ Prime Factors: = [[3],[1],[1],[1],[1],[2,2][3]]

Idx Perm Schedule
j Layer Dim. R = 3 ... K = 4 N = 3
n Prime Factors 3 ... 2 2 3
k s / t Mapping s t s t s t s t

i

M
em

or
y
Le

ve
ls

Register ...
... ...

InputBuf ... 3

GlobalBuf

O0

O1 3

O2 3

...
OZ 3

Table 4.3: Example binary matrix X representing a schedule. A checkmark in s, t indicates
spatial or temporal mapping. A checkmark in O0, ..., OZ indicates the rank for loop permuta-
tion. In this schedule, the loop tile of size 3 from problem dimension N is allocated within
the GlobalBuf at the innermost loop level, assigned for temporal execution. Both loop tiles
from K are mapped to spatial resources.

Here, we use a binary matrix X to represent the prime factor allocation, i.e., the scheduling
space, shown in Table 4.3. The four dimensions of X are: 1) the layer dimension variables
(indexed by j), 2) the prime factors of the loop bounds (indexed by n), 3) whether it is a
spatial or temporal mapping (indexed by k), and 4) the memory and the permutation levels
(indexed by i). With the prime factor decomposition, CoSA’s encoding can represent all
possible schedules and guarantees that the optimization solves for the full search space.

Table 4.3 shows an example binary matrix X that represents the schedule shown in
Listing 4.1. First, CoSA performs the tiling optimizations by assigning the prime factors to
different memory levels. For example, dimension K is split into two tiles, where the inner
tile of size 2 is allocated to the input buffer, and the outer tile of size 2 is allocated in the
global buffer. Second, mapping a prime factor to spatial execution is indicated by whether
the factor is mapped to a spatial column s or a temporal column t in the table. In this
example, both prime factors for K are spatially mapped. Finally, for loop permutation, we
add rank indices O0, O1, ..., OZ to the memory level of interest, where only one prime factor
can be mapped to each rank. The lowest-ranked factor is allocated to the innermost loop,
while the highest-ranked factor is allocated to the outermost loop. In the example shown

I I I I

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 79

Related Idx
W IA OA v

R 3 -

j

S 3 -
P 3 3

Q 3 3

C 3 3

K 3 3

N 3 3

Related Idx
W IA OA v

Register 3 3 3

i

AccBuf 3

WBuf 3

InputBuf 3

GlobalBuf 3 3

DRAM 3 3 3

Table 4.4: Constant binary matrices A (left) and B (right). A encodes how different layer
dimensions associate with data tensors. B encodes which data tensor can be stored in which
memory hierarchy.

in Table 4.3, the problem dimension N is mapped at the O1 level in the global buffer for
temporal mapping, which means the factor N = 3 will be assigned rank 1 in the global-buffer
level. Without other factors in the global-buffer level, factor N = 3 with the smallest rank
will become the innermost loop in permutation. For the ranking of permutation, we reserve
enough slots for all prime factors at all memory levels. Not all the slots need to be filled since
a prime factor can only be allocated to one memory level.

4.3.2.2 Constant Parameters

In addition to the loop-related variables, we have intrinsic relations across different components
in the architecture and layer specifications which must be encoded by constant parameters.
CoSA uses two constant binary matrices to encode the unique relations in the DNN scheduling
space, shown in Tabel 4.4. The first binary constant matrix, A, encodes the association
between layer dimensions (i.e., rows of the matrix) and data tensors (i.e., columns of the
matrix). For each input (IA), weight (W), and output (OA) tensor, matrix A indicates which
layer dimensions, i.e., R, S, P,Q,C,K,N , should be used to calculate the data transaction
size as well as multicast and reduction traffic on the accelerators.

In addition, we introduce another binary matrix B to represent which memory hierarchy
can be used to store which data tensor. DNN accelerators typically deploy a multi-level
memory hierarchy, where each memory level can be used to store different types of data tensors.
For example, matrix B shown in Table 4.4 represents an architecture that has dedicated input
and weight buffers for input activation and weight, respectively, while providing a shared
global buffer to store input and output activations.

I I I I

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 80

4.3.3 CoSA Constraints

This section discusses the constraints derived from the target accelerator architecture that
must be satisfied in CoSA and shows how to express them with CoSA variables and constants.

4.3.3.1 Buffer Capacity Constraint

To generate a valid schedule in a software-managed memory system, a key constraint is to
ensure that the size of data to be sent to the buffer does not exceed the buffer capacity. The
hardware memory hierarchy can be represented by the binary constant matrix B discussed
earlier. For each memory buffer, based on the tensor-dimension correlation matrix A, we
calculate the tiling size of each tensor by multiplying the relevant prime factors together
indicated by X. Both spatial and temporal factors should be included in the buffer utilization.
Let Nj be the number of prime factors for the layer dimension j. Then the utilization of the
buffer level I can be expressed as:

I−1∏
i=0

6, Nj∏
j=0,n=0

1∏
k=0

{
prime_factorj,n, X(j,n),i,kAj,vBI,v = 1

1, otherwise
(4.1)

We then set the upper bound of the buffer utilization to the capacity of different buffer
sizes, represented using MI,v. However, a problem with this utilization constraint is that it
involves products of the decision variables X, making it nonlinear and infeasible to solve
with standard constraint solvers. To address this limitation, we take the logarithm of both
sides of the constraints to obtain a linear expression for the utilization and encode the if-else
statement as:

UI,v =
I−1∑
i=0

6, Nj∑
j=0,n=0

1∑
k=0

log(prime_factorj,n)Aj,vBI,vX(j,n),i,k

≤ log(MI,v),∀I

(4.2)

To encode different precisions for different data tensors, we add the logarithm of the datatype
sizes precisionv to UI,v.

4.3.3.2 Spatial Resource Constraint

Another set of CoSA constraints is from the limited number of spatial resources. At the
chip level, there is a limited number of PEs. At the PE level, there is a limited number of
multiply-and-accumulate (MAC) units. In CoSA, once a factor is assigned to spatial mapping
in the configuration, it needs to satisfy: 1) each problem factor can only be mapped to either
spatial or temporal execution, 2) factors that map to spatial execution do not exceed the
resource limit in the architecture. These two constraints can be expressed in the equations
below:

1∑
k=0

X(j,n),i,k == 1,∀(j, n), i (4.3)

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 81

6, Nj∑
j=0,n=0

log(prime_factorj,n)X(j,n),I,0 ≤ log(SI), ∀I (4.4)

where SI is the number of available spatial resources at the level I.

4.3.4 Objective Functions

In this section, we describe the objective functions for CoSA. Each objective can be either
used individually to optimize a single aspect of performance, e.g., utilization, compute, and
communication, or combined with others.

4.3.4.1 Utilization-Driven Objective

High on-chip buffer utilization improves data-reuse opportunity. As demonstrated in the
prior work [48], communication lower bounds can be achieved when the tiling block size is
optimized for buffer utilization in a system with one-level cache. In this work, we formulate a
utilization objective that aims to maximize the buffer utilization of all tensors, so the overall
communication is minimized. We use the same formulation for the buffer utilization as in
4.3.3.1 and maximize the following linear utilization function:

ˆUtil =
I−1∑
i=0

2∑
v=0

Ui,v (4.5)

Here, maximizing the sum of utilization for all buffer levels and all tensors in the logarithm
form is equivalent to maximizing the geometric mean of the buffer utilization. Users can also
attach weights to the different buffer levels or different data tensors if they want to optimize
for the utilization of a specific level of the memory.

4.3.4.2 Compute-Driven Objective

The total number of compute cycles is another factor that affects the quality of schedules. In
this formulation, we multiply all the temporal factors for the estimated compute cycles in
each PE. Intuitively, this objective allows the constraint solver to exploit the parallelism in
the system by mapping more iterations to the spatial resources than to temporal iterations.
The objective can be expressed as a linear function again with logarithm taken:

ˆComp =
I∑
i=0

6, Nj∑
j=0,n=0

log(prime_factorj,n)X(j,n),i,1 (4.6)

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 82

4.3.4.3 Traffic-Driven Objective

Communication latency is a key contributing factor to the performance of spatial architecture.
CoSA also includes a traffic-driven objective to capture the communication cost. Specifically,
communication traffic can be decomposed into three terms: 1) data size per transfer, 2)
spatial factors of multicast and unicast traffic, and 3) temporal iterations. Multiplying these
three factors will get the total amount of traffic in the network. Next, we discuss how we
capture each of these factors using CoSA’s representation.

First, similar to the buffer utilization expression, data size per transfer can computed
using the allocated prime factors in matrix X, together with the dimension-tensor correlation
matrix A, as shown in the equation below:

Dv =
I−1∑
i=0

6, Nj∑
j=0,n=0

1∑
k=0

log(prime_factorj,n)Aj,vX(j,n),i,k (4.7)

Second, spatial factors would incur different multicast, unicast, and reduction patterns.
The dimension-tensor correlation matrix A discussed in Sec 4.3.2.2 can be used to indicate
different traffic patters. Specifically, depending on whether the spatial dimension, indicated
by the binary matrix X, is related to the specific tensor in consideration, represented by
the constant matrix A, different traffic patterns, e.g., multicast vs. unicast or reduction vs.
unicast, would occur.

Figure 4.5 shows how the intrinsic tensor-dimension correlation matrix A can be used to
calculate different traffic patterns for different variables. For example, as shown in Figure 4.5a,
if the dimension P is mapped spatially, AP,W = 0 implies multicast traffic for weight tensor W.
Since weight is not related to P , when we send weights from global buffer to PEs, the weight
traffic will be multicasted to the destination PEs. If the dimension C is mapped spatially,
AC,W = 1 (Figure 4.5b) implies unicast traffic for weight tensor W as weight is related to C.
Similarly, if the dimension C is mapped spatially, AC,OA = 0 (Figure 4.5c) implies reduction
traffic for output tensor OA, where partially sum needs to be reduced across C before sending
back to GB. If the dimension P is mapped spatially, AP,OA = 1 (Figure 4.5d) would indicate
unicast traffic for output tensor OA, as each traffic contributes to different regions of the
output. CoSA formulates this relationship in the following equation:

Lv =

6, Nj∑
j=0,n=0

log(prime_factorj,n)X(j,n),I,0Aj,v (4.8)

The third term, temporal iteration is used to calculate the number of data transfers
at the NoC level. We introduce a traffic iteration factor Y that is a function of X at the
permutation level, A, and B. Y indicates if the outer NoC loop bound should be used for
different variables. With Y, we ensure that, for each variable, if a relevant factor term is seen
inside the current loop level, the current loop level’s factor should be used to compute the
traffic iteration regardless of whether it is related to the data tensor of the variable of interest.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 83

R

R R R R

R R R R

R R R R

PE Router
G

B

R R R R

R R R R

R R R R

R R R R

R R R R

a. Multicast: AP,W = 0

R R R R

R R R R

G
B

R R R R

R R R R

R R R R

R R R R

G
B

R R R R

R R R R

c. Reduction: AC,OA = 0 d. Unicast: AP,OA = 1

b. Unicast: AC,W = 1
Global Buffer to NoC Traffic:

NoC to Global Buffer Traffic:

P is mapped spatially across colored PEs

C is mapped spatially across colored PEs

C is mapped spatially across colored PEs

P is mapped spatially across colored PEs

G
B

Figure 4.5: Different traffic patterns based on the constant matrix A. The two figures (top)
show how the constant A encodes the traffic types (multicast, unicast, reduction) for different
data tensors from the global buffer to PEs. The figures on the bottom show its implication
on output tensor reduction traffics.

This is a term that drives the reuse optimization. Mathematically, Y is constrained as:

Yv,z ≥
6, Nj∑

j=0,n=0

X(j,n),z,1Aj,vBI,v,∀z, ∀v

Yv,z ≥ Yv,z−1, ∀z > 0,∀v

(4.9)

Where z represents the position index for permutation and Z equals the total valid levels for

□ D

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 84

permutation. The traffic iteration term can thus be expressed as:

Tv =
Z−1∑
z=0

6,Nj∑
j=0,n=0

log(prime_factorj,n)Yv,zX(j,n),z,1 (4.10)

This turns the linear objective into quadratic as we multiply Y with X to indicate whether
there is a factor at the current permutation level.

After we calculate each individual term, we can combine them together for each tensor
that contributes to the total traffic in the network. Similar to the logarithmic transformation
we did earlier, instead of multiplying these three terms together, we take the logarithm on
both sides to get a linear expression of the traffic, as shown in the equation below:

ˆTraf =
2∑
v=0

(Dv + Lv + Tv) (4.11)

4.3.4.4 Overall Objective

One can construct a composite objective comprised of a linear combination of ˆUtil, ˆComp, and
ˆTraf , where we want to minimize the compute and communication latency while maximizing

the on-chip buffer utilization:

Ô = −wU ˆUtil + wC ˆComp+ wT ˆTraf (4.12)

where wU , wT , wC are user-selected parameters controlling the importance of each objective.
For a system with double-buffering optimization, wT can be set to map the traffic sizes
to the cycles for memory accesses. This brings wT ˆTraf to be of the same importance
as wC ˆComp in the optimization. Another formulation of the overall objective function to
balance the memory access and compute cycles is to minimize the difference of the two
terms: D̂ = wT ˆTraf − wC ˆComp. The weights of different objectives can be determined by
using a set of micro-benchmarks that characterize the compute, memory, and communication
latencies of the target architecture.

4.3.5 Limitation of CoSA

CoSA leverages the regularity from both the problem and the architecture space, where it
assumes a dense CNN workload and does not exploit the sparsity of the data. It also best
targets hardware systems with deterministic behavior and explicitly managed scratchpads.
This is because, in systems with non-deterministic behaviors, it can be challenging to construct
optimization objectives that capture the impact of such behaviors. However, CoSA can
be augmented with an iterative search on the objective functions and their corresponding
hyperparameters to approximate the unknown hardware performance model and directly
prune off the invalid points from the search space.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 85

Arithmetic : Storage : Network :

MACs 64 / PE Registers 64B / PE Dimension 4×4
Weight/Input 8bit Accum. Buffer 3KB / PE Router Wormhole

Precision Weight Buffer 32KB / PE Flit Size 64b
Partial-Sum 24bit Input Buffer 8KB / PE Routing X-Y
Precision Global Buffer 128KB Multicast Yes

Table 4.5: The baseline DNN accelerator architecture.

4.4 Methodology
This section discusses the evaluation platforms we use followed by the experimental setup for
CoSA evaluation.

4.4.1 Evaluation Platforms

We evaluate the schedules generated by CoSA on two platforms: 1) Timeloop for cycle
performance and energy consumption, and 2) our cycle-exact NoC simulator for overall
latency performance. The latter more accurately captures the communication overhead and
concurrent hardware behaviors on a spatial architecture.

Timeloop provides microarchitecture and technology-specific energy models for estimat-
ing the performance and energy on DNN accelerators. Timeloop reports the performance in
terms of the maximum cycles required for each processing element to complete the workload
and to perform memory accesses, assuming perfect latency hiding with double buffering.
The energy consumption in Timeloop is calculated by multiplying the access count on each
hardware component with the energy per access and summing the products up. The access
count is inferred from the schedule and the energy per access is provided by an energy
reference table in Timeloop. The specific Timeloop version we use in this work is commit
a9d08f0 from the GitHub repo.

NoC Simulator augments the Timeloop analytical compute model for PEs with a
synthesizable NoC implementation to reflect the communication cost. Communication is
one of the key contributing factors for latency in a NoC-based system, especially for the
communication bound schedules.

To accurately characterize the end-to-end accelerator performance of CoSA generated
schedules, We implement this cycle-exact transaction-based NoC simulation infrastructure
in SystemC and Python. The NoC simulator is transaction-based and cycle-exact for
modeling the on-chip traffic. Leveraging the synthesizable SystemC router design from
Matchlib [104] that supports unicast and multicast requests, we construct a resizable 2-
D mesh network and implement an X-Y routing scheme. The simulator captures both
computation and communication latencies by concurrently modeling data transfers in the

https://github.com/NVlabs/timeloop

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 86

Network Number of Unique Layers

AlexNet [110] 8
ResNet-50 [78] 21

ResNeXt-50 (32x4d) [209] 19
Deepbench [46]

(OCR and Face Recognition) 9

Table 4.6: Summary of DNN workloads used in this study

NoC, the PE executions, and off-chip DRAM accesses based on the DRAMSim2 model [168],
where the impact of traffic congestion on the NoC can also be manifested.

