
Building Reinforcement Learning Algorithms that

Generalize: From Latent Dynamics Models to Meta-

Learning

JD Co-Reyes

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-178

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-178.html

August 10, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Building Reinforcement Learning Algorithms that Generalize: From Latent Dynamics
Models to Meta-Learning

by

John D Co-Reyes

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Sergey Levine, Chair
Professor Pieter Abbeel
Professor Alison Gopnik

Summer 2021

Building Reinforcement Learning Algorithms that Generalize: From Latent Dynamics
Models to Meta-Learning

Copyright 2021
by

John D Co-Reyes

1

Abstract

Building Reinforcement Learning Algorithms that Generalize: From Latent Dynamics
Models to Meta-Learning

by

John D Co-Reyes

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Sergey Levine, Chair

Building general purpose RL algorithms that can efficiently solve a wide variety of problems
will require encoding the right structure and representations into our models. A key component
of our generalization capability is our ability to develop an internal model of the world that
can be used for robust prediction and efficient planning. In this thesis, we discuss work that
leverages representation learning to learn better predictive models of physical scenes and enable
an agent to generalize to new tasks by planning with the learned model under the framework
of model-based RL. We cover two kinds of abstraction that can enable good generalization:
state abstraction in the form of object level representations and temporal abstraction in the
form of skill representations for hierarchical RL. By incorporating these abstractions into our
models, we can achieve efficient learning and combinatorial generalization over long horizon,
multi-stage problems. We also discuss the role of meta-learning in automatically learning
the right structure for general RL algorithms. By leveraging large scale evolutionary based
computation, we can meta-learn general purpose RL algorithms that have better sample
efficiency and final performance over a wide variety of tasks. Finally, we cover how these
internal models can be used to compute the RL objective itself and train general RL agents
with complex behavior without having to design the reward function.

i

Contents

Contents i

List of Figures iii

List of Tables ix

1 Introduction 1

2 Preliminaries 5
2.1 Problem Statement . 5
2.2 Generative Latent Dynamics Models . 5
2.3 Representation Learning and Abstractions for Generalization 6

3 State Abstraction for Combinatorial Generalization 7
3.1 Related Work . 9
3.2 Entity Modeling Problem . 12
3.3 Object-Centric Perception, Prediction and Planning 12
3.4 Experiments . 17
3.5 Discussion . 20

4 Temporal Abstraction for Compositional Generalizaton 22
4.1 Self-Consistent Trajectory Autoencoder . 24
4.2 Related Work . 30
4.3 Experiments . 31
4.4 Discussion . 34

5 Evolutionary Based Meta-Learning to Learn General RL Algorithms 37
5.1 Related Work . 38
5.2 Learning Reinforcement Learning Algorithms 40
5.3 Learned RL Algorithm Results and Analysis 44
5.4 Discussion . 49

6 Unsupervised Objectives for General Intelligence 50

ii

6.1 Maxwell’s Demon and Belief Entropy . 52
6.2 Preliminaries . 53
6.3 Control and Information Gathering via Belief Entropy Minimization 53
6.4 The Believer Algorithm . 55
6.5 Experiments . 58
6.6 Related Work . 61
6.7 Discussion . 63

7 Conclusion 65

Bibliography 67

A OP3 Details 85
A.1 Observation Model . 85
A.2 Evidence Lower Bound . 86
A.3 Posterior Predictive Distribution . 87
A.4 Interactive Inference . 88
A.5 Cost Function . 89
A.6 Architecture and Hyperparameter Details . 90
A.7 Experiment Details . 92
A.8 Ablations . 95
A.9 Interpretability . 96

B SeCTAR Details 97
B.1 Experimental Details . 97
B.2 Baseline Details . 97

C Evolving RL Details 99
C.1 Search Language Details . 99
C.2 Training Details . 100
C.3 Environment Details . 100
C.4 Graph Distribution Analysis . 104
C.5 Repeatability of Meta Training . 104

D Believer Details 106
D.1 Experimental Details . 106
D.2 Implementation Details . 108
D.3 OneRoomCapture3d visualization. 109

iii

List of Figures

3.1 OP3. (a) OP3 can infer a set of entity variables H
(T)
1:K from a series of interactions

(interactive entity grounding) or a single image (entity grounding). OP3 rollouts predict

the future entity states H
(T+d)
1:K given a sequence of actions a(T :T+d). We evaluate these

rollouts during planning by scoring these predictions against inferred goal entity-states

H
(G)
k . (b) OP3 enforces the entity abstraction, factorizing the latent state into local

entity states, each of which are symmetrically processed with the same function that

takes in a generic entity as an argument. In contrast, prior work either (c) process a

global latent state (Hafner et al., 2018) or (d) assume a fixed set of entities processed

in a permutation-sensitive manner (Finn et al., 2016; Kulkarni et al., 2019; Xu et al.,

2018; Watters et al., 2019). (e-g) Enforcing the entity-abstraction on modeling the (f)

dynamics and (g) observation distributions of a POMDP, and on the (e) interactive

inference procedure for grounding the entity variables in raw visual observations.

Actions are not shown to reduce clutter. 8
3.2 Comparison with other methods. Unlike other methods, OP3 is a fully probabilistic

factorized dynamic latent variable model, giving it several desirable properties. First,

OP3 is naturally suited for combinatorial generalization (Battaglia et al., 2018) because

it enforces that local properties are invariant to changes in global structure. Because

every learnable component of the OP3 operates symmetrically on each entity, including

the mechanism that disambiguates entities itself (c.f. COBRA, which uses a learned

autoregressive network to disambiguates entities, and Transporter and C-SWMs, which

use a forward pass of a convolutional encoder for the global scene, rather than each

entity), the weights of OP3 are invariant to changes in the number of instances of an

entity, as well as the number of entities in the scene. Second, OP3’s recurrent structure

makes it straightforward to enforce spatiotemporal consistency, object permanence, and

refine the grounding of its entity representations over time with new information. In

contrast, COBRA, Transporter, and C-SWMs all model single-step dynamics and do not

contain mechanisms for establishing a correspondence between the entity representations

predicted from the previous timestep with the entity representations inferred at the

current timestep. 10

iv

3.3 (a) The observation model G models an observation image as a composition of sub-

images weighted by segmentation masks. The shades of gray in the masks indicate the

depth δ from the camera of the object that the sub-image depicts. (b) The graphical

model of the generative model of observations, where k indexes the entity, and i, j

indexes the pixel. Z is the indicator variable that signifies whether an object’s depth at

a pixel is the closest to the camera. 13
3.4 The dynamics model D models the time evolution of every object by symmetrically

applying the function d to each object. For a given object, d models the individual

dynamics of that object (do), embeds the action vector (da), computes the action’s effect

on that object (dao), computes each of the other objects’ effect on that object (doo),

and aggregates these effects together (dcomb). 15
3.5 Amortized interactive inference alternates between refinement (pink) and dynamics

(orange) steps, iteratively updating the belief of λ1:K over time. λ̂ corresponds to the

output of the dynamics network, which serves as the initial estimate of λ that is

subsequently refined by fG and fQ . O denotes the feedback used in the refinement

process, which includes gradient information and auxiliary inputs (Appdx. A.4). . . . 16
3.6 (a) In the block stacking task from (Janner et al., 2018) with single-step greedy

planning, OP3’s generalizes better than both O2P2, an oracle model with access to

image segmentations, and SAVP, which does not enforce entity abstraction. (b) OP3

exhibits better multi-step planning with objects already present in the scene. By

planning with MPC using random pick locations (SAVP and OP3 (xy)), the sparsity

of objects in the scene make it rare for random pick locations to actually pick the

objects. However, because OP3 has access to pointers to the latent entities, we can use

these to automatically bias the pick locations to be at the object location, without any

supervision (OP3 (entity)). 19
3.7 Visualization of interactive inference for block-manipulation and real-world videos (Ebert

et al., 2018). Here, OP3 interacts with the objects by executing pre-specified actions

in order to disambiguate objects already present in the scene by taking advantage of

temporal continuity and receiving feedback from how well its prediction of how an

action affects an object compares with the ground truth result. (a) OP3 does four

refinement steps on the first image, and then 2 refinement steps after each prediction.

(b) We compare OP3, applied on dynamic videos, with IODINE, applied independently

to each frame of the video, to illustrate that using a dynamics model to propagate

information across time enables better object disambiguation. We observe that initially,

both OP3 (green circle) and IODINE (cyan circles) both disambiguate objects via color

segmentation because color is the only signal in a static image to group pixels. However,

we observe that as time progresses, OP3 separates the arm, object, and background

into separate latents (purple) by using its currently estimates latents predict the next

observation and comparing this prediction with the actually observed next observation.

In contrast, applying IODINE on a per-frame basis does not yield benefits of temporal

consistency and interactive feedback (red). 21

v

4.1 Graphical models representing the state and policy decoders. The state decoder
(shown on the left) directly generates a trajectory conditioned on the latent
variable, while the policy decoder generates a trajectory by conditioning a policy
which is rolled out in the environment. As is standard in model-free RL, the
environment dynamics are unknown, so the policy decoder must be trained by
sampling rollouts. 25

4.2 The SeCTAR model computation graph. A trajectory is encoded into a latent
distribution, from which we sample a latent z. We then (1) directly decode z into
a sequence of states using a recurrent state decoder and (2) condition a policy
decoder on z to produce the same trajectory through sequential execution in the
environment. 27

4.3 From left to right (1) the wheeled locomotion environment with the waypoints
depicted in green (2) the object manipulation environment with different objects
(blocks and cylinders) and their correspondingly colored goals (squares) (3) the
swimmer navigation task with the first 3 waypoints depicted in green. 31

4.4 We show how our method improves exploration on three environments. On the
left, we show the final agent locations for 2D navigation and wheeled location and
show final block positions of 4 blocks for object manipulation from a randomly
initialized policy. On the right we show the corresponding final locations from our
explorer policy trained with the unsupervised exploration objective in Section 4.1.
The bottom left plot shows the initial block positions. In all environments we see
the agent learns to explore a more evenly distributed region of the state space. 33

4.5 Comparison of our method with prior methods on the four tasks. Dashed lines
indicate truncated execution. We find that on all tasks, our method is able to
achieve higher reward much quicker than model-based, model-free and hierarchical
baselines. For object manipulation and swimmer, prior methods fail to do anything
meaningful. 35

4.6 Interpolation between two latent codes on the object manipulation environment.
We interpolate between two latent codes and visualize the corresponding trajec-
tories from the policy decoder and the state decoder where each plot is a single
trajectory. The agent position is in brown and the object positions are in blue,
yellow, black and red. From left to right, there is a smooth interpolation between
moving the yellow object a little to the left and moving it much further left. . . 36

5.1 Method overview. We use regularized evolution to evolve a population of RL algorithms. A

mutator alters top performing algorithms to produce a new algorithm. The performance of

the algorithm is evaluated over a set of training environments and the population is updated.

Our method can incorporating existing knowledge by starting the population from known RL

algorithms instead of purely from scratch. 38
5.2 Visualization of a RL algorithm, DQN, as a computational graph which computes

the loss L = (Q(st, at)− (rt + γ ∗maxaQtarg(st+1, a)))2. Input nodes are in blue,
parameter nodes in gray, operation nodes in orange, and output in green. 40

vi

5.3 Left: Meta-training performance over different number of environments from scratch, and

bootstrapping. Plotted as RL evaluation performance (sum of normalized training return across

the training environments) over the number of candidate algorithms. Shaded region represents

one standard deviation over 10 random seeds. More training environments leads to better

algorithms. Bootstrapping from DQN speeds up convergence and higher final performance.

Right: Meta-training performance histogram for bootstrapped training. Many of the top

programs have similar structure (Appendix C.4). 45
5.4 Performance of learned algorithms (DQNClipped and DQNReg) versus baselines (DQN and

DDQN) on training and test environments as measured by episode return over 10 training seeds.

A dashed line indicates that the algorithm was meta-trained on that environment while a solid

line indicates a test environment. DQNReg can match or outperform the baselines on almost all

the training and test environments. Shaded regions correspond to 1 standard deviation. . . . 47
5.5 Overestimated value estimates is generally problematic in value-based RL. Our method learns

algorithms which regularize the Q-values helping with overestimation. We compare the estimated

Q-values for our learned algorithms and baselines with the optimal ground truth Q-values across

several environments during training. Estimate is for taking action zero from the initial state of

the environment. While DQN overestimates the Q-values, our learned algorithms DQNClipped

and DQNReg underestimate the Q-values. 48
5.6 Our learned algorithm, DQNClipped, can be broken down into four update rules where each

rule is active under certain conditions. Case 3 corresponds to normal TD learning while case

2 corresponds to minimizing the Q-values. Case 2 is more active in the beginning when value

overestimation is a problem and then becomes less active as it is no longer needed. 49

6.1 Top row: The environment consists of a large number of objects, some of which
(e.g., the goat) move and act in unpredictable ways, and are not observed unless
the agent is nearby. Bottom row: If the agent maintains a latent state space model
of the world, it has uncertain beliefs about unobserved objects, particularly those
that are dynamic (like the goat). If the agent reduces the long-horizon average
entropy of its beliefs, it will first seek out information (e.g., finding the goat), and
then modify the environment to limit the range of states the goat can occupy
even when it is no longer observed, for example by building a fence around it. . . 51

6.2 A “demon” gathering information to sort particles, reducing the entropy of the
particle configuration. 53

6.3 Comparison of several approaches on the TwoRoom environment. The agent, in
white, can view a limited area around it, in grey, and can stop particles within its
view and darken their color. The vertical wall, in brown, separates particles (blue
and green) in the “busy room” (on right) from the “dark room” (on left). Top:
Our approach seeks out the particles and stops them. Middle: The observational
surprise minimization method in Berseth et al. (2021) leads the agent to frequently
hide in the dark room, leaving the particles unstopped. Bottom: Latent-state
infogain leads the agent to find and observe the particles, but not stop them. . 54

vii

6.4 Figure of latent-state space model and rewards. Left: The model observes images,
ot to inform beliefs about latent states, qφ(zt|o≤t, a≤t−1), and observes actions to
make one-step predictions p(zt+1|zt, at). Each belief is used to update the latent
visitation, q̄t′(z). Right: The beliefs and latent visitations can be combined into
various reward functions. The solid arrows denote directions of belief expansion
and contraction incentivized by rewards; the dotted arrows denote directions of
belief translation incentivized by rewards. 56

6.5 TwoRoom Large Environment. 59
6.6 Vizdoom Defend The Center. 60
6.7 One Room Capture 3D. 60
6.8 Visualization of a sequence in the VizDoom DefendTheLine environment. Row

1: The image provided to the agent. Row 2: The agent’s reconstruction of a
sample from q. Row 3: The agent’s one-step image forecast. Right: The state
infogain signal, Eq[log q − log p]. Each colored rectangle identifies a keyframe
that corresponds to a colored circle on the infogain plot. The infogain signal
measures how much more certain the belief is compared to its temporal prior;
when stochastic events happen (monster appears nearby), the signal is high; when
the next image is predictable (monster disappears when shot), the signal is low. 61

A.1 Qualitative results on building a structure from the dataset in (Janner et al.,
2018). The input is an ”action image,” which depicts how an action intervenes
on the state by raising a block in the air. OP3 is trained to predict the steady-
state outcome of dropping the block. We see how OP3 is able to accurately and
consistently predict the steady state effect, successively capturing the effect of
inertial dynamics (gravity) and interactions with other objects. 93

A.2 We show a demonstration of a rollout for the dataset from (Janner et al., 2018).
The first four columns show inference iterations (refinement steps) on the single
input image, while the last column shows the predicted results using the dynamics
module on the learnt hidden states. The bottom 5 rows show the subimages of
each entity at each iteration, demonstrating how the model is able to capture
individual objects, and the dynamics afterwards. Notice that OP3 only predicts
a change in the yellow block while leaving the other latents unaffected. This is
a desriable property for dynamics models that operate on scenes with multiple
objects. 94

A.3 Two-dimensional (left) and three-dimensional (right) visualization of attention
values where colors correspond to different latents. The blocks are shown as
the green squares in the 2D visualizatio; picking anywhere within the square
automatically picks the block up. The black dots with color crosses denote the
computed pick xy for a given hk. We see that although the individual values are
noisy, the means provide good estimates of valid pick locations. In the right plot
we see that attention values for all objects are mostly 0, except in the locations
corresponding to the objects (purple and red). 95

viii

C.1 Meta-training performance for boot-strapping on 4 training environments for 10
random seeds. 105

D.1 TwoRoom Environments. In the large environment, the agent observes a 5x5 area
around it as an image, and the busy room contains 5 particles. In the normal
environment, the agent observes a 3x3 around it as an image, and the busy room
contains 2 particles. In both settings, the particles are initialized to random
positions in the busy room at the beginning of each episode. 107

D.2 Vizdoom Defend The Center and OneRoomCapture3D 107
D.3 Niche Expansion, Infogain, Niche Creation, Certainty, and Niche Creation+Infogain

rewards are plotted for the first 20 steps of select episodes. Rewards are normalized
to [0, 1] for each reward across the figures. Top: When the agent turns to look at
the box without taking actions to capture it, all rewards other than Certainty are
relatively low throughout the episode. Middle: When the agent moves towards
the box to trap it against a wall, Niche Creation and Niche Expansion decrease
until the box is trapped, and then they increase; the resulting stable configuration
eventually outweighs the preparations needed to trap the box if the episode length
is sufficiently long. Infogain and Certainty increase as the box is in view and able
to move. Bottom: Freezing the box results in low Infogain throughout the episode,
however it is highly rewarded by the other rewards. 110

ix

List of Tables

3.1 Accuracy (%) of block tower builds by the SAVP baseline, the O2P2 oracle, and our

approach. O2P2 uses image segmentations whereas OP3 uses only raw images as input. 18
3.2 Accuracy (%) of multi-step planning for building block towers. (xy) means (pick xy,

place xy) action space while (entity) means (entity id, place xy) action space. . 18

5.1 Performance of learned algorithm DQNReg against baselines on several Atari games. Baseline

numbers taken from reported papers. 48

6.1 Policy evaluation in TwoRoom and OneRoomCapture3D. Means and their standard

errors are reported; grey shading denotes a variant of our method, bolding denotes

where a method achieves the best mean performance under a metric. We observe that

the Niche Expansion and Niche Creation+Infogain objectives lead the agent to seek out

and stabilize the dynamic objects substantially more effectively than other methods. . 62
6.2 Policy evaluation in VizDoom and TwoRoom-Large. Means and their standard errors

are reported; grey shading denotes a variant of our method, bolding denotes where a

method achieves the best mean performance under a metric. We observe that the Niche

Expansion objective in VizDoom and Niche Creation+Infogain objective in TwoRoom-

Large lead the agent to seek out and stabilize the dynamic objects substantially more

effectively than other methods. 63

A.1 Accuracy of ablations. The no weight sharing model did not converge during training. 96

C.2 Other programs learned in learning DQNReg which is rank 1 with score 3.907.
Rank is if scores are sorted in decreasing order. Score is the sum of normalized
RL training performance across four environments. The simplified equations
contains only the relevant parts for minimizing the equation output. Qtarg refers
to maxaQtarg(st+1, a). 104

D.1 Hyperparameters of algorithm 5, models, and optimization. 109
D.2 Latent state-space model, visitation model, and policy architectural de-

tails: The inputs to the latent state-space model are RGB images ot ∈ [0, 1]3×64×64

and actions at ∈ {0, 1}A (one-hot). Pytorch layer notation is used as shorthand.
gt represents the GRU state at t. 111

x

Acknowledgments

First and foremost, I want to thank my advisor, Sergey Levine, for his mentorship and for
guiding me through my PhD. His commitment and continuous support has made this PhD
possible and shaped me into a better researcher. Thank you to my committee members,
Pieter Abbeel and Alison Gopnik for their support and guidance. I also want to thank my
undergraduate advisor, Yisong Yue, for inspiring me to pursue a career in research.

I am grateful to have had the opportunity to collaborate with an amazing group of
students, faculty, and researchers during my PhD. For the work in this thesis, I want to
thank Michael Chang, Michael Janner, Nicholas Rhinehart, Ben Eysenbach, Chelsea Finn,
Danijar Hafner, Jiajun Wu, and Josh Tenenbaum. I would especially like to thank mentors
Glen Berseth and Abhishek Gupta for not only collaborating with me but also providing
support and guidance on a range of issues throughout my PhD. I would also like to thank
all of the undergraduate students I worked with during my PhD including Suvansh Sanjeev,
Rishi Veerapaneni, Andrew Liu, Jie Qiu, Sarah Feng, and Jenny Wang. Beyond the work in
this thesis, I also had the pleasure of working with a number of other students and faculty
including Justin Fu, Nick Altieri, Jacob Andreas, and John Denero.

Thank you to all the researchers in Berkeley AI Research for creating a collaborative
and friendly environment. In particular, I want to thank my nearby labmates Vitchyr Pong,
Justin Fu, Avi Singh, Marvin Zhang, and Dierdre Quillen for all the fun discussions and late
nights working together in the lab. Discussions with Vitchyr Pong, who sat next to me, were
especially helpful in getting me through the challenging times of my PhD. I also appreciate
the support of Sandy Huang, Alex Lee, Greg Kahn, and Coline Devin.

I’m fortunate to have had the opportunity to do an internship at Google Brain under
Aleskandra Faust and Honglak Lee, collaborating with Yingjie Miao, Daiyi Peng, Esteban
Real, Sergey Levine, and Quoc V Le. Aleksandra provided me great freedom to work on any
problem and I’m also grateful for support and thoughtful conversations with many including
Luke Metz, Hanjun Dai, Xingyou Song, Krzysztof Choromanski, and Kevin Wu.

Finally, I’d like to thank my parents, Gigi Cobonpue and John Reyes, and my partner,
Cullen Reilly, for all their years of love and support.

1

Chapter 1

Introduction

Humans have a remarkable capability to solve almost any problem given enough time. Our
brains are flexible enough to adapt, acquire the right information, and learn new skills to
tackle any challenge. From navigation to tool use to conducting basic research, we can
rapidly generalize to new situations that we’ve never seen before. How can we build a similar
system artificially that can solve any relevant problem efficiently? This thesis will outline
progress along this goal of building general purpose agents that have the same problem solving
flexibility as humans. The first part will focus on representation learning and designing
the right inductive biases for reasoning about the world in terms of more abstract and
composable building blocks while the second part will focus on removing human supervision
to automatically design general purpose agents.

Reinforcement learning (RL) provides a general framework to design intelligent compu-
tational systems that can solve any problem that humans can. Advances in reinforcement
learning has led to human-level performance in Atari (Mnih et al., 2015), Go (Silver et al.,
2016) and has been successful in other domains including robotics (Levine et al., 2016;
Kalashnikov et al., 2018), NLP (Paulus et al., 2018), and chip design (Mirhoseini et al.,
2021). However, generalization and sample efficiency are still key challenges with existing
model-free reinforcement learning algorithms. While RL training usually requires millions of
samples (Schulman et al., 2015) and is specific to a particular environment, humans are able
to generalize to completely new situations and master new tasks quickly with little data.

In this thesis, we take the stance that a large degree of our generalization capability
comes from our ability to build an internal model of the world. Advances in model-based RL
has led to greater sample efficiency (Nagabandi et al., 2017) and faster adaptation (Clavera
et al., 2019). This model can be used to predict what happens when the agent takes a
particular action, plan an optimal course of actions, and deal with partial observability in
large open ended worlds. The particular structure of this internal model can enable good
generalization. For example, operating on raw image observations would be quite costly. If we
instead operate on a more abstract space such as representing the world as being composed
of objects, our agent can plan and reason about the world over the space of discrete entities
and their interactions rather than pixels. This more compact representation of the world can

CHAPTER 1. INTRODUCTION 2

enable to agent to generalize to more complex scenes with any number of new objects.
Being able to decompose the world in terms of abstract and reusable building blocks

such as objects is a powerful tool for generalization. We can leverage existing knowledge in
a combinatorial number of ways and understand novel scenes in terms of known concepts.
Humans understand the world in terms of objects at an early age (Spelke and Kinzler, 2007)
and learn concepts such as object permanence (Baillargeon et al., 1985) at five months old.
Young children start to use gestures to refer symbolically to objects or events (Acredolo and
Goodwyn, 1988) and this becomes more general over time to include concepts, abstractions,
behaviors, and categories. These composable building blocks can be used for building powerful
structured mental models of the world. Abstracting our raw visual perception of the world
into a compositional description in terms of more abstract entities can enable combinatorial
generalization over new combinations of known entities.

While modern neural networks have been successful in a variety of domains such as visual
object recognition (Krizhevsky et al., 2012) and speech recognition (Hinton et al., 2012), they
still struggle to generalize such as to different datasets (Yosinski et al., 2014), are fragile to
distributional shift in reinforcement learning (Kansky et al., 2017), and require more training
data than humans (Tsividis et al., 2017). This suggests that neural networks do not explicitly
learn a compositional representation that can easily be reused for new tasks and instead
learn mostly surface statistics such as between textures and classifications in images (Lake
and Baroni, 2018). A reasonable solution would be to take a more unified approach which
incorporates inductive biases in neural networks that enables learning about the right set of
abstractions and symbols. By tightly integrating neural networks with the ability to learn
and manipulate abstract entities, the learned representations can continuously adapt to the
data which avoids the need for task-specific engineering and rigid interfaces.

The first part of this thesis will cover how can we build inductive biases into deep
learning models for abstraction which can enable higher level reasoning and generalization
for model-based RL. A large challenge is the binding problem which is about dynamically
and flexibly combining information distributed throughout the network to represent and
relate symbol like entities Greff et al. (2020). We make progress towards this challenge
by building a probabilistic entity-centric dynamic latent variable model that can acquire
entity representations from raw visual observations without supervision. To ground the
entity representations to actual objects in the environment, we frame the binding problem
as an inference problem and develop an interactive inference algorithm that uses temporal
continuity and interactive feedback to bind information about object properties to the entity
variables. This model can be thought of as a differentiable physics simulator with built in
priors for reasoning about objects and once learned can then be used for prediction and
planning. By factorizing the model in terms of entities, we can generalize to never before
seen configurations on challenging block-stacking tasks.

We argue abstractions are a necessary component for generalization and efficient learning.
These abstractions can cover both space (representing objects from raw pixels) but also time.
For a task such as navigation, it would be difficult for a human to reason about the actions
at the level of contracting different muscles each second. We might temporally abstract this

CHAPTER 1. INTRODUCTION 3

problem into temporally extended skills such as taking one step or moving to a waypoint.
Reasoning at this higher level abstract space can enable us to compose and chain together
skills to solve temporally extended tasks. Prior work in hierarchical reinforcement learning
attempts to solve this problem by decomposing the problem into smaller subproblems and
learning a set of discrete options to represent skills which can solve each subproblem (Bacon
et al., 2017). However, this fixes the number of skills and we also usually have to manually
engineer the learning of each skill. Similar to the entity-problem over objects, we want
representations that can dynamically and flexibly adapt to the data while still enabling higher
levels of abstraction. In the second half of the first part of this thesis, we take a representation
learning perspective on the hierarchical RL problem and transform the problem of learning
lower layers in a hierarchy into the the problem of learning trajectory-level generative models.
This continuous latent representation of trajectories can be used to solve temporally extended
and multi-stage problems.

State abstraction and temporal abstraction are examples of how structure in internal
models can enable an agent to generalize to many different situations. Millions of years of
evolution have created the right structure for this level of generalization in humans. Designing
these structures manually requires a great deal of engineering. Is it possible to bypass some
of the manual design and automatically learn structure which can generalize? The second
part of this thesis will cover how we can remove supervision and manual effort in designing
these general purpose models.

For humans we might think that learning happens at two different levels. During a single
lifetime, a human learns new skills and adapts to the environment. However at a much longer
timescale, the structure of the brain which enables rapid adaptation is being evolved and
optimized over time. The inner loop learning process could be described by RL, but the
outer loop optimization might require a new kind of meta-learning. We will first discuss
how meta-learning can be used to automatically learn structure in our algorithms which can
enable good generalization. The main challenges are defining the right language to represent
RL algorithms and developing a meta-learning method which can perform the outer loop
optimization. We develop a language to represent an RL objective as a computational graph
and then introduce an evolutionary based meta-learning method that leverages large scale
computational to find reinforcement learning update rules that obtain better performance than
manually designed ones. The benefit of our algorithm language is that the learned algorithms
are interpretable. Interestingly, we find that the learned algorithms bear resemblance to
recently proposed algorithms, and perform a kind of constrained optimization even though
such structure was not defined explicitly. Such a method could also be used to meta-learn
better abstractions for the examples discussed previously. Abstractions for learning about
objects (space) and behaviors (time) might emerge as the dominant structure for the most
efficient and general agents.

While model structural priors and meta-optimization are two important ingredients for
general RL algorithms, a large missing component is the objective function to optimize.
Designing good reward functions for RL is generally challenging and requires manual effort
and fine tuning per task. Unsupervised RL objectives could lead to complex and useful

CHAPTER 1. INTRODUCTION 4

behavior without manually designing the reward function. Humans and animals explore
their environment and acquire useful skills even in the absence of clear goals, exhibiting
intrinsic motivation. An unsupervised objective would provide an agent with an intrinsically-
grounded drive to acquire understanding and control of its environment in the absence of an
extrinsic reward signal. In the final part of this thesis, we design an embodied agent and
general-purpose intrinsic reward signal that leads to the agent controlling partially-observed
environments when equipped only with a high-dimensional sensor and no prior knowledge.
The compact and general learning objective will be to minimize the entropy of the agent’s
state visitation distribution using a latent dynamics model. By minimizing entropy or surprise
which is analogous to maintaining homeostasis, an agent can learn useful behavior such as
cleaning up a room or building a house to survive in an open world environment. This
objective induces the agent to both gather information about its environment corresponding
to reducing uncertainty and to gain control over its environment, corresponding to reducing
the unpredictability of future world states. By optimizing this objective, the agent learns to
discover, represent and exercise control of dynamic objects in a variety of partially-observed
environments without extrinsic reward.

