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Abstract

Applications of Time Synchronized Measurements in the Electric Grid

by

Mohini Bariya

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Co-chair

Adjunct Professor Alexandra von Meier, Co-chair

Increased real-time monitoring of the electric grid is vital to meet the burgeoning challenges
posed by load growth and diversification, renewable generation integration, extreme weather
events, and cyber attacks. Grid operators must have situational awareness—an understand-
ing of the system’s evolving state—if they are to respond appropriately to challenging and
changing system conditions. The proliferation of measurement devices in the electric grid is
critical for situational awareness, but is not su�cient: measurements need to be converted
to actionable insight to be useful. Here, computational tools that ingest measurements to
infer system parameters and state are critical. While many such tools have been proposed
in the research literature, their real-world use is limited, resulting in a circumstance where
ballooning volumes of measurements are perceived as overwhelming rather than insightful,
diminishing the incentive for further sensor deployments.
This thesis argues for the creation of usable tools to bridge the chasm between research
and deployment. Usable tools have practically realizable data input requirements and—in
their forms and outputs—work in e↵ective collaboration with human users. Such tools are
well-suited to the demands of real grids, where data and prior knowledge remain scarce, and
where safety critical decisions involve human participants.
The thesis goes on to describe several usable tool algorithms for the use cases of topology
estimation and monitoring, event detection, and event classification. Finally, it presents
broad principles for the further development of usable tools.
Throughout, the thesis emphasizes how high resolution, time synchronized measurements
are particularly enabling for the creation of usable tools.
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1 I N T R O D U C T I O N

�.� ��� �������� ����
Electric grids deliver energy in the form of electricity from generators to
consumers. Beside this unifying feature, electric grids are diverse, and any
general description will likely be violated by some grid, somewhere. In
size, grids range from gigantic to small. The contiguous European grid
spans east to west from Portugal to Turkey and north to south from Alge-
ria to the Netherlands. At the opposite scale, a grid may encompass just a
single generator and a few small loads, supplying energy to an industrial
park or to an isolated village. Most grids, and certainly all substantial ones,
deal in alternating current (ac) power, with voltages and currents that vary
sinusoidally in time. Yet, an increasing number of grids are direct current
(dc) systems, with constant steady state voltages and currents. A mixture of
ac and dc elements is also possible. Some grids may rely on a single gener-
ation source or even a single generator, but most large grids include varied
generator types. The Brazilian grid incorporates enormous hydropower
plants alongside gas, nuclear, and oil generators while the European grid
encompasses Spanish solar farms, French nuclear plants and German off-
shore wind turbines. Energy user, or load, types are even more diverse
than generators, ranging from households with lighting and appliances to
energy-hungry factories and, today, giant data centers. In between gener-
ators and loads, a large grid includes thousands of pieces of equipment
for smooth and safe operations. Lines carry current, transformers change
voltage levels, switches reconfigure connections while breakers open them
in response to unsafe conditions, and all the while meters measure cus-
tomer consumption. Consequently, the grid and those who work on it are
the elephant and the blind men in the famous parable: each participant
focuses on a particular aspect of the system from the perspective of their
particular priorities. A grid planner considers financing and infrastructure
on time scales of years or decades, an operator thinks of markets for balanc-
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Figure 1: Satellite imagery of the Earth at night captures much about the electric
grid: its scale, extent, and inequities but most vividly its fundamental
importance to modern life [1].

ing demand and supply every hour, a protection engineer is preoccupied
with the coordination of fuses on a particular circuit, an analyst considers
the geopolitical implications of an international grid interconnection, and
a politician worries about election impacts of expanding infrastructure to
underserved constituents.
In a contiguous ac grid these disparate elements are bound by the single
frequency of sinusoidal voltages and currents across the system. This fre-
quency originates in the grid’s heart(s)—the massive rotating turbines of
generators—and is a pulse measurable everywhere, leading such grids to
be termed synchronous. For this reason, despite the numerous elements con-
stituting the grid, we can believably describe it as a single machine: “the
world’s largest machine". Historically, beneficial economies of scale have
driven synchronous grids to be larger and larger, aggregating customers
to be supplied by enormous, centralized power plants. From these plants,
energy flows unidirectionally outward through the system to consumers,
whose demand is considered inflexible, and in aggregate follows consis-
tent patterns. This operational regularity, and the physics of synchronous
generators have given synchronous grids surprising stability and robust-
ness despite minimal sensing and meager temporal and spatial flexibility
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or visibility into the system state. Built out incrementally over decades into
enormous, complex infrastructures, synchronous grids have worked under
little real time management or even understanding, conveyed in the pithy
maxim: “the electric grid works in practice but not in theory".
Synchronous grids are organized and operated in two, mostly silo-ed parts:
transmission and distribution. Transmission networks carry bulk power—
at high voltages to minimize losses—over the long distances from central-
ized generators to loads. Transmission infrastructure is large, with tall
towers and hefty lines. This is the most visible portion of the electric grid
both physically and operationally. Who can fail to notice transmission
lines traversing the landscape between imposing towers? For operators,
relatively high sensor deployments and network information provide vis-
ibility into the operating state of transmission. This enables a degree of
control and optimization in transmission: for example, using network con-
nectivity and impedances, optimal power flows can be solved to set gener-
ator outputs that minimize losses or cost. Nevertheless, even in transmis-
sion, real time visibility is surprisingly low, as illustrated by two examples.
First, in many transmission networks, ac voltages at nodes are not directly
measured but must be estimated through a process called state estima-
tion, with non-negligible error. Second, the loading limits of transmission
lines—which constrain the quantities of power they can transfer—change
dynamically with weather conditions, but are usually known only stati-
cally, leading to overly conservative line usage.
Distribution is isolated from transmission through transformers, which re-
duce transmission level voltages to the lower and safer ones at which power
is delivered to most loads. In total distance covered, distribution networks
constitute the bulk of the electric grid. Yet it is easier to overlook the infras-
tructure of distribution which is smaller and sometimes even underground.
Analogously, operational visibility into distribution is rudimentary, and
control generally consists of automated and invariable protection devices,
set to respond only to extreme events. Often, even basic parameters of dis-
tribution networks—such as their connectivity structures—are erroneous
or not known. Problematically, distribution is also the more vulnerable
part of the grid: highly exposed to tree falls, animal contact, storms and
even unwitting or malicious human damage.
What grid management does occur takes place largely in control rooms:
themselves separated into transmission and distribution. Here human grid
operators monitor the system, much like in air traffic control, hands ready
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at phones to communicate with field workers or respond to customer re-
ported outages. They are surrounded by system information, previously in
the form of paper reports updated manually after field visits and increas-
ingly as screens displaying measurements streaming in from field devices.
The grid is so enormous, that even with paltry system visibility, control
rooms are sites of information overload. Those who work with grid data
know the difficulty of interpreting measurements from just a single grid
sensor. In contrast, operators must synthesize multiple sources and types
of information to inform critical decisions, with little automated assistance.
This is already an onerous task today, though current levels of grid data
and measurement fall far short of those required for complete system visi-
bility.
Despite the existing challenges spanning transmission, distribution, and
control rooms, the electric grid in the developed world was long consid-
ered a “solved problem”. Grid reliability is high: for example, on average
in the United States in 2013, customers endured less than three hours of
interruptions per year [2]. Customers in western Europe fared even better
[3]. How is this possible? As mentioned, synchronous generators and the
historic regularity of loads contribute to system stability. In addition, grid
infrastructure in the developed world has been oversized and overbuilt, al-
lowing operators to abide by extra cautious system limits. The result is
a reliable yet inflexible and (cumulatively) costly system which strays lit-
tle from the expected operating state and therefore requires minimal real
time visibility. Reliability is further enhanced through expensive infrastruc-
ture choices. In Germany, for example, extensive undergrounding of lines
reduces distribution grid vulnerability and outages enormously, albeit at
high cost [4].
In the years ahead, this legacy operational model for electric grids will be
highly challenged and even infeasible in many contexts. In light of daunt-
ing new demands and difficulties facing the system, a new approach to
grid management is needed, as are novel tools to enable it.

�.� ����������
The looming challenges facing electric grids arise from a conjunction of
new trends and old approaches. The legacy approach to running grids—



�.� ���������� 5

as rigid, opaque, oversized systems—-is unviable as loads and generation
grow and diversify, and new security concerns emerge.
The diversification of loads and generation is due in part to transforma-
tions external to the energy sector: an example is the growth of electricity
usage by computers in data centers. However, the primary driver of diversi-
fication is the accelerating global effort to decarbonize our energy systems
in order to mitigate the devastating impacts of climate change. Electrifying
technologies and processes that have historically depended on fossil fuels
is an important first step toward curtailing carbon emissions. Currently,
transportation accounts for 14% of global CO2 emissions [5], motivating
countries across the developed and developing world to set ambitious elec-
tric vehicle (EV) adoption targets [6]. Industrial production is another ma-
jor carbon emitter, and the electrification of industry, though especially
technically challenging, is recognized as essential for meeting global cli-
mate targets [7]. Consequently, electrified industrial plants and vehicles
are increasingly being plugged into the grid. The integration of these new
load types strains the electric grid in diverse ways. Novel loads may intro-
duce unprecedented dynamics and usage trends, challenging the expertise
of grid operators and engineers as they plan and run the system. For
example, the operation of industrial equipment is often the cause of trou-
blesome disturbances in transmission networks; these will only increase
as more industrial plants are electrified. Another example: research sug-
gests that long used, well established load models—vital components of
power system planning and operation studies—do not adequately capture
the behaviors of novel loads [8]. The location of novel loads presents addi-
tional challenges. Many novel loads will be connected to the grid through
the distribution network, the most opaque portion of the system that is
neither designed nor managed to handle the behaviors of such loads. Dis-
tribution power quality issues—permissibly overlooked in the past—may
have serious consequences on novel loads, which could in turn amplify
these local problems into system-wide ones. For example, short, signifi-
cant dips in network voltage—termed “voltage sags”—are inconsequential
to lightbulbs or ovens but may cause EV chargers to trip offline [9]. The
coincident tripping of numbers of EV chargers can exacerbate distribution
voltage problems and even destabilize the broader grid.
On the generation side, decarbonization efforts are propelling the integra-
tion of renewable energy in the grid. Renewable generators encompass a
range of energy sources—wind, water, sunlight—and technologies. They
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differ widely in scale and character. Hydro generation is usually large scale
in the form of dams, while wind and especially solar can range in size
from individual household installations to farms covering many square
kilometers. From the grid perspective, the challenge of integrating renew-
able sources has spatial and temporal dimensions. Renewable availability
is spatially varied and inflexible. Places with high renewable generation
potential tend to be distant from locations of significant energy demand.
To utilize this potential, grid infrastructure must carry more power over
longer distances. Another spatial problem arises from where renewable
generation interconnects to the grid. Power generated by rooftop solar
panels enters the grid in the distribution network—a system which was
not designed to expect the resulting, sometimes bidirectional, power flows.
Meanwhile, the temporal challenge of renewables is that their outputs, un-
like those of fossil fuel power plants, vary in uncontrollable and largely
unpredictable ways. In power systems—which lack significant storage yet
must precisely balance generation and load—this unpredictable temporal
variability is a grave challenge. Similar to novel load types, renewable gen-
eration technologies have behaviors unforeseen by grid designers which
can challenge conventional approaches to safety and stability. A com-
pelling example is the Blue Cut fire incident in California, where a fault
event caused 1.2 GW of rooftop solar to suddenly trip offline, resulting in
a large system disturbance [10]. The trip was incited by the controllers of
the inverters which interface between rooftop solar systems and the bulk
grid, and whose rapid control schemes are generally unknown to and un-
accounted for by grid operators. At a wider scale, the displacement of
generators with enormous turbines by power electronic based renewable
technologies leads to less of the inertia that allows the grid to ride through
small discrepancies in generation and demand and to maintain a system
frequency that deviates little from nominal.
Weather poses another challenge. The grid, like us, is vulnerable to the
impacts of climate change. More extreme, more volatile weather—in the
form of wildfires, floods, and storms—damages grid infrastructure, lead-
ing to more frequent, longer outages. In turn, grid responses to extreme
weather can exacerbate the human toll of these events. Some examples
from the United States highlighting the deleterious interplay between ex-
treme weather and the electric grid are the infrastructure damage and
long-duration power outages experienced by Puerto Rico in the wake of
Hurricane Maria, the California wildfires sparked by grid failures during
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extreme heat and ensuing public safety power shutoffs, and the freakish
cold weather that forced power plants offline resulting in blackouts and
surging prices in Texas [11]–[13].
A final, emerging concern for electric grids is the threat of malicious attacks
by entities seeking to disable this vital infrastructure. The proliferation
of networked devices and automation in electric grids can increase their
vulnerability to cyber attacks. Given their importance to most aspects of
modern life, electric grids are relatively unprotected from attackers. Grid
cyber attacks have already occurred: a 2015 attack in Ukraine led to loss of
power for over 200, 000 people [14]. The risk of such attacks will only grow
in the years ahead.

�.� ������������
The first, critical step to address the increased threats, faster changing con-
ditions, and greater complexity emerging in all parts of the electric grid, is
improved real-time visibility across the system. This is especially necessary
in distribution networks, which are traditionally managed as passive and
therefore opaque systems. Before grid engineers and operators can begin
to concern themselves with how to respond to challenging conditions, they
must be aware of the conditions, and of the broader system context. They
must have what is termed situational awareness: a sufficient understanding
of the system’s status to inform an appropriate response. However, obtain-
ing situational awareness is complicated by two realities: the lack of com-
prehensive data availability and the challenge for a human to understand
even the limited data coming from such a massive and complex system.
This thesis argues for the creation of computational tools that provide aware-
ness of important system parameters and occurrences to human users. The
tools must derive operational insight from measurements, especially by
leveraging the beneficial traits of high-resolution, time synchronized grid
measurements. The tools must transform overwhelming volumes of data
to a scale and form suitable for human comprehension. Grid monitoring
tools have been developed in the past for various use cases, but most have
failed to percolate from research to application. This thesis argues that for
tools to be operationally useful, they must meet the criteria of usability, en-
compassing practical deployment requirements and human interpretability.
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The thesis then presents work on usable tool development for several use
cases.
The rest of the thesis is organized as follows.

• Chapter 2 presents the technical foundations for the creation of grid
monitoring tools. These foundations consist of high-resolution, time
synchronized measurements from novel grid sensors and the compu-
tational platforms that enable the performant storage and access of
this data.

• Chapter 3 surveys the literature of grid monitoring tools to under-
stand broad, common features and postulate why most tools fail to
transfer to application. Goaded by this survey, the chapter then pro-
poses a succinct set of criteria for usable tools, arguing that tools which
meet these criteria are well-suited to the needs of real-world deploy-
ment.

• Chapter 4 presents several tools for the use case of topology monitor-
ing, highlighting how the tools represent a progress toward increas-
ing usability.

• Chapter 5 presents usable tools for event detection and classification.

• Chapter 6 draws together the lessons from prior chapters to present
fundamental principles and strategies for designing usable grid mon-
itoring tools. The chapter emphasizes how high-resolution, time syn-
chronized measurements are especially empowering for the creation
of usable tools.

�.� ��������
To the best of our ability, we try to maintain consistent notation through-
out this work. Scalar quantities are denoted in lowercase, while vector and
matrix quantities are denoted in uppercase. Boldface indicates complex val-
ued quantities, while real quantities are non-bold. Uppercase, calligraphic
letters, such as N, denote sets. We use j for the imaginary unit to avoid
confusion with electric current: j =

p
-1. In the electric grid, quantities

are often expressed in per-unit (pu), in which the raw value is standardized
by nominal level. Therefore, a voltage of 1200 V on a line with a nominal
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voltage of 1 kV is expressed as 1.2 pu. There are a smattering of per-unit
values in this thesis.
The table below contains a basic demonstration of the notation used. Rest
assured that notation will be defined and reiterated in each section.

x real-valued scalar
x complex-valued scalar
X real-valued matrix
X complex-valued matrix
Xij i,j element of matrix X



2 F O U N DAT I O N S

Includes work from [15]–[17]

Novel tools for grid monitoring and management are built on a founda-
tion of grid measurements and the computing platforms that hold them.
The features of both the measurements themselves and the platforms they
are stored in are instrumental in enabling and precluding the types, forms,
and scope of tools. Both must be carefully considered and leveraged in
tool design.
This chapter summarizes grid measurement types, focusing on the features
of measurements that enable the design and development of particular
tools. I especially emphasize phasor measurements—made by eponymous
phasor measurement unit (PMU) sensors—as they are the inputs to the
tools described in following chapters. I highlight the arguably serendipi-
tous features of phasor measurements that make them extraordinarily en-
abling for novel tool design.
Then, I describe the high performance Berkeley Tree Database (BTrDB).
Broadly useful for storing and accessing time series data, BTrDB was orig-
inally designed with PMU measurements in mind. The efficacy of several
tools in later chapters relies on the attributes of BTrDB. The relevant fea-
tures of BTrDB are presented through a simple but exemplary electric grid
use case.

10
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�.� ���� ������������
Though the electric grid, especially at its periphery, is a relatively opaque
system, it is not totally bereft of sensors and measurements1. With bur-
geoning demands and challenges on electric grids, sensor deployments
and measurement volumes have been increasing. There has been a parallel
advancement in measurement types, and consequently in the types of grid
analyses and visibility that are possible.
In early electric grids, the quantities necessary for daily planning and op-
eration were often estimated rather than measured. The primary requisite
quantity was electric demand. In Edison’s day, the only load was electric
lighting, so utilities could crudely forecast demand by counting the num-
ber of light bulbs in each customer’s home and assuming they would all be
switched on after dark. As electric appliances diversified, load could not
simply be enumerated, and more sophisticated forecasts, correlated with
weather and other factors, were developed. Nevertheless these were still
computed manually, using tables of data, and presumably with significant
error margins [18]. In real time, the precise balance of demand and genera-
tion necessary for grid stability was achieved through automated generator
controls. These responded to changes in the ac frequency of the grid: a di-
rect proxy of system-wide power balance. Frequency could be measured
locally at each generator by looking at the rotation rate of the generator
turbine [19]. Consequently, with sufficiently large turbines (or equivalently
sufficiently small load changes), power balance and grid stability could be
maintained without networked measurements and communications. This
wonderful feature of the physics of ac electric networks allowed the electric
grid to predate computing.
Mathematical advances led to the introduction of more sophisticated grid
management techniques. Economic dispatch and later optimal power flow
allowed power output to be allocated across generators to meet some objec-
tive: generally cost minimization [20]. Astoundingly, these computations
were also done by hand, sometimes taking hours to complete. Correspond-
ingly, the data needed for these analyses was far from real time: it was
produced through forecasts (in the case of load) or static estimates of sys-

1 This section outlines the transformation of measurement and communication in the elec-
tric grid over the last century. While the narrative captures technology development, it
does not, and can not, provide a unified global account of technology deployment, which
differs enormously from grid to grid.
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tem parameters (in the case of connectivity and impedances). Together,
data and computation limitations constrained the analyses to be carried
out on slow time scales, rather than in rapid response to changing condi-
tions.
Grid sensors are as old as the grid itself. In the early days, a variety of ana-
log sensors were developed for grid applications, including a menagerie
of electric meters. Edison developed an early electric meter which intrigu-
ingly didn’t measure energy but ampere-hours (it was rather inaccurate
and upset customers) [21]. With only rudimentary communication tech-
nologies, analog grid sensors measurements had restricted, local availabil-
ity. These sensors were either directly connected to mechanical equipment
which automatically responded to their measurements—as in the case of
some controllers—or were accessed manually and occasionally—as in the
case of electric meters which had to be regularly visited by a meter reader.
Some sensors were connected over short distances to analog controllers
in the earliest “control rooms” [22]. Most early sensors lacked significant
recording capacity, and there was no reporting of time series data. Without
computers to process it, there was little use for such data anyway.
Digitization transformed the types and capabilities of grid sensors. As dig-
ital sensors and communication infrastructure were deployed—enabling
measurements from a wide area to be aggregated at a single location—
finally a degree of relatively real time, expansive visibility was achieved.
Transmission visibility was (and largely remains) the priority. In the United
States, large blackouts spurred the need to not only monitor power at each
generator, but to monitor voltages and currents throughout the system.
Thus state estimation (SE) was born [23]. Early SE used power measure-
ments from remote terminal units (RTUs) deployed at substations through-
out the network and collected by the supervisory control and data acquisi-
tion (SCADA) system [24]. These measurements were made and reported
at low time resolutions on the order of several seconds or minutes and
were not time synchronized. Grid state, consisting of voltage magnitudes
and angles at each node (from which current flows on each line could be
inferred given impedance values), was not directly measured but inferred
from this data through nonlinear SE methods.
Let us briefly pause to consider the implications of the low resolution, non-
synchronized data delivered by SCADA. A typical SCADA system reports
measurements every two to fifteen seconds [25]. In between, there is no vis-
ibility into the system, which is troubling given that we know many much
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faster processes occur in the grid. Even when SCADA reports, the data is
not time synchronized, meaning, for example, that two power values re-
ported simultaneously from two locations may not actually be coincident.
Unsurprisingly, this data must therefore be used with care to get even a
low time resolution snapshot of the system state. Nevertheless, SCADA
measurements were a significant step toward increased spatial and tempo-
ral granularity in grid visibility.
Digital technologies permeated distribution networks as well. Most visible
and well known are smart meters, which record and report customer con-
sumption at intervals of several minutes. Smart meter deployments were
expensive and often contentious [26], but the meters ended the need for
manual meter visits every billing cycle, saving utilities enormously [27].
Smart meter types are varied: simpler ones may suffer from time synchro-
nization issues [28], while more sophisticated models have a range of capa-
bilities for control and measurement that are not yet widely used [29].
Less conspicuous are the often advanced digital sensors integrated into
distribution network equipment. For example, digital fault recorders can
make high time resolution measurements, but only do so over short peri-
ods following the detection of a fault event in the system [30]. This data
must often be manually retrieved from the recorder. Similarly, many relays
make extremely high resolution measurements to trigger protection equip-
ment, but generally do not save or communicate this data [31].
Overall, roll out of communication networks lags behind digital sensor de-
ployment in most electric grids, especially in distribution systems. Therefore—
as with relays or digital fault recorders—many devices capable of making
sophisticated measurements do not communicate them. Devices that are
networked and do report data regularly, such as smart meters, often have
low sampling frequencies or time synchronization issues, stymieing efforts
to obtain real-time, wide area visibility through their data.
Phasor Measurement Units (PMUs)—boasting high measurement resolu-
tions and accurate time synchronization—promise to mitigate these issues.
They embody a nascent vision for a data rich, comprehensively monitored
electric grid (popularly called the “smart grid”). For this reason, and be-
cause they are the inspiration and data source for much of the work in
future chapters, the next sections are devoted to a brief but thorough intro-
duction to PMU data, starting with a description of the quantity reported
by PMUs: phasors.
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Interlude: What are phasors?

In ac electrical networks, voltages and currents alternate: continually chang-
ing in size and direction. Under idealized steady-state conditions, they are
perfect sinusoids, oscillating with a fixed amplitude, frequency, and phase
shift. In reality, they are imperfect and time varying, often with multiple
frequency components. Nevertheless, the idealized model generally holds
well, and ac voltages and currents are conventionally represented as perfect
sinusoids at the fundamental, or system, frequency.

v(t) = v cos(2⇡ft+ ✓) where f = 50 or 60 Hz (1)

Since frequency is assumed fixed, the explicit time dimension can be dis-
carded altogether, resulting in a compressed “phasor” representation which
still captures everything there is to know about the original, two variable
sinusoid: the root mean square (rms) magnitude, and the phase angle shift,
or exact timing of the zero crossing:

v =
vp
2
\✓ =

vp
2
ej✓ =

vp
2
(cos ✓+ j sin ✓) (2)

Notice the three equivalent denotations of the phasor representation of
time domain voltage v(t). The first explicitly indicates the two free param-
eters of the ac voltage signal: amplitude and phase. The second and third
represent the phasor as a complex number and are equated by Euler’s
formula. The magnitude and angle of the complex number respectively
capture the amplitude and phase of the time domain quantity. The

p
2s in

(2) arise from the convention of using the root mean square rather than the
amplitude of the sinusoid in the phasor notation.
There are numerous methods, such as [32], [33], for estimating the mag-
nitude and angle parameters—v and ✓—from real-world, time domain
voltage measurements. It is likely that different software and sensors
have differing, and often proprietary, estimation algorithms. A unifying
and convenient conceptualization, elucidated by Kirkham in several works
[34]–[36], is to think of phasor “measurement” as a mathematical fitting
process: we are trying to fit the idealized model of (1) to a real-world
signal which will differ from it to varying extents (Fig. 2). In this
framework, different phasor estimation algorithms fit the parameters of the
phasor model by different techniques in order to optimize different objec-
tives. This conceptualization—of the phasor as a model rather than a true
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Figure 2: A fitted phasor model visualized in the time domain overlaid on raw
measurements of the ac voltage waveform. Notice the discrepancy be-
tween model and measurements.

measurement—also illuminates the hazards of phasor data. What should
v and ✓ be when the voltage measurements differ considerably from (1)?
How should we use and interpret these values? I do not attempt to (and
perhaps it is impossible) definitively answer these questions here. However,
when working with phasor data, it is important to keep these quandaries
in mind, remembering that phasor measurements are really model param-
eters, and only as good as the model itself.
Modeling of ac electrical networks is greatly simplified in the phasor do-
main. The phasor version of Ohm’s law has the familiar, linear dc form,
but now all parameters are complex valued, capturing the phasor voltages

Figure 3: Voltages at two ends of a line visualized in the time and phasor domains.
Angle and magnitude differences have been unrealistically exaggerated
for illustration.
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(a) United States (b) India

Figure 4: Transmission PMU deployments in the United States and India. Maps
from (a) [37] and (b) [38].

and currents and the resistance and reactance of an electric line. The ac
voltage-current relationship across a line is described by:

vk - vl = zklikl

zkl = rkl + jxkl

where zkl is the complex-valued impedance of the line connecting points k
and l. We will come back to versions of this equation in later chapters.
While ac quantities are visualized in the time domain as oscillating signals,
phasors are represented as vectors in the complex plane. These two repre-
sentations are applied to the voltages vk and vl and visualized in Fig. 3.
Notice how the angle and magnitude differences between the vk and vl

phasors manifest as time delays and amplitude differences respectively in
the time domain.

�.�.� Phasor Measurement Units (PMUs)
Phasor Measurement Units (PMUs) are devices that report the phasor pa-
rameters of ac quantities. To do so, PMUs take measurements of ac wave-
forms—termed point on wave (pow) measurements—at high frequencies
up to 1 MHz [25]. A computation then determines the phasor magnitude
and angle corresponding to the pow data. It is impossible to obtain a mean-
ingful phasor from a single pow measurement so a phasor is estimated
from a window of pow measurements. Generally, PMUs report phasors at
lower frequencies than those at which they sample the ac waveforms, and
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Figure 5: The µPMU sensor holds the promise of increased distribution network
visibility. The white “mushroom” on top of the device box is an antenna
for receiving the GPS clock signal.

in this light, PMUs can be thought of as performing a filtering and com-
pression operation on raw pow data. PMUs use a GPS clock to precisely
synchronize the sampling of ac waveforms across devices, enabling accu-
rate time alignment of the final reported phasors.
PMU development and deployment was spurred by the urgent need for
increased, higher quality visibility into transmission grid state. PMUs di-
rectly report the phasors that constitute the grid state, simplifying state
estimation to a linear problem. PMUs’ accurate time synchronization and
considerably higher reporting rates enable data from multiple devices to
be collated to obtain expansive snapshots of the system at high time res-
olution [39]. These benefits have led to extensive PMU deployments on
transmission networks globally, for example in the United States and In-
dia (Fig. 4), enabling greater transmission visibility. PMUs scattered over
large areas in transmission have especially been used to monitor wide area
quantities—such as grid frequency and voltage angle differences—for im-
proved understanding of system wide events in projects such as FNET
[40].

In 2014, a pilot project sought to extend the visibility enabled by trans-
mission PMUs into distribution networks [41]. Compared to transmission,
distribution is characterized by shorter, lower impedance lines and smaller
power flows, resulting in angle differences between voltage phasors that
are up to two orders of magnitude smaller. In this context, a special-
ized distribution PMU, termed the micro-PMU (µPMU), with high angular
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and magnitude resolution, was created (Fig. 5). Sampling the underlying
ac waveforms at 512 Hz, µPMUs report phasor quantities at 120 Hz and
have reliably discerned angle differences up to 0.01deg and voltage mag-
nitudes to within 10-4 per-unit [42]. As part of the pilot project, a number
of µPMUs were deployed on operational distribution networks across the
United States. As soon as these µPMUs came online, it became clear that
the data they were reporting was extraordinarily rich. This was bolstered
by some manual, one-off analyses using the new data streams [43], [44].
However, much work was needed to enable more systematic use of this
novel data to increase situational awareness in distribution networks. Cer-
tain fundamental properties of the µPMU data needed to be better un-
derstood, and while a platform that allowed easy, efficient access to high
resolution data was already developed as part of the pilot, fundamental
algorithms that could use the platform to sift through and analyze large
volumes of data were still needed. This was the context in which I began
my PhD in 2016. In the remaining sections of this chapter, I describe my
work in addressing these foundational gaps. Section 2.2 describes the de-
velopment of a workable model for the sensor noise present in data from
field installed µPMUs. Section 2.3 describes the structure of the high per-
formance time series database developed to ingest and store µPMU data.
A simple use case is presented that highlights how algorithms can leverage
the database structure to rapidly run across large volumes of data.