4.4.2 Baseline Schedulers

We evaluate CoSA with respect to two other scheduling schemes: 1) a Random scheduler
that searches for five different valid schedules, from which we choose the one with the best
result for the target metric, and 2) the Timeloop Hybrid mapper in Timeloop [146] that
randomly selects a tiling factorization, prunes superfluous permutations, and then linearly
explores the pruned subspace of mappings before it proceeds to the next random factorization.
For this mapper, we keep the default termination condition where each thread self-terminates
after visiting 500 consecutive mappings that are valid yet sub-optimal. The mapper is
run with 32 threads, each of which independently searches the scheduling space until its
termination condition is met. Once all threads have terminated, Timeloop returns the best
schedule obtained from all 16,000+ valid schedules.

4.4.3 Experiment Setup

Mixed-Integer Program (MIP) Solver: CoSA uses Gurobi [68], a general-purpose
optimization solver for MIP and other constrained programming, as the solver. We specify
the CoSA variables, constraints, and objective functions before we invoke the solver. The
solver takes at most seconds to return a schedule for DNN layers.

DNN workloads: We measure the performance of CoSA-generated schedules over a
wide range of DNN workloads targeting different DNN tasks with diverse layer dimensions,
including: ResNet-50 [78], ResNeXt-50 (32x4d) [209], and Deepbench [46] (OCR and Face
Recognition). As summarized in Table 4.6, we benchmark the schedule performance of a
wide range of networks. The precision used for the benchmarks is 8-bit for the input and
weights, and 24-bit for the partial sums. We do not pad the dimensions to be multiples of 2,
as it incurs more overhead and outweighs the benefits it provides to allow more scheduling
options.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 87

CoSA Random (5×) Timeloop Hybrid

Avg. Runtime / Layer 4.2s 4.6s 379.9s
Avg. Samples / Layer 1 20K 67M

Avg. Evaluations / Layer 1 5 16K+

Table 4.7: Time-to-solution Comparison. CoSA outputs only one valid schedule per layer.
CoSA’s runtime is 1.1× and 90× shorter than the Random and Timeloop Hybrid search,
respectively.

Baseline architecture: We consider a spatial-array architecture like Simba [174] as our
baseline. Detailed specifications of the hardware constructs are summarized in Table 4.5.
We demonstrate that the CoSA framework is general to be applied for different architecture
parameters while delivering high-performance scheduling options in one shot.

4.5 Evaluation
In this section, we demonstrate the improved time-to-solution, performance, and energy of
CoSA compared to baseline schedulers, across different evaluation platforms and different
DNN architectures on a diverse set of DNN layers.

4.5.1 Time to Solution

We compare the average time for CoSA and the baseline schedulers to generate the schedule
of each layer from the four target DNN workloads. Table 4.7 shows that CoSA’s optimization-
driven approach offers more than 90× (4.2s vs. 379.9s) time-to-solution advantage over the
Timeloop Hybrid search strategy. Timeloop Hybrid search sampled 67 million schedules per
layer and evaluated more than 16 thousand valid ones among them, leading to a long runtime.
With Random search, a random sampling of 20K samples in 4.6 seconds resulted in only
five valid schedules, further demonstrating the need to have a constraint-based strategy to
prune the invalid search space directly. In the following section, we show that CoSA not only
shortens the time-to-solution but also generates high-quality schedules.

4.5.2 Evaluation on Timeloop Performance and Energy Models

We compare the performance of the Random search, the Timeloop Hybrid mapper, and
the CoSA scheduler for four different DNN workloads. The evaluations are based on our
baseline architecture described in Table 4.5 and the Timeloop evaluation platform mentioned
in Section 4.4.1.

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 88
11

_5
5_

3_
64

_4

5_
27

_6
4_

19
2_

1

3_
13

_1
92

_3
84

_1

3_
13

_3
84

_2
56

_1

3_
13

_2
56

_2
56

_1

1_
1_

92
16

_4
09

6_
1

1_
1_

40
96

_4
09

6_
1

1_
1_

40
96

_1
00

0_
1

G
E

O
M

E
A

N0
1
2
3
4
5
6
7
8
9

10

Sp
ee

du
p

[P
la

tfo
rm

: T
im

el
oo

p]

11
11 69 13

AlexNet

7_
11

2_
3_

64
_2

1_
56

_6
4_

64
_1

3_
56

_6
4_

64
_1

1_
56

_6
4_

25
6_

1

1_
56

_2
56

_6
4_

1

1_
56

_2
56

_1
28

_1

3_
28

_1
28

_1
28

_2

1_
28

_1
28

_5
12

_1

1_
28

_2
56

_5
12

_2

1_
28

_5
12

_1
28

_1

1_
28

_5
12

_2
56

_1

3_
14

_2
56

_2
56

_2

1_
14

_2
56

_1
02

4_
1

1_
14

_5
12

_1
02

4_
2

1_
14

_1
02

4_
25

6_
1

3_
14

_2
56

_2
56

_1

1_
14

_1
02

4_
51

2_
1

3_
7_

51
2_

51
2_

2

1_
7_

51
2_

20
48

_1

1_
7_

10
24

_2
04

8_
2

1_
7_

20
48

_5
12

_1

3_
7_

51
2_

51
2_

1

1_
1_

20
48

_1
00

0_
1

G
E

O
M

E
A

N0
1
2
3
4
5
6
7
8
9

10

23
23 13 14 19 15

ResNet-50
Random Timeloop Hybrid CoSA

7_
11

2_
3_

64
_2

1_
56

_6
4_

12
8_

1

3_
56

_4
_1

28
_1

1_
56

_1
28

_2
56

_1

1_
56

_6
4_

25
6_

1

1_
56

_2
56

_1
28

_1

1_
56

_2
56

_2
56

_1

3_
28

_8
_2

56
_2

1_
28

_2
56

_5
12

_1

1_
28

_2
56

_5
12

_2

1_
28

_5
12

_2
56

_1

3_
28

_8
_2

56
_1

1_
28

_5
12

_5
12

_1

3_
14

_1
6_

51
2_

2

1_
14

_5
12

_1
02

4_
1

1_
14

_5
12

_1
02

4_
2

1_
14

_1
02

4_
51

2_
1

3_
14

_1
6_

51
2_

1

1_
14

_1
02

4_
10

24
_1

3_
7_

32
_1

02
4_

2

1_
7_

10
24

_2
04

8_
1

1_
7_

10
24

_2
04

8_
2

1_
7_

20
48

_1
02

4_
1

3_
7_

32
_1

02
4_

1

1_
1_

20
48

_1
00

0_
1

G
E

O
M

E
A

N0
1
2
3
4
5
6
7
8
9

10

Sp
ee

du
p

[P
la

tfo
rm

: T
im

el
oo

p]

15 11
15 13 12 16 29

ResNeXt-50 (32x4d)

3_
48

0_
1_

16
_1

3_
24

0_
16

_3
2_

1

3_
12

0_
32

_6
4_

1

3_
60

_6
4_

12
8_

1

3_
10

8_
3_

64
_2

3_
54

_6
4_

64
_1

3_
27

_1
28

_1
28

_1

3_
14

_1
28

_2
56

_1

3_
7_

25
6_

51
2_

1

G
E

O
M

E
A

N0
1
2
3
4
5
6
7
8
9

10

13 12
12 11 21

DeepBench

R

an
do

m
Ti

m
el

oo
p

H
yb

rid

 C
oS

A

0
1
2
3
4
5
6
7
8
9

10

1.0

3.5

5.2

OVERALL

Figure 4.6: Speedup of different schedules relative to Random search on the baseline 4×4
NoC architecture. X-axis labels follow the naming convention R_P_C_K_Stride where S = R
and Q = P in all workloads. CoSA achieves 5.2× and 1.5× higher geomean speedup across
four DNN workloads compared to the Random and Timeloop Hybrid search.

4.5.2.1 Performance

Figure 4.6 shows the speedup reported by Timeloop for different scheduling schemes relative
to Random search. Figure 4.6 demonstrates that the CoSA-generated schedules are not only
valid but also outperform the ones generated by both Random search and Timeloop Hybrid
search. The geometric mean of the speedups of CoSA schedules relative to the Random and
Timeloop Hybrid search ones are 5.2× and 1.5× respectively across four DNNs.

In the few layers where Timeloop Hybrid search slightly outperforms CoSA, we find a
higher iteration count at the DRAM level in Timeloop Hybrid schedules, which helps to
reduce the size of each DRAM transaction and balance the pipeline. Fine-tuning the weights
of the objective functions could be used to improve the CoSA-generated schedules further.

A more exhaustive Timeloop Hybrid search (32K valid schedules) improves only 7.5%
in latency while increasing runtime by 2×. We find that even with 2× more valid samples
evaluated, Timeloop Hybrid search still cannot generate schedules that are of similar efficiency
to CoSA.

- - -
I I

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 89

AlexNet ResNet-50 ResNeXt-50 DeepBench GEOMEAN0

1

2

3

4

5

Im
pr

ov
em

en
t i

n
En

er
gy

1.0

2.7
3.3

Random Timeloop Hybrid CoSA

Figure 4.7: Improvements in total network energy reported by the Timeloop energy model. Energy
estimations are normalized to results from Random search and are evaluated on the baseline 4×4
NoC.

4.5.2.2 Energy

We use the Timeloop energy model to evaluate the energy of different schedules. Because
energy cost is highly correlated with the access count on each hardware component, our
traffic objective in CoSA is used for the schedule optimization targeting energy efficiency.
Figure 4.7 demonstrates that CoSA, using no simulation feedback, can generate schedules
22% more energy-efficient than the best Timeloop Hybrid solutions selected from 16,000+
valid schedules optimizing the energy.

4.5.2.3 Objective Breakdown

A detailed breakdown of the CoSA objective function on ResNet50 layer 3_7_512_512_1
is included in Figure4.8. Our overall objective function aims to capture an optimization
heuristic to maximize the utilization and minimize the compute and traffic costs at the same
time with a weighted sum of the three. Figure4.8 shows that CoSA achieves the lowest total
objective among all approaches, and optimizes all three sub-objectives simultaneously. This
observation on the objective values aligns with our empirical results in Figure 4.6, where
CoSA schedule runs 7× faster than the ones generated by Random and Timeloop Hybrid
search.

4.5.2.4 Different HW Architectures

We further explore the performance of CoSA with different DNN architecture parameters
such as different PE array sizes and different SRAM buffer sizes. We apply the same weights
for the evaluation on the same architecture and customize the objective weights in Eqn.4.12

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 90

0 50 100 150 200

wUUtil

wCComp

wTTraf

Total

Random Timeloop Hybrid CoSA

Figure 4.8: Objective function breakdown for ResNet-50 layer 3_7_512_512_1. The goal is to
minimize the total objective in Eq. 4.12. CoSA achieves the lowest values for all objective functions
on this layer among all approaches.

AlexNet
ResNet-50

ResNeXt-50
DeepBench

GEOMEAN
0

1

2

3

4

5

6

Sp
ee

du
p

[P
la

tfo
rm

: T
im

el
oo

p]

1.0

4.0
4.4

Random Timeloop Hybrid CoSA

(a) 8× 8 PEs

AlexNet
ResNet-50

ResNeXt-50
DeepBench

GEOMEAN
0
1
2
3
4
5
6
7
8
9

10
Sp

ee
du

p
[P

la
tfo

rm
: T

im
el

oo
p]

1.0

4.1

5.7

Random Timeloop Hybrid CoSA

(b) Larger Buffers

Figure 4.9: Speedup relative to Random search reported by Timeloop model on different hard-
ware architectures. CoSA’s performance generalizes across different hardware architectures
with different computing and on-chip storage resources.

using a micro-benchmark for different architectures. Figure4.9 shows the geomean speedup
of CoSA across all networks on two different hardware architectures.

PE Array Dimension. We scale the number of PEs up by 4× and increase both
the on-chip communication and DRAM bandwidth by 2× correspondingly. Both of these
modifications significantly impact the compute and communication patterns of DNN layer
executions. With a larger spatial array of arithmetic units, this case study presents a
scheduling problem where decisions about spatial and temporal mapping can be especially
crucial to attaining high performance. Figure 4.9a shows that CoSA achieves 4.4× and 1.1×
speedup compared to Random and Timeloop Hybrid search respectively across four networks.
This shows that the performance of our scheduler can scale and generalize to NoCs with more
PEs, which tend to be more affected by communication costs.

SRAM Size. We also increase the sizes of the local and global buffers to demonstrate

1111111111111 1111111111111

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 91
11

_5
5_

3_
64

_4

5_
27

_6
4_

19
2_

1

3_
13

_1
92

_3
84

_1

3_
13

_3
84

_2
56

_1

3_
13

_2
56

_2
56

_1

1_
1_

92
16

_4
09

6_
1

1_
1_

40
96

_4
09

6_
1

1_
1_

40
96

_1
00

0_
1

G
E

O
M

E
A

N0

1

2

3

4

5

Sp
ee

du
p

[P
la

tfo
rm

: N
oC

 S
im

]

7 86 6
12 8 115 10

AlexNet

7_
11

2_
3_

64
_2

1_
56

_6
4_

64
_1

3_
56

_6
4_

64
_1

1_
56

_6
4_

25
6_

1

1_
56

_2
56

_6
4_

1

1_
56

_2
56

_1
28

_1

3_
28

_1
28

_1
28

_2

1_
28

_1
28

_5
12

_1

1_
28

_2
56

_5
12

_2

1_
28

_5
12

_1
28

_1

1_
28

_5
12

_2
56

_1

3_
14

_2
56

_2
56

_2

1_
14

_2
56

_1
02

4_
1

1_
14

_5
12

_1
02

4_
2

1_
14

_1
02

4_
25

6_
1

3_
14

_2
56

_2
56

_1

1_
14

_1
02

4_
51

2_
1

3_
7_

51
2_

51
2_

2

1_
7_

51
2_

20
48

_1

1_
7_

10
24

_2
04

8_
2

1_
7_

20
48

_5
12

_1

3_
7_

51
2_

51
2_

1

1_
1_

20
48

_1
00

0_
1

G
E

O
M

E
A

N0

1

2

3

4

5

5 14 6 6 7 6
7 9 6 5 8 6 7

ResNet-50
Random Timeloop Hybrid CoSA

7_
11

2_
3_

64
_2

1_
56

_6
4_

12
8_

1

3_
56

_4
_1

28
_1

1_
56

_1
28

_2
56

_1

1_
56

_6
4_

25
6_

1

1_
56

_2
56

_1
28

_1

1_
56

_2
56

_2
56

_1

3_
28

_8
_2

56
_2

1_
28

_2
56

_5
12

_1

1_
28

_2
56

_5
12

_2

1_
28

_5
12

_2
56

_1

3_
28

_8
_2

56
_1

1_
28

_5
12

_5
12

_1

3_
14

_1
6_

51
2_

2

1_
14

_5
12

_1
02

4_
1

1_
14

_5
12

_1
02

4_
2

1_
14

_1
02

4_
51

2_
1

3_
14

_1
6_

51
2_

1

1_
14

_1
02

4_
10

24
_1

3_
7_

32
_1

02
4_

2

1_
7_

10
24

_2
04

8_
1

1_
7_

10
24

_2
04

8_
2

1_
7_

20
48

_1
02

4_
1

3_
7_

32
_1

02
4_

1

1_
1_

20
48

_1
00

0_
1

G
E

O
M

E
A

N0

1

2

3

4

5

Sp
ee

du
p

[P
la

tfo
rm

: N
oC

 S
im

]

8 10 7 6 6
8 7 6 10 6 6 28 18 6 6

ResNeXt-50 (32x4d)

3_
48

0_
1_

16
_1

3_
24

0_
16

_3
2_

1

3_
12

0_
32

_6
4_

1

3_
60

_6
4_

12
8_

1

3_
10

8_
3_

64
_2

3_
54

_6
4_

64
_1

3_
27

_1
28

_1
28

_1

3_
14

_1
28

_2
56

_1

3_
7_

25
6_

51
2_

1

G
E

O
M

E
A

N0

1

2

3

4

5

7
7 6 6 6 16

DeepBench

R

an
do

m
Ti

m
el

oo
p

H
yb

rid

 C
oS

A

0

1

2

3

4

5

1.0
1.3

3.3

OVERALL

Figure 4.10: Speedup reported by NoC simulator relative to Random search on the baseline 4×4
NoC architecture. CoSA achieves 3.3× and 2.5× higher geomean speedup across four DNN workloads
compared to the Random and Timeloop Hybrid search on the more communication sensitive NoC
simulator.

that CoSA can achieve consistently good schedules across different architectures. The sizes
of local buffers, i.e., accumulation, weight, and input buffers, are doubled; and the global
buffer size is increased 8×. At the PE and global buffer level, modified memory capacities are
likely to impact the optimal strategy for data reuse and NoC communication traffic reduction.
With CoSA, we show 5.7× speedup over Random and 1.4× speedup over Timeloop Hybrid
search in Figure 4.9b, demonstrating CoSA’s capability across different architectures.