In this thesis we outline progress along the goal of creating general RL agents with the
same problem solving ability as humans. We first introduce methods for building abstraction
into latent dynamics models for model based RL, then discuss meta-learning this structure
automatically, and finally show how these models can be used for unsupervised RL objectives.
This can be summarized as designing the structure, meta-optimization, and the objective
function for building general purpose agents:

• In Chapter 3, we make progress toward state abstraction in the form of object level
dynamics models which can enable combinatorial generalization from training on a few
objects to deploying on completely new scenes with many objects. This work appeared
previously as Veerapaneni et al. (2019).

• In Chapter 4 we discuss progress towards temporal abstraction in the form of trajectory
level generative models which can enable compositional generalization by chaining
together abstract skills to solve temporally extended problems. This work was published
previously as Co-Reyes et al. (2018).

• In Chapter 5 we look at how meta-learning can be used to automatically learn RL
algorithms which generalize over a wide variety of environments. This work appeared
previously as Co-Reyes et al. (2021).

• In Chapter 6, we use latent dynamics models for defining a simple entropy minimizing
objective which can lead to complex and useful behavior without manually designed
reward functions. This work appeared as Rhinehart et al. (2021).

• Finally, we discuss open challenges and future work in Chapter 7.

5

Chapter 2

Preliminaries

2.1 Problem Statement

In reinforcement learning, the environment is modeled as a partially observed Markov
decision process (POMDP), represented by M = {S,A, R, P,Ω, O, γ, ρ}. This is defined by
a state space S with states s ∈ S, action space A with actions a ∈ A, transition dynamics
P (st+1|st, at), observation space Ω with observations o ∈ Ω, observation function O(ot|st),
reward function R(st, at), and initial state distribution ρ(s). For a fully observed MDP, the
observation function becomes the identity function. The agent is a policy π(at|o≤t) which
maps observations to an action distribution. The goal is to find the optimal policy π∗ that
maximizes the discounted expected return vπ(ρ) = Eπ,s0∼ρ

∑T
t=0 γ

tR(st, at). We measure
performance of an agent by both its final return at the end of training and also by its sample
efficiency or number of training environment steps needed to achieve a particular return.

We call the training environment distribution that the agent collects experience to learn a
policy for model-free RL or dynamics model for model-based RL to be Mtrain while Mtest will
be the distribution of MDPs that we evaluate the trained agent on. To test generalization,
we make Mtrain and Mtest differ in various parameters. For example, in Chapter 3 where
we test generalization of our agent to different number of objects, Mtrain will contain scenes
with 1-4 objects and Mtest will contain scenes with 5-9 objects. In Chapter 5, where we test
algorithm generalization, Mtrain and Mtest are radically different and have different action
and state spaces, and dynamics functions.

2.2 Generative Latent Dynamics Models

In model-based reinforcement learning, the agent learns the dynamics function P (st+1|st, at)
and uses this to plan for an optimal sequence of actions. The reward function is either
assumed to be known or also learned. Generally, the state is not observed as in a POMDP
and we instead learn a latent state representation zt which approximates st along with a
latent dynamics function P (zt+1|zt, at). There are many ways to learn this representation

CHAPTER 2. PRELIMINARIES 6

and most of the work in this thesis will build a generative model p(ot|zt) (or p(o≥t|zt, a≥t) for
sequences) and encoder q(zt|o≤t). An important component of training this model is based
on the framework of variational inference. Variational inference methods use a tractable
proxy distribution q(z | o) to estimate an intractable posterior p(z | o). Given a model with
observations o and latent variables z we can decompose the likelihood p(o) in terms of q(z | o):

log p(o) = DKL(q(z | o) ‖ p(z | o)) + L(o) (2.1)

where L(o) = Eq[log p(o | z)] − DKL(q(z | o) ‖ p(z)) is called the evidence lower bound
(ELBO). Since KL divergence is non-negative, we obtain the lower bound:

log p(o) ≥ Eq[log p(o | z)]−DKL(q(z | o) ‖ p(z)) (2.2)

The variational autoencoder is a particular realization of this variational inference procedure.
This model can be trained by maximizing the ELBO using standard optimization methods.
We refer the reader to Hoffman and Blei (2015); Kingma and Welling (2013) for details.

2.3 Representation Learning and Abstractions for

Generalization

We as humans are able to use own internal models of the world to accurately predict what
might happen in completely new contexts. We would like to design the learned latent
dynamics model as discussed in the previous section to be able to generalize from the training
distribution Mtrain to very different test environments Mtest. We can test generalization for
both the supervised learning case where a learned dynamics model trained in Mtrain also has
low loss on Mtest, and also for the reinforcement learning objective we care about which is
the return of a policy on Mtest.

Internal representations or abstractions of the world can enable generalization because
they might contain invariances that transfer between Mtrain and Mtest. By encoding structural
priors into our models such as in the observation model p(o|z) or dynamics model p(zt+1|zt, at),
we enforce particular abstractions that can generalize better. The next two Chapters will
explore how we can build structure into generative latent models that can generalize. In
Chapter 3, we encode state abstraction into our model by factorizing z into a discrete set of
latent variables z1:k such that each zi will represent a different entity in the scene. In Chapter
4, we instead encode temporal abstraction into our model by having z represent a temporally
extended trajectory segment p(ot:t+h, |z) which we can then compose together into longer
horizon plans. Building this structure into our models is complex and Chapter 5, explores if
we can instead meta-learn components of the RL algorithm that will automatically generalize.
In Chapter 6, we see how we can use these models and the distribution of z to compute an
unsupervised objective which leads to useful behavior if optimized in dynamic environments.

7

Chapter 3

State Abstraction for Combinatorial
Generalization

A powerful tool for modeling the complexity of the physical world is to frame this complexity
as the composition of simpler entities and processes. For example, the study of classical
mechanics in terms of macroscopic objects and a small set of laws governing their motion
has enabled not only an explanation of natural phenomena like apples falling from trees but
the invention of structures that never before existed in human history, such as skyscrapers.
Paradoxically, the creative variation of such physical constructions in human society is due
in part to the uniformity with which human models of physical laws apply to the literal
building blocks that comprise such structures – the reuse of the same simpler models that
apply to primitive entities and their relations in different ways obviates the need, and cost, of
designing custom solutions from scratch for each construction instance.

The challenge of scaling the generalization abilities of learning robots follows a similar
characteristic to the challenges of modeling physical phenomena: the complexity of the
task space may scale combinatorially with the configurations and number of objects, but if
all scene instances share the same set of objects that follow the same physical laws, then
transforming the problem of modeling scenes into a problem of modeling objects and the
local physical processes that govern their interactions may provide a significant benefit in
generalizing to solving novel physical tasks the learner has not encountered before. This is
the central hypothesis of this chapter.

We test this hypothesis by defining models for perceiving and predicting raw observations
that are themselves compositions of simpler functions that operate locally on entities rather
than globally on scenes. Importantly, the symmetry that all objects follow the same physical
laws enables us to define these learnable entity-centric functions to take as input argument a
variable that represents a generic entity, the specific instantiations of which are all processed
by the same function. We use the term entity abstraction to refer to the abstraction barrier
that isolates the abstract variable, which the entity-centric function is defined with respect
to, from its concrete instantiation, which contains information about the appearance and
dynamics of an object that modulates the function’s behavior.

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
8

Figure 3.1: OP3. (a) OP3 can infer a set of entity variables H
(T)
1:K from a series of interactions

(interactive entity grounding) or a single image (entity grounding). OP3 rollouts predict the future

entity states H
(T+d)
1:K given a sequence of actions a(T :T+d). We evaluate these rollouts during planning

by scoring these predictions against inferred goal entity-states H
(G)
k . (b) OP3 enforces the entity

abstraction, factorizing the latent state into local entity states, each of which are symmetrically
processed with the same function that takes in a generic entity as an argument. In contrast, prior
work either (c) process a global latent state (Hafner et al., 2018) or (d) assume a fixed set of entities
processed in a permutation-sensitive manner (Finn et al., 2016; Kulkarni et al., 2019; Xu et al., 2018;
Watters et al., 2019). (e-g) Enforcing the entity-abstraction on modeling the (f) dynamics and
(g) observation distributions of a POMDP, and on the (e) interactive inference procedure for
grounding the entity variables in raw visual observations. Actions are not shown to reduce clutter.

Defining the observation and dynamic models of a model-based reinforcement learner
as neural network functions of abstract entity variables allows for symbolic computation in
the space of entities, but the key challenge for realizing this is to ground the values of these
variables in the world from raw visual observations. Fortunately, the language of partially
observable Markov decision processes (POMDP) enables us to represent these entity variables
as latent random state variables in a state-factorized POMDP, thereby transforming the
variable binding problem into an inference problem with which we can build upon state-of-the-
art techniques in amortized iterative variational inference (Marino et al., 2018a,b; Greff et al.,
2019) to use temporal continuity and interactive feedback to infer the posterior distribution
of the entity variables given a sequence of observations and actions.

We present a framework for object-centric perception, prediction, and planning (OP3), a
model-based reinforcement learner that predicts and plans over entity variables inferred via
an interactive inference algorithm from raw visual observations. Empirically OP3 learns to
discover and bind information about actual objects in the environment to these entity variables
without any supervision on what these variables should correspond to. As all computation
within the entity-centric function is local in scope with respect to its input entity, the process
of modeling the dynamics or appearance of each object is protected from the computations
involved in modeling other objects, which allows OP3 to generalize to modeling a variable
number of objects in a variety of contexts with no re-training.

Contributions: Our conceptual contribution is the use of entity abstraction to integrate

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
9

graphical models, symbolic computation, and neural networks in a model-based reinforcement
learning (RL) agent. This is enabled by our technical contribution: defining models as the
composition of locally-scoped entity-centric functions and the interactive inference algorithm
for grounding the abstract entity variables in raw visual observations without any supervision
on object identity. Empirically, we find that OP3 achieves two to three times greater accuracy
than state of the art video prediction models in solving novel single and multi-step block
stacking tasks.

3.1 Related Work

Representation learning for visual model-based reinforcement learning: Prior
works have proposed learning video prediction models (Wichers et al., 2018; Denton et al.,
2017; Lee et al., 2018; Finn et al., 2016) to improve exploration (Oh et al., 2015) and
planning (Finn and Levine, 2017) in RL. However, such works and others that represent
the scene with a single representation vector (Hafner et al., 2018; Zhang et al., 2018; Mnih
et al., 2015; Oh et al., 2016) may be susceptible to the binding problem (Greff et al., 2015;
Rosenblatt, 1961) and must rely on data to learn that the same object in two different
contexts can be modeled similarly. But processing a disentangled latent state with a single
function (Whitney et al., 2016; Chen et al., 2016; Kulkarni et al., 2015, 2019; Goel et al.,
2018) or processing each disentangled factor in a permutation-sensitive manner (Lee et al.,
2018; Xu et al., 2019; Kulkarni et al., 2019) (1) assumes a fixed number of entities that cannot
be dynamically adjusted for generalizing to more objects than in training and (2) has no
constraints to enforce that multiple instances of the same entity in the scene be modeled in
the same way. For generalization, often the particular arrangement of objects in a scene does
not matter so much as what is constant across scenes – properties of individual objects and
inter-object relationships – which the inductive biases of these prior works do not capture.
The entity abstraction in OP3 enforces symmetric processing of entity representations, thereby
overcoming the limitations of these prior works.

Unsupervised grounding of abstract entity variables in concrete objects: Prior
works that model entities and their interactions often pre-specify the identity of the enti-
ties (Chang et al., 2016; Battaglia et al., 2016; Hamrick et al., 2017; Janner et al., 2018;
Narasimhan et al., 2018; Bapst et al., 2010; Ajay et al., 2019), provide additional supervi-
sion (Girshick et al., 2014; He et al., 2017; Wang et al., 2018; Yang et al., 2018), or provide
additional specification such as segmentations (Janner et al., 2018), crops (Fragkiadaki et al.,
2015), or a simulator (Wu et al., 2017; Kansky et al., 2017). Those that do not assume
such additional information often factorize the entire scene into pixel-level entities (Santoro
et al., 2017; Zambaldi et al., 2018; Du and Narasimhan, 2019), which do not model objects
as coherent wholes. None of these works solve the problem of grounding the entities in raw
observation, which is crucial for autonomous learning and interaction. OP3 builds upon
recently proposed ideas in grounding entity representations via inference on a symmetrically
factorized generative model of static (Greff et al., 2015, 2017, 2019) and dynamic (van

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
10

Figure 3.2: Comparison with other methods. Unlike other methods, OP3 is a fully probabilistic
factorized dynamic latent variable model, giving it several desirable properties. First, OP3 is
naturally suited for combinatorial generalization (Battaglia et al., 2018) because it enforces that
local properties are invariant to changes in global structure. Because every learnable component of
the OP3 operates symmetrically on each entity, including the mechanism that disambiguates entities
itself (c.f. COBRA, which uses a learned autoregressive network to disambiguates entities, and
Transporter and C-SWMs, which use a forward pass of a convolutional encoder for the global scene,
rather than each entity), the weights of OP3 are invariant to changes in the number of instances of
an entity, as well as the number of entities in the scene. Second, OP3’s recurrent structure makes it
straightforward to enforce spatiotemporal consistency, object permanence, and refine the grounding
of its entity representations over time with new information. In contrast, COBRA, Transporter,
and C-SWMs all model single-step dynamics and do not contain mechanisms for establishing a
correspondence between the entity representations predicted from the previous timestep with the
entity representations inferred at the current timestep.

Steenkiste et al., 2018) scenes, whose advantage over other methods for grounding (Zhu et al.,
2019; Eslami et al., 2016; Burgess et al., 2019; Kosiorek et al., 2018; Watters et al., 2019)
is the ability to refine the grounding with new information. In contrast to other methods
for binding in neural networks (Levy and Gayler, 2008; Kanerva, 2009; Smolensky, 1990;
Vaswani et al., 2017), formulating inference as a mechanism for variable binding allows us to
model uncertainty in the values of the variables.

Comparison with similar work: The closest three works to OP3 are the Trans-
porter (Kulkarni et al., 2019), COBRA (Watters et al., 2019), and C-SWMs (Kipf et al.,
2019). The Transporter enforces a sparsity bias to learn object keypoints, each represented as
a feature vector at a pixel location, and the method’s focus on keypoints has the advantage
of enabling long-term object tracking, modeling articulated composite bodies such as joints,

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
11

and scaling to dozens of objects. C-SWMs learn entity representations using a contrastive
loss, which has the advantage of overcoming the difficulty in attending to small but relevant
features as well as the large model capacity requirements usually characteristic of the pixel
reconstructive loss. COBRA uses the autoregressive attention-based MONet (Burgess et al.,
2019) architecture to obtain entity representations, which has the advantage of being more
computationally efficient and stable to train. Unlike works such as (Greff et al., 2017; Eslami
et al., 2016; Burgess et al., 2019; Greff et al., 2019) that infer entity representations from static
scenes, these works represent complementary approaches to OP3 (Figure 3.2) for representing
dynamic scenes.

Symmetric processing of entities – processing each entity representation with the same
function, as OP3 does with its observation, dynamics, and refinement networks – enforces
the invariance that local properties are invariant to changes in global structure because it
prevents the processing of one entity from being affected by other entities. How symmetric
the process is for obtaining these entity representations from visual observation affects how
straightforward it is to directly transfer models of a single entity across different global
contexts, such as in modeling multiple instances of the same entity in the scene in a similar
way or in generalizing to modeling different numbers of objects than in training. OP3 can
exhibit this type of zero-shot transfer because the learnable components of its refinement
process are fully symmetric across entities, which prevents OP3 from overfitting to the
global structure of the scene. In contrast, the KeyNet encoder of the Transporter and the
CNN-encoder of C-SWMs associate the content of the entity representation with the index
of that entity in a global representation vector (Figure 3.1d), and this permutation-sensitive
mapping entangles the encoding of an entity with the global structure of the scene. COBRA
lies in between: it uses a learnable autoregressive attention network to infer segmentation
masks, which entangles local object segmentations with global structure but may provide a
useful bias for attending to salient objects, and symmetrically encodes entity representations
given these masks1.

As a recurrent probabilistic dynamic latent variable model, OP3 can refine the grounding
of its entity representations with new information from raw observations by simply applying
a belief update similar to that used in filtering for hidden Markov models. The Transporter,
COBRA, and C-SWMs all do not have mechanisms for updating the belief of the entity
representations with information from subsequent image frames. Without recurrent structure,
such methods rely on the assumption that a single forward pass of the encoder on a static
image is sufficient to disambiguate objects, but this assumption is not generally true: objects
can pop in and out of occlusion and what constitutes an object depends temporal cues,
especially in real world settings. Recurrent structure is built into the OP3 inference update
(Appendix 7), enabling OP3 to model object permanence under occlusion and refine its
object representations with new information in modeling real world videos (Figure 3.7).

1A discussion of the advantages and disadvantages of using an attention-based entity disambiguation
method, which MONet and COBRA use, versus an iterative refinement method, which IODINE (Greff et al.,
2019) and OP3 use, is discussed in Greff et al. (2019).

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
12

3.2 Entity Modeling Problem

Let x∗ denote a physical scene and h∗1:K denote the objects in the scene. Let X and A be
random variables for the image observation of the scene x∗ and the agent’s actions respectively.
In contrast to prior works (Hafner et al., 2018) that use a single latent variable to represent
the state of the scene, we use a set of latent random variables H1:K to represent the state of
the objects h∗1:K . We use the term object to refer to h∗k, which is part of the physical world,
and the term entity to refer to Hk, which is part of our model of the physical world. The

generative distribution of observations X(0:T) and latent entities H
(0:T)
1:K from taking T actions

a(0:T−1) is modeled as:

p
(
X(0:T), H

(0:T)
1:K

∣∣∣ a(0:T−1)
)

= p
(
H

(0)
1:K

) T∏
t=1

p
(
H

(t)
1:K

∣∣∣ H(t−1)
1:K , a(t−1)

) T∏
t=0

p
(
X(t)

∣∣∣ H(t)
1:K

)
(3.1)

where p(X(t) |H(t)
1:K) and p(H

(t)
1:K |H

(t−1)
1:K , A(t−1)) are the observation and dynamics distribution

respectively shared across all timesteps t. Our goal is to build a model that, from simply
observing raw observations of random interactions, can generalize to solve novel compositional
object manipulation problems that the learner was never trained to do, such as building
various block towers during test time from only training to predict how blocks fall during
training time.

When all tasks follow the same dynamics we can achieve such generalization with a planning
algorithm if given a sequence of actions we could compute p(X(T+1:T+d) |X(0:T), A(0:T+d−1)),
the posterior predictive distribution of observations d steps into the future. Approximating
this predictive distribution can be cast as a variational inference problem (Appdx. A.2)

for learning the parameters of an approximate observation distribution G(X(t) |H(t)
1:K), dy-

namics distribution D(H
(t)
1:K |H

(t−1)
1:K , A(t−1)), and a time-factorized recognition distribution

Q(H
(t)
1:K |H

(t−1)
1:K , X(t), A(t−1)) that maximize the evidence lower bound (ELBO), given by

L =
∑T

t=0 L
(t)
r − L(t)

c , where

Ltr = Eht1:K∼q(Ht1:K |h0:t−1
1:K ,x1:t,a0:t−1)

[
logG

(
xt |ht1:K

)]
Ltc = Eht−1

1:K∼q(H
t−1
1:K |h

1:t−2
1:K ,x1:t−1,a0:t−2)

[
DKL

(
Q
(
Ht

1:K |ht−1
1:K , x

t, at−1
)
||D

(
Ht

1:K |ht−1
1:K , a

t−1
))]

.

The ELBO pushes Q to produce states of the entities H1:K that contain information useful
for not only reconstructing the observations via G in L(t)

r but also for predicting the entities’

future states via D in L(t)
c . Sec. 3.3 will next offer our method for incorporating entity

abstraction into modeling the generative distribution and optimizing the ELBO.

3.3 Object-Centric Perception, Prediction and

Planning

The entity abstraction is derived from an assumption about symmetry: that the problem of
modeling a dynamic scene of multiple entities can be reduced to the problem of (1) modeling

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
13

a single entity and its interactions with an entity-centric function and (2) applying this
function to every entity in the scene. Our choice to represent a scene as a set of entities
exposes an avenue for directly encoding such a prior about symmetry that would otherwise
not be straightforward with a global state representation.

As shown in Fig. 3.1, a function F that respects the entity abstraction requires two
ingredients. The first ingredient (Sec. 3.3) is that F (H1:K) is expressed in part as the higher-
order operation map(f,H1:K) that broadcasts the same entity-centric function f(Hk) to every
entity variable Hk. This yields the benefit of automatically transferring learned knowledge
for modeling an individual entity to all entities in the scene rather than learn such symmetry
from data. As f is a function that takes in a single generic entity variable Hk as argument,
the second ingredient (Sec. 3.3) should be a mechanism that binds information from the raw
observation X about a particular object h∗k to the variable Hk.

Entity Abstraction in the Observation and Dynamics Models

The functions of interest in model-based RL are the observation and dynamics models G and
D with which we seek to approximate the data-generating distribution in equation 3.1.

Figure 3.3: (a) The observation model G models an observation image as a composition of
sub-images weighted by segmentation masks. The shades of gray in the masks indicate the depth δ
from the camera of the object that the sub-image depicts. (b) The graphical model of the generative
model of observations, where k indexes the entity, and i, j indexes the pixel. Z is the indicator
variable that signifies whether an object’s depth at a pixel is the closest to the camera.

Observation Model: The observation model G(X |H1:K) approximates the distribution
p(X |H1:K), which models how the observation X is caused by the combination of entities
H1:K . We enforce the entity abstraction in G (in Fig. 3.1g) by applying the same entity-centric
function g(X |Hk) to each entity Hk, which we can implement using a mixture model at each

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
14

pixel (i, j):

G
(
X(ij) |H1:K

)
=

K∑
k=1

m(ij) (Hk) · g
(
X(ij) |Hk

)
, (3.2)

where g computes the mixture components that model how each individual entity Hk is
independently generated, combined via mixture weights m that model the entities’ relative
depth from the camera, the derivation of which is in Appdx. A.1.

Dynamics Model: The dynamics model D(H ′1:K |H1:K , A) approximates the distribution
p(H ′1:K |H1:K , A), which models how an action A intervenes on the entities H1:K to produce
their future values H ′1:K . We enforce the entity abstraction in D (in Fig. 3.1f) by applying
the same entity-centric function d(H ′k |Hk, H[6=k], A) to each entity Hk, which reduces the
problem of modeling how an action affects a scene with a combinatorially large space of
object configurations to the problem of simply modeling how an action affects a single generic
entity Hk and its interactions with the list of other entities H[6=k]. Modeling the action as an
finer-grained intervention on a single entity rather than the entire scene is a benefit of using
local representations of entities rather than global representations of scenes.

However, at this point we still have to model the combinatorially large space of interactions
that a single entity could participate in. Therefore, we can further enforce a pairwise entity
abstraction on d by applying the same pairwise function doo(Hk, Hi) to each entity pair
(Hk, Hi), for i ∈ [6= k]. Omitting the action to reduce clutter (the full form is written in
Appdx. A.6), the structure of the D therefore follows this form:

D (H ′1:K |H1:K) =

K∏
k=1

d
(
H ′k |Hk, H

interact
k

)
, where H interact

k =

K∑
i6=k

doo (Hi, Hk) . (3.3)

The entity abstraction therefore provides the flexibility to scale to modeling a variable number
of objects by solely learning a function d that operates on a single generic entity and a
function doo that operates on a single generic entity pair, both of which can be re-used for
across all entity instances.

Interactive Inference for Binding Object Properties to Latent
Variables

For the observation and dynamics models to operate from raw pixels hinges on the ability to
bind the properties of specific physical objects h∗1:K to the entity variables H1:K . For latent
variable models, we frame this variable binding problem as an inference problem: binding
information about h∗1:K to H1:K can be cast as a problem of inferring the parameters of
p(H(0:T) |x(0:T), a(0:T−1)), the posterior distribution of H1:K given a sequence of interactions.
Maximizing the ELBO in Sec. 3.2 offers a method for learning the parameters of the
observation and dynamics models while simultaneously learning an approximation to the

posterior q(H(0:T) |x(0:T), a(0:T−1)) =
∏T

t=0 Q(H
(t)
1:K |H

(t−1)
1:K , x(t), a(t)), which we have chosen

to factorize into a per-timestep recognition distribution Q shared across timesteps. We
also choose to enforce the entity abstraction on the process that computes the recognition

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
15

Figure 3.4: The dynamics model D models the time evolution of every object by symmetrically
applying the function d to each object. For a given object, d models the individual dynamics of
that object (do), embeds the action vector (da), computes the action’s effect on that object (dao),
computes each of the other objects’ effect on that object (doo), and aggregates these effects together
(dcomb).

distribution Q (in Fig. 3.1e) by decomposing it into a recognition distribution q applied to
each entity:

Q
(
H

(t)
1:K |h

(t−1)
1:K , x(t), a(t)

)
=

K∏
k=1

q
(
H

(t)
k |h

(t−1)
k , x(t), a(t)

)
. (3.4)

Whereas a neural network encoder is often used to approximate the posterior (Hafner et al.,
2018; Xu et al., 2018; Kulkarni et al., 2019), a single forward pass that computes q in parallel
for each entity is insufficient to break the symmetry for dividing responsibility of modeling
different objects among the entity variables (Zhang et al., 2019) because the entities do not
have the opportunity to communicate about which part of the scene they are representing.

We therefore adopt an iterative inference approach (Marino et al., 2018a) to compute
the recognition distribution Q, which has been shown to break symmetry among modeling
objects in static scenes (Greff et al., 2019). Iterative inference computes the recognition
distribution via a procedure, rather than a single forward pass of an encoder, that iteratively
refines an initial guess for the posterior parameters λ1:K by using gradients from how well the
generative model is able to predict the observation based on the current posterior estimate.
The initial guess provides the noise to break the symmetry.

For scenes where position and color are enough for disambiguating objects, a static image
may be sufficient for inferring q. However, in interactive environments disambiguating objects
is more underconstrained because what constitutes an object depends on the goals of the agent.
We therefore incorporate actions into the amortized varitional filtering framework (Marino
et al., 2018b) to develop an interactive inference algorithm (Appdx. A.4 and Fig. 3.5) that
uses temporal continuity and interactive feedback to disambiguate objects. Another benefit

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
16

Figure 3.5: Amortized interactive inference alternates between refinement (pink) and dynamics
(orange) steps, iteratively updating the belief of λ1:K over time. λ̂ corresponds to the output of the
dynamics network, which serves as the initial estimate of λ that is subsequently refined by fG and
fQ . O denotes the feedback used in the refinement process, which includes gradient information and
auxiliary inputs (Appdx. A.4).

of enforcing entity abstraction is that preserving temporal consistency on entities comes for
free: information about each object remains bound to its respective Hk through time, mixing
with information about other entities only through explicitly defined avenues, such as in the
dynamics model.

Training at Different Timescales

The variational parameters λ1:K are the interface through which the neural networks fg, fd,
fq that respectively output the distribution parameters of G, D, and Q communicate. For
a particular dynamic scene, the execution of interactive inference optimizes the variational
parameters λ1:K . Across scene instances, we train the weights of fg, fd, fq by backpropagating
the ELBO through the entire inference procedure, spanning multiple timesteps. OP3 thus
learns at three different timescales: the variational parameters learn (1) across M steps of
inference within a single timestep and (2) across T timesteps within a scene instance, and
the network weights learn (3) across different scene instances.

Beyond next-step prediction, we can directly train to compute the posterior predictive
distribution p(X(T+1:T+d) |x(0:T), a(0:T+d)) by sampling from the approximate posterior of H

(T)
1:K

with Q, rolling out the dynamics model D in latent space from these samples with a sequence
of d actions, and predicting the observation X(T+d) with the observation model G. This
approach to action-conditioned video prediction predicts future observations directly from
observations and actions, but with a bottleneck of K time-persistent entity-variables with
which the dynamics model D performs symbolic relational computation.

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
17

Object-Centric Planning

OP3 rollouts, computed as the posterior predictive distribution, can be integrated into the
standard visual model-predictive control (Finn and Levine, 2017) framework. Since interactive
inference grounds the entities H1:K in the actual objects h∗1:K depicted in the raw observation,
this grounding essentially gives OP3 access to a pointer to each object, enabling the rollouts
to be in the space of entities and their relations. These pointers enable OP3 to not merely
predict in the space of entities, but give OP3 access to an object-centric action space: for
example, instead of being restricted to the standard (pick xy, place xy) action space
common to many manipulation tasks, which often requires biased picking with a scripted
policy (Levine et al., 2018; Kalashnikov et al., 2018), these pointers enable us to compute a
mapping (Appdx. A.7) between entity id and pick xy, allowing OP3 to automatically use
a (entity id, place xy) action space without needing a scripted policy.

