
Machine Learning in Compiler Optimization

Ameer Haj Ali

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2021-2

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-2.html

February 17, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Machine Learning in Compiler Optimization

by

Ameer Haj-Ali

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Krste Asanović, Co-chair
Professor Ion Stoica, Co-chair

Professor Jacob Noah Steinhardt

Fall 2020

Machine Learning in Compiler Optimization

Copyright 2020
by

Ameer Haj-Ali

1

Abstract

Machine Learning in Compiler Optimization

by

Ameer Haj-Ali

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Krste Asanović, Co-chair

Professor Ion Stoica, Co-chair

The end of Moore’s law is driving the search for new techniques to improve system performance
as applications continue to evolve rapidly and computing power demands continue to rise.
One promising technique is to build more intelligent compilers. Compilers map high-level
programs to lower-level primitives that run on hardware. During this process, compilers
perform many complex optimizations to boost the performance of the generated code. These
optimizations often require solving NP-Hard problems and dealing with an enormous search
space. To overcome these challenges, compilers currently use hand-engineered heuristics that
can achieve good but often far-from-optimal performance. Alternatively, software engineers
resort to manually writing the optimizations for every section in the code, a burdensome
process that requires prior experience and significantly increases the development time.

In this thesis, novel approaches for automatically handling complex compiler optimization
tasks are explored. End-to-end solutions using deep reinforcement learning and other machine
learning algorithms are proposed. These solutions dramatically reduce the search time while
capturing the code structure, different instructions, dependencies, and data structures to
enable learning a sophisticated model that can better predict the actual performance cost
and determine superior compiler optimizations. The proposed techniques can outperform
existing state-of-the-art solutions while requiring shorter search time. Furthermore, unlike
existing solutions, the deep reinforcement learning solutions are shown to generalize well to
real benchmarks.

i

To my parents, Aida and Yosef,
my sisters, Siwar, Reem, Faten, and Rouba, and

my nieces and nephews, Bana, Khalid, Rani, Anan, Aamer, and Nai,
for their constant love and support!

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1

2 Background 4

3 Deep RL in System Optimization 11
3.1 Introduction . 11
3.2 Background . 12
3.3 Deep Reinforcement Learning in System Optimization 13
3.4 Formulating the RL environment . 15
3.5 Considerations for Evaluating Deep RL in System Optimization 18
3.6 Deep RL Methods and Neural Network Models 21
3.7 Challenges . 22
3.8 An Illustrative Example . 23
3.9 RLDRM: Applying Deep RL to Dynamic Resource Management Optimization 25
3.10 Conclusions and Future Directions . 27

4 AutoPhase 29
4.1 Introduction . 29
4.2 Related Work . 32
4.3 AutoPhase Framework for Automatic Phase Ordering 32
4.4 Correlation of Passes and Program Features 35
4.5 Problem Formulation . 39
4.6 Evaluation . 40
4.7 Conclusion and Future Directions . 44

5 NeuroVectorizer 46
5.1 Introduction . 46

iii

5.2 Motivation . 48
5.3 The Proposed Framework for Automatic Vectorization 49
5.4 Evaluation . 54
5.5 Related Work . 61
5.6 Conclusion and Future Directions . 62

6 ProTuner 63
6.1 Introduction . 63
6.2 Challenges in Beam Search . 64
6.3 The Proposed ProTuner Scheduler . 66
6.4 Evaluation . 72
6.5 Ansor: Overview of a Different Approach . 76
6.6 Related Work . 78
6.7 Conclusion and Future Directions . 79

7 Conclusion and Future Directions 81

Bibliography 84

iv

List of Figures

3.1 RLDRM: Closed-loop dynamic resource allocation framework. 26
3.2 Deep RL design for RDT allocation. 26

4.1 A simple program to normalize a vector. 30
4.2 Progressively applying LICM (left) following by inlining (right) to the code in

Figure 4.1. 30
4.3 Progressively applying inlining (left) followed by LICM (right) to the code in

Figure 4.1. 31
4.4 The block diagram of AutoPhase. The input programs are compiled to an LLVM

IR using Clang/LLVM. The feature extractor is used to generate the input features
(state) and the clock cycle profiler is used to generate the runtime improvement
(reward) from the IR. The input features and runtime improvement are fed to
the deep RL agent as input data to train on. The RL agent predicts the next
best optimization passes to apply. After convergence, the HLS compiler is used to
compile the LLVM IR to hardware RTL. 33

4.5 Heat map illustrating the importance of feature and pass indices. The higher the
value is, the more important the feature is. 37

4.6 Heat map illustrating the importance of indices of previously applied passes and
the new pass to apply. The higher the value is, the more important having the
old pass is. 38

4.7 Circuit speedup and sample size comparison. 42
4.8 Episode reward mean as a function of step for the original approach where all the

program features and passes are used, and for the filtered approach where the
passes and features (with different normalization techniques) are filtered. Higher
values indicate faster circuit speed. 43

4.9 Circuit speedup and sample size comparison for deep RL generalization. 44

5.1 Performance of the dot product kernel for different VFs and IFs, normalized to
the baseline cost model implemented in LLVM. The best VF and IF corresponding
to the baseline cost model are (V F = 4, IF = 2). 48

5.2 Performance of brute-force search of LLVM’s vectorizer test suite, normalized to
the baseline cost model implemented in LLVM. 49

v

5.3 The proposed framework for automatic vectorization with deep RL. The programs
are read to extract the loops. The loop texts are fed to the code embedding
generator to generate an embedding. The embedding is fed to the RL agent. The
RL agent learns a policy that maps this embedding to optimal vectorization factors
by injecting compiler pragmas and compiling the programs with Clang/LLVM to
gather the rewards: the execution time improvements. 50

5.4 An example of the automatically injected VF and IF pragmas by the RL agent. 50
5.5 The distribution of optimal VF and IF with brute-force search for different

programs in the dataset. 54
5.6 Reward mean and training loss for different learning rates, FCNN architectures,

and batch sizes. 55
5.7 Reward mean and training loss for different action space definitions. 56
5.8 The performance of the proposed vectorizer compared to brute-force search, Polly

and the baseline cost model. The vectorizer can be configured to use NNS, random
search, decision trees, and RL. The performance is normalized to the baseline. . 57

5.9 Normalized average performance of supervised FCNN and deep RL as a function
of the number of compilations (samples) used for training. 59

5.10 The performance of the proposed vectorizer on Polybench compared to Polly and
the baseline cost model. The performance is normalized to the baseline. 60

5.11 The performance of the proposed vectorizer on Mibench compared to Polly and
the baseline cost model. The performance is normalized to the baseline. 60

6.1 Speedup of greedy and beam search with a cost model trained to predict the cost
of the future complete schedules. For each algorithm, the speedup is normalized
to the performance when the original cost model (trained on complete schedules
only) is used. 65

6.2 Speedup of greedy and beam search with a cost model trained directly on random
schedules of all the benchmark algorithms themselves. For each algorithm, the
speedup is normalized to the performance when the original cost model (trained
on complete schedules only) is used. 65

6.3 The block diagram of ProTuner. The program is fed to the MCTS, which
interacts with the learned cost model to find the optimal schedule. To make
each intermediate scheduling decision, the MCTS explores the benefits of the
possible next actions based on the average cost but eventually picks the root that
leads to the best cost. Each node stores the average costs, the best cost so far,
and the complete schedule that has this best cost. The simulation can either be
greedy or random. The backpropagation returns costs or 0/1 based on whether it
outperforms the global best. When running an ensemble of MCTSes, the next
root is picked to be the best from all the best roots. 67

vi

6.4 The proportion of decisions made by greedy MCTSes as a function of different
numbers of standard and greedy MCTSes on a suite of four real applications. X Y
corresponds to X standard MCTSes and Y greedy MCTSes. The overall number
of trees is 16. 68

6.5 The execution time speedup to the best execution time on a suite of four real
applications (higher is better). X Y corresponds to X standard MCTSes and Y
greedy MCTSes. The overall number of trees is 16. The 15 1 setting did best
overall. 70

6.6 Pseudocode of the MCTS scheduling algorithm that combines 15 standard MCTSes
and one greedy MCTS. The best next root can be determined based on the best cost
of the best fully scheduled states or based on the best execution time measurement
of the best fully scheduled states as shown in the commented line. 71

6.7 The minimum cost found by every algorithm normalized to the best cost found
by all the algorithms on a suite of 16 real benchmarks. 73

6.8 The minimum execution time found by every algorithm normalized to the best
execution time found by all the algorithms on a suite of 16 real benchmarks. . . 74

6.9 Execution time speedup normalized to the best execution time using beam search,
mcts 1s, and mcts 0.5s with autotuning on a suite of 16 real benchmarks. Each
algorithm is rerun with a different seed until a timeout of 15 minutes is reached
and the best performance found by each algorithm is reported. 75

6.10 System Overview. The gray arrows show the flow of extracting subgraphs from
deep learning models and generating optimized program schedules for them. The
green arrows mean the measurer returns profiling data to update the status of all
components in the system. 77

vii

List of Tables

3.1 Deep RL problem formulation. Model abbreviations: FCNN, fully connected
neural network; CNN, convolutional neural network; RNN, recurrent neural
network; GNN, graph neural network; GRU, gated recurrent unit; LSTM, long
short-term memory. 16

3.2 Evaluation results. 17

4.1 LLVM Transform Passes. 35
4.2 Program Features. 36
4.3 The observation and action spaces used in the different deep RL algorithms. . . 41

6.1 The MCTS configurations explored. We explored different timeouts (time to
determine a new root) in seconds per MCTS iteration, expansion formulas where we
modify the UCB, and execution time measurement schemes. mcts sqrt2 30s is the
algorithm that gives the most weight to exploration and is the closest to the original
UCB formula. mcts Cp10 30s gives the second highest weight to exploration.
mcts cost+real 30s combines mcts 30s from the first row and real execution
time measurement. mcts 10s and mcts 1s reduce the seconds for iteration to
ten seconds and one second, respectively. mcts cost+real 1s combines mcts 1s

from the first row and real execution time measurement. mcts sqrt2 30s uses
the original UCB formula and encourages much more exploration than the other
MCTS algorithms. We used Cp = 1√

2
as suggested in [174], which showed that

it works well with rewards in range [0, 1] as it satisfies the Hoeffding inequality.
Multiplying the exploitation term with the exploration term encourages early
exploitation. 72

viii

Acknowledgments

Working towards a PhD has been a deeply enriching experience. The things I learned and the
skills I gained are exceptional. While sometimes it was depressing, it was always rewarding.
Looking back, this journey would have not been successful without many people to whom I
would like to extend my thanks.

I am very grateful to my thesis co-advisor Ion Stoica for his great guidance throughout my
graduate studies. From the very beginning Ion had an open door for me, was always available
for me, and treated me like a friend. He always maintained my focus, kept me motivated,
and reminded me to start my research by identifying the right problems that matter and
by focusing on real-world impact. He made me realize that sometimes it is possible learn
without making mistakes. Ion always gave me direct and honest feedback, which made me a
better researcher and helped me become a better person. I am also very thankful to my thesis
co-advisor Krste Asanovic. Krste always reminded me to follow my passion and my dreams.
His feedback was very instrumental and helped identify the right problems to tackle. For all
of this and much more, Ion and Krste, thank you, my work would not have been possible
without you. I hope and look forward to continued collaboration with you in the future.

I would also like to thank Qijing (Jenny) Huang who influenced my PhD more than
anyone else and collaborated with me on multiple projects from the beginning of my PhD.
She was always ready to help me, as were Hasan Genc and William Moses. I have benefited
greatly from working with them. My collaboration with them has been one of the most
fruitful and fun engagements I have experienced. I learned a lot writing multiple papers with
them.

I have been very fortunate to work closely with some wonderful colleagues and peers in
the BWRC, ADEPT and RISE labs at UC Berkeley including Alon Amid, Lianmin Zheng,
Keertana Settaluri, Arya Reais-Parsi, Sagar Karandikar, David Kohlbrenner, Eyal Sela, Chloe
Liu, Seah Kim, David Biancolin, Abraham Gonzalez, Adam Izraelevitz, Dayeol Lee, Albert
Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Colin Schmidt, John Wright, Zongheng
Yang, Eric Liang, Richard Liaw, Giulia Guidi, and Paras Jain. I am also thankful to the
administrators, and lab engineers in these labs for their high availability and readiness to
help.

I am thankful to Professor Jonathan Ragan-Kelley for being on my prelim committee
and guiding me in my research, Jacob Steinhardt for being on my qualification exam and
thesis committee, Yakun Sophia Shao for guiding me and being on my qualification exam
committee, and Borivoje Nikolic and Joseph Gonzalez for guiding me. I am also grateful
to Shirley Salanio for her availability and having her door always open for me, and the
international office for assisting me with my nonimmigrant student status in the US.

My internship at Intel Labs would not have been so successful without the help of Ted
Willke, Nesreen K. Ahmed, Bin Li, and Nicole Beckage, as well as a large group of engineers
who assisted me and worked with me during my internship.

I am grateful to Professor Shahar Kvatinsky for recommending me to UC Berkeley and
Professor Elad Alon for accepting me. I am also grateful to the International House for

ix

granting me the gateway fellowship, which allowed me to live and meet with a great and
diverse group of students at UC Berkeley, and more importantly, provided me a welcoming
home outside my country.

Last, but not least, I would like to thank my family: my parents, Aida and Yosef, my
sisters, Rouba, Faten, Siwar, and Reem, and my nieces and nephews, Bana, Khalid, Rani,
Anan, Aamer, and Nai. I am very fortunate and blessed to have you in my life. Despite all,
you always loved me, motivated me, have been there for me, believed in me, and gave me all
I needed. Words cannot express how grateful I am for your selfless love and the joy you bring
to my life. This is dedicated to you.

1

Chapter 1

Introduction

In the era of big data, artificial intelligence, cloud computing, and the Internet of Things, our
thirst for computing power has never been greater. At the same time, the end of Moore’s law
is plainly in sight. This calls for alternative, novel techniques to continue scaling performance.
One efficient, cost-effective, and quick-to-deploy technique is to leverage existing hardware by
improving the mapping of program code to hardware primitives. This mapping is generally
done by a compiler. The compiler translates the high level code to low level instructions
that run on the hardware. This translation has to maintain the correctness of the code
while still achieving good performance, a very challenging task that often requires solving
complex NP-hard optimization problems with enormous search space. Compilers rely on
hand-engineered heuristics and greedy algorithms, which can achieve good performance but
often fall short in finding optimal solutions. Despite decades of research on developing
sophisticated optimization algorithms, there is still a performance gap between the code
generated by a compiler and the hand-optimized code produced by experts [1–18]. This often
leads software engineers to manually optimize the code by rewriting it, writing the low level
instructions, and giving optimization hints to the compiler, which is an error-prone task that
requires prior experience and significantly increases the development time.

Good solutions to compiler optimization problems are hindered by the large space of
options available and the need to compile the entire program in reasonable time. The
characteristics of the underlying hardware must also be considered—whether the optimization
decisions are made by the compiler or the software engineer. With the diminishing returns
of Moore’s law, the recent decade has seen a plethora of new, customized hardware that
increased the challenge of writing optimized code to different hardware targets. Overcoming
these challenges requires a new technique that can efficiently search the space of optimizations
efficiently, and similarly to a compiler expert, examine the computation graph, functionality,
data dependencies, and code characteristics to find the best optimizations.

Many compiler optimization problems can be formulated as a Markov Decision Process
(MDP) [19], where the next optimization to apply is the action, the state is the current
program’s intermediate representation, and the reward is proportional to the decrease in
execution time. When an action is applied, the generated program changes, as does its

CHAPTER 1. INTRODUCTION 2

performance. The solution would be the actions that lead to the optimal program state;
hence, solving the MDP can guarantee the optimal performance. Recent advancements in
machine learning, specifically, reinforcement learning (RL) [20, 21], show promising results in
efficiently solving MDPs. Among the most successful techniques is to use a neural network
in conjunction with RL, also known as deep RL. Deep models allow RL algorithms to solve
complex problems in an end-to-end fashion, handle unstructured environments, learn complex
functions, or predict actions in states that have not been visited in the past. Deep RL is
gaining wide interest due to its success in robotics and Atari games, and for its superhuman
performance capabilities [22–25]. Deep RL was the key technique behind defeating the
human European champion in the game of Go, long viewed as the most challenging of classic
games for artificial intelligence [26]. In the deep RL setting, a software agent continuously
interacts with the environment by taking actions. Each action can change the state of the
environment and generate a reward. The goal of the RL agent is to learn a policy—that is, a
mapping between the observed states of the environment and a set of actions—to maximize
the cumulative reward.

Deep RL is also gaining wide interest in the field of system optimization [27]. Many
system optimization problems are characterized by delayed, sparse, aggregated or sequential
rewards, where improving the long-term sum of rewards is more important than a single
immediate reward. This behavior is inherent in deep RL. In the compiler optimization case,
the observation from the environment is the program state and/or the optimization applied
so far. The action is the optimization pass to apply next, and the reward is the performance
improvement.

In this thesis, deep RL and other machine learning methods are applied to solve complex
compiler optimization tasks: phase ordering, vectorization, scheduling, and cache allocation.
With collaborators from Berkeley, other universities, and companies, the AutoPhase [13,
28], NeuroVectorizer [18, 29], RLDRM [30], ProTuner [31], and Ansor [32] systems were
built, open sourced, and used by the community to solve key compiler optimization problems.
Unlike prior works that focus on hand-engineered heuristics and program features, or other
machine learning methods, the deep RL methods proposed in this thesis address this problem
with end-to-end solutions, which learn from prior experience, efficiently explore the search
space, and quickly find better optimizations.

The thesis is organized as follows:

• Chapter 2 gives an overview of deep RL algorithms and other machine learning methods
used in this thesis, background on compiler optimization, and related work.

• Chapter 3 surveys the recent trends in deep RL algorithms for system optimization.
Despite the growing adoption of these solutions, a review of prior work shows the clear
lack of standardized metrics for assessing their performance. Therefore, quintessential
metrics to guide future work in evaluating the use of deep RL in system optimization
are also introduced in this chapter, and the multiple challenges faced when integrating
deep RL into systems are discussed. These metrics guided the application of deep

CHAPTER 1. INTRODUCTION 3

RL in compiler optimization throughout the thesis. RLDRM, which uses deep RL to
automatically optimize last-level cache allocation, is also introduced in this chapter.

• Chapter 4 introduces AutoPhase: a system for solving the NP-Hard compiler phase
ordering challenge with deep RL. AutoPhase is implemented, evaluated, and open
sourced.

• Chapter 5 introduces NeuroVectorizer: an open source system that uses deep RL to
automatically and directly vectorize code from text, achieving 97% of the optimal
performance and running more than 14× faster than a state-of-the-art algorithm that
uses supervised learning.

• Chapter 6 introduces ProTuner: a system for program scheduling that combines both
phase ordering and vectorization, in addition to multithreading, tiling, and loop unrolling.
ProTuner uses Monte Carlo tree search (MCTS). Unlike the current state-of-the-art,
MCTS makes decisions by looking ahead, evaluating complete schedules, avoiding
greediness, and considering the expected long-term reward of scheduling decisions,
which also makes it more resilient to noise in the cost model. Ansor, which is similar
to ProTuner but uses a scheduler and fine-tuner in conjunction with evolutionary
algorithms, is also discussed.

• Chapter 7 concludes the thesis and discusses future research directions.

4

Chapter 2

Background

Markov Decision Processes

A Markov decision process (MDP) is a discrete stochastic control process that models
sequential decision-making in fully observable environments. It assumes the Markov property
that the impact of one decision made in a state depends only on that state and not on the
prior decision history. An MDP model consists of:

• S: A set of possible states, with s0 representing the initial state.

• A: A set of possible actions.

• R(s, a): A reward function.

• T (s′|s, a): A transition function that models the probability of getting to state s′ given
an action a in state s.

Solving an MDP means finding a policy π(s) that chooses an action to apply based on the
current state and optimizes for the overall expected reward. The decision-making process is
modeled as a sequence of state and action pairs (s, a). The next state s′ can either be decided
deterministically by the pair (s, a) or stochastically by a probability distribution p(s′|s, a).

Deep Reinforcement Learning Algorithms

One promising machine learning approach for solving MDPs is reinforcement learning (RL),
in which an agent learns by continually interacting with an environment [20]. In RL, the agent
observes the state of the environment and performs an action based on this state/observation.
The ultimate goal is to compute a policy—a mapping between the environment states and
actions—that maximizes the expected reward. RL can be viewed as a stochastic optimization
solution for Markov Decision Processes (MDPs) [19], when the MDP is not known. An MDP
is defined by a tuple with four elements: S,A, P (s, a), r(s, a), where S is the set of states
of the environment, A describes the set of actions or transitions between states, s′∼P (s, a)

CHAPTER 2. BACKGROUND 5

describes the probability distribution of next states given the current state and action, and
r(s, a) : S × A→ R is the reward for taking action a in state s. Given an MDP, the goal of
the agent is to gain the largest possible cumulative reward. The objective of an RL algorithm
associated with an MDP is to find a decision policy π∗(a|s) : s→ A that achieves this goal
for that MDP:

π∗ = arg max
π

Eτ∼π(τ) [τ] =

arg max
π

Eτ∼π(τ)

[∑
t

r(st, at)

]
,

(2.1)

where τ is a sequence of states and actions that define a single episode, and T is the length
of that episode. Deep RL leverages a neural network to learn the policy (and sometimes
the reward function). In recent years, a plethora of new deep RL techniques have been
proposed [33–37].

Policy Gradient (PG) [35], for example, uses a neural network to represent the policy.
This policy is updated directly by differentiating the term in Equation 2.1 as follows:

∇θJ = ∇θEτ∼π(τ)

[∑
t

r(st, at)

]

= Eτ∼π(τ)

[(∑
t

∇θlogπθ(at|st)

)(∑
t

r(st, at)

)]

≈ 1

N

N∑
i=1

[(∑
t

∇θlogπθ(ai,t|si,t)

)(∑
t

r(si,t, ai,t)

)]
(2.2)

and updating the network parameters (weights) in the direction of the gradient:

θ ← θ + α∇θJ. (2.3)

Asynchronous Advantage Actor-critic (A3C) [33] uses an actor (usually a neural network)
that interacts with the critic, which is another network that evaluates the action by computing
the value function. The critic tells the actor how good its action was and how it should
adjust. The update performed by the algorithm can be expressed as ∇θlogπθ(ai,t|si,t)Ât.

Proximal Policy Optimization (PPO) [36] is a variant of PG that enables multiple epochs of
minibatch updates to improve the sample complexity. PPO obtains more deterministic, stable,
and robust behavior over PG. Vanilla PG performs one gradient update per data sample
while PPO uses a novel surrogate objective function to enable multiple epochs of minibatch
updates. It alternates between sampling data through interaction with the environment and
optimizing the surrogate objective function using stochastic gradient ascent. It performs
updates that maximize the reward function using the surrogate objective function to ensure
that the deviation from the previous policy is small. The loss function of PPO is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.4)

CHAPTER 2. BACKGROUND 6

where rt(θ) is defined as a probability ratio πθ(at|st)
πθold (at|st) so that r(θold) = 1. This term penalizes

policy updates that move rt(θ) from r(θold). Ât denotes the estimated advantage that
approximates how good at is compared to the average. The second term in the min function
acts as a disincentive for moving rt outside of [1− ε, 1 + ε], where ε is a hyperparameter.

In contrast, Q-Learning [38], state-action-reward-state-action (SARSA) [39], and deep
deterministic policy gradient (DDPG) [37] are temporal difference methods, i.e., they update
the policy on every timestep (action) rather than on every episode. Furthermore, these
algorithms bootstrap and, instead of using a neural network for the policy itself, they learn a
Q-function, which estimates the long-term reward from taking an action. The policy is then
defined using this Q-function. In Q-Learning the Q-function is updated as follows:

Q(st, at)← Q(st, at) + r(st, at) + γmaxa′t [Q(s′t, a
′
t)]. (2.5)

In other words, the Q-function updates are based on the action that maximizes the value of
that Q-function. On the other hand, in SARSA, the Q-function is updated as follows:

Q(st, at)← Q(st, at) + r(st, at) + γQ(st+1, at+1). (2.6)

In this case, the Q-function updates are based on the action that the policy would select
given state st. DDPG fits multiple neural networks to the policy, including the Q-function
and target time-delayed copies that slowly track the learned networks and greatly improve
stability in learning. Upper confidence bound and greedy algorithms can then be used to
determine the policy based on the Q-function [21, 40]. The reviewed works in this thesis
focus on the epsilon greedy method, where the policy is defined as follows:

π∗(at|st) =

{
arg maxat Q(st, at), w.p. 1− ε
random action, w.p. ε.

(2.7)

A method is considered to be on-policy if the new policy is computed directly from the
decisions made by the current policy. PG, PPO, A3C, and SARSA are thus on-policy while
DDPG and Q-Learning are off-policy. All the mentioned methods are model-free: they learn
directly from the environment by trial and error. If a model is nonetheless available or can
be learned, it could be used for planning and enable more robust training as less interaction
with the environment would be required.

Multi-armed Bandits

Multi-armed bandits [41, 42] simplify RL by removing the learning dependency on the state
and thus providing evaluative feedback that depends entirely on the action taken (1-step
RL problems). The actions usually are decided upon in a greedy manner by independently
updating the benefit estimates of performing each action. To also consider the state, contextual
bandits may be used [43]. Bandit solutions often perform as well as more complicated RL
solutions or even better. Many bandit algorithms enjoy stronger theoretical guarantees on

CHAPTER 2. BACKGROUND 7

their performance even under adversarial settings. These bounds would likely be of great
value to the systems world as they imply in the limit that the proposed algorithm would be
no worse than using the best fixed system configuration in hindsight.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) solves MDPs by combining tree search with random
sampling to find the optimal decisions in the MDP. The tree is built incrementally using
selection, expansion, simulation, and backpropagation. A tree policy is used to select a node
to expand at each iteration of the algorithm. This policy should balance the exploration and
exploitation of the search algorithm. The node is expanded and a simulation is then run from
the selected node to collect the rewards of the terminal state. The decisions made during
the simulation are determined by a default policy, which can be uniform random sampling
in its simplest form. This is the policy used in this thesis. Finally, MCTS backpropagates
the reward and updates the statistics of the ancestor nodes. In this thesis, the tree selection
policy used is the UCB [42]:

UCB = X̄j + 2Cp

√
2ln(n)

nj
(2.8)

where n is the number of times the current parent node has been visited, nj is the number
of times child j has been visited, and Cp > 0 is a constant. X̄j is the average reward of the
simulations. The left term (X̄j) tracks exploitation while the right term tracks exploration.
Increasing Cp will add more exploration, and decreasing it will reduce exploration.