4.5.3 Evaluation on NoC Simulator

To further compare the quality of schedules generated by different scheduling schemes, we
evaluate them on our NoC simulation platform. The NoC simulation platform more accurately
captures the communication overhead from the on-chip network as compared to the Timeloop
models.

Figure 4.10 shows the speedup relative to the Random baseline. We observe that CoSA-
generated schedules outperform the baseline schedules for all four DNN workloads, with
the greatest performance gains occurring for convolutional layers, e.g., DeepBench layers.
Intriguingly, for these same layers, Timeloop Hybrid scheduler actually under-performs
Random search as its internal analytical model does not accurately capture the communication

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 92

7_
11

2_
3_

64
_2

1_
56

_6
4_

64
_1

3_
56

_6
4_

64
_1

1_
56

_6
4_

25
6_

1

1_
56

_2
56

_6
4_

1

1_
56

_2
56

_1
28

_1

3_
28

_1
28

_1
28

_2

1_
28

_1
28

_5
12

_1

1_
28

_2
56

_5
12

_2

1_
28

_5
12

_1
28

_1

1_
28

_5
12

_2
56

_1

3_
14

_2
56

_2
56

_2

1_
14

_2
56

_1
02

4_
1

1_
14

_5
12

_1
02

4_
2

1_
14

_1
02

4_
25

6_
1

3_
14

_2
56

_2
56

_1

1_
14

_1
02

4_
51

2_
1

3_
7_

51
2_

51
2_

2

1_
7_

51
2_

20
48

_1

1_
7_

10
24

_2
04

8_
2

1_
7_

20
48

_5
12

_1

3_
7_

51
2_

51
2_

1

1_
1_

20
48

_1
00

0_
1

G
E

O
M

E
A

N0.0

0.6

1.2

1.8

2.4

3.0

Sp
ee

du
p

[P
la

tfo
rm

: G
PU

]

1.0
4 4 1.2

ResNet-50
TVM CoSA

Figure 4.11: Speedup relative to TVM reported on K80 GPU.

traffic in the network. On the other hand, there is no significant difference between the
performance of FC layers among different schedules, as the FC layers are heavily memory-
bound with low PE utilization. The DRAM access time dominates in these layers even with
the best schedules with respect to the reuse of buffered data. Overall, CoSA achieves a
geometric average of up to 3.3× speedup relative to the best Random search solutions and
2.5× relative to Timeloop Hybrid search schedules across the four networks. Furthermore,
unlike the iterative nature of Random and Timeloop Hybrid search schedules, CoSA schedules
are consistently performant with the one-shot solution.

4.5.4 Evaluation on GPU

To show the potential use of CoSA for general-purpose hardware, we also formulate GPU
scheduling as a constrained-optimization problem using CoSA. We evaluate the performance
of CoSA on GPU and compare it against TVM [29].

Target GPU. We target NVIDIA K80 GPU with 2496 CUDA cores and a 1.5MB L2
cache. This GPU has a 48KB shared memory and 64KB local registers, shared by a maximum
of 1024 threads in each CUDA thread block. The thread block is a programming abstraction
that represents a group of threads that can be run serially or in parallel in CUDA. The
maximum dimension of a thread block is (1024, 1024, 64). Violation of these constraints in
the CUDA kernel results in invalid schedules.

Constraints. CoSA expresses the hardware constraints for GPU thread groups and
shared/local memory similarly to how we specify the spatial resource and buffer capacity
constraints in Section 4.3.3. Each thread group can be seen as a spatial level with a specific

- -
- ,-- - ,-- -- - ----- ,-- - ,-- - ..- - -- - - ----- -- - ---- - ---- ,...... -- - - ------ - ,-- - -,----- - - --

I I I ■

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 93

size. The product of all three thread group sizes is enforced to be smaller than 1024. The share
memory utilization is calculated as buffer capacity constraints, and the register utilization is
calculated by multiplying the total number of threads with the inner loop register utilization.

Objective Functions. In CoSA, we compute the compute objective by discounting the
total compute cycles with the total number of threads for GPU, to reflect the performance
gain from thread-level parallelism. We then adjust the weights of the other objectives using
a micro-benchmark.

We run TVM with the XGBoost tuner for 50 trials per layer as the baseline. CoSA
generates valid schedules in one shot with a time-to-solution 2, 500× shorter than TVM (0.02s
vs. 50s per layer). The CoSA-generated schedules achieve 1.10× geomean speedup compared
to the TVM schedules on ResNet50 as shown in Figure4.11.

4.6 Scheduling-Informed Hardware Design

4.7 On-chip Memory Partitioning with CoSA
In addition to scheduling for a given hardware, due to the fast, one-shot nature of CoSA, it
can also be applied for hardware and scheduling co-design problems. In particular, on-chip
memory partitioning is a critical design decision that can greatly impact not only the overall
area budget but also the scheduling decision, especially in architectures with multi-level private
buffers for different data tensors. Given an on-chip memory budget, the memory partitioning
algorithm determines the memory portion assigned to each local buffer. Current work on the
design space exploration of accelerators for resource allocation [38,100,146,216,230] rely on
the iterative scheduling schemes that are computationally expensive and can yield sub-optimal
solutions. Our work is the first work that formulates both the scheduling decisions and the
on-chip memory partitioning problem as a single optimization problem.

4.7.0.1 Formulation

To co-optimize the scheduling and memory partitioning decisions, we modify the formulations
in Section 4.2.2 to include memory sizes also as CoSA variables. Instead of treating the log
capacity log(MI,v) for different buffers as constraints in Section 4.3.3.1, we turn them into
MIP variables mI,v that represents the log value of the actual buffer size wI,v. Assume we
have H on-chip buffers, we then need to add another constraint to ensure the total size of all
buffers does not exceed the allocated budget G:

H−1∑
I=0

2∑
v=0

wI,v =
H−1∑
I=0

2∑
v=0

2mI,v ≤ G (4.13)

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 94

11
_5

5_
3_

64
_4

1_
1_

40
96

_1
00

0_
1

1_
1_

40
96

_4
09

6_
1

1_
1_

92
16

_4
09

6_
1

3_
13

_1
92

_3
84

_1

3_
13

_2
56

_2
56

_1

3_
13

_3
84

_2
56

_1

5_
27

_6
4_

19
2_

10

2000

4000

6000

8000

10000

M
em

or
y

Si
ze

 (B
yt

es
)

Weight Buffer Input Buffer Output Buffer

(a) CoSA-generated memory partitions for
AlexNet layers.

11
_5

5_
3_

64
_4

1_
1_

40
96

_1
00

0_
1

1_
1_

40
96

_4
09

6_
1

1_
1_

92
16

_4
09

6_
1

3_
13

_1
92

_3
84

_1

3_
13

_2
56

_2
56

_1

3_
13

_3
84

_2
56

_1

5_
27

_6
4_

19
2_

1

G
E

O
M

E
A

N0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

[P
la

tfo
rm

: T
im

el
oo

p]

1.0
1.1

AlexNet Latency
Baseline CoSA

(b) Speedup on hardware with CoSA-generated
memory partitions for AlexNet layers.

4.7.0.2 Evaluation on On-chip Memory Partitioning

Co-optimizing hardware and schedule opens up new optimization opportunities to balance
different tradeoffs in the scheduling space and hardware design. As a starting point, we
demonstrate how CoSA can be extended to capture the design and scheduling tradeoffs. In
particular, Figure 4.12a shows the on-chip memory partitions solved by CoSA for each layer
in AlexNet. We observe significantly different preferred partitions for different layers, where
some partition leads to up to an 85% reduction in the total SRAM size. At the same time,
Figure 4.12b shows the corresponding performance of running each layer with CoSA-generated
schedules on the co-optimized hardware design. We see an 11% improvement in the geomean
speedup on the co-optimized hardware. This case study shows a promising application of
CoSA in hardware-software co-design. CoSA can be further extended to co-optimize other
hardware design decisions by relaxing the architectural constraints in a similar manner as
illustrated in this case study.

4.8 Conclusion
In CoSA, we present an optimization-driven approach to DNN scheduling. Harnessing the
regularities from DNN workloads and target accelerator designs, we formulate scheduling
into a constrained optimization problem that can be solved directly without incurring the
high cost of enumeration-based scheduling. We devise a single mathematical formulation to
simultaneously solve all three key optimizations in scheduling: loop tiling, loop permutation,
and spatial mapping. We implement a cycle-exact NoC simulator to evaluate different
schedules more accurately. Comparing our results to schedules generated from the state-of-

CHAPTER 4. SCHEDULING AND HARDWARE CO-DESIGN 95

the-art work, our approach achieves up to 2.5× speedup and 22% better energy-efficiency,
with 90× shorter time-to-solution. We consistently observe improved scheduling performance
across different DNN benchmarks and architecture variations.

In addition, we extend CoSA to co-optimize the hardware design and scheduling in unison,
a process that is quite time- and resource-intensive today. By transforming the architectural
constraints into variables in our formulation, our co-optimized, one-shot solutions can further
improve performance by 11% while saving up to 85% on-chip memory.

96

Chapter 5

Machine Learning for Hardware Design

Machine learning (ML) is poised to revolutionize the performance of numerous applications.
It has achieved unparalleled success in computer vision, NLP, computer graphics, work
automation, etc. Since the compute improvement has been a key driving force behind the
ML progress, we focused on advancing ML through co-designing and optimizing accelerator
systems in the previous parts of the dissertation. Given the rise of ML and its success in
many domains, we investigate applying machine learning to improve the accelerator design
tool in this part of the dissertation.

In this chapter, we present AutoPhase, in which we investigate the effectiveness of deep
reinforcement learning algorithms in addressing an NP-hard compiler optimization problem
called the phase-ordering problem. In HLS-based hardware generation flow, phase-ordering
can significantly affect the quality of results. It generally refers to the process of choosing a
good order of the optimization passes to apply. In AutoPhase, we implemented a framework
that takes a program and uses deep reinforcement learning to find a sequence of compilation
passes that minimizes its execution time. Without loss of generality, we construct this
framework in the context of the LLVM compiler toolchain and target high-level synthesis
programs. We use random forests to quantify the correlation between the effectiveness of a
given pass and the program’s features. This helps us reduce the search space by avoiding phase
orderings that are unlikely to improve the performance of a given program. We also compare
the performance of AutoPhase to state-of-the-art algorithms that address the phase-ordering
problem.

5.1 Machine Learning for Phase Ordering
The performance of the code a compiler generates depends on the order in which it applies the
optimization passes. Choosing a good order–often referred to as the phase-ordering problem,
is an NP-hard problem. As a result, existing solutions rely on a variety of heuristics. In this
work, we evaluate a new technique to address the phase-ordering problem: deep reinforcement
learning.

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 97

High-Level Synthesis (HLS) automates the process of creating digital hardware circuits
from algorithms written in high-level languages. Modern HLS tools [27, 94, 211] use the same
front-end as the traditional software compilers. They rely on traditional software compiler
techniques to optimize the input program’s intermediate representation (IR) and produce
circuits in the form of RTL code. Thus, the quality of compiler frontend optimizations directly
impacts the performance of HLS-generated circuits.

Program optimization is a notoriously difficult task. A program must be just in "the
right form" for a compiler to recognize the optimization opportunities. This is a task a
programmer might be able to perform easily but is often difficult for a compiler. To add to
this complexity, often, the optimization is hardware-dependent. Despite a decade of research
on developing sophisticated optimization algorithms, there is still a performance gap between
the HLS generated code and the hand-optimized one produced by experts.

This work builds off the LLVM compiler [114]. However, our techniques, can be broadly
applicable to any compiler that uses a series of optimization passes. In this case, the
optimization of an HLS program consists of applying a sequence of analysis and optimization
phases. Each phase in this sequence consumes the output of the previous phase, and generates
a modified version of the program for the next phase. Unfortunately, these phases are not
commutative, which makes the order in which these phases are applied very critical to the
performance of the output.

Consider the program in Figure 5.1, which normalizes a vector. Without any optimizations,
the norm function will take Θ(n2) to normalize a vector. However, a smart compiler will
implement the loop invariant code motion (LICM) [135] optimization, which allows it to
move the call to mag above the loop, resulting in the code on the left column in Figure 5.2.
This optimization brings the runtime down to Θ(n)—a big speedup improvement. Another
optimization the compiler could perform is (function) inlining [135]. With inlining, a call to
a function is simply replaced with the body of the function, reducing the overhead of the
function call. Applying inlining to the code will result in the code in the right column of
Figure 5.2.

Now, consider applying these optimization passes in the opposite order: first inlining,
then LICM. After inlining, we get the code on the left of Figure 5.3. Once again, we get
a modest speedup, having eliminated n function calls, though our runtime is still Θ(n2).
If the compiler afterwards attempted to apply LICM, we would find the code on the right
of Figure 5.3. LICM was able to successfully move the allocation of sum outside the loop.
However, it was unable to move the instruction setting sum=0 outside the loop, as doing so
would mean that all iterations excluding the first one would end up with a garbage value for
sum. Thus, the internal loop will not be moved out.

As this simple example illustrates, the order in which the optimization phases are applied
can be the difference between the program running in Θ(n2) versus Θ(n). It is thus crucial to
determine the optimal phase ordering to maximize the circuit speeds. Unfortunately, not only
is this a difficult task, but the optimal phase ordering may vary from program to program.
Furthermore, it turns out that finding the optimal sequence of optimization phases is an
NP-hard problem, and exhaustively evaluating all possible sequences is infeasible in practice.

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 98

__attribute__((const))
double mag(int n, const double *A) {

double sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
return sqrt(sum);

}
void norm(int n, double *restrict out,

const double *restrict in) {
for(int i=0; i<n; i++) {

out[i] = in[i] / mag(n, in);
}

}

Figure 5.1: A simple program to normalize a vector.

void norm(int n, double *restrict out,
const double *restrict in) {

double precompute = mag(n, in);
for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;
}

}

void norm(int n, double *restrict out,
const double *restrict in) {

double precompute, sum = 0;
for(int i=0; i<n; i++){

sum += A[i] * A[i];
}
precompute = sqrt(sum);
for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;
}

}

Figure 5.2: Progressively applying LICM (left) then inlining (right) to the code in Figure 5.1.

In this work, for example, the search space extends to more than 2247 phase orderings.
The goal of AutoPhase is to provide a mechanism for automatically determining good

phase orderings for HLS programs to optimize for the circuit speed. To this end, we aim
to leverage recent advancements in deep reinforcement learning (RL) [72, 190] to address
the phase ordering problem. With RL, a software agent continuously interacts with the
environment by taking actions. Each action can change the state of the environment and
generate a "reward". The goal of RL is to learn a policy—that is, a mapping between the
observed states of the environment and a set of actions—to maximize the cumulative reward.
An RL algorithm that uses a deep neural network to approximate the policy is referred to
as a deep RL algorithm. In our case, the observation from the environment could be the
program and/or the optimization passes applied so far. The action is the optimization pass
to apply next, and the reward is the improvement in the circuit performance after applying
this pass. The particular framing of the problem as an RL problem has a significant impact
on the solution’s effectiveness. Significant challenges exist in understanding how to formulate

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 99

void norm(int n, double *restrict out,
const double *restrict in) {

for(int i=0; i<n; i++) {
double sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

void norm(int n, double *restrict out,
const double *restrict in) {

double sum;
for(int i=0; i<n; i++) {

sum = 0;
for(int j=0; j<n; j++){

sum += A[j] * A[j];
}
out[i] = in[i] / sqrt(sum);

}
}

Figure 5.3: Progressively applying inlining (left) then LICM (right) to the code in Figure 5.1.

the phase ordering optimization problem in an RL framework.
We consider three approaches to represent the environment’s state. The first approach

is to directly use salient features from the program. The second approach is to derive the
features from the sequence of optimizations we applied while ignoring the program’s features.
The third approach combines the first two approaches. We evaluate these approaches by
implementing a framework that takes a group of programs as input and quickly finds a phase
ordering that competes with state-of-the-art solutions. In this chapter, we present:

• An importance analysis on the features using random forests to significantly reduce the
state and action spaces.