Generalization to Various Tasks

We consider tasks defined in the same environment with the same physical laws that govern
appearance and dynamics. Tasks are differentiated by goals, in particular goal configurations
of objects. Building good cost functions for real world tasks is generally difficult (Fu et al.,
2018) because the underlying state of the environment is always unobserved and can only be
modeled through modeling observations. However, by representing the environment state as
the state of its entities, we may obtain finer-grained goal-specification without the need for
manual annotations (Ebert et al., 2018). Having rolled out OP3 to a particular timestep,

we construct a cost function to compare the predicted entity states H
(P)
1:K with the entity

states H
(G)
1:K inferred from a goal image by considering pairwise distances between the entities,

another example of enforcing the pairwise entity abstraction. Letting S ′ and S denote the
set of goal and predicted entities respectively, we define the form of the cost function via a
composition of the task specific distance function c operating on entity-pairs:

C
(
H

(G)
1:K , H

(P)
1:K

)
=
∑
a∈S′

min
b∈S

c
(
H(G)
a , H

(P)
b

)
, (3.5)

in which we pair each goal entity with the closest predicted entity and sum over the costs of
these pairs. Assuming a single action suffices to move an object to its desired goal position,
we can greedily plan each timestep by defining the cost to be mina∈S′,b∈S c(H

(G)
a , H

(P)
b),

the pair with minimum distance, and removing the corresponding goal entity from further
consideration for future planning.

3.4 Experiments

Our experiments aim to study to what degree entity abstraction improves generalization,
planning, and modeling. Sec. 3.4 shows that from only training to predict how objects fall,
OP3 generalizes to solve various novel block stacking tasks with two to three times better
accuracy than a state-of-the-art video prediction model. Sec. 3.4 shows that OP3 can plan

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
18

for multiple steps in a difficult multi-object environment. Sec. 3.4 shows that OP3 learns to
ground its abstract entities in objects from real world videos.

Combinatorial Generalization without Object Supervision

We first investigate how well OP3 can learn object-based representations without addi-
tional object supervision, as well as how well OP3’s factorized representation can enable
combinatorial generalization for scenes with many objects.

Domain: In the MuJoCo (Todorov et al., 2012) block stacking task introduced by Janner
et al. (2018) for the O2P2 model, a block is raised in the air and the model must predict the
steady-state effects of dropping the block on a surface with multiple objects, which implicitly
requires modeling the effects of gravity and collisions. The agent is never trained to stack
blocks, but is tested on a suite of tasks where it must construct block tower specified by a
goal image. Janner et al. (2018) showed that an object-centric model with access to ground
truth object segmentations can solve these tasks with about 76% accuracy. We now consider
whether OP3 can do better, but without any supervision on object identity.

SAVP O2P2 OP3 (ours)

24% 76% 82%

Table 3.1: Accuracy (%) of block tower
builds by the SAVP baseline, the O2P2
oracle, and our approach. O2P2 uses
image segmentations whereas OP3 uses
only raw images as input.

Blocks SAVP OP3 (xy) OP3 (entity)

1 54% 73% 91%
2 28% 55% 80%
3 28% 41% 55%

Table 3.2: Accuracy (%) of multi-step planning for building
block towers. (xy) means (pick xy, place xy) action
space while (entity) means (entity id, place xy) action
space.

Setup: We train OP3 on the same dataset and evaluate on the same goal images as Janner
et al. (2018). While the training set contains up to five objects, the test set contains up to
nine objects, which are placed in specific structures (bridge, pyramid, etc.) not seen during
training. The actions are optimized using the cross-entropy method (CEM) (Rubinstein and
Kroese, 2004), with each sampled action evaluated by the greedy cost function described in
Sec. 3.3. Accuracy is evaluated using the metric defined by Janner et al. (2018), which checks
that all blocks are within some threshold error of the goal.

Results: The two baselines, SAVP (Lee et al., 2018) and O2P2, represent the state-of-the-
art in video prediction and symmetric object-centric planning methods, respectively. SAVP
models objects with a fixed number of convolutional filters and does not process entities
symmetrically. O2P2 does process entities symmetrically, but requires access to ground truth
object segmentations. As shown in Table 3.1, OP3 achieves better accuracy than O2P2,
even without any ground truth supervision on object identity, possibly because grounding
the entities in the raw image may provide a richer contextual representation than encoding
each entity separately without such global context as O2P2 does. OP3 achieves three times
the accuracy of SAVP, which suggests that symmetric modeling of entities is enables the

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
19

flexibility to transfer knowledge of dynamics of a single object to novel scenes with different
configurations heights, color combinations, and numbers of objects than those from the
training distribution. Fig. A.1 and Fig. A.2 in the Appendix show that, by grounding its
entities in objects of the scene through inference, OP3’s predictions isolates only one object
at a time without affecting the predictions of other objects.

Figure 3.6: (a) In the block stacking task from (Janner et al., 2018) with single-step greedy planning,
OP3’s generalizes better than both O2P2, an oracle model with access to image segmentations,
and SAVP, which does not enforce entity abstraction. (b) OP3 exhibits better multi-step planning
with objects already present in the scene. By planning with MPC using random pick locations
(SAVP and OP3 (xy)), the sparsity of objects in the scene make it rare for random pick locations
to actually pick the objects. However, because OP3 has access to pointers to the latent entities,
we can use these to automatically bias the pick locations to be at the object location, without any
supervision (OP3 (entity)).

Multi-Step Planning

The goal of our second experiment is to understand how well OP3 can perform multi-step
planning by manipulating objects already present in the scene. We modify the block stacking
task by changing the action space to represent a picking and dropping location. This requires
reasoning over extended action sequences since moving objects out of place may be necessary.

Goals are specified with a goal image, and the initial scene contains all of the blocks
needed to build the desired structure. This task is more difficult because the agent may
have to move blocks out of the way before placing other ones which would require multi-step
planning. Furthermore, an action only successfully picks up a block if it intersects with the
block’s outline, which makes searching through the combinatorial space of plans a challenge.

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
20

As stated in Sec. 3.3, having a pointer to each object enables OP3 to plan in the space of
entities. We compare two different action spaces (pick xy, place xy) and (entity id,

place xy) to understand how automatically filtering for pick locations at actual locations of
objects enables better efficiency and performance in planning. Details for determining the
pick xy from entity id are in appendix A.7.

Results: We compare with SAVP, which uses the (pick xy, place xy) action space.
With this standard action space (Table 3.2) OP3 achieves between 1.5-2 times the accuracy
of SAVP. This performance gap increases to 2-3 times the accuracy when OP3 uses the
(entity id, place xy) action space. The low performance of SAVP with only two blocks
highlights the difficulty of such combinatorial tasks for model-based RL methods, and
highlights the both the generalization and localization benefits of a model with entity
abstraction. Fig. 3.6b shows that OP3 is able to plan more efficiently, suggesting that OP3
may be a more effective model than SAVP in modeling combinatorial scenes. Fig. 3.7a shows
the execution of interactive inference during training, where OP3 alternates between four
refinement steps and one prediction step. Notice that OP3 infers entity representations
that decompose the scene into coherent objects and that entities that do not model objects
model the background. We also observe in the last column (t = 2) that OP3 predicts the
appearance of the green block even though the green block was partially occluded in the
previous timestep, which shows its ability to retain information across time.

Real World Evaluation

The previous tasks used simulated environments with monochromatic objects. Now we study
how well OP3 scales to real world data with cluttered scenes, object ambiguity, and occlusions.
We evaluate OP3 on the dataset from Ebert et al. (2018) which contains videos of a robotic
arm moving cloths and other deformable and multipart objects with varying textures.

We evaluate qualitative performance by visualizing the object segmentations and compare
against vanilla IODINE, which does not incorporate an interaction-based dynamics model
into the inference process. Fig. 3.7b highlights the strength of OP3 in preserving temporal
continuity and disambiguating objects in real world scenes. While IODINE can disambiguate
monochromatic objects in static images, we observe that it struggles to do more than just
color segmentation on more complicated images where movement is required to disambiguate
objects. In contrast, OP3 is able to use temporal information to obtain more accurate
segmentations, as seen in Fig. 3.7b where it initially performs color segmentation by grouping
the towel, arm, and dark container edges together, and then by observing the effects of
moving the arm, separates these entities into different groups.

3.5 Discussion

We have shown that enforcing the entity abstraction in a model-based reinforcement learner
improves generalization, planning, and modeling across various compositional multi-object

CHAPTER 3. STATE ABSTRACTION FOR COMBINATORIAL GENERALIZATION
21

Figure 3.7: Visualization of interactive inference for block-manipulation and real-world videos (Ebert
et al., 2018). Here, OP3 interacts with the objects by executing pre-specified actions in order
to disambiguate objects already present in the scene by taking advantage of temporal continuity
and receiving feedback from how well its prediction of how an action affects an object compares
with the ground truth result. (a) OP3 does four refinement steps on the first image, and then 2
refinement steps after each prediction. (b) We compare OP3, applied on dynamic videos, with
IODINE, applied independently to each frame of the video, to illustrate that using a dynamics
model to propagate information across time enables better object disambiguation. We observe
that initially, both OP3 (green circle) and IODINE (cyan circles) both disambiguate objects via
color segmentation because color is the only signal in a static image to group pixels. However,
we observe that as time progresses, OP3 separates the arm, object, and background into separate
latents (purple) by using its currently estimates latents predict the next observation and comparing
this prediction with the actually observed next observation. In contrast, applying IODINE on a
per-frame basis does not yield benefits of temporal consistency and interactive feedback (red).

tasks. In particular, enforcing the entity abstraction provides the learner with a pointer to
each entity variable, enabling us to define functions that are local in scope with respect to
a particular entity, allowing knowledge about an entity in one context to directly transfer
to modeling the same entity in different contexts. In the physical world, entities are often
manifested as objects, and generalization in physical tasks such as robotic manipulation often
may require symbolic reasoning about objects and their interactions. However, the general
difficulty with using purely symbolic, abstract representations is that it is unclear how to
continuously update these representations with more raw data. OP3 frames such symbolic
entities as random variables in a dynamic latent variable model and infers and refines the
posterior of these entities over time with neural networks. This suggests a potential bridge to
connect abstract symbolic variables with the noisy, continuous, high-dimensional physical
world, opening a path to scaling robotic learning to more combinatorially complex tasks.

22

Chapter 4

Temporal Abstraction for
Compositional Generalizaton

Deep reinforcement learning (RL) algorithms can learn complex skills from raw observa-
tions Mnih et al. (2015); Levine et al. (2016); Silver et al. (2016). However, domains that
involve temporally extended tasks and extremely delayed or sparse rewards can pose a tremen-
dous challenge for standard methods. A longtime goal in RL has been to develop effective
hierarchy induction methods that can acquire temporally extended lower-level primitives,
which can then be built upon by a higher level policy that operates at a coarser level of tem-
poral abstraction Sutton et al. (1999); Dayan and Hinton (1992); Dietterich (1998); Parr and
Russell (1997). A higher-level policy that is provided with temporally extended and intelligent
behaviors can reason at a higher level of abstraction and solve more temporally-extended
tasks. Furthermore, the same lower-level skills could be reused to accomplish multiple tasks
efficiently.

Prior work has proposed to acquire discrete sets of lower-level skills through hand-
specification of objectives or bottlenecks Florensa et al. (2017); Frans et al. (2017); Sutton
et al. (1999) and top-down training of hierarchically-organized policies Dayan and Hinton
(1992); Vezhnevets et al. (2017). Requiring prior knowledge and hand-specification restricts the
generality of the method, while purely top-down training suffers from challenging optimization
and exploration and limits the reusability of lower-level skills, providing a solution to just one
task. Furthermore, the top-level meta-policy must still be trained with reinforcement learning
for each task, and while this tends to be more efficient than learning from scratch if the skills
are useful, it still requires considerable time and experience collection. Several works have
also proposed “bottom up” training of lower-level skills using unsupervised objectives Bacon
et al. (2017); Gregor et al. (2016), but such methods either also require hand-specifying some
prior knowledge, or learn discrete skills that may not necessarily be sufficient to solve the
higher level task.

In this chaper, we propose a novel hierarchical reinforcement learning algorithm (SeCTAR)
that uses a bottom up approach to learn continuous representations for trajectories, without
the explicit need for hand-specification or subgoal information. Our work builds on two main

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 23

ideas: first, we propose to build a continuous latent space of skills, rather than a discrete
set of behaviors or options, and second, we propose to use a probabilistic latent variable
model that simultaneously learns to produce skills in the world and predict their outcomes.
By providing a higher-level controller with a continuous space of behaviors, it can exercise
considerable control, without being restricted to a small discrete set of primitives. At the
same time, since the behaviors are temporally extended, the higher-level policy still benefits
from temporal abstraction. Furthermore, by training a model that both acquires a set of
skills and predicts their outcomes, we can avoid needing to train a higher-level policy with
reinforcement learning, and directly use these outcome predictions to perform model-based
control at the higher level. This results in a hybrid model-free and model-based method, where
the behaviors that actually interact with the environment are trained in model-free fashion,
while the higher-level behavior is model-based. This also neatly addresses one of the major
shortcomings of model-based reinforcement learning, which is the difficulty of accurately
predicting low-level physical events at a fine temporal resolution. Since the predictions only
need to accurately reflect the outcomes of closed-loop and temporally extended behaviors,
they are substantially easier than low-level modeling of environment dynamics, while still
being conducive to effective higher-level planning.

Our model is based on a trajectory-level variational autoencoder (VAE) Kingma and
Welling (2013). The continuous latent space of behaviors is constructed by learning to embed
and generate trajectories obtained via a fully unsupervised exploration objective. In addition
to learning to generate the state sequences along these trajectories, the model simultaneously
learns to reproduce those trajectories in the environment via a policy conditioned on the
VAE latent variable. In this way, the latent-conditioned policy aims to “imitate” the VAE
decoder. The fact that the latent-conditioned policy and the VAE decoder are representing
the same behavior allows us to treat the decoder as a model of the closed loop behavior of
the policy. This allows us to use the decoder to plan in the latent space by sampling latents
and simulating their corresponding trajectories. We can then choose the best latents that
solve the task and execute the plan with the latent-conditioned policy.

The main contribution of this work is a hierarchical reinforcement learning algorithm that
acquires a continuous low-level latent space of skills, together with a predictive model that can
predict the outcomes of those skills, which can be used to carry out more complex higher-level
tasks. We propose a novel training procedure for this model, and show that higher-level
extended tasks can be performed directly with model-based planning, without any additional
reinforcement learning to learn a high level policy. Our experimental evaluation demonstrates
that this approach can be used to accomplish a variety of delayed and sparse reward tasks,
including interaction with objects and waypoint navigation, while outperforming reinforcement
learning methods such as TRPO Schulman et al. (2015), exploration driven methods such as
VIME Houthooft et al. (2016) as well as prior work on hierarchical reinforcement learning
such as FeUdal Networks Vezhnevets et al. (2017) and option critic Bacon et al. (2017). All
our results, videos, and experimental details can be found at https://sites.google.com/
view/sectar

https://sites.google.com/view/sectar
https://sites.google.com/view/sectar

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 24

4.1 Self-Consistent Trajectory Autoencoder

In this work, our aim is to perform long-horizon planning by learning latent representations
over trajectories. Given a task with a long horizon H, we define trajectories in the context
of SeCTAR as sequences of states [s0, s1, ..., sT] of length T , where T < H. Each complete
episode in the MDP M (of length H) may be composed of several of these shorter trajectories.
We hypothesize that building representations for these trajectories will allow us to reason
more effectively over the entire horizon.

To that end, we introduce the self-consistent trajectory autoencoder (SeCTAR) to acquire
latent representations of trajectories. The SeCTAR model is based on the variational
autoencoder, but with two decoders: the state decoder, which decodes latent variables
directly into sequences of states, and the policy decoder, which is a latent-conditioned policy
capable of generating the encoded trajectory when executed in the environment. This two-
headed model allows the state decoder to be a predictive model of the behavior that a policy
decoder can execute in the environment.

The latent representations learned by SeCTAR can be used for planning over long episodes,
by reasoning at the level of latent variables (representing extended state sequences) rather
than at the level of individual states and actions. We will introduce a model-based planning
algorithm based on SeCTAR in Section 4.1 to perform planning in the latent space to solve
long horizon tasks.

Solving tasks with sparse rewards and long horizons requires effective exploration. We
show that we can improve the exploration behavior needed for hierarchical reasoning, using
the SeCTAR model and an entropy based exploration objective. This results in an iterative
training procedure described in Section 4.1, which we find important for performing hierar-
chical tasks. We first introduce the SeCTAR model, describe how it can be trained, and show
its usefulness for hierarchical planning. We then describe how we can perform exploration in
the loop to improve performance.

Graphical Model

We consider the problem of learning latent representations of trajectories [s0, s1, · · · , sT]. We
begin by extending the framework of VAEs (Kingma and Welling, 2013), with trajectories τ
as the observation, a trajectory-level encoder qφ(z | τ), and a state decoder pθSD(τ | z). The
graphical model representing this model is shown in Fig 4.1. We will discuss the training
procedure of this model in Section 4.1. A trained model can generate sequences of states by
sampling a latent variable z and decoding using pθSD(τ | z).

While sequences of states are predictive of behavior, they do not allow us to act directly
in the real world: the states may not be fully dynamically consistent, and we do not know
the actions that would realize them. To enable our model to actually act in the world and
visit states that are predicted by the state decoder pθSD(τ | z), we introduce a second decoder
– the policy decoder pθPD(a | s, z). The policy decoder cannot generate the entire trajectory

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 25

Figure 4.1: Graphical models representing the state and policy decoders. The state decoder
(shown on the left) directly generates a trajectory conditioned on the latent variable, while
the policy decoder generates a trajectory by conditioning a policy which is rolled out in the
environment. As is standard in model-free RL, the environment dynamics are unknown, so
the policy decoder must be trained by sampling rollouts.

directly like the state decoder, but has to actually act sequentially in the environment to
produce trajectories. We train this policy decoder to produce behavior in the environment
consistent with the predictions made by the state decoder by minimizing the KL divergence
between the distribution over state sequences under the state decoder and the policy decoder.
Both the state and policy decoder are trained jointly with the recognition network qφ(z | τ).

We describe the model assuming that the trajectory data τ is observed and fixed, which
allows us to use maximum likelihood estimation to train the model. In Section 4.1, we will
describe how we can improve trajectory distributions by alternating between model fitting
and entropy based exploration, in order to generate better τ data automatically.

Training SeCTAR with Variational Inference

We can train the latent variable model described in Section 4.1 with a procedure that is
similar to VAE training. Unlike a standard VAE, we must also account for the relationship
between the policy decoder and state decoder. We want to maximize the likelihood of the
trajectory data p(τ) under the state decoder for different z, while also ensuring that the state
and policy decoder are consistent, minimizing the KL divergence between them.

max log p(τ)

subject to Eqφ [DKL(pθPD(τ | z) ‖ pθSD(τ | z))] = 0

By applying the KL divergence as a penalty on the likelihood, we can write an unconstrained
objective as

max
θSD,θPD,φ

log p(τ)− λEqφ [DKL(pθPD(τ | z) ‖ pθSD(τ | z))] (4.1)

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 26

Introducing the evidence lower bound (ELBO) in place of the marginal likelihood log(p(τ)),
we obtain

log p(τ)− λEqφ [DKL(pθPD(τ | z) ‖ pθSD(τ | z)]

≥ Eqφ [log pθSD(τ | z))]−DKL(qφ(z | τ) ‖ p(z)) +

λ
[
Eqφ,pθPD (τ |z)[log pθSD(τ | z)] +H(pθPD(τ | z))

] (4.2)

Intuitively, this corresponds to optimizing the ELBO while constraining the state and policy
decoders to be mutually consistent. This induces the state decoder to fit the observed data
and the policy decoder to match the state decoder while also maximizing the entropy of the
policy’s action distribution (as in maximum entropy RL Schulman et al. (2017a)).

We parameterize our encoder qφ(z | τ) and state decoder pθSD(τ | z) with recurrent neural
networks, since they operate on sequences of states, while the policy decoder is a feedforward
neural network, as shown in Figure 4.2. Since SeCTAR will be used for generating multiple
trajectories sequentially, each starting in a different state we condition the state decoder on
the initial state s0, allowing SeCTAR to generalize behavior across different initial states.
The state decoder is completely differentiable and can be trained with backpropagation, but
the policy decoder interacts with the environment’s non-differentiable dynamics, so we cannot
train it with backpropagation through time, instead requiring reinforcement learning.

Optimization of the objective in Equation 4.2, with respect to each of the parameters
θSD, θPD, φ yields the different components of our model training.

State Decoder: Optimizing the objective with respect to θSD maximizes the terms
Eq[log pθSD(τ | z)] + λEq,pθPD (τ ′|z)[log pθSD(τ ′ | z)]. The first term encourages the state decoder
to maximize the likelihood of the observed data, while the second term encourages the state
decoder to match the policy decoder. In practice, we didn’t find a significant advantage in
optimizing the second term with respect to θSD so it is omitted from our implementation.
Since θSD is differentiable this objective can be directly optimized using backpropagation.

Policy Decoder: Optimizing with respect to θPD maximizes the terms
λ
[
Eq,pθPD (τ ′|z)[log pθSD(τ ′ | z)] +H(pθPD(τ | z))

]
. The first term encourages samples drawn

from the policy decoder to maximize the likelihood under the state decoder, while the second
term is an entropy regularization. Since pθPD(τ | z) is non differentiable, we use reinforcement
learning to optimize this objective with reward computed by trajectory likelihood under
the state decoder, regularized with an entropy objective. In practice, trajectory data from
the environment actually consists of sequences of both states and actions. We find that
pretraining the policy decoder with behavior cloning to match the actions in the trajectory
provides a good initialization for subsequent finetuning with RL.

To optimize this model, we sample a batch of trajectories from the current set of training
trajectories and alternate between training the state decoder with backpropagation with the
standard VAE loss and training the policy decoder by initializing with behavior cloning and
doing RL finetuning with the reward function described above using PPO Schulman et al.
(2017b), backpropagating gradients into the encoder in both cases.

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 27

Figure 4.2: The SeCTAR model computation graph. A trajectory is encoded into a latent
distribution, from which we sample a latent z. We then (1) directly decode z into a sequence
of states using a recurrent state decoder and (2) condition a policy decoder on z to produce
the same trajectory through sequential execution in the environment.

Hierarchical Control with SeCTAR

After training the SeCTAR model as described above, we can apply it to perform hierarchical
control. Since SeCTAR provides us with a latent representation of trajectories, we can design
a meta-controller that reasons sequentially in the space of these latent variables at a coarser
time scale than the individual time steps in the environment. Decision making in the latent
space serves two purposes. First, it allows for more coherent exploration than randomized
action selection. Second, it shortens the effective horizon of the problem to be solved in latent
space.

To perform temporally extended planning, we can use a meta-controller that sequentially
chooses latent space values z. Each latent z is used to condition the policy decoder πθPD(a |
s, z), which is executed in the environment for T steps, after which the meta-controller
picks another latent. Although there are several choices for designing or learning such a
meta-controller, we consider an approach using model-based planning with model predictive
control (MPC), which takes advantage of the state decoder. Model predictive control is
an effective control method which performs control by finite horizon model based planning,
with iterative replanning at every time step. We refer readers to Garćıa et al. (1989) for a
comprehensive overview.

An important property of the SeCTAR model is that the differentiable state decoder
and the non-differentiable policy decoder are trained to be consistent with each other

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 28

Algorithm 1 Model predictive control in latent space

1: Given: trained SeCTAR model, Reward function R
2: for timestep t ∈ {1, . . . , H/T} do
3: Sample K sequences of latents from the prior where each sequence has HMPC number

of latents
4: Use the state decoder to predict environment states of length T ×HMPC for each latent

sequence.
5: Evaluate the reward per sequence, and choose the best sequence of latents.
6: Execute the policy decoder πθPD(a | s, z) conditioned on the first latent z from the

chosen sequence, for T steps starting at st0.
7: end for

(Equation 4.2). The state decoder represents a model of how the policy decoder will actually
behave in the environment for a particular latent. This is similar to a dynamics model, but
built at the trajectory level rather than the the transition level (i.e., operating on (st, at,
st+1). In this work, we use this interpretation of the state decoder as a model to build a
model predictive controller in latent space. Note that the state decoder only needs to make
predictions about the outcomes of the corresponding closed-loop policy, which is significantly
easier than forward dynamics prediction for arbitrary actions. We use the latent space as the
action space for MPC, and perform simple shooting-based planning via random sampling and
replanning to generate a sequence of latent variables that maximize a given reward function.

Specifically, given an episode of length H and SeCTAR trained with trajectories of length
T , we solve the following planning problem in the latent space over a horizon of H/T (the
effective horizon in latent space)

max
z0,z1...,zH/T

H/T∑
t=0

γtTR(τt)

subject to τt ∼ pθSD(τ | zt, st0)

s0
0 = s0, s

t+1
0 = stT

Here, τt is a trajectory sampled from the state decoder pθSD(τ | zt, st0) conditioned on the
current state, and st0 represents the start of the trajectory segment, which is the last state in
the previous segment. R(τt) =

∑T−1
i=0 γ

iR(sti, a
t
i) is the discounted sum of rewards of trajectory

τt. To perform this optimization, we use a simple shooting based method Nagabandi et al.
(2017) for model-based planning in latent space, described in Algorithm 1.

Exploration for SeCTAR

The model proposed in Section 4.1, provides an effective way to learn representations for
trajectories and generate behavior via a state and policy decoder. However, if we assume
that the trajectory data is observed and fixed as we have thus far, the trajectories that our

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 29

Algorithm 2 Overall algorithm overview

1: Initialize replay buffer and SeCTAR with data from randomly initialized πe
2: for iteration j ∈ {1, . . . , J} do
3: Execute model predictive control in latent space as in Algorithm 1
4: Run the explorer πe for T × He starting from a random sample of states visited by

MPC
5: Update πe using PPO with reward as negative ELBO (4.4) estimated on each of the

He trajectories
6: Train SeCTAR as described in Section 4.1 using data collected by πe in this iteration,

mixed with some data from prior iterations in the replay buffer
7: end for

model can generate are restricted by the distribution of observed data. This is particularly
problematic in the setting of RL problems over long horizons, where there is a need to explore
the environment significantly. The distribution of trajectories that SeCTAR is trained on
cannot simply be fixed but needs to be updated periodically to explore more of the state
space.

In order to collect data to train the SeCTAR, we introduce a policy πe that we refer to
as the explorer policy. The goal of the explorer policy is to collect data which is as useful
as possible for training the SeCTAR model and performing hierarchical planning with it.
The explorer policy should gather data by (1) exploring in regions which are relevant to the
hierarchical task being solved, and (2) exploring diverse behavior within these regions.

We explore in the neighborhood of task relevant states by initializing the explorer policy
near the distribution of states visited by the MPC controller described in Section 4.1. We
can achieve this by running the hierarchical controller with a randomly truncated horizon,
and letting the explorer policy take over execution. For environments that allow resets to a
given state, we can also start the explorer policy directly from a random sample of states
visited by the MPC controller.

For πe to explore diverse behavior, we propose maximizing the entropy of the marginal tra-
jectory distribution p(τ) induced under πe. Previous work on maximum entropy RL Haarnoja
et al. (2017); Mnih et al. (2016); Schulman et al. (2017a) typically maximize the conditional
entropy H(π(a | s)) of the policy distribution π(a | s)). In this work we suggest maximiz-
ing the marginal entropy over distributions of entire trajectories, which is different from
maximizing entropy over the policy distribution. The objective can be written as:

max
θ
H(pθ(τ)) = −Epθ(τ)[log pθ(τ)] (4.3)

Optimizing this objective reduces (on applying product rule, and removing a constant baseline)
to policy gradient, with − log pθ(τ) as the reward function per trajectory. The log likelihood
log pθ(τ) is typically intractable to estimate. However, SeCTAR provides us an effective way
to estimate log pθ(τ) by using a lower bound. SeCTAR optimizes the evidence lower bound
(ELBO) to maximize likelihood of trajectories, which suggests a simple approximation for

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 30

log pθ(τ) via the negated ELBO

−Eq[log pθSD(τ | z)] +DKL(q(z | τ) ‖ p(z)), (4.4)

as an approximation of − log(pθ(τ)). We can then perform policy gradient for exploration
with this reward function.

We combine the previously discussed model-predictive control and entropy maximization
methods into an iterative procedure which interleaves exploration with model fitting and
hierarchical planning, as summarized in Algorithm 2.

4.2 Related Work

Hierarchical reinforcement learning is a well studied area in reinforcement learning Sutton et al.
(1999); Dayan and Hinton (1992); Schmidhuber (2008); Parr and Russell (1997); Dietterich
(1998). One method is the options framework which involves learning temporally extended
subpolicies. However, the number of options is usually both finite and fixed beforehand which
may not be optimal for more complex domains such as continuous control tasks. Another
challenge is acquiring skills autonomously which previous work bypasses by hand engineering
subgoals Sutton et al. (1999) or using pseudo-rewards Dietterich (1998). Some end-to-end
gradient-based methods to learn options have recently been proposed as well Bacon et al.
(2017); Fox et al. (2017). Our work on the other hand, learns a continuous set of skills without
supervision by learning representations over trajectories, and optimizing the entropy over
trajectory distributions to encourage a diverse and useful set of primitives.

In most environments, good exploration is a prerequisite for hierarchy. A number of prior
works have been proposed to guide exploration based on criteria such as intrinsic motivation
Schmidhuber (2008); Stadie et al. (2015), state-visitation counts Strehl and Littman (2008);
Bellemare et al. (2016), and optimism in the face of uncertainty Brafman and Tennenholtz
(2003). In this work, we suggest a simple unsupervised exploration method which aims to
maximize entropy of the marginal of trajectory distributions. This can be thought of as a
means of density based exploration, related to Bellemare et al. (2016); Fu et al. (2017) but
operating at a trajectory level.

