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Abstract

Interactive Perception for Robotic Manipulation
of Liquids, Grains, and Doughs

by
Carolyn Chen Matl
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Ruzena Bajcsy, Chair

With the advent of robotic solutions in both the home and industrial environments comes the need
for robots that can dependably perceive and manipulate unstructured or deformable materials like
liquids and doughs. Robust handling of these complex materials often depends upon prior knowl-
edge of key material properties such as viscosity or stiffness, which ultimately affect material
dynamics. However, these material properties are difficult to observe with traditional sensing
mechanisms, e.g. with passive, image-based observations. Furthermore, these materials are gen-
erally associated with complex models or high-dimensional representations, which make real-time
dynamic predictions intractable.

Interactive perception enables robots to observe and learn from signals that would otherwise not
be present. In this work, we develop and leverage non-traditional sensing techniques that are
used within an interactive perception robotic framework to estimate physical properties of liquids,
grains, and deformable objects. In particular, this research aims to extract key material parameters
through direct interaction and observation of induced signals (e.g., sound or force). The estimated
parameters are then used to reason about the materials for dynamic robotic manipulation tasks
such as precision pouring and dough shaping. We additionally employ simplified representations
of these complex materials for use in real-time applications. We hope that this work will highlight
the importance of exploring new sensing modalities, which could enable robots to intelligently
interact with and manipulate unknown and unstructured objects and materials.



To my parents, Chih-Shan Chen and Tze-Chi Huang, to my kindergarten teacher, Mary Yarusso,
and to my love Matthew Matl.
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Wrench signals at the wrist of a robotic manipulator reflect changes in the center of
mass of liquid inside a container. These signals are used to infer key properties of the
liquid such as its mass, volume, and viscosity. Rotations are applied to the container
in order to observe both static and dynamic behavior of the liquid. © 2019 IEEE

(a) A cross-sectional diagram defining variables used to derive parameter estimation
formulas. (b) Top to bottom, left to right are the four cases of liquid geometry in a
cylindrical container, visualized by the mesh approximation method. (c) A diagram to
determine O for a precise pour. © 20191EEE . . . . . . . ... ... ...
From left to right: 480z Nalgene water bottle used in exploratory analysis, 3 large
cylindrical containers used in viscosity estimations, 3 small cylindrical containers used
in all experiments, and isopropyl alcohol, coconut milk, canola oil, evaporated milk,
mango juice, dish soap, syrup, and honey, arranged in order of approximately increas-
ing viscosity. © 20191EEE . . . . . . . . .. ...
(top): Torques measured during a rotation of a half and quarter full Nalgene. Open
points represent measured data, and lines represent the predicted torques, demonstrat-
ing that our model matches measurements well for different grasp positions and vol-
umes. (bottom): Graph of the residual error between measurements and predictions
over the variable V. The convexity of the residual informs us that there should be a
global minimum solution. © 20191EEE . . . . . .. .. ... ... ... ... ...
Error of mass and volume estimations. Blue curves represent adjustments of f, mea-
surements and corrections to reflect a better estimate of internal container geometry.
©20191IEEE . . . . . . .
(top) Real f, and 7, data (filtered and smoothed) after a 90 — Odeg rotation of water,
oil, and honey in the large containers. Detected peaks and rise times used in viscosity
calculations are shown. (bottom) Viscosity predictions for the 9 different liquids, ar-
ranged from top to bottom with increasing true viscosities. True values of five liquids
are denoted by red. Black circles mark the averages of the estimated viscosities per
liquid. Note, for illustrative purposes, viscosity estimates are shown on a log scale. ©
2019 1EEE . . . . e
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4.1

Granular parameter inference framework. (Bottom branch): Multiple granular pa-
rameter sets are randomly sampled from a prior distribution 6 ~ p(0), and for each,
summary statistics 7' (x5) are extracted from a simulation g(8). The set of T'(x%) are
used to learn a conditional density function for the parameters using BayesSim. (Top
branch): The summary statistics of a depth image of a real granular formation are
extracted. With the conditional density function, a posterior is estimated to infer the
likeliest simulation granular parameters to match the macroscopic granular behavior.

©2020IEEE . . . . . . .. e

The simulations capture sliding friction forces (Fy), rolling friction forces (F,), and
energy loss due to inelastic collisions for grain-grain and grain-ground interactions.
These forces are parameterized by the coefficients of sliding friction (L), rolling fric-

tion (U,), and restitution (e), respectively. © 2020 IEEE . . . . . . . .. ... ... ..

Sensitivity to observation error. An example X* is shown perturbed by different lev-
els of noise. 50 different test images X° were generated by evenly sampling U, €
[0.01,1.0]. The resulting approximated posteriors are plotted per true value of U,
where the highest peaks correspond to the brightest points. A perfect inference would
result in a white line overlapping the red. While the model is fairly robust to the level
of per-pixel Gaussian depth noise applied, accuracy is more affected by Gaussian blur.
Posterior peaks become wider, and distributions can become multimodal with o > 4.

©2020IEEE . . . . . . . e

Examples comparing simulated depth images of testing set and simulated depth images
from running a forward simulation with inferred parameters. Table shows correspond-
ing errors in inferred parameters, as well as L2 errors between summary statistics. ©

2020IEEE . . . . e

Comparisons of real depth images of piles poured at different heights and simulated
depth images generated from running a forward simulation at the corresponding heights,
using parameters inferred from a height of 12 cm. L2 errors are listed below the depth

images. © 2020 IEEE . . . . . . . . ...

Two granular manipulation tasks were tested. (Left): The height of the funnel is in-
ferred to create a desired ring shape. Performance is demonstrated by creating a pattern
of three concentric rings. (Right): The calibrated simulator is used to recreate a real-
life scene of pouring grains into a bowl. At various heights, both the simulations of
couscous and barley reasonably estimate the number of grains that leave the cereal

bowl. © 2020 IEEE . . . . . . . ..

STReSSD is a framework that uses sound to bridge the sim-to-real gap for a stochastic
dynamic process (e.g., a bouncing ball). (a) Simulation is used to learn a conditional
density function relating a material and noise parameter to collision times and po-
sitions, and posteriors over these parameters are generated from audio observations
of bouncing balls. (b) A probabilistic dynamics model is learned via the calibrated
stochastic simulator. (c) This model is used with real-world auditory feedback for a

reactive robotic ball-tracking task. . . . . . .. .. oo oL oL
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(Left): The initial velocity is sampled from a Gaussian distribution and collision per-
turbations are sampled from a von Mises-Fisher distribution, centered at #o/||i||. (Mid-
dle): 1000 samples over a sphere for different values of k for u = [0,0,1]. (Right):

Balls used in real experiments. . . . . . . . . . .. ...

(Left): Integrated robotic system used in experiments. (Right): Real-time sound lo-
calization is slightly less accurate than the offline method and produces outliers with

large errors. . . . . .. L

(a) Ball tracking setup. (b) Example ball trajectory for noiseless method. yg, is the
y-coordinate of the inferred crossing point of the ball given the first two bounces. (c)
Samples of future bounce positions given the first two bounces using the stochastic
noise method. The mean and variance of the samples in the workspace plane inform

the distance the paddle should travel (d,). . . . . . ... .. ... ... .......

(a) Sim-to-sim example posteriors of inferring e and log;,(x) from bounce times, e
and log;(x) from bounce positions, and both e and log;,(x) from times and posi-
tions. The table summarizes average error over 1000 examples for each parameter,
given a feature subset. (b) Top: Real-to-sim posteriors become more certain with more

samples. Bottom: Posteriors forreal balls. . . . . . .. ... ... .. ... ... ..

(a) A robotic hand bounces the ball off the tilted table surface into the cup, or goal. (b)
Top: Spatial map of success rates for different initial positions of the ball drop. Success
ranges from lightest (0 successful) to darkest (100 successful). Bottom: Comparison
of real and simulated success rates (out of 100) dropped at the red point, with simulated

success rates averaged over 30 trials of 100 simulations. . . . . . ... ... ... ..

(Left): A successful trial. (Middle) “Outliers” signifies failures due to sound local-
ization errors, and “Missed” denotes any other failure. Compared to the deterministic
baseline, the stochastic method has higher success (an absolute increase of 24%) and
fewer failures due to outliers (an absolute decrease of 29%), averaged across all balls.
This graph excludes trials that violated the robot’s boundary constraints; an alternative
graph with all 30 trials can be found in Section 15. (Right): On average, the base-
line uses more total energy than the stochastic method over all trials and all successful

trials, suggesting that the baseline is more overreactive. . . . . . . . . ... ... ...