• A framework that integrates the current HLS compiler infrastructure with the deep RL
algorithms.

We show that AutoPhase gets a 28% improvement over -O3 for nine real benchmarks.
Unlike all state-of-the-art approaches, deep RL demonstrates the potential to generalize to
thousands of different programs after training on a hundred programs.

5.2 Background and Motivation

5.2.1 Compiler Phase-ordering

Compilers execute optimization passes to transform programs into more efficient forms to run
on various hardware targets. Groups of optimizations are often packaged into “optimization
levels”, such as -O0 and -O3, for ease. While these optimization levels offer developers a
simple set of choices, they are handpicked by the compiler designers and often most benefit
specific groups of benchmark programs. The compiler community has attempted to address
the issue by selecting a particular set of compiler optimizations on a per-program or per-target
basis for software [4, 7, 145,195].

Since the search space of phase-ordering is too large for an exhaustive search, many
heuristics have been proposed to explore the space by using machine learning. Huang et al.

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 100

tried to address this challenge for HLS applications by using modified greedy algorithms [89,90].
It achieved 16% improvement vs. -O3 on the CHstone benchmarks [77], which we used in this
paper. In [3] both independent and Markov models were applied to automatically target an
optimized search space for iterative methods to improve the search results. In [187], genetic
algorithms were used to tune heuristic priority functions for three compiler optimization
passes. Milepost GCC [59] used machine learning to determine the set of passes to apply
to a given program, based on a static analysis of its features. It achieved an 11% execution
time improvement over -O3, for the ARC reconfigurable processor on the MiBench program
suite1. In [111] the challenge was formulated as a Markov process, and supervised learning
was used to predict the next optimization based on the current program state. OpenTuner [7]
autotunes a program using an AUC-Bandit-meta-technique-directed ensemble selection of
algorithms. Its current mechanism for selecting the compiler optimization passes does not
consider the order or support repeated optimizations. Wang et al. [201], provided a survey
for using machine learning in compiler optimization where they also described that using
program features might be helpful. NeuroVectorizer [69,70] used deep RL for automatically
tuning compiler pragmas such as vectorization and interleaving factors. NeuroVectorizer
achieves 97% of the oracle performance (brute-force search) on a wide range of benchmarks.

5.2.2 Reinforcement Learning Algorithms

Reinforcement learning (RL) is a machine learning approach in which an agent continually
interacts with the environment [99]. In particular, the agent observes the state of the
environment, and based on this observation, takes an action. The goal of the RL agent is then
to compute a policy–a mapping between the environment states and actions–that maximizes
a long-term reward.

RL can be viewed as a stochastic optimization solution for solving Markov Decision
Processes (MDPs) [15], when the MDP is not known. An MDP is defined by a tuple with four
elements: S,A, P (s, a), r(s, a) where S is the set of states of the environment, A describes the
set of actions or transitions between states, s′∼P (s, a) describes the probability distribution
of next states given the current state and action and r(s, a) : S × A → R is the reward of
taking action a in state s. Given an MDP, the goal of the agent is to gain the largest possible
aggregate reward. The objective of an RL algorithm associated with an MDP is to find a
decision policy π∗(a|s) : s→ A that achieves this goal for that MDP:

π∗ = arg max
π

Eτ∼π(τ)

[∑
t

r(st, at)

]

= arg max
π

T∑
t=1

E(st,at)∼π(st,at) [r(st, at)]

(5.1)

Deep RL leverages a neural network to learn the policy (and sometimes the reward func-
tion). Policy Gradient (PG) [191], for example, updates the policy directly by differentiating

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 101

the aggregate reward E in Equation 5.1:

∇θJ = ∇θEτ∼ρπ(τ)

[∑
t

r(st, at)

]

= Eτ∼ρπ(τ)

[
(
∑
t

∇θlogπθ(at|st))(
∑
t

r(st, at))

]

≈ 1

N

N∑
i=1

[
(
∑
t

∇θlogπθ(ai,t|si,t))(
∑
t

r(si,t, ai,t))

] (5.2)

and updating the network parameters (weights) in the direction of the gradient:

θ ← θ + α∇θJ, (5.3)

Note that PG is an on-policy method in that it uses decisions made directly by the current
policy to compute the new policy.

Over the past couple of years, a plethora of new deep RL techniques have been pro-
posed [133,169]. In this paper, we mainly focus on Proximal Policy Optimization (PPO) [172],
Asynchronous Advantage Actor-critic (A3C) [133].

PPO is a variant of PG that enables multiple epochs of minibatch updates to improve
the sample complexity. Vanilla PG performs one gradient update per data sample while PPO
uses a novel surrogate objective function to enable multiple epochs of minibatch updates. It
alternates between sampling data through interaction with the environment and optimizing
the surrogate objective function using stochastic gradient ascent. It performs updates that
maximizes the reward function while ensuring the deviation from the previous policy is small
by using a surrogate objective function. The loss function of PPO is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (5.4)

where rt(θ) is defined as a probability ratio πθ(at|st)
πθold (at|st) so r(θold) = 1. This term penalizes policy

update that move rt(θ) from r(θold). Ât denotes the estimated advantage that approximates
how good at is compared to the average. The second term in the min function acts as a
disincentive for moving rt outside of [1− ε, 1 + ε] where ε is a hyperparameter.

A3C uses an actor (usually a neural network) that interacts with the critic, which is
another network that evaluates the action by computing the value function. The critic tells
the actor how good its action was and how it should adjust. The update performed by the
algorithm can be seen as ∇θlogπθ(ai,t|si,t)Ât.

5.2.3 Evolutionary Algorithms

Evolutionary algorithms are another technique that can be used to search for the best compiler
pass ordering. It contains a family of population-based meta-heuristic optimization algorithms

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 102

inspired by natural selection. The main idea of these algorithms is to sample a population
of solutions and use the good ones to direct the distribution of future generations. Two
commonly used Evolutionary Algorithms are Genetic Algorithms (GA) [85] and Evolution
Strategies (ES) [43].

GA generally requires a genetic representation of the search space where the solutions
are coded as integer vectors. The algorithm starts with a pool of candidates, then iteratively
evolves the pool to include solutions with higher fitness by the three following strategies:
selection, crossover, and mutation. Selection keeps a subset of solutions with the highest
fitness values. These selected solutions act as parents for the next generation. Crossover
merges pairs from the parent solutions to produce new offsprings. Mutation perturbs the
offspring’s solutions with a low probability. The process repeats until a solution that reaches
the goal fitness is found or after a certain number of generations.

ES works similarly to GA. However, the solutions are coded as real numbers in ES. In
addition, ES is self-adapting. The hyperparameters, such as the step size or the mutation
probability, are different for different solutions. They are encoded in each solution, so good
settings get to the next generation with good solutions. Recent work [170] has used ES to
update policy weights for RL and showed it is a good alternative for gradient-based methods.

5.3 AutoPhase Framework for Automatic Phase
Ordering

We leverage an existing open-source HLS framework called LegUp [27] that compiles a C
program into a hardware RTL design. In [89], an approach is devised to quickly determine the
number of hardware execution cycles without requiring time-consuming logic simulation. We
develop our RL simulator environment based on the existing harness provided by LegUp and
validate our final results by going through the time-consuming logic simulation. AutoPhase
takes a program (or multiple programs) and intelligently explores the space of possible
passes to figure out an optimal pass sequence to apply. Table 5.1 lists all the passes used in
AutoPhase. The workflow of AutoPhase is illustrated in Figure 5.4.

5.3.1 HLS Compiler

AutoPhase takes a set of programs as input and compiles them to a hardware-independent
intermediate representation (IR) using the Clang front-end of the LLVM compiler. Optimiza-
tion and analysis passes act as transformations on the IR, taking a program as input and
emitting a new IR as output. The HLS tool LegUp is invoked after the compiler optimization
as a backend pass, which transforms LLVM IR into hardware modules.

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 103

Feature
Extractor

Cycle
Profiler

Learning
Agent LLVM  

IR

Optimization
Passes

HLS
Compiler Hardware

(State)

(Reward)

Gradient

New Compiler Pass 
 (Action)

Runtime

Features

Program
Generator

Real  
Benchmarks

Input Programs

Figure 5.4: The block diagram of AutoPhase. The input programs are compiled to an LLVM
IR using Clang/LLVM. The feature extractor and clock-cycle profiler are used to generate
the input features (state) and the runtime improvement (reward), respectively, from the
IR. The program features and runtime improvement are fed to the deep RL agent as input
data to train on. The RL agent predicts the next best optimization passes to apply. After
convergence, the HLS compiler is used to compile the LLVM IR to hardware RTL.

5.3.2 Clock-cycle Profiler

Once the hardware RTL is generated, one could run a hardware simulation to gather the
cycle count results of the synthesized circuit. This process is quite time-consuming, hindering
RL and all other optimization approaches. Therefore, we approximate cycle count using the
profiler in LegUp [89], which leverages the software traces and runs 20× faster than hardware
simulation. In LegUp, the frequency of the generated circuits is set as a compiler constraint
that directs the HLS scheduling algorithm. In other words, the HLS tool will always try to
generate hardware that can run at a certain frequency. In our experiment setting, without
loss of generality, we set the target frequency of all generated hardware to 200MHz. We
experimented with lower frequencies, too; the improvements were similar, but the cycle counts
the different algorithms achieved were better as more logic could be fitted in a single cycle.

5.3.3 IR Feature Extractor

Wang et al. [201] proposed to convert a program into observation by extracting all the features
from the program. Similarly, in addition to the LegUp backend tools, we developed analysis

policy
a)

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 104

passes to extract 56 static features from the program, such as the number of basic blocks,
branches, and instructions of various types. We use these features as partially observable
states for learning. We hope the neural network can capture the correlation between certain
combinations of these features and certain optimizations. Table 5.2 lists all the features used.

5.3.4 Random Program Generator

As a data-driven approach, RL generalizes better if we train the agent on more programs.
However, there are a limited number of open-source HLS examples online. Therefore, we
expand our training set by automatically generating synthetic HLS benchmarks. We first
generate standard C programs using CSmith [217], a random C program generator, which is
originally designed to generate test cases for finding compiler bugs. Then, we develop scripts
to filter out programs that take more than five minutes to run on the CPU or fail the HLS
compilation.

5.3.5 Overall Flow of AutoPhase

We integrate the compilation utilities into a simulation environment in Python with APIs
similar to an OpenAI gym [25]. The overall flow works as follows:

1. The input program is compiled into LLVM IR using the Clang/LLVM.

2. The IR Feature Extractor is run to extract salient program features.

3. LegUp compiles the LLVM IR into hardware RTL.

4. The Clock-cycle Profiler estimates a clock-cycle count for the generated circuit.

5. The RL agent takes the program features or the histogram of previously applied passes
and the improvement in clock-cycle count as input data to train on.

6. The RL agent predicts the next best optimization passes to apply.

7. New LLVM IR is generated after the new optimization sequence is applied.

8. The machine learning algorithm iterates through steps (2)–(7) until convergence.

Note that AutoPhase uses the LLVM compiler and the passes used are listed in Table 5.2.
However, adding support for any compiler or optimization passes in AutoPhase is very easy
and straightforward. The action and state definitions must be specified again.

5.4 Correlation of Passes and Program Features
Similar to the case with many deep learning approaches, explainability is one of the major
challenges we face when applying deep RL to the phase-ordering challenge. To analyze and
understand the correlation of passes and program features, we use random forests [23] to
learn the importance of different features. Random forest is an ensemble of multiple decision

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 105

Table 5.1: LLVM Transform Passes.

0 1 2 3 4 5 6 7 8 9 10
-correlated-propagation -scalarrepl -lowerinvoke -strip -strip-nondebug -sccp -globalopt -gvn -jump-threading -globaldce -loop-unswitch

11 12 13 14 15 16 17 18 19 20 21
-scalarrepl-ssa -loop-reduce -break-crit-edges -loop-deletion -reassociate -lcssa -codegenprepare -memcpyopt -functionattrs -loop-idiom -lowerswitch

22 23 24 25 26 27 28 29 30 31 32 33
-constmerge -loop-rotate -partial-inliner -inline -early-cse -indvars -adce -loop-simplify -instcombine -simplifycfg -dse -loop-unroll

34 35 36 37 38 39 40 41 42 43 44 45
-lower-expect -tailcallelim -licm -sink -mem2reg -prune-eh -functionattrs -ipsccp -deadargelim -sroa -loweratomic -terminate

Table 5.2: Program Features.

0 Number of BB where total args for phi nodes >5 28 Number of And insts
1 Number of BB where total args for phi nodes is [1,5] 29 Number of BB’s with instructions between [15,500]
2 Number of BB’s with 1 predecessor 30 Number of BB’s with less than 15 instructions
3 Number of BB’s with 1 predecessor and 1 successor 31 Number of BitCast insts
4 Number of BB’s with 1 predecessor and 2 successors 32 Number of Br insts
5 Number of BB’s with 1 successor 33 Number of Call insts
6 Number of BB’s with 2 predecessors 34 Number of GetElementPtr insts
7 Number of BB’s with 2 predecessors and 1 successor 35 Number of ICmp insts
8 Number of BB’s with 2 predecessors and successors 36 Number of LShr insts
9 Number of BB’s with 2 successors 37 Number of Load insts
10 Number of BB’s with >2 predecessors 38 Number of Mul insts
11 Number of BB’s with Phi node # in range (0,3] 39 Number of Or insts
12 Number of BB’s with more than 3 Phi nodes 40 Number of PHI insts
13 Number of BB’s with no Phi nodes 41 Number of Ret insts
14 Number of Phi-nodes at beginning of BB 42 Number of SExt insts
15 Number of branches 43 Number of Select insts
16 Number of calls that return an int 44 Number of Shl insts
17 Number of critical edges 45 Number of Store insts
18 Number of edges 46 Number of Sub insts
19 Number of occurrences of 32-bit integer constants 47 Number of Trunc insts
20 Number of occurrences of 64-bit integer constants 48 Number of Xor insts
21 Number of occurrences of constant 0 49 Number of ZExt insts
22 Number of occurrences of constant 1 50 Number of basic blocks
23 Number of unconditional branches 51 Number of instructions (of all types)
24 Number of Binary operations with a constant operand 52 Number of memory instructions
25 Number of AShr insts 53 Number of non-external functions
26 Number of Add insts 54 Total arguments to Phi nodes
27 Number of Alloca insts 55 Number of Unary operations

trees. The prediction made by each tree could be explained by tracing the decisions made at
each node and calculating the importance of different features on making the decisions at
each node. This helps us to identify the effective features and passes to use and show whether
our algorithms learn informative patterns on data.

For each pass, we build two random forests to predict whether applying it would improve
the circuit performance. The first forest takes the program features as inputs, while the
second takes a histogram of previously applied passes. To gather the training data for the
forests, we run PPO with a high exploration parameter value on 100 randomly generated
programs to generate feature–action–reward tuples. The algorithm assigns higher importance

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 106

Figure 5.5: Heat map illustrating the importance of feature and pass indices.

to the input features that affect the final prediction more.