Several recent and concurrent works have proposed methods which are related to ours
but have clear distinctions. Florensa et al. (2017); Heess et al. (2016); Hausman et al. (2018)
learn stochastic neural networks to modulate low level behavior which is trained on a “proxy”
reward function. However, our method does not assume that such a proxy reward function is
provided, as it is often restrictive and difficult to obtain in practice. Mishra et al. (2017) uses
trajectory segment models for planning but has no mechanism for exploration and does not
consider hierarchical tasks. Other works present information-theoretic representation learning
frameworks that are also based on latent variable models and variational inference, but have
significant differences in their methods and assumptions Gregor et al. (2016); Mohamed and
Rezende (2015). Gregor et al. (2016) aims to learn a maximally discriminative set of options
by maximizing the mutual information between the final state reached by each of the options

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 31

Figure 4.3: From left to right (1) the wheeled locomotion environment with the waypoints
depicted in green (2) the object manipulation environment with different objects (blocks and
cylinders) and their correspondingly colored goals (squares) (3) the swimmer navigation task
with the first 3 waypoints depicted in green.

and the latent representation. Whereas this prior method is applied only on relatively simple
gridworlds with discrete options, we learn a continuous space of primitives, together with a
state decoder that can be used for model-based higher-level control.

4.3 Experiments

In our experimental evaluation, we aim to address the following questions: (1) Can we learn
good exploratory behavior in the absence of task reward, using SeCTAR with our proposed
exploration method? (2) Can we use the learned latent space with planning and exploration
in the loop to solve hierarchical and sparse reward tasks? (3) Does the state decoder model
make meaningful predictions about the outcomes of the high-level actions? We evaluate our
method on four different domains: 2D navigation, object manipulation, wheeled locomotion,
swimmer navigation which are shown in Figure 4.3. Details of the experimental evaluation
can be found in the appendix.

Tasks

2-D Navigation In the 2-D navigation task, the agent can move a fixed distance in each
of the four cardinal directions. States are continuous and are observed as the 2D location of
the agent. The objective is to navigate a specific sequence of M goal waypoints which lie
within a bounding box. The agent is given a reward of 1 for successfully visiting every third
goal in the sequence. This evaluates our model’s ability to reason over long-horizons with
sparse rewards.

Wheeled Locomotion The wheeled environment consists of a two-wheeled cart that is
controlled by the angular velocity of its wheels. The cart uses a differential drive system
to turn and move in the plane. States include the position, velocity, rotation, and angular
velocity of the cart. In this task, the cart must move to a series of goals within a bounding box

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 32

and receives a reward of 1 after reaching every third goal in the sequence. This experiment
tests our method’s effectiveness in reasoning over a continuous action space with more
complicated physics.

Object Manipulation The object manipulation environment consists of four blocks that
the agent can move. The agent, which moves in 2D, can pick up nearby blocks, drop blocks,
and navigate in the four cardinal directions, carrying any block it has picked up. The agent
must move each block to its corresponding goal in the correct sequence and is given a reward
of 1 for each correctly placed block. We designed this task to evaluate our method’s ability
to explore and learn useful interaction skills with objects in the environment. The sparse,
sequential and discontinuous nature of this task makes it challenging.

Swimmer Navigation This task involves navigating through a number of waypoints in the
correct order using a 3-link robotic swimmer. The agent is given a reward of 1 for successfully
visiting every third goal. This task requires acquiring both a low-level swimming gait and
a higher-level navigation strategy to visit the waypoints, and presents a more substantial
exploration challenge.

Unsupervised Exploration with SeCTAR

To evaluate the effectiveness of the exploration method described in Section 4.1, we consider
an unsupervised setting where we interact with environments in the absence of a task reward.
We evaluate a simplified version of Algorithm 2 which alternates between (1) exploration
with the explorer policy πe, (2) model fitting with SeCTAR, (3) updating πe via the ELBO
as described in Section 4.1. This is a version of Algorithm 2, with no MPC and πe initialized
at a fixed initial state.

Our goal is to determine if alternating between exploration and SeCTAR model fitting 4.1
provides us with effective exploration behavior, which is a prerequisite for hierarchical
reinforcement learning. To evaluate this, we compare the distribution of final states visited
by a randomly initialized policy and the explorer policy after unsupervised training. We
found that the distribution of states of the explorer policy πe covered a significantly larger
portion of the state space, indicating good exploratory behavior as seen in Figure 4.4. For
the object manipulation task, the manipulator learns to pick up objects and move them
around maximally while in the locomotion and 2D navigation environments, the agent learns
to explore different portions of its state space.

Hierarchical Control

For the next experiment, we compare our full Algorithm 2 against several baselines methods
for exploration, hierarchy, and model-based control. To provide a fair comparison, we
initialize all methods from scratch, assuming no prior training in the environment. For each
environment, we randomly generated 5 sets of goal configurations and compare the average
reward over all goal configurations.

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 33

Figure 4.4: We show how our method improves exploration on three environments. On the
left, we show the final agent locations for 2D navigation and wheeled location and show final
block positions of 4 blocks for object manipulation from a randomly initialized policy. On
the right we show the corresponding final locations from our explorer policy trained with the
unsupervised exploration objective in Section 4.1. The bottom left plot shows the initial block
positions. In all environments we see the agent learns to explore a more evenly distributed
region of the state space.

We compare against model-free RL methods, TRPO (Schulman et al., 2015) and A3C
(Mnih et al., 2016), an exploration method based on intrinsic motivation - VIME Houthooft
et al. (2016), a model-based method from Nagabandi et al. (2017), and two hierarchical
methods, FeUdal Networks Vezhnevets et al. (2017) and option-critic Bacon et al. (2017). For
the model-based baseline, we perform the same number of random rollouts as our method,
with the same planning horizon. However, due to the computational demand of planning
at every time-step, we replan at the same rate as our method. We augment the state of
the environment with a one-hot encoding of the goal index to enable memoryless policies to
operate effectively. We did not evaluate FeUdal and A3C on the wheeled locomotion and
the swimmer navigation task, as our implementations of these methods only accommodated
discrete actions.

We found that our method can significantly outperform prior methods in terms of task

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 34

performance and sample complexity as shown in Figure 4.5. These tasks require sequential
long horizon reasoning and handling of delayed and sparse rewards. The block manipulation
task is particularly challenging for all methods, since it requires the exploration process
to pick up blocks and move them around, and only receives a reward when the blocks are
placed in the correct locations sequentially. We found that our method is able to significantly
outperform the model-based baseline, indicating the usefulness of building trajectory-level
models, rather than predictive models at the state-action level. This is likely because model-
based predictions at the trajectory level are less susceptible to compounding errors, and are
only required to solve the simpler task of predicting the outcomes of specific closed-loop skills,
rather than arbitrary actions. We also found that our method performed better than TRPO,
A3C, VIME, option-critic, and FeUdal Networks on all tasks. The ability of SeCTAR to
learn better on tasks which require challenging exploration and long-horizon reasoning can
likely be attributed to being able to perform long-horizon planning using good trajectory
representations. The model-based planner at the high level reduces sample complexity
significantly, while temporally extended trajectory representations allow us to reason more
effectively over longer horizons. While we find that, in the wheeled robot environment,
using VIME eventually matches the performance of our method, we are significantly more
sample efficient with model-based high-level planning. On the harder object manipulation
and swimmer tasks, only our method achieves good performance.

Model Analysis

We visualize interpolations in latent space to see how well the model generalizes to unseen
trajectories in Figure 4.6. We choose a latent in the dataset and interpolate to a random
point in the latent space. For each interpolated latent we visualize the predicted trajectory
from the state decoder and the rolled out trajectory from the policy decoder by plotting
the position of the agent. The trajectories are mostly consistent with each other, which
demonstrates the potential of SeCTAR to generalize its consistency to new behavior and
provide a structured and interpretable latent space.

4.4 Discussion

We proposed a method for hierarchical reinforcement learning that combines representation
learning of trajectories with model-based planning in a continuous latent space of behaviors.
We describe how to train such a model and use it for long horizon planning, as well as
for exploration. Experimental evaluations show that our method outperforms several prior
methods and flat reinforcement learning methods in tasks that require reasoning over long
horizons, handling sparse rewards, and performing multi-step compound skills.

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 35

Figure 4.5: Comparison of our method with prior methods on the four tasks. Dashed lines
indicate truncated execution. We find that on all tasks, our method is able to achieve higher
reward much quicker than model-based, model-free and hierarchical baselines. For object
manipulation and swimmer, prior methods fail to do anything meaningful.

CHAPTER 4. TEMPORAL ABSTRACTION FOR COMPOSITIONAL
GENERALIZATON 36

Figure 4.6: Interpolation between two latent codes on the object manipulation environment.
We interpolate between two latent codes and visualize the corresponding trajectories from
the policy decoder and the state decoder where each plot is a single trajectory. The agent
position is in brown and the object positions are in blue, yellow, black and red. From left to
right, there is a smooth interpolation between moving the yellow object a little to the left
and moving it much further left.

37

Chapter 5

Evolutionary Based Meta-Learning to
Learn General RL Algorithms

Designing new deep reinforcement learning algorithms that can efficiently solve across a wide
variety of problems generally requires a tremendous amount of manual effort. Learning to
design reinforcement learning algorithms or even small sub-components of algorithms would
help ease this burden and could result in better algorithms than researchers could design
manually. Our work might then shift from designing these algorithms manually into designing
the language and optimization methods for developing these algorithms automatically.

Reinforcement learning algorithms can be viewed as a procedure that maps an agent’s
experience to a policy that obtains high cumulative reward over the course of training. We
formulate the problem of training an agent as one of meta-learning: an outer loop searches
over the space of computational graphs or programs that compute the objective function for
the agent to minimize and an inner loop performs the updates using the learned loss function.
The objective of the outer loop is to maximize the training return of the inner loop algorithm.

Our learned loss function should generalize across many different environments, instead
of being specific to a particular domain. Thus, we design a search language based on genetic
programming (Koza, 1993) that can express general symbolic loss functions which can be
applied to any environment. Data typing and a generic interface to variables in the MDP
allow the learned program to be domain agnostic. This language also supports the use of
neural network modules as subcomponents of the program, so that more complex neural
network architectures can be realized. Efficiently searching over the space of useful programs
is generally difficult. For the outer loop optimization, we use regularized evolution (Real
et al., 2019), a recent variant of classic evolutionary algorithms that employ tournament
selection (Goldberg and Deb, 1991). This approach can scale with the number of compute
nodes and has been shown to work for designing algorithms for supervised learning (Real
et al., 2020). We adapt this method to automatically design algorithms for reinforcement
learning.

While learning from scratch is generally less biased, encoding existing human knowledge
into the learning process can speed up the optimization and also make the learned algorithm

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 38

Figure 5.1: Method overview. We use regularized evolution to evolve a population of RL algorithms. A
mutator alters top performing algorithms to produce a new algorithm. The performance of the algorithm is
evaluated over a set of training environments and the population is updated. Our method can incorporating
existing knowledge by starting the population from known RL algorithms instead of purely from scratch.

more interpretable. Because our search language expresses algorithms as a generalized
computation graph, we can embed known RL algorithms in the graphs of the starting
population of programs. We compare starting from scratch with bootstrapping off existing
algorithms and find that while starting from scratch can learn existing algorithms, starting
from existing knowledge leads to new RL algorithms which can outperform the initial
programs.

We learn two new RL algorithms which outperform existing algorithms in both sample
efficiency and final performance on the training and test environments. The learned algo-
rithms are domain agnostic and generalize to new environments. Importantly, the training
environments consist of a suite of discrete action classical control tasks and gridworld style
environments while the test environments include Atari games and are unlike anything seen
during training.

The contribution of this work is a method for searching over the space of RL algorithms,
which we instantiate by developing a formal language that describes a broad class of value-
based model-free reinforcement learning methods. Our search language enables us to embed
existing algorithms into the starting graphs which leads to faster learning and interpretable
algorithms. We highlight two learned algorithms which generalize to completely new envi-
ronments. Our analysis of the meta-learned programs shows that our method automatically
discovers algorithms that share structure to recently proposed RL innovations, and empirically
attain better performance than deep Q-learning methods.

5.1 Related Work

Learning to learn is an established idea in in supervised learning, including meta-learning
with genetic programming (Schmidhuber, 1987; Holland, 1975; Koza, 1993), learning a neural
network update rule (Bengio et al., 1991), and self modifying RNNs (Schmidhuber, 1993).

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 39

Genetic programming has been used to find new loss functions (Bengio et al., 1994; Trujillo
and Olague, 2006). More recently, AutoML (Hutter et al., 2018) aims to automate the
machine learning training process. Automated neural network architecture search (Stanley
and Miikkulainen, 2002; Real et al., 2017, 2019; Liu et al., 2017; Zoph and Le, 2016; Elsken
et al., 2018; Pham et al., 2018) has made large improvements in image classification. Instead
of learning the architecture, AutoML-Zero (Real et al., 2020) learns the algorithm from
scratch using basic mathematical operations. Our work shares similar ideas, but is applied to
the RL setting and assumes additional primitives such as neural network modules. In contrast
to AutoML-Zero, we learn computational graphs with the goal of automating RL algorithm
design. Our learned RL algorithms generalize to new problems, not seen in training.

Automating RL. While RL is used for AutoML (Zoph and Le, 2016; Zoph et al., 2018;
Cai et al., 2018; Bello et al., 2017), automating RL itself has been somewhat limited. RL
requires different design choices compared to supervised learning, including the formulation
of reward and policy update rules. All of which affect learning and performance, and are
usually chosen through trial and error. AutoRL addresses the gap by applying the AutoML
framework from supervised learning to the MDP setting in RL. For example, evolutionary
algorithms are used to mutate the value or actor network weights (Whiteson and Stone, 2006;
Khadka and Tumer, 2018), learn task reward (Faust et al., 2019), tune hyperparameters
(Tang and Choromanski, 2020; Franke et al., 2020), or search for a neural network architecture
(Song et al., 2020; Franke et al., 2020). This work focuses on task-agnostic RL update rules
in the value-based RL setting which are both interpretable and generalizable.

Meta-learning in RL. Recent work has focused on few-shot task adaptation. Finn
et al. (2017); Finn and Levine (2018) meta-learns initial parameters which can quickly
adapt to new tasks, while RL2 (Duan et al., 2016) and concurrent work (Wang et al., 2017),
formulates RL itself as a learning problem that is learned with an RNN. The meta-learned
component of these works is tuned to a particular domain or environment, in the form of NN
weights which cannot be used for completely new domains with potentially different sized
inputs. Neural Programmer-Interpreters (Reed and De Freitas, 2015; Pierrot et al., 2019)
overcome the environment generalization challenge by learning hierarchical neural programs
with domain-specific encoders for different environments. Here, the computational graph has
a flexible architecture and generalizes across different environments.

Learning RL algorithms or their components, such as a reward bonus or value update
function, has been studied previously with meta-gradients (Kirsch et al., 2020; Chebotar et al.,
2019; Oh et al., 2020), evolutionary strategies (Houthooft et al., 2018), and RNNs (Duan
et al., 2016). Although our work also learns RL algorithms, the update rule is represented as
a computation graph which includes both neural network modules and symbolic operators.
One key benefit is that the resulting graph can be interpreted analytically and can optionally
be initialized from known existing algorithms. Prior work that focuses on learning RL losses,
generalizes to different goals and initial conditions within a single environment (Houthooft
et al., 2018), or learns a domain invariant policy update rule that can generalize to new
environments (Kirsch et al., 2020). Another approach searches over the space of curiosity
programs using a similar language of DAGs with neural network modules (Alet et al., 2020a)

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 40

and performs the meta-training on a single environment. In contrast, our method is applied
to learn general RL update rules and meta-trained over a diverse set of environments.

5.2 Learning Reinforcement Learning Algorithms

In this section, we first describe the problem setup. An inner loop method Eval(L, E) evaluates
a learned RL algorithm L on a given environment E . Given access to this procedure, the goal
for the outer loop optimization is to learn a RL algorithm with high training return over a set
of training environments. We then describe the search language which enables the learning of
general loss functions and the outer loop method which can efficiently search over this space.

Figure 5.2: Visualization of a RL algorithm, DQN, as a computational graph which computes
the loss L = (Q(st, at)− (rt + γ ∗maxaQtarg(st+1, a)))2. Input nodes are in blue, parameter
nodes in gray, operation nodes in orange, and output in green.

Problem Setup

We assume that the agent parameterized with policy πθ(at|st) outputs actions at at each time
step to an environment E and receives reward rt and next state st+1. Since we are focusing
on discrete action value-based RL methods, θ will be the parameters for a Q-value function
and the policy is obtained from the Q-value function using an ε-greedy strategy. The agent
saves this stream of transitions (st, st+1, at, rt) to a replay buffer and continually updates the
policy by minimizing a loss function L(st, at, rt, st+1, θ, γ) over these transitions with gradient
descent. Training will occur for a fixed number of M training episodes where in each episode
m, the agent earns episode return Rm =

∑T
t=0 rt. The performance of an algorithm for a given

environment is summarized by the normalized average training return, 1
M

∑M
m=1

Ri−Rmin
Rmax−Rmin ,

where Rmin and Rmax are the minimum and maximum return for that environment. We
assume these are known ahead of time. This inner loop evaluation procedure Eval(L, E) is

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 41

outlined in Algorithm 3. To score an algorithm, we use the normalized average training
return instead of the final behavior policy return because the former metric will factor in
sample efficiency as well.

The goal of the meta-learner is to find the optimal loss function L(st, at, rt, st+1, θ, γ)
to optimize πθ with maximal normalized average training return over the set of training
environments. The full objective for the meta-learner is:

L∗ = arg max
L

[∑
E

Eval(L, E)

]

L is represented as a computational graph which we describe in the next section.

Search Language

Our search language for the algorithm L should be expressive enough to represent existing
algorithms while enabling the learning of new algorithms which can obtain good generalization
performance across a wide range of environments. Similar to Alet et al. (2020a), we describe
the RL algorithm as general programs with a domain specific language, but we target updates
to the policy rather than reward bonuses for exploration. Algorithms will map transitions
(st, at, st+1, rt), policy parameters θ, and discount factor γ into a scalar loss to be optimized
with gradient descent. We express L as a computational graph or directed acyclic graph
(DAG) of nodes with typed inputs and outputs. See Figure 5.2 for a visualization of DQN
expressed in this form. Nodes are of several types:

Input nodes represent inputs to the program, and include elements from transitions
(st, at, st+1, rt) and constants, such as the discount factor γ.

Parameter nodes are neural network weights, which can map between various data
types. For example, the weights for the Q-value network will map an input node with state
data type to a list of real numbers for each action.

Operation nodes compute outputs given inputs from parent nodes. This includes
applying parameter nodes, as well as basic math operators from linear algebra, probability,
and statistics. A full list of operation nodes is provided in Appendix C.1. By default, we set
the last node in the graph to compute the output of the program which is the scalar loss
function to be optimized. Importantly, the inputs and outputs of nodes are typed among
(state, action, vector, float, list, probability). This typing allows for programs to be applied
to any domain. It also restricts the space of programs to ones with valid typing which reduces
the search space.

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 42

Algorithm 3 Algorithm Evaluation, Eval(L, E)

1: Input: RL Algorithm L, Environment E , training episodes M
2: Initialize: Q-value parameters θ, target parameters θ′ empty replay buffer D
3: for i = 1 to M do
4: for t = 0 to T do
5: With probability ε, select a random action at,
6: otherwise select at = arg maxaQ(st, a)
7: Step environment st+1, rt ∼ E(at, st)
8: D ← D ∪ {st, at, rt, st+1}
9: Update parameters θ ← θ −∇θL(st, at, rt, st+1, θ, γ)

10: Update target θ′ ← θ
11: end for
12: Compute episode return Rm =

∑T
t=0 rt

13: end for
14: Output:

Normalized training performance 1
M

∑M
m=1

Rm−Rmin
Rmax−Rmin

Algorithm 4 Evolving RL Algorithms

1: Input: Training environments {E}, hurdle environment Eh, hurdle threshold α, optional existing algorithm
A

2: Initialize: Population P of RL algorithms {L}, history H, randomized inputs I. If bootstrapping,
initialize P with A.

3: Score each L in P with H[L].score←
∑
E Eval(L, E)

4: for c = 0 to C do
5: Sample tournament T ∼ Uniform(P)
6: Parent algorithm L← highest score algorithm in T
7: Child algorithm L′ ← Mutate(L)
8: H[L′].hash← Hash(L′(I))
9: if H[L′].hash was new and Eval(L′, Eh) > α then

10: H[L′].score←
∑
E Eval(L′, E)

11: end if
12: Add L′ to population P
13: Remove oldest L from population
14: end for
15: Output: Algorithm L with highest score

Evolutionary Search Method

Evaluating thousands of programs over a range of complex environments is prohibitively
expensive, especially if done serially. We adapt a genetic programming (Koza, 1993) method
for the search method and use regularized evolution (Real et al., 2019), a variant of classic
evolutionary algorithms that employ tournament selection (Goldberg and Deb, 1991). Regu-
larized evolution has been shown to work for learning supervised learning algorithms (Real
et al., 2020) and can be parallelized across compute nodes. Tournament selection keeps a
population of P algorithms and improves the population through cycles. Each cycle picks a

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 43

tournament of T < P algorithms at random and selects the best algorithm in the tournament
as a parent. The parent is mutated into a child algorithm which gets added to the population
while the oldest algorithm in the population is removed. We use a single type of mutation
which first chooses which node in the graph to mutate and then replaces it with a random
operation node with inputs drawn uniformly from all possible inputs.

There exists a combinatorially large number of graph configurations. Furthermore,
evaluating a single graph, which means training the full inner loop RL algorithm, can take up
a large amount of time compared to the supervised learning setting. Speeding up the search
and avoiding needless computation are needed to make the problem more tractable. We
extend regularized evolution with several techniques, detailed below, to make the optimization
more efficient. The full training procedure is outlined in Algorithm 4.

Functional equivalence check (Real et al., 2020; Alet et al., 2020b). Before evaluating
a program, we check if it is functionally equivalent to any previously evaluated program. This
check is done by hashing the concatenated output of the program for 10 values of randomized
inputs. If a mutated program is functionally equivalent to an older program, we still add it
to the population, but use the saved score of the older program. Since some nodes of the
graph do not always contribute to the output, parts of the mutated program may eventually
contribute to a functionally different program.

Early hurdles (So et al., 2019). We want poor performing programs to terminate early
so that we can avoid unneeded computation. We use the CartPole environment as an early
hurdle environment Eh by training a program for a fixed number of episodes. If an algorithm
performs poorly, then episodes will terminate in a short number of steps (as the pole falls
rapidly) which quickly exhausts the number of training episodes. We use Eval(L, Eh) < α as
the threshold for poor performance with α chosen empirically.

Program checks. We perform basic checks to rule out and skip training invalid programs.
The loss function needs to be a scalar value so we check if the program output type is a float
(type(L) = R). Additionally, we check if each program is differentiable with respect to the
policy parameters by checking if a path exists in the graph between the output and the policy
parameter node.

Learning from Scratch and Bootstrapping. Our method enables both learning
from scratch and learning from existing knowledge by bootstrapping the initial algorithm
population with existing algorithms. We learn algorithms from scratch by initializing the
population of algorithms randomly. An algorithm is sampled by sampling each operation
node sequentially in the DAG. For each node, an operation and valid inputs to that operation
are sampled uniformly over all possible options.

While learning from scratch might uncover completely new algorithms that differ substan-
tially from the existing methods, this method can take longer to converge to a reasonable
algorithm. We would like to incorporate the knowledge we do have of good algorithms to
bootstrap our search from a better starting point. We initialize our graph with the loss
function of DQN (Mnih et al., 2013) so that the first 7 nodes represent the standard DQN
loss, while the remaining nodes are initialized randomly. During regularized evolution, the
nodes are not frozen, such that it is possible for the existing sub-graph to be completely

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 44

replaced if a better solution is found.

5.3 Learned RL Algorithm Results and Analysis

We discuss the training setup and results of our experiments. We highlight two learned
algorithms with good generalization performance, DQNClipped and DQNReg, and ana-
lyze their structure. Additional details are available at https://sites.google.com/view/
evolvingrl.

Training Setup

Meta-Training details: We search over programs with maximum 20 nodes, not including
inputs or parameter nodes. A full list of node types is provided in Appendix C.1. We use a
population size of 300, tournament size of 25, and choose these parameters based on the ones
used in (Real et al., 2019). Mutations occur with probability 0.95. Otherwise a new random
program is sampled. The search is done over 300 CPUs and run for roughly 72 hours, at
which point around 20, 000 programs have been evaluated. The search is distributed such
that any free CPU is allocated to a proposed individual such that there are no idle CPUs.
Further meta-training details are in Appendix C.2.

Training environments: The choice of training environments greatly affects the
learned algorithms and their generalization performance. At the same time, our training
environments should be not too computationally expensive to run as we will be evaluating
thousands of RL algorithms. We use a range of 4 classical control tasks (CartPole, Acrobat,
MountainCar, LunarLander) and a set of 12 multitask gridworld style environments from
MiniGrid (Chevalier-Boisvert et al., 2018). These environments are computationally cheap
to run but also chosen to cover a diverse set of situations. This includes dense and sparse
reward, long time horizon, and tasks requiring solving a sequence of subgoals such as picking
up a key and unlocking a door. More details are in Appendix C.3.

The training environments always include CartPole as an initial hurdle. If an algorithm
succeeds on CartPole (normalized training performance greater than 0.6), it then proceeds
to a harder set of training environments. For our experiments, we choose these training
environments by sampling a set of 3 environments and leave the rest as test environments.
For learning from scratch we also compare the effect of number of training environments on
the learned algorithm by comparing training on just CartPole versus training on CartPole
and LunarLander.

RL Training details: For training the RL agent, we use the same hyperparameters
across all training and test environments except as noted. All neural networks are MLPs of
size (256, 256) with ReLU activations. We use the Adam optimizer with a learning rate of
0.0001. ε is decayed linearly from 1 to 0.05 over 1e3 steps for the classical control tasks and
over 1e5 steps for the MiniGrid tasks.

https://sites.google.com/view/evolvingrl
https://sites.google.com/view/evolvingrl

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 45

(a) Learning curve (b) Performance histogram

Figure 5.3: Left: Meta-training performance over different number of environments from scratch, and
bootstrapping. Plotted as RL evaluation performance (sum of normalized training return across the training
environments) over the number of candidate algorithms. Shaded region represents one standard deviation over
10 random seeds. More training environments leads to better algorithms. Bootstrapping from DQN speeds
up convergence and higher final performance. Right: Meta-training performance histogram for bootstrapped
training. Many of the top programs have similar structure (Appendix C.4).

Learning Convergence

Figure 5.3a shows convergence over several training configurations. We find that at the end
of training roughly 70% of proposed algorithms are functionally equivalent to a previously
evaluated program, while early hurdles cut roughly another 40% of proposed non-duplicate
programs.

Varying number of training environments: We compare learning from scratch with
a single training environment (CartPole) versus with two training environments (CartPole
and LunarLander). While both experiments reach the maximum performance on these
environments (Figure 5.3a), the learned algorithms are different. The two-environment
training setup learns the known TD loss

LDQN = (Q(st, at)− (rt + γ ∗max
a
Qtarg(st+1, a)))2

while the single-environment training setup learns a slight variation L = (Q(st, at)− (rt +
maxaQtarg(st+1, a)))2 that does not use the discount, indicating that the range of difficulty
on the training environments is important for learning algorithms which can generalize.

Learning from scratch versus bootstrapping: In Figure 5.3a, we compare training
from scratch versus training from bootstrapping on four training environments (CartPole,
KeyCorridorS3R1, DynamicObstacle-6x6, DoorKey-5x5). The training performance does not
saturate, leaving room for improvement. Bootstrapping from DQN significantly improves
both the convergence and performance of the meta-training, resulting in a 40% increase in
final training performance.

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 46

Learned RL Algorithms: DQNClipped and DQNReg

In this section, we discuss two particularly interesting loss functions that were learned by our
method, and that have good generalization performance on the test environments. Let

Yt = rt + γ ∗max
a
Qtarg(st+1, a), and δ = Q(st, at)− Yt.

The first loss function DQNClipped is

LDQNClipped = max
[
Q(st, at), δ

2 + Yt
]

+ max
[
Q(st, at)− Yt, γ(max

a
Qtarg(st+1, a))2

]
.

LDQNClipped was trained from bootstrapping off DQN using three training environments
(LunarLander, MiniGrid-Dynamic-Obstacles-5x5, MiniGrid-LavaGapS5). It outperforms
DQN and double-DQN, DDQN, (van Hasselt et al., 2015) on both the training and unseen
environments (Figure 5.4). The intuition behind this loss function is that, if the Q-values
become too large (when Q(st, at) > δ2 + Yt), the loss will act to minimize Q(st, at) instead
of the normal δ2 loss. Alternatively, we can view this condition as δ = Q(st, at) − Yt > δ2.
This means when δ is small enough then Q(st, at) are relatively close and the loss is just to
minimize Q(st, at).

The second learned loss function, which we call DQNReg, is given by

LDQNReg = 0.1 ∗Q(st, at) + δ2.

DQNReg was trained from bootstrapping off DQN using three training environments (KeyCor-
ridorS3R1, Dynamic-Obstacles-6x6, DoorKey-5x5). In comparison to DQNClipped, DQNReg
directly regularizes the Q values with a weighted term that is always active. We note that
both of these loss functions modify the original DQN loss function to regularize the Q-values
to be lower in value. While DQNReg is quite simple, it matches or outperforms the baselines
on all training and test environments including from classical control and Minigrid. It does
particularly well on a few test environments (SimpleCrossingS9N1, DoorKey-6x6, and Unlock)
and solves the tasks when other methods fail to attain any reward. It is also much more
stable with lower variance between seeds, and more sample efficient on test environments
(LavaGapS5, Empty-6x6, Empty-Random-5x5).

In Table 5.1, we evaluate DQNReg on a set of Atari games. We use the same architecture
as in DQN (Mnih et al., 2013) and use the same no-op evaluation procedure which evaluates
a trained policy every 1 million training steps over 200 test episodes. Even though meta-
training was on computationally simple, non-image based environments, we find that DQNReg
can generalize to image-based environments and outperform baselines. The results for the
baselines are taken from their respective papers (Mnih et al., 2013; van Hasselt et al., 2015;
Schulman et al., 2017).