According to [44], MCTS offers significant advantages over alpha-beta pruning, which
minimizes the search space when there is no good evaluation function. The evaluation of
moves in MCTS has proven it to converge to Minimax.

Evolutionary Algorithms

Evolutionary algorithms are another technique that can be used to search for the best
compiler pass ordering. They include a family of population-based meta-heuristic optimization
algorithms inspired by natural selection. The main idea of these algorithms is to sample a
population of solutions and use the good ones to direct the distribution of future generations.
Two commonly used evolutionary algorithms are genetic algorithms (GA) [45] and evolution
strategies (ES) [46].

GA generally requires a genetic representation of the search space where the solutions are
coded as integer vectors. The algorithm starts with a pool of candidates, then iteratively
evolves the pool to include solutions with better fitness using the strategies of selection,
crossover, and mutation. Selection keeps a subset of solutions with the highest fitness values.
These selected solutions act as parents for the next generation. Crossover merges pairs from
the parent solutions to produce new offspring. Mutation perturbs the offspring solutions with

CHAPTER 2. BACKGROUND 8

a low probability. The process repeats until a solution that reaches the goal fitness is found
or after a certain number of generations.

ES works similarly to GA. However, the solutions are coded as real numbers in ES. In
addition, ES is self-adapting. The hyperparameters, such as the step size or the mutation
probability, are different for different solutions. They are encoded in each solution, so good
settings get to the next generation with good solutions. Recent work [47] has used ES to
update policy weights for RL and showed it is a good alternative for gradient-based methods.

Beam Search

Beam search [48] is a heuristic algorithm that explores a decision tree and searches for the
optimal decisions by expanding a limited number of children with the highest intermediate
rewards. It is widely used for the sequential decision-making process, for example in speech
recognition [48] and software scheduling [12]. It builds its search tree with a breadth-first
search. At each step of the algorithm, it exhaustively evaluates all the direct children, sorts
the children based on the intermediate rewards, and keeps the top-k children as the parent
nodes for the next iteration. k is the beam size that determines the total number of top
children to keep at every iteration. It is essentially a greedy algorithm and thus can get stuck
in local optima.

Compiler Phase-ordering

Compilers execute optimization passes such as inlining, dead code elimination, loop unrolling,
loop invariant code motion, vectorization, and loop fusion to transform programs into more
efficient forms to run on various hardware targets. This is done by applying a sequence of
analysis and optimization phases, where each phase in this sequence consumes the output of
the previous phase and generates a modified version of the program for the next phase. The
performance of the code a compiler generates depends on the order in which it applies the
optimization passes. Furthermore, these phases are not commutative, which makes the order
in which they are applied critical to the performance of the generated program. Choosing a
good order—often referred to as the phase-ordering problem—is an NP-hard problem.

While these optimization levels offer a simple set of choices for developers, they are
handpicked by the compiler-designers and most often benefit certain groups of benchmark
programs. The compiler community has attempted to address the issue by selecting a
particular set of compiler optimizations on a per-program or per-target basis for software [1–
4].

Compiler Auto-Vectorzation

Vectorization is critical to enhancing the performance of compute-intensive workloads in
modern computers. All the dedicated vector machines and modern CPUs that support vector
instructions rely on vectorization to enhance the performance of such workloads.

CHAPTER 2. BACKGROUND 9

Loops are among the most commonly vectorized parts of the code. Loop vectorization is
done by setting the VF and the IF, which respectively determine the number of instructions
to pack together and the stride. Appropriately setting the values of VF and IF for loops is
cumbersome as it depends on many parameters, such as the instructions in the loop body, the
stride, the underlying hardware architecture, the computations graph, and the functionality.

Most C and C++ compilers allow the users to manually determine the VF and the IF in
their code. This, however, is time-consuming and error-prone. Thus, many works have tried
to address the automatic vectorization challenge. For example, Polly [15] uses an abstract
mathematical representation based on integer polyhedra to analyze and optimize the memory
access pattern of a program. Polly performs classical loop transformations, especially tiling
and loop fusion, to improve data locality. These transformations also simplify vectorization
decisions for the compiler.

Prior work [49] represented the code characteristics using hand-engineered heuristics
extracted from the assembly code, such as arithmetic intensity, used in conjunction with
supervised learning to predict the vectorization factors. Unfortunately, these features are
typically not sufficient to fully capture the code functionality [50]. To overcome this challenge,
the authors of [51] proposed an end-to-end solution that relies on deep supervised learning.
However, supervised learning methods require labels to train and finding these labels can be
time-consuming. Furthermore, optimizing for multiple objectives with large search spaces
can be challenging for supervised learning methods.

Automatic Cache Allocation

Modern CPUs use set associative cache, which comprises multiple sets, each comprising
multiple ways. Useful data in one application can be evicted by another application whose
data falls into the same set, following a certain replacement policy. For example, one very
popular replacement policy is the least-recently-used (LRU) policy, which means that the least
recently used cache line is evicted in the case of replacement. In a modern CPU chip, multiple
cores share a single logical last level cache (LLC). Applications running simultaneously on
different cores will compete for the limited LLC capacity. In other words, one application
may evict the useful data of another application from the same cache set, thus interfering
with its performance.

To alleviate the resource contention problem in multicore systems, numerous software
and hardware solutions have been proposed [52–63]. One of the most mature technologies
available today is Intel R© Resource Director Technology or Intel R© RDT [64]. Intel R© RDT
provides the capability to partition LLC to restrict the usage of each co-running application.

Halide Scheduling

Halide [65] is a domain-specific language for image processing and deep learning tasks. Halide’s
language abstraction decouples the algorithmic descriptions of the target image-processing
workloads from a specific mapping of the workload on hardware, which we refer to as a

CHAPTER 2. BACKGROUND 10

“schedule”. This abstraction provides the user with a clearly defined scheduling space and
makes it easier to explore different schedules automatically. Many decisions need to be made
in a Halide schedule, including the execution order of different functions, vectorization factors,
tiling factors, inlining, memory allocation strategies, etc. The overall scheduling space is
intractable and expert scheduling can be hard to develop. Therefore, automatic generation
of high-performance Halide schedulings has been implemented and studied in several prior
works [9–12].

TVM

TVM [66] is an open-source automated end-to-end optimizing compiler for deep learning
workloads running on CPUs, GPUs, and machine learning accelerators. TVM enables
machine learning engineers to optimize and run computations efficiently on multiple hardware
backends. TVM provides performance portability across diverse hardware back-ends by
relying on operator-level and graph-level optimizations, and it solves optimization challenges
specific to deep learning, such as operator fusion, mapping to arbitrary hardware primitives,
and memory latency hiding. It also automates optimization of low-level programs to hardware
characteristics by using a learning-based cost modeling method for rapid exploration of code
optimizations.

11

Chapter 3

Deep Reinforcement Learning in
System Optimization

3.1 Introduction

Reinforcement learning (RL) is a class of learning problems framed in the context of planning
on a Markov Decision Process (MDP) [19], when the MDP is not known. In RL, an agent
continually interacts with the environment [20, 21]. In particular, the agent observes the
state of the environment and performs an action in accordance with the observed state. The
goal of the RL agent is then to compute a policy—a mapping between the environment states
and actions—that maximizes a long term reward. There are multiple ways to extrapolate
the policy. Non-approximation methods usually fail to predict good actions in states that
were not visited in the past, and require storing all the action-reward pairs for every visited
state, a task that incurs a huge memory overhead and complex computation. Approximation
techniques are a promising alternative, and a top contender among these is Deep RL: by using
a neural network in conjunction with RL, unstructured environments can be successfully
handled, complex functions learned, and actions predicted in states not visited in the past.
Deep RL can thus provide end-to-end solutions for complex problems that non-approximation
techniques cannot solve. Deep RL is gaining wide interest due to its success in robotics and
Atari games, and for its superhuman performance capabilities [22–26].

Many system optimization problems are characterized by delayed, sparse, aggregated or
sequential rewards, where improving the long-term sum of rewards is more important than a
single immediate reward. For example, an RL environment can be a computer cluster. The
state could be defined as a combination of the current resource utilization, available resources,
time of the day, duration of jobs waiting to run, etc. The action could be to determine on
which resources to schedule each job. The reward could be the total revenue, jobs served in a
time window, wait time, energy efficiency, etc., depending on the objective. In this example,
if the objective is to minimize the waiting time of all jobs, then a good solution must interact
with the computer cluster and monitor the overall wait time of the jobs to determine good

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 12

schedules. This behavior is inherent in RL. The RL agent has the advantage of not requiring
expert labels or knowledge, being able instead to learn directly from its own interaction with
the world. RL can also learn sophisticated system characteristics that cannot be learned by a
straightforward solution such as a first-come first-served allocation scheme. For instance, it
could be better to put earlier long-running arrivals on hold if a shorter job requiring fewer
resources is expected shortly.

In this chapter, different attempts to overcome system optimization challenges with the
use of deep RL are reviewed. Unlike previous reviews [16, 17, 67–70] that focus on machine
learning methods without discussing deep RL models or applying them beyond a specific
system problem, we focus on deep RL in system optimization in general. Reviewing previous
work clearly shows that standardized metrics for assessing deep RL solutions in system
optimization problems are lacking. Thus, quintessential metrics to guide future work in
evaluating the use of deep RL in system optimization are proposed. Different deep RL
methods and neural network models are suggested for different use cases. Multiple challenges
faced when integrating deep RL into systems are discussed and addressed. We also introduce
and briefly discuss the RLDRM system, in which we used deep RL to address the challenge
of dynamically adjusting cache allocation to optimize network function virtualization (NFV).
Training the deep RL model on a real machine allows us to overcome stability issues and
maximize the long-term reward, thus successfully overcoming some of the key challenges that
will be detailed in Section 3.7.

3.2 Background

Most RL methods considered in this review are structured around value function estimation
(e.g., Q-values) and using gradients to update the policy. However, this is not always the
case. For example, genetic algorithms, simulated annealing, genetic programming, and other
gradient-free optimization methods – often called evolutionary methods [21] – can also solve
RL problems in a manner analogous to the way biological evolution produces organisms with
skilled behavior. Evolutionary methods can be effective if the space of policies is sufficiently
small, the policies are common and easy to find, and the state of the environment is not fully
observable. This review considers only the deep versions of these methods, i.e., using a neural
network in conjunction with evolutionary methods typically used to evolve and update the
neural network parameters.

Prior RL Works With Alternative Approximation Methods

Multiple prior works have proposed to use non-deep neural network approximation methods for
RL in system optimization. These works include reliability and monitoring [71–73], memory
management [74–77] in multicore systems, congestion control [78, 79], packet routing [80–82],
algorithm selection [83], cloud caching [84], energy efficiency [85], and performance [86–90].
Instead of using a neural network to approximate the policy, these works used tables, linear

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 13

approximations, and other approximation methods to train and represent the policy. Tables
were generally used to store the Q-values, i.e., one value for each action/state pair used in
training, and this table becomes the ultimate policy. In general, deep neural networks allow
for more complex forms of policies and Q functions [91], and can better approximate good
actions in new states.

3.3 Deep Reinforcement Learning in System

Optimization

In this section, the different system challenges tackled using RL are discussed and categorized
as (1) episodic tasks, in which the agent-environment interaction naturally breaks down into
a sequence of separate terminating episodes, and (2) continuing tasks, in which it does not.
For example, when optimizing resources in the cloud, the jobs arrive continuously and there
is not a clear termination state. But when optimizing the order of SQL joins, the query has
a finite number of joins, and thus after enough steps the agent arrives at a terminating state.

Continuing Tasks

Important features of RL are that it can learn from sparse reward signals, it does not need
expert labels, and it has the ability to learn direction from its own interaction with the
world. Jobs in the cloud arrive continuously and unpredictably. This might explain why
many system optimization challenges tackled with RL are in the cloud [92–99]. A good
job scheduler in the cloud should make decisions that are good in the long term. Such a
scheduler should sometimes forgo short-term gains in an effort to realize greater long-term
benefits. For example, it might be better to delay a long running job if a short running job
is expected to arrive soon. The scheduler should also adapt to variations in the underlying
resource performance and scale in the presence of new or unseen workloads combined with
large numbers of resources.

These schedulers have a variety of objectives, including minimizing the average execution
time of jobs and optimizing the resource allocation of virtual machines [92, 95, 98, 99],
optimizing data caching on edge devices and base stations [93, 94], and maximizing energy
efficiency [96, 97]. The RL algorithms used for addressing each system problem are listed in
Table 3.1.

Interestingly, for cloud challenges most works are driven by Q-learning (or the very
similar SARSA). In the absence of a complete environmental model, model-free Q-Learning
can be used to generate optimal policies. It is able to make predictions incrementally by
bootstrapping the current estimate with previous estimates and it provides good sample
efficiency [100]. Q-Learning is also characterized by inherent continuous temporal difference
behavior, where the policy can be updated immediately after each step (not at the end of a
trajectory), something that might be very useful for online adaptation.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 14

Episodic Tasks

Due to the sequential nature of decision-making in RL, the order of the actions has a major
impact on the rewards the RL agent collects. The agent can thus learn these patterns and
select more rewarding actions. Previous works took advantage of this behavior in RL to
optimize congestion control [101, 102], decision trees for packet classification [103], sequence
to SQL/program translation [104–106], ordering of SQL joins [107–110], compiler phase
ordering [13, 28, 111], and device placement [112, 113].

After enough steps in these problems, the agent will always arrive at a clear terminating
step. For example, in query join order optimization, the number of joins is finite and known
from the query. In congestion control – where the routers need to adapt the sending rates to
provide high throughput without compromising fairness – the updates are performed on a
fixed number of senders/receivers known in advance. These updates combined define one
episode. This may explain why there is a trend towards using PG methods for these types
of problems, as they do not require continuous temporal difference behavior and can often
operate in batches of multiple queries. Nevertheless, in some cases, Q-learning is still used,
mainly for sample efficiency, as the environment step might take a long time.

The performance of PG methods can be improved by taking advantage of the way
the gradient computation is performed. If the environment is not needed to generate the
observation, many environment steps can be saved by rolling out the entire episode by
interacting only with the policy and performing one environment step at the very end. The
sum of rewards will be the same as the reward received from this environment step. For
example, in query optimization, since the observations are encoded directly from the actions,
and the environment is mainly used to generate the rewards, it will be possible to repeatedly
perform an action, form the observation directly from this action, and feed it to the policy
network. After the end of the episode, the environment can be triggered to get the final
reward, which would be the sum of the intermediate rewards. This can significantly reduce
the training time.

Discussion: Continuous vs. Episodic

Continuous policies can handle both continuous and episodic tasks, while episodic policies
cannot. So, for example, Q-Learning can handle all the tasks mentioned in this work, while
PG based methods cannot directly handle them without modification. For example, in [92],
the authors limited the scheduler window of jobs to M , allowing the agent in every time step
to schedule up to M jobs out of all arrived jobs. The authors also discussed the ”bounded time
horizon” problem and hoped to overcome it by replacing the time-dependent baseline with a
value network. It is interesting to note that prior work on continuous system optimization
tasks using non-deep RL approaches [80–82, 84–89] used Q-Learning.

Continuous problems without episode boundaries can be handled with PG based methods
by defining performance in terms of the average rate of reward per time step [21] (Chapter

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 15

13.6). Such approaches can help better fit the continuous problems to episodic RL algorithms.

3.4 Formulating the RL environment

Table 3.1 lists all the works we reviewed and their problem formulations in the context of RL,
i.e., the model, observations, actions, and reward definitions. Among the major challenges
when formulating the problem in the RL environment is properly defining the system problem
as an RL problem, with all of the required inputs and outputs, i.e., state, action spaces, and
rewards. The rewards are generally sparse and behave similarly for different actions, making
the RL training ineffective due to bad gradients. The states are generally defined using
hand-engineered features in an attempt to encode the state of the system. This results in a
large state space with some features that are less helpful than others and rarely captures the
actual system state. Using model-based RL can alleviate this bottleneck and provide better
sample efficiency. In [97], auto-encoders were used to help reduce the state dimensionality.
The action space is also large but generally represents actions that are directly related to the
objective. Another challenge is the environment step. Some tasks require a long time for the
environment to perform one step, significantly slowing the learning process of the RL agent.

Interestingly, most works focus on using simple out-of-the-box FCNNs, while some works
that targeted parsing and translation ([104–106]) used RNNs [115] due to their ability to
parse strings and natural language. While FCNNs are simple and can be easily trained to
learn linear and non-linear function policy mappings, a more complicated network structure
tailored to the problem can sometimes further improve the results.

Evaluation Results

Table 3.2 lists training data and the evaluation results of the reviewed works. The evaluation
considers the time it takes to perform a step in the environment, the number of steps needed
in each iteration of training, number of training iterations, total number of steps needed,
and whether the prior work improves the state of the art and provides a comparison against
random search/bandit solution.

The total number of steps and the cost of each environment step is important to understand
the sample efficiency and practicality of the solution, especially when considering RL’s inherent
sample inefficiency [116, 117]. For different workloads, the number of samples needed varies
from thousands to millions. The environment step time also varies from milliseconds to
minutes. In multiple cases, the interaction with the environment is very slow. Note that in
most cases when the environment step time was a few milliseconds, it was because it was a
simulated environment, not a real one. For faster environment steps, more training samples
can be collected to further improve the performance. This excludes [97], where a cluster was
used and thus more samples could be processed in parallel.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 16

Table 3.1: Deep RL problem formulation. Model abbreviations: FCNN, fully connected
neural network; CNN, convolutional neural network; RNN, recurrent neural network; GNN,
graph neural network; GRU, gated recurrent unit; LSTM, long short-term memory.

Description Work State/Observation Action Reward Objective Algorithm

congestion
control

[101]1

[102]2

histories of sending
rates and resulting

statistics (e.g.,
loss rate)

changes to
sending rate

throughput
and negative of

latency or
loss rate

maximize
throughput

while maintaining
fairness

PPO1,2/PG2/
DDPG2

+ FCNN

packet
classification

[103]
encoding of the
tree node, e.g.,

split rules

cutting a
classification
tree node or
partitioning
a set of rules

classification time
/memory
footprint

build optimal
decision

tree for packet
classification

PPO + FCNN

SQL join
order

optimization

[107]1

[108]2

[110]3

[109]4

encoding of
current join plan

next relation
to join

negative cost1−3,
1/cost4

minimize execution
time

Q-Learning1−3/
PPO4

+ tree conv.3,
FCNN1−4

sequence to
SQL

[104]
SQL vocabulary,
question, column

names

query
corresponding
to the token

-2 invalid query,
-1 valid but wrong,
+1 valid and right

tokens in the
WHERE clause

PG + LSTM

language
to program
translation

[105]
natural language

utterances
a sequence of

program tokens
1 if correct result

0 otherwise
generate equivalent

program
PG + LSTM,

FCNN

semantic
parsing

[106]
embedding of

the words
a sequence of

program tokens
positive if correct

0 otherwise
generate equivalent

program
PG + RNN,

GRU

resource
allocation

[92]

current allocation of
cluster resources &
resource profiles of

waiting jobs

next job
to schedule

Σi(
−1
Ti

) for

all jobs in the
system (Ti is the
duration of job i)

minimize average
job slowdown

PG + FCNN

[93, 94]
status of edge

devices/base stations
/content caches

which station,
to offload/cache

or not
total revenue

maximize total
revenue

Q-Learning
+ CNN

[95]
current allocation

& demand
next resource

to allocate
payments maximize revenue

Q-Learning
+ FCNN

resource
allocation
for radio

access
networks

[96]
active remote
radio heads

& user demands

which remote
radio heads
to activate

negative power
consumption

power
efficiency

Q-Learning
+ FCNN

resource
allocation
& power

management

[97]
current allocation

& demand
next resource

to allocate

linear combination
of total power ,
VM latency, &

reliability metrics

power efficiency

Q-Learning +
autoencoder,

weight sharing
& LSTM

virtual
machine

configuration

[99]
[98]

current resource
allocations

increase/decrease
CPU/time/

memory

throughput
-response time

maximize
performance

Q-Learning
+ FCNN,

model-based

compiler
phase

ordering

[111]1

[13, 28]2
program features

next
optimization

pass

performance
improvement

minimize execution
time

Evolutionary
Methods1/

Q-Learning2/PG2

+ FCNN

device
placement

[113]1

[112]2
computation graph

placement
of graph node

speedup
maximize performance

& minimize peak
memory

PG1,2/Evolutionary
Methods1 +
GNN/FCNN

distributed
instruction
placement

[114] instruction features
instruction
placement
location

speedup maximize performance
Evolutionary

Methods + FCNN

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 17

Table 3.2: Evaluation results.

Problem Work
Environment
Step Time

of Steps
Per

Iteration

of
Training

Iterations

Total #
of Steps

Improves
State of
the Art

Compares
Against
Random
Search

packet
classification

[103] 20-600ms ≤ 60K ≤ 167 1,002,000 (18%) 5

congestion
control

[101] 50-500ms 8192 1200 9,830,400 (similar)
[102] 0.5s N/A N/A 50K-100K 5 5

resource
allocation

[92] 10-40ms 20K 1K 20,000,000 (10-63%)
[93]
[94]

N/A N/A 20K N/A N/A 5

[95] N/A N/A 10K-20K N/A N/A
[96] N/A N/A N/A N/A N/A
[97] 1-120 minutes 100K 20 2,000,000 N/A 5

[99]
[98]

N/A N/A N/A N/A N/A 5

SQL
Joins

[107] 10ms 640 100 64K (70%)
[108] N/A N/A N/A N/A N/A 5

[110] 250ms 100-8K 100 10K-80K (10-66%)
[109] 1.08s N/A N/A 10K (20%)

sequence
to SQL

[104] N/A 80,654 300 24,196,200 (similar) 5

language
to program
translation

[105] N/A N/A N/A 13K (56%) 5

semantic
parsing

[106] N/A 3,098 200 619,600 (3.4%) 5

compiler
phase

ordering

[13, 28] 1 second N/A N/A 1K-10K (similar)

[111]
13.2 days

for all steps
N/A N/A N/A 5 5

device
placement

[112] N/A (seconds) N/A N/A 1.6K-94K (3%)
[113] N/A (seconds) N/A N/A 400K (5%)

instruction
placement

[114] N/A (minutes) N/A 200 N/A (days) 5 5

As listed in Table 3.2, many works did not provide sufficient data to reproduce the
results. Reproducing the results is necessary to further improve the solution and enable
future evaluation and comparison against it.

Frameworks and Toolkits

A few recent RL benchmark toolkits assist in the development and comparison of reinforcement
learning algorithms, and provide a faster simulated system environment. OpenAI Gym [118]
supports an environment for teaching agents everything from walking to playing games such as
Pong or Pinball. Iroko [102] provides a data center emulator to understand the requirements

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 18

and limitations of applying RL in data center networks. It interfaces with the OpenAI Gym
and offers a way to evaluate centralized and decentralized RL algorithms against conventional
traffic control solutions.

Park [119] proposes an open platform that facilitates formulation of the RL environment
for twelve real-world system optimization problems with one easy to use API. The platform
provides a translation layer between the system and the RL environment, making it easier
for RL researchers to work on systems problems. That being said, actions, state, and reward
definitions cannot be changed in this framework, making it harder to improve the performance.

3.5 Considerations for Evaluating Deep RL in System

Optimization

In this section, we propose a set of questions that can help system optimization researchers
determine whether deep RL could be an effective tool in solving their systems optimization
challenges. We also provide examples on how we applied them to AutoPhase in Chapter 4
and to NeuroVectorizer in Chapter 5.

Can the System Optimization Problem Be Modeled by an MDP?

MDPs are a classic formalization of sequential decision-making, where actions influence not
only immediate rewards but also future states and rewards. This involves delayed rewards
and the trade-off between delayed and immediate rewards. In MDPs, the new state and new
reward are dependent only on the preceding state and action. Given a perfect model of the
environment, an MDP can compute the optimal policy.

MDPs are typically a straightforward formulation of the system problem, as an agent
learns by continually interacting with the system to achieve a particular goal, and the system
responds to these interactions with a new state and reward. The agent’s goal is to maximize
the expected reward over time. If the system optimization problem can be modeled by an
MDP, then RL is promising solution. For example, in AutoPhase and NeuroVectorizer, the
problem is formulated as an MDP where the program features are the state, the action is the
compiler optimization to apply, and the reward is the decrease in the execution time.

Can the Problem Be Best Solved by Reinforcement Learning?

RL is different from supervised learning. The latter is learning from a training set with labels
provided by a knowledgeable external supervisor. For each example the label is the correct
action the system should take. The objective of this kind of learning is to act correctly in new
situations not encountered in the training set. However, supervised learning is not suitable
for learning from interaction, as it is often impractical to obtain examples representative
of all the cases in which the agent has to act. What distinguishes RL from other machine

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 19

learning approaches is that it relies on self-exploration and exploitation, and thus must take
into account the tradeoff between them.

In AutoPhase and NeuroVectorizer, we demonstrate that the problem can be best solved
by RL as both systems require a tradeoff between exploitation and exploration. RL is
also shown to converge with fewer compilations and shorter training time, while achieving
promising performance.

Are the Rewards Delayed?

RL algorithms do not maximize the immediate reward of taking actions but, rather, the
expected reward over time. For example, an RL agent can choose to take actions that give low
immediate rewards but lead to higher rewards overall, as opposed to taking greedy actions
that lead to high immediate rewards in every step but low rewards overall. If the objective is
to maximize the immediate reward or the actions are not dependent, then simpler approaches,
such as bandits and greedy algorithms, will perform better than deep RL. In AutoPhase,
where the episode length was set to 45, the execution time is only known after performing 45
compilations. In NeuroVectorizer, however, the episode length is one. Hence, the execution
time is known after applying a single optimization.

What is Being Learned?