5.4.1 Importance of Program Features

The heat map in Figure 5.5 shows the importance of different features on whether a pass
should be applied. The higher the value is, the more important the feature is (the sum of the
values in each row is one). The random forest is trained with 150,000 samples generated from
the random programs. The index mapping of features and passes can be found in Tables 5.1
and 5.2. For example, the yellow pixel corresponding to feature index 17 and pass index 23
reflects that number-of-critical-edges affects the decision on whether to apply -loop-rotate
greatly. A critical edge in the control flow graph is an edge that is neither the only edge
leaving its source block, nor the only edge entering its destination block. The critical edges
can be commonly seen in a loop as a back edge, so the number of critical edges might roughly
represent the number of loops in a program. The transform pass -loop-rotate detects a loop
and transforms a while loop to a do-while loop to eliminate one branch instruction in the
loop body. Applying the pass results in better circuit performance as it reduces the total
number of FSM states in a loop.

Other expected behaviors are also observed in this figure. For instance, the correlation
between number of branches and the transform passes -loop-simplify, -tailcallelism (which
transforms calls of the current function i.e., self recursion, followed by a return instruction
with a branch to the entry of the function, creating a loop), -lowerswitch (which rewrites
switch instructions with a sequence of branches). Other interesting behaviors are also
captured. For example, in the correlation between binary operations with a constant operand

Feature
0 10 20 30 40 50

0

5 0.14

10 0.12

15 0.10

UI 20
UI 0 .08 ,a
Q. 25

0.06
30

0.04
35

40 0 .02

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 107

Figure 5.6: Heat map illustrating the importance of indices of previously applied passes and
the new pass to apply.

and -functionattrs, which marks different operands of a function as read-only (constant).
Some correlations are harder to explain, for example, number of BitCast instructions and
-instcombine, which combines instructions into fewer simpler instructions. This is actually a
result of -instcombine reducing the loads and stores that call bitcast instructions for casting
pointer types. Another example is number of memory instructions and -sink, where -sink
basically moves memory instructions into successor blocks and delays the execution of memory
until needed. Intuitively, whether to apply -sink should be dependent on whether there is
any memory instruction in the program. Our last example to show is number of occurrences
of constant 0 and -deadargelim, where -deadargelim helped eliminate dead/unused constant
zero arguments.

Overall, we observe that all the passes are correlated to some features and are able to
affect the final circuit performance. We also observe that multiple features are not effective at
directing decisions, and training with them could increase the variance that would result in
lower prediction accuracy of our results. For example, the total number of instructions did not
directly indicate whether applying a pass would be helpful or not. This is because sometimes
more instructions could improve the performance (for example, due to loop unrolling), and
eliminating unnecessary code could also improve the performance. In addition, the importance
of features varies among different benchmarks depending on the tasks they perform.

Old Passes
0 10 20 30 40

0

5 o.s
10

15
0.4

Ill
Ill
Ill 20 a. 0.3

~ 25
z

30 0.2

35
0.1

40

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 108

5.4.2 Importance of Previously Applied Passes

Figure 5.6 illustrates the impact of previously applied passes on the new pass to apply. The
higher the value is, the more important having the old pass is. From this figure, we learn
that for the programs we trained on passes -scalarrepl, -gvn, -scalarrepl-ssa, -loop-reduce,
-loop-deletion, -reassociate, -loop-rotate, -partial-inliner, -early-cse, -adce, -instcombine, -
simplifycfg, -dse, -loop-unroll, -mem2reg, and -sroa, are more impactful on the performance
compared to the rest of the passes regardless of their order in the trajectory. Point (23,23)
has the highest importance in which implies that pass -loop-rotate is very helpful and should
be included if not applied before. By examining thousands of the programs, we find that
-loop-rotate indeed reduces the cycle count significantly. Interestingly, applying this pass twice
is not harmful if the passes were given consecutively. However, giving this pass twice with
some other passes between them is sometimes very harmful. Another interesting behavior
our heat map captured is the fact that applying pass 33 (-loop-unroll) after (not necessarily
consecutive) pass 23 (-loop-rotate) was much more useful compared to applying these two
passes in the opposite order.

5.5 Problem Formulation

5.5.1 The RL Environment Definition

Assume the optimal number of passes to apply is N and there are K transform passes to
select from in total, our search space S for the phase-ordering problem is [0, KN). Given M
program features and the history of already applied passes, the goal of deep RL is to learn
the next best optimization pass a to apply that minimizes the long term cycle count of the
generated hardware circuit. Note that the optimization state s is partially observable in this
case as the M program features cannot fully capture all the properties of a program.

Action Space – we define our action space A as {a ∈ Z : a ∈ [0, K)} where K is the
total number of transform passes.

Observation Space – two types of input features were considered in our evaluation: 1○
program features of ∈ ZM listed in Table 5.2 and 2○ action history which is a histogram
of previously applied passes oa ∈ ZK . After each RL step where the pass i is applied, we call
the feature extractor in our environment to return new of , and update the action histogram
element oai to oai + 1.

Reward – the cycle count of the generated circuit is reported by the clock-cycle profiler
at each RL iteration. Our reward is defined as R = cprev − ccur, where cprev and ccur represent
the previous and the current cycle count of the generated circuit respectively. It is possible to
define a different reward for different objectives. For example, the reward could be defined as
the negative of the area, and thus the RL agent will optimize for the area. It is also possible
to co-optimize multiple objectives (e.g., area, execution time, power, etc.) by defining a
combination of different objectives.

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 109

5.5.2 Applying Multiple Passes per Action

An alternative to the action formulation above is to evaluate a complete sequence of passes
with length N instead of a single action a at each RL iteration. Upon the start of training
a new episode, the RL agent resets all pass indices p ∈ ZN to the index value K

2
. For pass

pi at index i, the next action to take is either to change to a new pass or not. By allowing
positive and negative index update for each p, we reduced the total steps required to traverse
all possible pass indices. The sub-action space ai for each pass is thus defined as [−1, 0, 1].
The total action space A is defined as [−1, 0, 1]N . At each step, the RL agent predicts the
updates [a1, a2, ..., aN] to N passes, and the current optimization sequence [p1, p2, ..., pN] is
updated to [p1 + a1, p2 + a2, ..., pN + aN].

5.5.3 Normalization Techniques

In order for the trained RL agent to work on new programs, we need to properly normalize the
program features and rewards, so they represent a meaningful state among different programs.
In this work, we experiment with two techniques: 1○ taking the logarithm of program features
or rewards and, 2○ normalizing to a parameter from the original input program that roughly
depicts the problem size. For technique 1○, note that taking the logarithm of the program
features not only reduces their magnitude, it also correlates them in a different manner in
the neural network. Since, w1 log(of1) + w2 log(of2) = log(ow1

f1
ow2
f2

), the neural network is
learning to correlate the products of features instead of a linear combination of them. For
technique 2○, we normalize the program features to the total number of instructions in the
input program (of_norm = of

of51
), which is feature #51 in Table 5.2.

5.6 Evaluation
To run our deep RL algorithms, we use RLlib [122], an open-source library for reinforcement
learning that offers both high scalability and a unified API for a variety of applications. RLlib
is built on top of Ray [134], a high-performance distributed execution framework targeted at
large-scale machine learning and reinforcement learning applications. We ran the framework
on a four-core Intel i7-4765T CPUwith a Tesla K20c GPUfor training and inference.

We set our frequency constraint in HLS to 200MHz and use the number of clock cycles
reported by the HLS profiler as the circuit performance metric. In [89], results showed a
one-to-one correspondence between the clock cycle count and the actual hardware execution
time under a certain frequency constraint. Therefore, better clock cycle count will lead to
better hardware performance.

5.6.1 Performance

To evaluate the effectiveness of various algorithms for tackling the phase-ordering problem, we
run them on nine real HLS benchmarks and compare the results based on the final HLS circuit

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 110

Table 5.3: The observation and action spaces used in the different deep RL algorithms.

RL-PPO1 RL-PPO2 RL-PPO3 RL-A3C RL-ES
Algorithms PPO PPO PPO A3C ES
Observation Program Features Action History Action History + Program Features Program Features Program Features

Action Single-Action Single-Action Multiple-Action Single-Action Single-Action

performance and the sample efficiency against state-of-the-art approaches for overcoming
the phase ordering, which include random search, Greedy Algorithms [89], OpenTuner [7],
and Genetic Algorithms [57]. These benchmarks are adapted from CHStone [77] and LegUp
examples. They are: adpcm, aes, blowfish, dhrystone, gsm, matmul, mpeg2, qsort, and sha.
For this evaluation, the input features/rewards were not normalized, the pass length was set
to 45, and each algorithm was run on a per-program basis. Table 5.3 lists the action and
observation spaces used in all the deep RL algorithms.

The bar chart in Figure 5.7 shows the percentage improvement of the circuit performance
compared to -O3 results on the nine real benchmarks from CHStone. The dots on the blue
line in Figure 5.7 show the total number of samples for each program, which is the number
of times the algorithm calls the simulator to gather the cycle count. -O0 and -O3 are the
default compiler optimization levels. RL-PPO1 is a PPO explorer where we set all the rewards
to 0 to test if the rewards are meaningful. RL-PPO2 is the PPO agent that learns the next
pass based on a histogram of applied passes. RL-A3C is the A3C agent that learns based
on the program features. Greedy performs the greedy algorithm, which always inserts the
pass that achieves the highest speedup at the best position (out of all possible positions it
can be inserted to) in the current sequence. RL-PPO3 uses a PPO agent and the program
features but with the action space described in Section 5.5.2. explained in Section 5.5.2.
OpenTuner runs an ensemble of six algorithms, which includes two families of algorithms:
particle swarm optimization [103] and GA, each with three different crossover settings. RL-ES
is similar to A3C agent that learns based on the program features, but updates the policy
network using the evolution strategy instead of backpropagation. Genetic-DEAP [57] is a
genetic algorithm implementation. random randomly generates a sequence of 45 passes at
once instead of sampling them one-by-one.

From Greedy, we see that always adding the pass in the current sequence that achieves the
highest reward leads to sub-optimal circuit performance. RL-PPO2 achieves higher performance
than RL-PPO1, which shows that the deep RL captures useful information during training.
Using the histogram of applied passes results in better sample efficiency, but using the program
features with more samples results in a slightly higher speedup. RL-PPO2, for example, at the
minor cost of 4% lower speedup, achieves 50× more sample efficiency than OpenTuner. Using
ES to update the policy is supposed to be more sample efficient for problems with sparse
rewards like ours; however, our experiments did not benefit from that. Furthermore, RL-PPO3
with multiple action updates achieves a higher speedup than the other deep RL algorithms
with a single action. One reason for that is the ability of RL-PPO3 to explore more passes per
compilation as it applies multiple passes simultaneously in between every compilation. On

I

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 111

 -O0 -O3
RL-PPO1

RL-PPO2
RL-A3C

Greedy
RL-PPO3

OpenTuner
RL-ES

Genetic-D
EAP
Random

0.2

0.1

0.0

0.1

0.2

0.3
Im

pr
ov

em
en

t
ov

er
 -O

3

-0.230.0

0.09

0.24 0.25

0.03

0.28 0.28 0.26 0.27

0.07

0

2000

4000

6000

8000

10000

Sa
m

pl
es

 /
Pr

og
ra

m

1 1 88 88

2484
3510400043846080

6789

8400

Figure 5.7: Circuit Speedup and Sample Size Comparison.

the other hand, the other deep RL algorithms apply a single pass at a time.

5.6.2 Generalization

With deep RL, the search should benefit from prior knowledge learned from other different
programs. This knowledge should be transferable from one program to another. For example,
as discussed in section 5.4 applying pass -loop-rotate is always beneficial, and -loop-unroll
should be applied after -loop-rotate. Note that the black-box search algorithms, such as
OpenTuner, GA, and greedy algorithms, cannot generalize. For these algorithms, rerunning a
new search with many compilations is necessary for every new program, as they do not learn
any patterns from the programs to direct the search and can be viewed as a smart random
search.

To evaluate how generalizable deep RL could be with different programs and whether
any prior knowledge could be useful, we train on 100 randomly generated programs using
PPO. Random programs are used for transfer learning due to lack of sufficient benchmarks,
and because it is the worst-case scenario, i.e., they are very different from the programs that
we use for inference. The improvement can be higher if we train on programs similar to the
ones we run inference on. We train a network with 256 × 256 fully connected layers and
use the histogram of previously applied passes concatenated to the program features as the
observation and passes as actions.

As described in Section 5.5.3, we experiment with two normalization techniques for the
program features: 1○ taking the logarithm of all the program features and 2○ normalizing the
program features to the total number of instructions in the program. In each pass sequence,
the intermediate reward was defined as the logarithm of the improvement in cycle count after

□ D

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 112

Figure 5.8: Episode reward mean as a function of step for the original approach where we use
all the program features and passes and for the filtered approach where we filter the passes
and features (with different normalization techniques). Higher values indicate faster circuit
speed.

applying each pass. The logarithm was chosen so that the RL agent will not give much larger
weights to big rewards from programs with longer execution time. Three approaches were
evaluated: filtered-norm1 uses the filtered (based on the analysis in Section 5.4 where we
only keep the important features and passes) program features and passes from Section with
normalization technique 1○, original-norm2 uses all the program features and passes with
normalization technique 2○, and filtered-norm2 uses the filtered program features and
passes from Section 5.4 with normalization technique 2○. Filtering the features and passes
might not be ideal, especially when different programs have different feature characteristics
and impactful passes. However, reducing the number of features and passes helps to reduce
variance among all programs and significantly narrow the search space.

Figure 5.8 shows the episode reward mean as a function of the step for the three approaches.
We observe that filtered-norm2 and filtered-norm1 converge much faster and achieve a
higher episode reward mean than original-norm2, which uses all the features and passes.
At roughly 8,000 steps the filtered-norm2 and filter-norm1 already achieve a very high
episode reward mean, with minor improvements in later steps. Furthermore, the episode
reward mean of the filtered approaches is still higher than that of original-norm2 even when
we allowed it to train for 20 times more steps (i.e., 160,000 steps). This indicates that filtering
the features and passes significantly improved the learning process. All three approaches
learned to always apply pass -loop-rotate, and -loop-unroll after -loop-rotate. Another useful
pass that the three approaches learned to apply is -loop-simplify, which performs several
transformations to transform natural loops into a simpler form that enables subsequent

C:

~ 16
:E . : : . "E 14 y···············r··············r··············-:-···········

n:s 12 : : : : : : :: ·······;················r···············\················;·················!················;·················:············
41 : : : : : : :
a: 10 ···· ·········i·················\·················l················i·················i················i·················I············
41 : : : : : : :
'g 8 · ·············i-···············+-···············i·················i···············+···············(···············+···········

111 I : I I : -- original-norm2
C. 6 , , ; , ;

LU I I I I filtered-norm2
4 ···············~·················~················:················~·················~ --

0

.
20 40 60 80

Step
100

filtered-norm 1

120

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 113

 -O0 -O3

Genetic-D
EAP

OpenTuner
Greedy

RL-filte
red-norm1

RL-filte
red-norm2

0.2

0.1

0.0
Im

pr
ov

em
en

t
ov

er
 -O

3
-0.23 0.0 -0.24 -0.02

0.02 0.03 0.04

0

10

20

30

Sa
m

pl
es

 /
Pr

og
ra

m

1 1 1 1 1 1 1

Figure 5.9: Circuit Speedup and Sample Size Comparison for deep RL Generalization.

analyses and transformations.
We now compare the generalization results of filtered-norm2 and filtered-norm1 with

the other black-box algorithms. We use 100 randomly generated programs as the training set
and nine real benchmarks from CHStone as the testing set for the deep RL-based methods.
With the state-of-the-art black-box algorithms, we first search for the best pass sequences
that achieved the lowest aggregated hardware cycle counts for the 100 random programs and
then directly apply them to the nine test set programs. In Figure 5.9, the bar chart shows
the percentage improvement of the circuit performance compared to -O3 on the nine real
benchmarks, the dots on the blue line show the total number of samples each inference takes
for one new program.

This evaluation shows that the deep RL-based inference achieves higher speedup than
the predetermined sequences produced by the state-of-the-art black-box algorithms for
new programs. The predetermined sequences that are overfitted to the random programs
can cause poor performance in unseen programs (e.g., -24% for Genetic-DEAP). Besides,
normalization technique 2○ works better compared to normalization technique 1○ for deep RL
generalization (4% vs 3% speedup). This indicates that normalizing the different instructions
to the total number of instructions i.e., the distribution of the different instructions in
Technique 2○ represents more universal characteristics across different programs, while taking
the log in Technique 1○ only suppresses the value ranges of different program features.
Furthermore, when we use other 12,874 randomly generated programs as the testing set with
filtered-norm2, the speedup is 6% compared to -O3.

