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Abstract

Goal-Directed Exploration and Skill Reuse

by

Vitchyr He Pong

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Reinforcement learning is a powerful paradigm for training agents to acquire complex behav-
iors, but it assumes that an external reward is provided by the environment. In practice, this
task supervision is often hand-crafted by a user, a process that is time-consuming to repeat
for every possible task and that makes manual engineering a primary bottleneck for behavior
acquisition. This thesis describes how agents can acquire and reuse goal-directed behaviors in
a completely self-supervised manner. It discusses challenges that arise when scaling up these
methods to complex environments: How can an agent set goals for itself when it does not
even know the set of possible states to explore? How does an agent autonomously reward
itself for reaching a goal? How can an agent reuse this goal-directed behavior to decompose a
new task into easier goal-reaching tasks? This thesis presents methods that I have developed
to address these problems and share results that apply the methods to image-based, robot
environments.



i

To my parents and sister.



ii

Contents

Contents ii

List of Figures v

List of Tables xv

1 Introduction 1

2 Goal-Conditioned Reinforcement Learning 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Goal-conditioned reinforcement learning. . . . . . . . . . . . . . . . . 7
2.1.2 Variational Autoencoders. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Goal-Reaching as Probabilistic Inference . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Outcome-Driven Reinforcement Learning . . . . . . . . . . . . . . . . 14
2.3.2 Warm-up: Achieving a Desired Outcome at a Fixed Time Step . . . . 15
2.3.3 Outcome-Driven Reinforcement Learning as Variational Inference . . 17
2.3.4 Outcome-Driven Reinforcement Learning . . . . . . . . . . . . . . . . 19
2.3.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Generating Goals for Autonomous Practice 25
3.1 Reinforcement Learning with Imagined Goals . . . . . . . . . . . . . . . . . 25

3.1.1 Goal-Conditioned Policies with Unsupervised Representation Learning 26
3.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Skew-Fit: Setting the Right Goals . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Skew-Fit: Learning a Maximum Entropy Goal Distribution . . . . . . 38
3.2.3 Training Goal-Conditioned Policies with Skew-Fit . . . . . . . . . . . 42
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Reusing Goal-Directed Behavior 51



iii

4.1 Temporal Di↵erence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.1 Model-based RL and optimal control. . . . . . . . . . . . . . . . . . . 52
4.1.2 Temporal Di↵erence Model Learning . . . . . . . . . . . . . . . . . . 53
4.1.3 Training and Using Temporal Di↵erence Models . . . . . . . . . . . . 55
4.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Planning with Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Planning with Goal-Conditioned Policies . . . . . . . . . . . . . . . . 60
4.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Extensions to Non-Goal-Reaching Tasks 70
5.1 Distribution-Conditioned Reinforcement Learning . . . . . . . . . . . . . . . 70

5.1.1 Contextual Markov Decision Processes . . . . . . . . . . . . . . . . . 71
5.1.2 Distribution-Conditioned Reinforcement Learning . . . . . . . . . . . 72
5.1.3 Learning Goal Distributions and Policies . . . . . . . . . . . . . . . . 74
5.1.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Contextual and Meta-Reinforcement Learning . . . . . . . . . . . . . . . . . 80
5.2.1 Related Works in Meta-Reinforcement Learning . . . . . . . . . . . . 81
5.2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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Chapter 1

Introduction

General-purpose robots that exhibit a broad range of capabilities in unstructured environments
would greatly advance the utility of robotics. However, robot applications have traditionally
been limited to domains, such as manufacturing or chemical engineering, in which the
environment is highly predictable by design or for which we have accurate models. In such
environments, one can manually design or synthesize a robot controller using prior knowledge
of the environment dynamics, sensors, and workspace configuration [5, 151]. However, such a
degree of predictability is often missing in many potential robot applications. In applications
such as construction, household robotics, and autonomous vehicles, robots must operate “in
the wild” with varying workspace configurations and desired behaviors.

Developing general-purpose robots for broader applications will require overcoming a
number of challenges. One limitation with manually designed controllers is that the design
process must be repeated for each new task. In unstructured environments, one cannot
practically anticipate and manually program a controller for every possible situation or task,
and so a promising ingredient for developing general-purpose robots is to enable robots to
acquire new manipulation and locomotion capabilities completely autonomously, without
requiring user e↵ort. Even if skill acquisition was automated, another challenge is that there
are exponentially many potential scenarios and tasks for which we may want to deploy a
robot. To handle the diversity of tasks we may care about, we need to develop methods
that allow robots to reuse their knowledge for solving old tasks to quickly solve new tasks,
rather than relying on robots to acquire each skill independently. Lastly, to deploy robots in
complex, unstructured environments where the number of sensors may be limited and the
configuration of the workspace may not be known beforehand, we need to develop methods
that can operate directly from raw sensory observations, such as images.

A promising approach to handle unstructured environments is a data-driven one that
combines techniques from reinforcement learning and deep learning. Reinforcement learning
(RL) agents can learn complex behaviors such as stratospheric balloon control [14] or data
center cooling [127, 137] by simply providing a reward. Similar to how a person can train
a dog by providing treats rather than by commanding its exact muscle movements, RL
enables a user to train an agent by only evaluating behaviors rather than by designing
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controllers. In parallel, machine learning as a field has seen great advances in optimizing
neural networks, which consist of di↵erentiable operations stacked together to produce
deep, expressive function approximators. These recent advances in “deep learning” have
produced great strides in modeling high-dimensional data, such as images [19, 112, 46]
and natural language text [213, 45, 21], while providing a shared substrate for optimizing
decision-making objectives. The confluence of deep learning and reinforcement learning has
produced impressive results, such as achieving professional or superhuman performance in
video games [15, 216] and board games [193]. Although deep reinforcement learning methods
do not require extensive prior knowledge and can learn directly from high-dimensional data,
the standard deep reinforcement learning paradigm is unlikely to address the remaining
challenges with training general-purpose robots.

A major shortcoming with deep reinforcement learning is that it traditionally trains
agents to maximize a single, fixed reward. As a result, a robot trained with standard RL
is specialized to one specific task and cannot reuse its learned skills to solve new tasks.
Moreover, the skill acquisition loop is by no means automated: traditional reinforcement
learning still relies on an external reward that must be provided for every action that an
agent takes. This reward must be manually provided by a user or be provided indirectly by a
programmer that writes code to automatically assign rewards. In other words, although RL
requires a user to “only” provide rewards for each new task, it still requires significant e↵ort
from a user for each task that a user wants a robot to accomplish.

Beyond standard reinforcement learning. In order to enable agents to autonomously
acquire reusable skills, we need to expand the traditional reinforcement learning paradigm to
enable an agent to set tasks for themselves and reward themselves, while also providing a
mechanism to reuse the learned policies to solve new tasks. To this end, this thesis studies
how an agent can set goals for itself and reuse goal-directed capabilities in the context of
goal-conditioned reinforcement learning. In goal-conditioned RL, the objective of an agent is
to reach a goal that is provided to the agent. Unlike standard reinforcement learning which
would train a separate policy for each goal, goal-conditioned RL trains one policy to reach
many goals by conditioning the policy directly on the goal.

Goal-conditioned reinforcement learning addresses many of the challenges described in
developing general-purpose robots. By training a single policy to reach many goals, the agent
can reuse knowledge of reaching one goal to quickly generalize to reaching new goals or can
plan over sub-goals to accomplish new tasks beyond those possible from simple generalization.
Moreover, by training agents to set goals for themselves, agents can autonomously acquire goal-
reaching capabilities without requiring a user to manually provide reward supervision. Lastly,
by leveraging advances in representation learning, these methods can be applied directly to
high-dimensional state spaces such as images. These benefits make goal-conditioned RL a
promising field of study to develop general-purpose robots, but we first need to answer an
important question: what exactly do we mean by “goal”?

There are a number of possible representations of a goal that an agent can use, and the
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exact representation of a goal will impact how easily an agent can self-generate goals, how
general its goal-directed capabilities are, and how flexibly an agent can reuse these capabilities
to solve new tasks. For example, a robot that can manipulate objects can represent a goal
as a fixed-length vector containing the desired pose of each object in the scene, but this
representation has a number of drawbacks. This goal representation requires knowing which
objects will be in the workspace and tracking their locations, which in practice will require
external sensors or prior knowledge of the object identities. Another drawback is that this
agent cannot set goals or plan sub-goals that involve manipulating new objects that are
added to the scene, since the representation assumes a fixed set of objects in the scene. In
general, any task-specific or scene-specific goal representation limits an agent’s ability to
learn general-purpose goal-reaching capabilities with minimal user involvement.

If we want to deploy robots in unstructured environments, with cluttered and unknown
objects, then we need a goal representation that does not require additional sensors or
prior knowledge. To obtain such a goal representation, this thesis studies how agents can
autonomously set goal states, where a state is the raw sensory observation of the robot. For
example, given a robot with a camera, the state is the current image of the scene, the goal
is a specific goal image, and the robot’s objective is to take actions in the world until its
camera matches a desired goal image. By relying solely on the sensors of an agent to define
the state and goal spaces, the methods in this thesis do not require prior knowledge about
the environment and focus on enabling agents to set goals for themselves and plan directly in
these general-purpose spaces.

Challenges with goal-conditioned reinforcement learning. There are a number of
challenges with applying goal-conditioned reinforcement learning to real-world robot domains.
For one, an agent in a new environment does not know the set of possible goals that it can
set for itself. In other words, a vision-based robot can visualize many possible goal images,
but not all of these goal images may be feasible. In order to enable agents to autonomously
practice useful, realistic behaviors, we need a way for the agents to autonomously generate
feasible goals for itself without using prior knowledge. Additionally, these agents must set
useful goals for themselves that encourage them to explore the set of possible behaviors,
rather than repeatedly practicing a small set of goals.

Another challenge is that an agent must also be able to reward itself for reaching goals
without external supervision, but it is challenging to define a reward that both captures the
semantics of a goal and that facilitates fast learning. For example, in vision based tasks,
pixel-wise Euclidean distance to a goal image is not an e↵ective reward since ancillary factors
such as lighting conditions can easily dominate the reward signal, and rewards that check for
exact equality are too sparse to learn from in these high dimensions.

Even if we do train a goal-conditioned policy, we also need to develop ways to reuse these
goal-conditioned policies to accomplish new user-specified goals and tasks. Autonomously
learning how to reach every possible goal from every possible start state can be extremely
time-consuming and does not directly take advantage of the Markovian properties of goal
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states. If an agent can move from state A to state B and from state B to state C, then
we would like to develop methods that enable this agent to immediately move from A to C

without requiring additional practice. Furthermore, not all tasks can be specified by a single
goal state, and it is unclear how a goal-reaching policy can be used to accomplish these other
tasks.

Outline. This thesis presents methods for addressing the challenges outlined above with
autonomously setting goals and reusing these goal-directed capabilities. We begin in Chapter 2
by providing background on goal-conditioned RL, describing the tools that we use, such
as Q-learning and variational autoencoders. This chapter also presents our first algorithm
for learning goal-conditioned policies, in which we derive the proper reward function for
goal-conditioned reinforcement learning.

In Chapter 3, we then address the challenges associated with setting goals in complex
state spaces. We discuss how agents can learn to generate feasible goals in new environments
by learning generative models over the state space using previously observed states. We
present a method that alternates between goal-directed exploration to observe new states
and using these states to update the generative model. We also define what it means for an
agent to perform optimal goal-directed exploration, propose a novel method for training the
generative models, and present conditions under which our proposed method converges to
the optimal goal-directed exploration.

Next, we address the challenges with reusing these goal-directed policies to solve new
tasks. In Chapter 4, we discuss how goal-reaching requires implicitly learning about which
goals can be reached, and how this knowledge can be reused to optimize arbitrary rewards or
goals that are far from the current state by planning over feasible sub-goals. We also discuss
how planning over high-dimensional state spaces such as images is di�cult, both because it is
computationally expensive and because it can lead to adversarial examples. We then present
a method that plans in a learned, latent space, which implicitly constrains the optimization
to the manifold of valid states.

In Chapter 5, we then study how the techniques in goal-conditioned reinforcement learning
can be extended to a more general class of problems, such as learning to reach a distribution of
states rather than a specific state, or meta-learning to maximize an arbitrary reward function.
Lastly, we conclude in Chapter 6 with a discussion of the implications of this research.
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Chapter 2

Goal-Conditioned Reinforcement
Learning

In this chapter, we present the formalisms, notation, and objectives of goal-conditioned
reinforcement learning. We will also present techniques that we will use throughout the
thesis, as well as a method for training goal-conditioned policies assuming that we are given a
specific goal. In future chapters, we will study how to generate these goals autonomously and
reuse the resulting goal-conditioned policies to accomplish new tasks. We begin by presenting
the standard reinforcement learning problem formulation.

2.1 Background

Reinforcement learning (RL) is concerned with reward maximization in a Markov decision
process (MDP), defined by a tuple (S,A, pd, r, ⇢0, �) [200], where S is the set of states, A
is the set of actions, pd(s0 | s, a) is the state dynamics transition model, r(s, a, s0) is the
reward function, ⇢0 is the initial state distribution, and � 2 [0, 1) is the discount factor. In
each episode, the agent’s initial state s0 2 S is sampled from an initial state distribution
s0 ⇠ ⇢0(s0), the agent chooses an action a 2 A according to a stochastic policy at ⇠ ⇡(·|st),
and the next state is sampled from the state transition dynamics st+1 ⇠ pd(· | st, at). We will
use ⌧ to denote a trajectory sequence (s0, a0, s1, . . . ) and denote sampling a trajectory as
⌧ ⇠ ⇡. The objective of an agent is to learn a policy that maximizes the sum of discounted
rewards,

E⌧⇠⇡

"
1X

t=1

�
t
r(st, at, st+1)

#
.

Q-learning There are many algorithms for learning reward-maximizing policies, and a
particularly important class of algorithms that can use o↵-policy data is the class of Q-learning
algorithms. Q-learning algorithms learn Q-functions, which predicts the expected sum of
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discounted reward, also called the expected returns, of a policy after taking action at in state
st. Formally, a Q-function is defined as

Q
⇡(s, a) =̇ E⌧⇠⇡

"
1X

t=0

r(st, at, st+1) | s0 = s, a0 = a

#

and can be written recursively [200] as

Q
⇡(s, a) = Es0⇠pd(·|s,a)

⇥
r(s, a, s0) + �Ea0⇠⇡(·|s0)[Q

⇡(s0, a0)]
⇤
. (2.1)

Similarly, the optimal Q-function can be defined recursively as following:

Q
⇤(s, a) = Es0⇠pd(·|s,a)

h
r(s, a, s0) + �max

a0
Q

⇤(s0, a0)
i

The optimal policy can then recovered according to the indicator distribution ⇡(a | s) = �(a =
argmaxa Q(s, a)), which deterministically selects the action that maximizes the Q-function
at every state.

Q-learning algorithms train function approximators, such as neural networks, to approxi-
mate these Q-functions by estimating the right-hand side of the expectation in Equation (2.1)
with a single sample. Specifically, let Qw be a function approximator with parameters w.
Given a sample transition (s, a, s0, r) where the state s0 is sampled from pd(· | s, a), Q-learning
methods minimize the following squared Bellman error:

L(w) = kQw(s, a)� ytargetk
2
, (2.2)

where the target is tranditionally approximated with

ytarget = r + �max
a0

Qw̄(s
0
, a0). (2.3)

For numerical instabilities, the target Q-value is typically approximated with a target network
Qw̄ with parameter w̄ that slowly tracks w.

Di↵erent algorithms di↵erent on how they handle the numerical instabilities [149, 138, 71]
and how they approximate the maximization in Equation (2.3) [149, 138, 77, 84, 71], but
all Q-learning algorithms take this form. Q-learning algorithms are important because they
only require tuples (s, a, s0, r) that can be collected by any policy, making it an o↵-policy
algorithm. In other words, this data can be collected once and reused to train multiple
Q-functions, an important property for learning policies that can reach multiple goals.

Lastly, we define a similar quantity, called the V -function, that represents the expected
returns conditioned on the current state:

V
⇡(s) = E⌧⇠⇡

"
1X

t=0

r(st, at, st+1) | s0 = s

#
.

The V -function can also be written recursively as

V
⇡(s) = Ea⇠⇡(·|s),s0⇠pd(·|s,a) [r(s, a, s

0) + �V
⇡(s0)]

and can be trained similarly to Q-functions using transitions (s, a, s0, r). To keep the notation
uncluttered, we will often omit the dependence of Q and V on ⇡.
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2.1.1 Goal-conditioned reinforcement learning.

Goal-conditioned RL [104] is a type of RL problem in which the reward is parameterized by
a specific goal that the agent wants to reach. Formally, the goal-conditioned RL problem
augments the MDP with a goal space G and goal distribution ⇢g. Moreover, the reward
function r(s, a, s0,g) is conditioned on a goal g.

At the beginning of each episode, a goal is sampled g ⇠ ⇢g along with the agent’s initial
state s0 ⇠ ⇢0(s0). The agent then chooses an action according to a stochastic goal-conditioned
policy at ⇠ ⇡(·|st,g), and the next state is sampled from the state transition dynamics
st+1 ⇠ pd(· | st, at). We note that the state transition dynamics are independent of the goal.

Typically, the goal space and reward function must be defined manually, with a common
choice being to equate the goal and state space (i.e., G = s) and to use a sparse indicator
reward r(s,g) = I{s = g}. However, this approach presents a number of challenges both
in theory and in practice. From a theoretical perspective, the indicator reward will almost
surely equal zero for environments with continuous goal spaces and non-trivial stochastic
dynamics. From a practical perspective, such sparse rewards can be slow to learn from,
as most transitions provide no reward supervision, while manually designing dense reward
functions that provide a better learning signal is time-consuming and often based on heuristics.
In Section 2.3.1, we will present a framework that addresses these practical and theoretical
considerations by casting goal-conditioned RL as probabilistic inference. Lastly, the choice of
the goal distribution ⇢g is often left to the user, but we will discuss in Chapter 3 how this
goal distribution can be learned from data.

The advantage of the goal-conditioned formulation is that one does not need to train a
separate policy for each task. By training a single policy to reach multiple goals, one enables
a single policy to reuse knowledge about reaching some goals to quickly learn to reach new
goals. As we will discuss in Chapter 4, these policies can then be reused to solve new tasks
by planning over the appropriate sub-goals. Furthermore, one can reuse the same data across
multiple goals by training goal-conditioned value functions with o↵-policy algorithms such as
Q-learning, resulting in sample e�cient learning.

Goal-conditioned value functions. Like a standard Q-function, a goal-conditioned Q-
function Q

⇡(s, a,g) learns the expected return for a given goal g, when conditioned on taking
action a at state s. Similar to Equation (2.2), one can train an approximate goal-conditioned
Q-function parameterized by w by minimizing the squared Bellman error

L(w) =
���Qw(s, a,g)� (r + �max

a0
Qw̄(s

0
, a0

,g))
���
2

,

given a state s, action a, next state s0, goal g, and corresponding goal-conditioned reward r.
Because the transition dynamics pd does not depend on the goal and because Q-learning

can use o↵-policy data, these value functions can be learned for any goal g using the same
o↵-policy (s, a, s0) tuple, provided that one can compute the reward r(s, a, s0,g). Relabeling
previously visited states with the reward for any goal leads to a natural data augmentation
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strategy, since each tuple can be replicated many times for many di↵erent goals without
additional data collection. Kaelbling [104] and Andrychowicz et al. [4] used this property to
produce an e↵ective curriculum for solving multi-goal task with delayed rewards. As we will
discuss in Section 3.1, relabeling past experience with di↵erent goals enables goal-conditioned
value functions to learn much more quickly from the same amount of data.

Finite-horizon formulation. In this work, we will also consider a finite-horizon, goal-
conditioned Markov decision process (MDP) defined by a tuple (S,G,A, pd, r, Tmax, ⇢0, ⇢g),
where the primary di↵erence is that the discount factor � is replaced with a time horizon
Tmax. The reward function and policy may both depend on the time. In this case, the
objective is to obtain a possibly policy ⇡(at | st,g, t) to maximize the expected sum of
rewards E⌧⇠⇡[

Pt
k=0

r(st0 , at0 , st0+1,g, k)] over the remaining t time steps.
The Q-function also varies with time and predicts the expected sum of future rewards,

given the current state s, goal g, and remaining time t:

Q
⇡(s, a,g, t) = E

"
tX

t0=0

r(st0 , at0 , st0+1,g, t
0) | s0 = s, a0 = a, ⇡ is conditioned on g

#
,

and similarly for the V -function. While both formulations have been used, this formulation is
particularly useful for using goal-conditioned value functions as a form of temporal abstraction,
as we will discuss in Chapter 4.

2.1.2 Variational Autoencoders.

A useful model of complex, multimodal data is a latent variable model. Latent variable
models assume that data x 2 Rdx is generated by first sampling a latent code z 2 Rdz

from a prior distribution p(z) and then sampling z from a conditional distribution p(x | z).
Together, the prior p(z) and conditional distribution p(x | z) comprise the generative model
of x. Typically, the latent dimension, dz, is much smaller than the observation dimension, dx.

Latent variable models are useful because they incorporate prior knowledge that observa-
tion can be decomposed into simple, underlying factors. For example, if x is an image of a
scene, z may represent the identity of di↵erent objects, their location, the pose of the camera,
and other “latent” factors that are not directly recorded in the image x but that contribute
to its generation. In this example, the distribution p(x | z) represents the (stochastic) way
that those factors result in an image. One trains a generative model by fitting p(z) and
p(x | z) to data. By learning the generative model, one implicitly learns about how the world
is organized and how to generate new, novel observations.

One can invert this generative process: given an observation x, what were the latent
variables z that produced x? Obtaining this posterior distribution, p(z | x), is called
probabilistic inference. Probabilistic inference is useful because it decomposes a scene into
its underlying factors of variation. In Chapter 3, we will use these abilities to represent and
generate goals for an autonomous agent.



CHAPTER 2. GOAL-CONDITIONED REINFORCEMENT LEARNING 9

Given a dataset of observations, D, a generative model is typically trained with maximum
likelihood estimation

max
✓

X

x2D

log p✓(x). (2.4)

However, with latent variable models, computing the marginal distribution p(x) requires
marginalizing over z, as in p(x) =

R
Z
p(z)p(x | z)dz. Computing this integral and optimizing

it is intractable for many latent variable models, and we avoid this intractability by training
variational autoencoders with variational inference.

Variational autoencoders [116, 182] are a special type of latent variable model that can
be tractably trained even when using expressive neural networks to represent the generative
model. For the generative model, VAE methods use a fixed prior p(z) that usually corresponds
to a standard Gaussian distribution in Rdz and train a neural network with parameter ✓ to
represent the conditional distribution p✓(x | z). For probabilistic inference, VAE methods
perform amortized inference by training a separate neural network with parameter � to
represent the posterior of z given an observation x, q�(z | x).

Rather than optimizing Equation (2.4), VAEs maximize a lower bound on the log-likelihood
of the data. This lower bound is called the evidence lower bound, or ELBO, and for a given
observation x is

ELBO(x) = Eenc(z|x[log p✓(x | z)]�DKL

⇣
q�(z|x)

���
���p(z)

⌘
 log p✓(x)

where DKL is the KL divergence.
In practice, the encoder and decoder parameters, � and ✓ respectively, are jointly trained

to maximize

L(✓,�;x) = Eenc(z|x[log p✓(x | z)]� �DKL

⇣
q�(z|x)

���
���p(z)

⌘
, (2.5)

where � is a hyperparameter that has been shown to encourage the generative model
to learn representations that are more disentangled when � > 1 [94]. The encoder q�

typically parameterizes the mean and log-variance diagonal of a Gaussian distribution, i.e.,
q�(x) = N (µ�(x), �2

�(x)), where µ� and �2

� are neural networks. The decoder p✓ typically
parameterizes a Gaussian or the parameters of a Bernoulli distribution for each dimension of
x.

2.2 Related Work

Traditionally, the focus of goal-conditioned reinforcement learning literature has been on
training goal-conditioned policies, assuming that a goal and goal-conditioned reward is
provided during exploration [104, 190, 4, 177, 171]. The methods that we present build o↵ of
these prior works to train goal-conditioned policies. For example, in Section 3.1 we present a
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method for retroactively relabelling data with goals sampled from a learned goal distribution.
Prior work found that goal relabeling accelerates learning [104, 4, 177, 136], and we find that
our specific relabeling strategy further improves the rate of learning.

However, these prior works do not study the question of where these goals and rewards
come from, which in practice must be provided externally be the environment designer. As a
results, the core ideas of this thesis are largely complementary to these methods: rather than
only proposing a better method for training goal-reaching policies, we focus on developing
methods that enable agents to autonomously set goals and provide rewards for themselves, as
well as developing methods for reusing the learned goal-reaching policies. Below, we discuss
the relationship to prior work in the context of autonomous learning and skill reuse, and also
conclude with a discussion to related fields and alternative problem formulations.

Exploration and goal setting. The methods that we describe in Chapter 3 learn without
any task rewards, and instead focus on developing agents that can autonomously learn
about the environment by setting and reaching goals. This autonomous learning is related
to exploration methods, which modify the reward based on state visitation frequency to
encourage a policy to visit novel states [13, 163, 203, 29, 141, 199, 166, 23, 22, 150, 203, 68].
While these exploration methods can also be used without a task reward, they provide no
mechanism for distilling the knowledge gained from visiting diverse states into flexible policies
that can be applied to accomplish new goals at test-time: their policies visit novel states, and
they quickly forget about them as other states become more novel. Similarly, methods that
provably maximize state entropy without using goal-directed exploration [91] or methods that
define new rewards to capture measures of intrinsic motivation [150] and reachability [188]
do not produce reusable policies.

Other prior methods do train goal-reaching policies, but propose to choose goals based
on heuristics such as learning progress [8, 214, 35], how o↵-policy the goal is [152], level
of di�culty [93], or likelihood ranking [231]. In contrast, in Section 3.2 we provide a
principled framework that optimizes a concrete and well-motivated exploration objective,
that can provably maximize this objective under regularity assumptions, and that empirically
outperforms many of these prior work.

Model-based reinforcement learning In Chapter 4, we discuss how to use goal-conditioned
policies as the abstraction for planning in order to handle tasks with a longer horizon. This
planning is similar to the planning that occurs in model-based reinforcement learning. Model-
based reinforcement learning methods use a learned dynamics model to plan over a sequence
of actions [175, 132, 154, 33]. However, when the observations are high-dimensional, such as
images, model errors for direct prediction compound quickly, making model-based planning
di�cult [62, 53, 24, 54, 105]. Rather than planning directly over states, we study how to
plan at a temporally-abstract level by using state embeddings and goal-conditioned policies.

A number of past works have also studied embedding high-dimensional observations into a
low-dimensional latent space for planning [218, 64, 86, 122, 229]. While our method also plans
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in a latent space, we additionally use a model-free goal-conditioned policy as the abstraction
to plan over, allowing our method to plan over temporal abstractions rather than only state
abstractions.

Planning over subgoals for a low-level goal-reaching policy also bears a resemblance to
hierarchical RL, where prior methods have used model-free learning on top of goal-conditioned
policies [41, 220, 47, 215, 136, 74, 152]. By using a planner rather than a learned policy
at the higher level, our method can flexibly plan to solve new tasks and benefit from the
compositional structure of planning.

Planning with goal-conditioned value functions has also been studied when there are a
discrete number of goals [124] or skills [2], in which case graph-search algorithms can be used
to plan [59, 139, 56]. In Chapter 4, we not only provide a concrete instantiation of planning
with goal-conditioned value functions, but we also present a new method for scaling this
planning approach to images, which reside in a lower-dimensional manifold.

Representation learning. Like our work, a number of prior works have used unsupervised
learning to acquire better representations for RL. These methods use the learned representation
as a substitute for the state for the policy, but require additional information, such as access
to the ground truth reward function based on the true state during training time [95, 82,
218, 64, 126, 103], expert trajectories [198], human demonstrations [195], or pre-trained
object-detection features [128]. In contrast, we learn to generate goals and use the learned
representation to obtain a reward function for those goals without any of these extra sources
of supervision. Many prior works have also focused on learning controllable and disentangled
representations [192, 27, 30, 181, 44, 204]. We use a method based on variational autoencoders,
but these prior techniques are complementary to ours and could be incorporated into our
method.

Contextual reinforcement learning. Goal-conditioned reinforcement learning is a spe-
cial case of contextual reinforcement learning, in which a policy is conditioned on some
variable z in addition to the state s. Contextual policies has been studied in the form of
latent-variable-conditioned policies, where latent variables are interpreted as options [201]
or abstract skills [90, 81, 58, 79, 66]. The resulting skills are diverse, but have no grounded
interpretation, while goal-reaching policies can be used immediately after unsupervised train-
ing to reach diverse user-specified goals. Contextual policies have also been studied in the
work on successor features [120, 10, 18, 11, 76], which assumes that reward have the form
r(s, a) = �(s)Tw and conditions policies on di↵erent values of w. These methods rely on
manually specified state features �, whereas our work directly learning to reach goal states,
removing the need for any manual feature engineering.

In Section 5.1, we discuss a fully general class of contextual reinforcement learning problem,
in which we can represent arbitrary reward functions by specify a task with a goal distribution
learned from a set of example goal states. A number of prior methods learn rewards [1, 208, 70]
or policies [207, 195, 140, 55] using expert trajectories or observations. Many of these prior
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methods require state sequences from expert demonstrations [1, 207, 195, 140, 55], or focus
on solving single tasks or goal-reaching tasks [70]. In contrast, we will present a contextual
framework in which arbitrary rewards can be represented as goal distributions, and only
requires observations of successful outcomes to fit the goal distribution.

In Section 5.2, we discuss how this connection to contextual policies also relates our work
to o✏ine meta-reinforcement learning algorithms. Specifically, we will present semi-supervised
meta-actor-critic (SMAC), a method that uses a context-based adaptation procedure similar
to Rakelly et al. [176].

Many prior meta-RL algorithms assume that reward labels are provided with each episode
of online interaction [52, 65, 80, 224, 89, 176, 99, 118, 235, 225, 233, 108]. In contrast to
these prior methods, our method only requires o✏ine prior data with rewards, and additional
online interaction does not require any ground truth reward signal.

Prior works have also studied other formulations that combine unlabeled and labeled trials.
For example, imitation and inverse reinforcement learning methods use o✏ine demonstrations
to either learn a reward function [1, 63, 96, 69] or to directly learn a policy [189, 184, 96, 180,
167]. Semi-supervised and positive-unlabeled reward learning [222, 236, 119] methods use
reward labels provided for some interactions to train a reward function for RL. However, all
of these methods have been studied in the context of a single task. While these methods focus
on recovering a policy that maximizes a specific reward function, we focus on meta-learning
an RL procedure that can adapt to new reward functions. In other words, we do not focus
on recovering a single reward function, because there is no single test time reward or task.
Instead, we focus on generating reward labels for meta-training that mitigate the distribution
shift between the o✏ine data and online data at test-time.

Our method addresses a similar problem to prior o✏ine meta-RL methods [148, 50],
but we show that these approaches generally underperform in low-data regimes, whereas
our method addresses the distribution shift problem by using online interactions without
requiring additional reward supervision. In our experiments, we found that SMAC greatly
improves the performance on both training and held-out tasks. Lastly, SMAC is also related
to unsupervised meta-learning methods [79, 101], which annotate data with their own rewards.
In contrast to these methods, we assume that there exists an o✏ine dataset with reward
labels that we can use to learn to generate similar rewards.

Alternative formulations to control. Lastly, we note that reward maximization is not
the only formulation for learning goal-reaching behaviors. Stochastic control [28, 75, 98, 223]
is a closely related problem of finding control laws that allow agents to move from an initial
state to some desired goal state while incurring minimal cost. Rawlik et al. [179] consider a
continuous-time setting and propose an expectation maximization algorithm that assumes
linear Gaussian dynamics, while more recent work has explored finding control laws for
non-linear stochastic system dynamics [183, 226]. In contrast to this strand of research, this
thesis studies a discrete-time setting and does not make assumptions or assumes knowledge
of the system dynamics but only requires the ability to interact with the environment to
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learn an outcome-driven policy.
Another formulation for learning goal-reaching policies is that of probabilistic inference.

Under this framework, learning a policy corresponds to inferring the distribution of actions,
conditioned on reaching a goal in the future. Several prior works cast RL and control as
probabilistic inference [61, 70, 97, 133, 178, 196, 205, 234] or KL divergence minimization [111,
169], with the aim of reformulating standard reward-based RL, assuming that the reward
function is given. In contrast, our work removes the need to manually specify a task-specific
reward or likelihood function, by learning a reward function from data, based on derivations
discussed in Section 2.3.

Past work has also studied this relationship between control and probabilistic inference in
the context of reaching a goal or desired outcome [6, 70, 97, 210]. However, these past work
have limitations that make it challenging to apply the methods to more complex domains
in a sample-e�cient manner. Toussaint et al. [211] and Ho↵man et al. [97] focus on exact
inference methods that require time-varying tabular or time-varying Gaussian value functions,
and the work in Fu et al. [70] requires on-policy trajectory samples, which can be expensive
or time-consuming to collect.

In the next chapter, we present a variational inference method that eliminates the need
to train a time-varying value function, and enables us to use expressive neural networks to
represent an approximate value function, making our method applicable to high-dimensional,
continuous, and non-linear domains. Moreover, in contrast to the work in Fu et al. [70], we
will derive an o↵-policy method by introducing a variational distribution qT over the time
when the outcome is reached.

2.3 Goal-Reaching as Probabilistic Inference

Standard goal-conditioned RL provides an appealing formalism for automated learning of
goal-reaching skills, but in practice, it requires considerable care and manual design. One
particularly delicate decision is the design of the reward function, which has a significant
impact on the resulting policy but is largely heuristic in practice, often lacks theoretical
grounding, can make e↵ective learning di�cult, and may lead to reward mis-specification.

To avoid these shortcomings, we propose to circumvent the process of manually specifying
a reward function altogether: Instead of framing the goal-conditioned reinforcement learning
problem as finding a policy that maximizes a heuristically-defined reward function, we
express it probabilistically, as inferring a state–action trajectory distribution conditioned
on a desired future outcome. By building o↵ of prior work on probabilistic perspectives on
RL [61, 109, 178, 209, 210, 234] and goal-directed RL in particular [6, 32, 97, 211], we derive a
tractable variational objective, an temporal-di↵erence algorithm that provides a shaping-like
e↵ect for e↵ective learning, as well as a reward function that captures the semantics of the
underlying decision problem and facilitates e↵ective learning.

We demonstrate that unlike prior works that proposed inference methods for finding
policies that achieve desired outcomes [6, 70, 97, 211], the resulting algorithm, outcome-



CHAPTER 2. GOAL-CONDITIONED REINFORCEMENT LEARNING 14

Figure 2.1: Illustration of the shaping e↵ect of the reward function derived from the goal-directed
variational inference objective. (Left) A 2-dimensional grid world with a desired outcome marked by
a star. (Middle left) The corresponding sparse reward function provides little shaping. (Middle right)
The reward function derived from our variational inference formulation at initialization. (Right)
The derived reward function after training. We see that the derived reward learns to provide a
dense reward signal everywhere in the state space.

driven actor–critic (odac), is amenable to o↵-policy learning and applicable to complex,
high-dimensional continuous control tasks over finite and infinite horizons. The resulting
variational algorithm can be interpreted as an automatic shaping method, where each
iteration learns a reward function that automatically provides dense rewards, as we visualize
in Figure 2.1. In tabular settings, odac is guaranteed to converge to an optimal policy, and
in non-tabular settings with linear Gaussian transition dynamics, the derived optimization
objective is convex in the policy, facilitating easier learning. In high-dimensional and non-
linear domains, our method can be combined with deep neural network function approximators
to yield a deep reinforcement learning method that does not require manual specification of
rewards, and leads to good performance on a range of benchmark tasks.

The core contribution of this section is the probabilistic formulation of a general framework
for inferring policies that lead to desired outcomes. We show that this formulation gives
rise to a variational objective from which we derive a novel outcome-driven Bellman backup
operator with a shaping-like e↵ect that ensures a clear and dense learning signal even in early
stages of training. Crucially, this “shaping” emerges automatically from a variational lower
bound, rather than the heuristic approach for incorporating shaping that is often used in
standard RL. We demonstrate that the resulting variational objective leads to an o↵-policy
temporal-di↵erence algorithm and evaluate it on a range of reinforcement learning tasks
without having to manually specify task-specific reward functions. In our experiments, we find
that our method results in significantly faster learning across a variety of robot manipulation
and locomotion tasks than alternative approaches.

2.3.1 Outcome-Driven Reinforcement Learning

In this section, we derive a variational inference objective to infer an approximate posterior
policy for achieving desired outcomes. Instead of using the heuristic goal-reaching rewards
discussed in Section 2.1, we will derive a general framework for inferring actions that lead
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Figure 2.2: A probabilistic graphical model of a state–action trajectory with observed random
variables s0 and st? .

to desired outcomes by formulating a probabilistic objective, using the tools of variational
inference. As we will show in the following sections, we use this formulation to translate the
problem of inferring a policy that leads to a desired outcome into a tractable variational
optimization problem, which we show corresponds to an RL problem with a well-shaped,
dense reward signal from which the agent can learn more easily.

We start with a warm-up problem that demonstrates how to frame the task of achieving
a desired outcome as an inference problem in a simplified setting. We then describe how to
extend this approach to more general settings. Finally, we show that the resulting variational
objective can be expressed as a recurrence relation, which allows us to derive an outcome-
driven variational Bellman operator and prove an outcome-driven probabilistic policy iteration
theorem.

2.3.2 Warm-up: Achieving a Desired Outcome at a Fixed Time
Step

We first consider a simplified problem, where the desired outcome is to reach a specific state
g 2 S at a specific time step t

? when starting from initial state s0. We can think of the
starting state s0 and the desired outcome g as boundary conditions, and the goal is to learn
a stochastic policy that induces a trajectory from s0 to g. To derive a control law that solves
this stochastic boundary value problem, we frame the problem probabilistically, as inferring
a state–action trajectory posterior distribution conditioned on the desired outcome and the
initial state. We will show that, by framing the learning problem this way, we obtain an
algorithm for learning outcome-driven policies without needing to manually specify a reward
function. We consider a model of the state–action trajectory up to and including the desired
outcome g,

p⌧0:t,st+1(⌧0:t,g | s0) =̇ pd(g | st, at)p(at | st)
t�1Y

t0=0

pd(st0+1 | st0 , at0)p(at0 | st0),

where t =̇ t
?
�1, p(at | st) is a conditional action prior, and pd(st+1 | st, at) is the environment’s

state transition distribution. If the dynamics are simple (e.g., tabular or Gaussian), the
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posterior over actions can be computed in closed form [6], but we would like to be able to
infer outcome-driven posterior policies in any environments, including those where exact
inference may be intractable. To do so, we start by expressing posterior inference as the
variational minimization problem

min
q2Q

DKL

⇣
q⌧̃0:t(· | s0)

���
���p⌧̃0:t(· | s0, st? = g)

⌘
, (2.6)

where ⌧̃0:t is the state–action trajectory up to t?, but excluding s0 and st? , DKL

⇣
·

���
���·
⌘
DKL(· k ·)

is the KL divergence, and Q denotes the variational family over which to optimize. We
consider a family of distributions parameterized by a policy ⇡ and defined by

q⌧̃0:t(⌧̃0:t | t, s0) =̇ ⇡(at | st)
t�1Y

t0=0

pd(st0+1 | st0 , at0)⇡(at0 | st0), (2.7)

where ⇡ 2 ⇧, a family of policy distributions, and where
Qt�1

t=0
pd(st+1 | st, at) is the true

action-conditional state transition distribution up to but excluding the state transition
at t

?
� 1, since st? = g is observed. Under this variational family, the inference problem

in Equation (2.6) can be equivalently stated as the problem of maximizing the following
objective with respect to the policy ⇡:

Proposition 1. Given q⌧̃0:t(⌧̃0:t | t, s0) from Equation (2.7), any state s0, termination time
t
?, and outcome g, solving Equation (2.6) is equivalent to maximizing this objective with
respect to ⇡ 2 ⇧:

F̄(⇡, s0,g) =̇ Eq(⌧̃0:t|s0)


log pd(g | st, at)�

t�1X

t0=0

DKL(⇡(· | st0) || p(· | st0))

�
. (2.8)

Proof. See Appendix B.1.1.

A variational problem of this form—which corresponds to finding a posterior distribution
over actions)—can equivalently be viewed as a reinforcement learning problem:

Corollary 1. The objective in Equation (2.8) corresponds to KL-regularized reinforcement
learning with a time-varying reward function given by r(st0 , at0 ,g, t0) =̇ I{t0 = t} log pd(g |

st0 , at0)

Corollary 1 illustrates how a reward function emerges automatically from a probabilistic
framing of outcome-driven reinforcement learning problems where the sole specification is
which variable (st?) should attain which value (g). In particular, Corollary 1 suggests that
we ought to learn the environment’s state-transition distribution, and view the log-likelihood
of achieving the desired outcome given a state–action pair as a “reward” that can be used
for o↵-policy learning as described in Section 2.1. Importantly—and unlike in model-based
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RL—such a transition model would not have to be accurate beyond single-step predictions,
as it would not be used for planning (see Appendix B.3). Instead, log pd(g | st, at) only needs
to be well shaped, which we expect to happen for commonly used model classes. For example,
when the dynamics are linear-Gaussian, using a conditional Gaussian model [154] yields
a reward function that is quadratic in st+1, making the objective convex and thus more
amenable to optimization.

2.3.3 Outcome-Driven Reinforcement Learning as Variational
Inference

Thus far, we assumed that the time at which the outcome is achieved is given. In many
problem settings, we do not know (or care) when an outcome is achieved. In this section, we
present a variational inference perspective on achieving desired outcomes in settings where no
reward function and no termination time are given, but only a desired outcome is provided.
As in the previous section, we derive a variational objective and show that a principled
algorithm and reward function emerge automatically when framing the problem as variational
inference.

To derive such an objective, we modify the probabilistic model used in the previous section
to model that the time at which the outcome is achieved is not known. As before, we define
an “outcome” as a point in the state space, but instead of defining the event of “achieving a
desired outcome” as a realization st? = g for a known t

?, we define it as a realization sT ? = g
for an unknown termination time T ? at which the outcome is achieved. Specifically, we model
the distribution over the trajectory and the unknown termination time with

p⌧̃0:T ,sT ,T (⌧̃0:t,g, t | s0) = pT (t)pd(g | st, at)p(at | st)
t�1Y

t0=0

pd(st0+1 | st0 , at0)p(at0 | st0), (2.9)

where pT (t) is the probability of reaching the outcome at t+ 1. Since the trajectory length
is itself a random variable, the joint distribution in Equation (2.9) is a transdimensional
distribution defined on

U
1

t=0
{t}⇥ S

t+1
⇥A

t+1 [97].
Unlike in the warm-up, the problem of finding an outcome-driven policy that eventually

achieves the desired outcome corresponds to finding the posterior distribution over state–action
trajectories and the termination time T conditioned on the desired outcome sT and a starting
state. Analogously to Section 2.3.2, we can express this inference problem variationally as

min
q2Q

DKL

⇣
q⌧̃0:t,T (· | s0)

���
���p⌧̃0:t,T (· | s0, sT ? = g)

⌘
, (2.10)

where t denotes the time immediately before the outcome is achieved and Q denotes the
variational family. In general, solving this variational problem in closed form is challenging,
but by choosing a variational family q⌧̃0:T ,T (⌧̃0:t, t | s0) = q⌧̃0:t(⌧̃0:t | t, s0)qT (t), where qT is a
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distribution over T in some variational family QT parameterized by

qT (t | s0) = q�t+1(�t+1 = 1)
tY

t0=1

q�t0 (�t0 = 0), (2.11)

with Bernoulli random variables �t denoting the event of “reaching g at time t given that g
has not yet been reached by time t� 1,” we can equivalently express the variational problem
in Equation (2.10) in a way that is tractable and amenable to o↵-policy optimization:

Theorem 1. Let qT (t) and q⌧̃0:t(⌧̃0:t | t, s0) be as defined before, and define

V
⇡(st,g; qT ) =̇ E⇡(at|st) [Q

⇡(st, at,g; qT )]�DKL(⇡(· | st) k p(· | st)) (2.12)

Q
⇡(st, at,g; qT ) =̇ r(st, at,g; q�) + q�t+1(�t+1 = 0)Epd(st+1|st,at) [V

⇡(st+1,g; ⇡, qT )] (2.13)

r(st, at,g; q�) =̇ q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘
. (2.14)

Then given any initial state s0 and outcome g,

DKL(q⌧̃0:t,T (· | s0) k p⌧̃0:t,T (· | s0, sT ? = g)) = �V ⇡(s0,g; qT ) + log p(g | s0),

where log p(g | s0) is independent of ⇡ and qT and hence maximizing V
⇡(s0,g; ⇡, qT ) is

equivalent to minimizing Equation (2.10).

Proof. See Appendix B.1.2.

