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Abstract

A Systematic Study of the Muscle Force–Deformation Relationship at the Human Elbow:
Toward Physiology-Aware Assistive Device Control and Noninvasive Muscle Force Sensing

by

Laura Hallock

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

While there exist a number of mechanically sophisticated exoskeletons, prostheses, and as-
sistive robots, with articulations similar to those of the intact human arm and hand, these
devices remain limited in their ability to augment human dexterity and safely interact with
human users and collaborators. In particular, due to the limits of conventional sensing,
robots remain locked in industrial cages, prosthesis users can often modulate only a sin-
gle degree of freedom, and when human–device interactions do occur, we have almost no
understanding of the resulting physiological impacts on the user’s musculoskeletal system.

This thesis begins to address these dual problems of device capability and safety by lever-
aging a novel signal class — muscle deformation, as measured via ultrasound — to probe
individual muscle forces, which cannot in general be measured noninvasively but are key to
understanding musculoskeletal dynamics during dexterous motion. Using the elbow flexion
motion as a case study, this document describes first, preliminary characterization of this
deformation and its relationship to output force; second, proof-of-concept use of this signal
for a trajectory tracking task; third, collection of a comprehensive 3D deformation data set
to systematically examine the force–deformation relationship; fourth, initial geometric anal-
ysis of this data set and a proposed framework for future modeling; and lastly, a discussion
of the open-source release of code and data associated with this project, preliminary work
on alternative sensing modalities, and speculation on future applications in robotics and
medicine. This dissertation work — collectively released as the OpenArm project for collab-
orative research use at https://simtk.org/projects/openarm — paves the way for future
investigation on both the extraction of multiple independent signals for high-dimensional
device control and enhanced overall understanding of the joint human–machine dynamical
system.

https://simtk.org/projects/openarm
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4.5 Example ultrasound frames from an illustrative subset of subjects, with tracked
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4.6 Correlation of muscle deformation (blue) and activation (orange) signals with
elbow output force across various trajectory types and in aggregate, with noted
standard deviation across subjects. Deformation remained strongly correlated
with output force for all examined trajectory types, with slightly lower and more
variable correlation during sustained and sine trajectories that is likely the result
of limitations in the optical flow tracking system, as discussed in section 4.4.
©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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5.2 Tracking error during muscle deformation (blue) and activation (orange) trajec-
tory tracking tasks across all subjects. With the exception of Sub7 — whose
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performing deformation-based control, as compared with our baseline activation-
based system. ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Tracking error during muscle deformation (blue) and activation (orange) trajec-
tory tracking tasks across various trajectory types and in aggregate, with noted
standard deviation across subjects. During all but sine trajectories — which
we again theorize were impacted by the drift in our deformation tracking sys-
tem — subjects were able to consistently achieve lower tracking error using the
deformation signal. ©2021 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Subject preferences when asked to evaluate deformation- and activation-based
tracking tasks separately (top) and in head-to-head comparisons (bottom). Sub-
jects largely found the deformation-based tracking task easier and perceived the
deformation signal to better match their output force, though they rated the
activation-based tracker as more responsive, and most preferred the deformation-
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6.1 Example ultrasound frames from Sub1 69° data series and their respective tracked
contour points using each candidate algorithm, at (relaxed) initialization (top)
and approximately 91 s into tracking during force exertion (bottom). Center left :
Complete set of contour points (red) tracked via naive Lucas–Kanade (LK ) gen-
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contour points based on feature quality (red) and tracked via Lucas–Kanade
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muscle contour as long as supporter point motion is well-correlated with contour
motion. ©2020 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Mean tracking error and standard deviation of LK (pink), FRLK (brown), BFLK
(blue), and SBLK (purple) algorithms, both tuned (hashed) and untuned (solid),
computed as Jaccard distance, across various subjects, collected at ∼69° elbow
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achieved, as well as the extent to which algorithm tuning mitigated errors, varied
substantially by subject, likely due to variations in both morphology and motion
qualia. Note that for Sub1, whose tuned values formed the generic baseline for
all tracking, tuned and untuned tracking algorithms are the same. ©2020 IEEE. 55

6.3 Overall tracking efficacy of SBLK-T algorithm for all aggregated time series,
expressed as fractional CSA (cyan), T (blue), and AR (dark blue) error and
Jaccard distance (JD, red). Histogram weights indicate that thickness T can
be tracked most reliably, as compared with CSA and AR, making it the most
promising control signal using our examined tracking algorithms. . . . . . . . . 56

6.4 Example CSA (cyan), T (blue), and AR (dark blue) trajectories, both ground
truth (solid) and tracked via SBLK-T algorithm (dashed), alongside time series
Jaccard distance error (JD, red), for Sub3 data series. For most data series,
thickness T is tracked most reliably, while aspect ratio AR (and, to a lesser
extent, cross-sectional area CSA) drift substantially. . . . . . . . . . . . . . . . . 57
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7.1 Experimental setup for the collection of OpenArm 1.0 full-arm upper-limb mor-
phology data under multiple elbow angles and loading conditions, enabling a
factorial study of the sources of muscle deformation (shown here at a 60° angle
of elbow flexion under HF (left) and FS (right) loading conditions). Setup in-
cludes ultrasound scanner (a) and probe (b) (with attached active motion capture
markers (c) used for spatial tracking); weight bands (d) used to load the elbow
flexors (during LF, MF, and HF trials); mechanical jig (e) used to support the
elbow (during all trials, left) and the forearm (during FS trials, right); and the
phantom devices (f) required to calibrate the coordinate transformation between
the motion capture world frame and the measured ultrasound scans. ©2018 IEEE. 62

7.2 Tissue structures from the OpenArm 1.0 data set release, including the (magenta)
biceps brachii and surrounding muscles (turquoise brachialis, purple brachioradi-
alis, and gray deltoid) under multiple loading conditions and kinematic configura-
tions, as segmented from volumetric reconstruction of ultrasound data. Locations
of the coronal cross-sectional scans shown are noted by lines transecting the as-
sociated sagittal scan in each inset. Volumetric changes across both kinematic
configurations and loading conditions are readily observable, confirming the ne-
cessity of modeling both signal sources when employing muscle deformation as a
device control signal and informing our analyses in part IV. ©2018 IEEE. . . . 66

7.3 Experimental setup for the collection of OpenArm 2.0 full-arm upper-limb mor-
phology data under multiple elbow angles and loading conditions (shown here at
a 30° angle of elbow flexion under FS (left) and P1 (right) loading conditions).
Setup includes ultrasound probe (a) (with attached active motion capture mark-
ers (b) used for spatial tracking); force-torque sensor (c), held statically in place
by KUKA LBR iiwa 14 R820 robot (d) and used by the subject via real-time
visual feedback (e) to maintain constant force output during loaded trials; me-
chanical jig (f) used to support the elbow (during all trials) and the forearm
(during FS trials, left); and real-time ultrasound and motion capture data (g) for
continuous system status monitoring. ©2019 IEEE. . . . . . . . . . . . . . . . 68

8.1 Baseline U-Net architecture for segmenting 2D slices of 3D volumetric scans,
which are then compiled to generate full 3D segmentation. Architecture is almost
exactly that of the original U-Net [124], with only a single additional concatena-
tion block (corresponding to four additional 3x3 convolutions, one additional 2x2
max pooling operation, and one additional “up-convolution”). . . . . . . . . . . 73

8.2 Training error for all reported network architectures over 40 epochs, over which
networks reliably — if sometimes messily — converged. Accuracy values reported
in Table 8.1 and predictions shown in Fig. 8.3 are computed from the minimum-
loss epoch network for each respective architecture. ©2019 IEEE. . . . . . . . . 76
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8.3 Exemplar volumetric data, as segmented manually (Ground Truth), via opti-
mized classical image registration (RANR), and via neural network, unmodified
(U-NET), using elastic deformation data augmentation (U-NET+EA), and using
an augmented multi-subject data set (Multi-Subject U-NET+EA). Data used for
RANR were ground truth values of (Sub1, 30°, FS); data for training the opti-
mized neural networks are those described in Section 8.5 and Table 8.1. Data
were trained, tested, and predicted only on the upper part of the arm, above
the elbow; raw lower-arm intensity maps are provided for context. Although su-
perficially smooth and well-formed, RANR segmentation poorly localizes biceps
and humerus (a), resulting in poor segmentation accuracy; in contrast, neural
network methods perform reliably along the middle section of the biceps (b) but
segment more poorly near the ends of the structure (c). Adding elastic deforma-
tion augmentation data generally helps smooth the data and improve accuracy
(d), though many artifacts remain. Note that Sub2 Multi-Subject U-NET pre-
diction (e) shows a scan used in network training; its high level of accuracy thus
represents network memorization, and the scan is presented for completeness only.
©2019 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.1 Visualization of deformation measures calculated for spatial geometric analysis at
each elbow angle θ, loading condition LC, and location x along the length of the
biceps brachii on a single representative coronal cross section. Cross-sectional area
CSAθ,LC(x) was directly extracted from the segmented volumetric biceps volume,
and thickness T θ,LC(x) was computed as the mean of the measure shown about a
1 cm region surrounding the centroid of the computed area. Eccentricity E θ,LC(x)
was computed as the major-to-minor-axis ratio of the best fit ellipse to the cross-
sectional spatial data values in the least-squares sense. The data collected suggest
that CSA changes are consistently associated with muscle output force, and that
thickness measurements T, when combined with a model of eccentricity E, could
be used to estimate the CSA signal using cheaper 1D A-mode ultrasound sensors.
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9.2 Variation in cross-sectional area CSA (top), thickness T (middle), and eccentric-
ity E (bottom) along the length of the biceps brachii from shoulder to elbow of
the prototype OpenArm 1.0 subject, under multiple elbow flexion angles with
the forearm fully supported (CSA and T ) and at all tested conditions (E ). The
location of maximum CSA/T (as measured from the corresponding quadratic
regression models shown in overlay) was not shown to vary with angle, but the
changes in width of the fitted CSA quadratics reflect the compression of the mus-
cle as elbow flexion increases, a preliminary and intuitive insight that suggests
that building low-dimensional predictive models of CSA change may be possible.
The steep increase in eccentricity E near the muscle’s ends is reflected in the
cross-sectional images shown in Fig. 7.2, and the consistent shape of the eccen-
tricity map across all tested conditions indicates that a spatial eccentricity map
could be of use in developing a predictive model of muscle CSA from 1D thickness
T data. ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.3 Spatial variation of change in biceps brachii cross-sectional area (CSA) from that
of the fully-supported (FS) volume under low (LF, dashed) and high (HF, solid)
loading conditions. Significant variation is consistently observed in a range cen-
tered approximately 2.6 cm distal from the location of maximum absolute CSA
and is larger under higher loading at each configuration. These observed ∆CSA
values thus indicate a candidate location from which to extract a spatially robust
assistive device or biomechanical modeling control signal. ©2018 IEEE. . . . . 86

10.1 Fully empirical “black box” baseline model mapping elbow angle θ and arbitrarily-
parameterized muscle deformation Dbiceps to elbow torque τext through arbitrary
function f0(·, ·). This model enables data-driven prediction of output torque but
lends little to no insight into underlying physiology. Image adapted from [67]. . 91

10.2 Imposing multi-muscle structure on the baseline model in Fig. 10.1 enables ex-
traction of biceps force Fbiceps and is more representative of real physiology, but
requires knowledge of either the configuration-varying percentage of elbow force
attributable to biceps exertion c(·) (top) or actual torque contributions of other
actuating muscles τbrach, τbrachrad, and τtriceps and mass contribution τmg (bottom).
Using the currently available OpenArm 2.0 data set, these values must be as-
sumed from literature, but as data sets expand, they too could be determined
from corresponding muscle deformation signals. Image adapted from [67]. . . . . 92

10.3 The Fig. 10.2 model above can be further refined by incorporating dynamics of
the muscle–tendon unit (MTU), assuming springlike behavior of the tendon with
spring constant k. This model class requires additional assumption of both k and
kinematically varying MTU length `MTU(·) but can be partially validated through
measurement of muscle length `m on the OpenArm 2.0 data set. Image adapted
from [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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10.4 Isometric ellipsoidal muscle kinematics can be imposed on the Fig. 10.3 model
above to generate a fully “white box” model requiring little to no parameter
fitting. This additional structure enforces that deformation is specifically param-
eterized as cross-sectional area Am and requires knowledge of (assumed constant)
muscle volume Vm, which can be extracted from the OpenArm 2.0 data set. Image
adapted from [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

12.1 Preliminary acoustic myography (AMG) data of the biceps and triceps show sub-
stantial correlation with muscle output force. Left : Simplified sagittal model of
the elbow used in data analysis. Right, top: A1ν1 of the biceps is highly corre-
lated with output output torque τ (r = 0.9, p < 10−6). Right, bottom: Example
A1ν1 and A2ν2 trajectories (of the biceps and triceps, respectively) during random
elbow stiffness modulation, showing significant correlation between the two data
series (r = 0.6, p < 10−7), consistent with maintaining constant output torque.
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13.1 Idealized example of using deformation-based muscle force inference to enable
simultaneous position, force, and stiffness control of a single joint in a teleop-
eration scenario. Top: Classical force-based control scenario in which human
user’s electrogoniometer-measured elbow angle θu is mapped to robot elbow an-
gle θr through PID control loop with constants kP, kI, and kD, with goal force
trajectory Fdes specified proportional to differential biceps–triceps surface elec-
tromyography (sEMG) signal αdiff and added to feedback-loop-generated position-
correcting force Fdy to generate robot elbow force Fr. Bottom: By introducing
ultrasound-measured muscle deformation Dbiceps — a better analog for the user’s
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Chapter 1

Introduction

Despite the prevalence of musculoskeletal injury and pathology — from spinal cord injury,
to muscular dystrophy, to amputation, to stroke — upper-limb assistive devices (including
prosthetics, exoskeletons, and robots) remain severely limited in both overall dexterity and
capacity to aid in tasks of daily living. While a number of sophisticated, anthropomorphic
devices exist, with all the right joints in all the right places, none approach the speed and
functional flexibility of the intact human arm, even when operated by a healthy human user.

To understand why these devices remain limited, consider the healthy human neuromus-
culoskeletal system. To perform a dexterous maneuver, the brain maps high-level intent to
a complicated feedback loop involving visual, proprioceptive, and contact sensing, transmit-
ting complex control signals to a multitude of motor units distributed across tens of muscles.
At the macro level, there are no good models for this neurological feedback system; in par-
ticular, we have a poor understanding of how these neurological signals translate into muscle
force, and even if this understanding were improved, the standard way to measure them non-
invasively (surface electromyography, or sEMG) is noisy, nonspecific, and unreliable. This
means that even the most straightforward possible control scheme, collecting data from a
healthy human user and mapping it to a joint-for-joint robotic replica, remains beyond the
means of existing systems — let alone controlling prostheses that replace missing limbs, or
robots that replace lost motor capabilities.

My work provides a path toward high-degree-of-freedom, dextrous control by leveraging
a single fundamental insight, illustrated in Figure 1.1: for devices in which we wish to
cede a high degree of control authority to the human user (prostheses, teleoperated robots,
etc.), we can use mechanical measures of muscle output force as a control signal, rather
than neurological activation or poorly-modeled “intent.” This approach allows us to make
predictions about human dynamics without directly modeling the neurological control loop
— until we want to explicitly study it.

Perhaps surprisingly, estimating these individual muscle forces remains an open problem
in the biomechanics community; no sensing modality exists that can measure such forces
directly and noninvasively in vivo. Addressing this force inference challenge is the primary
contribution of this thesis work, which introduces two novel, promising signal classes from
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Figure 1.1: Human motion results from complex neuromuscular contraction dynamics that
convert a neurological activation signal into muscle output force. This process is poorly
understood and difficult to measure, greatly limiting our ability to replicate such motions
in robots and assistive devices from neurological sensor data like surface electromyography
(sEMG, red). This dissertation work (green), in contrast, infers motion dynamics more
directly by measuring two classes of signals intrinsically coupled to force output: deformation
(via ultrasound) and vibration (via acoustic myography, or AMG). These signals can be
used directly to control safe and dexterous assistive devices without modeling these complex
neuromuscular contraction dynamics, and the resulting models can yield new insights into
healthy and pathological human motion. Select icons made by hunotika from the Noun
Project and smalllikeart from Flaticon.

which this force can likely be inferred: muscle deformation (as measured via ultrasound) and
muscle vibration (as measured via acoustic myography, or AMG). In particular, this work
presents a thorough examination, and proof-of-concept control use application, of deforma-
tion, which — unlike sEMG or AMG — can be measured in a highly localizable manner,
allowing for straightforward extraction of multiple independent signals.

At the cellular level, the relationship between muscle deformation and output force is
well understood: the cross-bridge cycle ratchets muscle fibers together, resulting in a shape
change that pulls the connected tendon and imparts force to the skeleton. At the same
time, prior to this work, there existed no macro-level, in vivo characterizations of this force–
deformation relationship during natural motion, nor even any data with which to begin study,
let alone models for how to leverage these deformation signals for control. This dissertation
thus presents preliminary work in two complementary directions: first, prototyping the use

https://thenounproject.com/hunotika/
https://thenounproject.com/
https://thenounproject.com/
https://www.flaticon.com/authors/smalllikeart
https://www.flaticon.com/
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of simple deformation signals to perform a proof-of-concept control task (i.e., trajectory
tracking), and second, building a comprehensive body of volumetric data, as well as an
analysis framework, to characterize this force–deformation relationship and ascertain the
most correlated signals.

Specifically, the contributions of this dissertation, as organized by part and chapter, are
as follows:

• a preliminary time series correlation analysis of simple, 2D muscle deformation signals
with output force at the elbow (part I), including an exploration of candidate signals
under multiple kinematic configurations (chapter 3) and a refined analysis of select
signals using a novel, automated tracking framework (chapter 4);

• proof-of-concept use of a simple deformation signal (i.e., thickness change) for control
(part II), including a comparative study of deformation- and activation-based trajec-
tory tracking via elbow flexion (chapter 5) and a preliminary exploration of additional
tracking methods and signals (chapter 6);

• generation and open-source release of two multi-subject volumetric data sets of the arm,
under multiple kinematic configurations and force conditions, to enable comprehensive
study of the force–deformation relationship (part III), including data set collection
(chapter 7) and neural-network-based tissue segmentation (chapter 8); and

• preliminary modeling analyses leveraging these 3D data sets (part IV), including ini-
tial geometric analyses (chapter 9) and a proposed systematic modeling framework
(chapter 10) for future exploration of the force–deformation relationship.

Also included are a discussion of related work contextualizing and motivating this document’s
contributions (chapter 2), as well as (in part V) information on released code and data
(chapter 11), a brief exploration of an alternative muscle force sensing modality (i.e., AMG,
chapter 12), and some final thoughts on limitations and future applications of this work in
control, biomechanics, and rehabilitative medicine (chapter 13).

Ultimately, this work aims to form the basis for future exploration of the force–deformation
relationship for a wide range of applications, enabling both fundamental technical advances
(in assistive technology, human–robot collaboration, and diagnosis and rehabilitation of
pathology) and theoretical breakthroughs (not only in human movement science, but control
theory, robotics, machine learning, and system identification more broadly).
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Chapter 2

Motivation & Related Work

In this chapter, drawing on existing biomechanics, robotics, and assistive technology lit-
erature, we argue first, that understanding particular aspects of human musculoskeletal
dynamics — specifically, individual muscle forces — is critical for many applications in as-
sistive device control, physical human–robot interaction, and rehabilitation of pathology;
second, that the human elbow provides a relevant and tractable target for preliminary force
modeling; third, that current modeling frameworks do not provide sufficient force inference
accuracy to enable the desired safety and capability of these systems; fourth, that existing
sensing modalities cannot fully close this modeling gap; fifth, that muscle deformation is a
promising signal from which to infer detailed muscle forces; and lastly, that ultrasound is an
ideal modality — one that is safe and commercially well-positioned for future incorporation
into real-world devices — with which to measure these deformation signals and use them for
biomechanical study and control.

Together, these claims motivate the two key contributions of the remainder of this dis-
sertation: the proof-of-concept use of ultrasound-measured deformation for control, and the
development of a comprehensive data set and analysis framework to enable future, more
expressive force–deformation models for robotic and therapeutic applications.

2.1 The Case for Improved Human Muscle Force

Modeling

Despite decades of study, noninvasive, in vivo, real-time measurement (or even accurate
prediction) of musculoskeletal dynamics remains an open problem. In particular, without
good models of muscle force output during natural movement, our understanding of how
humans execute dexterous motions — in terms of position, force output, and impedance —
is fundamentally limited, as is our ability to safely modify or replace this execution using
assistive devices and to accurately characterize and treat musculoskeletal pathology. In this
section, we first clarify the relationship between muscle forces and the dynamics of human
motion to argue for the importance of individual muscle force inference, then highlight three
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key application areas in which we see existing modeling frameworks as particularly insufficient
and improvements to these models as especially critical.

Skeletal Muscle: The Human Actuator

The human musculoskeletal system is capable of a wide range of motions comprising changes
in position (and its derivatives), output force, and impedance — all of which are critical to
how we interact with the world, from locomotion to tool manipulation. Healthy humans are,
in fact, experts at modulating each of these aspects of motion: we can precisely control foot
position to walk on uneven ground; we can pick strawberries without crushing them; we can
use a cane or a power drill.

At the same time, with current sensing technology, our ability to measure and model
these aspects of motion is limited. At the joint level, changes in position can be measured
comparatively easily (e.g., via motion capture [102], inertial measurement units [129], or
electrogoniometry [126]), and changes in force can be monitored in more limited settings via
sensorized environments (e.g., using force plates or contact sensors [125, 94], or exoskeleton-
inbuilt torque or strain sensors [78, 95]), but changes in impedance (including stiffness,
inertia, and damping properties) can generally be measured only under tightly controlled
conditions [109] (e.g., during oscillation [46] or impact perturbation [33] or “creep tests” [121])
and not during arbitrary natural movement, restricting their modeling usage to stereotyped
motions (e.g., the walking gait [89], reaching and grasping [111]).

While each of these aspects of motion is influenced by a number of factors — including
external load, limb masses and inertias, and the frictional properties of tissue structures —
humans modulate each of them using the same actuators: muscles. Specifically, for a given
set of environmental conditions, a change in muscle force (i.e., tension, as discussed below in
section 2.3) can result in a change in position (as the muscle–tendon unit, or MTU, shortens
and pulls along the skeleton), a change in force (as MTU tension increases to compensate for
external load), and/or a change in impedance (as multiple MTUs exert tension in different,
often antagonistic directions about a joint [109], and muscle material properties change).
Thus, measuring individual muscle forces would enable substantial advances in our ability to
model each of these aspects of human dynamics — and in particular, force and impedance
trajectories during natural motion, which are largely inaccessible using current technology,
as discussed above.

Key Application Areas

In this subsection, we highlight three areas in which improved human dynamics modeling
— specifically, greater understanding of force and impedance properties, as enabled by mea-
surement of individual muscle forces — could greatly enhance state-of-the-art approaches.
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Assistive Device Control & Human–Robot Collaboration

When constructing assistive devices that interact physically with the human body, such as
exoskeletons and prostheses, it is crucial to understand not only what overall joint moments
are being applied to the human user, but what muscle forces the user is induced to exert
based on this interaction. This information is critical foremost for device safety analysis
— i.e., determining whether the device induces forces that will result in acute or long-term
injury — but also, in cases of rehabilitation, assessment of whether a patient is actively
performing desired motions, or simply relying on the device. Additionally, these devices
remain far less dexterous than the limbs they are meant to aid or replace, a limitation that
improved musculoskeletal modeling and control signal extraction can address.

More broadly, enhanced human models are necessary in the wider field of physical human–
robot collaboration, in which robots must intuit human collaborators’ movements, intents,
and capabilities to safely accomplish tasks (for example, helping a factory worker with com-
plex part assembly, or aiding an elderly individual in performing lifting tasks). While current
robotic systems sometimes leverage basic cognitive and ergonomic models to evaluate user
comfort (as discussed below in section 2.3), both safety and efficient allocation of tasks across
human and robotic collaborators requires a deeper understanding of human users’ physical
capabilities.

Human Neuromuscular Science

Beyond applications to device control, finding a noninvasive measure of individual muscle
forces is recognized by the biomechanics community as a core challenge inhibiting our under-
standing of human motion [56]. Specifically, a measure of muscle output force would greatly
advance scientific understanding of the neuromusculoskeletal system in two antipodal di-
rections: with a view toward total-body modeling, individual muscle measures would allow
for study of force balancing across synergists and agonists/antagonists, relationships that
are central to understanding capabilities like balance and smoothness of motion, without
the explicit need for measurement of neurological signals; conversely, a mechanical muscle
force measure constitutes a novel output signal corresponding to this neurological input, en-
abling new insights when interpreting surface electromyography (sEMG), electroencephalo-
gram (EEG), or electrocorticograph (ECoG) data.