�.� ��� �����
A model for the noise present in µPMU—and more generally PMU—data
has fundamental value both for research and field applications of PMU
data. For researchers, gaining access to real-world PMU data for algorithm
testing and validation is still onerous, due to the legal and privacy con-
straints on using utility data sets and the relative paucity of device deploy-
ments, especially in distribution networks. Consequently, many algorithms
utilizing PMU data proposed in the literature are validated in simulation
alone. In this context, the effect of sensor noise is either overlooked entirely,
or white noise with arbitrary variance is added to simulated data to repre-
sent real noise [45]. The noise model and signal-to-noise ratios developed
here may be used to better incorporate the effect of noise in simulation
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studies through the creation of more realistic PMU noise.
A PMU noise model is also useful for field applications, such as state esti-
mation. At present, most state estimators use weighted least squares (WLS)
and power flow models to combine PMU data with other network measure-
ment types from which they compute a maximum likelihood estimate of
the true grid state [46], [47]. A PMU noise model would inform the se-
lection of the weights in such a state estimation algorithm, which could
improve performance over the heuristics currently used. Dynamic state
estimation, which incorporates the system’s historical state into future esti-
mates, remains an active research topic [48], [49]. Dynamic state estimators
use a Bayesian update step to generate a state estimate that balances con-
fidence in the expected state against that in the measured state. Again, a
PMU noise model could inform this trade off in a more principled manner.
PMUs are promising for use in control applications. For example, an in-
verter might be controlled through a feedback loop incorporating PMU
data which adjusts the inverter’s output to maintain a target nodal voltage.
In this case, the noise in the PMU data can substantially impact the in-
verter’s output. Especially in distribution feeders, where line impedances
are low, small errors in the voltage magnitude reported by a PMU can
lead to large changes in the commanded level of actuation. For exam-
ple, consider a standard line from the IEEE 13-bus model with impedance
z = 0.0756+ j0.0423 (p.u.) and voltage magnitude v = 2.4kV [50]. The (per
unit) current error induced by a 0.5% error in the voltage measurement
is:

|ierr| =
��verr

z

�� =
�� 2.4⇥ 0.005
0.0756+ j0.0423

�� ⇡ 0.140

At a 2.4kV voltage level, this 140A translates to approximately 300 kVA
of power. This large amount of erroneous actuation may be caused by a
seemingly low, 0.5% level of sensor noise.
Quantifying the noise level in PMU data is similarly vital in the context
of estimation. Consider the problem of estimating a line impedance from
phasor voltage and current measurements. For this purely illustrative ex-
ample, assume a dc, real-valued model in which the current measurement
i are perfect, while the measured voltage, ṽ, is the true voltage, v, con-
taminated by additive white noise " ⇠ N(0,�2): ṽ = v+ ". With voltage
measurements at two ends of a line, ṽk and ṽl, and a noiseless measure-
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ment of the current flowing along the line, ikl, the line impedance z̃ can be
estimated as follows:

z̃ =
ṽk - ṽl
ikl

= z+
"k - "l
ikl

where z is the true line impedance, and "k and "l are the noise in the
voltage measurements on each end of the line. Assuming the noise in
the two voltages is independent but identically distributed, the estimated
impedance can be modeled as the true line impedance contaminated by
white noise with distribution N(0, 2�

2

i2
). In the case of additive white noise,

one way to combat the effects of noise is to average multiple estimates. Let
z̃(1), ..., z̃(n) denote multiple estimates of z computed over time from differ-
ent noisy voltage measurements but under identical line current conditions.
A new impedance estimate, denoted z̃avg, can be obtained by averaging the
n individual estimates:

z̃avg =
1

n

nX

t=1

z̃(t) =
1

n

nX

t=1

✓
z+

"k(t)- "l(t)

i

◆
, z+ "avg

"avg =
1

n · i

nX

t=1

("k(t)- "l(t)) ⇠ N(0,
2�2

n • i)

Therefore, the estimation accuracy is parameterized by 2�2

N•I . To achieve a
desired estimation accuracy, n can be chosen appropriately, but first it is
essential to know the underlying noise level, that is �2.
The following sections detail the efforts of my collaborators and I to vali-
date a realistic PMU noise model and level from three days of data from
µPMU devices deployed on an operational distribution feeder. These re-
sults are valuable to all those working with PMU data, and will also be
relevant to the applications described in later chapters.

�.�.� PMU Noise Background
There are two components to a complete description of PMU noise: the
noise model and the noise level. The noise level defines the amount of noise
present in the signal. Noise level is usually quantified by the variance of
the noise random variable, or as the ratio between the signal and noise
variance (termed the signal-to-noise ratio, or SNR). The noise level conveys
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a sense of how much an individual measurement can be trusted. The
noise model parametrizes the noise in the signal, defining how the noise
gets added to the “true" (and unknown) phasor to produce the reported
noisy data. Understanding the noise model is fundamental for designing
noise robust algorithms, as techniques to handle noise differ based on the
noise model at play. For example, the techniques to combat additive noise
are different from those to deal with multiplicative noise. There is further
complexity when working in the phasor domain, where noise is present in
both magnitude and angle measurements.

Prior Work

To our knowledge, the only prior empirical study of PMU noise is [45]. The
authors assess noise using three different data sets from PMUs deployed
at three voltage levels: low voltage (120V), medium voltage (20kV), and
high voltage (345kV). They attempt to estimate the noise level using mea-
surements from a single PMU with no external information about the true
value being measured. Naturally, this is a difficult task, and to make it
tractable, the authors choose a window length m and assume that the me-
dian over the window is the true phasor value while all variation in the
window from the median is noise. The selected m differs between the
three data sets, whose PMUs have different reporting frequencies. For the
low, medium, and high voltage data sets, the chosen m corresponds to a
window length of 0.8s, 0.5s, and 8.3s respectively. This approach to noise
estimation seems inadequate, especially for high precision µPMUs. It is
inaccurate to assume that all variation from the median over the m-length
window corresponds to noise, as illustrated by Fig. 6 which plots the corre-
lation between the voltage magnitudes reported by two PMUs monitoring
the same voltage. The correlation between two n-length measurement time
series ṽk(1), ..., ṽk(n) and ṽl(1), ..., ṽl(n) is defined as:

corr(ṽk, ṽl) =
1

n

nX

t=1

(ṽk(t)- µk)(ṽl(t)- µl)

�k�l

where µk,�k are the sample mean and variance of the voltage at end k of
the line. This quantity will be bounded between -1 and 1. The correlations
are plotted for increasing sample aggregation, which refers to further down-
sampling the signal using the mean or median. This process replaces m
data points with a single point that is either the mean or the median of
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Figure 6: The correlation of voltage magnitude streams from two PMUs monitor-
ing the same voltage with increasing aggregation (down-sampling) of
the data. PMUs report at 120Hz and the highest level of aggregation
corresponds to 0.5 seconds

the original m points. As the signal is down-sampled, the noise is reduced
through aggregation, and consequently the correlation between the two
voltage time-series should increase. This is the premise of the work in [45]
and is indeed what happens in Fig. 6: note the lines for both aggregation
methods converging toward 1 as m grows. However, Fig. 6 shows that
even at low levels of aggregation, the correlation between the two voltage
streams is very high. This observation strongly suggests that the varia-
tion in the PMU data even over short duration can not be dismissed as
noise—which would produce low correlation—as the same variation is vis-
ible across two PMUs. Therefore the method and results of [45] may be too
pessimistic, motivating another approach to noise estimation.

�.�.� Experimental Setup
Our attempt at PMU noise estimation uses a setup consisting of two, iden-
tical µPMUs—labeled k and l—measuring a single voltage. The PMUs are
deployed on a distribution feeder in Northern California and are plugged
directly into a wall socket—that is on the secondary side of the service
transformer—at which they measure a 120V line-to-neutral or 208V line-to-
line point voltage. One known source of noise in distribution PMU data
is the voltage and current transformers that mediate between distribution
lines and PMU devices [51]. This transformer noise is believed to add a
bias to the measurements that changes gradually and minimally over du-
rations on the order of weeks. With adequate sensor deployment, this bias
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can be calibrated for with techniques such as that proposed in [52]. For
these reasons, transformer noise is generally referred to as systematic. In
contrast, we are focused on the random noise in PMU measurements. This
noise is important because, in general, it must be handled in an online
fashion, at the time when the noisy data is used. Therefore, understanding
and quantifying the level and type of this noise is vital to enable PMU data
users to integrate techniques for noise robustness into their PMU use cases.
We consider the noise in voltage phasors, and therefore use both magnitude
and angle data. Let ṽk(t), ṽl(t) denote the voltage magnitudes reported by
each PMU at some time point t. Then, v(t) denotes the true voltage magni-
tude at that time. Similarly ✓̃k(t), ✓̃l(t) denote the reported voltage angles,
while ✓(t) is the true voltage angle. The reported phasors can be expressed
in rectangular coordinates by Euler’s formula:

ṽk(t)e
j✓̃k(t) = ṽk(t) cos ✓̃k(t) + jṽk(t) sin ✓̃k(t) , ṽrek (t) + jṽimk (t)

Note that the phasor angle ✓ in this context is not related to the power
factor angle, and in general will vary from 0 to 2⇡ radians.

�.�.� Determining the Noise Model
A first principles approach to determining the noise model would entail
expressing mathematically each step of the PMU measurement process—
from transformer physics to phasor model fitting—while carefully account-
ing for each source of noise along the way. This is extremely difficult, if
not practically impossible. Instead, we propose a data-driven approach, hy-
pothesizing two simple noise models and then using reported PMU data
to determine which one better expresses the empirical noise.
The first model is a multiplicative phasor noise (MP) model in which the
reported and true phasors are related as:

ṽk(t)e
j✓̃k(t) = "k(t)e

j�k(t) · v(t)ej✓(t) = ("k(t)v(t))e
j(✓(t)+�k(t)) (3)

An equivalent equation can be written for vl(t). " and � are respectively
the magnitude and phase angle of the multiplicative noise. ✏ is centered
around 1 and � is centered around 0. The MP model leads to multiplica-
tive noise in the voltage magnitude and additive noise in the angle.
The second model is an additive phasor noise (AP) model in which the re-
ported and true phasors are related in rectangular form as:

ṽrek (t) + jṽimk (t) =
�
vre(t) + "rek (t)

�
+ j

�
vim(t) + "imk (t)

�
(4)
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Noise terms "rek and "imk are centered around 0. The MP model is more in-
telligible in the polar domain, considering noise in magnitudes and angles
independently. The opposite is true of the AP model, where a rectangular
formulation allows independent consideration of the real and imaginary
noise components.
The PMU reports phasor quantities ṽk(t), ✓̃k(t) from which ṽrek (t), ṽimk (t)
are computed. The true voltage quantities —v, ✓, vre, vim —and noise quan-
tities —"k,�k, "

re
k , "imk at PMU k—are treated as random variables of un-

known, static distribution. Furthermore, the noise random variables are
assumed to be unbiased (zero-mean for additive components, and mean
one for multiplicative components) and independent of the true quantities
as well as each other. The noise distributions are assumed to be fixed over
time so v(t) is an instance of the random variable v. Finally the noise is
assumed to be symmetric, or identically distributed, across PMUs.
Distinguishing between an additive and multiplicative noise model is es-
sential for developing applications of PMU data. Consider the simple sce-
nario of trying to obtain an accurate voltage magnitude value from multi-
ple readings of a PMU monitoring a fixed voltage with magnitude v and
angle 0� under purely real noise. If noise is multiplicative, the reported
magnitude is ṽ = "v, whereas if noise is additive, it is ṽ = v+ ". Under
additive noise, simply averaging multiple data points will reduce the noise
variance. However, if the noise is multiplicative, the noise variance will be
scaled by the signal magnitude v, even after averaging. Instead, the log
of the measurements should be averaged, illustrating the point that multi-
plicative and additive noise must be treated differently in data applications.
To determine which is the appropriate model for µPMU data, we propose
two tests: a multiplicative model test and an additive model test.

Multiplicative Model Test

We formulate a covariance test to assess if the noise follows the MP model.
Under the MP model, PMU k reports magnitude ṽk(t) = "k(t)v(t) and
angle ✓̃k(t) = ✓(t) +�k(t) and PMU l reports magnitude ṽl(t) = "l(t)v(t)
and angle ✓̃l(t) = ✓(t) + �l(t). Define a new random variable to be the
difference in reported magnitudes: d = ṽk- ṽl = ("k- "l)v. The covariance
between d and vk is:

cov(d, ṽk) = E[dṽ1]- E[d]E[ṽk]

= E[v2]var("k)- E[v]2E["k - "l]E["1] = E[v2]var("k)
(5)
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(a) cov(d, ṽk): MP model test (b) cov(d, ṽre
k
): AP model test

Figure 7: Distributions of the sample covariances computed for the MP and AP
model tests, with yellow lines marking means across all samples. Note
that the definition of d differs between the two tests.

The manufacturer reported magnitude error is ±0.05%. Letting this er-
ror equal the noise standard deviation, an optimistic value for var(✏k) is
⇡ (5⇥ 10-4)2 = 2.5⇥ 10-7. At 120V nominal, E[v2] ⇡ 14400, resulting in
cov(d, ṽk) ⇡ 3.6⇥ 10-3—a lower bound on cov(d, ṽk) under the MP model.
Intuitively, the MP test asserts that, in the case of multiplicative noise, the
amount the measured quantity differs from the true quantity (captured in
random variable d) is correlated with the true quantity itself (v in our case).
This is because the noise scales the true signal.
We compute cov(d, ṽk) over one second (120 samples) windows of data
from multiple hours during the day. Fig. 7a shows the resulting distribu-
tion of sample covariances. Across many trials, cov(d, ṽk) is very low, with
an average of:

cov(d, ṽk) = 6.59⇥ 10-6

This would imply an unrealistically low noise level with var("1) ⇡ 4.58⇥
10-10. Therefore, the MP model is inappropriate to describe the observed
PMU noise.

Additive Model Test

We formulate a covariance test to assess if the noise follows the AP model.
Under the AP model, PMU k reports complex voltage ṽrek (t) + jṽimk (t) =
(ṽre(t) + "rek (t)) + j(ṽim(t) + "imk (t)) while PMU l reports complex voltage
ṽrel (t)+ jṽiml (t) = (ṽre(t)+"rel (t))+ j(ṽim(t)+"iml (t)). Define a new random
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(a) ṽre
k

- ṽre
l

(b) ṽim
k

- ṽim
l

Figure 8: Distributions of differences in real and imaginary parts of voltage re-
ported by PMUs k and l.

variable to be the difference in reported real voltage components: d =
ṽrek - ṽrel = "rek - "rel . The covariance between d and ṽrek is:

cov(d, ṽrek ) = E[dṽrek ]- E[d]E[ṽrek ] = var("rek ) (6)

If the AP model holds, sample estimates of cov(d, ṽrek ) should be small and
independent of the true voltage v. Intuitively, the AP model test asserts that
under additive noise, the difference between the measured and true quan-
tity (captured in random variable d) is uncorrelated with the true quantity
vre.
As the PMUs report voltages in polar form, voltages must be translated
to rectangular form for the AP test. Fig. 7b shows the distribution of
cov(d, ṽrek ) samples computed over 1 second of data, with an average value
of:

cov(d, ṽrek ) = -3.41

At 120V nominal this corresponds to approximately 1.5% error for noise
within one standard deviation. These results suggest that the AP model is
reasonably accurate for describing noise in PMU measurements. Neverthe-
less, the estimate of cov(d, ṽrek ) is slightly higher than expected. Notice the
samples of cov(d, ṽrek ) are bimodally distributed (Fig. 7b). Indeed, one of
the peaks is close to 0, bolstering the validitiy of the AP model. The other
peak likely arises from our simplifying assumptions: a slight bias in d
and/or ṽrek will cause cov(d, ṽrek ) to differ from the value we derived.



�.� ����������� �������� 27

�.�.� Determining the Noise Level
Having validated the AP noise model, we can use it to derive an estimate
of the noise level present in the PMU data. The noise level is captured in
the variance quantities var("rek ) and var("imk ) (which, under our assump-
tions, are equal to var("rel ) and var("iml ) respectively). Estimates of these
variances can be obtained from the following equations:

var(ṽrek - ṽrel ) = var("rek - "rel ) = 2var("rek )

var(ṽimk - ṽiml ) = var("imk - "iml ) = 2var("imk )

Fig. 8 plots the distribution of ṽrek - ṽrel and ṽimk - ṽiml . From the vari-
ances of these distributions, we obtain the estimates: var("re) = 0.024 and
var("im) = 0.024, assumed equal across PMUs k and l. The signal-to-noise
ratio (SNR) of the data stream ṽre is defined as snrre = E[(vre)2]

var("re) , with snrim

defined equivalently. The numerator E[(vre)2] can not be computed exactly,
and is estimated as E[(ṽrek )2]. The final SNR estimates are:

snrre = 3.09⇥ 105, snrim = 3.08⇥ 105

which is approximately 55 dB.
The AP model test covariance in (6) could have been used to estimate the
noise level, but directly using var(ṽrek - ṽrel ) and var(ṽimk - ṽiml ) reduces
errors introduced by our simplifying assumptions. Deviations in the true
statistics of d will be scaled by E[ṽrek ] in (6), which is not the case when we
use the variance of the differences directly.

F
To summarize: in this section, we used µPMU data from sensors deployed
on an operational distribution feeder to validate a tractable additive pha-
sor noise model and estimate the noise level for PMU data. The noise
model and noise level form an important part of the foundational under-
standing on which algorithms and tools using PMU measurements can be
built.
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Figure 9: The structure of the Berkeley Tree Database (BTrDB). Plots at right show
different time resolutions of data, with full resolution data at the bottom,
and mean downsampled data at lower resolutions above. The lower
resolution means are stored at internal nodes in the database tree.
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�.� ����������� ��������
The Berkeley Tree Database (BTrDB)2 was developed as part of the µPMU
pilot project to store the large volume of time series data produced by
µPMUs as they report at 120 Hz [53]. Though developed for this purpose,
BTrDB can handle generic time series data, in which each data point is a
tuple of a timestamp and value: (t, x). Thanks to its special architecture,
the database is extraordinarily swift at both writing and reading data, out-
performing prior phasor databases by several orders of magnitude. Conse-
quently, BTrDB not only handles the ingress of 120 Hz data from numerous
µPMUs (each of which typically generate 12 data streams: magnitudes and
angles of voltages and currents on three phases), but also supports rapid
computation on and interactive visualization of data streams.
For the purposes of this thesis and, more generally, the design of algo-
rithms using µPMU data, it is the structure of data storage in BTrDB that
is pertinent. As the name suggests, BTrDB is tree-structured (Fig. 9). The
nodes at the bottom of the tree are the leaves. Leaves store the raw data
points—tuples of time stamps and values—reported by sensors. Moving
up through the tree from the leaves towards the root, internal nodes are en-
countered. Each internal node corresponds to a time range, defined by the
time stamps of the left and right-most leaves lying below it. An internal
node stores the statistical summaries (minimum, mean, maximum, stan-
dard deviation) over all the data in its time range. Taken together, the data
in the leaves is the full resolution time series data reported by the sensor.
The data in internal nodes at a particular level in the tree corresponds to a
lower resolution version of this time series, down sampled using either the
minimum, mean, maximum, or standard deviation (depending on which
summary statistic is considered). In the extreme, the tree root stores the
minimum, mean, maximum, and standard deviation of the entire stream:
a single point summary of all the data.
Accessing data at internal nodes is significantly faster than reaching into
the full resolution data in the leaves. Therefore, algorithms which leverage
the summary statistics in the database to avoid unnecessarily querying raw
data points can run rapidly over long periods of high resolution data. Sim-
ilarly, a long duration of data can be quickly visualized by querying and
plotting the appropriate lower resolution summary statistics. Then, as a

2 http://btrdb.io/
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Figure 10: A set of events retrieved by depth-first search sag detection applied
to a µPMU voltage magnitude data streams. The aggressive choice of
threshold has led to some events being retrieved that do not resemble
sags, though most of the events are some type of voltage sag.

particular period is zoomed into, only the necessary, shorter duration but
higher resolution data need be queried from the database.
It is important to recognize the alternatives to the BTrDB platform [15], es-
pecially those currently in use in the industry. Many utilities store PMU
and other grid sensor data in data historian applications which were built,
not to enable algorithmic processing and analysis of data, but to store large
data volumes to meet regulatory requirements on maintaining data history.
Therefore, these data historians prioritize efficient data archiving, often us-
ing downsampling or lossy compression schemes that permanently destroy
the high-resolution information in the raw measurements. For algorithmic
data analysis, utilities depend on tools such as MATLAB or Excel, which
make it highly challenging, if not impossible, to work with such enormous
data sets at scale. Incredibly, at many utilities, high frequency PMU data
is downloaded and shared in comma-separated-value (csv) files, which is
an extremely inconvenient and unscalable method for data access. Early in
my PhD, I worked with 120 Hz µPMU data shared in csv files, and I can
attest to the near impossibility of effectively visualizing, exploring, and de-
ploying algorithms on data in this form. In contrast to these options, the
BTrDB platform is liberating.
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�.�.� The Example of Voltage Sag Detection
The enabling capabilities of the BTrDB platform for algorithm development
are vividly illustrated by the use case of voltage sag detection [16].
Voltage sags are significant transient dips in voltage magnitude in an elec-
tric network that can persist from less than a cycle up to several seconds.
They are relatively common events in transmission and distribution net-
works, with varied causes including equipment misoperation, faults, mo-
tor starts or the rapid reclosing operation of circuit breakers. Large, long,
or frequent voltage sags can be problematic for utilities, causing sensitive
loads to turn off, motors to stall, or solar photovoltaic inverters to trip of-
fline. Many devices are pre-programmed to disconnect from the grid if
they measure a significant excursion from the nominal system voltage, as
occurs during a large voltage sag. The consequences of disconnection can
be significant. Load trips can be a serious nuisance, with substantial eco-
nomic losses particularly for large commercial customers. A large number
of simultaneous inverter trips can lead to broader system instability, as
was the case in the Blue Cut Fire Incident in California [54]. Altogether,
knowing if and when voltage sags occur in their system can be useful to
transmission and distribution operators. The high resolution of µPMU
measurements means that many more, short duration voltage sags are vis-
ible in this data. The authors of [55] detail the manual study of voltage sag
data collected during the µPMU pilot.
Automating voltage sag detection with the BTrDB platform is straight-
forward. As a voltage sag consists of a significant, temporally localized
drop in the mostly flat voltage magnitude profile, it is easily found by look-
ing through the summary statistics—specifically the minimum—stored in
BTrDB. An efficient depth-first search algorithm for localizing voltage sags
is presented in Listing 1, where tau is the user specified threshold below
which a voltage deviation qualifies as a sag. Depth-first refers to the al-
gorithm’s approach of searching first at low time resolutions, and then
proceeding deeper to high resolution data only when necessary. The algo-
rithm begins by scanning through summary statistics at a low time resolu-
tion: these statistics correspond to long time windows of raw data. If the
minimum within such a window is less than threshold tau, the algorithm
traverses deeper and deeper down the tree until the minimum point is lo-
calized in the full resolution, raw µPMU data.
By leveraging BTrDB’s structure, this algorithmic approach is highly effi-
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cient. For example, over a three month period of 120 Hz µPMU data, with
an aggressive threshold of 0.99 times nominal voltage, the search finishes
in 51 seconds, or approximately (1.5 · 105)⇥ real time. The algorithm finds
24 sags, visualized in Fig. 10.
This use case conveys the power of the BTrDB architecture for finding peri-
ods of interest in vast volumes of raw measurement data.
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Listing 1: Depth-first search for voltage sags in BTrDB

def find_vsags_dfs(stream, tau, start, end, rez):
# Inputs
# stream - measurement stream in which to find sags
# tau - voltage threshold for sags
# start, end - times to search between
# rez - time resolution at which to search

# Query summary statistics of windows
# Time resolution rez specifies window width
windows = stream.aligned_windows(start, end, rez)

# Traverse left to right over windows
for window in windows:

# Check if window contains possible sag
if window.min <= tau:

# Get time range of window
wstart = window.time
wend = window.time + rez.nanoseconds

if pw <= 30:
# If window length <= 1 sec, get raw values
points = stream.values(wstart, wend)

else:
# Otherwise, recurse deeper into tree
points = find_vsags_dfs(stream, tau, wstart,

wend, rez-1)

# Return only sag points
for point in points:

if point.value <= tau:
yield point
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�.� ����������
Let us take stock. This chapter laid the foundation on which algorithmic
tools for grid monitoring and management are built. These tools take grid
measurements as inputs, and Section 2.1 introduced several measurement
types, with a particular focus on the high resolution, time synchronized
phasor measurements from PMU devices. Extracting insights from mea-
surements requires an understanding of the nature of the data itself. The
type and level of noise present in the data is of particular importance if
algorithms are to convert measurements into reliable and accurate informa-
tion. Section 2.2 proposed a tractable noise model and estimated a noise
level for µPMU data. Finally, especially when working with the large vol-
umes of high resolution data generated by PMUs, an efficient platform for
data storage and access is vital. Section 2.3 introduced the Berkeley Tree
Database and illustrated how the structure of the database enables efficient
measurement search, analysis and processing.
With the foundation laid, we can begin—not yet to build, but to envis-
age and plan the edifice of tools. The next chapter takes time to define
and determine the kinds of tools we desire, before we start constructing
them.



3 W H AT A R E U S A B L E TO O L S ?

The academic literature teems with proposed algorithms for grid moni-
toring and management. The electric power industry is also increasingly
adopting computational methods to improve situational awareness: the real
time cognizance of grid state. I collectively term these computational
methods—proposed in the literature and deployed in industry—tools, be-
cause it explicitly captures their intended purpose and mode of use, clar-
ifying their desired design. The word tool instantly evokes an image of
a helpful, physical object: a fork, a chisel, a wrench. We see the tool
in the hand of a person, permitting them to effortlessly complete a task
which would otherwise be difficult if not impossible. While this picture
is slightly archaic for the present context, it is not altogether irrelevant
(Fig. 11). Computational tools for grid management are virtual, housed
in computers and not easily visualized in hand. Yet, like traditional tools,
they aim to make a daunting task—that of understanding complex electric
networks—tractable. They share another crucial feature with traditional
tools: both are used by a human.
The word tool is evocative not just of use but also quality: we easily rec-
ognize the difference between good and bad tools. A good, or usable,
tool is simple to use: intuitive and transparent. Transparency also makes
the tool trustworthy and reliable. A tool lacking these features becomes
unattractive and feels unhelpful. These criteria apply to grid tools as much
as traditional ones. Transparency, trust, and reliability are especially vital
in computational tools. The computing black box, however prescient, has
a nightmarish quality; like the literal and figurative black box computer
HAL in Clarke’s Space Odyssey.
Yet, development of grid algorithms that satisfy the criteria of good tools
is unfortunately meager. Indeed, many proposed grid algorithms, while
technically ingenious, do not prioritize being good tools, giving minimal
consideration to the needs of their human users. I believe this lacuna plays
a large part in the limited transfer of algorithms from academia to indus-
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try. In this chapter, I survey tools for situational awareness in industry
and literature, using the comparison to concretely define criteria for usable
grid tools. I then propose a model for a grid monitoring toolbox. Creating
grid tools that meet the criteria defined in this chapter is the aim of this
thesis. More generally, it can ease the transfer of academic work into the
real world, where tools can address the emerging challenges for situational
awareness in the grid.
To demarcate a tractable scope, this chapter focuses on a subset of all tools:
those that use data from PMU devices for the broad application category
of situational awareness. Some of the tools may have very specific, narrow
uses, while others are broadly useful. The focus here is not on the use case
of a tool, but its design: what kind of result does it produce, how does it
produce it, and how is the result delivered? I compare tools based on two
qualitative dimensions. The first dimension relates to how a tool produces
its result, while the second relates both to how a result is produced and the
nature of the result. These dimensions are:

1. Tool input information requirements. How much input data (in the
form of measurements or external system information) does the tool
require?

2. Tool Transparency. How interpretable to a human user is the algo-
rithmic approach and output of the tool?

Both dimensions are challenging to quantify precisely. Differences in the
types of inputs to various tools makes information requirements difficult
to compare across tools, while tool transparency can be a nebulous and
contentious concept. Here, I aim instead for fair qualitative comparison in
both dimensions.
When considering the amount of input information a tool requires, I con-
sider the volume of information demanded. For example, a tool which
requires measurements from sensors at every load connection has a high in-
put information requirement. Similarly, a tool which requires an impedance
value for every network line also has a high input information require-
ment. Two caveats are required here. First, some tools have flexible input
data needs, in which case I consider the minimum data they require to
produce a meaningful output. Second, some tools require large volumes
of data during an offline training phase, but little data during online op-
eration. Quantifying training data needs is highly challenging and often
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overlooked or concealed in the literature. Therefore, while noting the po-
tential training data demands of tools, I compare them based on online
data needs.
Tool transparency encompasses two features. A highly transparent tool has
both algorithmic and output transparency. Algorithmic transparency refers
to an algorithmic design for which the designer can define performance
guarantees. Output transparency is even more stringent: the output must
be interpretable to a typical user in the electric power industry—someone
with a general understanding of power systems concepts and quantities but
without extensive expertise in statistics or computer science. The disparity
in the requirements on algorithmic and output transparency are motivated
by the manner in which a tool is used. A tool user needn’t understand
the complete inner workings of a tool, but for them to trust it, the tool
must provide clear guarantees—not that it will always work, but instead
when it will work and when not. On the other hand, tool output(s) must
be completely understood by the user if they are to enhance situational
awareness and inform further actions. Transparent tool designs are espe-
cially urgent in the electric grid context where there is a need to bridge the
cultural divide between engineers and operators, who have very different
conceptualizations of and priorities for the system [60]. Another reason
for urgency is the retirement of experienced grid operators who have built
deep intuition for the system over long careers. They are replaced by young
operators who need to accumulate their own empirical observations and
experience of the system. Transparent tools can both bridge the operator-
engineer divide and help new operators build understanding and intuition
for the system.
In the next sections, I describe a range of tools from industry and academia,
locating them in the two dimensional space of information requirements
and transparency. The tool positions are visualized in Fig. 12.
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(a) Sweetmeats [56] (b) Spinning [57] (c) Sculpture [58]

(d) Situational Awareness [59]

Figure 11: Tools for various purposes. Thinking of grid tools for situational aware-
ness in the context of traditional tools elucidates how they will be used
and therefore how they should be designed. Images adapted from
cited sources.
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Figure 12: Visualizing tools from literature and industry in the two dimensional
space of transparency and input information requirements.
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This section surveys tools proposed in the literature, starting with those
having high information requirements.