This theorem tells us that the maximizer of V
⇡(st,g; qT ) is equal to the minimizer

of Equation (2.10). In other words, Theorem 1 presents a variational objective with dense
reward functions defined solely in terms of the desired outcome and the environment dynamics,
which we can learn directly from environment interactions. Thanks to the recursive expression
of the variational objective, we can find the optimal variational over T as a function of the
current policy and Q-function analytically:

Proposition 2. The optimal distribution q
?
T with respect to Equation (2.12) is

q
?
�t+1

(�t+1 = 0; ⇡, Q⇡) = �
�
⇤(st, ⇡, qT , Q

⇡) + �
�1
�
p�t+1(�t+1 = 0)

��
, (2.15)

where

⇤(st, ⇡, qT , Q
⇡) =̇ E⇡(at+1|st+1)pd(st+1|st,at)⇡(at|st)[Q

⇡(st+1, at+1,g; qT )� log pd(g | st, at)]

and �(·) is the sigmoid function, that is, �(x) = 1

e�x+1
and ��1(x) = log x

1�x .

Proof. See Appendix B.1.3

In the next section, we discuss how we can learn the Q-function in Theorem 1 using
o↵-policy transitions by deriving a temporal-di↵erence algorithm for this problem.
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2.3.4 Outcome-Driven Reinforcement Learning

In this section, we show that the variational objective in Theorem 1 is amenable to o↵-policy
learning and that it can be estimated e�ciently from single-step transitions. We then describe
how to instantiate the resulting outcome-driven algorithm in large environments where
function approximation is necessary.

2.3.4.1 Outcome-Driven Policy Iteration

To develop an outcome-directed o↵-policy algorithm, we define the following Bellman operator:

Definition 1. Given a function Q : S ⇥A⇥ S ! R, define the operator T
⇡ as

T
⇡
Q(st, at,g; qT ) =̇ r(st, at,g; q�) + q�t+1(�t+1 = 0)E

⇥
V(st+1,g; qT )

⇤
, (2.16)

where r(st, at,g; q�) is from Theorem 1, the expectation is w.r.t. pd(st+1 | st, at), and

V(st,g; qT ) =̇ E⇡(at|st) [Q(st, at,g; qT )] +DKL(⇡(· | st) k p(· | st)) (2.17)

Unlike the standard Bellman operator, the above operator has a varying weight factor
q�t+1(�t+1 = 0), with the optimal weight factor given by Equation (2.15). From Equa-
tion (2.15), we see that as the outcome likelihood pd(g | s, a) becomes large relative to the
Q-function, the weight factor automatically adjusts the target to rely more on the rewards.

Below, we show that repeatedly applying the operator T ⇡ (policy evaluation) and opti-
mizing ⇡ with respect to Q

⇡ (policy improvement) converges to a policy that maximizes the
objective in Theorem 1.

Theorem 2. Assume MDP is ergodic and |A| <1.

1. Outcome-Driven Policy Evaluation (ODPE): Given policy ⇡ and a function Q
0 : S ⇥

A⇥ S ! R, define Q
i+1 = T

⇡
Q

i. Then the sequence Q
i converges to the lower bound

in Theorem 1.

2. Outcome-Driven Policy Improvement (ODPI): The policy that solves

⇡
+ = argmax

⇡02⇧
{E⇡0(at|st) [Q

⇡(st, at,g; qT )]�DKL(⇡
0(· | st) || p(· | st)} (2.18)

and the variational distribution over T defined in Equation (2.15) improve the varia-
tional objective, i.e., F(⇡+

, qT , s0) � F(⇡, qT , s0) and F(⇡, q+T , s0) � F(⇡, qT , s0) for all
s0, ⇡, qT .

3. Alternating between ODPE and ODPI converges to a policy ⇡
? and a variational

distribution over T , qT , such that Q
⇡?
(s, a,g; q?T ) � Q

⇡(s, a,g; qT ) for all (⇡, qT ) 2
⇧⇥QT and any (s, a) 2 S ⇥A.

Proof. See Appendix B.2.
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Algorithm 1 odac: Outcome-Driven Actor–Critic

1: Initialize policy ⇡✓, replay bu↵er R, Q-function Q�, and dynamics model p .
2: for iteration i = 1, 2, ... do
3: Collect on-policy samples to add to R by sampling g from environment and executing

⇡.
4: Sample batch (s, a, s0,g) from R.
5: Compute approximate reward and optimal weights with Equation (2.22) and Equa-

tion (2.15).
6: Update Q� with Equation (2.19), ⇡✓ with Equation (2.20), and p with Equation (2.21).
7: end for

This result tells us that alternating between applying the outcome-driven Bellman operator
in Definition 1 and optimizing the bound in Theorem 1 using the resulting Q-function, which
can equivalently be viewed as expectation maximization, will lead to a policy that induces
an outcome-driven trajectory and solves the inference problem in Equation (2.10). As we
discuss in Appendix B.2, this implies that Variational Outcome-Driven Policy Iteration is
theoretically at least as good as or better than standard policy iteration for KL-regularized
objectives.

2.3.4.2 Outcome-Driven Actor–Critic (ODAC)

We now build on previous sections to develop a practical algorithm that handles large and
continuous domains. In such domains, the expectation in the Bellman operator in Definition 1
is intractable, and so we approximate the policy ⇡✓ and Q-function Q� with neural networks
parameterized by parameters ✓ and �, respectively. We train the Q-function to minimize

FQ(�) = E
⇣

Q�(s, a,g)� (r(s, a,g; q�) + q�t(�t = 0) V̂ (s0,g))
⌘2
�
, (2.19)

where the expectation is taken with respect to (s, a,g, s0) sampled from a replay bu↵er, D, of
data collected by a policy. We approximate the V̂ -function using a target Q-function Q�̄:

V̂ (s0,g) ⇡ Q�̄(s
0
, a0

,g)� log ⇡(a0
| s0;g), where a0 are samples from the amortized variational

policy ⇡✓(· | s0;g) The parameters �̄ slowly track the parameters of � at each time step via
the standard update �̄ ⌘�̄+ (1� ⌘)� [138]. We then train the policy to maximize the
approximate Q-function by performing gradient descent on

F⇡(✓) = �Es⇠D,a⇠⇡✓(·|s;g) [Q�(s, a,g)� log ⇡✓(a | s;g)] . (2.20)

We estimate q̂�t+1(�t+1 = 0) with a Monte Carlo estimate of Equation (2.15) obtained
via a single Monte Carlo sample (s, a, s0, a0

,g) from the replay bu↵er. In practice, a value of
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(a) Box 2D (b) Ant (c) Sawyer Push

(d) Fetch Push (e) Faucet (f) Window

Figure 2.3: From left to right, we evaluate on: a 2D environment in which an agent must move
around a box, a locomotion task in which a quadruped robot must match a location and pose
(yellow), and four manipulation tasks in which the robot must push objects, rotate faucet valve, or
open a window.

q�t+1(�t+1 = 0) = 1 can lead to numerical instabilities with bootstrapping, and so we also
upper bound the estimated q�t+1(�t+1 = 0) by the prior distribution p�t+1(�t+1 = 0).

To compute the rewards, we need to compute the likelihood of achieving the desired out-
come. If the transition dynamics are unknown, we learn a dynamics model from environment
interactions by training a neural network p that parameterizes the mean and scale of a
factorized Laplace distribution. We train this model by maximizing the log-likelihood of the
data collected by the policy,

Fp( ) = E(s,a,s0)⇠D[log p (s
0
| s, a)], (2.21)

and use it to compute the rewards

r̂(st, at,g; q�) =̇ q̂�t+1(�t+1 = 1) log p (g | st, at)�DKL

⇣
q�t

���
���p�t

⌘
. (2.22)

The complete algorithm is presented in Algorithm 1 and consists of alternating between
collecting data via policy ⇡ and minimizing Equations 2.19, 2.20, and 2.21 via gradient
descent. This algorithm alternates between approximating the lower bound in Equation (2.12)
by repeatedly applying the outcome-driven Bellman operator to an approximate Q-function,
and maximizing this lower bound by performing approximate policy optimization on Equa-
tion (2.20).
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Figure 2.4: Learning curves showing final distance vs environment steps across all six environments.
We see that only odac consistently performs well on all six tasks. Prior methods struggle to learn,
especially in the absence of uniform goal sampling. See text for details.

2.3.5 Empirical Evaluation

Our experiments compare odac to prior methods for learning goal-conditioned policies and
evaluate how the components of our variational objective impact the performance of the
method. Specifically, we compare odac to prior methods on a wide range of manipulation and
locomotion tasks that require achieving a desired outcome. To answer the second question,
we conduct several ablation studies and visualize the behavior of q�t+1(�t+1 = 0). In our
experiments, we use a uniform action prior p(a) and the time prior pT is geometric with
parameter 0.01, i.e., p�t+1(�t+1 = 0) = 0.99. We begin by describing prior methods and
environments used for the experiments.

Baselines and prior work. We compare our method to hindsight experience replay
(HER) [4], a goal-conditioned method, where the learner receives a reward of �1 if it is within
an ✏ distance from the goal, and 0 otherwise, universal value density estimation (UVD) [194],
which also uses sparse rewards as well as a generative model of the future occupancy measure
to estimate the Q-values, and DISCERN [217], which learns a reward function by training a
discriminator and using a clipped log-likelihood as the reward. Lastly, we include an oracle
Soft Actor–Critic (SAC) baseline that uses a manually designed reward. For the MetaWorld
tasks, this baseline uses the benchmark reward for each task. For the remaining environments,
this baseline uses the Euclidean distance between the agent’s current and the desired outcome
for the reward.

Environments. To avoid over-fitting to any one setting, we compare to these methods
across several di↵erent robot morphologies and tasks, all illustrated in Figure 2.3 of the
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appendix. We compare odac to prior work on a simple 2D navigation task, in which an
agent must take non-greedy actions to move around a box, as well as the Ant, Sawyer Push,
and Fetch Push simulated robot domains, which have each been studied in prior work on
reinforcement learning for reaching goals [4, 152, 155, 173, 194]. For the Ant and Sawyer tasks,
desired outcomes correspond to full states (i.e., desired positions and joints). For the Fetch
task, we use the same goal representation as in prior work [4] and only represent g with the
position of the object. Lastly, we demonstrate the feasibility of replacing manually designed
rewards with our outcome-driven paradigm by evaluating the methods on the Sawyer Window
and Sawyer Faucet tasks from the MetaWorld benchmark [227]. These tasks come with
manually designed reward functions, which we replace by simply specify a desired outcome
g. We plot the mean and standard deviation of the final Euclidean distance to the desired
outcome across four random seeds. We normalize the distance to be 1 at the start of training.
For further details, see Appendix B.4.1.

In all tasks, a fixed desired final goal is commanded as the exploration goal on each
episode, and during training, the goals are relabeled using the future-style relabeling scheme
from Andrychowicz et al. [4]. To challenge the methods, we choose the desired goal to be far
from the starting state.

Results. In Figure 2.4, we see that odac outperforms virtually every method on all tasks,
consistently learning faster and often reaching a final distance that is orders of magnitude
closer to the desired outcome. The only exception is that the hand-crafted reward learns
slightly faster on the 2D task, but this gap is closed within a few ten thousand steps.

2.3.5.1 Ablation Studies and Visualizations

Table 2.1: Ablation results, showing mean final normalized
distance (⇥100) at the end of training across 4 seeds. Best
mean is in bold and standard error in parentheses. odac is
not sensitive to the dynamics models p̂d but benefits from
the dynamic qT variant.

Env odac fix p̂d fix qT fix qT , p̂d
2D 1.7 (1.2) 1.2 (.14) 1.0 (.24) 1.3 (.29)
Ant 9.4 (.48) 11 (.57) 12 (.41) 13 (.20)
Push 35 (2.7) 34 (1.5) 37 (1.5) 38 (3.1)
Fetch 19 (5.5) 15 (2.5) 53 (13) 66 (15)

Window 5.4 (.62) 5.0 (.62) 7.9 (.71) 6.0 (.12)
Faucet 13 (4.2) 1 5 (3.3) 37 (8.3) 38 (7.2)

Next, we study the importance
of the dynamic discount factor
q�t+1(�t+1 = 0) and the sensitiv-
ity of our method to the dynamics
model. On all tasks, we evaluate
the performance when the poste-
rior exactly matches the prior, that
is, q�t+1(�t+1 = 0) = 0.99 (labeled
fixed qT in Table 2.1). Our analy-
sis in Appendix B.1.3 suggests that
this setting is sub-optimal, and this
ablation empirically evaluate its
benefits. We also measure how the
algorithm’s performance depends
on the accuracy of the learned dy-
namics model used for the reward
in odac. To do this, we evaluate odac with the dynamics model fixed to a multivariate
Laplace distribution with a fixed variance, centered at the previous state (labeled fixed p̂d
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in Table 2.1). This ablation represents an extremely crude model, and good performance with
such a model would indicate that our method does not depend on obtaining an particularly
accurate model.

In Table 2.1, we see that fixing the distribution qT deteriorates performance, and that
using a learned or fixed model both perform relatively well. These results suggest that the
derived optimal variational distribution q

?
�t+1

(�t+1 = 0) given in Proposition 2 is better not
only in theory but also in practice, and that odac is not sensitive to the accuracy of the
dynamics model.

In Appendix B.3, we present the ablation’s full learning curves and additional experiments.
For example, we compare odac to a variant in which we use the learned dynamics model
for model-based planning. We find that using the dynamics model only to compute rewards
significantly outperformed the variant where it is used for both computing rewards and
model-based planning. This result suggests that odac does not require learning a dynamics
model that is accurate enough for planning, and that the derived Bellman updates are
su�cient for obtaining policies that can achieve desired outcomes. In Figure B.3, we also
visualize qT and find that as the policy reaches an irrecoverable state, q�t+1(�t+1 = 0) drops
in value, suggesting that odac automatically learns a dynamic discount factor that terminates
an episode when an irrecoverable state is reached.

2.4 Conclusion

In this chapter, we presented background on goal-conditioned reinforcement learning. We also
presented a probabilistic approach for reaching a desired goal or “outcomes,” in settings where
no reward function and no termination condition are given. We showed that by framing the
problem of achieving desired outcomes as variational inference, we can derive an o↵-policy RL
algorithm, a reward function learnable from environment interactions, and a novel Bellman
backup that contains a state–action dependent dynamic discount factor for the reward and
bootstrap term. Our experimental results further support that the resulting algorithm can
lead to e�cient outcome-driven approaches to RL.

The standard goal-conditioned formulation and our probabilistic approach both assume
that a goal was provided to an agent in the problem statement. In practice, this goal must
come from a user, which can be expensive to provide during training. We discuss in the next
chapter how an agent can generate its own goals to enable an agent to autonomously learn
goal-reaching behaviors without external supervision.
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Chapter 3

Generating Goals for Autonomous
Practice

Reinforcement learning (RL) algorithms hold the promise of allowing autonomous agents,
such as robots, to learn to accomplish arbitrary tasks. However, the standard RL framework
involves learning policies that are specific to individual tasks, which are defined by hand-
specified reward functions. Agents that exist persistently in the world can prepare to solve
diverse tasks by setting their own goals, practicing complex behaviors, and learning about
the world around them. In fact, humans are very proficient at setting abstract goals for
themselves, and evidence shows that this behavior is already present from early infancy [197],
albeit with simple goals such as reaching. The behavior and representation of goals grows
more complex over time as they learn how to manipulate objects and locomote. How can
we begin to devise a reinforcement learning system that sets its own goals and learns from
experience with minimal outside intervention and manual engineering?

In this chapter, we take a step toward this goal by designing an RL framework that
jointly learns representations of raw sensory inputs and policies that achieve arbitrary goals
under this representation by practicing to reach self-specified random goals during training.
We then discuss how to select these random goals to most e↵ectively prepare an agent for
downstream tasks.

3.1 Reinforcement Learning with Imagined Goals

To provide for automated and flexible goal-setting, we must first choose how a general goal
can be specified for an agent interacting with a complex and highly variable environment.
Even providing the state of such an environment to a policy is a challenge. For instance,
a task that requires a robot to manipulate various objects would require a combinatorial
representation, reflecting variability in the number and type of objects in the current scene.
Directly using raw sensory signals, such as images, avoids this challenge, but learning from
raw images is substantially harder. In particular, pixel-wise Euclidean distance is not an
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e↵ective reward function for visual tasks since distances between images do not correspond to
meaningful distances between states [174, 230]. Furthermore, although end-to-end model-free
reinforcement learning can handle image observations, this comes at a high cost in sample
complexity, making it di�cult to use in the real world.

We propose to address both challenges by incorporating unsupervised representation
learning into goal-conditioned policies. In our method, which is illustrated in Figure 3.1, a
representation of raw sensory inputs is learned by means of a latent variable model, which
in our case is based on the variational autoencoder (VAE) [116]. This model serves three
complementary purposes. First, it provides a more structured representation of sensory inputs
for RL, making it feasible to learn from images even in the real world. Second, it allows for
sampling of new states, which can be used to set synthetic goals during training to allow the
goal-conditioned policy to practice diverse behaviors. We can also more e�ciently utilize
samples from the environment by relabeling synthetic goals in an o↵-policy RL algorithm,
which makes our algorithm substantially more e�cient. Third, the learned representation
provides a space where distances are more meaningful than the original space of observations,
and can therefore provide well-shaped reward functions for RL. By learning to reach random
goals sampled from the latent variable model, the goal-conditioned policy learns about the
world and can be used to achieve new, user-specified goals at test-time.

This chapter presents a framework for learning general-purpose goal-conditioned policies
that can achieve goals specified with target observations. We call our method reinforcement
learning with imagined goals (RIG). RIG combines sample-e�cient o↵-policy goal-conditioned
reinforcement learning with unsupervised representation learning. We use representation
learning to acquire a latent distribution that can be used to sample goals for unsupervised
practice and data augmentation, to provide a well-shaped distance function for reinforcement
learning, and to provide a more structured representation for the value function and policy.
While several prior methods, discussed in the following section, have sought to learn goal-
conditioned policies, we can do so with image goals and observations without a manually
specified reward signal. Our experimental evaluation illustrates that our method substantially
improves the performance of image-based reinforcement learning, can e↵ectively learn policies
for complex image-based tasks, and can be used to learn real-world robotic manipulation
skills with raw image inputs. Videos of our method in simulated and real-world environments
can be found at https://sites.google.com/site/visualrlwithimaginedgoals/.

3.1.1 Goal-Conditioned Policies with Unsupervised
Representation Learning

To devise a practical algorithm based on goal-conditioned value functions, we must choose a
suitable goal representation. In the absence of domain knowledge and instrumentation, a
general-purpose choice is to set the goal space G to be the same as the state observations
space S. This choice is fully general as it can be applied to any task, and still permits
considerable user control since the user can choose a “goal state” to set a desired goal for a

https://sites.google.com/site/visualrlwithimaginedgoals/
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Figure 3.1: We train a VAE using data generated by our exploration policy (left). We use the
VAE for multiple purposes during training time (middle): to sample goals to train the policy, to
embed the observations into a latent space, and to compute distances in the latent space. During
test time (right), we embed a specified goal observation og into a goal latent zg as input to the policy.
Videos of our method can be found at sites.google.com/site/visualrlwithimaginedgoals

trained goal-conditioned policy. But when the state space S corresponds to high-dimensional
sensory inputs such as images 1 learning a goal-conditioned Q-function and policy becomes
exceedingly di�cult as we illustrate empirically in Section 3.1.2.

Our method jointly addresses a number of problems that arise when working with high-
dimensional inputs such as images: sample e�cient learning, reward specification, and
automated goal-setting. We address these problems by learning a latent embedding using a
�-VAE. We use this latent space to represent the goal and state and retroactively relabel data
with latent goals sampled from the VAE prior to improve sample e�ciency. We also show
that distances in the latent space give us a well-shaped reward function for images. Lastly, we
sample from the prior to allow an agent to set and “practice” reaching its own goal, removing
the need for humans to specify new goals during training time. We next describe the specific
components of our method, and summarize our complete algorithm in Section 3.1.1.5.

3.1.1.1 Sample-E�cient RL with Learned Representations

One challenging problem with end-to-end approaches for visual RL tasks is that the resulting
policy needs to learn both perception and control. Rather than operating directly on
observations, we embed the state st and goals g into a latent space Z . To learn a representation
of the state and goal space, we train a �-VAE by executing a random policy and collecting
state observations, {s(i)}, and optimize Equation (2.5). We then use the mean of the encoder
as the state encoding, i.e. z = e(s) =̇ µ�(s).

After training the VAE, we train a goal-conditioned Q-function Q(z, a, zg) and corre-
sponding policy ⇡✓(z, zg) in this latent space. The policy is trained to reach a goal zg using

1We make the simplifying assumption that the system is Markovian with respect to the sensory input.
One could incorporate memory into the state for partially observed tasks.

https://sites.google.com/site/visualrlwithimaginedgoals/
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the reward function discussed in Section 3.1.1.2. For the underlying RL algorithm, we use
twin delayed deep deterministic policy gradients (TD3) [71], though any value-based RL
algorithm could be used. Note that the policy (and Q-function) operates completely in the
latent space. During test time, to reach a specific goal state g, we encode the goal zg = e(g)
and input this latent goal to the policy.

As the policy improves, it may visit parts of the state space that the VAE was never
trained on, resulting in arbitrary encodings that may not make learning easier. Therefore,
in addition to procedure described above, we fine-tune the VAE using both the randomly
generated state observations {s(i)} and the state observations collected during exploration.
We show in ?? C.1.1.3 that this additional training helps the performance of the algorithm.

3.1.1.2 Reward Specification

Training the goal-conditioned value function requires defining a goal-conditioned reward
r(s,g). Using Euclidean distances in the space of image pixels provides a poor metric, since
similar configurations in the world can be extremely di↵erent in image space. In addition to
compactly representing high-dimensional observations, we can utilize our representation to
obtain a reward function based on the reward function derived in Section 2.3.

That reward function is the negative Mahalanobis distance in the latent space:

r(s,g) = �||e(s)� e(g)||A = �||z� zg||A,

where the matrix A weights di↵erent dimensions in the latent space. To see the relationship
to our previously derived reward, let A to be the precision matrix of the VAE encoder, q�.
Since we use a Gaussian encoder, we have that

r(s,g) = �||z� zg||A /
q
log q�(zg | s). (3.1)

In other words, minimizing this squared distance in the latent space is equivalent to rewarding
reaching states that maximize the probability of the latent goal zg, which approximates the
reward derived in Equation (2.14) when we a fix the posterior over when we will reach the
goal to the prior, i.e., q�t = p�t .

In practice, we found that setting A = I, corresponding to Euclidean distance, performed
better than Mahalanobis distance, though its e↵ect is the same — to bring z close to zg and
maximize the probability of the latent goal zg given the observation. This interpretation
would not be possible when using normal autoencoders since distances are not trained to
have any probabilistic meaning. Indeed, we show in Section 3.1.2 that using distances in a
normal autoencoder representation often does not result in meaningful behavior.

3.1.1.3 Improving Sample E�ciency with Latent Goal Relabeling

To further enable sample-e�cient learning in the real world, we use the VAE to relabel
goals. Note that we can optimize Equation (2.2) using any valid (s, a, s0,g, r) tuple. If we
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could artificially generate these tuples, then we could train our entire RL algorithm without
collecting any data. Unfortunately, we do not know the system dynamics, and therefore have
to sample transitions (s, a, s0) by interacting with the world. However, we have the freedom
to relabel the goal and reward synthetically. So if we have a mechanism for generating goals
and computing rewards, then given (s, a, s0), we can generate a new goal g and new reward
r(s, a, s0,g) to produce a new tuple (s, a, s0,g, r). By artificially generating and recomputing
rewards, we can convert a single (s, a, s0) transition into potentially infinitely many valid
training datums.

For image-based tasks, this procedure would require generating goal images, an onerous
task on its own. However, our reinforcement learning algorithm operates directly in the latent
space for goals and rewards. So rather than generating goals g, we generate latent goals zg
by sampling from the VAE prior p(z). We then recompute rewards using Equation (3.1). By
retroactively relabeling the goals and rewards, we obtain much more data to train our value
function. This sampling procedure is made possible by our use of a latent variable model,
which is explicitly trained so that sampling from the latent distribution is straightforward.

In practice, the distribution of latents will not exactly match the prior. To mitigate this
distribution mismatch, we use a fitted prior when sampling from the prior: we fit a diagonal
Gaussian to the latent encodings of the VAE training data, and use this fitted prior in place
of the unit Gaussian prior.

Retroactively generating goals is also explored in tabular domains by Kaelbling [104] and
in continuous domains by Andrychowicz et al. [4] using hindsight experience replay (HER).
However, HER is limited to sampling goals seen along a trajectory, which greatly limits the
number and diversity of goals with which one can relabel a given transition. Our final method
uses a mixture of the two strategies: half of the goals are generated from the prior and
half from goals use the “future” strategy described in Andrychowicz et al. [4]. We show in
Section 3.1.2 that relabeling the goal with samples from the VAE prior results in significantly
better sample-e�ciency.

3.1.1.4 Automated Goal-Generation for Exploration

If we do not know which particular goals will be provided at test time, we would like our RL
agent to carry out a self-supervised “practice” phase during training, where the algorithm
proposes its own goals, and then practices how to reach them. Since the VAE prior represents
a distribution over latent goals and state observations, we again sample from this distribution
to obtain plausible goals. After sampling a goal latent from the prior zg ⇠ p(z), we give this
to our policy ⇡(z, zg) to collect data.

3.1.1.5 Algorithm Summary

We call the complete algorithm reinforcement learning with imagined goals (RIG) and
summarize it in Algorithm 2. We first collect data with a simple exploration policy, though
any exploration strategy could be used for this stage, including o↵-the-shelf exploration
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Algorithm 2 RIG: Reinforcement learning with imagined goals

Require: VAE encoder q�, VAE decoder p✓, policy
⇡✓, goal-conditioned value function Qw.

1: Collect D = {s(i)} using exploration policy.
2: Train �-VAE on D by optimizing (2.5).
3: Fit prior p(z) to latent encodings {µ�(s(i))}.
4: for n = 0, ..., N � 1 episodes do
5: Sample latent goal from prior zg ⇠ p(z).
6: Sample initial state s0 ⇠ E.
7: for t = 0, ..., H � 1 steps do
8: Get action at = ⇡✓(e(st), zg) + noise.
9: Get next state st+1 ⇠ p(· | st,at).
10: Store (st,at, st+1, zg) into replay bu↵er R.
11: Sample transition (s,a, s0, zg) ⇠ R.
12: Encode z = e(s), z0 = e(s0).

13: (Probability 0.5) replace zg with z0g ⇠ p(z).

14: Compute new reward r = �||z0 � zg||.
15: Minimize (2.2) using (z,a, z0, zg, r).
16: end for
17: for t = 0, ..., H � 1 steps do
18: for i = 0, ..., k � 1 steps do
19: Sample future state shi , t < hi  H � 1.
20: Store (st,at, st+1, e(shi)) into R.
21: end for
22: end for
23: Fine-tune �-VAE every K episodes on mixture

of D and R.
24: end for

bonuses [166, 13] or unsupervised reinforcement learning methods [58, 66]. Then, we train a
VAE latent variable model on state observations and finetune it over the course of training.
We use this latent variable model for multiple purposes: We sample a latent goal zg from
the model and condition the policy on this goal. We embed all states and goals using the
model’s encoder. When we train our goal-conditioned value function, we resample goals from
the prior and compute rewards in the latent space using Equation (3.1). Any RL algorithm
that trains Q-functions could be used, and we use TD3 [71] in our implementation.

3.1.2 Experiments

Our experiments address the following questions:

1. How does our method compare to prior model-free RL algorithms in terms of sample

Figure 3.2: (Left) The simulated pusher, door opening, and pick-and-place environments are
pictured. (Right) Test rollouts from our learned policy on the three pushing environments. Each
row is one rollout. The right two columns show a goal image g and its VAE reconstruction ĝ. The
images to their left show frames from a trajectory to reach the given goal.
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e�ciency and performance, when learning continuous control tasks from images?

2. How critical is each component of our algorithm for e�cient learning?

3. Does our method work on tasks where the state space cannot be easily specified ahead
of time, such as tasks that require interaction with variable numbers of objects?

4. Can our method scale to real world vision-based robotic control tasks?

For the first two questions, we evaluate our method against a number of prior algorithms
and ablated versions of our approach on a suite of the following simulated tasks. Visual
Reacher : a MuJoCo [206] environment with a 7-dof Sawyer arm reaching goal positions. The
arm is shown the left of Figure 3.2. The end-e↵ector (EE) is constrained to a 2-dimensional
rectangle parallel to a table. The action controls EE velocity within a maximum velocity.
Visual Pusher : a MuJoCo environment with a 7-dof Sawyer arm and a small puck on a table
that the arm must push to a target push. Visual Multi-Object Pusher : a copy of the Visual
Pusher environment with two pucks. Visual Door : a Sawyer arm with a door it can attempt
to open by latching onto the handle. Visual Pick and Place: a Sawyer arm with a small
ball and an additional dimension of control for opening and closing the gripper. Detailed
descriptions of the environments are provided in the Supplementary Material.

Solving these tasks directly from images poses a challenge since the controller must learn
both perception and control. The evaluation metric is the distance of objects (including the
arm) to their respective goals. To evaluate our policy, we set the environment to a sampled
goal position, capture an image, and encode the image to use as the goal. Although we use
the ground-truth positions for evaluation, we do not use the ground-truth positions for
training the policies. The only inputs from the environment that our algorithm receives
are the image observations. For Visual Reacher, we pretrained the VAE with 100 images.
For other tasks, we used 10,000 images.

We compare our method with the following prior works. L&R: Lange and Riedmiller [125]
trains an autoencoder to handle images. DSAE : Deep spatial autoencoders [64] learns a
spatial autoencoder and uses guided policy search [134] to achieve a single goal image. HER:
Hindsight experience replay [4] utilizes a sparse reward signal and relabeling trajectories
with achieved goals. Oracle: RL with direct access to state information for observations and
rewards.

To our knowledge, no prior work demonstrates policies that can reach a variety of goal
images without access to a true-state reward function, and so we needed to make modifications
to make the comparisons feasible. L&R assumes a reward function from the environment.
Since we have no state-based reward function, we specify the reward function as distance in
the autoencoder latent space. HER does not embed inputs into a latent space but instead
operates directly on the input, so we use pixel-wise mean squared error (MSE) as the metric.
DSAE is trained only for a single goal, so we allow the method to generalize to a variety
of test goal images by using a goal-conditioned Q-function. To make the implementations

2In all our simulation results, each plot shows a 95% confidence interval of the mean across 5 seeds.
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Figure 3.3: Simulation results, final distance to goal vs simulation steps2. RIG (red) consistently
outperforms the baselines, except for the oracle which uses ground truth object state for observations
and rewards. On the hardest tasks, only our method and the oracle discover viable solutions.

comparable, we use the same o↵-policy algorithm, TD3 [71], to train L&R, HER, and our
method. Unlike our method, prior methods do not specify how to select goals during training,
so we favorably give them real images as goals for rollouts, sampled from the same distribution
that we use to test.

Figure 3.4: Reward type
ablation results. RIG (red),
which uses latent Euclidean
distance, outperforms the
other methods.

We see in Figure 3.3 that our method can e�ciently learn
policies from visual inputs to perform simulated reaching and
pushing, without access to the object state. Our approach
substantially outperforms the prior methods, for which the
use of image goals and observations poses a major challenge.
HER struggles because pixel-wise MSE is hard to optimize.
Our latent-space rewards are much better shaped and allow us
to learn more complex tasks. Finally, our method is close to
the state-based “oracle” method in terms of sample e�ciency
and performance, without having any access to object state.
Notably, in the multi-object environment, our method actually
outperforms the oracle, likely because the state-based reward
contains local minima. Overall, these result show that our
method is capable of handling raw image observations much
more e↵ectively than previously proposed goal-conditioned
RL methods. Next, we perform ablations to evaluate our
contributions in isolation. Results on Visual Pusher are shown, and see Appendix C.1.1 for
experiments on all three simulated environments.
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Figure 3.5: Training curve for relabeling
ablation. We see that the RIG-style rela-
beling that relabels with both future and
self-generated goals performs the best.

Figure 3.6: Training curve for learning with
varying number of objects. We see that RIG
makes progress on this task, which does not
length itself to a fix-length state representa-
tion.

Reward Specification Comparison We evaluate how e↵ective distance in the VAE latent
space is for the Visual Pusher task. We keep our method the same, and only change the
reward function that we use to train the goal-conditioned valued function. We include the
following methods for comparison: Latent Distance, which uses the reward used in RIG, i.e.
A = I in Equation (3.1); Log Probability, which uses the Mahalanobis distance in Equation
(3.1), where A is the precision matrix of the encoder; and Pixel MSE, which uses mean-squared
error (MSE) between state and goal in pixel space. 3 In Figure 3.4, we see that latent distance
significantly outperforms log probability. We suspect that small variances of the VAE encoder
results in drastically large rewards, making the learning more di�cult. We also see that
latent distances results in faster learning when compared to pixel MSE.

Relabeling Strategy Comparison As described in Section 3.1.1.3, our method uses a
novel goal relabeling method based on sampling from the generative model. To isolate how
much our new goal relabeling method contributes to our algorithm, we vary the resampling
strategy while fixing other components of our algorithm. The resampling strategies that we
consider are: Future, relabeling the goal for a transition by sampling uniformly from future
states in the trajectory as done in Andrychowicz et al. [4]; VAE, sampling goals from the
VAE only; RIG, relabeling goals with probability 0.5 from the VAE and probability 0.5 using
the future strategy; and None, no relabeling. In Figure 3.5, we see that sampling from the
VAE and Future is significantly better than not relabeling at all. In RIG, we use an equal
mixture of the VAE and Future sampling strategies, which performs best by a large margin.
?? C.1.1.1 contains results on all simulated environments, and ?? C.1.1.4 considers relabeling
strategies with a known goal distribution.

3To compute the pixel MSE for a sampled latent goal, we decode the goal latent using the VAE decoder,
p , to generate the corresponding goal image.
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Figure 3.7: (Left) Our method compared to the HER baseline and oracle on a real-world visual
reaching task. (Middle) Our robot setup is pictured. (Right) Test rollouts of our learned policy.

Puck Distance to Goal (cm)

RIG HER

4.5± 2.5 14.9± 5.4

Figure 3.8: (Left) The learning curve for real-world pushing. (Middle) Our robot pushing setup is
pictured, with frames from test rollouts of our learned policy. (Right) Our method compared to the
HER baseline on the real-world visual pushing task. We evaluated the performance of each method
by manually measuring the distance between the goal position of the puck and final position of the
puck for 15 test rollouts, reporting mean and standard deviation.

Learning with Variable Numbers of Objects A major advantage of working directly
from pixels is that the policy input can easily represent combinatorial structure in the
environment, which would be di�cult to encode into a fixed-length state vector even if a
perfect perception system were available. For example, if a robot has to interact with di↵erent
combinations and numbers of objects, picking a single MDP state representation would be
challenging, even with access to object poses. By directly processing images for both the
state and the goal, no modification is needed to handle the combinatorial structure: the
number of pixels always remains the same, regardless of how many objects are in the scene.

We demonstrate that our method can handle this di�cult scenario by evaluating on a task
where the environment, based on the Visual Multi-Object Pusher, randomly contains zero,
one, or two objects in each episode during testing. During training, each episode still always
starts with both objects in the scene, so the experiments tests whether a trained policy can
handle variable numbers of objects at test time. Figure 3.6 shows that our method can learn
to solve this task successfully, without decrease in performance from the base setting where
both objects are present (in Figure 3.3). Developing and demonstrating algorithms that solve
tasks with varied underlying structure is an important step toward creating autonomous
agents that can handle the diversity of tasks present “in the wild.”
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3.1.2.1 Visual RL with Physical Robots

RIG is a practical and straightforward algorithm to apply to real physical systems: the
e�ciency of o↵-policy learning with goal relabeling makes training times manageable, while
the use of image-based rewards through the learned representation frees us from the burden
of manually design reward functions, which itself can require hand-engineered perception
systems [187]. We trained policies for visual reaching and pushing on a real-world Sawyer
robotic arm, shown in Figure 3.7. The control setup matches Visual Reacher and Visual
Pusher respectively, meaning that the only input from the environment consists of
camera images.

We see in Figure 3.7 that our method is applicable to real-world robotic tasks, almost
matching the state-based oracle method and far exceeding the baseline method on the reaching
task. Our method needs just 10,000 samples or about an hour of real-world interaction time
to solve visual reaching.

Real-world pushing results are shown in Figure 3.8. To solve visual pusher, which is more
visually complicated and requires reasoning about the contact between the arm and object,
our method requires about 25,000 samples, which is still a reasonable amount of real-world
training time. Note that unlike previous results, we do not have access to the true puck
position during training so for the learning curve we report test episode returns on the VAE
latent distance reward. We see RIG making steady progress at optimizing the latent distance
as learning proceeds.

These experiments demonstrate that RIG is a promising method for enabling agents to
autonomously acquire goal-directed skills. Because RIG uses the generative model to sample
new goals for exploration, one limitation of RIG is that the resulting exploration is sensitive to
the data used to train the generative model. On more complex domains, a simple exploration
strategy as mentioned in Section 3.1.1.5 is unlikely to be su�cient for generative diverse data
that will encourage the In other words, although RIG enables an agent to generate new goals
for autonomous exploration, it does not guarantee that the generated goals will be interested,
nor does it formally define what constitutes “interesting” goals. We address this limitation in
the next section.

3.2 Skew-Fit: Setting the Right Goals

How do we design an unsupervised RL algorithm that automatically explores the environment
and iteratively distills this experience into general-purpose policies that can accomplish new
user-specified tasks at test time? In Section 3.1, we presented RIG, an algorithm that enables
an RL agent to autonomously generate goals and practice reaching them. At test time, the
trained policy can reach some user-specified goals without any additional training, but the
policy’s test time performance depends on the set of goals that the policy autonomously
generates during the unsupervised phase of learning.

In the absence of any prior knowledge, an e↵ective exploration scheme is one that visits
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Figure 3.9: Left: Robot learning to open a door with Skew-Fit, without any task reward. Right:
Samples from a goal distribution when using (a) uniform and (b) Skew-Fit sampling. When used as
goals, the diverse samples from Skew-Fit encourage the robot to practice opening the door more
frequently.

as many states as possible, allowing a policy to autonomously prepare for user-specified tasks
that it might see at test time. We can formalize the problem of visiting as many states as
possible as one of maximizing the state entropy H(s) under the current policy.5 Unfortunately,
optimizing this objective alone does not result in a policy that can solve new tasks: it only
knows how to maximize state entropy. In other words, to develop principled unsupervised
RL algorithms that result in useful policies, maximizing H(s) is not enough. We need a
mechanism that allows us to reuse the resulting policy to achieve new tasks at test-time.

We argue that this can be accomplished by performing goal-directed exploration: a policy
should autonomously visit as many states as possible, but after autonomous exploration, a
user should be able to reuse this policy by giving it a goal G that corresponds to a state that
it must reach. While not all test-time tasks can be expressed as reaching a goal state, a wide
range of tasks can be represented in this way. Mathematically, the goal-conditioned policy
should minimize the conditional entropy over the states given a goal, H(s | G), so that there
is little uncertainty over its state given a commanded goal. This objective provides us with a
principled way to train a policy to explore all states (maximize H(s)) such that the state
that is reached can be determined by commanding goals (minimize H(s | G)).

Directly optimizing this objective is in general intractable, since it requires optimizing
the entropy of the marginal state distribution, H(s). However, we can sidestep this issue by
noting that the objective is the mutual information between the state and the goal, I(s;G),
which can be written as:

H(s)�H(s|G) = I(s;G) = H(G)�H(G|s). (3.2)

Equation (3.2) thus gives an equivalent objective for an unsupervised RL algorithm: the
agent should set diverse goals, maximizing H(G), and learn how to reach them, minimizing
H(G | s).

5We consider the distribution over terminal states in a finite horizon task and believe this work can be
extended to infinite horizon stationary distributions.
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While learning to reach goals is the typical objective studied in goal-conditioned RL [104, 4],
setting goals that have maximum diversity is crucial for e↵ectively learning to reach all possible
states. Acquiring such a maximum-entropy goal distribution is challenging in environments
with complex, high-dimensional state spaces, where even knowing which states are valid
presents a major challenge. For example, in image-based domains, a uniform goal distribution
requires sampling uniformly from the set of realistic images, which in general is unknown a
priori.

This chapter presents the following contributions. First, we propose a principled objective
for unsupervised RL, based on Equation (3.2). While a number of prior works ignore the
H(G) term, we argue that jointly optimizing the entire quantity is needed to develop e↵ective
exploration. Second, we present a general algorithm called Skew-Fit and prove that under
regularity conditions Skew-Fit learns a sequence of generative models that converges to a
uniform distribution over the goal space, even when the set of valid states is unknown (e.g.,
as in the case of images). Third, we describe a concrete implementation of Skew-Fit and
empirically demonstrate that this method achieves state of the art results compared to a
large number of prior methods for goal reaching with visually indicated goals, including a
real-world manipulation task, which requires a robot to learn to open a door from scratch in
about five hours, directly from images, and without any manually-designed reward function.

3.2.1 Problem Formulation

To ensure that an unsupervised reinforcement learning agent learns to reach all possible states
in a controllable way, we maximize the mutual information between the state s and the goal
G, I(s;G), as stated in Equation (3.2). This section discusses how to optimize Equation (3.2)
by splitting the optimization into two parts: minimizing H(G | s) and maximizing H(G).

3.2.1.1 Minimizing H(G | s): Goal-Conditioned Reinforcement Learning

For simplicity, in this chappter we will assume in our derivation that the goal space matches
the state space, such that G = S, though the approach extends trivially to the case where G

is a hand-specified subset of S, such as the global XY position of a robot.
Goal-reaching can be formulated as minimizingH(G | s), and many practical goal-reaching

algorithms [104, 138, 190, 4, 155, 172, 67] can be viewed as approximations to this objective
by observing that the optimal goal-conditioned policy will deterministically reach the goal,
resulting in a conditional entropy of zero: H(G | s) = 0. See Appendix C.2.5 for more details.
Our method may thus be used in conjunction with any of these prior goal-conditioned RL
methods in order to jointly minimize H(G | s) and maximize H(G).

3.2.1.2 Maximizing H(G): Setting Diverse Goals

We now turn to the problem of setting diverse goals or, mathematically, maximizing the
entropy of the goal distribution H(G). Let US be the uniform distribution over S, where we
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assume S has finite volume so that the uniform distribution is well-defined. Let qG� be the goal
distribution from which goals G are sampled, parameterized by �. Our goal is to maximize
the entropy of qG� , which we write as H(G). Since the maximum entropy distribution over
S is the uniform distribution US , maximizing H(G) may seem as simple as choosing the
uniform distribution to be our goal distribution: qG� = US . However, this requires knowing
the uniform distribution over valid states, which may be di�cult to obtain when S is a subset
of Rn, for some n. For example, if the states correspond to images viewed through a robot’s
camera, S corresponds to the (unknown) set of valid images of the robot’s environment, while
Rn corresponds to all possible arrays of pixel values of a particular size. In such environments,
sampling from the uniform distribution Rn is unlikely to correspond to a valid image of the
real world. Sampling uniformly from S would require knowing the set of all possible valid
images, which we assume the agent does not know when starting to explore the environment.

While we cannot sample arbitrary states from S, we can sample states by performing
goal-directed exploration. To derive and analyze our method, we introduce a simple model
of this process: a goal G ⇠ q

G
� is sampled from the goal distribution q

G
� , and then the

goal-conditioned policy ⇡ attempts to achieve this goal, which results in a distribution of
terminal states s 2 S. We abstract this entire process by writing the resulting marginal
distribution over s as p

S
�(s) =̇

R
G
q
G
� (G)p(s | G)dG, where the subscript � indicates that

the marginal pS� depends indirectly on q
G
� via the goal-conditioned policy ⇡. We assume

that pS� has full support, which can be accomplished with an epsilon-greedy goal reaching
policy in a communicating MDP. We also assume that the entropy of the resulting state
distribution H(pS�) is no less than the entropy of the goal distribution H(qG� ). Without this
assumption, a policy could ignore the goal and stay in a single state, no matter how diverse
and realistic the goals are. 6 This simplified model allows us to analyze the behavior of our
goal-setting scheme separately from any specific goal-reaching algorithm. We will however
show in Section 3.2.4 that we can instantiate this approach into a practical algorithm that
jointly learns the goal-reaching policy. In summary, our goal is to acquire a maximum-entropy
goal distribution q

G
� over valid states S, while only having access to state samples from p

S
� .

3.2.2 Skew-Fit: Learning a Maximum Entropy Goal Distribution

Our method, Skew-Fit, learns a maximum entropy goal distribution q
G
� using samples collected

from a goal-conditioned policy. We analyze the algorithm and show that Skew-Fit maximizes
the goal distribution entropy, and present a practical instantiation for unsupervised deep RL.

3.2.2.1 Skew-Fit Algorithm

To learn a uniform distribution over valid goal states, we present a method that iteratively
increases the entropy of a generative model qG� . In particular, given a generative model

6Note that this assumption does not require that the entropy of pS� is strictly larger than the entropy of

the goal distribution, qG� .
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q
G
�t at iteration t, we want to train a new generative model, qG�t+1

that has higher entropy.

While we do not know the set of valid states S, we could sample states sn
iid
⇠ p

S
�t using the

goal-conditioned policy, and use the samples to train q
G
�t+1

. However, there is no guarantee
that this would increase the entropy of qG�t+1

.
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Figure 3.10: Our method, Skew-Fit, samples goals for goal-conditioned RL. We sample states
from our replay bu↵er, and give more weight to rare states. We then train a generative model qG� t+1

with the weighted samples. By sampling new states with goals proposed from this new generative
model, we obtain a higher entropy state distribution in the next iteration.