(a) The Soft Optical Feedback Tactile cell (SOFTcell), a device towards a soft fingertip
with integrated sensing and actuation. (b) Pneumatic actuation enables controllable
increase of effective modulus and a greater than 200% increase in volume. (c) A
cutaway scale diagram of SOFTcell displaying its assembled internal components. ©

20I8IEEE . . . . . e
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Examples of raw images captured by the internal camera, overlaid with the traces of
the trajectories of the markers. Different colors are assigned to distinguish different
marker traces. Arrows found in the bottom-left corners serve to illustrate the general
directional motion of the markers. (a) The membrane is indented radially on the left
side by a spherical probe (see Figure 5.4). (b) The membrane shears in contact with a
flat surface moving upwards. (c) The membrane experiences torsion while in contact
with a twisting flat surface. © 2018 1EEE . . . . . . . .. ... ... ... ... ..
General system workflow. Contacts are transmitted as images via the internal camera
and further modified by the image processing scheme. The vectors of marker displace-
ments are then interpreted as tactile feedback, e.g., a detected membrane shear. A
central computer computes a command, e.g., increase pressure, in response to the vec-
tors, which is relayed to the microcontroller. The microcontroller sends a PWM signal
to the solenoid valves, which in turn change the air pressure supplied to the SOFT-
cell. This subsequently changes the volume and stiffness of the elastic tip. The change
in volume is captured by the internal camera as well, demonstrating proprioceptive
capabilities of the SOFTcell. © 2018 IEEE . . . . . . . .. .. .. ... .. .....
A schematic representation of the mechanical stiffness characterization experiments.
(a) Coaxial contact with the spherical probe. (b) Radial contact at an angle of §. ©
2018 IEEE . . . . . e
The results of the mechanical stiffness characterization experiments described in IV.A.
(a) Coaxial contact with a spherical probe. (b) Radial contact (%) with a spherical
probe. (c) Coaxial contact with a planar probe. At low pressures and higher inden-
tations O, the planar probe contacted the rim of the pressure capsule, so forces were
not recorded. (d) SOFTcell’s effective modulus increases as the internal pressure is
increased. © 2018 IEEE . . . . . . . .. . L
Comparison of coaxial and radial contact forces exerted by SOFTcell onto a fixed
force-torque sensor. The internal gauge pressure is varied between 0 and 6.14 kPa in a
triangle wave-like oscillation. © 2018 IEEE . . . . . . . ... ... ... ... ....
The minimum detectable force (£ ;) for coaxial contact with the spherical probe vs.
the internal pressure of SOFTcell. © 2018 IEEE . . . . . .. ... ... ... ....
The experimental setup for Section 5.5 and Section 5.5. (a) SOFTcell pushes a box
of glass beads against a wall, applying sufficient normal force to counter the effect of
gravity; (b) a free-body diagram of forces involved in this experimental setup. © 2018
IEEE . . . . e
Contours of uniform membrane displacement from SOFTcell sensor data for a 0.8N
shear load at different cell pressure states. Displacements are in mm, in the direction
of shear. Displacements in the direction normal to shear were negligible for all trials.
©20181IEEE . . . . . . e
Average membrane shear deflection measured by SOFTcell for different shear loads at
different cell pressure states. Different deflections are measured at different shear loads
(depending on the internal pressure state), suggesting that approximate shear load can
be inferred from the spatial tactile data. © 2018 IEEE . . . . . . . ... ... ... ..
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5.11 Results of the membrane shear experiments (Section IV.E). (a) The mass of the grasped

6.1

6.2

6.3

6.4

6.5

6.6

object at the point of slip / detected shear vs. the pressure state of SOFTcell. (b)
Measured normal force vs. normal deflection compared to theoretical predictions from
the effective modulus Hertz contact model with measured parameters. Error bars show

95% confidence interval. © 2018 IEEE . . . . . . . . . . .. ... ...

(Left): An orthographic view of StRETcH, mounted on a robotic arm. An elastic mem-
brane (blue) is attached to the robotic gripper, which modulates its stiffness through
stretching when interacting with an object (red). (Right): (a) Mid-range stiffness is
used to deform a soft object; (b) Low-range stiffness is used when measuring the ob-
ject’s geometry; (c) High-range stiffness is used to exert large forces on the object. ©

2021 IEEE . . . . . e

(Left): A cross-sectional schematic of StRETcH. The membrane is stretched by x mm.
When the membrane makes contact with an object, it is deformed from its original
position (dashed blue) and can be partitioned into undeformed (solid blue), deformed
but not in contact (yellow), and deformed and in contact (red) segments. (Right): 3D
points corresponding to the red, yellow, and blue segments are extracted from the depth

image, resulting in a low error in estimated contact geometry. © 2021 IEEE . . . . . .

(a) Indentation depth & vs. load force F for varying stretch states for a 20mm diameter
hemispherical rigid indenter; (b) 6 vs. F for varying stretch states for a 20mm diame-
ter cylindrical rigid indenter; (c) § vs. F for varying stretch states for a 45deg conical
rigid indenter; (d) 0 vs. F for varying diameter hemispherical indenters with a mem-
brane stretched by 30mm; (e) Stretch distance x vs. effective modulus E* for varying
diameter hemispherical indenters; (f) x vs. E* for indenters of varying geometry. ©

2021 IEEE . . . . . . e

(a) Example estimated contacts with cylinders of varying diameters; (b) Errors in es-
timated diameter along the stretch direction j for different indentation depths é and
stretch distances x; (¢) Errors in estimated diameter in the i direction for different &
and x; (d) Absolute total error in estimated diameter along the i&j directions for dif-
ferent 6 and x. (b-d) demonstrate higher contact estimation accuracy for larger 6 and

lowerx. © 2021 IEEE . . . . . . . . . . .

(a) Alternative visualization of Figure 6.3(e). Negative exponential curves are fitted
to the datapoints (which are the average E* over five trials). The vertical line denotes
corresponding effective moduli for an estimated spherical contact with radius R*. (b) A
logarithmic function is fit to the corresponding points lying on the vertical line 2R* in
plot (a). The fitted function estimates E* given the stretch distance x for the particular
geometry of radius R*. (c) Generated 0 vs. F functions for the specific radius R*. ©

2021 IEEE . . . . . o e

3D reconstructions of contacts with a: wooden cube, wooden triangular prism, wooden
half-cylinder, wooden bridge, glass snowman, paper cube, paper half-cylinder, paper

pyramid, wire circle, and wire triangle. © 2021 IEEE . . . . . . .. .. ... ... ..
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(Top): Stiffness estimations in N/mm for balloons filled with air, water, chia pudding,
and chia seeds. (Bottom): Active sensing is used to determine stiffness. Plots dis-
play force modulation of StRETcH (shown in red) as it increases its indentation depth
(moving along the curve to the right) and stretch width (moving to higher curves) until
a deformation is sensed. 8-F curves are generated using the learned model described

in Section 6.5. © 2021 IEEE . . . . . . . . . . ...

Example cookies formed from cubes of Play-Doh. (Top): The dough begins as a cube;
(Middle): The dough is rolled into a sphere using medium stiffness; (Bottom): The

dough is flattened into a cookie using high stiffness. © 2021 IEEE . . . . . ... . ..

(left): Diagram of the robotic system. The elastic hand is used to roll the elasto-plastic
dough back and forth. The gripper changes the hand’s stiffness via stretching, which
modulates the force imposed by the hand onto the dough. The overhead depth camera
is used to track the progression of the dough’s shape. (right): Four frames taken from
a rollout of a dough ball into a 10 inch log. Image is colorized to match the diagram

on the left. © 2021 IEEE . . . . . . . . . . . .

(a): Featurization of a point cloud of dough. The state observation [/, w, ] is extracted
by finding the minimum bounding box enclosing this point cloud. The yellow region
signifies where the robot will contact the dough in the next roll. (b): Each roll is state-
dependent. The length of the elastic band ¢ and the distance of the roll d are fixed to be
equivalent and lower-bounded by w. The depth of the indentation § is upper-bounded

by h. © 2021 IEEE . . . o oot

Indentation depth 8 vs. load force F for varying stretch states for a 30mm diameter

hemispherical rigid indenter. © 2021 IEEE . . . . . . . ... ... ... ........

(top) Number of steps to roll a ball of dough into the goal length for four different
action-selection methods. 6 trials are represented per bar and error bars reflect a 95%
confidence interval. (bottom) An example of the dough state progression at each time

step for all four methods. © 2021 IEEE . . . . . . .. ... ... ... ... .....

(a): Comparison of using a fixed vs. iterative model for Model Predictive Control. The
iterative model is refined every 7' = 5 steps from new data collected at run-time. In
both scenarios, the initial model is incorrect (dough A is initialized with f¢ and vice
versa). The goal states for doughs A and C are 6in and 4in in length, respectively. 15
trials are represented per bar. (b): Comparison of incorrectly initializing the model
vs. initializing the model using the estimated stiffness of the dough. Dough A is
incorrectly initialized with f¢, Dough C is incorrectly initialized with f4, and Dough
B is initialized by either f4 or fc with equal probability. The goal states for Doughs
A, B, and C are 6in, 5in, and 4in in length, respectively. 10 trials are represented per

bar. © 2021 IEEE . . . . . . . e
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A3
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AS
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B.1

(left): Comparison of actions chosen throughout the progression of the task for dough
A, with red, yellow, and blue corresponding to the fixed incorrect dynamics model
of fc, iterative dynamics model initialized at fe, and stiffness-initialized model, re-
spectively. The top graph is the gripper throw (length of the elastic band, ¢) and the
bottom graph is rolling depth 8. (right): Comparison of actions for dough C, where
the incorrect initialized dynamics model is f4. © 2021 IEEE . . . . .. ... ... ..