These algorithms are related to recently proposed RL algorithms, conservative Q-learning
(CQL) (Kumar et al., 2020) and M-DQN (Vieillard et al., 2020). CQL learns a conservative
Q-function by augmenting the standard Bellman error objective with a simple Q-value

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 47

Figure 5.4: Performance of learned algorithms (DQNClipped and DQNReg) versus baselines (DQN and
DDQN) on training and test environments as measured by episode return over 10 training seeds. A dashed
line indicates that the algorithm was meta-trained on that environment while a solid line indicates a test
environment. DQNReg can match or outperform the baselines on almost all the training and test environments.
Shaded regions correspond to 1 standard deviation.

regularizer: log
∑

a exp (Q(st, a))−Q(st, at) which encourages the agent to stay close to the
data distribution while maintaining a maximum entropy policy. DQNReg similarly augments
the standard objective with a Q-value regularizer although does so in a different direction by
preventing overestimation. M-DQN modifies DQN by adding the scaled log-policy (using the
softmax Q-values) to the immediate reward. Both of these methods can be seen as ways to
regularize a value-based policy. This resemblance indicates that our method can find useful
structures automatically that are currently being explored manually, and could be used to
propose new areas for researchers to explore.

We discover that the best performing algorithms from the experiment which learned
DQNReg are consistent, and in the form L = δ2 + k ∗Q(st, at). This loss could use further
analysis and investigation, possibly environment-specific tuning of the parameter k. See
Appendix C.2 for details.

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 48

Env DQN DDQN PPO DQNReg
Asteroid 1364.5 734.7 2097.5 2390.4
Bowling 50.4 68.1 40.1 80.5
Boxing 88.0 91.6 94.6 100.0
RoadRunner 39544.0 44127.0 35466.0 65516.0

Table 5.1: Performance of learned algorithm DQNReg against baselines on several Atari games. Baseline
numbers taken from reported papers.

Analysis of Learned Algorithms

Figure 5.5: Overestimated value estimates is generally problematic in value-based RL. Our method learns
algorithms which regularize the Q-values helping with overestimation. We compare the estimated Q-values
for our learned algorithms and baselines with the optimal ground truth Q-values across several environments
during training. Estimate is for taking action zero from the initial state of the environment. While DQN
overestimates the Q-values, our learned algorithms DQNClipped and DQNReg underestimate the Q-values.

We analyze the learned algorithms to understand their beneficial effect on performance.
In Figure 5.5, we compare the estimated Q-values for each algorithm. We see that DQN
frequently overestimates the Q values while DDQN consistently underestimates the Q values
before converging to the ground truth Q value which are computed with a manually designed
optimal policy. DQNClipped has similar performance to DDQN, in that it also consistently
underestimates the Q values and does so slightly more aggressively than DDQN. DQNReg
significantly undershoots the Q values and does not converge to the ground truth. Various
works (van Hasselt et al., 2015; Haarnoja et al., 2018; Fujimoto et al., 2018) have shown that
overestimated value estimates is problematic and restricting the overestimation improves
performance.

The loss function in DQNClipped is composed of the sum of two max operations, and so
we can analyze when each update rule is active. We interpret DQNClipped as max(v1, v2) +
max(v2, v3) with four cases: 1) v1 > v2 and v3 > v4 2) v1 > v2 and v3 < v4 3) v1 < v2 and v3 <
v4 4) v1 < v2 and v3 > v4. Case 2 corresponds to minimizing the Q values. Case 3 would corre-

CHAPTER 5. EVOLUTIONARY BASED META-LEARNING TO LEARN GENERAL
RL ALGORITHMS 49

spond to the normal DQN loss of δ2 since the parameters of Qtarg are not updated during gradi-
ent descent.

Figure 5.6: Our learned algorithm,
DQNClipped, can be broken down into
four update rules where each rule is
active under certain conditions. Case
3 corresponds to normal TD learning
while case 2 corresponds to minimizing
the Q-values. Case 2 is more active in
the beginning when value overestima-
tion is a problem and then becomes less
active as it is no longer needed.

In Figure 5.6, we plot the proportion of when each case
is active during training. We see that usually case 3 is
generally the most active with a small dip in the beginning
but then stays around 95%. Meanwhile, case 2, which
regularizes the Q-values, has a small increase in the begin-
ning and then decreases later, matching with our analysis
in Figure 5.6, which shows that DQNClipped strongly
underestimates the Q-values in the beginning of training.
This can be seen as a constrained optimization where
the amount of Q-value regularization is tuned accordingly.
The regularization is stronger in the beginning of training
when overestimation is problematic (Q(st, at) > δ2 + Yt)
and gets weaker as δ2 gets smaller.

5.4 Discussion

In this chapter, we presented a method for learning re-
inforcement learning algorithms. We designed a general
language for representing algorithms which compute the loss function for value-based model-
free RL agents to optimize. We highlight two learned algorithms which although relatively
simple, can obtain good generalization performance over a wide range of environments. Our
analysis of the learned algorithms sheds insight on their benefit as regularization terms which
are similar to recently proposed algorithms. Our work is limited to discrete action and
value-based RL algorithms that are close to DQN, but could easily be expanded to express
more general RL algorithms such as actor-critic or policy gradient methods. How actions
are sampled from the policy could also be part of the search space. The set of environments
we use for both training and testing could also be expanded to include a more diverse set of
problem types.

50

Chapter 6

Unsupervised Objectives for General
Intelligence

Reinforcement learning offers a framework for learning control policies that maximize a given
measure of reward – ideally, rewards that incentivize simple high-level goals, such as survival,
accumulating a particular resource, or accomplishing some long-term objective. However,
extrinsic rewards may be insufficiently informative to encourage an agent to explore and
understand its environment, particularly when the environment is partially-observed : when
the agent has a limited view of its environment. A generalist agent should instead acquire
an understanding of its environment before a specific objective or reward is provided. This
goal motivates the study of self-supervised / unsupervised reinforcement learning: algorithms
that provide the agent with an intrinsically-grounded drive to acquire understanding and
control of its environment in the absence of an extrinsic reward signal. Agents trained with
intrinsic reward signals might accomplish tasks specified via simple and sparse rewards more
quickly, or may acquire broadly useful skills that could be adapted to specific task objectives.
Our aim is to design an embodied agent and a general-purpose intrinsic reward signal that
leads to the agent controlling partially-observed environments when equipped only with a
high-dimensional sensor (camera) and no prior knowledge.

A large body of prior methods for self-supervised reinforcement learning focus on attaining
coverage, typically through novelty-seeking or skill-discovery objectives; see Hafner et al.
(2020) for a survey. As argued in prior work (Friston et al., 2010; Friston, 2013; Fountas
et al., 2020; Berseth et al., 2021), a compelling alternative to coverage suited to complex and
dynamic environments is to minimize surprise, which incentivizes an agent to control aspects
of its environment to achieve homeostasis within it – i.e. constructing and maintaining a
niche where it can reliably remain despite external perturbations. We generally expect agents
that succeed at minimizing surprise in complex environments to develop similarly complex
behaviors; such acquired complex behaviors may be repurposed for other tasks (Berseth
et al., 2021). However, these frameworks do not explicitly address the difficulty of controlling
partially-observed environments: if an otherwise complex and chaotic environment contains a
“dark room” (small reliable niche), an agent could minimize surprise simply by hiding in this

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 51

Figure 6.1: Top row: The environment consists of a large number of objects, some of which
(e.g., the goat) move and act in unpredictable ways, and are not observed unless the agent
is nearby. Bottom row: If the agent maintains a latent state space model of the world, it
has uncertain beliefs about unobserved objects, particularly those that are dynamic (like the
goat). If the agent reduces the long-horizon average entropy of its beliefs, it will first seek
out information (e.g., finding the goat), and then modify the environment to limit the range
of states the goat can occupy even when it is no longer observed, for example by building a
fence around it.

room and refusing to make meaningful observations, thereby failing to explore and control
the wider surrounding environment.

Consider Fig. 6.1, which depicts a partially-observed outdoor environment with various
flora (trees, vegetables, and grass), fauna (a goat), weather, and an agent. We will discuss
three different intrinsic incentives an agent might adopt in this environment. If the agent’s
incentive is to (i) minimize the entropy of its next observation, it will seek the regions with
minimal unpredictable variations in flora, fauna, and weather. This is unsatisfying because it
merely requires avoidance, rather than interaction. Let us assume the agent will maintain a
model of its belief about a learned latent state – the agent cannot observe the true state,
instead it learns a state representation. Further, let us assume the agent maintains a separate
model of the visitation of its latent state – we will refer to this distribution as its latent
visitation. If the agent’s incentive is to (ii) minimize the entropy of belief (either at every
step or at some final step), the agent will gather information and take actions to make the
environment predictable: find and observe the changes in flora, fauna, and weather that are
predictable and avoid those that aren’t. However, once it has taken actions to make the world
predictable, this agent is agnostic to future change – it will not resist predictable changes in
the environment. Finally, if the agent’s incentive is to (iii) minimize the entropy of its latent
visitation, this will result in categorically different behavior: the agent will seek both to make
the world predictable by gathering information about it and prevent it from changing. While
both the belief and latent visitation entropy minimization objectives are worthwhile intrinsic
motivation objectives to study, we speculate that an agent that is adept at preventing its
environment from changing will generally learn more complex behaviors.

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 52

We present a concise and effective objective for self-supervised reinforcement learning
in dynamic partially-observed environments: minimize the entropy of the agent’s latent
visitation under a latent state-space model learned from exploration. Our method, which
we call Believer, results in an agent that learns to seek out and control factors of variation
outside of its immediate observations. We instantiate this framework by simultaneously
learning a state-space model as a Deep Variational Bayes Filter along with a policy that
employs the model’s beliefs. Our experiments show that our method learns to represent and
control dynamic entities in partially-observed visual environments with no extrinsic reward
signal, including in several 3D environments.

6.1 Maxwell’s Demon and Belief Entropy

The main concept behind our approach to self-supervised reinforcement learning is that
incentivizing an agent to minimize the entropy of its beliefs about the world is sufficient to
lead it to both gather information about the world and learn to control aspects of its world.
Our approach is partly inspired by a well-known connection between information theory and
thermodynamics, which can be illustrated informally by a version of the Maxwell’s Demon
thought experiment (Maxwell and Pesic, 2001; Leff and Rex, 2014). Imagine a container
separated into compartments, as shown in Fig. 6.2. Both compartments contain gas molecules
that bounce off of the walls and each other in a somewhat unpredictable fashion, though
short-term motion of these molecules (between collisions) is predictable. The compartments
are separated by a massless door, and the agent (the eponymous “demon”) can open or
close the door at will to sort the particles.1 By sorting the particles onto one side, the
demon appears to reduce the disorder of the system, as measured by the thermodynamic
entropy, S, which increases the energy, F available to do work, as per Helmholtz’s free
energy relationship, F = U − TS. The ability to do work affords the agent control over
the environment. This apparent violation of the second law of thermodynamics is resolved
by accounting for the agent’s information processing needed to make decisions (Bennett,
1982). By concentrating the particles into a smaller region, the number of states each particle
visits is reduced. Therefore, this illustrates an example environment in which reducing the
entropy of the visitation distribution results in an agent gaining the ability to do work. In
the same way that Maxwell’s demon accumulates free energy via information-gathering and
manipulating of its environment, we would expect self-supervised agents guided by belief
entropy minimization to accumulate the equivalent of potential energy in their corresponding
sequential decision processes, which would lead them to gain control over their environment.

1In Maxwell’s original example, the demon sorts the particles into the two chambers based on velocity.
Our example is closely related to Szilard’s engine (Szilard, 1929; Magnasco, 1996).

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 53

Figure 6.2: A “demon” gathering information to sort particles, reducing the entropy of the
particle configuration.

6.2 Preliminaries

Our goal in this work will be to design self-supervised reinforcement learning methods in
partially observed settings, which can acquire complex behaviors that both gather information
and gain control over their environment. To this end, we will formulate the learning problem
in the context of a discrete-time partially-observed controlled Markov process, also known as
a controlled hidden Markov process (CHMP), which corresponds to a POMDP without a
reward function. The CHMP is defined by a state space S with states s ∈ S, action space A
with actions a ∈ A, transition dynamics P (st+1|st, at), observation space Ω with observations
o ∈ Ω, and emission distribution O(ot|st). The agent is a policy π(at|o≤t). Note that it does
not observe any states s.

We denote the undiscounted finite-horizon state visitation as dπ(s)
.
= 1/T

∑T−1
t=0 Prπ(st = s),

where Prπ(st = s) is the probability that st = s after executing π for t steps. Using dπ(s), we
can quantify the average disorder of the environment with the Shannon entropy, H(dπ(s)).
Prior work proposes observational surprise minimization (minπ− log p̂(o)) as an intrinsic
control objective (Friston, 2009; Ueltzhöffer, 2018; Berseth et al., 2021); in Berseth et al.
(2021) (SMiRL), the agent models the state visitation distribution, dπ(s) with p̂(s), which
it computes by assuming access to s. In environments in which there are natural sources
of variation outside of the agent, this incentivizes the SMiRL agent, fully aware of these
variations observed through s, to take action to control them. In a partially-observed setting,
SMIRL’s model becomes p̂(o), which generally will enable the agent to ignore variations
that it can prevent from appearing in its observations. We observe this phenomenon in our
experiments.

6.3 Control and Information Gathering via Belief

Entropy Minimization

The main question that we tackle in the design of our algorithm is: how can we formulate a
general and concise objective function that can enable an RL agent to gain control over its

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 54

Time−−−→

Figure 6.3: Comparison of several approaches on the TwoRoom environment. The agent,
in white, can view a limited area around it, in grey, and can stop particles within its view
and darken their color. The vertical wall, in brown, separates particles (blue and green) in
the “busy room” (on right) from the “dark room” (on left). Top: Our approach seeks out
the particles and stops them. Middle: The observational surprise minimization method in
Berseth et al. (2021) leads the agent to frequently hide in the dark room, leaving the particles
unstopped. Bottom: Latent-state infogain leads the agent to find and observe the particles,
but not stop them.

partially-observed environment, in the absence of any user-provided task reward? Consider the
following partially-observed “TwoRoom” environment, depicted in Fig. 6.3. The environment
has two rooms: an empty (“dark”) room on the left, and a “busy” room on the right, the
latter containing two moving particles that move around until the agent “tags” them, which
stops their motion. Intuitively, an agent that aims to gather information and gain control of
its environment should search for the moving particles to find out where they are. However,
it is difficult to observe both particles at the same time. A more effective strategy is to “tag”
the particles – then, their position remains fixed, and the agent will know where they are at
all times, even when they are not observed. This task can be seen as a simple analogy for
more complex settings that can occur in natural environments, where we might want agents
to arrange an environment in an orderly fashion. We can view this task as a rough analogy
for a version of the previously-discussed Maxwell’s Demon thought experiment.

Representing variability with latent state-space models. In order for the agent to
represent the dynamic components of the environment observed from images, our method
involves learning a latent state-space model (LSSM) (Watter et al., 2015; Krishnan et al.,
2015; Karl et al., 2016; Maddison et al., 2017; Hafner et al., 2018; Mirchev et al., 2018;
Wayne et al., 2018; Vezzani et al., 2019; Lee et al., 2019; Das et al., 2019; Hafner et al.,
2019; Mirchev et al., 2020; Rafailov et al., 2021). We intermittently refer to these dynamic
components as “factors of variation” to distinguish the model’s representation of variability
in the environment (latent state) from the true variability (true state). At timestep t, the
LSSM represents the agent’s current belief as qφ(zt|o≤t, a≤t−1), where zt is the model’s latent
state. We defer the description of the LSSM learning and architecture to Section 6.4, and
now motivate how we will use the LSSM for constructing an intrinsic control objective.

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 55

Belief entropy and latent visitation entropy. Consider a policy that takes actions
to minimize the entropy of the belief H(qφ(zt|o≤t, a≤t−1)). This corresponds to the agent
performing active state estimation (Feder et al., 1999; Williams, 2007; Kreucher et al.,
2005), and is equivalent to taking actions to maximize expected latent-state information
gain I(ot, zt|o<t, at) (Aoki et al., 2011). However, active state estimation is satisfied by a
policy that simply collects informative observations, as it does not further incentivize actions
to “stabilize” the environment by preventing the latent state from changing. Analogous to
the standard definition of undiscounted state visitation, consider the undiscounted latent
visitation: dπ(z)

.
= 1/T

∑T−1
t=0 Prπ(zt = z), where Prπ(zt = z) = Eπqφ(zt|o≤t, a≤t−1) (the

expected belief after executing π for t timesteps). Our goal is to minimize H(dπ(z)), as this
corresponds to stabilizing the agent’s beliefs, which incentivizes both reducing uncertainty
in each qφ(zt|o≤t, a≤t−1), as well as constructing a niche such that each qφ(zt|o≤t, a≤t−1)
concentrates probability on the same latent states.

Discovering factors of variation. In order for belief entropy minimization to incentivize
the agent to control entities in the environment, the LSSM’s belief must represent the
underlying state variables in some way and model their uncertain evolution until either
observed or controlled. For example, the demon in the thought experiment in Section 6.1 would
have no incentive to gather the particles if it did not know that they existed. While sufficient
random exploration may result in a good-enough LSSM, making this approach generally
practical requires a suitable exploration strategy to collect the experience necessary to train an
LSSM that represents all of the underlying factors of variation. To this end, we learn a separate
exploratory policy to maximize expected model information gain, similar to Schmidhuber
(2010); Houthooft et al. (2016); Gheshlaghi Azar et al. (2019); Sekar et al. (2020). Expected
information gain about model parameters θ is relative to a set of prior experience D and
a partial trajectory ht−1, given as I(ot;θ|ht−1,D) = EotKL(p(θ|ot,ht−1,D) || p(θ|ht−1,D)).
Note that model information gain is distinct from the information an agent may gather to
reduce its belief entropy H(qφ(zt|o≤t, a≤t−1)) within the current episode. Computing the full
model parameter prior p(θ|ht−1,D) and posterior p(θ|ot,ht−1,D) is generally computationally
expensive, and also requires evaluating an expectation over observations – instead, we
approximate this expected information gain following a method similar to Sekar et al. (2020):
we use an ensemble of latent dynamics models, E = {pθi(zt|zt−1, at−1)}Ki=1 to compute the
variance of latent states estimated by qφ(zt|o≤t, a≤t−1). We build the ensemble throughout
training using the method of Izmailov et al. (2018). Thus, the exploration reward is given as:
re = Var{θi}[log pθ(zt|zt−1, at−1)|zt ∼ qφ]..

6.4 The Believer Algorithm

Now we describe how we implement and combine the various components of our method
into a learning algorithm for minimizing belief visitation entropy in CHMPs (reward-less

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 56

(a) Latent state-space and visitation mod-
els.

(b) Intrinsic rewards.

Figure 6.4: Figure of latent-state space model and rewards. Left: The model observes images,
ot to inform beliefs about latent states, qφ(zt|o≤t, a≤t−1), and observes actions to make
one-step predictions p(zt+1|zt, at). Each belief is used to update the latent visitation, q̄t′(z).
Right: The beliefs and latent visitations can be combined into various reward functions. The
solid arrows denote directions of belief expansion and contraction incentivized by rewards;
the dotted arrows denote directions of belief translation incentivized by rewards.

POMDPs). The main components are the latent-state space model, the latent visitation
model, and the exploration and control policies.

Latent state-space model. In our CHMP setting, the agent only has access to par-
tial observations o of the true state \. In order to estimate a representation of states
and beliefs, we employ a sequence-based Variational Autoencoder to learn latent vari-
able belief, dynamics, and emission models. We formulate the variational posterior to be
qφ(z1:T |o1:T , a1:T) =

∏T
t=1 qφ(zt|o≤t, a≤t−1) and the generative model as p(z1:T ,o1:T |a1:T) =∏T

t=1 pθ(ot|zt)pθ(zt|zt−1, at−1). Denoting ht
.
= (o≤t, a≤t−1), the log-evidence of the model and

its lower-bound are:

log p(o1:T |a1:T−1) = logEz1:T∼p(z1:T |a1:T)

[
T∏
t=1

log p(ot|zt)

]

≥ L(φ, θ) =
T∑
t=1

E
qφ(zt|ht)

[
pθ(ot|zt)

]
− E

qφ(zt−1|ht−1)

[
KL(qφ(zt|ht) || pθ(zt|zt−1, at−1)

]
(6.1)

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 57

Given a datasetD = {(o1:T , a1:T)i}Ni=1, Eq. 6.1 is used to train the model via maxφ,θ EU(D)L(φ, θ).
The focus of our work is not to further develop the performance of LSSMs; our method
could be further improved with advances in the particular LSSM employed. In practice, we
implemented an LSSM in PyTorch (Paszke et al., 2019) similar to the categorical LSSM
architecture described in (Hafner et al., 2020). In this case, both the belief prior and belief
posterior are distributions formed from products of K1 categorical distributions over K2

categories: g(z; v) =
∏K1

κ1=1

∏K2

κ2=1 v
zκ1,κ2
κ1,κ2 , where the vector of K1 · K2 parameters, v, is

predicted by neural networks: vposterior = fφ(o≤t, at) for the posterior, and vprior = fθ(o<t, at)
for the prior. We found it effective to construct fφ and fθ following the distribution-sharing
decomposition described in (Karl et al., 2016, 2017; Das et al., 2019), in which the posterior
is produced by transforming the parameters of the prior with a measurement update. We
implemented the prior as an RNN, and the posterior as an MLP, and defer further details to
the supplementary material.

Latent visitation model. Our agent cannot, in general, evaluate dπ(z) or H(dπ(z)); at
best, it can approximate them. We do so by maintaining a within-episode estimate of dπ(z)

by constructing a mixture across the belief history samples q̄t′(z) = 1/t′
∑t′

t=0 qφ(zt|o≤t, a≤t−1).
This corresponds to a mixture (across time) of single-sample estimates of each Eπqφ(zt|o≤t, a≤t−1).
Given q̄t′(z), we have an estimate of the visitation of the policy, and we can use this as
part or all of the reward signal of the agent. To implement q̄t′(z), we experimented both
approximating it by averaging each v and with recording every belief, and found that simply
recording each belief sufficed.

Belief-based objectives

We now describe several rewards that can be constructed with the LSSM, and how they
connect to our main objective. In what follows, we denote qφ(zt|o≤t, a≤t−1) = qt(zt) for
brevity. While our primary objective is “niche creation” by minimizing the expected surprise
of the latent visitation model, we also explore other intrinsic objectives that can be computed
in terms of the LSSM and the latent visitation model. These rewards are visualized in
Fig. 6.4.
Certainty. The entropy of the current belief measures the agent’s certainty of the latent state,
and by extension, about the aspects of the environment captured by the latent. Minimizing
the belief entropy increases the agent’s certainty. It is agnostic to predictable changes, and
penalizes unpredictable changes. We define the certainty reward as the negative belief entropy:

rct
.
= −H(qt(zt)) = Eqt(zt)[log qt(zt)] (6.2)

Niche Creation: Our primary objective is the expected surprise of the latent visitation
distribution, which measures how many states the agent believes it could have been in during
the episode so far. Minimizing this reduces the number of visited environment states and
increases the agent’s certainty. We define the niche creation reward as the negative cross

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 58

entropy of the visitation under the belief:

rnct
.
= −H(qt(zt), q̄t′(z)) = Eqt(zt)[log q̄t′(z)]. (6.3)

Niche Expansion. Instead of minimizing the latent visitation entropy altogether, we can
add an entropy bonus for the current belief to encourage exploration and thus potentially
find a broader niche. The results in bringing the current belief towards the current latent
visitation distribution. We define the niche expansion reward as the negative KL divergence:

rnet
.
= −KL(qt(zt)||q̄t′(z)) = Eqt(zt)[log q̄t′(z)− log qt(zt)]. (6.4)

State Infogain. The latent state information gain (not to be confused with the model
information gain described in section 6.3) measures how much more certain the belief is
compared to its temporal prior. Gaining information does not always coincide with being
certain, because an infogain agent may cause chaotic events in the environment with outcomes
that it only understands partially. As a result, it has gained more information than standing
still but has also become less certain. We define the infogain reward as the KL divergence:

rit
.
= KL(qt(zt)||p(zt|zt−1, at−1)) = Eqt(zt)qt−1(zt−1)[log qt(zt)− log p(zt|zt−1, at−1)]. (6.5)

Algorithm summary

Conceptual pseudocode for our belief-entropy based method, which we call Believer, is
presented in Alg. 5. The algorithm begins by initializing the LSSM, qφ and pθ, as well as
two separate policies: one trained to collect difficult-to-predict data with the exploration
objective with rewards defined by re, πe, and one trained to maximize one of the intrinsic
control objectives as defined by eqs. (6.2) to (6.5).

We represent each policy π(at|vposterior,t) as a two-layer fully-connected MLP with 128
units. Recall that vposterior is the vector of posterior parameters, which enables the policy
to use the memory represented by the LSSM. We do not back-propagate the policies’ losses
to the LSSM for simplicity of implementation, although prior work does so in the case of a
single policy (Lee et al., 2019). Our method is agnostic to the subroutine used to improve
the policies. In our implementation, we employ PPO (Schulman et al., 2017).

6.5 Experiments

Our experiments are designed to answer the following questions: Q1: Intrinsic control
capability: Does our latent visitation-based self-supervised reward signal cause the agent to
stabilize partially-observed visual environments with dynamic entities more effectively than
prior self-supervised stabilization objectives? Q2: Properties of Believer objectives:
What types of emergent behaviors does each belief-based objective described in section 6.4
evoke?

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 59

Algorithm 5 Believer

1: procedure BELIEVER(Env; L, M , N , L)
2: Initialize πc, πe, qφ, p{θi}Ki=1

,D ← ∅.
3: for episode = 0, . . . ,M do
4: De ← Collect(N,Env, πe);Dc ← Collect(N,Env, πc);D ← D ∪De ∪ Dc
5: // LSSM fitting step.

6: Update qφ, pθ using SGD on Eq. 6.1 with D for L rounds.
7: Update πe using SGD on PPO’s objective with rewards re
8: // Intrinsic control optimization step.

9: Update πc using SGD on PPO’s objective with rewards defined by one of eqs. (6.2)
to (6.5)

10: end for

In order to answer these questions, we identified environments with the following properties
(i): partial observability, (ii): dynamic entities that the agent can affect, and (iii): high-
dimensional observations. Because many standard RL benchmarks do not contain the
significant partial-observability that is prevalent in the real world, it is challenging to answer
these questions with them. Instead, we create several environments, and employ several
existing environments we identified to have these properties. In what follows, we give an
overview of the experimental settings and conclusions. We defer comprehensive details to the
supplementary material.

Environments

Figure 6.5:
TwoRoom Large
Environment.

TwoRoom. As previously described, this environment has two rooms:
an empty (“dark”) room on the left, and a “busy” room on the right,
the latter containing moving particles that move around unless the agent
“tags” them, which permanently stops their motion, as shown in Fig. 6.5.
The agent can observe a small area around it, which it receives as an
image. In this environment, control corresponds to finding and stopping
the particles. The action space isA = {left, right, up, down, tag, no-op},
and the observation space is normalized RGB-images: Ω = [0, 1]3×30×30.
An agent that has significant control over this environment should tag
particles to reduce the uncertainty over future states. To evaluate policies,
we use the average fraction of total particles locked, the average fraction
of particles visible, and the discrete true-state visitation entropy of the
positions of the particles, H(dπ(sd)). We employed two versions of this
environment, with details provided in the supplementary material. In the large environment,
the agent observes a 5x5 area around it as an image, and the busy room contains 5 particles.

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 60

Figure 6.6: Vizdoom
Defend The Center.

VizDoom DefendTheCenter. The VizDoom DefendTheCenter
environment shown in Fig. 6.6 is a circular arena in which a stationary
agent, equipped with a partial field-of-view of the arena and a
weapon, can rotate and shoot encroaching monsters (Kempka et al.,
2016). The action space is A = {turn left, turn right, shoot}, and
the observation space is normalized RGB-images: Ω = [0, 1]3×64×64.
In this environment, control corresponds to reducing the number
of monsters by finding and shooting them. We use the average
original environment return, (for which no policy has access to
during training), the average number of killed monsters at the end of
an episode, and the average number of visible monsters to measure
the agent’s control.

Figure 6.7: One Room
Capture 3D.

OneRoomCapture3D The MiniWorld framework is a customiz-
able 3D environment simulator in which an agent perceives the
world through a perspective camera (Chevalier-Boisvert, 2018). We
used this framework to build the environment in Fig. 6.7 which an
agent and a bouncing box both inhabit a large room; the agent
can lock the box to stop it from moving if it is nearby, as well
as constrain the motion of the box by standing nearby it. In this
environment, control corresponds to finding the box and either
trapping it near a wall, or tagging it. The action space is A =
{turn left 20◦, turn right 20◦,move forward, move backward, tag},
and observation space is normalized RGB-images: Ω = [0, 1]3×64×64.
We use the average fraction of time the box is captured, the average
time the box is visible, and continuous (Gaussian-estimated) true-
state visitation entropy of the box’s position H(dπ(sd)) to measure
the agent’s ability to reduce entropy of the environment.

Comparisons

In order to answer Q1, we compare to SMiRL (Berseth et al., 2021) and a recent empowerment
method (Zhao et al., 2021) that estimates the current empowerment of the agent from an
image. We use the empowerment estimate as a reward signal for training a policy. In order to
answer Q2, we ensured each environment was instrumented with the aforementioned metrics
of visibility and control, and deployed algorithm 5 separately with each of eqs. (6.2) to (6.5),
as well a with simple sum of eq. (6.3) and eq. (6.5). Finally, we compare to a “random policy”
that chooses actions by sampling from a uniform distribution over the action space, as well as
an “oracle policy” that has access to privileged information about the environment state in
each environment. We perform evaluation at 5e6 environment steps with 50 policy rollouts
per random seed, with 3 random seeds for each method (150 rollouts total).