Diagnosis & Rehabilitation of Musculoskeletal Pathology

These kinds of advances in device control and motor science are perhaps most impactful
when they can be leveraged to address musculoskeletal pathology. Many such pathologies
— including muscular dystrophy, spinal cord injury, stroke, and Parkinson’s disease — often
present with pathologies in force distribution (e.g., disrupted balance) and lack quantitative
metrics (beyond, e.g., the Brooke scale [35]) to evaluate disease progression and treatment
efficacy. Muscle force measures could provide much-needed insights regarding both capability
and behavior after injury or disease onset and throughout rehabilitation, and to evaluate the
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biceps 
brachii

triceps 
brachiibrachialis

brachioradialis

Figure 2.1: Musculoskeletal anatomy of the human arm. Left : The human arm is complex,
with tens of muscles actuating multi-degree-of-freedom (DoF) joints in synergistic and an-
tagonistic ways. Right : The elbow provides a comparatively simple modeling testbed, with
only three flexors (the biceps brachii, brachialis, and brachioradialis) and a single extensor
(the triceps brachii) actuating a single-DoF joint. Left and center images from [42]; right
image adapted from [154].

efficacy of treatments, whether they are rehabilitative devices, pharmaceuticals, or lifestyle
changes.

2.2 Our Focus: Net Torque at the Human Elbow

In light of the target application areas above, we focus our modeling efforts in this thesis on
the human arm, examining signals and modeling schema appropriate for use in upper-limb
(manipulation-type) device control. While the techniques we present could likely be used to
model a number of other joints and motions (e.g., gait at the legs, balance at the torso), we
view novel models at the arm to be especially important, as existing assistive device control
paradigms remain particularly limited when compared with healthy human motion.

Below, we motivate our specific model target — the human elbow — and outline the
scope of our (as yet limited) modeling capabilities.

Modeling Target: The Human Elbow

As illustrated in the left and center images of Fig. 2.1, the human arm in its entirety is
incredibly complex, with tens of muscles each actuating one or more joints, many of which
have multiple degrees of freedom (DoF). In this dissertation, we focus on the elbow as a case
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study for our proposed sensing and modeling methods, a comparatively simple, single-DoF
joint with only a few actuating muscle groups (three flexors and a single extensor, as shown
in the right image of Fig. 2.1) that is nevertheless critical to performing manipulation tasks
requiring substantial force exertion.

Modeling Scope: Net Joint Torque Inference

The primary sensing method we explore in this thesis — specifically, the use of ultrasound
to measure muscle deformation — was selected specifically for its ability to attribute signals
to individual muscles, enabling individual muscle force–deformation modeling: as discussed
below in section 2.5, muscle deformation is an inherent aspect of the muscle force generation
mechanism, and this deformation can be measured directly for an individual muscle (or,
indeed, any spatial location) via ultrasound. At the same time, this work is valuable precisely
because there exist no standard methods for noninvasive, in vivo individual muscle force
measurement, which leaves us unable to validate force–deformation models at the level of
individual muscles.

Instead, in this document, we limit our analyses (aside from some speculative modeling
techniques in chapter 10) to the relationship between muscle deformation and net output
joint torque, a measure that is easily accessible via contact force-torque sensing. Never-
theless, we feel that the data we present, alongside our understanding of the physiological
relationship between deformation and output force, constitute a powerful case that this sig-
nal is a promising candidate for individual muscle force measurement. In the future, we
aim to validate these assertions using both invasive and noninvasive sensing, as discussed in
section 13.2.

2.3 Existing Musculoskeletal Modeling Frameworks

In this section, we enumerate existing musculoskeletal modeling frameworks — focusing on
those most relevant to device control and macro-level biomechanical modeling — and remark
on their utility and limitations when applied to the domains of interest above.

Micro-Scale Models: Neurological Control & the Sliding Filament
Theory

At the cellular level, the mechanism by which skeletal muscles generate force is well-character-
ized: the nervous system (central or peripheral) sends an electrochemical signal to a given
motor neuron, which then sends an action potential to ennervate a “motor unit” of a few
or more muscle fibers via chemical depolarization, filaments of which are induced to slide
relative to one another via the actin-myosin cross-bridge cycle [65, 66] and stabilized by titin
and other elastic proteins [57], causing a length (and thus tension) change and imparting
force. Increased force in a given muscle results from increased force contributions of a single
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motor unit (induced by more frequent action potentials) and from the recruitment of larger
motor units in increasing order of size (following the Henneman size principle [55]).

While these mechanisms cannot be tractably sensed and modeled for direct full-muscle
in vivo analysis, they highlight several phenomena that must be considered when modeling
macro-scale musculoskeletal dynamics. First, the force generation signal may originate in
the brain or as a peripheral reflex; second, motor units (which come in many sizes [15]),
and not full muscles or individual fibers, are the quanta by which muscles are activated;
and third, each motor unit may be activated by only a single action potential (“twitch”),
multiple summed action potentials (“summation”), or to maximum (“tetanus”).

Additional Complexities: Contraction Types, Fiber Types,
Hysteresis, & Fatigue

In addition to the intricacies of the mechanism described above, muscle contraction dynamics
vary with a number of factors, including contraction type, relative directions of motion and
exertion, fiber type composition, stretch reflex prominence, and fatigue. In this subsection,
we delineate modeling considerations necessitated by these phenomena.

Contraction types. While muscles exhibit time-varying force, length, and velocity be-
havior during natural motion, contraction behaviors are often simplified as being isometric
(changing in force, but with no associated length change or velocity), isokinetic (moving at
constant velocity, with varying force and length) or isotonic (consistent in force, but chang-
ing in length and velocity), and muscle force generation capabilities vary substantially with
contraction type [80, 60]. In this dissertation, we primarily target isometric contraction for
simplified initial modeling, though we ultimately aim to build a system that accounts for all
combinations of these contraction modes.

Contraction directions. While muscles can only execute unidirectional force (i.e., can only
pull, not push), they can pull with (concentric) or against (eccentric) the direction of joint
motion, shortening or extending during contraction, respectively. Concentric contraction en-
ables overall skeletal movement; eccentric contraction is critical for stabilizing and smoothing
motions, balancing, and as a braking force to prevent joint damage [31, 112]. Contraction
dynamics exhibit considerable differences in these two regimes: muscles are substantially
stronger and require less energy expenditure when contracting eccentrically [112], and ec-
centric training is generally considered to be more effective at increasing force generation
capability, but also more damaging [123].

Fiber type. Muscle fibers exhibit different temporal force generation properties (e.g., time
for tension to rise to peak value during twitch) depending on their primary metabolic en-
ergy source. In particular, three fiber types have been identified [103]: slow oxidative (SO,
powered primarily by aerobic respiration), fast oxidative-glycolytic (FOG, powered by both
aerobic respiration and anaerobic glycolysis), and fast glycolytic (FG, powered primarily by
anaerobic glycolysis).1 Muscles generally exhibit a mix of fiber types, as each produces move-

1Interestingly, these fiber types also differentiate light and dark meat, which correspond to fast and
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ment advantages (SO for fatigue resistance, FG for speed, and FOG for strategic flexibility),
and this balance can be modified with appropriate training and exercise [23].

Myotatic (“stretch”) reflex & hysteresis. In addition to active, central-nervous-system-
controlled output forces, muscles exert reflexive contraction forces when passively stretched
(as sensed by the muscle spindle, a stretch receptor within the muscle body that conveys
information back to the nervous system via afferent nerve fibers), acting to keep the muscle
at constant length [25]. This reflex is critical to maintaining balance and stability, but also
exhibits substantial hysteresis depending on current and previous movement conditions that
make modeling difficult [82].

Fatigue. Muscle fatigue, a decrease in maximal force output and power production during
contractile activity, both acute and chronic, can occur due to exertion-related changes in any
aspect of the contractile mechanism, including neurological activation, ion concentrations,
and metabolic energy systems [149]. In general, these changes are poorly characterized and
rarely accounted for in real-time musculoskeletal modeling frameworks.

Hill-Type Muscle Models

Although there exist models extending the sliding filament theory to muscle-level dynamics
[157], the complexities described above have meant that the most successful macro-scale
dynamics models are phenomenological — i.e., models largely constructed from data using
system identification techniques rather than grounded in detailed biological processes. The
most widely-adopted example is the Hill model [59], one common variation of which is shown
in Fig. 2.2, a lumped parameter model containing a nonlinear contractile element (CE) and
nonlinear parallel (PE) and series (SE) elastic spring elements, corresponding roughly to the
activating muscle, elastic elements surrounding and throughout the muscle (fascia, etc.), and
the tendon, respectively. The force–velocity relationship of CE is then described by equation

(F + a)(v + b) = (Fmax + a)b

for muscle tensile force F , muscle shortening velocity v, maximum (tetanic) isometric force
Fmax, constant coefficient of shortening heat a, and constant b = avmax/Fmax for maximum
shortening velocity vmax. This force–velocity model is often paired with force–length models
derived from the sliding filament theory [40].

This Hill model is advantageous in that it requires fitting only a few parameters to a
given muscle (Fmax, a, and b above, along with a few tendon stiffness parameters) and easily
supports a number of structural extensions [151]. Due to this simplicity, it is widely employed
for musculoskeletal modeling and simulation, including in the state-of-the-art optimization
systems described below [22, 19]. At the same time, the model has many limitations often
ignored by its users: in particular, the model was only ever designed to describe maximal,
tetanic contractions, and often poorly describes submaximal contraction during natural mo-
tion [151]. In addition, fitting even these few parameters becomes an underdetermined and
challenging problem when simulating many muscles at a time, as discussed below.

(myoglobin-rich) slow twitch fibers, respectively.
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Figure 2.2: Basic Hill-type muscle model [59], a ubiquitous model of muscle force–length
and force–velocity relationships, including nonlinear contractile element CE, series elastic
element SE, and parallel elastic element PE. Image from [54].

Optimization-Based Models: Full-Body Simulation

Drawing on the Hill-type muscle models described above, as well as extensive literature in
tissue morphology, several simulation frameworks have been developed to enable full-body
musculoskeletal simulation, including OpenSim [22] and AnyBody [19]. These frameworks
have been applied to a wide array of human modeling domains, including gait simulation
[153, 143], sports training [87], rehabilitation [84], and device evaluation [85].

At the same time, these detailed simulations intrinsically make many morphological as-
sumptions and offer limited customization parameters, relying on sparse and aggregate data
to fit models to individuals and thus generating substantial modeling error. These systems
also have to contend with a significant “biological nullspace” [137] (induced by redundant
muscles) of possible muscle force values for any given joint force trajectory. As illustrated in
Fig. 2.3’s toy example, even simple motions admit a range of possible solutions for muscle
output force values, forcing these frameworks to rely on optimizations (e.g., least possible
force output, matching a gait cycle) known to be inaccurate when modeling many phenom-
ena of interest (e.g., balance, co-contracted or stabilized motion) [20] — and especially when
measuring pathological motions (e.g., stroke-induced plegia, antagonistic co-contraction due
to Parkinsons’ disease) — and thus precluding any safety guarantees when used to inform
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Figure 2.3: Toy example illustrating limitations of musculoskeletal simulation frameworks,
depicting a simple sagittal model of the elbow with one biceps-like flexor exerting force Fbiceps

and one triceps-like extensor exerting force Ftriceps. Both left and right images depict muscle
forces consistent with observed output force Fext; in the absence of muscle force measurement,
simulation frameworks are forced to choose a solution. Most frameworks will likely choose
the solution depicted on the left if optimizing for minimal exertion, though the image on
the right is likely more consistent with stabilized, higher-impedance motion. Select images
adapted from [67].

device control.

Higher-Level Models: Cognition & Ergonomics

Despite the advances above, the use of musculoskeletal modeling remains relatively uncom-
mon in robotics and device control fields. Instead, many human–robot systems leverage
simpler human models grounded in ergonomics [132, 11], assumptions of intended trajectory
characteristics [34], cognitive intent inference [68, 52, 93], or simple rigid body dynamics
[133]. Considering these frameworks is mostly beyond the scope of this dissertation, as
they model fundamentally different attributes of the human system, and we see them as
complementary to our musculoskeletal dynamics inference efforts.

2.4 Existing (Noninvasive) Musculoskeletal Sensing

Paradigms

As discussed above in section 2.1, while there exist a number of sensing modalities with which
to measure real-time human kinematics (including motion capture and electrogoniometry),
as well as ground reaction and contact forces (e.g., via force plates and load cells), sensing of
individual muscle forces — especially noninvasively — remains limited. Surface electromyo-
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graphy (sEMG) — which measures (via surface electrodes) the electrical signals generated
throughout the muscle by the motor unit action potentials (MUAPs) described above in
section 2.3 — is by far the most ubiquitous modality from which muscle force is inferred.
A rich body of literature, using a wide variety of electrode configurations (from simple dif-
ferential to complex arrays [105]), has shown success in decomposing the various MUAP
contributions to the sEMG signal to measure which muscles are synergistically activated
during a variety of motions and with what relative timing [108]; however, while individual
sEMG signals are generally correlated with output force, they cannot be used directly for
force inference, as signal magnitudes are highly dependent on electrode locations, subject
morphology, and many other factors, and often vary substantially from day to day or session
to session [21]. Nevertheless, enabled by additional modeling assumptions, sEMG signals are
often used for force inference [21], including via the optimization-based frameworks discussed
above [130, 61, 119], and we use these signals as a baseline for comparison with our own
deformation-based force inference methods throughout this thesis.

A second, relatively recent force inference method involves measuring tendons’ vibra-
tional behavior to infer strain — specifically, using a shear wave tensiometer that exerts
micron-scale taps on the tendon of interest, the resulting wave speeds of which are then
measured by skin-mounted accelerometers [99]. This method has been used successfully at
both the knee and ankle joints (at the achilles and patellar tendons [26], for example), and
is a promising technology with which to validate much of this thesis work, as discussed in
section 13.2. At the same time, this technique is limited in two important ways: first, it
relies on tendon access near the skin surface, which is not the case for many muscles of inter-
est (e.g., in this thesis, the brachialis), and second, it assumes a roughly elastic “beamlike”
tendon to compute expected shear wave propagation, a quality that is likely unsatisfied by
many (geometrically complex) tendons and aponeuroses. Nevertheless, for MTU structures
that meet these criteria, this “tendon tapping” method is arguably the most direct extant
noninvasive method of individual muscle force measurement.

A final, less common muscle force sensing paradigm is to measure contraction-associated
muscle vibrations using microphones or inertial measurement units, in a method known
variously as acoustic myography (AMG), vibromyography (VMG), or mechanomyography
(MMG). While these signals remain poorly characterized — in fact, the mechanistic sources
of the vibration signal are still debated — they present an additional source of contrac-
tile dynamics information, and our own preliminary study evaluating vibration-based force
inference is included in chapter 12.

2.5 Deformation as a Measure of Musculoskeletal

Forces

Deformation provides a force inference signal that addresses a number of limitations of the
signals discussed above. First, like tapping-induced tendon shear waves and vibration, it is
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mechanically, rather than neurologically (as sEMG-measured activation) coupled to muscle
dynamics, such that it provides a measure representative of actual force production rather
than neurological intent. Second, when measured via ultrasound (and unlike vibration or
activation), it can be precisely localized to specific structures of interest, rather than a
nonspecific area around the transducer, theoretically allowing for the extraction of multiple
independent signals from different muscles (e.g., to allow control of different device degrees
of freedom, or simply to enhance biomechanical understanding). Lastly, unlike any of the
methods above, the deformation signal can be extracted equally well from both deep and
superficial muscles, enabling more complete consideration of the full musculoskeletal system.

Despite the intricacies described above in section 2.3, the core mechanism relating mus-
cle deformation and output force is straightforward: as muscle fibers ratchet together in
the cross-bridge cycle described above, they induce a length change along the line of ac-
tion, which pulls the attached (roughly elastic) tendons, which then impart the force to
the skeleton, a phenomenon that has been observed and characterized empirically for select
muscles at select (e.g., tetanic) conditions [97]. Under the (mild) assumption that muscles
are isovolumetric [139, 103], this length change by definition induces further shape changes,
or deformation, in the activated muscle. A number of isolated studies have observed this
deformation empirically under limited conditions and established a correlation with muscle
activation [104, 131, 159, 135, 72, 45].

At the same time, the human musculoskeletal system is highly complex, geometrically
irregular, and dominated by the physics of various nonlinear materials — as illustrated
in the above Fig. 2.1 — and morphology often varies substantially across individuals in
ways that significantly impact system dynamics [64, 27].2 While muscle deformation can be
observed in one or two dimensions (e.g., muscle thickness or cross-sectional area changes,
respectively), there do not exist models that can translate these observations into clinically-
relevant quantities like stiffness, activation, and force output, and there exist few macro-scale
force–deformation models relevant to assistive device control or system-level biomechanics;
fewer still are (even cursorily) validated with experimental data. Within the field of computer
graphics, a number of algorithms exist to generate plausible muscle deformations given a
virtual model’s kinematic configuration, dynamics, and/or skin surface deformation [117, 90,
91, 163], but these algorithms are generally evaluated on their output’s visual appeal rather
than a physiological or data-driven error metric. Although some such models are rooted in
biomechanical data and are intended for real-world medical applications [163], they largely
ignore muscles’ fundamental nature as actuators, instead treating them as passive elements
whose deformation is purely a function of configuration and applied external force, without
regard to force distribution across muscles. Lastly, most of these models rely on finite
element analysis, which makes them too computationally intensive for direct application to

2In addition, it is an open question whether this deformation can be observed in muscles without well-
defined series tendons and/or with otherwise complex connective geometry (e.g., the deltoid), in which the
one-dimensional length change mechanism described above is likely to break down; as the underlying cross-
bridge-cycle mechanism of force generation is the same, we anticipate that there exists observable deformation
of some kind, but that characterizing it may prove more challenging.
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a real-time control scheme.
At the other end of the muscle deformation modeling spectrum are micro- and mezzo-

scale analyses of (one to a few) individual muscle fibers [83, 44]. While these models offer
significant insight into the biological sources of deformation, they are not readily extensible to
macro-scale analysis. Indeed, there is significant evidence not only that fibers behave quite
differently in vivo and in isolation (due to contact dynamics and other factors), but that
passive tissues like tendons and aponeuroses significantly impact the deformation behavior
of the muscle-tendon unit when modeled at this level of detail [63]. This evidence makes it
difficult or impossible to conjecture how deformations scale across model resolution.

Another deformation-based force inference approach is to measure the force-generating
muscle–tendon unit length change directly, in either the muscle or the tendon [81, 5, 162].
These approaches are complementary, but limited, in a similar manner to the “tendon tap-
ping” methods described above in section 2.4: several muscles of interest may be attached to
the same tendon, and these attached tendons — or, in many cases, aponeuroses — may have
complex geometry that makes establishing a single “length” value difficult or impossible.

While these existing studies provide evidence that deformation can be used for force infer-
ence, there exist no principled, generalizable frameworks for modeling the force–deformation
relationship in a widely applicable, real-time manner. Ultimately, the field of muscle de-
formation modeling could greatly benefit from its own version of the Hill model [59] — a
ubiquitous, cleanly parameterized formulation that could be applied to a wide variety of
musculoskeletal modeling endeavors. While the creation of such a model will doubtless re-
quire years of rigorous system identification, both in vivo and in vitro, this dissertation
presents the first steps toward this kind of phenomenological modeling, first validating the
correlation results above on a manipulation-relevant joint (the elbow), then testing their use
in a real-time control application, and lastly, building a data set and analysis framework to
allow for comprehensive examination of many possible models.

2.6 Ultrasound as a Sensing & Control Modality

There exist a number of sensing modalities with which we could measure this force-associated
muscle deformation, from magnetic resonance imaging (MRI) to scan full muscle geometry
[12] and strain [161], to force myography (FMG) [18] and tactile myography (TMG) [70] to
measure shape and force changes at the surface of the skin. When used for real-time inference
of muscle dynamics, each of these modalities presents both advantages and limitations:
MRI provides a detailed view of muscle dynamics, but is expensive, slow and/or repetitive
to collect, requires collection within a limited bore, and is not immediately applicable to
device control outside lab settings; FMG and TMG are readily wearable, but cannot yield
insight into the complex deformation relationships between deep and surface muscles that
characterize many joints’ actuation. (Elbow joint flexion, for example, the motion we explore
in this thesis, is generated not only by the biceps brachii and brachioradialis, both surface
muscles, but also by the — deep — brachialis.) In this dissertation, given our aspirations
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toward device control and real-time modeling of natural motion, we present ultrasound as
a deformation measurement technology that combines the strengths of the above sensors,
yielding images of both shallow and deep muscle geometry while maintaining a reasonably
portable form factor.

While commercial ultrasound-driven assistive devices are not yet available, diverse studies
have demonstrated the use of 2D brightness mode (B-mode) ultrasound to measure a wide
variety of muscle architectural parameters, including muscle thickness, pennation angle, and
fascicle length [62, 118], as well as to execute preliminary (“sonomyographic”) control on both
simple single-degree-of-freedom prostheses [16], and on more complex devices by leveraging
learning-based image processing and gesture classification [150, 24, 2, 127, 29]. A number
of studies have specifically targeted muscle thickness, both as a feasible signal for prosthesis
control [160] and as a measure of muscle activation (as correlated with EMG) [104, 76] and
fatigue [135]. Additionally, wearable 1D amplitude mode (A-mode) ultrasonic sensors —
which could potentially be applied to acquire a single muscle thickness measurement — have
been used to continually monitor the mechanical properties of plantar soft tissue in diabetic
patients [142] and knee torque [144] and are much closer to commercial integration with
assistive devices than 2D B-mode scanners.

At the same time, these ultrasound-based control techniques have not seen wide adoption,
are rarely evaluated against state-of-the-art sEMG control systems, and are inhibited by
poor understanding of the underlying musculoskeletal dynamics. In this thesis, we begin to
address these limitations by developing enhanced force–deformation models and ultrasound-
based control paradigms in tandem and alongside corresponding sEMG data.

2.7 Summary

In this chapter, we introduced the necessity of enhanced musculoskeletal modeling in robotic
and human motion science applications and argued that ultrasound-based extraction of de-
formation signals represents a promising path toward generating the expressive models we
seek. In the following chapters, we leverage this insight to both prototype deformation-based
control at the elbow joint and develop a systematic force–deformation analysis framework
to enable expanded modeling in the future.
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Part I

Exploratory Data Analysis
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Chapter 3

Exploratory Force–Deformation
Correlation

This chapter is adapted in part from [51].1

As discussed at length in chapter 2, muscle deformation is a rich, complex signal class,
and there exist no standard parameterizations or control-ready models relating it to output
force. In this chapter, we begin our systematic analysis of the force–deformation relationship
at the elbow with a simple correlation study, examining several deformation signals of the
brachioradialis alongside surface electromyography (sEMG) and contact force data during
varied isometric contraction.

In the sections below, we first outline the scope of this preliminary study and detail
our subject cohort and collection procedure, then present example time series data along-
side qualitative and quantitative analysis of the force–deformation relationship. Lastly, we
discuss the implications and limitations of our findings — namely, that several measures
of brachioradialis deformation indeed correlate with output force and are consistent with
simultaneous sEMG data, validating prior correlation results in the literature and informing
our choice of deformation-based signals for both control and detailed study in the remaining
chapters.

All data and analysis code have been released to the OpenArm project in the OpenArm
Multisensor 1.0 package (see section 11.1).

1©2020 IEEE. Reprinted, with permission, from Laura A. Hallock, Akash Velu, Amanda Schwartz, and
Ruzena Bajcsy. “Muscle deformation correlates with output force during isometric contraction”. In: IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE. 2020,
pp. 1188–1195. doi: 10.1109/BioRob49111.2020.9224391.

https://doi.org/10.1109/BioRob49111.2020.9224391
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3.1 Study Scope

In this study, we target the cross section of the brachioradialis (the smallest of the elbow
flexors, and thus the most visible in a single time-varying ultrasound frame) as a source
of deformation signals, analyzing cross-sectional area, thickness, and aspect ratio changes
— signals we expect to correlate well with muscle force given the basic force–deformation
mechanism described in section 2.5 — during time-varying isometric elbow flexion. We collect
these signals alongside sEMG-measured activation of the biceps brachii and brachioradialis
and output joint force at the elbow, during a variety of pulsed and sustained flexion pulses,
under multiple kinematic configurations (i.e., elbow angles) and for multiple subjects. We
examine correlations between these deformation and activation signals and output force and
how they vary by subject and kinematic configuration.