The intuition behind our method is simple: rather than fitting a generative model to these
samples sn, we skew the samples so that rarely visited states are given more weight. See
Figure 3.10 for a visualization of this process. How should we skew the samples if we want
to maximize the entropy of qG�t+1

? If we had access to the density of each state, pS�t(s), then
we could simply weight each state by 1/pS�t(s). We could then perform maximum likelihood
estimation (MLE) for the uniform distribution by using the following importance sampling
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(IS) loss to train �t+1:

L(�) = Es⇠US

⇥
log qG� (s)

⇤

= Es⇠pS�t

"
US(s)

p
S
�t
(s)

log qG� (s)

#

/ Es⇠pS�t

"
1

p
S
�t
(s)

log qG� (s)

#

where we use the fact that the uniform distribution US(s) has constant density for all states
in S. However, computing this density p

S
�t(s) requires marginalizing out the MDP dynamics,

which requires an accurate model of both the dynamics and the goal-conditioned policy.
We avoid needing to model the entire MDP process by approximating p

S
�t(s) with our

previous learned generative model: pS�t(s) ⇡ q
G
�t(s). We therefore weight each state by the

following weight function

wt,↵(s) =̇ q
G
�t(s)

↵
, ↵ < 0. (3.3)

where ↵ is a hyperparameter that controls how heavily we weight each state. If our approx-
imation q

G
�t is exact, we can choose ↵ = �1 and recover the exact IS procedure described

above. If ↵ = 0, then this skew step has no e↵ect. By choosing intermediate values of ↵, we
trade o↵ the reliability of our estimate q

G
�t(s) with the speed at which we want to increase

the goal distribution entropy.

Variance Reduction As described, this procedure relies on IS, which can have high
variance, particularly if qG�t(s) ⇡ 0. We therefore choose a class of generative models where
the probabilities are prevented from collapsing to zero, as we will describe in Section 3.2.3
where we provide generative model details. To further reduce the variance, we train q

G
�t+1

with
sampling importance resampling (SIR) [185] rather than IS. Rather than sampling from p

S
�t

and weighting the update from each sample by wt,↵, SIR explicitly defines a skewed empirical
distribution as

pskewedt(s) =̇
1

Z↵
wt,↵(s)�(s 2 {sn}

N
n=1

) (3.4)

Z↵ =
NX

n=1

wt,↵(sn), sn
iid
⇠ p

S
�t ,

where � is the indicator function and Z↵ is the normalizing coe�cient. We note that computing
Z↵ adds little computational overhead, since all of the weights already need to be computed.
We then fit the generative model at the next iteration q

G
�t+1

to pskewedt using standard MLE.
We found that using SIR resulted in significantly lower variance than IS. See ?? C.2.2.2 for
this comparision.
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Goal Sampling Alternative Because q
G
�t+1
⇡ pskewedt , at iteration t+ 1, one can sample

goals from either qG�t+1
or pskewedt . Sampling goals from pskewedt may be preferred if sampling

from the learned generative model qG�t+1
is computationally or otherwise challenging. In either

case, one still needs to train the generative model qG�t to create pskewedt . In our experiments,
we found that both methods perform well.

Summary Overall, Skew-Fit collects states from the environment and resamples each state
in proportion to Equation (3.3) so that low-density states are resampled more often. Skew-Fit
is shown in Figure 3.10 and summarized in Algorithm 3. We now discuss conditions under
which Skew-Fit converges to the uniform distribution.

Algorithm 3 Skew-Fit

1: for Iteration t = 1, 2, ... do
2: Collect N states {sn}Nn=1

by sampling goals from q
G
�t (or pskewedt�1

) and running goal-
conditioned policy.

3: Construct skewed distribution pskewedt (Equation (3.3) and Equation (3.4)).
4: Fit qG�t+1

to skewed distribution pskewedt using MLE.
5: end for

3.2.2.2 Skew-Fit Analysis

This section provides conditions under which q
G
�t converges in the limit to the uniform

distribution over the state space S. We consider the case where N !1, which allows us to
study the limit behavior of the goal distribution pskewedt . Our most general result is stated as
follows:

Lemma 1. Let S be a compact set. Define the set of distributions Q = {p : support(p) ✓ S}.
Let F : Q 7! Q be continuous with respect to the pseudometric dH(p, q) =̇ |H(p)�H(q)| and
H(F(p)) � H(p) with equality if and only if p is the uniform probability distribution on S,
denoted as US. Define the sequence of distributions P = (p1, p2, . . . ) by starting with any
p1 2 Q and recursively defining pt+1 = F(pt). The sequence P converges to US with respect
to dH. In other words, limt!0 |H(pt)�H(US)|! 0.

Proof. See ?? C.2.1.1.

We will apply Lemma 1 to be the map from pskewedt to pskewedt+1 to show that pskewedt

converges to US . If we assume that the goal-conditioned policy and generative model learning
procedure are well behaved (i.e., the maps from q

G
�t to p

S
�t and from pskewedt to q

G
�t+1

are
continuous), then to apply Lemma 1, we only need to show that H(pskewedt) � H(pS�t) with
equality if and only if pS�t = US . For the simple case when q

G
�t = p

S
�t identically at each
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iteration, we prove the convergence of Skew-Fit true for any value of ↵ 2 [�1, 0) in ?? C.2.1.3.
However, in practice, qG�t only approximates pS�t . To address this more realistic situation, we
prove the following result:

Lemma 2. Given two distribution p
S
�t and q

G
�t where p

S
�t ⌧ q

G
�t

7 and

Covs⇠pS�t

⇥
log pS�t(s), log q

G
�t(s)

⇤
> 0, (3.5)

define the pskewedt as in Equation (3.4) and take N !1. Let H↵(↵) be the entropy of pskewedt
for a fixed ↵. Then there exists a constant a < 0 such that for all ↵ 2 [a, 0),

H(pskewedt) = H↵(↵) > H(pS�t).

Proof. See ?? C.2.1.2.

This lemma tells us that our generative model qG�t does not need to exactly fit the sampled
states. Rather, we merely need the log densities of qG�t and p

S
�t to be correlated, which we

expect to happen frequently with an accurate goal-conditioned policy, since p
S
�t is the set of

states seen when trying to reach goals from q
G
�t . In this case, if we choose negative values of ↵

that are small enough, then the entropy of pskewedt will be higher than that of pS�t . Empirically,
we found that ↵ values as low as ↵ = �1 performed well.

In summary, pskewedt converges to US under certain assumptions. Since we train each
generative model qG�t+1

by fitting it to pskewedt with MLE, qG�t will also converge to US .

3.2.3 Training Goal-Conditioned Policies with Skew-Fit

Thus far, we have presented Skew-Fit assuming that we have access to a goal-reaching policy,
allowing us to separately analyze how we can maximize H(G). However, in practice we
do not have access to such a policy, and this section discusses how we concurrently train a
goal-reaching policy.

Maximizing I(s;G) can be done by simultaneously performing Skew-Fit and training
a goal-conditioned policy to minimize H(G | S), or, equivalently, maximize �H(G | S).
Maximizing �H(G | S) requires computing the density log p(G | s), which may be di�cult to
compute without strong modeling assumptions. However, for any distribution q, the following
lower bound on �H(G | S):

�H(G | S) = E(G,s)⇠q [log q(G | s)] +DKL

⇣
p

���
���q
⌘

� E(G,s)⇠q [log q(G | s)] ,

where DKL denotes Kullback–Leibler divergence as discussed by Barber and Agakov [9]. Thus,
to minimize H(G | S), we train a policy to maximize the reward

r(s,G) = log q(G | s).

7
p⌧ q means that p is absolutely continuous with respect to q, i.e. p(s) = 0 =) q(s) = 0.
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Figure 3.11: Illustrative example of Skew-Fit on a 2D navigation task. (Left) Visited state plot for
Skew-Fit with ↵ = �1 and uniform sampling, which corresponds to ↵ = 0. (Right) The entropy of
the goal distribution per iteration, mean and standard deviation for 9 seeds. Entropy is calculated
via discretization onto an 11x11 grid. Skew-Fit steadily increases the state entropy, reaching full
coverage over the state space.

The RL algorithm we use is reinforcement learning with imagined goals (RIG) [155],
though in principle any goal-conditioned method could be used. RIG is an e�cient o↵-policy
goal-conditioned method that solves vision-based RL problems in a learned latent space.
In particular, RIG fits a �-VAE [94] and uses it to encode observations and goals into a
latent space, which it uses as the state representation. RIG also uses the �-VAE to compute
rewards, log q(G | s). Unlike RIG, we use the goal distribution from Skew-Fit to sample
goals for exploration and for relabeling goals during training [4]. Since RIG already trains a
generative model over states, we reuse this �-VAE for the generative model qG� of Skew-Fit.
To make the most use of the data, we train q

G
� on all visited state rather than only the

terminal states, which we found to work well in practice. To prevent the estimated state
likelihoods from collapsing to zero, we model the posterior of the �-VAE as a multivariate
Gaussian distribution with a fixed variance and only learn the mean. We summarize RIG
and provide details for how we combine Skew-Fit and RIG in ?? C.2.3.4 and describe how
we estimate the likelihoods given the �-VAE in ?? C.2.3.1.

3.2.4 Experiments

Our experiments study the following questions: (1) Does Skew-Fit empirically result in
a goal distribution with increasing entropy? (2) Does Skew-Fit improve exploration for
goal-conditioned RL? (3) How does Skew-Fit compare to prior work on choosing goals for
vision-based, goal-conditioned RL? (4) Can Skew-Fit be applied to a real-world, vision-based
robot task?

Does Skew-Fit Maximize Entropy? To see the e↵ects of Skew-Fit on goal distribution
entropy in isolation of learning a goal-reaching policy, we study an idealized example where
the policy is a near-perfect goal-reaching policy. The environment consists of four rooms [201].
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Figure 3.12: (Left) Ant navigation environment. (Right) Evaluation on reaching target XY
position. We show the mean and standard deviation of 6 seeds. Skew-Fit significantly outperforms
prior methods on this exploration task.

At the beginning of an episode, the agent begins in the bottom-right room and samples a
goal from the goal distribution q

G
�t . To simulate stochasticity of the policy and environment,

we add a Gaussian noise with standard deviation of 0.06 units to this goal, where the entire
environment is 11⇥ 11 units. The policy reaches the state that is closest to this noisy goal
and inside the rooms, giving us a state sample sn for training q

G
�t . Due to the relatively small

noise, the agent cannot rely on this stochasticity to explore the di↵erent rooms and must
instead learn to set goals that are progressively farther and farther from the initial state. We
compare multiple values of ↵, where ↵ = 0 corresponds to not using Skew-Fit. The �-VAE
hyperparameters used to train q

G
�t are given in ?? C.2.3.2. As seen in Figure 3.11, sampling

uniformly from previous experience (↵ = 0) to set goals results in a policy that primarily sets
goal near the initial state distribution. In contrast, Skew-Fit results in quickly learning a
high entropy, near-uniform distribution over the state space.

Exploration with Skew-Fit We next evaluate Skew-Fit while concurrently learning a
goal-conditioned policy on a task with state inputs, which enables us study exploration
performance independently of the challenges with image observations. We evaluate on a
task that requires training a simulated quadruped “ant” robot to navigate to di↵erent XY
positions in a labyrinth, as shown in Figure 3.12. The reward is the negative distance to the
goal XY-position, and additional environment details are provided in Appendix C.2.4. This
task presents a challenge for goal-directed exploration: the set of valid goals is unknown due
to the walls, and random actions do not result in exploring locations far from the start. Thus,
Skew-Fit must set goals that meaningfully explore the space while simultaneously learning to
reach those goals.

We use this domain to compare Skew-Fit to a number of existing goal-sampling methods.
We compare to the relabeling scheme described in the hindsight experience replay (labeled
HER). We compare to curiosity-driven prioritization (Ranked-Based Priority) [232], a
variant of HER that samples goals for relabeling based on their ranked likelihoods. Held et al.
[93] samples goals from a GAN based on the di�culty of reaching the goal. We compare
against this method by replacing q

G
� with the GAN and label it AutoGoal GAN. We also
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Figure 3.13: We evaluate on these continuous control tasks, from left to right: Visual Door, a
door opening task; Visual Pickup, a picking task; Visual Pusher, a pushing task; and Real World
Visual Door, a real world door opening task. All tasks are solved from images and without any
task-specific reward. See Appendix C.2.4 for details.

compare to the non-parametric goal proposal mechanism proposed by [217], which we label
DISCERN-g. Lastly, to demonstrate the di�culty of the exploration challenge in these
domains, we compare to #-Exploration [203], an exploration method that assigns bonus
rewards based on the novelty of new states. We train the goal-conditioned policy for each
method using soft actor critic (SAC) [84]. Implementation details of SAC and the prior works
are given in ?? C.2.3.3.

We see in Figure 3.12 that Skew-Fit is the only method that makes significant progress
on this challenging labyrinth locomotion task. The prior methods on goal-sampling primarily
set goals close to the start location, while the extrinsic exploration reward in #-Exploration
dominated the goal-reaching reward. These results demonstrate that Skew-Fit accelerates
exploration by setting diverse goals in tasks with unknown goal spaces.

Vision-Based Continuous Control Tasks We now evaluate Skew-Fit on a variety of
image-based continuous control tasks, where the policy must control a robot arm using only
image observations, there is no state-based or task-specific reward, and Skew-Fit must directly
set image goals. We test our method on three di↵erent image-based simulated continuous
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control tasks released by the authors of RIG [155]: Visual Door, Visual Pusher, and Visual
Pickup. These environments contain a robot that can open a door, push a puck, and lift
up a ball to di↵erent configurations, respectively. To our knowledge, these are the only
goal-conditioned, vision-based continuous control environments that are publicly available
and experimentally evaluated in prior work, making them a good point of comparison. See
Figure 3.13 for visuals and Appendix C.2.3 for environment details. The policies are trained
in a completely unsupervised manner, without access to any prior information about the
image-space or any pre-defined goal-sampling distribution. To evaluate their performance,
we sample goal images from a uniform distribution over valid states and report the agent’s
final distance to the corresponding simulator states (e.g., distance of the object to the target
object location), but the agent never has access to this true uniform distribution nor the
ground-truth state information during training. While this evaluation method is only practical
in simulation, it provides us with a quantitative measure of a policy’s ability to reach a broad
coverage of goals in a vision-based setting.

We compare Skew-Fit to a number of existing methods on this domain. First, we
compare to the methods described in the previous experiment (HER, Rank-Based Priority,
#-Exploration, Autogoal GAN, and DISCERN-g). These methods that we compare to
were developed in non-vision, state-based environments. To ensure a fair comparison across
methods, we combine these prior methods with a policy trained using RIG. We additionally
compare to Hazan et al. [91], an exploration method that assigns bonus rewards based on the
likelihood of a state (labeled Hazan et al.). Next, we compare to RIG without Skew-Fit.
Lastly, we compare to DISCERN [217], a vision-based method which uses a non-parametric
clustering approach to sample goals and an image discriminator to compute rewards.

We see in Figure 3.14 that Skew-Fit significantly outperforms prior methods both in
terms of task performance and sample complexity. The most common failure mode for prior
methods is that the goal distributions collapse, resulting in the agent learning to reach only a
fraction of the state space, as shown in Figure 3.9. For comparison, additional samples of qG�
when trained with and without Skew-Fit are shown in ?? C.2.2.3. Those images show that
without Skew-Fit, qG� produces a small, non-diverse distribution for each environment: the
object is in the same place for pickup, the puck is often in the starting position for pushing,
and the door is always closed. In contrast, Skew-Fit proposes goals where the object is in the
air and on the ground, where the puck positions are varied, and the door angle changes.

We can see the e↵ect of these goal choices by visualizing more example rollouts for RIG
and Skew-Fit. These visuals, shown in Figure C.10 of ?? C.2.2.3, show that RIG only learns
to reach states close to the initial position, while Skew-Fit learns to reach the entire state
space. For a quantitative comparison, Figure 3.15 shows the cumulative total exploration
pickups for each method. From the graph, we see that many methods have a near-constant
rate of object lifts throughout all of training. Skew-Fit is the only method that significantly
increases the rate at which the policy picks up the object during exploration, suggesting that
only Skew-Fit sets goals that encourage the policy to interact with the object.



CHAPTER 3. GENERATING GOALS FOR AUTONOMOUS PRACTICE 47

20. 30. 40. 50. 60. 70.
7imeVtepV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fi
nD

O A
ng

Oe
 D

iff
er

en
Fe

ViVuDO Door 2pening

100. 200. 300.
TiPeVtepV

0.01

0.02

0.03

0.04

0.05

Fi
nD

O 2
bj

eF
t D

iV
tD

nF
e

ViVuDO 2bjeFt 3iFkup

100. 200. 300.
TiPeVtepV

0.04

0.06

0.08

0.10

Fi
nD

l 3
uF

k 
D

iV
tD

nF
e

ViVuDl 3uFk 3uVKing
RIG + SNHw-)it (Ours)
RIG
RIG + # (xSORrDtiRn
RIG + +DzDn Ht DO.
RIG + AutRGRDO GAN
RIG + DISC(RN-g
RIG + +(R
RIG + RDnN-BDsHG PriRrity
DISC(RN

Figure 3.14: Learning curves for simulated continuous control tasks. Lower is better. We show
the mean and standard deviation of 6 seeds and smooth temporally across 50 epochs within each
seed. Skew-Fit consistently outperforms RIG and various prior methods. See text for description of
each method.
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Figure 3.15: Cumulative total pickups during exploration for each method. Prior methods fail
to pay attention to the object: the rate of pickups hardly increases past the first 100 thousand
timesteps. In contrast, after seeing the object picked up a few times, Skew-Fit practices picking up
the object more often by sampling the appropriate exploration goals.

Real-World Vision-Based Robotic Manipulation We also demonstrate that Skew-Fit
scales well to the real world with a door opening task, Real World Visual Door, as shown
in Figure 3.13. While a number of prior works have studied RL-based learning of door
opening [106, 26], we demonstrate the first method for autonomous learning of door opening
without a user-provided, task-specific reward function. As in simulation, we do not provide
any goals to the agent and simply let it interact with the door, without any human guidance
or reward signal. We train two agents using RIG and RIG with Skew-Fit. Every seven and a
half minutes of interaction time, we evaluate on 5 goals and plot the cumulative successes
for each method. Unlike in simulation, we cannot easily measure the di↵erence between the
policy’s achieved and desired door angle. Instead, we visually denote a binary success/failure
for each goal based on whether the last state in the trajectory achieves the target angle. As
Figure 3.16 shows, standard RIG only starts to open the door after five hours of training.
In contrast, Skew-Fit learns to occasionally open the door after three hours of training and
achieves a near-perfect success rate after five and a half hours of interaction. Figure 3.16 also
shows examples of successful trajectories from the Skew-Fit policy, where we see that the
policy can reach a variety of user-specified goals. These results demonstrate that Skew-Fit
is a promising technique for solving real world tasks without any human-provided reward
function. Videos of Skew-Fit solving this task and the simulated tasks can be viewed on our
website. 8

8https://sites.google.com/view/skew-fit
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Figure 3.16: (Top) Learning curve for Real World Visual Door. Skew-Fit results in considerable
sample e�ciency gains over RIG on this real-world task. (Bottom) Each row shows the Skew-Fit
policy starting from state s1 and reaching state s100 while pursuing goal G. Despite being trained
from only images without any user-provided goals during training, the Skew-Fit policy achieves the
goal image provided at test-time, successfully opening the door.

Additional Experiments To study the sensitivity of Skew-Fit to the hyperparameter ↵,
we sweep ↵ across the values [�1,�0.75,�0.5,�0.25, 0] on the simulated image-based tasks.
The results are in Appendix C.2.2 and demonstrate that Skew-Fit works across a large range
of values for ↵, and ↵ = �1 consistently outperform ↵ = 0 (i.e. outperforms no Skew-Fit).
Additionally, Appendix C.2.3 provides a complete description our method hyperparameters,
including network architecture and RL algorithm hyperparameters.

3.3 Conclusion

In this chapter, we presented new RL algorithms that can e�ciently solve goal-conditioned,
vision-based tasks without access to any ground truth state or reward functions. These
methods train a generative model that is used for multiple purposes: we embed the state
and goals using the encoder; we sample from the prior to generate goals for exploration;
we also sample latents to retroactively relabel goals and rewards; and we use distances in
the latent space for rewards to train a goal-conditioned value function. We show that these
components culminate in a sample e�cient algorithm that works directly from vision. As a
result, we are able to apply our method to a variety of simulated visual tasks, including a
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variable-object task that cannot be easily represented with a fixed length vector, as well as
real world robotic tasks. We also presented a formal objective for self-supervised goal-directed
exploration, allowing researchers to quantify and compare progress when designing algorithms
that enable agents to autonomously learn. To optimize this objective, we presented Skew-Fit,
an algorithm for training a generative model to approximate a uniform distribution over an
initially unknown set of valid states, using data obtained via goal-conditioned reinforcement
learning, and our theoretical analysis gives conditions under which Skew-Fit converges to
the uniform distribution. When such a model is used to choose goals for exploration and
to relabeling goals for training, the resulting method results in much better coverage of the
state space, enabling our method to explore e↵ectively. Our experiments show that when
we concurrently train a goal-reaching policy using self-generated goals, Skew-Fit produces
quantifiable improvements on simulated robotic manipulation tasks, and can be used to learn
a door opening skill to reach a 95% success rate directly on a real-world robot, without any
human-provided reward supervision.

This chapter concludes our discussion on generating goals and autonomously practicing
to reach them. Since the original publication of RIG [155] and Skew-Fit [173], a number
of papers have extended and complimented the framework presented here in exciting ways.
For example, Pitis et al. [170] empirically demonstrates that exploration can be accelerated
by much more aggressively skewing the state, i.e. by conceptually setting ↵ to values even
less than �1. Colas et al. [37] demonstrates that using language-based goals enables agents
to generate more out-of-distribution goals by leveraging language’s compositionality. Lee
et al. [130] discusses the use of prior information to match a target distribution rather
than a uniform state distribution. Incorporating modularity into goal setting, analyzing
and accelerating the rate of convergence of these goal-directed exploration methods, and
incorporating prior information are all promising directions for future research.

Goal-conditioned reinforcement learning provides a powerful mechanism for autonomously
acquiring goal-reaching skills. These skills can be reused by simply providing a new goal to a
policy, and in the next chapter, we discuss how we can enable policies to achieve longer-horizon
tasks and optimize new rewards by combining goal-conditioned policies with planning-based
methods.



51

Chapter 4

Reusing Goal-Directed Behavior

Thus far, we have presented methods for acquiring goal-conditioned skills by learning through
direct interaction with the environment. However, solving complex and temporally extended
sequential decision making requires more than just well-honed reactions. Agents that general-
ize e↵ectively to new situations and new tasks must reuse their capabilities and reason about
the consequences of their actions and solve new problems via planning. Accomplishing this
entirely with model-free RL often proves challenging, as purely model-free learning does not
inherently provide for temporal compositionality of skills.

Planning and trajectory optimization algorithms encode this temporal compositionality
by design, but require accurately models with which to plan. When these models are specified
manually, planning can be very powerful, but learning such models presents major obstacles:
in complex environments with high-dimensional observations such as images, direct prediction
of future observations presents a very di�cult modeling problem [17, 162, 145, 31, 107, 7, 129],
and model errors accumulate over time [154], making their predictions inaccurate in precisely
those long-horizon settings where we most need the compositionality of planning methods.
Can we obtain the benefits of temporal compositionality inherent in model-based planning,
without the need to model the environment at the lowest level, in terms of both time and
state representation?

One way to avoid modeling the environment in detail is to plan over abstractions : simplified
representations of states and transitions on which it is easier to construct predictions and
plans. Temporal abstractions allow planning at a coarser time scale, skipping over the high-
frequency details and instead planning over higher-level subgoals, while state abstractions
allow planning over a simpler representation of the state. Both make modeling and planning
easier.

In this chapter, we study how model-free RL, and specifically goal-conditioned model-free
RL, can be used to provide such abstraction for a model-based planner. At first glance, this
might seem like a strange proposition, since model-free RL methods learn value functions and
policies, not models. However, this is precisely what makes them ideal for abstracting away
the complexity in temporally extended tasks with high-dimensional observations: by avoiding
low-level (e.g., pixel-level) prediction, model-free RL can acquire behaviors that manipulate
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these low-level observations without needing to predict them explicitly. This leaves the
planner free to operate at a higher level of abstraction, reasoning about the capabilities of
low-level model-free policies.

We begin by presenting temporal di↵erence models, a method for reusing goal-conditioned
value functions in a planning-based framework for domains with relatively simple state spaces.
We then discuss how to extend this work to more complex observation spaces such as images.

4.1 Temporal Di↵erence Models

To arrive at a method that combines the strengths of model-free and model-based RL, we
study a variant of goal-conditioned value functions [202, 190, 4]. As discussed in Section 2.1,
goal-conditioned value functions learn to predict the value function for every possible goal
state. That is, they answer the following question: what is the expected reward for reaching
a particular state, given that the agent is attempting (as optimally as possible) to reach it?
The particular choice of reward function determines what such a method actually does, but
rewards based on distances to a goal hint at a connection to model-based learning: if we can
predict how easy it is to reach any state from any current state, we must have some kind
of understanding of the underlying “physics.” In fact, for a specific choice of reward and
horizon, the value function corresponds directly to a model, while for larger horizons, it more
closely resembles model-free approaches. Extension toward more model-free learning is thus
achieved by acquiring “multi-step models” that can be used to plan over progressively coarser
temporal resolutions, eventually arriving at a fully model-free formulation.

We presents a new RL algorithm that makes use of this connection between model-
based and model-free learning to learn a specific type of goal-conditioned value function,
which we call a temporal di↵erence model (TDM). This value function can be learned very
e�ciently, with sample complexities that are competitive with model-based RL, and can then
be used with an MPC-like method to accomplish desired tasks. Our empirical experiments
demonstrate that this method achieves substantially better sample complexity than fully
model-free learning on a range of challenging continuous control tasks, while outperforming
purely model-based methods in terms of final performance. Furthermore, the connection
that our method elucidates between model-based and model-free learning may lead to a
range of interesting future methods. We begin by briefly summarizing common approaches
to model-based RL.

4.1.1 Model-based RL and optimal control.

In model-based RL, the aim is to train a model of the form f(st, at) to predict the next state
st+1. Once trained, this model can be used to choose actions, either by backpropagating
reward gradients into a policy, or planning directly through the model. In the latter case,
a particularly e↵ective method for employing a learned model is model-predictive control
(MPC), where a new action plan is generated at each time step, and the first action of that
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plan is executed, before replanning begins from scratch. MPC can be formalized as the
following optimization problem:

at = argmax
at:t+T

t+TX

i=t

r(si, ai) where si+1 = f(si, ai) 8 i 2 {t, ..., t+ T � 1}. (4.1)

We can also write the dynamics constraint in the above equation in terms of an implicit
dynamics, according to

at = argmax
at:t+T ,st+1:t+T

t+TX

i=t

r(si, ai) such that C(si, ai, si+1) = 0 8 i 2 {t, ..., t+ T � 1}, (4.2)

where C(si, ai, si+1) = 0 if and only if si+1 = f(si, ai). This implicit version will be important
in understanding the connection between model-based and model-free RL.

4.1.2 Temporal Di↵erence Model Learning

In this section, we introduce a type of goal-conditioned value functions called temporal
di↵erence models (TDMs) that provide a direct connection to model-based RL. We will first
motivate this connection by relating the model-based MPC optimizations in Equations (4.1)
and (4.2) to goal-conditioned value functions, and then present our temporal di↵erence model
derivation, which extends this connection from a purely model-based setting into one that
becomes increasingly model-free.

4.1.2.1 From Goal-Conditioned Value Functions to Models

Let us consider the choice of reward function for the goal conditioned value function. Although
a variety of options have been explored in the literature [202, 190, 4], a particularly intriguing
connection to model-based RL emerges if we set G = S, such that g 2 G corresponds to a
goal state g 2 S, and we consider distance-based reward functions rd of the following form:

rd(st, at, st+1,g) = �D(st+1,g),

where D(st+1,g) is a distance, such as the Euclidean distance D(st+1,g) = kst+1 � gk2. If
� = 0, we have Q(st, at,g) = �D(st+1,g) at convergence of Q-learning, which means that
Q(st, at,g) = 0 implies that st+1 = g. Plug this Q-function into the model-based planning
optimization in Equation (4.2), denoting the task control reward as rc, such that the solution
to

at = argmax
at:t+T ,st+1:t+T

t+TX

i=t

rc(si, ai) such that Q(si, ai, si+1) = 0 8 i 2 {t, ..., t+ T � 1} (4.3)

yields a model-based plan. We have now derived a precise connection between model-free and
model-based RL, in that model-free learning of goal-conditioned value functions can be used
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to directly produce an implicit model that can be used with MPC-based planning. However,
this connection by itself is not very useful: the resulting implicit model is fully model-based,
and does not provide any kind of long-horizon capability. In the next section, we show how
to extend this connection into the long-horizon setting by introducing the temporal di↵erence
model (TDM).

4.1.2.2 Long-Horizon Learning with Temporal Di↵erence Models

If we consider the case where � > 0, the optimization in Equation (4.3) no longer corresponds
to any optimal control method. In fact, when � = 0, Q-values have well-defined units: units
of distance between states. For � > 0, no such interpretation is possible. The key insight in
temporal di↵erence models is to introduce a di↵erent mechanism for aggregating long-horizon
rewards. Instead of evaluating Q-values as discounted sums of rewards, we introduce an
additional input t, which represents the planning horizon, and define the Q-learning recursion
as

Q(st, at,g, t) = Ep(st+1|st,at)[�D(st+1,g) [t=0] + max
a

Q(st+1, a,g, t�1) [t 6=0]]. (4.4)

The Q-function uses a reward of �D(st+1,g) when t = 0 (at which point the episode
terminates), and decrements t by one at every other step. Since this is still a well-defined Q-
learning recursion, it can be optimized with o↵-policy data and, just as with goal-conditioned
value functions, we can resample new goals g and new horizons t for each tuple (st, at, st+1),
even ones that were not actually used when the data was collected. In this way, the TDM
can be trained very e�ciently, since every tuple provides supervision for every possible goal
and every possible horizon.

The intuitive interpretation of the TDM is that it tells us how close the agent will get
to a given goal state g after t time steps, when it is attempting to reach that state in t

steps. Alternatively, TDMs can be interpreted as Q-values in a finite-horizon MDP, where
the horizon is determined by t. For the case where t = 0, TDMs e↵ectively learn a model,
allowing TDMs to be incorporated into a variety of planning and optimal control schemes at
test time as in Equation (4.3). Thus, we can view TDM learning as an interpolation between
model-based and model-free learning, where t = 0 corresponds to the single-step prediction
made in model-based learning and t > 0 corresponds to the long-term prediction made by
typical Q-functions. While the correspondence to models is not the same for t > 0, if we only
care about the reward at every K step, then we can recover a correspondence by replace
Equation (4.3) with

at = argmax
at:K:t+T ,st+K:K:t+T

X

i=t,t+K,...,t+T

rc(si, ai)

such that Q(si, ai, si+K , K � 1) = 0 8 i 2 {t, t+K, ..., t+ T �K},

(4.5)

where we only optimize over every K
th state and action. As the TDM becomes e↵ective for

longer horizons, we can increase K until K = T , and plan over only a single e↵ective time
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step:
at = argmax

at,at+T ,st+T

rc(st+T , at+T ) such that Q(st, at, st+T , T � 1) = 0. (4.6)

This formulation does result in some loss of generality, since we no longer optimize the reward
at the intermediate steps. This limits the multi-step formulation to terminal reward problems,
but does allow us to accommodate arbitrary reward functions on the terminal state st+T ,
which still describes a broad range of practically relevant tasks. In the next section, we
describe how TDMs can be implemented and used in practice for continuous state and action
spaces.

4.1.3 Training and Using Temporal Di↵erence Models

The TDM can be trained with any o↵-policy Q-learning algorithm, such as DQN [149],
DDPG [138], NAF [77], and SDQN [146]. During o↵-policy Q-learning, TDMs can benefit
from arbitrary relabeling of the goal states g and the horizon t, given the same (st, at, st+1)
tuples from the behavioral policy as done in [4]. This relabeling enables simultaneous,
data-e�cient learning of short-horizon and long-horizon behaviors for arbitrary goal states,
unlike previously proposed goal-conditioned value functions that only learn for a single time
scale, typically determined by a discount factor [190, 4]. In this section, we describe the
design decisions needed to make practical a TDM algorithm.

4.1.3.1 Reward Function Specification

Q-learning typically optimizes scalar rewards, but TDMs enable us to increase the amount
of supervision available to the Q-function by using a vector-valued reward. Specifically, if
the distance D(s,g) factors additively over the dimensions, we can train a vector-valued
Q-function that predicts per-dimension distance, with the reward function for dimension
j given by �Dj(sj,gj). We use the `1 norm in our implementation, which corresponds to
absolute value reward �|sj � gj|. The resulting vector-valued Q-function can learn distances
along each dimension separately, providing it with more supervision from each training point.
Empirically, we found that this modifications provides a substantial boost in sample e�ciency.

We can optionally make an improvement to TDMs if we know that the task reward rc

depends only on some subset of the state or, more generally, state features. In that case, we
can train the TDM to predict distances along only those dimensions or features that are used
by rc, which in practice can substantially simplify the corresponding prediction problem. In
our experiments, we illustrate this property by training TDMs for pushing tasks that predict
distances from an end-e↵ector and pushed object, without accounting for internal joints of
the arm, and similarly for various locomotion tasks.

4.1.3.2 Policy Extraction with TDMs

While the TDM optimal control formulation Equation (4.6) drastically reduces the number
of states and actions to be optimized for long-term planning, it requires solving a constrained
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optimization problem, which is more computationally expensive than unconstrained problems.
We can remove the need for a constrained optimization through a specific architectural
decision in the design of the function approximator for Q(s, a,g, t). We define the Q-function
as Q(s, a,g, t) = �kf(s, a,g, t)� gk, where f(s, a,g, t) outputs a state vector. By training
the TDM with a standard Q-learning method, f(s, a,g, t) is trained to explicitly predict
the state that will be reached by a policy attempting to reach g in t steps. This model
can then be used to choose the action with fully explicit MPC as below, which also allows
straightforward derivation of a multi-step version as in Equation (4.5).

at = argmax
at,at+T ,st+T

rc(f(st, at, st+T , T � 1), at+T ) (4.7)

In the case where the task is to reach a goal state g, a simpler approach to extract a policy
is to use the TDM directly:

at = argmax
a

Q(st, a,g, T ) (4.8)

In our experiments, we use Equations (4.7) and (4.8) to extract a policy.

4.1.3.3 Algorithm Summary

Algorithm 4 Temporal Di↵erence Model Learning

Require: Task reward function rc(s,a), parameterized TDM Qw(s,a,g, t), replay bu↵er B
1: for n = 0, ..., N � 1 episodes do
2: s0 ⇠ p(s0)
3: for t = 0, ..., T � 1 time steps do
4: a⇤t = MPC(rc, st, Qw, T � t){Eq. 4.5, Eq. 4.6, Eq. 4.7, or Eq. 4.8}
5: at = AddNoise(a⇤t ){Noisy exploration}
6: st+1 ⇠ p(st,at), and store {st,at, st+1} in the replay bu↵er B {Step environment}
7: for i = 0, I � 1 iterations do
8: Sample M transitions {sm,am, s0m} from the replay B.
9: Relabel time horizons and goal states t,gm {?? D.1.1.1}
10: ym = �ks0m � gmk [t = 0] + maxa Q0(s0m,a,gm, t� 1) [t 6= 0]
11: L(w) =

P
m(Qw(sm,am,gm, t)� ym)2/M{Compute the loss}

12: Minimize(w,L(w)){Optimize}
13: end for
14: end for
15: end for

The algorithm is summarized as Algorithm 4. A crucial di↵erence from prior goal-
conditioned value function methods [190, 4] is that our algorithm can be used to act according
to an arbitrary terminal reward function rc, both during exploration and at test time. Like
other o↵-policy algorithms [149, 138], it consists of exploration and Q-function fitting. Noise
is injected for exploration, and Q-function fitting uses standard Q-learning techniques, with
target networks Q0 and experience replay [149, 138]. If we view the Q-function fitting as model
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fitting, the algorithm also resembles iterative model-based RL, which alternates between
collecting data using the learned dynamics model for planning [43] and fitting the model.
Since we focus on continuous tasks, we use DDPG [138], though any Q-learning method
could be used.

The computation cost of the algorithm is mostly determined by the number of updates to
fit the Q-function per transition, I. In general, TDMs can benefit from substantially larger I
than classic model-free methods such as DDPG due to relabeling increasing the amount of
supervision signals. In real-world applications such as robotics where we care most of the
sample e�ciency [78], the learning is often bottlenecked by the data collection rather than
the computation, and therefore large I values are usually not a significant problem and can
continuously benefit from the acceleration in computation.

4.1.4 Experiments

Our experiments examine how the sample e�ciency and performance of TDMs compare to
both model-based and model-free RL algorithms. We expect to have the e�ciency of model-
based RL but with less model bias. We also aim to study the importance of several key design
decisions in TDMs, and evaluate the algorithm on a real-world robotic platform. For the
model-free comparison, we compare to DDPG [138], which typically achieves the best sample
e�ciency on benchmark tasks [51]; HER, which uses goal-conditioned value functions [4]; and
DDPG with the same sparse rewards of HER. For the model-based comparison, we compare to
the model-based component in [153], a recent work that reports highly e�cient learning with
neural network dynamics models. Details of the baseline implementations are in the Appendix.
We perform the comparison on five simulated tasks: (1) a 7 DoF arm reaching various random
end-e↵ector targets, (2) an arm pushing a puck to a target location, (3) a planar cheetah
attempting to reach a goal velocity (either forward or backward), (4) a quadrupedal ant
attempting to reach a goal position, and (5) an ant attempting to reach a goal position and
velocity. The tasks are shown in Figure 4.1 and terminate when either the goal is reached
or the time horizon is reached. The pushing task requires long-horizon reasoning to reach
and push the puck. The cheetah and ant tasks require handling many contact discontinuities
which is challenging for model-based methods, with the ant environment having particularly
di�cult dynamics given the larger state and action space. The ant position and velocity
task presents a scenario where reward shaping as in traditional RL methods may not lead to
optimal behavior, since one cannot maintain both a desired position and velocity. However,
such a task can be very valuable in realistic settings. For example, if we want the ant to jump,
we might instruct it to achieve a particular velocity at a particular location. We also tested
TDMs on a real-world robot arm reaching end-e↵ector positions, to study its applicability to
real-world tasks.

For the simulated and real-world 7-DoF arm, our TDM is trained on all state components.
For the pushing task, our TDM is trained on the hand and puck XY-position. For the half
cheetah task, our TDM is trained on the velocity of the cheetah. For the ant tasks, our TDM
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(a) 7-DoF Reacher (b) Pusher (c) Half Cheetah (d) Ant (e) Sawyer Robot

Figure 4.1: The tasks in our experiments: (a) reaching target locations, (b) pushing a puck to a
random target, (c) training the cheetah to run at target velocities, (d) training an ant to run to
a target position or a target position and velocity, and (e) reaching target locations (real-world
Sawyer robot).

(a) 7-Dof Reacher (b) Pusher (c) Half Cheetah

(d) Ant: Position (e) Ant: Position and Velocity (f) Sawyer Robot (Real-world)

Figure 4.2: The comparison of TDM with model-free (DDPG, both with sparse and dense rewards),
model-based, and goal-conditioned value functions (HER with sparse rewards) methods on various
tasks. All plots show the final distance to the goal versus 1000 environment steps (not rollouts). The
bold line shows the mean across 3 random seeds, and the shaded region show one standard deviation.
Our method, which uses model-free learning, is generally more sample-e�cient than model-free
alternatives including DDPG and HER and improves upon the best model-based performance.

is trained on either the position or the position and velocity for the respective task. Full
details are in the Appendix.
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(a) Scalar vs Vectorized TDMs (b) TDMs with di↵erent tmax

Figure 4.3: Ablation experiments for (a) scalar vs. vectorized TDMs on 7-DoF simulated reacher
task and (b) di↵erent tmax on pusher task. The vectorized variant performs substantially better,
while the horizon e↵ectively interpolates between model-based and model-free learning.

4.1.4.1 TDMs vs Model-Free, Mode-Based, and Direct Goal-Conditioned RL

The results are shown in Figure 4.2. When compared to the model-free baselines, the pure
model-based method learns learns much faster on all the tasks. However, on the harder
cheetah and ant tasks, its final performance is worse due to model bias. TDMs learn as
quickly or faster than the model-based method, but also always learn policies that are as
good as if not better than the model-free policies. Furthermore, TDMs requires fewer samples
than the model-free baselines on ant tasks and drastically fewer samples on the other tasks.
We also see that using HER does not lead to an improvement over DDPG. While we were
initially surprised, we realized that a selling point of HER is that it can solve sparse tasks that
would otherwise be unsolvable. In this paper, we were interested in improving the sample
e�ciency and not the feasibility of model-free reinforcement learning algorithms, and so we
focused on tasks that DDPG could already solve. In these sorts of tasks, the advantage of
HER over DDPG with a dense reward is not expected. To evaluate HER as a method to
solve sparse tasks, we included the DDPG-Sparse baseline and we see that HER significantly
outperforms it as expected. In summary, TDMs converge as fast or faster than model-based
learning (which learns faster than the model-free baselines), while achieving final performance
that is as good or better that the model-free methods on all tasks.

Lastly, we ran the algorithm on a 7-DoF Sawyer robotic arm to learn a real-world analogue
of the reaching task. Figure 4.2f shows that the algorithm outperforms and learns with fewer
samples than DDPG, our model-free baseline. These results show that TDMs can scale to
real-world tasks.

4.1.4.2 Ablation Studies

We discuss two key design choices for TDMs that provide substantially improved performance.
First, Figure 4.3a examines the tradeo↵s between the vectorized and scalar rewards. The
results show that the vectorized formulation learns substantially faster than the näıve scalar
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variant. Second, Figure 4.3b compares the learning speed for di↵erent horizon values tmax.
Performance degrades when the horizon is too low, and learning becomes slower when the
horizon is too high. These results suggest that TDMs perform well because they provide an
intermediate temporal abstraction between one-step planning methods and infinite-horizon
model-free methods.

These experiments were all conducted in domain with relatively low dimensional state
spaces. In the next chapter, we discuss how one can apply TDMs to complex state represen-
tations, such as images, where simple distance metrics may no longer be e↵ective.

4.2 Planning with Images

In this section, we study how we can extend the ideas from Section 4.1 to domains with
complex observation spaces. A major challenge with this setup is the need to actually optimize
over subgoals. In domains with high-dimensional observations such as images, this may require
explicitly optimizing over image pixels. This optimization is challenging, as realistic images –
and, in general, feasible states – typically form a thin, low-dimensional manifold within the
larger space of possible state observation values [142]. To address this, we build abstractions
of the state observation by learning a compact latent variable state representation, which
makes it feasible to optimize over the goals in domains with high-dimensional observations,
such as images, without explicitly optimizing over image pixels. The learned representation
allows the planner to determine which subgoals actually represent feasible states, while the
learned goal-conditioned value function tells the planner whether these states are reachable.

We evaluate our method on temporally extended tasks that require multistage reasoning
and handling image observations. We discuss how the low-level goal-reaching policies them-
selves cannot solve these tasks e↵ectively, as they do not plan over subgoals and therefore do
not benefit from temporal compositionality. Planning without state representation learning
also fails to perform these tasks, as optimizing directly over images results in invalid subgoals.
By contrast, our method, which we call Latent Embeddings for Abstracted Planning (LEAP),
is able to successfully determine suitable subgoals by searching in the latent representation
space, and then reach these subgoals via the model-free policy.

4.2.1 Planning with Goal-Conditioned Policies

We aim to learn a model that can solve arbitrary long-horizon goal reaching tasks with
high-dimensional observation and goal spaces, such as images. A model-free goal-conditioned
reinforcement learning algorithm could, in principle, solve such a problem. However, as we
will show in our experiments, in practice such methods produce overly greedy policies, which
can accomplish short-term goals, but struggle with goals that are more temporally extended.
We instead combine goal-conditioned policies trained to achieve subgoals with a planner that
decomposes long-horizon goal-reaching tasks into K shorter horizon subgoals. Specifically,
our planner chooses the K subgoals, g1, . . . ,gK , and a goal-reaching policy then attempts to
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Figure 4.4: Summary of Latent Embeddings for Abstracted Planning (LEAP). (1) The planner is
given a goal state. (2) The planner plans intermediate subgoals in a low-dimensional latent space.
By planning in this latent space, the subgoals correspond to valid state observations. (3) The
goal-conditioned policy then tries to reach the first subgoal. After t1 time steps, the policy replans
and repeats steps 2 and 3.

reach the first subgoal g1 in the first t1 time steps, before moving onto the second goal g2,
and so forth, as shown in Figure 4.4. This procedure only requires training a goal-conditioned
policy to solve short-horizon tasks. Moreover, by planning appropriate subgoals, the agent
can compose previously learned goal-reaching behavior to solve new, temporally extended
tasks. The success of this approach will depend heavily on the choice of subgoals. In the
sections below, we outline how one can measure the quality of the subgoals. Then, we address
issues that arise when optimizing over these subgoals in high-dimensional state spaces such as
images. Lastly, we summarize the overall method and provide details on our implementation.