Our primary results are presented in tables 6.1 and 6.2. We observe the Niche Cre-
ation+Infogain and Niche Expansion rewards to yield policies that exhibit a high degree

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 61

Figure 6.8: Visualization of a sequence in the VizDoom DefendTheLine environment. Row 1:
The image provided to the agent. Row 2: The agent’s reconstruction of a sample from q. Row
3: The agent’s one-step image forecast. Right: The state infogain signal, Eq[log q − log p].
Each colored rectangle identifies a keyframe that corresponds to a colored circle on the
infogain plot. The infogain signal measures how much more certain the belief is compared to
its temporal prior; when stochastic events happen (monster appears nearby), the signal is
high; when the next image is predictable (monster disappears when shot), the signal is low.

of control over each environment – finding and stopping the moving objects, and finding
and shooting the monsters, in the complete absence of any extrinsic reward signal. The
Infogain-based agent generally seeks out and observes, but does not interfere with, the
dynamic objects; the high Visibility metric and low control metrics (Lock, Capture, Kill)
in each environment illustrates this. Qualitative results of this phenomenon are illustrated
in fig. 6.8, in which the infogain signal is high when stochastically-moving monsters are
visible, and low when they are not. We observe that in these partially observed environments
the method of Berseth et al. (2021) tends to learn policies that hide from the dynamic
objects in the environment, as indicated by the low control and visibility values of the final
policy. Furthermore, we observe the method of Zhao et al. (2021) not to exhibit controlling
behavior in these partially-observed environments, instead it views the dynamic objects in
the TwoRoom and OneRoomCapture3D Environments somewhat more frequently than the
random policy. We present videos of all policies in the supplementary material.

6.6 Related Work

Much of the previous work on learning without extrinsic rewards has been based either on (i)
exploration (Chentanez et al., 2005; Oudeyer et al., 2007; Oudeyer and Kaplan, 2009), or
(ii) some notion of intrinsic control, such as empowerment (Klyubin et al., 2005; Mohamed
and Jimenez Rezende, 2015; Karl et al., 2017). Exploration approaches include those that
maximize model prediction error or improvement (Schmidhuber, 1991; Lopes et al., 2012;
Stadie et al., 2015; Pathak et al., 2017), maximize model uncertainty (Houthooft et al.,
2016; Still and Precup, 2012; Shyam et al., 2018; Pathak et al., 2019; Gheshlaghi Azar et al.,
2019), maximize state visitation (Bellemare et al., 2016; Fu et al., 2017; Tang et al., 2017;

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 62

Method TwoRoom Environment OneRoomCapture3D Environment

Obj. Lock↑ Obj. Visible↑ H(dπ(sd)) ↓ Obj. Captured↑ Obj. Tagged↑ Obj. Visible↑ H(dπ(sd)) ↓

Niche Creation+Infogain 0.92±0.01 0.94±0.01 0.33±0.03 0.84±0.08 0.00±0.00 0.88±0.02 −0.06±0.16

Niche Expansion, eq. (6.4) 0.95±0.00 0.66±0.03 0.22±0.02 0.73±0.03 0.71±0.03 0.67±0.04 -0.96±0.21

Niche Creation, eq. (6.3) 0.50±0.05 0.46±0.05 1.06±0.09 0.39±0.04 0.36±0.04 0.01±0.00 1.15±0.16

Certainty, eq. (6.2) 0.06±0.02 0.01±0.00 1.86±0.04 0.29±0.04 0.27±0.04 0.16±0.03 0.66±0.24

Infogain, eq. (6.5) 0.00±0.00 0.55±0.00 1.95±0.02 0.57±0.03 0.00±0.00 0.54±0.04 0.97±0.14

SMiRL (Berseth et al., 2021) 0.25±0.04 0.27±0.03 1.52±0.06 0.46±0.04 0.45±0.04 0.20±0.02 −0.02±0.28

Empowerment (Zhao et al., 2021) 0.00±0.00 0.46±0.03 1.95±0.03 0.49±0.04 - 0.22±0.02 0.21±0.25

Random policy 0.61±0.03 0.28±0.01 1.19±0.06 0.54±0.03 0.52±0.04 0.16±0.01 0.12±0.22

Oracle lock policy 0.98±0.00 0.91±0.01 0.13±0.01 0.95±0.00 0.95±0.00 0.96±0.00 −2.58±0.23

Table 6.1: Policy evaluation in TwoRoom and OneRoomCapture3D. Means and their standard

errors are reported; grey shading denotes a variant of our method, bolding denotes where a method

achieves the best mean performance under a metric. We observe that the Niche Expansion and

Niche Creation+Infogain objectives lead the agent to seek out and stabilize the dynamic objects

substantially more effectively than other methods.

Hazan et al., 2019), maximize surprise (Schmidhuber, 1991; Achiam and Sastry, 2017; Sun
et al., 2011), and employ other novelty-based exploration bonuses (Lehman and Stanley,
2011; Burda et al., 2018; Kim et al., 2018, 2019). Our method can be combined with prior
exploration techniques to aid in optimizing our proposed objective, and in that sense our
work is largely orthogonal to prior exploration methods.

Prior works on intrinsic control include empowerment maximization (Klyubin et al.,
2005,?; Mohamed and Rezende, 2015), observational surprise minimization (Friston, 2009;
Friston et al., 2009; Ueltzhöffer, 2018; Berseth et al., 2021; Parr and Friston, 2019), and skill
discovery (Barto et al., 2004; Konidaris and Barto, 2009; Gregor et al., 2016; Eysenbach et al.,
2018; Sharma et al., 2019; Xu et al., 2020). Observational surprise minimization seeks policies
that make observations predictable and controllable, and is closely connected to entropy
minimization, as entropy is defined to be the expected surprise. In Friston et al. (2010),
the notion of Free Energy Minimization corresponds to minimizing observational entropy,
and states that the entropy of hidden states in the environment is bounded by the entropy
of sensory observations. However, the proof assumes a diffeomorphism to hold between
states and observations, which is explicitly violated in CHMPs and any real-world setting, as
agents cannot perceive the state of anything outside their egocentric sensory observations.
Similarly, empowerment (Klyubin et al., 2005; Karl et al., 2015, 2017; Zhao et al., 2021) is a
measure of the degree of control an agent could have over future observations, whereas state
visitation entropy is a measure of the degree of the control an agent has over the underlying
environment state. Our approach seeks to infer and gain control over a representation of the
environment’s state, as opposed to the agent’s observations. We demonstrate environments
where minimizing observational surprise and maximizing empowerment leads to degenerate
solutions that ignore important factors of variation, whereas our approach identifies and
controls them.

Representation learning methods have been explored in a variety of prior work, including,
but not limited to, (Lange and Riedmiller, 2010; Watter et al., 2015; Karl et al., 2016; Finn

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 63

Method DefendTheCenter Environment

Env. Return↑ Monster Kills↑ Visible↑

Niche Creation+Infogain 1964.4±05.42 0.00±0.00 1.16±0.005

Niche Expansion, eq. (6.4) 2506.4±36.26 28.2±1.50 0.94±0.015

Niche Creation, eq. (6.3) 2182.2±14.12 10.0±0.55 0.76±0.017

Certainty, eq. (6.2) 1958.0±35.63 07.2±0.73 0.92±0.028

Infogain, eq. (6.5) 1928.6±35.51 00.2±00.2 1.15±0.008

SMiRL (Berseth et al., 2021) 1918.7±53.80 7.58±0.15 0.89±0.009

Empowerment (Zhao et al., 2021) 2161.8±29.06 16.2±2.35 0.86±0.064

Random policy 2113.8±37.60 14.2±0.73 0.90±0.026

Oracle policy 2550.8±55.90 28.0±1.52 0.80±0.035

TwoRoom-Large Environment

Obj. Lock↑ Obj. Visible↑ H(dπ(sd)) ↓

Niche Creation+Infogain 0.665±0.013 0.501±0.013 2.831±0.083

SMiRL (Berseth et al., 2021) 0.110±0.020 0.087±0.016 3.417±0.022

Random policy 0.271±0.024 0.138±0.011 3.404±0.063

Oracle policy 0.885±0.005 0.464±0.017 1.016±0.043

Table 6.2: Policy evaluation in VizDoom and TwoRoom-Large. Means and their standard errors are

reported; grey shading denotes a variant of our method, bolding denotes where a method achieves

the best mean performance under a metric. We observe that the Niche Expansion objective in

VizDoom and Niche Creation+Infogain objective in TwoRoom-Large lead the agent to seek out and

stabilize the dynamic objects substantially more effectively than other methods.

et al., 2016; Nair et al., 2018; Zhang et al., 2018; Hafner et al., 2018; Lee et al., 2019). Our
approach employs a representation learning method to build a latent state-space model
(Watter et al., 2015; Krishnan et al., 2015; Karl et al., 2016; Hafner et al., 2018; Mirchev
et al., 2018; Wayne et al., 2018; Vezzani et al., 2019; Lee et al., 2019; Das et al., 2019; Hafner
et al., 2019; Mirchev et al., 2020; Rafailov et al., 2021).

6.7 Discussion

We presented a method, Believer, for intrinsically motivating an agent to discover, represent,
and exercise control of dynamic objects in a partially-observed environments sensed with
visual observations. We found that our method approached expert-level performance on
several environments and substantially surpassed prior work in its unsupervised control
capability. While our experiments represent a proof-of-concept that illustrates how latent
state belief entropy minimization can incentivize an agent to both gather information and
gain control over its environment, there are a number of exciting future directions. First, our
method is inspired by a connection between thermodynamics and information theory, but
the treatment of this connection is informal. Formalizing this connection could lead to an
improved theoretical understanding of how Believer and other intrinsic motivation methods

CHAPTER 6. UNSUPERVISED OBJECTIVES FOR GENERAL INTELLIGENCE 64

can lead to desirable behavior, and perhaps allow deriving conditions on environments under
which such desirable behaviors would emerge. Second, Believer and other surprise-minimizing
intrinsic motivation objectives are designed to work well in complex environments with
unpredictable phenomena: a particularly interesting direction for future work is to scale up
such methods in order to study the behavior that emerges.

65

Chapter 7

Conclusion

In this thesis, our goal was to make progress towards building general purpose agents that can
efficiently solve any problem. Reinforcement learning provides a general framework to design
these agents, and in particular we view internal latent dynamics models with model-based RL
as a key component for building this generalization capability. We summarise our findings
and discuss future work and open challenges.

In Chapter 3, we incorporated the concept of entities into a factorized latent dynamics
model and showed that such a model can generalize and transfer knowledge about physics in
a scenes with a few objects to new scenes with many objects. However, the concept of an
entity or object is not fixed and is instead context dependent. For example, if opening a water
bottle, we might consider the cap and the bottle as seperate objects, but when transporting
the bottle, we might consider both pieces as a single object. This flexibility to view objects
at different levels of abstraction depending on the task is still lacking in our agents and could
enable representations that are less brittle and can adapt faster to new dynamics or tasks.

While Chapter 3 covered abstractions in space, Chapter 4, explored abstractions in space
in the form of chaining together abstract skills for solving temporally extended problems.
Chapter 4 did not operate on raw visual observations compared to Chapter 3 and an open
challenge is to combine the strengths of both state abstraction and temporal abstraction. An
agent that can build flexible state abstractions with the concept of entities and then reason
over long horizon interactions between objects, could generalize over both complex visual
input and temporally extended tasks.

While Chapter 3 and Chapter 4 showed that we can manually build in structural priors
that can enable generalization, Chapter 5 discussed an evolutionary based method for
automatically learning structure within our RL algorithms that can generalize across very
different environments. Chapter 5 was limited in scope to value-based RL methods and
an immediate future work would be to extend it to a broader family of RL algorithms.
However, we could also extend this work for high level architectures to automatically learn the
abstractions that were manually designed in Chapter 3 and Chapter 4. Entity abstractions
and hierarchical RL might emerge among other structures as key components for general RL
agents. Longer term, we might see machine guided algorithm and architecture design that is

CHAPTER 7. CONCLUSION 66

iterative and interactive with humans where the machine might suggest new promising areas
of research to explore further.

Finally, while the previous chapters covered building in structure into latent dynamics
models and a meta-optimization method for general RL agents, Chapter 6 covered the missing
piece of the optimization objective. Latent state belief entropy minimization led to an agent
gathering information and gaining control over its environment. An open question is whether
such an approach might scale to more complex open ended world environments. For example,
we might see an agent learn to build a house and acquire resources in Minecraft such that it
is more empowered to control the environment and achieve any downstream task.

The role of the environment in developing complex behavior is still an underexplored area.
While some progress has been made in characterizing properties of the environment that
would make RL more tractable (Co-Reyes et al., 2020), an exciting area of research would be
to combine the unsupervised objectives in Chapter 6 with large scale meta-learning in Chapter
5 but in open-ended environments that are structured for fast learning. A kind of curriculum
or shaped environment could help make unsupervised RL and meta-learning efficient enough
to create general purpose agents that exhibit complex behavior and adaptation to solve any
task.

67

Bibliography

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning
latent dynamics for planning from pixels. arXiv:1811.04551, 2018.

C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pages 64–72, 2016.

T. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and V. Mnih.
Unsupervised learning of object keypoints for perception and control. arXiv:1906.11883,
2019.

Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Modeling
parts, structure, and system dynamics via predictive learning. 2018.

N. Watters, L. Matthey, M. Bosnjak, C. P. Burgess, and A. Lerchner. Cobra: Data-efficient
model-based rl through unsupervised object discovery and curiosity-driven exploration.
arXiv:1905.09275, 2019.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv:1806.01261, 2018.

M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn, and J. Wu. Reasoning
about physical interactions with object-oriented prediction and planning. arXiv:1812.10972,
2018.

F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn. Robustness via retrying: Closed-loop
robotic manipulation with self-supervised learning. arXiv:1810.03043, 2018.

G. Berseth, D. Geng, C. M. Devin, N. Rhinehart, C. Finn, D. Jayaraman, and S. Levine.
{SM}irl: Surprise minimizing reinforcement learning in unstable environments. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/

forum?id=cPZOyoDloxl.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

https://openreview.net/forum?id=cPZOyoDloxl
https://openreview.net/forum?id=cPZOyoDloxl

BIBLIOGRAPHY 68

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17(1):1334–1373, Jan. 2016.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive summarization.
ArXiv, abs/1705.04304, 2018.

A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. M. Songhori, S. Wang, Y.-J. Lee, E. Johnson,
O. Pathak, A. Nazi, J. Pak, A. Tong, K. Srinivasa, W. Hang, E. Tuncer, Q. V. Le, J. Laudon,
R. Ho, R. Carpenter, and J. Dean. A graph placement methodology for fast chip design.
Nature, 594 7862:207–212, 2021.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy
optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/1502.05477.

A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. CoRR, abs/1708.02596,
2017.

I. Clavera, A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to
adapt: Meta-learning for model-based control. In International Conference on Learning
Representations, 2019.

E. S. Spelke and K. D. Kinzler. Core knowledge. Developmental science, 10(1):89–96, 2007.

R. Baillargeon, E. Spelke, and S. Wasserman. Object permanence in five-month-old infants.
Cognition, 20:191–208, 1985.

L. Acredolo and S. Goodwyn. Symbolic gesturing in normal infants. Child development, 59 2:
450–66, 1988.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60:84 – 90, 2012.

http://arxiv.org/abs/1502.05477

BIBLIOGRAPHY 69

G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29:82–97, 2012.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural
networks? ArXiv, abs/1411.1792, 2014.

K. Kansky, T. Silver, D. A. Mély, M. Eldawy, M. Lázaro-Gredilla, X. Lou, N. Dorfman,
S. Sidor, S. Phoenix, and D. George. Schema networks: Zero-shot transfer with a generative
causal model of intuitive physics. arXiv:1706.04317, 2017.

P. Tsividis, T. Pouncy, J. L. Xu, J. Tenenbaum, and S. Gershman. Human learning in atari.
In AAAI Spring Symposia, 2017.

B. Lake and M. Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In ICML, 2018.

K. Greff, S. van Steenkiste, and J. Schmidhuber. On the binding problem in artificial neural
networks. ArXiv, abs/2012.05208, 2020.

P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In AAAI, pages
1726–1734, 2017.

R. Veerapaneni, J. D. Co-Reyes, M. Chang, M. Janner, C. Finn, J. Wu, J. Tenenbaum,
and S. Levine. Entity abstraction in visual model-based reinforcement learning. ArXiv,
abs/1910.12827, 2019.

J. D. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and S. Levine. Self-consistent
trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings.
In ICML, 2018.

J. D. Co-Reyes, Y. Miao, D. Peng, E. Real, S. Levine, Q. V. Le, H. Lee, and A. Faust.
Evolving reinforcement learning algorithms. ArXiv, abs/2101.03958, 2021.

N. Rhinehart, J. Wang, G. Berseth, J. D. Co-Reyes, D. Hafner, C. Finn, and S. Levine.
Intrinsic control of variational beliefs in dynamic partially-observed visual environments.
In ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021. URL https:

//openreview.net/forum?id=gb5rUScIY5x.

M. D. Hoffman and D. M. Blei. Stochastic structured variational inference. In Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS
2015, San Diego, California, USA, May 9-12, 2015, 2015.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.

https://openreview.net/forum?id=gb5rUScIY5x
https://openreview.net/forum?id=gb5rUScIY5x

BIBLIOGRAPHY 70

J. Marino, Y. Yue, and S. Mandt. Iterative amortized inference. arXiv:1807.09356, 2018a.

J. Marino, M. Cvitkovic, and Y. Yue. A general method for amortizing variational filtering.
In Advances in Neural Information Processing Systems, pages 7857–7868, 2018b.

K. Greff, R. L. Kaufmann, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey,
M. Botvinick, and A. Lerchner. Multi-object representation learning with iterative varia-
tional inference. arXiv:1903.00450, 2019.

N. Wichers, R. Villegas, D. Erhan, and H. Lee. Hierarchical long-term video prediction
without supervision. arXiv:1806.04768, 2018.

E. L. Denton et al. Unsupervised learning of disentangled representations from video. In
Advances in neural information processing systems, pages 4414–4423, 2017.

A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine. Stochastic adversarial
video prediction. arXiv:1804.01523, 2018.

J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh. Action-conditional video prediction using
deep networks in atari games. In Advances in neural information processing systems, pages
2863–2871, 2015.

C. Finn and S. Levine. Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 2786–2793. IEEE,
2017.

M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and S. Levine. Solar: Deep
structured latent representations for model-based reinforcement learning. arXiv:1808.09105,
2018.

J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and
action in minecraft. arXiv:1605.09128, 2016.

K. Greff, R. K. Srivastava, and J. Schmidhuber. Binding via reconstruction clustering.
arXiv:1511.06418, 2015.

F. Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
Technical report, CORNELL AERONAUTICAL LAB INC BUFFALO NY, 1961.

W. F. Whitney, M. Chang, T. Kulkarni, and J. B. Tenenbaum. Understanding visual concepts
with continuation learning. arXiv:1602.06822, 2016.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial
nets. In Advances in Neural Information Processing Systems, pages 2172–2180, 2016.

BIBLIOGRAPHY 71

T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional inverse
graphics network. In Advances in Neural Information Processing Systems, pages 2539–2547,
2015.

V. Goel, J. Weng, and P. Poupart. Unsupervised video object segmentation for deep
reinforcement learning. arXiv:1805.07780, 2018.

Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Unsupervised
discovery of parts, structure, and dynamics. arXiv:1903.05136, 2019.

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv:1612.00341, 2016.

P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, et al. Interaction networks for learning about
objects, relations and physics. In Advances in Neural Information Processing Systems,
pages 4502–4510, 2016.

J. B. Hamrick, A. J. Ballard, R. Pascanu, O. Vinyals, N. Heess, and P. W. Battaglia.
Metacontrol for adaptive imagination-based optimization. arXiv:1705.02670, 2017.

M. Janner, K. Narasimhan, and R. Barzilay. Representation learning for grounded spatial
reasoning. Transactions of the Association for Computational Linguistics, 6:49–61, 2018.

K. Narasimhan, R. Barzilay, and T. Jaakkola. Grounding language for transfer in deep
reinforcement learning. Journal of Artificial Intelligence Research, 63:849–874, 2018.

V. Bapst, A. Sanchez-Gonzalez, C. Doersch, K. L. Stachenfeld, P. Kohli, P. W. Battaglia,
and J. B. Hamrick. Structured agents for physical construction. arXiv:1904.03177, 2010.

A. Ajay, M. Bauza, J. Wu, N. Fazeli, J. B. Tenenbaum, A. Rodriguez, and L. P. Kaelbling.
Combining physical simulators and object-based networks for control. arXiv:1904.06580,
2019.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages 2961–2969, 2017.

D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell. Deep object centric policies for
autonomous driving. arXiv:1811.05432, 2018.

W. Yang, X. Wang, A. Farhadi, A. Gupta, and R. Mottaghi. Visual semantic navigation
using scene priors. arXiv:1810.06543, 2018.

BIBLIOGRAPHY 72

K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of
physics for playing billiards. arXiv:1511.07404, 2015.

J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum. Learning to see physics via visual
de-animation. In Advances in Neural Information Processing Systems, pages 153–164, 2017.

A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and
T. Lillicrap. A simple neural network module for relational reasoning. arXiv:1706.01427,
2017.

V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,
T. Lillicrap, E. Lockhart, et al. Deep reinforcement learning with relational inductive
biases. 2018.

Y. Du and K. Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning.
arXiv:1905.04819, 2019.

K. Greff, S. van Steenkiste, and J. Schmidhuber. Neural expectation maximization. 2017.

S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber. Relational neural expectation
maximization: Unsupervised discovery of objects and their interactions. arXiv:1802.10353,
2018.

G. Zhu, J. Wang, Z. Ren, and C. Zhang. Object-oriented dynamics learning through multi-level
abstraction. arXiv:1904.07482, 2019.

S. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, G. E. Hinton, et al. Attend,
infer, repeat: Fast scene understanding with generative models. In Advances in Neural
Information Processing Systems, pages 3225–3233, 2016.

C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerchner.
Monet: Unsupervised scene decomposition and representation. arXiv:1901.11390, 2019.

A. R. Kosiorek, H. Kim, I. Posner, and Y. W. Teh. Sequential attend, infer, repeat: Generative
modelling of moving objects. arXiv:1806.01794, 2018.

S. D. Levy and R. Gayler. Vector symbolic architectures: A new building material for artificial
general intelligence. In Conference on Artificial General Intelligence, 2008.

P. Kanerva. Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive computation, 2009.

P. Smolensky. Tensor product variable binding and the representation of symbolic structures
in connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

BIBLIOGRAPHY 73

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

T. Kipf, E. van der Pol, and M. Welling. Contrastive learning of structured world models.
arXiv preprint arXiv:1911.12247, 2019.

Y. Zhang, J. Hare, and P.-B. Adam. Deep set prediction networks. arXiv:1906.06565, 2019.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. The International
Journal of Robotics Research, 37(4-5):421–436, 2018.

J. Fu, A. Singh, D. Ghosh, L. Yang, and S. Levine. Variational inverse control with events:
A general framework for data-driven reward definition. In Advances in Neural Information
Processing Systems, pages 8538–8547, 2018.

F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, and S. Levine. Visual foresight: Model-based
deep reinforcement learning for vision-based robotic control. arXiv:1812.00568, 2018.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

R. Y. Rubinstein and D. P. Kroese. The cross-entropy method. In Information Science and
Statistics, 2004.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

R. S. Sutton, D. Precup, and S. P. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999. doi:
10.1016/S0004-3702(99)00052-1.

P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in Neural Information
Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December
3, 1992], pages 271–278, 1992.

T. G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In Proceedings
of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison,
Wisconsin, USA, July 24-27, 1998, pages 118–126, 1998.

R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines. In Advances
in Neural Information Processing Systems 10, [NIPS Conference, Denver, Colorado, USA,
1997], pages 1043–1049, 1997.

BIBLIOGRAPHY 74

C. Florensa, Y. Duan, and A. Pieter. Stochastic neural networks for hierarchical reinforcement
learning. In ICLR, 2017.

K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. Meta learning shared hierarchies.
CoRR, abs/1710.09767, 2017.

A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and
K. Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, pages 3540–3549, 2017.

P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 1726–1734, 2017.

K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. CoRR,
abs/1611.07507, 2016.

R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. VIME: variational
information maximizing exploration. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 1109–1117, 2016.

J. Schulman, P. Abbeel, and X. Chen. Equivalence between policy gradients and soft
q-learning. CoRR, abs/1704.06440, 2017a.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017b.

C. E. Garćıa, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335 – 348, 1989.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-
based policies. CoRR, abs/1702.08165, 2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

J. Schmidhuber. Driven by compression progress: A simple principle explains essential aspects
of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art,
science, music, jokes. CoRR, abs/0812.4360, 2008.

R. Fox, S. Krishnan, I. Stoica, and K. Goldberg. Multi-level discovery of deep options. CoRR,
abs/1703.08294, 2017.

BIBLIOGRAPHY 75

B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning
with deep predictive models. CoRR, abs/1507.00814, 2015.

A. L. Strehl and M. L. Littman. An analysis of model-based interval estimation for markov
decision processes. J. Comput. Syst. Sci., 74(8):1309–1331, 2008. doi: 10.1016/j.jcss.2007.
08.009.

M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 1471–1479, 2016.

R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, Mar.
2003. ISSN 1532-4435. doi: 10.1162/153244303765208377.

J. Fu, J. D. Co-Reyes, and S. Levine. EX2: exploration with exemplar models for deep
reinforcement learning. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 2574–2584, 2017.

N. Heess, G. Wayne, Y. Tassa, T. P. Lillicrap, M. A. Riedmiller, and D. Silver. Learning and
transfer of modulated locomotor controllers. CoRR, abs/1610.05182, 2016.

K. Hausman, J. T. Springenberg, N. H. Ziyu Wang, and M. Riedmiller. Learning an embedding
space for transferable robot skills. In Proceedings of the International Conference on
Learning Representations, ICLR, 2018.

N. Mishra, P. Abbeel, and I. Mordatch. Prediction and control with temporal segment models.
In Proceedings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, pages 2459–2468, 2017.

S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 2125–2133, 2015.

J. Koza. Genetic programming - on the programming of computers by means of natural
selection. In Complex adaptive systems, 1993.

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized evolution for image classifier
architecture search. In AAAI, volume abs/1802.01548, 2019.

D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. FOGA, 1991.

BIBLIOGRAPHY 76

E. Real, C. Liang, D. So, and Q. V. Le. Automl-zero: Evolving machine learning algorithms
from scratch. In ICML, volume abs/2003.03384, 2020.

J. Schmidhuber. Evolutionary principles in self-referential learning. 1987.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 1975. second edition, 1992.

Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. IJCNN-91-Seattle
International Joint Conference on Neural Networks, ii:969 vol.2–, 1991.

J. Schmidhuber. A self-referential weight matrix. 1993.

S. Bengio, Y. Bengio, and J. Cloutier. Use of genetic programming for the search of a new
learning rule for neural networks. Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational Intelligence, pages 324–327 vol.1,
1994.

L. Trujillo and G. Olague. Synthesis of interest point detectors through genetic programming.
In GECCO ’06, 2006.

F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automated Machine Learning: Methods,
Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin.
Large-scale evolution of image classifiers. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pages 2902–2911. JMLR.org, 2017.

C. Liu, B. Zoph, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. L. Yuille, J. Huang, and K. Murphy.
Progressive neural architecture search. CoRR, abs/1712.00559, 2017. URL http://arxiv.

org/abs/1712.00559.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv:1611.01578, 2016.

T. Elsken, J. H. Metzen, and F. Hutter. Neural architecture search: A survey. arXiv preprint
arXiv:1808.05377, 2018.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search
via parameter sharing. In ICML, 2018.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for
scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8697–8710, 2018.

http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1712.00559

BIBLIOGRAPHY 77

H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang. Efficient architecture search by network
transformation. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 2787–2794, 2018.

I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le. Neural optimizer search with reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 459–468. JMLR. org, 2017.

S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning.
J. Mach. Learn. Res., 7:877–917, 2006.

S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages 1188–1200. Curran
Associates, Inc., 2018.

A. Faust, A. Francis, and D. Mehta. Evolving rewards to automate reinforcement learning.
arXiv preprint arXiv:1905.07628, 2019.

Y. Tang and K. Choromanski. Online hyper-parameter tuning in off-policy learning via
evolutionary strategies, 2020.

J. K. H. Franke, G. Köhler, A. Biedenkapp, and F. Hutter. Sample-efficient automated deep
reinforcement learning. 2020.

X. Song, K. Choromanski, J. Parker-Holder, Y. Tang, W. Gao, A. Pacchiano, T. Sarlos,
D. Jain, and Y. Yang. Reinforcement learning with chromatic networks for compact
architecture search. 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. ArXiv, abs/1703.03400, 2017.

C. Finn and S. Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. ArXiv, abs/1710.11622, 2018.

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. ArXiv, abs/1611.02779, 2016.

J. X. Wang, Z. Kurth-Nelson, H. Soyer, J. Z. Leibo, D. Tirumala, R. Munos, C. Blundell,
D. Kumaran, and M. M. Botvinick. Learning to reinforcement learn. ArXiv, abs/1611.05763,
2017.

S. Reed and N. De Freitas. Neural programmer-interpreters. arXiv:1511.06279, 2015.

BIBLIOGRAPHY 78

T. Pierrot, G. Ligner, S. Reed, O. Sigaud, N. Perrin, A. Laterre, D. Kas, K. Beguir, and
N. de Freitas. Learning compositional neural programs with recursive tree search and
planning. NeurIPS, 2019.