A cross-sectional diagram defining variables used to derive liquid volume calculations.
Example locations of center of masses of the container, gripper, and liquid are illus-
trated. . . .. L
An illustration of the shifted body frame Bx, with respect to which the center of mass
equations if* and y‘f* are initially defined. X;(0,V) is defined with respect to the world
frame, so a transformation is necessary once if* and )7?* are computed. . . . ... ..
Diagram depicting Case 1 for liquid center of mass and volume calculations. . . . . .
Diagrams depicting Case 2 for liquid center of mass and volume calculations. (Left)
for hiop > hportom- (Right) for hyop < hporom- - - - o o o oo oo
Diagrams depicting Case 3 for liquid center of mass and volume calculations. (Left)
for hyop > hportom- (Right) for hyop < Mporsom- Red triangles correspond to volume (case
2) with height 4 — Lcos 6 to be subtracted from volume (case 1) with height 4.
Diagram depicting Case 4 for liquid center of mass and volume calculations. Red
triangle corresponds to volume (case 2) with height 7 — Lcos 6 to be subtracted from
volume (case 2) with heighth. . . . . . . . ... .. ... L L
(Left): Cross-section of liquid flow; (Middle): Highlighted regions (red+grey) are to
denote where liquid is present immediately after the rotation of the container. Liquid
flows through the cross-sectional area illustrated on the left. (Right): Highlighted
regions (red+grey) are to denote where liquid is present after reaching steady state.
The red regions are to illustrate the change in location of mass before and after liquid
flow. . . e

(Left): A graph of the vertical trajectory of a ball over time, labeled with relevant
variables for extracting X;. (Right): xy planar positions of ball bounces are denoted by
the open circles, and relevant variables for extracting X, are labeled. . . . . . . .. ..
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B.2 A flow diagram detailing the STReSSD framework. (A): Simulation is used to learn the
conditional density function g4 (6|X*) relating parameters e and Kk to observation fea-
tures X = [;—f,dl,dz, o). 6000 independent simulations are run to generate the training
set to learn go. (B): Feature extraction of real data begins by observing the peaks of raw
audio signals, finding the time delays between pairs of microphones, and locating the
bounces. The low-dimensional feature vector X" is thus extracted from raw data. (C):
The simulator is calibrated using real observations to match a particular ball’s dynamic
behavior. A posterior over the parameters 0 = [e, k| is approximated using the learned
conditional density function g¢ and the real observation X”. Posteriors from different
observations of the same ball can be multiplied to generate a more peaked joint pos-
terior. The calibrated simulator samples from this joint posterior. (D): The calibrated
simulator from (C) is used to make open-loop dynamic predictions of the ball. (E): The
calibrated simulator is used for robotic ball-tracking. A new training set is generated
by forward simulating the calibrated simulator, with relevant parameters sampled from
the joint posterior in (C). New features (X; = [t;,d;] and X, = [t;41,d;+1, % 1)) are
extracted from this simulator and a second conditional density function approximates
a transition function for the stochastic dynamics of the ball. The transition function is
used to estimate the next bounce location and time, given the last two bounces. The
transition function can be applied recursively to predict future ball bounces. . . . . . .

B.3 Locating the source of a sound using time delay estimation involves finding the inter-
section of two conics, defined by the time delays between pairs of microphones. . . . .

B.4 A comparison of (a) offline and (b) online sound localization. Ground truth positions
were recorded by tapping a piece of paper layered with a carbon sheet. These posi-
tions were converted to world coordinates via an automated image processing script.
Observe that outliers occasionally arise when using the less-accurate real-time sound
localization method. However, the displacement errors of the outliers are sufficiently
large such that they can be easily filtered. . . . . . .. ... .. ... ... ... ..

B.5 Dynamic predictions without collision noise assume a piecewise parabolic trajectory
for the ball, based on the most recent two bounces. The robot moves to the intersection
of this predicted trajectory and the robot workspace plane. . . . . .. ... ... ...

B.6 Outliers” signifies failures due to errors in sound localization, "Boundaries” refers to
failures due to the ball violating robot workspace boundaries, and "Missed” denotes
any other failure. All 30 tosses are represented in this graph. . . . . . .. ... .. ..

B.7 We categorize the failures due to outliers in bounce localization by the bounce at which
the outlier occurs. Note that Algorithm 2 successfully filters out outliers as long as
they occur after the second bounce. The robot is able to use, instead, the mean of the
posterior over which the bounce should have occurred, which subsequently leads to
more accurate ball trajectory predictions. . . . . . . ... ..o Lo

B.8 The firstbounceislocated. . . . . . . . ...

B.9 Thesecond bounceislocated. . . ... ... ... ... ... L.

B.10 The 1st and 2nd measured locations are used to predict the distribution over the 3rd
bounce location. . . . . . . ... oL
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Chapter 1

Introduction

Aging populations across the globe present an urgency for developing automated solutions for
personal care and the home. As a result of this trend, an area of research that has garnered much
interest in recent years is in service robots, which are expected to aid humans in tasks such as
cleaning and cooking. However, current robots remain challenged in their capability to robustly
handle the unstructured and deformable objects and substances that abound in environments like
the kitchen. Technical challenges that hinder robotic dexterity of such materials largely lie in the
realms of perception, modeling, and control [230, 217].

Interactive perception presents a pivotal step towards unstructured dexterous manipulation; we
propose and develop new sensing methods for the handling of these complex materials. Jeannette
Bohg, et al., contribute a thorough definition of interactive perception in a review [16]:

Interactive Perception ... exploits any kind of forceful interaction with the environ-
ment to simplify and enhance perception.

— physical interaction creates a novel sensory signal that would otherwise not be
present.
—the prediction and interpretation of this novel signal becomes simpler and more
robust.

Interaction simplifies and enhances perception. We aim to make use of interaction to simplify
perception problems and enrich what the robot can observe from the world. For humans, perceiving
through exploratory interactions is practically second-nature — we squeeze fruits to determine their
ripeness, rattle boxes to listen to their contents, and rub cloths to feel their texture. In Jones &
Lederman’s “Human Hand Function,” they note that active haptic sensing is more or less essential
for observing identifying properties about an object [80]. These are all examples of how one
forcefully interacts with an object or the environment to “induce a novel sensory signal that would
not otherwise by present.”” And the manner in which one interacts with an object (e.g., pressing
it), directly connects with the physical property that one seeks to learn about that object (e.g.,
its compliance) [107]. To emphasize the last section of this excerpt, ultimately, this interaction
enables the prediction and interpretation of the signal to be “simpler and more robust.”
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As Lederman & Klatzky show, humans make these connections almost automatically — ex-
ploratory procedures used by human subjects were found to be strongly linked with specific object
properties, and these exploratory procedures were determined to be optimal or even necessary for
acquiring the desired information [107]. How, then, can robots be equipped with similar percep-
tual intelligence? In his paper titled “Robotic Perception of Material” [94], Eric Krotkov asks the
questions:

What physical principles relate the acts of manipulation to percepts such as forces,
torques, displacements, and vibrations?
What acts of manipulation best reveal a given material property?

These questions are precisely what have driven the presented research, and they will be revisited
throughout this thesis.

To position this thesis in perspective with prior work, we begin by grouping research on robotic
interactive perception into roughly three main categories. First, interactive perception can be quite
useful for classification purposes. For instance, in [185] and [23], the authors apply different
exploratory motions to containers, like shaking or rattling, and use the induced sound signals to
classify the container contents. An additional example in [209] demonstrates the use of robotic
pushing to categorize objects as either deformable or rigid. These examples illustrate that simple
motions, when applied to induce a change of state of the object in question, can generate clear,
differentiating signals.

Another focus of interactive perception research is in parameter estimation in order to produce a
more accurate model of an object or the environment. One illustrative example is in Eric Krotkov’s
Whack and Watch experiment [94], where objects were whacked by a pendulum, and their resulting
trajectories were observed in order to estimate their mass and coefficient of sliding friction. Other
notable work includes [88] and [128], where robotic manipulators interact with articulated objects
such as clippers and drawers. Using visual, haptic, and proprioceptive sensing, the authors show
how this interaction enables the robot to build a kinematic and dynamics model of the articulated
object. Parameters such as the coefficient of sliding friction or the kinematic structure of an object
help construct a more accurate representation of the object, which can later aid the robot in planning
and control for manipulation.

This leads to the final category of work, in which interactive perception is used to efficiently
teach robots how to perform a manipulation task. For instance, in both [111] and [109], the robotic
manipulator learns through a short, interactive training phase how to perform contact-rich tasks
such as peg-insertion and screwing caps onto bottles. The authors in [108] take a learning-from-
demonstration approach for force-based tasks, where human-guided interactions with linear and
planar deformable objects enable the robot to learn how to tie a rope or fold a towel. This group
of work showcases how interactive perception is inevitable in completing complex manipulation
tasks, especially contact-rich tasks. Thus, incorporating interactive perception in the training phase
of a manipulation task will improve the robot’s effectiveness of performing the task at run-time.

The work in this thesis mostly falls under the category of parameter estimation. However, in
contrast with prior literature, we focus on the perception of non-rigid objects and materials that
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undergo plastic deformations. Specifically, we study the perception of key material parameters of
liquids, grains, and doughs. By extracting these physically relevant parameters, we show how this
can be useful to manipulate the complicated material or object using a relatively simple model and
control scheme. Thus, we hypothesize:

Robotic interactive perception of liquids, grains and doughs enables the accurate esti-
mation of identifying properties of the material and subsequently improves the manip-
ulation of that material.

This thesis will address this hypothesis from various perspectives, using different types of
perception modalities and representations. The perception of different materials requires unique
frameworks and thus the thesis is structured as follows: Part I studies liquids, Part II studies gran-
ular materials and stochastic dynamics, and Part III studies plastically deformable solid objects
like dough. Given the particular properties we would like to determine about these materials, we
ask the questions: what kind of signal can we design to extract this relevant information, and what
sort of sensor would be necessary to observe this signal? Therefore, Chapter 2 discusses how hap-
tic perception is used to feel liquids shifting in containers, Chapter 3 illustrates how depth images
of static formations can illuminate the dynamics of scattering grains, Chapter 4 demonstrates how
audio signals are used to observe the stochastic dynamics of a bouncing ball, and Part III develops
a series of new variable-stiffness tactile sensors to palpate deformable objects.