It is important to understand what is being learned by the agent. For example, what actions
are taken in which states and why? Can the knowledge learned be applied to new states/tasks?
Is there a structure to the problem being learned? If a brute-force solution is possible for
simpler tasks, it will also be helpful to know how much better the performance of the RL
agent is than the brute force solution. In some cases, not all hand-engineered features are
useful. Using all of them can result in high variance and prolonged training. Feature analysis
can help overcome this challenge. For example, in [114] significant performance gaps were
shown for different selected features.

In AutoPhase, the deep RL learns how to correlate the static program features with the
outcome of applying a pass. In NeuroVectorizer, the deep RL agent learns the relationship
between the learned vector representation of the program and the necessary action that would
lead to the shortest execution time.

Does It Outperform the State of the Art?

The most important metric in system optimization in general is outperforming the state of the
art. Improving the state of the art includes different objectives, such as efficiency, performance,
throughput, bandwidth, fault tolerance, security, utilization, reliability, robustness, complexity,
and energy. If the deep RL approach does not perform better than the state of the art in some
metric, then its use is hard to justify. Moreover, the state of the art solution is frequently
more stable, practical, and reliable than deep RL. In many prior works listed in Table 3.2, a

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 20

comparison against the state of the art is not provided or deep RL performs worse. In some
cases deep RL can perform as well as the state of the art or slightly worse, but it can still be
a useful solution as it improves on other metrics such as the time it takes to navigate the
search space and find the solution. Our AutoPhase and NeuroVectorizer systems are shown
to outperform the state of the art.

Does It Outperform Random Search and a Bandit Solution?

In some cases, the RL solution is just another form of improved random search, and good
RL results have sometimes been achieved by mere chance. If the features used to represent
the state are not good or do not have a pattern that could be learned, then random search
might perform as well as RL, or even better, as it is less complicated. For example, in [28],
the authors showed 10% improvement over the baseline by using random search. In some
cases the actions are independent and a greedy or bandit solution can achieve optimal or
near-optimal results. Using a bandit method is equivalent to using a 1-step RL solution, in
which the objective is to maximize the immediate reward. Maximizing the immediate reward
could deliver the overall maximum reward and, thus, a comparison will reveal whether a
bandit solution is preferable in this case. In our case, both AutoPhase and NeuroVectorizer
are shown to outperform random search.

Are the Expert Actions Accessible?

In some cases the expert actions, i.e., optimal actions, are accessible, for example by running
a brute-force search to collect the labels if it is plausible and practical. In that case, using
imitation learning [120], which is a supervised learning approach that learns by imitating expert
actions, will outperform deep RL. In AutoPhase the expert actions are not accessible. This
is because knowing the expert actions requires running a brute-force search on an extremely
large space (2247 permutations), which requires years to complete. In NeuroVectorizer, on
the other hand, the search space is smaller, and a brute-force search is feasible. However, the
long search time of brute-force search required for supervised learning is shown to result in
14× slower search time compared to deep RL.

Is It Possible to Reproduce/Generalize Good Results?

The results are reproducible and generalizable when they span a wide spectrum of the search
space and a third party can reproduce them. The learning process in deep RL is stochastic;
thus, good results are sometimes achieved due to local maxima, simple tasks, and chance.
In [121] different results were generated by simply changing the random seeds. In many cases,
good results cannot be reproduced by retraining, training on new tasks, or generalizing to
new tasks. In that case, it is possible that deep RL cannot achieve good results overall.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 21

In AutoPhase and NeuroVectorizer, the results are reproducible and the code is open
sourced with scripts. An evaluation of both systems shows that the results can generalize to
new unseen programs.

3.6 Deep RL Methods and Neural Network Models

Multiple RL methods and neural network models can be used to solve system optimization
problems. RL frameworks such as RLlib [122], Intel’s Coach [123], TensorForce [124], Facebook
Horizon [125], and Google’s Dopamine [126] can help the users pick the right RL model, as
they provide implementations of many policies and models for which a convenient interface is
available.

As a rule of thumb, we rank RL algorithms in accordance with their sample efficiency, as
follows: model-based approaches (most efficient), temporal difference methods, PG methods,
and evolutionary algorithms (least efficient). In general, many RL environments run in a
simulator. For example, [92, 113, 119] run in a simulator as the real environment’s step
would take minutes or hours, which significantly slows down the training. If this simulator
is fast enough or training time is not constrained, then PG methods can perform well. If
the simulator is not fast enough or training time is constrained, then temporal difference
methods can do better than PG methods as they are more sample efficient.

If the environment is the real one, then temporal difference can do well, as long as
interaction with the environment is not slow. Model-based RL performs better if the
environment is slow. Model-based methods require a model of the environment (that often
can be learned) and rely mainly on planning rather than learning [127, 128]. Since planning is
not done in the actual environment, but in much faster simulation steps within the model, it
requires fewer samples from the real environment to learn. Many real-world system problems
have well-established and often highly accurate models, which model-based methods can
leverage. That being said, model-free methods are often used as they are simpler to deploy
and have the potential to generalize better from exploration in a real environment.

If good policies are easy to find, and if either the space of policies is small enough or time
is not a bottleneck for the search, then evolutionary methods can be effective. Evolutionary
methods also have advantages when the learning agent cannot observe the complete state
of the environment. As mentioned earlier, bandit solutions are good if the problem can be
viewed as a one-step RL problem.

PG methods are in general more stable than methods such as Q-Learning that do not
directly use and derive a neural network to represent the agent’s policy. Because directly
deriving the policy and moving the gradient in the direction of the objective are intuitively
greedy strategies, PG methods are easier to reason about and often more reliable. However,
Q-Learning can be applied to data collected from a running system more readily than PG,
which must interact with the system during training.

The RL methods may be implemented using any number of deep neural network archi-
tectures. The preferred architecture depends on the nature of the observation and action

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 22

spaces. CNNs that efficiently capture spatially organized observation spaces lend themselves
to visual data (e.g., images or video). Networks designed for sequential learning, such as
RNNs, are appropriate for observation spaces involving sequence data (e.g., code, queries,
temporal event streams). Otherwise, FCNNs are preferred for their general applicability and
ease of use, although they tend to be the most computationally intensive choice. Finally,
GNNs or other networks that capture structure within observations can be used in the less
frequent case that the designer has a priori knowledge of the representational structure. In
this case, the model can even generate structured action spaces (e.g., a query plan tree or
computational graph).

3.7 Challenges

In this section, the primary challenges of applying deep RL in system optimization are
discussed.

Interactions with Real Systems Can Be Slow. Generalizing from Faster Sim-
ulated Environments Can Be Restrictive. Unlike the case in simulated environments,
when an action is performed in a real environment, the reward may be triggered only after a
lengthy delay. For example, when scheduling jobs on a cluster of nodes – where the reward is
proportional to the decrease in execution time – some jobs might require hours to run, and
thus collecting the rewards will be slow. To speed up this process, some works use simulators
as cost models instead of the actual system. These simulators often do not fully capture the
actual behavior of the real system and thus the RL agent may not work as well in practice.
More comprehensive environment models can aid generalization from simulated environments.
RL methods that are more sample efficient will speed up training in real system environments.

Instability and High Variance. These are common problems that lead to bad policies
when performing system optimization with deep RL. Such policies can generate a large
performance gap when trained multiple times and behave in an unpredictable manner. This
is mainly due to poor formulation of the problem as an RL problem, limited observation of
the state, i.e., the use of embeddings and input features that are not sufficient/meaningful,
and sparse or similar rewards. Sparse rewards can be due to bad reward definition or to the
fact that some rewards cannot be computed directly and are known only at the end of the
episode. For example, in [103], where deep RL is used to optimize decision trees for packet
classification, the reward (the performance of the tree) is known only when the entire tree
is built, or after approximately 15,000 steps. In some cases using more robust and stable
policies can help. For example, Q-learning is known to have good sample efficiency but
unstable behavior. SARSA, double Q-learning [129] and policy gradient methods, on the
other hand, are more stable. Subtracting a bias in PG can also help reduce variance [130].

Lack of Reproducibility. Reproducibility is a frequent challenge with many recent
works in system optimization that rely on deep RL. Restricted access to the resources, code,
and workloads used, lack of a detailed list of the used network hyperparameters, and lack of
stable, predictable, and scalable behavior of the different RL algorithms all make the results

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 23

difficult to reproduce. This challenge prevents future deployment, incremental improvements,
and proper evaluation.

Defining Appropriate Rewards, Actions and States. The proper definition of
states, actions, and rewards is the key to a useful RL solution. In the general use case of
deep RL, defining the states, actions and rewards is much more straightforward than in the
case of system optimization. For example, in Atari games, the state is an image representing
the current status of the game, the rewards are the points collected while playing, and the
actions are moves in the game. In system optimization, however, it is often unclear what the
appropriate definitions are. Furthermore, in many cases the rewards are sparse or similar,
and the states are not fully observable and have limited features that capture only a small
portion of the system state. This results in unstable and inadequate policies. The action and
state spaces are usually large, requiring a lot of samples to learn and resulting in instability
and large variance in the learned network. Therefore, retraining often fails to generate the
same results.

Lack of Generalization. The lack of generalization is also endemic to deep RL solutions.
This might be beneficial when learning a particular structure. For example, in NeuroCuts [103],
the target is to build the best decision tree for fixed set of predefined rules, and the objective
of the RL agent is thus to find the optimal fit for these rules. However, lack of generalization
sometimes results in a solution that works for a particular workload or setting but is not very
good overall. This problem manifests when the RL agent has to deal with new states that
it did not visit in the past. The ability to generalize is crucial in such a case. For example,
in [112, 113], the RL agent has to learn good resource placements for different computation
graphs. To improve generalization the authors trained the RL agent and tested it on a wide
range of graphs.

Lack of Standardized Benchmarks, Frameworks and Evaluation Metrics. The
lack of standardized benchmarks, frameworks and evaluation metrics makes it very difficult
to evaluate the effectiveness of the deep RL methods in the context of system optimization.
Thus, it is crucial to have proper standardized frameworks and evaluation metrics that define
success. Moreover, benchmarks are needed that enable proper training, evaluation of the
results, measuring the generalization of the solution to new problems, and valid comparisons
against baseline approaches.

3.8 An Illustrative Example

Using DeepRM [92] as an illustrative example, we put all the metrics from Section 3.5 to
work in order to further highlight the challenges (from Section 3.7) of implementing deep RL
solutions. The targeted system problem is resource management in the cloud. The objective
is to avoid job slowdown, i.e., the goal is to minimize the wait time for all jobs. DeepRM
uses PG in conjunction with a simulated environment rather than a real cloud environment.
This significantly improves the step time but can result in restricted generalization when
used in a real environment. Nonetheless, since all the simulation parameters are known, the

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 24

full state of the simulated environment can be captured. The actions are defined as selecting
which job should be scheduled next. The state is defined as the current allocation of cluster
resources, as well as the resource profiles of jobs waiting to be scheduled. The reward is
defined as the sum of job slowdowns: Σi(

−1
Ti

), where Ti is the pure execution time of job i
without considering the wait time. This reward basically gives a penalty of −1 for jobs that
are waiting to be scheduled. The penalty is divided by Ti to give a higher priority to shorter
jobs.

The state, actions and reward clearly define an MDP and a reinforcement learning problem.
The agent interacts with the system by making sequential allocations, observing the state of
the current allocation of resources, and receiving delayed long-term rewards as overall job
slowdowns. The rewards are delayed because the agent cannot know the effect of the current
allocation action on the overall slowdown at any particular time step; the agent would have
to wait until all the other jobs are allocated to assess the full impact. The agent then learns
which jobs to allocate in the current time step to minimize the average job slowdown, given
the current resource allocation in the cloud. Note that DeepRM also learns to withhold larger
jobs to make room for smaller ones to reduce the overall average job slowdown. DeepRM is
shown to outperform random search.

Expert actions are not available in this problem as there are no methods to find the
optimal allocation decision at any particular time step. During training in DeepRM, multiple
examples of job arrival sequences were considered in order to encourage policy generalization
and robust decisions1. DeepRM is also shown to outperform the state-of-the-art by 10–63% 1.

Clearly, most of the challenges mentioned in Section 3.7 are manifested in DeepRM. The
interaction with the real cloud environment is slow and thus the authors opted for a simulated
environment. This has the advantage of speeding up the training but may result in a policy
that does not generalize to the real environment. Unfortunately, generalization tests in the
real environment were not provided. The instability and high variance were addressed by
subtracting a bias in the PG equation. The bias was defined as the average of job slowdowns
taken at a single time step across all episodes. The implementation of DeepRM was open
sourced, allowing others to reproduce the results. The rewards, actions, and states defined
allowed the agent to learn a policy that performed well in the simulated environment. Note
that defining the state of the system was easier because the environment was simulated.
The solution also considered multiple reward definitions, for example, −|J |, where J is the
number of unfinished jobs in the system. This reward definition optimizes the average job
completion time. The jobs evaluated in DeepRM were considered to arrive online according
to a Bernoulli process. In addition, the jobs were chosen randomly, and it is unclear whether
they represent real workload scenarios. This emphasizes the need for standardized benchmarks
and frameworks to evaluate the effectiveness of deep RL methods for job scheduling in the
cloud.

1Results provided were only in the simulated system.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 25

3.9 RLDRM: Applying Deep RL to Dynamic

Resource Management Optimization

In RLDRM [30], we used deep RL to make dynamic cache allocation adjustments for network
function virtualization (NFV). NFV technology is attracting tremendous interest from the
telecommunication industry and from data center operators, as it allows service providers to
assign resources for virtual network functions (VNFs) on demand, achieving better flexibility,
programmability, and scalability. To improve server utilization, one popular practice is to
deploy best effort (BE) workloads along with high priority (HP) VNFs when the resource
usage of HP VNFs is detected to be low. To achieve that goal, RLDRM dynamically adjusts
the last level cache (LLC) allocation between the high priority (HP) and the best effort (BE)
workloads using deep RL. The deep RL agent’s goal is to ensure that the HP workloads meet
the packet loss or throughput target while maximizing the performance for the BE tasks,
thus improving the server utilization.

Compared to traditional hardware black boxes, VNFs can be easily scaled and configured,
enabling much shorter development to production time, and reducing the cost of upgrade and
maintenance. However, hardware based networking functions still have better throughput
and latency in many scenarios. Industry and academia have thus worked to develop various
techniques to improve the performance of the NFV platform. Some examples include software
algorithm improvements [131, 132], kernel bypass technologies [133], and in-core hardware
accelerators [134, 135]. Unfortunately, running multiple applications on the same server
platform could result in undesirable performance interference, as happens when HP and BE
interfere on the allocated LLC cache resources. We use Intel Resource Director Technology
(RDT) [64] to overcome performance interference. One of the most mature technologies, RDT
provides cache partitioning capability, also known as CAT, or Cache Allocation Technology [58].
We use Intel RDT in conjunction with deep RL in RLDRM to improve the resource allocation
of LLC for HP and BE workloads in servers.

RLDRM Framework Overview

Figure 3.1 shows the RLDRM framework of our closed-loop system for dynamic hardware
resource allocation with deep RL. It works for a platform that runs both HP and BE
workloads. The HP VNF workloads are usually the user facing, latency critical workloads.
Meanwhile, system schedulers schedule the BE workloads on the same server to improve server
utilization. The telemetry tool periodically collects telemetry data (platform performance
counters, application throughput, etc.) The telemetry data are then stored and processed
further by the analytic and dynamic resource allocation controller to make resource allocation
decisions for the next time window.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 26

Best Effort
Workloads

Telemetry

Monitoring and
Storage

Analytic and
Dynamic Resource

Allocation Controller

High Priority VNF

Server Platform

RDT
Action

Figure 3.1: RLDRM: Closed-loop dynamic resource allocation framework.

Set RDT CAT
allocation

Measure state
RL Agent: Dynamic

Resource Controller
(policy S->A)

Action

Reward

HP BE

Platform

Measure packet
loss and calculate

reward

State

Figure 3.2: Deep RL design for RDT allocation.

Deep RL design for dynamic RDT allocation

Figure 3.2 shows an overview of our proposed deep RL based framework for dynamically
controlling RDT allocation among multiple workloads at run time. The RL agent continuously
interacts with the system and learns a policy that maximizes the long term reward.

There are four key components in RL: (1) action, (2) state, (3) policy, and (4) reward.
The policy takes the state and outputs the Q-values for each possible action. The action
with the maximum Q-value is applied by the agent to the environment. After each action, a
new state and reward are obtained from the system. The reward is then used to improve the
policy of the agent.

The key challenge of applying deep RL to solve real world problems is to select the right
algorithm for the problem, and to define the appropriate states (feature selection), actions,
and the rewards. Most prior works that apply deep RL for optimization are simulator based,
for example works on gaming, for which sample efficiency is less relevant. In our design, since
we train the deep RL model on real machines, sample efficiency is a major consideration
when choosing the algorithm. Stability is also a factor. For these reasons, we chose dueling

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 27

double deep Q-learning (DDDQN) [136, 137] with prioritized experience replay as our deep
RL algorithm. We also experimented with the original DQN model, but its performance and
stability could not match DDDQN. Below is the detailed design for the DDDQN algorithm
for controlling RDT:

Actions A: The action A is the number of RDT LLC ways allocated to HP and BE
workloads for the next time window.

State S: The state S consists of the ingress traffic rate for the past N time windows, as
well as the current RDT LLC way allocation to the HP VNF and the BE workload.

Reward R: In our design, the reward reflects the goal of allocating the fewest possible
LLC ways for the HP workloads with the lowest possible packet loss, and allocating the
remaining LLC ways to the BE workloads to improve server utilization. We designed the
reward function as follows:

Rpktloss =


−m1 if pktloss > th1

−m2 else if pktloss > th2

−m3 else if pktloss > th3

+m4 else if pktloss <= th3

(3.1)

Rrdt =

{
LLCHP if pktloss > th3

TotalLLC − LLCHP if pktloss <= th3
(3.2)

Rtotal = Rpktloss +Rrdt (3.3)

Here the pktloss is the number of packets dropped during the current time window. Rpktloss

is the reward for packet loss. If the pktloss is smaller than a predefined acceptable threshold
th3 (can be either zero packet loss or low packet loss depending on the use cases), we assign
a positive reward for the Rpktloss. If the packet loss is above this threshold th3, we assign a
negative reward for the Rpktloss as penalty. The greater the pktloss, the bigger the penalty
(m1 > m2 > m3) is. Rrdt is the reward for LLC way allocation. When the pktloss is smaller
than threshold th3, we give higher reward for using fewer LLC ways for the HP workloads.
When the pktloss is above this threshold th3, we give higher reward for using more LLC ways
for these workloads. Total reward Rtotal is the sum of Rpktloss and Rrdt, which considers both
packet loss and LLC way allocation.

3.10 Conclusions and Future Directions

Multiple challenges in applying deep reinforcement learning to system optimization problems
were reviewed and discussed in this chapter, and a set of metrics to evaluate solutions was
proposed. Recent applications of deep RL in system optimization are mainly in packet
classification, congestion control, compiler optimization, scheduling, query optimization and
cloud computing. The growing complexity in systems requires learning-based approaches.

CHAPTER 3. DEEP RL IN SYSTEM OPTIMIZATION 28

Deep RL presents a unique opportunity to address the dynamic behavior of systems. Applying
deep RL to systems introduces a new set of challenges on how to frame and evaluate deep
RL techniques. Solving these challenges will help foster the growth of optimization with deep
RL. There are multiple future directions for this growth, and in particular for the deployment
of deep RL solutions in system optimization tasks.

The general assumption is that deep RL may be useful in every system problem that can
be formulated as a sequential decision-making process, and where meaningful action, state,
and reward definitions can be provided. The optimization objective may span a wide range
of options, such as energy efficiency, power, reliability, monitoring, revenue, performance,
and utilization. At the processor level, deep RL could be used in branch prediction, memory
prefetching, caching, data alignment, garbage collection, thread/task scheduling, power
management, reliability, and monitoring. Compilers may also benefit from using deep RL
to optimize the order of passes (optimizations), knobs/pragmas, unrolling factors, memory
expansion, function inlining, vectorizing multiple instructions, tiling and instruction selection.
With advancement of in- and near-memory processing, deep RL can be used to determine
which portions of a workload should be performed in/near memory and which outside the
memory.

At a higher system level, deep RL may be used in SQL/pandas query optimization, cloud
computing, scheduling, caching, monitoring (e.g., temperature/failure) and fault tolerance,
packet routing and classification, congestion control, FPGA allocation, and algorithm selection.
While some of this has already been done, there is great potential for improvement. It is
necessary to explore more benchmarks, stable and generalizable learners, transfer learning
approaches, RL algorithms, and model-based RL and, more importantly, to provide better
encoding of the states, actions and rewards to better represent the system and thus improve
the learning. For example, with SQL/pandas join order optimization, the contents of the
database are critical for determining the best order, and thus somehow incorporating an
encoding of these contents may further improve the performance.

There is room for improvement in the RL algorithms as well. Some action and state spaces
can dynamically change with time. For example, when a new node is added to a cluster, the
RL agent will always skip the added node and it will not be captured in the environment
state. Generally, the state transition function of the environment is unknown to the agent.
Therefore, there is no guarantee that if the agent takes a certain action, a certain state will
follow in the environment. This issue was presented in [111], where compiler optimization
passes were selected using deep RL. The authors mentioned a scenario where the agent is
stuck in an infinite loop of repeatedly picking the same optimization (action). This problem
arose when a particular optimization did not change the features that describe the state of
the environment, causing the neural network to apply the same optimization. To break this
infinite loop, the authors limited the number of repetitions to five, and then applied the
second best optimization instead. This was done by taking the action that corresponds to the
second highest probability from the neural network’s probability distribution output. In the
following chapters we detail our deep RL solutions to some of the key compiler optimization
challenges discussed here.

29

Chapter 4

AutoPhase

4.1 Introduction

High-Level Synthesis (HLS) automates the process of creating digital hardware circuits
from algorithms written in high-level languages. In this chapter we propose a deep RL
approach to improve the performance of HLS by optimizing the order in which the compiler
applies optimization phases. Modern HLS tools [138–140] use the same front-end as the
traditional software compilers. They rely on traditional software compiler techniques to
optimize the input program’s intermediate representation (IR) and produce circuits in the
form of RTL code. Thus, the quality of compiler front-end optimizations directly impacts
the performance of HLS-generated circuits. Despite a decade of research on developing
sophisticated optimization algorithms, there is still a performance gap between the HLS
generated code and the hand-optimized code produced by experts. A program must be just
in “the right form” for a compiler to recognize the optimization opportunities. A programmer
might easily perform this task, but is often difficult for a compiler.

The AutoPhase [13, 28] system introduced in this chapter was developed with the goal
of overcoming the NP-hard phase ordering challenge. The system is built off the LLVM
compiler [141], but the used techniques are broadly applicable to any compiler that uses a
series of optimization passes. In this case, the optimization of an HLS program consists of
applying a sequence of analysis and optimization phases, where each phase in this sequence
consumes the output of the previous phase, and generates a modified version of the program
for the next phase. Unfortunately, these phases are not commutative, which makes the order
in which they are applied critical to the performance of the output.

Consider the program in Figure 4.1, which normalizes a vector. Without any optimizations,
the norm function will take Θ(n2) to normalize a vector. However, a smart compiler will
implement the loop invariant code motion (LICM) [142] optimization, which allows it to
move the call to mag above the loop, resulting in the code shown in the left-hand column of
Figure 4.2. This optimization brings the runtime down to Θ(n)—a big speedup improvement.
Another optimization the compiler could perform is (function) inlining [142]. With inlining,

CHAPTER 4. AUTOPHASE 30

__attribute__((const))

double mag(int n, const double *A) {

double sum = 0;

for(int i=0; i<n; i++){

sum += A[i] * A[i];

}

return sqrt(sum);

}

void norm(int n, double *restrict out,

const double *restrict in) {

for(int i=0; i<n; i++) {

out[i] = in[i] / mag(n, in);

}

}

Figure 4.1: A simple program to normalize a vector.

void norm(int n, double *restrict out,

const double *restrict in) {

double precompute = mag(n, in);

for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;

}

}

void norm(int n, double *restrict out,

const double *restrict in) {

double precompute, sum = 0;

for(int i=0; i<n; i++){

sum += A[i] * A[i];

}

precompute = sqrt(sum);

for(int i=0; i<n; i++) {

out[i] = in[i] / precompute;

}

}

Figure 4.2: Progressively applying LICM (left) following by inlining (right) to the code in
Figure 4.1.

a call to a function is simply replaced with the body of the function, reducing the overhead
of the function call. Applying inlining will result in the code shown in the right-hand column
of Figure 4.2.

Now, consider applying these optimization passes in the opposite order: inlining followed
by LICM. After inlining, the result is the code shown on the left in Figure 4.3. The achieved
speedup is once again modest, n function calls having been eliminated, though our runtime
is still Θ(n2). If the compiler afterwards attempted to apply LICM, it would result in the
code shown on the right in Figure 4.3. LICM was able to successfully move the allocation of
sum outside the loop. However, it was unable to move the instruction setting sum=0 outside
the loop, as doing so would mean that all iterations excluding the first one would end up
with a garbage value for sum. Thus, the internal loop will not be moved out.

As this simple example illustrates, the order in which the optimization phases are applied
can be the difference between the program running in Θ(n2) versus Θ(n). However, not only

CHAPTER 4. AUTOPHASE 31

void norm(int n, double *restrict out,

const double *restrict in) {

for(int i=0; i<n; i++) {

double sum = 0;

for(int j=0; j<n; j++){

sum += A[j] * A[j];

}

out[i] = in[i] / sqrt(sum);

}

}

void norm(int n, double *restrict out,

const double *restrict in) {

double sum;

for(int i=0; i<n; i++) {

sum = 0;

for(int j=0; j<n; j++){

sum += A[j] * A[j];

}

out[i] = in[i] / sqrt(sum);

}

}

Figure 4.3: Progressively applying inlining (left) followed by LICM (right) to the code in
Figure 4.1.

is the optimal phase ordering difficult to determine, but it may also vary from program to
program. Furthermore, since the problem of finding the optimal sequence of optimization
phases is NP-hard, exhaustively evaluating all possible sequences is infeasible in practice. In
this work, for example, the search space extends to more than 2247 phase orderings.