Model Estimation & Model Comparison

Several tools in the literature estimate the entire network structure, consist-
ing of network lines and their impedances (this topic is the focus of Chap-
ter 4 where it is covered in far greater depth). Monitoring the connections
and impedances of a network is important both for successful management
and control of the system, and for detecting structural changes that could
indicate significant issues such as faults, equipment changes, or network
reconfigurations. In [61], the proposed tool uses PMU voltage and current
measurements from every network node to estimate the complete system
impedance model. The tool of [62], with only slightly lower information de-
mands, uses voltage data from every node to recover only network connec-
tions. [63] describes a fundamentally similar but more targeted approach,
monitoring a single line using PMU measurements made at both ends. Ex-
tended to an entire network, this tool too demands data from every node.
While these tools require almost no prior information on the system, they
still have high information requirements in the form of sensor data with ex-
tensive spatial coverage. Algorithmically, these tools are based on physics
equations relating network structure to measurements, which are inverted
to estimate network structure from measurements alone. As long as the
underlying physics equations hold, the tools are guaranteed to work. Fur-
ther, the outputs of these tools are direct, physical quantities (electrical
connections and impedances) with concrete meaning easily understood by
a human. Using the tools’ outputs to understand system changes —to the
extent of determining the location and nature of the change —is essentially
inbuilt. Consequently, these tools score highly in transparency.
Across use cases, many tool algorithms are based on physics equations. Of-
ten, the physics equations are approximations of the true system physics,
and therefore the efficacy of the tool depends on the efficacy of the approx-
imation which can vary across contexts. A class of approximations com-
monly used in tool designs are linearizations of the nonlinear, nonconvex
power flow equations which relate nodal power injections to nodal voltage
phasors. The tool in [64], based on a linearization, uses nodal voltage angle
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measurements to detect line outages. [65] proposes a linearization-based
tool for fault detection from nodal voltage phasors. While the use of lin-
earizations does not significantly reduce the information requirements of
tools ([64] and [65] both require extensive sensor data), it does produce
tool outputs that emerge from physics equations and are therefore physi-
cally meaningful and interpretable to the user. Indeed, linearizations often
preserve fundamental system features while being more easily interpreted
by a human than the precise nonlinear system equations, which explains
their widespread use in analysis. In general, linearizations are based on
well-defined assumptions and approximations. Tools which use them can
therefore precisely define performance guarantees accordingly. This, along
with the interpretability of outputs, makes such tools highly transparent.
Another class of tools compare observed measurements to those predicted
by system models. The models could encompass an entire transmission
network or a single generator [102]. Discrepancies between the predicted
and observed data may signal the occurrence of an event in the system.
Such a data disparity for a generator, for example, could indicate anoma-
lous equipment behavior within the generator or a fault in the sensor mon-
itoring the generator. The tool in [66] monitors discrepancies between mea-
surements and models to identify problematic generators. The tool in [67]
detects and classifies structural changes in a network by comparing ob-
served measurements to those simulated from a large library of models
comprised of all possible operating configurations. Similarly, the tool in
[68] detects and localizes events on a radial distribution line by comparing
measured voltage magnitudes to those predicted using a network model.
While this class of tools tends to have less stringent sensor coverage require-
ments, the input information demanded is still considerable, consisting of
accurate, detailed system models. Creating and maintaining such models
is always burdensome and sometimes impossible—for example, it is rare to
have access to detailed, accurate models for distribution networks. Yet, by
linking system data to rich, virtual models, the tools can produce outputs
with physical specificity —for example, localizing a change to a specific
line or piece of equipment —leading to high transparency.
Note that the tools described so far, which estimate quantities from physics
equations or compare measured and modeled quantities, may be particu-
larly sensitive to measurement noise. Noise must be considered in the
design of such tools if they are to be suitable for real world use.
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Thresholds: Simple to Elaborate

Numerous tools lack any connection to a model, whether in the form of a
physics equation or a simulation. Such tools have varying levels of trans-
parency, but generally lower information requirements. The simplest of
these tools apply constant thresholds—often based on utility standards or
definitions—to measurements to flag significant system events. The tool in
[55] detects voltage sags by thresholding voltage magnitude data accord-
ing to the utility definition of a sag event: “the decrease in RMS voltage
between 10 and 90 percent of nominal for one-half cycle to one minute”
[103]. When multiple measurement points are available, this approach can
localize events to the extent of identifying their origin as either in the trans-
mission or distribution system. The technique requires no prior informa-
tion and needs measurements from limited locations. While it flags events,
it provides almost no further insight for diagnosis or analysis. Yet, because
the threshold is applied to raw data and set in a simple manner based on
an industry standard, the algorithm and output of the tool are easily un-
derstood by the user. Therefore, within its limited but well-defined scope,
the tool has high transparency.
Thresholds can also be applied to computed quantities rather than raw
measurements. In this case, tool transparency depends on the interpretabil-
ity of the computed quantity. Several tools detect events by applying
thresholds to differences between voltage phase angles measured at multi-
ple locations across a network, as described in [72]. Through a power flow
linearization, angle differences have intuitive physical meaning in terms
of power flows across impedances. Therefore, these tools have surprisingly
high transparency—more so than simple voltage thresholding—and enable
detection, localization, and diagnosis of physical system events. The input
information requirements are flexible and generally low, though greater
measurement coverage can enable more granular visibility. In contrast, the
tool in [73] detects events by applying thresholds to wavelet coefficients
computed from raw measurement time series. This tool’s transparency is
low due to the limited transparency of wavelets. It is unclear how the
user—especially a grid operator without signal processing background—is
to understand what it means when an event has been detected based on an
abnormal value of the nth wavelet coefficient. Similarly, [69]–[71] have low
transparency due to thresholding of less intuitive, computed quantities.
Additional complexity is added to threshold-based tools by defining more
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elaborate thresholds. Historical data can be used to determine the bounds
of normal behavior with varying complexity (and proportionally varying
volumes of historical data). For example, baselines can be computed with
hourly and seasonal dependence, as discussed in [77]. The high impedance
fault detection tool in [76] thresholds measurements based on a Gaussian
distribution fitted to historical data. The transparency of these tools hinges
on the transparency of the threshold choice and its presentation to the
user. Many tools present “atypicality” scores [77], [78] which are generally
opaque. On the other hand, a probability score based on a learned dis-
tribution is more interpretable to a user, with the added benefit of being
effectively visualized. Such statistical baselines promise greater transparency
than hard thresholds because they can inform the user not just that data is
abnormal but how abnormal it is, expressed quantitatively and intuitively
(for example, as a probability or the number of standard deviations from
mean behavior).

Machine Learning Methods

A large set of tools employ supervised and unsupervised machine learning
techniques on raw measurements or features computed from them. In gen-
eral, these tools are applied to segments of data that have been extracted
from measurement streams based on anomaly detectors such as those just
described. Supervised techniques require labeled training data: datasets
that include both the algorithm input and the desired, associated output
(such as events captured in measurements and their associated labels). In
contrast, unsupervised techniques may require training data, but do not
require information external to the data. Therefore, they are particularly
advantageous in the grid context where privacy concerns and data paucity
compound to severely restrict the availability of labeled data.

Clustering is one unsupervised technique commonly used in event clas-
sification tools (a demonstration is visualized in Fig. 13). These tools
take event data samples as inputs and return a “classification"—a clus-
ter membership—for each, grouping them by similarity. No explicit label
is produced, but recurring events can be identified in this manner, which
can then assist in external analysis and diagnosis. Such tools tend to have
low information input requirements in terms of spatial sensor coverage or
prior network information, though some volume of data is needed to form
meaningful clusters. While clustering itself is an intuitive operation, the
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Figure 13: A toy demonstration of clustering. When a clustering algorithm is ap-
plied to the two-dimensional raw data visualized on the left, it groups
the data points by similarity / proximity into the clusters on the right.

transparency of such tools depends on the transparency of the quantity be-
ing clustered and the distance metric used to determine clusters. The tool
in [79] clusters three phase µPMU time series measurements with k-Means
using Euclidean distance as the distance metric. This technique has high
transparency as it clusters raw measurements with an intuitive distance
metric. The identified clusters are easily visualized and clearly consist of
similar events. Clustering of less intuitive or higher dimensional data di-
minishes transparency and trust in the results. This is the case for [80]–[82],
all of which cluster larger sets of non-intuitive, derived features.
An emerging class of unsupervised tools are based on generative models,
which learn a statistical distribution of the data from a training data set.
The architecture choice of the model enables it to capture complex, nonlin-
ear statistical dependencies. The transparency of these approaches benefits
from the fact that the result can be conveyed as an interpretable probability
quantity, however complex choices of architecture and model inputs com-
promise transparency. [91], [92] present such unsupervised techniques for
event detection. While they may succeed at flagging events, these tools pro-
vide little further insight into the nature (location, type, etc.) of the event,
which can make their outputs difficult to use effectively.
Despite the difficulties of obtaining training data in the real world, a vari-
ety of tools based on supervised machine learning have been proposed in
the literature. Consider the motley of classifier tools: for protection fault
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detection [83], for event detection [84], for line fault detection [85], for cyber
attack detection [86], [89], for event identification [87], for stability moni-
toring [88], for equipment malfunction detection [90], among many others.
These tool techniques are black boxes with minimal transparency. While
their online data demands may be low, they generally require significant
volumes of training data and can be difficult to train: a point which is often
glossed over in the literature. Even when trained successfully in one con-
text, it is unclear if the tools will generalize to another context (a different
feeder or interconnection, etc). Methods to address poor generalizability—
for example by replacing a single classifier with several—further reduce
transparency [104].

Physical Proxies

With a few exceptions, the tools discussed so far lie at the two extremes of
transparency. While model estimation and model comparison tools have
high transparency, machine learning tools tend to be black boxes with pal-
try transparency. This polarity hinges on the use of physically meaningful
quantities in the approaches and outputs of these tools—which the model
tools posses but machine learning tools lack. I now share a miscellany of
tools which deal in quantities that are not explicitly physical but are re-
lated to physical quantities and can be termed physical proxies. Physical
proxies carry the intuition and transparency of explicit physical quantities
insomuch that, for example, a change in a physical proxy indicates the lo-
cation and nature of a system event.
Some tools do deal in quantities that can be understood as physical prox-
ies for increased transparency, but still fail to interpret the quantities as
such. The algorithms underlying these tools lack mathematical deriva-
tions that contextualize their outputs as physical proxies by connecting
them to physics equations of the system. These derivations are necessary
to concretely establish implicit algorithmic assumptions and guarantees—
vital both for algorithmic transparency and the correct interpretation of
the physical proxy output. The absence of such derivations results in
tools that miss an opportunity for increased transparency. Consider, for
example, tools which monitor the principal components of PMU data to
detect events [93], [94]. While principal components of voltages can have
physical meaning under certain assumptions on the system, the tools in
[93], [94] do not derive or interpret them in this manner, diminishing them



�.� ����� �� �������� 46

from physical proxies to purely heuristic features, and compromising tool
transparency. Similarly, several tools monitor measurement correlations.
Though voltage correlations also have physical meaning under specific
assumptions, the correlation-based tools in [95], [96] use correlations as
purely heuristic, statistical quantities.
There are some tools in the literature which do better in deriving and us-
ing physical proxies. The tool in [74] estimates the ZIP parameters of loads
from PMU data. These parameters do not represent a complete load model,
but nevertheless carry physical intuition and are associated with a specific
system element, bolstering transparency. The tool in [44] detects the switch-
ing operation of capacitor banks to infer the control parameters of these
devices. These control parameters have clear intuitive meaning, and can be
monitored to detect equipment malfunction. The tool in [75] estimates the
quantity of distributed solar generation in a distribution feeder from PMU
data. The algorithm is derived starting from a simplified solar generation
model, under clear and explicit assumptions. The result consequently has
wonderful transparency.

�.� ����� �� ��������
As PMUs proliferate in operational electric grids, industry use of tools that
leverage PMU data is expanding concurrently. Yet, the range of tools used
in industry is narrow, with just a few tool types gaining widespread pop-
ularity. This is a stark testament of the impediments to tool transfer from
academia—where numerous new tool algorithms are proposed each year—
to industry. The differences between widely used industry tools and tools
in the literature is telling of different attitudes towards usability. Here, I
describe industry tools for system monitoring as well as some monitoring
workflows which illustrate how tools are used.
Detecting and localizing power oscillations—which can manifest in volt-
ages, currents, and frequency—is of particular interest to utilities at the
transmission level, and is an important application of transmission PMUs.
Several types of proprietary and open-source oscillation monitoring tools
are employed in industry. Most of these compute oscillation mode and
magnitude at different system locations and visualize these quantities di-
rectly to the user in an interface, some of which are shown in Fig. 14. These
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tools have low information requirements: while better source localization
is enabled by increasing measurement coverage, the algorithms can be ap-
plied even to a single measurement stream. Transparency is high due to
the presentation of intuitive, physically meaningful quantities directly to
the user. From the presented oscillation data, the user can often infer the
root cause as a particular generator [105].

Steady-state voltage angles across a network indicate power flows and
electrical distance. They have intuitive physical meaning–especially in
transmission networks, where mostly reactive lines result in more signif-
icant differences in voltage angles than magnitudes. Angle difference mon-
itoring can therefore be used to detect system stress due to congestion
caused by large power flows or loss of lines [100]. Several industry tools,
some of which are shown in Fig. 15, compute and display voltage angles
to the user. Similar to oscillation monitoring tools, angle monitoring tools
have low information requirements—though increasing sensor coverage
improves visibility—and high transparency due to their direct presenta-
tion of intuitive angle data.
The quantity with perhaps the longest history of monitoring in electric
grids is frequency. For all those who deal with ac power systems, fre-
quency has lucid meaning: it is uniform across a synchronous network
and indicates the balance of energy generated and consumed. Therefore,
monitoring frequency at multiple locations in a system can reveal the pres-
ence of electric “islands”—regions that are energized but isolated from the
rest of the system. Fig. 16 shows the interfaces of several industry tools
for island detection. These tools measure frequency at different points in
the network, visualizing the results directly to the user who can easily
identify an island by noticing areas with significantly different frequencies.
These tools require few measurement inputs—though increasing coverage
improves island detection—and have high transparency. Together, island
detection and angle monitoring tools can also be used to successfully re-
connect an island to the bulk system.

Tools for ad hoc analysis

Many applications of sensor data in the electric industry occur, not through
established, targeted tools, but as ad hoc analyses for particular, often tran-
sient applications. While not typical tool examples, these analytic vignettes
illuminate the needs of utilities and convey how tools will likely be used
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Figure 14: Interfaces of industry tools for oscillation monitoring. Clockwise from
top left: SEL, Space-Time Insight [99], ERCOT [97], BPA [98]

Figure 15: Interfaces of industry tools for angle difference monitoring. Clockwise
from top left: ERCOT, Dominion, Columbia WAMS, and EPG [100]

Figure 16: Interfaces of industry tools for island detection. From left: EPG, OS-
Isoft, and Alstom [101]
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and useful.
The authors of [106] relate several instances where sensor measurements,
under investigation by analysts, revealed and diagnosed issues in oper-
ational networks. On one occasion, analysts noticed significant voltage
imbalance across the three phases and pin-pointed the cause to the mal-
functioning of one phase of a three phase transformer. Such asymmetrical
behavior across phases could have been symptomatic of varied issues. It
was the analysts expertise and experience of the system that enabled them
to swiftly and accurately diagnose the issue manifested in the data. On
other occasions detailed in [106], analysts used phasor data to identify ca-
pacitor bank switching problems, disconnections and unbalanced currents
in circuit breakers, and arrester failures.
These incidents share common features: many of the issues detected are
both critical and unusual, manifesting in complex ways across several data
streams. Their diagnosis is far from fully automated, but instead occurs
through rich interactions between human users with knowledge of the sys-
tem and data from the system. The user’s experience plays a critical role
in ultimately identifying the root cause.

�.� ��� ���
Altogether, the prior sections and Fig. 12 highlight a gap between the ma-
jority of tools in literature and those in industry, both in their fundamental
aims and realized forms. In their forms, literature tools generally trade-
off transparency and input information requirements. While tools with
high transparency mandate extensive input information, tools requiring lit-
tle input information have low transparency. On the other hand, tools in
industry prioritize low input information requirements while maintaining
high transparency through explicable algorithms and physically meaning-
ful output quantities.
This divergence in forms stems from a divergence in aims between lit-
erature and industry tools. Many literature tools either circumvent or
neglect the human user, aiming to provide finalized, conclusive results.
Once the human user is disregarded, the need for establishing trust and
understanding—in short the need for transparency—fades. Indeed, this is
why many literature tools are designed as end-to-end black boxes which
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ingest measurements to generate complete diagnoses. Industry tools, in
contrast, are definitively tools in the hands of human users. They gener-
ate intuitive outputs always intended for delivery to a human user. This
arises from a recognition that the identification of many important events,
such as those in [106], is highly challenging to automate completely, and
that the experience and insight of the human user is crucial to correct diag-
nosis. Successful automation generally requires consistent characteristics
or—in the case of machine learning approaches—numerous samples of a
particular occurrence, both of which are lacking for many system issues,
and especially for unusual ones. Humans, however, can draw on their in-
tuition and knowledge of system equipment and physics to diagnose even
rare, previously unseen issues.
A consequence of these divergent attitudes towards the human user is an-
other stark difference between literature and industry tools: visualization.
Industry tools include significant visualization components, while few lit-
erature tools discuss visualization at all. A broad survey of PMU tools
found visualization to be a sliver of the full research pie (Fig. 17) [107].
This is not to suggest that industry tools are the grail for all tools. Rather,
they are often siloed into particular use cases, and provide the bare min-
imum of insight, so that the brunt of analytical burden remains on the
human user. Nevertheless, the fundamental aim of industry tools—to be
useful to a human user even in low information scenarios—reflects a more
realistic and persuasive vision of how computational tools will be used in
the electric grid context. If literature tools are to translate to industry use,
they must better heed this vision.
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Figure 17: The proportion of research works dedicated to visualization in a large
survey of PMU applications. Modified from [107].

�.� �������� ��� ��� : ������ �����
In this section, I recommend three broad features that should be incorpo-
rated into tools to make them usable and bridge the gap between literature
tools and industry application. To be usable, tools should:

• have low and flexible input information requirements. Algorithms
with high information requirements—whether in the form of exhaus-
tive sensor measurements or extensive system information—are un-
likely to be workable in real-world contexts. While grid sensor de-
ployments are growing, comprehensive measurement of distribution
networks, with their highly branched topologies and multitudes of
loads, is still remote. Similarly, accurate and detailed system informa-
tion, such as line impedances or equipment characteristics, is scarce
and challenging to obtain. Information in the form of training data
is also limited. Building sufficiently large training data sets is expen-
sive, stymied by privacy concerns, and essentially impossible for rare
grid events. The usefulness of these training data sets is also sus-
pect, as many event signatures may not generalize across networks
and scenarios. Tools which require training on large data sets before
they can be at all effectual are unlikely to be viable in real application.
Flexibility of input information requirements allows tools to be used
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and useful across contexts with varying levels of information avail-
ability. Further, as information availability increases—for example,
sensor deployments grow—such tools can accommodate new infor-
mation to produce results with higher resolution and quality.

• use physically meaningful quantities, ideally through basis in an

underlying physics model. This is an important feature for trans-
parency and user trust of tools. The intelligibility of physically mean-
ingful outputs to human users means that, rather than standing alone,
the outputs augment users’ situational awareness and can be used in
further analysis. An algorithm built on a physics model not only
produces meaningful outputs, but has structural transparency, with
easier formulation of guarantees, including well-defined assumptions
and failure modes.

• consider the limitations of real measurements. Few literature tools
assess the impacts of real measurement characteristics on tool perfor-
mance. In the case of several tools, this partly stems from inherent
algorithmic opacity which makes it challenging to determine the im-
pacts of noise or to articulate and quantify the importance of implicit
assumptions. Many literature tools are only validated on simulated
data, which differs strikingly from real grid data. It is often unclear
and even dubious if and how these tools will translate to real data.
Therefore, for literature tools to be usable in industry, it is essential
that their very forms include features for real world robustness. Basis
in physics models aid robustness as assumptions and noise impacts
can be precisely defined.

These bridging features are summarized in Fig. 18, with the space of highly
usable tools in the center of the Venn diagram.

�.�.� Design Recommendations
This section describes a few concrete design recommendations to meet the
criteria of usable tools.
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Figure 18: Three broad features that lead to tool usability and can bridge the
gap between literature and industry tools. Background modified from
[108].
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Expose the Features

Many literature tools are black boxes that take in measurements and pro-
duce outputs. In between, they may compute features—insightful derived
quantities—but these are obscured from the user; algorithmic ephemera.
Instead, computing insightful, interpretable, physically meaningful fea-
tures and exposing these directly to the user is a step towards usable tools.
Exposing features co-opts—rather than bypasses—the human user in the
decision-making and analysis process, leveraging their intuition, experi-
ence, and insight of the system. These features contribute to building the
user’s mental model of the system, based on which they can understand
and diagnose system issues. Exposing the features often leaves the final
inductive step to the user (a compromise is presented later in Section 3.5).
In simple or frequent scenarios, the algorithm could automate this step,
but relinquishing it to the user comes with benefits of transparency and
trust. In complex and rare scenarios, the human may be essential to suc-
cessfully conducting this final step. Examples of features to expose are: the
measured voltage magnitudes at a bus, a simulated nodal voltage based on
a utility model, the correlation between two nodal voltages, an estimated
impedance quantity such as a source impedance, or an important angle
difference.
Exposed features lead to modularity and flexibility. As algorithms are de-
veloped or sensors are deployed, new features can be presented to the
user. Together, a diverse set of features create an increasingly complete
and insightful picture of the system state. Changes in this feature set can
indicate a range of issues and events, increasing flexibility and applicability
compared to highly targeted, black-box tools. Another benefit of exposed
features is resilience. Many existing tools tend to synthesize numerous
data streams into a single output. A single erroneous input can completely
contaminate the output of such tools. In contrast, presenting features com-
puted from distinct raw measurement sets creates redundancy across fea-
tures that can increase resilience to cyber attacks or sensor failures.

Statistical Baselines

Statistical baselines are statistical models of quantitative features. They
capture both the typical range of a feature as well as the bounds of ab-
normality, expressed in intuitive probability terms. Therefore, statistical
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baselines can be used to flag unusual feature values, while also indicating
their level of abnormality, reported as probabilities. Statistical baselines are
also easily visualized for individual features. Altogether, this gives statis-
tical baselines a transparency that is absent in algorithms which simply
label data as normal or abnormal. For more binary needs, thresholds can
be added atop statistical baselines to trigger event alarms. These thresh-
olds can be intuitively adjusted, or formulated through Neyman-Pearson
style tests (here is another opportunity for operator participation) which
balance desired risks of false positives and false negatives [109]. The use of
statistical baselines could address real measurement limitations by making
algorithms more robust to noise. The normal variation in raw measure-
ments or computed features due to noise can be encapsulated in the statis-
tical baseline model, averting excessive and unnecessary alarms. Statistical
baselines also aid system modularity because they can be separated from
feature computation.

Time-Aligned Visualization

Time alignment is a powerful feature of modern grid sensors, notably
PMUs. I propose leveraging this feature in the outputs of tools as well,
by presenting the user with a time-aligned visualization—in which time
series are vertically aligned by time—of the exposed feature streams (Fig.
20). This visualization addresses the broad deficiency of visualization ca-
pabilities in literature tools: a major impediment to usability. Presenting
time-aligned features to the user builds their situational awareness and fa-
cilitates event diagnosis as they notice coinciding, anomalous events, all in
a transparent manner. Given the high resolution of novel grid sensors, it
is highly likely that perfectly coincident events, even at different locations,
share a common cause. Many existing tools do not present time-aligned
visualizations, aggravating user cognitive load as they struggle to deter-
mine and understand simultaneous events [110]. Another potential benefit
of time-aligned visualization is pedagogical: it can train users to interpret
and utilize novel data types or features. PMU data, for example, is newer
than SCADA data, and due to their differing time resolutions, PMU and
SCADA measurements can look significantly different over the same time.
As PMU deployments grow, grid data users must familiarize themselves
with these new measurements. Time-aligned visualizations of PMU data
alongside SCADA data can build users’ understanding of PMU streams by
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enabling easy comparison with the more familiar SCADA reference. The
authors of [111] realized this too, in the context of a different application
and system.

�.� ��� ������ �������
Figs. 19-20 visualize the structure of a future grid toolbox incorporating the
features and design recommendations of Section 3.4. This high-level pro-
posed design takes inspiration from the system described in [112] created
for the computer network monitoring domain, which perhaps surprisingly
shares several defining characteristics with the grid management space.
Fig. 19 visualizes the information flows for the future grid toolbox. The in-
puts to the toolbox are data from a diversity of sources which, critically, are
time synchronized. The quality of time synchronization required will vary
across tools and applications, but some level of dependable time synchro-
nization is essential for collating diverse and disparate data sources. Input
data could include measurements from PMUs and smart meters, weather
measurements and forecasts, outputs of simulation models, and customer
phone calls, among others. Input data types and volumes will continue
to grow, and new data can be easily incorporated in this framework. The
input data is ingested by an extensible set of tools which meet the criteria
of usability. Each tool may take in one or more data streams to output
one or more interpretable features. Examples of intuitive and meaningful
tool outputs are impedance estimates, angle differences, and solar output
estimates among innumerable others. These output features, generally in
the form of time-series, are then passed to statistical baselining algorithms,
which learn the features’ distributions. The baselining algorithms are in-
dependent of the tools, so an extensible library of methods can be created
and used. This structure gives the system modularity and flexibility. Fi-
nally, the outputs are presented to the user in a time-aligned visualization.
Fig. 20 presents a mock-up of the visualization component of the future
grid toolbox. Tool outputs—i.e. interpretable features—are presented to
the human user vertically aligned by time. This allows the user to observe
coincident changes in multiple features and thereby surmise the source of
the change. The full set of features is too large to be visualized at once,
so features are ordered based on their abnormality, under the assumption
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that more anomalous values deserve greater attention. The statistical base-
lines enable this ranking and, for transparency, are also visualized with the
feature time series. In Fig. 20, the learned feature distribution is visualized
as a color gradient, while a likelihood quantity is displayed alongside each
time series. Notice the least likely, or most anomalous, feature is presented
first. User collaboration is enabled and solicited through like or dislike
buttons attached to each feature; votes can be incorporated into future de-
cisions to display a particular feature. This visualization is highly transpar-
ent, enabling and even relying on user analysis to make the final diagnostic
conclusions. However, the future toolbox framework also allows for further
automation without compromising transparency. Automated diagnoses or
explanations can be suggested to the user alongside feature plots. In Fig.20,
this is visualized for an event detected in Feature n. An automated event
classification and diagnosis is indicated by a dashed hypothesis box, with
an arrow that will display further details.

F
In this chapter, a comparison of tools widespread in industry and tools
proposed in the literature motivated the definition of three broad features
that beget usable tools. A few concrete design recommendations were pre-
sented, and ultimately an architecture for a versatile toolbox of several al-
gorithmic tools was envisioned. This chapter lit the beacon for usable and
useful computational tools; the next chapters relate one journey getting
there.
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...

...

Figure 19: Information flows for the future grid toolbox. Data from varied, time
synchronized sources is the input to computational tools. The tool out-
puts are interpretable features, mostly in the form of time series. These
time series are passed through algorithms that statistically baseline the
features. Baseline and tool algorithms are independent and extensible.
Results are presented to a human user in the visualization of Fig. 20.
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Figure 20: A time-aligned visualization presents the outputs of the future grid
toolbox to the human user. Statistical baselines indicate the expected
distribution of interpretable features, and the likelihood of the latest
values. Users can indicate features which are helpful or unhelpful.
Additional automation can be unobtrusively incorporated in the form
of suggested diagnoses.



4 TO P O LO GY TO O L S

Includes work from [113]–[117]

At the level of abstraction inhabited by this thesis, an electric network con-
sists solely of lines and buses. Lines are electric conductors of some finite
impedance along which power flows. Buses are juncture points where
lines, loads, generators, and other components connect—though for our
purposes these individual components are generally abstracted away: en-
capsulated within buses and represented by net flows. Buses provide con-
venient reference points at which to specify system voltages, and are also
the only points where current can enter and leave the network. Power, on
the other hand, transits at buses but is also dissipated on lines in the form
of losses.
Topology is the fundamental property of all electric networks. It defines the
network structure by describing exactly how buses are connected by lines.
A complete network topology indicates the bus endpoints and impedances
of every line, as well as the phase label of each line (see Interlude below).
Topology is essential for understanding network behavior. For example,
by specifying current injections at every network bus, applying Ohm’s and
Kirchhoff’s Laws to the topology allows for the derivation of bus voltages,
line flows, and losses. Similarly, when bus power injections are specified,
optimal power flow uses the topology to determine voltages, flows, and
losses. All together, knowledge of network topology is vital for understand-
ing or intervening in a system. Many control and monitoring methods—
such as the canonical procedure of state estimation—assume knowledge of
topology as a prerequisite.
Grid topologies come in two broad types: radial and meshed. Radial net-
works have no loops, meaning that there is only one path—defined by a
set of lines—connecting any two buses. Meshed networks contain one or
more loops, leading to parallel paths between some pairs of buses. Trans-
mission systems, which deliver power at high voltage over long distances,

60
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are organized as meshed networks. The parallel paths create valuable re-
dundancy in case of system failures, endowing resilience to this especially
critical portion of the grid. Distribution systems, which deliver power to
customers at lower voltages and over shorter distances, are generally op-
erated as radial networks. This simplifies protection design and network
management. Through the opening and closing—or switching—of lines,
many distribution networks can be shifted between multiple topologies.
Electric network topologies have a natural connection to the mathematical
structures called graphs; consequently much theoretical work on topology
uses the terminology and definitions of graph theory. In this framework,
buses are nodes and lines become edges. The graph representation of a topol-
ogy is generally undirected, as electric lines have no particular orientation.
Graphs of radial topologies are termed trees. Mooring electric network
topologies to mathematical graphs enables the co-option of a vast, vener-
able repository of results and techniques from the field of graph theory.
These results can be illuminating and empowering in the design of novel

Figure 21: A complete three phase network converted to a single phase graph
representation with net flows at each node.
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(a) Distribution network with three & one
phase loads.

(b) Time domain & phasor voltages on each phase in the perfectly balanced case.

Figure 22: Three phase electric systems

tools for topology estimation and monitoring, as the following sections will
highlight.

Interlude: Three Phases

Alternating current electric systems are also termed three phase systems
because power is transmitted on three lines—generally named phase a, b,
and c—by currents (and correspondingly voltages) that are 120o apart, as
visualized in Fig. 22. If the three phase currents are balanced, their sum
is zero, eliminating the need for a return wire. Maintaining near balance
such that voltages and currents across phases remain symmetrically 120o
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apart and have equal magnitudes is an important priority for grid opera-
tors. Transmission systems tend to be highly balanced, and here all lines
are three phase, coming in sets of three. At the distribution level, the three
phases of transmission may be separated to reach different loads, which
are generally connected to a single phase only. Therefore, distribution net-
work lines can be one, two, or three phase. Balance is achieved by evenly
distributing loads across the three phases.
Although nearly all grids contain multiple phases, systems are often as-
sumed to be balanced with identical impedances and loads on all phases.
A balanced three phase system can be reduced to and analyzed as a single
phase system, with symmetric behavior (albeit shifted by 120o) on the ne-
glected phases. Many real distribution networks, which contain lines with
a subset of all phases, can not be reduced in this way.
A complete network topology should not only specify the connectivity of
each line, but also its phase label. However, when treated as balanced and
reduced to a single phase equivalent, a network’s line phase labels are not
handled; the labels are either assumed known or must be determined sep-
arately.
Incorrect phase labeling cam be highly problematic, especially if interven-
tion is desired on a particular phase. For example, a fault on phase a
may be wrongly localized to phase b due to incorrect labels, causing confu-
sion, time wastage, and potentially safety issues for repair crews. Incorrect
phase labels are more common in distribution networks than transmission,
due to generally poorer information and visibility on this part of the sys-
tem.