This thesis additionally explores interactive perception using three different types of represen-
tations. In Part I, a derived physics model informs the robot’s interactions with the liquid. Part
IT uses simulation to model granular materials and stochastic dynamics in place of an explicit
model. Here, interactive perception plays a role in bridging this gap between simulation and real-
ity. Finally, interactive perception is used in Part III in a data-driven approach to directly learn a
dynamics model of dough and hand interactions, which, due to their complexity, are impractical
to model using existing physics simulations that are too slow to adapt for real-time scenarios. The
presented robotic interactive frameworks serve to simplify and enhance the perception of liquids,
grains and doughs by linking the materials with specific exploratory procedures and sensing mech-
anisms hypothesized to be highly effective for perceiving the desired properties. Together with
the materials’ simplified representations, the frameworks demonstrate improved robotic manipula-
tion capabilities of each material via liquid precision pouring, stochastic dynamic predictions, and
dough shaping.



Part I

Liquids: Physical Modeling from Haptic
Signals

We begin our exploration of interactive perception with a type of material that a robot
will inevitably encounter in both the industrial and home settings — liquid. In partic-
ular, we are interested in observing liquid inside a container that might not be known
or visible, and we aim to estimate the liquid’s mass, volume, and viscosity. Revis-
iting the question of “what kind of interaction and perception would be most useful
for observing these material properties,” we observe that the liquid’s changing center
of mass can be directly modeled by deriving a set of explicit equations relating to the
state of the container. In the following work, the analytic equations modeling the static
and dynamic states of the liquids help unveil clues as to how the robot can effectively
perceive the desired properties. The particular revelation made in this work is that the
robot can intentionally rotate the container to induce a change in the center of mass.
This change in state can subsequently be measured with a force/torque sensor at the
wrist of the robotic arm. Thus, the following chapter explores using physical model-
ing, haptic sensing, and purposeful rotations to liquid inside a container to measure its
mass, volume, and viscosity.



Chapter 2

Haptic Perception of Liquids Enclosed in
Containers

This chapter is based on the paper “Haptic Perception of Liquids Enclosed in Containers” [132],
written in collaboration with Robert Matthew and Ruzena Bajcsy.

Service robots will require several important manipulation skills, including the ability to ac-
curately measure and pour liquids. Prior work on robotic liquid pouring has primarily focused on
visual techniques for sensing liquids, but these techniques fall short when liquids are obscured by
opaque or closed containers. This chapter proposes a complementary method for liquid perception
via haptic sensing. The robot moves a container through a series of tilting motions and observes
the wrenches induced at the manipulator’s wrist by the liquid’s shifting center of mass. That data
is then analyzed with a physics-based model to estimate the liquid’s mass and volume. In exper-
iments, this method achieves error margins of less than 1g and 2mL for an unknown liquid in a
600mL cylindrical container. The model can also predict the viscosity of fluids, which can be used
for classifying water, oil, and honey with an accuracy of 98%. The estimated volume is used to
precisely pour 100mL of water with less than 4% average error.

2.1 Introduction

Perception of liquids inside closed containers has been studied for quite some time by the trans-
portation and aerospace industries, where estimating the volume [97] or sloshing [49] of fuel inside
a tank can be used to better control trucks or aircraft. With the advent of service robots that can
work in the kitchen, this same problem has now resurfaced at a much smaller scale. How much
milk is inside the carton? How thick is the honey inside the jar? Answering these questions before
opening a container can drastically change how a robot might plan to pour a liquid [100, 47, 96,
196].

However, the complexity of fluid mechanics makes it difficult to accurately model and predict
the behavior of liquids, and transparent liquids present a challenge for visual sensors. Several
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Figure 2.1: Wrench signals at the wrist of a robotic manipulator reflect changes in the center of
mass of liquid inside a container. These signals are used to infer key properties of the liquid such
as its mass, volume, and viscosity. Rotations are applied to the container in order to observe both
static and dynamic behavior of the liquid. © 2019 IEEE

vision-based techniques have addressed this challenge [212, 178, 90], but these methods either
only perceive the liquid during the pouring action or do not work when the container is opaque or
occluded.

To address these challenges, this chapter proposes a haptic-based method to complement ex-
isting visual techniques. Our robot rotates a container filled with an unknown liquid to shift the
liquid’s center of mass and observes the wrenches induced at the manipulator’s wrist during both
static and dynamic states of the liquid. The method then analyzes this wrench data with a physics-
based model to estimate the liquid’s mass, volume, and viscosity. To the best of our knowledge, this
is the first work to use robotic haptic sensing and physics-based reasoning to completely determine
these three key parameters of liquids inside containers.

The main contributions of this chapter are:

* Time-domain system identification of key parameters of liquids inside containers (mass,
volume, and viscosity) using haptic data.

* A physics-based model that utilizes both the static and dynamic states of the liquid for pa-
rameter estimation.

* A demonstration of the use of liquid parameter estimation for robotic precision pouring.
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2.2 Related Work

Liquid modeling and simulation

The high-dimensional and stochastic nature of fluid flow makes modeling and simulating liquids
a challenging and often computationally-demanding task. By narrowing the scope to fluids in a
container, it has been shown that basic equivalent mechanical models such as pendulums [43] or
multi-mass-spring systems [170] can be sufficiently descriptive for certain objectives. Other work
has explored numerical techniques such as the Volume of Fluid method combined with the Navier-
Stokes equations to model liquid sloshing [215, 39] or particle-based simulations for tracking
liquid flow [144, 212, 179]. A recognized strength of physics-based simulations is their ability
to generalize to different liquids, as only few physical parameters such as viscosity need to be
changed without the need to relearn a representative model [179]. However, the authors of [179]
note that it is still an open challenge to efficiently observe such parameters from real data, which
this chapter aims to address.

Active perception and system identification

Inferring model parameters from sensor data is a fundamental focus in the fields of active percep-
tion [7] and system identification [5]. The majority of existing literature concerned with estimating
liquid properties such as volume or viscosity tackles this challenge by using either special-purpose
equipment such as multi-sensor fusion systems built in and around aircraft fuel tanks [97, 64]
or camera-based systems that require advanced vision techniques and processing [40, 47]. This
chapter proposes a method for finding these parameters by using physics-based models on haptic
data.

Interactive haptic perception of objects with internal dynamics

Liquids inside containers are part of the broad category of objects with internal dynamics. It has
been shown that for objects in this class, such as articulated objects, [88, 89], direct interactions
can allow robots to exploit the object’s kinematics and dynamics to improve model information.
These interactions can range anywhere from near-static contacts [60] to persistent excitation [23]
to derived motions optimized for information gain [176]. In particular, pairing these interactions
with haptic sensing enables perception of objects that are unobservable with vision (e.g., liquids
in an opaque bottle). In [60, 26], the authors use tactile data during a grasp of a container to
distinguish between an empty or full container. A more dynamic motion is applied in [23], in
which shaking-induced vibrations are used to classify between different container contents. The
angle and frequency of shaking is algorithmically determined to maximize information gain and to
infer the viscosity of a liquid inside a container in [176]. While [176] addresses the generation of
an action in order to best perceive viscosity, this chapter uses predetermined motions informed by
exploratory analysis with a greater focus on parameter estimation.
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Manipulation of liquids

Accurate liquid modeling, simulation, and perception is essential for the manipulation of liquids.
Slosh-control and pouring are two challenging robotic tasks within the realm of liquid manipula-
tion. Control of tanks or containers while minimizing slosh has applications for ground vehicles,
aerospace vehicles, and robotics [49, 170]. Instead of focusing on the control of slosh, the meth-
ods in this chapter utilize slosh dynamics to determine the viscosity of a liquid. Numerous papers
have also worked on the task of pouring liquids [212, 178, 180, 161, 160, 156, 90], although most
rely on vision-based sensing to track liquid flow. Four works of note [174, 180, 90, 115] perform
precision pouring, i.e., pouring of specific amounts of fluid. This chapter also attempts this chal-
lenging task, but our method differs in that the haptic signals and physics-based reasoning inform
the action to take before the liquid is poured.

2.3 Problem Statement

Imagine a robotic manipulator that has a stable grasp of an opaque bottle encasing some amount of
an unknown liquid. The manipulator is allowed to perturb the bottle in order to haptically perceive
the internal dynamics of its contents. Given the wrench forces experienced at the wrist of the
manipulator, the goal of this chapter is to determine the mass, volume, and viscosity of the liquid
enclosed in the container.

Simplifying Assumptions

It is assumed that the manipulator has already achieved a rigid grasp of the container, maintaining
force closure throughout the entire interaction and perception cycle. We limit manipulator motions
to rotations of the end-effector wrist joint, and to simplify processing, wrench forces are only mea-
sured when the manipulator is not in motion. With these assumptions, wrench forces at the wrist
should primarily reflect the shifting center of mass of the liquid. By observing this proxy for ag-
gregate motion of the liquid, the physics models proposed approach the problem macroscopically
rather than at the molecular scale. The liquid is assumed to have uniform density and be at room
temperature.

Concerning the container, many assumptions were made including that it is rigid and has a
known mass and geometry. For much of the analysis in this chapter, we use a cylindrical container
and approximate its geometry with a right circular cylinder parameterized by its radius and length.
While this geometric assumption enables fast analytic calculations, we can still perform the same
analysis on arbitrarily-shaped containers using mesh processing techniques. Knowledge of the
grasp point of the container, parameterized by the distance from the bottom of the container to
the center of the grasp, is also assumed. Container wall thickness is assumed to be negligible so
that the internal volume of the container can be determined from its external geometry, which we
acknowledge will induce some small error in our analysis.
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Figure 2.2: (a) A cross-sectional diagram defining variables used to derive parameter estimation
formulas. (b) Top to bottom, left to right are the four cases of liquid geometry in a cylindrical
container, visualized by the mesh approximation method. (c) A diagram to determine 0 for a
precise pour. © 2019 IEEE

Definitions

Let the state of the system at time ¢ be defined as x, = (f;, 7, 6;), where f € R3 and 7 € R3 are
the forces and torques along the x, y, an z axes experienced at the wrist of the manipulator and
0 € [0,2x] is the clockwise angle of rotation of the manipulator about the z-axis from the vertical.
Based on this single-axis rotation constraint, the states of interest for the following experiments
are fy, fy, and 7.