L. Kirsch, S. van Steenkiste, and J. Schmidhuber. Improving generalization in meta rein-
forcement learning using learned objectives. ArXiv, abs/1910.04098, 2020.

Y. Chebotar, A. Molchanov, S. Bechtle, L. Righetti, F. Meier, and G. S. Sukhatme. Meta-
learning via learned loss. ArXiv, abs/1906.05374, 2019.

J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. van Hasselt, S. Singh, and D. Silver. Discovering
reinforcement learning algorithms. ArXiv, abs/2007.08794, 2020.

R. Houthooft, R. Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho, and P. Abbeel. Evolved
policy gradients. ArXiv, abs/1802.04821, 2018.

F. Alet, M. F. Schneider, T. Lozano-Perez, and L. Kaelbling. Meta-learning curiosity
algorithms. ArXiv, abs/2003.05325, 2020a.

F. Alet, M. F. Schneider, T. Lozano-Perez, and L. P. Kaelbling. Meta-learning curiosity
algorithms. In International Conference on Learning Representations, 2020b. URL https:

//openreview.net/forum?id=BygdyxHFDS.

D. So, C. Liang, and Q. V. Le. The evolved transformer. ArXiv, abs/1901.11117, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environment for openai
gym. https://github.com/maximecb/gym-minigrid, 2018.

H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In AAAI, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv:1707.06347, 2017.

A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. ArXiv, abs/2006.04779, 2020.

N. Vieillard, O. Pietquin, and M. Geist. Munchausen reinforcement learning. ArXiv,
abs/2007.14430, 2020.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

https://openreview.net/forum?id=BygdyxHFDS
https://openreview.net/forum?id=BygdyxHFDS
https://github.com/maximecb/gym-minigrid

BIBLIOGRAPHY 79

S. Fujimoto, H. V. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. ArXiv, abs/1802.09477, 2018.

D. Hafner, P. A. Ortega, J. Ba, T. Parr, K. Friston, and N. Heess. Action and perception as
divergence minimization. arXiv preprint arXiv:2009.01791, 2020.

K. J. Friston, J. Daunizeau, J. Kilner, and S. J. Kiebel. Action and behavior: a free-energy
formulation. Biological cybernetics, 102(3):227–260, 2010.

K. Friston. Life as we know it. Journal of the Royal Society Interface, 10(86):20130475, 2013.

Z. Fountas, N. Sajid, P. A. Mediano, and K. Friston. Deep active inference agents using
monte-carlo methods. arXiv preprint arXiv:2006.04176, 2020.

J. C. Maxwell and P. Pesic. Theory of heat. Courier Corporation, 2001.

H. S. Leff and A. F. Rex. Maxwell’s demon: entropy, information, computing. Princeton
University Press, 2014.

L. Szilard. Über die entropieverminderung in einem thermodynamischen system bei eingriffen
intelligenter wesen. Zeitschrift für Physik, 53(11):840–856, 1929.

M. Magnasco. Szilard’s heat engine. EPL (Europhysics Letters), 33(8):583, 1996.

C. H. Bennett. The thermodynamics of computation—a review. International Journal of
Theoretical Physics, 21(12):905–940, 1982.

K. Friston. The free-energy principle: a rough guide to the brain? Trends in cognitive
sciences, 13(7):293–301, 2009.

K. Ueltzhöffer. Deep active inference. Biological Cybernetics, 112(6):547–573, 2018.

M. Watter, J. T. Springenberg, J. Boedecker, and M. Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. arXiv preprint arXiv:1506.07365,
2015.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep variational bayes filters: Unsu-
pervised learning of state space models from raw data. arXiv preprint arXiv:1605.06432,
2016.

C. J. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet, and Y. W.
Teh. Filtering variational objectives. arXiv preprint arXiv:1705.09279, 2017.

A. Mirchev, B. Kayalibay, M. Soelch, P. van der Smagt, and J. Bayer. Approximate bayesian
inference in spatial environments. arXiv preprint arXiv:1805.07206, 2018.

BIBLIOGRAPHY 80

G. Wayne, C.-C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska, J. Rae,
P. Mirowski, J. Z. Leibo, A. Santoro, et al. Unsupervised predictive memory in a goal-
directed agent. arXiv preprint arXiv:1803.10760, 2018.

G. Vezzani, A. Gupta, L. Natale, and P. Abbeel. Learning latent state representation for
speeding up exploration. arXiv preprint arXiv:1905.12621, 2019.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. arXiv preprint arXiv:1907.00953,
2019.

N. Das, M. Karl, P. Becker-Ehmck, and P. van der Smagt. Beta dvbf: Learning state-space
models for control from high dimensional observations. arXiv preprint arXiv:1911.00756,
2019.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. arXiv preprint arXiv:1912.01603, 2019.

A. Mirchev, B. Kayalibay, P. van der Smagt, and J. Bayer. Variational state-space models
for localisation and dense 3d mapping in 6 dof. arXiv preprint arXiv:2006.10178, 2020.

R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn. Offline reinforcement learning from images
with latent space models. Learning for Decision Making and Control (L4DC), 2021.

H. J. S. Feder, J. J. Leonard, and C. M. Smith. Adaptive mobile robot navigation and
mapping. The International Journal of Robotics Research, 18(7):650–668, 1999.

J. L. Williams. Information Theoretic Sensor Management. PhD thesis, Massachusetts
Institute of Technology, 2007.

C. Kreucher, K. Kastella, and A. O. Hero Iii. Sensor management using an active sensing
approach. Signal Processing, 85(3):607–624, 2005.

E. H. Aoki, A. Bagchi, P. Mandal, and Y. Boers. A theoretical look at information-driven
sensor management criteria. In 14th International Conference on Information Fusion,
pages 1–8. IEEE, 2011.

J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. VIME: Variational
Information Maximizing Exploration. 2016. URL http://arxiv.org/abs/1605.09674.

M. Gheshlaghi Azar, B. Piot, B. Avila Pires, J.-B. Grill, F. Altché, and R. Munos. World
discovery models. arXiv e-prints, pages arXiv–1902, 2019.

http://arxiv.org/abs/1605.09674

BIBLIOGRAPHY 81

R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. In International Conference on Machine Learning, pages
8583–8592. PMLR, 2020.

P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson. Averaging weights
leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703, 2019.

D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020.

M. Karl, M. Soelch, P. Becker-Ehmck, D. Benbouzid, P. van der Smagt, and J. Bayer. Unsuper-
vised real-time control through variational empowerment. arXiv preprint arXiv:1710.05101,
2017.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. Vizdoom: A doom-
based ai research platform for visual reinforcement learning. In 2016 IEEE Conference on
Computational Intelligence and Games (CIG), pages 1–8. IEEE, 2016.

M. Chevalier-Boisvert. gym-miniworld environment for openai gym. https://github.com/
maximecb/gym-miniworld, 2018.

R. Zhao, K. Lu, P. Abbeel, and S. Tiomkin. Efficient empowerment estimation for unsupervised
stabilization. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=u2YNJPcQlwq.

N. Chentanez, A. G. Barto, and S. P. Singh. Intrinsically motivated reinforcement learning.
In Advances in neural information processing systems, pages 1281–1288, 2005.

P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for autonomous
mental development. IEEE transactions on evolutionary computation, 11(2):265–286, 2007.

P.-Y. Oudeyer and F. Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:6, 2009.

A. S. Klyubin, D. Polani, and C. L. Nehaniv. All else being equal be empowered. In M. S.
Capcarrère, A. A. Freitas, P. J. Bentley, C. G. Johnson, and J. Timmis, editors, Advances
in Artificial Life, pages 744–753, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
ISBN 978-3-540-31816-3.

S. Mohamed and D. Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages
2125–2133. Curran Associates, Inc., 2015.

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://openreview.net/forum?id=u2YNJPcQlwq

BIBLIOGRAPHY 82

J. Schmidhuber. Curious model-building control systems. In Proc. international joint
conference on neural networks, pages 1458–1463, 1991.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer. Exploration in model-based rein-
forcement learning by empirically estimating learning progress. In Advances in neural
information processing systems, pages 206–214, 2012.

B. C. Stadie, S. Levine, and P. Abbeel. Incentivizing exploration in reinforcement learning
with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven Exploration by Self-
supervised Prediction. 2017.

S. Still and D. Precup. An information-theoretic approach to curiosity-driven reinforcement
learning. Theory in Biosciences, 131(3):139–148, 2012.

P. Shyam, W. Jaśkowski, and F. Gomez. Model-based active exploration. arXiv preprint
arXiv:1810.12162, 2018.

D. Pathak, D. Gandhi, and A. Gupta. Self-Supervised Exploration via Disagreement. 2019.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pages 1471–1479, 2016.

J. Fu, J. Co-Reyes, and S. Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pages
2577–2587, 2017.

H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan, J. Schulman, F. DeTurck,
and P. Abbeel. # exploration: A study of count-based exploration for deep reinforcement
learning. In Advances in neural information processing systems, pages 2753–2762, 2017.

E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681–2691. PMLR,
2019.

J. Achiam and S. Sastry. Surprise-based intrinsic motivation for deep reinforcement learning.
arXiv preprint arXiv:1703.01732, 2017.

Y. Sun, F. Gomez, and J. Schmidhuber. Planning to be surprised: Optimal bayesian
exploration in dynamic environments. In International Conference on Artificial General
Intelligence, pages 41–51. Springer, 2011.

J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011.

BIBLIOGRAPHY 83

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-Scale
Study of Curiosity-Driven Learning. 2018. URL http://arxiv.org/abs/1808.04355.

H. Kim, J. Kim, Y. Jeong, S. Levine, and H. O. Song. Emi: Exploration with mutual
information. arXiv preprint arXiv:1810.01176, 2018.

Y. Kim, W. Nam, H. Kim, J.-H. Kim, and G. Kim. Curiosity-bottleneck: Exploration by
distilling task-specific novelty. In International Conference on Machine Learning, pages
3379–3388, 2019.

A. S. Klyubin, D. Polani, and C. L. Nehaniv. Empowerment: A universal agent-centric
measure of control. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages
128–135. IEEE, 2005.

S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In Advances in neural information processing systems,
pages 2125–2133, 2015.

K. J. Friston, J. Daunizeau, and S. J. Kiebel. Reinforcement learning or active inference?
PLOS ONE, 4(7):1–13, 07 2009. doi: 10.1371/journal.pone.0006421. URL https://doi.

org/10.1371/journal.pone.0006421.

T. Parr and K. J. Friston. Generalised free energy and active inference. Biological Cybernetics,
113(5):495–513, Dec 2019. ISSN 1432-0770. doi: 10.1007/s00422-019-00805-w. URL
https://doi.org/10.1007/s00422-019-00805-w.

A. G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchical
collections of skills. In Proceedings of the 3rd International Conference on Development
and Learning, pages 112–19. Piscataway, NJ, 2004.

G. Konidaris and A. G. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in neural information processing systems, pages 1015–1023,
2009.

K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv preprint
arXiv:1611.07507, 2016.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

K. Xu, S. Verma, C. Finn, and S. Levine. Continual learning of control primitives: Skill
discovery via reset-games. arXiv preprint arXiv:2011.05286, 2020.

http://arxiv.org/abs/1808.04355
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1007/s00422-019-00805-w

BIBLIOGRAPHY 84

M. Karl, J. Bayer, and P. van der Smagt. Efficient empowerment. arXiv preprint
arXiv:1509.08455, 2015.

S. Lange and M. Riedmiller. Deep auto-encoder neural networks in reinforcement learning. In
The 2010 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,
2010.

C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel. Deep spatial autoen-
coders for visuomotor learning. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 512–519. IEEE, 2016.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement
learning with imagined goals. In Advances in Neural Information Processing Systems,
pages 9191–9200, 2018.

J. D. Co-Reyes, S. Sanjeev, G. Berseth, A. Gupta, and S. Levine. Ecological reinforcement
learning. ArXiv, abs/2006.12478, 2020.

C. Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv:1312.6114, 2013.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

R. Pascanu, T. Mikolov, and Y. Bengio. Understanding the exploding gradient problem.
ArXiv, abs/1211.5063, 2012.

I. Sutskever. Training recurrent neural networks. University of Toronto Toronto, Canada,
2013.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the adaptive
learning rate and beyond. arXiv preprint arXiv:1908.03265, 2019.

85

Appendix A

OP3 Details

A.1 Observation Model

The observation model G models how the objects H1:K cause the image observation X ∈
R
N×M . Here we provide a mechanistic justification for our choice of observation model

by formulating the observation model as a probabilistic approximation to a deterministic
rendering engine.

Deterministic rendering engine: Each object Hk is rendered independently as the
sub-image Ik and the resulting K sub-images are combined to form the final image observation
X. To combine the sub-images, each pixel Ik(ij) in each sub-image is assigned a depth δk(ij)

that specifies the distance of object k from the camera at coordinate (ij). of the image plane.
Thus the pixel X(ij) takes on the value of its corresponding pixel Ik(ij) in the sub-image Ik if
object k is closest to the camera than the other objects, such that

X(ij) =
K∑
k=1

Zk(ij) · Ik(ij), (A.1)

where Zk(ij) is the indicator random variable 1[k = arg mink∈K δk(ij)], allowing us to intuitively
interpret Zk as segmentation masks and Ik as color maps.

Modeling uncertainty with the observation model: In reality we do not directly
observe the depth values, so we must construct a probabilistic model to model our uncertainty:

G (X|H1:K) =

N,M∏
i,j=1

K∑
k=1

m(ij)(Hk) · g
(
X(ij) |Hk

)
, (A.2)

where every pixel (ij) is modeled through a set of mixture components g
(
X(ij) |Hk

)
:= p

(
Xij|Zk(ij) = 1, Hk

)
that model how pixels of the individual sub-images Ik are generated, as well as through the
mixture weights mij(Hk) := p

(
Zk(ij) = 1|Hk

)
that model which point of each object is closest

to the camera.

APPENDIX A. OP3 DETAILS 86

A.2 Evidence Lower Bound

Here we provide a derivation of the evidence lower bound. We begin with the log probability
of the observations X(1:T) conditioned on a sequence of actions a(0:T−1):

log p
(
X(0:T)

∣∣∣ a(0:T−1)
)

= log

∫
h
(0:T)
1:K

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)
dh

(0:T)
1:K .

= log

∫
h
(0:T)
1:K

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
) q (h(0:T)

1:K | ·
)

q
(
h

(0:T)
1:K | ·

) dh(0:T)
1:K .

= logE
h
(0:T)
1:K ∼q

(
H

(0:T)
1:K | ·

)
p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

q
(
h

(0:T)
1:K | ·

)

≥ E
h
(0:T)
1:K ∼q

(
H

(0:T)
1:K | ·

) log

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

q
(
h

(0:T)
1:K | ·

)
 . (A.3)

We have freedom to choose the approximating distribution q
(
H

(0:T)
1:K | ·

)
so we choose it to

be conditioned on the past states and actions, factorized across time:

q
(
H

(0:T)
1:K | x(0:T), a(0:T)

)
= q

(
H

(0)
1:K |x

(0)
) T∏
t=1

q
(
H

(t)
1:K |H

(t−1)
1:K , x(t), a(t−1)

)
With this factorization, we can use linearity of expectation to decouple Equation A.3 across
timesteps:

E
h
(0:T)
1:K ∼q

(
H

(0:T)
1:K | x(0:T),a(0:T)

) log

p
(
X(0:T), h

(0:T)
1:K

∣∣∣ a(0:T−1)
)

q
(
h

(0:T)
1:K |x(0:T), a(0:T)

)
 =

(t)∑
t=0

L(t)
r − L(t)

c ,

where at the first timestep

L(0)
r = E

h
(0)
1:K∼q

(
H

(0)
1:K |X(0)

) [log p
(
X(0) | h(0)

1:K

)]
L(0)

c = DKL

(
q
(
H

(0)
1:K |X

(0)
)
|| p
(
H

(0)
1:K

))
and at subsequent timesteps

L(t)
r = E

h
(t)
1:K∼q

(
H

(t)
1:K |h

(0:t−1)
1:K ,X(0:t),a(0:t−1)

) [log p
(
X(t) | h(t)

1:K

)]
L(t)

c = E
h
(t−1)
1:K ∼q

(
H

(t−1)
1:K |h(0:t−2)

1:K ,X(1:t−1),a(0:t−2)
) [DKL

(
q
(
H

(t)
1:K | h

(t−1)
1:K , X(t), a(t−1)

)
|| p
(
H

(t)
1:K | h

(t−1)
1:K , a(t−1)

))]
.

By the Markov property, the marginal q(H
(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)) is computed recursively

as
E
h(t−1)∼q

(
H

(t−1)
1:K |h(0:t−2)

1:K ,X(0:t−1),a(0:t−2)
) [q (H(t)

1:K | h
(t−1)
1:K , X(t), a(t−1)

)]
whose base case is q

(
H(0) |X(0)

)
when t = 0.

APPENDIX A. OP3 DETAILS 87

We approximate observation distribution p(X |H1:K) and the dynamics distribution
p(H ′1:K |H1:K , a) by learning the parameters of the observation model G and dynamics model
D respectively as outputs of neural networks. We approximate the recognition distribution
q(H

(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)) via an inference procedure that refines better estimates of the

posterior parameters, computed as an output of a neural network. To compute the expectation
in the marginal q(H

(t)
1:K |h

(0:t−1)
1:K , X(0:t), a(0:t−1)), we follow standard practice in amortized

variational inference by approximating the expectation with a single sample of the sequence
h

(0:t−1)
1:K by sequentially sampling the latents for one timestep given latents from the previous

timestep, and optimizing the ELBO via stochastic gradient ascent (Doersch, 2016; Kingma
and Welling, 2013; Rezende et al., 2014).

A.3 Posterior Predictive Distribution

Here we provide a derivation of the posterior predictive distribution for the dynamic latent
variable model with multiple latent states. Section A.2 described how we compute the distri-

butions p(X |H1:K), p(H ′1:K |H1:K , a), q(H
(t)
1:K |h

(t−1)
1:K , X(t), a(t−1)), and q(H

(0:T)
1:K |x(1:T), a(1:T)).

Here we show that these distributions can be used to approximate the predictive posterior
distribution p(X(T+1:T+d) |x(0:T), a(0:T+d)) by maximizing the following lower bound:

log p
(
X(T+1:T+d) | x(0:T), a(0:T+d)

)
=

∫
h
(0:T+d)
1:K

p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T), a(0:T+d)

)
dh

(0:T+d)
1:K

=

∫
h
(0:T+d)
1:K

p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T), a(0:T+d)

) q (h(0:T+d)
1:K | ·

)
q
(
h

(0:T+d)
1:K | ·

) dh(0:T+d)
1:K

= logE
h
(0:T+d)
1:K ∼q

(
H

(0:T+d)
1:K | ·

)
p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T), a(0:T+d)

)
q
(
h

(0:T+d)
1:K | ·

)

≥ E
h
(0:T+d)
1:K ∼q

(
H

(0:T+d)
1:K | ·

) log

p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T), a(0:T+d)

)
q
(
h

(0:T+d)
1:K | ·

)
 .

(A.4)

The numerator p(X(T+1:T+d), h
(0:T+d)
1:K |x(0:T), a(0:T+d)) can be decomposed into two terms, one

of which involving the posterior p(h
(0:T+d)
1:K |x(0:T), a(0:T+d)):

p
(
X(T+1:T+d), h

(0:T+d)
1:K | x(0:T), a(0:T+d)

)
= p

(
X(T+1:T+d) | h(0:T+d)

1:K

)
p
(
h

(0:T+d)
1:K | x(0:T), a(0:T+d)

)
,

This allows Equation A.4 to be broken up into two terms:

E
h
(0:T+d)
1:K ∼q

(
H

(0:T+d)
1:K | ·

) log p
(
X(T+1:T+d) | h(0:T+d)

1:K

)
−DKL

(
q
(
H

(0:T+d)
1:K | ·

)
|| p
(
H

(0:T+d)
1:K | x(0:T), a(0:T+d)

))
Maximizing the second term, the negative KL-divergence between the variational distribution

q(H
(0:T+d)
1:K | ·) and the posterior p(H

(0:T+d)
1:K |x(0:T), a(0:T+d)) is the same as maximizing the

APPENDIX A. OP3 DETAILS 88

following lower bound:

E
h
(0:T)
1:K ∼q

(
h
(0:T)
1:K | ·

) log p
(
x(0:T) | h(0:T)

1:K , a(0:T−1)
)
−DKL

(
q
(
H

(0:T+d)
1:K | ·

)
|| p
(
H

(0:T+d)
1:K | a(0:T+d)

))
(A.5)

where the first term is due to the conditional independence between X(0:T) and the future

states H
(T+1:T+d)
1:K and actions A(T+1:T+d). We choose to express q

(
H

(0:T+d)
1:K | ·

)
as conditioned

on past states and actions, factorized across time:

q
(
H(0:T+d) | x(0:T), a(0:T+d−1)

)
= q

(
H

(0)
1:K |x

(0)
) T+d∏
t=1

q
(
H

(t)
1:K |H

(t−1)
1:K , x(t), a(t−1)

)
.

In summary, Equation A.4 can be expressed as

E
h
(0:T+d)
1:K ∼q(H(0:T+d) | x(0:T),a(0:T+d−1)) log p

(
X(T+1:T+d) | h(0:T+d)

1:K

)
+E

h
(0:T)
1:K ∼q(H(0:T) | x(0:T),a(0:T−1)) log p

(
x(0:T) | h(0:T)

1:K , a(0:T−1)
)

−DKL

(
q
(
H(0:T+d) | x(0:T), a(0:T+d−1)

)
|| p
(
H

(0:T+d)
1:K | a(0:T+d)

))
which can be interpreted as the standard ELBO objective for timesteps 0 : T , plus an addition
reconstruction term for timesteps T + 1 : T + d, a reconstruction term for timesteps 0 : T .
We can maximize this using the same techniques as maximizing Equation A.3.

Whereas approximating the ELBO in Equation A.4 can be implemented by rolling out OP3
to predict the next observation via teacher forcing (Williams and Zipser, 1989), approximating
the posterior predictive distribution in Equation A.4 can be implemented by rolling out the
dynamics model d steps beyond the last observation and using the observation model to
predict the future observations.

A.4 Interactive Inference

Algorithms 6 and 7 detail M steps of the interactive inference algorithm at timestep 0
and t ∈ [1, T] respectively. Algorithm 6 is equivalent to the IODINE algorithm described
in (Greff et al., 2019). Recalling that λ1:K are the parameters for the distribution of the
random variables H1:K , we consider in this paper the case where this distribution is an
isotropic Gaussian (e.g. N (λk) where λk = (µk, σk)), although OP3 need not be restricted
to the Gaussian distribution. The refinement network fq produces the parameters for the

distribution q(H
(t)
k |h

(t−1)
k , x(t), a(t)). The dynamics network fd produces the parameters for

the distribution d(H
(t)
k |h

(t−1)
k , h

(t−1)
[6=k] , a

(t)). To implement q, we repurpose the dynamics model

to transform h
(t−1)
k into the initial posterior estimate λ

(0)
k and then use fq to iteratively update

this parameter estimate. βk indicates the auxiliary inputs into the refinement network used
in (Greff et al., 2019). We mark the major areas where the algorithm at timestep t differs
from the algorithm at timestep 0 in blue.

APPENDIX A. OP3 DETAILS 89

Algorithm 6 Interactive Inference: Timestep 0

1: Input: observation x(0)

2: Initialize: parameters λ(0,0)

3: for i = 0 to M − 1 do

4: Sample h
(0,i)
k ∼ N

(
λ

(0,i)
k

)
for each entity k

5: Evaluate L(0,i) ≈ logG
(
x(0) |h(0,i)

1:K

)
−DKL

(
N
(
λ

(0,i)
1:K

)
|| N (0, I)

)
6: Calculate ∇λkL(0,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k

8: Update λ
(0,i+1)
k ← frefine

(
x(0),∇λL(0,i), λ(0,i), β

(0,i)
k

)
for each entity k

9: end for
10: Return λ(0,M)

Algorithm 7 Interactive Inference: Timestep t

1: Input: observation x(t), previous action a(t−1), previous entity states h
(t−1)
1:K

2: Predict λ
(t,0)
k ← fd

(
h

(t−1)
k , h

(t−1)
[6=k] , a

(t−1)
)

for each entity k

3: for i = 0 to M − 1 do
4: Sample h

(t,i)
k ∼ N

(
λ(t,i)

)
for each entity k

5: Evaluate L(t,i) ≈ logG
(
x(t) |h(t)

1:K

)
−DKL

(
N
(
λ

(t,i)
1:K

)
|| N

(
λ

(t,0)
1:K

))
6: Calculate ∇λkL(t,i) for each entity k
7: Assemble auxiliary inputs βk for each entity k

8: Update λ
(t,i+1)
k ← fq

(
x(t),∇λkL(t,i), λ

(t,i)
k , β

(t,i)
k

)
for each entity k

9: end for
10: Return λ(t,M)

Training: We can train the entire OP3 system end-to-end by backpropagating through the
entire inference procedure, using the ELBO at every timestep as a training signal for the
parameters of G, D, Q in a similar manner as (van Steenkiste et al., 2018). However, the
interactive inference algorithm can also be naturally be adapted to predict rollouts by using
the dynamics model to propagate the λ1:K for multiple steps, rather than just the one step
for predicting λ

(t,0)
1:K in line 2 of Algorithm 7. To train OP3 to rollout the dynamics model

for longer timescales, we use a curriculum that increases the prediction horizon throughout
training.

A.5 Cost Function

Let Î(Hk) := m(Hk) · g (X |Hk) be a masked sub-image (see Appdx: A.1). We decompose
the cost of a particular configuration of objects into a distance function between entity states,
c(Ha, Hb). For the first environment with single-step planning we use L2 distance of the
corresponding masked subimages: c(Ha, Hb) = L2(Î(Ha), Î(Hb)). For the second environment

APPENDIX A. OP3 DETAILS 90

with multi-step planning we a different distance function since the previous one may care
more about if a shape matches than if the color matches. We instead use a form of intersection
over union but that counts intersection if the mask aligns and pixel color values are close

c(Ha, Hb) = 1−
∑
i,j mij(Ha)>0.01 and mij(Hb)>0.01 and L2(g(Ha)(ij),g(Hb)(ij))<0.1∑

i,j mij(Ha)>0.01 or mij(Hb)>0.01
. We found this version

to work better since it will not give low cost to moving a wrong color block to the position of
a different color goal block.

A.6 Architecture and Hyperparameter Details

We use similar model architectures as in (Greff et al., 2019) and so have rewritten some
details from their appendix here. Differences include the dynamics model, inclusion of actions,
and training procedure over sequences of data. Like (Hafner et al., 2018), we define our
latent distribution of size R to be divided into a deterministic component of size Rd and
stochastic component of size Rs. We found that splitting the latent state into a deterministic
and stochastic component (as opposed to having a fully stocahstic representation) was helpful
for convergence. We parameterize the distribution of each Hk as a diagonal Gaussian, so the
output of the refinement and dynamics networks are the parameteres of a diagonal Gaussian.
We parameterize the output of the observation model also as a diagonal Gaussian with means
µ and global scale σ = 0.1. The observation network outputs the µ and mask mk.

Training: All models are trained with the ADAM optimizer (Kingma and Ba, 2014) with
default parameters and a learning rate of 0.0003. We use gradient clipping as in (Pascanu
et al., 2012) where if the norm of global gradient exceeds 5.0 then the gradient is scaled down
to that norm.

Inputs: For all models, we use the following inputs to the refinement network, where
LN means Layernorm and SG means stop gradients. The following image-sized inputs are
concatenated and fed to the corresponding convolutional network:

Description Formula LN SG Ch.

image X 3
means µ 3
mask mk 1
mask-logits m̂k 1
mask posterior p(mk|X,µ) 1
gradient of means ∇µkL X X 3
gradient of mask ∇mkL X X 1
pixelwise likelihood p(X |H) X X 1
leave-one-out likelih. p(X |Hi6=k) X X 1
coordinate channels 2

total: 17

APPENDIX A. OP3 DETAILS 91

Observation and Refinement Networks

The posterior parameters λ1:K and their gradients are flat vectors, and we concatenate them
with the output of the convolutional part of the refinement network and use the result as
input to the refinement LSTM:

Description Formula LN SG

gradient of posterior ∇λkL X X
posterior λk

All models use the ELU activation function and the convolutional layers use a stride
equal to 1 and padding equal to 2 unless otherwise noted. For the table below Rs = 64 and
R = 128.

Observation Model Decoder

Type Size/Ch. Act. Func. Comment

Input: Hi R
Broadcast R+2 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 Linear RGB + Mask

Refinement Network

Type Size/Ch. Act. Func. Comment

MLP 128 Linear
LSTM 128 Tanh
Concat [λi,∇λi] 2Rs

MLP 128 ELU
Avg. Pool Rs

Conv 3× 3 Rs ELU
Conv 3× 3 32 ELU
Conv 3× 3 32 ELU
Inputs 17

Dynamics Model

The dynamics model D models how each entity Hk is affected by action A and the other
entity H[6=k]. It applies the same function d(H ′k |Hk, H[6=k], A) to each state, composed of

APPENDIX A. OP3 DETAILS 92

several functions illustrated and described in Fig. 3.4:

H̃k = do(Hk) Ã = da(At) H̃act
k = dao(H̃kÃ)

H interact
k =

K∑
i6=k

doo(H̃i
act
, H̃k

act
) H

′

k = dcomb(H̃act
k , H interact

k),

where for a given entity k, dao(H̃kÃ) := dact-eff(H̃k, Ã) · dact-att(H̃k, Ã) computes how

(dact-eff) and to what degree (dact-att) an action affects the entity and doo(H̃i
act
, H̃k

act
) :=

dobj-eff(H̃act
i , H̃act

k) · dobj-att(H̃
act
i , H̃act

k) computes how (fobj-eff) and to what degree (dobj-att)
other entities affect that entity. dobj-eff and dobj-att are shared across all entity pairs. The
other functions are shared across all entities. The dynamics network takes in a sampled state
and outputs the parameters of the posterior distribution. Similar to (Hafner et al., 2018) the
output H ′k is then split into deterministic and stochastic components each of size 64 with
separate networks fdet and fsto. All functions are parametrized by single layer MLPs.