�.� ������� ������ ����� ��� ��������
This chapter describes several algorithms for topology monitoring. Though
they differ in context, data availability, and results, they cohere in their aim
to improve real-time topology awareness. Ordered here almost chronologi-
cally, they reflect an intellectual progression and academic journey towards
usable topology tools. Usable topology tools—per the discussion in Chap-
ter 3—possess three features: they deal in physically meaningful quantities,
have low or flexible information requirements, and consider the limitations
of real measurement data. In the narrative of this chapter, the tools detailed
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tend toward usability as a preordained destination, but in truth the desti-
nation and tool designs coevolved, with the criteria of usability coalescing
through the process of tool creation and experimentation.
There is a sizeable literature on algorithms for grid topology estimation.
Already extensive when I began working in this area, it has only continued
to expand. Algorithms in this literature are highly diverse, using varied
measurements and input information and applying assorted techniques to
extricate topology. While some methods appear to aim for the usability
criteria I define, many have different aims or seem unconcerned about us-
ability altogether. Consequently, of this large literature, only a minority of
tools are workable.
The tool features that contribute to poor usability also vary. Many ap-
proaches have practically prohibitive demands for prior system informa-
tion. For example, [67] and [118] require access to simulation models of
every possible network configuration; simulated measurements are then
compared to real PMU measurements to identify the operational topology.
[119] describes a similar approach, using non-PMU measurements. Also
requiring models are a class of methods that combine the process of state
estimation—estimating voltage phasors at every bus from a set of available
measurements—with topology monitoring [46], [120]–[122]. Unfortunately,
especially in distribution, network models are often missing or erroneous,
and running simulations is time-consuming, thwarting such approaches.
Even more inaccessible than methods requiring accurate system models
are those which require physical intervention, for example by injecting
voltage perturbations into the system [123], [124].
Another set of topology tools—including all those I have worked on and
present here—are purely measurement driven, requiring no extra system
information or intervention. However, their usability is often hampered by
cumbersome measurement requirements or their failure to consider and
handle the detrimental impact of real measurement imperfections such as
noise. For example, [62], [125]–[128] require PMU measurements at almost
every network node, still a remote possibility in most electric grids. On
the other hand, several of these approaches are built atop a theoretically
justified physics model, which lends certain advantages: success, failure,
and sensitivity can be precisely defined and handled. Radial topology es-
timation forms a special subset of all topology tools, as the constraints of
radial structures greatly improve the tractability of this challenging estima-
tion task. [129]–[132] form a single body of work on this problem, with
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slightly varying approaches. [133], [134] extend these techniques to explic-
itly handle multiple phases, rather than making the balanced, single phase
reduction implicit in most other works.
Taking a different tack are heuristic tools for topology monitoring, which
surveil quantities computed from raw measurements that are indicative of
underlying network structure. Popular quantities include the rank [135]–
[137], pairwise correlations [95], and principal components [93], [94], [138]–
[140] of nodal voltage measurements. The usability of heuristic tools bene-
fits from low and flexible measurement coverage requirements. This comes
at the cost of fine-grained results, but nevertheless these tools can provide
much practically useful system visibility. On the other hand, their usabil-
ity suffers from the absence of a theoretical basis: obscuring both why they
work and any implicit assumptions they make. This in turn hinders precise
specification of when and why these tools succeed and fail, limiting user
trust.
Section 4.2 describes one such heuristic topology estimation algorithm,
vividly illustrating both the benefits and drawbacks of the type. While
the algorithm’s low measurement coverage demands enable it to be effec-
tively applied to a real distribution network, the absence of a theoretical
foundation limits understanding of algorithm failures. Section 4.3 goes
on to detail a tool with an underlying physics model and rigorously an-
alyzed noise sensitivity, but exorbitant sensor coverage requirements that
make real world application unviable. The tool of 4.4 is an extension to
three phase, unbalanced networks; again built on a meticulously defined
physics model but with impractical sensor demands. Nevertheless, the the-
oretical results of these works lay an important foundation for the creation
of usable topology tools. Finally, Section 4.5 melds the benefits of the pre-
vious tools, using the physics models to derive simple statistical quantities
that indicate topology. The resulting justified heuristic tools have low or flex-
ible sensor requirements but also a well-defined rationale and transparent
assumptions.

�.� � ��������� ��������
This section describes corr-top, a heuristic tool for topology identification
using µPMU measurements. Very practical, the tool has low, flexible re-
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quirements of sensor coverage and demands no prior knowledge of net-
work characteristics. It returns a part of the full network topology; specif-
ically the relative connectivity between measured nodes, which preserves
the ordering of sensors along the feeder. Corr-top uses correlations in
voltage magnitude measurements to infer topology and works with data
on a single phase (though it is likely effective for phase identification as
well). To ensure consistency, the algorithm selects and uses specific data
segments that are most informative of topology. The alternative, of using
arbitrary data segments, produces inconsistent and variable results, the
unpredictability of which is an inherent drawback of heuristics. Corr-top
relies on signal shapes and trends rather than values, making it resilient
to noise, missing data segments, and the persistent transducer error that
plagues µPMU data [141]. Corr-top is demonstrated on measurements
from an operational distribution feeder.
Though corr-top is not based on an underlying physics model and there-
fore does not deal in explicit physical quantities, it’s simple algorithmic
approach preserves a degree of transparency and intuition for the user. In
addition to providing a topology estimate, it returns a sample of data that
supports the recovered topology. Continuous, high resolution raw voltage
magnitude streams contain vast quantities of data that are overwhelmingly
difficult for a human to process and interpret. By returning a succinct data
example, corr-top distills an interpretable explanation from an overwhelm-
ing data set, increasing transparency and trust. This improves the usability
of the tool in the context of mixed human-computer control for grid man-
agement, which is the broader objective of this thesis. In general, this thesis
advocates for building transparency features into grid tools in this manner,
especially in the case of algorithms such as heuristics where the lack of
an underlying physics model and explicit physical quantities can diminish
transparency.
First, some notation for what follows. The voltage magnitude measure-
ment at node i is denoted vi, referring either to the full, continuous mea-
surement stream or a portion of the stream at this node. A single mea-
surement from this stream is denoted vi(k) while vi(t1, t2) is a vector of
measurements covering the period from time t1 to t2. The data streams are
discrete, but for simplicity we index them using a time point t or an index
k. A matrix is denoted in capitals and its (i, j)th element is denoted with a
subscript, for example matrix P and element Pij. R denotes the set of real
numbers.
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�.�.� The Algorithm
The corr-top algorithm includes four steps: data selection, correlation-
based proximity computation, spanning tree construction, and data valida-
tion. In the first data selection step, a search algorithm selects informative
data segments from continuous voltage magnitude measurement streams.
Next, correlations are computed between simultaneous segments at spa-
tially distributed sensors to build a proximity matrix between sensors. A
greedy method uses the proximity matrix to construct an estimate of the
feeder connectivity, which is assumed to be radial. In the final step, a sub-
set of the selected data segments is returned as validation of the estimated
topology.
Corr-top ingests 120Hz data from µPMU sensors. Synchrophasors are
prominent for their ability to report the phase angle of voltages and cur-
rents in ac systems. Discussions of their advantages typically revolve
around the use of phase angles in various applications, from basic complex
power computations to more sophisticated analytics. In contrast, corr-top
uses only root mean square (rms) voltage magnitude data from µPMUs,
disregarding angles altogether. The compelling, critical value of µPMUs to
the algorithm is the measurement resolution and synchronicity across loca-
tions. Precise synchronization means events seen at different sensors can be
reliably matched in time and confidently claimed to have the same source.
Corr-top’s topology inference depends on correlation, a common technique
for signal matching. Correlations between signals deteriorate rapidly with
time misalignment making the precise synchronization of µPMU data vital
for this tool. Fig. 23 visualizes an event as measured at two µPMUs, where
the similar signatures and time alignment compellingly suggest a common
cause. The bottom plot shows how the measurement correlation between
sensors for this event rapidly drops as time misalignment grows. The GPS
time-stamping used by µPMUs has an accuracy on the order of 10 ns, at
which correlations are highly reliable.
One challenge for any high-precision sensor connecting to high- or medium-
voltage systems is that instrument transformers—which mediate between
the sensor and the system by reducing current and voltages to safe-to-
measure levels—can introduce an error that is orders of magnitude greater
than the sensor error itself. This limits the field feasibility of analytics re-
quiring precise computation of steady-state quantities such as impedance.
Fortunately, transducer errors tend to be stable over timescales of seconds
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Figure 23: The importance of accurate time synchronization is illustrated by the
rapid drop in signal correlation with growing misalignment for an
event signature measured at two PMUs.

or minutes. As corr-top uses signal shapes rather than raw signal values, it
is uncompromised by the nearly constant additive or multiplicative errors
in the signal that must be expected.
The signal shape segments used in corr-top are found through an event
search algorithm, described next.

�.�.� Data Selection with Event Search
Due to the high frequency of µPMU measurements, it is infeasible to use
an entire stream of µPMU data at full resolution over considerable time
periods such as multiple days. Instead, selected windows of data must be
used, raising the question of what kind of data segments to choose. Volt-
age magnitude signals in the distribution grid are distorted by network
happenings and load fluctuations throughout the electric grid, near and
far. Therefore, though voltage magnitudes are carefully regulated to stay
within a small band around the nominal voltage level, there is essentially
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constant ambient variation within this band, which may or may not cor-
relate across locations. Experimentally, I found that short, high resolution
data windows at arbitrary time points show uniformly low correlations
across sensors. In contrast, longer, lower resolution windows show uni-
formly high correlations across sensors, since average voltage magnitude
profiles track each other closely across a single distribution network. This
phenomenon is known as the low-rank nature of synchrophasor measure-
ments and is discussed in [142]. Overall, using arbitrary measurement seg-
ments of high or low resolution leads to inconsistent topology estimates.
Instead, corr-top uses data during periods where voltage magnitudes devi-
ate rapidly and significantly from the nominal, which were experimentally
found to be most informative of topology. I refer to these periods as event
points. Typical event points observed in µPMU voltage magnitude data in-
clude transformer tap changes, capacitor bank switching, and voltage sags.
The source or nature of the event is not important for the purpose of topol-
ogy identification (event classification is discussed further in Chapter 5).
As described in Section 2.3.1, many events can be rapidly localized by
leveraging the summary statistics stored in the multi-resolution structure
of the Berkeley Tree Database (BTrDB). Corr-top makes use of a simple
event search algorithm presented in [79]. The algorithm scans through
non-overlapping, fixed duration time windows of voltage magnitude data,
computing a metric on the summary statistics of each window. If the met-
ric exceeds a preset threshold—denoted ⌧—the window is considered to
contain an event and its raw data is queried and returned. The metric used
is given in Eq. (7).

max[v(tk, tk + �)]- min[v(tk, tk + �)]
mean[v(tk, tk + delta)]

> ⌧ (7)

Here, tk, tk + � are respectively the start and end time points of the kth

window with duration �. By accessing only summary statistics to localize
events, the event search algorithm runs in seconds across an entire day of
µPMU data on my Intel i7 Core processor.

�.�.� Proximity Matrix Construction
Consider a network with n sensors, each monitoring a common phase at
separate network nodes. The voltage magnitude time series for these sen-
sors are v1, v2, ...., vn. Corr-top runs event search on each of these n time
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A 1: [E] = event-extraction(pmus, �)
Input :pmus is a length n list of pmus

� is a constant event duration
Output :E is a matrix of event data.
n len(pmus) // Number of pmus

for i 0 to m do

tstarts  find-events(pmus[i]) // event start times

ei  len(tstarts) // number of events found at pmu i

// Iterate over events

for j 0 to n do

for k 0 to ei do

// Get data at pmu j for event k

E[i][j][k] get-data(pmus[j], tstart[k], tstart[k] + �)
end

end

end

series. For every event found in sensor i’s data stream vi, data is extracted
for the corresponding time period from the measurement stream of every
other sensor. Assuming e1 events are found in v1, e2 in v2 and so on, the
result is a total of e = n

Pn
i=1 ei extracted time segments. Usually, there is

a great deal of overlap between the events found at each sensor. However,
it is necessary to run event search on each time series as some events are
detected at one sensor but fall below the detection threshold at another
sensor. It is precisely this variation in event visibility across sensors that
contains important topology information. Algorithm 1 defines the event
extraction process.

The extracted event data is used to build up a proximity matrix P 2 Rn⇥n.
The value Pij is set to the average Pearson correlation coefficient between
events detected at sensor i and the corresponding measurements at sensor
j. The Pearson correlation coefficient between two t-length voltage magni-
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tude time series vi 2 Rt and vj 2 Rt, denoted ⇢(vi, vj), is defined in Eq.
(8).

⇢(vi, vj) =
tX

k=1

v̄i(k)v̄j(k)||v̄i||2||v̄j||2 (8)

v̄i =
vi - E[vi]

||vi - E[vi]||2
, E[vi] =

1

t

tX

k=1

vi(k)

Note the normalization in the definition of ⇢(vi, vj). Normalization of the
voltage data removes the effect of the nominal voltage magnitude, which
may vary across buses within a single feeder. More generally, normaliza-
tion means the correlation coefficient reflects how closely the shapes, rather
than the raw values, of signals vi and vj align. Normalization also makes
the metric ⇢ more interpretable than a simple dot product, because ⇢(vi, vj)
is bounded between -1 and 1, with 1 indicating perfectly matched signal
shapes.
Denote the start and end time stamps of the ei events found at sensor
i by (t

(i)
1 , t

(i)
1 + �), (t

(i)
2 , t

(i)
2 + �), ..., (t(i)ei , t

(i)
ei + �). Then, Pij is computed as

follows:

pij ,
1

ei

eiX

k=1

⇢

✓
vi(t

(i)
k , t

(i)
k + �), vj(t

(i)
k , t

(i)
k + �)

◆
. (9)

Pij = min(pij, pji) (10)

Since Pij is the average of correlation coefficients, it lies in the range [-1, 1].
pij indicates the proximity of sensors i and j based on the events detected
at i while pji indicates the proximity of sensors i and j based on the events
detected at j. A higher score indicates greater proximity. By setting Pij to
the minimum of pij and pji, corr-top uses the more pessimistic estimate of
proximity. This tends to emphasize local events which contain the most
useful topology information. The final proximity matrix is symmetric: P =
PT . Fig. 24 visualizes the construction of P.

�.�.� Topology Estimate
Corr-top is targeted for application in distribution networks and assumes
that the topology to be recovered is radial—in graph terms, tree structured.
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Figure 24: Adding values to the n⇥n proximity matrix P for single event k found
at sensor i.

To estimate the tree connectivity of the measured network nodes from the
computed proximity matrix, P is passed to a maximal spanning tree (mst)
algorithm. The mst algorithm, homologous to the minimal spanning tree
algorithm, is a classic greedy algorithm [143]. The mst algorithm interprets
P as the weighted adjacency matrix of a graph, where the n sensors are the
n nodes and Pij is the weight of the edge connecting node i to j. From the
full set of n · (n- 1) edges, the algorithm selects a subset of n- 1 edges
that connect the n graph nodes together in a tree while having the maxi-
mum sum of edge weights. This maximal spanning tree is returned as the
estimated topology.
Corr-top only handles measured nodes. Therefore, edges in the estimated
topology are relative, reflecting how the monitored nodes are connected
to each other within the full, real network (Fig. 25). Unmeasured nodes
are not considered in the algorithm and do not appear in the final solution.
Therefore, there are combined topology and sensor deployment scenarios
where different topologies result in the same relative sensor connectivity
and will therefore be indistinguishable to corr-top.
While corr-top aims to work under various sensor placement schemes,
some placements produce better results than others. For example, uniform
spacing of sensors along the feeder length is better than “clumped” place-
ment. Consider the case where we have three sensors s1, s2, s3 such that
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Figure 25: A comparison of the true network topology and the estimate returned
by corr-top showing recovery of the relative connectivity of measured
nodes.

the distance from s1 to s2, denoted dist(s1, s2), is much less than that from
s1 to s3: dist(s1, s2) << dist(s1, s3) and s3 lies down the network from
s1 and s2. Measurements at s1 and s2 are highly correlated, so vs1 ⇡ vs2 .
Therefore ⇢(vs1, vs3) ⇡ ⇢(vs2, vs3), and the data provides little indication if
s3 is connected directly to s1 or s2. Note that if the network has specific
switches or breakers whose open/closed status is of interest, it should gen-
erally be straightforward to identify suitable µPMU placements for reliable
detection.
With slight modification, corr-top can be extended to cases where the n
sensors are split between two or more radial feeders by modifying the al-
gorithm to return more than one tree when edge weights fall short of a
threshold. In such a case, the sensors on different feeders will be separated
by a single, low weight edge. This scenario is detailed in Section 4.2.6.
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�.�.� Data Validation
Along with the topology estimate, corr-top returns selected data to validate
the estimate for the user. This data quantity must be kept small to ensure
it is interpretable to a human user. Corr-top returns the voltage magnitude
time series for one event at each sensor–a total of n time series segments.
Returning a single data snippet for every sensor is highly informative, en-
abling the user to “see” the topology from the vantage of each sensor node.
This is especially important when the network is configured as multiple
separate radial feeders.
At a single sensor, for the selected event, a n⇥ 1 vector of correlation co-
efficients is also returned, the computation of which was described earlier
in Section 4.2.3. More concretely, suppose at sensor s there are a total of es
event points extracted from the voltage measurement stream vs and used
to construct proximity matrix P. The es event points correspond to the time
segments (t

(s)
1 , t

(s)
1 + �), ..., (t(s)es , t

(s)
es + �). Only one of these events is chosen

to be part of the returned validation data. The selected event is the one
which maximizes the following objective, for k 2 {1, ..., es}:

k⇤s = max
k

vari

⇢

✓
vs(t

(s)
k , t

(s)
k + �), vi(t

(s)
k , t

(s)
k + �)

◆�
. (11)

Maximizing this objective finds the event with the largest variance in cor-
relations across all other sensors i 2 {1, ..., N}. This selected event, which
is maximally different across sensors, tends to be most explanatory of the
topology. By capturing the network topology and validating the topology
estimate, the selected event makes the topology estimation algorithm more
transparent, trustworthy and hence useful to human users.

�.�.� Results
Corr-top was tested on data from two operational distribution feeders.
The topology estimates returned by the algorithm were validated against
ground truth information provided by the utility. The first network, termed
network a, operated under a fixed topology and the algorithm was tested
for consistency at this location. The second, network b, underwent recon-
figuration multiple times. Table 1 contains the details of each test case. The
size and complexity of the test cases presented here were constrained by
the networks and reconfiguration operations for which data was available.



�.� � ��������� �������� 75

Figure 26: The true topology, topology estimate and data explanation from s3 for
test cases 4 (top) and 5 (bottom)
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The number of sensors used varies across test cases on network b as data
was available for only a subset of all sensors during each test period. The
test case duration must be long enough to generate a sufficient number of
events for topology estimation. On network a, we used a longer 48 hour
duration since the network topology was fixed. On network b we generally
used a 24 hour duration. Test case 7 is unusually short and corresponds to a
brief period during which network b operated under an alternate topology.
In this instance the time duration proved adequate for correctly recovering
the topology.
To provide intuition for corr-top’s algorithmic performance, this section de-
scribes in detail two of the test cases on network b: cases 4 and 5 in Table 1.
Network b generally operates as two separate radial feeders. Tie switches
allow nodes to be switched from one feeder to the other. Consequently,
for network b test cases, the topology estimation algorithm was allowed
to return a solution consisting of multiple trees. A threshold of 70% was
used to split the topology estimate. That is, if the minimum weight edge in
the mst solution had a weight less than 70% of the next lightest edge, the
minimum weight edge was removed, splitting the spanning tree solution
into two spanning trees. This threshold was chosen empirically.
Cases 4 and 5 use the same set of three sensors, denoted s1, s2, and s3.
The true connectivities of these sensors is shown in the left panel of Fig.
26. Measurement nodes s1 and s2 are on different feeders. Node s3 can
be connected to one substation through node s1, as in test case 4, or to the
other substation through node s2, as in test case 5. The middle panel of Fig.
26 presents the sensor connectivity estimated by corr-top. In both cases the
estimated connectivity is correct.
The right panel in Figure 26 contains the returned validation data for sen-
sor s3. In both cases, the returned validation measurement is a tap change,
which manifests as a step change in voltage magnitude. In case 4 the tap
change is clearly visible at s1 and s3 but invisible at s2. In case 5, the tap
change is visible at s2 and s3 but invisible at s1. This returned data snippet
is a compelling validation of the topology estimate.

F
Corr-top is a heuristic approach to topology estimation and benefits from
low and flexible sensor coverage requirements as well as a level of algo-
rithmic transparency and interpretability. However, like many heuristic ap-
proaches, the absence of a theoretical foundation for the algorithm makes
it difficult to understand and predict algorithm failure or inconsistency. In
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Table 1: Corr-top test case summary

Test Case Network Number of sensors Duration Correct?

1 a 4 48 hr Yes
2 a 4 48 hr Yes
3 a 4 48 hr Yes
4 b 3 24 hr Yes
5 b 3 24 hr Yes
6 b 4 24 hr Yes
7 b 4 5 hr 48 min Yes

the case of corr-top, this was mitigated through the averaging of many
data samples when constructing proximity matrix P; however this limits
the real-time applicability of the approach. In the search for usable tools
for topology monitoring, we need to build a tractable, underlying physics
model, which is the focus of the next section.

�.� � ������� ��������
This section approaches the problem of topology estimation starting with
fundamentals: the physics equations that relate phasor measurements and
topology. It describes an algorithm for estimating the complete network
topology—encompassing both lines and their impedances—from nodal
voltage and current phasors. Perhaps more importantly, it explores the
theoretical foundations of topology estimation, establishing informational
limits on how much of the topology can be inferred from data and the
noise sensitivity of estimation.
The proposed estimation method requires no apriori information about
the network structure or user guidance—making it easier to use, widely
applicable, and resilient to human error. It makes no assumptions on load
behavior or network parameters. It addresses the network as a whole and
specifically improves noise robustness over prior work by formulating the
problem to be better conditioned. Here, impedances are estimated via
ordinary least squares (ols) regression but the method is agnostic to the
optimization method used for regression.
The topology estimation method requires nodal voltage and current injec-
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Figure 27: Impedance and topology estimation algorithm schematic. Measure-
ments V and I are fed into estimation algorithms to recover various
network representations.

tion phasor measurements at all active network nodes—anywhere where
current enters or leaves the network—to estimate what is called a Kron re-
duced network impedance or admittance model. Next, effective impedances
quantities between active nodes—which capture cumulative system impedance—
are extracted from the Kron reduced model. We develop Complex Recur-
sive Grouping (crg) to recover network topology from the complex-valued
effective impedance estimates, in the case where the network is radial. The
crg algorithm is an extension of the recursive grouping algorithm, origi-
nating in the field of evolutionary biology [144], and previously applied
to topology estimation in the case of real-valued impedances [145]. Fig.
27 shows a schematic representation of the proposed topology estimation
method; it is a useful reference for tracking the processes, quantities, and
notations that will be introduced throughout this section.
For the toy network in Fig. 28 the proposed method proceeds as fol-
lows. First, unsupervised regression is used to estimate the admittance
or impedance matrix of the Kron reduced network, visualized on the right
of Fig. 28. The specific regression method can be ols—as done here

�
e.g.

Eq. (19)
�
—or another optimization formulation. Next, effective impedance

estimates between active nodes are calculated using Eq. (13). Finally, the
full network is reconstructed using the crg algorithm applied to the set of
effective impedances, as illustrated in Fig. 30. The four primary contribu-
tions of this section are:
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Figure 28: Kron reduction of a toy network with 5 active nodes (blue), includ-
ing the substation, and 1 passive node (red) which does not have any
current injection.

1. Defining the fundamental information limits of (phasor) measure-
ments made on electrical networks.

2. Proving the Kron reduced admittance matrix to be the best achiev-
able outcome of unsupervised learning on electrical network mea-
surements.

3. Proposing estimation of the reduced Laplacian (subKron) matrix net-
work representation to improve impedance estimation noise-robustness.

4. Generalization of the Recursive Grouping algorithm to complex-valued
distances to recover radial topologies from effective impedances.

The subsequent section parts are organized as follows. Part 4.3.1 pro-
vides necessary background information. Section 4.3.2 establishes the chal-
lenges of network estimation. Section 4.3.3 introduces the subKron net-
work model and section 4.3.4 explains its physical meaning. Section 4.3.5
discusses noise-robust unsupervised impedance estimation. Section 4.3.6
presents the crg algorithm. Finally, section 4.2.6 evaluates the proposed
methods in simulation.

�.�.� Background
Notation and Definitions

First, let us take care of vital preliminaries: the notation and mathematical
definitions used in this section, which are mostly in line with those intro-
duced in Section 1.4. M 2 Cp⇥q is a complex-valued p-by-q matrix with
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ith row M
T
i and element M(l,m) in row l, column m. M

T and M
H are its

transpose and conjugate transpose respectively. -1 and † denote the matrix
inverse and pseudoinverse respectively. Q is a set with cardinality q = |Q|.
I denotes complex current measurements—not the identity matrix. 1 is
the 1’s vector and ei is the ith standard basis vector. Operators Re(•) and
Im(•) respectively return the real and imaginary parts of their arguments.
ker(M) is the span of vectors {v} such that Mv = 0. 1j =

p
-1. Matrices

A and B are informationally equivalent if we can exactly compute A from B
and vice versa.
A graph G has nodes N and edges E. If ✏ij 2 E, nodes i and j are connected
by an edge with weight wij. The degree of node i in G is the number of
nodes to which it is directly connected. A node with degree = 1 is a leaf.
A connected graph has a path (a sequences of edges) between every pair of
nodes. In an acyclic graph, this path is unique. As mentioned before, a tree
is a connected and acyclic graph, termed radial in power systems. To orient
a tree, one node is chosen as the root. Node i and j are respectively parent
and child if eij 2 E and i is closer to the root. Nodes k and k 0 are siblings if
they share a parent.
We consider an electrical network with n = a+p nodes and e edges, where
n, a, p and e are respectively the cardinality of the set of network nodes
N, the set of active nodes, A, the set of passive nodes, P, and the set of
edges E. Active nodes are the subset of network nodes where current en-
ters or exits the network. In distribution networks, the substation is an
active node that is also a convenient choice for the root. Passive nodes are
the subset of network nodes where three or more lines come together and
current is rerouted, but does not enter or exit the network. We assume
voltage and current phasor measurements are available at at least all active
nodes. These definitions are visualized in Fig. 28.
Complex-valued, synchronized voltage and current phasor measurements
from all n nodes at t time points can be collected into matrices V 2 Cn⇥t

and I 2 Cn⇥t. Every row of V and I is a measurement time series at one
node. Ohm’s law defines a linear relationship between V and I:

[Admittance] I = YV$ V = ZI [Impedance] (12)

The two forms are parametrized by either the network admittance matrix,
Y 2 Cn⇥n, or the network impedance matrix, Z 2 Cn⇥n.The forms are infor-
mationally equivalent, however Y has a simpler, more intuitive structure
and is generally used in practice. In graph theory terms, Y is the weighted
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Laplacian of the graph describing the electrical network, with edges corre-
sponding to physical lines and weights corresponding to line admittances.
For a network with no shunt admittances—lines connecting nodes directly
to ground—Y is a loopless weighted Laplacian [146]. Physically, Z is the
inverse of Y, however it cannot be computed as Y

-1 due to the following
well-known lemma [147]:

Lemma 1. Loopless Laplacian Y of a connected graph is rank (n- 1) with 1 2
ker(Y)

However, we can calculate Z from Y with the matrix pseudoinverse: Z = Y
†.

The pseudoinverse is defined via the singular value decomposition, and in-
verts all non-zero eigenvalues of the original matrix while preserving its
null space.
We neglect shunt admittances in this work. At active nodes, shunt admit-
tances are irrelevant as both voltage and current measurements are avail-
able.

Effective Impedance

In [146], the effective resistance rij of a resistive network is defined as the
voltage drop between nodes i and j when 1 amp of current is injected
at i and extracted at j. This is a fundamental quantity for parametriz-
ing network behavior. Similarly, we define effective impedance ⇣⇣⇣ij as the
complex-valued voltage phasor difference between nodes i and j of a resis-
tive+reactive network when (1+ 0j) amp of fundamental frequency current
is injected at i and extracted at j. ⇣⇣⇣ij is computed from Z as:

⇣⇣⇣ij = (ei - ej)
T
Z(ei - ej) (13)

Effective impedance is symmetric: ⇣⇣⇣ij = ⇣⇣⇣ji. All pairwise effective impedances
can be collected into matrix ⇣⇣⇣ 2 Cn⇥n such that ⇣⇣⇣(i, j) = ⇣⇣⇣ij. ⇣⇣⇣A 2 Ca⇥a is
the collection of effective impedances between active nodes. We use sub-
scripts rather than parentheses with ⇣⇣⇣ to emphasize that ⇣⇣⇣, unlike Z, isn’t
structured in a useful manner. The entries of Z can be written in terms of
⇣⇣⇣ as follows:

Z(i, j) = -
1

2

✓
⇣⇣⇣ij -

1

n

nX

k=1

(⇣⇣⇣ik +⇣⇣⇣kj) +
1

n2

nX

k=1

nX

l=1

⇣⇣⇣kl

◆
(14)
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In radial electric networks, effective impedance are a valid distance metric,
as impedances add in series, making them useful for distance-based latent
tree reconstruction algorithms.

Kron Reduction

While I = YV relates voltages and currents at all nodes, the Kron reduction
reduces this equation to relate voltages and currents at active nodes only
[146], [148]. (In general, the Kron reduction can eliminate any subset of
nodes U ✓ P. We assume U = P.) The Kron reduction is derived from
Ohm’s law using the fact that I

T
i = 0, 8i 2 P. Without loss of generality,

we partition the complete V and I matrices into active and passive nodal
measurements, plugging in IP = 0:


IA

0

�
=


YAA Y

T
PA

YPA YPP

� 
VA

VP

�
$


VA

VP

�
=


ZAA Z

T
PA

ZPA ZPP

� 
IA

0

�

IA = (YAA - YPAY
-1
PP

Y
T
PA

)VA $ VA = ZAAIA

YK , YAA - YPAY
-1
PP

Y
T
PA
$ ZK , ZAA

The Kron reduced admittance matrix, YK 2 Ca⇥a, is the Schur complement
of Y 2 Cn⇥n, with respect to the passive node set P. For Laplacian matri-
ces, the Schur complement is the cumulative result of successive Gaussian
eliminations of every passive node. The Kron reduced impedance matrix,
ZK 2 Ca⇥a, is the ZAA block of Z 2 Cn⇥n. YK, like Y, is an admittance ma-
trix and is therefore rank deficient. Consequently, ZK = Y

†
K is an impedance

matrix.
Physically, Kron reduction eliminates passive nodes, replacing the origi-
nal network connections with a set of fictitious connections that preserve
effective impedances between active nodes:

8i, j 2 A : ⇣⇣⇣ij = (ei - ej)
T
ZK(ei - ej).

The set of pairwise effective impedances between active nodes are denoted
⇣⇣⇣A. Therefore, the Kron reduction preserves the “input-output” behavior—
the relationship between voltages and currents at active nodes—of the com-
plete network.
There are many benefits to the Kron representation. It relates measure-
ments at only the network active nodes. Practically, this makes the Kron
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representation useful when sensor installations or measurement availabil-
ity is limited. However, the Kron reduction YK is still rank deficient.