For a cylindrical container, let radius R and length L define its geometry. The robot grasp can
be anywhere along the length of the container, and the position of the gripper center relative to the
bottom face of the container is defined by the distance Lg. The wrench FZ = (2 18) is originally
with respect to the body frame of the system, which we define as rigidly attached to the center of
the grasp with positive y pointing towards the top face of the container. The world frame is defined
for +y opposite of gravitational force, also with its origin centered between the grasp (see Figure
2.2).

The unknown values we wish to estimate are the mass my, volume V, and the dynamic viscosity
p of the liquid. The total mass of the system is M = mg + m. + my, where my is the known mass
of the gripper and m, is the known mass of the container. Other unknown variables that are useful
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for calculations in the following section are the height of the liquid inside the container, A, and the
center of mass of the composite system Xj; = Xg + X¢ + Xy, both of which are defined with respect
to the world frame. We use X to represent the horizontal component of the center of mass. 4 is
defined as the vertical distance from the lowest point of the container to the surface of the liquid.
Xg is assumed to be 0 since it coincides with the origin of the world frame and X, is assumed to be
at the midpoint of the container. Xy is initially unknown. Figure 2.2 summarizes these definitions
in a cross-sectional diagram of the system.

Objective

This chapter aims to solve for my, V, and u given x; for ¢ € [fy,#;]. A predetermined action is taken
by the robot, involving a rotation of  at some velocity 8. To simplify analysis, ¢, is defined as the
time once this action is completed, and #; is a constant time after 7y (in these experiments, 10 sec).
The methods described in the following section are later evaluated by comparing my, V, and u to
ground-truth values.

2.4 Methods

Both static and dynamic signals are used to calculate my, V, and y given inputs fy, f,, and 7,. The
changing center of mass of the liquid, Xy, is the key to deriving these values. For the following
sections, assume the inputs are expressed with respect to the static world frame (see Figure 2.2).

Liquid Mass

Knowing m., the mass of the container, finding the mass of the liquid is simple. Given the force in
the positive y direction, fy, of the static world frame, then

my = fy/g — mg —me

where g is the gravitational constant —9.8077/s? and my is the measured mass of the gripper in kg.

Liquid Volume

Given the liquid mass from Section 2.4, we can derive an expression for the torque 7, as a function
of the control variable 6 and the volume V, an unknown. First, we rewrite 7, in terms of the centers
of mass of the attached system:

T, = fkm = g(mgXy + meXe +myXy)

Because the world frame is anchored at the center of the gripper, let X, = 0. We can approximate
X. by assuming the container has a shell with a uniform density. Then, relative to the world frame,
¥ = (I/2—L,)sin 6. Finally, observe that liquid takes the shape of its container, so Xy is a function
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of rotation angle 6, volume V, and container geometry. Together, we get an expression of 7; as a
function of 6 and V:
7,(0) = g(me(L/2—Lg)sin @ +myxy(0,V)) (2.1)

Let 0 represent a vector of rotation angles from a sampled discrete set ®. This expression allows us
to perform nonlinear least squares (NLS) to estimate the parameter V. The objective is to minimize
the residuals between our measured values 7,(0) and our model-based estimated values:

V = argmin || 7.(0) — g(me(L/2— Lg) sin 6 +my%(6,V)) H§ (2.2)
4
Below, we describe two different methods that can be used to define the nonlinear function x,(0,V).

Analytic Model

Many containers can be approximated with simplified geometry (e.g. a rectangular prism or a
cylinder). For such containers, we can derive a closed-form analytic expression for x,(6,V). Here,
we define the derived equations for a circular cylinder with radius R and length L and express )Zlg
and y¥ with respect to the body frame, shifted along the +y? by L,. In other words, the origin of
the frame of reference lies at the center of the bottom face of the container, with +x? extending
along the radius and +y® extending along the length of the container.

To make these calculations easier, we first compute the height of the liquid 4 in the container
(see Section 2.3) as a function of V and 6. Because this function is not easily invertible, in practice
we use the fact that 4(0,V) is a monotonically-increasing function in V and find the correct value
of h via binary search.

We assume the liquid is at rest, with its surface parallel to the ground plane, and capillary
effects are negligible. Depending on A, R, L, and 6, the liquid takes on one of four cylindrical
wedge shapes (See Figure 2.2 as illustration). Below, the four cases defining %,(0,V) collectively
form a piecewise continuous function. All formulas are defined for the range 6 € [0, 7], but through
reasoning about symmetry, the full range can be derived.

1. The bottom face is covered, but the top face is dry: This case occurs when 2Rsin @ < Lcos 6
and h € [2Rsin 0, Lcos 0]. Then:

V = nR*( ) —2Rtan ) + R’ tan @
cos
nR*
.f? = Wtan@

1

_B

= —((Rtan 0
Ye V(( an

h 20 1o 2oy o4
— 2Rt —7R t —7R
I 2Ran0)2 (S R?) + (1an” 0) (3 7R

_|_
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2. The bottom face is partially covered and the top face is dry: This case occurs when 4 € [0, d]
for @ = min[Lcos 6,2Rsin 6]. We define the following variables to simplify our expression.

Letx=R— and 8 = VR? — o2. Then:

h
sin 6

BS 7'CR2

v=tano( - (——aﬁ—Rzarctan%))
xf:%tane(i(%ﬁ—aﬁ@az—Rz)

- R4arctan(%))— ZO;B )
7= tar‘fe(a;(%zﬂ —ap —Rzarctan%)

42~ apa - R~ Rarcan( ) - %)

3. The bottom face is covered and the top face is partially covered: This case occurs when
h € |a,cos 0(L+ 2Rtan 0)] for a = max|Lcos 0,2Rsin 0]. The resulting cylindrical wedge is
simply a volumetric difference of case (1) and (2). To be precise, let V;(-), XZ (+), and )72 ()
represent the volume and center of mass formulas for case (i) as functions of height (-), with
0 implied. Let h;y = h and hp = h— Lcos 8. Then:

V3 =Vi(h1) = Va(h2)
% (h)Vi () = %5, (h2)Va (o)

T = Vi(hi) = Va(ha)
= 30, (h)Vi(ht) = (7 (h2) + L)Va(ha)
6 Vi(h1) —Va(h2)

4. The bottom and top faces are both partially covered: This case occurs when LcosO <
2Rsin 6O and h € [Lcos 0,2Rsin0]. The resulting cylindrical wedge is a volumetric differ-
ence of two wedges of case (2):

Vi =Va(hy) —Va(h2)
%, (h)Va(hy) = 2, (ha)Va(ho)

Ch V(1) = Va(ho)
. 33, (h)Va(ht) = (77 (h2) + L) V2 (ha)
64_ Va(h) —Va(hy)

As shown, there is not a clean formulation for an expression that maps V to h. Instead, because
V(+) is a monotonically increasing function with respect to the variable 4, i can be found via binary
search for the volume V. After this computation, )Z? and )7? are transformed into the world frame.
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Mesh Approximation

When a container has more complicated features such as in Figure 2.3, solving for closed-form
expressions for volume and center of mass becomes much more challenging. For such containers,
we provide an alternative method using polyhedral mass property calculations on mesh approxi-
mations [37, 140].

Similar to the method used in [180] and described in [226], we can bisect the container’s
mesh with a horizontal plane at different heights /4 and solidify the part of the mesh in the lower
halfspace to approximate the shape of the liquid in the container at height 4. As in the analytic
method, we compute £ for a given V by using binary search. The center of mass of the resulting
solid is computed using methods described in [140] and implemented in [37]. The analytic and
computational mesh methods were verified to produce the same approximate values.

Liquid Viscosity

In contrast with prior sections, viscosity calculations exploit the dynamic modes of the liquid. In
particular, we aim to induce either sloshing within the container or laminar flow down its side. For
low-viscosity fluids like water, viscosity can be determined by observing the decaying oscillations
of the forces caused by the sloshing. For highly-viscous fluids such as honey, the damped response
of the forces can be used to approximate viscous fluid flow.

Slosh-induced forces and torques are caused by the shifting center of mass of the liquid inside
the container. The slosh mode that dominates the force profile is the fundamental antisymmetric
wave, which is characterized by a slosh wave peaking at one end of the container and sinking
at the other [43]. In a stationary tank, slosh oscillation decays reflect energy dissipation due to
viscous stresses within and at the boundary of the liquid [43]. Several works studying sloshing
in a tank have empirically shown that the decay rate of the oscillations is solely a function of
tank geometry, fill level, and liquid viscosity. Specifically, [43, 138, 75] define the following. Let
A= peak amplitude of oscillation be the logarithmic decrement of the decaying oscillation.

eak amplitude of oscillation one cycle later

The c?amping ratio is then defined by:

A
r= V212 £ A2

For an upright circular cylindrical tank, the damping ratio of the first symmetric mode is given by:

B v 0.318 1 — (h/R)
r=07 \/ R3/2g1/2 1+ sinh1.84h/R<cosh1.84h/R +1)] @4

where V is the kinematic viscosity of the liquid, R is the radius of the tank, and # is the fill-level of
the tank.