3.2 Data Set Collection

As an exploratory data set, we collected simultaneous sEMG, ultrasound, and output force
data from a single subject under multiple kinematic configurations during a sequence of
voluntary flexion pulses, in a protocol similar to that used in [47] and illustrated in Fig. 3.1.
To explore consistency across individuals, we collected ultrasound and force data from an
additional 4 subjects at a single representative configuration. Details of this subject cohort
and collection procedure are outlined below.

Subject Biometric Data & Consent

Data were collected from the right arms of 5 subjects (2 female, 3 male). Of these, 4
subjects were within age 18–24, while the last subject was age 83 and used to investigate
generalizability across age groups. All subjects were healthy, with a wide variety of exercise
regimens and body types. The study protocol was approved by the University of California
Institutional Review Board for human protection and privacy under Protocol ID 2016-01-
8261 (first approved 4 April 2016) and written informed consent was obtained from each
subject.

Data Collection

Each experimental trial consisted of a pulsed sequence of isometric elbow flexions, executed
while the subject was instrumented with a lab-developed sEMG system [74] and a 3–12 MHz
linear ultrasound transducer (L3–12 NGS, eZono AG, Jena, Germany) attached to its corre-
sponding ultrasound unit (eZono 4000, eZono AG, Jena, Germany). Surface EMG electrodes
were placed in a differential configuration on both the upper and lower arm, targeting the
biceps and brachioradialis, respectively. The ultrasound transducer was placed perpendic-
ular to the lower arm (i.e., roughly perpendicular to the brachioradialis) at a consistent
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(a)
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Figure 3.1: Experimental setup for the collection of time series force, surface electromyo-
graphy (sEMG), and ultrasound data under multiple elbow angles. Setup includes sEMG
electrodes (a); ultrasound probe (b); UR5 robot (c) with attached handle, through which
subject may transmit force to force plate (d); and wrist brace (e) for elbow isolation. ©2020
IEEE.

marked location and lightly stabilized in the sagittal plane via an L-shaped support. When
exerting force, subjects pressed upward on a handle mounted to the end effector of a 6-degree-
of-freedom robot arm (UR5, Universal Robots, Odense, Denmark).2 This robot remained
static for each trial, but changing its configuration between trials served as an easy manner
of repositioning the handle in space based on subject physiology and desired elbow angle
during measurement. The robot was in turn mounted to a 6-channel force plate (Optima-
HPS, Advanced Mechanical Technology, Inc., Watertown, MA, USA), which was used to
measure the output force exerted by the subject. Additionally, each subject wore a brace to
immobilize the wrist.

2Note that subjects did not actually grasp this handle, but simply pressed upward via elbow flexion; the
handle was used to allow subjects to exert a force vector exactly in the elbow flexion direction (i.e., tangent
to the rotational flexion motion, with no radial component) without necessitating precise placement of the
flat surface of the robot end effector in space for each elbow angle and subject.
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During data collection, the subject sat comfortably upright, feet planted, with the back
of the upper arm supported and elbow flexed to the prescribed angle, as shown in Fig. 3.1.
Subjects were instructed to press upward in the sagittal plane while only exerting force at
the elbow (and otherwise relaxing, to minimize co-contraction) and keeping the forearm
completely supinated. For each experimental trial, the subject was guided in a series of 21
force pulses, each of 2 s duration with 1 s rest in between, via a visual display that instructed
the subject to press with “low”, “medium”, or “high” intensity at each interval. The first 3
intervals were always performed in order of increasing intensity, while the remaining 18 were
randomized. For select trials, this pulsed sequence was followed by a set of 3 sustained force
presses (each 5 s in duration, with 2 s rest in between) in increasing order of intensity. Note
that this protocol was intended primarily to generate a wide variety of force conditions, not
to prescribe specific force values; none of our analyses rely on subjects following this protocol
exactly, and there is high variance in the extent to which this sequence is readily observable
in the collected force data.

Data Scope

Using the protocol above, simultaneous force, sEMG, and ultrasound data were collected
from a single subject (denoted Sub1 ) at elbow angles of 25°, 44°, 69°, 82°, and 97°, as
measured from full extension. Simultaneous force and ultrasound data were collected from
an additional 4 subjects (denoted Sub2 –Sub5 ) at a self-selected, comfortable elbow angle
near 69° for comparison with the primary subject’s 69° trial.

3.3 Data Processing & Definition of Deformation

Signals

Prior to our correlation analyses, we preprocessed the raw data streams in the following man-
ner to extract force, neural activation, and deformation measures that are readily comparable.
All preprocessing and analysis details are included with code release, and an exemplar of the
finalized trial data can be seen in Table 3.1.

Force and sEMG Preprocessing

To generate a single output force magnitude from the collected 6-channel (i.e., 3-channel
force and 3-channel torque) force plate data, the measured wrench was first transformed into
the handle’s frame of reference based on the robot’s kinematic configuration. The magnitude
of the subject’s output force was then calculated as the magnitude of the force component
of the resultant wrench.

To generate muscle activation data from raw sEMG values, ambient noise was first re-
moved with a 60 Hz notch filter. Our final activation measure is the absolute value of this
denoised signal, smoothed by an exponential moving average filter. These sEMG values were
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CSA

T AR = T
W

W

Figure 3.2: Example cross section of the brachioradialis muscle, as collected via ultrasound
(probe to left of frame, scanning right), with illustrated shape measures of interest: cross-
sectional area (CSA, cyan), thickness (T, blue) and aspect ratio (AR, dark blue, the ratio
of thickness T to width W ). Each measure is calculated for each ultrasound frame during
trials of isometric elbow flexion to generate time series deformation data.

collected from both the brachioradialis and the biceps brachii, both of which aid in elbow
flexion. We present both in the analyses below — the first because it is more closely related
to the observed brachioradialis deformation, and the second because it is a mildly cleaner
signal and thus constitutes a more competitive baseline for our comparison with deformation
measures.

Extraction of Deformation Measures

Given our time series data of ultrasound images, we can parameterize muscle deformation in
a multitude of ways, from shifts in individual pixel values to changes in muscle dimensions.
For this preliminary study, we examine the following three shape measures, which are also
illustrated in Fig. 3.2.

Cross-sectional area (CSA). We define CSA as the total area of the brachioradialis cross
section visible on a given ultrasound scan.
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Thickness (T). We define T as the maximum extent of the brachioradialis cross section
measured from the surface of the skin perpendicularly away from the transducer.

Aspect ratio (AR). We define AR as the ratio between the thickness T of the brachiora-
dialis cross section and its maximum extent in the perpendicular dimension.

Each of these 3 metrics is calculated by first manually masking the brachioradialis cross
section at each time point, then extracting each above-defined value from the mask. We
note two salient sources of measurement error. First, the manual masking process relies
on human annotation that is inconsistent and time consuming. Second, the full extent
of the brachioradialis cross section often extends beyond the measured ultrasound frame,
impacting primarily the CSA and AR measures. These limitations are addressed in future
chapters, through our development of automated cross section tracking methods (chapter 6)
and studies of full 3D muscle deformation (parts III and IV), respectively.

Alignment of Data Streams

Due to the technical peculiarities of each sensor, a fully time-synced data collection system
remained under development at the time of data collection; we therefore align the force,
sEMG, and ultrasound data streams based on the temporal location of the first force pulse,
which is manually noted in each data stream, then linearly interpolate each series to attain a
consistent frequency. In this preliminary study, we make no claims on the precise temporal
relationships between force, activation, and deformation signals. This is one of the first
limitations addressed in the refined follow-up correlation study in chapter 4, which uses a
more precisely time-synced system.

Ultrasound Drift Compensation

Although the ultrasound probe was stabilized by a support structure during collection, the
precise location of the probe relative to the brachioradialis muscle tends to drift over time,
primarily due to subjects’ skin shifting and the probe rotating relative to the arm. To
compensate for this drift, we fit a third-order polynomial to each of the CSA, T, and AR data
series, measured only at time points at which force was near zero (i.e., between prescribed
pulses). We then subtract the value of this polynomial at each point in the original series
to generate “detrended” data. We examine both the original deformation data streams and
their detrended counterparts in the analyses below.

As with data alignment, this issue is addressed in the refined chapter 4 study, which
employs improved ultrasound attachment hardware.

3.4 Correlation & Evaluation

In the following analyses, we use the Pearson correlation to assess the viability of using
our candidate deformation measures to infer output force, alongside or as an alternative to
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Table 3.1: Example Time Series Data

SIGNAL Symbol

Pearson Correlation 
Coefficient

raw, detrended
CC ( ·, f) Time Series Signal

force
(N) f 1.00

sEMG, biceps
(mV raw, 0.1mV processed) sEMG-BIC 0.38

sEMG, brachioradialis
(mV raw, 0.1mV processed) sEMG-BRD 0.27

cross-sectional area
(mm2) CSA(-DT) 0.44, 0.48

thickness
(mm) T(-DT) 0.59, 0.72

aspect ratio AR(-DT) 0.70, 0.78

Example time series data (collected from Sub1 at 25° elbow flexion) of elbow output force
(black) in which the subject executed a series of prescribed force pulses and sustained exer-
tions. Data streams include biceps (light orange) and brachioradialis (dark orange) surface
electromyography (sEMG) data, as well as detrended ultrasound-measured cross-sectional
area (CSA, cyan), thickness (T, blue) and aspect ratio (AR, dark blue) of the brachioradialis
cross section. In general, CSA, T, and AR deformation measures correlate well with out-
put force, especially when detrended. Moreover, these force–deformation correlations are of
comparable strength to those between force and more standard sEMG measures. Note that
raw (gray) and processed (orange) sEMG traces are plotted at different scales for clarity as
noted, and reported correlation coefficients are for processed data. ©2020 IEEE.

sEMG. We first examine an illustrative time series, then discuss how our assertions translate
across changes in kinematic configuration and across subjects.

An Illustrative Time Series

Table 3.1 shows representative pulse data from a single trial (specifically, that of Sub1 col-
lected at 25°) alongside each data stream’s correlation coefficient as measured against force
data. In this series, and in general, our deformation measures CSA, T, and AR correlate
comparably with sEMG from both the biceps and brachioradialis; in this case, in fact, they
are substantially more correlated (though this varies with both elbow angle and subject, as
discussed below).

This exemplar also illustrates two other trends largely consistent throughout the data.
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First, thickness T and aspect ratio AR are somewhat more correlated with output force than
cross-sectional area CSA, perhaps because an increase in one dimension is often accompanied
by a decrease in the other due to muscles’ isovolumetric nature. Second, detrending the
data using the method detailed in section 3.3 generally improves the observed correlation,
providing evidence that sensor drift (or some biological source of drift, e.g., fatigue) indeed
occurred.

Deformation and Elbow Angle

Fig. 3.3 illustrates the manner in which correlation strength varies with angle for each data
stream on our exemplar subject, Sub1. For flexion angles less than approximately 90°, defor-
mation measures remain reasonably correlated with force, with detrended data performing
slightly better as in our illustrative data series. The relative performance of CSA, T, and AR
measures, however, varies in a complex manner that is difficult to characterize but is reflected
qualitatively in the accompanying illustrative frames, which show significant angle-dependent
variation in shape and size. This variation is perhaps most obvious in the highest-flexion 97°
data series, in which the cross section changes shape entirely and our defined deformation
metrics largely fail, perhaps because the belly of the muscle has shifted significantly away
from the ultrasound probe location. Interestingly, sEMG correlations behave in the opposite
manner, with the largest correlations occurring at the highest flexion angles. While this
may simply be a subject-specific phenomenon, it suggests that hybrid sensor approaches —
in which ultrasound-measured deformation and sEMG-measured activation are employed,
depending on kinematic configuration — may hold more promise for robust device control
than either technology alone.

Multi-Subject Deformation

Fig. 3.4 shows the strength of each deformation signal’s correlation with force on a repre-
sentative trial (near elbow angle 69°) for each of our 5 subjects. All measures CSA, T, and
AR are consistently correlated with a magnitude of around 0.5 or higher even though the
subjects vary significantly in terms of muscle morphology, suggesting that the underlying
biological mechanism generating the signal is common to all subjects. As before, detrending
the data generally provides a mild performance boost if a significant trend was removed, or
makes little difference if no trend was observed. (The one exception, in which detrending
resulted in decreased correlation, is Sub4, for whom a truly meaningful trendline could not
be computed due to lack of zero-force baseline data throughout the data series.)

Perhaps the most interesting subject data is that of Sub5, our single elderly subject and
the only subject physically small enough that virtually the entire brachioradialis cross section
was visible in every data frame. Like other subjects’ data, the magnitude of each deformation
signal’s correlation was substantial — in fact, T and AR signals were more correlated with
force than for any other subject, perhaps due to the completeness of the cross-sectional
image. Oddly, the subject’s CSA data, while strongly correlated with force, was negatively
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Figure 3.3: Top: Correlation of cross-sectional area (CSA, cyan), thickness (T, blue) and
aspect ratio (AR, dark blue) of the brachioradialis cross section, both raw (solid) and de-
trended (dashed), with elbow output force, alongside baseline force correlations with biceps
(light orange) and brachioradialis (dark orange) surface electromyography (sEMG) data.
Correlations were computed across flexion angles ranging from near full extension (25°) to
near maximum flexion (97°). CSA, T, and AR deformation signals, especially when de-
trended, correlate well with elbow output force for most elbow angles, but this correlation
collapses near full flexion. Bottom: Example ultrasound frames with annotated brachio-
radialis contours depicting no force (top row) and high output force (bottom row) at each
examined flexion angle reflect the changing presentation of muscle deformation with changes
in elbow angle. ©2020 IEEE.
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Figure 3.4: Top: Correlation of cross-sectional area (CSA, cyan), thickness (T, blue) and
aspect ratio (AR, dark blue) of the brachioradialis cross section, both raw (solid) and de-
trended (hashed), with elbow output force, across various subjects, collected at ∼69° elbow
flexion. CSA, T, and AR deformation signals, especially when detrended, correlate well
with output force, though the magnitude and direction of these correlations varies widely
across subjects. Bottom: Example ultrasound frames with annotated brachioradialis con-
tours depicting no force (top row) and high output force (bottom row) for each subject reflect
substantial morphological variation. ©2020 IEEE.
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correlated (i.e., CSA decreased with the application of force), in what could be a quirk of
morphology, a function of sensor placement, or a property of aging musculature. We see this
question in particular as meriting future study, as aging individuals could especially benefit
from advances in muscle force measurement technology. We present this preliminary data
as evidence both that measuring deformation data in elderly subjects is possible and that
the data collected is largely consistent with that of younger subjects in terms of correlation
magnitude.

3.5 Summary & Limitations

This study provides novel evidence that several simple measures of ultrasound-measured
muscle deformation correlate well with output force and are consistent with sEMG-measured
activation at the elbow joint during isometric contraction, showing initial feasibility of lever-
aging such signals for device control. In the next few chapters, we expand on these positive
results, first building a real-time deformation tracking system (with improved sensing and
hardware) to expand the correlation analyses above to a wider cohort of subjects and refined
set of force conditions (chapter 4), then employing this tracked signal for control (chapter 5).
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Chapter 4

Refined Force–Deformation
Correlation

This chapter is adapted in part from [50].1

In the previous chapter, we showed preliminary evidence that simple measures of deforma-
tion, as measured via ultrasound, correlate with output force, and thus represent promising
device control signals; however, these analyses were limited by the need for extensive manual
annotation and disparate sensing infrastructure. In this chapter, we present a novel exper-
imental platform, consisting of both networked hardware and real-time optical-flow-based
muscle contour tracking software, that enables the simultaneous, time-synced collection and
display of joint force, muscle activation, and muscle deformation data, facilitating force–
deformation–activation correlation analysis at the elbow on an expanded cohort of subjects.
(This platform is also employed in the deformation-based control studies in chapter 5.)

In the sections below, we outline the scope of this refined study and detail this novel
data collection platform, then present an enhanced correlation analysis enabled by this new
system, and lastly, discuss both the platform’s limitations and its direct applicability to the
study of ultrasound-based control. As before, we find that simple measures of deformation
correlate well with output force, and newly, that we can successfully track one measure of
this deformation (i.e., muscle thickness) in real-time, enabling its use as a control signal in
future chapters.

All data and analysis code have been released to the OpenArm project in the OpenArm
Multisensor 2.0 package (see section 11.2).

1©2021 IEEE. Reprinted, with permission, from Laura A. Hallock, Bhavna Sud, Chris Mitchell, Eric
Hu, Fayyaz Ahamed, Akash Velu, Amanda Schwartz, and Ruzena Bajcsy. “Toward Real-Time Muscle Force
Inference and Device Control via Optical-Flow-Tracked Muscle Deformation”. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering (TNSRE) (2021, under review).
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4.1 Study Scope

As with our preliminary study in chapter 3, we target the brachioradialis cross section as
a source of the deformation signal and examine its relationship to output force and surface
electromyography (sEMG)-measured activation at the elbow during isometric contraction,
this time during precise force trajectories enabled by real-time visual feedback. Based on
these previous correlation results, as well as the tracking capabilities of our novel system, we
focus specifically on thickness change as our measure of deformation, and use sEMG of only
the biceps brachii as our activation for comparison. We also examine these signals at only
a single kinematic configuration, as we explore kinematic-associated deformation in our 3D
analyses in future chapters (parts III and IV).

4.2 Real-Time Deformation & Activation Tracking

Platform

To enable improved evaluation of force–deformation correlation during isometric contraction
at the elbow, we developed a novel experimental system to enable simultaneous collection
and optional real-time display of joint force, muscle thickness (as measured via ultrasound),
and muscle activation (as measured via sEMG) during varied isometric elbow flexion.2

This section details, first, hardware aspects of this system that allow for collection of
these data under consistent kinematic conditions, and second, the signal processing software
used to extract, calibrate, display, and record these signals over time.

Hardware Setup

The hardware platform was designed for data collection from the right arm of a subject seated
comfortably upright, feet planted, right upper arm comfortably adducted (vertical), elbow
flexed 90°, forearm fully supinated, with the elbow supported by a static jig from below, as
shown in Fig. 4.1. The right wrist was firmly strapped into a brace mounted to a 6-channel
force-torque sensor (ATI Mini45, ATI Industrial Automation, Apex, NC, USA), which was
in turn mounted to the end effector of a 7-degree-of-freedom robot arm (KUKA LBR iiwa
14 R820, KUKA AG, Augsburg, Germany).3 Subjects pressed upward on this sensor to
generate a measure of “output joint force” at the elbow; while this measured contact force
was inherently confounded by contributions from other linked joints, subjects were instructed
to exert force using only elbow flexion motion, and the wrist was immobilized, with the force

2Note that the software aspects of this platform — contained in the OpenArm open-source release —
are agnostic to the particular muscles and joints observed and could readily be adapted for study of other
joints.

3Note that this robot remained static throughout all data collection, but changing its configuration be-
tween subjects served as an easy manner of re-placing the force-torque sensor in space to maintain consistent
elbow angle across differing subject physiology.
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Figure 4.1: Experimental setup for the collection of time series force, ultrasound, and surface
electromyography (sEMG) data during constrained isometric elbow flexion. Setup includes
ultrasound probe (a) attached securely to user’s forearm with cuff (b); sEMG electrodes (c);
wrist brace (d) through which subject transmits force to attached to force-torque sensor (e),
in turn held stable by KUKA robot (f); elbow stabilizing jig (g); goal and sensor trajectory
display (h) for real time visual feedback for subject self-assessment; and real-time ultrasound
thickness tracking data (i) for continuous experimenter system status monitoring. This
system allows subjects to precisely follow a specified force trajectory to enable study of force–
deformation correlation under varied trajectory types (section 4.3) and to perform trajectory
tracking tasks using experimental deformation- and activation-based signals (chapter 5).
©2021 IEEE.
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sensor attached near the proximal edge of the palm, to isolate the elbow joint as much as
possible.

To gather muscle activation and deformation data, the subject’s right arm was instru-
mented with a MyoWare sEMG system (Advancer Technologies, Raleigh, NC, USA) and a
3–12 MHz linear ultrasound transducer (L3–12 NGS, eZono AG, Jena, Germany) attached
to its corresponding ultrasound unit (eZono 4000, eZono AG, Jena, Germany). Surface EMG
electrodes (Red Dot 2560, 3M, St. Paul, MN, USA) were placed in a differential configuration
on the biceps brachii, with the two signaling electrodes placed with 40 mm proximal–distal
center-to-center separation (adhesive edges abutting) and the top electrode roughly centered
on the lateral belly of the muscle, and the grounding electrode placed on the acromion. The
ultrasound transducer was manually placed perpendicular to the lower arm such that the
brachioradialis cross section was maximally in frame and held in place by an adjustable foam
and neoprene cuff.

Note that ultrasound and sEMG sensors were placed to target different muscles: the bra-
chioradialis and the biceps, respectively. While this inherently limits any correlation insights
we might make between deformation and activation values, both are active during elbow
flexion, and this configuration was chosen to allow simultaneous collection while preventing
sensors from physically interfering with one another. Earlier work (chapter 3) also found
stronger sEMG signals from the biceps than the brachioradialis, such that this configuration
provides a more competitive baseline against which to evaluate deformation data.

Signal Tracking & Display

During data collection, the subject faced a large monitor, which displayed two or more sig-
nal streams: a time series goal trajectory, and either force (to enable consistent force output
for the correlation analysis described in this chapter), and/or ultrasound-extracted deforma-
tion/thickness or sEMG-extracted activation (to compare deformation- and activation-based
trajectory tracking in the study discussed in chapter 5), each normalized to the subject’s
strength capabilities (via calibration to their maximum voluntary contraction force, as de-
tailed below). Our methods for signal extraction, calibration, and display are outlined below,
and full details can be found in the released codebase.

Tracking Muscle Thickness via Optical Flow

Brachioradialis thickness was tracked over time via the standard iterative Lucas–Kanade
method of optical flow estimation [96] as implemented in the OpenCV Python library [14].
Specifically, at the start of each trial, while the subject was instructed to remain still, 10
points were manually selected along both the top and bottom (i.e., superficial and deep)
surfaces of the brachioradialis muscle fascia, forming two clusters of points. These points
were used to define the vertices of two polygons from which contours were extracted [138];
these contour points, as shown in Fig. 4.2, were then tracked over time (on a bilaterally-
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Figure 4.2: Still frame of optical-flow-based brachioradialis thickness tracking system. Points
were tracked along the superficial (red) and deep (blue) fascial surfaces of the brachioradi-
alis, and thickness was reported as the vertical (superficial-to-deep, green-to-green) distance
between the center (mean) of each cluster. A line connecting each cluster center was also
displayed (magenta) to allow for easy observation of particle drift. ©2021 IEEE.

filtered version of each image [141] to suppress speckle noise) at a best-effort frame rate4 of 1
kHz, and the thickness value calculated at each iteration as the vertical (superficial-to-deep)
distance between the mean location of tracked points in each cluster.

To prevent points from drifting away from the selected surfaces (a frequent challenge in
optical flow estimation), we leveraged the knowledge that the fascial segment selected by each
point cluster should remain intact — i.e., points within a cluster should remain at similar
positions relative to each other. Thus, during each iteration, if the average squared distance
from tracked points to their cluster center exceeded a specified distance (here, 200 px2, or
approximately 3 mm2), all tracked point locations were reset to their initial locations. In
practice, these resets happened rarely for most subjects and are noted in released data.

Signal Processing & Calibration

Force, ultrasound-extracted thickness, and sEMG-measured activation were sampled for both
recording and display at a best-effort rate of 1 kHz. Activation values were smoothed via a
250-point (0.25 s) moving average filter.

4In practice, this frame rate was slightly slower due to delay associated with image recording.
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To normalize force, deformation, and activation signal traces s(t) to a subject’s strength,
at the beginning of each trial, subjects were first instructed to remain still for several sec-
onds, then to press upward with maximum possible contraction force for several seconds;
mean minimum and maximum signal values were then calculated over the final 200 samples
(approximately 0.2 s) at each condition as smin and smax, respectively.

Normalized signal traces s̄(t) were then calculated for both display and recording as

s̄(t) =
s(t)− smin

smax − smin

.

During each trial, one or more of these normalized traces s̄(t) was then displayed alongside
a goal trajectory, which the subject was then instructed to track by modulating elbow flexion
force, as detailed in sections 4.3 and 5.2. Note that regardless of display, all goal, force,
deformation, and activation signals, both raw and processed, were collected for all trials.

4.3 Data Set Collection

As a refined exploratory data set, simultaneous force, deformation, and activation signals
were collected from a preliminary cohort of subjects using the platform described above
as they tracked a specified elbow flexion force trajectory with visual feedback. We first
outline our subject cohort and collection procedure, then present preliminary time series
data alongside qualitative and quantitative analysis of the force–deformation relationship.