Lemma 2. YK is rank deficient with 1 2 ker(YK).

Proof. Since Y is a loopless Laplacian matrix, YK is also a loopless Laplacian
[146]. Therefore, YK1 = 0.

�.�.� Fundamental limitations of Electrical Network Data Sets
In general, Y is not recoverable from V and I measurements without prior
knowledge of the network topology, even with full measurement coverage
[61]. This is due to fundamental limits—established in Thm. 1—on the
rank of I 2 Cm⇥t and V 2 Cm⇥T from arbitrary network node subset M.
Intuitively, a data matrix’s rank upper-bounds the information it contains:
informationally equivalent matrices must have equal ranks.

Theorem 1. (A) For any V 2 Cm⇥t matrix constructed from time series measure-
ments of voltage phasors at all nodes in the set M such that M ✓ N: rank(V) 6 a
(B) For any V 2 Cm⇥t matrix with t > a constructed from time series measure-
ments at a subset of nodes M such that A ✓M ✓ N: rank(V) = a

Proof. By Ohm’s Law I = ȲV and by Kirchoff’s current law, rank(I) 6 a- 1.
If m = n, Ȳ is the complete network admittance. If m < n, Ȳ is the Kron
reduction of Y with respect to nodes M. From lemma 1, rank(Ȳ) = m- 1.
By Sylvester’s rank inequality, rank(I) > rank(V) + rank(Y) - m =)
rank(V) 6 a, proving Part A. Now consider A ✓ M ✓ N. By the def-
inition of a graph Laplacian, dim(ker(Ȳ)) = 1, with ker(Ȳ) = 1. How-
ever, assuming positive voltage measurements, 1 is not in the span of
ker(V). Therefore the kernel dimensions of the matrix product I = YV are
additive—dim(ker(I)) = dim(ker(Y)) + dim(ker(V))—and Sylvester’s in-
equality holds with equality: rank(I) + 1 = rank(V). Assuming some load
variation, the bound on the rank of I holds with equality: rank(I) = a- 1.
Thus, rank(V) = a.

Thm.1 implies that Y cannot be estimated from V and I without prior
knowledge of the network. That is, the information to uniquely specify
Y does not exist in V and I alone. Consider when V is not full rank (when
the network contains at least one passive node). Then, 9y 2 ker(VT )



�.� � ������� �������� 84

such that: I = YV = (Y + 1yT )V. Similarly, 9z 2 ker(VT ) such that:
V = ZI = (Z + 1zT )I. Thus Y and Z are not uniquely recoverable, as
there are multiple possibilities for these matrices that are consistent with
the measurements. Therefore, for a network with any passive nodes, unsu-
pervised Y estimation with zero prior information is generally impossible.
Yet, Y contains two distinct pieces of information: network connectivity and
effective impedances. While Thm. 1(A) says it is generally impossible to
estimate the network connectivity solely from V and I, Thm. 1(B) implies
it is always possible to estimate effective impedances between active nodes.
That is, the network’s input-output behavior is fully contained in active
node measurements VA and IA. Indeed, the matrix relating VA and IA is
the Kron reduced admittance YK, and it can be uniquely recovered from VA

and IA alone. This is established (as a particular case of a broader result),
by Thm. 2:

Theorem 2. Given measurements V 2 Cm⇥T and I 2 Cm⇥T , at node set M

such that A ✓ M ✓ N, there is a unique matrix Y relating I to V according to
I = YV iff V has full row-rank, and a unique matrix Z relating V to I according
to V = ZI iff I has full row-rank. When unique, Y and Z are respectively the
network impedance and admittance matrices or an appropriate reduction.

Proof. Suppose ker(VT ) 6= ; (ie V is not full row rank). Then, 9y 2 C1⇥m

such that yV = 0. Let Ŷ be a solution to I = YV. Then, I = ŶV =) 8↵ 2
C : I = (Ŷ + ↵y)V. Therefore, there are an infinite number of possible
solutions. Now suppose ker(VT ) = ; (V does have full row rank). Let Ŷ1

and Ŷ2 be two possible solutions to I = YV. Then, I = Ŷ1V = Ŷ2V =)
(Ŷ1 - Ŷ2)V = 0. This contradicts ker(VT ) = ;, so there can not be two
solutions. A symmetric proof applies for the uniqueness of Z when I has
full row rank.

While Thm. 1 indicates it isn’t generally possible to recover Y from YK, in
the special case of radial networks it is possible, as discussed next.

Radial Networks

It is a property of the Schur complement that Y cannot always be recovered
from YK. The mapping from a matrix A to its Schur complement, AU, with
respect to an arbitrary row and column subset U isn’t generally injective,
so recovery of A from AU isn’t guaranteed, even when A is restricted to the
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set of weighted Laplacians of fully-connected graphs. However, when A is
further restricted to the set of Laplacians of tree graphs, denoted T, with
only passive nodes eliminated—U ✓ P—the following holds:

Theorem 3. The Schur complement mapping from A 2 T to AP is injective. That
is, no Schur complement of A 0 2 T\A with respect to any set of passive nodes can
produce AP.

Thm. 3 holds for trees with real or complex edge weights, and is stated here
without proof. The proof is based on the crg, which demonstrates that a
radial tree is exactly recoverable from exact distances. For radial electrical
networks, effective impedances are a valid distance metric. Together, Thm.
1-3 imply Corollary 1:

Corollary 1. For any radial electric network, Y is fully recoverable from perfect
voltage and current PMU measurements at every active node.

Estimating ⇣⇣⇣A is a necessary intermediary step in recovering the full net-
work admittance model from active node measurements. In the next sec-
tion we present a novel network representation which improves effective
impedance estimation accuracy from noisy active node PMU measurements.

�.�.� subKron Reduction
We introduce the subKron reduction, a further reduction of electric networks
that builds on the Kron reduction. Recall, the Kron voltage-current rela-
tionships: IA = YKVA $ VA = ZKIA. Since relative, not absolute voltages,
drive power flows, we can subtract the substation voltage—assumed to be
the first—from all other voltages, without modifying the left hand side
(Lemma 1).

2

64
- I

T
A1 -
...

- I
T
Aa -

3

75 =


Y11 Y

T
1K

YK1 YsK

�
2

64
- 0 -

...
- (VT

Aa - V
T
A1) -

3

75 (15)

We define VsA 2 C(a-1)⇥t and IsA 2 C(a-1)⇥t as the data matrices in (15)
with the first row in each removed. The subKron admittance matrix, YsK 2
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C(a-1)⇥(a-1), relates VsA to IsA. YsK is equivalent to YK with the first row
and column removed. This condensation turns (15) to (16) below:

IsA = YsKVsA (16)

We can equivalently derive an expression for the subKron impedance ma-

trix which relates IsA to VsA:

VsA = ZsKIsA (17)

The elements of ZsK are:

ZsK(i, j) = ZK(i+ 1, j+ 1)- ZK(1, j+ 1)- ZK(1, i+ 1) + ZK(1, 1) (18)

Proof. We can derive the subKron impedance matrix as follows: VA -
1V

T
A1 = ZKIA - 1Z

T
K1IA. Z

T
K1 is the first row of ZK and, by symmetry, also

the first column. Expanding the above expression gives:
2

64
- 0 -

...
- (VAa - VA1)

T -

3

75 =

2

64
- (ZK1 - ZK1)

T -
...

- (ZKa - ZK1)
T -

3

75 IA

Where ZK1, ...,ZKa are the rows (or equivalently the transposed columns)
of ZK. By conservation of current, IA1 = -

Pa
i=2 IAi, allowing us to rewrite

the above as follows:

IA =

2
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- IA1 -
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- IAa -

3
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
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T
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- IA2 -
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- IAa -

3

75

where I(a-1) is the (a - 1) ⇥ (a - 1) identity matrix. Define Z̄ = (ZK -

1Z
T
K1)


-1T

I(a-1)

�
. Then the elements of Z̄ 2 Ca⇥(a-1) are related to the values

in ZK by:

Z̄(i, j) = ZK(i, j+ 1)- ZK(1, j+ 1)- ZK(1, i) + ZK(1, 1)



�.� � ������� �������� 87

Using the symmetry of ZK, we can see that 8j : Z̄(1, j) = 0: Z̄(1, j) =
ZK(1, j+ 1)- ZK(1, j+ 1)- ZK(1, 1) + ZK(1, 1) = 0 Therefore, the first row
of Z̄ is 0, corresponding to the row of 0s in VA - 1V

T
A1. Discarding both

rows of zeros reduces the equation dimensionality and leaves us with a
square matrix ZsK 2 C(a-1)⇥(a-1).

2

64
- (VA2 - VA1)

T -
...

- (VAA - VA1)
T -

3

75 = ZsK

2

64
- IA2 -

...
- IAA -

3

75

ZsK is the subKron impedance matrix with elements defined by Eq. (18),
which comes directly from the values in Z̄. The two subKron forms of
Ohm’s Law are then:

[Admittance] IsA = YsKVsA $ VsA = ZsKIsA [Impedance]

The subKron representation has lower dimensionality—by one—than the
Kron representation, but is informationally equivalent:

Lemma 3. YK is always recoverable from YsK for a network without shunt admit-
tances.

Proof. YK is a loopless Laplacian. YK1 = 0 and Y
T
K = YK. YsK corresponds

to YK with the first row and column removed. We can recover the first
row and column of YK from the elements of YsK as follows: i 2 {2, ..., a} :
YK(i, 1) = YK(1, i) = -

Pa-1
j=1 YsK(i, j) and YK(1, 1) = -

Pa
i=2 YK(i, 1).

An important feature of the subKron representation is its rank:

Lemma 4. Unlike Y or YK, YsK is always full rank.

Proof. This follows from Kirchhoff’s matrix tree theorem, which states that
the total weight of trees in a graph is equal to any cofactor of the graph’s
weighted Laplacian.

T(YK) ,
X

T2T(YK)

w(T)
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T(YK) denotes the total weight of spanning trees in the graph described by
Kron impedance matrix YK, T is one particular spanning tree of YK in the
set of all spanning trees T(YK), and w(T) is the weight of tree T (the sum
of the weights of the edges in T ). One cofactor of YK is YK(1, 1)det(YsK).
Therefore: YK(1, 1)det(YsK) = T(YK). Since |T(YK)| > 1, we have T(YK) > 0.
Therefore, det(YsK) > 0, proving YsK is full rank.

Consequently, we can convert between the subKron impedance and ad-
mittance representations by taking the true matrix inverse: ZsK = Y

-1
sK .

In graph theory terms, the subKron matrix YsK is the reduced Laplacian
of YK. In the following section, we delve deeper into the physical mean-
ing of the Kron and subKron network matrices, by returning to effective
impedances.

�.�.� Effective Impedances Between Active Nodes
Effective impedances are useful to concretely establish what is lost and
preserved in the Kron and subKron reductions. An electrical network ad-
mittance matrix contains two fundamental pieces of information: network
connectivity and effective impedances between network node pairs. Kron
reduction discards the connectivity information, but preserves the effective
impedances between the active nodes, which characterize the network’s
input-output properties. By Lemma 3, subKron reduction also preserves
inter-active node effective impedances. Therefore, though different in di-
mensionality and definition, all the network representations introduced in
Sections 4.3.1-4.3.3 may be used to calculate effective impedances between
active nodes.
Lemma 5 below establishes useful relationships between the elements of
subKron matrix ZsK and the effective impedances of the original network,
⇣⇣⇣.

Lemma 5. The (i, j)th element of ZsK is the effective impedance of the shared
path between nodes i, j 2 A and the substation.

Proof. Combining equations (14) and (18):

ZsK(i, j) =
1

2


⇣⇣⇣1(j+1) +⇣⇣⇣1(i+1) -⇣⇣⇣(i+1)(j+1) -⇣⇣⇣11

�
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Figure 29: Relationships between the different network models. Bidirectional ar-
rows indicate informational equivalence of representations.

Corollary 2. The diagonal elements of ZsK are the effective impedances to the
substation.

Proof. By Eq. (18), the diagonal elements of ZsK are related to the elements
of ZK:

ZsK(i, i) = ZK(i+ 1, i+ 1) +ZK(1, 1)- 2ZK(1, i+ 1) = ⇣1(i+1)

The relationships between the different network models and the effective
impedances are summarized in Fig. 29. Note that ⇣⇣⇣A ✓ ⇣⇣⇣.

�.�.� Impedance Estimation
The Kron and subKron representations are informationally equivalent, but
estimating them from real-world measurements are not identical challenges.
Noise in real world measurements makes network impedance estimation—
i.e. “inverting” Ohm’s Law to infer Y or Z from V and I—nontrivial. Here,
impedance estimation refers to estimation of either the complete (Y or Z),
Kron (YK or ZK) or subKron (YsK or ZsK) network representations. As we
establish in the following, the major advantage of the subKron reduction
is that it can be estimated with better accuracy than the Kron reduction in
the presence of noise.
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Ordinary Least Squares

A simple regression method is ordinary least squares (ols). Given data ma-
trices R 2 Cn⇥t, P 2 Cn⇥t which are known to obey an underlying linear
relationship parametrized by matrix M 2 Cn⇥n, we can write: R ⇡ MP
where we use ⇡ rather than = to reflect that R and P contain noise. Then,
ols estimates M from R and P as

M̂ = argmin
M

||R - MP||F

The solution to this objective, which is the best linear unbiased estimate of
M, has a closed form:

M̂ = (PH
P)-1

P
H

R

There are no constraints on the structure of M̂ in the above formulation.
Many alternatives to ols exist including those which regularize the objec-
tive, explicitly account for noise in both P and R or enforce special struc-
ture on M. We focus on ols estimation because of its intuitive objective,
lack of tuning parameters, and computational efficiency, which makes it
suited to online applications of impedance estimation such as fault detec-
tion. We also find ols performs comparably to alternative techniques in
practice. Note that ols can be replaced by any regression technique within
our larger proposed method.
For real-world applicability, we must understand the sensitivity of estimate
M̂ to noise in the measurements. Depending on the structure of the P

H
P

matrix, (PH
P)-1 can contain very large values that magnify noise in P

H
R

and produce a poor M̂ solution. The condition number of P
H

P is a metric
for understanding the noise magnification of (PH

P)-1 and is defined as the
ratio of its largest and smallest eigenvalues:

cond(Q) , �max(Q)

�min(Q)

A larger cond(PH
P) means (PH

P)-1 will magnify noise, and M̂ will be
more noise sensitive. At the extremes, cond(Q) = 1 means Q is very well-
conditioned, while cond(Q) = 1 means it is rank deficient and not invert-
ible. cond(PH

P) is related to the correlation between the rows of P. If the
rows of P are highly correlated, cond(PH

P) is large, and the estimate is
more noise sensitive.
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Conditioning of Impedance Models

The ols network impedance estimation from measurement data is formu-
lated as follows:

Ŷ = argmin
Y

||I - YV||F = (VH
V)-1

V
H

I (19)

|| � ||F indicates the Frobenius norm. Note the inevitable inversion of a data
matrix product: V

H
V in (19). Expressions for ŶK, ŶsK, ẐK and ẐsK are

determined by active node measurements alone (Thm. 2). The full set of
ols model estimate equations are given below:

Complete:

Ŷ = argmin
Y

||I - YV||2 = (VH
V)-1

V
H

I

Ẑ = argmin
Z

||V - ZI||2 = (IHI)-1
I
H

V

Kron reduced:

ŶK = argmin
Y

||IA - YVA||2 = (VH
A

VA)
-1

V
H
A

IA

ẐK = argmin
Z

||VA - ZIA||2 = (IH
A

IA)
-1

I
H
A

VA

subKron reduced:

ŶsK = argmin
Y

||IsA - YVsA||2 = (VH
sAVsA)

-1
V

H
sAIsA

ẐsK = argmin
Z

||VsA - ZIsA||2 = (IHsAIsA)
-1

I
H
sAVsA

Each formulation will have different noise sensitivity since each inverts a
different data matrix. The rank constraints of Thm. 1 immediately indicate
an issue with estimating Y or Z from measurements at every network node:
V, I 2 Cn⇥t. Thm. 1 establishes I is rank deficient, making computation
of (IHI)-1 impossible. When n > p+ 1 (the network contains more than
one passive node), V will also be rank deficient, making computation of
(VH

V)-1 similarly impossible. Note Thm. 1 is for noiseless measurement
matrices. With noisy V and I, the rank constraints won’t hold exactly, but
will nonetheless manifest in the matrix conditioning. Therefore, though it
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may be possible to compute (IHI)-1 and (VH
V)-1 for real measurements,

these matrices will be highly ill-conditioned, and the resulting impedance
estimates will be noise sensitive to the point of impracticality. Similarly, ZK

cannot be estimated directly as IA is rank deficient.
While Y, Z, and ZK cannot be estimated uniquely, Thm. 2 establishes that
YK, YsK and ZsK can, since VA,VsA and IsA are full rank. This is another
perspective from which to see the Kron reduction as the best possible esti-
mate of the network impedance given no prior information. While YK, ZsK

and YsK are informationally equivalent, estimating them from real data
will have differing accuracies as each entails the inversion of a different
data matrix with its own condition number. The following conditioning
trend holds for the measurement data:

cond(IHsAIsA) < cond(VH
sAVsA) < cond(VH

A
VA) (20)

The conditioning improvement from VA to VsA is intuitive, as taking volt-
age differences is akin to common mode removal [115], reducing data cor-
relation. While nodal currents are predominantly driven by individual
loads which often behave independently, nodal voltages are correlated by
the network structure itself. Therefore, voltage measurements tend to be
more correlated than currents, causing VsA to be more poorly conditioned
than IsA. Thus, ŶsK is more noise robust than ŶK, and ẐsK estimation is the
most noise robust. Ultimately, the improved data conditioning provides
better ⇣⇣⇣A estimates and, in turn, more accurate network reconstruction via
the Recursive Grouping algorithm, described next.

�.�.� Recursive Grouping Algorithm
To reiterate, the Kron reduction preserves the effective impedances between
active nodes. Thm. 3 tells us that in a radial network, effective impedances
between every pair of active nodes is sufficient to recover the full network
structure. In other words, with one piece of apriori information about the
network—specifically that it is radial—we are guaranteed recovery of the
network topology and the impedances between all nodes just from ⇣⇣⇣A.
The recursive grouping (rg) algorithm, presented and described in [144],
reconstructs a radial network from real-valued information distances d
between the “observed” nodes O, defined here as the set of nodes for
which the information distances are known but the parent node is un-
known. By comparing the pairwise quantities dij to the triplet quantities
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�ijk , dik-djk, 8(i, j, k) 2 O, O is recursively shrunk until the tree is recon-
structed, as demonstrated on the toy network in Fig. 30. Using resistance
and reactance as the information distances in two separate, real-valued re-
constructions, [145] applied rg to radial distribution networks. With noisy
data, this separation into real-valued reconstructions is a source of unnec-
essary reconstruction error.
We present complex recursive grouping (crg) is a modification of relaxed rg
that uses complex-valued effective impedances directly in the reconstruc-
tion. That is, dij = ⇣⇣⇣ij. To understand crg, it is important to have a rudi-
mentary understanding of its algorithmic progenitors, described in the fol-
lowing interlude.

Interlude: Recursive Grouping & Relaxed Recursive Grouping

Recursive grouping recursively reconstructs the radial network, progres-
sively shrinking O as parent nodes are identified and introduced according
to the distance comparisons of Lemma 6. For distribution networks, the
initial O is the set A, which includes at least all of the leaf nodes. Once a
parent is identified or introduced, its children nodes are removed from O.
To determine connectivity relationships between observed nodes, rg com-
pares pairwise distance dij with the distance difference �ijk , dik - djk,
for all possible combinations i, j, k 2 O. The following Lemma 6 [144] de-
scribes the relationship between dij and �ijk that hold for nodes which are
parent-child pairs or siblings.

Lemma 6. (i) dij = �ijk, 8k 2 O\(i, j) iff i is a leaf node in O, and j is the parent
of i.
(ii) -dij < �ijk = �ijk 0 < dij, 8k, k 0 2 O\(i, j) iff i and j are leaf nodes in O,
and siblings.

If two or more sibling nodes are discovered but their parent node is absent
in O, a new parent node is added to the tree. As new nodes are added, the
effective impedances between them and the rest of the network are calcu-
lated using linear operations (eqns. (13)- (14) in [144]). Thus, overall, rg
is a linear operator.
[144] also introduces “relaxed recursive grouping” for application in sce-
narios where the inter-node distance estimates (d̂) are contaminated by
noise and errors because of which the relationships of Lemma 6 will no



�.� � ������� �������� 94

longer hold exactly. For this scenario, the parent-child criteria of Lemma 6
is replaced with:

|d̂ij - �̂ijk| 6 ✏, 8k 2 Kij, (21)

and the sibling group criteria of Lemma 6 is replaced with:

⇤̂ij , max
k2ij

(|�̂ijk|)- min
k2ij

(|�̂ijk|) 6 ✏. (22)

Here, as per [144], Kij is a subset of nodes O that are within some proximity
of both i and j according to our distance metric. Eqs. (21) and (22) intro-
duce a bias, because it is more likely that node pair (i, j) will be recognized
as a parent-child or sibling pair if set Kij contains fewer nodes. To avoid
this, we modify the relaxed rg tests to consider the average of �̂ijk value
over k 2 Kij rather than the max. The proposed relaxed rg parent-child
and sibling tests are precisely the crg tests described next.
There is one final caveat. In order for relaxed RG to converge, it must se-
lect at least two nodes in O to be a parent/children pair or siblings at each
iteration. But with imperfect d̂ estimates, it is possible that no nodes in O

satisfy the parent-child or sibling tests for a given ✏. This can be addressed
using the expanding ✏ technique presented in [145] in which ✏ is iteratively
increased until some nodes satisfy the parent-child or sibling tests.
In crg, which uses complex-valued distances, Lemma 6 becomes:

Lemma 7. (i) ⇣⇣⇣ij =���ijk, 8k 2 O\(i, j) iff i is a leaf node in O, and j is the parent
of i.
(ii) ���ijk = ���ijk 0 6= ⇣⇣⇣ij, 8k, k 0 2 O\(i, j) iff i and j are leaf nodes in O, and
siblings.

While crg uses complex impedances, the inequality tests of crg must be
performed on the real number field R which, unlike C, is ordered. Formu-
lating real-valued inequality tests for complex-valued impedances requires
care. A natural suggestion is to use the lexicographic ordering; that is, to
compare magnitudes. However, with noise and imperfect ⇣̂⇣⇣ estimates, this
may lead to reconstruction errors. Instead, we use the ✏-neighborhood of
�̂��ijk in the complex plane for some tolerance choice ✏. A complex number
z is in the ✏-neighborhood of �̂��ijk if |z - �̂��ijk| 6 ✏. As in [144], we define
Kij as the subset of nodes close to both i and j, with closeness quantified
by parameter ⌧:

Kij , {k 2 O\(i, j)|max(d̂ik, d̂jk) 6 ⌧}



�.� � ������� �������� 95

Figure 30: Applying crg to the toy network of Fig. 28. The nodes in O are high-
lighted in green in each step.

The parent-child test in crg is:

�̂ij ,
1

|Kij|

X

k2Kij

(|d̂ij - �̂��ijk|) 6 ✏ (23)

The crg sibling test is:

�̂ij ,
1

|Kij|(|Kij|- 1)

X

k2Kij

X

k 02Kij/k

(|�̂��ijk - �̂��ijk 0 |) 6 ✏, (24)

where �̂ij is the average distance between the complex quantities d̂ij and
�̂��ijk for k 2 Kij, and �̂ij is the average distance between �̂��ijk and �̂��ijk 0

for k, k 0 2 Kij. (24) may incorrectly include parent nodes in sibling sets.
This is resolved by removing the parent node from the set of siblings, once
the parent is identified by (23). Finally, the equations that determine the
effective impedances for the new parent nodes (eqns. (27)- (28) in [144])
are linear, and do not need to be modified for complex quantities.
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�.�.� Simulation and Results
We test our topology recovery methods on synthetic data generated by
simulating seven different radial test feeders with the power flow tool mat-
power [149]. To emulate realistic conditions, we use minute-resolution real
power consumption data of nearby homes from the Pecan Street project,
thereby preserving load correlations that exist in the real world. These
correlations manifest in voltage and current measurements and can affect
estimation performance. The seven cases have 4, 9, 12, 13, 13, 18, and 29
load nodes. The two 13 load cases differ in their topologies. All test cases
have 3 passive nodes, except the 12 load case which has 4. Five of the seven
test cases are visualized in Fig. 31. For each case, we simulate and collect
time series phasor measurements at the active (load and substation) nodes
only. To model real µPMU measurements, we add complex additive white
Gaussian noise (AWGN) to the voltage and current measurements gener-
ated by matpower. This a reasonable noise model choice based on empiri-
cal PMU noise studies [45]. The noise level is specified as a signal-to-noise
ratio (SNR): the mean squared magnitude of the true measurement time
series divided by the noise variance. Note that the noise sensitivity of ols
is determined by the condition number of the inverted data matrices. By
definition, the condition number reflects estimate sensitivity to the norm
of the noise, not its distribution. Therefore, though we use AWGN in our
simulations, the relative performance of the methods will be the same for
other noise distributions [150].
Generating voltage measurements with matpower takes on average 0.98
ms per load per time point. That is, simulating a 10 node network over
1000 time points takes 9.8 seconds. The ols network estimation process
takes 0.7 s. per node per trial.

Effective Impedance Estimation Results

From the noisy measurements of each test case, we estimate the effective
impedances ⇣⇣⇣A via three different approaches: estimating either ŶK, ŶsK,
or ẐsK and then computing ⇣⇣⇣A using the equations of Section 4.3.4. We
determine the error between the three different estimates of ⇣̂⇣⇣A—from each
of ŶK, ŶsK and ẐsK—and the true ⇣⇣⇣A. These are all matrix quantities, so the



�.� � ������� �������� 97

Figure 31: Visualization of five of the total seven test networks. Passive nodes are
red, active nodes are blue. The set of active nodes is the set of load
nodes plus the substation. The measured nodes are all active nodes.
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Figure 32: Log of the condition number of noiseless measurements for each test
case. Larger values lead to greater noise sensitivity.

error is quantified by and reported as the normalized Total Vector Error
(nTVE). The nTVE between complex matrices M and M̂ is defined as:

nTVE(M, M̂) , ||M - M̂||2

||M||2

⇣⇣⇣A estimation accuracy versus SNR is shown in Fig. 33 for each of the three
estimation approaches. Across approaches, we see errors are larger and de-
cay more slowly with increasing SNR for test cases with more loads. The
corresponding conditioning trend for the test cases is recorded in Fig. 32.
As the number of loads (and consequently measurement points) grows, the
nodes are more electrically proximate and therefore the voltage measure-
ments more correlated. This leads to poorer conditioning resulting in in-
creased estimation error and noise sensitivity. This is a compelling and per-
haps counterintuitive result—more PMU measurements do not necessarily
improve impedance estimation accuracy if there is noise in the measure-
ments. Fig. 33 also conveys the advantage of the subKron representation
over the Kron representation. ⇣⇣⇣A estimation via ŶK, ŶsK and ẐsK is affected
by the conditioning of VA, VsA and IsA respectively. Since VA is the worst
conditioned, ⇣̂⇣⇣A extracted from Kron admittance YK has high error at low
SNRs and consistently high estimate variance. This result represents the
performance of existing methods assuming they use ols estimation. In
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Figure 33: Estimation error of ⇣⇣⇣A via three ols approaches for five test cases with
varying noise in I and V. Light bands indicate error across 100 trials
per SNR value with different noise instances. Dark lines show average
error.
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Figure 34: Estimation error of ⇣⇣⇣A via three ols approaches for five test cases with
varying number of measurement time points t used in estimation. The
noise level in I and V is constant SNR = 100. Light bands indicate
error across 100 trials per t choice with different noise instances. Dark
lines show average error.
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comparison, ⇣̂⇣⇣A extracted from ZsK is clearly the most noise-robust with
orders of magnitude lower error at low SNRs and dramatically lower es-
timate variance across the entire SNR test range. Estimation error drops
more rapidly with increasing SNR for ⇣̂⇣⇣A extracted from ZsK than from
YK. The improvement is especially pronounced for the larger test cases, as
in these cases YK and YsK estimation require inversion of the increasingly
correlated and ill-conditioned voltage measurements, while IsK estimation
inverts the mostly uncorrelated current measurements.
While low mean error is obviously critical, low error variance is also im-
portant. The high variance of noise sensitive estimation methods has op-
erational consequences. For example, a dramatic change in the network
impedance estimate may be due simply to measurement noise, as opposed
to real topological changes or faults, leading to frequent false alarms that
waste time and reduce operator trust in both the sensors and algorithms.
Low error variance is an important advantage of the subKron representa-
tion over prior work.
Fig. 34 plots ⇣⇣⇣A estimation error for increasing number of measurement
data points t. The SNR is fixed. The ZsK method provides orders of mag-
nitude better performance at small values of t indicating that it is more
suitable than existing methods for real time applications. The ZsK method
also provides better performance at large values of t, and unlike the YK

method, increasing t results in a significant reduction of ẐsK error across
all of the test networks.

Tree Reconstruction Results

To evaluate crg reconstruction performance, we compute the Robinson-
Foulds metric (RF) used in computational biology on phylogenetic trees
[151]. RF quantifies the difference between two trees that share an active
node set. It assesses the validity of each reconstructed edge independent
of reconstruction performance upstream or downstream of that edge. We
introduce the normalized Robinson-Foulds metric (nRF), defined as the RF
metric divided by the total number of active nodes: nRF = RF

A . Normaliza-
tion roughly enables performance comparison across networks of different
sizes. To evaluate estimation performance, we use nRF to compare the
topology reconstruction against the true network. Thus, the nRF serves as
an error metric with lower scores indicating better recovery.
The performance of crg is evaluated on two different effective impedance
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input data sets. The “baseline” data set consists of effective impedances
⇣̂⇣⇣A calculated from the estimate of ŶK—representing the approach of ex-
isting methods that do not consider measurement data conditioning. The
second data set consists of ⇣̂⇣⇣A calculated from ẐsK. Fig. 35 shows crg con-
sistently performs better when provided with the more accurate effective
impedances calculated from ẐsK, over those calculated from ŶK. Perfor-
mance is significantly better across a range of feeder sizes for SNRs from
10 to 1000.
The execution time of crg scales non-linearly with network size. On ⇣̂⇣⇣A
from ŶK, crg runs in .06, .39 and 107 s on the 4, 9, and 29 load networks
respectively. On ⇣̂⇣⇣A from ẐsK, crg is faster—.06, .34 and 65 s, respectively.
Therefore, crg is faster on more accurate effective impedances because the
✏ tolerance does not need to be increased as often and in each iteration it
is more likely that multiple observed nodes are connected.