·······- ······· ■

CHAPTER 5. MACHINE LEARNING FOR HARDWARE DESIGN 114

5.7 Conclusions
In AutoPhase, we introduce an approach based on deep RL to improve the performance of
HLS designs by optimizing the order in which the compiler applies optimization phases. We
use random forests to analyze the relationship between program features and optimization
passes. We then leverage this relationship to reduce the search space by identifying the most
likely optimization phases to improve the performance, given the program features. Our
RL-based approach achieves 28% better performance than compiling with the -O3 flag after
training for a few minutes, and a 24% improvement after training for less than a minute.
Furthermore, we show that, unlike prior work, our solution shows the potential to generalize
to a variety of programs. While in this paper we have applied deep RL to HLS, we believe
that the same approach can be successfully applied to software compilation and optimization.

As we advance, we harness RL and ML techniques to tackle a broader range of hardware
and systems problems, including Halide scheduling [71], Analog circuit sizing [173], and
verification [91].

115

Chapter 6

Discussion and Future Work

This dissertation describes the three-pronged co-design approach we employed to tackle the
research question we asked in the Introduction (Chapter 1): “How to develop the most efficient
accelerator systems for deep learning in a timely and cost-effective manner? ”. This thesis
demonstrates that the synergy among algorithm, software, and hardware in co-designing deep
learning accelerator systems has enabled substantially more optimization opportunities to
improve the end-to-end system (Chapter 2-4). Furthermore, we harness the advancements
in machine learning to help solve for NP-hard optimization problems in hardware design
and compiler transforms (Chapter 5). While the co-design methodologies demonstrated in
this thesis make incremental progress towards the development of state-of-the-art accelerator
systems, there are still many opportunities to enhance in the modern-day systems to be further
enhanced. Aside from human heuristics, more advanced machine learning and optimization
algorithms for automatic design space exploration deserve more study, especially for handling
the discrete and more intractable co-design space.

6.1 Discussion
This section discusses various insights and lessons learned from the thesis.

6.1.1 Co-design of algorithm, software, and hardware

The full potential of hardware acceleration can be realized through a holistic examination of
the end-to-end system and innovations at different levels of the acceleration stack. The thesis
covers multiple works that consider the algorithm, software, and hardware together in the
design process to achieve better overall performance. There are three lessons learned from
this research.

First, it is an effective tactic to start the co-design optimization by pinpointing the
performance bottleneck. Although ideally, we should consider all possible system components
in the search space, it is infeasible in real scenarios due to various resource and time constraints.

CHAPTER 6. DISCUSSION AND FUTURE WORK 116

For instance, given a compute-bound 3x3 convolution workload on an FPGA accelerator with
PE utilization of 100%, updating the algorithm operation and quantization to allow for more
computing resources is preferred over changing the mapping algorithm for better reuse.

Second, modification to different components in co-design presents different costs and
benefits. Assuming we can reach the same accelerator speedup by modifying only one out of
the three key components, changing the algorithm and software would be faster and less risky
than changing the hardware. The hardware design iteration is considerably more protracted
than the one for software and the algorithm. In addition, once the accelerator design is
sent for tape-out, it becomes difficult to fix any bugs in hardware while it remains feasible
to update software and algorithm designs. However, if the benefits of a hardware change
outweigh its development costs, or the hardware is easily programmable, as in the case of
FPGA, there is no reason not to co-optimize hardware with the rest of the system.

Third, one practical strategy adopted in the thesis for rapidly finding performant solutions
in the co-design space is to prune the space with explicit system constraints and data-driven
analysis. The co-design exposes us to a significantly larger design space to explore. However,
many existing machine learning and optimization algorithms do not scale with the number of
variables or the variables’ dimensions. Pruning the search space helps to reduce the number
of samples required for an exhaustive search or even the number of variable dimensions.

6.1.2 Automatic Design and Verification Methodology

Design automation for hardware is a rich and vibrant research space. There exist a number
of NP-hard problems in the automation of hardware design and verification, such as resource
allocation, scheduling, logic synthesis, placement and routing, etc. As briefly mentioned in
Chapter 2, one critical unsolved hurdle in design automation such as High-Level Synthesis
(HLS) is the programming model and language abstraction. A fully automatic design flow
demands a language abstraction that is sufficiently powerful to describe the target application
yet easy to use, meanwhile comprehensively exposes potential optimizations.

We have investigated various programming paradigms ranging from binary, imperative,
objective-oriented, to functional. There are several insights drawn from these attempts.
First, witnessing the rising popularity of Python, I learn a rule of thumb for designing a
good hardware language is to keep the abstractions simple and let the compiler and runtime
automatically handle the error-prone and repetitive details. In addition, the evaluation
of various properties of abstraction is objective, but the ease of use metric can be very
subjective. The personal preference for different hardware languages is strongly influenced
by education and past programming experiences. For example, some programmers find it
natural to specify loops in recursion as in functional languages, but others don’t. Lastly,
domain-specific languages (DSL) like Halide [161] are a promising direction as they allow
users to specify the desired behaviors in fewer lines of code and ease the analysis needed
from the compiler to enable optimization passes. Furthermore, such abstraction has explicitly
exposed optimization opportunities at different levels to the user and the compiler. This

CHAPTER 6. DISCUSSION AND FUTURE WORK 117

property makes it possible to generate high-performance mapping onto various platforms in
DSL.

We also observe two main obstacles to the adoption of novel HLS and HDL abstraction.
One is the high adoption cost. Many companies have in-house legacy code and scripts that
are incompatible with the new languages. However, rewriting the codebase can incur very
high overheads. The second obstacle is the lack of comprehensive verification support in
the new language ecosystem. Since verification accounts for more than half of the hardware
development cycle (∼56% project time according to a recent study [180]), the hardware
language should be designed with verification in mind.

6.1.3 Machine Learning and Optimization for Hardware

Although ML for everything has become a hot topic nowadays, we argue that ML might not
be universally suitable for all problems. From our experience with AutoPhase (Chapter 5),
we find that machine learning, albeit its unprecedented performance on certain tasks, has its
own limitations. First, the training of ML, in particular DL and RL, requires much data to
converge. The overall training process would be extremely costly if obtaining feedback or labels
is very time-consuming. Even if we have enough resources to gather enough data, ML might
not be the most efficient algorithm to use for optimization. We should consider expressing
more task information such as constraints and objectives in mathematical format and see if
the problem can be solved using standard mathematical programming. Intuitively, it should
be more efficient for the user to specify specific constraints or properties for optimization
than learning it from data using ML. Besides, the existing ML model design might not be
powerful enough to encode all the structural or inductional information of input, potentially
leading to a sub-optimal solution in the search.

Mathematical optimization, on the other hand, also has its drawbacks. An obvious one
is that not all problems can be modeled within the solvable mathematical optimization
paradigms. Linear programming, for instance, requires all constraints and objectives to be
linear. Sometimes, we have to relax and approximate requirements to enable the optimization
solver for complex problems, which could result in incorrect or unoptimized solutions.

Ideally, we want to apply ML to transfer the learned heuristics for optimization from task
to task and apply mathematical optimization techniques to solve well-defined subproblems
when feasible.

6.2 Future Work
For future research, I think there are three challenges and opportunities that are worth
pursuing. The first is to examine more applications and exploit the co-design opportunities
in them. The next unaddressed challenge is the proper abstraction for programming the
heterogeneous systems that are more and more prevailing. Finally, it is critical to look into
universally required machine learning and optimization techniques.

CHAPTER 6. DISCUSSION AND FUTURE WORK 118

6.2.1 Co-Design for Broader Applications

With the pervasive needs for perception, recognition, and action at the edge, and the compute-
hungry workloads on the cloud, more opportunities for acceleration are emerging. This thesis
mainly focuses on deep learning inferencing. There are lots of workloads with high compute
demand that we can apply our co-design methodology to accelerate. An immediate and
promising extension to this thesis is AI training. With the prevalence of IoT devices and
higher connectivity among them, edge devices are likely to become “smarter” and undertake
more compute-hungry perception and learning tasks. However, due to the concerns of long
turnaround latency, privacy, and security, future AI training is likely to be a combination of
large-scale pretraining remote in the datacenter and efficient fine-tuning and adaptation in the
local edge devices. In the near future, it is thus critical to enable more efficient data collection
and deep learning training capability on the edge platforms for real-time adaptation.

6.2.2 Programming Abstraction for Heterogeneous Systems

With the prevalence of accelerators in the commodity computing platforms at scale, the
programming abstraction is pivotal to user productivity and system performance. Given the
complexity of modern applications and the underlying heterogeneous systems, an expressive
yet simple concurrency abstraction is needed. Based on our previous study, Go [52] could
be a good candidate for describing concurrency in both software and hardware. Its CSP
concurrency model defines clear boundaries among sequential subroutines running on different
hardware, allowing for flexible workload partitioning among accelerators and processors.
Some interesting future directions include: How to partition workload to various resources?
How to place different workloads? How to route the different traffics?

6.2.3 Machine Learning and Optimization for Systems

As mentioned in the previous sections, many NP-hard problems exist in hardware design
automation and heterogeneous systems scheduling. Designing machine learning and optimiza-
tion techniques that can efficiently navigate the large search space would be critical to the
success of many other fields. It is worth looking into the following three research directions:
1) scalable machine learning algorithms for sequential decisions with large action and state
space; for instance, how to formulate specific applications to reduce the action and state
space? 2) methods to integrate heuristics and traditional optimization techniques such as
linear programming with machine learning to reduce the solution space and improve sample
efficiency, and 3) effective featurization and encoding of target problems to enable transfer
learning.

CHAPTER 6. DISCUSSION AND FUTURE WORK 119

6.3 Closing Remarks
There are three key aspects of graduate schools I benefited from: collaboration, exploration,
and focus. I believe collaboration is key to innovation and productivity. Through my
collaborators specialized in different research domains, I obtained extensive knowledge and
deep insights that I could not learn from the textbooks. Together, my collaborators and I have
accomplished several engineering-heavy projects that would have been impossible to finish
independently. More importantly, interacting with people is beneficial to our mental health
since we are social creatures. Exploration driven by curiosity has also played an essential role
in my graduate school journey. Without the urge to explore more about the field we study,
I would not have taken many seemingly unrelated courses and done internships at various
amazing companies. Exploration helps me to broaden my horizons and gain more novel ideas
in research. Meanwhile, focus became more critical towards the end of the graduate study. It
allows me to allocate resources towards my goal wisely.

Overall, going through graduation study is similar to training an reinforcement learning
agent. I first need to perform explorations to cover enough research space to find feasible
regions with promising rewards. I then need to exploit these regions with clear directions to
obtain higher rewards. As in RL, there are tradeoffs in exploration and exploitation. Finding
the right balance in life and research is also key to success. In this process, I further leverage
the knowledge transferred from other agents and their past experiences to facilitate my own
learning. Unfortunately, randomness is something that cannot be avoided in the process and
still impacts the outcome of each trial.

Finally, now it may seem reasonable to imagine RL agents getting their graduate school
degrees in the future with more disruptive technology revolutions.

120

Bibliography

[1] Aravind Acharya, Uday Bondhugula, and Albert Cohen. Polyhedral auto-transformation
with no integer linear programming. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), 2018.

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michael
Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG), 2019.

[3] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin, Michael FP
O’Boyle, John Thomson, Marc Toussaint, and Christopher KI Williams. Using machine
learning to focus iterative optimization. In International Symposium on Code Generation
and Optimization (CGO), pages 295–305. IEEE Computer Society, 2006.

[4] Lelac Almagor, Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steven W
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effective
compilation sequences. ACM SIGPLAN Notices, 2004.

[5] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. Search-based
program synthesis. Communications of the ACM, 2018.

[6] Amazon. AWS Inferentia: High Performance Machine Learning Inference Chip. https:
//aws.amazon.com/machine-learning/inferentia/, 2018.

[7] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible
framework for program autotuning. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2014.

[8] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar
Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin
Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/

BIBLIOGRAPHY 121

Rocket Chip Generator. Technical Report UCB/EECS-2016-17, University of California,
Berkeley, Apr 2016.

[9] Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous memory management
for embedded systems. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 2001.

[10] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and Gordon R Chiu.
An opencl deep learning accelerator on arria 10. In Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA), 2017.

[11] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast
and portable code. In International Symposium on Code Generation and Optimization
(CGO), 2019.

[12] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse,
Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donaldson, Jeroen Ketema,
Javed Absar, Sven Van Haastregt, Alexey Kravets, Anton Lokhmotov, Robert David,
and Elnar Hajiyev. Pencil: A platform-neutral compute intermediate language for
accelerator programming. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2015.

[13] Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi. Label
refinery: Improving imagenet classification through label progression. arXiv preprint
arXiv:1805.02641, 2018.

[14] Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2006.

[15] Richard Bellman. A markovian decision process. In Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[16] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[17] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Waterman,
Jonathan Bachrach, and Krste Asanovic. FASED: Fpga-accelerated simulation and eval-
uation of dram. In Proceedings of the International Symposium on Field Programmable
Gate Arrays (FPGA), 2019.

[18] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,

BIBLIOGRAPHY 122

et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

[19] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth
O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. Finn-r: An end-to-end
deep-learning framework for fast exploration of quantized neural networks. In ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 2018.

[20] Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard
Firner, Lawrence Jackel, and Urs Muller. Explaining how a deep neural network trained
with end-to-end learning steers a car. arXiv preprint arXiv:1704.07911, 2017.

[21] Uday Bondhugula, Aravind Acharya, and Albert Cohen. The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine loop nests.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2016.

[22] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy Sa-
dayappan. A practical automatic polyhedral parallelizer and locality optimizer. In
Proceedings of the Conference on Programming Language Design and Implementation
(PLDI), 2008.

[23] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[24] Benjamin Brock, Aydın Buluç, and Katherine Yelick. Bcl: A cross-platform distributed
container library. arXiv preprint arXiv:1810.13029, 2018.

[25] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[26] Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. Zeroq: A novel zero shot quantization framework. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), pages 13169–13178,
2020.

[27] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen D Brown, and Jason H Anderson. Legup: An open-source high-
level synthesis tool for fpga-based processor/accelerator systems. ACM Transactions
on Embedded Computing Systems (TECS), 13(2):24, 2013.

[28] Prasanth Chatarasi, Hyoukjun Kwon, Natesh Raina, Saurabh Malik, Vaisakh Haridas,
Angshuman Parashar, Michael Pellauer, Tushar Krishna, and Vivek Sarkar. Marvel:
A data-centric compiler for dnn operators on spatial accelerators. arXiv preprint
arXiv:2002.07752, 2020.

BIBLIOGRAPHY 123

[29] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: An Automated End-to-end Optimizing Compiler for Deep
Learning. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[30] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and
Olivier Temam. DianNao: A Small-footprint High-throughput Accelerator for Ubiqui-
tous Machine-learning. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems (ASPLOS), March 2014.

[31] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A Spatial Architecture for
Energy-efficient Dataflow for Convolutional Neural Networks. In Proceedings of the
International Symposium on Computer Architecture (ISCA), 2016.

[32] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 2019.

[33] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. DaDianNao: A Machine-learning
Supercomputer. In Proceedings of the International Symposium on Microarchitecture
(MICRO), 2014.

[34] Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi Jiang, Naiyan Wang, and
Zhaoxiang Zhang. Simpledet: A simple and versatile distributed framework for object
detection and instance recognition. The Journal of Machine Learning Research (JMLR),
2019.

[35] Shaoyi Cheng and John Wawrzynek. High level synthesis with a dataflow architectural
template. arXiv preprint arXiv:1606.06451, 2016.

[36] S Alexander Chin and Jason H Anderson. An architecture-agnostic integer linear
programming approach to cgra mapping. In Design Automation Conference (DAC),
2018.

[37] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalak-
shmi Srinivasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation
for quantized neural networks. arXiv:1805.06085, 2018.

[38] Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and
Jinho Lee. Dance: Differentiable accelerator/network co-exploration. arXiv preprint
arXiv:2009.06237, 2020.