Subject Biometric Data & Consent

Data were collected from the right arm of 10 subjects (7 female, 3 male, 9 right-handed, 1
left-handed, age 25.6± 0.966, mass 61.7± 10.5 kg, height 1.69± 0.072 m, body mass index
21.5± 2.89), hereafter denoted Sub1 –Sub10.5 All subjects were healthy, with a wide variety
of exercise regimes, body types, and familiarity with nonstandard computer interfaces. The
study protocol was approved by the University of California Institutional Review Board for
human protection and privacy under Protocol ID 2016-01-8261 (first approved 4 April 2016)
and written informed consent was obtained from each subject.

Trial Specification

After being strapped into the data collection system outlined in section 4.2 and instrumented
with all relevant sensors, each subject performed three 90 s tracking trials: one unstructured
trial to familiarize them with the system, followed by two trials intended for correlation
analysis.

5Statistics are reported as mean ± standard deviation. For additional demographic data, broken down
by subject, see the full open-source data release. Note that the subjects examined here and their identifying
numbers bear no relation to those examined in the previous chapter 3 study.
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The initial familiarization trial — from which no actual data was analyzed for publication
— was designed to both familiarize subjects with the system and assure investigators that
all sensors were behaving as expected. After initializing the thickness tracking system and
performing min/max calibration (as outlined in section 4.2), the subject’s monitor was set
to display all three normalized force, thickness, and activation traces, as well as the goal
trajectory to be used in future trials. Subjects were then instructed to freely modulate
elbow flexion to get a sense for how the various signals changed with force output, though
they were not yet asked to perform the tracking task.

During the two data collection trials, the same tracking initialization and min/max cal-
ibration was performed, but this time, the subject’s monitor displayed only the goal and
normalized force trajectories. The subject was instructed to match the force trace to the
goal trace — scaled to the subject’s force generation capability and detailed below — by
modulating isometric elbow flexion force. The second trial was used in correlation analysis,
except where noted in the corresponding data release (e.g., due to sensor malfunction).

Goal Trajectory Elements

To evaluate correlation across various types of force exertion, both sustained and quickly
varying, the same 90 s goal trajectory containing the following varied elements and shown in
Fig. 4.3 was used for all trials. Specifically, the trajectory contained the following elements
in sequence:

• sustained flexion at 0.25, 0.5, and 0.75 of maximum force capability, each for 8 s, with
intervening 4 s rest phases;

• a slow 6 s ramp in flexion from 0 to 0.75 of maximum force capability, 5 s sustained
flexion at this 0.75 level, then a slow 6 s ramp back to 0;

• arbitrary, quickly varying 2 s step changes in flexion (specifically, to 0.3, 0.5, 0.2, 0.8,
0.4, and 0.6 of maximum force capability); and

• a 0.3 Hz, 10 s sine wave ranging from 0.25 to 0.75 of maximum force capability.

Force–deformation and force–activation correlation were evaluated across both the entire
trajectory and individual elements, as detailed below.

4.4 Correlation & Evaluation

In the following analyses, we use the Pearson correlation, applied directly to the synchronized
data streams, to assess the viability of using our candidate deformation measures to infer
output force, alongside or as an alternative to sEMG. We first examine an illustrative time
series, then discuss how our assertions translate across across subjects and trajectory types.
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Figure 4.3: Example time series data collected from subject Sub1 for force–deformation and
force–activation correlation analysis, including output force (black, solid), alongside specified
goal trajectory (black, dotted), deformation (i.e., brachioradialis thickness change as tracked
via optical flow, blue), and activation (as measured via sEMG, orange). Subjects were
able to track the specified force trajectory with little error, enabling controlled observation
of a variety of sustained and quickly varying force conditions, and both deformation and
activation were shown to be highly correlated with output force during all portions of the
trajectory. Signal values are reported — as they were displayed — as a fraction of measured
maximal value, as described in section 4.2. ©2021 IEEE.

An Illustrative Time Series

Fig. 4.3 shows representative trajectory data from a single trial (specifically, that of Sub1 ).
In this series, and in general, brachioradialis thickness deformation correlates comparably
with sEMG activation (though this varies with both subject and trajectory type, as discussed
below).

This exemplar also illustrates two important data set qualities: first, that subjects proved
impressively skilled at following goal trajectories given visual feedback, yielding both the
sustained and quickly varying signal types we sought for comparison; and second, that while
our optical-flow-based tracking system exhibited some drift over time, thickness was largely
well-tracked for most subjects throughout the full 90 s duration of each trial.

Correlation by Subject

Fig. 4.4 shows the strength of deformation and activation correlation with force for each of our
10 subjects. Both deformation and activation are consistently correlated, with most subjects
showing a correlation magnitude of around 0.6 or higher — an even higher magnitude than
that found in our chapter 3 study — even though subjects vary significantly in terms of muscle
morphology, as illustrated in Fig. 4.5, suggesting (as in chapter 3) a common underlying
biological mechanism.



CHAPTER 4. REFINED FORCE–DEFORMATION CORRELATION 37

1 2 3 4 5 6 7 8 9 10
Subject

0.0

0.2

0.4

0.6

0.8

1.0

CC
(·,

 fo
rc

e)

deformation
activation

Figure 4.4: Correlation of muscle deformation (blue) and activation (orange) signals with
elbow output force across all subjects. Despite substantial differences in morphology (il-
lustrated below in Fig. 4.5), most subjects — aside from Sub7 and Sub9, who displayed
morphological quirks that resulted in poor signal quality, as discussed in section 4.4 —
showed strong correlation between deformation and output force. ©2021 IEEE.

At the same time, two subjects — Sub7 and Sub9 — fail to show the same thickness–
force correlation. While more principled analysis is needed to tease out the exact reasons for
this lack of correlation, experimenters noted during collection that the observed deformation
appeared qualitatively different, as illustrated in Fig. 4.5: unlike most subjects, for which
vertical (deep–superficial) expansion was observed, widening the brachioradialis contour,
these subjects showed substantial lateral motion, in which fibers appeared to slide side to
side, but the deep and superficial fascial surfaces seemed to move very little. Given that
this different motion paradigm appeared in multiple subjects, and could be the result of
idiosyncratic morphology, a function of sensor placement, or differing elbow flexion strategy,
we see other deformation measures (e.g., localized fiber motion in any direction) as worthy
of future study.
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Figure 4.5: Example ultrasound frames from an illustrative subset of subjects, with tracked
and annotated brachioradialis thickness, depicting no force (top row) and high output force
(bottom row) for each subject. While subjects’ morphology varies significantly, most subjects
(like the pictured Sub1, Sub6, Sub8, and Sub10 ) display a reliable thickness increase with
output force, while several (like Sub7 ) primarily display lateral motion, leaving thickness
uncorrelated with force output. ©2021 IEEE.

Correlation by Trajectory Type

Generally, as shown in Fig. 4.6, both deformation and activation correlate well with force
across all four trajectory types (sustained, ramp, step, and sine, as outlined above in sec-
tion 4.3), with activation showing indistinguishable, and high, levels of correlation across
all trajectory types. Force–deformation correlation was particularly high for ramp and step
conditions, though lower and more variable for sustained and sine conditions. Based on
qualitative examination of the data, we theorize that these lower values are the result of
limitations in our tracking software, rather than an underlying physiological mechanism:
specifically, we observe first, that under quick, dramatic force/thickness changes like those
at the start and end of each trial, the optically tracked points fail to fully remain on the
fascia, and thus do not return to baseline, and second, that these points generally drift over
time, perhaps impacting the final (sine) section of the trajectory most dramatically.

Nevertheless, deformation — even as measured by this limited, drifting, proof-of-concept
system — is consistently and highly correlated with output force, showing promise for use
in device control or motion analysis under both fast and slow movement conditions.
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Figure 4.6: Correlation of muscle deformation (blue) and activation (orange) signals with
elbow output force across various trajectory types and in aggregate, with noted standard
deviation across subjects. Deformation remained strongly correlated with output force for all
examined trajectory types, with slightly lower and more variable correlation during sustained
and sine trajectories that is likely the result of limitations in the optical flow tracking system,
as discussed in section 4.4. ©2021 IEEE.

4.5 Summary & Limitations

The results in this chapter validate and expand the preliminary correlation results in chap-
ter 3 — i.e., they corroborate that brachioradialis muscle deformation (thickness change)
correlates with output force at the elbow during varied isometric contraction and is consis-
tent with simultaneous sEMG data under our refined experimental conditions.6 These results
— and the novel platform used to collect them — provide the basis for the proof-of-concept
deformation-based control explored in chapter 5.

At the same time, these correlations were analyzed under limited conditions, and the
cohort size remains small; in the future (though beyond the scope of this thesis), we aim

6In fact, as we expand our analyses beyond isometric conditions (e.g., to include joint motion), we expect
the deformation–force correlation to surpass that of activation, as the signal measured by sEMG electrodes
will likely be more heavily impacted by the relative motion of skin and muscle than that measured by
ultrasound.
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to further expand these analyses with additional subjects (of varying age and ability), addi-
tional force conditions (e.g., non-isometric, natural/unconstrained motion), and an improved
(e.g., multi-channel) sEMG system for more equitable ultrasound comparison (especially im-
portant as we begin to examine dynamic motions, during which electrodes placed on the skin
may slide relative to underlying structures). Such enhancements will allow for expanded un-
derstanding of the results above (including the impact of age on the deformation signal) and
of phenomena not yet explored (e.g., temporal and spatial sEMG–deformation relationships,
the impact of fatigue).

A further limitation of this analysis is our assumption that force, activation, and deforma-
tion signals occurred simultaneously: we might have achieved better correlation by account-
ing for the multi-millisecond electromechanical delay expected between sEMG-measured ac-
tivation and output force [39]. We aim to incorporate this delay into future correlation and
modeling analyses (and even leverage our data to study this delay, which is variable and
remains poorly characterized).

Finally, this study also illustrates the challenge of extracting generalizable force–deformation
relationships: as shown visually in Fig. 4.5’s illustrative frames, a single muscle cross sec-
tion, without accompanying 3D shape data, is difficult or impossible to interpret, and sim-
ple deformation measures like those analyzed above barely scratch the surface of its archi-
tectural nuance. Future chapters of this thesis address this challenge from two perspec-
tives, through development of tracking systems that support real-time extraction of new and
higher-dimensional signals from a given muscle cross section (chapter 6) and the construction
and analysis of comprehensive 3D deformation data sets (parts III and IV).
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Part II

Tracking & Control
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Chapter 5

Trajectory Following & Control

This chapter is adapted in part from [50].1

In part I, we showed that several measures of muscle deformation correlate well with ouput
force, and that we can track one measure (thickness change) in real time; now, in part II,
we explore the use of these signals for device control, leveraging our muscle thickness tracker
in a prototype trajectory tracking task and examining possible expansions to the tracking
system to enable extraction of richer control signals.

In this chapter, we present a proof-of-concept case study in which subjects completed a
trajectory tracking task by modulating either ultrasound-measured deformation or surface
electromyography (sEMG)-measured activation. In the sections below, we outline our study
scope and data collection procedure, then examine subjects’ tracking performance and re-
ported preferences, and lastly, discuss study limitations and applications to physical device
control. We find that ultrasound-measured thickness can indeed be used for real-time tra-
jectory tracking, and is even, in some cases, preferred by the user over sEMG-based control.

All data and analysis code have been released to the OpenArm project in the OpenArm
Multisensor 2.0 package (see section 11.2).

5.1 Study Scope

Drawing on our successful correlation analyses in part I, we use ultrasound-measured brachio-
radialis thickness change and sEMG-measured biceps brachii activation — measured using
the collection system described in section 4.2 — as two candidate control signals with which
a cohort of subjects performed a one-dimensional trajectory tracking task using isometric
elbow flexion exertion.

1©2021 IEEE. Reprinted, with permission, from Laura A. Hallock, Bhavna Sud, Chris Mitchell, Eric
Hu, Fayyaz Ahamed, Akash Velu, Amanda Schwartz, and Ruzena Bajcsy. “Toward Real-Time Muscle Force
Inference and Device Control via Optical-Flow-Tracked Muscle Deformation”. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering (TNSRE) (2021, under review).
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5.2 Data Collection

The same cohort of 10 subjects for which refined correlation analysis was performed in chap-
ter 4 (Sub1 –Sub10, detailed in section 4.3) was asked to perform several trajectory tracking
tasks using the chapter 4 force–deformation–activation tracking system (section 4.2, Fig. 4.1).
Specifically, for each trial, the subject was instructed to perform the same trajectory track-
ing task described in section 4.3, with identical tracking initialization and calibration steps,
except that instead of the ground truth force trajectory, the monitor displayed only the nor-
malized thickness/deformation or normalized and mean-filtered activation trace, alongside
the same goal trace used in chapter 4 correlation analysis. These two tracking schemes (iden-
tified to the subject as “mode 1” and “mode 2”) were presented in a random order, and each
subject was only informed that each controller would be using some combination of sEMG
and ultrasound data, with no additional details.2 The subject executed the full tracking task
using each signal twice, and the second trial was used in tracking performance evaluation,
except where noted in the corresponding data release (e.g., due to sensor malfunction).

Each subject was then asked to complete a questionnaire, with both Likert scale and
free-form response elements, to evaluate their controller preferences.

5.3 Quantitative Tracking Performance

In the following analyses, we evaluate tracking performance of an exemplar subject, as well
as across subjects and trajectory types.

Illustrative Trajectories

Fig. 5.1 shows the time series tracking performance of subject Sub1 using each candidate
signal. This subject and most others were able to complete the trajectory tracking task
qualitatively well using both thickness/deformation and activation signal traces.

On the other hand, these data highlight the drift that occurs in our thickness tracking
system, which we also observed in the correlation analyses in section 4.4. While most subjects
could compensate for this drift somewhat when guided by visual feedback, they were often
unable to return the signal to baseline at later stages of each trial (a challenge reflected
in subjects’ written feedback, as discussed below in section 5.4). Activation-based tracking
displayed no such drift, but showed many undesirable spikes and oscillations about the goal
trajectory. In future iterations of this work, we will seek to ameliorate this noise with more
aggressive mean filtering, though this will come at a cost of responsivity.

2In fact, these trajectories were much simpler than this statement implies: as stated, the two modes
were simply the normalized thickness/deformation and normalized and mean-filtered activation measures
extracted from ultrasound and sEMG data, respectively.
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Figure 5.1: Example time series data collected from subject Sub1 during separate defor-
mation (blue, top) and activation (orange, bottom) tracking trials, alongside specified goal
trajectories (black, dotted). Most subjects were able to complete the tracking task qualita-
tively well using both signal traces, despite drift in the deformation tracking system that
sometimes made returning the system to baseline difficult (as is evident to the right of this
trajectory), and uncontrolled, high-frequency oscillations in the activation signal. ©2021
IEEE.

Tracking Performance by Subject

As shown in Fig. 5.2, most subjects completed the tracking task with reasonably low RMS
error using either sensor — generally performing best using thickness/deformation-based
control, underscoring the value of this novel control paradigm. Perhaps unsurprisingly, Sub7
(a subject discussed in section 4.4 as having irregular anatomy) was the exception to this
success, and was largely unable to track the trajectory at all. Sub9, on the other hand,
despite similarly irregular anatomy, was nevertheless able to adapt to the tracking system
and achieve similarly low error to that of other subjects whose muscle deformation more
reliably correlated with force. These outliers underscore the importance of continuing to
examine additional possible deformation signals as we work to build generalizable control
systems, but also the promising adaptability of human users to suboptimal control signals
in this space.

Tracking Performance by Trajectory Type

As illustrated in Fig. 5.3, subjects were generally able to track all four trajectory types
(first outlined in section 4.3). Relative to activation-based tracking — at which subjects
performed comparably regardless of trajectory type, aside from slightly higher and more
variable error during the step condition, perhaps due to the combined challenge of modulating
the activation signal both quickly and to arbitrary levels — subjects consistently achieved
lower error using the thickness/deformation signal. The one exception to this improved
performance was during the sine portion of the trajectory; we theorize that this diminished
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Figure 5.2: Tracking error during muscle deformation (blue) and activation (orange) tra-
jectory tracking tasks across all subjects. With the exception of Sub7 — whose irregular
anatomy prevented almost any deformation-based control — subjects were largely able to
achieve better, or at worst comparable, performance when performing deformation-based
control, as compared with our baseline activation-based system. ©2021 IEEE.

performance is at least partially due to the drift observed in our tracking software (and
discussed in section 4.4), though more exploration is needed to validate this claim (e.g.,
temporally rearranging trajectory elements).

5.4 Quantitative & Qualitative Tracking Preferences

Fig. 5.4 illustrates subjects’ survey-reported tracking signal preferences, when evaluated
both separately and comparatively. In both cases, subjects reported finding the thick-
ness/deformation trajectory easier to control, and felt it better matched their perceived
force trajectory, but that the activation trajectory was more responsive. Most subjects pre-
ferred the deformation-based controller overall — evidence that deformation-based tracking
is not only feasible, but can be made intuitive for users.

In free-form responses, subjects noted many of the same qualitative characteristics of
each controller that were observed by experimenters: many found that the deformation-
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Figure 5.3: Tracking error during muscle deformation (blue) and activation (orange) trajec-
tory tracking tasks across various trajectory types and in aggregate, with noted standard
deviation across subjects. During all but sine trajectories — which we again theorize were
impacted by the drift in our deformation tracking system — subjects were able to consistently
achieve lower tracking error using the deformation signal. ©2021 IEEE.

based tracker was “better for maintaining a steady trajectory” but found it “hard to reduce
the signal to ‘at rest’ level”; conversely, they noted the “quick response” of the activation-
based tracker but found it “hard to maintain constant force” and “hard to not overshoot.”
One subject even noted that the two tracking schemes “essentially had opposite issues” and
explicitly suggested sensor fusion. These comments — which were largely consistent with
experimenters’ own observations — will be used to inform future improvements to each
tracking system in isolation (e.g., more aggressive low-pass filtering of the activation signal,
improved tracking software to address drift and step artifacts) and in new, sensor-fused
systems, as discussed below.

Subjects’ full survey responses are included with the open-source data release.
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Figure 5.4: Subject preferences when asked to evaluate deformation- and activation-based
tracking tasks separately (top) and in head-to-head comparisons (bottom). Subjects largely
found the deformation-based tracking task easier and perceived the deformation signal to
better match their output force, though they rated the activation-based tracker as more
responsive, and most preferred the deformation-based tracker overall. Full survey questions
and responses are included with the open-source data release. ©2021 IEEE.
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5.5 Summary & Limitations

The promising results of this preliminary trajectory tracking study — in terms of both
tracking accuracy and subject preferences — constitute strong evidence that it’s possible,
and even intuitive, to perform control with deformation-based signals. Beyond this disserta-
tion, we are currently working to adapt this work to the control of physical devices, and in
particular, to enable natural control of multiple degrees of freedom by extracting (highly lo-
calizable) deformation signals from multiple muscles simultaneously. Such expansions to real
control applications will also require hardware enhancements, including the use of wearable
ultrasound devices, to which this work should readily translate, many of which are under
development [58, 106, 155].

The relative strengths and limitations of each sensing modality — namely, the slower
response time and drift observed in ultrasound-measured deformation, and the oscillatory
behavior of sEMG-measured activation — suggest compelling new control approaches lever-
aging these signals in complementary ways. In the future, we aim to explore a number of
control schemes that combine these signals to exploit the strengths of each (e.g., using base-
line sEMG signals as a trigger to reset tracked ultrasound points, or formulating a consensus
approach to maintain responsiveness while avoiding erroneous motion).

Even without considering sensor fusion approaches, the prototype deformation tracking
system used in this study is both simplistic (allowing tracking of only a single one-dimensional
thickness measure) and unoptimized (using a basic implementation of Lucas–Kanade optical
flow, as outlined in section 4.2). In the next chapter (6), we examine several optical-flow-
based methods to enable tracking of the full muscle contour, and thus a richer class of
possible control signals.
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Chapter 6

Expanded Deformation Tracking

This chapter is adapted in part from [51].1

In the previous chapter, we showed that deformation-based control is both feasible and
intuitive (for most subjects in a preliminary cohort) using a simple thickness-based measure
under constrained experimental conditions; however, this control method was more effective
for some subjects’ morphology than others’, and exploratory analyses in part I confirm the
complexity of the deformation signal. In this chapter, we present a first effort at extraction
of a richer class of possible control signals using optical-flow-based methods.

In the sections below, we present several algorithms to track both the candidate defor-
mation signals discussed in chapter 3 (CSA, T, and AR, as defined in section 3.3) and the
overall contour of the brachioradialis muscle. We first precisely define this tracking problem
and its associated performance metrics, then discuss each algorithm’s performance on the
multi-angle, multi-subject (OpenArm Multisensor 1.0) data set generated and analyzed in
chapter 3.

All data and analysis code have been released to the OpenArm project in the OpenArm
Multisensor 1.0 package (see section 11.1).

6.1 Study Scope

This study constitutes a preliminary analysis of several optical-flow-based tracking algo-
rithms on the OpenArm Multisensor 1.0 data set — of 5 subjects, denoted Sub1 –Sub5 —
generated and analyzed in chapter 3. Although any number of tracking schemes, both sparse
and dense, could be used to extract varied measures of deformation, we focus on the problem
of muscle contour tracking — more precisely, tracking the edges of the brachioradialis muscle

1©2020 IEEE. Reprinted, with permission, from Laura A. Hallock, Akash Velu, Amanda Schwartz, and
Ruzena Bajcsy. “Muscle deformation correlates with output force during isometric contraction”. In: IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE. 2020,
pp. 1188–1195. doi: 10.1109/BioRob49111.2020.9224391.

https://doi.org/10.1109/BioRob49111.2020.9224391
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as it shifts over time. We choose this formulation for a number of reasons. First, the CSA,
T, and AR deformation signals we showed in chapter 3 to be well-correlated with output
force can be readily extracted from the tracked contour. Second, the manually-generated
mask data used in chapter 3’s analysis provides a ready ground truth signal for both overall
tracking quality (via Jaccard distance computation, for example, as detailed in section 6.3
below) and for our previously examined deformation signals of interest. Third, the tracked
contour admits future extraction of more complex deformation signals (e.g., statistical shape
models or masked dense optical flow measures) while isolating a given muscle of interest
from the surrounding tissue.

Lastly, tracking this cross section is feasible, if challenging: the brachioradialis, like many
muscles of interest, is surrounded by fascia that appear brighter than surrounding tissue on
an ultrasound scan. While the fascial structure is sometimes narrow and difficult to track —
a fact that informs our more sophisticated tracking schemes — the preliminary results below
indicate that even standard, untuned tracking methods perform relatively well in many cases.

Note that this study includes only offline data and analysis, which are used to determine
promising directions for future tracking system development. Use of these signals for real-
time tracking and control is left for future investigation.

6.2 Candidate Tracking Algorithms

Tracking biological structures within ultrasound data is an active area of research, with a
number of general [77] and structure-specific [131, 162, 107, 4, 81, 30] approaches proposed.
As a proof of concept, we examine the following candidate algorithms, each of which is
built on the standard iterative Lucas–Kanade method of optical flow estimation [96] as
implemented in the OpenCV Python library [14].

For the latter two algorithms, we present tracking error results for two sets of parameter
values: “general” (tuned via expert-informed grid search on the Sub1 data series collected
at 69° elbow flexion) and “subject-specific” (tuned using each subject’s ∼69° data series).
The full details of each implementation, including algorithm-specific parameter values and
tuning methods, have been released with the analysis codebase, and example frames from
each tracker are shown in Fig. 6.1.

Naive Lucas–Kanade (LK). As a tracking baseline, we perform unmodified iterative
Lucas–Kanade optical flow on every point along the brachioradialis contour, regardless of
feature quality, initialized via the manually segmented contour mask in the first frame.

Feature-Refined Lucas–Kanade (FRLK). As a refinement of the LK procedure above, we
track only the top 70% of feature points along the manually segmented contour as measured
by their Shi-Tomasi corner score [134], a good indicator of the trackability of a point. In
general, this refinement results in less drift-associated error from poor feature points but
often fails to track narrower sections of the fascia altogether.