Dynamics Network

Function Output Act. Func. MLP Size

do(Hk) H̃k ELU 128

da(A) Ã ELU 32

dact-eff(H̃k, Ã) ELU 128

dact-att(H̃k, Ã) Sigmoid 128

dobj-eff(H̃act
i , H̃act

j) ELU 256

dobj-att(H̃
act
i , H̃act

k) Sigmoid 256

dcomb(H̃act
i , H̃ interact

k) H ′k ELU 256
fdet(H

′
k) H ′k,det 128

fsto(H ′k) H ′k,sto 128

This architectural choice for the dynamics model is an action-conditioned modification of
the interaction function used in Relational Neural Expectation Maximization (RNEM) (van
Steenkiste et al., 2018), which is a latent-space attention-based modification of the Neural
Physics Engine (NPE) (Chang et al., 2016), which is one of a broader class of architectures
known as graph networks (Battaglia et al., 2018).

A.7 Experiment Details

Single-Step Block-Stacking

The training dataset has 60,000 trajectories each containing before and after images of size
64x64 from Janner et al. (2018). Before images are constructed with actions which consist of
choosing a shape (cube, rectangle, pyramid), color, and an (x, y, z) position and orientation

APPENDIX A. OP3 DETAILS 93

for the block to be dropped. At each time step, a block is dropped and the simulation runs
until the block settles into a stable position. The model takes in an image containing the
block to be dropped and must predict the steady-state effect. Models were trained on scenes
with 1 to 5 blocks with K = 7 entity variables. The cross entorpy method (CEM) begins
from a uniform distribution on the first iteration, uses a population size of 1000 samples per
iteration, and uses 10% of the best samples to fit a Gaussian distribution for each successive
iteration.

Figure A.1: Qualitative results on building a structure from the dataset in (Janner et al.,
2018). The input is an ”action image,” which depicts how an action intervenes on the state
by raising a block in the air. OP3 is trained to predict the steady-state outcome of dropping
the block. We see how OP3 is able to accurately and consistently predict the steady state
effect, successively capturing the effect of inertial dynamics (gravity) and interactions with
other objects.

Multi-Step Block-Stacking

The training dataset has 10,000 trajectories each from a separate environment with two
different colored blocks. Each trajectory contains five frames (64x64) of randomly picking
and placing blocks. We bias the dataset such that 30% of actions will pick up a block and
place it somewhere randomly, 40% of actions will pick up a block and place it on top of a
another random block, and 30% of actions contain random pick and place locations. Models
were trained with K = 4 slots. We optimize actions using CEM but we optimize over multiple
consecutive actions into the future executing the sequence with lowest cost. For a goal with
n blocks we plan n steps into the future, executing n actions. We repeat this procedure
2n times or until the structure is complete. Accuracy is computed as # blocks in correct position

goal blocks
,

where a correct position is based on a threshold of the distance error.

APPENDIX A. OP3 DETAILS 94

Figure A.2: We show a demonstration of a rollout for the dataset from (Janner et al.,
2018). The first four columns show inference iterations (refinement steps) on the single
input image, while the last column shows the predicted results using the dynamics module
on the learnt hidden states. The bottom 5 rows show the subimages of each entity at
each iteration, demonstrating how the model is able to capture individual objects, and the
dynamics afterwards. Notice that OP3 only predicts a change in the yellow block while
leaving the other latents unaffected. This is a desriable property for dynamics models that
operate on scenes with multiple objects.

For MPC we use two difference action spaces:
Coordinate Pick Place: The normal action space involves choosing a pick (x,y) and

place (x,y) location.
Entity Pick Place: A concern with the normal action space is that successful pick

locations are sparse (2%) given the current block size. Therefore, the probability of picking
n blocks consecutively becomes 0.02n which becomes improbable very fast if we just sample
pick locations uniformly. We address this by using the pointers to the entity variables to
create an action space that involves directly choosing one of the latent entities to move and
then a place (x, y) location. This allows us to easily pick blocks consecutively if we can
successfully map a latent entity id of a block to a corresponding successful pick location.
In order to determine the pick (x, y) from an entity id k, we sample coordinates uniformly
over the pick (x, y) space and then average these coordinates weighted by their attention

APPENDIX A. OP3 DETAILS 95

Figure A.3: Two-dimensional (left) and three-dimensional (right) visualization of attention
values where colors correspond to different latents. The blocks are shown as the green squares
in the 2D visualizatio; picking anywhere within the square automatically picks the block
up. The black dots with color crosses denote the computed pick xy for a given hk. We see
that although the individual values are noisy, the means provide good estimates of valid pick
locations. In the right plot we see that attention values for all objects are mostly 0, except in
the locations corresponding to the objects (purple and red).

coefficient on that latent:

pick xy|hk =

∑
x′,y′ p(hk|x, y) ∗ pick x’y’∑

x′,y′ p(hk|x′, y′)

where p(hk|x, y) are given by the attention coefficients produced by the dynamics model
given hk and the pick location (x, y) and x′, y′ are sampled from a uniform distribution. The
attention coefficient of Hk is computed as

∑K
i6=k dobj-att(H̃

act
i , H̃act

k) (see Appdx. A.6)

A.8 Ablations

We perform ablations on the block stacking task from Janner et al. (2018) examining
components of our model. Table A.1 shows the effect of non-symmetrical models or cost
functions. The “Unfactorized Model” and “No Weight Sharing” follow (c) and (d) from
Figure 3.1 and are unable to sufficiently generalize. “Unfactorized Cost” refers to simply
taking the mean-squared error of the compositie prediction image and the goal image, rather
than decomposing the cost per entity masked subimage. We see that with the same OP3 model
trained on the same data, not using an entity-centric factorization of the cost significantly
underperforms a cost function that does decompose the cost per entity (c.f. Table 3.1).

APPENDIX A. OP3 DETAILS 96

No Weight Sharing Unfactorized Model Unfactorized Cost

0 % 0 % 5%

Table A.1: Accuracy of ablations. The no weight sharing model did not converge during training.

A.9 Interpretability

We do not explicitly explore interpretability in this work, but we see that an entity-factorized
model readily lends itself to be interpretable by construction. The ability to decompose
a scene into specific latents, view latents invididually, and explicitly see how these latents
interact with each other could lead to significantly more interpretable models than current
unfactorized models. Our use of attention values to determine the pick locations of blocks
scratches the surface of this potential. Additionally, the ability to construct cost functions
based off individual latents allows for more interpretable and customizable cost functions.

97

Appendix B

SeCTAR Details

B.1 Experimental Details

For all experiments, we parameterize πθPD and πe as a three-layer fully connected neural
networks with 400, 300, 200 hidden units and ReLU activations. The policies output either
categorical or Gaussian distributions. The encoder is a two-layer bidirectional-LSTM with
300 hidden units, and we mean-pool over LSTM outputs over time before applying a linear
transform to produce parameters of a Gaussian distribution. We use an 8-dimensional
diagonal Gaussian distribution for z. The state decoder is a single-layer LSTM with 256
hidden units that conditions on the initial state and latent z, to output a Gaussian distribution
over trajectories. We use trajectories of length T = 19, and plan over K = 2048 random
latent sequences. We use horizons H = 380, HMPC = 5, He = 5 for the 2D navigation task,
H = 950, HMPC = 20, He = 10 for the wheeled locomotion task, and H = 950, HMPC = 10,
He = 10 for the object manipulation task. These values were chosen empirically with a
hyperparameer sweep.

B.2 Baseline Details

TRPO / VIME We used the rllab TRPO implementation, OpenAI VIME implementation
with a batch size of 100 * task horizon and step size of 0.01.

MPC We use a learning rate of 0.001 and batch size of 512. The MPC policy simulates
2048 paths each time it is asked for an action. We verified correctness on half-cheetah.

Option Critic We use a version of Option Critic that uses PPO instead of DQN. We swept
over number of options, reward multiplier, and entropy bonuses. We verified correctness on
cartpole, hopper, and cheetah.

APPENDIX B. SECTAR DETAILS 98

Feudal / A3C The Feudal and A3C implementations are based on chainerRL. We swept
over the parameters β, tmax, and gradient clipping.

99

Appendix C

Evolving RL Details

C.1 Search Language Details

Inputs and outputs to nodes in the computational graph have data types which include state
S, action Z, float R, list List[X], probability P, vector V. The symbol X indicates it can
be of S,R, or V. We assume that vectors are of fixed length 32 and actions are integers.
Operations will broadcast so that for example adding a float variable to a state variable will
result in the float being added to each element of the state. This typing allows the learned
program to be domain agnostic. The full list of operators is listed below.

Operation Input Types Output Type

Add X, X X
Subtract X, X X

Max X, X X
Min X, X X

DotProduct X, X R
Div X, X X

L2Distance X, X R
MaxList List[R] R
MinList List[R] R

ArgMaxList List[R] Z
SelectList List[X], Z X
MeanList List[X] X

VarianceList List[X] X
Log X X
Exp X X
Abs X X

(C)NN:S→ List[R] S List[R]
(C)NN:S→ R S R
(C)NN:S→ V V V

Softmax List[R] P
KLDiv P, P R

Entropy P R
Constant 1, 0.5, 0.2, 0.1, 0.01

MultiplyTenth X X
Normal(0, 1) R
Uniform(0, 1) R

APPENDIX C. EVOLVING RL DETAILS 100

C.2 Training Details

We describe the training details and hyperparameters used. For all environments we use the
Adam optimzier with a learning rate of 0.0001.

Common RL training details. All neural networks are MLPs of size (256, 256) with
ReLU activations. For optimizing the Q-function parameters we use the Adam optimizer
with a learning rate of 0.0001. Target update period is 100. These settings are used for all
training and test environments.

Classical control environments. The value of ε is decayed linearly from 1 to 0.05
over 1000 steps. CartPole, Acrobat, and MountainCar are trained for 400 episodes and
LunarLander is trained for 1000 episodes.

MiniGrid environments. The value of ε is decayed linearly from 1 to 0.05 over 105

steps. During meta-training, MiniGrid environments are trained for 5 ∗ 105 steps.
Atari environments. We use the same neural network architecture as in Mnih et al.

(2013). Target update period is 1, 000. The value of ε is decayed linearly from 1 to 0.1 over
106 steps. For evaluation, we use the no-op start condition as in Mnih et al. (2013) where the
agent will output the no-op action for x steps where x is a random integer drawn between
[1, 30]. The evaluation policy uses an ε of 0.001 and is evaluated every 106 steps for 100
episodes. The best training snapshot is reported.

C.3 Environment Details

We describe the classical control environments below. CartPole and LunarLander are dense
reward while Acrobat and MountainCar are sparse reward.

APPENDIX C. EVOLVING RL DETAILS 101

Task ID Description

CartPole-v0

The agent must balance a pole on top of
a cart by applying a force of +1 or −1 to
the cart. A reward of +1 is provided for
each timestep the pole remains upright.

LunarLander-v2
The agent controls a lander by firing one
of four thrusters and must land it on the
landing pad.

Acrobat-v1

The goal is to swing a 2-link system up-
right to a given height by applying 1, 0,
or -1 torque on the join between the two
links.

MountainCar-v0
The goal is to drive up the mountain on
the right by first driving back and forth
to build up momentum.

We describe the MiniGrid environments below. The input to the agent is a fully observed
grid which is encoded as an NxNx3 size array where N is the grid size. The 1st channel
contains the index of the object type at that location (out of 11 possible objects), the 2nd
channel contains the color of the object (out of 6 possible colors), and the 3rd channel contains
the orientation of the agent out of 4 cardinal directions. This encoding is then flattened and
fed into an MLP. There are 7 possible actions (turn left, turn right, forward, pickup, drop,
toggle, done).

Unless stated otherwise, all tasks are sparse reward tasks with a reward of 1 for completing
the task. Max steps is set to 100. A size such as 5x5 in the environment name refers to a
grid size with width and height of 5 cells.

Task ID Description

KeyCorridorS3R1-v0

The agent has to find a key hidden in one
room and then use it to pickup an object
behind a locked door in another room.
This tests sequential subgoal completion.

APPENDIX C. EVOLVING RL DETAILS 102

LavaGapS5-v0

The agent has to reach the green goal
square without touching the lava which
will terminate the episode with zero re-
ward. This tests safety and safe explo-
ration.

MultiRoom-N2-S4-v0
The agent must open a door to get to the
green goal square in the next room.

SimpleCrossingS9N1-
v0

The agent has to reach the green goal
square on the other corner of the room
and navigate around walls.

Empty-v0
The agent has to reach the green goal
square in an empty room.

EmptyRandom-v0
The agent has to reach the green goal
square in an empty room but is initialized
to a random location.

Dynamic-Obstacles-v0

The agent has to reach the green goal
square without colliding with any blue
obstacles which move around randomly.
If the agent collides with an obstacle it
receives a reward of −1 and the episode
terminates.

FourRooms-v0

The agent must navigate in a maze com-
posed of four rooms. Both the agent and
goal square are randomly placed in any of
the four rooms.

APPENDIX C. EVOLVING RL DETAILS 103

DoorKey-v0
The agent must pick up a key to unlock
a door to enter another room and get to
the green goal square.

APPENDIX C. EVOLVING RL DETAILS 104

C.4 Graph Distribution Analysis

We look at the distribution of top performing graphs and find similarities in their structure.
This is summarized in Table C.2 where we describe the equations of learned algorithms for
differing ranks (if sorted by score). The best performing algorithms from the experiment
which learned DQNReg are all variants of adding Q(st, at) to the standard TD loss in some
form, δ2 + k ∗ Q(st, at). We think this kind of loss could use further investigation and
that while we did not tune the value of k, this could also be tuned per environment. In
Figure 5.3b, we show the distribution of scores for all non-duplicate programs that have been
evaluated. We provide a full list of top performing algorithms from a few of our experiments
at https://github.com/jcoreyes/evolvingrl.

Raw Equation Simplified Equation Score Rank
δ2 + 0.1 ∗Q(st, at) + rt − (γ ∗Qtarg − 0.1 ∗Q(st, at)) δ2 + 0.2 ∗Q(st, at) 3.905 2
δ2 + 0.1 ∗Q(st, at)− γ +Qtarg δ2 + 0.1 ∗Q(st, at) 3.904 3
δ2 − (γ ∗Qtarg − 0.1 ∗Q(st, at)) δ2 + 0.1 ∗Q(st, at) 3.903 4
δ2 +Qtarg + 0.1 ∗Q(st, at)− γ δ2 + 0.1 ∗Q(st, at) 3.902 5
δ2 − (0.1 ∗Q(st, at)− Yt)2 δ2 − (0.1 ∗Q(st, at)− Yt)2 3.898 6
δ2 + ((rt + γ ∗Qtarg +Q(st, at)) ∗ (γ −max(γ, 0.1 ∗Q(st, at))
−γ ∗Qtarg − 0.1 ∗Q(st, at))

NA 3.846 11146

δ2 + (δ2 + 0.1 ∗Q(st, at))
2 NA 3.65 12146

δ2 +Q(st, at) δ2 +Q(st, at) 2.8 12446
δ2 δ2 2.28 13246

Table C.2: Other programs learned in learning DQNReg which is rank 1 with score 3.907.
Rank is if scores are sorted in decreasing order. Score is the sum of normalized RL training
performance across four environments. The simplified equations contains only the relevant
parts for minimizing the equation output. Qtarg refers to maxaQtarg(st+1, a).

C.5 Repeatability of Meta Training

In Figure C.1, we plot the meta-training performance for bootstrapping from DQN with four
training environments (CartPole, KeyCorridorS3R1, Dynamic-Obstacles-6x6, DoorKey-5x5)
over ten trials. Four out of the ten trials reach the max training performance. Two out of 10
of these trials learns the same algorithm DQNReg while the other top two trials find other
less interpretable algorithms.

https://github.com/jcoreyes/evolvingrl

APPENDIX C. EVOLVING RL DETAILS 105

Figure C.1: Meta-training performance for boot-strapping on 4 training environments for 10
random seeds.

106

Appendix D

Believer Details

D.1 Experimental Details

Computational resources. Most experimental results were computed on a Linux Destkop
with 32 GiB of RAM, equipped with an AMD Ryzen 7 3800X 8-core CPU and an RTX 2080
Ti GPU.

True-state entropy metric. We approximated H(dπ(sd)) by computing an estimated
dπ(sd) during the episode. We report the entropy at the final step of the episode, which is
when the estimate of dπ(sd) is most precise. Recall that sd represents the positions of the
dynamic objects in the environment. In the TwoRoom environment, dπ(sd) is computed by
recording counts. In the OneRoomCapture3D environment, sd is continuous, and dπ(sd) is
computed by fitting a diagonal Gaussian.

Environment details.

In this section, we elaborate on the details of the environments described in the main text.

TwoRoom environment details. As previously described, this environment has two
rooms: an empty (“dark”) room on the left, and a “busy” room on the right, the latter con-
taining moving particles that move around unless the agent “tags” them, which permanently
stops their motion, as shown in Fig. D.1. The agent can observe a small area around it, which
it receives as an image. In this environment, control corresponds to finding and stopping the
particles. The action space is A = {left, right, up, down, tag, no-op}, and the observation
space is normalized RGB-images: Ω = [0, 1]3×30×30. An agent that has significant control
over this environment should tag particles to reduce the uncertainty over future states. To
evaluate policies, we use the average fraction of total particles locked, the average fraction of
particles visible, and the discrete true-state visitation entropy of the positions of the particles,
H(dπ(sd)). We employed two versions of this environment. In the large environment, the

APPENDIX D. BELIEVER DETAILS 107

(a) TwoRoom Large Environment (b) TwoRoom Environment

Figure D.1: TwoRoom Environments. In the large environment, the agent observes a 5x5 area
around it as an image, and the busy room contains 5 particles. In the normal environment,
the agent observes a 3x3 around it as an image, and the busy room contains 2 particles.
In both settings, the particles are initialized to random positions in the busy room at the
beginning of each episode.

agent observes a 5x5 area around it as an image, and the busy room contains 5 particles. In
the normal environment, the agent observes a 3x3 around it as an image, and the busy room
contains 2 particles. The large environment consists of an area of 15x15 cells, and the normal
environment consists of an area of 5x5 cells. In both settings, the particles are initialized to
random positions in the busy room at the beginning of each episode, and episodes last for
T = 100 timesteps. The particles bounce off the walls, but not each other.

(a) Vizdoom DefendTheCenter. (b) OneRoomCapture3D

Figure D.2: Vizdoom Defend The Center and OneRoomCapture3D

APPENDIX D. BELIEVER DETAILS 108

VizDoom DefendTheCenter. The VizDoom DefendTheCenter environment shown in
Fig. D.2 is a circular arena in which an agent, equipped with a partial field-of-view of the
arena and a weapon, can rotate and shoot encroaching monsters (Kempka et al., 2016). The
action space is A = {turn left, turn right, shoot}, and the observation space is normalized
RGB-images: Ω = [0, 1]3×64×64. In this environment, significant control corresponds to
reducing the number of monsters by finding and shooting them. We use the average original
environment return (for which no method has access to during training) the average number
of killed monsters at the end of an episode, and the average number of visible monsters to
measure the agent’s control. Episodes last for T = 500 timesteps.

OneRoomCapture3D The MiniWorld framework is a customizable 3D environment
simulator in which an agent perceives the world through a perspective camera (Chevalier-
Boisvert, 2018). We used this framework to build the environment in Fig. D.2 which an agent
and a bouncing box both inhabit a large room; the agent can lock the box to stop it from
moving if it is nearby, as well as constrain the motion of the box by standing nearby it. In
this environment, significant control corresponds to finding the box and either trapping it
near a wall, or tagging it. When the box is tagged, its color changes from yellow to purple.
The action space is A = {turn left 20◦, turn right 20◦,move forward, move backward, tag},
and observation space is normalized RGB-images: Ω = [0, 1]3×64×64. We use the average
fraction of time the box is captured, the average time the box is visible, and continuous
(Gaussian-estimated) true-state visitation entropy of the box’s position H(dπ(sd)) to measure
the agent’s ability to reduce entropy of the environment. Episodes last for T = 150 timesteps.

D.2 Implementation Details

Hyperparameters. In table D.1, we provide values of the hyperparameters used in algo-
rithm 5 and the LSSM architecture described in table D.2.

Architectural details. We provide detailed information on the architectural implementa-
tion of the learners in table D.2. The value function used for generalized advantage estimation
in PPO uses the same architecture as the policy with decoupled weights, except with a final
output size of 1 (scalar).

Optimization. We use RAdam to optimize the policies and LSSM (Liu et al., 2019).
Following Hafner et al. (2020), we use straight-through gradient estimation of samples of the
Categorical distributions.

APPENDIX D. BELIEVER DETAILS 109

Hyperparameter Value Meaning

algorithm 5 hyperparameters

K 7 Ensemble size
B 32 Minibatch size of LSSM
L 0.05|D|/B Number of minibatches to step the model
M 1e7/2NT Maximum number of total rounds
N 20 Number of episodes to collect per policy per round
T {100,150,500} (varies) Episode length in the environment

LSSM hyperparameters

H 50 LSSM model training horizon
P 5 Number of latent particles
K1 16 Number of component categoricals in latent distributions
K2 16 Number of categories in each component categorical

Optimization hyperparameters

α0 0.5 · 10−4 LSSM learning rate with Adam optimizer
α1 1.0 · 10−4 PPO learning rate with Adam optimizer
εPPO 0.2 PPO advantage clipping
γ0 0.99 PPO discount factor
γ1 0.90 PPO GAE discount factor
β 1.0 KL loss scaling factor (implicit in eq. (6.1))
b0 True Whether truncated BPTT (Sutskever, 2013) is used to train the model
j1, j2 50 Truncated BPTT horizons

Table D.1: Hyperparameters of algorithm 5, models, and optimization.
.

D.3 OneRoomCapture3d visualization.

In fig. D.3, we analyze the behavior of our intrinsic reward signals over several different
sub-episodes in the OneRoomCapture3D environment.

APPENDIX D. BELIEVER DETAILS 110

Figure D.3: Niche Expansion, Infogain, Niche Creation, Certainty, and Niche Cre-
ation+Infogain rewards are plotted for the first 20 steps of select episodes. Rewards are
normalized to [0, 1] for each reward across the figures. Top: When the agent turns to look at
the box without taking actions to capture it, all rewards other than Certainty are relatively
low throughout the episode. Middle: When the agent moves towards the box to trap it
against a wall, Niche Creation and Niche Expansion decrease until the box is trapped, and
then they increase; the resulting stable configuration eventually outweighs the preparations
needed to trap the box if the episode length is sufficiently long. Infogain and Certainty
increase as the box is in view and able to move. Bottom: Freezing the box results in low
Infogain throughout the episode, however it is highly rewarded by the other rewards.

APPENDIX D. BELIEVER DETAILS 111

Layer Input [Dimensionality] Output [Dimensionality]

Prior pθ(zt+1|zt,at, gt) =
∏K1

κ1=1

∏K2

κ2=1 v
zt+1,κ1,κ2

prior,κ1,κ2
= MultiCat(·;vprior)

//Embed action with affine layer

1 at [A] La=Linear(at), [K1 ·K2]

//Combine action embedding and latent state

2 zt [K1,K2]; La [K1 ·K2] Laz=Concat(Flatten(zt), La), [2K1 ·K2]

//RNN transformation of action embedding and latent state

3 Laz, [2K1 ·K2]; gt, [K1 ·K2] gt+1=GRU(Laz, gt), [K1 ·K2]

//Logits of independent Categorical prior (‘‘MultiCat’’)

4 gt+1, [K1 ·K2] lprior=Linear(gt+1), [K1 ·K2]

//Transform logits of all K1 component dists.

5 lprior,[K1 ·K2] vprior=softmax(lprior, axis = K2)

Posterior qφ(zt+1 | o≤t+1,a≤t, zt, gt) = MultiCat(·;vposterior)

//Apply CNN to observation.

1 ot, [3, 64, 64] Lo0=ELU(BN(Conv2d(3, 32, 4, 2)))(ot)
2 Lo0, [32, 31, 31] Lo1=ELU(BN(Conv2d(32, 64, 4, 2)))(Lo0)
3 Lo1, [64, 14, 14] Lo2=ELU(BN(Conv2d(64, 128, 4, 2)))(Lo1)
4 Lo2, [128, 6, 6] Lo3=ELU(BN(Conv2d(128, 256, 4, 2)))(Lo2)
5 Lo3, [256, 2, 2] Eo=Flatten(Lo2), [1024]

//Produce observation-specific posterior parameters.

6 Eo, [1024]; at, [A] l′posterior=Linear(Concat(Eo, at)), [K1 ·K2]

//Produce final posterior parameters as log-space addition to prior parameters.

7 l′posterior, [K1 ·K2]; lprior, [K1 ·K2] lposterior = l′posterior + lprior, [K1 ·K2]

//Transform logits of all K1 component dists.

8 lposterior,[K1 ·K2] vposterior=softmax(lposterior, axis = K2), [K1 ·K2]

Observation Likelihood pθ(ot|zt) = N (·;µo, I)

//Embed latent state with affine layer to consistently-sized vector.

1 zt, [K1 ·K2] Ez=Linear(zt), [1024]

//Apply transposed-CNN to decode to observation dimensionality.

2 Ez, [1024] Lz0=ELU(BN(ConvTranspose2d(1024, 128, 5, 2)))(Ez)
3 Lz0, [128, 5, 5] Lz1=ELU(BN(ConvTranspose2d(128, 64, 5, 2)))(Lz0)
4 Lz1, [64, 13, 13] Lz2=ELU(BN(ConvTranspose2d(64, 32, 6, 2)))(Lz1)
5 Lz2, [32, 30, 30] Lz3=ELU(BN(ConvTranspose2d(32, 3, 6, 2)))(Lz2)
6 Lz3, [3, 64, 64] Lz4=ELU(BN(ConvTranspose2d(32, 3, 6, 2)))(Lz3)

//Output of final layer is the mean of the observation likelihood.

7 Lz4, [3, 64, 64] µo=ELU(BN(ConvTranspose2d(3, 3, 1, 1)))(Lz4)

Belief qφ(zt+1 | o≤t+1,a≤t) = q(zt+1|ht+1) = 1/P
∑P
p=0 wpqφ(zt+1,p | o≤t+1,a≤t, ztp, gt)

//Compute unnormalized log-space particle weights of P latent particles

1 {(zt,p, zt−1,p)}Pp=1 log ŵ = log
pθ(zt+1,p|zt,p,at)pθ(ot|zt,p)
qφ(zt+1,p|o≤t+1,a≤t,zt,p) , [P]

//Form belief from weighted mixture over particles.

2 w, [P] MixtureSameFamily({qφ(zt+1,p | o≤t+1,a≤t, zt,p)}Pp=1, w)

Latent Visitation Model q̄t′(z) = 1/t′
∑t′

t=0 qφ(zt|o≤t,a≤t−1)

//Define uniform mixture weights.

1 ∅ c0 = 1/t′torch.ones((1,t’)), [1, t′]

//Form uniform mixture over previous beliefs.

2 {qφ(zt|o≤t,a≤t−1)}t′t=0; c0, [1, t
′] q̄t′(z) =MixtureSameFamily({qφ(zt|o≤t,a≤t−1)}t′t=0, c0)

Policy π(at|vposterior) = Categorical(·; pa)

1 vposterior, [K1 ·K2] h0=tanh(Linear(vposterior)), [128]
2 h1, [128] h1=tanh(Linear(h0)), [128]

//Compute categorical action distribution parameters.

3 h2, [128] p̂a=Linear(h2), [|A|]
4 p̂a, [|A|] pa=sum(p̂a, -1), [|A|]

Table D.2: Latent state-space model, visitation model, and policy architectural
details: The inputs to the latent state-space model are RGB images ot ∈ [0, 1]3×64×64 and
actions at ∈ {0, 1}A (one-hot). Pytorch layer notation is used as shorthand. gt represents the
GRU state at t.

	Contents
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Problem Statement
	Generative Latent Dynamics Models
	Representation Learning and Abstractions for Generalization

	State Abstraction for Combinatorial Generalization
	Related Work
	Entity Modeling Problem
	Object-Centric Perception, Prediction and Planning
	Experiments
	Discussion

	Temporal Abstraction for Compositional Generalizaton
	Self-Consistent Trajectory Autoencoder
	Related Work
	Experiments
	Discussion

	Evolutionary Based Meta-Learning to Learn General RL Algorithms
	Related Work
	Learning Reinforcement Learning Algorithms
	Learned RL Algorithm Results and Analysis
	Discussion

	Unsupervised Objectives for General Intelligence
	Maxwell's Demon and Belief Entropy
	Preliminaries
	Control and Information Gathering via Belief Entropy Minimization
	The Believer Algorithm
	Experiments
	Related Work
	Discussion

	Conclusion
	Bibliography
	OP3 Details
	Observation Model
	Evidence Lower Bound
	Posterior Predictive Distribution
	Interactive Inference
	Cost Function
	Architecture and Hyperparameter Details
	Experiment Details
	Ablations
	Interpretability

	SeCTAR Details
	Experimental Details
	Baseline Details

	Evolving RL Details
	Search Language Details
	Training Details
	Environment Details
	Graph Distribution Analysis
	Repeatability of Meta Training

	Believer Details
	Experimental Details
	Implementation Details
	OneRoomCapture3d visualization.