For a container with a different geometry, [75] provides a table of constants C; and n; corre-
sponding to the characteristic dimension d and the following relation:

)"

(2.3)

1%
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This chapter thus aims to induce oscillations for cylindrical containers in the upright position.
The input motion we chose is a single impulse rotation from 6 = 7/2 to 6 = 0. With ¥ calculated
using Equation 2.3 and 4 calculated using techniques described in Section 2.4, the viscosity can be
calculated by rearranging Equation 2.4:

- 0.318 1~ (h/R) .
V=7 VE079(1+ sinh1.84h/R(coshl.84h/R 1) )

To get the dynamic viscosity, i, we multiply v by the inferred density of the liquid p.

For highly-viscous fluids like honey, the response is over-damped, meaning no oscillations will
occur in the wrench profile. For this case, we estimate the dynamic viscosity (t by approximating
the flow once the container is tilted from 6 = 7/2 to O = 0 as a free surface flow on an inclined
plane. [104] defines the mass flux per unit length Q as

o— pgcos Gh%
2u

where 8 = 0, p is the density of the liquid, and A, is the thickness of the liquid. We assume #; to

equal the height of the liquid at steady state when the container is tilted horizontally (6 = 7/2). Q
can be approximated by % where ¢, is the 10 to 90% rise time of the damped torque response and

A= %2(06 —sina), a = 2arccos (222) is the cross-sectional area of the liquid flow sliced parallel

to the ground plane. Letting / be the steady state height of the liquid when the container is tilted at

6 = 0, we can approximate Amy by the mass quantity estimated to move during fluid flow induced

by the rotation, or Amy = mg(V_TAh). Finally, rearranging Equation 2.6, we get:

(2.6)

w— pgcos th
29

Pouring

Building on the concepts discussed above, we investigate a simple control scheme to pour a specific
volume of liquid. Using estimation of the volume V, we can determine a rotation angle 6 to pour
a specified volume from the container.

Referencing Figure 2.2, let V be the starting volume, V; be the desired poured volume, and
V¢(-) be the final volume of the liquid in the container, corresponding to height (). We assume
that the liquid flow is laminar and that, at the optimal angle 8, V; is the volume of the liquid above
the horizontal plane intersecting the bottom-most point of the container’s top face if the container
were closed. The objective then is to solve for 6:

0 :argminHVd—(V—Vf(LCOSO))H; 2.7)
0€[0,7/2]

Because Vy monotonically decreases as 6 — 7/2, a binary search is used to find 6. The pouring
experiments only use cylindrical containers, but it is possible to pour from containers of more
complicated geometry by using the mesh-approximation method described in section 2.4.
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Figure 2.3: From left to right: 480z Nalgene water bottle used in exploratory analysis, 3 large
cylindrical containers used in viscosity estimations, 3 small cylindrical containers used in all ex-
periments, and isopropyl alcohol, coconut milk, canola oil, evaporated milk, mango juice, dish
soap, syrup, and honey, arranged in order of approximately increasing viscosity. © 2019 IEEE

2.5 Experimental Setup

Hardware system

All the experiments in this chapter use a Universal Robot URS5 (5 kg payload) robotic arm. While
the URS has 6 degrees of freedom, for simplicity, the experiments only rotate the 6th joint, or wrist
3, to move the container. An ATI Axia80 EtherNet Force/Torque (F/T) sensor is attached at the
end-effector. The six-axis sensor has a 7812 Hz output frequency rate and coincides with the body
frame depicted in Figure 2.2. Attached to the F/T sensor is a 3D-printed mechanically-adjusted
parallel-jaw gripper. High durability grip tape in the inside of the gripper ensures minimal slippage.

Different types of liquids and cylindrical containers were tested during experimentation, illus-
trated in Figure 2.3. The different liquids were chosen to represent a range of viscous materials
found in a typical kitchen. Different sized and massed cylindrical bottles were used to test their
effect on parameter estimation.

Signal processing

The time-series F/T sensor data and URS joint data are recorded asynchronously. These are then
aligned using system time stamps, down-sampled using a Finite Impulse Response filter, and in-
terpolated so that the F/T and joint position sensors are sampled at the same point in time. F/T
sensor offsets measured during a calibration phase are subtracted from the interpolated and down-
sampled F/T data. Using the joint position data, a transformation is applied to the six-axis F/T
data to convert the wrench from the body frame F? to the static world frame F". Finally, a 1D
Gaussian filter with ¢ = 5 is applied to all six axes to denoise the data.
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Figure 2.4: (top): Torques measured during a rotation of a half and quarter full Nalgene. Open
points represent measured data, and lines represent the predicted torques, demonstrating that our
model matches measurements well for different grasp positions and volumes. (bottom): Graph of
the residual error between measurements and predictions over the variable V. The convexity of the
residual informs us that there should be a global minimum solution. © 2019 IEEE

Exploratory analysis

Prior to experimentation, we performed exploratory analysis on preliminary data. Our first ex-
ploration involved filling the 1.5L Nalgene with water to 375mL and 750mL and rotating it at
19 different angles evenly spaced by 10deg, 6 € [0, 180]deg. Three different grasp locations were
tested —at L, = 1/4L, 1/2L, and 3/4L. The resulting data, depicted in Figure 2.4, demonstrates the re-
peatability of the F/T data and confirmed that 7, alone was sufficiently informative to infer volume.
The rest of the experiments use a grasp at L, = 3/4L in order to maintain greater stability during
pouring. Furthermore, from Figure 2.4, it can be seen that this grasp position has a greater torque
response for lower rotation angles, meaning less motion is necessary to extract approximately the
same amount of information.

Finally, to ensure that Equation 2.2 could be optimized, we performed a grid search over the
variable V. As shown in Figure 2.4, the objective appeared to be convex, so NLS should produce
good estimates of the true solutions.
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Mass and Volume Estimation
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Figure 2.5: Error of mass and volume estimations. Blue curves represent adjustments of f, mea-
surements and corrections to reflect a better estimate of internal container geometry. © 2019 IEEE

2.6 Results

Predetermined actions are applied to various liquid/container combinations and the accuracy of
mass, volume, and viscosity estimations are evaluated below. Note that the mass and volume can
be calculated from the same motion. Both calculations assume the liquid is in a static state, so a
slow rotation from 0 to 180deg, stopping at intervals of 10deg, is applied for these estimations.
In contrast, the viscosity estimations rely on observing the dynamic modes of the liquids, so a
fast rotation from 90 to Odeg is applied. Finally, for precision pouring, the applied rotation is
computed using the estimated volume. Please see the accompanying video for visualizations of
the following experiments: . For visualizations of the following experiments, please see: https:
//youtu.be/QrOB09iQEcM

Liquid Mass Estimation

We begin with liquid mass estimation by conducting a sensitivity experiment with varying fill-
levels of a container. The small cylindrical container depicted in Figure 2.3 is used, which has
an external radius and length of 35 and 172 mm, respectively, with a total measured capacity of
662mL. We sampled 13 fill-levels of water, evenly spaced from 0 to 100 percent full, and measured
the ground-truth mass. For each fill-level, we performed five iterations of rotating the container
from 6 = 0 to 180deg, stopping every 10deg to let the liquid settle. f, is calculated for each
instance by averaging over the transformed ny s throughout the entire motion. As shown in grey
in the top-left plot of Figure 2.5, there is a gradual increase in the error of our mass estimate as the
fill-level increases. This error could be attributed to a miscalibrated conversion from strain-gauge
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measurements to forces. Because the error appears to grow linearly with an increased mass, we
fit a linear regressor to re-calibrate” measured f, forces. In the same figure in blue, we see that
this re-calibration helps center the error of the mass estimation at an average error of -0.23g with a
95% confidence interval of £0.73g.

Liquid Volume Estimation

The same motion is used for liquid volume estimation. With the data from Section 2.6, we can
observe the empirical error on our estimation of volume for different fill-levels of the small cylin-
drical container. The sampled measurements of 77 at different values of 6 along with our estimate
of m; allow us to search for a volume V that minimizes the error between the measurements and
our calculated 7z curve using Equation 2.1. Our first attempt resulted in a large average error,
aggregated across all fill-levels, of 87 +53mL. However, a closer look revealed that this large error
was due to the edge case of m; = 0, for which the objective was not convex. Because we use the
shifting center of mass to determine V, there is no way of discerning an empty container from a
full container. Thus, our optimization consistently estimated V = L7R? when 6 = 0. However,
knowledge of the container mass disambiguates the value of m;, so we can bias the estimator to
assume V =0if m; = 0.

From Figure 2.5, we see that, with this bias, volume estimation performs with an error of
21.46 +3.28mL. Notice that our calculations tend to overestimate the actual liquid volume, as
expected since we assume internal container geometry is equivalent to external geometry. If we
reason about the geometry of the container’s cavity, e.g., walls could be 1mm thick, then we see that
this lowers the 95% confidence interval of the error to —0.6540.83mL. All 65 estimates of volume
were within 13mL of error. Lower volume estimates tended to have greater variance, perhaps due to
higher sensitivity to sensor noise. Note that while we tested mass and volume estimation on water,
the physics-based calculations will work for any liquid as long as measurements are recorded when
the liquid is in steady state.

Using NLS optimization allows for an efficient search of the volume estimate, but to verify
that it indeed is finding the global minimum of the objective function, we evaluated the objective
with a fine grid search over all possible volumes. Taking the global minimum solution found via
grid search, the error in the volume estimate was essentially equivalent to that of using the more
efficient NLS method, at a 95% confidence of —0.62 £ 0.82mL. The error-per-fill-level graph is
visually identical to the one produced via NLS so it is omitted from Figure 2.5.