Bilaterally-Filtered Lucas–Kanade (BFLK). To further improve the tracking of individual
contour points through noise removal without compromising edge integrity, we generate two
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Figure 6.1: Example ultrasound frames from Sub1 69° data series and their respective tracked
contour points using each candidate algorithm, at (relaxed) initialization (top) and approx-
imately 91 s into tracking during force exertion (bottom). Center left : Complete set of
contour points (red) tracked via naive Lucas–Kanade (LK ) generally describes ground truth
muscle shape (GT, left), but fails to track more extreme deviations and exhibits significant
drift error. Center : Refined set of contour points based on feature quality (red) and tracked
via Lucas–Kanade (FRLK ) describe muscle shape only mildly more accurately than naive
LK approach. Center right : Refined contour points tracked after aggressive (red) and less
aggressive (yellow) bilateral filtering (BFLK ) experience slightly less drift error, but still fail
to capture deviation in the top right quadrant of the contour where fascia is narrow. Right :
Combining Lucas–Kanade-tracked refined feature points (red) with contour points (green,
closed) predicted based on supporter point locations (green, open) (SBLK ) results in reason-
able tracking of the full muscle contour as long as supporter point motion is well-correlated
with contour motion. ©2020 IEEE.

denoised images at each time point via two separate bilateral filters [141]. The first of these
filters is tuned to aggressively suppress speckle noise, but also removes narrower sections of
fascia; the second generates a noisier image but retains even narrow fascia sections. Points
along the initial manually segmented contour are again culled based on feature quality, this
time in each of the filtered images, to generate two sets of high-quality feature points. (Points
considered high quality on both filtered images are tracked on the more noise-suppressed
frame.) These point sets are then tracked via standard Lucas–Kanade on their respective
filtered images, and the contour at each time point is computed from the union of these
points. Parameters tuned for subject-specific algorithm implementations include both the
noise reduction characteristics of each bilateral filter and the fraction of highest-quality points
used for tracking.

Supporter-Based Lucas–Kanade (SBLK). We further refine the BFLK method above in
a manner similar to that described in [116]: high quality contour points (after aggressive
bilateral filtering) are tracked via Lucas–Kanade, and the remainder of the contour is filled
in based on the relationship of contour points to “supporter points” of high feature quality
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extracted from throughout the image. To avoid irregularities caused by alternating Lucas–
Kanade-tracked and supporter-tracked points — and observing that the narrowest, most
featureless portion of the contour occurs in the top right quadrant of the contour — we
enforce that all supporter-tracked points belong to this quadrant, and all Lucas–Kanade-
tracked contour points remain outside. We then again apply two bilateral filters to each
frame; using the first and most aggressive, we again obtain the top fraction of contour points
by feature quality and track those that lie within the non-supporter quadrants via Lucas–
Kanade. Next, using the second and less-aggressive filter, we select a set of “supporter
points” of high feature quality, which we assume maintain a consistent distance to each
contour point in the supporter-tracked quadrant. We then track these supporter points via
Lucas–Kanade and use each supporter point to predict the new location of each contour
point based on this constant-displacement assumption, in a manner similar to the “one-
shot learning” method described in [41]. We calculate each contour point’s final predicted
location as the dynamically weighted mean over all supporter points’ predictions, where we
rely more heavily on supporter points that themselves deviate significantly over time from
their initial position (to avoid relying too heavily on unmoving background feature points).
Parameters tuned for subject-specific algorithm implementations include those tuned in the
BFLK algorithm, as well as the number of supporter points, the fraction of Lucas–Kanade-
tracked points, and properties of the (affine) prediction weighting function.

6.3 Tracking Error Metrics

In evaluating the performance of the algorithms above, we wish to characterize how well
each algorithm tracks our CSA, T, and AR measures of interest, as well as how precisely it
tracks the muscle contour overall. We thus present explicit CSA, T, and AR fractional error
values along with contour segmentation error, computed as Jaccard distance (i.e., one minus
intersection-over-union, or IoU). More precisely, Jaccard distance error is computed as

1− |Amanual ∩ Atracked|
|Amanual ∪ Atracked|

at each frame, where Amanual is the manually segmented area of the brachioradialis contour
and Atracked is the area of the contour as tracked by the candidate algorithm.

6.4 Tracking Performance

In this section, we evaluate our candidate tracking algorithms on the chapter 3 OpenArm
Multisensor 1.0 data set, remarking on each algorithm’s general performance and its perfor-
mance variation across subjects.
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Table 6.1: Example Tracking Error

TRACKING 
ALGORITHM Symbol

Tracking Error (M±SD)

(1-IoU)

Naive Lucas–Kanade LK 0.17±0.05 0.37±0.22 0.11±0.08 0.29±0.13

Feature-Refined 
Lucas–Kanade FRLK 0.19±0.05 0.31±0.18 0.09±0.06 0.28±0.15

Bilaterally-Filtered 
Lucas–Kanade, general BFLK-G 0.18±0.06 0.38±0.20 0.11±0.09 0.30±0.12

Bilaterally-Filtered 
Lucas–Kanade, tuned BFLK-T 0.16±0.04 0.24±0.13 0.10±0.07 0.31±0.12

Supporter-Based 
Lucas–Kanade, general SBLK-G 0.20±0.06 0.30±0.22 0.09±0.05 0.29±0.09

Supporter-Based 
Lucas–Kanade, tuned SBLK-T 0.18±0.05 0.19±0.11 0.08±0.05 0.36±0.13

Example tracking error of LK, FRLK, BFLK, and SBLK algorithms, both tuned and un-
tuned, on the Sub3 data series, computed as both Jaccard distance (one minus intersection-
over-union, or IoU) and fractional error on predicted CSA, T, and AR deformation signals.
In general, tuned algorithms outperform untuned algorithms, more structured algorithms
(BFLK and SBLK ) often outperform less structured ones, and T is tracked with lower
mean error than CSA or AR. Values are presented as mean ± standard deviation. ©2020
IEEE.
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An Illustrative Time Series

Table 6.1 shows aggregate tracking error values over the Sub3 data series examined in chap-
ter 3. While tracking performance varies by subject and kinematic configuration, these values
illustrate several observed trends. First, adding structure to specifically track narrow sec-
tions of fascia via the BFLK and SBLK algorithms often improves performance over naive
Lucas–Kanade baselines (though which of these two algorithms gives this performance boost
varies by subject, as reflected in Fig. 6.1). Second, per-subject tuning generally improves
tracking performance, as discussed in detail below. Third, thickness T is the easiest of our
deformation measures to track, and AR the most challenging, suggesting that although AR
correlates slightly more reliably with muscle output force, T — which also correlates reason-
ably well — may be a better choice of control signal; this is discussed more comprehensively
below.

Multi-Subject Tracking

Fig. 6.2 shows tracking error for each proposed algorithm on the five subjects examined in
chapter 3. Overall tracking quality (both mean and standard deviation of the error) varies
substantially by subject, likely due to both the morphology differences illustrated in Fig. 3.4
(Sub2, for example, had extremely narrow fascia) and differences in motion strategy (Sub4,
for instance, moved very abruptly). The importance of subject-specific tuning varies as well;
Sub5, whose morphology varies substantially from that of Sub1, showed a large decrease in
mean tracking error with tuning, while Sub3, whose morphology is more similar, showed a
much more modest improvement.

Tracking Performance Across Deformation Measures

Fig. 6.3 illustrates the relative CSA, T, and AR tracking performance of our best-performing
algorithm, SBLK-T, alongside Jaccard distance error, when computed in aggregate across
all tracked trials for all subjects and elbow angles. In general, thickness T, the simplest
signal, is tracked most reliably. The example (Sub3 ) time series in Fig. 6.4 corroborates this
result: while tracked T values remain close to ground truth, CSA and AR values quickly
begin to drift, a problem we also observed with our simpler thickness tracking system used
in chapters 4 and 5. Generally, we observed this drift to be our most dominant source of
error, suggesting that future tracking algorithms should take advantage of shape priors to
periodically recalibrate to reasonable cross section shapes.

6.5 Summary & Limitations

In this chapter, we showed that optical-flow-based tracking can be used to track the brachio-
radialis muscle contour over time, and that imposing additional structure (e.g., separate,
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Figure 6.2: Mean tracking error and standard deviation of LK (pink), FRLK (brown),
BFLK (blue), and SBLK (purple) algorithms, both tuned (hashed) and untuned (solid),
computed as Jaccard distance, across various subjects, collected at ∼69° elbow flexion. Both
the top performing algorithm and the level of tracking accuracy achieved, as well as the
extent to which algorithm tuning mitigated errors, varied substantially by subject, likely
due to variations in both morphology and motion qualia. Note that for Sub1, whose tuned
values formed the generic baseline for all tracking, tuned and untuned tracking algorithms
are the same. ©2020 IEEE.
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Figure 6.3: Overall tracking efficacy of SBLK-T algorithm for all aggregated time series,
expressed as fractional CSA (cyan), T (blue), and AR (dark blue) error and Jaccard distance
(JD, red). Histogram weights indicate that thickness T can be tracked most reliably, as
compared with CSA and AR, making it the most promising control signal using our examined
tracking algorithms.
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Figure 6.4: Example CSA (cyan), T (blue), and AR (dark blue) trajectories, both ground
truth (solid) and tracked via SBLK-T algorithm (dashed), alongside time series Jaccard
distance error (JD, red), for Sub3 data series. For most data series, thickness T is tracked
most reliably, while aspect ratio AR (and, to a lesser extent, cross-sectional area CSA) drift
substantially.

supporter-based tracking of thick and thin fascial locations) can improve tracking perfor-
mance. However, both the algorithms examined and our preliminary analyses of their quality
are only the first steps toward real-time muscle cross section tracking, and the algorithms
we selected were tailored to our particular data set of interest only in the most general
sense. True assessment of their quality will require a much more rigorous examination of
time series error characteristics, as well as collection of data sets more expressly designed to
elucidate tracking error. (The data sets here, by contrast, were primarily collected to assess
correlation, and thus contain little variation in speed of force application.)

In addition, although contour tracking enables new classes of possible control signals (e.g.,
mean overall magnitude of pixel motion, shape change from the relaxed condition), and there
exist a multitude of more sophisticated tracking approaches we could explore (e.g., dense
pixel tracking, edge tracking, applying shape priors), which signal types are most reliably
related to force output remains unclear. Establishing these relevant signal types through the
creation and systematic analysis of comprehensive 3D deformation data sets is the focus of
parts III and IV.
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Part III

Comprehensive Data Set



59

Chapter 7

3D Data Set Collection

This chapter is adapted in part from [49] and [113].1

In parts I and II, we showed that simple measures of muscle deformation correlate with
output force during isometric contraction at the elbow, and that they can be used for con-
trol; at the same time, these preliminary studies made evident how much these signals vary
across individuals and joint angles, such that substantially more data is needed to determine
which deformation signals are most correlated, where they should be collected spatially on
the arm, and how this relationship is modified by changes in kinematic configuration. Now,
in part III, we build an extensive 3D data set to enable the comprehensive study of these
relationships (a preliminary version of which appears in part IV).

In this chapter, we present two iterations of the core OpenArm data set, each of which
comprises a collection of full-factorial 3D volumetric images of the arm under multiple kine-
matic configurations (i.e., elbow angles) and force conditions for multiple subjects. In the
sections below, we first outline our data set scope and core imaging system design choices,
then detail the subject cohort, as well as data collection and tissue annotation procedures,
for each data iteration. Lastly, we discuss the limitations of these data and their potential
application to device control, animation, and biomechanical study.

All data have been released to the OpenArm project in the OpenArm 1.0 and 2.0 packages
as noted (see sections 11.3 and 11.4, respectively).

1©2018–2019 IEEE. Reprinted, with permission, from Laura A. Hallock, Akira Kato, and Ruzena Ba-
jcsy. “Empirical Quantification and Modeling of Muscle Deformation: Toward Ultrasound-Driven Assistive
Device Control”. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018,
pp. 1825–1832. doi: 10.1109/ICRA.2018.8462887 and Yonatan Nozik*, Laura A. Hallock*, Daniel Ho,
Sai Mandava, Chris Mitchell, Thomas Hui Li, and Ruzena Bajcsy. “OpenArm 2.0: Automated Segmenta-
tion of 3D Tissue Structures for Multi-Subject Study of Muscle Deformation Dynamics”. In: International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2019, pp. 982–988.
doi: 10.1109/EMBC.2019.8857669. *Equal contribution.

https://doi.org/10.1109/ICRA.2018.8462887
https://doi.org/10.1109/EMBC.2019.8857669
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7.1 Data Scope

As described in section 2.5, the relationship between muscle deformation and output force
is straightforward: as (isovolumetric) muscles shorten along their line of action to pull the
connected tendon and impart force, they necessarily expand and otherwise deform in other
dimensions. At the same time, as noted in our preliminary correlation studies in chapter 3,
deformation also occurs under changes in kinematic configuration, as muscles are passively
stretched to accommodate new distances between their attachment points and deformed
by interactions with the surrounding tissues. Thus, in order to build a framework that
can model the force–deformation relationship during natural motion and determine what
deformation signals are most correlated with force and where to collect them — the ultimate
goal motivating this thesis work — we must account for and model these configuration-
associated deformation changes.

The two data sets below (OpenArm 1.0 and 2.0) were collected to enable this kind of
comprehensive, systematic analysis of both force- and configuration-associated deformation
at the elbow. Each data set comprises full 3D volumetric scans of the anterior side of a given
subject’s arm under factorial isometric loading conditions and kinematic configurations (i.e.,
elbow angles) with select annotated tissue structures (primarily, the full volume of the biceps
brachii and the anterior surface of the humerus, as noted below). OpenArm 1.0 comprises
full-factorial data sets of 3 subjects, with manually annotated bone and muscle structures
for a subset of 1 subject; OpenArm 2.0 comprises similar data, collected using a refined
experimental procedure to enable more consistent force output, for 11 subjects, with manual-
and neural-network-annotated2 biceps brachii and humerus volumes for a select subset and
all subjects, respectively.

7.2 3D Imaging Modality: Localized 2D Ultrasound

To generate the 3D tissue scans we require, MRI is perhaps the most obvious imaging
modality and has been used in prior studies of muscle motion [161]. However, limited
bore size makes scanning under natural arm configurations difficult or impossible, and long
scan times make collecting data under multiple conditions prohibitively expensive and time-
consuming. This is especially true when scanning under loaded configurations, as muscle
fatigue may significantly influence the observed deformation signal.

Instead, we collect 3D scans via sweeps of a 2D brightness mode (B-mode) ultrasound
probe — a technology that is cheaper, better studied, and more readily available than 3D
ultrasound — whose position is spatially registered via motion capture. This technique has
been widely used in both human- and robot-guided ultrasound imaging for surgical [146]
and exploratory [69, 9] applications, and comprehensive tools for scan generation are widely
available [88]. While the system is vulnerable to significant ultrasound-specific artifacts,
including acoustic shadowing opposite ultrasound-impermeable bone and imaging of the

2This automated annotation process is the focus of chapter 8.
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surface gel, structures of interest (bone surfaces, muscle fascia, etc.) are readily visible.
Moreover, the comparatively short scan time and unrestricted workspace permit numerous
scans of a single subject.

Specifically, to generate 3D images under each examined condition, we collect a dense
data set of B-mode ultrasound scans along the anterior surface of the arm, each of which
is spatially localized via calibration of the marker-tagged ultrasound probe with an active
motion capture system. These scans are then used to build a 3D intensity map within which
muscle fascia can be readily observed, thus allowing for segmentation of tissue structures of
interest. The full details of this process and its usage in the generation of each data set are
presented below.

7.3 Prototype Data Set (OpenArm 1.0)

In this section, we describe the generation of an initial volumetric data set, hereafter denoted
OpenArm 1.0. We first outline our subject cohort and data scope, then detail the experi-
mental procedures used to collect the raw ultrasound data, reconstruct the spatial location
of each ultrasound scan, extract the relevant muscle volumes and bone surfaces, and align
all scans for analysis in future chapters.

Subject Biometric Data & Consent

Data were collected from the right arms of three total subjects, one primary subject for which
tissue annotation was performed for select scans (male, age 25, mass 55 kg, height 1.6 m)
and two additional subjects for future analysis (female, age 24, mass 70 kg, height 1.8 m and
male, age 21, mass 66 kg, height 1.6 m). All subjects were healthy and right-handed.

The study protocol was approved by the University of California Institutional Review
Board for human protection and privacy under Protocol ID 2016-01-8261 (first approved
4 April 2016) and written informed consent was obtained from each subject.

Data Collection

During data collection, the test subject lay supine and relaxed, with legs comfortably ex-
tended and right arm extended laterally from the body at a 90° shoulder abduction angle.
The forearm was fully supinated, with the upper arm supported at the distal end of the
humerus, as shown in Fig. 7.1. Scans were then collected with the subject’s elbow held stati-
cally at each of four angle values (0°, 30°, 60°, and 90° as measured from from full extension)
under five separate loading conditions (fully supported by a jig at the wrist, unsupported but
unloaded, and unsupported while lifting wrist weights of comparatively low, intermediate,
and high mass), for a total of 20 trials. Angle conditions were selected to allow for both
observable kinematic-associated muscle deformation and free manipulation of the ultrasound
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Figure 7.1: Experimental setup for the collection of OpenArm 1.0 full-arm upper-limb mor-
phology data under multiple elbow angles and loading conditions, enabling a factorial study
of the sources of muscle deformation (shown here at a 60° angle of elbow flexion under HF
(left) and FS (right) loading conditions). Setup includes ultrasound scanner (a) and probe
(b) (with attached active motion capture markers (c) used for spatial tracking); weight bands
(d) used to load the elbow flexors (during LF, MF, and HF trials); mechanical jig (e) used to
support the elbow (during all trials, left) and the forearm (during FS trials, right); and the
phantom devices (f) required to calibrate the coordinate transformation between the motion
capture world frame and the measured ultrasound scans. ©2018 IEEE.
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Table 7.1: Volumetric Data Collection Conditions, OpenArm 1.0

Manipulated Factors Levels*

θ elbow flexion angle 0°, 30°, 60°, 90°
LC elbow load condition fully supported (FS),

gravity compensation (GC),

under load of 227g (LF),

under load of 727g (MF),

under load of 954g (HF)

*Italicized values denote conditions for which raw ultrasound data were collected but for
which tissue annotation was not completed (in deference to the time-intensive nature of
manual annotation, addressed via automated segmentation in the data set’s second iteration
and detailed in chapter 8). Note that “fully supported” (FS) trials occurred while the arm
was fully supported by the experimental jig (i.e., to measure “pure” kinematic deformation),
while “gravity compensation” (GC) trials occurred while the arm was unsupported but
unloaded (i.e., the elbow flexors performed gravity compensation for the arm’s mass, but
nothing more). Elbow flexion angles are measured from full extension. ©2018 IEEE.

probe around the elbow joint (the latter of which precluded scans at larger elbow flexion an-
gles). Similarly, loading masses were selected to allow for observable force-associated muscle
deformation while not being so heavy that subjects were unable to remain still during the
(several minute) duration of the scan. During unsupported weight-bearing trials, subjects
were asked to maintain contact between a designated point on the anterior surface of the
wrist and a guide bar in order to maintain constant elbow flexion angles both within and
between trials. Loading weights were attached at the wrist to avoid the confounding acti-
vation of wrist and finger flexors that would occur if weights were held in the hand. These
conditions are summarized in Table 7.1.

During each trial, ultrasound images were collected using a portable commercial ultra-
sound scanner (eZono 4000, eZono AG, Jena, Germany) equipped with a 3–12 MHz linear
transducer (L3–12 NGS, eZono AG, Jena, Germany). The machine was configured to collect
B-mode data at a depth of 4 cm, with a 3.8 cm transducer footprint.

To collect full volumetric data of the anterior surface of the arm, the ultrasound probe
was held perpendicular to the subject’s skin and swept by a practiced operator along the
arm’s surface, using the operator-estimated minimum pressure necessary to maintain probe
contact in order to deform the tissue as little as possible.3 To scan the full anterior surface

3While the operator took care to maintain this pressure as consistently as possible, the deformation
imposed at the probe contact point is likely a source of error in our collected images. There exist a number
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of the arm (from medial to lateral edges) required multiple parallel sweeps of the probe; to
ensure that scans were sufficiently evenly distributed in space, the subject’s arm was marked
in 1 cm increments using a non-toxic marker, and the operator maintained a metronome-
guided constant rate of approximately 80 cm/min when sweeping proximally-to-distally along
the arm, deviating as necessary near the shoulder and elbow joints to acquire sufficient
numbers of scans. (Note that the volumetric reconstruction of these scans used here does
not impose specific requirements on the spatial distribution of data, so this process need not
be completely rigorous and simply improves signal quality.)

To permit volumetric reconstruction of the ultrasound data, the spatial location of the
probe was tracked from a set of four optical markers using a PhaseSpace active motion cap-
ture system (PhaseSpace Inc., San Leandro, CA, USA). Prior to data collection, the trans-
formation between the ultrasound probe location and the measured image was calculated
(both spatially and temporally) using the open-source PLUS calibration toolkit [88], with
a reported probe calibration error of 1.6 mm. During data collection, data were streamed
to an external computer at a rate of 30 Hz through an OpenIGTLink server [140] and later
reconstructed using the volume reconstruction application provided by the PLUS toolkit.

The full experimental setup is shown in Fig. 7.1, and representative volumetric data can
be seen in Fig. 7.2 as the spatial intensity map from which volumes were manually segmented.

Tissue Segmentation

To provide deformation data for a factorial range of force and kinematic conditions, while
acknowledging the time intensive nature of 3D image annotation, we selected nine scans from
our primary subject data set for tissue segmentation (at 30°, 60°, and 90° elbow flexion and
fully supported, lightly loaded, and heavily loaded force conditions, as noted in Table 7.1).

A complete study of muscle deformation about the elbow would require characterization
of all muscles that actuate the joint, including flexors and extensors, as well as the muscles
of the surrounding joints that contact and collide with those above. This study includes
preliminary segmentation results of all elbow flexors4 (biceps brachii, brachialis, and bra-
chioradialis), but we report primarily on the observed deformation of the biceps brachii,
which can be most cleanly observed in all nine examined scans and — as a surface muscle
— is a natural target for eventual use in assistive device control signals.5

of strategies for mitigating this distortion via robot-assisted scanning [128, 10, 101, 28] or correcting for it in
post-processing based on collected force information [148], but a number of technical challenges (robot arms
occluding motion capture markers, the necessity of irregular and subject-specific scanning paths about the
shoulder and elbow, the number of scans requiring consistent processing, etc.) prevented their usage in the
collection of this preliminary data set.

4Elbow extensor muscles — primarily the triceps brachii — could not be segmented due to the placement
of jig supports.

5While the brachialis muscle is also known to exert significant force during elbow flexion, the fact that
its belly is largely centered over the elbow joint itself makes deformation difficult to observe and characterize
(unlike the biceps brachii, whose mass is concentrated along the upper arm). The brachioradialis, despite its
usage in our chapter 3 and 4 analyses, was not prioritized for scanning, as it provides a smaller fraction of
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For initial segmentation, we selected the scan collected at a 30° elbow flexion angle while
fully supported, as this condition represents a natural baseline for all subsequent conditions
in our targeted data subset that increase angle and loading. Muscle volumes for the biceps
brachii, brachialis, and brachioradialis were observed and manually annotated in the axial,
coronal, and sagittal planes of the scan using ITK-SNAP [156], as were the anterior surfaces of
the humerus, ulna, and radius (in order to establish the locations of both muscle attachment
points and the elbow joint itself).

The full manual segmentation of this initial scan represents a bottleneck in the analy-
sis process: it took two operators tens of hours to complete the full segmentation at the
desired level of precision. To segment additional scans, a manual rigid transformation was
performed in 3D Slicer [32] to align the segmentation of the initial scan with each of the
remaining eight volumetric scans, such that the humerus of each scan perfectly overlapped.
These segmentations were then manually modified in ITK-SNAP to include the new muscle
deformation observed and any other necessary clean-up (a process that took several hours
per scan rather than several days).

In addition to decreasing the required segmentation time, this process of modifying an
existing segmentation instead of segmenting from scratch mitigated the chances of the human
segmenter encountering areas of scan ambiguity (e.g., wide muscle fascia, acoustic shadow-
ing, poor signal quality around the elbow joint) and making different choices across scans,
generating a deformation signal that could be erroneously attributed to configuration- or
force-associated deformation. To further reduce the prevalence of these types of errors, all
nine scans were manually aligned (again using humerus alignment as ground truth) and were
simultaneously examined by the same segmenter, slice by slice, to ensure that segmentation
ambiguities were resolved consistently across scans.

The final result of this segmentation process is a set of nine aligned upper-arm scans
at the factorially-varying elbow flexion and loading conditions described above, as shown
in Fig. 7.2. These scans constitute the core OpenArm 1.0 data set and are used in our
preliminary 3D deformation analyses in part IV.