4.2.1.1 Planning over Subgoals

Suitable subgoals are ones that are reachable: if the planner can choose subgoals such that
each subsequent subgoal is reachable given the previous subgoal, then it can reach any goal
by ensuring the last subgoal is the true goal. If we use a goal-conditioned policy to reach
these goals, how can we quantify how reachable these subgoals are?

One natural choice is to use a goal-conditioned value function which, as previously
discussed, provides a measure of reachability. In particular, given the current state s, a policy
will reach a goal g after t time steps if and only if V (s,g, t) = 0. More generally, given K

intermediate subgoals g1:K = g1, . . . ,gK and K + 1 time intervals t1, . . . , tK+1 that sum to
Tmax, we define the feasibility vector as

�!
V(s,g1:K , t1:K+1,g) =

2

666664

V (s,g1, t1)
V (g1,g2, t2)

...
V (gK�1,gK , tK)
V (gK ,g, tK+1)

3

777775
.

The feasibility vector provides a quantitative measure of a plan’s feasibility: The first element
describes how close the policy will reach the first subgoal, g1, starting from the initial state, s.
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The second element describes how close the policy will reach the second subgoal, g2, starting
from the first subgoal, and so on, until the last term measures the reachability to the true
goal, g.

To create a feasible plan, we would like each element of this vector to be zero, and so we
minimize the norm of the feasibility vector:

L(g1:K) = ||
�!
V(s,g1:K , t1:K+1,g)||. (4.9)

In other words, minimizing Equation (4.9) searches for subgoals such that the overall path
is feasible and terminates at the true goal. In the next section, we turn to optimizing
Equation (4.9) and address issues that arise in high-dimensional state spaces.

4.2.1.2 Optimizing over Images

We consider image-based environments, where the set of states S is the set of valid image
observations in our domain. In image-based environments, solving the optimization in
Equation (4.9) presents two problems. First, the optimization variables g1:K are very high-
dimensional – even with 64x64 images and just 3 subgoals, there are over 10,000 dimensions.
Second, and perhaps more subtle, the optimization iterates must be constrained to the set
of valid image observations S for the subgoals to correspond to meaningful states. While a
plethora of constrained optimization methods exist, they typically require knowing the set
of valid states [161] or being able to project onto that set [164]. In image-based domains,
the set of states S is an unknown r-dimensional manifold embedded in a higher-dimensional
space RN , for some N � r [142] – i.e., the set of valid image observations.

Figure 4.5: Optimizing directly over
the image manifold (b) is challenging, as
it is generally unknown and resides in
a high-dimensional space. We optimize
over a latent state (a) and use our de-
coder to generate images. So long as the
latent states have high likelihood under
the prior (green), they will correspond
to realistic images, while latent states
with low likelihood (red) will not.

Optimizing Equation (4.9) would be much easier
if we could directly optimize over the r dimensions
of the underlying representation, since r ⌧ N , and
crucially, since we would not have to worry about
constraining the planner to an unknown manifold.
While we may not know the set S a priori, we can
learn a latent-variable model with a compact latent
space to capture it, and then optimize in the latent
space of this model. To this end, we use a variational-
autoencoder (VAE) [116, 182], which we train with
images randomly sampled from our environment.

A VAE consists of an encoder q�(z | s) and de-
coder p✓(s | z). The inference network maps high-
dimensional states s 2 S to a distribution over lower-
dimensional latent variables z for some lower dimen-
sional space Z, while the generative model reverses
this mapping. Moreover, the VAE is trained so that
the marginal distribution of Z matches our prior dis-
tribution p0, the standard Gaussian.
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This last property of VAEs is crucial, as it allows us to tractably optimize over the
manifold of valid states S. So long as the latent variables have high likelihood under the
prior, the corresponding images will remain inside the manifold of valid states, as shown in
Figure 4.5. In fact, Dai and Wipf [40] showed that a VAE with a Gaussian prior can always
recover the true manifold, making this choice for latent-variable model particularly appealing.

In summary, rather than minimizing Equation (4.9), which requires optimizing over the
high-dimensional, unknown space S we minimize

LLEAP(z1:K) = ||
�!
V(s, z1:K , t1:K+1,g)||p � �

KX

k=1

log p(zk) (4.10)

where

�!
V(s, z1:K , t1:K+1,g) =

2

666664
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V ( (z1), (z2), t2)

...
V ( (zK�1), (zK), tK)

V ( (zK),g, tK+1)

3

777775
and  (z) = argmax

g0
p✓(g

0
| z).

This procedure optimizes over latent variables zk, which are then mapped onto high-
dimensional goal states gk using the maximum likelihood estimate (MLE) of the decoder
argmaxg(g | z). In our case, the MLE can be computed in closed form by taking the mean
of the decoder. The term summing over log p(zk) penalizes latent variables that have low
likelihood under the prior p, and � is a hyperparameter that controls the importance of this
second term.

While any norm could be used, we used the `1-norm which forces each element of the
feasibility vector to be near zero. We found that the `1-norm outperformed the `1-norm,
which only forces the sum of absolute values of elements near zero. 1

4.2.1.3 Goal-Conditioned Reinforcement Learning

For our goal-conditioned reinforcement learning algorithm, we use temporal di↵erence models
(TDMs) [172]. TDMs learn Q functions rather that V functions, and so we compute V by
evaluating Q with the action from the deterministic policy: V (s,g, t) = Q(s, a,g, t)|a=⇡(s,g,t).
To further improve the e�ciency of our method, we can also utilize the same VAE that we
use to recover the latent space for planning as a state representation for TDMs. While we
could train the reinforcement learning agents from scratch, this can be expensive in terms
of sample e�ciency as much of the learning will focus on simply learning good convolution
filters. We therefore use the pretrained mean-encoder of the VAE as the state encoder for our
policy and value function networks, and only train additional fully-connected layers with RL
on top of these representations. Details of the architecture are provided in Appendix D.2.3.
We show in Section 4.2.2 that our method works without reusing the VAE mean-encoder,
and that this parameter reuse primarily helps with increasing the speed of learning.

1See ?? D.2.1.1 comparison.
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4.2.1.4 Summary of Latent Embeddings for Abstracted Planning

Our overall method is called Latent Embeddings for Abstracted Planning (LEAP) and is
summarized in Algorithm 5. We first train a goal-conditioned policy and a variational-
autoencoder on randomly collected states. Then at testing time, given a new goal, we choose
subgoals by minimizing Equation (4.10). Once the plan is chosen, the first goal  (z1) is given
to the policy. After t1 steps, we repeat this procedure: we produce a plan with K � 1 (rather
than K) subgoals, and give the first goal to the policy. In this work, we fix the time intervals
to be evenly spaced out (i.e., t1 = t2 . . . tK+1 = bTmax/(K + 1)c), but additionally optimizing
over the time intervals would be a promising future extension.

Algorithm 5 Latent Embeddings for Abstracted Planning (LEAP)

1: Train VAE encoder q� and decoder p✓.
2: Train TDM policy ⇡ and value function V .
3: Initialize state, goal, and time: s1 ⇠ ⇢0, goal g ⇠ ⇢g, and t = 1.
4: Assign the last subgoal to the true goal, gK+1 = g
5: for k in 1, . . . , K + 1 do
6: Optimize Equation (4.10) to choose latent subgoals zk, . . . , zK using V and p✓ if k  K.

7: Decode zk to obtain goal gk =  (zk).
8: for t

0 in 1, . . . , tk do
9: Sample next action at using goal-conditioned policy ⇡(· | st,gk, tk � t

0).
10: Execute at and obtain next state st+1

11: Increment the global timer t t+ 1.
12: end for
13: end for

4.2.2 Experiments

Our experiments study the following two questions: (1) How does LEAP compare to model-
based methods, which directly predict each time step, and model-free RL, which directly
optimizes for the final goal? (2) How does the use of a latent state representation and other
design decisions impact the performance of LEAP?

4.2.2.1 Vision-based Comparison and Results

We study the first question on two distinct vision-based tasks, each of which requires
temporally-extended planning and handling high-dimensional image observations.

The first task, 2D Navigation requires navigating around a U-shaped wall to reach a goal,
as shown in Figure 4.6. The state observation is a top-down image of the environment. We use
this task to conduct ablation studies that test how each component of LEAP contributes to
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final performance. We also use this environment to generate visualizations that help us better
understand how our method uses the goal-conditioned value function to evaluate reachability
over images. While visually simple, this task is far from trivial for goal-conditioned and
planning methods: a greedy goal-reaching policy that moves directly towards the goal will
never reach the goal. The agent must plan a temporally-extended path that moves around
the walls, sometimes moving away from the goal. We also use this environment to compare
our method with prior work on goal-conditioned and model-based RL.

To evaluate LEAP on a more complex task, we utilize a robotic manipulation simulation
of a Push and Reach task. This task requires controlling a simulated Sawyer robot to both
(1) move a puck to a target location and (2) move its end e↵ector to a target location. This
task is more visually complex, and requires more temporally extended reasoning. The initial
arm and and puck locations are randomized so that the agent must decide how to reposition
the arm to reach around the object, push the object in the desired direction, and then move
the arm to the correct location, as shown in Figure 4.6. A common failure case for model-free
policies in this setting is to adopt an overly greedy strategy, only moving the arm to the goal
while ignoring the puck.

We train all methods on randomly initialized goals and initial states. However, for
evaluation, we intentionally select di�cult start and goal states to evaluate long-horizon
reasoning. For 2D Navigation, we initialize the policy randomly inside the center square
and sample a goal from the region directly below the U-shaped wall. This requires initially
moving away from the goal to navigate around the wall. For Push and Reach, we evaluate on
5 distinct challenging configurations, each requiring the agent to first plan to move the puck,
and then move the arm only once the puck is in its desired location. In one configuration for
example, we initialize the hand and puck on opposite sides of the workspace and set goals so
that the hand and puck must switch sides.

We compare our method to both model-free methods and model-based methods that plan
over learned models. All of our tasks use Tmax = 100, and LEAP uses CEM to optimize
over K = 3 subgoals, each of which are 25 time steps apart. We compare directly with
model-free TDMs, which we label TDM-25. Since the task is evaluated on a horizon of
length Tmax = 100 we also compare to a model-free TDM policy trained for Tmax = 100,
which we label TDM-100. We compare to reinforcement learning with imagined goals
(RIG) [155], a state-of-the-art method for solving image-based goal-conditioned tasks. RIG
learns a reward function from images rather than using a pre-determined reward function.
We found that providing RIG with the same distance function as our method improves its
performance, so we use this stronger variant of RIG to ensure a fair comparison. In addition,
we compare to hindsight experiment replay (HER) [4] which uses sparse, indicator rewards.
Lastly, we compare to probabilistic ensembles with trajectory sampling (PETS) [33], a state-
of-the-art model-based RL method. We favorably implemented PETS on the ground-truth
low-dimensional state representation and label it PETS, state.

The results are shown in Figure 4.6. LEAP significantly outperforms prior work on both
tasks, particularly on the harder Push and Reach task. While the TDM used by LEAP
(TDM-25) performs poorly by itself, composing it with 3 di↵erent subgoals using LEAP
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Figure 4.6: Comparisons on two vision-based domains that evaluate temporally extended control,
with illustrations of the tasks. In 2D Navigation (left), the goal is to navigate around a U-shaped
wall to reach the goal. In the Push and Reach manipulation task (right), a robot must first push a
puck to a target location (blue star), which may require moving the hand away from the goal hand
location, and then move the hand to another location (red star). Curves are averaged over multiple
seeds and shaded regions represent one standard deviation. Our method, shown in red, outperforms
prior methods on both tasks. On the Push and Reach task, prior methods typically get the hand
close to the right location, but perform much worse at moving the puck, indicating an overly greedy
strategy, while our approach succeeds at both.

results in much better performance. By 400k environment steps, LEAP already achieves a
final puck distance of under 10 cm, while the next best method, TDM-100, requires 5 times
as many samples. Details on each task are in Appendix D.2.2, and algorithm implementation
details are given in Appendix D.2.3.

We visualize the subgoals chosen by LEAP in Figure 4.7 by decoding the latent subgoals
zt1:K into images with the VAE decoder p✓. In Push and Reach, these images correspond to
natural subgoals for the task. Figure 4.7 also shows a visualization of the value function,
which is used by the planner to determine reachability. Note that the value function generally
recognizes that the wall is impassable, and makes reasonable predictions for di↵erent time
horizons. Videos of the final policies and generated subgoals and code for our implementation
of LEAP are available on the paper website2.

4.2.2.2 Planning in Non-Vision-based Environments with Unknown State
Spaces

While LEAP was presented in the context of optimizing over images, we also study its utility
in non-vision based domains. Specifically, we compare LEAP to prior works on an Ant
Navigation task, shown in Figure 4.8, where the state-space consists of the quadruped robot’s
joint angles, joint velocity, and center of mass. While this state space is more compact than
images, only certain combinations of state values are actually valid, and the obstacle in the
environment is unknown to the agent, meaning that a näıve optimization over the state space
can easily result in invalid states (e.g., putting the robot inside an obstacle).

2https://sites.google.com/view/goal-planning

https://sites.google.com/view/goal-planning
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Figure 4.7: (Left) Visualization of subgoals reconstructed from the VAE (bottom row), and the
actual images seen when reaching those subgoals (top row). Given an initial state s0 and a goal
image g, the planner chooses meaningful subgoals: at gt1 , it moves towards the puck, at gt2 it
begins pushing the puck, and at gt3 it completes the pushing motion before moving to the goal
hand position at g. (Middle) The top row shows the image subgoals superimposed on one another.
The blue circle is the starting position, the green circle is the target position, and the intermediate
circles show the progression of subgoals (bright red is gt1 , brown is gt3). The colored circles show
the subgoals in the latent space (bottom row) for the two most active VAE latent dimensions, as
well as samples from the VAE aggregate posterior [144]. (Right) Heatmap of the value function
V (s,g, t), with each column showing a di↵erent time horizon t for a fixed state s. Warmer colors
show higher value. Each image indicates the value function for all possible goals g. As the time
horizon decreases, the value function recognizes that it can only reach nearby goals.

This task has a significantly longer horizon of Tmax = 600, and LEAP uses CEM to
optimize over K = 11 subgoals, each of which are 50 time steps apart. As in the vision-based
comparisons, we compare with model-free TDMs, for the short-horizon setting (TDM-50)
which LEAP is built on top of, and the long-horizon setting (TDM-600). In addition to
HER, we compare to a variant of HER that uses the same rewards and relabeling strategy
as RIG, which we label HER+. We exclude the PETS baseline, as it has been unable to
solve long-horizon tasks such as ours. In this section, we add a comparison to hierarchical
reinforcement learning with o↵-policy correction (HIRO) [152], a hierarchical method for
state-based goals. We evaluate all baselines on a challenging configuration of the task in
which the ant must navigate from one corner of the maze to the other side, by going around
a long wall. The desired behavior will result in large negative rewards during the trajectory,
but will result in an optimal final state. We see that in Figure 4.8, LEAP is the only method
that successfully navigates the ant to the goal. HIRO, HER, HER+ don’t attempt to go
around the wall at all, as doing so will result in a large sum of negative rewards. TDM-50
has a short horizon that results in greedy behavior, while TDM-600 fails to learn due to
temporal sparsity of the reward.

4.2.2.3 Ablation Study

We analyze the importance of planning in the latent space, as opposed to image space, on
the navigation task. For comparison, we implement a planner that directly optimizes over
image subgoals (i.e., in pixel space). We also study the importance of reusing the pretrained
VAE encoder by replicating the experiments with the RL networks trained from scratch.
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Figure 4.8: In the Ant Navigation task, the ant must move around the long wall, which will incur
large negative rewards during the trajectory, but will result in an optimal final state. We illustrate
the task, with the purple ant showing the starting state and the green ant showing the goal. We use
3 subgoals here for illustration. Our method (shown in red in the plot) is the only method that
successfully navigates the ant to the goal.

We see in Figure 4.9 that a model that does not reuse the VAE encoder does succeed, but
takes much longer. More importantly, planning over latent states achieves dramatically
better performance than planning over raw images. Figure 4.9 also shows the intermediate
subgoals outputted by our optimizer when optimizing over images. While these subgoals may
have high value according to Equation (4.9), they clearly do not correspond to valid state
observations, indicating that the planner is exploiting the value function by choosing images
far outside the manifold of valid states.

We include further ablations in Appendix D.2.1, in which we study the sensitivity of � in
Equation (4.10) (?? D.2.1.3), the choice of norm (?? D.2.1.1), and the choice of optimizer
(?? D.2.1.2). The results show that LEAP works well for a wide range of �, that `1-norm
performs better, and that CEM consistently outperforms gradient-based optimizers, both in
terms of optimizer loss and policy performance.

4.3 Conclusion

In this chapter, we presented a way to reuse goal-directed skills by deriving a connection
between model-based and model-free reinforcement learning. We presented a novel RL
algorithm that exploits this connection to greatly improve on the sample e�ciency of state-
of-the-art model-free deep RL algorithms. Our temporal di↵erence models can be viewed
both as goal-conditioned value functions and implicit dynamics models, which enables them
to be trained e�ciently on o↵-policy data while still minimizing the e↵ects of model bias.
As a result, they achieve asymptotic performance that compares favorably with model-free
algorithms, but with a sample complexity that is comparable to purely model-based methods.

We also presented LEAP, a method for extending TDMs to solve temporally extended
tasks with high-dimensional state observations, such as images. The key idea in LEAP is to
form temporal abstractions by using goal-reaching policies to evaluate reachability, and state
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Figure 4.9: (Left) Ablative studies on 2D Navigation. We keep all components of LEAP the same
but replace optimizing over the latent space with optimizing over the image space (-latent). We
separately train the RL methods from scratch rather than reusing the VAE mean encoder (-shared),
and also test both ablations together (-latent, shared). We see that sharing the encoder weights
with the RL policy results in faster learning, and that optimizing over the latent space is critical for
success of the method. (Right) Visualization of the subgoals generated when optimizing over the
latent space and decoding the image (top) and when optimizing over the images directly (bottom).
The goals generated when planning in image space are not meaningful, which explains the poor
performance of “-latent” shown in (Left).

abstractions by using representation learning to provide a convenient state representation for
planning. By planning over states in a learned latent space and using these planned states
as subgoals for goal-conditioned policies, LEAP can solve tasks that are di�cult to solve
with conventional model-free goal-reaching policies, while avoiding the challenges of modeling
low-level observations associated with fully model-based methods.

Model-based methods represent one way to extend the capabilities of goal-conditioned
policies, and in the next chapter, we discuss how we can extend the training methods of
goal-conditioned policies to other problem formulations.
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Chapter 5

Extensions to Non-Goal-Reaching
Tasks

The methods presented thus far have focused on goal-reaching tasks. However, goal-reaching
cannot represent many of the behaviors we might actually want a versatile robotic system to
perform, since it can only represent behaviors that involve reaching individual states. For
example, for a robot packing items into a box, the task is defined by the position of the
items relative to the box, rather than their absolute locations in space, and therefore does not
correspond to a single state configuration. In this chapter, we explore how general-purpose
robotic policies can be acquired by conditioning policies on more general task representations.
Many of the techniques we have discussed are applicable to any contextual policy, and below
we present two examples of how we can train contextual policies to solve various tasks.

5.1 Distribution-Conditioned Reinforcement Learning

To make it possible to learn general-purpose policies that can perform any task, we first
consider conditioning a policy on a full distribution over goal states. Rather than reaching a
specific state, a policy must learn to reach states that have high likelihood under the provided
distribution, which may specify various covariance relationships (e.g., as shown in Figure 5.1,
that the position of the items should covary with the position of the box). In fact, we show
that, because optimal policies are invariant to additive factors in reward functions, arbitrary
goal distributions can represent any state-dependent reward function, and therefore any task.
Choosing a specific distribution class provides a natural mechanism to control the expressivity
of the policy. We may choose a small distribution class to narrow the range of tasks and
make learning easier, or we may choose a large distribution class to expand the expressiveness
of the policy.

Our experiments demonstrate that distribution-conditioned policies can be trained e�-
ciently by sharing data from a variety of tasks and relabeling the goal distribution parameters,
where each distribution corresponds to a di↵erent task reward. Lastly, while the distribution
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Figure 5.1: We infer the distribution parameters ! from data and pass it to a DisCo policy.
Distribution-conditioned RL can express a broad range of tasks, from defining relationships between
di↵erent state components (top) to more arbitrary behavior (bottom).

parameters can be provided manually to specify tasks, we also present two ways to infer these
distribution parameters directly from data.

The main contribution of this section is DisCo RL, an algorithm for learning distribution-
conditioned policies. To learn e�ciently, DisCo RL uses o↵-policy training and a novel
distribution relabeling scheme. We evaluate on robot manipulation tasks in which a single
policy must solve multiple tasks that cannot be expressed as reaching di↵erent goal states.
We find that conditioning the policies on goal distributions results in significantly faster
learning than solving each task individually, enabling policies to acquire a broader range of
tasks than goal-conditioned methods.

5.1.1 Contextual Markov Decision Processes

A contextual MDP augments an MDP with a context space C, and both the reward and the
policy 1 are conditioned on a context c 2 C for the entire episode. Contextual MDPs allow
us to easily model policies that accomplish much di↵erent tasks, or, equivalently, maximize
di↵erent rewards, at each episode. The design of the context space and contextual reward
function determines the behaviors that these policies can learn. For example, when the
context is a goal state, we recover the goal-conditioned reinforcement learning formulation

1Some work assumes the dynamics p depend on the context [87]. We assume that the dynamics are the
same across all contexts, though our method could also be used with context-dependent dynamics.
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described in Section 2.1. If we want to train general-purpose policies that can perform
arbitrary tasks, is it possible to design a contextual MDP that captures the set of all rewards
functions? In theory, the context space C could be the set of all reward functions. But in
practice, it is unclear how to condition policies on reward functions, since most learning
algorithms are not well suited to take functions as inputs. In the next section, we present a
promising context space: the space of goal distributions.

5.1.2 Distribution-Conditioned Reinforcement Learning

In this section, we show how conditioning policies on a goal distribution results in a MDP
that can capture any set of reward functions. Each distribution represents a di↵erent reward
function, and so choosing a distribution class provides a natural mechanism to choose the
expressivity of the contextual policy. We then present distribution-conditioned reinforcement
learning (DisCo RL), an o↵-policy algorithm for training policies conditioned on parametric
representation of distributions, and discuss the specific representation that we use.

5.1.2.1 Generality of Goal Distributions

We assume that the goal distribution is in a parametric family, with parameter space ⌦,
and augment the MDP state space with the goal distribution, as in S

0 = S ⇥ ⌦. At the
beginning of each episode, a parameter ! 2 ⌦ is sampled from some parameter distribution
p!. The parameter ! defines the goal distribution pg(s;!) : S 7! R+ over the state space.
The policy is conditioned on this parameter, and is given by ⇡(· | s,!). The objective of a
distribution-conditioned (DisCo) policy is to reach states that have high log-likelihood under
the goal distribution, which can be expressed as

max
⇡

E⌧⇠⇡(·|s,!)

"
X

t

�
t log pg(st;!)

#
. (5.1)

This formulation can express arbitrarily complex distributions and tasks, as we illustrate in
Figure 5.1. More formally:

Remark 1. Any reward maximization problem can be equivalently written as maximizing the
log-likelihood under a goal distribution (Equation (5.1)), up to a constant factor.

This statement is true because, for any reward function of the form r(s), we can define a
distribution pg(s) / e

r(s), from which we can conclude that maximizing log pg(s) is equivalent
to maximizing r(s), up to the constant normalizing factor in the denominator. If the reward
function depends on the action, r(s, a), we can modify the MDP and append the previous
action to the state s̄ = [s, a], reducing it to another MDP with a reward function of the form
r(s̄).

Of course, while any reward can be expressed as the log-likelihood of a goal distribution,
a specific fixed parameterization pg(s;!) may not by itself be able to express any reward.
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In other words, choosing the distribution parameterization is equivalent to choosing the set
of reward functions that the conditional policy can maximize. As we discuss in the next
section, we can trade-o↵ expressivity and ease of learning by choosing an appropriate goal
distribution family.

5.1.2.2 Goal Distribution Parameterization

Di↵erent distribution classes represent di↵erent types of reward functions. To explore the
di↵erent capabilities a↵orded by di↵erent distributions, we study three families of distributions.

Gaussian distribution A simple class of distributions is the family of multivariate Gaus-
sian. Given a state space in Rn, the distribution parameters consists of two components,
! = (µ,⌃), where µ 2 Rn is the mean vector and ⌃ 2 Rn⇥n is the covariance matrix. When
inferring the distribution parameters with data, we regularize the ⌃�1 matrix by thresholding
absolute values below ✏ = 0.25 to zero. With these parameters, the reward from Equation (5.1)
is given by r(s;!) = �0.5(s� µ)T⌃�1(s� µ), where we have dropped constant terms that do
not depend on the state s. This simple parameterization can express a large number of reward
functions. Using this parameterization, the weight of individual state dimensions depend
on the values along the diagonal of the covariance matrix. By using o↵-diagonal covariance
values, this parameterization also captures the set of tasks in which state components need
to covary, such as when the one object must be placed near another one, regardless of the
exact location of those objects (see the top half of Figure 5.1).

Gaussian mixture model A more expressive class of distributions that we study is
the Gaussian mixture model with 4 modes, which can represent multi-modal tasks. The
parameters are the mean and covariance of each Gaussian and the weight assigned to each
Gaussian distribution. The reward is given by the log-likelihood of a state.

Latent variable model To study an even more express class of distribution, we consider
a class of distributions parameterized by neural networks. Distributions parameterized by
neural networks can be extremely expressive [48, 212], but distributions based on neural
networks often have millions of parameters [48, 117].

To obtain an expressive yet compact parameterization, we consider non-linear reparame-
terizations of the original state space. Specifically, we model a distribution over the state
space using a Gaussian variational auto-encoder (VAE) [116, 182]. Gaussian VAEs model
a set of observations using a latent-variable model of the form p(s) =

R
Z
p(z)p✓(s | z)dz,

where z 2 Z = Rdz are latent variables with dimension dz. The distribution p✓ is a learned
generative model or “decoder” and p(z) is a standard multivariate Gaussian distribution in
Rdz . A Gaussian VAE also learns a posterior distribution or “encoder” that maps states s
onto Gaussian distributions in a latent space, given by q�(z; s). We refer readers to Doersch
[49] for a detailed explanation of VAEs.
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Gaussian VAEs are explicitly trained so that Gaussian distributions in a latent space
define distributions over the state space. Therefore, we represent a distribution over the state
space with the mean µz 2 Rdz and variances �z 2 Rdz of a diagonal Gaussian distribution
in the learned, latent space, which we write as N (z;µz, �z). In other words, the parameters
! = (µz, �z) define the following distribution over the states:

pg(s;!) =

Z

Z

N (z;µz, �z)p✓(s | z)dz, (5.2)

where p✓(s | z) is the generative model from the VAE. Because z resides in a learned latent
space, the set of reward functions that can be expressed with Equation (5.2) includes arbitrary
non-linear transformations of s.

5.1.3 Learning Goal Distributions and Policies

Given any of the distribution classes mentioned above, we now consider how to obtain a
specific goal distribution parameter ! and train a policy to maximize Equation (5.1). We
start with obtaining goal distribution parameters !. While a user can manually select the
goal distribution parameters !, this requires a degree of user insight, which can be costly or
practically impossible if using the latent representation in Equation (5.2). We discuss two
automated alternatives for obtaining the goal distribution parameters !.

5.1.3.1 Inferring Distributions from Examples

One simple and practical way to specify a goal distribution is to provide K example observa-
tions {sk}Kk=1

in which the task is successfully completed. This supervision can be easier to
provide than full demonstrations, which not only specify the task but also must show how to
solve the task through a sequence of states (s1, s2, . . . ) or states and actions (s1, a1, s2, . . . ).
Given the example observations, we describe a way to infer the goal parameter based on the
parameterization.

If ! represents the parameters of a distribution in the state space, we learn a goal
distribution via maximum likelihood estimation (MLE), as in

!
⇤ = argmax

!2⌦

KX

k=1

log pg(sk;!), (5.3)

and condition the policy on the resulting parameter !⇤. If ! represents the parameters
of a distribution in the latent space, we need a Gaussian distribution in the latent space
that places high likelihood on all of the states in Dsubtask. We obtain such a distribution by
finding a latent distribution that minimizes the KL divergence to the mixture of posteriors
1

K

P
k q�(!; sk). Specifically, we solve the problem

!
⇤ = argmin

!2⌦
DKL

 
1

K

X

k

q�(z; sk)
���
���p(z;!)

!
, (5.4)
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Figure 5.2: A robot must arrange objects into a configuration sf that changes from episode to
episode. This task consists of multiple sub-tasks, such as first moving the red object to the correct
location. Given a final state sf , there exists a distribution of intermediate states s in which the first
sub-task is completed. We use pairs of states s, sf to learn a conditional distribution that defines
the first sub-task given the final task, p(s | sf ).

where ⌦ is the set of all means and diagonal covariance matrices in Rdz . The solution to
Equation (5.4) can be computed in closed form using moment matching [147].

5.1.3.2 Dynamically Generating Distributions via Conditioning

We also study a di↵erent use case for training a DisCo policy: automatically decomposing long-
horizon tasks into sub-tasks. Many complex tasks lend themselves to such a decomposition,
and learning each of these sub-tasks can be significantly faster than directly solving the main
task. For example, a robot that must arrange a table can divide this task into placing one
object to a desired location before moving on to the next object. To automatically decompose
a task, we need to convert a “final task,” represented as T , into M di↵erent sub-tasks, where
M is the number of sub-tasks needed to accomplish the final task. Moreover, rather than
training a separate policy for each sub-task, we would like to train a single policy that can
accomplish all of these sub-tasks. How can we convert a task parameter T into di↵erent
sub-tasks, all of which can be accomplished by a single policy?

We can address this question by training a DisCo policy. A task represented by parameters
T can be decomposed into a sequence of sub-tasks, each of which in turn is represented
by a goal distribution. We accomplish this by learning conditional distributions, pig(s | T ):
conditioned on some final task T , the conditional distribution p

i
g(s | T ) is a distribution over

desired states for sub-task i.
To obtain a conditional distribution p

i
g(s | T ) for sub-task i, we assume access to tuples

D
i
subtask

= {(s(k), T (k))}Kk=1
, where s(k) is an example state in which sub-task i is accomplished

for solving task T
(k). See Figure 5.2 for a visualization. Our experiments test the setting

where final tasks are represented by a final state sf that we want the robot to reach, meaning
that T = sf . We note that one can train a goal-conditioned policy to reach this final state sf
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directly, but, as we will discuss in Section 5.1.4, this decomposition significantly accelerates
learning by exploiting access to the pairs of states.

For each i, and dropping the dependence on i for clarify, we learn a conditional distribution,
by fitting a joint Gaussian distribution, denoted by ps,sf (s, sf ;µ,⌃), to these pairs of states
using MLE, as in

µ
⇤
,⌃⇤ = argmax

µ,⌃

KX

k=1

log ps,sf (s
(k)
, s(k)f ;µ,⌃). (5.5)

This procedure requires up-front supervision for each sub-task during training time, but at test
time, given a desired final state sf , we compute the parameters of the Gaussian conditional
distribution pg(s | sf ;µ⇤

,⌃⇤) in closed form. Specifically, the conditional parameters are given
by

µ̄ = µ1 + ⌃12⌃
�1

22
(sf � µ2)

⌃̄ = ⌃11 � ⌃12⌃
�1

22
⌃21,

(5.6)

where µ1 and µ2 represents the first and second half of µ⇤, and similarly for the covariance
terms. To summarize, we learn µ

⇤ and ⌃⇤ with Equation (5.5) and then use Equation (5.6)
to automatically transform a final task T = sf into a goal distribution ! = (µ̄, ⌃̄) which we
give to a DisCo policy. Having presented two ways to obtain distributions, we now turn to
learning DisCo RL policies.

5.1.3.3 Learning Distribution-Conditioned Policies

In this section, we discuss how to optimize Equation (5.1) using an o↵-policy TD algorithm.
As discussed in Section 2.1, TD algorithms require tuples of state, action, next state, and
reward, denoted by (st, at, rt, st+1). To collect this data, we condition a policy on a goal
distribution parameter !, collect a trajectory with the policy ⌧ = [s0, a0, · · · ], and then store
the trajectory and distribution parameter into a replay bu↵er [149], denoted as R. We then
sample data from this replay bu↵er to train our policy using an o↵-policy TD algorithm.
We use soft actor-critic as our RL algorithm [83], though in theory any o↵-policy algorithm
could be used. Because TD algorithms are o↵-policy, we propose to reuse data collected by
a policy conditioned on one goal distribution ! to learn about how a policy should behave
under another goal distribution !0. In particular, given a state s sampled from a policy that
was conditioned on some goal distribution parameters !, we occasionally relabel the goal
distribution with an alternative goal distribution !0 = RS(s,!) for training, where RS is
some relabeling strategy. For relabeling, given a state s and existing parameters ! = (µ,⌃),
we would like to provide a strong learning signal by creating a distribution parameter that
gives high reward to an achieved state. We used a simple strategy that we found worked well:
we replace the mean with the state vector s and randomly re-sampling the covariance from the
set of observed covariances as in RS(s, (µ,⌃)) = (s,⌃0), where ⌃0 is sampled uniformly from
the replay bu↵er. This relabeling is similar to relabeling methods used in goal-conditioned
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Algorithm 6 (Conditional) Distribution-Conditioned RL

Require: Policy ⇡✓, Q-function Q�, TD algorithm A, relabeling strategy RS, exploration
parameter distribution p!, replay bu↵er R.

1: Compute ! using Equation (4) or (5) (if unconditional).
2: for 0, . . . , Nepisode � 1 episodes do
3: Sample sf and compute ! with Equation (5.6).
4: Sample trajectory from environment ⌧ ⇠ ⇡(·|s;!) and store tuple (⌧ ,!) in replay

bu↵er R.
5: for 0, . . . , Nupdates � 1 steps do
6: Sample trajectory and parameter (⌧ ,!) ⇠ R.
7: Sample transition tuple (st, at, st+1) and a future state sh from ⌧ , where t < h.
8: With probability prelabel, relabel !  RS(sh,!).
9: Compute reward r = log pg(st;!) and augment states ŝt  [st;!], ŝt+1  [st+1;!].
10: Update Q� and ⇡✓ using A and (ŝt; at, ŝt+1, r).
11: end for
12: end for

reinforcement learning [104, 4, 177, 172, 152, 171, 155, 60], but applied to goal distributions
rather than individual goal states.

We call the method DisCo RL when learning a distribution from examples and Conditional
DisCo RL when learning a conditional distribution. We summarize both in Algorithm 6.

5.1.4 Experiments

Our experiments study the following questions: (1) How does DisCo RL with a learned
distribution compare to prior work that also uses successful states for computing rewards?
(2) Can we apply Conditional DisCo RL to solve long-horizon tasks that are decomposed into
shorter sub-tasks? (3) How do DisCo policies perform when conditioned on goal distributions
that were never used for data-collection? The first two questions evaluate the variants of
DisCo RL presented in Section 5.1.3, and the third question studies how well the method
can generalize to test time task specifications. We also include ablations that study the
importance of the relabeling strategy presented in Section 5.1.3.3. Videos of our method and
baselines are available on the paper website.2

We study these questions in three simulated manipulation environments of varying
complexity, shown in Figure 5.3. We first consider a simple two-dimensional “Flat World”
environment in which an agent can pick up and place objects at various locations. The second
environment contains a Sawyer robot, a rectangular box, and four blocks, which the robot
must learn to manipulate. The agent controls the velocity of the end e↵ector and gripper,
and the arm is restricted to move in a 2D plane perpendicular to the table’s surface. Lastly,
we use an IKEA furniture assembly environment from Lee et al. [131]. An agent controls

2https://sites.google.com/view/disco-rl

https://sites.google.com/view/disco-rl
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Figure 5.3: Illustrations of the experimental domains, in which a policy must (left top) use the
blue cursor to move objects to di↵erent locations, (left bottom) control a Sawyer arm to move cubes
into and out of a box, and (right) attach shelves to a pole using a cursor.

the velocity of a cursor that can lift and place 3 shelves onto a pole. Shelves are connected
automatically when they are within a certain distance of the cursor or pole. The states
comprise the Cartesian position of all relevant objects and, for the Sawyer task, the gripper
state. For the Sawyer environment, we also consider an image-based version which uses a
48x48 RGB image for the state. To accelerate learning on this image environment, we follow
past work on image-based RL [155] and encode images s with the mean of the VAE encoder
q�(z; s) for the RL algorithm and pretrain the VAE on 5000 randomly collected images. All
plots show mean and standard deviation across 5 seeds, as well as optimal performance with
a dashed line.

5.1.4.1 Learning from Examples

Our first set of experiments evaluates how well DisCo RL performs when learning distribution
parameters from a fixed set of examples, as described in Section 5.1.3.1. We study the
generality of DisCo RL across all three parameterizations from Section 5.1.2.2 on di↵erent
environments: First, we evaluate DisCo RL with a Gaussian model learned via Equation (5.3)
on the Sawyer environment, in which the policy must move the red object into the box while
ignoring the remaining three “distractor” objects. Second, we evaluate DisCo RL with a
GMM model also learned via Equation (5.3) on the Flat World environment, where the agent
must move a specific object to any one of four di↵erent locations. Lastly, we evaluate DisCo
RL with a latent variable model learned via Equation (5.4) on an image-based version of the
Sawyer environment, where the policy must move the hand to a fixed location and ignore
visual distractions. We note that this last experiment is done completely from images, and
so manually specifying the parameters of a Gaussian in image-space would be impractical.
The experiments used between K = 30 to 50 examples each for learning the goal distribution
parameters. We report the normalized final distance: a value 1 is no better than a random
policy.

We compare to past work that uses example states to learn a reward function. Specifically,
we compare to variational inverse control with events (VICE) [70], which trains a success
classifier to predict the user-provided example states as positive and replay bu↵er states
as negative, and then uses the log-likelihood of the classifier as a reward. We also include
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Figure 5.4: (Lower is better.) Learning curve showing normalized distance versus environment
steps of various method. DisCo RL uses a (left) Gaussian model, (middle) Gaussian mixture model,
or (right) latent-variant model on their respective tasks. DisCo RL with a learned goal distribution
consistently outperforms VICE and obtains a final performance similar to using oracle rewards.

an oracle labeled SAC (oracle reward) which uses the ground truth reward. Since VICE
requires training a separate classifier for each task, these experiments only test these methods
on a single task. Note that a single DisCo RL policy can solve multiple tasks by conditioning
on di↵erent parameter distributions, as we will study in the next section.

We see in Figure 5.4 that DisCo RL often matches the performance of using an oracle
reward and consistently outperforms VICE. VICE often failed to learn, possibly because the
method was developed using hundreds to thousands of examples, where as we only provided
30 to 50 examples.

5.1.4.2 Conditional Distributions for Sub-Task Decomposition

The next experiments study how Conditional DisCo RL can automatically decompose a
complex task into easier sub-tasks. We design tasks that require reaching a desired final state
sf , but that can be decomposed into smaller sub-tasks. The first task requires controlling
the Sawyer robot to move 4 blocks with randomly initialized positions into a box at a fixed
location. We design analogous tasks in the IKEA environment (with 3 shelves and a pole)
and Flat World environment (with 4 objects). All of these tasks can be split into sub-task
that involving moving a single object at a time.

For each object i = 1, . . . ,M , we collect an example set D
i
subtask

. As described in
Section 5.1.3.2, each set Di

subtask
contains K = 30 to 50 pairs of state (s, sf ), in which object

i is in the same location as in the final desired state sf , as shown in Figure 5.2. We fit a
joint Gaussian to these pairs using Equation (5.5). During exploration and evaluation, we
sample an initial state s0 and final goal state sf uniformly from the set of possible states, and
condition the policy on ! given by Equation (5.6). Because the tasks are randomly sampled,
the specific task and goal distribution at evaluation are unseen during training, and so this
setting tested whether Conditional DisCo RL can generalize to new goal distributions.

For evaluation, we test how well DisCo RL can solve long-horizon tasks by conditioning
the policy on each p

i
g(s | sf ) sequentially for H/M time steps. We report the cumulative

number of tasks that were solved, where each task is considered solved when the respective
object is within a minimum distance of its target location specified by sf . For the IKEA
environment, we also consider moving the pole to the correct location as a task. We compare
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Figure 5.5: (Higher is better.) Learning curves showing the number of cumulative tasks completed
versus environment steps for the Sawyer (left), IKEA (middle), and Flat World (right) tasks. We
see that DisCo RL significantly outperforms HER and VICE, and that relabeling the mean and
covariance is important.

to VICE which trains separate classifiers and policies for each sub-task using the examples
and also sequentially runs each policies for H/M time steps.

One can train a goal-conditioned policy to reach this final state sf directly, and so we
compare to hindsight experience replay (HER) [4], which attempts to directly reach the
final state for H time steps and learns using an oracle dense reward. Since HER does not
decompose the task into subtasks, we expect that the learning will be significantly slower
since it does not exploit access to the tuples that give examples of a subtask being completed.
We see in Figure 5.5 that Conditional DisCo RL significantly outperforms VICE and HER
and that Conditional DisCo RL successfully generalizes to new goal distributions.

Ablations Lastly, we include ablations that test the importance of relabeling the mean and
covariance parameters during training. We see in Figure 5.5 that relabeling both parameters,
and particularly the mean, accelerates learning.

Overall, our experiments show that DisCo policies can solve a variety of tasks using goal
distributions inferred from data, and can accomplish tasks specified by goal distributions that
were not seen during training. In the next section, we discuss another class of contextual
policies that can generalize to unseen tasks.

5.2 Contextual and Meta-Reinforcement Learning

Another promising class of contextual policies are meta-policies, and in this section we discuss
challenges that arise when training such contextual policies and ways to mitigate these
challenges. The discussion and lessons here are useful not only for training meta-policies, but
also for training contextual policies in general, such as goal-conditioned policies.

Just like goal-conditioned policies, a single meta-policies can solve a large number of
tasks. However, rather than being conditioned on a goal state, meta-policies are conditioned
on histories of states, actions, and resulting rewards, and must infer the task based on this
history. Once this inference procedure is trained, meta-policies can adapt to new tasks with
orders of magnitude less data than standard RL [176]. However, the meta-training phase
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in these algorithms still requires a large number of online samples, often even more than
standard RL, due to the multi-task nature of the meta-learning problem.

O✏ine reinforcement learning methods, which use only prior experience without active
data collection, provide a potential solution to this issue, because a user must only annotate
multi-task data with rewards once in the o✏ine dataset, rather than doing so in the inner
loop of RL training, and the same o✏ine multi-task data can be reused repeatedly for many
training runs. While a few recent works have proposed o✏ine meta-RL algorithms [50, 148],
we identify a specific problem when an agent trained with o✏ine meta-RL is tested on a new
task: the distributional shift between the behavior policy and the meta-test time exploration
policy means that adaptation procedures learned from o✏ine data might not perform well on
the (di↵erently distributed) data collected by the exploration policy at meta-test time. In
practice, we find that this issue can lead to a large degradation in performance on o✏ine
meta-RL tasks. This mismatch in training distribution occurs because meta-RL is never
trained on data generated by the exploration policy.

We will discuss how we can address this challenge by collecting additional online data
without any reward supervision, leading to a semi-supervised o✏ine meta-RL algorithm, as
illustrated in Figure 5.6. Online data can be relatively cheap to collect when it does not
require reward labels and enables the agent to observe new exploration trajectories. We
would like to meta-train on this online data to mitigate the distribution shift that occurs at
meta-test time, but meta-training requires reward labels. If an agent can generate its own
reward labels for these new states and actions, it can meta-train on this labeled dataset that
includes trajectories generated by the learned exploration policy.

Based on this principle, we develop a method called semi-supervised meta actor-critic
(SMAC) that uses reward-labeled o✏ine data to bootstrap a semi-supervised meta-reinforcement
learning procedure, in which an o✏ine meta-RL agent collects additional online experience
without any reward labels. The agent uses the reward supervision from the o✏ine dataset to
learn to generate new reward functions, which it uses to autonomously annotate rewards in
these otherwise rewardless interactions and meta-train on this new data. We evaluate our
method and prior o✏ine meta-RL methods on existing benchmarks [50, 148] with fewer than
400 time steps of reward labels at meta-test time. We find that while standard meta-RL
methods perform well at adapting to training tasks, they su↵er from data-distribution shifts
when they must adapt to new tasks that were not seen during meta-training. In contrast, we
find that additional environment interaction greatly improves the meta-test time performance
of SMAC, despite the lack of additional reward supervision.

5.2.1 Related Works in Meta-Reinforcement Learning

Many prior meta-RL algorithms assume that reward labels are provided with each episode
of online interaction [52, 65, 80, 224, 89, 176, 99, 118, 235, 225, 233, 108]. In contrast to
these prior methods, our method only requires o✏ine prior data with rewards, and additional
online interaction does not require any ground truth reward signal.
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Figure 5.6: (left) In o✏ine meta-RL, an agent uses o✏ine data from multiple tasks T1, T2, . . . ,
each with reward labels that must only be provided once. (middle) In online meta-RL, new reward
supervision must be provided with every environment interaction. (right) In semi-supervised meta-
RL, an agent uses an o✏ine dataset collected once to learn to generate its own reward labels for
new, online interactions. Similar to o✏ine meta-RL, reward labels must only be provided once
for the o✏ine training, and unlike online meta-RL, the additional environment interactions do not
require external reward supervision.