Our AutoPhase system overcomes this problem by providing a mechanism that automati-
cally determines good phase orderings for HLS programs to optimize the circuit speed. To
this end, recent advancements in deep reinforcement learning (RL) [21] were leveraged to
address the phase ordering problem. With RL, a software agent continuously interacts with
the environment by taking actions. Each action can change the state of the environment
and generate a “reward”. The goal of RL is to learn a policy—that is, a mapping between
the observed states of the environment and a set of actions—to maximize the cumulative
reward. A deep RL algorithm is one that uses a deep neural network to approximate the
policy. In our case, the observation from the environment could be the program and/or
the optimization passes applied so far. The action is the optimization pass to apply next,
and the reward is the improvement in the circuit performance after applying this pass. The
particular framing of the problem as an RL problem will be a determining factor in the
solution’s effectiveness. Understanding how to formulate the phase ordering optimization
problem in an RL framework presents significant challenges.

In this chapter, three approaches to represent the environment’s state are considered. The
first approach is to directly use salient features from the program. The second approach is
to derive the features from the sequence of optimizations that were applied while ignoring
the program’s features. The third approach combines the first two approaches. To evaluate
these approaches, a framework that takes a group of programs as input and quickly finds
a phase ordering that competes with state-of-the-art solutions is implemented. The main
contributions of this chapter are as follows:

• Leveraging deep RL to address the phase-ordering problem.

• An importance analysis on the features using random forests to significantly reduce the

CHAPTER 4. AUTOPHASE 32

state and action spaces.

• AutoPhase [13]1, a framework that integrates the current HLS compiler infrastructure
with the deep RL algorithms and obtains a 28% better execution time over -O3 for nine
real benchmarks.

• Demonstrating the potential of deep RL to generalize to thousands of different programs
after training on one hundred programs, an accomplishment no state of the art algorithm
has achieved.

4.2 Related Work

Since the search space of phase-ordering is too large for an exhaustive search, many heuristics
have been proposed to explore the space by using machine learning. Huang et al. tried
to address this challenge for HLS applications by using a modified greedy algorithm [143,
144]. Their solution achieved 16% improvement vs -O3 on the CHstone benchmarks [145].
This is the greedy algorithm evaluated in Section 4.6. In [8], both independent and Markov
models were applied to automatically target an optimized search space for iterative methods
to improve the search results. In [6], genetic algorithms were used to tune heuristic priority
functions for three compiler optimization passes. Milepost GCC [5] used machine learning
to determine the set of passes to apply to a given program, based on a static analysis
of its features. It achieved an 11% execution time improvement over -O3, for the ARC
reconfigurable processor on the MiBench program suite1. In [7] the challenge was formulated
as a Markov process, and supervised learning was used to predict the next optimization,
according to the current program state. OpenTuner [4] autotunes a program using an ensemble
of AUC-Bandit-meta-technique-directed algorithms. Its current mechanism for selecting the
compiler optimization passes does not consider the order or support repeated optimizations.
Wang et al. [17] surveyed machine learning techniques for compiler optimization, where they
also noted the possible benefit of using program features.

4.3 AutoPhase Framework for Automatic Phase

Ordering

This section describes how AutoPhase was built by leveraging an existing open-source HLS
framework called LegUp [140] that compiles a C program into a hardware RTL design. In
[143], an approach based on LegUp is devised to quickly determine the number of hardware
execution cycles without requiring time-consuming logic simulation. The RL simulator
environment was developed using the existing harness provided by LegUp, and the final
results were validated by going through the time-consuming logic simulation. AutoPhase takes

1AutoPhase is open-sourced under https://github.com/ucb-bar/autophase.

https://github.com/ucb-bar/autophase

CHAPTER 4. AUTOPHASE 33

Feature
Extractor

Cycle
Profiler

Learning
Agent LLVM  

IR

Optimization
Passes

HLS
Compiler Hardware

(State)

(Reward)

Gradient

New Compiler Pass 
 (Action)

Runtime

Features

Program
Generator

Real  
Benchmarks

Input Programs

Figure 4.4: The block diagram of AutoPhase. The input programs are compiled to an LLVM
IR using Clang/LLVM. The feature extractor is used to generate the input features (state)
and the clock cycle profiler is used to generate the runtime improvement (reward) from the
IR. The input features and runtime improvement are fed to the deep RL agent as input
data to train on. The RL agent predicts the next best optimization passes to apply. After
convergence, the HLS compiler is used to compile the LLVM IR to hardware RTL.

a program (or multiple programs) and intelligently explores the space of possible passes to
figure out an optimal pass sequence to apply. Table 4.1 lists all the passes used in AutoPhase.
The workflow of AutoPhase is illustrated in Figure 4.4.

HLS Compiler

AutoPhase takes a set of programs as input and compiles them to a hardware-independent
intermediate representation (IR) using the Clang front-end of the LLVM compiler. Opti-
mization and analysis passes act as transformations on the IR, taking a program as input
and generating a new IR as output. The HLS tool LegUp is invoked after the compiler
optimization as a back-end pass, which transforms LLVM IR into hardware modules.

Clock-cycle Profiler

Once the hardware RTL is generated, a hardware simulation could be run to gather the cycle
count results of the synthesized circuit. This process is quite time-consuming, hindering RL
and all other optimization approaches. Therefore, the cycle count is approximated using
the profiler in LegUp [143], which leverages the software traces and runs 20× faster than
hardware simulation. In LegUp, the frequency of the generated circuits is set as a compiler

CHAPTER 4. AUTOPHASE 34

constraint that directs the HLS scheduling algorithm. In other words, the HLS tool will
always try to generate hardware that can run at a certain frequency. In our experiment
setting, without loss of generality, the target frequency of all generated hardware is set to
200MHz. Experiments on lower frequencies were also conducted; the improvements were
similar but the cycle counts achieved by the different algorithms were better as more logic
could be fitted in a single cycle.

IR Feature Extractor

Wang et al. [17] proposed to convert a program into an observation by extracting all its
features. Similarly, in addition to utilizing the LegUp backend tools, analysis passes to extract
56 static features from the program were developed, such as the number of basic blocks,
branches, and instructions of various types. These features were used as partially observable
states for the RL learning, in the hope that the neural network can capture the correlation
of certain combinations of these features and certain optimizations. Table 4.2 lists all the
features used.

Random Program Generator

As a data-driven approach, deep RL generalizes better if the agent is trained on more programs.
However, there are a limited number of open-source HLS examples online. Therefore, our
training set was expanded by automatically generating synthetic HLS benchmarks. Standard
C programs using CSmith [146] were generated first. CSmith is a random C program
generator, originally designed to generate test cases for finding compiler bugs. Programs that
take more than five minutes to run on CPU or fail the HLS compilation were filtered out.

Overall Flow of AutoPhase

The compilation utilities were integrated into a simulation environment in Python with APIs,
similar to OpenAI Gym [118]. The overall flow works as follows:

1. The input program is compiled into LLVM IR using the Clang/LLVM.

2. The IR Feature Extractor is run to extract salient program features.

3. LegUp compiles the LLVM IR into hardware RTL.

4. The Clock-cycle Profiler estimates a clock-cycle count for the generated circuit.

5. The RL agent takes the program features or the histogram of previously applied passes
and the improvement in clock-cycle count as input data to train on.

6. The RL agent predicts the next best optimization passes to apply.

7. New LLVM IR is generated after the new optimization sequence is applied.

8. The machine learning algorithm iterates through steps (2)–(7) until convergence.

CHAPTER 4. AUTOPHASE 35

Table 4.1: LLVM Transform Passes.

0 1 2 3 4 5
-correlated-propagation -scalarrepl -lowerinvoke -strip -strip-nondebug -sccp

6 7 8 9 10 11
-globalopt -gvn -jump-threading -globaldce -loop-unswitch -scalarrepl-ssa

12 13 14 15 16 17
-loop-reduce -break-crit-edges -loop-deletion -reassociate -lcssa -codegenprepare

18 19 20 21 22 23
-memcpyopt -functionattrs -loop-idiom -lowerswitch -constmerge -loop-rotate

24 25 26 27 28 29 30
-partial-inliner -inline -early-cse -indvars -adce -loop-simplify -instcombine

31 32 33 34 35 36 37 38
-simplifycfg -dse -loop-unroll -lower-expect -tailcallelim -licm -sink -mem2reg

39 40 41 42 43 44 45
-prune-eh -functionattrs -ipsccp -deadargelim -sroa -loweratomic -terminate

Note that although AutoPhase uses the LLVM compiler and the passes as listed in Table 4.2,
adding support for any compiler or optimization passes is very easy and straightforward. The
action and state definitions must be specified again.

4.4 Correlation of Passes and Program Features

As is the case with many deep learning approaches, explainability is a major challenge when
applying deep RL to phase-ordering optimization. To analyze and understand the correlation
of passes and program features, random forests [147] are used to learn the importance of
different features. Random forest is an ensemble of multiple decision trees. The prediction
made by each tree can be explained by tracing the decisions made at each node and calculating
the importance of different features for each of those decisions. This helps us to identify the
effective features and passes and shows whether our algorithms learn informative patterns on
data.

For each pass, two random forests are built to predict whether applying it would improve
the circuit performance. The first forest takes the program features as inputs while the
second takes a histogram of previously applied passes. To gather the training data for the
forests, PPO is run with a high exploration parameter on 100 randomly generated programs
to generate feature–action–reward tuples. The algorithm assigns higher importance to the
input features that have greater effect on the final prediction.

CHAPTER 4. AUTOPHASE 36

Table 4.2: Program Features.

0 Number of BBs where total args for phi nodes >5 28 Number of And instructions

1 Number of BBs where total args for phi nodes is [1,5] 29 Number of BBs with instructions in [15,500]

2 Number of BBs with 1 predecessor 30 Number of BBs with less than 15 instructions

3 Number of BBs with 1 predecessor and 1 successor 31 Number of BitCast instructions

4 Number of BBs with 1 predecessor and 2 successors 32 Number of Br instructions

5 Number of BBs with 1 successor 33 Number of Call instructions

6 Number of BBs with 2 predecessors 34 Number of GetElementPtr instructions

7 Number of BBs with 2 predecessors and 1 successor 35 Number of ICmp instructions

8 Number of BBs with 2 predecessors and successors 36 Number of LShr instructions

9 Number of BBs with 2 successors 37 Number of Load instructions

10 Number of BBs with >2 predecessors 38 Number of Mul instructions

11 Number of BBs with Phi node # in range (0,3] 39 Number of Or instructions

12 Number of BBs with more than 3 Phi nodes 40 Number of PHI instructions

13 Number of BBs with no Phi nodes 41 Number of Ret instructions

14 Number of Phi-nodes at beginning of BB 42 Number of SExt instructions

15 Number of branches 43 Number of Select instructions

16 Number of calls that return an int 44 Number of Shl instructions

17 Number of critical edges 45 Number of Store instructions

18 Number of edges 46 Number of Sub instructions

19 Number of occurrences of 32-bit integer constants 47 Number of Trunc instructions

20 Number of occurrences of 64-bit integer constants 48 Number of Xor instructions

21 Number of occurrences of constant 0 49 Number of ZExt instructions

22 Number of occurrences of constant 1 50 Number of basic blocks

23 Number of unconditional branches 51 Number of instructions (of all types)

24 Number of binary operations with a constant 52 Number of memory instructions

25 Number of AShr instructions 53 Number of non-external functions

26 Number of Add instructions 54 Total arguments to Phi nodes

27 Number of Alloca instructions 55 Number of unary operations

Importance of Program Features

The heat map in Figure 4.5 shows the importance of different features in the decision as to
whether a pass should be applied. The higher the value is, the more important the feature is
(the sum of the values in each row is one). The random forest is trained with 150,000 samples
generated from the random programs. The index mapping of features and passes can be
found in Tables 4.1 and 4.2. For example, the yellow pixel corresponding to feature index
17 and pass index 23 reflects that number-of-critical-edges greatly affects the decision as to

CHAPTER 4. AUTOPHASE 37

Figure 4.5: Heat map illustrating the importance of feature and pass indices. The higher the
value is, the more important the feature is.

whether to apply -loop-rotate. A critical edge in the control flow graph is an edge that is
neither the only edge leaving its source block nor the only edge entering its destination block.
The critical edges often appear in a loop as a back edge, so the number of critical edges might
roughly represent the number of loops in a program. The transform pass -loop-rotate detects
a loop and transforms a while loop to a do-while loop to eliminate one branch instruction
in the loop body. Applying the pass results in better circuit performance as it reduces the
number of FSM states in a loop.

Other expected behaviors can also be observed in this figure. These include, for example,
the correlation between number of branches and the transform passes -loop-simplify, -
tailcallelim, and -lowerswitch (-tailcallelim transforms calls of the current function, i.e.,
self recursion, followed by a return instruction with a branch to the entry of the function,
creating a loop, and -lowerswitch rewrites switch instructions with a sequence of branches).
Other interesting behaviors are also captured, for example, in the correlation between binary
operations with a constant operand and -functionattrs, which marks different operands of
a function as read-only (constant). Some correlations are harder to explain, for example,
the correlation between number of BitCast instructions and -instcombine, which combines
instructions into fewer, simpler instructions. This is actually a result of -instcombine reducing
the loads and stores that call bitcast instructions for casting pointer types. Another example of
an interesting behavior is observed in the correlation between number of memory instructions
and -sink, where -sink basically moves memory instructions into successor blocks and delays
the execution of memory until needed. Clearly, the decision whether to apply -sink should
be dependent on whether there is any memory instruction in the program. Our last example

CHAPTER 4. AUTOPHASE 38

Figure 4.6: Heat map illustrating the importance of indices of previously applied passes and
the new pass to apply. The higher the value is, the more important having the old pass is.

to show is number of occurrences of constant 0 and -deadargelim, where -deadargelim helped
eliminate dead/unused constant zero arguments.

Overall, all the passes are correlated to some features and are able to affect the final
circuit performance. We also observed that multiple features are not effective at directing
decisions and training with them could increase the variance in lower prediction accuracy of
our results. For example, the total number of instructions did not give a direct indication of
whether applying it would be helpful. This is because more instructions might sometimes
improve the performance (for example, due to loop unrolling), and likewise for eliminating
unnecessary code. In addition, the importance of features varies among different benchmarks
depending on the tasks they perform.

Importance of Previously Applied Passes

Figure 4.6 illustrates the impact of previously applied passes on the new pass to apply.
The higher the value is, the more important having the old pass is. This figure shows that
passes -scalarrepl, -gvn, -scalarrepl-ssa, -loop-reduce, -loop-deletion, -reassociate, -loop-rotate,
-partial-inliner, -early-cse, -adce, -instcombine, -simplifycfg, -dse, -loop-unroll, -mem2reg,
and -sroa had greater impact on the performance than the rest of the passes regardless of
their order in the trajectory. Point (23,23) has the highest value, which implies that pass
-loop-rotate is very helpful and should be included if it was not applied before. Examining
thousands of programs shows that -loop-rotate indeed reduces the cycle count significantly.
Interestingly, applying this pass twice is not harmful if applied consecutively. However, if

CHAPTER 4. AUTOPHASE 39

other passes are applied between them, performance might be reduced dramatically. Another
interesting behavior captured by the heat map is that it was much more useful to apply pass
33 (-loop-unroll) after (not necessarily consecutive) pass 23 (-loop-rotate) than it was to apply
these two passes in the opposite order.

4.5 Problem Formulation

The RL Environment Definition

Assume the optimal number of passes to apply is N and there are K transform passes to
select from. Then, the search space S for the phase-ordering problem is [0, KN). Given M
program features and the history of already applied passes, the goal of deep RL is to learn
the next best optimization pass a to apply that minimizes the long-term cycle count of the
generated hardware circuit. Note that the optimization state s is partially observable in this
case as the M program features cannot fully capture all the properties of a program.

Action Space – the action space A is defined as {a ∈ Z : a ∈ [0, K)} where K is the
number of transform passes.

Observation Space – two types of input features were considered in our evaluation:
1© program features of ∈ ZM listed in Table 4.2 and 2© action history, which is a

histogram of previously applied passes oa ∈ ZK . After each RL step where the pass i is
applied, the feature extractor in our environment is called to return new of and update the
action histogram element oai to oai + 1.

Reward – the cycle count of the generated circuit is reported by the clock-cycle profiler
at each RL iteration. Our reward is defined as R = cprev− ccur, where cprev and ccur represent,
respectively, the previous and the current cycle count of the generated circuit. Different
rewards can be defined for different objectives. For example, the reward could be defined to
be proportional to the decrease in the area, resulting in the RL agent optimizing for the area.
It is also possible to co-optimize multiple objectives (e.g., area, execution time, power, etc.)
by defining a combination of different objectives.

Applying Multiple Passes per Action

An alternative to the action formulation above is to evaluate a complete sequence of passes
with length N instead of a single action a at each RL iteration. Upon the start of training a
new episode, the RL agent resets all pass indices p ∈ ZN to the index value K

2
. For pass pi at

index i, the next action to take is either to switch to a new pass or not. By allowing positive
and negative index updates for each p, the number of steps required to traverse all possible
pass indices is reduced. The sub-action space ai for each pass is thus defined as [−1, 0, 1].
The total action space A is defined as [−1, 0, 1]N . At each step, the RL agent predicts the
updates [a1, a2, ..., aN] to N passes, and the current optimization sequence [p1, p2, ..., pN] is
updated to [p1 + a1, p2 + a2, ..., pN + aN].

CHAPTER 4. AUTOPHASE 40

Normalization Techniques

In order for the trained RL agent to work on new programs, the program features and rewards
must be properly normalized so that they represent a meaningful state for different programs.
In this work, we experimented with two techniques: 1© taking the logarithm of program
features or rewards and, 2© normalizing to a parameter from the original input program
that roughly depicts the problem size. For technique 1©, note that taking the logarithm
of the program features not only reduces their magnitude but also correlates them in a
different manner in the neural network. Since w1 log(of1) + w2 log(of2) = log(ow1

f1
ow2
f2

), the
neural network learns to correlate the products of features instead of a linear combination of
them. For technique 2©, the program features are normalized to the number of instructions
in the input program (of norm = of

of51
), which is feature #51 in Table 4.2.

4.6 Evaluation

To run the deep RL algorithms, we used RLlib [148], an open-source library for reinforcement
learning that offers both high scalability and a unified API for a variety of applications. RLlib
is built on top of Ray [149], a high-performance distributed execution framework targeted at
large-scale machine learning and reinforcement learning applications. The framework runs on
a four-core Intel i7-4765T CPUwith a Tesla K20c GPUfor training and inference.

The frequency constraint in HLS is set to 200MHz, and the number of clock cycles reported
by the HLS profiler is used as the circuit performance metric. In [143], results showed a
one-to-one correspondence between the clock cycle count and the actual hardware execution
time under certain frequency constraints. Therefore, better clock cycle count will lead to
better hardware performance.

Performance

We evaluated the effectiveness of various deep RL algorithms in tackling the phase-ordering
problem on nine real HLS benchmarks and compared them to state-of-the-art approaches, in-
cluding random search, Greedy Algorithms [143], OpenTuner [4], and Genetic Algorithms [150].
The metrics for comparison were the final HLS circuit performance and the sample efficiency.
The benchmarks were adapted from CHStone [145] and LegUp examples. They are: adpcm,
aes, blowfish, dhrystone, gsm, matmul, mpeg2, qsort, and sha. For this evaluation, the input
features/rewards were not normalized, the pass length was set to 45, and each algorithm was
run on a per-program basis. Table 4.3 lists the action and observation spaces used in all the
deep RL algorithms.

The bar chart in Figure 4.7 shows the percentage improvement of the circuit performance
compared to -O3 results on the nine real benchmarks from CHStone. The dots on the blue
line in Figure 4.7 show the number of samples for each program, which is the number of
times the algorithm calls the simulator to gather the cycle count. -O0 and -O3 are the default
compiler optimization levels. RL-PPO1 is a PPO explorer where all the rewards are set to 0 to

CHAPTER 4. AUTOPHASE 41

Table 4.3: The observation and action spaces used in the different deep RL algorithms.

RL-PPO1 RL-PPO2 RL-PPO3 RL-A3C RL-ES

Deep RL
Algorithm

PPO PPO PPO A3C ES

Observation
Space

Program
Features

Action
History

Action History +
Program Features

Program
Features

Program
Features

Action Space Single-Action Single-Action Multiple-Action Single-Action Single-Action

test if the rewards are meaningful. RL-PPO2 is the PPO agent that learns the next pass based
on a histogram of applied passes. RL-A3C is the A3C agent that learns based on the program
features. Greedy performs the greedy algorithm, which always inserts the pass that achieves
the highest speedup at the best position (out of all possible positions it can be inserted into)
in the current sequence. RL-PPO3 uses a PPO agent and the program features but with
the action space described in Section 4.5. OpenTuner runs an ensemble of six algorithms,
which includes two families of algorithms: particle swarm optimization [151] and GA, each
with three different crossover settings. RL-ES is similar to the A3C agent that learns using
the program features, but updates the policy network using the evolution strategy instead
of backpropagation. Genetic-DEAP [150] is a genetic algorithm implementation. random

randomly generates a sequence of 45 passes at once instead of sampling them one-by-one.
Greedy results show that always inserting that pass in the best position (i.e., the one with

the highest reward) in the current sequence leads to sub-optimal circuit performance. RL-PPO2
achieves better performance than RL-PPO1, which shows that the deep RL captures useful
information during training. Using the histogram of applied passes results in better sample
efficiency, but using the program features with more samples results in a slightly higher
speedup. RL-PPO2, for example, achieves 50× better sample efficiency than OpenTuner,
with only 4% drop in speedup. Using ES to update the policy is supposed to be more
sample efficient for problems with sparse rewards like ours; however, our experiments did
not demonstrate this benefit. Furthermore, RL-PPO3 with multiple action updates achieves a
better speedup than the other deep RL algorithms. This is due in part to its ability to apply
more passes per compilation, which makes it run faster and more efficiently. On the other
hand, the other deep RL algorithms apply a single pass at a time.

Generalization

With deep RL, the search should benefit from prior knowledge learned from other programs.
This knowledge should be transferable from one program to another. For example, as discussed
in Section 4.4, applying pass -loop-rotate is always beneficial, and -loop-unroll should be
applied after -loop-rotate. Note that the black-box search algorithms, such as OpenTuner,
GA, and greedy algorithms, cannot generalize. For these algorithms, a new search with many
compilations must be run for every new program, as they do not learn any patterns from the
programs to direct the search and can be viewed as performing smart random search.

CHAPTER 4. AUTOPHASE 42

 -O0 -O3
RL-PPO1

RL-PPO2
RL-A3C

Greedy
RL-PPO3

OpenTuner
RL-ES

Genetic-D
EAP
Random

0.2

0.1

0.0

0.1

0.2

0.3
Im

pr
ov

em
en

t
ov

er
 -O

3

-0.230.0

0.09

0.24 0.25

0.03

0.28 0.28 0.26 0.27

0.07

0

2000

4000

6000

8000

10000

Sa
m

pl
es

 /
Pr

og
ra

m

1 1 88 88

2484
3510400043846080

6789

8400

Figure 4.7: Circuit speedup and sample size comparison.

To evaluate how generalizable deep RL might be with different programs and whether any
prior knowledge could be useful, a deep RL network was trained on 100 randomly generated
programs using PPO. Random programs were used for transfer learning because not enough
benchmarks were available and because it is the worst-case scenario, i.e., these programs are
very different from the programs that were used for inference. The performances improves
further when the network is trained on programs that are similar to the ones inferenced.
A network with 256 × 256 fully connected layers was trained, the histogram of previously
applied passes concatenated to the program features was used as the observation, and passes
were used as actions.

As described in Section 4.5, two normalization techniques for the program features
were tested: 1© taking the logarithm of all the program features, and 2© normalizing the
program features to the number of instructions in the program. In each pass sequence, the
intermediate reward was defined as the logarithm of the decrease in cycle count after applying
each pass. The logarithm was chosen so that the RL agent will not give much larger weights
to big rewards from programs with longer execution time. Three approaches were evaluated:
filtered-norm1, which uses the filtered program features and passes from Section 4.4 with
normalization technique 1©; original-norm2, which uses all the program features and passes
with normalization technique 2©; and filtered-norm2, which uses the filtered program
features and passes from Section 4.4 with normalization technique 2©. Filtering the features
and passes might not be ideal, especially when different programs have different feature
characteristics and the impact of a particular pass is not the same. However, reducing the
number of features and passes helps to reduce variance among all programs and significantly
narrows the search space.

Figure 4.8 shows the episode reward mean as a function of the step for the three approaches.
We see that filtered-norm2 and filtered-norm1 converge much faster and achieve a higher

CHAPTER 4. AUTOPHASE 43

Figure 4.8: Episode reward mean as a function of step for the original approach where all the
program features and passes are used, and for the filtered approach where the passes and
features (with different normalization techniques) are filtered. Higher values indicate faster
circuit speed.

episode reward mean than original-norm2, which uses all the features and passes. At roughly
8,000 steps, filtered-norm2 and filter-norm1 already achieve a very high episode reward
mean, with minor improvements in later steps. Furthermore, the episode reward mean of the
filtered approaches is still higher than that of original-norm2 even when allowed to train for
20 times more steps (i.e., 160,000 steps). This indicates that filtering the features and passes
significantly improved the learning process. All three approaches learned to always apply pass
-loop-rotate, and -loop-unroll after -loop-rotate. Another useful pass that the three approaches
learned to apply is -loop-simplify, which performs several transformations to transform natural
loops into a simpler form that enables subsequent analyses and transformations.

To demonstrate the generalization abilities of filtered-norm1 and filtered-norm2 and
their performance advantages, we compared them to the black box algorithms. We used 100
randomly generated programs as the training set and nine real benchmarks from CHStone
as the testing set. The results of state-of-the-art black-box algorithms were extracted by
searching for the best pass sequences that achieved the lowest aggregated hardware cycle
counts for the 100 random programs and then directly applying them to the nine test set
programs. The bar chart in Figure 4.9 shows the percentage improvement of the circuit
performance compared to -O3 on the nine real benchmarks. The dots on the blue line show
the total number of samples each inference takes for one new program.