7.4 Refined, Autosegmented, Multi-Subject Data Set

(OpenArm 2.0)

While the OpenArm 1.0 release provides a proof-of-concept data set for 3D deformation
analysis — one that we leverage in our geometric analyses in chapter 9 — we highlight two
substantial limitations to our experimental procedure above and the resultant data. First,
the method used to generate varied force conditions — attaching weights at the elbow —
generated force conditions that were not quantitatively comparable across force conditions:
holding up a weight applied to the arm at 30° elbow flexion requires substantially more

output joint force (especially when the wrist is supinated), and is not always completely visible within the
frame of our scans.
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Figure 7.2: Tissue structures from the OpenArm 1.0 data set release, including the (magenta)
biceps brachii and surrounding muscles (turquoise brachialis, purple brachioradialis, and gray
deltoid) under multiple loading conditions and kinematic configurations, as segmented from
volumetric reconstruction of ultrasound data. Locations of the coronal cross-sectional scans
shown are noted by lines transecting the associated sagittal scan in each inset. Volumetric
changes across both kinematic configurations and loading conditions are readily observable,
confirming the necessity of modeling both signal sources when employing muscle deformation
as a device control signal and informing our analyses in part IV. ©2018 IEEE.
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exertion than at 90° flexion, for example, at which point it becomes chiefly a balancing task.
Second, the time intensive nature of the manual segmentation process prevented the creation
of a fully annotated multi-subject data set.

In this section, we describe the generation of a refined volumetric data set, hereafter
denoted OpenArm 2.0, that addresses both limitations above, leveraging a new experimental
setup to enable subjects to maintain specified output forces using visual feedback and a
novel neural-network-based pipeline for automated image segmentation (described in detail
in chapter 8). In the subsections below, we first outline our new subject cohort and data
scope, then detail our refined procedures for data collection and tissue annotation.

Subject Biometric Data & Consent

Data were collected from the right arm of 10 subjects (6 male, 4 female, all right-handed,
age 21.4± 2.46, mass 66.9± 10.1 kg, height 1.72± 0.0876 m, body mass index 22.5± 2.63),
hereafter denoted Sub1 –Sub10.6 All subjects were healthy, with a wide variety of exercise
regimes and body types. An incomplete set of scans, as noted in Table 7.2, was collected
from an additional elderly subject (female, right-handed, age 85, mass 61.2 kg, height 1.52 m,
body mass index 26.4), hereafter denoted Sub11, for preliminary evaluation of generalizability
across age groups.

The study protocol was approved by the University of California Institutional Review
Board for human protection and privacy under Protocol ID 2016-01-8261 (first approved
4 April 2016) and written informed consent was obtained from each subject.

Data Collection

Data collection methods were largely identical to those used in the generation of the Open-
Arm 1.0 data set described in section 7.3, aside from updates to subject demographics,
posture, and loading conditions, as noted above and below.

During data collection, the test subject sat erect in a low stadium chair, with legs com-
fortably extended and right arm extended laterally from the body at a 90° shoulder abduction
angle. The forearm was fully supinated, with the upper arm supported at the distal end
of the humerus, as shown in Fig. 7.3. Scans were then collected with the subject’s elbow
held statically at the same four angle values examined in OpenArm 1.0 data collection under
five refined loading conditions (fully supported by a jig at the wrist and unsupported while
pressing upward on a force-torque sensorized handle with four prescribed levels of force), for
a total of 20 trials. These conditions are summarized in Table 7.2. Subjects wore a brace to
limit wrist flexion force and more completely isolate the elbow.

Loading conditions were selected for each participant based on the subject’s maximum
voluntary contraction (MVC) value. To measure this MVC value, subjects were asked to

6Statistics are reported as mean ± standard deviation. For additional demographic data, broken down
by subject, see the full open-source data release. Note that the subjects examined here and their identifying
numbers bear no relation to those in the OpenArm 1.0 data set or examined in previous part I and II studies.
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Figure 7.3: Experimental setup for the collection of OpenArm 2.0 full-arm upper-limb mor-
phology data under multiple elbow angles and loading conditions (shown here at a 30° angle
of elbow flexion under FS (left) and P1 (right) loading conditions). Setup includes ultra-
sound probe (a) (with attached active motion capture markers (b) used for spatial tracking);
force-torque sensor (c), held statically in place by KUKA LBR iiwa 14 R820 robot (d) and
used by the subject via real-time visual feedback (e) to maintain constant force output dur-
ing loaded trials; mechanical jig (f) used to support the elbow (during all trials) and the
forearm (during FS trials, left); and real-time ultrasound and motion capture data (g) for
continuous system status monitoring. ©2019 IEEE.

press upward on the handle with maximum possible force, then hold for several seconds, then
release. Subjects performed this sequence twice, both at full elbow extension, and the max-
imum overall force value was recorded as MVC. (Empirically, this value varied substantially
across subjects, with mean and standard deviation 66.1±28.8 N for the 10 primary subjects
tested.)7 To allow subjects to maintain a given force for the several minutes required to
generate a full 3D scan, force conditions were chosen as 0, 10, 30, and 50 percent of the
MVC value. Note that the same MVC value, and thus the same force conditions, were used
for all angle conditions for the same subject, to allow for development of models explicitly
relating muscle deformation to force. Collecting this value at full extension — the angle at
which muscles are weakest [37] — ensured that subjects could maintain the forces required
under all tested conditions. Subjects maintained the prescribed force during each trial by
matching visual feedback from the attached force-torque sensor (ATI Axia80, ATI Industrial
Automation, Apex, NC, USA) to a marked goal value on a real-time series plot, as shown in
Fig. 7.3. All subjects were able to consistently maintain this value within several newtons.

During each trial, ultrasound images were collected by an experienced operator using the
same motion-capture-localized ultrasound system and scanning protocol used to generate

7This sequence was performed at 30° of extension for the single elderly subject to avoid hyperextension
injury, at which the measured MVC was 42.5 N.
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Table 7.2: Volumetric Data Collection Conditions, OpenArm 2.0

Manipulated Factors Levels‡

θ elbow flexion angle 0°, 30°, 60°, 90°
LC elbow load condition fully supported (FS),

0% MVC (P0),

10% MVC (P1),

30% MVC (P3),

50% MVC (P5)

‡Data were collected from 10 subjects at each of the 4 flexion angles and 5 loading conditions
listed above in a factorial manner, for a total of 20 scans per subject. Additional data were
collected from a single elderly subject at 30° and 60° flexion angles (all loading conditions)
and 0° and 90° (FS only), for a total of 12 scans. Note that fully supported (FS) trials
occurred while the arm was held in position by the experimental jig (i.e., to measure “pure”
kinematic deformation), while the latter 4 loading conditions denote percentages of maximum
voluntary contraction (MVC) level. Elbow flexion angles are measured from full extension.
©2019 IEEE.

the OpenArm 1.0 data set and detailed in section 7.3 above, with all the same configuration
parameters and calibration procedures.

The full experimental setup is shown in Fig. 7.3, and representative volumetric data can
be seen in Fig. 8.3 as the spatial intensity map from which volumes are segmented.

Tissue Segmentation

To enable annotation of the full OpenArm 2.0 data set (over 200 scans) while minimizing
the need for manual annotation, we restricted our segmentation to the biceps brachii (for
deformation analysis) and the humerus (for alignment across scans) and developed an au-
tomated neural-network-based segmentation system. This system, including all examined
architectures and modifications, is detailed in chapter 8.

7.5 Summary & Limitations

In this chapter, we described the generation of the OpenArm 1.0 and 2.0 data sets, which
comprise the first sets of 3D scans of the arm under factorial kinematic configurations and
loading conditions and enable comprehensive study of both muscle deformation sources across
multiple individuals. In part IV, we leverage this data to begin this type of analysis, and in
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the future, the full volumetric nature of the scans make the data sets an excellent platform
with which to verify the wide variety of existing muscle deformation models and quickly
test the feasibility of new ones. For this reason, we consider these data sets a core thesis
contribution in their own right, and they have been open-source released for future study by
the biomechanics, robotics, and animation communities.

At the same time, these data sets remain limited, and are only a starting point for study
of the complex force–deformation relationship. Subject cohort sizes remain small, and the
substantial morphological variation observed (here and in part I studies) makes it likely
that a robust understanding of muscle deformation signals will require many more subjects
of much more varied demographics. In addition, the length of time required to collect a
single scan means that all scans were collected under static, though loaded conditions; how
well models based on these data will translate to natural, unconstrained motion remains an
open question. Lastly, as discussed above, while these data primarily support analysis of a
single elbow flexor (the biceps brachii) and surrounding tissue structures, a more complete
understanding of the elbow joint and its actuators would require analysis of all flexors and
extensors — and even those of surrounding joints.

Despite these limitations, the OpenArm data sets are the first of their kind and enable
unprecedented exploration of the force–deformation relationship. We aim to use the insights
gained in analyzing these data to build more targeted data sets in the future, enabling
expansion to larger subject cohorts, dynamic conditions, and additional muscles and tissue
structures.
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Chapter 8

Automated Tissue Segmentation

This chapter is adapted in part from [113].1

In the previous chapter, we described the generation of the OpenArm 1.0 and 2.0 data
sets — 3D volumetric scans of the arm under factorial force conditions and kinematic config-
urations to enable comprehensive study of the force–deformation relationship. This chapter
describes the development of a novel neural-network-based pipeline to enable automated
segmentation of tissue structures of interest from these scans, for which manual annotation
is prohibitively time intensive.

In the sections below, we first define our annotation system requirements (i.e., target
tissue structures) and core (neural-network-based) approach, then present several candidate
system architectures and evaluate their segmentation performance on the OpenArm 2.0 data
set as compared with a registration-based baseline approach. Lastly, we comment on the
system’s limitations and speculate on its application to future annotation tasks.

All code and trained neural network models have been released to the OpenArm project
in the OpenArm 2.0 and Annotation Source Code packages (see sections 11.4 and 11.5,
respectively).

8.1 Segmentation Targets & Scope

While the segmentation pipeline we present could easily be re-trained for various tissue
segmentation tasks, our primary objective is the segmentation of elbow flexors and other
relevant tissue structures in the OpenArm 2.0 data set detailed in chapter 7. In particular, in
a concession to the time-intensive nature of manual ground truth training data segmentation,

1©2019 IEEE. Reprinted, with permission, from Yonatan Nozik*, Laura A. Hallock*, Daniel Ho, Sai
Mandava, Chris Mitchell, Thomas Hui Li, and Ruzena Bajcsy. “OpenArm 2.0: Automated Segmentation
of 3D Tissue Structures for Multi-Subject Study of Muscle Deformation Dynamics”. In: International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2019, pp. 982–988.
doi: 10.1109/EMBC.2019.8857669. *Equal contribution.

https://doi.org/10.1109/EMBC.2019.8857669


CHAPTER 8. AUTOMATED TISSUE SEGMENTATION 72

we limit our segmentation to the two tissue structures most immediately relevant to the
deformation analyses undertaken in part IV: the biceps brachii (for direct analysis) and the
humerus (for alignment across scans).2

8.2 Segmentation Approach: Convolutional Neural

Networks

Convolutional neural networks (CNNs) are a promising tool in many medical imaging do-
mains [92], including echocardiogram annotation [158], brain lesion segmentation [73], and
localization of organ structures [110].

In this work, we adapt existing CNN-based methods to segment our tissue structures of
interest, the humerus and the biceps brachii. Specifically, building from the U-Net [124] neu-
ral network framework, we examine various data augmentation techniques and training data
sets to both optimize the network’s performance on our data set and hypothesize strategies
to better select training data, minimizing manual annotation time while maximizing per-
formance. We then employ this pipeline to generate segmentations of biceps brachii and
humerus tissue volumes for the OpenArm 2.0 data set detailed in chapter 7.

On a conceptual level, this problem is well suited to a deep learning approach: rules
for segmentation are difficult to enumerate a priori (due to both the modality-specific ar-
tifacts mentioned above and the varied geometric behaviors of different tissue structures,
which make classical registration approaches difficult); at the same time, the domain is well-
specified and highly constrained, such that generating domain-spanning training data is a
tractable problem.

As discussed below in section 8.5, we find that CNN-based segmentation significantly out-
performs classical registration-based approaches in both quantitative segmentation accuracy
and qualitative manual cleanup time.

8.3 Candidate Segmentation Architectures &

Modifications

To segment the humerus and biceps brachii structures from the generated OpenArm 2.0
scans, we explored the following neural net architectures and data augmentation techniques.
All networks were trained in Tensorflow [100] using the Adam optimizer [79] and a cross-
entropy loss function on a custom-built desktop machine with an INTEL Core i7-5820K six-
core CPU and an NVIDIA Titan Xp GPU. A full list of tested architectures and baselines

2An additional benefit is that these two structures are representative of the wider tissue segmentation
challenge in that they have significantly different appearance and properties (e.g., different elasticity proper-
ties, tissue-specific artifacts like bone shadow); thus, successful segmentation of these structures constitutes
strong evidence that our methods could be extended to segmentation of other bones and muscles in the
future.
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Figure 8.1: Baseline U-Net architecture for segmenting 2D slices of 3D volumetric scans,
which are then compiled to generate full 3D segmentation. Architecture is almost exactly
that of the original U-Net [124], with only a single additional concatenation block (corre-
sponding to four additional 3x3 convolutions, one additional 2x2 max pooling operation, and
one additional “up-convolution”).

is shown in Table 8.1, and all hyperparameter values and architecture details are available
with code release.

Baseline Architecture: 2D U-Net

Although our objective was to generate 3D scans, we chose the 2D U-Net [124] as our baseline
segmentation architecture, which we applied to axial slices of the full upper-arm volume; each
slice of each test scan was then predicted individually to generate full volumetric predictions.
The U-Net was designed to perform well when trained on relatively small data sets and has
been widely applied to various biomedical image segmentation tasks [158, 3], and it is more
computationally efficient than many of its 3D counterparts. All examined networks built
upon the original U-Net architecture, with one additional concatenation block, as shown in
Fig. 8.1.

Data Augmentation

To generate additional training data without prohibitively time-consuming manual annota-
tion, we artificially increased the size of our training data set via both rotational and elastic
deformation, a useful and common practice in neural network training when comprehensive
data is not available [136]. Specifically, we generated additional scans through arbitrary
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rotation and random elastic deformation [145] and trained networks both with and without
this augmented data, as noted in section 8.5 and Table 8.1.

Baselines/Controls for Comparison

We evaluate these neural network approaches against a classical registration-based approach
in which tissue structures from one scan are mapped to another by finding the optimal
transformation between the two spatial intensity maps. Specifically, we compare the meth-
ods above with both pure rigid registration (as a simple baseline) and a set of sequen-
tially higher-degree-of-freedom transformations (rigid, affine, and B-spline-parameterized)
in which each transformation is used to initialize the next registration (as a more complex
baseline that better represents the upper limits of classical registration’s efficacy). Opti-
mal transformations were calculated using the SimpleElastix image registration library [98];
transformation quality was evaluated at each optimization step using the mutual information
criterion. Manual translation was performed prior to automated registration to better align
the scans, and sensitive hyperparameters were tuned via grid search to further optimize the
results. Baseline registration code and associated hyperparameter values, like those used in
neural-network-based methods, are available with code release.

8.4 Ground-Truth Data Set Generation

To train and evaluate the segmentation pipeline across kinematic configurations, loading
conditions, and subjects, we manually segmented full-scan volumetric data for the following
subjects:

• Sub1 – all angles and loading conditions (20 scans)

• Sub2 – all loading conditions at 30° (5 scans)

• Sub3 & Sub4 – single scans at 30°, FS (1 scan each)

Scans were selected to allow for comparison across variables of interest while remaining
tractable. Each scan required approximately 10–12 hours of expert annotation time.

8.5 Segmentation Performance

The objectives of our investigations into neural network architectures were twofold: first, we
sought a network that could reliably generate annotations across a variety of subjects and
configurations; second, we aimed to derive principles to guide future architecture design in
similar domains.

Two major factors influenced neural network performance: use of data augmentation and
selection of training data. While a full factorial analysis under all possible augmentations
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Table 8.1: Segmentation Accuracy

Architecture / Strategy Accuracy (IoU, Pixel Accuracy)

same angle, new angle, same angle, same angle,

same force, same force, new force, same force,

same subject1 same subject2 same subject3 new subject4

RR (rigid registration) 0.431, 0.980 0.320, 0.970 0.537, 0.985 0.244, 0.953

RANR (rigid-affine-nonlinear hierarchical registration) 0.722, 0.991 0.545, 0.980 0.450, 0.980 0.386, 0.960

U-NET (unmodified U-Net [124]) 0.875, 0.996 0.593, 0.982 0.604, 0.988 0.422, 0.961

U-NET+RA (U-Net + rotational augmentation) 0.929, 0.998 0.560, 0.984 0.464, 0.986 0.393, 0.971

U-NET+EA (U-Net + elastic deformation augmentation) 0.950, 0.999 0.677, 0.988 0.573, 0.989 0.533, 0.978

U-NET+RA+EA 0.936, 0.998 0.577, 0.984 0.544, 0.988 0.499, 0.978

Multi-Angle U-NET 0.886, 0.997 0.691, 0.989 0.614, 0.989 0.470, 0.972

Multi-Angle U-NET+EA 0.906, 0.997 0.717, 0.989 0.651, 0.990 0.523, 0.975

Multi-Force U-NET 0.885, 0.997 0.617, 0.985 0.770, 0.994 0.452, 0.972

Multi-Force U-NET+EA 0.902, 0.997 0.682, 0.988 0.793, 0.994 0.519, 0.977

Multi-Subject U-NET 0.884, 0.997 0.657, 0.987 0.536, 0.988 0.885, 0.995

Multi-Subject U-NET+EA 0.908, 0.998 0.687, 0.989 0.565, 0.989 0.909, 0.996

RR, RANR, U-NET, U-NET+RA, U-NET+EA, and U-NET+EA were all trained on (or
mapped from) the single Sub1 scan at 30° and FS conditions, with and without augmented
data from the same scan(s) as noted. Multi-Angle U-NETs were trained on Sub1 scans at
all angle conditions and FS loading; similarly, Multi-Force U-NETs were trained on Sub1
scans at 30° and all force conditions, and Multi-Subject U-NETs were trained on all subjects
at 30° and FS conditions. Note that grayed values constitute network “memorization” —
i.e., predictions are calculated over data included in network training. These values are
presented as baselines for the maximum performance we expect to achieve from a given
strategy. ©2019 IEEE.
1 Accuracy on Sub1 scan at 30° angle and FS loading conditions.
2 Mean accuracy on Sub1 scans at 0°, 60°, and 90° angle and FS loading conditions.
3 Mean accuracy on Sub1 scans at 30° angle and P0, P1, P3, and P5 loading conditions.
4 Mean accuracy on Sub2, Sub3, and Sub4 scans at 30° angle and FS loading conditions.
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Figure 8.2: Training error for all reported network architectures over 40 epochs, over which
networks reliably — if sometimes messily — converged. Accuracy values reported in Table
8.1 and predictions shown in Fig. 8.3 are computed from the minimum-loss epoch network
for each respective architecture. ©2019 IEEE.

and training data sets was intractable, we tested both the augmentation types above and
various promising sets of training data (incorporating single or multiple angle conditions,
loading conditions, and subjects) in a principled manner, in both isolation and combination,
as outlined in Table 8.1. Networks were restricted to using at most 500 slices of manually
segmented data to allow fair comparison across training strategies. For networks in which
multiple scans of training data were used, these 500 slices were distributed uniformly at
random across scans. Up to 1000 slices of total augmented data were used, again distributed
uniformly at random across augmented scans, to maintain tractable training time. Of these
slices, 5% were reserved for validation at each epoch and 15% for final testing.3 Networks
were trained for 40 epochs — after which, empirically, they had reliably converged, as shown
in Fig. 8.2 — and the epoch with best performance was selected for comparison.

The performance of these models under various conditions is shown in Table 8.1, and
example qualitative segmentation data from select architectures are shown in Fig. 8.3.

Registration vs. CNN-Based Methods

Quantitatively, as shown in Table 8.1, neural networks perform almost uniformly better than
registration-based methods in terms of both intersection-over-union (IoU) values and overall

3Segmentation accuracy on this test data was used internally to confirm that networks were not overfit-
ting; here, we instead report accuracies across new 3D scans not used in training, as generalization across
conditions, rather than across slices of the same 3D image, is of primary interest.
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Figure 8.3: Exemplar volumetric data, as segmented manually (Ground Truth), via opti-
mized classical image registration (RANR), and via neural network, unmodified (U-NET),
using elastic deformation data augmentation (U-NET+EA), and using an augmented multi-
subject data set (Multi-Subject U-NET+EA). Data used for RANR were ground truth values
of (Sub1, 30°, FS); data for training the optimized neural networks are those described in
Section 8.5 and Table 8.1. Data were trained, tested, and predicted only on the upper part
of the arm, above the elbow; raw lower-arm intensity maps are provided for context. Al-
though superficially smooth and well-formed, RANR segmentation poorly localizes biceps
and humerus (a), resulting in poor segmentation accuracy; in contrast, neural network meth-
ods perform reliably along the middle section of the biceps (b) but segment more poorly near
the ends of the structure (c). Adding elastic deformation augmentation data generally helps
smooth the data and improve accuracy (d), though many artifacts remain. Note that Sub2
Multi-Subject U-NET prediction (e) shows a scan used in network training; its high level of
accuracy thus represents network memorization, and the scan is presented for completeness
only. ©2019 IEEE.
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pixel accuracy (calculated as the total fraction of correctly classified voxels). Registration is
particularly inadequate when segmenting new subjects. In addition, as shown in Fig. 8.3, the
sources of this error are fundamentally different. Registration-based segmentation generates
well-formed tissue structures, but these structures are significantly misaligned, so errors
are distributed along the length of the scan; in contrast, neural network methods perform
well in the central belly of the muscle, but struggle with endpoints, such that errors are
concentrated at the top and bottom of the muscle. Manual error correction is thus much
more time-efficient on neural-network-segmented scans, as a much smaller subset of slices
must be corrected. Alternatively, analysis can be restricted to the center of the muscle with
a reasonable expectation of data reliability. This difference in error type also suggests future
work in ensemble approaches that incorporate the successful aspects of each strategy.

Elastic Deformation Augmentation

The augmentation of the training data set with elastically deformed scans substantially im-
proved performance in most tested cases, suggesting that this method of data augmentation
is useful in tissue annotation. In fact, as shown in Table 8.1, a U-Net trained on a single scan
along with the elastically-augmented version of that scan (U-NET+EA) performed almost as
well on scans at new angles as a network trained on multiple angles (Multi-Angle U-NET).
Gains across force conditions and subjects were more modest, but elastic augmentation still
showed improved performance as compared with unaugmented counterparts. Qualitatively,
elastic augmentation seems to sharpen scans and and remove some artifacts, as shown in
Fig. 8.3.

The addition of rotationally augmented data did not improve performance; in fact, per-
formance was diminished across all tested categories, most likely because both test and
training scans were collected at similar poses.

A Note on Multi-Subject Training and Performance

To effectively scale up muscle deformation analysis requires generalization to new subjects.
While neural network segmentation performed reasonably well in this respect, considering the
small number of scans seen — even an unmodified U-Net trained on a single scan successfully
segmented the middle portion of most subjects’ biceps and humerus — performance remains
significantly lower than when generalizing across angle or force conditions for the same
subject. More explicitly, a network trained on multiple subjects performs better on new
angles and force conditions than a network trained on multiple angles or force conditions
performs on new subjects; thus, our objective of multi-subject data sets will be best served
in the future by focusing on generation of training data across multiple subjects rather than
multiple angle or force conditions.
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8.6 Summary & Limitations

In this chapter, we presented a novel CNN-based pipeline for generating 3D annotated scans
of bone and muscle structures and used it to annotate the biceps brachii and humerus of
the OpenArm 2.0 data set developed in chapter 7. We found that this pipeline generally
compared favorably with classical registration-based segmentation approaches in terms of
segmentation accuracy and distribution of errors, and it saved hundreds (possibly thousands)
of hours of estimated expert annotation time on this target data set. In the future, we
hope to leverage this segmentation process to further expand the data we examine, which
will include multiple muscles under both static and dynamic conditions, as well as greater
variety in subjects’ age and pathology. Beyond muscle segmentation, this work could easily
be extended to measurement and modeling of other deformable tissues throughout the body.

At the same time, while we found 2D CNNs to be sufficiently expressive to generate our
data set with the desired level of accuracy for preliminary modeling, segmentations remain
messy in some cases, and a number of improvements to the pipeline could be made to achieve
even greater accuracy (though possibly at the cost of computational efficiency), including use
of a 3D U-Net [17], consensus methods across image slices collected from different dimensions,
or, treating one dimension as time, techniques used in video segmentation [38].