Prior works have also studied other formulations that combine unlabeled and labeled trials.
For example, imitation and inverse reinforcement learning methods use o✏ine demonstrations
to either learn a reward function [1, 63, 96, 69] or to directly learn a policy [189, 184, 96, 180,
167]. Semi-supervised and positive-unlabeled reward learning [222, 236, 119] methods use
reward labels provided for some interactions to train a reward function for RL. However, all
of these methods have been studied in the context of a single task. While these methods focus
on recovering a policy that maximizes a specific reward function, we focus on meta-learning
an RL procedure that can adapt to new reward functions. In other words, we do not focus
on recovering a single reward function, because there is no single test time reward or task.
Instead, we focus on generating reward labels for meta-training that mitigate the distribution
shift between the o✏ine data and online data at test-time.

SMAC uses a context-based adaptation procedure similar to Rakelly et al. [176], which is
related to other work on contextual policies, such as goal-conditioned reinforcement learning
[104, 190, 4, 172, 34, 217, 168, 155] or successor features [120, 10, 12, 76]. In contrast to these
latter works on contextual policies, our meta-learning procedure applies to any RL problem,
does not assume that the reward is defined by a single goal state or fixed basis function, and
uses o✏ine data to learn to generate rewards.

Our method addresses a similar problem to prior o✏ine meta-RL methods [148, 50],
but we show that these approaches generally underperform in low-data regimes, whereas
our method addresses the distribution shift problem by using online interactions without
requiring additional reward supervision. In our experiments, we found that SMAC greatly
improves the performance on both training and held-out tasks. Lastly, SMAC is also related
to unsupervised meta-learning methods [79, 101], which annotate data with their own rewards.
In contrast to these methods, we assume that there exists an o✏ine dataset with reward
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labels that we can use to learn to generate similar rewards.

5.2.2 Preliminaries

Meta-reinforcement learning. In meta-RL, we assume there is a distribution of tasks
pT (·). A task T is a Markov decision process (MDP), defined by a tuple T = (S,A, r, �, p0, pd),
where S is the state space, A is the action space, r is a reward function, � is a discount
factor, p0(s0) is the initial state distribution, and pd(st+1 | st, at) is the environment dynamics
distribution. A replay bu↵er D is a set of state, action, reward, next-states tuples, D =
{si, ai, ri, s0i}

Nsize
i=1

, where all the rewards come from the same task. We will use the letter
h to denote a small replay bu↵er or “history” and the notation h ⇠ D to denote that a
mini-batch h is sampled from a replay bu↵er D. We will use the letter ⌧ to represent a
trajectory ⌧ = (s1, a1, s2, . . . ) without reward labels.

A meta-episode consists of sampling a task T ⇠ pT (·), collecting Tadapt trajectories
with a policy ⇡, adapting the policy to the task between each trajectory, and measuring
the performance on the last trajectory. We write the policy’s adaptation procedure as A�,
parameterized by meta-parameters �. Between each trajectory, the adaptation procedure
transforms the history of interactions h within the meta-episode into a context z = A�(h)
that summarizes the previous interactions. This context z 2 Z is then given to the policy
⇡(a, | s, z). The exact representation of ⇡, A�, and Z depends on the specific meta-RL
method used. For example, the context z can be weights of a neural network [65] outputted
by a gradient update, hidden activations outputted by a recurrent neural network [52], or
latent variables outputted by a stochastic encoder [176]. Using this notation, the objective
in meta-RL is to learn the adaptation parameters � and policy parameters ✓ to maximize
performance on a meta-episode given a new task T sampled from p(T ).

PEARL. Since we require an o↵-policy meta-RL procedure for o✏ine meta-training, we
build on probabilistic embeddings for actor-critic RL (PEARL) [176], an online o↵-policy
meta-RL algorithm. In PEARL, z is a vector and the adaptation procedure A� that maps h
to z consists of sampling z from a distribution z ⇠ q�(z | h). The distribution q� is generated
by an encoder network with parameters �. This encoder is a set-based network that processes
all of the tuples in h = {si, ai, ri, s0i}

Nenc
i=1

in a permutation-invariant manner to produce the
mean and variance of a diagonal multivariate Gaussian. The policy is a contextual policy
⇡(a | s, z) conditioned on z by concatenating z to the state s.

The policy parameter ✓ is trained using soft-actor critic [85] which involves learning a critic,
or Q-function, Qw(s, a, z), with parameter w that estimates the sum of future discounted
rewards conditioned on the current state, action, and context. The encoder parameters are
trained by back-propagating the critic loss into the encoder. The actor, critic, and encoder
losses are minimized via gradient descent with mini-batches sampled from separate replay
bu↵ers for each task.
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O✏ine reinforcement learning. In o✏ine reinforcement learning, we assume that we have
access to a dataset D collected by some policy behavior ⇡�. An RL agent must train on this
fixed dataset and cannot interact with the environment. One challenge that o✏ine RL poses
is that the distribution of states and actions that an agent will see when deployed will likely
be di↵erent from those seen in the o✏ine dataset as they are generated by the agent, and a
number of recent methods have tackled this distribution shift issue [73, 72, 121, 221, 157, 135].
Moreover, one can combine o✏ine RL with meta-RL by training meta-RL on multiple
datasets D1, . . . ,DNbu↵

[50, 148], but in the next section we describe some limitations of this
combination.

5.2.3 The Problem with Näıve O✏ine Meta-Reinforcement
Learning

Although o✏ine meta-RL methods must address the usual o✏ine RL distribution shift issues,
they must also contend with a distribution shift that is specific to the meta-RL scenario:
distribution shift in z-space. Distribution shift in z-space occurs because meta-learning
requires learning an exploration policy ⇡ that generates data for adaptation. However, o✏ine
meta-learning only trains the adaptation procedure A�(h) using o✏ine data h generated by
a previous behavior policy, which we denote as ⇡�. After o✏ine training, there will be a
mismatch between this learned exploration policy ⇡ and the behavior policy ⇡�, leading to a
di↵erence in the data h and in turn, in the context variables z = A�(h). In other words, if
we write p(z | ⇡) to denote the marginal distribution over z given data generated by policy ⇡,
the di↵erences between trajectories from ⇡ and ⇡� will result in di↵erences between p(z | ⇡�)
during o✏ine training and p(z | ⇡) at meta-test time.

To illustrate the presence of this distribution shift at meta-test time, we empirically
compare p(z | ⇡�) and p(z | ⇡). While computing these distributions in closed form would
require strong assumptions about how the policy, adaptation procedure, and environment
interact, we approximate the these distributions by using a PEARL-style encoder discussed
in Section 5.2.2: p(z | ⇡) ⇡ q�(z | h) where h ⇠ ⇡. We use this approximation to measure
the KL-divergence observed during o✏ine training between the posterior p(z | ⇡) and a fixed
prior p(z). If these two distributions were the same, then we would expect the distribution of
KL divergences to also be similar. However, we see in Figure 5.7 that these two distributions
are markedly di↵erent when analyzing a training run of SMAC on the Ant Direction task
(see Section 5.2.5 for details).

We also observe that this distribution shift negatively impacts the resulting policy. In
Figure 5.7, we plot the performance of the learned policy when conditioned on z sampled
from q�(z | ⇡�) compared to q�(z | ⇡). We see that the policy conditioned on z generated
from ⇡� data leads to improvement, while the same policy conditioned on z generated from
the exploration policy ⇡ slightly drops in performance. Since we evaluate the same policy
⇡ and only change how z is sampled, this degradation in performance suggests that the
policy su↵ers from distributional shift between p(z | ⇡�) and p(z | ⇡): the encoder produces z
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Figure 5.7: Left: The distribution of the KL-divergence between the posterior q�(z | h) and a
prior p(z) over the course of training, when conditioned on data from the o✏ine dataset (blue) or
learned policy (orange), as measured by DKL(q�(z | h)||p(z)). We see that data from the learned
policy results in posteriors that are substantially farther from the prior, suggesting a significant
di↵erence in distribution over z. Right: The performance of the policy post-adaptation when
conditioned on data from the o✏ine dataset (i.e., z ⇠ p(z | ⇡�)) and data generated by the learned
policy (i.e., z ⇠ p(z | ⇡)). During the o✏ine training phase, we see that although the meta-RL policy
learns when conditioned on z generated by the o✏ine data, the performance does not increase when
z is generated using the online data. Since the same policy is evaluated, the change in z-distribution
is likely the cause for the drop in performance. In contrast, during the self-supervised training
phase, the performance of the two is quite similar.

vectors that too unfamiliar to the policy after reading in these exploration trajectories, and
therefore actually attains better performance when conditioned on the trajectories from ⇡�.

We note that this issue arises in any method for training non-Markovian policies with
o✏ine data. For example, recurrent policies for partially observed MDPs [100] depend both on
the current observation o and a history h. When deployed, these policies must also contend
with potential distributional shifts between the training and test-time history distributions,
in addition to the change in observation distribution o. This additional distribution shift may
explain why many memory-based recurrent policies are often trained online [52, 92, 57] or
have benefited from refreshing the memory states [110]. In this paper, we focus on addressing
this issue specifically in the o✏ine meta-RL setting.

O✏ine meta-RL with self-supervised online training. In complex environments
where many behaviors are possible, the distribution shift in z-space will likely be inevitable,
since the learned policy is likely to deviate from the behavior policy. To address this issue,
we introduce an additional assumption: in addition to the o✏ine dataset, we assume that the
agent can autonomously interact with the environment without observing additional reward
supervision. This problem statement is useful for scenarios where autonomously interacting
with the world is relatively easy, but online reward supervision is more expensive to obtain.
For instance, it may be cheap to label rewards in an o✏ine dataset for robotics by reward
sketching [25], but expensive to have a labeler available online while the robot runs to provide
rewards.
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Figure 5.8: (Left) In the o✏ine phase, we sample a history h0 to compute the posterior q�(z | h0).
We then use a sample from this encoder and another history h to train the networks. In purple, we
update the encoder q� with both reconstruction and KL loss. (Right) During the self-supervised
phase, we explore by sampling z ⇠ p(z) and conditioning our policy on these observations. We label
rewards using our learned reward decoder, and append the resulting data to the training data. The
training procedure is equivalent to the o✏ine phase, except that we do not train the reward decoder
or encoder since no additional ground-truth rewards are observed.

Formally, we assume that the agent can generate additional rollouts in an MDP without
a reward function, T \ r = (S,A, �, p0, pd). These additional interactions enable the agent to
explore using the learned policy. These exploration trajectories are from the same distribution
that will be observed at meta-test time, and therefore can be included into the meta-training
process to mitigate the distributional shift issue described above. However, meta-training
requires not just states and actions, but also rewards. In the next section, we describe a
method for autonomously labeling these rollouts with synthetic reward labels to enable an
agent to meta-train on this additional data.

5.2.4 Semi-Supervised Meta Actor-Critic

In this section, we present semi-supervised meta actor-critic (SMAC), a method to perform
o✏ine meta-training followed by self-supervised online meta-training. For the o✏ine meta-
training, we assume access to a set of replay bu↵ers, D = {Di}

Nbu↵
i=1

, where each bu↵er
corresponds to data for one task. For self-supervised online meta-training, we assume that
we can sample MDPs without a reward function. The SMAC adaptation procedure consists
of passing history through the encoder described in Section 5.2.2, resulting in a posterior
q(z | h). SMAC then uses this posterior for both meta-RL training and for reward generation.
Below, we describe both components of the algorithm.

5.2.4.1 O✏ine Meta-Training

To learn from the user-provided o✏ine data, we adapt the PEARL meta-learning method [176]
to the o✏ine setting. We use an actor-critic algorithm to train a contextual policy using a
set-based encoder, and update the critic by minimizing the Bellman error:

Lcritic(w) = E(s,a,r,s0)⇠Di,z⇠q�(z|h),a0⇠⇡(a0|s0,z)

⇥
(Qw(s, a, z)� (r + �Qw̄(s

0
, a0

, z)))2
⇤
, (5.7)
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where w̄ are target network weights [149] updated with the soft update [138] of w̄  

⌘ · w̄ + (1� ⌘) · w.
PEARL uses soft actor critic (SAC) [85] to train their policy and Q-function. SAC

has been primarily applied in the online setting, in which a replay bu↵er is continuously
expanded by adding data from the latest policy. However, when näıvely applied to the
o✏ine setting, actor-critic methods such as SAC su↵er from o↵-policy bootstrapping error
accumulation [73, 121, 221], which occurs when the target Q-function for bootstrapping
Q(s0, a0) is evaluated at actions a0 outside of the training data.

To avoid this error accumulation during o✏ine training, we update our actor with a
loss that implicitly constrains the policy to stay close to the actions observed in the replay
bu↵er, following the approach in a previously proposed single-task o✏ine RL algorithm
called AWAC [157]. AWAC uses the following loss to approximate a constrained optimization
problem, where the policy is constrained to stay close to the data observed in D:

Lactor(✓) = Es,a,s0⇠D,z⇠q�(z|h)


log ⇡(a | s) exp

✓
Q(s, a, z)� V (s0, z)

�

◆�
. (5.8)

We estimate the value function V (s, z) = Ea⇠⇡(a|s,z)Q(s, a, z) with a single sample, and � is
the corresponding Lagrange multiplier for the optimization problem. See Nair et al. [157] for
a full derivation.

This modified actor update makes it possible to train the encoder, actor, and critic
on the o✏ine data without the overestimation issues that a✏ict conventional actor-critic
algorithms [121]. However, it does not address the z-space distributional shift issue discussed
in Section 5.2.3, because the exploration policy learned via this o✏ine procedure will still
deviate significantly from the behavior policy ⇡�. As discussed previously, we will aim to
address this issue by collecting additional online data without reward labels and learning to
generate reward labels if self-supervised meta-training.

Learning to generate rewards. To continue meta-training online without provided
rewards, we propose to use the o✏ine dataset to learn a generative model over meta-training
task reward functions that we can use to label the transitions collected online. Recall that
during o✏ine learning, we learn an encoder q� which maps experience h to a latent context z
that encodes the task. In the same way that we train our policy ⇡(a | s, z) that conditionally
decodes z into actions, as well as a Q-function Qw(s, a, z) that conditionally decodes z into
Q-values, we additionally train a reward decoder p✓(s, a, z) 3 that conditionally decodes z into
rewards. We train the reward decoder p✓ to reconstruct the observed reward in the o✏ine
dataset through a mean squared error loss.

Because we use the latent space z for reward-decoding, we back-propagate the reward
decoder loss into q�. As visualized in Figure 5.8, we also regularize the posteriors q�(z | h)
against a prior p(z) to provide an information bottleneck in that latent space z and ensure
that samples from p(z) represent meaningful latent variables. We found it beneficial to not

3For simplicity, we write � to represent the parameters of both the encoder and decoder.
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back-propagate the critic loss into the encoder, in contrast to prior work such as PEARL. To
summarize, we train the reward encoder and decoder by minimizing the following loss

Lreward(�,h, z) = �
X

(s,a,r)2h

kr � p✓(s, a, z)k
2

2
+DKL

⇣
q�(z | h)

���
���p(z)

⌘
. (5.9)

In the next section, describe how we use this reward decoder to generate new reward labels.

5.2.4.2 Self-Supervised Meta-Training

We now describe the self-supervised online training procedure, during which we use the
reward decoder to provide supervision. First, we collect a trajectory ⌧ by rolling out our
exploration policy ⇡✓ conditioned on a context sampled from the prior p(z). To emulate
the o✏ine meta-training supervision, we would like to label ⌧ with rewards that are in the
distribution of meta-training tasks. As such, we sample a replay bu↵er Di uniformly from D

to get a history h ⇠ Di from the o✏ine data. We then sample from the posterior z ⇠ q�(z | h)
and label the reward rgenerated of a new state and action, (s, a), using the reward decoder

rgenerated = p✓(s, a, z), where z ⇠ q�(z | h) (5.10)

We then add the labeled trajectory to the bu↵er and perform actor and critic updates as in
o✏ine meta-training. Lastly, since we do not observe additional ground-truth rewards, we
do not update the reward decoder p✓ or encoder q�, and instead only train the policy and
Q-function during the self-supervised phase. We visualize this procedure in Figure 5.8.

Algorithm 7 Semi-Supervised Meta Actor-Critic

1: Input: datasets D = {Di}
Nbu↵
i=1

, policy ⇡, Q-function Qw, encoder q�, and decoder p✓.
2: for iteration n = 1, 2, . . . , No✏ine do
3: Sample bu↵er Di ⇠ D and two histories from bu↵er h,h0

⇠ Di.
4: Use the first history sample to h to infer z encode it z ⇠ q�(h).
5: Update ⇡, Qw, q�, p✓ by minimizing Lactor, Lcritic, Lreward with samples z,h0.
6: end for
7: for iteration n = 1, 2, . . . , Nonline do
8: Collect trajectory ⌧ with ⇡(a | s, z), with zt ⇠ p(z).
9: Label the rewards in ⌧ using Equation (5.10) and add the resulting data to Di.
10: Sample bu↵er Di ⇠ D and two histories from bu↵er h,h0

⇠ Di.
11: Encode first history z = q�(h).
12: Update ⇡, Qw by minimizing Lactor, Lcritic with samples z,h0.
13: end for
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5.2.4.3 Algorithm Summary and Details

We call the overall algorithm semi-supervised meta-actor-crici (SMAC) and visualize it
in Figure 5.8. For o✏ine training, we assume access to o✏ine datasets D = {Di}

Nbu↵
i=1

, where
each bu↵er corresponds to data generated for one task. Each iteration, we sample a bu↵er
Di ⇠ D and a history from this bu↵er h ⇠ Di. We condition the stochastic encoder q� on
this history to obtain a sample z ⇠ q�(z | h). We then use this sample z and a second history
sample h ⇠ Di to update the Q-function, the policy, encoder, and decoder by minimizing
Equation (5.7), Equation (5.8), and Equation (5.9) respectively. During the self-supervised
phase, we found it beneficial to train the actor with a combination of the loss in Equation (5.8)
and the original PEARL actor loss, weighted by hyperparameter �pearl. We provide pseudo-
code for the method in Algorithm 7 a complete list of hyperparameters for reproducibility,
such as the network architecture and RL hyperparameters, is provided in Appendix E.2.2.

5.2.5 Experiments

We proposed a method that uses additional online data to mitigate the distribution shift
in z-space that occurs in o✏ine meta-RL. In this section, we evaluate whether or not the
self-supervised phase of SMAC mitigates this negative drop in performance. We also study if
SMAC can not only overcome the distribution shift problem, but also improve the ability to
generalize to new tasks. In these experiments, we evaluate the adaptation procedure’s ability
to generalize to new task by testing it on held-out reward functions. We compare to di↵erent
methods across multiple simulated robot domains.

Meta-RL Tasks We evaluate our method on multiple simulated MuJoCo [206] meta-
learning tasks that have been used in past online and o✏ine meta-RL papers [65, 176, 50, 148].
The first task, Cheetah Velocity, contains a two-legged “half cheetah” that can move forwards
or backwards along the x-axis. Following prior work [176, 50], the reward function is the
absolute di↵erence product between the agent’s x-velocity and a velocity uniformly sampled
from [0, 3]. The second task, Ant Direction, contains a quadruped “ant” robot that can
move in a plane. The reward function is the dot product between the agent’s velocity and a
direction uniformly sampled from the unit circle. In both of these domains, a meta-episode
consists of sampling a desired velocity. The agent must learn to discover which velocity will
maximize rewards within Tadapt = 3 episodes, each of length 200.

We also evaluated SMAC on a significantly more diverse robot manipulation meta-learning
task called Sawyer Manipulation, based on the goal-conditioned environment introduced
in Khazatsky et al. [114]. Sawyer Manipulation is a simulated PyBullet environment [38]
which comprises a Sawyer robot arm that can manipulate drawers, pick and place objects,
and push buttons. Sampling a task T ⇠ p(T ) involves sampling both a new configuration
of the environment and the desired behavior to achieve. The initial configuration of the
objects can vary drastically, with the presence and location of objects randomized as shown
in Figure 5.9 and the agent is tested on one of many possible desired behaviors, such as
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Figure 5.9: Examples of our evaluation domains, each of which has a set of meta-train tasks
(examples shown in blue) and held out test tasks (orange). The domains include (left) a half cheetah
tasked with running at di↵erent speeds, (middle) a quadruped ant locomoting to di↵erent points on
a circle, and (right) a simulated Sawyer arm performing various manipulation tasks.

pushing a button, opening a drawer, or lifting an object. The observation is a 13-dimensional
state vector; when an object is not present in the task, the corresponding dimension takes
on value 0. The action space is 4-dimensional: 3 dimensions to control the end-e↵ector in
Euclidean space and one dimension to control the gripper. The sparse reward is �1 when
the desired behavior is not achieved and 0 when achieved. The task is di�cult due to the
diversity of objects, sparse reward, and precise manipulation required.

On all of the environments, we test the meta-RL procedure’s ability to generalize to new
tasks by evaluating the policies on held-out tasks sampled from the same distribution as in
the o✏ine datasets. We give a complete description of the possible tasks in Appendix E.2.2.

O✏ine data collection. For the MuJoCo tasks, we generate data by following a similar
procedure as [73], in which we use the replay bu↵er from a single PEARL run that uses
the ground-truth reward. We limit the data collection to 1200 transitions or 6 trajectories
per task and terminate the PEARL run early, forcing the meta-RL agent to learn from
sub-optimal data. For Sawyer Manipulation, we collect data using a scripted policy that
randomly performs as many potential tasks in the environment, without knowing what the
desired behavior in a sampled task is. We used 50 training tasks and 50 trajectories of length
75 per task. The average reward is -0.54 in the o✏ine data. See Appendix E.2.2 for more
details.

Comparisons and ablations. As an upper bound, we include the performance of PEARL
when online training uses oracle ground-truth rewards rather than self-generated rewards,
which we label Online Oracle. To understand the impact of using the actor loss in Equa-
tion (5.8), we include an ablation in which we use the actor loss from PEARL but still employ
our proposed unsupervised online phase, which we label SMAC (actor ablation). We also
include a meta-imitation baseline, which infers the task like PEARL, but then imitates the
task data in the dataset. In this baseline, we replace the actor update in Equation (5.8) with
simply maximizing log ⇡(a | s, z). We label this baseline meta behavior cloning. This baseline
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Figure 5.10: Comparison on self-supervised meta-learning against baseline methods. We report
the final return of meta-test adaptation on unseen test tasks, with varying amounts of online
meta-training following o✏ine meta-training. Our method SMAC, shown in red, consistently trains
to a reasonable performance from o✏ine meta-RL (shown at step 0) and then steadily improves
with online self-supervised experience. The o✏ine meta-RL methods, MACAW [148] and BOReL at
best match the o✏ine performance of SMAC but have no mechanism to improve via self-supervision.
We also compare to SMAC (SAC ablation) which uses SAC instead of AWAC as the underlying RL
algorithm. This ablation struggles to pretrain a value function o✏ine, and so struggles to improve
on more di�cult tasks.

illustrates the gap between o✏ine meta-RL and imitation, and helps us understand the gap
between the (highly suboptimal) behavior policy and RL.

For comparisons to prior work, we include the two previously proposed o✏ine meta-RL
methods: meta-actor critic with advantage weighting (labelled MACAW ) [148] and Bayesian
o✏ine RL (labelled BOReL) [50]. Since these methods have only been applied to the o✏ine
phase, we report their performance only after o✏ine training, since they do not have a
self-supervised online stage. For both prior works, we used the code released by the authors.
We trained these methods using the same o✏ine dataset and matched hyperparameters when
possible, such as batch size and network size.

Comparison results. We plot the mean post-adaptation returns and standard deviation
across 4 seeds in Figure 5.10. We see that across all three environments, SMAC consistently
improves during the self-supervised phase, and often achieves a similar performance to
the oracle that uses ground-truth reward during the online phase of learning. SMAC also
significantly improves over meta behavior cloning, which confirms that the data in the o✏ine
dataset is far from optimal.

We found that BOReL and MACAW performed comparatively poorly on all three tasks. A
likely cause for this performance is that BOReL and MACAW were both developed assuming
several orders of magnitude more data than the regime that we tested. For example, in
the BOReL paper [50], the Cheetah Velocity was trained with an o✏ine dataset using 400
million transitions and performs additional reward relabeling using ground-truth information
about the transitions. In contrast, our o✏ine dataset contains only 240 thousand transitions,
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Figure 5.11: We visualize the visited XY-coordinates of the learned policy on the Ant Direction
task. Left: Trajectories from the post-adaptation policy conditioned on z ⇠ q�(z|h) when h is
sampled from the o✏ine dataset (blue) or the learned exploration policy (orange) immediately after
o✏ine training. When conditioned on o✏ine data, the policy correctly moves in many di↵erent
directions. However, when conditioned on data from the learned exploration policy, the post-
adaptation policy only moves up and to the left, suggesting that the post-adaptation policy is
sensitive to data distribution used to collect h. Right: After the self-supervised phase, we see
that the post-adaptation policy learns to move in many di↵erent directions regardless of the data
source. These visualization demonstrate that the self-supervised phase mitigates the distribution
shift between conditioning on o✏ine and online data.

roughly three orders of magnitude fewer transitions. Similarly, MACAW uses 100M transitions
for Cheetah Velocity, over 40 times more transitions than used in our experiments. These
prior methods also collect o✏ine datasets by training task-specific policies, which converge to
near-optimal policies within the first million time step [85], meaning that they are evaluated
on very high-quality data.

In contrast, our data collection protocol produces more realistic o✏ine datasets that are
highly suboptimal, as evidenced by the performance of the meta behavior cloning baseline,
leaving plenty of room for improvement with o✏ine RL. We also observed that our method
improves over the performance of BOReL and MACAW even before the online phase (i.e., at
zero new environment steps) on the Cheetah and Sawyer Manipulation tasks, and achieves a
particularly large improvement on the Sawyer Manipulation environments, which are by far
the most challenging and exhibit the most variability between tasks. In this domain, we also
see the largest gains from the AWAC actor update, in contrast to the actor ablation (in blue),
indicating that properly handling the o✏ine phase is also important for good performance.

Visualizing the distribution shift. Lastly, we investigate if the self-supervised training
helps specifically because it mitigates a distribution shift caused by the exploration policy.
To investigate this, we visualize the trajectories of the learned policy both before and after
the self-supervised phase for the Ant Direction task in Figure 5.11. For each plot, we show
trajectories from the policy ⇡(a | s, z) when the encoder q�(z | h) is conditioned on histories
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from either the o✏ine dataset (ho✏ine) or from the learned exploration policy (honline). Since
the same policy is evaluated, di↵erences between the resulting trajectories represent the
distribution shift caused by using history from the learned exploration policy rather than
from the o✏ine dataset.

We see that before the self-supervised phase, there is a large di↵erence between the
two modes that can only be attributed to the di↵erence in h. When using honline, the
post-adaptation policy only explores one mode, but when using ho✏ine, the policy moves in
all directions. This qualitative di↵erence explains the large performance gap observed in
Figure 5.7 and highlights that the adaptation procedure is sensitive to the history h used
to adapt. In contrast, after the self-supervised phase, the policy moves in all directions
regardless of where the history came from. In Appendix E.2.1, we also visualize the exploration
trajectories and found that the exploration trajectories are qualitatively similar both before
and after the self-supervised phase. Together, these results illustrate the SMAC policy learns
to adapt to the exploration trajectories by using the self-supervised phase to mitigate the
distribution shift that occurs with näıve o✏ine meta RL.

5.3 Conclusion

We presented two example methods for training contextual policies beyond standard goal-
reaching. We first presented DisCo RL, a method for learning distribution-conditioned,
general-purpose policies specified using a goal distribution. An exciting direction for future
work for DisCo would be to interleave DisCo RL and distribution learning, for example by
using newly acquired data to update the learned VAE or by backpropagating the DisCo
RL loss into the VAE learning loss. Another promising direction would be to study goal-
distribution directed exploration, in which an agent can explore along a certain distribution
of states, analogous to work on goal-directed exploration discussed in Section 3.2.

We also presented SMAC, a method for training meta-policies using o✏ine data and
autonomous environment interaction. We analyzed and addressed a specific problem in
o✏ine meta-RL: distribution shift in the context parameters z. This distribution shift occurs
because the data collected by a meta-learned exploration policy will di↵er from the data
in an o✏ine dataset. This di↵erence is then magnified by the non-Markovian adaptation
procedure in meta-RL, since the learned policy depends on the entire history through the
post-adaptation context parameters z. We provided evidence that this distribution shift both
occurs and hurts the performance of o✏ine meta-RL. To address this problem, we made an
additional assumption that an agent can sample new trajectories without additional reward
labels. We show experimentally that SMAC significantly improves over the performance of
prior o✏ine meta-RL methods, in many cases achieving better performance even after the
o✏ine phase alone, and significantly improving performance after the self-supervised online
phase.

While our method significantly improves o✏ine meta-RL performance, the most obvious
limitation of SMAC is of course the need to gather additional unlabeled online samples.
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This may be quite practical in domains where collecting reward labels is a major bottleneck,
such as when rewards must be labeled by a human user, but may still pose a challenge in
safety-critical settings where online interaction is impractical.

In addition to being useful for learning general-purpose policies and meta-policies, the
research in Chapter 5 results highlight the challenges with and promising techniques for
training contextual policies. For example, the work in Section 5.1 highlights the flexibility
granted by learning conditional generative models over contexts. This insight suggests that
conditional models could similarly grant flexibility in training goal-conditioned policies, as
demonstrated in Nair et al. [156]. On the other hand, the work in Section 5.2 suggests that
distribution shifts in the context space can drastically hurt the performance of contextual
policies. This suggests a possible explanation for why techniques such as hindsight relabel-
ing [104, 4] (see also Section 3.1) are so e↵ective in goal-conditioned reinforcement: it is a
form of data-augmentation in the context space that reduces the distribution shift between
training and test time.
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Chapter 6

Discussion and Future Work

In this thesis, we discussed how goal-conditioned reinforcement learning can be used to
develop agents that can autonomously acquire reusable skills. We began in Chapter 2
by presenting the traditional goal-conditioned reinforcement learning problem and a novel
method for training policies to reach a given goal. In Chapter 3, we then discussed how agents
can autonomously generate goals for themselves that enable them to explore, especially in
environments with high-dimensional states such as images. We continued in Chapter 4 by
discussing how these goal-reaching policies can be reused in a planning framework. Specifically,
we described how goal-conditioned policies provide an abstraction over how a goal is reached,
enabling high-level planners to focus on what goals to reach using a temporal di↵erence model.
Lastly, we concluded in Chapter 5 by relating goal-conditioned reinforcement learning to
more general problem formulations, such as maximizing arbitrary rewards or meta-learning.

Future Work Although Skew-Fit provides a principled approach for autonomous goal-
setting in the absence of any prior knowledge, an important direction for future work is
to incorporate some prior knowledge to guide exploration in real-world domains. Many
real-world applications contain exponentially many states, rendering a uniform exploration
strategy impractical. One possible remedy is to provide examples of interesting goal states
before the agent autonomously explores. A goal-conditioned RL agent that has access to
example goals can use these provided goals to guide its autonomous exploration to focus on
regions of the state space that are of interest to the end user, similar to how SMAC uses a
dataset with labeled rewards to generate similar rewards.

This relationship to SMAC and, more generally, Chapter 5 connects the techniques of
goal-conditioned reinforcement learning to problem formulations involving contextual and
Non-Markovian policies. We hope that highlighting this connection between contextual,
meta, and goal-conditioned policies will encourage future cross-pollination of insights and
techniques.

Combining goal-conditioned RL with planning is an exciting research direction that holds
the potential to make RL methods more flexible, capable, and broadly applicable. Our work
represents a step in this direction, though other crucial questions remain to be answered.
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For example, how can planning be used to optimize the exploration objectives discussed
in Section 3.2? How can we use more powerful constrained optimization methods for planning?
Yet another promising research question is to study how lossy state abstractions might further
improve the performance of the planner, by explicitly discarding state information that is
irrelevant for higher-level planning. Exploring these future next steps can enable agents
to solve complex tasks that may require more directed exploration, involved planning, or
computationally e�cient planning.

We also note that this work uses deep generative models for sampling and representing
goals. One of the strengths of this approach is that many of the advances in generative
model [88, 16] can be quickly translated to advances in goal-conditioned reinforcement learning.
Exploring how more advanced generative models can be used to generate and represent goals
in more complex domains or di↵erent modalities is a very promising next step, as evidence
by the recent work that has explored this line of research [143, 123, 156, 170, 36, 113].

Finally, the work in this thesis presents a step in mitigating challenges associated with
applying RL to many real-world systems. By enabling agents to autonomously acquire
goal-directed behaviors, this work greatly minimizes the cost needed to train agents to
acquire reusable skills. An exciting direction for future work is to apply these techniques to
robotics applications “in the wild” and other control domains in which an agent must exhibit
general-purpose capabilities.
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[109] H. J. Kappen, V. Gómez, and M. Opper. Optimal control as a graphical model inference
problem. Machine Learning, 87(2):159–182, 2012.

[110] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.
Recurrent experience replay in distributed reinforcement learning. In International
conference on learning representations, 2018.
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[168] Alexandre Péré, Sebastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Un-
supervised Learning of Goal Spaces for Intrinsically Motivated Goal Exploration. In
International Conference on Learning Representations (ICLR), 2018. URL https:

//arxiv.org/pdf/1803.00781.pdf.
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[188] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Pollefeys,
Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. arXiv
preprint arXiv:1810.02274, 2018.

[189] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 3(6):233–242, 1999.

[190] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function
Approximators. In ICML, pages 1312–1320, 2015. ISBN 9781510810587. URL http:

//proceedings.mlr.press/v37/schaul15.pdf.

[191] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function
Approximators. In International Conference on Machine Learning (ICML), 2015.

[192] Jürgen Schmidhuber. Learning factorial codes by predictability minimization. Neural
Computation, 4(6):863–879, 1992.

[193] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

[194] Yannick Schroecker and Charles Isbell. Universal value density estimation for imitation
learning and goal-conditioned reinforcement learning. arXiv preprint arXiv:2002.06473,
2020.

https://arxiv.org/pdf/1401.4082.pdf
https://arxiv.org/pdf/1401.4082.pdf
http://proceedings.mlr.press/v37/schaul15.pdf
http://proceedings.mlr.press/v37/schaul15.pdf


BIBLIOGRAPHY 114

[195] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised
learning from video. arXiv preprint arXiv:1704.06888, 2018.

[196] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-
to-end robotic reinforcement learning without reward engineering. arXiv preprint
arXiv:1904.07854, 2019. URL http://arxiv.org/abs/1904.07854.

[197] Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons
from babies. Artificial life, 11(1-2):13–29, 2005. URL https://www.cogsci.msu.edu/

DSS/2010-2011/Smith/6lessons.pdf.

[198] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal
planning networks. arXiv preprint arXiv:1804.00645, 2018.

[199] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing Exploration In
Reinforcement Learning With Deep Predictive Models. In ICLR, 2016. URL https:

//arxiv.org/pdf/1507.00814.pdf.

[200] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[201] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2), 1999.

[202] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski,
Adam White, and Doina Precup. Horde: A Scalable Real-time Architecture for
Learning Knowledge from Unsupervised Sensorimotor Interaction. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), volume 10, pages
761–768. International Foundation for Autonomous Agents and Multiagent Systems,
2011. URL https://www.cs.swarthmore.edu/{~}meeden/DevelopmentalRobotics/

horde1.pdf.

[203] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John
Schulman, Filip De Turck, and Pieter Abbeel. #Exploration: A Study of Count-
Based Exploration for Deep Reinforcement Learning. In Neural Information Processing
Systems (NIPS), nov 2016. URL http://arxiv.org/abs/1611.04717.

[204] Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin,
Marie-Jean Meurs, Joelle Pineau, Doina Precup, Yoshua Bengio, Valentin Thoma,
Joelle Pineau, Doina Precup, and Yoshua Bengio. Independently Controllable Factors.
In NIPS Workshop, 2017. URL https://arxiv.org/pdf/1703.07718.pdfhttps://

arxiv.org/pdf/1708.01289.pdf.

http://arxiv.org/abs/1904.07854
https://www.cogsci.msu.edu/DSS/2010-2011/Smith/6lessons.pdf
https://www.cogsci.msu.edu/DSS/2010-2011/Smith/6lessons.pdf
https://arxiv.org/pdf/1507.00814.pdf
https://arxiv.org/pdf/1507.00814.pdf
http://arxiv.org/abs/1611.04717
https://arxiv.org/pdf/1703.07718.pdf%20https://arxiv.org/pdf/1708.01289.pdf
https://arxiv.org/pdf/1703.07718.pdf%20https://arxiv.org/pdf/1708.01289.pdf


BIBLIOGRAPHY 115

[205] E. Todorov. Linearly-solvable Markov decision problems. In Neural Informa-
tion Processing Systems (NeurIPS), 2006. URL http://papers.nips.cc/paper/

3002-linearly-solvable-markov-decision-problems.pdf.

[206] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012. ISBN 9781467317375. doi: 10.1109/
IROS.2012.6386109. URL https://homes.cs.washington.edu/{~}todorov/papers/

TodorovIROS12.pdf.

[207] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
In IJCAI, 2018.

[208] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from
observation. arXiv:1807.06158, 2018.

[209] M. Toussaint. Robot trajectory optimization using approximate inference. In Inter-
national Conference on Machine Learning (ICML), 2009. URL https://icml.cc/

Conferences/2009/papers/271.pdf.

[210] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and
continuous state markov decision processes. In Proceedings of the 23rd international
conference on Machine learning, pages 945–952, 2006.

[211] Marc Toussaint, Stefan Harmeling, and Amos Storkey. Probabilistic inference for
solving (po)mdps. Technical report, Technical Report EDI-INF-RR-0934, School of
Informatics, University of Edinburgh, 2006.

[212] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves,
et al. Conditional image generation with pixelcnn decoders. In NeurIPS, pages 4790–
4798, 2016.

[213] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[214] Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning.
arXiv preprint arXiv:1806.09605, 2018.

[215] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. FeUdal networks for hierarchical rein-
forcement learning. In International Conference on Machine Learning, 2017. URL
https://arxiv.org/pdf/1703.01161.pdfhttp://arxiv.org/abs/1703.01161.

http://papers.nips.cc/paper/3002-linearly-solvable-markov-decision-problems.pdf
http://papers.nips.cc/paper/3002-linearly-solvable-markov-decision-problems.pdf
https://icml.cc/Conferences/2009/papers/271.pdf
https://icml.cc/Conferences/2009/papers/271.pdf
https://arxiv.org/pdf/1703.01161.pdf%20http://arxiv.org/abs/1703.01161


BIBLIOGRAPHY 116

[216] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
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Appendix A

Contributions

• Section 2.3 is based on Rudner et al. [186], co-first authored with Tim G. J. Rudner.
Sergey Levine proposed the idea of treating goal-conditioning reinforcement learning
as variational inference. Tim G. J. Rudner wrote the first version of the proofs,
demonstrating goal-conditioned reinforcement learning objectives can be derived from
variational inference over trajectory distributions. Vitchyr H. Pong proposed to treat
the time at which the goal is reached as a separate random variable and to infer
it variationally alongside the distribution over the goal-conditioned trajectory. Tim
unified this approach with the previous results by proposing to treat the trajectory as a
transdimensional random variable. Together, Vitchyr and Tim significantly revised and
extended the proofs, with Tim proving the majority of the results. Tim and Vitchyr
worked together on designing the experiments, with Vitchyr conducting the experiments.
Sergey Levine, Rowan McAllister, and Yarin Gal provided feedback on the paper drafts
and contributed to the model formulation and variational inference method.

• Section 3.1 is based on Nair et al. [155], co-first authored with Ashvin Nair.

• Section 3.2 is based on Pong et al. [173], co-first authored with Murtaza Dalal and
Steven Lin.

• Section 4.1 is based on Pong et al. [172], co-first authored with Shixiang Gu.

• Section 4.2 is based on Nasiriany et al. [159], co-first authored with Soroush Nasiriany.

• Section 5.1 is based on Nasiriany et al. [158], co-first authored with Soroush Nasiriany
and Ashvin Nair.

I especially thank these collaborators for their significant contributions to this thesis!
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Appendix B

Chapter 2 Appendix

B.1 Proofs & Derivations

B.1.1 Derivation of Variational Objectives

In this section, we present detailed derivations to complement the derivations and results
included in Section 2.3.2 and Section 2.3.3.

Proposition 1 (Fixed-Time Outcome-Driven Variational Objective). Let q⌧̃0:t(⌧̃0:t | t, s0)
be as defined in Equation (2.7). Then, given any initial state s0, termination time t

?, and
outcome g,

DKL(q⌧̃0:t(· | t, s0) k p⌧̃0:t(· | t, s0, st? = g)) = log p(g | s0)� F̄(⇡, s0,g), (B.1)

where

F̄(⇡, s0,g) =̇ Eq⌧̃0:t (·|s0)


log pd(g | st, at) +

t�1X

t0=0

DKL(⇡(· | st0) || p(· | st0))

�
, (B.2)

and since log p(g|s0) is constant in ⇡,

argmin
⇡2⇧

DKL(q⌧̃0:t(· | t, s0) k p⌧̃0:t(· | t, s0, st? = g)) = argmax
⇡2⇧

F̄(⇡, s0,g). (B.3)

Proof. To find the (approximate) posterior pat(· | st, st? = g), we can use variational inference.
To do so, we consider the trajectory distribution under pat(· | st, st? = g),

p(⌧̃0:t | s0, st? = g) = p(at | st, st? = g)
t�1Y

t0=0

pd(st0+1 | st, at)p(at0 | st0 , st? = g), (B.4)

where t = t
?
� 1 and we denote the state–action trajectory realization from state s0 and

action a0 to time t
?
� 1 by ⌧̃0:t =̇ {a0, s1, a1, ..., st, at}. Inferring a posterior distribution
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p(⌧̃0:t|st? = g) then becomes equivalent to finding a variational distribution q⌧̃0:t(· | s0), which
induces a trajectory distribution q(⌧̃0|s0) that minimizes the KL divergence from q⌧̃0:t(· | s0)
to p⌧̃0:t(· | t, s0, st? = g):

min
q2Q̄

DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0, st? = g)

⌘
. (B.5)

If we find a distribution q⌧̃0:t(· | s0) for which the resulting KL divergence is zero, then
q⌧̃0:t(· | s0) is the exact posterior. If the KL divergence is positive, then q⌧̃0:t(· | s0) is an
approximate posterior. To solve the variational inference problem in Equation (B.5), we can
define a factorized variational family as

q⌧̃0:t(· | s0) =̇ ⇡(at | st)
t�1Y

t0=0

q(st0+1 | st0 , at0)⇡(at0 | st0), (B.6)

where a0:t are latent variables to be inferred, and the product is from t = 0 to t = t� 1 to
exclude the conditional distribution over the (observed) state st+1 = g from the variational
distribution.

Returning to the variational problem in Equation (B.5), we can now write

DKL

⇣
q⌧̃0:t(· | s0)

���
���p⌧̃0:t(· | t, s0, st? = g)

⌘
=

Z

At

Z

St

q⌧̃0:t(⌧̃0:t | s0) log
q⌧̃0:t(⌧̃0:t | s0)

p(⌧̃0:t|s0, st? = g)
ds1:tda0:t

= �F̄(⇡, s0,g) + log p(g|s0),
(B.7)

where

F̄(⇡, s0,g) =̇ Eq(⌧̃0:t|s0)

"
log pd(g | st, at) + log p(at | st)� log ⇡(at | st)

+
t�1X

t0=0

log p(at0 | st0) + log pd(st0+1 | st0 , at0)

� log ⇡(at0 | st0)� log q(st0+1 | st0 , at0)

#
(B.8)

and

log p(g|s0) = log

Z

At

Z

St

p⌧̃0:t(⌧̃0:t | t, s0, st? = g)ds1:tda0:t (B.9)

is a log-marginal likelihood. Following Haarnoja et al. [83], we assume that the variational
distribution q(st+1 | st, at) matches the generative model, i.e., q(st+1 | st, at) = pd(st+1 | st, at).
We then get that

q⌧̃0:t(⌧̃0:t | s0) =̇ ⇡(at | st)
t�1Y

t0=0

pd(st0+1 | st0 , at0)⇡(at0 | st0), (B.10)
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we can simplify F̄(⇡, s0,g) to

F̄(⇡, s0,g) = Eq⌧̃0:t (·|s0)

"
log pd(g | st, at) +

tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#
. (B.11)

Since log p(g|s0) is constant in ⇡, solving the variational optimization problem in Equa-
tion (B.5) is equivalent to maximizing the variational objective with respect to ⇡ 2 ⇧, where
⇧ is a family of policy distributions.

Corollary 1 (Fixed-Time Outcome-Driven Reward Function). The objective in Equation (2.8)
corresponds to KL-regularized reinforcement learning with a time-varying reward function
given by

r(st0 , at0 ,g, t
0) =̇ I{t0 = t} log pd(g | st0 , at0).

Proof. Let

r(st0 , at0 ,g, t
0) =̇ I{t0 = t} log pd(g | st0 , at0) (B.12)

and note that the objective

F̄(⇡, s0,g) = Eq⌧̃0:t (·|s0)

"
log pd(g | st, at) +

tX

t=0

DKL(⇡(· | st) k p(· | st)

#
(B.13)

can equivalently written as

F̄(⇡, s0,g) = Eq⌧̃0:t (·|s0)

"
tX

t=0

r(st0 , at0 ,g, t
0) +

tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#
(B.14)

= Eq⌧̃0:t (·|s0)

"
tX

t=0

r(st0 , at0 ,g, t
0) +DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#
, (B.15)

which, as shown in Haarnoja et al. [83], can be written in the form of Equation (2.1).