This evaluation shows that the deep RL-based inference achieves higher speedup than
the predetermined sequences produced by the state-of-the-art black-box algorithms for new

CHAPTER 4. AUTOPHASE 44

 -O0 -O3

Genetic-D
EAP

OpenTuner
Greedy

RL-filte
red-norm1

RL-filte
red-norm2

0.2

0.1

0.0
Im

pr
ov

em
en

t
ov

er
 -O

3
-0.23 0.0 -0.24 -0.02

0.02 0.03 0.04

0

10

20

30

Sa
m

pl
es

 /
Pr

og
ra

m

1 1 1 1 1 1 1

Figure 4.9: Circuit speedup and sample size comparison for deep RL generalization.

programs. The predetermined sequences that are overfitted to the random programs can
cause poor performance in unseen programs (e.g., -24% for Genetic-DEAP). The evaluation
also shows that normalization technique 2© works better than normalization technique 1© for
deep RL generalization (4% vs 3% speedup). This indicates that normalizing the different
instructions to the total number of instructions in technique 2© (i.e., transforming the features
to reflect the distribution of the different instructions) allows more universal characteristics to
be represented across different programs, while taking the log in technique 1© only suppresses
the value ranges of different program features. Furthermore, when another set of 12,874
randomly generated programs is used as the testing set with filtered-norm2, the speedup
is 6% better than -O3.

4.7 Conclusion and Future Directions

Our proposed deep RL approach was shown to improve the performance of HLS designs by
optimizing the order in which the compiler applies optimization phases. Random forests
were used to analyze the relationship between program features and optimization passes.
This relationship was leveraged to reduce the search space by identifying the most likely
optimization phases to improve the performance, given the program features. Our RL based
approach achieves 28% better execution time than compiling with the -O3 flag after training
for a few minutes, and a 24% improvement after training for less than a minute. Furthermore,
unlike prior work, the proposed solution shows potential to generalize to a variety of programs.

The static captured features in AutoPhase do not fully capture the entire characteristics
of the program or the changes in the IR. Thus, the performance of AutoPhase can be

CHAPTER 4. AUTOPHASE 45

significantly improved with better features, which can include loop polyhedral analysis, graph
representation of the code, and abstract syntax tree. For better generalization, AutoPhase
should be trained on a wide spectrum of programs, potentially with a more sophisticated
deep neural network model. The underlying hardware should be featurized as an input for
AutoPhase for it to generalize to different hardware targets. Often the passes can allow
a modifiable value (pragma) to be passed in as an optimization (in AutoPhase this value
was set to the default). For example, when passing the vectorization or interleaving pass,
vectorization and interleaving factors can be passed to the compiler. This improvement is
addressed in our NeuroVectorizer system, presented in the next chapter. While here we
showed how to apply deep RL to HLS, a similar approach can be successfully applied to
software compilation and optimization.

46

Chapter 5

NeuroVectorizer

5.1 Introduction

Vectorization is another mission-critical compiler optimization challenge, crucial for enhancing
the performance of computer-intensive workloads. Modern computers typically have vector
instructions that perform multiple basic operations simultaneously, such as Intel Advanced
Vector Extensions (AVX) [152]. Vectorization is the process of converting a computer program
from a scalar implementation, which processes a single pair of operands at a time, to a vector
implementation, which performs a single operation on multiple data (SIMD) items at once.

Loops are among the most commonly vectorized parts of the code. Loop vectorization
is done by defining the vectorization factor (VF) and the interleaving factor (IF) [153]. VF
determines how many instructions to pack together from different iterations of the loop.
IF determines the stride of the memory accesses of the packed instructions. IF allows
vectorization to be performed on non-consecutive addresses, generally referred to as non-unit
stride accesses.

In most C and C++ compilers, intrinsic pragmas or compiler passes can be used to
manually vectorize loops by setting the VF and IF. However, manual vectorization is labor
intensive, error-prone, and results in code that is difficult to maintain and port. Several
solutions for automatic vectorization and loop optimization have been proposed. The
current vectorizer used in LLVM, and its proposed improvements [14, 154], rely on linear
and constant-cost models to predict the vectorization factors. Unfortunately, these cost
models do not consider the computation graph and focus on estimating the cost of different
instructions with predefined heuristics. Another common approach is Polly [15]. Polly
uses loop polyhedral analysis, which relies on an abstract mathematical representation,
namely equations and matrices, to represent loops as polytopes. The polytope representation
simplifies the implementation of loop optimizations, though to date the main optimizations
in Polly are tiling and loop fusion to improve data locality.

Machine learning is yet another recent approach that has been proposed for automatic
vectorization [49]. While this approach improves the cost models implemented by existing

CHAPTER 5. NEUROVECTORIZER 47

compilers, it still requires hand-engineered heuristics to extract features from the assembly
code, such as arithmetic intensity. Unfortunately, these features are typically not sufficient to
fully capture the code functionality. To overcome this challenge, an end-to-end solution that
relies on deep supervised learning was proposed in [51]. However, supervised learning methods
require labels to train. These labels are not always available and it can be time-consuming to
find them. Furthermore, optimizing for multiple objectives with large search spaces can be
challenging for supervised learning methods. Finally, deep RL differs from other machine
learning methods in that its inherent trade-off between self-exploration and exploitation [21]
can be leveraged.

In this chapter we present a framework for automatic vectorization using deep RL. A
human vectorization expert can determine the optimal vectorization factors, i.e., VF and
IF, for a specific hardware architecture by examining the computation graph, functionality,
operations, and loop bodies in the text code. In our framework we use a code embedding
generator that reads the text similarly to a human expert, “understands” it, and then
generates an embedding that represents it. We use the generated embedding as an input to
another neural network that can learn a mapping from this embedding to optimal vectorization
factors similar to those learned by a human expert. This approach efficiently addresses the
vectorization challenge end-to-end: from code to optimal factors, enabling the co-optimization
of multiple objectives while preserving code correctness.

This chapter makes the following contributions:

• A comprehensive data set of more than 10,000 synthetic loop examples.

• An end-to-end deep reinforcement learning (RL) [21] based auto-vectorization method.

• NeuroVectorizer [18]: an extensible, open-source1 framework that integrates learning
code embedding with multiple machine learning methods to make vectorization pre-
dictions on loops. We explore using random search, supervised learning methods, i.e.,
nearest-neighbor search (NNS) [155], decision trees [156], supervised fully connected
neural network (FCNNs), and contextual bandits based on deep RL.

• Rigorous evaluations across different learning hyperparameters and benchmark suites
to show the effectiveness of our approaches versus the currently used cost model as well
as its effectiveness versus Polly. Our results show 1.29×−4.73× average performance
speedup and only 3% worse speedup than the brute-force solution. Furthermore,
NeuroVectorizer shows the ability to generalize to unseen programs.

CHAPTER 5. NEUROVECTORIZER 48

Figure 5.1: Performance of the dot product kernel for different VFs and IFs, normalized to
the baseline cost model implemented in LLVM. The best VF and IF corresponding to the
baseline cost model are (V F = 4, IF = 2).

5.2 Motivation

Vectorization Characterization

To better understand the vectorization challenges that motivate this work, consider a simple
vector dot product kernel function:

int vec[512] __attribute__((aligned(16)));

__attribute__((noinline))

int dot_product () {

int sum = 0;

for(int i = 0; i<512; i++){

sum += vec[i]*vec[i];

}

return sum;

}

To eliminate noise and variance in results, this kernel is run one million times and the average
execution time is calculated. The kernel is run on 16 GB 2133 MHz LPDDR3 memory and
2.7 GHz (up to 4.5 GHz) Intel 4-Core i7-8559U [157], which supports AVX. Figure 5.1 shows
the performance of this kernel after a brute-force search for different VFs and IFs normalized
to the baseline cost model implemented in LLVM. The best VF and IF corresponding to the
baseline cost model are (V F = 4, IF = 2). While the baseline improved the performance
by 2.6× when compared to the unvectorized code (V F = 1, IF = 1), 26 out of 35 possible
factors improve over the baseline. This improvement is maximized by (V F = 64, IF = 8),
which performs up to 20% better than the baseline.

1https://github.com/intel/neuro-vectorizer.

https://github.com/intel/neuro-vectorizer

CHAPTER 5. NEUROVECTORIZER 49

Figure 5.2: Performance of brute-force search of LLVM’s vectorizer test suite, normalized to
the baseline cost model implemented in LLVM.

To show how the current baseline cost model can be further improved, we ran a brute-force
search for all possible VFs and IFs on the vectorization test suite used in the LLVM base code2,
which evaluates the cost model of the baseline vectorizer in LLVM. The performance of the
optimal vectorization normalized to the baseline is illustrated in Figure 5.2. In all the tests,
the optimal vectorization performed better than the baseline. and for more complicated tests,
the performance gap increased by up to 1.5×. There results provide additional motivation for
using deep RL to automatically vectorize loops. In what follows, we show how deep RL can
learn with fewer samples than supervised learning methods, without the need for brute-force
search, which can be impractical for a larger number of samples. We further show how deep
RL — unlike supervised learning — can co-optimize for multiple objectives, such as code
size, compilation time, and execution time.

5.3 The Proposed Framework for Automatic

Vectorization

The proposed framework for automatic vectorization with deep RL and its components are
illustrated in Figure 5.3. The directory of code files is fed to the framework as text code.
This code is fed to an automatic loop extractor. The extractor finds and outputs all the

2The test suite is available on:
https://github.com/llvm/llvm-test-suite/tree/master/SingleSource/UnitTests/Vectorizer.

https://github.com/llvm/llvm-test-suite/tree/master/SingleSource/UnitTests/Vectorizer

CHAPTER 5. NEUROVECTORIZER 50

Figure 5.3: The proposed framework for automatic vectorization with deep RL. The programs
are read to extract the loops. The loop texts are fed to the code embedding generator to
generate an embedding. The embedding is fed to the RL agent. The RL agent learns a policy
that maps this embedding to optimal vectorization factors by injecting compiler pragmas
and compiling the programs with Clang/LLVM to gather the rewards: the execution time
improvements.

Figure 5.4: An example of the automatically injected VF and IF pragmas by the RL agent.

loops and their contexts in all the source codes. These outputs are fed to a code embedding
generator to learn and generate an embedding. The latter is fed to the deep RL agent to
predict the vectorization factors. The agent automatically injects vectorization pragmas as
shown in Figure 5.4. The agent then compiles the program with clang/LLVM to gather the
execution time improvements, which are used as rewards to the RL agent. Once the model is
trained it can be plugged in as-is for inference without further retraining3. Note that our
framework cannot introduce new errors in the compiled code. Our framework injects pragmas
only. These pragmas are used as hints to make vectorization decisions on the loops. However,
sometimes the compiler can decide not to consider these pragmas if it is not feasible to do so.

3It can still be beneficial to keep online training activated so that when completely new loops are observed,
the agent can learn how to optimize them too.

CHAPTER 5. NEUROVECTORIZER 51

For example, predicates and memory dependency can make it difficult to find the optimal
VF and IF. In that case, if the agent accidentally injected bad pragmas, the compiler will
ignore them.

It is also possible to vectorize from the command line by giving the passes -force-vector-
width=VF and -force-vector-interleave=IF. However, this option was not used as it restricts
us to a single VF and IF pair for the entire code, which is far from optimal. Furthermore, for
nested loops, the pragma is injected to the innermost loop. Next, we discuss the details of
each component in the proposed framework.

Code Embedding

The ultimate goal of the code embedding generator is to learn a function that maps the input
loop codes to a point in a latent multidimensional space where similar loop codes are mapped
to points close to each other in that space. This can allow the RL agent to make similar
vectorization decisions on similar codes using the learned embedding. There are multiple
ways to generate/learn an embedding for the input code. One is to use Polly’s mathematical
representation of loops as an embedding. We see this as a potential future direction for this
work. It is also possible to use a neural network model pretrained with labels that describe
the functionality, e.g., matrix multiplications, dot product, convolution, etc.

In this work we use code2vec [158]. Code2vec is a neural network model that relies
on natural language processing [159] and attention [160] to represent snippets of code as
continuously distributed vectors. Code2vec represents a code snippet as a single fixed-length
code vector, which can be used to predict the semantic properties of the snippet. This vector
is composed of 340 features that embed the program code based on the mapping learned by
the code2vec neural network. This vector captures many characteristics of the code, such
as semantic similarities, combinations, and analogies. The code is first decomposed to a
collection of paths in its abstract syntax tree. Then, the network simultaneously learns the
atomic representation of each path while learning how to aggregate a set of them.

The RL Environment Definition

To learn a good policy, it is necessary to appropriately define actions, rewards, and states.
We define the agent’s reward as follows:

reward = (tbaseline − tRL)/tbaseline, (5.1)

where tbaseline is the execution time when compiled with the currently implemented baseline
cost model in LLVM and tRL is the execution time when compiled with the pragmas injected
by the RL agent. We normalize the execution time by tbaseline so that our reward metric
is robust to the variations in the programs’ execution times. We also use tbaseline as a bias
in our reward so that a positive reward means the current configuration improves over the
baseline. This also reduces the variance in the learned policy.

CHAPTER 5. NEUROVECTORIZER 52

An action picks the VF and the IF, respectively, from the following values:

V F ∈ [20, 21, 22, ...,MAX VF],

IF ∈ [20, 21, 22, ...,MAX IF],
(5.2)

where MAX VF and MAX IF are, respectively, the maximum VF and IF supported by the
underlying architecture. Note that the actions for VF and IF can be defined to have values
that are not powers of two. Here they were defined as powers of two only because this is
what LLVM currently supports. Initially, we trained two agents, one that predicts VF and
another that predicts IF independently. However, as shown in our experiment, performance
improve when these two agents are combined into one agent with a single neural network
that predicts the VF and IF simultaneously. This also aligns with the fact that IF and VF
are directly correlated, and in the LLVM compiler code they are defined as functions of one
another.

The states of the RL agent were defined as the vector output embedding from the code
embedding generator. For the inputs of the code embedding generator, we experimented with
different snippets of the loop bodies and observed that for nested loops, feeding the loop
body of the outermost loop, which also includes the bodies of the inner loops, yielded better
performance than feeding the body of the innermost loop only. This is mainly because the
entire loop nest better captures the functionally of the code, and reveals the access patterns
and strides.

Dataset Description

Neural networks require many samples for training. We first tried to train our model with
long-running benchmarks that include code that is not restricted to loops only. Training was
time-consuming because every time a pragma is injected for a loop, the whole program has
to be recompiled and executed. Even if we had the resources to overcome the challenges of
long execution time, the number of open-source benchmarks available for training is very
small [50].

To speed up the training and make it more efficient, we built a dataset that includes
loops only. We built generators that generate more than 10,000 synthetic loop examples
automatically from the LLVM vectorization test suite. For example, some new tests are
created by changing the names of the parameters, which was crucial for reducing noise
in the code embedding generator, as the names of the parameters might often bias the
embedding. Other examples included the stride, the number of iterations, the functionality,
the instructions, and the number of nested loops. Below are some of the loop examples in
the dataset and the (commented) pragma line that the RL agent will inject:

/* Example #1 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i = 0; i < N-1; i+=2) {

assign1[i] = (int) short_a[i];

CHAPTER 5. NEUROVECTORIZER 53

assign1[i+1] = (int) short_a[i+1];

assign2[i] = (int) short_b[i];

assign2[i+1] = (int) short_b[i+1];

assign3[i] = (int) short_c[i];

assign3[i+1] = (int) short_c[i+1];

}

/* Example #2 */

for (i=0; i<M; i++) {

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (j=0; j<N; j++) {

G[i][j] = x;

}

}

/* Example #3 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i=0; i<N*2; i++){

int j = a[i];

b[i] = (j > MAX ? MAX : 0);

}

/* Example #4 */

for (i = 0; i < M; i++){

for (j = 0; j < L; j++){

float sum = 0;

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (k = 0; k < N; k++) {

sum += alpha*A[i][k] * B[k][j];

}

C[i][j] = sum;

}

}

/* Example #5 */

//#pragma clang loop vectorize_width(VF) interleave_count(IF)

for (i = 0; i < N/2-1; i++){

a[i] = b[2*i+1] * c[2*i+1] - b[2*i] * c[2*i];

d[i] = b[2*i] * c[2*i+1] + b[2*i+1] * c[2*i];

}

Figure 5.5 shows the distribution of optimal vectorization factors when running a brute-force
search with MAX VF = 16 and MAX IF = 8 on the dataset. While these loops do not
represent all the existing loops, the results show that different loops have different optimal
VF and IF. All combinations of VF and IF should be considered, if optimal performance
is to be guaranteed. Interestingly, the factors with the highest percentage of programs are
(V F = 4, IF = 2). In our experiments, these factors were the default values the baseline cost
model also outputted.

CHAPTER 5. NEUROVECTORIZER 54

Figure 5.5: The distribution of optimal VF and IF with brute-force search for different
programs in the dataset.

Handling Long Compilation Time

During training, some of the programs took a long time to compile, mainly when the agent
was trying to vectorize more than is plausible given the available resources. To overcome
this, the compilation time was limited to ten times the time it takes to compile a program
with the baseline cost model. If the program took longer than that to compile, we gave
a penalty reward of −9 (equivalent to assuming it takes ten times the execution time of
the baseline) so that the agent will learn not to overestimate the vectorization. Moreover,
the programs that took a relatively long time to compile did not, in the end, yield better
results. Nonetheless, in contexts where compile time is important to the user, our reward
definition can also incorporate it, by making the reward proportional to the decrease in
compilation time or penalizing for longer compilation times. The reward can also be defined
as a combination of the compilation time, execution time, generated assembly code size, etc,
allowing for the simultaneous optimization of multiple objectives.

5.4 Evaluation

We evaluated the proposed framework following the methodology in Section 5.2. For code2vec
we used the open-source code and modified it to work with our RL agent implementation. To
run our RL algorithms, we used RLlib [122] and Tune [161], open-source libraries for RL that
offer high scalability, hyper-parameter tuning, and a unified API for a variety of applications.
RLlib and Tune are built on top of Ray [149], a high-performance distributed execution

CHAPTER 5. NEUROVECTORIZER 55
Re

w
ar

d
M

ea
n

Lr=5e-3
Lr=5e-4
Lr=5e-5

Tr
ai

ni
ng

 Lo
ss

Reward Mean for Different Learning Rates Training Loss for Different Learning Rates

Lr=5e-3
Lr=5e-4
Lr=5e-5

Re
w

ar
d

M
ea

n

Tr
ai

ni
ng

 Lo
ss

Reward Mean for Different FCNN Architectures Training Loss for Different FCNN Architectures

32x32
64x64
128x128

32x32
64x64
128x128

Number of Training Steps Number of Training Steps

Number of Training Steps Number of Training Steps

Reward Mean for Different Batch Sizes Training Loss for Different Batch Sizes

Number of Training Steps Number of Training Steps

Re
w

ar
d

M
ea

n

Tr
ai

ni
ng

 Lo
ss

500
1000
2000
4000

500
1000
2000
4000

Figure 5.6: Reward mean and training loss for different learning rates, FCNN architectures,
and batch sizes.

framework targeted at large-scale machine learning and RL applications. We first trained the
framework with the RL agent and code2vec until convergence. We then ran a brute-force

CHAPTER 5. NEUROVECTORIZER 56

Reward Mean for Different Action Space Definitions Training Loss for Different Action Space Definitions

Re
w

ar
d

M
ea

n

Tr
ai

ni
ng

 Lo
ss

discrete
continuous_1
continuous_2

discrete
continuous_1
continuous_2

Number of Training Steps Number of Training Steps

Figure 5.7: Reward mean and training loss for different action space definitions.

search on the dataset to find the best vectorization factors and used them as labels for NNS,
the decision tree, and the supervised FCNN. Since the brute-force search requires a long
time to run, we limited our training set to 5,000 samples and used this set for the rest of our
evaluation. To report performance, we took twelve completely different benchmarks from the
test set. These benchmarks combine completely different benchmarks from the LLVM test
suite. These benchmarks include loops with different functionality and access patterns, for
example, predicates, memory accesses with different strides, bitwise operations, unknown
loop bounds, if statements, unknown misalignment, multidimensional arrays, summation
reduction, type conversions, and different data types. We compared the performance of our
framework to Polly and the baseline cost model.

We started with a 64× 64 FCNN, with training batch size of 4,000, a learning rate of 5e-5
— a hyperparameter which determines to what extent newly acquired information overrides
old information — and discrete actions. We then experimented with changing one parameter
at a time. For discrete actions, the neural network picks two integer numbers that index
into the arrays of possible VFs and IFs. We experimented with different hyperparameters.
Figure 5.6 shows a hyperparameter sweep over different hyperparameters as function of the
number of training steps, i.e., compilations. We trained up to 500,000 steps to see whether
more training yields better rewards, but it is clear that the policy converges with much fewer
steps.

These results show that the current framework is robust to noise and different parameters.
When the learning rate was set to 5e-5, the reward mean reached the maximum in the shortest
time. For learning rate 5e-3, the reward mean never reached a higher maximum than that
of the smaller learning rates and the training loss was the highest. Minor differences were
observed for the different FCNN architectures. We also tried single hidden layer networks
and deeper networks, not included in the figures because the results were similar. The policy
converged with fewer samples as the batch size was decreased. We also experimented with

CHAPTER 5. NEUROVECTORIZER 57

Figure 5.8: The performance of the proposed vectorizer compared to brute-force search, Polly
and the baseline cost model. The vectorizer can be configured to use NNS, random search,
decision trees, and RL. The performance is normalized to the baseline.

smaller batch sizes; these resulted in unstable policies that did not outperform the scenario
when the batch size was set to 500.

The results also show that the policy converged and arrived at a highly rewarding state
with 5,000 samples (for the lowest batch size), 35× less than that required for a brute-force
search or a supervised learning method. Note that higher than 0 means better, on average,
than the baseline, according to the reward definition in Section 5.3. It is important to
emphasize that this training is performed once and that the framework can be used later for
inference, which requires a single step only, similar to the baseline cost model. By contrast, a
brute-force method would require repeating the search.

Figure 5.7 shows the reward mean and total training loss as function of the number
of training steps for different action space definitions. We experimented with three action
space definitions: 1 a discrete action space, where the agent picks two integer numbers that
correspond to indices in the arrays of VFs and IFs, 2 a continuous action space where the
agent picks one continuous number that encodes both the VF and IF, and 3 a continuous
action space where the agent picks two continuous numbers that encode both the VF and IF.
The numbers in the continuous action spaces are rounded to the closest integers. The results
show that the discrete action space performs the best.

The performance on different benchmarks for the baseline, random search, Polly, decision
tree, NNS, supervised FCNN, and RL and brute-force search are shown in Figure 5.8. RL
outperformed the baseline by 2.67× on average and achieved performance only 3% worse
than that of the brute-force search. The availability of more vectorizable instructions in
a benchmark was a key factor in the performance difference. NNS and decision trees also

CHAPTER 5. NEUROVECTORIZER 58

performed well, with respectively 2.65× and 2.47× better performance than the baseline. This
shows that the embedding learned by the code embedding generator during the end-to-end
training is good; thus other learning methods that cannot be trained end-to-end can also
perform well using this embedding.

Random search performed much worse than the baseline. This shows that the framework
learned a structure in the observations that manifested in the vectorization decisions it made.
Polly outperformed the baseline by 17% but performed 56% worse than the proposed RL
solution. In benchmark #10, it outperformed the brute-force search because it performs loop
transformations that optimize beyond vectorization. This shows the potential for further
improving performance by combining Polly and deep RL. We plan to explore this in future
work.

While NNs and decision trees cannot be trained end-to-end and require special handling,
the supervised FCNN can be trained end-to-end and performs comparably to deep RL.
However, RL does not require labels and thus can be trained without a brute-force search. To
demonstrate the advantage of deep RL, Figure 5.9 shows its normalized average (geomean)
performance compared to supervised FCNN as a function of the number of compilations
required (samples). Deep RL performs very well with as few as 5,000 compilations (only
5% worse than the peak) and 1.26× better than the supervised FCNN. Supervised FCNN
achieved this only after 70,000 compilations, making it 14× less sample efficient than deep
RL. Furthermore, in the long run, we believe that deep RL can better handle large search
spaces with multiple objectives to co-optimize.

Transfer Learning

To assess how well the framework generalizes to a completely new code, we evaluated the
trained model on two benchmarks: MiBench [162], where the loops constitute a minor
portion of the code, and PolyBench [163], where the loops constitute a major portion of
the code. MiBench is a set of free and commercially representative embedded benchmarks
for telecommunication, networking, security, office, and automation. Note that some of the
MiBench benchmarks cannot be vectorized. For example, due to memory dependencies,
control-flow or lack of loops, it was not possible to vectorize adpcm, dijkstra, basicmath,
blowfish, etc. PolyBench includes benchmarks that perform matrix operations, decomposition,
and linear algebra, on which Polly is optimized to run.

Figure 5.10 shows the performance of deep RL, Polly, and the baseline on PolyBench.
Deep RL achieves on average 3.42×4 better performance than the baseline and 1.33× better
than Polly. Despite Polly being optimized to run on PolyBench, deep RL outperformed it on
three out of the six benchmarks. Polly nonetheless performed better on some benchmarks due
to its ability to perform loop transformations that optimize beyond vectorization. The lack
of enough benchmarks in the dataset leads the deep RL agent to be less generalizable to new

4Note that we take the average performance improvement over multiple inferences. If instead we take the
best performance, the deep RL improves by 4.77× on average: 3.71× for 2mm, 6.74× for bicg, 6.92× for ajax,
5.21× for gemm, 1.61× for gemver, and 8.16× for cholesky.

CHAPTER 5. NEUROVECTORIZER 59

Figure 5.9: Normalized average performance of supervised FCNN and deep RL as a function
of the number of compilations (samples) used for training.

benchmarks. The high penalty incurred by the deep RL agent due to the long compilation
time also worked to Polly’s advantage: when the RL agent tried to increase the values of
VF and IF, the reward sometimes decreased due to the time factor. In such cases, the agent
learns to avoid being overly optimistic about increasing these values. With more training
data the agent can generalize better to larger loop bounds on new examples. When Polly is
combined with deep RL, the average potential performance improvement is 4.35×.

Figure 5.11 shows the performance of deep RL, Polly, and the baseline on MiBench. Deep
RL outperforms both Polly and the baseline in all the benchmarks. The average performance
improvement was 1.1× over the baseline. This result is promising despite the improvement
being small as the benchmarks did not rely heavily on loops, and the measured execution
time was for all the code not restricted to loops.