Finally, we tested liquid volume estimation using the mesh approximation method. A half-
gallon milk carton (total capacity equivalent to about 1.9L) was measured and modeled as a 3D
mesh. The milk carton was filled to 250mL, 500mL, and 750mL with water, and five iterations of
tilts and measurements were performed per each fill level. Using the 3D mesh of the milk carton,
the 95% confidence error margin of the volume estimation optimization was 1.69 +24.69mL.
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Figure 2.6: (top) Real f, and 7, data (filtered and smoothed) after a 90 — Odeg rotation of water,
oil, and honey in the large containers. Detected peaks and rise times used in viscosity calculations
are shown. (bottom) Viscosity predictions for the 9 different liquids, arranged from top to bottom
with increasing true viscosities. True values of five liquids are denoted by red. Black circles
mark the averages of the estimated viscosities per liquid. Note, for illustrative purposes, viscosity
estimates are shown on a log scale. © 2019 IEEE

Liquid Viscosity Estimation

We apply a different motion to the container here in order to observe the liquid in its dynamic
mode. Instead of a slow rotation, we use a fast rotation from 8 = 90 to Odeg to act as an impulse
to the system. The dynamics can be observed via both £V and TZW . If the resulting signals contain
oscillations, the algorithm calculates u via the slosh-dynamics analysis described in Section 2.4.
Otherwise, the overdamped response is used to calculate y via the fluid-flow equation (2.6). We
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tested this method of viscosity estimation on nine different liquids — water, oil, honey, isopropryl
alcohol, coconut milk, evaporated milk, mango juice, dish soap, and syrup. Each liquid was poured
into the small cylindrical container at 137, 292, and 442 mL and a series of five impulse rotations
were applied in each scenario. To test the method’s sensitivity to varying geometries, we also
perform five impulse rotations to 636.11 mL of water, oil, and honey, each in a larger cylindrical
container depicted in Figure 2.3.

As illustrated in Figure 2.6, while the variance of the viscosity estimates is high (note, however,
on a log scale), the method manages to capture relative viscosity differences between the liquids.
In fact, using the predicted viscosities of data from volumes of 292, 442, and 636 mL, a linear
SVM classifier with 5-fold cross-validation is able to distinguish between the four lowest viscosity
liquids at an accuracy of 78 £ 11% and between water, oil, and honey with an accuracy of 98 &
10%. These predictions improve if we narrow the training set to larger quantities of volume. This
suggests that Equations 2.4 and 2.6 serve as reasonable parameterizations of the haptic signal 7,.
Furthermore, the method generalizes well to data captured using the larger container. For instance,
estimates of the 636 mL of honey had an error of 0.197 £0.096 Pa-s when honey’s true viscosity
is approximately 10Pa-s.

The predominant limitations of the reported method that likely contributed to the wide vari-
ance in viscosity estimations are low signal-to-noise ratios (SNR)s of the haptic data as well as
imperfect models. Many of the signals collected using the small container had low SNRs, often
detecting one or two peaks before the signal was obscured by sensor noise. In contrast, with the
larger container and quantity of liquid, the changes in the liquid center of mass were much clearer,
as evidenced in signals shown in Figure 2.6. Subsequently, viscosity estimates made from larger
containers tended to have a lower variance than those made based on observations with the smaller
container. To combat this issue, a more dynamic-sensitive tactile or haptic sensor could be used,
paired with an intelligent selection of shaking motions to improve SNR, similar to the active learn-
ing framework demonstrated in [176]. As expected, the models used to estimate viscosity were
imperfect. For example, the clustering of the estimates of honey are illustrative of the sensitivity
of the proposed model to changes in geometry and volume. A better model is needed to overcome
these sensitivities.

An Application Demonstration: Pouring

To demonstrate the applicability of the methods described in this chapter, we attempt to pour a spe-
cific amount of liquid given estimations of liquid volume. In contrast with other precision-pouring
papers, this work pre-computes an open-loop control strategy (specifically, the rotation angle )
based on the estimated volume. While the proposed control scheme is not very sophisticated, it
achieves reasonable effectiveness in this challenging task using only the haptically-estimated vol-
ume. Furthermore, this pre-computed rotation angle can act as a guide when paired with closed-
loop control schemes, which can serve to dynamically fine-tune or adjust the angle.

We begin by characterizing the robot’s pouring precision. Using Equation 2.7 and perfect
knowledge of the liquid volume, we attempt to precisely pour a quarter, half, and three-quarters
of 200, 400, and 500 mL of water from the small cylindrical container, with 5 trials for each case.
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At first, all attempted pours were approximately S0mL below the desired poured volume. After
observing a few pours, it was evident that there were two factors contributing to this experimental
error. The first is that there was a lip to the cylindrical container, where the radius of the open
top was actually significantly smaller than the external radius. To fix this error, we assume that
computer vision techniques can be used to estimate the internal radius, wall thickness, and lip
dimensions of the container. This is a reasonable assumption as the lid would be off, exposing the
true internal geometry of the container. The second factor contributing to error was the surface
tension of the water. It was so strong that water would bunch up at almost Smm above the bottom-
most point of the lip, contributing to a significant difference between our model prediction and
experimental results. To combat this, we added a term to represent the added height required due
to water tension. With these changes, our robot became very precise and repeatable. Under perfect
knowledge, the robot operates with an error of at most =5 mL poured, with an average error of
1.55+1.60 mL.

We then attempted to precisely pour 100 mL from 200, 300, 400, and 500 mL of water based
on the estimated volume of the water, with 5 trials for each case. Here, we make no assumption of
the density of the liquid and only base our calculations off of estimates of V. As before, we found
that the precision of pouring was incredibly sensitive to the a priori knowledge determining the
container geometry. With knowledge of internal container geometry, the original volume estimated
is more accurate (5.09 +2.59mL) which subsequently allows for a more precise pour. For a 100
mL pour over 20 trials, the robot achieved an average error of 1.80 4-2.04mL, where the largest
error poured was +9mL. These results are comparable to related work that uses visual reasoning
to precisely pour liquids. Finally, we attempted to pour oil and honey, but these both caused a giant
mess and so we decided to postpone those experiments for the time being. However, a reasonable
next step would be to incorporate estimated viscosity data for different liquids to guide the speed
at which the pour is performed for minimal sloshing and maximal efficiency.

2.7 Conclusions

In this chapter, we show that physics-based analysis of haptic signals can achieve high precision
estimation of the mass and volume of liquids in a cylindrical container and provide a framework
for estimating fluid viscosity. To demonstrate the efficacy of these methods, we performed precise
pouring of water where the estimated volume determined the rotation angle 6. In future work,
we imagine that incorporating real-time haptic and visual control will improve precision during
pouring. Furthermore, we believe the precision of our viscosity estimates can be improved by
combining better physics-based parameterization with active perception to optimize for motions to
induce higher SNRs of the haptic data. More accurate viscosity measurements could then be used
to inform a control strategy to quickly pour viscous fluids with minimal sloshing [196]. Finally,
we hope this work can be extended to haptic perception and control of granular materials and more
non-newtonian fluids in containers. In the following chapter, we begin our investigation into this
realm of problems through the perception and physical parameter estimation of granular materials.
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Simulation Calibration with Depth Images

and Sound

In Part I, explicit models of a material like liquid revealed how the robot might interact
with the material to extract key features like volume or viscosity. For some materials,
however, there may not yet exist sufficiently expressive models. Furthermore, the dy-
namic behavior of the material may require stochastic modeling. Take as an example
a container of grains. Due to the material properties of the individual granular parti-
cles, we can no longer assume, unlike with liquids, what the granular material may
look like at steady state after a rotation is applied to the container. Thus, in Part II of
this thesis, we dive into the perception of stochastic dynamic systems, specifically, of
granular materials in Chapter 3 and a single, bouncing ball in Chapter 4.

First observe that material properties have a direct effect on the collision dynamics of
a material. The goal then is to design an interactive perception framework that induces
these collision events in an effort to estimate material properties from the resulting
signals. However, explicitly modeling the dynamics of granular materials and other
stochastic dynamic systems can be rather difficult and complex. In place of analytic
equations to represent the material, Part II turns to using numerical simulation. State-
of-the-art work on both the physics of granular materials and bouncing balls also use
numerical simulation as a tool for studying their behavior. However, the relevant ma-
terial properties are often hand-tuned to match real-life observations. In contrast, the
work presented in Part II uses real sensor observations to directly tune the simulator
to match real-life stochastic dynamics.

The underlying method that acts as the bridge between the simulation representation
and reality is a likelihood-free Bayesian inference framework called BayeSim [169].
This framework approximates the posterior of simulator parameters given real obser-
vations. This turns out to be quite valuable for this section’s problem formulation,
where some level of uncertainty over the material parameters of interest is desirable
in order to account for the stochasticity observed in real life. Chapter 4 builds on this
concept further by directly approximating a posterior over a stochastic parameter.
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Chapter 3

Inferring the Material Properties of
Granular Media

This chapter is based on the paper “Inferring the Material Properties of Granular Media for
Robotic Tasks” [133], written in collaboration with Yashraj Narang, Ruzena Bajcsy, Fabio Ramos,
and Dieter Fox.