Proposition 2 (Unknown-time Outcome-Driven Variational Objective). Let q⌧̃0:T ,T (⌧̃0:t, t |
s0) = q⌧̃0:t(⌧̃0:t | t, s0)qT (t), let qT (t) be a variational distribution defined on t 2 N0, and let
q⌧̃0:t(⌧̃0:t | t, s0) be as defined in Equation (2.7). Then, given any initial state s0 and outcome
g, we have that

DKL(q⌧̃0:T ,T (· | s0) k p⌧̃0:T ,T (· | s0, sT ? = g)) = log p(g|s0)� F(⇡, qT , s0,g), (B.16)

where

F(⇡, qT , s0,g) =̇
1X

t=0

qT (t | s0) · Eq⌧̃0:t (⌧̃0:t|t,s0)

h

log pd(g | st, at)�DKL(q⌧̃0:T ,T (· | s0) || p⌧̃0:T ,T (· | s0))
i (B.17)

and log p(g | s0) is constant in ⇡ and qT .
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Proof. In general, solving the variational problem

min
q2Q

DKL

⇣
q⌧̃0:T ,T (· | s0)

���
���p⌧̃0:T ,T (· | s0, sT ? = g)

⌘
(B.18)

from Section 2.3.3 in closed form is challenging, but as in the fixed-time setting, we can take
advantage of the fact that, by choosing a variational family parameterized by

q⌧̃0:t(⌧̃0:t | t, s0) =̇ ⇡(at | st)
t�1Y

t0=0

pd(st0+1 | st0 , at0) ⇡(at0 | st0), (B.19)

with ⇡ 2 ⇧, we can follow the same steps as in the proof for Proposition 1 and show that
given any initial state s0 and outcome g,

DKL

⇣
q⌧̃0:T ,T (· | s0)

���
���p⌧̃0:T ,T (· | s0, sT ? = g

⌘
) = log p(g | s0)� F(⇡, qT , s0,g), (B.20)

where

F(⇡, qT , s0,g) =̇
1X

t=0

qT (t)Eq⌧̃0:t (⌧̃0:t|t,s0)

"
log pd(g | st, at)

�DKL

⇣
q⌧̃0:T ,T (· | s0)

���
���p⌧̃0:T ,T (· | s0)

⌘#
,

(B.21)

where q(⌧̃0:t, t|s0) =̇ q⌧̃0:t(⌧̃0:t | t, s0)qT (t), and hence, solving the variational problem in Equa-
tion (2.10) is equivalent to maximizing F(⇡, qT , s0,g) with respect to ⇡ and qT .

B.1.2 Derivation of Recursive Variational Objective

Proposition 4 (Factorized Unknown-Time Outcome-Driven Variational Objective). Let
q⌧̃0:T ,T (⌧̃0:T , T | s0) = q⌧̃0:t(⌧̃0:t | t, s0)qT (t), let qT (t) = q�t+1(�t+1 = 1)

Qt
t0=1

q�t0 (�t0 = 0) be
a variational distribution defined on t 2 N0, and let q⌧̃0:t(⌧̃0:t | t, s0) be as defined in Equa-
tion (2.7). Then, given any initial state s0 and outcome g, Equation (B.17) can be rewritten
as

F(⇡, qT , s0,g) = Eq(⌧̃ |s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!⇣
r(st, at,g; q�)�DKL(⇡(· | st) k p(· | st))

⌘#

(B.22)
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Proof. Consider the variational objective F(⇡, qT , s0,g) in Equation (B.17):

F(⇡, qT , s0,g)

=
1X

t=0

qT (t)Eq⌧̃0:t (⌧̃0:t|t,s0)

h
log pd(g | st, at)�DKL

⇣
q⌧̃0:T ,T (· | s0)

���
���p⌧̃0:T ,T (· | s0)

⌘ i (B.23)

=
1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)


log pd(g | st, at)� log

q⌧̃0:t(⌧̃0:t | t, s0)qT (· | s0)(t)

p⌧̃0:t(⌧̃0:t | t, s0)pT (· | s0)
d⌧̃0:t

�

(B.24)

=
1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)


log pd(g | st, at)� log

q⌧̃0:t(⌧̃0:t | t, s0)

p⌧̃0:t(⌧̃0:t | t, s0)

�

�

1X

t=0

qT (t | s0) log
qT (t | s0)

qT (t | s0)
.

(B.25)

Noting that
P

1

t=0
qT (t | s0) log

qT (t|s0)
qT (t|s0)

= DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘
, we can write

F(⇡, qT , s0,g) (B.26)

=
1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)


log pd(g | st, at)� log

q⌧̃0:t(⌧̃0:t | t, s0)

p⌧̃0:t(⌧̃0:t | t, s0)

�

�DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘ (B.27)

=
1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)

h
log pd(g | st, at)

i

�

1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)


log

q⌧̃0:t(⌧̃0:t | t, s0)

p⌧̃0:t(⌧̃0:t | t, s0)

�

�DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘
.

(B.28)

Further noting that for an infinite-horizon trajectory distribution

q(⌧̃t0 | st0) =̇
1Y

t=t0

pd(st+1 | st, at)⇡(at | st),
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a trajectory realization ⌧̃t+1 =̇ {⌧t0}1t0=t+1
, and any joint probability density f(st, at),

1X

t=0

qT (t | s0)Eq⌧̃0:t (⌧̃0:t|t,s0)

h
f(st, at)

i
(B.29)

=
1X

t=0

✓
Eq⌧̃0:t (⌧̃0:t|t,s0)

h
qT (t | s0)f(st, at)

i
·

✓Z
q(⌧̃t+1 | s0)d⌧̃t+1

◆

| {z }
=1

◆
(B.30)

=
1X

t=0

✓✓Z

St⇥At

q(⌧̃0:t | s0)qT (t | s0)f(st, at)d⌧̃0:t

◆
·

✓Z
q(⌧̃t+1 | s0)d⌧̃t+1

◆

| {z }
=1

◆
(B.31)

=
1X

t=0

✓Z
q(⌧̃t+1 | s0)

✓Z

St⇥At

q(⌧̃0:t | s0)qT (t | s0)f(st, at)d⌧̃0:t

◆
d⌧̃t+1

◆
, (B.32)

=
1X

t=0

Z
q(⌧̃0 | s0)qT (t | s0)f(st, at)d⌧̃0 (B.33)

=

Z
q(⌧̃0 | s0)

1X

t=0

qT (t | s0)f(st, at)d⌧̃0, (B.34)

we can express Equation (B.28) in terms of the infinite-horizon state–action trajectory
q(⌧̃0 | s0) =̇

Q
1

t=0
pd(st+1 | st, at)⇡(at | st) as

F(⇡, qT , s0,g) (B.35)

=

Z
q(⌧̃0|s0)

1X

t=0

qT (t | s0) log p(g|st, at)d⌧̃

�

1X

t=0

qT (t | s0)DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘

�DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘

(B.36)

= Eq(⌧̃0|s0)

"
1X

t=0

qT (t | s0)
⇣
log p(g|st, at)�DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘⌘#

�DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘
.

(B.37)

Using Lemma 7 and the definition of qT (t | s0) in Equation (2.11), we can rewrite this
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objective as

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

⇣ tY

t0=1

q�t0 (�t0 = 0)
⌘
q�t0 (�t0 = 1)

⇣
log p(g|st, at)

�DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘⌘#

�

1X

t=0

⇣ tY

t0=1

q�t0 (�t0 = 0)
⌘
DKL(q�t+1 || p�t+1)

(B.38)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q(�t0 = 0)

!
·

 
q(�t+1 = 1)

�
log p(g|st, at)�DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘ �
�DKL

⇣
q�t+1

���
���p�t+1

⌘!#
,

(B.39)

with

DKL

⇣
q�t+1

���
���p�t+1

⌘
= q�t+1(�t+1 = 0) log

q�t+1(�t+1 = 0)

p�t+1(�t+1 = 0)

+ (1� q�t+1(�t+1 = 0)) log
1� q�t+1(�t+1 = 0)

1� p�t+1(�t+1 = 0)
.

(B.40)

Next, to re-express DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘
as a sum over Kullback-Leibler diver-

gences between distributions over single action random variables, we note that

DKL

⇣
q⌧̃0:t(· | t, s0)

���
���p⌧̃0:t(· | t, s0)

⌘
=

Z

St⇥At

q⌧̃0:t(⌧̃0:t | t, s0) log
q⌧̃0:t(⌧̃0:t | t, s0)

p⌧̃0:t(⌧̃0:t | t, s0)
d⌧̃0:t (B.41)

=

Z

St⇥At

q⌧̃0:t(⌧̃0:t | t, s0) log

Qt
t0=1

⇡(at0 | st0)Qt
t0=1

p(at0 | st0)
d⌧̃0:t (B.42)

=

Z

St⇥At

q⌧̃0:t(⌧̃0:t | t, s0)
tX

t0=0

log
⇡(at0 | st0)

p(at0 | st0)
d⌧̃0:t (B.43)

= Eq(⌧̃ |s0)

"
tX

t0=0

Z

A

⇡(at0 | st0) log
⇡(at0 | st0)

p(at0 | st0)
dat0

#

(B.44)

= Eq(⌧̃ |s0)

"
tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#
, (B.45)
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where we have used the same marginalization trick as above to express the expression in terms
of an infinite-horizon trajectory distribution, which allows us to express Equation (B.39) as

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q(�t0 = 0)

!

·

 
q(�t+1 = 1)

 
log p(g|st, at)� Eq(⌧̃ |s0)

"
tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#!

�DKL

⇣
q�t+1

���
���p�t+1

⌘!#
.

(B.46)

Rearranging and dropping redundant expectation operators, we can now express the objective
as

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q(�t0 = 0)

!

·

 
q(�t+1 = 1)

 
log p(g|st, at)� Eq(⌧̃ |s0)

"
tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#!

�DKL

⇣
q�t+1

���
���p�t+1

⌘!#
.

(B.47)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q(�t0 = 0)q(�t+1 = 1)

!
log p(g|st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘#

�

1X

t=0

 
tY

t0=1

q(�t0 = 0)q(�t+1 = 1)

!

| {z }
=qT (t|s0)

Eq(⌧̃ |s0)

"
tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#
,

(B.48)
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whereupon we note that the negative term can be expressed as

1X

t=0

qT (t | s0)Eq(⌧̃ |s0)

"
tX

t0=0

DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘#

= Eq(⌧̃ |s0)

"
1X

t=0

tX

t0=0

qT (t | s0)DKL

⇣
⇡(· | st0)

���
���p(· | st0)

⌘# (B.49)

= Eq(⌧̃ |s0)

"
1X

t=0

q(T � t)DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘#
(B.50)

= Eq(⌧̃ |s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!

| {z }
(by Lemma 4)

DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘#
,

(B.51)

where the second line follows from expanding the sums and regrouping terms. By substituting
the expression in Equation (B.51) into Equation (B.48), we obtain an objective expressed
entirely in terms of distributions over single-index random variables:

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!

·

⇣
q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘⌘

�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘#

(B.52)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!⇣
r(st, at,g; q�)�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘#
,

(B.53)

where we defined

r(st, at,g; q�) =̇ q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘
, (B.54)

which concludes the proof.

Theorem 1 (Outcome-Driven Variational Inference). Let qT (t) and q⌧̃0:t(⌧̃0:t | t, s0) be as
defined in Equation (2.7) and Equation (2.11), and define

V
⇡(st,g; qT ) =̇ E⇡(at|st) [Q

⇡(st, at,g; qT )]�DKL(⇡(· | st) k p(· | st)), (B.55)

Q
⇡(st, at,g; qT ) =̇ r(st, at,g; q�) + q(�t+1 = 0)Epd(st+1|st,at) [V

⇡(st+1,g; ⇡, qT )] , (B.56)

r(st, at,g; q�) =̇ q�t+1(�t+1 = 1) log pd(g | st, at)�DKL(q�t+1 k p�t+1). (B.57)
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Then given any initial state s0 and outcome g,

DKL(qq⌧̃0:t,T (· | s0) k p⌧̃0:t,T (· | s0, sT ? = g)) = �F(⇡, qT , s0,g) + C = �V ⇡(s0,g; qT ) + C,

where C =̇ log p(g | s0) is independent of ⇡ and qT , and hence maximizing V
⇡(s0,g; ⇡, qT ) is

equivalent to minimizing Equation (2.10).

Proof. Consider the objective derived in Proposition 4 (Factorized Unknown-Time Outcome-
Driven Variational Objective),

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!

·

⇣
q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘⌘

| {z }
=̇ r(st,at,g;q�)

�DKL

⇣
⇡(at | st)

���
���p(at|st)

⌘#
,

(B.58)

and recall that, by Proposition 2 (Unknown-time Outcome-Driven Variational Objective),

DKL(qq⌧̃0:t,T (· | s0) k p⌧̃0:t,T (· | s0, sT ? = g)) = �F(⇡, qT , s0,g) + log p(g|s0). (B.59)

Therefore, to prove the result that

DKL(qq⌧̃0:t,T (· | s0) k p⌧̃0:t,T (· | s0, sT ? = g)) = �V ⇡(s0,g; qT ) + log p(g|s0),

we just need to show that F(⇡, qT , s0,g) = V
⇡(s0,g; qT ) for V ⇡(s0,g; qT ) as defined in the

theorem. To do so, we start from the objective F(⇡, qT , s0,g) and and unroll it for t = 0:

F(⇡, qT , s0,g)

= Eq(⌧̃0|s0)

"
1X

t=0

 
tY

t0=1

q�t0 (�t0 = 0)

!
r(st, at,g; q�)�DKL

⇣
⇡(at | st)

���
���p(at|st)

⌘# (B.60)

= E⇡(a0|s0)

"
r(s0, a0,g; q�) + Eq(⌧1|s0,a0)

h 1X

t=1

tY

t0=1

q�t0 (�t0 = 0)
⇣
r(st, at,g; q�)

i#

�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘
�DKL

⇣
⇡(· | s0)

���
���p(· | s0)

⌘
.

(B.61)

With this expression at hand, let r0 be shorthand for r(s0, a0,g; q�). We now define

Q
⇡
sum

(s0, a0,g; qT ) =̇ r0 + Eq(⌧ |s0,a0)

"
1X

t=1

tY

t0=1

q�t0 (�t0 = 0)
⇣
r(st, at,g; q�)

�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘#
,

(B.62)
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and note that

F(⇡, qT , s0,g) = E⇡(a0|s0)[Q
⇡
sum

(s0, a0,g; qT )]�DKL(⇡(· | s0) k p(· | s0)) = V
⇡(s0,g; qT ),

as per the definition of V ⇡(s0,g; qT ). To prove the theorem from this intermediate result,
we now have to show that Q⇡

sum
(s0, a0,g; qT ) as defined in Equation (B.62) can in fact be

expressed recursively as Q⇡
sum

(st, at,g; qT ) = Q
⇡(s0, a0,g; qT ) with

Q
⇡(s0, a0,g; qT ) = r(st, at,g; q�) + q(�t+1 = 0)Epd(st+1|st,at) [V

⇡(st+1,g; ⇡, qT )] . (B.63)

To see that this is the case, we begin by unrolling Q
⇡(s0, a0,g; qT ) for t = 1 to get

Q
⇡
sum

(s0, a0,g; qT )

= r0 + Eq(⌧1|s0,a0)

"
1X

t=1

tY

t0=1

q�t0 (�t0 = 0)
⇣
r(st, at,g; q�)�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘#

(B.64)

= r0 + Epd(s1|a0,a0)

"
Eq(⌧1|s0,a0)

"
1X

t=1

tY

t0=1

q�t0 (�t0 = 0)
⇣
r(st, at,g; q�)

�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘## (B.65)

= r0 + Epd(s1|a0,a0)

"
E⇡(a1|s1)

"
q�1(�1 = 0)

⇣
r(s1, a1,g; q�)�DKL

⇣
⇡(· | s1)

���
���p(· | s1)

⌘⌘

+ Eq(⌧2|s1,a1)

"
1X

t=2

tY

t0=2

q�t0 (�t0 = 0)
⇣
r(st, at,g; q�)�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘⌘###
.

(B.66)
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Next, note that we can rearrange this expression to obtain the recursive relationship

Q
⇡
sum

(s0, a0,g; qT ) (B.67)

= r0 + q�1(�1 = 0)Epd(s0+1|s0,a0)

"
�DKL

⇣
⇡(· | s1)

���
���p(· | s1)

⌘

+ E⇡(a1|s1)

"
r(s1, a1,g; q�) + E

"
1X

t=2

 
tY

t0=2

q�t0 (�t0 = 0)

!⇣
r(st, at,g; q�)

�DKL

⇣
⇡(· | st)

���
���p(· | s)

⌘⌘###
,

(B.68)

= r0 + q�1(�1 = 0)Epd(s0+1|s0,a0)

"
�DKL

⇣
⇡(· | s1)

���
���p(· | s1)

⌘

+ E⇡(a1|s1)

"
Q
⇡
sum

(s1, a1,g; qT )

##
,

(B.69)

where the innermost expectation is taken with respect to q(⌧2|s1, a1). With this result, we
see that

Q
⇡
sum

(s0, a0,g; qT )

= r0 + q�1(�1 = 0)Epd(s0+1|s0,a0)

h
E⇡(a1|s1) [Q

⇡
sum

(s1, a1,g; qT )]�DKL

⇣
⇡(· | s1)

���
���p(· | s1)

⌘ i

(B.70)

= r0 + q�1(�1 = 0)Epd(s1|s,a)

h
V
⇡(s1,g; qT )

i
, (B.71)

for V(st+1,g; qT ) as defined above, as desired. In other words, we have that

F(⇡, qT , s0,g) = E⇡(a0|s0)[Q
⇡
sum

(s0, a0,g; qT )]�DKL(⇡(· | s0) k p(· | s0)) = V
⇡(s0,g; qT ).

(B.72)

Combining this result with Proposition 2 (Unknown-time Outcome-Driven Variational Ob-
jective) and Proposition 4 (Factorized Unknown-Time Outcome-Driven Variational Objective),
we finally conclude that

DKL(qq⌧̃0:t,T (· | s0) k p⌧̃0:t,T (· | s0, sT ? = g)) = �F(⇡, qT , s0,g) + C = �V ⇡(s0,g; qT ) + C,

(B.73)

where C =̇ log p(g | s0) is independent of ⇡ and qT . Hence, maximizing V
⇡(s0,g; ⇡, qT ) is

equivalent to minimizing the objective in Equation (2.10). This concludes the proof.

Corollary 3 (Simplified Outcome-Driven Variational Inference). Let qT = pT , assume that pT
is a Geometric distribution with parameter � 2 (0, 1), and let p(at|st) be a uniform distribution.
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Then the inference problem in Equation (2.10) of finding a goal-directed variational trajectory
distribution simplifies to maximizing the following recursively defined variational objective
with respect to ⇡:

V̄
⇡(s0,g; �) =̇ E⇡(a1|s1) [Q(s1, a1,g; �)]�H(⇡(· | s0)), (B.74)

where

Q̄
⇡(s1, a1,g; �) =̇ (1� �) log pd(g | s1, a1) + �Epd(s0+1|s0,a0)

⇥
V(s2,g; �)

⇤
(B.75)

and H(·) is the entropy functional.

Proof. The result follows immediately when replacing q� in Theorem 1 by p� and noting

that DKL

⇣
p�

���
���p�

⌘
= 0.

B.1.3 Derivation of Optimal Variational Posterior over T

Proposition 3 (Optimal Variational Distribution over T ). The optimal variational distribu-
tion q

?
T with respect to Equation (2.12) is defined recursively in terms of q?

�t+1
(�t+1 = 0) for

all t 2 N0 by

q
?
�t+1

(�t+1 = 0; ⇡, Q⇡) = �

⇣
E⇡(at+1|st+1)pd(st+1|st,at)[Q

⇡(st+1, at+1,g; qT )]

� E⇡(at|st)[log pd(g | st, at)] + �
�1
�
p�t+1(�t+1 = 0)

� ⌘

where �(·) is the sigmoid function, that is, �(x) = 1

e�x+1
and ��1(x) = log x

1�x .

Proof. Consider F(⇡, qT , s0,g):

F(⇡, qT , st,g) = E⇡(at|st)[Q
⇡(st, at,g; qT )] (B.76)

= E⇡(at|st)[r(st, at,g; q�) + q�t+1(�t+1 = 0)E
⇥
V(st+1,g; qT )

⇤
]. (B.77)

Since the variational objective F(⇡, qT , st,g) can be expressed recursively as

V
⇡(st,g; qT ) =̇ E⇡(at|st) [Q(st, at,g; qT )]�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘
,

with

Q
⇡(st, at,g; qT ) = r(st, at,g; q�) + q�t+1(�t+1 = 0)Epd(st+1|st,at) [V

⇡(st+1,g; qT )] ,

r(st, at,g; q�) = q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘
,
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and since DKL

⇣
q�t+1

���
���p�t+1

⌘
is strictly convex in q�t+1(�t+1 = 0), we can find the globally

optimal Bernoulli distribution parameters q�t+1(�t+1 = 0) for all t 2 N0 recursively. That is,
it is su�cient to solve the problem

q
?
�t+1

(�t+1 = 0) =̇ argmax
q�t+1 (�t+1=0)

{F(⇡, qT , s0,g)} (B.78)

= argmax
q�t+1 (�t+1=0)

�
F(⇡, q�1 , . . . , q�t+1 , . . . , s0,g)

 
(B.79)

for a fixed t+ 1. To do so, we take the derivative of F(⇡, q�1 , . . . , q�t+1 , . . . , s0,g), which—
defined recursively—is given by

E⇡(at|st) [Q(st, at,g; qT ]�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘
(B.80)

= E⇡(at|st)

⇥
r(st, at,g; q�) + q�t+1(�t+1 = 0)Epd(st+1|st,at) [V

⇡(st+1,g; qT )]
⇤

(B.81)

= �DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘
(B.82)

= E⇡(at|st)


q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘
(B.83)

+ q�t+1(�t+1 = 0)Epd(st+1|st,at) [V
⇡(st+1,g; qT )]

�
�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘

(B.84)

= E⇡(at|st)


(1� q�t+1(�t+1 = 0)) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘
(B.85)

+ q�t+1(�t+1 = 0)Epd(st+1|st,at) [V
⇡(st+1,g; qT )]

�
�DKL

⇣
⇡(· | st)

���
���p(· | st)

⌘
,

(B.86)

with respect to q�t+1(�t+1 = 0) and set it to zero, which yields

0 = �E⇡(at|st)

⇥
log pd(g | st, at) + E⇡(at+1|st+1)pd(st+1|st,at)[Q

⇡(st+1, at+1,g; qT )]
⇤

+ log
1� q

?
�t+1

(�t+1 = 0)

1� p�t+1(�t+1 = 0)
� log

q
?
�t+1

(�t+1 = 0)

p�t+1(�t+1 = 0)
.

(B.87)

Rearranging, we get

q
?
�t+1

(�t+1 = 0)

1� q
?
�t+1

(�t+1 = 0)
= exp

 
E⇡(at+1|st+1)pd(st+1|st,at)⇡(at|st)[Q

⇡(st+1, at+1,g; qT )

� log pd(g | st, at)] + log
p�t+1(�t+1 = 0)

1� p�t+1(�t+1 = 0)

!
,

(B.88)



APPENDIX B. CHAPTER 2 APPENDIX 133

where the Q-function depends on q(�t0) with t
0
> t, but not on q

?
�t+1

(�t+1 = 0). Solving for
q
?
�t+1

(�t+1 = 0), we obtain

q
?
�t+1

(�t+1 = 0) (B.89)

=
exp(E[Q⇡(st+1, at+1,g; qT )� log pd(g | st, at)] + log

p�t+1 (�t+1=0)

1�p�t+1 (�t+1=0)
)

1 + exp(E[Q⇡(st+1, at+1,g; qT )� log pd(g | st, at)] + log
p�t+1 (�t+1=0)

1�p�t+1 (�t+1=0)
)

(B.90)

= �

⇣
E[Q⇡(st+1, at+1,g; qT )]� E[log pd(g | st, at)] + �

�1
�
p�t+1(�t+1 = 0)

� ⌘
, (B.91)

where the expectation is with respect to ⇡(at+1 | st+1)pd(st+1 | st, at)⇡(at | st) and where
�(·) is the sigmoid function with �(x) = 1

e�x+1
and �

�1(x) = log x
1�x . This concludes the

proof.

Remark 2. As can be seen from Proposition 3 (Optimal Variational Distribution over
T ), the optimal approximation to the posterior over T trades o↵ short-term rewards via
E⇡(at|st)[r(st, at,g; q�)], long-term rewards via E⇡(at+1|st+1)pd(st+1|st,at)[Q

⇡(st+1, at+1,g; qT )], and
the prior log-odds of not achieving the outcome at a given point in time conditioned on the

outcome not having been achieved yet,
p�t+1 (�t+1=0)

1�p�t+1 (�t+1=0)
.

Corollary 2 (Equivalence to Soft Actor-Critic [83]). Let qT = pT , assume that pT is a
Geometric distribution with parameter � 2 (0, 1), and let p(at | st) be a uniform distribution.
If the model of the state transition distribution is a Gibbs distribution,

p̃d(g|st, at; �) =̇
exp (��E(st, at,g))

Z(st, at; �)
, (B.92)

with � =̇ log(1��), Z(st, at; �) =̇
R
S
exp (��E(st, at,g0)) dg0

<1 and E : S⇥A⇥S ! R�0,
then for a fixed g and a reward function

r̃(st, at) =̇ E(st, at,g) + logZ(st, at; �), (B.93)

the inference problem in Equation (2.10) of finding a goal-directed variational trajectory
distribution simplifies to the infinite-horizon, discounted Soft Actor-Critic objective [83], with

Q
⇡(s, a) =̇ r̃(s, a) + �E

⇥
V
⇡(s1)

⇤
, (B.94)

where the expectation is w.r.t. the true state transition distribution pd(s1|s, a), and

V
⇡(s1) =̇ E⇡(a1|s1) [Q

⇡(s1, a1)] +H(⇡(a1 | s1)), (B.95)

where H(·) is the entropy functional.

Proof. The result follows immediately from the definition of Q⇡ in Theorem 1.

Remark 3. Corollary 2 shows that the infinite-horizon, discounted Soft Actor-Critic algorithm
can be derived entirely from first principles. In contrast, Haarnoja et al. [83] do not derive
the discounted infinite-horizon objective from first principles, but instead include a discount
factor post-hoc. Corollary 2 provides a probabilistic justification for this post-hoc objective.
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B.1.4 Lemmas

Lemma 3. Let q(T = t) =̇ q(T = t|T � t)
Qt

i=1
q(T 6= i � 1|T � i � 1) be a discrete

probability distribution with support N0. Then for any t 2 N0, we have that

q(T � t) =
1X

i=t

q(T = i|T � i)
iY

j=1

q(T 6= j � 1|T � j � 1) =
tY

i=1

q(T 6= i� 1|T � i� 1).

(B.96)

Proof. We proof the statement by induction on t.
Base case: For t = 0, q(T � 0) = 1 by definition of the empty product.
Inductive case: Note that q(T  t) =

Qt
i=1

q(T = i� 1|T � i� 1). Show that

q(T � t) =
tY

i=1

q(T 6= i� 1|T � i� 1) =) q(T � t+ 1) =
t+1Y

i=1

q(T 6= i� 1|T � i� 1).

(B.97)

Consider q(T � t+ 1) =
P

1

i=t+1
q(T = i|T � i)

Qi
j=1

q(T 6= j � 1|T � j � 1). To prove the
inductive hypothesis, we need to show that the following equality is true:

1X

i=t+1

q(T = i|T � i)
iY

j=1

q(T 6= j � 1|T � j � 1) =
t+1Y

i=1

q(T 6= i� 1|T � i� 1) (B.98)

()

1X

i=t

q(T = i|T � i)
iY

j=1

q(T 6= j � 1|T � j � 1)

� q(T = t|T � t)
tY

j=1

q(T 6= j � 1|T � j � 1)

= q(T 6= t|T � t)
tY

i=1

q(T 6= i� 1|T � i� 1).

(B.99)

By the inductive hypothesis,

q(T � t) =
1X

i=t

q(T = i|T � i)
iY

j=1

q(T 6= j � 1|T � j � 1) =
tY

i=1

q(T 6= i� 1|T � i� 1),

(B.100)
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and so

Equation (B.99)()
tY

j=1

q(T 6= j|T � j)� q(T 6= t+ 1|T � t+ 1)
tY

j=1

q(T = j|T � j)

(B.101)

= q(T 6= t|T � t)
tY

i=1

q(T 6= i� 1|T � i� 1). (B.102)

Factoring out
Qt

i=1
q(T 6= i� 1|T � i� 1), we get

Equation (B.99)()
tY

j=1

q(T 6= j � 1|T � j � 1) (1� q(T = t|T � t))| {z }
=q(T 6=t|T�t)

(B.103)

= q(T 6= t|T � t)
tY

j=1

q(T = j � 1|T � j � 1) (B.104)

()q(T 6= t|T � t)
tY

j=1

q(T 6= j � 1|T � j � 1) (B.105)

= q(T 6= t|T � t)
tY

j=1

q(T 6= j � 1|T � j � 1), (B.106)

which proves the inductive hypothesis.

Lemma 4. Let qT (t) and pT (t) be discrete probability distributions with support N0, let �t

be a Bernoulli random variable, with success defined as T = t+ 1 given that T � t, and let
q�t be a discrete probability distribution over �t for t 2 N\{0}, so that

q�t+1(�t+1 = 0) =̇ q(T 6= t | T � t)

q�t+1(�t+1 = 1) =̇ q(T = t | T � t).
(B.107)

Then we can write q(T = t) = q�t+1(�t+1 = 1)
Qt

i=1
q�i(�i = 0) for any t 2 N0 and have that

q(T � t) =
1X

i=t

q�i+1(�i+1 = 1)
iY

j=1

q�j(�j = 0) =
tY

i=1

q�i(�i = 0). (B.108)

Proof. By Lemma 3, we have that for any t 2 N0

q(T � t) =
1X

i=t

q(T = i|T � i)
iY

j=1

q(T 6= j � 1|T � j � 1) =
tY

i=1

q(T 6= i� 1|T � i� 1).

(B.109)

The result follows by replacing q(T = i|T � i) by q�i+1(�i+1 = 1), q(T 6= j � 1|T � j � 1)
by q�j(�j = 0), and q(T 6= i� 1|T � i� 1) by q�i(�i = 0).
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Lemma 5. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then
for any k 2 N0,

Et⇠q(T |T�k)


log

q(T = t | T � k)

p(T = t | T � k)

�

= f(q, p, k) + q(T 6= k | T � k)Et⇠q(T |T�k+1)


log

q(T = t | T � k + 1)

p(T = t | T � k + 1)

�
.

(B.110)

Proof. Consider Et⇠q(T |T�k)

h
log q(T=t|T�k)

p(T=t|T�k)

i
and note that by the law of total expectation we

can rewrite it as

Et⇠q(T |T�k)


log

q(T = t | T � k)

p(T = t | T � k)

�

= q(T = k | T � k)Et⇠q(T |T=k)


log

q(T = t | T � k)

p(T = t | T � k)

�

+ q(T 6= k | T � k)Et⇠q(T |T�k+1)


log

q(T = t | T � k)

p(T = t | T � k)

� (B.111)

= q(T = k | T � k) log
q(T = k | T � k)

p(T = k | T � k)
(B.112)

+ q(T 6= k | T � k)Et⇠q(T |T�k+1)


log

q(T = t | T � k)

p(T = t | T � k)

�
. (B.113)

For all values of T � k + 1, we have that

q(T = t | T � k) = q(T = t | T � k + 1)q(T 6= k | T � k) (B.114)

p(T = t | T � k) = p(T = t | T � k + 1)p(T 6= k | T � k) (B.115)

and so we can rewrite the expectation in Equation (B.112) as

Et⇠q(T |T�k+1)


log

q(T = t | T � k)

p(T = t | T � k)

�

= Et⇠q(T |T�k+1)


log

q(T = t | T � k)

p(T = t | T � k)
+ log

q(T 6= k | T � k)

p(T 6= k | T � k)

�
(B.116)

= Et⇠q(T |T�k+1)


log

q(T = t | T � k)

p(T = t | T � k)

�
+ log

q(T 6= k | T � k)

p(T 6= k | T � k)
(B.117)
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Combining Equation (B.117) with Equation (B.112), we have

Et⇠q(T |T�k)


log

q(T = t | T � k)

p(T = t | T � k)

�

= q(T = k | T � k) log
q(T = k | T � k)

p(T = k | T � k)
+ q(T 6= k | T � k) log

q(T 6= k | T � k)

p(T 6= k | T � k)| {z }
=̇ f(q,p,k)

+ q(T 6= k | T � k)Et⇠q(T |T�k+1)


log

q(T = t | T � k + 1)

p(T = t | T � k + 1)

�
,

(B.118)

which concludes the proof.

Lemma 6. Let qT (t) and pT (t) be discrete probability distributions with support N0. Then
the KL divergence from qT to pT can be written as

DKL(qT (· | s0) || pT (· | s0)) =
1X

t=0

q(T � t)f(qT , pT , t) (B.119)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t | T � t) log
q(T = t | T � t)

p(T = t | T � t)
+ q(T 6= t | T � t) log

q(T 6= t | T � t)

p(T 6= t | T � t)
.

(B.120)

Proof. Note that q(T = k) denotes the probability that the distribution q assigns to the
event T = k and q(T � m) denotes the tail probability, that is, q(T � m) =

P
1

t=m q(T = t).
We will write q(T |T � m) to denote the conditional distribution of q given T � m, that is,
q(T = k|T � m) = [k � m]q(T = k)/q(T � m). We will use analogous notation for p.

By the definition of the KL divergence and using the fact that, since the support is
lowerbounded by T = 0, q(T = 0) = q(T = 0 | T � 0), we have

DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘
= Et⇠q(T )


log

q(T = t)

p(T = t)

�
= Et⇠q(T |T�0)


log

q(T = t | T � 0)

p(T = t | T � 0)

�
.

(B.121)
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Using Lemma 5 with k = 0, 1, 2, 3, . . . , we can expand the above expression to get

DKL

⇣
qT (· | s0)

���
���pT (· | s0)

⌘

= f(qT , pT , 0) + q(T 6= 0 | T � 0)Et⇠q(T |T�1)


log

q(T = t | T � 1)

p(T = t | T � 1)

�
(B.122)

= f(q, p, 0) + q(T 6= 0 | T � 1)f(qT , pT , 1)

+ q(T 6= 0 | T � 0)q(T 6= 1 | T � 1)Et⇠q(T |T�2)


log

q(T = t | T � 2)

p(T = t | T � 2)

�
(B.123)

= 1|{z}
=q(T�0)

·f(q, p, 0)

+ q(T 6= 0 | T � 0)| {z }
=q(T�1)

f(q, p, 1)

+ q(T 6= 0 | T � 0)q(T 6= 1 | T � 1)| {z }
=q(T�2)

f(qT , pT , 2)

+ q(T 6= 0 | T � 0)q(T 6= 1 | T � 1)q(T 6= 2 | T � 2)| {z }
=q(T�3)

·

 

Et⇠q(T |T�3)


log

q(T = t | T � 3)

p(T = t | T � 3)

�!

(B.124)

=
1X

t=0

q(T � t)f(qT , pT , t), (B.125)

where f(qT , pT , t) is shorthand for

f(qT , pT , t) = q(T = t | T � t) log
q(T = t | T � t)

p(T = t | T � t)
+ q(T 6= t | T � t) log

q(T 6= t | T � t)

p(T 6= t | T � t)
.

(B.126)

and we used the fact that, by Lemma 3,

q(T � t) =
tY

k=1

q(T 6= k � 1 | T � k � 1). (B.127)

This completes the proof.

Lemma 7. Let qT (t) and pT (t) be discrete probability distributions with support N0, let �t

be a Bernoulli random variable, with success defined as T = t given that T � t, and let q�t

and p�t be discrete probability distributions over �t for t 2 N0\{0}, so that

q�t+1(�t+1 = 0) =̇ q(T 6= t | T � t) q�t+1(�t+1 = 1) =̇ q(T = t | T � t) (B.128)

p�t+1(�t+1 = 0) =̇ p(T 6= t | T � t) p�t+1(�t+1 = 1) =̇ p(T = t | T � t). (B.129)
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Then the KL divergence from qT (· | s0) to pT (· | s0) can be written as

DKL(qT (· | s0) || pT (· | s0)) =
1X

t=0

⇣ tY

k=1

q�t(�t = 0)
⌘
DKL(q�t+1 || p�t+1) (B.130)

Proof. The result follows from Lemma 6, Equation (B.127), Equation (B.128), and the
definition of f .

In detail, from Lemma 3, and Equation (B.128) we have that

q(T � t) =
tY

k=1

q(T 6= k � 1 | T � k � 1) =
tY

k=1

q�k
(�k = 0). (B.131)

From the definition of f(qT , pT , t), we have

f(qT , pT , t) = q(T = t | T � t) log
q(T = t | T � t)

p(T = t | T � t)
+ q(T 6= t | T � t) log

q(T 6= t | T � t)

p(T 6= t | T � t)
(B.132)

= q�t+1(�t+1 = 0) log
q�t+1(�t+1 = 0)

p�t+1(�t+1 = 0)
+ q(�t+1 = 1) log

q�t+1(�t+1 = 1)

p�t+1(�t+1 = 1)
(B.133)

= DKL

⇣
q�t+1

���
���p�t+1

⌘
. (B.134)

Combining Equation (B.131), Equation (B.134), and Equation (B.119) completes the proof.

B.2 Proof of Outcome-Driven Policy Iteration
Theorem

Theorem 2 (Variational Outcome-Driven Policy Iteration). Assume |A| <1 and that the
MDP is ergodic.

1. Outcome-Driven Policy Evaluation (ODPE): Given policy ⇡ and a function Q
0 : S ⇥

A⇥ S ! R, define Q
i+1 = T

⇡
Q

i. Then the sequence Q
i converges to the lower bound

in Theorem 1.

2. Outcome-Driven Policy Improvement (ODPI): The policy that solves

⇡
+ = argmax

⇡02⇧

�
E⇡0(at|st) [Q

⇡(st, at,g; qT )]�DKL(⇡
0(· | st) || p(· | st))

 
(B.135)
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and the variational distribution over T recursively defined in terms of

q
+(�t+1 = 0 | s0; ⇡, Q

⇡) = �

⇣
E⇡(at+1|st+1)pd(st+1|st,at)[Q

⇡(st+1, at+1,g; qT )]

� E⇡(at|st)[log pd(g | st, at)] + �
�1
�
p�t+1(�t+1 = 0)

� ⌘

(B.136)

improve the variational objective. In other words, F(⇡+
, qT , s0) � F(⇡, qT , s0) and

F(⇡, q+T , s0) � F(⇡, qT , s0) for all s0 2 S.

3. Alternating between ODPE and ODPI converges to a policy ⇡
? and a variational

distribution over T , q
?
T , such that Q

⇡?
(s, a,g; q?T ) � Q

⇡(s, a,g; qT ) for all (⇡, qT ) 2
⇧⇥QT and any (s, a) 2 S ⇥A.

Proof. Parts of this proof are adapted from the proof given in Haarnoja et al. [83], modified
for the Bellman operator proposed in Definition 1.

1. Outcome-Driven Policy Evaluation (ODPE): Instead of absorbing the entropy term
into the Q-function, we can define an entropy-augmented reward as

r
⇡(st, at,g; q�) =̇ q�t+1(�t+1 = 1) log pd(g | st, at)�DKL

⇣
q�t+1

���
���p�t+1

⌘

+ q�t+1(�t+1 = 0)Epd(st+1|st,at)[DKL

⇣
⇡(· | st+1)

���
���p(· | st+1)

⌘
].

(B.137)

We can then write an update rule according to Definition 1 as

Q̃(st, at,g; qT ) r
⇡(st, at,g; q�) + q�t+1(�t+1 = 0) ·

⇣
(B.138)

E⇡(at+1|st+1)pd(st+1|st,at)

⇥
Q̃(st+1, at+1,g; qT )

⇤⌘
, (B.139)

where q�t+1(�t+1 = 0)  1. This update is similar to a Bellman update [200], but
with a discount factor given by q�t+1(�t+1 = 0). In general, this discount factor
q�t+1(�t+1 = 0) can be computed dynamically based on the current state and action,
such as in Equation (2.15). As discussed in White [219], this Bellman operator is still
a contraction mapping so long as the Markov chain induced by the current policy is
ergodic and there exists a state such that q�t+1(�t+1 = 0) < 1. The first condition
is true by assumption. The second condition is true since q�t+1(�t+1 = 0) is given
by Equation (2.15), which is always strictly between 0 and 1. Therefore, we apply
convergence results for policy evaluation with transition-dependent discount factors [219]
to this contraction mapping, and the result immediately follows.

2. Outcome-Driven Policy Improvement (ODPI): Let ⇡old 2 ⇧ and let Q⇡old and V
⇡old be

the outcome-driven state and state-action value functions from Definition 1, let qT be
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some variational distribution over T , and let ⇡new be given by

⇡new(at|st) = argmax
⇡02⇧

n
E⇡0(at|st) [Q

⇡old(st, at,g; qT )]�DKL

⇣
⇡
0(· | st)

���
���p(· | st)

⌘o

= argmax
⇡02⇧

J⇡old(⇡
0(at, st), qT ).

(B.140)

Then, it must be true that J⇡old(⇡old(at|st); qT )  J⇡old(⇡new(at|st); qT ), since one could
set ⇡new = ⇡old 2 ⇧. Thus,

E⇡new(at|st) [Q
⇡old(st, at,g; qT )]�DKL

⇣
⇡new(· | st)

���
���p(· | st)

⌘

� E⇡old(at|st) [Q
⇡old(st, at,g; qT )]�DKL

⇣
⇡old(· | st)

���
���p(· | st)

⌘
,

(B.141)

and since

V
⇡old(st,g; qT ) = E⇡old(at|st) [Q

⇡old(st, at,g; qT )]�DKL

⇣
⇡old(· | st)

���
���p(· | st)

⌘
, (B.142)

we get

E⇡new(at|st) [Q
⇡old(st, at,g; qT )]�DKL

⇣
⇡new(· | st)

���
���p(· | st)

⌘
� V

⇡old(st,g; qT ).

(B.143)

We can now write the Bellman equation as

Q
⇡old(st, at,g; qT ) (B.144)

= q�t+1(�t+1 = 1) log pd(g | st, at)

+ q�t+1(�t+1 = 0)Epd(st+1|st,at)[V
⇡old(st+1,g; qT )]

(B.145)

 q�t+1(�t+1 = 1) log pd(g | st, at)

+ q�t+1(�t+1 = 0)Ep(st0 |st,at)[E⇡new(at0 |st0 ) [Q
⇡old(st0 , at0 ,g; qT )]

�DKL

⇣
⇡new(· | st0)

���
���p(· | st0)

⌘
],

(B.146)

...

 Q
⇡new(st, at,g; qT ) (B.147)

where we defined t
0 =̇ t+ 1, repeatedly applied the Bellman backup operator defined

in Definition 1 and used the bound in Equation (B.143). Convergence follows from
Outcome-Driven Policy Evaluation above.

3. Locally Optimal Variational Outcome-Driven Policy Iteration: Define ⇡i to be a policy
at iteration i. By ODPI for a given qT , the sequence of state-action value functions
{Q

⇡i
(qT )}1i=1

is monotonically increasing in i. Since the reward is finite and the negative
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KL divergence is upper bounded by zero, Q⇡(qT ) is upper bounded for ⇡ 2 ⇧ and
the sequence {⇡

i
}
1

i=1
converges to some ⇡?. To see that ⇡? is an optimal policy, note

that it must be the case that J⇡?(⇡?(at|st); qT ) > J⇡?(⇡(at | st); qT ) for any ⇡ 2 ⇧
with ⇡ 6= ⇡

?. By the argument used in ODPI above, it must be the case that the
outcome-driven state-action value of the converged policy is higher than that of any
other non-converged policy in ⇧, that is, Q⇡?

(st, at; qT ) > Q
⇡(st, at; qT ) for all ⇡ 2 ⇧

and any q
i
T 2 QT and (s, a) 2 S ⇥A. Therefore, given qT , ⇡? must be optimal in ⇧,

which concludes the proof.

4. Globally Optimal Variational Outcome-Driven Policy Iteration: Let ⇡i be a policy and
let qiT be variational distributions over T at iteration i. By Locally Optimal Variational
Outcome-Driven Policy Iteration, for a fixed q

i
T with q

i
T = q

j
T8i, j 2 N0, the sequence of

{(⇡i
, q

i
T )}

1

i=1
increases the objective Equation (B.16) at each iteration and converges

to a stationary point in ⇡i, where Q
⇡?
(st, at; qiT ) > Q

⇡(st, at; qiT ) for all ⇡ 2 ⇧ and any
q
i
T 2 QT and (s, a) 2 S ⇥A. Since the objective in Equation (B.16) is concave in qT ,
it must be the case that for, q?

i

T 2 QT , the optimal variational distribution over T at
iteration i, defined recursively by

q
?i(�t+1 = 0; ⇡i

, Q
⇡i
) = �

⇣
E⇡(at+1|st+1)pd(st+1|st,at)[Q

⇡i
(st+1, at+1,g; qT (⇡

i
, Q

⇡i
))]

� E⇡(at|st)[log pd(g | st, at)] + �
�1(p�t+1(�t+1 = 0)

⌘
,

for t 2 N0, Q⇡(st, at; q?T ) > Q
⇡(st, at; qT ) for all ⇡ 2 ⇧ and any (s, a) 2 S ⇥A. Note

that qT is defined implicitly in terms of ⇡i and Q
⇡i
, that is, the optimal variational

distribution over T at iteration i is defined as a function of the policy and Q-function at
iteration i. Hence, it must then be true that for Q⇡?