Discussion: Deployability

Vendors and commercial companies are generally reluctant to adopt machine learning and
deep learning methods in compiler optimization. The main reason is their need for methods
that are deterministic, simple, easy to explain, and performant on a large scale of applications.
This also explains why most of the optimizations and implementation in compilers are based
on manual engineering and heuristics. With that being said, we believe that the growing
complexity in systems and workloads, along with the increasing availability of data, are

CHAPTER 5. NEUROVECTORIZER 60

Figure 5.10: The performance of the proposed vectorizer on Polybench compared to Polly
and the baseline cost model. The performance is normalized to the baseline.

Figure 5.11: The performance of the proposed vectorizer on Mibench compared to Polly and
the baseline cost model. The performance is normalized to the baseline.

CHAPTER 5. NEUROVECTORIZER 61

best addressed by learning-based approaches. Deep RL and other deep learning methods
present a unique opportunity to address these compiler challenges end-to-end and improve
upon manual engineering. In our evaluation, we showed that deep RL can generalize to new
benchmarks. With enough training data, deep RL can be deterministic and performant on
a large scale of applications. Since it will be applied mainly for inference, it will also be
simple to use and deploy. The main challenge will remain in interpretability. This challenge
is not only a limitation of deep RL in vectorization, but it is also a limitation of neural
networks in general. Many recent works focus on explaining neural network decisions [164];
better understanding of these decision-maker processes will benefit the use of deep RL in
code optimization. Moreover, neural networks have been adopted to solve many advanced
real-world challenges regardless of the interpretability limitation. We believe that compilers
and code optimization should also follow.

5.5 Related Work

Previous work has utilized machine learning in compiler optimization [16, 17]. For example,
deep supervised and RL methods were proposed in [5, 13, 28] to overcome the phase ordering
challenge. In [49], multiple machine learning methods for automatic vectorization were
proposed. Our work differs in that it is the first to propose a solution based on deep RL to
explore the vectorization space and compiler optimization in general. Moreover, all these
works rely primarily on extracted/engineered (hand-crafted) features from the program, e.g.,
arithmetic intensity, memory operations, number of different instructions, or distance between
producer and consumer. However, these features do not fully represent the original code.
Our work addresses automatic vectorization by learning useful features in an end-to-end
fashion, from the text code itself to the optimal factors without any loss of information.
In [51] end-to-end supervised deep learning is used to learn compiler heuristics. While such
an approach can achieve comparable performance, finding the labels for training can be time
consuming, and optimizing for multiple objectives with large search spaces can be challenging.

Automatic vectorization with other methods has also been proposed. For example,
the currently implemented cost model in LLVM and recently proposed cost models in [14,
154, 165] rely on predefined cost functions that calculate the expected execution time of
a vectorized loop based on a linear formula from the instruction distribution. In [166],
superword level parallelism (SLP) [167] is exploited to prevent unnecessary vectorization.
But loop vectorization is not addressed and the baseline cost model is used to predict when
some portions of code are better off not vectorized. In [168] heuristics are used to guide
automatic vectorization. Finally, [169, 170] improve SLP and rely on fixed cost models such
as weighted instruction count or the current LLVM cost models.

CHAPTER 5. NEUROVECTORIZER 62

5.6 Conclusion and Future Directions

Our end-to-end NeuroVectorizer framework automatically detects loops, learns their structures,
and applies deep RL to inject vectorization pragmas to the compiler. NeuroVectorizer can
generalize to unseen programs and demonstrates an average performance improvement
1.29 × −4.73× compared to the baseline cost model implemented in LLVM and performs
only 3% worse on average than the brute-force solution.

We see multiple future directions for this work. Computation cost can be reduced using
loop polyhedral analysis, which operates on loop snippets for the code embedding. Combining
deep RL and Polly can further boost the performance, and training the RL agent to predict
using Polly will be advantageous. The deep RL vectorizer can also be employed at the
intermediate representation level, which can better reflect the effects of the vectorization on
the code. This in turn could help the agent learn better predictions. Features representing
different underlying architectures should be added and separate models trained for each as
different architectures behave differently and have different VF and IF action spaces. In this
work, we showed the potential of the deep RL vectorizer as the first step toward end-to-end
code optimization with machine learning and deep RL. However, in order for this vectorizer
to become a standardized optimization stage in the LLVM compilation stack, training must
be conducted on a wide range of applications and target architectures.

In our approach, we assumed the agent makes a single decision per loop nest (i.e., episode).
However, with new compiler features such as the support of vectorization at different levels of
a nested loop, the deep RL agent will not be restricted in this way. It will be able to perform
multiple sequential decisions that collectively form a single episode of multiple actions and
states.

Pragmas such as loop unrolling, distribution, and vector predication can be similarly
tuned. The user needs only to define an appropriate action space and a reward function
that depends on the desired objective. Many compiler optimizations today are global rather
than local. For example, the phase ordering of compiler passes is applied indiscriminately
to all the functions in the code. By fine-tuning the pragmas, different phase orderings and
optimizations can be determined automatically for different sections of the code.

Our framework can also support vanilla deep neural network methods instead of deep RL.
One direction we are exploring is to use a neural network that learns a ranking scheme on
the VFs and IFs. Given an embedding and pragmas, the network can learn the execution
times normalized to the non-vectorized code. This is equivalent to learning a new cost model
for each VF and IF. These models could replace the baseline cost models. This method –
unlike NNs and decision trees – can be trained end-to-end.

63

Chapter 6

ProTuner

6.1 Introduction

Most deep learning and image processing programs rely heavily on loops, which represent the
vast majority of a program’s total execution time. The large number of loops in each loop
nest makes it possible to schedule them in many different, yet functionally equivalent ways.
Choosing a bad program schedule can dramatically increase execution time. Similar schedules
can include different optimizations such as inlining, tiling, vectorization, and multithreading,
which can significantly impact program performance. The number of possible optimizations
grows exponentially with the number of loops in the loop nest. With the end of Moore’s
law and the boom of new, application-specific integrated circuits (ASICs), the scheduling
challenge becomes harder as the scheduler also needs to generate different schedules for
different target architectures.

Due to its complexity, scheduling is often done using heuristics and tremendous amounts
of hand engineering. Big vendors often hire engineers whose only job is to manually write
schedules for different applications. This incurs huge costs both in terms of time and human
capital. Heuristics mostly fall short of optimal performance [13, 18, 50]. Ideally, the scheduler
should consider all the possible schedules and the target hardware to find the optimal
schedule. Unfortunately, the space of possible schedules for different hardware targets is
prohibitively large to explore. To cope with that, a recent work [12] proposed using beam
search with a learned cost model to find good schedules. While this approach achieves
promising improvements over the baseline default auto-scheduler in Halide [65], it often fails
to find the optimal schedule. The main problem is in the greediness of beam search and the
inability of the cost model to accurately predict the performance of partially scheduled (not
meaningful) programs, which is required at every intermediate step of the beam search. This
results in a multiplied error at every decision made in the beam search tree and an inability
to explore schedules that are less rewarding in the short term but potentially more rewarding
in the long term.

ProTuner overcomes these challenges by using Monte Carlo Tree Search (MCTS) [171].

CHAPTER 6. PROTUNER 64

In ProTuner, the scheduling problem is formulated as a Markov decision process (MDP)
where each intermediate schedule is represented as a state and the actions are the different
intermediate optimizations that could be applied next. The reward is proportional to the
execution time improvement. The solution would be the actions that lead to the optimal
schedule; hence, solving the MDP can guarantee the optimal schedule.

One promising algorithm for solving MDPs is MCTS. MCTS builds a search tree using
selection, expansion, simulation, and backpropagation to explore the search space. After
some number of iterations, the tree decides which next step (of intermediate scheduling
optimization) to perform next. When this happens, a new root is determined and the MCTS
starts again. With the upper confidence bound (UCB) [42], MCTS is guaranteed to converge
to the optimal solution after enough iterations.

MCTS makes decisions by looking ahead, evaluating complete schedules, avoiding greedi-
ness, and considering the expected long-term reward of scheduling decisions, which also makes
it more resilient to noise in the cost model. To test our conjecture that MCTS is a better fit
than beam search for finding the optimal schedule, we implemented ProTuner with MCTS
on top of Halide [65] and evaluated its performance. ProTuner with MCTS outperformed or
performed comparably to beam search on all the evaluated benchmarks, with up to 3.25×
speedup on the best performing benchmark.

This chapter makes the following contributions:

• Formulates the scheduling problem as an MDP and solves it using MCTS with the
UCB.

• Explains how ProTuner was implemented on top of Halide and explores different MCTS
techniques to improve and fine-tune its performance.

• Presents rigorous evaluations that show a performance improvement of up to 3.25×
better than beam search on a suite of 16 real benchmarks.

• Shows how ProTuner can combine real execution time evaluation with the learned cost
model to further boost its performance.

We also briefly discuss Ansor [32], which is similar to ProTuner but uses evolutionary
search instead of MCTS to explore optimizations outside the search space of other frameworks.

6.2 Challenges in Beam Search

A beam-search based approach [12] was recently proposed as a scheduler in Halide, with
state-of-the-art results. In this approach, a cost model is trained as a proxy for predicting the
true execution time of intermediate schedules used by the beam search to determine which
schedules to choose. Unfortunately, the cost model is trained on fully scheduled programs
and cannot predict the execution time of incomplete/partially-scheduled programs. We also

CHAPTER 6. PROTUNER 65
E

xe
cu

tio
n

Ti
m

es
 S

pe
ed

up

0.0

1.0

2.0

3.0

bi
la

te
ra

l_
gr

id
lo

ca
l_

la
pl

ac
ia

nl
_m

ea
ns

le
ns

_b
lu

r
ca

m
er

a_
pi

pe
st

en
cil

_c
ha

in

ha
rri

s

hi
st

m
ax

_f
ilte

r
un

sh
ar

p
in

te
rp

ol
at

e
co

nv
_l

ay
er

iir
_b

lu
r

bg
u

m
at

_m
ul

re
sn

et
50

ge
om

ea
n

greedy beam
Training a Value Function

Figure 6.1: Speedup of greedy and beam search with a cost model trained to predict the
cost of the future complete schedules. For each algorithm, the speedup is normalized to the
performance when the original cost model (trained on complete schedules only) is used.

E
xe

cu
tio

n
Ti

m
es

 S
pe

ed
up

0.0

1.0

2.0

3.0

bi
la

te
ra

l_
gr

id
lo

ca
l_

la
pl

ac
ia

nl
_m

ea
ns

le
ns

_b
lu

r
ca

m
er

a_
pi

pe
st

en
cil

_c
ha

in

ha
rri

s

hi
st

m
ax

_f
ilte

r
un

sh
ar

p
in

te
rp

ol
at

e
co

nv
_l

ay
er

iir
_b

lu
r

bg
u

m
at

_m
ul

re
sn

et
50

ge
om

ea
n

greedy beamTraining on the Benchmarks

Figure 6.2: Speedup of greedy and beam search with a cost model trained directly on random
schedules of all the benchmark algorithms themselves. For each algorithm, the speedup is
normalized to the performance when the original cost model (trained on complete schedules
only) is used.

observed that the cost model often falls short in properly predicting execution times of fully
scheduled programs. Thus, minimal cost does not necessarily mean optimal execution time.
This makes the beam search very sensitive to inaccuracies in the cost model. Since beam
search queries the cost model at every scheduling decision, this error aggregates.

To illustrate the disadvantage of beam search, we perform two experiments for predicting

CHAPTER 6. PROTUNER 66

the execution time of incomplete programs. In the first we trained a cost model as was
done in [12], except that we trained it on the fully scheduled benchmarks that we later run
the search on. Figure 6.2 shows the results on beam search and greedy search (i.e., beam
search with a beam size of one) with the new cost model. We observed that the performance
improves for some benchmarks while for others it deteriorates and overall the performance is
similar. This was also observed by the authors in [12] when they retrained their cost model
on the specific benchmark programs that they were also autotuning. Even if the model is
trained on the benchmarks on which we later run the inference, it is hard for the cost model
to accurately predict the execution time of incomplete schedules during the search. In the
second experiment, shown in Figure 6.1, we trained the model to predict the future cost
of the current schedule. This also did not work well because there are multiple options for
scheduling the rest of the program; thus, the same partial schedule can lead to different costs.

These problems can be avoided if we formulate the scheduling problem as an MDP.
Because a graph node represents an intermediate schedule/program, and edges between
nodes represent potential scheduling actions, applying a particular schedule to a program
can be seen as a simple graph traversal. The goal is to find a node/set of actions that
maximizes the reward of the end state. In our use case, the reward would be the inverse of the
execution time (thereby ensuring that maximizing the reward gives the fastest program). This
motivated our choice of MCTS, which, in addition to the advantages mentioned in Section 6.1,
is theoretically guaranteed to find the best node with sufficient time. Moreover, its UCB
formula strikes a good balance between the exploration of new states and the exploitation of
existing states, thus leveraging the tradeoff discussed in Chapter 5.

Finally, MCTS allows us to combine real execution time measurements and the cost
model’s predictions to further improve performance.

6.3 The Proposed ProTuner Scheduler

Our MDP is defined by actions that correspond to intermediate scheduling decisions and
states that represent intermediate schedules. The cost is the execution time of the schedule.
To enumerate the possible schedules and evaluate their costs, we use the same techniques
used in [12]. Given an n-dimensional tensor, the scheduling is split to n stages. Starting from
the last stage and back to the input, a new scheduling decision is made at each stage, with
a new tiling and a compute and storage granularity for inserting the new stage. The new
tilings can be unrolled or spread across parallel threads or single instruction multiple data
(SIMD) lanes. The costs of the complete schedules (at the end of simulation) are evaluated
using a cost model trained on random, fully scheduled programs.

Figure 6.3 shows the block diagram of ProTuner. The MCTS starts from the last stage
and explores the possible schedules back to the inputs. Every simulation from one node in
the MCTS ends by computing the cost from the cost model and backpropagating to the
parent nodes with the terminating fully scheduled state. These nodes update the future best
cost so far, the terminating state, and the value function that stores the average cost so far.

CHAPTER 6. PROTUNER 67

Program
MCTS

Cost

Schedule

Optimal
Schedule

Learned
Cost

Model

Figure 6.3: The block diagram of ProTuner. The program is fed to the MCTS, which
interacts with the learned cost model to find the optimal schedule. To make each intermediate
scheduling decision, the MCTS explores the benefits of the possible next actions based on the
average cost but eventually picks the root that leads to the best cost. Each node stores the
average costs, the best cost so far, and the complete schedule that has this best cost. The
simulation can either be greedy or random. The backpropagation returns costs or 0/1 based
on whether it outperforms the global best. When running an ensemble of MCTSes, the next
root is picked to be the best from all the best roots.

CHAPTER 6. PROTUNER 68
P

er
ce

nt
ag

e
of

 D
ec

is
io

ns

0%

25%

50%

75%

100%

16_0 15_1 12_4 8_8 4_12 1_15 0_16
standard greedy

bilateral_grid

(a) Proportion of decisions made by standard
and greedy MCTSes on the bilateral grid

test.

P
er

ce
nt

ag
e

of
 D

ec
is

io
ns

0%

25%

50%

75%

100%

16_0 15_1 12_4 8_8 4_12 1_15 0_16
standard greedy

nl_means

(b) Proportion of decisions made by standard
and greedy MCTSes on the nl means test.

P
er

ce
nt

ag
e

of
 D

ec
is

io
ns

0%

25%

50%

75%

100%

16_0 15_1 12_4 8_8 4_12 1_15 0_16
standard greedy

iir_blur

(c) Proportion of decisions made by standard
and greedy MCTSes on the iir blur test.

P
er

ce
nt

ag
e

of
 D

ec
is

io
ns

0%

25%

50%

75%

100%

16_0 15_1 12_4 8_8 4_12 1_15 0_16
standard greedy

max_filter

(d) Proportion of decisions made by standard
and greedy MCTSes on the max filter test.

Figure 6.4: The proportion of decisions made by greedy MCTSes as a function of different
numbers of standard and greedy MCTSes on a suite of four real applications. X Y corresponds
to X standard MCTSes and Y greedy MCTSes. The overall number of trees is 16.

During the search the MCTS uses the average cost to determine the next child to explore.
We tried using the best cost in the search but that resulted in non-smooth value functions
where the children that got lucky earlier and found better costs performed significantly more
simulations than less lucky children. This often results in the greedy behavior we are trying
to avoid.

When the computation budget is reached either after exceeding the number of allowed
iterations or due to time out, a winning action (schedule) for the current stage is determined
and the new root is the state this action leads to. The winner is determined based on the
best cost so far, as in [172]. We found this method to outperform taking the child with the
best average cost by 25%. This is mainly because it can guarantee that later steps need to
find schedules that are better than the best so far (rather than average best), which can be
helpful when fewer iterations are available. This also allows us to combine real execution

CHAPTER 6. PROTUNER 69

time measurements with cost model predictions at a negligible overhead.
To further improve our results, we ran multiple MCTSes in parallel across multiple cores

that synchronize when picking a new root at every intermediate scheduling decision, which is
the best child from all the best children of all the MCTSes. In addition to the performance
benefits conferred by this parallelism, an ensemble of MCTSes is proven to outperform a
single MCTS with the number of iterations equal to the combined number of iterations
available in the ensemble [173]. Furthermore, MCTS does not need to evaluate the costs of all
the children during simulation or compute their state features (which we found to consume
more than 92.3% of the overhead in beam search). Instead, it randomly and continuously
picks a possible child and only evaluates one state when it is fully scheduled.

Improving Scheduling Time by Adding Greedy MCTSes

We explored multiple techniques to improve the scheduling time of our MCTS. We found
that adding some greediness to our algorithm allows it find good schedules in a shorter
time. First, we explored adding greediness by picking the best next action with probability 1

2

instead of randomly picking an action during the simulation phase. This, however, offered no
benefits over simulating random actions. We then tried instead to mimic the MCTS scheme
in single-player games with 0/1 rewards. When running from the first root, MCTS finds
the best cost, and then the children that later become roots get 1 point if they beat their
parent’s cost, and 0. This normalizes the reward, simplifies the hyperparameter tuning of the
cost, and forces the new roots to beat the costs of their ancestors. However, this resulted in
9% worse performance.

What finally worked very well was to combine standard MCTSes with an MCTS that
simulates greedily. In the latter, after the node to be expanded based on the UCB formula is
determined, it is expanded with a random child but the simulation is done purely greedily
using the cost model. To determine how many trees should simulate randomly and how
many greedily, we experimented with different numbers of random or greedy MCTSs on
four real applications, as shown in Figures 6.4 and 6.5. We found that applications such
as bilateral grid and nl means benefited from adding greedy MCTSes while iir blur

and max filter did not. We also observed that it is sufficient to use a single MCTS that
simulates greedily as it struck a good balance between greediness and uniform exploration.
Figure 6.4 shows the number of decisions made by greedy MCTSes as a function of different
numbers of random and greedy MCTSes. Adding more greedy MCTSes did not change the
number of decisions made by greedy MCTSes for nl means, which benefits from greediness.
For bilateral grid, the number of decisions made by greedy MCTSes increased slightly,
but this did not impact the performance as we found that greedy MCTSes often found similar
best states. For iir blur and max filter, which benefit mostly from standard MCTSes,
adding more greedy MCTSes slightly increased the number of decisions made by greedy
MCTSes but resulted in worse performance.

CHAPTER 6. PROTUNER 70

Figure 6.5: The execution time speedup to the best execution time on a suite of four real
applications (higher is better). X Y corresponds to X standard MCTSes and Y greedy
MCTSes. The overall number of trees is 16. The 15 1 setting did best overall.

Combining the Cost Model and Real Execution Time
Measurement

Despite their inaccuracies, cost models are often used because calculating the real measurement
is time consuming. To compensate for inaccuracies in the cost model while incurring minimal
additional overhead, we added real execution time measurements at every iteration where a
new root is declared. Our final algorithm is shown in Figure 6.6. The algorithm initializes
one greedy MCTS and 15 standard ones. While the program is not fully scheduled, it runs
the MCTSes in parallel from the current root. The returned best roots are evaluated based
on the best real execution time measurement (the commented line).

To implement real execution time measurement in our C++ code, the head thread forks

multiple children. Each compiles a benchmark application serially for each of the candidate
schedules returned by the greedy and standard MCTSes. Afterward, each of the compiled
benchmark applications is run serially (to make sure they do not interfere with each other’s
run). The schedule with the best real execution time, rather than the one with the lowest
cost, is used as the new root of the MCTSes for the next iteration.

To compile the benchmark applications, we used Halide’s rudimentary “RunGen” wrapper,
described in the official documentation [175]. RunGen wraps a solitary scheduled Halide
function (which is what we compiled) into a simple benchmark application that returns the
execution time of the scheduled program.

The RunGen wrapper fails to compile an error-free program for various applications, such
as camera pipe and bgu. For these applications, we instead compiled the scheduled functions
with the custom wrappers found under the apps directory in the official Halide repository.

CHAPTER 6. PROTUNER 71

all_mcts=[]

all_mcts.append(init_greedy_mcts())

all_mcts.extend(init_standard_mcts(num_mcts=15))

current_root = state0 //empty schedule

best_fully_scheduled_states={}

next_best_roots={}

while(!fully_scheduled){

parallel_for(i=0...15){

best_fully_scheduled_states[i],

next_best_roots[i] =

all_mcts[i].run(root=current_roots[i])

}

best_index = get_best_state_index_from_costs(

best_fully_scheduled_states)

/* Uncomment the next lines to evaluate

the real execution time instead of

estimated cost:

best_index =

get_best_state_index_real_measure(

best_fully_scheduled_states) */

parallel_for(i=0...15){

current_roots[i] =

next_best_roots[best_index]

}

optimal_schedule =

best_fully_scheduled_states[best_index]

fully_scheduled =

next_best_roots[best_index].is_leaf

}

Figure 6.6: Pseudocode of the MCTS scheduling algorithm that combines 15 standard
MCTSes and one greedy MCTS. The best next root can be determined based on the best
cost of the best fully scheduled states or based on the best execution time measurement of
the best fully scheduled states as shown in the commented line.

We could not use real execution time measurements for ResNet50 as it requires many
simultaneously scheduled functions that a single forked child cannot run on its own. Therefore,
for ResNet50, we report the results from the MCTS run that schedules it using the cost
model only.

CHAPTER 6. PROTUNER 72

Name Seconds for Iteration Expansion Formula Measurement

mcts 30s 30 1∑
i ExecTimei

nj

(1 +
√

ln(n)
nj

) cost model

mcts 10s 10 1∑
i ExecTimei

nj

(1 +
√

ln(n)
nj

) cost model

mcts 1s 1 1∑
i ExecTimei

nj

(1 +
√

ln(n)
nj

) cost model

mcts Cp10 30s 30 1∑
i ExecTimei

nj

(1 + 10
√

ln(n)
nj

) cost model

mcts sqrt2 30s 30
∑
i

1
ExecTimei

nj
+
√

2
√

2ln(n)
nj

cost model

mcts cost+real 30s 30 1∑
i ExecTimei

nj

(1 +
√

ln(n)
nj

)
cost model

+ real

mcts cost+real 1s 1 1∑
i ExecTimei

nj

(1 +
√

ln(n)
nj

)
cost model

+ real

Table 6.1: The MCTS configurations explored. We explored different timeouts (time to
determine a new root) in seconds per MCTS iteration, expansion formulas where we modify the
UCB, and execution time measurement schemes. mcts sqrt2 30s is the algorithm that gives
the most weight to exploration and is the closest to the original UCB formula. mcts Cp10 30s

gives the second highest weight to exploration. mcts cost+real 30s combines mcts 30s

from the first row and real execution time measurement. mcts 10s and mcts 1s reduce
the seconds for iteration to ten seconds and one second, respectively. mcts cost+real 1s

combines mcts 1s from the first row and real execution time measurement. mcts sqrt2 30s

uses the original UCB formula and encourages much more exploration than the other MCTS
algorithms. We used Cp = 1√

2
as suggested in [174], which showed that it works well with

rewards in range [0, 1] as it satisfies the Hoeffding inequality. Multiplying the exploitation
term with the exploration term encourages early exploitation.

6.4 Evaluation

To evaluate ProTuner we built it on top of Halide in C++. We ran ProTuner on AWS
m5.8xlarge instances. These instances run Intel Xeon Platinum 8259CL processors with 16
physical cores with 128 GB RAM and 100 GB SSD storage. AWS often provides different
CPUs for different instances even if they are from the same type (e.g., m5.8xlarge can have
Intel Xeon Platinum 8259CL processors or Intel Xeon Platinum 8175M processors). To
minimize variance between runs, we ran all our results on the same instance, at the same
time of the day, when it is night in the time zone and after turning off hyperthreading.

We set the timeout limit for picking a new root in the MCTS to 30 seconds. We also
explored reducing this limit to one second and include real execution time measurements.
We used 16 MCTSes (one greedy, 15 standard) that run in parallel and synchronize every
timeout for picking a new root. For an apples-to-apples comparison, we also ran 16 beam

CHAPTER 6. PROTUNER 73

Figure 6.7: The minimum cost found by every algorithm normalized to the best cost found
by all the algorithms on a suite of 16 real benchmarks.

searches in parallel. We used the open-sourced code of Halide’s beam search algorithm with
the artifacts published by the original authors with the same configuration provided in [12]:
a beam size of 32 and five passes (iterations of beam search). We also compared our results
to a greedy auto-scheduler (beam size of 1), the default scheduler on Halide’s master branch,
and random search. Random search does not use the cost model. It runs for ten minutes
and outputs the program with the best real execution time it found. The other algorithms
run with three different seeds and the best performing schedule found by each algorithm is
reported.

We auto-scheduled a suite of 16 real applications. These applications range from matrix
multiplications to various blurs, convolutions and interpolations, to full implementation of
ResNet50 [176]. These applications were taken from the baseline beam search work we
compared against and are available in the Halide repository. We experimented with multiple
MCTS configurations as shown in Table 6.1. We mainly experimented with different timeouts
for determining a new root while running the MCTS algorithm, the expansion formula
that determines which child in the tree gets expanded, and integrating real execution time
measurements during the search.

Cost

Figure 6.7 shows the minimum costs found by our MCTS algorithms compared to random,
greedy, and beam search. The costs are normalized to the best cost found by all the algorithms.

CHAPTER 6. PROTUNER 74

Figure 6.8: The minimum execution time found by every algorithm normalized to the best
execution time found by all the algorithms on a suite of 16 real benchmarks.