F
This section described tools for extracting visualizable and actionable topol-
ogy information solely from PMU data with no prior system information
except the assumption of radial structure. By starting with fundamental
physics, the tools have strong theoretical grounding and well-defined per-
formance guarantees and noise sensitivity. This physics-oriented approach
yields both practical tools as well as insightful theoretical results. This
section made the following contributions:

• It is generally impossible to uniquely recover the complete network
even from comprehensive V and I phasor measurements. However,
it is always possible to recover ⇣⇣⇣A, pairwise effective impedances be-
tween active nodes, from V and I measurements at all active nodes.
Happily, in radial networks, ⇣⇣⇣A is sufficient for complete network re-
covery.

• The subKron representation, though informationally equivalent to
the Kron reduced representation, proffers a more noise robust ap-
proach for ⇣⇣⇣A estimation.

• For radial systems, the complex recursive grouping (crg) algorithm
recovers the full network from ⇣⇣⇣A and performs well even when ⇣̂⇣⇣A
is noisy.

• Our simulations demonstrate the efficacy and practical challenges of
the subKron and crg methods. While subKron-based ⇣⇣⇣A estimation
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Figure 35: nRF of radial network reconstructions from YK (top) and ZsK (bottom).
The subKron method leads to lower reconstruction error than the Kron
method across test case sizes for SNRs 10- 1000. Performance is com-
parable for SNR = 1. nRF values are averaged over 5 trials.
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outperforms Kron-based estimation, all impedance estimation tech-
niques become increasingly noise sensitive as network size grows.
Also, crg execution time increases nonlinearly with reconstruction di-
mension. These practical limits create SNR-dependent limits on the
size of networks that can be estimated.

The main usability limitation of this approach—and indeed this class of
approaches—is the onerous sensor coverage demands. PMU voltage and
current measurements at every active node in a distribution network—
which in practice is the majority of network nodes—is a formidable ask.
Reaching this level of coverage at the distribution level remains a distant
dream. To reach usability, we must ease this measurement burden, while
preserving the beneficial features of an underlying physics model. How-
ever, before striding in this direction, we must alleviate a common but sig-
nificant assumption implicit in this approach. The tools described in this
section assume a balanced three phase network that can be represented as
a single phase system. Every nodes is assumed to have all three phases,
and all measurements used are from one of the phases, with symmetric
behavior assumed on the others. This limits the tool application to many
distribution networks, which have unbalanced behavior across phases, sin-
gle or two phase laterals and many nodes with some subset of all three
phases. We extend physics-based topology estimation to this unbalanced
three phase scenario in the next section.

�.� ��������� �� ����� ����� ��������
This section presents a greedy algorithm for joint phase and topology iden-
tification, termed gpt, which extends topology identification to generalized,
unbalanced radial distribution networks. Like the approach in Section
4.3, gpt is rooted in a physics model, lending similar benefits of theoret-
ical justification and precise assumptions. Unlike the tools of Section 4.3,
gpt recovers only the network connectivity without impedances, but also
has lower data requirements, demanding only voltage measurements at all
nodes. The gpt algorithm surpasses the prior work in topology and phase
estimation in the following respects.
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Figure 36: (a) Notation visualized for two nodes and connecting line. (b) ToyNet:
A toy network with three, two, and one phase nodes used as a running
example.

• It is provably correct under realistic assumptions and runs in polyno-
mial time.

• It is applicable to real distribution networks, where some buses may
have a subset of all three phases.

• It requires only voltage measurements; either phasors or magnitudes
(with slight differences in performance).

• It utilizes voltage statistics enabling successful phase identification
even from voltage magnitudes alone and in the presence of phase
shifting transformers [152].

Based on a novel, linearized, multi-phase power flow model mapping
nodal current injections to nodal voltage phasors, gpt requires that the
network is radial with diagonally dominant line impedance matrices to
guarantee correctness. When phases are known, gpt reduces to provable,
greedy multi-phase topology learning generalizing prior work in [130] for
the balanced setting. When topology is known apriori, it reduces to a lo-
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cal approach to phase identification. We demonstrate gpt’s performance
and improvement over prior work in both phase and topology recovery on
multiple IEEE test networks simulated in Open-DSS, an open source distri-
bution system simulator that can handle unbalanced networks [153].
This section is organized into multiple sub-parts. Section 4.4.1 presents
a linearized model for unbalanced, three-phase networks with missing
phases which is the theoretical basis of gpt. Section 4.4.2 theoretically
derives and justifies a proximity metric for phase identification. Section
4.4.3 justifies a distance metric for topology identification once phases have
been identified. Section 4.4.4 puts the prior parts together to propose gpt:
an algorithm for joint phase and topology recovery. Finally, Section 4.4.5
presents validation of gpt on non-linear voltage data for three IEEE dis-
tribution test networks, simulated in OpenDSS. We compare gpt’s perfor-
mance with algorithms in prior work, demonstrating that gpt outperforms
the prior work, and is robust to non-ideal measurements.

Notation

Notation is summarized below and visualized in Fig. 36(a). While overall
consistent with other sections, the notation here is more elaborate, reflect-
ing the complexity of three phase, unbalanced networks.

N Node set E Edge set

Vk =

2

4
v
a
k

v
b
k

v
c
k

3

5 Node k voltages Ik =

2

4
i
a
k

i
b
k

i
c
k

3

5 Node k current
injections

Mk Node k phases Mkl Line kl phases
V All nodal volt-

ages
I All nodal injec-

tions
Ykl Multiphase ad-

mittance matrix
of line kl

Y Network admit-
tance matrix

Yk,l Y block for
nodes k & l

Y
�, 
k,l Y element for

phase � at node
k & phase  at
node l

AT Transpose AH Conjugate trans-
pose
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�.�.� Unbalanced Three Phase Model
Before introducing the unbalanced three phase network model, it is helpful
to review the single phase balanced power flow model. In the single phase
case, each line ij has an associated scalar admittance yij and impedance
zij = y

-1
ij . The single phase voltage phasors and current injections are

related by the (|N|⇥ |N|) system admittance matrix Y as I = YV with the
form:

Yi,j = -yij, Yi,i =
X

ij2E
yij ) Y = ADAT

Y can be factored into |N|⇥ |E| incidence matrix A and diagonal line impedance
matrix D [154]. Without loss of generality, we choose all edges to be di-
rected away from the network “root”, generally the point of common cou-
pling (PCC) or substation. If edge ij is oriented from i to j, the correspond-
ing elements of A are

Ai,ij = 1, Aj,ij = -1, Ar,ij = 0 if r 6= i 6= j

where Ai,ij is the ith element of the column corresponding to edge ij. By
definition, as Y1 = 0, Y is not invertible. An invertible reduced admittance
matrix, Y, is constructed by choosing a reference node r and removing the
corresponding row and column of Y (recall the transformation from the
Kron to subKron matrices in Section 4.3). Since the system is lossless, its
inverse relates voltages and currents as follows:

Z = Y-1, V = ZI

V contains voltages differences to the reference voltage while I contains
current injections at non-reference nodes. Let Ei and Ej denote the edge sets
on the unique path in the radial system to r from nodes i and j respectively.
The value of Zi,j is given by :

Zi,j =
X

kl2(Ei\Ej)
zkl.

Thus, the elements of Z correspond to the impedances of common paths
between node pairs and the reference [114], [130].
The unbalanced three phase model follows from the single phase one. To
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clarify definitions, we use ToyNet (Fig. 36b), a simple, unbalanced, three
phase radial network, as a running example. We begin with the model for
a multiphase line ij, with phases Mij ✓ {a, b, c}. The voltage across ij is
related to the current along each phase of the line by line impedance matrix
Yij:

Iij = Yij(Vi - Vj) (25)

Yij is the inverse of the (|Mij|⇥ |Mij|) line impedance matrix, Zij. Eq. (25)
for line 56 in ToyNet is:


i
a
56

i
c
56

�
= Y56


v
a
5 - v

a
6

v
c
5 - v

c
6

�

The node i current injection, denoted Ii, is a vector of injections on each
phase of i, and is given by the sum of line flows: Ii =

P
ij2E Iij. Building

up from the current-voltage relations across individual lines in (25), the
multi-phase voltages and currents injections across the network are related
by I = ŶV. Note this model can describe a network with a subset of
phases at some nodes. Ŷ is the multi-phase system admittance matrix
with dimensions (

P
i2N |Mi|)⇥ (

P
i2N |Mi|). The i, j block of Ŷ is

Ŷi,j = -Yij, Ŷi,i =
X

ij2E
Yij (26)

Block Ŷi,j is (|Mi| ⇥ |Mj|), so Yij must be appropriately zero-padded or
reduced if i and j don’t have all the same phases. For ToyNet, Ŷ has the
structure visualized in Fig. 37.

Remark 1. Ŷ can be factored into an incidence matrix Â, which captures the
endpoints of each edge, and D̂, a block diagonal matrix of line admittances: Ŷ =
ÂD̂ÂT . D̂ has dimensions (

P
ij2E |Mij|) ⇥ (

P
ij2E |Mij|), with line admittance

matrices Yij along the diagonal. Â is (
P

i2N |Mi|)⇥ (
P

ij2E |Mij|) dimensional.
Its rows correspond to phases at each bus, and columns to phases of each edge.
With edges directed toward the root, assume edge ij 2 E is oriented from i to j.
Then for every ij 2 E, with � 2Mij: Â

��
i,ij = 1, Â��j,ij = -1. All other elements of

Â are zero. Â for ToyNet is visualized in Fig. 37.

Inverting the model

Ŷ maps voltages to current injections, but for phase and topology iden-
tification we need the inverse mapping. By definition (26), Ŷ is singular.
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Figure 37: Visualizing the structure of three phase admittance, adjacency and
impedance matrices for ToyNet.

Again, a reduction denoted Ŷ is invertable. To obtain Ŷ, we remove the
three rows and columns of Ŷ corresponding to the three phases at reference
node r. Ŷ can be factored as: Ŷ = AD̂AT where A is obtained from Â by
deleting the three rows corresponding to r.
To derive Ŷ

-1, we begin with the right pseudoinverse of AT , which has the
following properties.

Lemma 8. Let B be the right pseudoinverse of AT , with rows corresponding to
nodes and columns to edges. For i 2 N with phases Mi, let Ei be the edge set of
the unique path to r. Then,

B� i,kl =

�
-1 8� =  2Mi, 8kl 2 Ei

0 otherwise

Proof. B�i is the row of B corresponding to phase � at node i, while B,�
,ij is

the column corresponding to phase � of edge ij. If � 6=  , B,�T
,ij A, 

,kl = 0. A
column of A has only two nonzero elements, so for � =  , we have

B,�T
,ij A,�

,kl = -1�(ij 2 Ek) + 1�(ij 2 El)

For any edge kl 6= ij, we will have either (ij 2 Ek), (ij 2 El) or (ij 62 Ek), (ij 62
El). Thus B,�T

,ij A,�
,kl = 0 for kl 6= ij. If kl = ij, we have (ij 62 Ek), (ij 2 El)

and B,�T
,ij A,�

,ij = 1. Thus, B,�T
,ij A, 

,kl = 1 iff ij = kl,� =  ) BTA = I.
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Now consider, B�i A
 T
j , the inner product of rows. If � 6=  , this is 0.

Consider when � =  and i 6= j. If j does not lie along the path from i to
the reference, then jk 62 Ei, i.e. there is no edge connected to j in Ei, and
B�i A

�T
j = 0. In contrast, if j lies along the path from i to the reference, there

must be two edges kj, jl 2 Ei oriented to and away from j respectively, as
the path passes through j. Then, B�i A

�T
j = (-1⇥-1) + (1⇥-1) = 0. If

i = j, only edge il = jl 2 Ei, and B�i A
�T
i = 1. Therefore, B�i A

 T
j = 1 iff i =

j,� =  

Therefore, Ŷ
-1

= Ẑ can be written as follows.

Theorem 4. The inverse of Ŷ is given by:

Ẑ = Ŷ
-1

= BD̂
-1BT (27)

where D̂
-1 is block diagonal matrix of line impedance matrices: D̂

-1
ij,ij = Zij.

Further, the element of Ẑ corresponding to phase � at node i and phase  at node
j is given by:

Ẑ
� 
ij =

X

kl2(Ei\Ej)
Z
� 
kl (28)

Proof. Using the structure of B from Lemma 8, we have

ẐŶ = (BD̂
-1BT )(AD̂AT ) = I.

Thus Ẑ = Ŷ
-1.

Consider the block of Ẑ corresponding to nodes i and j. Based on Lemma
8:

Ẑ
� 
ij =

X

kl2E
B��i,klZ

� 
kl B  Tj,kl =

X

kl2(Ei\Ej)
Z
� 
kl

Intuitively, (28) says that a change in current injection on phase  at node
j will affect the voltage at phase � at node i, proportional to the (� )
impedance of the shared path (Ei \ Ej) from i, j to r. In our definition, Ŷ

and Ẑ are ordered with the phases of each node or edge grouped together.
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If all phases exist at all nodes, this is equivalent to a permutation of the
three-phase model in [134], where entries for one phase across all nodes
and edges are grouped together.
Using this theorem, in the unbalanced three phase model, voltages are
related to currents as:

V = ẐI (29)

Here, V contains nodal voltage differences with the voltage for the matching
phase at the reference: V

�
i = v

�
i -v

�
r . I contains all current injections except

at the reference. Note that there is no assumption for all nodes having all
three phases. In the next section, we will use the model of (29) to determine
patterns in voltage statistics to enable phase and topology recovery.

Current and Voltage Statistics

We treat voltages as random variables driven by current via the model of
(29). In our theoretical analysis, we assume

1. current injections are uncorrelated across nodes and phases (includ-
ing at a single node).

cov(i�i , i
 
j ) 6= 0 iff (i = j)\ (� =  ) (30)

2. current injections have equal variance at all nodes.

8i,� : var(i�i ) = s2 (31)

As they are predominantly determined by loads—which are uncorrelated
over time intervals on the order of seconds—current injections can be mod-
eled as uncorrelated across nodes and phases when using high resolution
measurements such as from PMUs. We assume PMUs report at 120Hz, but
our methods apply if resolution is sufficient for measurements to be de-
trended to remove inter-nodal correlations. Assumption (31) is stronger
but permissible in reasonably balanced networks. In Section 4.4.5, we
evaluate how deviations from these assumptions impact recovery perfor-
mance.
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�.�.� Voltage Covariance for Phase Matching
Voltage covariances are informative for phase identification. Under As-
sumptions (30,31), the covariance of the voltage of phase � at node i and
phase  at node j, in the three-phase model (29), is given by:

cov(v�i , v
 
j ) = cov(Ẑ

�
i I, Ẑ

 
j I) = s2Re((Ẑ

�
i )

HẐ
 
j ) (32)

We are interested in the sum of covariances for a particular phase ordering
between nodes i and j. Consider the case where the phases at i are a subset
of those at j (Mi ✓ Mj). Let O denote the ordering/permutation of phases
at j, where O(�) denotes the specific phase at j matched to the phase � at
i. Then, the covariance sum for matching O, denoted by cOij, is:

cOij =
X

�2Pi

cov(v�i , v
O(�)
j ) (33)

Let Ẑi denote the rows of Ẑ corresponding to all phases at node i, and Ẑ
O

j

denote the rows corresponding to the phases at j ordered according to O.
Then cOij is:

cOij = s2Re(vec(Ẑi)
Hvec(Ẑ

O

j )) = s2Re(
X

k2N
vec(Ẑ

H
ik)vec(Ẑ

O

jk))

= s2Re

"
X

k2N

X

mn2(Ei\Ek)
pq2(Ej\Ek)

vec(ZMi

mn)
Hvec(ZO

pq)

#

(34)

The last equality follows from (28). The contribution of a node k to cOij is
the dot product of the common path lengths between i, k and j, k. The
following result shows how cOij enables phase matching.

Theorem 5. Consider cOij given in (33) for Mi ✓ Mj. If condition (35) holds for
each pair of line impedance matrices, then cOij is maximized when O corresponds to
the correct phase matching between i and j.

8M 2 {M1, ...,Mn}, 8st, kl 2 E :

M = arg max
O

Re


vec(ZM

st )
Hvec(Z

O(M)
kl )

�
(35)

where M ranges over every nodal phase set Mi.
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Proof. If (35) holds, every term in the summation in (34) is maximized by
O = Mi. Therefore, Mi maximizes the sum, and Mi = arg maxO cOij

(35) is a condition on every pair of edges, st and kl, in the network. It states
that for every row subset of line impedance matrix Zst (corresponding to
each nodal phase set M1, ...,Mn), the matching rows of Zkl produce the
largest vectorized dot product. This is reasonable as real line impedance
matrices are diagonally dominant. Condition (35) depends on the particu-
lar network considered. In a network where all nodes have all three phases
(M = Mi = {a, b, c}) the condition on the vectorized dot product involves
the full three phase line impedance matrices. if some nodes have a subset
of phases, it will involve sub-matrices of impedance matrices. Note that, in
general, cov(v�i , v

 
j ) > 0 even if � 6=  . If node i has phases a, b and node

j has phases a, c (Mi 6✓Mj), minimizing cij will incorrectly match b, c. The
gpt algorithm avoids such scenarios by ordering nodes; discussed later. In
summary, Theorem 5 allows us to use cOij as a proximity metric for phase
matching.

�.�.� Voltage Difference Variances for Topology
We use voltage difference variances for topology recovery. Define dij to
be the sum of the variance of the voltage differences between correctly
matched phases of nodes i, j. Assuming Mi ✓Mj, dij is:

dij =
X

�2Mi

var(v�i - v
�
j ) =

X

�2Mi

E[(v�i - v
�
j )- E(v�i - v

�
j )]

2 (36)

Lemma 9 establishes trends in dij along one phase.

Lemma 9. Given the voltage on phase � at node i:

arg min
j

d�ij , arg min
j

var(v�i - v
�
j ) 2 Parent/Child of i (37)

Proof. Expanding the difference, we obtain:

d�ij = var(v�i - v
�
j ) =

X

n2N

X

 2Mn

s2n|Ẑ
� 
in - Ẑ

� 
jn |

2 (38)
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where sn is the injection variance at node n. If the paths from nodes k and
l to r merge at node n, Ẑ

�, 
k,l = e

� 
n , the impedance of the path from n to r

along phase coupling �, :

e
� 
n =

X

ij2En

Z
� 
ij (39)

To determine the minimizer of (37), consider two cases visualized in Fig.
38. In case A, j is the common ancestor of node i, k on the path to the root.
In case B, j is an ancestor of i, while k is an ancestor of j. In both cases, we
show that d�ij, d

�
jk < d�ik. Put together, for a given i, the minimizer j of d�ij

is either the parent or child of i.

Case A. We split the sum in (38) into the regions Ni in Fig. 38a. Using (39)
in (38) for each region, we have

d�ik - d�ij =
X

n2N1, 2Mn

0+
X

n2N2, 2Mn

0+
X

n2N4, 2Mn

0

+
X

n2N3, 2Mn

s2n

✓
|e
� 
j - e

� 
n |

2 - |e
� 
j - e

� 
j |

2

◆

+
X

n2N5, 2Mn

s2n

✓
|e
� 
j - e

� 
k |

2 - |e
� 
j - e

� 
j |

2

◆
> 0

A similar argument shows d�ik - d�kj > 0.
Case B. Now we split (38) over the regions in Fig. 38b. Using (39), we have

d�ik - d�ij =
X

n2N1, 2Mn

0+
X

n2N2, 2Mn

0

+
X

n2N3, 2Mn

s2n

✓
|e
� 
n - e

� 
k |

2 - |e
� 
n - e

� 
n |

2

◆

+
X

n2N4, 2Mn

s2n

✓
|e
� 
j - e

� 
k |

2 - |e
� 
j - e

� 
j |

2

◆

+
X

n2N5, 2Mn

s2n

✓
|e
� 
n - e

� 
k |

2 - |e
� 
n - e

� 
j |

2

◆

+
X

n2N6, 2Mn

s2n

✓
|e
� 
i - e

� 
k |

2 - |e
� 
i - e

� 
j |

2

◆
> 0
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Figure 38: Regions of the radial network when (a) Case A: k lies off the path
between i and the reference. (b) Case B: i lies along the path from j to
the reference.

A similar analysis shows d�ik - d�kj > 0. Thus the minimum is given by the
parent/child of i.

Applying Lemma 9 to all matched phases between two nodes gives the
following result:

Theorem 6. Given node i, the node j which minimizes dij in (36) is either a
parent or child of i.

If phases at each node are known, Thm. 6 enables correct topology recov-
ery with a greedy algorithm based on distance dij. Note that Lemma 9
and Thm. 6 hold for all uncorrelated injections even with unequal vari-
ances. Thus, Assumption 31 can be relaxed for topology learning. We now
have the tools for joint phase and topology recovery, detailed in the next
section.

�.�.� Joint Phase & Topology Identification
We propose gpt (Alg. 2): a greedy algorithm for joint phase and topology
identification based on the nodal voltage properties of Sections 4.4.2-4.4.3.
The gpt method computes cOij’s (32) exhaustively (for all matching options),
selecting maxima for phase matching (Theorem 5). Based on phase match-
ings, it computes dij’s (36) exhaustively (for all node pairs), selecting min-
ima for topology recovery (Theorem 6). Next, gpt greedily builds a tree
with node set T, starting from node i0 and iterating till all nodes have been
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added. In each iteration, a new node is added to the tree by choosing node
i 62 T, which has the minimum value of dij for all j 2 T, using the getNext
algorithm. When node i is added to the tree, it’s phases are determined
based on their matching to the phases of node j.

Note that gpt adds 3 phase, then 2 phase, then 1 phase nodes to the tree.
The initial node must be three phase, making the reference an intuitive
choice. By adding nodes in this order, gpt implicitly enforces the crucial
fact that number of phases never increases moving from the substation
to the network ends (a single phase node is never the parent of a three
phase node) and avoids issues that can arise when applying a naive greedy
algorithm to a network with a variable number of phases at each node.
For example, suppose we are recovering the topology of ToyNet. All nodes
have been added to T except 6, 7, and 8. To recover the correct topology, we
should connect node 6 to 5 first. Then nodes 7 and 8 will get connected to 6
naturally, as d76 < d75 and d86 < d85. However, consider d65 and d75,

d65 = var(va
6 - v

a
5 ) + var(vc

6 - v
c
5), d75 = var(vc

7 - v
c
5)

We have no guarantee that d65 < d75 due to the presence of additional
phase variance in d65 illustrating how an algorithm that doesn’t order
nodes by decreasing number of phases may return an incorrect topology,
unlike gpt.

Alternative Estimation Scenarios

In the general scenario, gpt recovers both phase and topological connec-
tivity from voltage measurements. Our theoretical results also establish
estimation methods for restricted setting.

Phase Identification with Topology Information. If topology is known,
phases can be identified by greedily matching adjacent nodes using cOij (32)
across edges ij 2 E. [67], [155], [156] similarly use the Pearson correlation
coefficient of voltages as the distance, which is related to the covariance
but not theoretically justified. Unlike [155]–[159] which cluster all nodal
voltages to recover phase, gpt is highly local. K-means is a popular cluster-
ing algorithm choice [158]. However, even if the correct phase matching is
the globally optimal solution of the k-means cost, the optimization is non-
convex and may not converge to the global minima. Our greedy approach,
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however, is guaranteed to result in the optimal solution.

Topology Estimation with Phase Information. If phase labels are known,
dij (36) can be directly minimized to recover topology and gpt reduces to
greedy spanning tree learning generalizing prior work for the single phase
case [130]. Compared to [133], [134] that use conditional independence
tests and need matrix inversions, gpt has improved sample performance,
as demonstrated in Section 4.4.5.

Estimation using voltage magnitudes only While gpt is based on nodal
voltage phasors, it can also use voltage magnitudes v�i = |v

�
i |. This is theo-

retically justified by linearizing (25) for line kl:

Ikl = Ykl

2
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⇡ YklDr((Vk - Vl) + j(✓k - ✓l))

where ✓� is the phase � reference angle and ✓�k = ✓�k - ✓�. The lineariza-
tion assumes small magnitude deviations from the reference and small
angle difference between neighboring nodes. Properties of voltage mag-
nitudes across the network can then be derived under assumptions on
YklDr, Ikl to obtain gpt for phase and topology recovery.

�.�.� Simulation Experiments
We present simulation results of gpt. We measure average errors in phase
and topology recovery, normalized by network size:

Topology Error =
wrong edges + missing edges

total edges
,

Phase Error =
wrong nodal phases
total nodal phases

Further, we evaluate the algorithm’s sensitivity to the following parame-
ters.

• Measurement noise: We add white noise n to original measurement vi:
ṽi = vi + n, defining noise level(ṽi) =

var(n)
var(vi)

. As gpt uses voltage co-
variances, it depends on relative precision and not absolute accuracy
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and is immune to the stable transducer errors that afflict distribution
PMU data [160].

• Number of measurement samples: Assuming 120 Hz distribution PMU
measurements [41], we record performance on 1 second to 1 minute
of voltage data.

• Load Correlations: We test gpt’s sensitivity to the assumption of un-
correlated injections, by varying the correlations of the loads while
maintaining their variance. This is done by setting load covariance
matrix ⌃ = �2((1- ✏)I + ✏11T ). As ✏ ! 1, injections become more
correlated.

Three IEEE distribution test networks are simulated in OpenDSS: the 13
and 34 bus networks have some one and two phases buses, while the 37
bus network has all three phase buses [161]. We modify the models by
adding loads at every bus, and by disabling voltage regulators, which in-
validate the assumption of voltages driven by injections. We fluctuate the
load injections at each phase at each bus, and simulate the network with
power flow to obtain non-linear voltages.
Fig. 39 plots topology recovery accuracy for three noise levels ranging
from 0 (no noise) to 10, with 1 second to 1 minute of voltage magnitude
or phasor measurements. PMUs are highly precise; and the noise level
would realistically be ⇠ 0.001 [17], [45]. Nevertheless, gpt performs well
under more noise as measurement samples increase. For all test networks
and measurement durations, gpt achieves perfect topology recovery from
voltage magnitudes for 0 and 0.001 noise. Insets in Fig. 39 show recovered
topologies across trials. Note how errors are localized to a few nodes, and
lower for voltage magnitudes. Fig 39 also compares performance on volt-
age magnitudes to Liao2019 [133], showing that gpt outperforms it across
scenarios.
Fig. 40 presents gpt’s phase matching error on the same three networks
and noise levels averaged across several sample durations (we found phase
matching error to be invariant to sample duration). The error is compared
to that of the approach in Olivier2018 [155]. The methods have compara-
ble performance, except on the 13 bus network, where gpt outperforms
Olivier2018 across SNRs.
Fig. 41 shows topology recovery sensitivity as injections stray from the un-
correlated assumption (30). Error increases rapidly as loads become more
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correlated. In reality, over short time durations, it is reasonable to assume
that injections will be uncorrelated across nodes or can be de-trended [133].
We use at most one minute of data to recover phase and topology: short
enough that the uncorrelated assumption should hold well.
The polynomial time gpt is suitable for real time application, taking on
the order of seconds to recover phase and topology for the IEEE test cases
shared here. On the largest 37 bus test case, the algorithm completes in 15
seconds.

F
This section presented gpt, an algorithm for joint phase and topological
connectivity identification from voltage measurements in unbalanced three
phase networks where each bus can have single, two, or three phases. The
algorithm is grounded in a linear physics model of the system, and there-
fore has well-defined assumptions under which it generates provably cor-
rect results. By applying gpt to non-linear voltages from three test feed-
ers simulated under realistic conditions, we also demonstrated the efficacy
of gpt in practice. We showed that gpt is robust to measurement non-
idealities, and outperforms the prior work in both phase and topology
recovery.
In addition to the gpt algorithm itself, the novel, three phase linear model
which forms its foundation is an important contribution for the develop-
ment of additional estimation and monitoring tools in unbalanced net-
works.
While gpt demands fewer measurements (at the cost of impedance infor-
mation) than the subKron method of Section 4.3, its sensor coverage re-
quirements remain high for true usability. The following section describes
a set of topology monitoring tools that push further in the direction of
usability.
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Figure 39: Plot of gpt topology error vs number of samples for three test feed-
ers and three noise levels. Samples are assumed to arrive at 120Hz.
Insets show estimated (gray) and true (red) network lines across tri-
als, with the opacity of gray lines indicating how many times the edge
was recovered. We evaluated gpt on voltage phasor and magnitude
data, with performance on magnitudes compared to state of the art in
Liao2019 [133].
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Figure 40: Plot of gpt phase matching error for three test feeders and three noise
levels using voltage phasor and magnitude data. The last table al-
lows comparison with the state of the art phase matching method
of Olivier2018 [155]. Mostly, gpt has comparable performance to
Olivier2018, but significantly outperforms it on the 13 bus system.

Figure 41: Plot of gpt topology error from voltage magnitudes as injections be-
come increasingly correlated (✏ ! 1) for three test feeders and two
noise levels. Notice the rapid rise in error with increasing correlation
particularly for the largest network.
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A 2: [E,P] = gpt(V)
Input : V is a (

P
i2N

|Mi|)⇥ t matrix of voltage data (phasor or
magnitude)

Output :E is the network edge set, P is the phase ordering of each node
N1,N2,N3 // set of three, two, one phase nodes in N

forall i, j 2
�
N

2

�
do

8O compute cO
ij

phase-match(i, j) arg maxO cO
ij

// Eq. 33

dists(i, j) dij for phase-match(i, j)// Eq. 36

end

// Add first three phase node to tree T and set phases

T  {i0}// Initialize tree

P(i0) {a, b, c}// Initialize phases

N3  N3 \ i0
while N3 6= ; do

// Add three phase nodes

i, j get-next(dists, T, N3)// Call to Alg. 3

N3  N3 \ i// Remove i from unconnected set

T  T [ i// Add i to tree

E E[ eij// Add edge between i & j

P(i) phase-match(i, j)// Record i’s phase matching to j

end

while N2 6= ; do

// Add two phase nodes

i, j get-next(dists, T, N2)
N2  N2 \ i,
T  T [ i, E E[ eij, P(i) phase-match(i, j)

end

while N1 6= ; do

// Add one phase nodes

i, j get-next(dists, T, N1)
N1  N1 \ i,
T  T [ i, E E[ eij, P(i) phase-match(i, j)

end
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A 3: [i, j] = get-next(dists, T, N)
Input : dists contains pairwise distances between all nodes

T is the node set in the tree so far
N is the nodes to be added

Output : i is the node from N to be added to T

j is the node in T connected to i

// Find node in N nearest to any node in T

dij  1, i none, j none
forall b 2 T, a 2 N do

if dists(a, b) < dij then

dij  dists(a, b)
i a, j b

end

end
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�.� ��������� ����������
The previous sections described heuristic and physics-based tools for topol-
ogy monitoring. Each tool had its strengths, but fell short of the criteria
of usability in one or more key respects. This section describes a set of
topology tools termed “justified heuristics”, which stride toward usability
by attempting to meld the benefits of underlying physics models with the
low and flexible sensor requirements of heuristic approaches. The section
begins by establishing physics-based theory connecting the mathematical
properties of voltage measurements in general—including rank, correla-
tions, and clusters—to network topology. This enables the theoretical justi-
fication of existing heuristic approaches—clarifying what they reveal of the
system’s physics and the implicit assumptions involved—and the proposal
of novel analytic tools. The proposed tools generate continuous outputs
targeted at human users. These outputs will manifest significant changes
if there are underlying transformations in the physical system. However,
the outputs will also change more marginally due to noise—either arising
from the input data or due to system deviations from the tools’ implicit as-
sumptions. Human users can and must distinguish these types of changes,
enabling the proposed analytics to be successful even if their underlying
assumptions do not perfectly hold at all times or if there is some noise in
the inputs. With the same intent, the outputs of these analytics can also
be passed to statistical baselining methods before being relayed to human
users, as described briefly in Chapter 3 and discussed further in Chapter
6. Beyond specific analytics, the results of this section lay the groundwork
for improved understanding and use of grid voltage measurements in a
range of applications, including topology identification, phase identifica-
tion, anomaly detection, and missing data recovery. The results enable an
otherwise overwhelming amount of voltage data to be transformed into in-
tuitive, visualizable system information with relatively simple algorithms.
This work is similar in spirit to [162], which also seeks to explain how sim-
ple analytics reveal aspects of the underlying system, but does not take a
graph theoretic approach as is done here.