(st, at; q?T ) > Q
⇡?
(st, at; qT ) for all

q
?
T (⇡

?
, Q

⇡?
) 2 QT and for any ⇡? 2 ⇧ and (s, a) 2 S ⇥A. In other words, for an optimal

policy and correspondingQ-function, there exists an optimal variational distribution over
T that maximizes the Q-function, given the optimal policy. Repeating locally optimal
variational outcome-driven policy iteration under the new variational distribution
q
?
T (⇡

?
, Q

⇡?
) will yield an optimal policy ⇡?? and computing the corresponding optimal

variational distribution, q??T (⇡??, Q⇡??
) will further increase the variational objective

such that for ⇡??) 2 ⇧ and q
??
T (⇡??, Q⇡??

) 2 QT , we have that

Q
⇡??

(st, at; q
??
T ) > Q

⇡??
(st, at; q

?
T ) > Q

⇡?
(st, at; q

?
T ) > Q

⇡?
(st, at; qT ) (B.148)

for any ⇡? 2 ⇧ and (s, a) 2 S ⇥A. Hence, global optimal variational outcome-driven
policy iteration increases the variational objective at every step. Since the objective
is upper bounded (by virtue of the rewards being finite and the negative KL diver-
gence being upper bounded by zero) and the sequence of {(⇡i

, q
i
T )}

1

i=1
increases the

objective Equation (B.16) at each iteration, by the monotone convergence theorem, the
objective value converges to a supremum and since the objective function is concave
the supremum is unique. Hence, since the supremum is unique and obtained via
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global optimal variational outcome–driven policy iteration on (⇡, qT ) 2 ⇧ ⇥QT , the
sequence of {(⇡i

, q
i
T )}

1

i=1
converges to a unique stationary point (⇡?, q?T ) 2 ⇧ ⇥ QT ,

where Q⇡?
(st, at; q?T ) > Q

⇡(st, at; qiT ) for all ⇡ 2 ⇧ and any q
i
T 2 QT and (s, a) 2 S ⇥A.

Corollary 3. 3Optimality of Variational Outcome Driven Policy Iteration Variational
Outcome-Driven Policy Iteration on (⇡, qT ) 2 ⇧⇥QT results in an optimal policy at least as
good or better than any optimal policy attainable from policy iteration on ⇡ 2 ⇧ alone.

Remark 4. The convergence proof of ODPE assumes a transition-dependent discount fac-
tor [219], because the variational distribution used in Equation (2.15) depends on the next
state and action as well as on the desired outcome.

B.3 Additional Experiments

Description of Figure 2.1 We implemented a tabular version of odac and applied it
to the 2D environment shown in Figure 2.3a. We discretize the environment into an 8⇥ 8
grid of states. The action correspond to moving up, down, left, or right. If probability 1� ✏,
this action is taken. If the agent runs into a wall or boundary, the agent stays in its current
state. With probability ✏ = 0.1, the commanded action is ignored and a neighboring state
grid (including the current state) is uniformly sampled as the next state. The policy and
Q-function are represented with look-up tables and randomly initialized. The entropy reward
is weighted by 0.01 and the time prior p(T ) is geometric with parameter 0.5. The dynamics

model, p(0)d is initialized to give a uniform probability to each states for every state and action.
Each iteration, we simulate data collection by updating the dynamics model with the running
average update

p
(t+1)

d = 0.99p(t)d + 0.01pd

where pd is the true dynamics and update the policy and Q-function according to Equa-
tion (2.18) and Equation (2.16), respectively. Figure 2.1 shows that, in contrast to the
binary-reward setting, the learned reward provides shaping for the policy, which solves the
task within 100 iterations.

Full Ablation Results We show the full ablation learning curves in Figure B.1. We see
that odac consistently performs the best, and that odac with a fixed model also performs
well. However, on a few tasks, and in particular the Fetch Push and Sawyer Faucet tasks,
we see that using a fixed qT hurts the performance, suggesting that our derived formula
in Equation (2.15) results in better empirical performance.
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Comparison to methods with oracle goal sampling. To demonstrate the impact of
sampling the desired outcome g during exploration, we evaluate the methods on the Fetch
task when using oracle goal sampling, in which the goals are sampled uniformly from the set of
possible desired outcomes. As shown in Figure B.2, we see that the performances of UVD and
odac are similar and that both outperform other methods. The large drop in performance
when the desired outcome g is fixed may be due to the fact that uniformly sampling g
implicitly provides a curriculum for learning. For example, in the Box 2D environment, goal
states sampled above the box can train the agent to move around the obstacle, making it
easier to learn how to reach the other side of the box. Without this guidance, prior methods
often “got stuck” on the other side of the box. In contrast, odac consistently performs
well in this more challenging setting, suggesting that the log-likelihood signal provides good
guidance to the policy.

As shown in Figure 2.4, odac performs well on both this setting and the harder setting
where the desired outcome g was fixed during exploration, suggesting that odac does not
rely as heavily on the uniform sampling of g to learn a good policy than do other methods.

Comparison to model-based planning. odac learns a dynamics model but does not
use it for planning and instead relies on the derived Bellman updates to obtain a policy.
However, a natural question is whether or not the method would benefit from using this model
to perform model-based planning, as in Janner et al. [102]. We assess this by comparing
odac with model-based baseline that uses a 1-step look-ahead. In particular, we follow the
training procedure in Janner et al. [102] with k = 1. To ensure a fair comparison, we use the
exact same dynamics model architecture as in odac and match the update-to-environment
step ratio to be 4-to-1 for both methods. Table B.1 shows the final distance to the goal (best
results in bold). Using the same dynamics model, odac, which does not use the dynamics
model to perform planning and only uses it to compute rewards, outperforms the model-based
planning method. While a better model might lead to better performance for the model-based
baseline, these results suggest that odac is not sensitive to model quality to the same degree
as model-based planning methods.

Reward Visualization We visualize the reward for the Box 2D environment in Figure B.4.
We see that over the course of training, the reward function initially flattens out near g,
making learning easier by encouraging the policy to focus on moving just out of the top left
corner of the environment. Later in training (around 16,000 steps), the policy learns to move
out of the top left corner, and we see that the reward changes to have a stronger reward
gradient near g. We also note that the reward are much more negative for being far g at the
end of training: the top left region changes from having a penalty of �1.6 to �107. Overall,
these visualizations show that the reward function automatically changes during training
and provides a strong reward signal for di↵erent parts of the state space depending on the
behavior of the policy.
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Figure B.1: Ablation results across all six environments. We see that using our derived qT equation
is important for best performance across all six tasks and that odac is not sensitive to the quality
of dynamics model.
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Figure B.2: Comparison of di↵erent methods when the desired outcome g is sampled uniformly
from the set of possible outcomes during exploration. In this easier setting, we see that the UVD
performance is similar to odac. These results suggest that UVD depends more heavily on sampling
outcomes from the set of desired outcomes than odac.
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Figure B.3: The inferred q�t+1(�t+1 = 0) versus time during an example trajectory in the
Ant environment. As the ant robot falls over, q�t+1(�t+1 = 0) drops in value. We see that the
optimal posterior q?

�t+1
(�t+1 = 0) given in Proposition 2 automatically assigns a high likelihood of

terminating when this irrecoverable state is first reached, e↵ectively acting as a dynamic discount
factor.

Environment odac (Mean + Standard Error) Dyna (Mean + Standard Error)
Box 2D 0.74 (0.091) 0.87 (0.058)
Ant 33 (27) 102 (0.83)
Sawyer Faucet 14 (6.3) 100 (5)
Fetch Push 12 (3.7) 96 (3.8)
Sawyer Push 58 (8.7) 96 (0.39)
Sawyer Window 4.4 (1.5) 116 (14)

Table B.1: Normalized final distances (lower is better) across four random seeds, multiplied by a
factor of 100.
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(a) Reward Visualization
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Figure B.4: We visualize the rewards over the course of training for the Box 2D environment.
The darkest color corresponds to a reward of �100 and brightest to 0. To visualize the reward,
we discretize the continuous state space and evaluate r(st,at,g; q�) for at = ~0 at di↵erent states.
As shown in Figure B.4c, the desired outcome g is near the bottom right. After 4-8 thousand
environment steps, the reward is more flat near g, and only provides a reward gradient far from g.
After 20 thousand environment steps, the reward gradient is much larger again near the end, and
the penalty for being in the top left corner has changed from �1.6 to �107.



APPENDIX B. CHAPTER 2 APPENDIX 148

B.4 Experimental Details

B.4.1 Environment

Ant. This Ant domain is based on the “Ant-V3” OpenAI Gym [20] environment, with three
modifications: the gear ratio is reduced from 150 to 120, the contact force sensors are removed
from the state, and there is no termination condition and the episode only terminates after
a fixed amount of time. In this environment, the state space is 23 dimensional, consistent
of the XYZ coordinate of the center of the torso, the orientation of the ant (in quaternion),
and the angle and angular velocity of all 8 joints. The action space is 8-dimensional and
corresponds to the torque to apply to each joint. The desired outcome consists of the desired
XYZ, orientation, and joint angles at a position that is 5 meters down and to the right of the
initial position. This desired pose is shown in Figure 2.4.

Sawyer push. In this environment, the state and goal space is 4 dimensional and the
action space is 2 dimension. The state and goal consists of the XY end e↵ector (EE) and the
XY position of the puck. The object is on a 40cm x 50cm table and starts 20 cm in front of
the hand. The goal puck position is fixed to 15 cm forward and 30 cm to the right of the
initial hand position, while the goal hand position is 5cm behind and 20 cm to the right of
the initial hand position. The action is the change in position in each XY direction, with a
maximum change of 3 cm per direction at each time step. The episode horizon is 100.

Box 2D. In this environment, the state is a 4x4 with a 2x2 box in the middle. The policy is
initialized to to (�3.5,�2) and the desired outcome is (3.5, 2). The action is the XY velocity
of the agent, with wall collisions taken into account and maximum velocity of 0.2 in each
direction. To make the environment stochastic, we add Gaussian noise to actions with mean
zero and standard deviation that’s 10% of the maximum action magnitude.

Sawyer window and faucet. In this environment, the state and goal space is 6 dimensional
and the action space is 2 dimension. The state and goal consists of the XYZ end e↵ector
(EE) and the XYZ position of the window or faucet end endpoint. The hand is initialized
away from the window and faucet. The EE goal XYZ position is set to the initial window or
faucet position. The action is the change in position in each XYZ direction. For the window
task, the goal positions is to close the window, and for the faucet task, the goal position is to
rotate the faucet 90 degrees counter-clockwise from above.

B.4.2 Algorithm

Pseudocode for the complete algorithm is shown in Algorithm 8.
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Algorithm 8 Outcome-Driven Actor Critic

Require: Policy ⇡✓, Q-function Q�, dynamics model p , replay bu↵er R, and map from
state to achieved goal f .
for n = 0, . . . N � 1 episodes do
Sample initial state s0 from environment.
Sample goal g from environment.
for t = 0, . . . , H � 1 steps do
Get action at ⇠ ⇡✓(st,g).
Get next state st+1 ⇠ p(· | st, at).
Store (st, at, st+1,g) into replay bu↵er R.
Sample transition (s, a, s0,g) ⇠ R.

Compute reward r = log p (g | s, a)�DKL

⇣
q�(·|st, at)

���
���p(�)

⌘
.

Compute q(�t = 0|s, a) using Equation (2.15).
Update Q� using Equation (2.19) and data (s, a, s0,g, r).
Update ⇡✓ using Equation (2.20) and data (s, a,g).
Update p using Equation (2.21) and data (s, a,g).

end for
for t = 0, ..., H � 1 steps do
for i = 0, ..., k � 1 steps do
Sample future state shi , where t < hi  H � 1.
Store (st, at, st+1, f(shi)) into R.

end for
end for

end for

B.4.3 Implementation

Table B.3 lists the hyper-parameters that were shared across the experiments. Table B.2 lists
hyper-parameters specific to each environment. We give extra implementation details.

Dynamics model. For the Ant and Sawyer experiments, we train a neural network to
output the mean and standard deviation of a Laplace distribution. This distribution is then
used to model the distribution over the di↵erence between the current state and the next
state, which we found to be more reliable than predicting the next state. So, the overall
distribution is given by a Laplace distribution with learned mean µ and fixed standard
deviation � computed via

p = Laplace(µ = g (s, a) + f(s), � = 0.00001)

where g is the output of a network and f is a function that maps a state into a goal.
For the 2D Navigation experiment, we use a Gaussian distribution. The dynamics neural

network has hidden units of size [64, 64] with a ReLU hidden activations. For the Ant
and Sawyer experiments, there is no output activation. For the linear-Gaussiand and 2D
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Navigation experiments, we have a tanh output, so that the mean and standard To bound
the standard deviation outputted by the network, the standard-deviation tanh is multiplied
by two with the standard deviation be between limited to between

Reward normalization. Because the di↵erent experiments have rewards of very di↵erent
scale, we normalize the rewards by dividing by a running average of the maximum reward
magnitude. Specifically, for every reward r in the ith batch of data, we replace the reward
with

r̂ = r/Ci

where we update the normalizing coe�cient Ci using each batch of reward {rb}
B
b=1

:

Ci+1  (1� �)⇥ Ci + � max
b2[1,...,B]

|rb|

and Ci is initialized to 1. In our experiments, we use � = 0.001.

Target networks. To train our Q-function, we use the technique from Fujimoto et al. [71]
in which we train two separate Q-networks with target networks and take the minimum over
two to compute the bootstrap value. The target networks are updated using a slow, moving
average of the parameters after every batch of data:

�̄i+1 = (1� ⌧)�̄i +⇥�i.

In our experiments, we used ⌧ = 0.001.

Automatic entropy tuning. We use the same technique as in Haarnoja et al. [84] to
weight the rewards against the policy entropy term. Specifically, we pre-multiply the entropy
term in

V̂ (s0,g) ⇡ Q�̄(s
0
, a0

,g)� log ⇡(a0
|s0;g),

by a parameter ↵ that is updated to ensure that the policy entropy is above a minimum
threshold. The parameter ↵ is updated by taking a gradient step on the following function
with each batch of data:

F↵(↵) = �↵ (log ⇡(a | s,g) +Htarget)

and where Htarget is the target entropy of the policy. We follow the procedure in Haarnoja
et al. [84] to choose Htarget and choose Htarget = �Daction, where Daction is the dimension of
the action space.
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Environment horizon Q-function and policy hidden sizes
Box 2D 100 [64, 64]
Ant 100 [400, 300]

Fetch Push 50 [64, 64]
Sawyer Push 100 [400, 300]

Sawyer Window 100 [400, 300]
Sawyer Faucet 100 [400, 300]

Table B.2: Environment specific hyper-parameters.

Hyper-parameter Value
# training batches per environment step 1

batch size 256
discount Factor 0.99

policy hidden activation ReLU
Q-function hidden activation ReLU

replay bu↵er size 1 million
hindsight relabeling strategy future

hindsight relabeling probability 80%
target network update speed ⌧ 0.001
reward scale update speed � 0.001

Table B.3: General hyper-parameters used for all experiments.

Exploration policy. Because odac is an o↵-policy algorithm, we are free to use any
exploration policy. It may be beneficial to add For the Ant and Sawyer tasks, we simply
sample current policy. For the 2D Navigation task, at each time step, the policy takes a
random action with probability 0.3 and repeats its

Evaluation policy. For evaluation, we use the mean of the learned policy for selecting
actions.
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Appendix C

Chapter 3 Appendix

C.1 Section 3.1 Appendix

C.1.1 Complete Ablative Results

C.1.1.1 Relabeling strategy ablation

In this experiment, we compare di↵erent goal resampling strategies for training the Q function.
We consider: Future, relabeling the goal for a transition by sampling uniformly from future
states in the trajectory as done in Andrychowicz et al. [3]; VAE, sampling goals from the VAE
only; RIG, relabeling goals with probability 0.5 from the VAE and probability 0.5 using the
future strategy; and None, no relabeling. Figure C.1 shows the e↵ect of di↵erent relabeling
strategies with our method.

Figure C.1: Relabeling ablation simulated results, showing final distance to goal vs environment
steps. RIG (red), which uses a mixture of VAE and future, consistently matches or outperforms the
other methods.

C.1.1.2 Reward type ablation

In this experiment, we change only the reward function that we use to train the goal-
conditioned valued function to show the e↵ect of using the latent distance reward. We
include the following methods for comparison: Latent Distance, which is the reward used
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in RIG, i.e. A = I in Equation (3.1); Log Probability, which uses the Mahalanobis distance
in Equation (3.1), where A is the precision matrix of the encoder; and Pixel MSE, which
computes mean-squared error (MSE) between state and goal in pixel space. To compute the
pixel MSE for a sampled latent goal, we decode the goal latent using the VAE decoder, p ,
to generate the corresponding goal image. Figure C.2 shows the e↵ect of di↵erent rewards
with our method.

Figure C.2: Reward type ablation simulated results, showing final distance to goal vs environment
steps. RIG (red), which uses latent distance for the reward, consistently matches or outperforms
the other reward types.

C.1.1.3 Online training ablation

Rather than pre-training the VAE on a set of images collected by a random policy, here we
train the VAE in an online manner: the VAE is not trained when we initially collect data
with our policy. After every 3000 environment steps, we train the VAE on all of the images
observed by the policy. We show in Figure C.3 that this online training results in a good
policy and is substantially better than leaving the VAE untrained. These results show that
the representation learning can be done simultaneously as the reinforcement learning portion
of RIG, eliminating the need to have a predefined set of images to train the VAE.

The Visual Pusher experiment for this ablation is performed on a slightly easier version
of the Visual Pusher used for the main results. In particular, the goal space is reduced to be
three quarters of its original size in the lateral dimension.

C.1.1.4 Comparison to Hindsight Experience Replay

In this section, we study in isolation the e↵ect of sampling goals from the goal space directly
for Q-learning, as covered in Section 3.1.1.3. Like hindsight experience replay [3], in this
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Figure C.3: Online vs o✏ine VAE training ablation simulated results, showing final distance to
goal vs environment steps. Given no pre-training phase, training the VAE online (red), outperforms
no training of the VAE, and also performs well.

section we assume access to state information and the goal space, so we do not use a VAE.
To match the original work as closely as possible, this comparison was based o↵ of the

OpenAI baselines code [171] and we compare on the same Fetch robotics tasks. To minimize
sample complexity and due to computational constraints, we use single threaded training with
rollout batch size=1, n cycles=1, batch size=256. For testing, n test rollouts=1

and the results are averaged over the last 100 test episodes. Number of updates per cycle
corresponds to n batches.

On the plots, “Future” indicates the future strategy as presented in Andrychowicz et al.
[3] with k = 4. “Ours” indicates resampling goals with probability 0.5 from the ”future”
strategy with k = 4 and probability 0.5 uniformly from the environment goal space. Each
method is shown with dense and sparse rewards.

Figure C.4: Comparison between our relabeling strategy and HER. Each column shows a di↵erent
task from the OpenAI Fetch robotics suite. The top row uses 64 gradient updates per training cycle
and the bottom row uses 256 updates per cycle. Our relabeling strategy is significantly better for
both sparse and dense rewards, and for higher number of updates per cycle.
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Results are shown in Figure C.4. Our resampling strategy with sparse rewards consistently
performs the best on the three tasks. Furthermore, it performs reasonably well with dense
rewards, unlike HER alone which often fails with dense rewards. While the evaluation metric
used here, success rate, is favorable to the sparse reward setting, learning with dense rewards
is usually more sample e�cient on most tasks and being able to do o↵-policy goal relabeling
with dense rewards is important for RIG.

Finally, as the number of gradient updates per training cycle is increased, the performance
of our strategy improves while HER does not improve and sometimes performs worse. As we
apply reinforcement learning to real-world tasks, being able to reduce the required number
of samples on hardware is one of the key bottlenecks. Increasing the number of gradient
updates costs more compute but reduces the number of samples required to learn the tasks.

C.1.2 Hyperparameters

Table C.1 lists the hyperparameters used for the experiments.

Hyperparameter Value
Mixture coe�cient � 0.5

# training batches per time step 4
Exploration Policy OU, ✓ = 0.15, � = 0.3

� for �-VAE 5
Critic Learning Rate 10�3

Critic Regularization None
Actor Learning Rate 10�3

Actor Regularization None
Optimizer Adam

Target Update Rate (⌧) 10�2

Target Update Period 2 time steps
Target Policy Noise 0.2

Target Policy Noise Clip 0.5
Batch Size 128

Discount Factor 0.99
Reward Scaling 10�4

Normalized Observations False
Gradient Clipping False

Table C.1: Hyper-parameters used for all experiments.

C.1.3 Environment Details

Below we provide a more detailed description of the simulated environments.



APPENDIX C. CHAPTER 3 APPENDIX 156

Visual Reacher : A MuJoCo environment with a 7-DoF Sawyer arm reaching goal positions.
The arm is shown on the left of Figure 3.2 with two extra objects for the Visual Multi-Object
Pusher environment (see below). The end-e↵ector (EE) is constrained to a 2-dimensional
rectangle parallel to a table. The action controls EE velocity within a maximum velocity.
The underlying state is the EE position e, and the underlying goal is to reach a desired EE
position, ge.

Visual Pusher : A MuJoCo environment with a 7-DoF Sawyer arm and a small puck on a
table that the arm must push to a target position. Control is the same as in Visual Reacher.
The underlying state is the EE position, e and puck position p. The underlying goal is for
the EE to reach a desired position ge and the puck to reach a desired position p.

Visual Multi-Object Pusher : A copy of the Visual Pusher environment with two pucks.
The underlying state is the EE position, e and puck positions p1 and p2. The underlying goal
is for the EE to reach desired position ge and the pucks to reach desired positions g1 and g2

in their respective halves of the workspace. Each puck and respective goal is initialized in
half of the workspace.

Videos of our method in simulated and real-world environments can be found at https:
//sites.google.com/site/visualrlwithimaginedgoals/.

C.2 Section 3.2 Appendix

C.2.1 Proofs

The definitions of continuity and convergence for pseudo-metrics are similar to those for
metrics, and we state them below.

A function f : Q 7! Q is continuous with respect to a pseudo-metric d if for any p 2 Q

and any scalar ✏ > 0, there exists a � such that for all q 2 Q,

d(p, q) < � =) d(f(p), f(q)) < ✏.

An infinite sequence p1, p2 . . . converges to a value p with respect to a pseudo-metric d,
which we write as

lim
t!1

pt ! p,

if

lim
t!1

d(pt, p)! 0.

Note that if f is continuous, then

lim
t!1

dH(pt, q)! 0 =) lim
t!1

dH(f(pt), f(q))! 0.

https://sites.google.com/site/visualrlwithimaginedgoals/
https://sites.google.com/site/visualrlwithimaginedgoals/
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C.2.1.1 Proof of Lemma 3.1

Lemma 8. Let S be a compact set. Define the set of distributions Q = {p : support(p) ✓ S}.
Let F : Q 7! Q be continuous with respect to the pseudometric dH(p, q) =̇ |H(p)�H(q)| and
H(F(p)) � H(p) with equality if and only if p is the uniform probability distribution on S,
denoted as US. Define the sequence of distributions P = (p1, p2, . . . ) by starting with any
p1 2 Q and recursively defining pt+1 = F(pt). The sequence P converges to US with respect
to dH. In other words, limt!0 |H(pt)�H(US)|! 0.

Proof. The idea of the proof is to show that the distance (with respect to dH) between pt and
US converges to a value. If this value is 0, then the proof is complete since US uniquely has
zero distance to itself. Otherwise, we will show that this implies that F is not continuous,
which a contradiction.

For shorthand, define dt to be the dH-distance to the uniform distribution, as in

dt =̇ dH(pt, US).

First we prove that dt converges. Since the entropies of the sequence (p1, . . . ) monotonically
increase, we have that

d1 � d2 � . . . .

We also know that dt is lower bounded by 0, and so by the monotonic convergence theorem,
we have that

lim
t!1

dt ! d
⇤
.

for some value d
⇤
� 0.

To prove the lemma, we want to show that d
⇤ = 0. Suppose, for contradiction, that

d
⇤
6= 0. Then consider any distribution, q⇤, such that dH(q⇤, US) = d

⇤. Such a distribution
always exists since we can continuously interpolate entropy values between H(p1) and H(US)
with a mixture distribution. Note that q⇤ 6= US since dH(US , US) = 0. Since limt!1 dt ! d

⇤,
we have that

lim
t!1

dH(pt, q
⇤)! 0, (C.1)

and so

lim
t!1

pt ! q
⇤
.

Because the function F is continuous with respect to dH, Equation C.1 implies that

lim
t!1

dH(F(pt),F(q⇤))! 0.
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However, since F(pt) = pt+1 we can equivalently write the above equation as

lim
t!1

dH(pt+1,F(q⇤))! 0.

which, through a change of index variables, implies that

lim
t!1

pt ! F(q⇤)

Since q
⇤ is not the uniform distribution, we have that H(F(q⇤)) > H(q⇤), which implies that

F(q⇤) and q
⇤ are unique distributions. So, pt converges to two distinct values, q⇤ and F(q⇤),

which is a contradiction. Thus, it must be the case that d⇤ = 0, completing the proof.

C.2.1.2 Proof of Lemma 3.2

Lemma 9. Given two distribution p(x) and q(x) where p⌧ q and

0 < Covp[log p(X), log q(X)] (C.2)

define the distribution p↵ as

p↵(x) =
1

Z↵
p(x)q(x)↵

where ↵ 2 R and Z↵ is the normalizing factor. Let H↵(↵) be the entropy of p↵. Then there
exists a constant a > 0 such that for all ↵ 2 [�a, 0),

H↵(↵) > H↵(0) = H(p). (C.3)

Proof. Observe that {p↵ : ↵ 2 [�1, 0]} is a one-dimensional exponential family

p↵(x) = e
↵T (x)�A(↵)+k(x)

with log carrier density k(x) = log p(x), natural parameter ↵, su�cient statistic T (x) =
log q(x), and log-normalizer A(↵) =

R
X
e
↵T (x)+k(x)

dx. As shown in [160], the entropy of a
distribution from a one-dimensional exponential family with parameter ↵ is given by:

H↵(↵) =̇ H(p↵) = A(↵)� ↵A0(↵)� Ep↵ [k(X)]

The derivative with respect to ↵ is then

d

d↵
H↵(↵) = �↵A

00(↵)�
d

d↵
Ep↵ [k(x)]

= �↵A00(↵)� E↵[k(x)(T (x)� A
0(↵)]

= �↵Varp↵ [T (x)]� Covp↵ [k(x), T (x)]
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where we use the fact that the nth derivative of A(↵) give the n central moment, i.e.
A

0(↵) = Ep↵ [T (x)] and A
00(↵) = Varp↵ [T (x)]. The derivative of ↵ = 0 is

d

d↵
H↵(0) = �Covp0 [k(x), T (x)]

= �Covp[log p(x), log q(x)]

which is negative by assumption. Because the derivative at ↵ = 0 is negative, then there
exists a constant a > 0 such that for all ↵ 2 [�a, 0], H↵(↵) > H↵(0) = H(p).

The paper applies Lemma 9 to the case where q = q
G
� and p = p

S
� . When we take N !1,

we have that pskewed corresponds to p↵ above.

C.2.1.3 Simple Case Proof

We prove the convergence directly for the (even more) simplified case when p✓ = p(S | q
G
�t)

using a similar technique:

Lemma 10. Assume the set S has finite volume so that its uniform distribution US is well
defined and has finite entropy. Given any distribution p(s) whose support is S, recursively
define pt with p1 = p and

pt+1(s) =
1

Zt
↵

pt(s)
↵
, 8s 2 S

where Z
t
↵ is the normalizing constant and ↵ 2 [0, 1).

The sequence (p1, p2, . . . ) converges to US , the uniform distribution S.

Proof. If ↵ = 0, then p2 (and all subsequent distributions) will clearly be the uniform
distribution. We now study the case where ↵ 2 (0, 1).

At each iteration t, define the one-dimensional exponential family {p
t
✓ : ✓ 2 [0, 1]} where

p
t
✓ is

p
t
✓(s) = e

✓T (s)�A(✓)+k(s)

with log carrier density k(s) = 0, natural parameter ✓, su�cient statistic T (s) = log pt(s),
and log-normalizer A(✓) =

R
S
e
✓T (s)

ds. As shown in [160], the entropy of a distribution from
a one-dimensional exponential family with parameter ✓ is given by:

H
t
✓(✓) =̇ H(pt✓) = A(✓)� ✓A0(✓)

The derivative with respect to ✓ is then

d

d✓
dH

t
✓(✓) = �✓A

00(✓)

= �✓Vars⇠pt✓
[T (s)]

= �✓Vars⇠pt✓
[log pt(s)] (C.4)

 0
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where we use the fact that the nth derivative of A(✓) is the n central moment, i.e. A00(✓) =
Vars⇠pt✓

[T (s)]. Since variance is always non-negative, this means the entropy is monotonically
decreasing with ✓. Note that pt+1 is a member of this exponential family, with parameter
✓ = ↵ 2 (0, 1). So

H(pt+1) = H
t
✓(↵) � H

t
✓(1) = H(pt)

which implies

H(p1)  H(p2)  . . . .

This monotonically increasing sequence is upper bounded by the entropy of the uniform
distribution, and so this sequence must converge.

The sequence can only converge if d
d✓H

t
✓(✓) converges to zero. However, because ↵ is

bounded away from 0, Equation (C.4) states that this can only happen if

Vars⇠pt✓
[log pt(s)]! 0. (C.5)

Because pt has full support, then so does pt✓. Thus, Equation (C.5) is only true if log pt(s)
converges to a constant, i.e. pt converges to the uniform distribution.

C.2.2 Additional Experiments

C.2.2.1 Sensitivity Analysis

Sensitivity to RL Algorithm In our experiments, we combined Skew-Fit with soft actor
critic (SAC) [84]. We conduct a set of experiments to test whether Skew-Fit may be used with
other RL algorithms for training the goal-conditioned policy. To that end, we replaced SAC
with twin delayed deep deterministic policy gradient (TD3) [71] and ran the same Skew-Fit
experiments on Visual Door, Visual Pusher, and Visual Pickup. In Figure C.5, we see that
Skew-Fit performs consistently well with both SAC and TD3, demonstrating that Skew-Fit
is beneficial across multiple RL algorithms.

Sensitivity to ↵ Hyperparameter We study the sensitivity of the ↵ hyperparameter
by testing values of ↵ 2 [�1,�0.75,�0.5,�0.25, 0] on the Visual Door and Visual Pusher
task. The results are included in Figure C.6 and shows that our method is robust to di↵erent
parameters of ↵, particularly for the more challenging Visual Pusher task. Also, the method
consistently outperform ↵ = 0, which is equivalent to sampling uniformly from the replay
bu↵er.
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Figure C.5: We compare using SAC [84] and TD3 [71] as the underlying RL algorithm on Visual
Door, Visual Pusher and Visual Pickup. We see that Skew-Fit works consistently well with both
SAC and TD3, demonstrating that Skew-Fit may be used with various RL algorithms. For the
experiments presented in subsection 3.2.4, we used SAC.
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Figure C.6: We sweep di↵erent values of ↵ on Visual Door, Visual Pusher and Visual Pickup.
Skew-Fit helps the final performance on the Visual Door task, and outperforms No Skew-Fit (↵ = 0)
as seen in the zoomed in version of the plot. In the more challenging Visual Pusher task, we see
that Skew-Fit consistently helps and halves the final distance. Similarly, we observe that Skew-Fit
consistently outperforms No Skew-fit on Visual Pickup. Note that alpha=-1 is not always the optimal
setting for each environment, but outperforms ↵ = 0 in each case in terms of final performance.
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Method NLL

MLE on uniform (oracle) 20175.4

Skew-Fit on unbalanced 20175.9

MLE on unbalanced 20178.03

Table C.2: Despite training on a unbalanced Visual Door dataset (see Figure 7 of paper), the
negative log-likelihood (NLL) of Skew-Fit evaluated on a uniform dataset matches that of a VAE
trained on a uniform dataset.

C.2.2.2 Variance Ablation

Figure C.7: Gradient variance averaged across parameters in last epoch of training VAEs. Values
of ↵ less than �1 are numerically unstable for importance sampling (IS), but not for Skew-Fit.

We measure the gradient variance of training a VAE on an unbalanced Visual Door image
dataset with Skew-Fit vs Skew-Fit with importance sampling (IS) vs no Skew-Fit (labeled
MLE). We construct the imbalanced dataset by rolling out a random policy in the environment
and collecting the visual observations. Most of the images contained the door in a closed
position; in a few, the door was opened. In Figure C.7, we see that the gradient variance
for Skew-Fit with IS is catastrophically large for large values of ↵. In contrast, for Skew-Fit
with SIR, which is what we use in practice, the variance is relatively similar to that of MLE.
Additionally we trained three VAE’s, one with MLE on a uniform dataset of valid door
opening images, one with Skew-Fit on the unbalanced dataset from above, and one with
MLE on the same unbalanced dataset. As expected, the VAE that has access to the uniform
dataset gets the lowest negative log likelihood score. This is the oracle method, since in
practice we would only have access to imbalanced data. As shown in Table C.2, Skew-Fit
considerably outperforms MLE, getting a much closer to oracle log likelihood score.
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C.2.2.3 Goal and Performance Visualization

We visualize the goals sampled from Skew-Fit as well as those sampled when using the prior
method, RIG [155]. As shown in Figure C.8 and Figure C.9, the generative model qG� results
in much more diverse samples when trained with Skew-Fit. We we see in Figure C.10, this
results in a policy that more consistently reaches the goal image.

C.2.3 Implementation Details

C.2.3.1 Likelihood Estimation using �-VAE

We estimate the density under the VAE by using a sample-wise approximation to the marginal
over x estimated using importance sampling:

q
G
�t(x) = Ez⇠q✓t (z|x)


p(z)

q✓t(z|x)
p t(x | z)

�

⇡
1

N

NX

i=1


p(z)

q✓t(z|x)
p t(x | z)

�
.

where q✓ is the encoder, p is the decoder, and p(z) is the prior, which in this case is unit
Gaussian. We found that sampling N = 10 latents for estimating the density worked well in
practice.

C.2.3.2 Oracle 2D Navigation Experiments

We initialize the VAE to the bottom left corner of the environment for Four Rooms. Both
the encoder and decoder have 2 hidden layers with [400, 300] units, ReLU hidden activations,
and no output activations. The VAE has a latent dimension of 8 and a Gaussian decoder
trained with a fixed variance, batch size of 256, and 1000 batches at each iteration. The VAE
is trained on the exploration data bu↵er every 1000 rollouts.

C.2.3.3 Implementation of SAC and Prior Work

For all experiments, we trained the goal-conditioned policy using soft actor critic (SAC) [84].
To make the method goal-conditioned, we concatenate the target XY-goal to the state
vector. During training, we retroactively relabel the goals [104, 3] by sampling from the goal
distribution with probabilty 0.5. Note that the original RIG [155] paper used TD3 [71], which
we also replaced with SAC in our implementation of RIG. We found that maximum entropy
policies in general improved the performance of RIG, and that we did not need to add noise
on top of the stochastic policy’s noise. In the prior RIG method, the VAE was pre-trained on
a uniform sampling of images from the state space of each environment. In order to ensure a
fair comparison to Skew-Fit, we forego pre-training and instead train the VAE alongside RL,
using the variant described in the RIG paper. For our RL network architectures and training
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Figure C.8: Proposed goals from the VAE for RIG and with Skew-Fit on the Visual Pickup, Visual
Pusher, and Visual Door environments. Standard RIG produces goals where the door is closed and
the object and puck is in the same position, while RIG + Skew-Fit proposes goals with varied puck
positions, occasional object goals in the air, and both open and closed door angles.
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Figure C.9: Proposed goals from the VAE for RIG (left) and with RIG + Skew-Fit (right) on the
Real World Visual Door environment. Standard RIG produces goals where the door is closed while
RIG + Skew-Fit proposes goals with both open and closed door angles.

scheme, we use fully connected networks for the policy, Q-function and value networks with
two hidden layers of size 400 and 300 each. We also delay training any of these networks
for 10000 time steps in order to collect su�cient data for the replay bu↵er as well as to
ensure the latent space of the VAE is relatively stable (since we continuously train the VAE
concurrently with RL training). As in RIG, we train a goal-conditioned value functions [191]
using hindsight experience replay [3], relabelling 50% of exploration goals as goals sampled
from the VAE prior N (0, 1) and 30% from future goals in the trajectory.

For our implementation of [91], we trained the policies with the reward

r(s) = rSkew-Fit(s) + � · rHazan et al.(s)

For rHazan et al., we use the reward described in Section 5.2 of Hazan et al. [91], which
requires an estimated likelihood of the state. To compute these likelihood, we use the same
method as in Skew-Fit (see subsubsection C.2.3.1). With 3 seeds each, we tuned � across
values [100, 10, 1, 0.1, 0.01, 0.001] for the door task, but all values performed poorly. For the
pushing and picking tasks, we tested values across [1, 0.1, 0.01, 0.001, 0.0001] and found that
0.1 and 0.01 performed best for each task, respectively.

C.2.3.4 RIG with Skew-Fit Summary

9 provides detailed pseudo-code for how we combined our method with RIG. Steps that were
removed from the base RIG algorithm are highlighted in blue and steps that were added are
highlighted in red. The main di↵erences between the two are (1) not needing to pre-train
the �-VAE, (2) sampling exploration goals from the bu↵er using pskewed instead of the VAE
prior, (3) relabeling with replay bu↵er goals sampled using pskewed instead of from the VAE
prior, and (4) training the VAE on replay bu↵er data data sampled using pskewed instead of
uniformly.
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Figure C.10: Example reached goals by Skew-Fit and RIG. The first column of each environment
section specifies the target goal while the second and third columns show reached goals by Skew-Fit
and RIG. Both methods learn how to reach goals close to the initial position, but only Skew-Fit
learns to reach the more di�cult goals.
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C.2.3.5 Vision-Based Continuous Control Experiments

In our experiments, we use an image size of 48x48. For our VAE architecture, we use a
modified version of the architecture used in the original RIG paper [155]. Our VAE has
three convolutional layers with kernel sizes: 5x5, 3x3, and 3x3, number of output filters: 16,
32, and 64 and strides: 3, 2, and 2. We then have a fully connected layer with the latent
dimension number of units, and then reverse the architecture with de-convolution layers. We
vary the latent dimension of the VAE, the � term of the VAE and the ↵ term for Skew-Fit
based on the environment. Additionally, we vary the training schedule of the VAE based
on the environment. See the table at the end of the appendix for more details. Our VAE
has a Gaussian decoder with identity variance, meaning that we train the decoder with a
mean-squared error loss.

When training the VAE alongside RL, we found the following three schedules to be
e↵ective for di↵erent environments:

1. For first 5K steps: Train VAE using standard MLE training every 500 time steps
for 1000 batches. After that, train VAE using Skew-Fit every 500 time steps for 200
batches.

2. For first 5K steps: Train VAE using standard MLE training every 500 time steps for
1000 batches. For the next 45K steps, train VAE using Skew-Fit every 500 steps for 200
batches. After that, train VAE using Skew-Fit every 1000 time steps for 200 batches.

3. For first 40K steps: Train VAE using standard MLE training every 4000 time steps
for 1000 batches. Afterwards, train VAE using Skew-Fit every 4000 time steps for 200
batches.

We found that initially training the VAE without Skew-Fit improved the stability of
the algorithm. This is due to the fact that density estimates under the VAE are constantly
changing and inaccurate during the early phases of training. Therefore, it made little sense
to use those estimates to prioritize goals early on in training. Instead, we simply train using
MLE training for the first 5K timesteps, and after that we perform Skew-Fit according to
the VAE schedules above. Table C.3 lists the hyper-parameters that were shared across the
continuous control experiments. Table C.4 lists hyper-parameters specific to each environment.
Additionally, subsubsection C.2.3.4 discusses the combined RIG + Skew-Fit algorithm.

C.2.4 Environment Details

Four Rooms: A 20 x 20 2D pointmass environment in the shape of four rooms [201]. The
observation is the 2D position of the agent, and the agent must specify a target 2D position as
the action. The dynamics of the environment are the following: first, the agent is teleported
to the target position, specified by the action. Then a Gaussian change in position with mean
0 and standard deviation 0.0605 is applied1. If the action would result in the agent moving

1In the main paper, we rounded this to 0.06, but this di↵erence does not matter.
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Hyper-parameter Pusher Door Pickup Real World Door
Path Length 50 100 50 100
� for �-VAE 20 20 30 60

Latent Dimension Size 4 16 16 16
↵ for Skew-Fit �1 �1/2 �1 �1/2

VAE Training Schedule 2 1 2 1
Sample Goals From q

G
� pskewed pskewed pskewed

Table C.4: Environment specific hyper-parameters for the visual experiments

Hyper-parameter Value
# training batches per time step .25

Exploration Noise None (SAC policy is stochastic)
RL Batch Size 512
VAE Batch Size 64
Discount Factor 299

300

Reward Scaling 10
Path length 300

Policy Hidden Sizes [400, 300]
Policy Hidden Activation ReLU
Q-Function Hidden Sizes [400, 300]

Q-Function Hidden Activation ReLU
Replay Bu↵er Size 1000000

Number of Latents for Estimating Density (N) 10
� for �-VAE 10

Latent Dimension Size 2
↵ for Skew-Fit �2.5

VAE Training Schedule 3
Sample Goals From pskewed

Table C.5: Hyper-parameters used for the ant experiment.
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Algorithm 9 RIG and RIG + Skew-Fit. Blue text denotes RIG specific steps and red text
denotes RIG + Skew-Fit specific steps
Require: �-VAE mean encoder q�, �-VAE decoder p , policy ⇡✓, goal-conditioned value function Qw, skew

parameter ↵, VAE Training Schedule.
1: Collect D = {s

(i)
} using random initial policy.

2: Train �-VAE on data uniformly sampled from D.
3: Fit prior p(z) to latent encodings {µ�(s(i))}.
4: for n = 0, ..., N � 1 episodes do
5: Sample latent goal from prior zg ⇠ p(z).
6: Sample state sg ⇠ pskewedn and encode zg = q�(sg) if R is nonempty. Otherwise sample zg ⇠ p(z)
7: Sample initial state s0 from the environment.
8: for t = 0, ..., H � 1 steps do
9: Get action at ⇠ ⇡✓(q�(st), zg).
10: Get next state st+1 ⇠ p(· | st, at).
11: Store (st, at, st+1, zg) into replay bu↵er R.
12: Sample transition (s, a, s0, zg) ⇠ R.
13: Encode z = q�(s), z0 = q�(s0).
14: (Probability 0.5) replace zg with z

0
g ⇠ p(z).

15: (Probability 0.5) replace zg with q�(s00) where s
00
⇠ pskewedn .

16: Compute new reward r = �||z0 � zg||.
17: Minimize Bellman Error using (z, a, z0, zg, r).
18: end for
19: for t = 0, ..., H � 1 steps do
20: for i = 0, ..., k � 1 steps do
21: Sample future state shi , t < hi  H � 1.
22: Store (st, at, st+1, q�(shi)) into R.
23: end for
24: end for
25: Construct skewed replay bu↵er distribution pskewedn+1 using data from R with Equation (3.4).
26: if total steps < 5000 then
27: Fine-tune �-VAE on data uniformly sampled from R according to VAE Training Schedule.
28: else
29: Fine-tune �-VAE on data uniformly sampled from R according to VAE Training Schedule.
30: Fine-tune �-VAE on data sampled from pskewedn+1 according to VAE Training Schedule.
31: end if
32: end for



APPENDIX C. CHAPTER 3 APPENDIX 172

through or into a wall, then the agent will be stopped at the wall instead.
Ant : A MuJoCo [206] ant environment. The observation is a 3D position and velocities,

orientation, joint angles, and velocity of the joint angles of the ant (8 total). The observation
space is 29 dimensions. The agent controls the ant through the joints, which is 8 dimensions.
The goal is a target 2D position, and the reward is the negative Euclidean distance between
the achieved 2D position and target 2D position.

Visual Pusher : A MuJoCo environment with a 7-DoF Sawyer arm and a small puck
on a table that the arm must push to a target position. The agent controls the arm by
commanding x, y position for the end e↵ector (EE). The underlying state is the EE position,
e and puck position p. The evaluation metric is the distance between the goal and final puck
positions. The hand goal/state space is a 10x10 cm2 box and the puck goal/state space is a
30x20 cm2 box. Both the hand and puck spaces are centered around the origin. The action
space ranges in the interval [�1, 1] in the x and y dimensions.

Visual Door : A MuJoCo environment with a 7-DoF Sawyer arm and a door on a table
that the arm must pull open to a target angle. Control is the same as in Visual Pusher. The
evaluation metric is the distance between the goal and final door angle, measured in radians.
In this environment, we do not reset the position of the hand or door at the end of each
trajectory. The state/goal space is a 5x20x15 cm3 box in the x, y, z dimension respectively
for the arm and an angle between [0, .83] radians. The action space ranges in the interval
[�1, 1] in the x, y and z dimensions.