BIBLIOGRAPHY 124

[39] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[40] Jason Cong, Zhenman Fang, Michael Gill, and Glenn Reinman. PARADE: A cycle-
accurate full-system simulation platform for accelerator-rich architectural design and
exploration. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD), 2015.

[41] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partitioning and
scheduling for throughput and power optimization. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2011.

[42] Jason Cong and Zhiru Zhang. An efficient and versatile scheduling algorithm based on
sdc formulation. In Design Automation Conference (DAC), 2006.

[43] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stan-
ley, and Jeff Clune. Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2018.

[44] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. In Proceedings of the International Conference on
Computer Vision (ICCV), 2017.

[45] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shrivastava.
DMazeRunner: Executing perfectly nested loops on dataflow accelerators. ACM
Transactions on Embedded Computing Systems, 2019.

[46] DeepBench. http://www.github.com/baidu-research/deepbench.

[47] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[48] Grace Dinh and James Demmel. Communication-optimal tilings for projective nested
loops with arbitrary bounds. In Proceedings of the Symposium on Parallelism in
Algorithms and Architectures, 2020.

[49] Zhen Dong, Yizhao Gao, Qijing Huang, John Wawrzynek, Hayden KH So, and Kurt
Keutzer. Hao: Hardware-aware neural architecture optimization for efficient inference.
In International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2021.

BIBLIOGRAPHY 125

[50] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. HAWQ-V2: Hessian aware trace-weighted quantization of neural networks. In
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS),
2020.

[51] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq:
Hessian aware quantization of neural networks with mixed-precision. In Proceedings of
the International Conference on Computer Vision (ICCV), 2019.

[52] Alan AA Donovan and Brian W Kernighan. The Go programming language. Addison-
Wesley Professional, 2015.

[53] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing
Feng, Yunji Chen, and Olivier Temam. ShiDianNao: Shifting Vision Processing Closer
to the Sensor. In Proceedings of the International Symposium on Computer Architecture
(ISCA), 2015.

[54] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian.
Centernet: Keypoint triplets for object detection. In Proceedings of the International
Conference on Computer Vision (ICCV), 2019.

[55] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International Journal of
Computer Vision (IJCV), 2010.

[56] Fasih Ud Din Farrukh, Chun Zhang, Yancao Jiang, Zhonghan Zhang, Ziqiang Wang,
Zhihua Wang, and Hanjun Jiang. Power efficient tiny yolo cnn using reduced hardware
resources based on booth multiplier and wallace tree adders. IEEE Open Journal of
Circuits and Systems, 2020.

[57] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 2012.

[58] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu,
Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen
Heil, Prerak Patel, Adam Sapek, G. Weisz, Lisa Woods, Sitaram Lanka, Steve Reinhardt,
Adrian Caulfield, Eric Chung, and Doug Burger. A Configurable Cloud-Scale DNN
Processor for Real-Time AI. In Proceedings of the International Symposium on Computer
Architecture (ISCA), 2018.

[59] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier
Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois,
et al. Milepost gcc: Machine learning enabled self-tuning compiler. International
journal of parallel programming, 39(3):296–327, 2011.

BIBLIOGRAPHY 126

[60] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory. In Proceedings
of the International Conference on Architectural Support for Programming Languages
and Operation Systems (ASPLOS), 2017.

[61] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. Tangram:
Optimized Coarse-Grained Dataflow for Scalable NN Accelerators. In Proceedings of
the International Conference on Architectural Support for Programming Languages and
Operation Systems (ASPLOS), 2019.

[62] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin, Sicheng
Zhao, and Kurt Keutzer. Squeezenext: Hardware-aware neural network design. arXiv
preprint arXiv:1803.10615, 2018.

[63] Google. Edge TPU. https://cloud.google.com/edge-tpu/. Accessed: 2018-12-05.

[64] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger,
and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm. In Proceedings of the
First International Workshop on Polyhedral Compilation Techniques (IMPACT), 2011.

[65] Vivien Gueant. iPerf-The ultimate speed test tool for TCP, UDP and SCTPTest the
limits of your network Internet neutrality test. https://iperf.fr/iperf-doc.php.
Accessed: 2021-07-01.

[66] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang. Software-
hardware codesign for efficient neural network acceleration. IEEE Micro, 37(2):18–25,
2017.

[67] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K. Hazelwood,
M. Hempstead, B. Jia, H. S. Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong,
and X. Zhang. The architectural implications of facebook’s dnn-based personalized
recommendation. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2020.

[68] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

[69] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Sophia Shao, Krste Asanovic, and Ion
Stoica. Learning to vectorize using deep reinforcement learning. In Workshop on ML
for Systems at NeurIPS, December 2019.

[70] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Sophia Shao, Krste Asanovic, and Ion
Stoica. Neurovectorizer: End-to-end vectorization with deep reinforcement learning.
International Symposium on Code Generation and Optimization (CGO), 2020.

https://cloud.google.com/edge-tpu/
https://iperf.fr/iperf-doc.php

BIBLIOGRAPHY 127

[71] Ameer Haj-Ali, Hasan Genc, Qijing Huang, William Moses, John Wawrzynek, Krste
Asanović, and Ion Stoica. Protuner: tuning programs with monte carlo tree search.
arXiv preprint arXiv:2005.13685, 2020.

[72] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Joseph Gonzalez, Krste Asanovic,
and Ion Stoica. A view on deep reinforcement learning in system optimization. arXiv
preprint arXiv:1908.01275, 2019.

[73] Haj-Ali, Ameer, Qijing Huang, John Xiang, William Moses, Krste Asanovic, John
Wawrzynek, and Ion Stoica. Autophase: Juggling hls phase orderings in random
forests with deep reinforcement learning. Proceedings of Machine Learning and Systems
(MLSys), 2, 2020.

[74] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, Shih-Wei Liao,
E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the suif
compiler. IEEE Computer, 1996.

[75] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[76] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-
mei Hwu, and Deming Chen. Fpga/dnn co-design: An efficient design methodology for
1ot intelligence on the edge. In Design Automation Conference (DAC), 2019.

[77] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii.
Chstone: A benchmark program suite for practical c-based high-level synthesis. In
International Symposium on Circuits and Systems, 2008.

[78] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In Proceedings of the European Conference on Computer Vision
(ECCV), 2016.

[80] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar, and
Christopher W Fletcher. Mind mappings: enabling efficient algorithm-accelerator
mapping space search. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems (ASPLOS), 2021.

[81] G. Henry, P. Palangpour, M. Thomson, J. S. Gardner, B. Arden, J. Donahue, K. Houck,
J. Johnson, K. O’Brien, S. Petersen, B. Seroussi, and T. Walker. High-performance
deep-learning coprocessor integrated into x86 soc with server-class cpus industrial

BIBLIOGRAPHY 128

product. In Proceedings of the International Symposium on Computer Architecture
(ISCA), 2020.

[82] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh Akella.
Autotm: Automatic tensor movement in heterogeneous memory systems using integer
linear programming. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operation Systems (ASPLOS), 2020.

[83] Daniel S. Hirschberg, Ashok K. Chandra, and Dilip V. Sarwate. Computing connected
components on parallel computers. Communications of the ACM, 22(8):461–464, 1979.

[84] Charles Antony Richard Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666–677, 1978.

[85] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[86] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861,
2017.

[87] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[88] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh, John
Wawrzynek, Thomas Norell, and Yakun Sophia Shao. CoSA: Scheduling by Constrained
Optimization for Spatial Accelerators. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2021.

[89] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Stephen Brown,
and Jason Anderson. The effect of compiler optimizations on high-level synthesis
for FPGAs. In International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2013.

[90] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan Xi, Nazanin Calagar,
Stephen Brown, and Jason Anderson. The effect of compiler optimizations on high-level
synthesis-generated hardware. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 2015.

[91] Qijing Huang, Hamid Shojaei, Fred Zyda, Azade Nazi, Shobha Vasudevan, Sat Chatter-
jee, and Richard Ho. Faster coverage convergence with automatic test parameter tuning
in constrained random verification. In Workshop on Languages, Tools, and Techniques
for Accelerator Design (LATTE), 2021.

BIBLIOGRAPHY 129

[92] Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton, Benjamin
Brock, Liang Ma, Guohao Dai, Robert Quitt, Krste Asanovic, and John Wawrzynek.
Centrifuge: Evaluating Full-System HLS-Generated Heterogeneous-Accelerator SoCs
using FPGA-Acceleration. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD), 2019.

[93] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[94] Intel. Intel FPGA SDK for OpenCL.

[95] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[96] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for
deep neural networks. In Proceedings of Machine Learning and Systems (MLSys), 2019.

[97] Li Jiao, Cheng Luo, Wei Cao, Xuegong Zhou, and Lingli Wang. Accelerating low
bit-width convolutional neural networks with embedded fpga. In Proceedings of the
International Conference on Field Programmable Logic and Applications (FPL), 2017.

[98] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the
International Symposium on Computer Architecture (ISCA), 2017.

[99] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. In Reinforcement learning: A survey, volume 4, pages 237–285,
1996.

BIBLIOGRAPHY 130

[100] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. ConfuciuX: Autonomous
Hardware Resource Assignment for DNN Accelerators using Reinforcement Learning.
In Proceedings of the International Symposium on Microarchitecture (MICRO), 2020.

[101] Sheng-Chun Kao and Tushar Krishna. GAMMA: Automating the HW Mapping of
DNN Models on Accelerators via Genetic Algorithm. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD), 2020.

[102] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol
Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing
Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste
Asanović. Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the
public cloud. In Proceedings of the International Symposium on Computer Architecture
(ISCA), 2018.

[103] James Kennedy. Particle swarm optimization. Encyclopedia of machine learning, pages
760–766, 2010.

[104] Brucek Khailany, Evgeni Krimer, Rangharajan Venkatesan, Jason Clemons, Joel S.
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,
Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam Likun Xi, Yanqing
Zhang, and Brian Zimmer. A modular digital vlsi flow for high-productivity soc design.
In Design Automation Conference (DAC), 2018.

[105] Donggyu Kim, Christopher Celio, David Biancolin, Jonathan Bachrach, and Krste
Asanovic. Evaluation of risc-v rtl with fpga-accelerated simulation. In First Workshop
on Computer Architecture Research with RISC-V, 2017.

[106] Steve Klabnik and Carol Nichols. The Rust Programming Language (Covers Rust 2018).
No Starch Press, 2019.

[107] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël Pouchet, and
Ponnuswamy Sadayappan. When polyhedral transformations meet simd code generation.
In Proceedings of the Conference on Programming Language Design and Implementation
(PLDI), 2013.

[108] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient
inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

[109] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[110] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), 2012.

BIBLIOGRAPHY 131

[111] Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-ordering
problem using machine learning. In Proceedings of the International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA), 2012.

[112] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling Flexi-
ble Dataflow Mapping over DNN Accelerators via Programmable Interconnects. In
Proceedings of the International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2018.

[113] Kiseok Kwon, Alon Amid, Amir Gholami, Bichen Wu, Krste Asanovic, and Kurt
Keutzer. Co-design of deep neural nets and neural net accelerators for embedded vision
applications. arXiv preprint arXiv:1804.10642, 2018.

[114] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization (CGO), 2004.

[115] Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings
of the European Conference on Computer Vision (ECCV), 2018.

[116] Hei Law, Yun Teng, Olga Russakovsky, and Jia Deng. Cornernet-lite: Efficient keypoint
based object detection. arXiv preprint arXiv:1904.08900, 2019.

[117] Jure Leskovec and Andrej Krevl. Snap: Stanford metwork analysis project. https:
//snap.stanford.edu. Accessed: 2021-07-01.

[118] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. A high
performance fpga-based accelerator for large-scale convolutional neural networks. In Pro-
ceedings of the International Conference on Field Programmable Logic and Applications
(FPL), 2016.

[119] Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan, and Rui Fan. Fully
quantized network for object detection. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[120] Shuai Li, Kuangyuan Sun, Yukui Luo, Nandakishor Yadav, and Ken Choi. Novel
cnn-based ap2d-net accelerator: An area and power efficient solution for real-time
applications on mobile fpga. Electronics, 9(5):832, 2020.

[121] Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware trident
networks for object detection. In Proceedings of the International Conference on
Computer Vision (ICCV), 2019.

[122] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph Gonzalez, Michael Jordan, and Ion Stoica. Rllib: Abstractions for distributed

https://snap. stanford. edu
https://snap. stanford. edu

BIBLIOGRAPHY 132

reinforcement learning. In Proceedings of the International Conference on Machine
Learning (ICML), 2018.

[123] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. Fp-bnn: Binarized
neural network on fpga. Neurocomputing, 275:1072–1086, 2018.

[124] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision (ECCV),
2014.

[125] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network
for instance segmentation. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

[126] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision (ECCV), 2016.

[127] LowRISCV. Diplomacy and TileLink from the Rocket Chip.

[128] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical
guidelines for efficient cnn architecture design. arXiv preprint arXiv:1807.11164, 2018.

[129] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop operation and
dataflow in fpga acceleration of deep convolutional neural networks. In Proceedings of
the International Symposium on Field Programmable Gate Arrays (FPGA), 2017.

[130] Yufei Ma, Tu Zheng, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Algorithm-hardware
co-design of single shot detector for fast object detection on fpgas. In Proceedings of
the International Conference on Computer-Aided Design (ICCAD), 2018.

[131] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. https://www.cs.virginia.edu/stream/.

[132] Mentor. Catapult high-level synthesis.

[133] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In Proceedings of the International Conference on
Machine Learning (ICML), 2016.

[134] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray:
A Distributed Framework for Emerging AI Applications. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018.

https://www.cs.virginia.edu/stream/

BIBLIOGRAPHY 133

[135] Steven S. Muchnick. Advanced compiler design and implementation. In Advanced
Compiler Design and Implementation. Morgan Kaufmann, 1997.

[136] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and
Kayvon Fatahalian. Automatically scheduling halide image processing pipelines. ACM
Transactions on Graphics (TOG), 2016.

[137] Hiroki Nakahara, Tomoya Fujii, and Shimpei Sato. A fully connected layer elimina-
tion for a binarizec convolutional neural network on an fpga. In Proceedings of the
International Conference on Field Programmable Logic and Applications (FPL), 2017.

[138] Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. A lightweight
yolov2: A binarized cnn with a parallel support vector regression for an fpga. In Pro-
ceedings of the International Symposium on Field Programmable Gate Arrays (FPGA),
2018.

[139] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan
Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G.
Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghu-
raman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie
Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. Deep
learning recommendation model for personalization and recommendation systems, 2019.

[140] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng. Hybrid
optimization/heuristic instruction scheduling for programmable accelerator codesign. In
Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2018.

[141] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankaralingam,
Cristian Estan, and Behnam Robatmili. A general constraint-centric scheduling frame-
work for spatial architectures. ACM SIGPLAN Notices, 2013.

[142] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,
Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit
Subhaschandra, et al. Can fpgas beat gpus in accelerating next-generation deep neural
networks? In Proceedings of the International Symposium on Field Programmable Gate
Arrays (FPGA), 2017.

[143] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[144] OpenAI. Ai and compute. https://openai.com/blog/ai-and-compute. Accessed:
2021-07-01.

https://openai.com/blog/ai-and-compute

BIBLIOGRAPHY 134

[145] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In International Symposium on Code
Generation and Optimization (CGO), 2006.

[146] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A.
Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W. Keckler,
and Joel Emer. Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In
Proceedings of the International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019.

[147] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and William J. Dally.
SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks. In
Proceedings of the International Symposium on Computer Architecture (ISCA), 2017.

[148] Eunjung Park, John Cavazos, Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and
P Sadayappan. Predictive modeling in a polyhedral optimization space. International
journal of parallel programming, 2013.

[149] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover, Emina
Torlak, and Rastislav Bodik. Swizzle inventor: Data movement synthesis for gpu
kernels. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operation Systems (ASPLOS), 2019.

[150] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah
Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided compiler for low-power
spatial architectures. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), 2014.

[151] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P Carloni.
Broadening the exploration of the accelerator design space in embedded scalable
platforms. In High Performance Extreme Computing Conference (HPEC), pages 1–7,
2017.