Notation

The notation here is consistent with previous sections. A 2 Rn⇥m is an
n-by-m real-valued matrix. A 2 Cn⇥m is an n-by-m complex-valued ma-
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trix while A
⇤ and A

T are the conjugate and transpose of A respectively.
Therefore, A

H = (A⇤)T . Aij is the (i, j) element of A. We often deal with
the rows and columns of matrices, so they are explicitly denoted: A-i is
the ith column and Ai- is the ith row of matrix A. The electric network
is represented by a graph denoted G = (N,E) with node set N and edge
set E. |N| = n and |E| = e is the number of nodes and edges in the graph
respectively.

Measurement Model

For an electrical network represented by a graph G with n nodes, time
series of nodal voltage and current phasors over t time points can be col-
lected into matrices V 2 Cn⇥t and I 2 Cn⇥t respectively. The voltages and
currents are related by the now-familiar matrix form of Ohm’s Law

I = YV$ V = ZI (40)

Recall that Y is the network admittance matrix, or the Laplacian, of G. It
captures the complete network structure, consisting of connections and
impedances. Y is symmetric and can be diagonalized as Y = UD�U

T . The
columns of U are the eigenvectors of Y, while D� is a diagonal matrix of
the eigenvalues of Y, denoted �1 6 ... 6 �n. By definition of the Laplacian,
�1 = 0. The network impedance matrix Z is the pseudoinverse of Y, defined
as:

Z , WD1/�W
T , (41)

W , U
⇤ (42)

where D1/� is a diagonal matrix containing the eigenvalues of Z, denoted
�1 6 ... 6 �N. The eigenvalue set of Z consists of the zero eigenvalues and
the reciprocals of the non-zero eigenvalues of Y. Therefore, Z preserves the
null space of Y. The rich, venerable field of graph theory has established
many properties of graph Laplacian matrices and their eigenvalues and
eigenvectors (see [163] for a summary), some of which will be instrumental
here. In this work we use complex-valued, phasor measurements, but our
results can be extended to magnitude measurements through power flow
linearizations, such as the following simple one, which arises by inversion
of decoupled power flow [164]:

V ⇡ XQ
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where V 2 Rn⇥t contains nodal voltage magnitudes and Q 2 Rn⇥t con-
tains nodal reactive power injections. X 2 Rn⇥n is the system’s real-valued
reactance matrix which, like Z, is the pseudoinverse of a Laplacian encod-
ing the same graph structure as Y but with real valued edge weights. By
applying the assumptions made here on complex current injections I to Q
instead, equivalent results can be derived for V as done here for phasor
V.

Assumptions

To derive various informative properties of voltage measurements, it is nec-
essary to make enabling but reasonable assumptions. The analytic deriva-
tions in this section make one or both of the following assumptions:

A1 Current injections are uncorrelated and have equal variance across
nodes. That is:

Ī , (I -
1

t
I11T ) =) ĪĪ

H = �2I In (43)

where In is the n⇥ n identity matrix and �2
I

is the current injection
variance at every node. This assumption is similar to one made in Sec-
tion 4.4, and is reasonable because currents are driven primarily by
the power injections of disparate loads which should be statistically
independent across nodes over short time scales.

A2 D1/� is rank k- 1 with k- 1 approximately equal eigenvalues and
n- k+ 1 zero eigenvalues. That is:

�n-(k+1) ⇡ ... ⇡ �n , � (44)

0 = �1 ⇡ ... ⇡ �n-k (45)

The rationale for this assumption is based on graph theory and will
be clarified in Section 4.5.1.

Which assumptions are at play in each derivation will be made clear in the
text.

�.�.� Voltage Data Rank
It is well known that grid voltage measurements are approximately low
rank: that is, V can be closely approximated by a low rank matrix. This
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Figure 42: Voltage measurements and their singular values for four test networks
with differing clusters. Shorter line length indicates lower admittance
and higher impedance, or greater electrical proximity.

property motivates approaches to measurement compression, missing mea-
surement recovery, and event detection [135]–[137]. It also motivates a new
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approach to system identification and event localization in [61] and is used
to detect cyber attacks in [165]. However, despite its wide use, this low rank
property is not theoretically established in prior work, and a discussion of
the reasons and extent of this observed phenomenon is lacking. In fact, as
we will show, the approximate rank of V is linked to the structure of the
network graph G. Define V̄ , V - 1

tV11T = ZĪ to be the mean centered
voltages with singular value decomposition AD

V̄
B
T where D

V̄
is a diago-

nal matrix containing the singular values of V̄. Then, under assumption
(A1):

V̄V̄
H = AD2

V̄
A

H = �2I ZZ
H = �2I WD2

1/�W
T (46)

Therefore, the singular values of V̄ are the scaled eigenvalues of Z, which in
turn are the reciprocals of the eigenvalues of Y. The number of zero eigen-
values of Laplacian Y equals the number of connected components—or in-
dependent nodes groups—in graph G. Furthermore, a near zero eigenvalue
of Y indicates a cluster or community of nodes that are highly connected
to each other but “easily" separable (connected by low weight edges) from
the rest of G [166]. Due to the inversion of (41), it is the near zero eigenval-
ues of Y that are the dominant eigenvalues of Z. Therefore, if G contains
k node clusters, V̄ will have k- 1 dominant eigenvalues and can be well
approximated by a rank k matrix.
This result is demonstrated in Fig. 42. The first column visualizes four toy
networks with varied topologies and realistic line impedances. Current in-
jections are generated for each node to statistically abide by the assumption
of (A1). Next, nodal voltage phasors are computed via (40), plotted in the
second column. The final column visualizes the eigenvalues of the voltage
data. Notice the first network has a single, tight-knit community including
all network nodes. Therefore the centered voltage magnitudes V̄ appear
as a flat line since variation from the mean time series is minimal. Corre-
spondingly, the voltage measurements have zero dominant singular values.
In other words, most of the variation or information in V is captured in the
average voltage time series. The other three toy networks have two, three,
and four node communities respectively, reflected in their voltage singular
values. Inter-community lines are higher impedance than intra-community
lines, indicated by shorter line length in the network visualizations of Fig.
42.
This mathematical result on the singular values of voltage data has prac-
tical importance. It motivates using the structure of G to inform any ap-
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plications relying on the rank of V. Voltage data rank is useful in multi-
ple applications, including compressing voltage data or recovering missing
voltage measurements through low rank matrix recovery. Conversely, the
rank of V indicates the structure of the network and can indicate and alert
operators to any changes in G. Notice in Fig. 42 that the voltage singular
values are more compact and easily visualized than the raw voltage data.
Now with theoretically justified physical meaning, they are an intuitive,
visualizable quantity for system monitoring.

�.�.� Voltage Clustering
Clustering voltage time series directly to infer the structure of G is an estab-
lished heuristic technique for topology monitoring [167]. Yet, the theoreti-
cal underpinnings of voltage clustering are not established, and therefore
what clustering reveals about the structure of G in general, and why, is
poorly understood. This section provides theoretical justification of this
heuristic technique through the lens of spectral clustering: a popular tech-
nique for clustering the nodes of a graph. In brief, the results of spectral
clustering state that given Laplacian Y = UD�U

T of graph G, the nodes of
G can be separated into k clusters that maximize inter-cluster edge weights
and minimize intra-cluster edge weights by applying k-means to the rows
of matrix U

(k) 2 Cn⇥k. The columns of U
(k) are the first k eigenvectors

of Laplacian Y (equivalently the first k columns of U)—that is the eigen-
vectors corresponding to the k largest eigenvalues �n-k, ..., �n. K-means
clustering is a standard algorithm which partitions data points into a spec-
ified number of clusters, where each data point is assigned to the cluster
with the closest centroid or mean. Spectral clustering—derived through
the relaxation of a non-convex optimization function over graph G—can
in practice be implemented with k-means (see [168] for a more in-depth
study). Here we will prove that, under some assumptions, directly cluster-
ing the voltage time series V̄1-, ..., V̄n- (collected as rows in the complete
measurement matrix V) produces the same result as spectral clustering ap-
plied to Y. This result enables voltage clustering to be used for network
structure monitoring.
Suppose G contains k node clusters. As discussed in Section 4.5.1, it is then
reasonable to make assumption (A2), which implies:

V̄ ⇡ �(U(k))⇤(U(k))HĪ (47)
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The result of applying k-means clustering to the rows of U
(k)—denoted

U
(k)
1- , ...,U

(k)
n-—will depend on the pairwise distances between rows under

the chosen clustering distance metric [169]. A common distance metric
choice is the Euclidean distance which is preserved under conjugation and
multiplication by an orthogonal matrix. Then, under (A1), the distance
between voltage time series Vi- and Vj- is:

||V̄i- - V̄j-||2 =

||U
(k)
i- (U(k))HĪ - U

(k)
j- (U(k))HĪ||2 = �I�||U

(k)
i- - U

(k)
j- ||2 (48)

Together, (47) and (48) show that the ordering of pairwise distances be-
tween rows are identical between V̄ and U

(k), which means that applying
k-means clustering to the rows of V̄ (the voltage time series V̄1-, ..., V̄n-) is
equivalent to applying spectral clustering to G. This result is demonstrated
in Fig. 43, which uses the same toy networks as Fig. 42. K-means cluster-
ing is applied to the centered nodal voltage time series V̄ of each network.
The resulting node cluster membership is indicated by node color. We see
that the results of voltage clustering match those of spectral clustering: cor-
rectly grouping nodes according to their underlying topological proximity
in G. This result explains why voltage clustering techniques for coherency
identification, such as [170], succeed at the transmission level, and extends
the technique to distribution, even in the absence of inertial generators,
under the stated assumptions.

�.�.� Voltage Correlations
Using voltage correlations for system monitoring or topology estimation is
a common heuristic technique [95]. Indeed, it was integral to the topology
heuristic described earlier in this Thesis (Section 4.2). Here, based on the
physics model and assumptions (A1) and (A2), we propose and justify an
extension: clustering the rows of the voltage correlation matrix, denoted
S
(V). We can show that, under the given assumptions, this is equivalent to

spectral clustering on G. Using assumption (A1), and Eqs. (40)-(41), S
(V)

can be expanded as:

S
(V) , V̄V̄

H = �2I U
⇤D2

1/�U
T (49)

Incorporating (A2) gives:

S
(V) ⇡ �2I�2(U(k))⇤(U(k))T (50)
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Since (U(k))T (U(k))⇤ = Ik—the identity matrix—by the results of Section
4.5.2, clustering the rows of S

(V) will produce the same result as applying
spectral clustering to G. This result is visualized in Fig. 44, which shows
the node cluster membership found by clustering the rows of S(V), along-
side S(V) for each toy network. We see the clusters over S(V)—captured
in the node color and indicated by the numbers segregating the rows of
S(V)—match the physical clusters in G.
A cursory comparison of Sections 4.5.2 and 4.5.3 may lead to the conclu-
sion that clustering the pairwise correlations in S

(V) is exactly equivalent
to clustering the voltage time series in V̄. However, notice that assumption
(A2) is applied to D2

1/� to derive approximation (50) for correlation clus-
tering, while for voltage clustering it is directly applied to D1/� to derive
approximation (47). (A2) will tend to be more accurate on D2

1/� than D1/�

as squaring the singular value matrix will cause the largest k eigenvalues
to further dominate over the smaller. Therefore, clustering over S

(V) will
tend to be more robust than clustering over V̄.

Failure Cases

A critical strength of justified heuristics is that by understanding the as-
sumptions underlying the analytic approaches, it is possible to define when
they will fail. This is vital for use in safety-critical infrastructure such as
the electric grid, where operators will take rapid and impactful decisions
based on the results of analytics. For the methods described here, we un-
derstand that they will fail when assumptions (A1) and/or (A2) do not
hold. Fig. 45 shows how voltage time series clustering and voltage corre-
lation clustering produce unexpected results—different from the expected
equivalence to spectral clustering— when assumption (A1) is significantly
violated. To create this failure case, current injections I were generated
to have a particular correlation structure, visualized in Fig. 45. This is a
pathological example, but current correlations can indeed stray far from
(A1). For example, the presence of distributed generation (such as PV) at
multiple nodes can produce high correlations in current injections. Elec-
tric demand at different households has been observed to be correlated
through a range of factors [171]. This will manifest in correlations among
I injections.
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�.�.� Voltage PCA
Principal component analysis (PCA) transforms data to a new, lower di-
mensional subspace while maximizing the preserved variance (see [172]
for a more detailed study). Applying PCA to voltage measurements is a
widespread heuristic used for grid monitoring. In [93], PCA is used to
project a multitude of PMU voltage measurements onto a lower dimension
subspace to reduce the data quantity and detect system changes. Linear
systems theory is used to justify this approach, but no connection is made
with the underlying graph structure. In [94], PCA is also used for event
detection and localization, but again without theoretical justification. In
[140], PCA is applied to voltage angle measurements for fault detection.
The advantages of PCA for reducing unwieldy data sets into tractable, in-
formative and visualizable ones has motivated its use in other grid mea-
surement applications, such as bad data detection [138], [139]. However, to
the best of our knowledge, the theory establishing the efficacy and physi-
cal meaning of PCA on voltage measurements is absent from the literature.
Here, we connect PCA to spectral clustering. PCA enables the reduction
of V̄ 2 Cn⇥t to the lower dimensional V̂ 2 Cn⇥k. By definition, the prin-
cipal components, contained in the matrix denoted P, are the conjugate
eigenvectors of V̄

H
V̄, which can be expanded as follows:

V̄
H

V̄ = Ī
H

UD2
1/�U

H
Ī (51)

Under (A1), Ī
H

U has orthogonal columns. Therefore:

P = U
H

I (52)

where the rows of P are the principal components. To find V̂, V̄
H is

projected on to the first k principal components. Under (A2), this leads
to:

V̂ = V̄
⇤(P(k))T = �2I�U

(k) (53)

Therefore, the PCA transformed data is the scaled top k eigenvectors of Y.
From (53), it is evident that clustering V̂1-, ..., V̂1- is equivalent to cluster-
ing U

(k)
1- , ...,U

(k)
n-, which is spectral clustering. Therefore, PCA projects the

measurements into a subspace with measurement clusters corresponding
to node clusters in the graph G.
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This result is illustrated in Fig. 46. For each toy network, we choose k = 2,
which allows for the visualization of the PCA projection in two dimen-
sions. Notice that from a spectral clustering perspective, the choice of
k = 2 means we are only bisecting G. However, when plotting V̂ 2 Cn⇥2,
we see that the top two eigenvectors of Y—contained in U

(2)—are actually
effective at separating the nodes into more defined, smaller clusters. In
fact, the plots show that the nodes are well separated to reflect their true
topological clusters in G. In other words, U

(2) contains more information
on the structure of G than a crude graph bisection.

F
This section described a suite of justified heuristics for topology monitor-
ing that are theoretically justified through simple physics models and the
application of realistic assumptions. Though they may not produce the
level of detailed system information generated by other tools in this sec-
tion, they represent the most usable of the tools described, best meeting
the three requirements of using physically meaningful quantities, having
low and flexible input information requirements, and considering the lim-
its of real measurements, as detailed in Chapter 3. As this chapter captures,
they are the culmination of a long journey spanning a range of tool forms.
They also suggest a path forward toward the creation of additional usable
tools, to be discussed further in the final chapter.
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Figure 43: Visualizing node clustering through k-means clustering of nodal mean-
centered voltage time series. Plots at right show cluster centroids
which are the average time series across member nodes. Node color
in the graphs at left indicates cluster membership and matches the cor-
responding centroid time series.
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Figure 44: Results of node clustering by clustering voltage correlation matrix
S(V) = V̄V̄H with k-means. Node color indicates cluster membership.
Plots show Re(S(V)) for each network.
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Figure 45: Results of node clustering by clustering nodal voltage time series with
k-means. Node color indicates cluster membership. Plots at right show
centroids of mean centered voltages for each cluster. In this case, the
current injections are correlated across nodes with the correlation ma-
trix shown at left, leading to failure of the voltage clustering.



�.� ��������� ���������� 137

Figure 46: PCA with k = 2 applied to nodal measurements in V̄. Plots at right
show the coefficients obtained by projecting nodal voltages on the first
two principal components. Notice how the projected data is well sepa-
rated into the underlying node clusters in G.



5 E V E N T D E T E C T I O N &
C L A S S I F I C AT I O N TO O L S

Includes work from [173], [174]

Incessantly and continually within the sprawling infrastructure of the elec-
tric grid, things occur. These multifarious things have varied causes, effects,
and importance. Some, from the perspective of the grid operator, are ex-
ogenous but expected: a typical example is a reasonable change in elec-
tricity demand. Others arise from premeditated actions and are entirely
foreseeable and generally desirable. Examples include the programmed
response of capacitor banks, transformers, and other control devices. More
unsettling are those things that are surprising and unwanted: the failure
of crucial equipment, faults instigated by trees or animals touching power
lines, and even the sabotage of grid devices by hackers, as infamously hap-
pened in Ukraine in 2015 [14]. These things are generically called events; a
term that is appropriately imprecise given their variety1.
By definition, knowing when and what events occur in an electric network
(respectively the problem of event detection and event classification) is an
integral part of situational awareness. Amidst the complexity of a typi-
cal electric grid, awareness of every event is practically impossible. Here,
the chosen method of event detection is decisive in determining which
events we have awareness of. This can lead to epistemic difficulty: ig-
norant of the unseen, how can we know if we have achieved situational
awareness? Therefore, event detection tools must be created and continu-
ally refined through feedback between algorithm, user, and environment,
until no event with consequences goes unnoticed. When this is the case,
at least we can claim to have achieved adequate—if not total—situational
awareness.

1 While the term event is often earnestly debated in the literature and at conferences, really
anything that happens in the system can legitimately be called an event. With such a
capacious definition, more important than a universal consensus is clear specifications in
each application of what constitutes an event.

138
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This chapter presents work on tools for event detection and classification,
with a focus on the latter. In the spirit of usability, these algorithmic
tools run on single measurement streams and are envisioned as assist-
ing a human user in identifying system events. Unlike the tools of the
previous chapter, they are not based on physics models, but ensure trans-
parency through intuitive approaches that can be applied to raw measure-
ments (which retain direct physical interpretability) or physically meaning-
ful computed quantities. The examples in this chapter apply these methods
to raw measurements only.

Prior Work

Event detection is the first step in identifying important periods from long,
mostly inconsequential data streams. All event detection algorithms iden-
tify changes in raw measurements or computed quantities. Numerous
methods exist for event detection and classification. This section—by no
means a comprehensive review—gives a flavor of the diverse approaches
and aims.
The electric grid is never perfectly static, and real measurements inevitably
contain some noise. Together, this means that measurements and com-
puted quantities will always vary in time. Event detection methods must
use thresholds to distinguish this normal variation from changes that indi-
cate system events. Broadly then, the creation of any event detector entails
two choices. First, the quantity in which events are to be detected must be
selected. Should we look for events in voltage magnitudes, frequency, real
power? Or perhaps events should be sought in an estimated impedance
quantity or even a stream of voltage predictions? Events can be detected
in any of these raw or computed streams. While some types of events may
manifest across multiple streams, others may be distinguishable only in
specific ones. Therefore, the choice of data stream is critical in determin-
ing which events will be discovered. This choice also has implications for
transparency. A frequency event may manifest in voltage magnitude data,
but detecting it in frequency data carries greater explanatory power for the
human user.
The second choice for event detection is how to determine the event thresh-
old. Often, thresholds are set to constant values. A constant threshold
can be an intuitive and simple choice, especially if it is based on a widely
acknowledged standard. For example, the American National Standards
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Institute requires system voltage to remain within ten percent of nominal
[175]. Setting 0.9 and 1.1 p.u. as constant thresholds for voltage mag-
nitude events is therefore a tenable and intuitive choice. On the other
hand, some choices of constant thresholds are opaque and even arbitrary,
the single number obscuring the many iterations of tuning necessary to
determine the perfect threshold for the tool designer’s specific aims. Some-
times, when labeled events are available, this tuning is automated through
a machine learning algorithm which sets the final threshold. More com-
plex, evolving thresholds can also be chosen, using regression or statistical
methods.
These two choices allow us to succinctly describe and compare the varied
approaches to event detection presented in the literature. Both [94] and
[93] apply dimensionality reduction to PMU voltage data, detecting events
by applying constant thresholds to changes in the resulting eigenvalues or
eigenvectors. [82] too detects events in PMU data of reduced dimensions,
but rather than by a constant threshold, events and non-events are differ-
entiated by a machine learning algorithm, which learns some concealed
threshold. [176] also uses a machine learning method to determine a mul-
tidimensional threshold separating events, applying this to several streams
computed from raw PMU data. [177], statistical, regression, and constant
thresholds are used to detect events in voltage, current, and power streams.
[92] takes a statistical tack, detecting events using multiple data streams
simultaneously. A generative adversarial network learns the joint distribu-
tion of these multiple streams, flagging outliers as events. Similarly, [178]
learns the distribution of PMU measurements—with fixed form but evolv-
ing parameters—and events are detected by thresholding changes in the
estimated distribution parameters. [73] decomposes voltage and frequency
measurements with the wavelet transform, using constant thresholds to
flag excursions in the resulting wavelet coefficients as events.
After events are detected, they can be classified by type. Examples of event
types include line trips, capacitor bank switching, topology changes, light-
ning strikes, animal contact, etc. Here again, numerous approaches are
proposed in the literature, with the crucial distinction being between su-
pervised approaches—that require (generally a large volume of) labeled
examples—and unsupervised approaches—which do not require labeled
data. Acquiring sufficient volumes of labeled data is arduous in the elec-
tric grid context, which leads to a great asymmetry in the practicality of
supervised and unsupervised event detection approaches. Supervised ap-
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Figure 47: Visualization of bay-detect’s maximum likelihood approach to data dis-
tribution estimation. Maximum likelihood estimation balances the em-
pirical data distribution with the prior parameter distribution to find
the most likely parameters.

proaches also suffer from limited transparency and indefinite or limited
generalizability, especially when they use black-box machine learning mod-
els. While unsupervised approaches are less likely to manifest these issues,
they are by no means immune. Some entail convoluted transformations of
grid data that make their results frustratingly opaque.
[90], [179]–[183] train a variety of machine learning models to classify a va-
riety of events from a variety of features derived from grid measurements.
Support vector machines—which determine classification boundaries in a
high-dimensional feature space—are a favored choice of model. Unsuper-
vised approaches are also diverse. Some, such as [177] use physics based
rules to distinguish event types. A popular class of approaches uses clus-
tering algorithms; classifying events by grouping them according to their
similarity in some feature space, as in [178], [184]. This approach will be
discussed further in Section 5.2.
With the prior work mapped out, the next sections venture further afield,
describing new approaches to event detection and classification.
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�.� �������� ����� ���������
A statistical event detection framework is compelling for its transparency,
modularity, and easy refinement. It consists of applying a statistical baselin-
ing method to a data stream and flagging outliers in the stream as events,
conforming to the toolbox vision described in Section 3.5.
This section describes a Bayesian approach to statistical event detection,
termed bay-detect [173]. Bay-detect assumes the input data stream samples
are normally distributed with unknown mean µ and variance �2. While
µ and �2 are assumed constant during the steady state, they may change
following an event. Bay-detect attempts to estimate µ and �2 from the
observed data in a maximum likelihood estimation (mle) framework, re-
fining the estimates as more samples are observed. These parameters are
assumed to arise from a prior distribution, chosen to be a normal-inverse-
chi-squared (NI�2) distribution for tractability. The mle approach balances
the weight of the prior and that of the data, lending some stability to the
parameter updates and allowing evolution of both the value of and confi-
dence in the parameters. Fig. 47 visualizes this process, the mathematics
of which are based on (and follow the notation of) the work in [185].
The NI�2 distribution is a joint prior over the mean and variance, where
the mean is normally distributed, while the variance follows an inverse-chi-
squared distribution. The inverse-chi-squared distribution—which is pos-
itive valued and right-skewed—is a natural choice for the variance prior.
The NI�2 prior is written in Eq. 54 [185].

p(µ,�2) = NI�2(µ,�2|µi, i,�
2
i ,⌫i) = N(µ|µi,

�2

⌫i
) · �-2(�2|�2i ,⌫o) (54)

Variables µi, �2i , i and ⌫i are the parameters of the prior. Initially (i = 0),
they must be selected by the user, after which they evolve with time as data
samples are observed. The parameters µi and �i specify the centering of
the mean and variance priors respectively, whose product gives the joint
prior. Parameters i and ⌫i capture the scale, or spread, of the mean and
variance priors.
The critical step in the maximum likelihood approach of bay-detect is to
determine the posterior parameter distribution by merging the guidance of
the prior with that of empirical data samples. Conveniently, the posterior
is also a NI�2 distribution, with parameters µn, n,�

2
n,⌫n:

p(µ,�2|x1, ..., xn) = NI�2(µn, n,�
2
n,⌫n) (55)
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Given n data samples x1, ..., xn, with sample mean x̄, the posterior NI�2

parameters are defined by Eqs. 56-59.

µn =
0µ0 +nx̄

n
(56)

n = 0 +n (57)

�2n =
1

⌫n
(⌫0�

2
0 +

nX

i=1

(xi - x̄2) +
n0
n

(µ0 - x̄)2) (58)

⌫n = ⌫0 +n (59)

The posterior scale parameters n and ⌫n can be interpreted to indicate the
confidence in the data distribution parameter estimates. They are equal
to the number of samples observed, and as they increase, they tighten the
spread of the posterior, reflecting the increasing certainty in the data distri-
bution. Bay-detect utilizes the expectation over the posterior to produce the
final data distribution parameter estimates. These final estimates are:

E[µ|x1, ..., xn] = µn (60)

E[�2|x1, ..., xn] =
⌫n

⌫n - 2
�2n (61)

The method is easily made an online approach (able to handle streaming
input data) by converting equations 56-59 into explicit update equations.
Assume bay-detect has seen n data samples, x1, ..., xn, thus far—perhaps
split over several streaming batches—from which the algorithm has ob-
tained posterior parameters µn, n,�

2
n,⌫n. A new batch of k data points,

xn+1, ..., xn+k arrives. The posterior parameters can be updated based on
the k new samples according to equations 62-65, where x̄ is the sample
mean of the k latest samples.

µn+k =
nµn + kx̄

n
(62)

n+k = n + k (63)

�2n =
1

⌫n+k
(⌫n�

2
n +

kX

i=1

(xi - x̄)2 +
kn
n+k

(µn - x̄)2) (64)

⌫n+k = ⌫n + k (65)

In this way, as batches of data stream in, the posterior parameters are re-
fined, resulting in new estimates of the data distribution parameters.
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Figure 48: Visualizing the tail probability used by bay-detect to flag data point x as
an event.

The first posterior parameter update incorporates the initial posterior pa-
rameter values: µ0, 0,�

2
0,⌫0. These must be specified by the user to reflect

prior knowledge on the data distribution, and can indicate anything from
highly accurate knowledge to essentially no knowledge. For example, set-
ting 0 and ⌫0 very close to 0 implies that there is no certainty on the data
distribution.
Beginning with the data samples and proceeding through the sequence of
empirical, prior, and posterior distributions, bay-detect ultimately deter-
mines the posterior distribution of unseen data given the observed samples.
This predictive posterior is a generalized t-distribution denoted:

x ⇠ t⌫(x|µ,�
2) (66)

where µ is the mean, �2 is the scale, and ⌫ is the degrees of freedom. The
distribution resembles a Gaussian, but with heavier tails.
Given data points x1, ..., xn, the estimated posterior distribution of future
point x is:

p(x|x1, ..., xn) = t⌫n

✓
µn,

(1+ n)�2n
n

◆
(67)

x may be one or more steps into the future; there is no explicit time aware-
ness in this formulation.

Using the predictive posterior, events can be detected probabilistically,
based on a user specified probability threshold demarcating normal data
from abnormal, or event, data. It is at this point that the statistical event
detection approach especially shines. While other approaches require the
selection of raw value thresholds—a process which generally demands a
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great deal of fumbling experimentation and results in seemingly arbitrary
and non-intuitive values—bay-detect requests a probability from the user.
For example, the user can specify that any data value with a probability
< 0.001 according to the estimated data distribution should be considered
an event. Such probability thresholds can be intuitively specified and inter-
preted. In the case of bay-detect, a tail probability is computed for data point
x. Denoted ptail, this is the cumulative probability in the tail demarked by
x, as visualized in Fig. 48 and defined as:

F(x) ,
Z

y
p(y 6 x|x1, ..., xn)

ptail(x) = min(F(x), 1- F(x)) (68)

Given threshold ⇢, data point x is flagged as an event if:

ptail(x) 6 ⇢ (69)

Once an event is flagged, bay-detect assumes that the data distribution may
have changed, and the posterior parameters are reset to the prior values of
µ0, 0,�

2
0,⌫0.

Algorithm 4 presents pseudocode of the bay-detect algorithm.

Demonstration

Fig. 49-50 visualize the results of applying bay-detect to simulated and real
PMU voltage magnitude measurements with events. The time of events
detected by bay-detect are indicated with red dashed vertical lines. When
true event times are known, they are indicated by green vertical lines. The
dashed orange time series visualizes the mean of the posterior predictive
distribution, while the dark gray band visualizes its spread, together indi-
cating the data distribution that bay-detect learns. Notice the gray band
widening dramatically following an event, reflecting the resumption of un-
certainty on the data distribution parameters. As more data points are
observed, the gray band tightens, indicating the increasing certainty in the
estimated data distribution.
Fig. 49 applies bay-detect to a simulated voltage magnitude time series
containing a total of 14 events. The time series was generated by simu-
lating the IEEE 14 Bus transmission test system [186] under a sequence
of different event types, including load changes, capacitor bank switching,
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A 4: [E] = bay-detect(X)
Input :X is a 1⇥ t data time series
Output :E is a 1⇥ t binary vector where 1 indicates an event point
// Initialize posterior parameters

µ0, 0, �
2

0
, ⌫0  1, 0.1, 10, 0.1 // Constants

µ, , �2, ⌫ X(0), 0, �0, ⌫0 // Initial values

for n 1 to t do

x X(n)
cdf postProb(x, µ, ,�2,⌫)
// Compute tail probabilities

ptail min(cdf, 1- cdf) // Eq.68

if ptail 6 ⇢ then

E(n) 1 // Event!