Lastly, as with most deep-learning-based approaches and despite the use of data augmen-
tation, our segmentation pipeline assumes a substantial body of expert-annotated training
data that remains time-intensive to collect, and cannot immediately generalize to untrained
additional tissue structures. Future research will explore both additional augmentation ap-
proaches and the feasibility of training generalized networks to recognize arbitrary numbers
and configurations of muscles based on the appearance of fascia and the edges of bones, to
allow for further expansion of the force–deformation modeling work begun in this thesis.
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Part IV

Systematic Modeling
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Chapter 9

Exploratory Geometric Analysis

This chapter is adapted in part from [49].1

In part III, we described the construction of two 3D volumetric data sets of the elbow
to enable comprehensive study of muscle deformation under changes in both kinematic con-
figuration and loading conditions. Now, in part IV, we present both preliminary geometric
analyses of these data and a proposed framework for expanded modeling in the future.

In this chapter, we broaden our exploratory part I analyses of simple deformation signals
to three dimensions, examining kinematic- and force-associated deformation of the biceps
brachii along the length of the arm using the OpenArm 1.0 data set described in chapter 7.
These analyses inform the systematic modeling framework we propose in chapter 10.

In the sections below, we first define the scope of our analyses and examined deformation
signals, then quantify these signals’ spatial variation on the OpenArm 1.0 data set. Lastly, we
summarize the limitations of these analyses and their implications in subsequent systematic
modeling and control signal extraction, including insights on the best spatial locations from
which to reliably measure force-associated deformation signals.

9.1 Study Scope

While the OpenArm data sets provide volumetric data that supports explicit 3D modeling
(e.g., finite element analysis), we focus our analysis on signals relevant for use in real-time
control and biomechanical modeling — i.e., those that are correlated with force output,
can be measured from a single 2D B-mode ultrasound transducer (or even 1D A-mode
transducer), can be tracked in real time without extensive computation, and are robust to
slight variation in sensor location. Thus, we start our examination with simple cross-sectional

1©2018 IEEE. Reprinted, with permission, from Laura A. Hallock, Akira Kato, and Ruzena Bajcsy.
“Empirical Quantification and Modeling of Muscle Deformation: Toward Ultrasound-Driven Assistive Device
Control”. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 1825–
1832. doi: 10.1109/ICRA.2018.8462887.

https://doi.org/10.1109/ICRA.2018.8462887
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signals (area, etc., as defined below) similar to those explored in chapter 3 and examine
their behavior along the proximal-to-distal length of the biceps brachii (the elbow flexor
for which the cleanest and most complete segmentation was obtained). We first examine
these signals’ behavior across pure, unloaded changes in kinematic configuration (i.e., elbow
angle), then examine, at each angle, changes under loading, remarking on these measures’
consistency with the simple ellipsoidal deformation expected based on our understanding of
the deformation mechanism (as described in section 2.5).

9.2 Definition of Deformation Signals

The following three deformation measures (noted spatially on a representative scan slice in
Fig. 9.1) were extracted from the segmented biceps brachii at each cross section of each of the
nine segmented OpenArm 1.0 scans and analyzed along the axis of the humerus (hereafter
denoted x).

Cross-sectional area (CSA). Similarly to the measure in chapter 3, we define CSA as the
area of the muscle cross section sliced perpendicular to the length of the humerus.

Thickness (T). While thickness was shown in chapter 3 to be correlated with output force
when measured at a single cross section of the brachioradialis, it is not obvious how best to
define this value spatially across muscle cross sections, since defining it relative to any single
axis along the humerus cannot accommodate the nonlinear deviation of the muscle along
its length. For these preliminary analyses, we define thickness T as the mean thickness of
the muscle measured from the anterior arm surface down toward the humerus within a 1 cm
window surrounding the centroid of the measured muscle cross section, a region selected to
average out irregularities resulting from the manual annotation process.

Eccentricity (E). We define the eccentricity E of the muscle cross section as the condition
number of the covariance matrix of the cross section when treated as spatially-varying point
data. Intuitively, the condition number represents the ratio of the major to minor axes of
the best-fit ellipse to the cross-sectional area and is thus a measure of muscle eccentricity
along the length of the arm. This measure is analogous to an inverted version of the aspect
ratio measurement explored in chapter 3, but incorporates point data from the entire cross
section rather than only the points of widest extent in each dimension.

9.3 Spatial Deformation Analysis

Based on the simple force generation mechanism outlined in section 2.5 — specifically, that
because muscles are isovolumetric, force-related length changes occur alongside correspond-
ing cross-sectional area changes — we expect that, when measured in an appropriate location
along the muscle, both passive elbow flexion and force exertion that result in muscle shorten-
ing will result in corresponding increases in cross section size in a roughly ellipsoidal manner.
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Figure 9.1: Visualization of deformation measures calculated for spatial geometric analysis
at each elbow angle θ, loading condition LC, and location x along the length of the biceps
brachii on a single representative coronal cross section. Cross-sectional area CSAθ,LC(x) was
directly extracted from the segmented volumetric biceps volume, and thickness T θ,LC(x) was
computed as the mean of the measure shown about a 1 cm region surrounding the centroid
of the computed area. Eccentricity E θ,LC(x) was computed as the major-to-minor-axis ratio
of the best fit ellipse to the cross-sectional spatial data values in the least-squares sense.
The data collected suggest that CSA changes are consistently associated with muscle output
force, and that thickness measurements T, when combined with a model of eccentricity E,
could be used to estimate the CSA signal using cheaper 1D A-mode ultrasound sensors.
©2018 IEEE.
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In this section, we investigate the extent to which this model is evident in our prototype
OpenArm 1.0 data set via spatial analysis of the deformation metrics defined above.

Kinematic-Related Deformation

We first analyze purely kinematic-associated muscle deformation, examining the spatial be-
havior of CSA, T, and E measures under fully supported loading conditions. Based on the
simple ellipsoidal model discussed above, as well as qualitative observation of the multi-angle
data set explored in chapter 3, we expect maximum CSA and T measures to increase with
increased flexion angle. (The behavior of the E signal in this early data is more difficult to
parse, so we do not offer any particular hypothesis for its behavior.)

The top and middle plots of Fig. 9.2 show raw CSA and T data, respectively, for the
biceps brachii under the fully supported condition at all three angles examined, as well as
the best-fit quadratic regressor for the data (in the least-squares sense), from the proximal
extremum of the observable biceps volume to the location of the elbow (i.e., where the
humerus meets the radius and the ulna).

Examining both raw data values and these quadratic regressors, we indeed observe the
anticipated increase in maximum CSA and T values with increased elbow flexion. In addi-
tion, despite messily segmented muscle endpoints, the regressors reflect the muscle’s isovol-
umetricity: the model for the 30° condition is not only shortest in the CSA dimension, but
longest in the x, and the 90° model is both tallest in the CSA dimension and shortest in the
x. The fitted quadratic functions consistently peak at a distance of 7.4 cm (46%) from the
proximal end of the muscle across all angle conditions (all within a range of 0.3 cm), and
no obvious deviation from this mean is observable under load; this is interesting given that
when observing natural flexion motion, the biceps muscle belly appears to slide from distal
to proximal, and we might expect maximum CSA and T measures to do the same. We do
not observe these trends in the measured T data, aside from an expected lower thickness
value at the most extended elbow 30° near the muscle belly at around 6 cm; we conjecture
that this is because our thickness measure does not sufficiently incorporate the 3D nature
of the muscle’s line of action, and can be substantially impacted by the muscle’s deviation
from the humerus-aligned scans we consider. It’s also possible that, unlike the trends we
observed in the brachioradialis muscle in chapter 3, thickness alone is not a reliable indicator
of biceps length changes.

Nevertheless, thickness T remains a desirable signal for deformation measurement in
that it can be measured with cheap, simple sensors like 1D A-mode ultrasound transducers,
and we hypothesize that they could be used as a proxy for more representative CSA values
when combined with an offline model of eccentricity values E (as CSA can be roughly
calculated when T and E are known). The final plot of Fig. 9.2 characterizes this E value
for our prototype data set across all examined joint angles and loads, showing it to be
relatively consistent across experimental conditions, with narrow, eccentric muscle endpoints
and a wider, rounder belly, indicating that construction of a low-dimensional eccentricity
model may be possible. Once appropriately fitted to the data, a system leveraging such an
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Figure 9.2: Variation in cross-sectional area CSA (top), thickness T (middle), and eccentric-
ity E (bottom) along the length of the biceps brachii from shoulder to elbow of the prototype
OpenArm 1.0 subject, under multiple elbow flexion angles with the forearm fully supported
(CSA and T ) and at all tested conditions (E ). The location of maximum CSA/T (as mea-
sured from the corresponding quadratic regression models shown in overlay) was not shown
to vary with angle, but the changes in width of the fitted CSA quadratics reflect the com-
pression of the muscle as elbow flexion increases, a preliminary and intuitive insight that
suggests that building low-dimensional predictive models of CSA change may be possible.
The steep increase in eccentricity E near the muscle’s ends is reflected in the cross-sectional
images shown in Fig. 7.2, and the consistent shape of the eccentricity map across all tested
conditions indicates that a spatial eccentricity map could be of use in developing a predictive
model of muscle CSA from 1D thickness T data. ©2018 IEEE.
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Figure 9.3: Spatial variation of change in biceps brachii cross-sectional area (CSA) from that
of the fully-supported (FS) volume under low (LF, dashed) and high (HF, solid) loading
conditions. Significant variation is consistently observed in a range centered approximately
2.6 cm distal from the location of maximum absolute CSA and is larger under higher loading
at each configuration. These observed ∆CSA values thus indicate a candidate location from
which to extract a spatially robust assistive device or biomechanical modeling control signal.
©2018 IEEE.
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eccentricity model and real-time thickness data could form the bases of a CSA-estimating
control scheme.

Force-Related Deformation

We next examine force-associated deformation — the key relationship we seek to model
for enhanced inference of human dynamics. For initial analysis, we consider this force–
deformation relationship separately at each kinematic configuration.2

Fig. 9.3 shows the spatially-varying change in muscle CSA under low- and high-force
conditions (LF and HF, respectively) detailed in section 7.3 and Table 7.1, defined as the
CSA under loading less the CSA while fully supported (FS) at each spatial location. The
observed changes peak consistently across configurations and loading conditions at a distance
of approximately 10 cm from the proximal end of the muscle, roughly 63% of the way down
the muscle and 2.6 cm (16%) distal from the peak of the absolute maximum CSA shown in
Fig. 9.2. Overall, substantial deformation — up to 5.9 cm2, or 54% of the corresponding
unloaded CSA value — is observed.

While the magnitudes of this CSA change are not comparable across configurations, as
the same wrist weights induced different moments at each angle, greater changes in CSA
are observed for larger loads than those of smaller loads at all angle conditions within a
considerable region (8.8 cm, or 55% of the total examined biceps length, roughly centered
about the location of maximum CSA change, with much larger regions in the 30° and 60°
cases). This suggests that an assistive device control signal could be gathered from this
location and remain reasonably robust under moderate levels of sensor movement. Interest-
ingly, this location of maximum CSA change is not centered about the location of maximal
CSA overall, which is consistently approximately 2.6 cm more proximal, as illustrated in
Fig. 9.2, illustrating a breakdown of the simple ellipsoidal model. We hypothesize that this
inconsistency is related to contact forces with nearby tissue structures — in particular, with
the brachialis, which also provides substantial flexion force and presses upward from below
— but more analysis on a wider subject cohort will be necessary to confirm this conjecture.

Although changes in muscle thickness across loading conditions were similarly defined
and examined, the data proved extremely noisy, and observed signal changes were small
(on the order of 0.4 cm) and difficult to characterize, with no discernible peak or trend
across loading conditions. As with our kinematic-related deformation analysis above, this
suggests that the thickness signal as defined neglects substantial muscle deformation in the
unexamined dimension, and may therefore be most useful in concert with a model of muscle

2Note that the nature of our imposed force conditions — weights applied at the wrist — does not allow
us to disambiguate between muscle exertions that increase output force and those that increase stiffness or
impedance. (Indeed, at the 90° condition, effectively all exertions relate to stiffness, as the loading vector
points along the length of the forearm, as discussed in section 7.4.) Here, we describe both of these exertions
as being “force-related,” but target this disambiguation for future study (e.g., using the OpenArm 2.0 data
set, which imposes force conditions in a more precisely specified manner, and by building new data sets that
examine both agonist and antagonist muscles together).
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eccentricity, as described above. We therefore plan to undertake a more thorough study of
these models, and also of the most effective ways to gather a 1D muscle thickness signal
(e.g., by considering different potential positions for an ultrasound sensor about the coronal
plane of the arm) in future investigations.

9.4 Summary & Limitations

In this chapter, we undertook a preliminary geometric analysis of the kinematic- and force-
associated variation of several simple deformation signals on the biceps brachii of a prototype
individual from the OpenArm 1.0 data set. We found these data to be largely consistent with
a simple isovolumetric, ellipsoidal model of deformation — despite several inconsistencies
likely caused by tissue contact dynamics and other geometric complexities — and located
a promising spatial location at which force-related deformation changes reliably appear,
suggesting an appropriate region from which to extract a control or modeling signal.

Due to the complex sliding and contact dynamics involved, expanded analysis of configura-
tion-related deformation in particular is likely to require an especially complex model; at the
same time, it may prove less necessary to use this model explicitly during real-time device
control, as a number of sensors already exist (including motion capture, electrogoniome-
ters, and inertial measurement units) that can measure real-time kinematics. Our ulti-
mate objective is the extraction of force-related signals — which, given an offline model of
configuration-associated deformation, may admit a clean and low-dimensional formulation,
allowing for real-time, high-dimensional measurement of human dynamics.

These exploratory single-subject analyses inform our systematic modeling work in chap-
ter 10, in which we present an example framework for incorporating both types of deformation
in a principled manner while also considering more complex known biological phenomena
impacting the signal.
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Chapter 10

Systematic Force–Deformation
Modeling

In the previous chapter, we presented a simple geometric analysis of kinematic- and force-
associated muscle deformation and found it to be largely consistent with ellipsoidal muscle
deformation; at the same time, our results showed substantial spatial irregularities in the
deformation signal, making it difficult to determine precisely what model formulations would
best describe the force–deformation relationship. In this chapter, leveraging these basic
insights, we propose a novel theoretical framework to systematically examine a wide variety
of possible force–deformation models while considering both empirical data and literature-
based assumptions to varying degrees.

In the sections below, we first motivate the creation of this modeling framework and
define its scope, then present an example suite of models — verifiable by the chapter 7
OpenArm 2.0 data set — relating biceps deformation and elbow angle to output torque at
the elbow. Lastly, we comment on the model selection process and on the applications of
both the models themselves and our wider strategy in conceptualizing the black box/white
box trade-off, as well as limitations of this approach.

10.1 Model Scope

As with all system identification problems, the “best” model is defined by its final appli-
cation.1 In this thesis, we are primarily concerned with models suitable for integration in
real-time device control tasks and biomechanical modeling, and thus scope our proposed
models accordingly, avoiding computationally intensive techniques like finite element analy-
sis and models that require 3D inputs that cannot be collected in a single time instant.

Even limiting our target applications in this manner, there exist a multitude of possible
force–deformation model types, ranging from purely data-driven and unstructured “black

1“All models are approximations. Essentially, all models are wrong, but some are useful. However, the
approximate nature of the model must always be borne in mind.” —George E. P. Box [13]
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box” models to “white box” models that impose known physiological relationships with
minimal free parameters. In the field of human modeling, there exist centuries of study
from which to draw these physiological modeling assumptions; at the same time, given
the geometric, mechanical, and neurological complexity of the neuromusculoskeletal system
discussed at length in section 2.3, as well as the substantial morphological differences across
individuals, it is not at all evident which assumptions hold, and under what conditions. This
presents a modeling trade-off: while fully data-driven models offer little generalizability or
physiological insights, introduction of erroneous values and assumptions from literature may
adversely affect model quality in unpredictable ways.

Thus, rather than advocating for a single model relating muscle force, deformation, and
configuration, we present a suite of possible models along this black box–white box con-
tinuum that make this empirical/theoretical trade-off in a principled manner, allowing for
equitable comparison across candidate models. This model series constitutes both a readily
implementable approach for immediate control signal extraction (compatible with, for ex-
ample, the trajectory tracking control task explored in chapter 5) and an example of our
more abstract modeling contribution: a systematic, quantifiable way to approach the black
box/white box trade-off.

10.2 Example Modeling Framework

In this section, we present an example modeling framework mapping muscle deformation and
kinematic configuration to output force at the elbow, designed for calibration and validation
with the OpenArm 2.0 data set described in chapter 7. Specifically, in the subsections
below, we detail a suite of models with common inputs biceps deformation Dbiceps and elbow
angle θ and common output elbow joint torque τext, as shown in Fig. 10.1–10.4, which make
varying trade-offs between relying exclusively on empirical data and building in assumptions
from biomechanics literature. Note that while we envision Dbiceps as being extracted from
a single ultrasound cross section (to generate models readily applicable to real-time control
scenarios), many of the model classes we describe support arbitrary parameterizations of
this deformation in arbitrary dimensions, and the Dbiceps signal — alongside more precisely
defined θ and τext — can be extracted from the OpenArm 2.0 data set in numerous ways.

While we formulate this framework primarily as a mapping from Dbiceps and θ to τext as
noted, later, more structured models also enable inference of individual muscle forces — a
key future objective of this line of modeling inquiry — as discussed below (though model
calibration and validation of such extracted force values will likely require additional sensor
data, like that proposed in section 13.2).

“Model-Free” Baseline

We begin with a “black box” baseline model, in which joint angle θ and deformation Dbiceps

are mapped directly to output torque τext via arbitrary function f0(·, ·) using only empirical



CHAPTER 10. SYSTEMATIC FORCE–DEFORMATION MODELING 91

“black box” “white box”

Musculoskeletal Dynamics

“model free” 
baseline

Figure 10.1: Fully empirical “black box” baseline model mapping elbow angle θ and
arbitrarily-parameterized muscle deformation Dbiceps to elbow torque τext through arbitrary
function f0(·, ·). This model enables data-driven prediction of output torque but lends little
to no insight into underlying physiology. Image adapted from [67].

data, as shown in Fig. 10.1. This model class supports a wide array of possible deformation
and function parameterizations — Dbiceps, for example, could be any of the deformation
signals discussed in previous chapters, the location of contour points, or even raw pixel
values, and f0(·, ·) could be anything from a linear model to a neural network.

Adding Multi-Muscle Dynamics

We can impose structure on the above black box baseline model by incorporating the struc-
ture of multi-muscle dynamics, as shown in Fig. 10.2. In this model class, joint angle θ
and deformation Dbiceps are again mapped through arbitrary function f1(·, ·) in an equally
data driven manner (supporting all of the above possible parameterizations), but are instead
mapped to biceps force Fbiceps, which is now modeled as a fraction of the total output torque
measured at the elbow. Note that this model requires assuming several values and prop-
erties from literature — either function c(·), a configuration-dependent multiplier for the
percentage of force attributable to the biceps, or the actual torque contributions of all other
elbow flexors and extensors (τbrach, τbrachrad, τtriceps) and that of the forelimb’s mass (τmg)
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Musculoskeletal Dynamics [assumed]

“black box” “white box”

Biceps Contraction Dynamics
Force Distribution Model

“model free” 
baseline

+ multi-muscle 
dynamics

Musculoskeletal Dynamics

Force Distribution Model

[assumed]

+
Muscle Geometry

Biceps Contraction Dynamics

Figure 10.2: Imposing multi-muscle structure on the baseline model in Fig. 10.1 enables
extraction of biceps force Fbiceps and is more representative of real physiology, but requires
knowledge of either the configuration-varying percentage of elbow force attributable to biceps
exertion c(·) (top) or actual torque contributions of other actuating muscles τbrach, τbrachrad,
and τtriceps and mass contribution τmg (bottom). Using the currently available OpenArm 2.0
data set, these values must be assumed from literature, but as data sets expand, they too
could be determined from corresponding muscle deformation signals. Image adapted from
[67].
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model
Muscle 

Deformation

[measured]
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Tendon Dynamics

+
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“model free” 
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+ multi-muscle 
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dynamics

Figure 10.3: The Fig. 10.2 model above can be further refined by incorporating dynamics
of the muscle–tendon unit (MTU), assuming springlike behavior of the tendon with spring
constant k. This model class requires additional assumption of both k and kinematically
varying MTU length `MTU(·) but can be partially validated through measurement of muscle
length `m on the OpenArm 2.0 data set. Image adapted from [67].

along with (possibly kinematically varying) biceps moment arm rbiceps(·). Alternatively, as
our deformation data sets expand, these additional muscle torque values could be inferred
from their corresponding deformation signals.

By imposing this structure, we can now use this model (and all models below) directly
for individual muscle force inference if desired, treating Fbiceps as our output.

Adding Muscle–Tendon Unit Dynamics

We can further impose structure on the above models by incorporating the dynamics of
the muscle–tendon unit (MTU), as shown in Fig. 10.3, mapping θ and the (still arbitrarily
parameterized) Dbiceps to muscle length change `m via arbitrary function f2(·, ·) and modeling
the tendon length change as that of a stiff spring with constant k. This requires assuming
several additional values from literature, including the total (kinematically varying) MTU
length `MTU(·) and tendon spring constant k. Note that models in this class can be partially
validated on (or fitted to) the OpenArm 2.0 data set by extracting muscle length `m directly
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Musculoskeletal Dynamics
Biceps Contraction Dynamics

Force Distribution Model
Muscle 

Deformation

[measured]
[assumed]

Tendon Dynamics

+
Muscle Geometry

“model free” 
baseline

+ multi-muscle 
dynamics

+ MTU 
dynamics

+ ellipsoidal 
kinematics

“black box” “white box”

Figure 10.4: Isometric ellipsoidal muscle kinematics can be imposed on the Fig. 10.3 model
above to generate a fully “white box” model requiring little to no parameter fitting. This
additional structure enforces that deformation is specifically parameterized as cross-sectional
area Am and requires knowledge of (assumed constant) muscle volume Vm, which can be
extracted from the OpenArm 2.0 data set. Image adapted from [67].

from the full volumetric scans.

Adding Ellipsoidal Deformation Kinematics

Lastly, we can impose the isometric ellipsoidal deformation kinematics implied by the mech-
anism described in section 2.5 to generate a fully “white box” model, as shown in Fig. 10.4,
defining Dbiceps specifically as muscle cross-sectional area Am and assuming purely ellipsoidal
deformation, such that muscle length `m is always equal to 3Vm/(4Am) (for constant muscle
volume Vm) when viewed in appropriate reference frame Tθ. This requires knowledge of Vm,
which can be extracted from the OpenArm 2.0 data set volumes or assumed from literature.
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10.3 Thoughts on Model Selection

As discussed above in section 10.1, the suitability of a particular model on the continuum dis-
cussed above is completely application dependent, and its quality can be evaluated on a num-
ber of disparate factors (time series error, generalizability across individuals or conditions,
etc.). For device control applications, for example, data-driven models may be sufficient; for
biomechanical study, however, and for applications in which muscle exertions are evaluated
to prevent injury or maintain comfort (e.g., exoskeletal control), physiology-based models are
critical. While in the short term, lacking a comprehensive muscle force–deformation body of
literature (and especially given individual morphological variation), we may be forced to rely
primarily on black box techniques, we ultimately advocate for leveraging as much modeling
structure as possible to enable safety, interpretability, and novel scientific understanding.

10.4 Summary & Limitations

In this chapter, we presented a theoretical framework to enable the consideration of a range
of muscle force–deformation–configuration models incorporating both empirical data and ex-
isting phyiological modeling assumptions and evaluation of their relative performance in a
quantifiable manner. While implementing these models in the context of a particular appli-
cation is beyond the scope of this thesis, we are currently developing software infrastructure
to allow for comparison of the models above on a number of performance metrics (e.g.,
mean prediction error, generalizability across subjects, sensitivity to probe location) on the
OpenArm 2.0 data set developed in chapter 7. Ultimately, we envision the wide applica-
tion of these and similar models — as well as our overall approach to quantifying the black
box/white box trade-off — in the many domains discussed in our concluding chapter 13,
including assistive device control and enhanced understanding of the human motor control
system, both healthy and pathological.
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Part V

Data, Codebases, Alternative
Sensing, & Conclusions



97

Chapter 11

The OpenArm Codebase

This chapter delineates all current releases of the OpenArm data set, released open-source on
the SimTK database at https://simtk.org/projects/openarm. Beyond the work in this
dissertation, the OpenArm data sets are designed to enable study of force- and kinematic-
induced muscle deformation for applications in biomechanics research, computer graphics,
and assistive device development, and are presented as a core thesis contribution. We invite
anyone in the research community to use the OpenArm and OpenArm Multisensor data sets
to validate existing muscle deformation models or to devise new ones.