The cost of ResNet50 is omitted because the application includes multiple stages, each of
which is auto-scheduled separately (with costs in different ranges), after which the stages
are merged back to form the final application. All our MCTS configurations outperformed
beam, greedy, and random search cost-wise in geometric mean. This means that with a 100%
accurate cost model, our MCTS performs better than beam, greedy, and random search.
mcts Cp10 30s outperformed beam search in all the benchmarks and mct 30s outperformd it
in all the benchmarks except iir blur, where its cost-wise performance was 4.5% worse than
beam search. mct 10s outperformed beam search in all the benchmarks except nl means and
iir blur, where its cost-wise performance was 8.9% worse than beam search for the former
and 1.1% worse for the latter. mcts sqrt2 30s likewise outperformed beam search in all the
benchmarks except nl means and iir blur, where its cost-wise performance was 5.2% worse
than beam search for the former and 2.4% worse for the latter. mcts cost+real 30s and
mcts cost+real 1s achieved the worst geometric mean cost among the MCTS algorithms.
This means that they found schedules with better execution times but at higher costs.

Execution Time

Figure 6.8 shows the minimum execution time each algorithm found normalized to the best
execution time found by all the algorithms. Note that while better costs generally mean
better execution times, the improvement ratios are not similar. Time-wise in geometric mean,
however, all the MCTS algorithms outperformed beam search (1.06×-1.36×), similar to the

CHAPTER 6. PROTUNER 75

Figure 6.9: Execution time speedup normalized to the best execution time using beam search,
mcts 1s, and mcts 0.5s with autotuning on a suite of 16 real benchmarks. Each algorithm is
rerun with a different seed until a timeout of 15 minutes is reached and the best performance
found by each algorithm is reported.

cost-improvement trend. This was true even for mcts 1s, which gives one second for each
MCTS iteration. The biggest execution time improvement was achieved by interpolate,
which performed 1.8×-3.25× better in the different MCTS algorithms.

As expected, mcts cost+real 30s and mcts cost+real 1s achieved the best performance
in geometric mean, despite not having achieved the best geometric mean in costs. This
shows that real execution time measurement is effective. Interestingly, mcts cost+real 1s

performed better than mcts cost+real 30s. A clear example can be seen in conv layer,
which is the smallest benchmark. While both mcts cost+real 1s and mcts cost+real 30s

outperformed the other MCTS algorithms, mcts cost+real 1s performed better as it stops
evaluating the cost model earlier and hence it is less likely to overfit to the cost model,
especially on smaller benchmarks.

We observe that mcts 10s performed similarly to mcts 30s and mcts sqrt2 30s, and
better than mcts Cp10 30s in geometric mean. This means that 10 seconds per MCTS
iteration is sufficient for our benchmarks. Adding more time might be useful for large
benchmarks but can be harmful to smaller benchmarks due to the aforesaid overfitting
problem. An ideal configuration should consider the size of the application when setting the
MCTS parameters.

Search Time

Our MCTS algorithms with the cost model schedule programs in seconds to minutes. For
example, the average auto-scheduling times of mcts 1s, mcts 10s, and mcts 30s are 31, 155,

CHAPTER 6. PROTUNER 76

422 seconds respectively. This includes the time to compile the search code, the search time,
and the time to compile and benchmark the applications. In smaller applications, such
as conv layer and mat mul, this time is dominated by the compilation and benchmarking
time. In larger applications, this time is dominated by the search time. Our performance
analysis shows that most of the search time (88%) is spent during the generation of new
children (schedules) in the simulation phase and only 7.5% of the time is spent in the cost
evaluation. However, our standard MCTS simulation needs a single randomly generated
child. The rest of the children are generated but not used. Therefore we see a potential for
8× speedup in the search time of MCTS, which we seek to implement in future work.

For mcts cost+real 1s and mcts cost+real 30s, the average auto-scheduling times
are 23 and 35 minutes, respectively. Most benchmarks require roughly 3× more time to
auto-schedule with real execution time measurement when the MCTS iteration is set to
30 seconds. This time was mostly consumed in the forked children processes that serially
compile and evaluate the candidates of potential next roots. While possibly inefficient, serial
compilation and evaluation ensures that there will be no interference between threads during
execution time measurement.

Autotuning with Limited Time Budget

Figure 6.9 shows the autotuning performance comparison between beam search and MCTS.
We limited the autotuning time to 15 minutes for each application. This time includes
the compilation and execution time of the benchmarks as well as the search time. The
execution time of the generated program was normalized to the best execution time found by
beam search and MCTS. For time efficiency we used mcts 1s. We further explored using
half a second per MCTS iteration (mcts 0.5s), which allows for more real execution time
measurements during autotuning. Each algorithm was rerun with a different seed until the 15
minute timeout was reached, and the best performance found by each algorithm is reported.
mcts 0.5s achieved the best overall performance and outperformed beam search by up to
3.43× and by 1.35× in geometric mean, in the same time budget. mcts 1s also outperformed
beam search by up to 3× and by 1.29× in geometric mean in the same time budget. This
was mainly due to more accurate scheduling decisions derived from meaningful costs of fully
scheduled programs rather than incomplete programs.

6.5 Ansor: Overview of a Different Approach

Here we give a brief overview of Ansor [32], a tensor program generation framework for deep
learning applications. Ansor pursues similar goals to ProTuner but uses evolutionary search
instead of MCTS to explore optimizations outside the search space of other frameworks such
as beam search. By sampling program schedules from a hierarchical representation of the
search space, Ansor is able to explore many more optimization combinations than existing
search strategies. This representation decouples high-level structures and low-level details,

CHAPTER 6. PROTUNER 77

Deep	Learning	Models

Subgraph	1

Task Scheduler

Subgraph	2 Subgraph	3 · ·	·	

Program Sampler

Sketch	Generation Random	Annotation

Performance Tuner

Evolutionary	Search Learned	Cost	Model

Intel	CPU

Measurer

ARM	CPU NVIDIA	GPU · ·	·	

Section 6

Section 5

Section 4

Partitioned subgraphs

One subgraph

A batch of initial programs

A batch of opimized programs

Execution time of programs

Figure 6.10: System Overview. The gray arrows show the flow of extracting subgraphs from
deep learning models and generating optimized program schedules for them. The green
arrows mean the measurer returns profiling data to update the status of all components in
the system.

enabling flexible enumeration of the former and efficient sampling of the latter. The space
is constructed automatically for a given computation definition. Ansor then fine-tunes the
sampled program schedules with evolutionary search and a learned cost model to identify
the best program schedules. Evolutionary search uses mutation and crossover to perform
out-of-order rewrite and break the limitation of sequential construction. Thus, Ansor is able
to find high-performance program schedules that are outside the search space of existing
state-of-the-art approaches. Moreover, Ansor utilizes a task scheduler to simultaneously
optimize multiple subgraphs in deep neural networks.

Figure 6.10 shows the overall architecture of Ansor. The input of Ansor is a set of
to-be-optimized DNNs. Ansor uses a tool [177] to convert DNNs from popular model formats
(e.g., ONNX [178], TensorFlow PB) to partitioned small subgraphs and then generates tensor
program schedules for these subgraphs. Ansor has three major components: (1) a program
sampler that constructs a large search space and samples diverse program schedules from it;
(2) a performance tuner that fine-tunes the performance of sampled program schedules; (3) a

CHAPTER 6. PROTUNER 78

task scheduler that allocates time resources for optimizing multiple subgraphs in the DNNs.
Program sampler. One key challenge is to generate a large search space for a given

computational graph. To cover diverse tensor program schedules with various high-level
structures and low-level details, Ansor utilizes a hierarchical representation of the search
space with two levels: sketch and annotation. Ansor defines the high-level structures of
program schedules as sketches and leaves billions of low-level choices (e.g., tile size, parallel,
unroll annotations) as annotations. Ansor includes a program sampler that randomly samples
program schedules from the space to provide comprehensive coverage of the search space.

Performance tuner. The performance of randomly sampled program schedules is not
necessarily good. To fine-tune it, Ansor uses re-sampled new program schedules as well
as good program schedules from previous iterations as the initial population to start the
evolutionary search. Querying the learned cost model is orders of magnitude faster than
actual measurement, so we can evaluate thousands of program schedules in seconds via the
cost model.

Task scheduler. Program sampling and performance fine-tuning allow Ansor to find
high-performance tensor program schedules for a computational graph. Although treating an
entire DNN as a single computational graph and generating a full tensor program for it might
result in the optimal schedule, this method is inefficient due to the unnecessary exponential
explosion of the search space. Typically, the compiler partitions the large computational
graph of a DNN into several small subgraphs [66, 177]. This partition has a negligible effect
on the performance thanks to the layer-by-layer construction of DNNs. This brings the
final challenge of Ansor: how to allocate time resources when generating program schedules
for multiple subgraphs. The task scheduler in Ansor uses a scheduling algorithm based on
gradient descent to allocate resources to the subgraphs that are more likely to improve the
end-to-end DNN performance.

6.6 Related Work

Multiple previous attempts to automatically schedule Halide programs have been proposed.
In the original paper [65], heuristics and genetic search over random schedule rewrites were
used. The scheduling relied on measuring real execution time, which resulted in a search
time that can take days for moderate benchmarks. OpenTuner [4] autotunes a program using
an AUC-Bandit-meta-technique-directed ensemble selection of algorithms. It is effective in
scheduling simple pipelines [9].

The auto-scheduler that comes with the master Halide repo, which we compared against in
Section 6.4, is based on [10]. It uses a cost model with a greedy search algorithm that allows
it to run quickly, with no autotuning or benchmarking at all. However, it only considers a
fixed set of optimization heuristics for things like parallelism, vectorization and unrolling,
and it has a single level of tiling and fusion. This cost model was improved in [179], but the
the restricted search space was not expanded. In [11, 180] the search space was improved
and a manual cost model was used. However, the search space is still smaller than ours.

CHAPTER 6. PROTUNER 79

Many compilers use loop polyhedral analysis to perform automatic scheduling of affine
loop nests [9, 15, 181–184]. Many possible Halide schedules are excluded in these compilers.
However, it might be possible to use the polyhedral representation to build more accurate
cost models.

AutoTVM [185] uses tree-based algorithms to auto-schedule programs on TVM [66], which
is an optimization stack for deep learning. This approach, however, still requires the user to
manually write the search space for each loop. Furthermore, each operation is optimized in
isolation without exploring large programs. In [186], deep reinforcement learning is used to
schedule deep learning pipelines. This method results in better performance than AutoTVM.

Machine learning in compiler optimization has been proposed in many prior works [16,
17]. This includes phase ordering [6–8, 143, 144, 187], tiling factors [188], mappings of kernels
to CPUs or GPUs [51] with supervised learning, auto-vectorization [14, 18, 49, 154, 165–170,
189], and the throughput of basic blocks [190].

Multi-Level Intermediate Representation (MLIR) [191] has been recently proposed to
help scale performance with the end of Moore’s law. One objective of MLIR is to represent
kernels in a form suitable for optimization, and allow easy integration of search algorithms
such as reinforcement learning, MCTS, and beam search.

6.7 Conclusion and Future Directions

The ProTuner framework that we proposed and developed in this chapter uses an MCTS-
based algorithm to automatically tune programs for high-performance deep learning and
image processing applications. MCTS looks ahead, evaluates complete programs, and does
not evaluate incomplete ones or suffer from greediness. This was reflected in the results,
which demonstrated up to 3.25× better performance compared to the state-of-the-art beam-
search algorithm. Looking forward, we foresee a potential opportunity to continue scaling
performance—despite the end of Moore’s Law—through automatic program tuning and
optimization, with machine learning algorithms such as MCTS.

We see multiple future directions for this work. We could combine a value function cost
model that can predict the advantage of taking an action instead of running the MCTS
simulation. Another direction can include applying deep reinforcement learning methods to
solve the scheduling MDP as done in similar domains in compiler optimization in [13, 18, 28,
186]. We believe that if deep reinforcement learning (with a neural network) can generalize in
that case, then the runtime of the algorithm can be significantly improved because it will only
need to run inference rather than retrain/research from scratch as in MCTS or beam search.
With limited resources, more accurate cost models are necessary for scheduling, especially
with the recent trends in customized hardware and the explosion of new applications. Such
cost models need to consider the target hardware parameters and program features.

Another point for improvement is in the generation of the next states during the random
simulation. During the MCTS simulation phase, our implementation now generates all the
possible children (next possible intermediate schedules) and then randomly picks one child.

CHAPTER 6. PROTUNER 80

In this setting, our algorithm’s cost evaluation overhead is 7.5% while 88% of the time is
spent on enumerating children that our standard MCTSes do not use. In other words, we see
the potential for 8× runtime improvement for our MCTS algorithm. Different configurations
of the MCTS impact the performance differently. Some applications seem to benefit more
from greedy behavior while others work better with random behavior. The Cp could be
further tuned and our performance could be improved if we had a different Cp for different
programs. Because different programs have different costs/runtimes, using the same Cp for of
them encourages less exploration in shorter programs. Furthermore, the Cp could be reduced
to encourage less exploration as the standard deviation in the costs of the children decreases.
We also observed that our MCTS can overfit to the cost model if we run it for too long.

The search space can also be extended to include more optimizations such as vector sizes
different than the native vector size, or not forcing the multi-core parallelism to be at the
outermost loop level. More hardware targets and autotuning methods can be explored to
further improve the performance.

81

Chapter 7

Conclusion and Future Directions

This thesis explored the application of recent machine learning techniques in compiler
optimization. Multiple compiler optimization challenges were tackled using deep RL, MCTS,
and evolutionary algorithms. Multiple systems were built and open sourced to tackle these
challenges. AutoPhase uses deep RL to generate better compiler phase orderings, a problem
known to be NP-hard. NeuroVectorizer uses deep RL in a contextual bandit scheme for
auto-vectorization. To generate better program schedules, ProTuner uses MCTS and Ansor
uses evolutionary algorithms. RLDRM uses deep RL to optimize the cache allocated resources
for different applications.

Unlike prior state-of-the-art methods, our approaches do not rely on hand-engineered
features, greedy algorithms, or hand-written optimization, and can find better solutions in less
time. Our deep RL methods can also generalize to new unseen programs and outperform prior
approaches. Looking forward, we foresee an opportunity to continue scaling performance,
despite the end of Moore’s Law, and keep up with the continuously changing hardware
through automatic program optimization. Deep RL algorithms that combine features from
the underlying hardware and programs have the potential to generalize not only to new
unseen programs but also to new unseen hardware, thus allowing us to build more intelligent
compilers.

There are a number of future directions where this work can evolve. Some of them are
outlined below.

Cost Model Improvements

Cost models are the main bottleneck to achieving optimal program performance with machine
learning. The following approaches can be used to improve them.

• Better management of overhead tradeoffs: some use cases might benefit from faster
search time over negligible improvement in performance while others might require the
best performance while tolerating longer search time. Hybrid heterogeneous models

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 82

that take into account both the performance and the search time can help address this
challenge.

• Developing ways to fully represent different programs by mapping them to different
points in the latent multidimensional space and generalizing to new unseen programs.

• Fully representing hardware in a meaningful way that enables generalization over
different hardware targets.

• Combining different objectives such as code size, compilation time, search time, and
performance.

Combining deep RL with such cost models will allow us to compensate for the end of
Moore’s law and the continuously changing hardware, saving the time and burden of manual
optimization by software engineers.

Extending the Action Space

• Hardware-level actions. Hardware generators [192, 193] now enable the co-optimization
of hardware and software by by means of actions that not only modify the program
code but also modify the underlying hardware. This can be the ultimate end-to-end
method for optimal performance. For example, Gemmini [193] is a systolic-array based
matrix multiplication accelerator generator with many configurable architectural pa-
rameters such as local memory size, systolic array dimensions, pipeline depth, host
CPU, dataflow and precision. These parameters can be tuned simultaneously with
the software compiler optimizations to generate optimized systolic-array based matrix
multiplication accelerators and compiled software.

• Software-level actions. Improved software action spaces (compiler optimizations)
can be realized with better, design specific languages. Halide and TVM generate
programs/schedules from simpler higher level code that focuses more on the functionality
than on the low level implementation. This focus allows the compiler to generate better-
optimized codes, which is much easier to do when the code itself is generated by the
compiler. Optimizing existing low level code is more difficult than optimizing generated
code. For example, it is easier to optimize programs written in Halide than in C++, as
Halide facilitates rewriting the generated C++. Rewriting the code in C++ itself is a
considerably more difficult task.

Supporting Distributed Applications

Another important future research direction is the distributed setting. With the end of
Moore’s law, the world is shifting to distributed computing, where machine learning will
inevitably be the technology of choice for optimizing workloads on multiple nodes. This is
a distinctly different task than optimizing for a single node, one that brings its own set of

CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS 83

unique challenges. For example, how should the data be partitioned? How should the tasks
be scheduled to achieve optimal performance? How should dependencies be handled? How
can utilization be improved? How can the monetary cost of resources be minimized? Further
exploration will be required to address performance optimization in the distributed setting.

Engaging with the Vendor Communities

More engagement from the research and vendor communities is necessary to fully realize
machine learning in compiler optimization. Generalizable models cannot be realized without
sufficient data to train them on. This data is composed of programs and benchmarks that
can be open sourced by these communities and reused for the benefit of all the users. Vendors
are often reluctant to adopt machine learning in compilers due to its added complexity, its
unreliability, and its lack of explainability. Therefore, researchers need to work with the
compiler engineers in tech companies to help bridge these gaps to facilitate the deployment
of machine learning in commercial compilers.

84

Bibliography

[1] Spyridon Triantafyllis et al. “Compiler optimization-space exploration”. In: Proceedings
of the International Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization. IEEE Computer Society. 2003, pp. 204–215.

[2] Lelac Almagor et al. “Finding effective compilation sequences”. In: ACM SIGPLAN
Notices. Vol. 39. 7. ACM, 2004, pp. 231–239.

[3] Zhelong Pan and Rudolf Eigenmann. “Fast and effective orchestration of compiler
optimizations for automatic performance tuning”. In: Proceedings of the International
Symposium on Code Generation and Optimization. IEEE Computer Society. 2006,
pp. 319–332.

[4] Jason Ansel et al. “OpenTuner: An extensible framework for program autotuning”.
In: Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation. ACM. 2014, pp. 303–316.

[5] Grigori Fursin et al. “Milepost GCC: Machine learning enabled self-tuning compiler”.
In: International Journal of Parallel Programming. Vol. 39. 3. Springer, 2011, pp. 296–
327.

[6] Mark Stephenson et al. “Meta Optimization: Improving Compiler Heuristics with
Machine Learning”. In: Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation. PLDI ’03. 2003.

[7] Sameer Kulkarni and John Cavazos. “Mitigating the compiler optimization phase-
ordering problem using machine learning”. In: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA ’12. 2012.

[8] Felix Agakov et al. “Using machine learning to focus iterative optimization”. In:
Proceedings of the International Symposium on Code Generation and Optimization.
IEEE Computer Society. 2006, pp. 295–305.

[9] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “Polymage: Automatic op-
timization for image processing pipelines”. In: ACM SIGARCH Computer Architecture
News. Vol. 43. 1. ACM New York, NY, USA, 2015, pp. 429–443.

BIBLIOGRAPHY 85

[10] Ravi Teja Mullapudi et al. “Automatically scheduling Halide image processing pipelines”.
In: ACM Transactions on Graphics (TOG). Vol. 35. 4. ACM New York, NY, USA,
2016, pp. 1–11.

[11] Savvas Sioutas et al. “Schedule synthesis for Halide pipelines through reuse analysis”.
In: ACM Transactions on Architecture and Code Optimization (TACO). Vol. 16. 2.
ACM New York, NY, USA, 2019, pp. 1–22.

[12] Andrew Adams et al. “Learning to optimize Halide with tree search and random
programs”. In: ACM Transactions on Graphics (TOG). Vol. 38. 4. ACM New York,
NY, USA, 2019, pp. 1–12.

[13] Ameer Haj-Ali et al. “AutoPhase: Juggling HLS phase orderings in random forests
with deep reinforcement learning”. In: Third Conference on Machine Learning and
Systems (MLSys 2020). 2020.

[14] Xinmin Tian et al. “LLVM framework and IR extensions for parallelization, SIMD
vectorization and offloading”. In: 2016 Third Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC). IEEE. 2016, pp. 21–31.

[15] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. “Polly: Performing
polyhedral optimizations on a low-level intermediate representation”. In: Parallel
Processing Letters. Vol. 22. 04. World Scientific, 2012.

[16] Amir H Ashouri et al. “A survey on compiler autotuning using machine learning”. In:
ACM Computing Surveys (CSUR). Vol. 51. 5. ACM, 2018, pp. 1–42.

[17] Zheng Wang and Michael O’Boyle. “Machine learning in compiler optimization”. In:
Proceedings of the IEEE. Vol. 106. 11. 2018, pp. 1879–1901.

[18] Ameer Haj-Ali et al. “NeuroVectorizer: end-to-end vectorization with deep reinforce-
ment learning”. In: Proceedings of the 18th ACM/IEEE International Symposium on
Code Generation and Optimization. 2020, pp. 242–255.

[19] Richard Bellman. “A Markovian decision process”. In: Journal of Mathematics and
Mechanics. Vol. 6. 5. 1957, pp. 679–684.

[20] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement
learning: a survey”. In: Journal of Artificial Intelligence Research. Vol. 4. 1996, pp. 237–
285.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction. MIT
Press, 2018.

[22] Volodymyr Mnih et al. “Playing Atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602. 2013.

[23] Kenji Doya. “Reinforcement learning in continuous time and space”. In: Neural
Computation. Vol. 12. 1. MIT Press, 2000, pp. 219–245.

BIBLIOGRAPHY 86

[24] Jens Kober, J Andrew Bagnell, and Jan Peters. “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research. Vol. 32. 11. Sage
Publications UK: London, England, 2013, pp. 1238–1274.

[25] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. “Reinforcement learning for
humanoid robotics”. In: Proceedings of the Third IEEE-RAS International Conference
on Humanoid Robots. 2003, pp. 1–20.

[26] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature. Vol. 529. 7587. Nature Publishing Group, 2016, pp. 484–489.

[27] Ameer Haj-Ali et al. “A view on deep reinforcement learning in system optimization”.
In: arXiv preprint arXiv:1908.01275. 2019.

[28] Qijing Huang et al. “AutoPhase: Compiler phase-ordering for HLS with deep re-
inforcement learning”. In: 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE. 2019, pp. 308–308.

[29] Ameer Haj-Ali et al. “Learning to vectorize using deep reinforcement learning”. In:
Workshop on ML for Systems at NeurIPS. 2019.

[30] Bin Li et al. “RLDRM: closed loop dynamic cache allocation with deep reinforcement
learning for network function virtualization”. In: 2020 6th IEEE Conference on Network
Softwarization (NetSoft). IEEE. 2020, pp. 335–343.

[31] Ameer Haj-Ali et al. “ProTuner: tuning programs with Monte Carlo tree search”. In:
arXiv preprint arXiv:2005.13685. 2020.

[32] Lianmin Zheng et al. “Ansor: generating high-performance tensor programs for deep
learning”. In: 14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 2020). 2020.

[33] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:
International Conference on Machine Learning. 2016, pp. 1928–1937.

[34] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A reduction of imitation learn-
ing and structured prediction to no-regret online learning”. In: Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics. 2011,
pp. 627–635.

[35] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation”. In: Advances in Neural Information Processing Systems.
2000, pp. 1057–1063.

[36] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint
arXiv:1707.06347. 2017.

[37] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
arXiv preprint arXiv:1509.02971. 2015.

[38] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine Learning.
Vol. 8. 3-4. Springer, 1992, pp. 279–292.

BIBLIOGRAPHY 87

[39] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems. Technical Report 166. University of Cambridge, Department of Engineering.
Cambridge, England, 1994.

[40] Peter Auer. “Using confidence bounds for exploitation-exploration trade-offs”. In:
Journal of Machine Learning Research. Vol. 3. 2002, pp. 397–422.

[41] Donald A Berry and Bert Fristedt. “Bandit problems: sequential allocation of ex-
periments”. In: Monographs on Statistics and Applied Probability. Vol. 5. London:
Chapman and Hall, 1985, pp. 71–87.

[42] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine Learning. Vol. 47. 2-3. Springer, 2002,
pp. 235–256.

[43] Wei Chu et al. “Contextual bandits with linear payoff functions”. In: Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics. 2011,
pp. 208–214.

[44] Tomas Jakl. Arimaa challenge-comparison study of MCTS versus alpha-beta methods.
Univerzita Karlova, Matematicko-fyzikalni fakulta, 2011.

[45] David E Goldberg. Genetic algorithms. Pearson Education India, 2006.

[46] Edoardo Conti et al. “Improving exploration in evolution strategies for deep reinforce-
ment learning via a population of novelty-seeking agents”. In: Advances in Neural
Information Processing Systems. 2018, pp. 5032–5043.

[47] Tim Salimans et al. “Evolution strategies as a scalable alternative to reinforcement
learning”. In: arXiv preprint arXiv:1703.03864. 2017.

[48] D Raj Reddy et al. “Speech understanding systems: a summary of results of the five-
year research effort”. In: Department of Computer Science. Carnegie-Mellon University,
Pittsburgh, PA. Vol. 17. 1977.

[49] Kevin Stock, Louis-Noël Pouchet, and P Sadayappan. “Using machine learning to
improve automatic vectorization”. In: ACM Transactions on Architecture and Code
Optimization (TACO). Vol. 8. 4. ACM, 2012, p. 50.

[50] Chris Cummins et al. “Synthesizing benchmarks for predictive modeling”. In: 2017
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE. 2017, pp. 86–99.

[51] Chris Cummins et al. “End-to-end deep learning of optimization heuristics”. In: 2017
26th International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE. 2017, pp. 219–232.

[52] S. Cho and L. Jin. “Managing distributed, shared L2 caches through OS-level page
allocation”. In: 2006 39th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’06). 2006, pp. 455–468.

BIBLIOGRAPHY 88

[53] M. K. Qureshi and Y. N. Patt. “Utility-based cache partitioning: a low-overhead,
high-performance, runtime mechanism to partition shared caches”. In: 2006 39th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06). Dec.
2006, pp. 423–432.

[54] Ravi Iyer. “CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms”.
In: Proceedings of the 18th Annual International Conference on Supercomputing. ICS
’04. New York, NY, USA: ACM, 2004, pp. 257–266. isbn: 1-58113-839-3.