Visual Pickup: A MuJoCo environment with the same robot as Visual Pusher, but now
with a di↵erent object. The object is cube-shaped, but a larger intangible sphere is overlaid
on top so that it is easier for the agent to see. Moreover, the robot is constrained to move
in 2 dimension: it only controls the y, z arm positions. The x position of both the arm and
the object is fixed. The evaluation metric is the distance between the goal and final object
position. For the purpose of evaluation, 75% of the goals have the object in the air and 25%
have the object on the ground. The state/goal space for both the object and the arm is 10cm
in the y dimension and 13cm in the z dimension. The action space ranges in the interval
[�1, 1] in the y and z dimensions.

Real World Visual Door : A Rethink Sawyer Robot with a door on a table. The arm
must pull the door open to a target angle. The agent controls the arm by commanding the
x, y, z velocity of the EE. Our controller commands actions at a rate of up to 10Hz with
the scale of actions ranging up to 1cm in magnitude. The underlying state and goal is the
same as in Visual Door. Again we do not reset the position of the hand or door at the end
of each trajectory. We obtain images using a Kinect Sensor. The state/goal space for the
environment is a 10x10x10 cm3 box. The action space ranges in the interval [�1, 1] (in cm)
in the x, y and z dimensions. The door angle lies in the range [0, 45] degrees.



APPENDIX C. CHAPTER 3 APPENDIX 173

C.2.5 Goal-Conditioned Reinforcement Learning Minimizes
H(G | S)

Some goal-conditioned RL methods such as Warde-Farley et al. [217], Nair et al. [155] present
methods for minimizing a lower bound for H(G | S), by approximating log p(G | S) and
using it as the reward. Other goal-conditioned RL methods [104, 138, 191, 3, 172, 67] are not
developed with the intention of minimizing the conditional entropy H(G | S). Nevertheless,
one can see that goal-conditioned RL generally minimizes H(G | S) by noting that the
optimal goal-conditioned policy will deterministically reach the goal. The corresponding
conditional entropy of the goal given the state, H(G | S), would be zero, since given the
current state, there would be no uncertainty over the goal (the goal must have been the
current state since the policy is optimal). So, the objective of goal-conditioned RL can be
interpreted as finding a policy such that H(G | S) = 0. Since zero is the minimum value of
H(G | S), then goal-conditioned RL can be interpreted as minimizing H(G | S).
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Appendix D

Chapter 4 Appendix

D.1 Section 4.1 Appendix

D.1.1 Experiment Details

In this section, we detail the experimental setups used in our results.

D.1.1.1 Goal State and t Sampling Strategy

While Q-learning is valid for any value of g and t for each transition tuple (st, at, st+1), the
way in which these values are sampled during training can a↵ect learning e�ciency. Some
potential strategies for sampling g are: (1) uniformly sample future states along the actual
trajectory in the bu↵er (i.e., for st, choose g = st+k for a random k > 0) as in [4]; (2)
uniformly sample goal states from the replay bu↵er; (3) uniformly sample goals from a
uniform range of valid states. We found that the first strategy performed slightly better than
the others, though not by much. In our experiments, we use the first strategy. The horizon t

is sampled uniformly at random between 0 and the maximum horizon tmax.

D.1.1.2 Model-free setup

In all our experiments, we used DDPG [138] as the base o↵-policy model-free RL algorithm
for learning the TDMs Q(s, a,g, t). Experience replay [149] has size of 1 million transitions,
and the soft target networks [138] are used with a polyak averaging coe�cient of 0.999 for
DDPG and TDM and 0.95 for HER and DDPG-Sparse. For HER and DDPG-Sparse, we
also added a penalty on the tanh pre-activation, as in Andrychowicz et al. [4]. Learning
rates of the critic and the actor are chosen from {1e-4, 1e-3} and {1e-4, 1e-3} respectively.
Adam [115] is used as the base optimizer with default parameters except the learning rate.
The batch size was 128. The policies and networks are parmaeterized with neural networks
with ReLU hidden activation and two hidden layers of size 300 and 300. The policies have
a tanh output activation, while the critic has no output activation (except for TDM, see
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Figure D.1: TDMs with di↵erent number of updates per step I on ant target position task. The
maximum distance was set to 5 rather than 6 for this experiment, so the numbers should be lower
than the ones reported in the paper.

D.1.1.5). For the TDM, the goal was concatenated to the observation. The planning horizon
t is also concatenated as an observation and represented as a single integer. While we tried
various representations for t such as one-hot encodings and binary-string encodings, we found
that simply providing the integer was su�cient.

While any distance metric for the TDM reward function can be used, we chose L1 norm
�kst+1 � gk1 to ensure that the scalar and vectorized TDMs are consistent.

D.1.1.3 Model-based setup

For the model-based comparison, we trained a neural network dynamics model with ReLU
activation, no output activation, and two hidden units of size 300 and 300. The model was
trained to predict the di↵erence in state, rather than the full state. The dynamics model is
trained to minimize the mean squared error between the predicted di↵erence and the actual
di↵erence. After each state is observed, we sample a minibatch of size 128 from the replay
bu↵er (size 1 million) and perform one step of gradient descent on this mean squared error
loss. Twenty rollouts were performed to compute the (per-dimension) mean and standard
deviation of the states, actions, and state di↵erences. We used these statistics to normalize
the states and actions before giving them to the model, and to normalize the state di↵erences
before computing the loss. For MPC, we simulated 512 random action sequences of length
15 through the learned dynamics model and chose the first action of the sequence with the
highest reward.

D.1.1.4 Tuned Hyperparameters

For TDMs, we found the most important hyperparameters to be the reward scale, tmax, and
the number of updates per observations, I. As shown in Figure D.1, TDMs can greatly
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benefit from larger values of I, though eventually there are diminishing returns and potentially
negative impact, mostly likely due to over-fitting. We found that the baselines did not benefit,
except for HER which did benefit from larger I values. For all the model-free algorithms
(DDPG, DDPG-Sparse, HER, and TDMs), we performed a grid search over the reward
scale in the range {0.01, 1, 100, 10000} and the number of updates per observations in the
range {1, 5, 10}. For HER, we also tuned the weight given to the policy pre-tanh-activation
{0, 0.01, 1}, which is described in [4]. For TDMs, we also tuned the best tmax in the range
{15, 25,Horizon� 1}. For the half cheetah task, we performed extra searches over tmax and
found tmax = 9 to be e↵ective.

D.1.1.5 TDM Network Architecture and Vector-based Supervision

For TDMs, since we know that the true Q-function must learn to predict (negative) distances,
we incorporate this prior knowledge into the Q-function by parameterizing it as Q(s, a,g, t) =
�kf(s, a,g, t)� gk1. Here, f is a vector outputted by a feed-forward neural network and has
the same dimension as the goal. This parameterization ensures that the Q-function outputs
non-positive values, while encouraging the Q-function to learn what we call a goal-conditioned
model: f is encouraged to predict what state will be reached after t, when the policy is trying
to reach goal g in t time steps.

For the `1 norm, the scalar supervision regresses

Q(st, at,g, t) = �
X

j

|fj(st, at,g, t)� gj|

onto

r(st, at, st+1,g) + [t = 0] +Q(st+1, a
⇤
,g, t� 1) [t 6= 0]

= �
X

j

{|st+1,j � sg,j| [t = 0] + |fj(st, a
⇤
,g, t� 1)� sg,j| [t 6= 0]}

where a⇤ = argmaxaQ(st+1, a,g, t� 1). The vectorized supervision instead supervises each
components of f , so that

|fj(st, at,g, t)� sg,j|

regresses onto

|st+1,j � sg,j| [t = 0] + |fj(s, a
⇤
,g, t� 1)� sg,j| [t 6= 0]

for each dimension j of the state.

D.1.1.6 Task and Reward Descriptions

Benchmark tasks are designed on MuJoCo physics simulator [206] and OpenAI Gym en-
vironments [20]. For the simulated reaching and pushing tasks, we use (4.7) and for the
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other tasks we use (4.8) for policy extraction. The horizon (length of episode) for the pusher
and ant tasks are 50. The reaching tasks has a horizon of 100. The half-cheetah task has a
horizon of 99.

7-DoF reacher.: The state consists of 7 joint angles, 7 joint angular velocities, and 3 XYZ
observation of the tip of the arm, making it 17 dimensional. The action controls torques
for each joint, totally 7 dimensional. The reward function during optimization control and
for the model-free baseline is the negative Euclidean distance between the XYZ of the tip
and the target XYZ. The targets are sampled randomly from all reachable locations of the
arm at the beginning of each episode. The robot model is taken from the striker and pusher
environments in OpenAI Gym MuJoCo domains [20] and has the same joint limits and
physical parameters.

Many tasks can be solved by expressing a desired goal state or desired goal state compo-
nents. For example, the 7-Dof reacher solves the task when the end e↵ector XYZ component
of its state is equal to the goal location, (x⇤

, y
⇤
, z

⇤). One advantage of using a goal-conditioned
model f as in Equation (4.7) is that this desire can be accounted for directly: if we already
know the desired values of some components in st+T , then wen can simply fix those compo-
nents of st+T and optimize over the other dimensions. For example for the 7-Dof reacher, the
optimization problem in Equation (4.7) needed to choose an action becomes

at = argmax
at,st+T [0:14]

rc(f(st, at, st+T [0 : 14]||[x⇤
, y

⇤
, z

⇤]))

where || denotes concatenation; st+T [0 : 14] denotes that we only optimize over the first 14
dimensions (the joint angles and velocities), and we omit at+T since the reward is only a
function of the state. Intuitively, this optimization chooses whatever goal joint angles and
joint velocities make it easiest to reach (x⇤

, y
⇤
, z

⇤). It then chooses the corresponding action
to get to that goal state in T time steps. We implement the optimization over s[0 : 14] with
stochastic optimization: sample 10,000 di↵erent vectors and choose the best value. Lastly,
instead of optimizing over the actions, we use the policy trained in DDPG to choose the
action, since the policy is already trained to choose an action with maximum Q-value for
a given state, goal state, and planning horizon. We found this optimization scheme to be
reliable, but any optimizer can be used to solve Equation (4.7),(4.6), or (4.5).

Pusher : The state consists of 3 joint angles, 3 joint angular velocities, the XY location of
the hand, and the XY location of the puck. The action controls torques for each of the 3
joints. The reward function is the negative Euclidean distance between the puck and the
puck. Once the hand is near (with 0.1) of the puck, the reward is increased by 2 minus the
Euclidean distance between the puck and the goal location. This reward function encourages
the arm to reach the puck. Once the arm reaches the puck, bonus reward begins to have
a↵ect, and the arm is encouraged to bring the puck to the target.

As in the 7-DoF reacher, we set components of the goal state for the optimal control
formulation. Specifically, we set the goal hand position to be the puck location. To copy the
two-stage reward shaping used by our baselines, the goal XY location for the puck is initially
its current location until the hand reaches the puck, at which point the goal position for the
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puck is the target location. There are no other state dimensions to optimize over, so the
optimal control problem is trivial.

Half-Cheetah: The environment is the same as in [20]. The only di↵erence is that the
reward is the `-1 norm between the velocity and desired velocity v

⇤. Our optimal control
formulation is again trivial since we set the goal velocity to be v

⇤. The goal velocity for
rollout was sampled uniformly in the range [�6, 6]. We found that the resulting TDM policy
tends to “jump” at the last time step, which is the type of behavior we would expect to
come out of this finite-horizon formulation but not of the infinite-time horizon of standard
model-free deep RL techniques.

Ant : The environment is the same as in [20], except that we lowered the gear ratio to 30
for all joints. We found that this prevents the ant from flipping over frequently during the
initially phase of training, allowing us to run all the experiments faster. The reward is the
`-1 norm between the actual and desired xy-position and xy-velocity (for the position and
velocity task) of the torso center of mass. For the target-position task, the target position
was any position within a 6-by-6 square. For the target-position-and-velocity task, the target
position was any position within a 1-by-1 square and any velocity within a 0.05-by-0.05
velocity-box. When computing the distance for the position-and-velocity task, the velocity
distance was weighted by 0.9 and the position distance was weighted by 0.1.

Sawyer Robot : The state and action spaces are the same as in the 7-DoF simulated robot
except that we also included the measured torques as part of the state space since these
can di↵erent from the applied torques. The reward function used is also the `1 norm to the
desired XYZ position.

D.2 Section 4.2 Appendix

D.2.1 Additional Experiments

D.2.1.1 Norm Ablation

We compare using the `1-norm to minimize the feasibility vector with using the `1-norm.
As shown in Figure D.2, `1-norm performs better, which matches the intuition it will more
consistently push all terms in the feasibility vector towards zero.

D.2.1.2 Optimizer Ablation

We compare the performance of di↵erent optimizers on the 2D Navigation tasks. As shown
in Figure D.3, CEM consistently outperforms other optimizers both in terms of the optimizer
loss, and the corresponding final performance on the task.
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Figure D.2: We compare using the `1-norm to the `1-norm. We see that the `1-norm outperforms the
`1-norm.

Figure D.3: We compare CEM to di↵erent optimizers L-BFGS, Adam, RMSProp, and gradient descent
(SGD) that have had their learning rates tuned. (Left) The optimizer loss, where CEM outperforms the other
methods. (Right) The performance of the policy after using the plan chosen by each optimizer. We see that
the lower optimizer loss of CEM corresponds to a better performance.

D.2.1.3 Likelihood Penalty Ablation

We examine the e↵ect of the additional log-likelihood term (under the VAE prior) in Equa-
tion (4.10). In particular, we vary the weighting hyperparameter � for the 2D Navigation
and Push and Reach environments. For each environment, we note the final performance
of the RL algorithm, in addition to the log-likelihood values and V values that compose
(4.10). See Figure D.4 for detailed results. We see that there is a trade-o↵ between achieving
a high likelihood under the prior and high V values. As we increase the weighting term �

the likelihood values increase while the V values decrease. There is an optimal threshold at
which RL performance is maximized. For 2D Navigation, we note this value to be � = 0.01
and for Push and Reach any range of values between 0.0001 and 0.01. For Ant Navigation,
we independently verified an optimal choice of � = 0.1.
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Figure D.4: Examining the e↵ect of the weight � in Equation 4.10. We note the final RL performance
(left), log-likelihood under the VAE prior (middle), and V values (right). As we increase �, the log-likelihood
values increase while the V values decrease. For 2D navigation (top), we note the optimal value to be � = 0.01
and for Push and Reach (bottom) any range of values between 0.0001 and 0.01.

D.2.2 Environment Details

D.2.2.1 2D Navigation

The agent must learn to navigate around a square room with a U-shaped wall in the center.
See Figure 4.6 for a visualization of the environment. The dimensions of the space are
8⇥ 8 units, the walls are 1 unit thick, and the agent is a circle with radius 0.5 units. The
observation is a 48 ⇥ 48 RGB image and the agent specifies a 2D velocity as the action.
At each timestep, the agent can attempt to move up to 0.15 units in either dimension.
The distance for subsubsection 4.1.2.1 is the distance between the current 2D position and
the target position. We note that a greedy policy can easily lower the final distance by
moving directly towards the goal. To measure whether or not the final policy performs more
non-greedy behavior, we define success as whether or not the policy ends below the horizontal
wall and within a diameter of the intended goal. Complete results are provided in Figure D.5.
Plots are averaged across 5 seeds, with the exception of PETS, which uses 3 seeds due to
computational constraints. For image based baselines (all except PETS), we first train VAEs
and select the top 5 seeds based on VAE loss. We proceed to training our RL algorithm with
one seed per selected VAE. Note that for the ablation study in Figure 4.9, we select the top
VAE seed based on VAE loss, and train our RL algorithm with 5 seeds.
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Figure D.5: Complete 2D Navigation Results

D.2.2.2 Push and Reach

This task is based on the environment released by Nair et al. [155]. An additional invisible
wall around the goal space of the puck has been added to prevent the puck from moving to
unreachable hand locations. In contrast to prior work evaluated on goal-conditioned pushing
tasks [3, 171, 35], this task is solved using images as the observations and cannot be solved
with a simple, unidirectional pushing behavior [155, 173]. Specifically, the observation is an
84 ⇥ 84 RGB image showing a top-down view of the scene. The robot is operated via 2D
position control, where each action is limited to moving the robot end e↵ector 2 cm in either
dimension. The distance for Section 4.1.2.1 is the Euclidean distance between (1) the goal
and (2) the XY-position of the puck concatenated with the XY-position of the hand. We
modify the task so as to require the agent to perform temporally extended planning. First,
we increase the workspace of the environment to 40 cm ⇥ 20 cm. Second, we evaluate the
final policy on 5 hard scenarios which require temporally extended behavior: rather than
simply executing a simple, unidirectional pushing behavior, the robot must reach across the
table to a corner where the puck is located, move its arm around the puck, and then pull
the puck to a di↵erent corner of the table, as shown in Figure 4.6. A trajectory is successful
if the final puck position is within 6 cm of the target position. For context, the puck has a
radius of 4 cm. Complete results are provided in Figure D.6. Plots are averaged across 8
seeds, with the exception of PETS, which uses 5 seeds due to computational constraints. For
image based baselines (all except PETS), we first train VAEs and select the top 8 seeds based
on VAE loss. We proceed to training our RL algorithm with one seed per selected VAE.

D.2.2.3 Ant Navigation

The ant must learn to navigate around a narrow rectangular room with a long wall in the
center. See Figure 4.8 for a visualization of the environment. The dimensions of the space are
7.5⇥ 18 units, the wall is 1.5 units thick, and the ant has a radius of roughly 0.75 units. The
state includes the position, orientation (in Euler angles rather than quaternions), joint angles,
and velocities of the aforementioned components. The gear ratio for the ant is reduced to
10 units, to prevent the ant from flipping over. The distance for subsubsection 4.1.2.1 is
the distance between the current 2D position and the target position, in addition to the
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Figure D.6: Complete Push and Reach Results

di↵erences in orientation of the ant with respect to the target orientation. We define success
as whether or not the ant is within 1.5 units of the goal position. Complete results are
provided in Figure D.7. Plots are averaged across 15 seeds, with the exception of HIRO,
which uses 5 seeds due to computational constraints. For LEAP, we first train VAEs and
select the top 5 seeds based on VAE loss. We proceed to training our RL algorithm with
three seed per selected VAE. Unlike the image-based experiments, the VAE is not used for
training the RL algorithm. It is only used during test time for planning subgoals. The VAE
is trained on a dataset in which the ant is in various valid positions of the maze, with a fixed
orientation and fixed joint angles.

Figure D.7: Complete Ant Navigation Results

D.2.3 Implementation Details

This section contains descriptions and hyperparameters of the experiment implementations.

D.2.3.1 Goal-conditioned reinforcement learning

Both the Q network and policy concatenate all inputs and pass them through a feed-forward
network. For RIG, the Q network outputs a scalar corresponding to the infinite discounted
sum of rewards. For TDMs, the Q network outputs a vector corresponding to the negative
distance between the final state and goal along each of the state dimensions. We train our
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Hyper-parameter Value
Q network hidden sizes 400, 300

Policy network hidden sizes 400, 300
Q network and policy activation ReLU
Q network output activation None

Policy network output activation tanh

Exploration noise
✏-greedy, ✏ = .1 (2D Navigation)

OU-process ✓ = .3, � = .3 (Push & Reach and Ant)
# training batches per time step 1

Batch size
128 (2D Navigation)

2048 (Push and Reach and Ant)
Optimizer Adam

Learning rate (all networks) 0.001
Target update rate ⌧ 0.005
Replay bu↵er size 1000000

Table D.1: TD3 [71] hyperparameters.

networks using the twin delayed deep deterministic policy gradient algorithm [71] (TD3).
Hyperparameter details are provided in Table D.1. When sampling minibatches from the
replay bu↵er, we sample transitions, goals, and times (for TDMs only). For TDM, RIG, and
HER+, we relabel the goals in our minibatches in the following manner:

• 20%: original goals from collected trajectories

• 40%: randomly sampled states from the replay bu↵er

• 40%: future states along the same collected trajectory, as dictated by hindsight experi-
ence replay [3] (HER).

We note that in the Ant Navigation task, we split sampling from the replay bu↵er to 20%
from the replay bu↵er and 20% oracle goals from the environment.

For HER, we relabel the goals in our minibatches in the following manner:

• 20%: original goals from collected trajectories

• 80%: future states along the same collected trajectory

D.2.3.2 Latent space optimization

In this subsection, we describe how we use the cross entropy method (CEM) [42] to optimize
(4.10). Given an optimization problem over K subgoals, with each subgoal represented as an
r-dimensional latent vector, the CEM optimizer is initialized with a standard multivariate
Gaussian distribution N (0rK , IrK), where 0rK is a rK-dimensional vector of zeros, and IrK

is the rK ⇥ rK identity matrix. We sample di↵erent subgoal sequences from our distribution
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and evaluate the value of each sample using Equation 4.10. We then fit a diagonal multivariate
Gaussian distribution to the top 5% of samples. We repeat this process for 15 iterations, and
at each iteration we sample 1000 subgoal sequences from the fitted Gaussian. For the Ant
Navigation task which involves optimizing over significantly higher number of subgoals, we
sample 10000 subgoal sequences and run for 50 iterations instead. In addition, we found it
beneficial to filter the top 25% of samples for the first half of iterations, and then filter the
top 1% in the latter half. For the weight on the log-likelihood of the latents, we use � = 0.1
for 2D Navigation and Ant Navigation tasks, and � = 0.001 for Push and Reach.

D.2.3.3 Variational auto-encoder

We use separate VAE architectures for 2D Navigation (48⇥ 48 image) and Push and Reach
(84⇥ 84 image). For 2D Navigation, encoder kernel sizes of [5, 3, 3], encoder strides of [3, 2, 2],
[16, 32, 64] encoder channels, decoder kernel sizes of [3, 3, 6], decoder strides of [2, 2, 3], and
[64, 32, 16] decoder channels are used. For Push and Reach, we use encoder kernel sizes
of [5, 5, 5], encoder strides of [3, 3, 3], [16, 16, 32] encoder channels, decoder kernel sizes of
[5, 6, 6], decoder strides of [3, 3, 3], and [32, 32, 16] decoder channels. Both architectures have
a representation size of 16 and ReLU activation. We trained the 2D Navigation VAEs with
binary cross-entropy loss, and the Push and Reach VAEs with mean squared error loss.

For Ant Navigation, our VAE is a generative model for the full state of the ant, rather than
images. Our encoder and decoder are multilayer perceptrons with hidden sizes of [64, 128, 64]
and ReLU activation. We used a representation size of 8, and trained the VAE with mean
squared error loss.
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Appendix E

Chapter 5 Appendix

E.1 Section 5.1 Appendix

E.1.1 Additional Results

The objective of the tasks in Section 5.1.4 was to move objects to certain positions, and we
found that goal-conditioned reinforcement learning (GCRL) performed poorly. To better
understand the behavior of the GCRL policies, we plotted the distance between the final end
e↵ector position reached and the one specified by the final goal state sg. In Figure E.1, we
see that the GCRL policies quickly learned to minimize the final distance to the end e↵ector
position in the goal state sg. We see that the GCRL policies optimized only the dimensions
of the goal state that were easiest to maximize, rather than the important dimensions. VICE
had unsatisfactory performance even on the end e↵ector position, and we hypothesize this is
due to the fact that VICE needs a substantially higher number of example states.

Videos of the final policies for our method and baselines are available on the paper website:
https://sites.google.com/view/disco-rl

E.1.2 Environments

Sawyer This environment is based in the PyBullet [39] physics simulator. It consists of
a Sawyer robot mounted next to a table, on top of which there is a tray and four blocks.
The robot must learn to manipulate the blocks via its gripper. The robot is controlled via
position control, and it is restricted to move in a 2D plane. Specifically, the robot arm can
move in the YZ coordinate plane and the gripper can open along the X axis, where the X, Y,
Z axes move along the front-back, left-right, and up-down directions of table, respectively.
We also constrain the objects to move along the YZ coordinate plane. The agent has access
to state information, comprising of the position of the end e↵ector and gripper state, as well
as the positions of the objects and tray.

https://sites.google.com/view/disco-rl
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(a) final end-e↵ector distance

(b) success rate

Figure E.1: (a) The distance between the final end-e↵ector position and the position specified
in the goal state sg. (b) The success rate of the methods on the same task (with results copied
from Figure 5.5 for convenience). We see that goal-conditioned RL focuses primarily on moving
the end e↵ector to the correct position, while DisCo RL ignores this task-irrelevant dimension and
successfully completes the task.

Visual Sawyer We use the same environment as described above for the vision-based
tasks but replace the state with 48x48 RGB images. We pretrain a VAE on 5120 randomly
generated images and obtain the goal distribution using 30 example images. We visualize
some example images in Figure E.2.

The encoder consist of a 3 convolutions with the following parameters

1. channels: 64, 128, 128

2. kernel size: 4, 4, 3

3. stride: 2, 2, 2

4. padding: 1, 1, 1

followed by 3 residual layers each containing two convolutions with the following parameters

1. channels: 64, 64

2. kernel size: 3, 1

3. stride: 1, 1

4. padding: 1, 1

and two linear layers that projects the convolution output into the mean and log-standard
deviation of a Gaussian distribution in a latent dimension with dimension 64.

The decoder begins with a linear layer with the transposed shape as the final encoder
linear layer, followed by a reshaping into a latent image the same shape as the final encoder
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convolution output shape. This latent image is put through a convolution (128 channels,
kernel size 3, stride 1, padding 1), and then an equivalent residual stack as the encoder, and
two transposed convolutions with parameters

1. channels: 64, 64

2. kernel size: 4, 4

3. stride: 2, 1

4. padding: 2, 1

which outputs the mean of a Gaussian distribution with a fixed unit variance. We trained this
VAE with Adam with a learn rate of 10�3 and default PyTorch [165] parameters (�1 = 0.9
and �2 = 0.999) for 100 epochs and annealed the loss on the KL term from 0 to 1 for the
first 20 epochs.

Figure E.2: Example images with the hand in a fixed position used to obtain a goal distribution.

IKEA We adapted this environment from the suite of furniture assembly environments
developed by Lee et al. [131]. In our environment, the agent must learn to attach a set
of 3 shelves to a pole. It can do so by controlling two end e↵ectors: one end e↵ector that
can move the pole, and another end e↵ector that can move the shelves. The former end
e↵ector is always attached to the pole, while the latter end e↵ector can selectively attach
and detach itself from the shelves. Both end e↵ectors can move via 3D position control, in a
1⇥ 1⇥ 1 area for a maximum of 0.05 units (in each direction) per timestep. The end e↵ector
interfacing with the shelves can hold onto a shelf by applying a grasp action when it is within
the bounding box region of a shelf. Each shelf has a connection point at which point it will
attach to the pole, and the pole has a receiving connection point as well. When these two
connection points are within 0.2 units away from one another, the shelf automatically attaches
to the pole and becomes welded. The objects have 3 degrees of freedom via translations
in 3D space. The objects are not allowed to collide with one another – if an action causes
them to collide, that action is ignored by the environment and the next state is the same
as the current state. As an exception, when an end e↵ector is not grabbing an object, it is
allowed to move through objects. The agent has access to state information, comprising the
3D position of the end e↵ectors, shelves, and the pole, and indicator information for whether
each end e↵ector is grasping an object.
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Flat World This two-dimensional environment consists of a policy and 4 objects, each of
which are defined by their XY-coordinate. The policy and objects are in an enclosed 8⇥ 8
unit space. The policy’s action space is three dimensional: two correspond to relative change
in position, for a maximum of 1 unit in each dimension per timestep, and one corresponds
to a grab action. The grab action takes on a value between �1 and 1. If this grab action
is positive, then the policy picks up the closest object that is within 1 unit of it, or none if
there are no such objects. If this grab action is non-positive, then the policy drops any object
that it was holding. While an object is grabbed, the object moves rigidly with the policy.
The policy can only grab one object at a time, with ties broken by a predetermined, fixed
order. The agent has access to state information, comprising the 2D position of the policy
and the 4 objects.

E.1.3 Experimental Details

Distribution inference These experiments were evaluated on the Sawyer environment.
In this setting, the agent needs to pick up one of the blocks (specifically, the red block) and
place it into the tray. The initial position of the tray and objects vary in each episode. The
objective is only to minimize the relative distance between the red block and the tray, and it
is important for the agent to ignore the absolute position of the other blocks and the tray.
The robot can attempt to slide the tray to a specific goal location, but the tray is heavy
and moves very slowly. If it successfully moves the tray to another location, it will not have
enough time in the episode to move the red block.

We generated K = 30 examples of successful goal states, in which the red block is always
inside the tray, and the tray, other objects, hand, and gripper are in random locations
and configurations. We provided this set of example goal states as input to the competing
baselines. Each baseline used the example states in the following manner:

• DisCo RL: infer a goal distribution from the example states

• VICE: a classifier is trained to predict whether a state is optimal, with the example
states as the positive examples for the classifier

For evaluation, a trajectory is successful if the red block is placed in the tray. We plot this
success metric over time in Figure 5.4.

Multi-task performance For the multi-task evaluations, we performed experiments in
all three of our environments. For each environment, we split the task into several subtasks,
as described below:

• Sawyer: move the blocks to their goal locations. Each subtask represents moving one
block at a time to its goal location.

• IKEA: move the pole and the shelves to their goal locations. Each subtask represents
moving the pole and one of the shelves to their goal locations.
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• Flat World: move the objects to their goal locations. Each subtask represents moving
one object at a time to its goal location.

We generated an example dataset of successful states for each subtask. For each example
state for a particular subtask, we also provided a state representing the final configuration for
the entire task (after all subtasks are solved). See ?? E.1.4.2 for additional details regarding
the example sets. The evaluation metrics for each environment are as follows:

• Sawyer: the number of objects that are within 0.10 units of their respective final goal
locations

• IKEA: the number of shelves that are connected to the pole, in addition to an indicator
for whether the pole is within 0.10 units of its final goal location

• Flat World: the number of objects that are within 1 unit of their respective final goal
locations

For evaluation, we provide the GCRL baseline oracle goals. In this setting, the provided
goal is identical to the initial state at the beginning of the episode, except for the position of
the red block, which we set to be inside the tray. For example, if the state is given by
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In theory, this oracle goal encourages the robot to focus on moving the red block to its goal
rather than moving the other state components. The GCRL baseline only uses this oracle
during evaluation.

Details regarding the distribution of final goal states used for exploration rollouts and
relabeling during training, are provided in Table E.1. For evaluation, we used H = 100 for
the IKEA and Flat World environments, and H = 400 for the Sawyer environment.

Goal Use
Case

Sawyer IKEA Flat World

Exploration 50%: objects on
ground, 50%: ob-
jects in tray

Shelves assem-
bled, pole in
random position

Objects in ran-
dom positions

Training Same as above Objects in ran-
dom positions

Same as above

Table E.1: Environment specific final goal distributions.
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Hyper-parameter Sawyer IKEA Flat World
Number of examples (per subtask) K 30 50 30

Std. dev. of Gaussian noise added to example set data 0.01 0.1 0.01

Table E.2: Environment specific hyper-parameters.

Hyper-parameter Value
horizon H (for training) 100

batch size 2048
discount factor 0.99

Q-function and policy hidden sizes [400, 300]
Q-function and policy hidden activations ReLU

replay bu↵er size 1 million
hindsight relabeling probability 80%
target network update speed ⌧ 0.001

number of training updates per episode Nupdates per episode 100
number of training batches per environment step 1

Table E.3: General hyper-parameters used for all experiments.

O↵-policy distributions These experiments are conducted on the Flat World domain and
extend the multi-task experiments described in the previous section. We created a total of 10
total subtasks, 4 of which require moving a single object to its desired goal location, and 6 of
which require moving a pair of objects to their desired goal locations. We provided example
sets of size K = 30 for each of these 10 subtasks. For the on-policy variant, we explore and
relabel with the goal distributions inferred for all 10 subtasks. For the o↵-policy variant, we
only explore with the first 4 goal distributions and train with all 10 goal distributions. For
evaluation, we measured the performance of the algorithm for one of the pairwise subtasks.
Our evaluation metric measures how many objects (out of the specific pair) the agent was
able to successfully move within 1 unit of their respective final goal locations.

E.1.4 Implementation Details

E.1.4.1 General Training Algorithm and Hyperparameters

In our experiments, we use soft actor-critic as our RL algorithm [83]. For specific details on
the hyperparameters that we used, see Table E.3.

E.1.4.2 DisCo RL

Covariance Smoothing We apply pre-preprocessing and post-processing steps to obtain
the distribution parameters used in RL. In the pre-processing phase, we add i.i.d. Gaussian
noise to the dataset of examples. The amount of noise that we apply varies by environment
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– see Table E.2 for specific details. After inferring the raw parameters of the Gaussian
distribution µ and ⌃, we apply post-processing steps to the covariance matrix. We begin
by inverting the covariance matrix ⌃. For numerical stability, we ensure that the condition
number of ⌃ does not exceed 100 by adding a scaled version of the identity matrix to ⌃.
After obtaining ⌃�1, we normalize its components such that the largest absolute value entry
of the matrix is 1. Finally, we apply a regularization operation that thresholds all values of
the matrix whose absolute value is below 0.25 to 0. We found this regularization operation to
be helpful when the number of examples provided is low, to prevent the Gaussian model from
inferring spurious dependencies in the data. We used the resulting µ and ⌃�1 for computing
the reward.

Conditional distribution details To obtain the conditional distribution used for rela-
beling and multi stage planning, we assume that data is given in the form of pairs of states
{(s(k), s(k)f )}Kk=1

, in which s(k) correspond to a state where a sub-task is accomplished when
trying to reach the final state sf . We fit a joint Gaussian distribution of the form

ps,sf = N
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to these pairs of states using maximum likelihood estimation. Since the joint distribution ps,sf

is Gaussian, the conditional distribution ps|sf is also Gaussian with parameters (µ,⌃) = h(sf ),
where h is the standard conditional Gaussian formula:
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In summary, given a final desired state sf , we generate a distribution by computing ! = h(sf )
according to Equation (E.1). This conditional distribution also provides a simple way to
relabel goal distributions given a reached state sr: we relabel the goal distribution by using
the parameters !0 = h(sr).

Multi-task exploration scheme For training, in 50% of exploration rollouts we randomly
selected a single subtask for the entire rollout, and in the other 50% of exploration rollouts
we sequentially switched the subtask throughout the rollout, evenly allocating time to each
subtask. For switching the subtask, we simply switched the parameters of the subtask µ and
⌃. We randomized the order of the subtasks for sequential rollouts.

Relabeling We relabel the parameters of the goal distribution (µ,⌃), and the relabeling
strategy we use depends on whether we use conditional goal distributions. For non-conditional
distributions, we relabel according to the following strategy:

• 40%: relabel µ to a future state along the same collected trajectory
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For conditional distributions, we relabel according to the following strategy:

• 40%: randomly sample sf from the environment

• 40%: relabel sf to a future state along the same collected trajectory

For our multi-task experiments, whenever we perform relabeling, we also relabel ⌃. Specifically,
we first randomly sample a task from the set of tasks that we have inferred, and relabel ⌃ to
the covariance matrix for that task.

E.1.4.3 HER

Our implementation of goal-conditioned RL follows from hindsight experience replay (HER)
[3]. Crucially, we perform o↵-policy RL, in addition to using the relabeling strategies inspired
by HER. When provided a batch of data to train on, we relabel the goals according to the
following strategy:

• 40%: randomly sampled goals from the environment, or the example sets

• 40%: future states along the same collected trajectory, as dictated by HER

Unlike HER, which used sparse rewards, we use the Euclidean distance as the basis for our
reward function:

r(s, sg) = �ks� sgk (E.2)

To avoid manual engineering, the space of goals is the same as the space of states. I.e., the
dimension of the goal is the same as that of the state, and the corresponding entries in s and
sg correspond to the same semantic state features.

E.1.4.4 VICE

Variational inverse control with events (VICE) is described in Fu et al. [70]. VICE proposes
an inverse reinforcement learning method that extends adversarial inverse reinforcement
learning (AIRL) Fu et al. [69]. Like AIRL, VICE learns a density p✓(s, a) using a classification
problem. However, unlike the usual IRL setting, VICE assumes access to an example set
that specifies the task – the same assumption as DisCo RL.

VICE alternates between two phases: updating the reward and running RL. To learn a
reward function, VICE solves a classification problem, considering the initial example set as
positives and samples from the replay bu↵er as negatives. The discriminator is:

D✓(s, a) =
p✓(s, a)

p✓(s, a) + ⇡(a | s)
. (E.3)

At optimality, the reward recovered p✓(s, a) / ⇡
⇤(a | s) = exp(A(s, a)), the advantage of the

optimal policy [69]. In practice the reward is represented as p✓(s), ignoring the dependence
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on actions. However, actions are still needed to compute the discriminator logits; we follow
the method specified in VICE-RAQ [196] to sample actions from ⇡(a | s) for all states. We
also use mixup [228] as described in VICE-RAQ. Mixup significantly reduces overfitting and
allows VICE to successfully learn a neural net classifier even with so few (30 to 50) positive
examples. In the RL phase, VICE runs reinforcement learning with log p✓(s, a) as the reward
function, actively collecting more samples to use as negatives.

We re-implemented VICE as above and confirmed that it successfully learns policies to
reach a single state, specified by examples. However, our results demonstrate that VICE
struggles to reach the example sets we use in this work. This issue is exacerbated when the
problem is multi-task instead of single-task and the state includes a goal, as in goal-conditioned
learning.

In multi-stage tasks, we train a single DisCo RL policy shared among the stages. For
VICE, sharing data among di↵erent tasks would not respect the adversarial optimization
performed by the method. Instead, we train separate policies for each stage without sharing
data between policies. Thus, for a task with N stages, VICE is generously allowed to
experience N⇥ the data, as each policy collects its own experience).

E.2 Section 5.2 Appendix

E.2.1 Additional Experimental Results

Exploration and o✏ine dataset visualization In Figure E.3, we visualize the post-
adaption trajectories generated when conditioning the encoder the online exploration trajec-
tories honline and the o✏ine trajectories ho✏ine, similar to Figure 5.11, and also visualize the
online and o✏ine trajectories themselves. We see that honline and ho✏ine are very di↵erent,
but the self-supervised phase mitigates the negative impact that this distribution shift has
on o✏ine meta RL.

E.2.2 Experimental Details

E.2.2.1 Environment Details

In this section, we describe the state and action space of each environment. We also describe
how reward functions were generated and how the o✏ine data was generated.

Ant Direction The Ant Direction task consists of controlling a quadruped “ant” robot
that can move in a plane. Following prior work [176, 50], the reward function is the dot
product between the agent’s velocity and a direction uniformly sampled from the unit circle.
The state space is R20, comprising the orientation of the ant (in quaternion) as well as the
angle and angular velocity of all 8 joints. The action space is [�1, 1]8, with each dimension
corresponding to the torque applied to a respective joint.
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Figure E.3: We duplicate Figure 5.11 but include the exploration trajectories (green) and example
trajectories from the o✏ine dataset (red). We see that the exploration policy both before and
after self-supervised training primarily moves up and to the left, whereas the o✏ine data moves
in all direction. Before the self-supervised phase, we see that conditioning the encoder on online
data (orange) rather than o✏ine data (blue) results in very di↵erent policies, with the online data
resulting in the post-adaptation policy only moving up and to the left. However, the self-supervised
phase of SMAC mitigates the impact of this distribution shift and results in qualitatively similar
post-adaptation trajectories, despite the large di↵erence between the exploration trajectories and
o✏ine dataset trajectories.

The o✏ine data is collected by running PEARL [176] on this meta RL task with 100
pre-sampled 1 target velocities. We terminate PEARL after 100 iterations, with each iteration
containing at least 1000 new transitions. In PEARL, there are two replay bu↵ers saved
for each task, one for sampling data for training the encoder and another for training the
policy and Q-function. We will call the former replay bu↵er the encoder replay bu↵er and
the latter the RL replay bu↵er. The encoder replay bu↵er contains data generated by only
the exploration policy, in which z ⇠ p(z). The RL replay bu↵er contains all data generated,
including both exploration and post-adaptation, in which z ⇠ q�(z | h). To make the o✏ine
dataset, we load the last 1200 samples of the RL replay bu↵er and the last 400 transitions
from the encoder replay bu↵er into corresponding RL and encoder replay bu↵ers for SMAC.
In the initial submission, we mistakenly stated that we used 1200 samples when in fact we
used 1600 samples for each task. During the self-supervised phase, we add all new data to
both replay bu↵ers.

Cheetah Velocity The Cheetah Velocity task consists of controlling a two-legged “half
cheetah” that can move forwards or backwards along the x-axis. Following prior work [176, 50],
the reward function is the absolute di↵erence product between the agent’s x-velocity and a
velocity uniformly sampled from [0, 3]. The state space is R20, comprising the z-position; the
cheetah’s x- and z- velocity; the angle and angular velocity of each joint and the half-cheetah’s

1To mitigate variance coming from this sampling procedure, we use the same sampled target velocities
across all experiments and comparisons. We similarly use a pre-sampled set of tasks for the other environments.
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y-angle; and the XYZ position of the center of mass. The action space is [�1, 1]6, with each
dimension corresponding to the torque applied to a respective joint.

The o✏ine data is collected in the same way as in the Ant Direction task, using a run
from PEARL with 100 pre-sampled target velocities. For the o✏ine dataset, we use the first
1200 samples from the RL replay bu↵er and last 400 samples from the encoder replay bu↵er
after 50 PEARL iterations, with each iteration containing at least 1000 new transitions. For
only this environment, we found that it was beneficial to freeze the encoder bu↵er during the
self-supervised phase.

Sawyer Manipulation The state space, action space, and reward is described in Sec-
tion 5.2.5. Tasks are generated by sampling the initial configuration, and then the desired
behavior. There are five objects: a drawer opened by handle, a drawer opened by button, a
button, a tray, and a graspable object. If an object is not present, it takes on position 0 in
the corresponding element of the state space. First, the presence or absence of each of the
five is randomized. Next, the position of the drawers (from 2 sides), initial position of the
tray (from 4 positions), and the object (from 4 positions) is randomized. Finally, the desired
behavior is randomly chosen from the following list, but only including the ones that are
possible in the scene: ”move hand”, ”move object”, opening or closing each of the 2 drawers
(4 tasks in total), ”press button”, and ”move object to tray”. The o✏ine data is collected
using a scripted controller that does not know the desired behavior and randomly performs
potential tasks in the scene, choosing another task if it finishes one task before the trajectory
ends. This data is loaded into a single replay bu↵er used for both the encoder and RL.

E.2.2.2 Hyperparameters

We list the hyperparameters for training the policy, encoder, decoder, and Q-network in Ta-
ble E.4. If hyperparameters were di↵erent across environments, they are listed in Table E.5.
For pretraining, we use the same hyperparameters and train for 50000 gradient steps. Below,
we give details on non-standard hyperparameters and architectures.

Batch sizes. The RL batch size is the batch size per task when sampling (s, a, r, s0) tuples
to update the policy and Q-network. The encoder batch size is the size of the history h per
task used to conditioned the encoder q�(z | h). The meta batch size is how many tasks batches
were sampled and concatenated for both the RL and encoder batches. In other words, for
each gradient update, the policy and Q-network observe (RL batch size)⇥ (meta batch size)
transitions and the encoder observes (RL batch size)⇥ (encoder batch size) transitions.

Encoder architecture. The encoder uses the same architecture as in Rakelly et al. [176].
The posterior is given as the product of independent factors

q�(z | h) /
Y

s,a,r2h

�(z | s, a, r),
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Hyperparameter Value

RL batch size 256
encoder batch size 64
meta batch size 4

Q-network hidden sizes [300, 300, 300]
policy network hidden sizes [300, 300, 300]
decoder network hidden sizes [64, 64]
encoder network hidden sizes [200, 200, 200]

z dimensionality (dz) 5
hidden activation (all networks) ReLU

Q-network, encoder, and decoder output activation identity
policy output activation tanh

discount factor � 0.99
target network soft target ⌧ 0.005

policy, Q-network, encoder, and decoder learning rate 3⇥ 10�4

policy, Q-network, encoder, and decoder optimizer Adam
# of gradient steps per environment transition 4

Table E.4: SMAC Hyperparameters for Self-Supervised Phase

Hyperparameter Cheetah Ant Sawyer

max trajectory length 200 200 50
AWR � 100 100 0.3

reward scale 5 5 1
# of training tasks 100 100 50
# of test tasks 30 20 10

# o✏ine transitions per task 1600 1600 3750
�pearl 1 1 0

Table E.5: Environment Specific SMAC Hyperparameters
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where each factor is a multi-variate Gaussian over Rdz with learned mean and diagonal
variance. In other words,

q�(z | s, a, r) = N (µ�(s, a, r), ��(s, a, r)).

The mean and standard deviation is the output of a single MLP network with output
dimensionality 2⇥ dz. The output of the MLP network is split into two halves. The first half
is the mean and the second half is passed through the softplus activation to get the standard
deviation.

Self-supervised actor update. The parameter �pearl controls the actor loss during the
self-supervised phase, which is

L
self-supervised

actor (✓) = Lactor(✓) + �pearl · L
PEARL

actor
(✓),

where L
PEARL

actor
is the actor loss from PEARL [176]. For reference, the PEARL actor loss is

L
PEARL

actor
(✓) = Es⇠Di,z⇠q�(z|h)


DKL

✓
⇡(a | s, z)

���
���
expQw(s, a, z)

Z(s)

◆�
.

When the parameter �pearl is zero, the actor update is equivalent to the actor update in
AWAC [157].
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