Each package, along with all available downloads at time of publication, is enumerated
below.

11.1 OpenArm Multisensor 1.0

The OpenArm Multisensor 1.0 package [51] contains the first iteration of the OpenArm
Multisensor data set and associated muscle contour tracking code. Included are 1) a multi-
subject data set of ultrasound-based time series deformation data of the brachioradialis
muscle alongside surface electromyography (sEMG), acoustic myography (AMG), and force
data, and 2) all code used in analyzing deformation across subjects and optical flow tracking
of muscle deformation over time.

Specifically, the data release includes:

• Data set. All OpenArm Multisensor data, including raw and segmented ultrasound
frames used in brachioradialis tracking and processed time series data.

• Source code. GitHub repository of all optical flow tracking and analysis code.

11.2 OpenArm Multisensor 2.0

The OpenArm Multisensor 2.0 package [50] contains the second iteration of the OpenArm
Multisensor data set and associated muscle contour tracking code. Included are 1) a multi-

https://simtk.org/projects/openarm
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subject data set of ultrasound-based time series deformation data of the brachioradialis
muscle alongside surface electromyography (sEMG), force, and goal trajectory data, and
2) all code used in analyzing deformation across subjects, optical flow tracking of muscle
deformation over time, and real-time visualization of time series data.

Specifically, the data release includes:

• Data set. All OpenArm Multisensor data, including raw and processed ultrasound
frames used in brachioradialis tracking, processed time series data, demographic data,
and survey results on user preferences during a trajectory tracking task.

• Ultrasound streaming & tracking source code. GitHub repository of all real-time stream-
ing and optical-flow-based muscle thickness tracking code.

• Visualization & data collection source code. GitHub repository of all real-time signal
visualization and data collection code.

• Analysis source code. GitHub repository of all analysis code.

11.3 OpenArm 1.0

The OpenArm 1.0 package [49] contains the first iteration of the OpenArm data set, a set
of full volumetric scans of the human arm collected using ultrasound and motion capture.
Data are factorial under multiple elbow angles and loading conditions, and thus allow for
separable analysis of force- and configuration-associated muscle deformation.

Specifically, the data release includes:

• Data set. full volumetric data of the arm for three subjects (Sub1, Sub2, and Sub3 )
under 20 force and elbow angle conditions. A subset of nine Sub1 scans are annotated
with the full visible volumes of the humerus and biceps brachii, as well as sections of
the ulna, radius, deltoid, brachialis, and brachioradialis.

11.4 OpenArm 2.0

The OpenArm 2.0 package [113] contains the second iteration of the OpenArm data set, a
multi-subject set of full volumetric scans of the human arm collected using ultrasound and
motion capture. Data are factorial under multiple elbow angles and loading conditions, and
thus allow for separable analysis of force- and configuration-associated muscle deformation.
Improvements from OpenArm 1.0 include improved data collection procedures allowing for
more explicit comparison of force conditions across angles, more subjects, and partial anno-
tations for all subjects enabled by neural-network-based segmentation.

Specifically, the data release includes:
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• Data set. Full volumetric data of the arm for ten subjects under 20 force and elbow
angle conditions, as well as 12 scans from one additional subject. Ground-truth seg-
mentation data of the biceps brachii and ventral surface of the humerus are included
for one full set of subject scans, as well as several scans of other subjects. Partial
neural-network-generated segmentation data are included for all subjects and scans.

11.5 Annotation Source Code

The Annotation Source Code package [113] contains all code and neural network models
used to generate tissue segmentations of the biceps and humerus for the OpenArm 2.0 data
set, using both convolutional neural networks and classical image registration. Code and
models used in network training, prediction, analysis, and data augmentation are included.

Specifically, the data release includes:

• Neural network models. ZIP archives of all neural network models used in segmenting
the OpenArm 2.0 data set, including all models used in the associated publication [113]
and the best performing model overall at time of release.

• Segmentation source code. GitHub repository of all segmentation code.
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Chapter 12

Alternative Sensing: Force–Vibration
Correlation via Acoustic Myography

This chapter is adapted in part from [48].1

In parts I–IV, we explored the use of ultrasound-extracted deformation signals for force
inference and device control. In this chapter, we present preliminary work leveraging an al-
ternative sensing technology — acoustic myography, or AMG — to measure muscle vibration
during contraction to perform similar inference of musculoskeletal dynamics.

In the sections below, we first present the scope of this (highly preliminary, single-subject)
study and provide background on existing models relating muscle force and vibration. We
then present a proof-of-concept model of the elbow joint for examining force–vibration cor-
relation under isometric elbow flexion and show early evidence that these values are indeed
correlated. Lastly, we remark on the study’s limitations and implications for future device
control and biomechanical modeling.

12.1 Study Scope

Building on current scientific understanding of the force–vibration relationship, we present
a simple, novel model relating output force at the elbow to AMG-measured vibration from
both agonist (biceps) and antagonist (triceps) muscles, whose interaction is critical to mod-
ulating joint stiffness during everyday tasks and largely ignored in existing musculoskeletal
modeling frameworks. We then probe this model’s validity during isometric contraction via
a preliminary single-subject study.

1©2018 IEEE. Reprinted, with permission, from Laura A. Hallock and Ruzena Bajcsy. “A Preliminary
Evaluation of Acoustic Myography for Real-Time Muscle Force Inference”. In: International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2018.
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12.2 Existing Muscle Force–Vibration Measurement

& Models

In this section, we describe existing sensing paradigms used in muscle vibration measure-
ment, competing theories for the mechanistic source of this vibration signal, and current
understanding of its relationship to muscle output force.

Muscle Vibration Measurement

While the fact that skeletal muscles produce vibrations during contraction has been known
for centuries [43, 152], the vibration signal has only recently been used in scientific studies, en-
abled by the development of appropriate sensors (including sufficiently sensitive piezoelectric
transducers and condenser microphones) to measure the low-amplitude, low-frequency signal
[114]. The term acoustic myography (AMG) was first used to describe the measurement of
these vibration-induced pressure waves in [7]; other terms, including vibromyography [75, 8]
and mechanomyography [114] have been used to describe the acquisition of the same signal.
These terms are frequently conflated, though some literature draws a distinction based on
the specific modality used (microphones, accelerometers, etc.); all terms above refer to the
measurement of the same underlying vibrational phenomenon, and we will here employ the
term AMG to describe our own signal acquisition procedure.

Competing Theories of AMG Signal Source

Despite advances in sensing technology, there remain three major competing theories for
precisely what phenomenon causes the vibratory signal. The cross-bridge cycling theory
[115] states that the vibration is a direct product of the myosin-actin cross-bridge cycle that
causes each sarcomere to contract. Proponents support this theory by relating the dominant
frequency of muscle sounds during isometric contractions (both voluntary and elicited by
electrical stimulation) with the rate of cross-bridge cycling; however, they provide no model-
based evidence to support this conclusion.

The vibrating string theory [36] states that the muscle sound pressure can be explained by
the model of a vibrating string. Proponents’ studies [36] have shown that plucking of isolated
muscle produced decaying pressure oscillations in which the first half cycle was largest, as
would be expected from a string under tension.

The unfused motor unit theory [86] states that there exists a relationship between motor
unit recruitment strategies and associated force transients and the AMG signal at different
levels of voluntary effort. Citing earlier work in [71], proponents [86] showed that the vi-
bratory signal of a single motor unit can be recorded at very weak contractions using an
accelerometer, and that these values were consistent with their proposed model.

Each of the three theories above offers multiple concrete predictions about the nature of
the AMG signal; based on these predictions, [147] performed thorough discriminative studies
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on both human and animal models, both electrically stimulated and voluntary, including a
fatigue study, and concluded that the unfused motor unit theory was best supported by the
available evidence. Our preliminary results below are largely consistent with these findings.

Muscle Force and the AMG Signal

Muscle force is a function of both the number of fibers recruited and the firing rate of
each motor unit; while these phenomena are difficult or impossible to disambiguate from
traditional surface electromyography (sEMG)-based inference methods, they are readily ob-
servable via AMG in the signal’s amplitude and frequency, respectively [53]. This knowledge
forms the basis of the preliminary force–vibration model explored below.

12.3 Proof-of-Concept Model

In this section, we define a proof-of-concept model based on the above understanding of the
force–vibration relationship relating AMG-measured vibrational signals to output torque
at the elbow. We then pose several hypotheses implied by this model and use them to
interrogate the model’s validity on a prototype subject.

Model Definition

We can model the observed AMG amplitude A as approximately proportional to the number
of activated fibers n, while the AMG frequency ν is approximately proportional to the mean
fiber force F̄f [53]. The output force Fm of a muscle can then be written as

Fm = nF̄f = αAν

for some (positive) constant α.
Although this model is difficult to validate in vivo, as measurements of external forces

admit an infinite range of possible muscle synergies (as discussed in section 2.3), we perform
preliminary validation analysis using the simplified sagittal model of the elbow shown in Fig.
12.1. Assuming a static configuration of the elbow, the following two hypotheses should hold
if the model is valid: (1) under relaxed conditions (i.e., minimal elbow stiffening), A1ν1 of the
elbow flexor(s) should correlate positively with output torque τ ; and (2) for a given τ , under
varying elbow stiffness, A1ν1 of the elbow flexor(s) should correlate positively with A2ν2 of
the elbow extensor(s) to maintain a constant output torque. We evaluate these hypotheses
on a preliminary data set from a prototype subject below.

Subject Biometric Data & Consent

Data were collected from the right (dominant) arm of a healthy female subject, age 24,
of mass 70 kg and height 1.8 m. The study protocol was approved by the University of
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Figure 12.1: Preliminary acoustic myography (AMG) data of the biceps and triceps show
substantial correlation with muscle output force. Left : Simplified sagittal model of the
elbow used in data analysis. Right, top: A1ν1 of the biceps is highly correlated with output
output torque τ (r = 0.9, p < 10−6). Right, bottom: Example A1ν1 and A2ν2 trajectories
(of the biceps and triceps, respectively) during random elbow stiffness modulation, showing
significant correlation between the two data series (r = 0.6, p < 10−7), consistent with
maintaining constant output torque. ©2018 IEEE.

California Institutional Review Board for human protection and privacy under Protocol ID
2016-01-8261 (first approved 4 April 2016) and written informed consent was obtained.

Data Collection & Preliminary Results

Muscle vibration data were collected from the biceps and triceps brachii of the single subject
above using a Myodynamik CURO AMG collection system (MyoDynamik ApS, Bagsværd,
Denmark), under multiple loads τ at the same elbow angle, while encouraging the subject
to modulate their muscle stiffness at 3 s intervals over which A1ν1 and A2ν2 were calculated.
The data were consistent with hypotheses (1) and (2) above, as shown in Fig. 12.1, suggesting
that Aν is well-correlated with muscle force.

12.4 Summary & Limitations

The data above show extremely preliminary evidence that muscle vibration, as measured via
AMG, is well correlated with muscle output force under isometric elbow flexion, suggesting
that AMG is a feasible and useful modality for assistive device control and biomechanical
study. Because the AMG signal, like the ultrasound-measured deformation that is the pri-
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mary focus of this thesis, is mechanically, rather than neurologically coupled to force output,
it presents a second, promising signal with which to measure musculoskeletal dynamics. The
fact that different properties of the vibration signal are thought to correspond to different
aspects of fiber recruitment could also enable more detailed study of motor unit recruitment
strategies and how they vary across muscles and individuals.

Beyond the scope of this thesis, we are currently working to improve on this preliminary
model — including separate correlation analysis of amplitude and frequency with force,
fitting parameters α to enable actual force inference, and investigating both temporal and
spatial resolution of the AMG signal (toward determining the shortest interval over which
ν can be robustly calculated — which determines the “real-time” potential of this control
signal formulation — and the number of independent signals that can be extracted from
neighboring muscles, respectively) — and to test its validity on a wider cohort of subjects.
In the future, as with our muscle deformation work, we aim to expand the resultant models
to complex multi-muscle systems and employ them in device control and other real-time
force inference applications.
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Chapter 13

Conclusions & Future Directions

In this dissertation, we presented preliminary work prototyping the use of muscle deformation
for force-related device control, as well several novel data sets and a comprehensive modeling
framework to enable expanded study of the force–deformation relationship. In this final
chapter, revisiting many of the application areas presented as motivation in chapter 2, we
discuss both immediate and long-term plans for the application and expansion of this work
in device control, human dynamics modeling, human–robot collaboration, and rehabilitation
domains. We also present some final thoughts on the future importance of enhanced human
modeling in general. On the whole, this thesis poses more questions than it answers, and
the expansions below range from concrete to highly speculative.

13.1 Safe & Capable Device Control

As discussed in section 2.1, we envision two main respects in which our deformation-based
muscle force modeling can enable enhanced device control: improving safety and improv-
ing capability, particularly for devices in which we wish to confer a high degree of control
authority to the human user (e.g., prostheses, exoskeletons, teleoperation) and for auto-
mated systems that need to deeply understand human dynamics (e.g., to predict human
motion with or without robotic intervention to avoid collision). In the subsections below, we
provide several examples of specific control scenarios in which we envision these deformation-
modeling-based safety and/or capability enhancements.

Simultaneous Position, Force, & Stiffness Control

One way in which deformation data could be utilized is as an additional control signal
atop existing biosignal-based control schemes, enabling improved control in cases requiring
precise impedance modulation (e.g., manipulating cane-like supports, using a screwdriver,
performing catching maneuvers). Fig. 13.1 illustrates a simple teleoperation example of
this usage, in which deformation, activation, and position signals are combined to enable
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Figure 13.1: Idealized example of using deformation-based muscle force inference to enable
simultaneous position, force, and stiffness control of a single joint in a teleoperation sce-
nario. Top: Classical force-based control scenario in which human user’s electrogoniometer-
measured elbow angle θu is mapped to robot elbow angle θr through PID control loop with
constants kP, kI, and kD, with goal force trajectory Fdes specified proportional to differential
biceps–triceps surface electromyography (sEMG) signal αdiff and added to feedback-loop-
generated position-correcting force Fdy to generate robot elbow force Fr. Bottom: By in-
troducing ultrasound-measured muscle deformation Dbiceps — a better analog for the user’s
absolute output force than the differential sEMG signal — we can configure the robot to track
this output force more directly by specifying Fdes as proportional to Dbiceps and remap αdiff

to generate controller stiffness constants consistent with the user’s own elbow stiffness. This
enables enhanced control in scenarios requiring precise independent modulation of position,
force, and stiffness parameters (e.g., manipulation of cane-like weight-bearing tools, catching
delicate objects). Note that this prototype example assumes ideal controllable-torque actu-
ators; implementation would require careful actuator selection and likely innovation. Select
images adapted from [67].
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simultaneous and intuitive force, stiffness, and position modulation on a single robot joint,
a paradigm shown to be feasible [1, 120] but that remains technically challenging.

High-Dimensional Device Control

A second potential deformation-based control application is our motivating example in chap-
ter 1: intuitive control of devices with many degrees of freedom (DoF). While there exist a
number of multi-jointed assistive robots and prostheses (e.g., anthropomorphic hands), with
mechanical potential for substantial dexterity, most support only single-DoF control (e.g.,
opening and closing a grasp). A primary reason for these limited control schemes is humans’
inability to consciously modulate the number of control signals required for greater dexterity:
a fully biomimetic hand, for example, would require independent actuation of approximately
27 DoF, while humans often struggle to manipulate even a few disjoint control signals.1

We envision three possible strategies for addressing these challenges to enable high-DoF,
dexterous control: substantial (likely prohibitive) levels of user training on classical control
interfaces (e.g., joysticks), the introduction of considerable device autonomy, and the organic
extraction of signals from the neuromuscular system humans are pre-wired to control. While
we hypothesize that successful approaches will leverage all of these strategies, as well as
additional augmentations like haptic feedback, we see the latter strategy as particularly
powerful for increasing dexterity without diminishing human control authority.

The work in this thesis is directly applicable to precisely this multi-signal extraction
problem, and is complementary to existing biosignal-based control schemes, which mostly
employ surface electromyography (sEMG). Unlike sEMG, which provides an aggregate, noisy
signal that varies greatly with even small shifts in sensor placement and largely cannot
measure deep muscle activation, ultrasound-measured deformation is easily localized to a
particular muscle and can be measured for deep and shallow muscles alike, allowing for
straightforward extraction of multiple independent control signals to actuate multiple DoF.
Ultimately, such signals could be used to control not only the biomimetic exoskeletons and
prostheses discussed above, but other high-dimensional robotic systems that are currently
difficult for a single operator to manage (e.g., fleets of quadrotors, supernumerary arms).

Human–Robot Collaboration

Beyond human-controlled assistive devices, deformation-based human dynamics models could
improve physical human–robot interaction systems more broadly in two distinct ways: first,
by enhanced modeling of human capabilities, and second, enhanced measurement of human
actions and intentions in real time.

In the former case, such modeling systems could improve the safety and comfort of col-
laborative human–robot systems by monitoring human exertions and adjusting robot actions
when these exertions surpass thresholds of comfort or safety (e.g., inducing a robot arm to

1This is something to which anyone who has played QWOP can attest.

http://www.foddy.net/Athletics.html
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take more weight when performing a collaborative lifting task). Scientifically, these monitor-
ing systems could also be used to evaluate the quality of ergonomic cost functions currently
used by these collaborative frameworks, evaluating whether the predicted ergonomicity of a
system state in consistent with underlying musculoskeletal forces.

In the latter case, deformation-based measures of human dynamics could provide full
dynamics trajectories of human actions, which could then be used directly in robot control
schemes (e.g., inducing a robot to help lift an object simultaneously with a human collabo-
rator) or to learn new robot control policies (e.g., monitoring human dynamics during such
a lifting task to teach the robot via reinforcement learning which actions helpfully reduce
required human exertions). At an even higher level of abstraction, these deformation-derived
dynamics signals could also be used to evaluate the quality of the cognitive models often
used to predict human intention in these domains by providing a concrete measure of human
actions.

13.2 Neuromuscular Dynamics Modeling

In addition to device control, we highlight three key areas in the human neuromusculoskeletal
modeling domain in which we see deformation-based muscle force modeling as particularly
and immediately impactful.

Individual Muscle Force Inference

While our analyses in this dissertation are restricted to relating deformation to net joint
output force, the true power in the deformation signal is its potential use in measuring
individual muscle forces. As discussed throughout this thesis (and particularly in sections 2.3
and 2.4), there exists no framework for noninvasive, in vivo muscle force measurement of
both deep and shallow muscles, a core limitation of biomechanics literature, and this thesis
provides substantial evidence that deformation-based force inference could aid in filling this
modeling gap.

To truly validate a force–deformation model in absolute terms would require an invasive
(likely animal) study that enables muscle–tendon unit isolation and direct transducer-based
strain measurement [6, 122]. In the future, we aim to investigate both these invasive valida-
tion strategies and others that don’t require surgery (e.g., the “tendon tapping” method [99]
discussed in section 2.4, a new technology shown to enable force measurement of muscle–
tendon units for which the tendon is exposed).

Multi-Muscle Modeling & Existing Framework Validation

Beyond single-muscle force inference, (localizable) deformation provides a path toward im-
proved modeling of synergistic and antagonistic muscle behaviors. In particular, we see
deformation modeling as directly applicable in two ways, as shown in Fig. 13.2: first, by
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Figure 13.2: Example usage of deformation-based force inference in inverse and forward
musculoskeletal dynamics modeling. Top: Current musculoskeletal simulation frameworks
(e.g., OpenSim [22], AnyBody [19]) convert joint angles and velocities {θ, θ̇} to joint torques
{τ} via inverse dynamics, then convert these torques to muscle forces {Fm} by optimizing
over cost functions (e.g., minimum metabolic energy expenditure, gait cycle or sEMG match-
ing) that may or may not represent true human dynamics. By measuring even a subset of
muscle forces directly (e.g. Fbiceps at the biceps brachii), we can begin to evaluate the validity
of these cost functions, determine under what conditions they hold, and develop new ones.
Bottom: Direct, simultaneous, deformation-based measurement of multiple muscle forces
{Fm} would enable the creation of forward dynamics models of the human musculoskeletal
system, a class of models that is not yet widely used in the biomechanics community, as
these individual muscle forces are not often otherwise available even during invasive study.

providing force information on individual muscles that can be used to validate predictions
made by existing (inverse) musculoskeletal modeling frameworks [22, 19], and second, by
enabling the creation of novel forward models that predict human dynamics directly from
muscle forces.

Force–Activation Modeling

While we have primarily focused in this dissertation on the (purely mechanical) force–
deformation relationship, abstracting away the neurological control loop, the data and me-
thodologies we have developed provide a compelling new approach to study of the nervous
system. As illustrated in Fig. 13.3, a mechanical measure of output force constitutes a “loop
closure” of sorts in our ability to measure the resulting physical output of neural control, not
only the neurological input (already accessible peripherally via surface electromyography, or



CHAPTER 13. CONCLUSIONS & FUTURE DIRECTIONS 110

EEG, ECoG

nerve cuff 
electrodes

BRAIN

SPINE

PNS
(s)EMG

cerebral palsy

stroke
Parkinson’s

muscular 
dystrophy

SCI

ALS

ultrasound / AMG

Figure 13.3: By providing mechanical, output-force-related deformation and vibration sig-
nals, both ultrasound and acoustic myography (AMG), respectively, “close” the neuromus-
cular control loop in terms of available sensor measurements, enabling enhanced understand-
ing of neurological signals measured (via nerve cuff, EEG, ECoG, etc., blue) throughout the
brain, spine, and peripheral nervous system (PNS), as well as a more holistic view of the way
in which pathologies (red) throughout the system impact physical capabilities and behaviors.
Image adapted from [67].

sEMG, or via nerve cuff electrodes, electroencephalography, or electrocorticography more
centrally). Most immediately, as touched on in section 2.1, we are working to use these de-
formation signals to make sEMG more interpretable, by studying delays between activation
and actual force onset and by inferring from which muscles (or even motor units) sEMG
signals spatially originate.

13.3 Quantifying, Tracking, & Rehabilitating

Pathology

The “loop closure” discussed above enables enhanced study of not only healthy individuals,
but also those exhibiting musculoskeletal pathology. As illustrated in Fig. 13.3, pathologies
influencing motion capabilities can occur at many different points along the neuromuscu-
lar control loop, and while the cause of these injuries is often fundamentally neurological
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(e.g., spinal cord injury, abnormal brain development causing cerebral palsy), they gener-
ally result in physical morphological changes (e.g., muscle atrophy, permanent shortening of
the muscle–tendon unit). Deformation-based force inference would allow for a more holistic
understanding of these pathologies and would aid in quantifying the relationships between
the causes of pathologies and their downstream effects, including variation over time (e.g.,
during the degeneration associated with muscular dystrophy to track disease progression, or
during stroke recovery to track treatment efficacy).

Beyond providing these measures of efficacy, our proposed real-time force inference meth-
ods have direct applications in rehabilitation robotics. One immediate use for measures is
to evaluate whether a given robotic device is actually inducing the desired rehabilitative
exertions (e.g., whether a robotic exoskeleton causes target muscles to be activated or is
simply performing the motion for the patient) — or, conversely, whether the device is in-
ducing undesirable or pathological exertions that could be injurious. Another, longer-term
application would be integrating these deformation-based force measures directly into the
robotic control loop to enable the system to adapt in a bespoke manner to an individual’s
capabilities and rehabilitation goals.

13.4 Additional Fields of Interest

While we have focused our attention in this thesis on sensing and modeling schemes con-
ducive to real-time control and modeling, the frameworks we developed — and in particular,
the open-source data we have generated and released, as detailed in chapter 11 — could
be used and adapted for many other applications and modeling paradigms. Our 3D Open-
Arm 1.0 and 2.0 data sets, for example, could be used to inspire and validate deformation
models at many levels of detail (from finite-element-based to linear best-fit approximations),
enabling advances in fields as diverse as muscle histology (through improved understanding
of viscoelastic tissue mechanics) and animation (enabling enhanced graphical rendering of
human motion). Likewise, the tracking and annotation software we developed could be ap-
plied to a wide variety of additional biomechanical analyses (e.g., by leveraging our optical
flow tracking system to measure real-time motion of other tissues of interest, or training our
neural-network-based autosegmentation framework to annotate additional structures).

13.5 Final Thoughts

Understanding detailed human dynamics will only become more critical as humans and
robots increasingly occupy the same physical space and engage in progressively more com-
plex physical interactions. We hope the work in this thesis will form the blueprint for novel
deformation-based musculoskeletal modeling paradigms, enabling not only safe and capa-
ble human–robot systems, but enhanced understanding of neurological motor control and
diagnosis and treatment of pathology.
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