µ,,�,⌫ x, 0,�
2

0
,⌫0 // Reset parameters after event

else

// Update parameters with new data point

µ,,�2,⌫ update([x], µ, , �2, ⌫)
end

end

A 5: [µ 0,  0, � 02, ⌫ 0] = update(Xk, u, , �2, ⌫)
Input :Xk is 1⇥ k vector of data with which to update parameters

u, , �2, ⌫ scalar posterior parameters.
Output :µ 0,  0, � 02, ⌫ 0 are updated parameters
x̄ 1

k

P
k

i=1
Xk(i) // Sample mean of Xk

µ 0  µ+kx̄


// Eq.62

 0  + k // Eq.63

⌫ 0  ⌫+ k // Eq.65

� 02  1

⌫ 0

✓
⌫�2 +

P
k

i=1
(Xk(i)- x̄)2 + k

 0 (µ- x̄)2
◆
// Eq.64

A 6: [cdf] = postProb(x, µ, , �2, ⌫)
Input : x is scalar measurement to obtain posterior probability of given

parameters µ, , �2, ⌫
Output : cdf is cumulative probability of x
// Normalize data to use standard t-distribution

�̂2  1+


�2

x̂ x-µp
�̂2

cdf t⌫.cdf(x̂) // CDF of standard t-distribution
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faults, and generator trips. One of the software PMUs “installed” at a bus
in the network produced the synthetic voltage magnitude data plotted in
Fig. 49. As the times of the simulated events were known, this data allowed
for validation of bay-detect. Bay-detect successfully finds all the simulated
events, detecting them at times closely aligned with the true event times.
There are no false positives. Fig. 49b shows zoomed in results on a portion
of the full time series.
Fig. 50 applies bay-detect to a voltage magnitude time series from a µPMU
installed on an operational distribution network. Event times for this data
are not known, but some events—like the drastic voltage sag in Fig. 50a—
are discernible by eye. Bay-detect successfully detects the voltage sag. In
Fig. 50, bay-detect is applied to a period of real data containing no event.
Here we see the learned posterior distribution evolving to match the data.

F
Once events are detected—with bay-detect or other techniques—they can
be classified. The next section describes a clustering algorithm for event
classification.
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(a) Full time series with 14 events

(b) Subseries with 4 out of 14 events

Figure 49: Bayesian event detection applied to a simulated voltage magnitude
time series containing 14 events. Events were simulated on the IEEE 14
bus system and are of varied types. For realism, 30 dB of white noise
was added to the simulated voltage data.
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(a) A voltage sag event

(b) A non-event period

Figure 50: Bayesian event detection applied to voltage magnitude measurements
from an operational distribution network.
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�.� ��������� ����� ����������
Clustering is a promising approach to event classification, as it addresses
two key usability issues that mar other approaches. First, it is an unsuper-
vised approach, meaning it does not require data with class labels. Second,
clustering approaches can be highly transparent, especially if applied to
raw measurements or simple features (conversely, clustering in abstruse
feature spaces is highly opaque and provides little insight).
In the grid context, clustering has been extensively applied to load data
[187]–[189], to find exemplars from large numbers of time series. Closest
to the clustering application presented in this section are the approaches of
[79], [190], [191], which apply off-the-shelf clustering algorithms to PMU
time series measurements of events. This section presents k-ShapeStream,
a novel clustering algorithm designed with time series grid measurements
in mind. k-ShapeStream improves on the prior work in two critical respects.
First, it is a streaming clustering approach, allowing clusters to be updated
with new event data without requiring access to historical event data. This
is a critical feature for algorithms intended to run online on continually
updated measurement data streams. In contrast, the clustering approaches
in prior works necessitate re-clustering the entire set of new and historical
event data every time a new event is added, which quickly becomes imprac-
tical. Second, k-ShapeStream uses a probabilistic time-series distance mea-
sure for clustering which has multiple benefits. This distance measure im-
proves algorithm performance, enables anomaly detection, and enhances
human interpretation of the results. It associates a probability distribution
with each cluster, which can be interpreted as a confidence metric. By
providing such a confidence measure rather than cut-and-dried answers,
k-ShapeStream gives users more context, further engendering trust in the
analytic tool.
k-ShapeStream is the progeny of k-Shape, a recently developed—but al-
ready popular—time series clustering algorithm [192], [193]. To under-
stand k-ShapeStream, it is helpful to first understand k-Shape, briefly de-
scribed next in Section 5.2.1. Then, Section 5.2.2 details how k-ShapeStream
extends k-Shape to (i) operate over streaming data; (ii) produce probabilis-
tic interpretable results; and (iii) separate outlier events. Finally, Sections
5.2.3-5.2.4 demonstrate the effectiveness of k-ShapeStream on events de-
tected in µPMU voltage magnitude measurements from an operational dis-
tribution network in California.
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Figure 51: Visual comparison of cluster centroids computed using k-shape’s
eigendecomposition method versus the arithmetic mean. Gray lines
show individual events in each cluster. The eigendecomposition better
preserves the sharpest changes.

�.�.� Background: k-Shape Time-Series Clustering
k-Shape is a time-series clustering algorithm that has been effectively ap-
plied to data from various domains [193], including the energy sector [194]–
[196]. Similarly to the canonical k-means clustering algorithm [197], k-
shape segregates input data points into k clusters—where k is specified by
the user—by iteratively maximizing intra-cluster similarity. It ultimately
returns cluster assignments for each input data point as well as a repre-
sentative centroid for each cluster. A generic algorithm intended for use
on data points in an arbitrary, multidimensional feature space, k-means
uses Euclidean distance as the similarity measure between data points
(lower distance means higher similarity) and computes the cluster cen-
troids as the arithmetic mean of all member points. Here k-shape has a
distinct difference, using an approach targeted to time series data. In the
place of Euclidean distance, k-shape uses a normalized version of cross-
correlation as the similarity measure between time series, termed Shape-
based Distance (SBD). In place of the arithmetic mean, k-shape applies an
eigendecomposition-based method for centroid computation. Both modifi-
cations are especially suited to time series measurements. SBD is intuitive,
robust to time series scaling and misalignment, and can be efficiently com-
puted via the Fast Fourier Transform (FFT) [198]. While the arithmetic
mean for centroid computation tends to have a low pass effect, eigende-
composition preserves sharp edges in time series signatures—as shown in
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Fig. 51—and, therefore, produces more representative centroids. Together,
these features make k-shape an attractive algorithm for clustering time se-
ries grid events.

�.�.� Clustering Streams of Time Series
With all its compelling attributes, k-shape has one major weakness. To de-
termine clusters, it requires access to the entire set of time series, making it
prohibitively computationally expensive for use in streaming settings due
to the need to re-cluster new and historical data. k-ShapeStream alleviates
this shortcoming.
k-ShapeStream proceeds in rounds, handling one batch of data per round.
In round r of clustering, the algorithm ingests nr time series of length t,
contained in the nr ⇥ t data matrix Xr. Associated with each of the k clus-
ters are nine parameters which evolve over rounds. For cluster j in round
r, they are denoted and defined as follows:

• mr(j) is the scalar count of cumulative cluster members.

• Sr(j) is the t⇥ t cluster shape matrix.

• ur(j) is the t⇥ 1 time series cluster centroid.

• µr(j) is the scalar mean of the cluster distance distribution.

• �r(j) is the scalar squared mean of the cluster distance distribution.

• �r(j) is the scalar standard deviation of the cluster distance distribu-
tion.

To enable a probabilistic clustering distance metric, the intra-cluster dis-
tances —between the time series members of a cluster and its centroid
—are modeled as normally distributed, with mean and variance µr(j),�r(j).
The scalar �r(j) enables a streaming update of the normal distribution pa-
rameters. All the listed parameters are efficiently updated in each round
and are the only data carried forward between rounds. A length nr list
of indices indicating the cluster assignment of time series in Xr—denoted
IDXr—is returned after each round. Fundamental to the streaming ap-
proach is that shape matrices—from which cluster centroids are extracted
via eigendecomposition—can be linearly updated with each new round of
data, allowing centroids to reflect the entire, cumulative set of cluster mem-
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bers without accessing time series from prior rounds.
k-ShapeStream assigns each time series in data matrix Xr either to one of
the k clusters, or to an outlier set, based on the normalized cross-correlation
distance, or SBD, between the time series and the centroid of each cluster.
The assignment depends on the probability of the distance between the
time series and current cluster centroids, given the current intra-cluster dis-
tance distributions. As mentioned, these distributions are assumed normal,
with mean µr-1(j) and standard deviation �r-1(j) for cluster j. Therefore,
in round r, time series i is assigned to a cluster or to the outlier set as
follows:

disti(j) ,
SBD(Xr(i), ur(j))- µr-1(j)

�r-1(j)
(70)

IDXr(i) =

�
argminj disti(j) if minj disti(j) < ⌧

outlier otherwise
(71)

⌧ is a user specified threshold of the number of �’s of permissible devia-
tion for a time series to be assigned to a cluster. A typical choice—used in
this work—is ⌧ = 2. By labeling outliers, k-ShapeStream allows unusual
or unfamiliar events to be flagged for analysis and also avoids cluster con-
tamination by outliers. Within round r, cluster memberships are iteratively
refined, either until they have stabilized or until the maximum number of
iterations has been reached.
Assume clustering has proceeded to the end of round r, having assigned
each time series in Xr to one of the k clusters or the outlier set. Xr(IDXr = j)
is the set of time series from round r assigned to cluster j, which will be
denoted Xj

r for brevity. At the end of the round, cluster parameters are up-
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dated based on the final time series assignments. The parameters of cluster
j are updated according to the following equations:

mr(j) = mr-1(j) + |IDXr = j|1 (72)

Sr(j) = Xj
r · (Xj

r)
T + Sr-1(j) (73)

ur(j) = eig(QT · Sr(j) ·Q) where Q , I-
1

t
O (74)

µr(j) =
mr-1(j) · µr-1(j) +

P
l SBD(ur(j), X

j
r(l))

mr-1(j) + |IDXr = j|1
(75)

�r(j) =
mr-1(j) · �r-1(j) +

P
l SBD(ur(j), X

j
r(l))2

mr-1(j) + |IDXr = j|1
(76)

�r(j) = ↵
q
�r(j)- µr(j)2 + (1-↵) (77)

The equations make clear why we track the mean of squared intra-cluster
distances: it is needed in the standard deviation update of (77). Motivated
by a maximum likelihood approach, a smoothing factor, denoted ↵, is used
in the standard deviation update to capture increasing certainty in the dis-
tribution parameters with increasing number of cluster members [185]. The
value of ↵ is:

↵ =
mr-1(j) + |IDXr = j|1

1+mr-1(j) + |IDXr = j|1
(78)

Importantly, the cluster parameters are updated using only the previous
parameters but none of the member time series from prior rounds. There-
fore, once all cluster parameters have been updated at the end of round
r, Xr can be completely discarded; all pertinent information for the next
round is captured in the cluster parameters. This is the fundamental ben-
efit of the streaming approach which makes the method sustainable for
application to ever-growing streams of indefinite duration.
Pseudocode for k-ShapeStream is provided in A7-9. The SBD function
called in the pseudocode returns the shape based distance and aligned
time series. SBD is fully described in [192] and has achieved state-of-the-
art accuracy and runtime performance [199]. The input time series must
initially be z-normalized, as described in [200]. Pseudocode for the update
of the intra-cluster distance distribution parameters are in A9.
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A 7: [IDXr, Cr] = k-ShapeStream(Xr, Cr-1)

Input :Xr is an nr-by-t matrix containing nr z-normalized time series of
length t.Cr-1 contains cluster parameters from the prior round.

Output : IDXr is an nr-by-1 vector containing the assignment of nr time
series to k clusters or outlier set. Cr contains cluster parameters
at the end of this round.

ur  Cr-1.u, mr-1  Cr-1.m // prior centroids, cluster member counts

µr-1, �r-1, �r-1  Cr-1.µ, Cr-1.�, Cr-1.� // prior dist params

µr, �r, �r  µr-1, �r-1, �r-1 // init new dist params

IDX 0
r  [], Sr  [] // initial assignment & shape matrices

mindist 0 // nr-by-1 zeros vector, distance to nearest centroid

while IDX 0
r 6= IDXr & iter = 0 : 100 do

IDX 0
r  IDXr

for j 1 to k do

X 0  []
for i 1 to nr do

if IDXr(i) = j then

X 0  [X 0, Xr(i)]
end

end

[ur(j), Sr(j)] ShapeExtraction(X 0, ur-1(j), Sr-1(j))
end

for i 1 to nr do

mindist(i) 1
for j 1 to k do

[d, x 0] SBD(ur(j), Xr(i))

dist |d-µr-1(j)|
�r-1(j)

// Eq.70

if dist < mindist(i) then

mindist(i), IDXr(i) dist, j // Eq.71

end

end

if mindist(i) > ⌧ then

IDXr(i) k+ 1 // Outlier, Eq.71

end

end

[mr, µr, �r, �r] Update(Xr, IDXr, mindist, mr-1, µr-1, �r-1, �r-1)
end

Cr.m, Cr.S, Cr.u, Cr.µ, Cr.�, Cr.� mr, Sr, ur, µr, �r,�r// New cluster

params
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A 8: [u, S 0] = ShapeExtraction(X,u, S)
Input :X is an n-by-t matrix of z-normalized time series

u, S are prior centroid and shape matrix of cluster.
Output :u 0 is new t-by-1 centroid.

S 0 is new t-by-t shape matrix.
// Align time series to prior centroid

X̂ []
for i 1 to n do

[dist, x̂] SBD(u, X(i))
X̂ [X̂, x̂]

end

S 0  X̂T · X̂+ S // incrementally updated Eq.73

Q I- 1

t
·O // I, O are identity & ones matrices respectively

M QT · S 0 ·Q
u 0  eig(M,1)// Eq.74

A 9: [mr, µr, �r, �r] = Update(IDXr,mindist,mr-1, µr-1, �r-1,�r-1)
Input :Xr, IDXr, mindist as defined in Alg. 7

mr-1, µr-1, �r-1, �r-1 prior cluster parameters
Output :mr, µr, �r,�r are new cluster parameters
for j 1 to k do

count, s, ss 0, 0, 0

for i 1 to nr do

if IDXr(i) = j then

count = count+ 1

s = s+mindist(i)
ss = ss+mindist(i)2

end

end

mr(j) mr-1(j) + count // Eq.72

µr(j) mr-1(j)·µr-1(j)+s

mr-1(j)+count
// Eq.75

�r(j) mr-1(j)·�r-1(j)+ss

mr-1(j)+count
// Eq.76

↵ mr-1(j)+count

1+mr-1(j)+count
// Smoothing factor Eq.78

�r(j) ↵
p
�r(j)- µr(j)2 + (1-↵) // Eq.77

end
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Figure 52: Average intra-cluster distance for different choices of k. This analysis
on the first batch of data is useful for choosing k: here we choose k = 7,
just after the “knee" of the curve.

�.�.� Demonstration
This section demonstrates k-ShapeStream applied to open-access voltage
magnitude measurements from a single µPMU on an operational distri-
bution feeder in California, obtained through the NI4AI project platform2

[201]. For this demonstration, similar to [16], [79], events are found by
searching for sharp, significant changes in voltage magnitude streams. A
window of 2 seconds (240 samples) around each event point is extracted
from the measurement stream. These time series chunks are the inputs to
k-ShapeStream. Note that k-ShapeStream is for post-detection event anal-
ysis and is agnostic to the preceding event detection algorithm. We use a
simple approach, but there are a multitude of other options, such as bay-
detect, or the methods in [73], [82], [93], [94].
To emulate a streaming situation, the full data set of over 700 events found
across four months of measurement is split into batches of 30 events each.
k-ShapeStream ingests and clusters one batch at a time. To perform the
clustering, the user must select k: the number of clusters to find. This can
be a thorny step. For realism, we choose k based only on the first batch
of data by clustering it with several values of k and considering the aver-
age intra-cluster distance—the average of the SBD between each time series

2 https://ni4ai.org/

https://ni4ai.org/
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Figure 53: Seven clusters and the set of outliers visualized over six rounds of
clustering. Gray lines indicate individual events. Colored lines show
the cluster centroids. The inset number shows the number of events
added to the cluster in each round. The inset distribution visualizes
how intra-cluster distance distributions evolve: notice the narrowing
distribution representing increasing certainty in the event’s signature.
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and its centroid—for each choice of k. The results are shown in Fig. 52,
based on which we choose k = 7, as it lies just after the “knee" of the curve.
Fig. 53 shows the resulting clusters and outliers, over six batches or rounds
of clustering (columns correspond to rounds, rows to each cluster). The
colored lines show cluster centroids, while gray lines show the individual
events added to each cluster. The number in the top right corner indicates
the number of events added to the cluster in that round. The inset distribu-
tions in orange visualize the distribution of intra-cluster distances, which
evolve with each round. The distributions clearly and compellingly inform
on the quality and nature of the clusters. Some clusters have very nar-
row distributions—indicating a highly regular, recurring signature—while
others have wider distributions—reflecting a more irregular or perhaps
poorer quality cluster. The outlier events differ emphatically from the cen-
troids.

�.�.� Example Use Case
To showcase the utility of k-ShapeStream, we perform analyses on some
recognizable clusters from the full set of seven. These examples are not
meant to present technically novel methods for system monitoring. In-
stead, we hope to illustrate how k-ShapeStream enables identification and
analysis of recurring grid events and can be easily integrated into an anal-
ysis workflow to support a human analyst.

Transformer Tap Events

Load tap changing transformers (LTCs), common at distribution substa-
tions between medium and low voltage, mechanically adjust the effective
turns ratio between their primary and secondary coils. They periodically
“tap" the voltage up or down to compensate for changing voltage drop due
to load variation, thus maintaining customer voltages within permissible
limits. LTC failures can be costly and highly disruptive, motivating trans-
former monitoring [203]. Analysis of LTC operation based on PMU data
has been manually demonstrated in the past [204]. k-ShapeStream can be
used to automatically identify LTC tap events. Two clusters found in the
data showing sharp step changes in voltage clearly correspond to LTCs op-
erating to step voltage up and down (Fig. 54(a)-(b)). Notice the narrowness
of the intra-cluster distance distributions indicating the high regularity of
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the LTC signatures. Once the signatures are temporally isolated, different
event features can be analyzed. We consider the pre-event voltage (Fig.
54(c)), voltage change during the event (Fig. 54(d)), and the time of event
occurrence (Fig. 54(e)). For this set of LTC operations, all these features
seem normal: magnitudes are generally lower preceding a tap up operation
than a tap down, the size of the voltage step is highly regular, and tap ups
tend to occur later in the day while tap downs occur earlier (as we would
expect under a typical residential feeder load profile). Such an analysis
could reveal irregular transformer behavior. For example, the intra-cluster
distance distribution found by k-ShapeStream could be used to reveal an
anomalous LTC signature that might indicate incipient failure. Note that
no prior knowledge whatsoever about LTCs was required for the algorithm
to suggest the relevant clusters.

Voltage Sag Events

Voltage sags are large transient dips in a network voltage magnitude that
can last from less than a cycle to several seconds. They may be caused by
motor starts, equipment misoperation, or faults [205], including dangerous
high-impedance faults that fail to trip overcurrent protection. Recurrent
sags could be caused by repeated vegetation contact and indicate a fire
hazard. Large, long, or frequent voltage sags are also problematic in that
they may cause sensitive loads and solar PV inverters to trip offline. Mon-
itoring voltage sags is therefore important for maintaining safety and reli-
ability. We find one cluster containing a sharp, transient voltage drop that
corresponds to a recurring voltage sag signature (55(a)). Notice from the
intra-cluster distance distribution that while this event signature is quite
regular, it is less so than the LTC tap signatures, as expected when com-
paring a random event to equipment operation. A voltage sag feature with
implications for reliability is sag magnitude: the minimum voltage mag-
nitude attained during the event. A result in the literature based on a
simplified, generic model of fault-induced sags posits that the normalized
frequency of sags with magnitude M will be proportional to M

1-M [202]. Fig.
55(b) compares this model to the empirical distribution of sag magnitudes
in the cluster found by k-ShapeStream. The model appears to describe the
empirical distribution quite well, indicating its efficacy for prediction and
monitoring on this feeder. Again, k-ShapeStream produces a characteri-
zation of voltage sag type and frequency, and thereby generates possible
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insights into physical occurrences, in an entirely unsupervised learning
process.

�.�.� Conclusion
The analyses of Section 5.2.4 highlight the efficacy of k-ShapeStream for
identifying recurring and unusual (“outlier") event signatures in grid data.
Once identified by k-ShapeStream, these signatures can then be analyzed
further to identify issues, understand system behaviour, and improve over-
all situational awareness. Without such a streaming clustering approach,
event signatures would have to be identified manually, which is always
time consuming and sometimes impossible. Furthermore, k-ShapeStream
generates highly intuitive results including a distribution that reflects the
degree of confidence in a given cluster. These features make the algo-
rithm particularly suitable for assisting and collaborating with a human
user, which is essential in the electric grid context.
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Figure 54: Analyzing clusters containing LTC operation events. Tap up (a) and
down (b) signatures clustered together across several months of data
and multiple rounds of clustering. Distribution insets are very narrow
indicating highly regular event signatures. (c) Voltage magnitude pre-
ceding tap event, showing lower magnitudes for tap up events and
higher magnitudes for tap down events. (d) Histogram of percent
change in voltage during event showing highly regular step size. (e)
Occurrence of tap up and down events over study period, with his-
tograms showing hourly distribution. Tap up events tend to occur later
in the day while tap down events tend to occur earlier, as is expected
under a typical residential load profile.
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Figure 55: Analyzing cluster containing voltage sags. (a) A cluster containing
92 voltage sag events found over several months of data and multiple
rounds of clustering. The inset distribution of intra-cluster distances is
wider than for the tap events in Fig. 54(a),(b) indicating less consistent
event signatures. (b) Comparison of the empirical distribution of sag
magnitudes in the cluster to a theoretical model proposed in [202].



6 P R I N C I P L E S F O R U S A B L E
TO O L S

The previous chapters covered much ground in defining and describing
usable tools for grid monitoring. The tool algorithms in this thesis tar-
geted two areas: topology monitoring and event detection and classifica-
tion. Much works remains in expanding the grid operator and engineer’s
usable toolkit, not just in these areas but for a plethora of other use cases.
Chapter 3 defined a wish-list of usability features, but a wish-list does not
comprise a plan. How can we actually build more usable tools across ap-
plications? Drawing on the experience of developing the tools described
in prior chapters, this final chapter presents some broad principles that fa-
cilitate the creation of tools to meet the criteria of usability, highlighting
in particular the enabling features of high resolution, time synchronized
measurements in getting there.

�.� ������ ������
Linear models were crucial in the design of several of the topology tools in
Chapter 4. They are tractable models capturing both the system and mea-
surements from which we can derive physically justified tools that deal
in intuitive physical quantities. Linear models also enable the principled
study of the impacts of noise and other real world non-idealities on tool
results.
There are many choices of linear models to use in the power systems
space. Single phase, phasor quantities naturally obey a linear relationship
parametrized by the network model, expressed in the now familiar matrix
version of Ohm’s Law:

I = YV

This model was the foundation of the physics-based topology estimation
algorithm of Section 4.3. An extension, with a more elaborate Y matrix,

164
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was the basis of the three-phase topology estimation algorithm detailed in
Section 4.4. In both the single and three phase case, it was the use of a
linear model with an explicit, intuitive, well elucidated structure—recall
the intuitive interpretation of the values in the Kron reduced impedance
matrix—that was essential for successful tool design.
In the absence of phasor measurements, power system physics are gener-
ally non-linear. For example, real and reactive power injections (p and q)
are related to nodal voltage magnitudes and angles (v and ✓) through the
famously non-linear and non-convex power flow equations.

pk =
nX

j=1

vkvj
�
gkj cos(✓k - ✓j) + bjk sin(✓k - ✓j)

�

qk =
nX

j=1

vkvj
�
gkj sin(✓k - ✓j)- bjk cos(✓k - ✓j)

�

Even so, there are numerous linearizations of these equations—based on
well-defined assumptions and accurate across many scenarios—that can be
useful starting points for tool design [65].
The coupling of high resolution, time aligned measurements with linear
measurement models is especially enabling for the design of usable tools,
and in particular for allowing low sensor coverage requirements. Con-
sider the following toy example, which aims to localize the source of an
injection change to the nearest node in a radial network, using only nodal
voltages.

Toy Example: Localizing an Injection Change

Ohm’s law for a network mapping from current injections to nodal voltages
is:

V(t) = ZI(t)

Here, Z is the system impedance matrix and V and I are n⇥ 1 vectors of
the nodal voltage and current phasors across the network at one point in
time t. Differentiating voltage and current in time produces the following
relationship between changes in voltage and changes in current, which we
compress into a more convenient notation

V(t+ 1)- V(t) = Z

✓
I(t+ 1)- I(t)

◆
! V

(�t) = ZI
(�t)
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Assume that we only have access to the left hand side of this model, specif-
ically the nodal voltage changes V

(�t). Suppose there is a rapid, signif-
icant change in the current injection at a single node k between time t
and t + 1 . If the measurement time resolution is low—i.e. t to t + 1
is a long duration—many other injection changes at other nodes will ap-
pear coincident from the measurement perspective. However, with high
enough measurement resolution—such as that delivered by PMUs—it is
reasonable to assume that the change at node k is the only change occur-
ring within this time step. In this case, I

(�t) will be sparse, with a single
non-zero value at the k-th position. The impedance matrix Z is non-sparse,
therefore the lone non-zero value in I

(�t) will ripple across V
(�t) to produce

many non-zero voltage changes, eliminating the direct indication of the
source. However, here the structural properties of Z are crucial. It can
be shown that the diagonal elements of Z have the largest magnitude in
each row [173]. Therefore, the largest element of V

(�t) will in fact be the
one corresponding to the source node of the injection change, allowing the
successful localization of the change only from voltage data.
The simple localization tool in this example relies on a linear model with
clear structure, combined with high resolution measurement data that must
also be time synchronized to be at all useful in the model. All together,
these elements enable a localization tool that deals in physically mean-
ingful quantities, is theoretically well-founded, and requires only voltage
measurements—i.e. a very usable one.
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Figure 56: Studying correlations in household real power demand using minute
resolution demand data from the Pecan Street project. Individual load
profiles for 12 homes over several hours are shown at left. The abso-
lute value of the Pearson correlation coefficient between every pair of
loads is visualized in the matrix on the right. A value of 1 means two
load profiles are highly positively or negatively correlated, while a 0

indicates no correlation.

�.� ����������� �����������
Statistical assumptions can be extremely useful for making the problem of
usable tool design tractable. Assumptions on the statistics of current injec-
tions (and implicitly demand), were vital for creating the three phase and
justified heuristic topology tools in Chapter 4. Assuming that loads are
uncorrelated—and therefore that current injections are uncorrelated—is a
common and highly effective assumption. While aggregate load behavior
or load variation on long time scales is highly correlated, the uncorrelated
assumption often holds very well on individual loads or in high resolution
data like that from PMUs. Fig. 56 visually validates this assumption on
minute resolution household demand data from the Pecan Street data set1.
The correlation matrix visualized in the right of Fig. 56 contains the abso-
lute value of the Pearson correlation coefficients between household load
time series. Its strong diagonal and relatively small off-diagonal elements
support the claim of individual loads being weakly correlated and bolsters
the validity of the uncorrelated load assumption.
The following toy example illustrates how the correlation assumption en-

1 https://www.pecanstreet.org/

https://www.pecanstreet.org/
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Figure 57: The setup of the toy example for estimating a path impedance using
limited phasor measurements and the assumption of uncorrelated cur-
rent extractions.

ables the development of usable tools in lower sensor coverage scenar-
ios.

Toy Example: Estimating a Path Impedance

Consider an arbitrary radial network with only a voltage phasor measure-
ment at the substation, and a measurement of the voltage and current in-
jection phasors at a single leaf or edge node. This setup is visualized in Fig.
57, where the substation is node 1 and the measured leaf node is 5. The
relevant voltage, current, and impedance quantities are explicitly labeled,
and measured quantities are colored in red while unmeasured quantities
are colored blue. Suppose we are interested in z15, the impedance of the
path between the measured substation and leaf node. This quantity can be
written as the sum of individual line impedances:

z15 = z12 + z23 + z35

Conventionally, we would need to estimate each of these line impedances
individually—requiring measurements from both ends of each line—in or-
der to determine z15. However, if we make the assumption that current
extractions are uncorrelated, the problem becomes tractable with the avail-
able data.
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By Ohm’s Law, the voltage difference between the substation and leaf 5
can be written in terms of line impedances and current extractions as fol-
lows:

v1 - v5 = z12

✓ 5X

k=2

ik

◆
+ z23

✓ 5X

k=3

ik

◆
+ z45i5

Then the correlation between voltage difference v1 - v5 and current extrac-
tion i5 can be written as:

(v1 - v5)
H

i5 = z12

✓ 5X

k=2

i
H
k i5

◆
+ z23

✓ 5X

k=3

i
H
k i5

◆
+ z45(i

H
5 i5) (79)

Since current extractions are uncorrelated between nodes, several terms on
the right hand side of (79) disappear, leaving:

(v1 - v5)
H

i5 = (z12 + z23 + z45)i
H
5 i5

This then allows for the determination of the path impedance of interest
using only the three available phasor measurements:

z15 =
(v1 - v5)

H
i5

iH5 i5

�.� ����������� ���������
Statistical baselines were used for event detection in Chapter 5. More
broadly, we can envision them as adding a final layer of robustness to
tools, and thereby improving usability. The linear model and statistical
assumptions involved in the derivation of a tool will rarely hold exactly,
leading to noisy variation in the tool output. An overlaid statistical base-
line can distinguish this noisy variation from truly significant changes that
demand urgent human attention. This can address issues around exces-
sive alarms and the resulting cognitive overload that currently challenges
grid operators [206]. At the same time, statistical baseline distributions are
highly intuitive and do not diminish tool transparency.
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�.� � ������ ��� �����
We have reached the end of this thesis’ journey towards usable tools. There
is still far to go to achieve the real-time grid visibility needed to meet the
challenges posed by a transforming energy system. My hope is that the
usability criteria, tool examples, and design strategies proposed in this
thesis provide a road map for the creation of future grid tools that work
in successful collaboration with humans to safely, efficiently, reliably, and
renewably deliver energy to all the world’s people.
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