[152] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P Carloni. Cosmos:
Coordination of high-level synthesis and memory optimization for hardware accelerators.
ACM Transactions on Embedded Computing Systems (TECS), 2017.

[153] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Stefan
Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. Plasticine: A
reconfigurable architecture for parallel patterns. In Proceedings of the International
Symposium on Computer Architecture (ISCA), 2017.

BIBLIOGRAPHY 135

[154] Thomas B Preußer, Giulio Gambardella, Nicholas Fraser, and Michaela Blott. Inference
of quantized neural networks on heterogeneous all-programmable devices. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018.

[155] Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects
with recursive feature pyramid and switchable atrous convolution. arXiv preprint
arXiv:2006.02334, 2020.

[156] Qijing Huang, Haj-Ali, Ameer, William Moses, John Xiang, Ion Stoica, Krste Asanovic,
and John Wawrzynek. AutoPhase: Compiler Phase-Ordering for HLS with Deep
Reinforcement Learning. In International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2019.

[157] Qijing Huang, Wang, Dequan, Dong, Zhen, Yizhao Gao, Yaohui Cai, Tian Li, Bichen
Wu, Kurt Keutzer, and John Wawrzynek. Efficient Deployment of Input-adaptive
Object Detection on FPGAs. In Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), 2021.

[158] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and
T. Krishna. Sigma: A sparse and irregular gemm accelerator with flexible interconnects
for dnn training. In Proceedings of the International Symposium on High-Performance
Computer Architecture (HPCA), 2020.

[159] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu,
Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform
for convolutional neural network. In Proceedings of the International Symposium on
Field Programmable Gate Arrays (FPGA), 2016.

[160] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Fredo Durand,
and Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. Acm Sigplan Notices, 2013.

[161] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proceedings of the
Conference on Programming Language Design and Implementation (PLDI), 2013.

[162] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In European
Conference on Computer Vision, pages 525–542. Springer, 2016.

[163] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

BIBLIOGRAPHY 136

[164] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once:
Unified, Real-time Object Detection. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[165] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[166] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems (NIPS), 2015.

[167] M Roozmeh. High level synthesis of bitonic sorting algorithm, 2016.

[168] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accurate
memory system simulator. IEEE computer architecture letters, 2011.

[169] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 627–635, 2011.

[170] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-
tion strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864, 2017.

[171] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[172] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[173] Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, and Borivoje
Nikolic. Autockt: Deep reinforcement learning of analog circuit designs. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–6, 2020.

[174] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew
Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina,
Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer, C. Thomas Gray, Brucek
Khailany, and Stephen W. Keckler. Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the International Symposium on
Microarchitecture (MICRO), 2019.

[175] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew
Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina,
Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer, C. Thomas Gray, Brucek

BIBLIOGRAPHY 137

Khailany, and Stephen W. Keckler. Simba: Scaling deep-learning inference with multi-
chip-module-based architecture. In Proceedings of the International Symposium on
Microarchitecture (MICRO), 2019.

[176] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin:
A Pre-RTL, Power-Performance Accelerator Simulator Enabling Large Design Space
Exploration of Customized Architectures. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2014.

[177] Yakun Sophia Shao, Sam (Likun) Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and
David Brooks. Co-Designing Accelerators and SoC Interfaces using gem5-Aladdin. In
International Symposium on Microarchitecture (MICRO), 2016.

[178] Evan Shelhamer, Dequan Wang, and Trevor Darrell. Blurring the line between structure
and learning to optimize and adapt receptive fields. arXiv preprint arXiv:1904.11487,
2019.

[179] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of
bert. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2019.

[180] Siemens. The 2020 wilson research group functional verification study.
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/
part-8-the-2020-wilson-research-group-functional-verification-study.
Accessed: 2021-07-01.

[181] SiFive. Sifive tilelink specification, August 2017.

[182] Frans Sijstermans. The NVIDIA Deep Learning Accelerator. In Hot Chips, 2018.

[183] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[184] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-scale Image Recognition. CoRR, abs/1408.1556, 2014.

[185] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu. Pro-
gramming by sketching for bit-streaming programs. In Proceedings of the Conference
on Programming Language Design and Implementation (PLDI), 2005.

[186] Jinook Song, Yunkyo Cho, Jun-Seok Park, Jun-Woo Jang, Sehwan Leev, Joon-Ho Song,
Jae-Gon Lee, and Inyup Kang. An 11.5 tops/w 1024-mac butterfly structure dual-core
sparsity-aware neural processing unit in 8nm flagship mobile soc. In Proceedings of the
International Solid State Circuits Conference (ISSCC), 2019.

https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study

BIBLIOGRAPHY 138

[187] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta
optimization: Improving compiler heuristics with machine learning. In Proceedings of
the Conference on Programming Language Design and Implementation (PLDI), 2003.

[188] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma
Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized opencl-based fpga accelera-
tor for large-scale convolutional neural networks. In Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA), pages 16–25. ACM, 2016.

[189] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2014.

[190] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning, volume
135. MIT press Cambridge, 1998.

[191] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Proceedings
of the Conference on Neural Information Processing Systems (NeurIPS), 2000.

[192] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper
with Convolutions. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[193] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and David
Patterson. A case for FAME: FPGA architecture model execution. In ACM SIGARCH
Computer Architecture News, volume 38, pages 290–301, 2010.

[194] Philippe Tillet, HT Kung, and David Cox. Triton: an intermediate language and
compiler for tiled neural network computations. In Proceedings of the International
Workshop on Machine Learning and Programming Languages, 2019.

[195] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I August.
Compiler optimization-space exploration. In Proceedings of the international symposium
on Code generation and optimization: feedback-directed and runtime optimization, pages
204–215. IEEE Computer Society, 2003.

[196] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized
neural network inference. In Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), 2017.

[197] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor

BIBLIOGRAPHY 139

comprehensions: Framework-agnostic high-performance machine learning abstractions,
2018.

[198] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings
of the Conference on Neural Information Processing Systems (NeurIPS), 2017.

[199] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das, Sasikanth
Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat Kaul, Pradeep
Dubey, and Anand Raghunathan. ScaleDeep: A Scalable Compute Architecture for
Learning and Evaluating Deep Networks. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2017.

[200] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet:
Learning dynamic routing in convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[201] Z. Wang and M. OBoyle. Machine learning in compiler optimization. In Machine
Learning in Compiler Optimization, volume 106, pages 1879–1901, Nov 2018.

[202] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu,
Yun Liang, and Jason Cong. Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas. In Design Automation Conference (DAC), 2017.

[203] Yasitha M Wijesinghe, Jayathu G Samarawickrama, and Dileeka Dias. Hardware
and software co-design for object detection with modified vibe algorithm and particle
filtering based object tracking. In 2019 14th Conference on Industrial and Information
Systems (ICIIS), 2019.

[204] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful
visual performance model for floating-point programs and multicore architectures.
Communications of the Association for Computing Machinery, 2009.

[205] Bichen Wu, Forrest N Iandola, Peter H Jin, and Kurt Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object detection for
autonomous driving. In CVPR Workshops, 2017.

[206] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir
Gholaminejad, Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter
alternative to spatial convolutions. arXiv preprint arXiv:1711.08141, 2017.

[207] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation from 3d lidar
point cloud. arXiv preprint arXiv:1710.07368, 2017.

BIBLIOGRAPHY 140

[208] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. Squeeze-
segv2: Improved model structure and unsupervised domain adaptation for road-object
segmentation from a lidar point cloud. arXiv:1809.08495, 2018.

[209] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[210] Xilinx. General Matrix Operation. https://github.com/Xilinx/gemx.

[211] Xilinx. Vivado design suite user guide - high-level synthesis, June 2015.

[212] Xilinx. PYNQ Introduction, 2018. https://pynq.readthedocs.io/en/v2.3.

[213] Xilinx. Vivado Design Suite User Guide - High-Level Synthesis (UG902), 2018.

[214] Ke Xu, Xiaoyun Wang, and Dong Wang. A scalable opencl-based fpga accelerator
for yolov2. In International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019.

[215] Xiaowei Xu, Xinyi Zhang, Bei Yu, X Sharon Hu, Christopher Rowen, Jingtong Hu, and
Yiyu Shi. Dac-sdc low power object detection challenge for uav applications. IEEE
Transactions on pattern analysis and machine intelligence (TPAMI), 2019.

[216] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell,
Kaidi Cao, Heonjae Ha, Priyanka Raina, Christos Kozyrakis, and Mark Horowitz. Inter-
stellar: Using halide’s scheduling language to analyze dnn accelerators. In Proceedings
of the International Conference on Architectural Support for Programming Languages
and Operation Systems (ASPLOS), 2020.

[217] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. In ACM SIGPLAN Notices, volume 46, pages 283–294, 2011.

[218] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella,
Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al. Synetgy:
Algorithm-Hardware Co-design for Convnet Accelerators on Embedded FPGAs. In Pro-
ceedings of the International Symposium on Field Programmable Gate Arrays (FPGA),
2019.

[219] Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella,
Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al. Synetgy:
Algorithm-hardware co-design for convnet accelerators on embedded FPGAs. In Pro-
ceedings of the International Symposium on Field Programmable Gate Arrays (FPGA),
2019.

https://github.com/Xilinx/gemx
https://pynq.readthedocs.io/en/v2.3

BIBLIOGRAPHY 141

[220] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

[221] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[222] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Op-
timizing fpga-based accelerator design for deep convolutional neural networks. In Pro-
ceedings of the International Symposium on Field Programmable Gate Arrays (FPGA),
2015.

[223] Chi Zhang and Viktor Prasanna. Frequency domain acceleration of convolutional
neural networks on cpu-fpga shared memory system. In Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA), 2017.

[224] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of
the European Conference on Computer Vision (ECCV), 2018.

[225] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue
Sun, Tong He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks.
arXiv preprint arXiv:2004.08955, 2020.

[226] Jialiang Zhang and Jing Li. Improving the performance of opencl-based fpga accelerator
for convolutional neural network. In Proceedings of the International Symposium on
Field Programmable Gate Arrays (FPGA), 2017.

[227] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi
Chen, and Yunji Chen. Cambricon-X: An Accelerator for Sparse Neural Networks. In
Proceedings of the International Symposium on Microarchitecture (MICRO), 2016.

[228] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely ef-
ficient convolutional neural network for mobile devices. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[229] Xiaofan Zhang, Yuhong Li, Cong Hao, Kyle Rupnow, Jinjun Xiong, Wen-mei Hwu, and
Deming Chen. Skynet: A champion model for dac-sdc on low power object detection.
arXiv preprint arXiv:1906.10327, 2019.

[230] Yongan Zhang, Yonggan Fu, Weiwen Jiang, Chaojian Li, Haoran You, Meng Li, Vikas
Chandra, and Yingyan Lin. Dna: Differentiable network-accelerator co-search. arXiv
preprint arXiv:2010.14778, 2020.

BIBLIOGRAPHY 142

[231] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Sri-
vastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional neural
networks with software-programmable fpgas. In Proceedings of the International Sym-
posium on Field Programmable Gate Arrays (FPGA), 2017.

[232] H. Zhong, X. Liu, Y. He, and Y. Ma. Shift-based Primitives for Efficient Convolutional
Neural Networks. ArXiv e-prints, September 2018.

[233] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental
network quantization: Towards lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017.

[234] R. Zhou and T. M. Jones. Janus: Statically-driven and profile-guided automatic
dynamic binary parallelisation. In International Symposium on Code Generation and
Optimization (CGO), 2019.

[235] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

[236] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv preprint
arXiv:1904.07850, 2019.

[237] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl. Bottom-up object detection by
grouping extreme and center points. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[238] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

[239] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More
deformable, better results. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[240] Yuhao Zhu, Anand Samajdar, Matthew Mattina, and Paul Whatmough. Euphrates:
algorithm-soc co-design for low-power mobile continuous vision. In Proceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA), 2018.

[241] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards
effective low-bitwidth convolutional neural networks. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[242] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. arXiv:1707.07012, 2017.

	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges and Opportunities
	Thesis Contributions
	Hardware and Software Co-Design
	Algorithm and Hardware Co-Design
	Scheduling and Hardware Co-Design
	Machine Learning for Hardware

	Hardware and Software Co-Design
	Accelerator Design Methodology
	Background and Motivation
	Related Work

	Centrifuge Overview
	Centrifuge Design Flow
	Generating a Base SoC with Rocket Chip
	Integrating Accelerators into the SoC
	RoCC Accelerators
	TileLink-attached accelerators
	Network-attached accelerators

	Generating Accelerators with Vivado HLS
	Generating the software stack for a complete SoC
	Running Bare-metal
	Running on Linux

	Centrifuge Case Studies
	Smart-House Hub
	Evaluating the Baseline Application
	Generating Accelerators
	Evaluating Accelerators
	Continue Hardware and Software Development

	Distributed Matrix Multiplication Accelerator
	Deep Learning Accelerators
	Design for New Algorithms
	Distributed Accelerators

	Graph Accelerator

	Parallel Abstraction for HLS
	Communicating Sequential Processes
	Go-to-Verilog HLS
	Discussion

	Conclusion

	Algorithm and Hardware Co-Design
	Co-design for Image Classification
	Synetgy Background and Motivation
	Efficient CNN Models
	CNN Quantization
	Hardware Designs

	Synetgy CNN Design
	ShuffleNetV2
	DiracDeltaNet
	CNN Quantization

	Synetgy Hardware Design
	The accelerator architecture
	Dataflow Architecture
	Convolution Unit
	Conversion Unit
	Pooling Unit
	Shift Unit
	Shuffle Unit
	Fully Connected Unit

	Software

	Synetgy Experimental Results
	Co-design for Object Detection
	CoDeNet Background and Motivation
	Object Detection
	Deformable Convolution
	Algorithm-hardware Co-design for Object Detection
	Quantization

	CoDeNet Deformable Operation Co-design
	Algorithm Modifications
	Hardware Optimizations

	CoDeNet Detection System Co-Design
	CoDeNet Neural Network Design
	Dataflow Accelerator

	CoDeNet Experimental Results
	Conclusion

	Scheduling and Hardware Co-design
	Hardware-Aware Scheduling
	Background and Motivation
	DNN Scheduling Space
	State-of-the-art Schedulers
	Brute-force Approaches
	Feedback-based Approaches
	Constrained-optimization Approaches

	The CoSA Framework
	CoSA Overview
	Target Workload
	Target Architecture
	Target Scheduling Decisions

	CoSA Variables and Constants
	Variable Representation
	Constant Parameters

	CoSA Constraints
	Buffer Capacity Constraint
	Spatial Resource Constraint

	Objective Functions
	Utilization-Driven Objective
	Compute-Driven Objective
	Traffic-Driven Objective
	Overall Objective

	Limitation of CoSA

	Methodology
	Evaluation Platforms
	Baseline Schedulers
	Experiment Setup

	Evaluation
	Time to Solution
	Evaluation on Timeloop Performance and Energy Models
	Performance
	Energy
	Objective Breakdown
	Different HW Architectures

	Evaluation on NoC Simulator
	Evaluation on GPU

	Scheduling-Informed Hardware Design
	On-chip Memory Partitioning with CoSA
	Formulation
	Evaluation on On-chip Memory Partitioning

	Conclusion

	Machine Learning for Hardware Design
	Machine Learning for Phase Ordering
	Background and Motivation
	Compiler Phase-ordering
	Reinforcement Learning Algorithms
	Evolutionary Algorithms

	AutoPhase Framework for Automatic Phase Ordering
	HLS Compiler
	Clock-cycle Profiler
	IR Feature Extractor
	Random Program Generator
	Overall Flow of AutoPhase

	Correlation of Passes and Program Features
	Importance of Program Features
	Importance of Previously Applied Passes

	Problem Formulation
	The RL Environment Definition
	Applying Multiple Passes per Action
	Normalization Techniques

	Evaluation
	Performance
	Generalization

	Conclusions

	Discussion and Future Work
	Discussion
	Co-design of algorithm, software, and hardware
	Automatic Design and Verification Methodology
	Machine Learning and Optimization for Hardware

	Future Work
	Co-Design for Broader Applications
	Programming Abstraction for Heterogeneous Systems
	Machine Learning and Optimization for Systems

	Closing Remarks

	Bibliography