[55] Ravi Iyer et al. “QoS Policies and Architecture for Cache/Memory in CMP Plat-
forms”. In: Proceedings of the 2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems. SIGMETRICS ’07. New York, NY,
USA: ACM, 2007, pp. 25–36.

[56] Bin Li et al. “CoQoS: coordinating QoS-aware shared resources in NoC-based SoCs”.
In: Journal of Parallel and Distributed Computing. Vol. 71. 5. Orlando, FL, USA, May
2011, pp. 700–713.

[57] Bin Li et al. “Dynamic QoS Management for Chip Multiprocessors”. In: ACM Trans-
actions on Architecture and Code Optimization. Vol. 9. 3. New York, NY, USA: ACM,
Oct. 2012, 17:1–17:29.

[58] Andrew Herdrich et al. “Cache QoS: From Concept to Reality in the Intel R© Xeon R© Pro-
cessor E5-2600 v3 Product Family”. In: Proceedings of the 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA 2016). Barcelona,
Spain, 2016.

[59] V. Selfa et al. “Application Clustering Policies to Address System Fairness with Intel’s
Cache Allocation Technology”. In: 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 2017, pp. 194–205.

[60] Cong Xu et al. “dCat: Dynamic Cache Management for Efficient, Performance-sensitive
Infrastructure-as-a-service”. In: Proceedings of the Thirteenth EuroSys Conference.
EuroSys ’18. Porto, Portugal: ACM, 2018, 14:1–14:13.

[61] Harshad Kasture and Daniel Sanchez. “Ubik: efficient cache sharing with strict Qos
for latency-critical workloads”. In: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’14. Salt Lake City, Utah, USA: ACM, 2014, pp. 729–742.

[62] D. Sanchez and C. Kozyrakis. “Vantage: Scalable and efficient fine-grain cache parti-
tioning”. In: 2011 38th Annual International Symposium on Computer Architecture
(ISCA). 2011, pp. 57–68.

[63] Henry Cook et al. “A hardware evaluation of cache partitioning to improve utiliza-
tion and energy-efficiency while preserving responsiveness”. In: SIGARCH Computer
Architecture News. Vol. 41. 3. New York, NY, USA: ACM, June 2013, pp. 308–319.

[64] Intel 64 and IA-32 Architectures Software Developer’s Manual.

BIBLIOGRAPHY 89

[65] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for optimizing paral-
lelism, locality, and recomputation in image processing pipelines”. In: ACM Sigplan
Notices. Vol. 48. 6. ACM New York, NY, USA, 2013, pp. 519–530.

[66] Tianqi Chen et al. “TVM: end-to-end optimization stack for deep learning”. In: arXiv
preprint arXiv:1802.04799. 2018.

[67] Abdul Hameed et al. “A survey and taxonomy on energy efficient resource allocation
techniques for cloud computing systems”. In: Computing. Vol. 98. 7. Springer, 2016,
pp. 751–774.

[68] Mohammad Saeid Mahdavinejad et al. “Machine learning for Internet of Things data
analysis: A survey”. In: Digital Communications and Networks. Vol. 4. 3. Elsevier,
2018, pp. 161–175.

[69] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. “A taxonomy and
survey of grid resource management systems for distributed computing”. In: Software:
Practice and Experience. Vol. 32. 2. Wiley Online Library, 2002, pp. 135–164.

[70] Nguyen Cong Luong et al. “Applications of deep reinforcement learning in communi-
cations and networking: A survey”. In: IEEE Communications Surveys & Tutorials.
IEEE, 2019.

[71] Anup Das et al. “Reinforcement learning-based inter-and intra-application thermal
optimization for lifetime improvement of multicore systems”. In: Proceedings of the
51st Annual Design Automation Conference. ACM. 2014, pp. 1–6.

[72] Qijun Zhu and Chun Yuan. “A reinforcement learning approach to automatic error re-
covery”. In: 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). IEEE. 2007, pp. 729–738.

[73] Johannes Zeppenfeld et al. “Learning classifier tables for autonomic systems on chip”.
In: GI Jahrestagung (2). Vol. 134. 2008, pp. 771–778.

[74] Engin Ipek et al. “Self-optimizing memory controllers: A reinforcement learning ap-
proach”. In: ACM SIGARCH Computer Architecture News. Vol. 36. 3. IEEE Computer
Society. 2008, pp. 39–50.

[75] Eva Andreasson, Frank Hoffmann, and Olof Lindholm. “To collect or not to collect?
Machine learning for memory management.” In: Java Virtual Machine Research and
Technology Symposium. 2002, pp. 27–39.

[76] Leeor Peled et al. “Semantic locality and context-based prefetching using reinforcement
learning”. In: 2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA). IEEE. 2015, pp. 285–297.

[77] Nuno Diegues and Paolo Romano. “Self-tuning Intel transactional synchronization
extensions”. In: 11th International Conference on Autonomic Computing ({ICAC}
14). 2014, pp. 209–219.

BIBLIOGRAPHY 90

[78] Wei Li et al. “Learning-based and data-driven TCP design for memory-constrained
iot”. In: 2016 International Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE. 2016, pp. 199–205.

[79] Aloizio P Silva et al. “Smart congestion control for delay-and disruption tolerant
networks”. In: 2016 13th Annual IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON). IEEE. 2016, pp. 1–9.

[80] Samuel PM Choi and Dit-Yan Yeung. “Predictive Q-routing: A memory-based re-
inforcement learning approach to adaptive traffic control”. In: Advances in Neural
Information Processing Systems. 1996, pp. 945–951.

[81] Michael Littman and Justin Boyan. “A distributed reinforcement learning scheme for
network routing”. In: Proceedings of the International Workshop on Applications of
Neural Networks to Telecommunications. Psychology Press. 2013, pp. 55–61.

[82] Justin A Boyan and Michael L Littman. “Packet routing in dynamically changing
networks: A reinforcement learning approach”. In: Advances in Neural Information
Processing Systems. 1994, pp. 671–678.

[83] Michail G Lagoudakis and Michael L Littman. “Algorithm selection using reinforcement
learning”. In: International Conference on Machine Learning (ICML 2000). 2000,
pp. 511–518.

[84] Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B Giannakis. “Optimal and
scalable caching for 5G using reinforcement learning of space-time popularities”. In:
IEEE Journal of Selected Topics in Signal Processing. Vol. 12. 1. IEEE, 2017, pp. 180–
190.

[85] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement learning”. In: 2014
22nd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. IEEE. 2014, pp. 500–507.

[86] Zhiping Peng et al. “Random task scheduling scheme based on reinforcement learning
in cloud computing”. In: Cluster Computing. Vol. 18. 4. Springer, 2015, pp. 1595–1607.

[87] Pooyan Jamshidi et al. “Self-learning cloud controllers: Fuzzy Q-learning for knowledge
evolution”. In: 2015 International Conference on Cloud and Autonomic Computing.
IEEE. 2015, pp. 208–211.

[88] Enda Barrett, Enda Howley, and Jim Duggan. “Applying reinforcement learning
towards automating resource allocation and application scalability in the cloud”. In:
Concurrency and Computation: Practice and Experience. Vol. 25. 12. Wiley Online
Library, 2013, pp. 1656–1674.

[89] Hamid Arabnejad et al. “A comparison of reinforcement learning techniques for fuzzy
cloud auto-scaling”. In: Proceedings of the 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Press. 2017, pp. 64–73.

BIBLIOGRAPHY 91

[90] Seyedakbar Mostafavi, Fatemeh Ahmadi, and Mehdi Agha Sarram. “Reinforcement-
learning-based foresighted task scheduling in cloud computing”. In: arXiv preprint
arXiv:1810.04718. 2018.

[91] Long-Ji Lin. Reinforcement learning for robots using neural networks. Ph.D. thesis.
Carnegie-Mellon University School of Computer Science, 1993.

[92] Hongzi Mao et al. “Resource management with deep reinforcement learning”. In:
Proceedings of the 15th ACM Workshop on Hot Topics in Networks. ACM. 2016,
pp. 50–56.

[93] Ying He et al. “Software-defined networks with mobile edge computing and caching
for smart cities: A big data deep reinforcement learning approach”. In: IEEE Commu-
nications Magazine. Vol. 55. 12. IEEE, 2017, pp. 31–37.

[94] Ying He, Nan Zhao, and Hongxi Yin. “Integrated networking, caching, and computing
for connected vehicles: A deep reinforcement learning approach”. In: IEEE Transactions
on Vehicular Technology. Vol. 67. 1. IEEE, 2017, pp. 44–55.

[95] Gerald Tesauro, Rajarshi Das, and Nicholas K Jong. “Online performance management
using hybrid reinforcement learning”. In: Proceedings of SysML. 2006.

[96] Zhiyuan Xu et al. “A deep reinforcement learning based framework for power-efficient
resource allocation in cloud RANs”. In: 2017 IEEE International Conference on
Communications (ICC). IEEE. 2017, pp. 1–6.

[97] Ning Liu et al. “A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning”. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). IEEE. 2017, pp. 372–382.

[98] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. “URL: A unified reinforcement learning
approach for autonomic cloud management”. In: Journal of Parallel and Distributed
Computing. Vol. 72. 2. Elsevier, 2012, pp. 95–105.

[99] Jia Rao et al. “VCONF: a reinforcement learning approach to virtual machines auto-
configuration”. In: Proceedings of the 6th International Conference on Autonomic
Computing. ACM. 2009, pp. 137–146.

[100] Chi Jin et al. “Is q-learning provably efficient?” In: Advances in Neural Information
Processing Systems. 2018, pp. 4863–4873.

[101] Nathan Jay et al. “A deep reinforcement learning perspective on internet congestion
control”. In: International Conference on Machine Learning. 2019, pp. 3050–3059.

[102] Fabian Ruffy, Michael Przystupa, and Ivan Beschastnikh. “Iroko: a framework to
prototype reinforcement learning for data center traffic control”. In: arXiv preprint
arXiv:1812.09975. 2018.

[103] Eric Liang et al. “Neural packet classification”. In: arXiv preprint arXiv:1902.10319.
2019.

BIBLIOGRAPHY 92

[104] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2sql: Generating structured
queries from natural language using reinforcement learning”. In: arXiv preprint
arXiv:1709.00103. 2017.

[105] Kelvin Guu et al. “From language to programs: Bridging reinforcement learning and
maximum marginal likelihood”. In: arXiv preprint arXiv:1704.07926. 2017.

[106] Chen Liang et al. “Neural symbolic machines: Learning semantic parsers on freebase
with weak supervision”. In: arXiv preprint arXiv:1611.00020. 2016.

[107] Sanjay Krishnan et al. “Learning to optimize join queries with deep reinforcement
learning”. In: arXiv preprint arXiv:1808.03196. 2018.

[108] Jennifer Ortiz et al. “Learning state representations for query optimization with deep
reinforcement learning”. In: arXiv preprint arXiv:1803.08604. 2018.

[109] Ryan Marcus and Olga Papaemmanouil. “Deep reinforcement learning for join order
enumeration”. In: Proceedings of the First International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management. ACM. 2018, pp. 1–4.

[110] Ryan Marcus et al. “Neo: A learned query optimizer”. In: arXiv preprint arXiv:1904.03711.
2019.

[111] Sameer Kulkarni and John Cavazos. “Mitigating the compiler optimization phase-
ordering problem using machine learning”. In: ACM SIGPLAN Notices. Vol. 47. 10.
ACM. 2012, pp. 147–162.

[112] Ravichandra Addanki et al. “Placeto: learning generalizable device placement algo-
rithms for distributed machine learning”. In: arXiv preprint arXiv:1906.08879. 2019.

[113] Aditya Paliwal et al. “REGAL: transfer learning for fast optimization of computation
graphs”. In: arXiv preprint arXiv:1905.02494. 2019.

[114] Katherine E Coons et al. “Feature selection and policy optimization for distributed
instruction placement using reinforcement learning”. In: Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques. ACM.
2008, pp. 32–42.

[115] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition
with deep recurrent neural networks”. In: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6645–6649.

[116] Stefan Schaal. “Learning from demonstration”. In: Advances in Neural Information
Processing Systems. 1997, pp. 1040–1046.

[117] Todd Hester et al. “Deep q-learning from demonstrations”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[118] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].

[119] Hongzi Mao et al. “Park: An open platform for learning-augmented computer systems”.
In: Advances in Neural Information Processing Systems. Vol. 32. 2019, pp. 2494–2506.

https://arxiv.org/abs/1606.01540

BIBLIOGRAPHY 93

[120] Stefan Schaal. “Is imitation learning the route to humanoid robots?” In: Trends in
Cognitive Sciences. Vol. 3. 6. Elsevier, 1999, pp. 233–242.

[121] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor”. In: arXiv preprint arXiv:1801.01290.
2018.

[122] Eric Liang et al. “Ray rllib: A composable and scalable reinforcement learning library”.
In: arXiv preprint arXiv:1712.09381. 2017.

[123] Itai Caspi et al. Reinforcement Learning Coach. 2017. url: https://doi.org/10.
5281/zenodo.1134899.

[124] Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a TensorFlow
library for applied reinforcement learning. Web page. 2017. url: https://github.
com/tensorforce/tensorforce.

[125] Jason Gauci et al. “Horizon: Facebook’s open source applied reinforcement learning
platform”. In: arXiv preprint arXiv:1811.00260. 2018.

[126] Pablo Samuel Castro et al. “Dopamine: a research framework for deep reinforcement
learning”. In: arXiv preprint arXiv:1812.06110. 2018.

[127] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. “Learning to control
a low-cost manipulator using data-efficient reinforcement learning”. In: Robotics:
Science and Systems V. 2011, pp. 57–64.

[128] Xiaoxiao Guo et al. “Deep learning for real-time Atari game play using offline Monte-
Carlo tree search planning”. In: Advances in Neural Information Processing Systems.
2014, pp. 3338–3346.

[129] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[130] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. “Variance reduction tech-
niques for gradient estimates in reinforcement learning”. In: Journal of Machine
Learning Research. Vol. 5. 2004, pp. 1471–1530.

[131] Ben Pfaff et al. “The design and implementation of Open vSwitch”. In: 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). Oakland,
CA, May 2015, pp. 117–130. isbn: 978-1-931971-218.

[132] Y. Wang et al. “Optimizing Open vSwitch to support millions of flows”. In: GLOBE-
COM 2017 - 2017 IEEE Global Communications Conference. Dec. 2017, pp. 1–7.

[133] Intel Corporation. Data Plane Development Kit (DPDK).
https://www.dpdk.org. 2018.

[134] Yifan Yuan et al. “HALO: accelerating flow classification for scalable packet pro-
cessing in NFV”. In: Proceedings of the 46th International Symposium on Computer
Architecture. ISCA ’19. Phoenix, Arizona: Association for Computing Machinery, 2019,
pp. 601–614. isbn: 9781450366694.

https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.5281/zenodo.1134899
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
https://www.dpdk.org

BIBLIOGRAPHY 94

[135] Intel Corporation. Intel R© Data Direct I/O (DDIO).
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.

html. 2018.

[136] Hado van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double Q-Learning”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 2094–2100.

[137] Ziyu Wang et al. “Dueling network architectures for deep reinforcement learning”.
In: Proceedings of the 33rd International Conference on Machine Learning. ICML’16.
2016, pp. 1995–2003.

[138] Xilinx. Vivado High-Level Synthesis. 2019. url: %7Bhttps://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html%7D.

[139] Intel. Intel High-Level Synthesis Compiler. 2019. url: %7Bhttps://www.intel.com/
content/www/us/en/software/programmable/quartus-prime/hls-compiler.

html%7D.

[140] Andrew Canis et al. “LegUp: an open-source high-level synthesis tool for FPGA-
based processor/accelerator systems”. In: ACM Transactions on Embedded Computing
Systems (TECS). Vol. 13. 2. ACM, 2013. doi: 10.1145/2514740.

[141] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. In: International Symposium on Code Generation and
Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[142] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers, 1997.

[143] Qijing Huang et al. “The effect of compiler optimizations on high-level synthesis for
FPGAs”. In: IEEE 21st Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM 2013). IEEE. 2013, pp. 89–96.

[144] Qijing Huang et al. “The effect of compiler optimizations on high-level synthesis-
generated hardware”. In: ACM Transactions on Reconfigurable Technology and Systems
(TRETS). Vol. 8. 3. ACM, 2015. doi: 10.1145/2629547.

[145] Yuko Hara et al. “CHstone: A benchmark program suite for practical c-based high-level
synthesis”. In: IEEE International Symposium on Circuits and Systems (ISCAS 2008).
2008, pp. 1192–1195.

[146] Xuejun Yang et al. “Finding and understanding bugs in C compilers”. In: ACM
SIGPLAN Notices. Vol. 46. ACM. 2011, pp. 283–294.

[147] Leo Breiman. “Random forests”. In: Machine Learning. Vol. 45. 1. Springer, 2001,
pp. 5–32.

[148] Eric Liang et al. “RLlib: abstractions for distributed reinforcement learning”. In: arXiv
preprint arXiv:1712.09381. 2017.

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
%7Bhttps://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html%7D
%7Bhttps://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html%7D
%7Bhttps://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html%7D
%7Bhttps://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html%7D
%7Bhttps://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html%7D
https://doi.org/10.1145/2514740
https://doi.org/10.1145/2629547

BIBLIOGRAPHY 95

[149] Philipp Moritz et al. “Ray: a distributed framework for emerging AI applications”.
In: 13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18). 2018, pp. 561–577.

[150] Félix-Antoine Fortin et al. “DEAP: Evolutionary algorithms made easy”. In: Journal
of Machine Learning Research. Vol. 13. July 2012, pp. 2171–2175.

[151] James Kennedy. “Particle swarm optimization”. In: Encyclopedia of Machine Learning.
Springer, 2010, pp. 760–766.

[152] Chris Lomont. “Introduction to Intel advanced vector extensions”. In: Intel White
Paper. 2011, pp. 1–21.

[153] Dorit Nuzman, Ira Rosen, and Ayal Zaks. “Auto-vectorization of interleaved data for
SIMD”. In: ACM SIGPLAN Notices. Vol. 41. 6. ACM, 2006, pp. 132–143.

[154] Konrad Trifunovic et al. “Polyhedral-model guided loop-nest auto-vectorization”.
In: 2009 18th International Conference on Parallel Architectures and Compilation
Techniques. IEEE. 2009, pp. 327–337.

[155] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. “Nearest neighbor queries”.
In: ACM Sigmod Record. Vol. 24. 2. ACM. 1995, pp. 71–79.

[156] J. Ross Quinlan. “Induction of decision trees”. In: Machine Learning. Vol. 1. 1. Springer,
1986, pp. 81–106.

[157] Intel Inc. Intel Core i7-8559U Processor Specification. 2018. url: https://ark.

intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-

processor-8m-%5C%20cache-up-to-4-50-ghz.html.

[158] Uri Alon et al. “code2vec: learning distributed representations of code”. In: Proceedings
of the ACM on Programming Languages. Vol. 3. POPL. ACM, 2019, pp. 1–29.

[159] Ronan Collobert and Jason Weston. “A unified architecture for natural language
processing: Deep neural networks with multitask learning”. In: Proceedings of the 25th
International Conference on Machine Learning. ACM. 2008, pp. 160–167.

[160] Kelvin Xu et al. “Show, attend and tell: neural image caption generation with visual
attention”. In: International Conference on Machine Learning. 2015, pp. 2048–2057.

[161] Richard Liaw et al. “Tune: A research platform for distributed model selection and
training”. In: arXiv preprint arXiv:1807.05118. 2018.

[162] Matthew R Guthaus et al. “MiBench: A free, commercially representative embedded
benchmark suite”. In: Proceedings of the Fourth Annual IEEE International Workshop
on Workload Characterization. WWC-4 (Cat. No. 01EX538). IEEE. 2001, pp. 3–14.

[163] Louis-Noel Pouchet. “Polybench: The polyhedral benchmark suite”. In: URL: http://www.
cs. ucla. edu/pouchet/software/polybench. 2012.

[164] David Gunning. “Explainable artificial intelligence (XAI)”. In: Defense Advanced
Research Projects Agency (DARPA). 2017.

https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-%5C%20cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-%5C%20cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/137979/intel-core-i7-8559u-processor-8m-%5C%20cache-up-to-4-50-ghz.html

BIBLIOGRAPHY 96

[165] Dorit Nuzman et al. “Vapor SIMD: Auto-vectorize once, run everywhere”. In: Pro-
ceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization. IEEE Computer Society. 2011, pp. 151–160.

[166] Vasileios Porpodas and Timothy M Jones. “Throttling automatic vectorization: When
less is more”. In: 2015 International Conference on Parallel Architecture and Compi-
lation (PACT). IEEE. 2015, pp. 432–444.

[167] Samuel Larsen and Saman Amarasinghe. “Exploiting superword level parallelism with
multimedia instruction sets”. In: ACM Sigplan Notices. Vol. 35. 5. 2000.

[168] Daniel S McFarlin et al. “Automatic SIMD vectorization of fast Fourier transforms for
the larrabee and AVX instruction sets”. In: Proceedings of the International Conference
on Supercomputing. ACM. 2011, pp. 265–274.

[169] Vasileios Porpodas. “SuperGraph-SLP Auto-Vectorization”. In: 2017 26th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT).
IEEE. 2017, pp. 330–342.

[170] Vasileios Porpodas, Alberto Magni, and Timothy M Jones. “PSLP: Padded SLP
automatic vectorization”. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. IEEE Computer Society. 2015,
pp. 190–201.

[171] Cameron B Browne et al. “A survey of Monte Carlo tree search methods”. In: IEEE
Transactions on Computational Intelligence and AI in Games. Vol. 4. 1. IEEE, 2012,
pp. 1–43.

[172] Yngvi Bjornsson and Hilmar Finnsson. “Cadiaplayer: a simulation-based general game
player”. In: IEEE Transactions on Computational Intelligence and AI in Games. Vol. 1.
1. IEEE, 2009, pp. 4–15.

[173] Guillaume MJ-B Chaslot, Mark HM Winands, and H Jaap van Den Herik. “Parallel
Monte-Carlo tree search”. In: International Conference on Computers and Games.
Springer. 2008, pp. 60–71.

[174] Levente Kocsis, Csaba Szepesvari, and Jan Willemson. “Improved Monte-Carlo search”.
In: University of Tartu, Estonia, Technical Report. Vol. 1. 2006.

[175] Steven Johnson. “Running and Benchmarking Halide Generators”. In: Halide GitHub
Repository: https://github.com/halide/Halide/blob/master/README rungen.md. Aug.
2019.

[176] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–778.

[177] Jared Roesch et al. “Relay: A high-level IR for deep learning”. In: arXiv preprint
arXiv:1904.08368. 2019.

[178] Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open Neural Network Exchange. 2019.

BIBLIOGRAPHY 97

[179] Abhinav Jangda and Uday Bondhugula. “An effective fusion and tile size model for
optimizing image processing pipelines”. In: ACM SIGPLAN Notices. Vol. 53. 1. ACM
New York, NY, USA, 2018, pp. 261–275.

[180] Savvas Sioutas et al. “Loop transformations leveraging hardware prefetching”. In: Pro-
ceedings of the 2018 International Symposium on Code Generation and Optimization.
2018, pp. 254–264.

[181] Nicolas Vasilache et al. “Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions”. In: arXiv preprint arXiv:1802.04730. 2018.

[182] Riyadh Baghdadi et al. “Pencil: A platform-neutral compute intermediate language for
accelerator programming”. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE. 2015, pp. 138–149.

[183] Uday Bondhugula et al. “A practical automatic polyhedral parallelizer and locality
optimizer”. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2008, pp. 101–113.

[184] Riyadh Baghdadi et al. “Tiramisu: A polyhedral compiler for expressing fast and
portable code”. In: 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE. 2019, pp. 193–205.

[185] Tianqi Chen et al. “Learning to optimize tensor programs”. In: Advances in Neural
Information Processing Systems. 2018, pp. 3389–3400.

[186] Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Esmaeilzadeh. “Reinforcement
learning and adaptive sampling for optimized DNN compilation”. In: arXiv preprint
arXiv:1905.12799. 2019.

[187] Grigori Fursin et al. “MILEPOST GCC: machine learning based research compiler”.
In: GCC Summit. 2008.

[188] Mohammed Rahman, Louis-Noël Pouchet, and P Sadayappan. “Neural network assisted
tile size selection”. In: International Workshop on Automatic Performance Tuning
(IWAPT’2010). 2010.

[189] Charith Mendis et al. “Compiler auto-vectorization with imitation learning”. In:
Advances in Neural Information Processing Systems. 2019, pp. 14598–14609.

[190] Charith Mendis et al. “Ithemal: Accurate, portable and fast basic block throughput
estimation using deep neural networks”. In: arXiv preprint arXiv:1808.07412. 2018.

[191] Chris Lattner et al. “MLIR: a compiler infrastructure for the end of Moore’s law”. In:
arXiv preprint arXiv:2002.11054. 2020.

[192] Alon Amid et al. “Chipyard: Integrated Design, Simulation, and Implementation
Framework for Custom SoCs”. In: IEEE Micro. Vol. 40. 4. 2020, pp. 10–21. doi:
10.1109/MM.2020.2996616.

[193] Hasan Genc et al. “Gemmini: An agile systolic array generator enabling systematic
evaluations of deep-learning architectures”. In: arXiv preprint arXiv:1911.09925. 2019.

https://doi.org/10.1109/MM.2020.2996616

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Deep RL in System Optimization
	Introduction
	Background
	Deep Reinforcement Learning in System Optimization
	Formulating the RL environment
	Considerations for Evaluating Deep RL in System Optimization
	Deep RL Methods and Neural Network Models
	Challenges
	An Illustrative Example
	RLDRM: Applying Deep RL to Dynamic Resource Management Optimization
	Conclusions and Future Directions

	AutoPhase
	Introduction
	Related Work
	AutoPhase Framework for Automatic Phase Ordering
	Correlation of Passes and Program Features
	Problem Formulation
	Evaluation
	Conclusion and Future Directions

	NeuroVectorizer
	Introduction
	Motivation
	The Proposed Framework for Automatic Vectorization
	Evaluation
	Related Work
	Conclusion and Future Directions

	ProTuner
	Introduction
	Challenges in Beam Search
	The Proposed ProTuner Scheduler
	Evaluation
	Ansor: Overview of a Different Approach
	Related Work
	Conclusion and Future Directions

	Conclusion and Future Directions
	Bibliography