Granular media (e.g., cereal grains, plastic resin pellets, and pills) are ubiquitous in robotics-
integrated industries, such as agriculture, manufacturing, and pharmaceutical development. This
prevalence mandates the accurate and efficient simulation of these materials. This work presents
a software and hardware framework that automatically calibrates a fast physics simulator to accu-
rately simulate granular materials by inferring material properties from real-world depth images
of granular formations (i.e., piles and rings). Specifically, coefficients of sliding friction, rolling
friction, and restitution of grains are estimated from summary statistics of grain formations using
likelihood-free Bayesian inference. The calibrated simulator accurately predicts unseen granular
formations in both simulation and experiment; furthermore, simulator predictions are shown to
generalize to more complex tasks, including using a robot to pour grains into a bowl, as well as to
create a desired pattern of piles and rings. Visualizations of the framework and experiments can be
viewed at https://youtu.be/0BvV5h2NMKA.

3.1 Introduction

A granular material is a collection of discrete macroscopic particles that primarily experience in-
elastic collisions and are usually unaffected by temperature [77]. Naturally, this definition spans
a wide variety of materials, from sand and stones to powders and pills to seeds and cereals, mak-
ing granular material one of the most manipulated substances in the construction, pharmaceutical,
agriculture, and food industries [171]. As robots continue to permeate these industries, they will
inevitably interact with granular materials in a variety of settings, such as pouring flour in the
kitchen, scattering seeds on a farm, or traversing loose terrain [112].
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Despite the ubiquity of granular materials, much of the physics behind their complex behaviors
remains a mystery. Granular materials are often considered their own category of matter (separate
from solids, liquids, and gases), and consequently, new constitutive laws must be defined. While
recent work has delivered promising advances in the formulation of continuum models for gran-
ular materials [81, 3, 45, 155, 85, 86], researchers frequently rely on numerical techniques and
simulations to corroborate and extend their predictions.

The state-of-the-art numerical technique for simulating granular materials is the discrete ele-
ment method (DEM), where each particle is represented independently. Although DEM has pri-
marily been used in physics, it has also been leveraged by the robotics community for applications
such as locomotion on sand or gravel [127, 92, 154] and motion planning for pouring [38]. How-
ever, calibrating the material parameters of the simulated grains is still an open problem. Most
DEM calibration methods involve a tedious cycle of performing small-scale materials tests, manu-
ally tuning parameters, and iterating until the desired experimental behavior is captured. To reduce
this burden, the physics community has posed the following challenge: how can particle-scale
parameters (e.g., frictional properties) be determined from observations of macroscale behavior
(e.g., granular pile shape) [58]? Answering this could lead to more efficient methods for refining
simulations to match real macroscale behavior.

This chapter addresses this question by integrating a framework for likelihood-free Bayesian
inference (BayesSim [169]) with a fast and efficient physics simulation platform capable of DEM
simulations (NVIDIA’s Isaac Simulator [157]), as well as experimental observations using off-
the-shelf depth cameras. Using this software and hardware framework, depicted in Figure 3.1,
particle-scale material properties (i.e., coefficients of friction and restitution) of granular materials
are inferred from simple, inexpensive observations of macroscale behavior in the real world. The
calibrated simulator can then be leveraged to predict unseen granular formations in both simulation
and experiment. This chapter concludes by demonstrating how this research may be applied to
robotics tasks by using the developed framework on an industrial robot to manipulate agricultural
grains (i.e., couscous and barley).

The main highlights of this chapter are

* A software and hardware framework that integrates likelihood-free Bayesian inference, an
efficient physics simulator, and depth images of granular formations to estimate particle-
scale material properties

* A demonstration of the use of this framework to calibrate material properties of agricultural
grains (couscous and barley) for a simulator, which is then evaluated against new scenarios
in simulation and experiment

* A robotic demonstration that uses the proposed framework to reason about agricultural grains
in order to complete a simple manipulation task
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Figure 3.1: Granular parameter inference framework. (Bottom branch): Multiple granular parame-
ter sets are randomly sampled from a prior distribution 6 ~ 5(6), and for each, summary statistics
T (x%) are extracted from a simulation g(8). The set of T'(x%) are used to learn a conditional den-
sity function for the parameters using BayesSim. (Top branch): The summary statistics of a depth
image of a real granular formation are extracted. With the conditional density function, a posterior
is estimated to infer the likeliest simulation granular parameters to match the macroscopic granular
behavior. © 2020 IEEE

3.2 Related Work

Granular Materials in Physics

The mechanics of granular materials is an active area of research within the physics community.
Recent advancements present new constitutive relations of granular media that relate flow behavior
to particle-scale properties like grain size [86], geometry [135], and surface friction [87]. Through-
out this body of work, DEM simulators are consistently used to evaluate and extend theoretical
explanations [36, 227, 87, 81, 135]. This emphasis on simulation encourages the development of
frameworks that can infer difficult-to-measure material parameters (e.g., frictional coefficients of
a grain) from macroscale behavior of collections of grains (e.g., pile shape). This work proposes
one such framework, designed primarily for robotic applications due to its speed, efficiency, and
minimal hardware requirements.
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Granular Materials in Robotics

Within robotics, the mechanics of granular materials has been investigated to design jamming grip-
pers and manipulators [19, 200, 118, 29], as well as mobile robots that can traverse granular terrain
[232, 112, 127, 92, 228, 154, 202]. Recent work has explored the perception of granular materi-
als [31, 23, 185] and their manipulation in scooping [31] and pouring [181] tasks. Such work
has largely focused on the classification of granular materials rather than estimation of material
parameters; furthermore, it has often been highly task-specific. However, granular parameter iden-
tification is important to enable physical reasoning of how different grains may behave in unseen
scenarios while dynamically interacting with robots. Due to the complexity of granular physics,
researchers in robotics have leveraged simulation to model robot-granular interactions [232, 228,
127, 154, 202].

Simulation of Granular Materials

The state-of-the-art numerical technique to simulate granular materials is the Discrete Element
Method (DEM), where each grain is generally represented as an independent particle that interacts
with others only through direct contact. Other granular simulation techniques include the Mate-
rial Point Method (MPM) [70, 45], which constructs a background mesh to compute forces, and
Position Based Dynamics (PBD) [145, 124, 126], which directly manipulates particle positions to
enforce attachments and resolve collisions, typically trading off accuracy for speed. Although ac-
curate, DEM often uses explicit time-integration, which can require impractically small time steps
for stiff systems. In this work we model contact as a nonlinear complementarity problem (NCP)
which is solved implicitly using a GPU-optimized non-smooth Newton solver in the NVIDIA Isaac
Simulator platform [157, 125]. This enables both high accuracy and rapid simulation of ~2000
spherical grains. Furthermore, the platform allows direct input of particle-scale parameters such
as geometry and material properties, as well as a programmatic interface in which new testing
scenarios can be rapidly created. The platform has recently been applied to reinforcement learning
applications for non-DEM simulations [22, 116].

Automatic Calibration of Granular Material Simulation

Most techniques used to calibrate the material parameters for DEM simulation require tedious ex-
periments and manual tuning until the desired experimental behavior is captured [32]. Thus, recent
work aims to automate this process. For instance, in [41], a genetic algorithm and direct optimiza-
tion are used to determine the frictional coefficients of sand grains by measuring discharge time
from an hourglass. In [13], an artificial neural network is used to infer multiple material parameters
of iron ore sinter; the network greatly increases the speed of inference at the expense of training
time. Recently, likelihood-free inference techniques, such as Approximate Bayesian Computation
(ABC) methods, have been explored to increase the interpretability of results, as well as to en-
hance robustness to non-unique mappings between material properties and macroscale behavior.
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Specifically, in [24], an iterative Bayesian filtering framework was used to infer the coefficients of
friction of glass beads based on 100 measurements of porosity and stress per iteration.

In the present work, we leverage a likelihood-free Bayesian inference framework called BayesSim
[169]. The framework allows the complexities of the simulator to be fully abstracted from the in-
ference process and requires only a single training phase followed by a prediction step. This is in
contrast to multiple prediction steps necessary in typical Bayesian filtering. Because BayesSim is
an €-free method [162] (i.e., it does not rely on sampling with acceptance region defined by ¢€), it
is generally more sample-efficient and produces more accurate parametric approximations of the
posteriors than ABC methods [162]. Furthermore, the preceding studies measured macroscopic be-
havior using highly-specific experimental setups and advanced laboratory equipment, which may
be prohibitively expensive for many robotics applications. In contrast, the present work measures
macroscopic behavior (e.g., granular formations from pouring grains through a funnel) using single
images taken with inexpensive, off-the-shelf depth cameras.

3.3 Problem Statement

Simplifying Assumptions

This section defines the key simplifications made in the simulator. First, we consider grains with
a length scale of at least 1 mm, thus excluding powders. Given that the average size and mass of
a grain can be measured, they are assumed as known inputs to the simulator. While natural grains
will represent a distribution of sizes and masses, we make the simplification that all grains are of
the same size and mass.

We further assume that the grains are perfectly rigid, cohesionless, and experience negligible
drag, so that the only sources of energy dissipation are friction and collisions with each other and
the ground. The forces experienced during these interactions, depicted in Figure 3.2, are functions
of the coefficients of restitution e, sliding friction L, and rolling friction , for the grain-to-grain or
grain-to-ground interactions. To simplify parameter search, we assume that the grain-to-grain and
grain-to-ground coefficients are equivalent. Together, these three parameters enable the simulator
to generate a diversity of realistic granular behavior. Using a subset of {e, i, 1t} restricts the
simulator’s expressiveness and may likely cause the real and simulated distributions of granular
formations to be completely distinct.

Finally, we represent all grains as spheres. While it has been shown that aggregate behavior
is dependent on grain geometry and size, this coarse approximation makes collisions easier and
faster to compute, and thus practical for robotic applications. Further, although the parameters
are bounded by real-world values, it is not the goal of this chapter to estimate physically-exact
friction and restitution coefficients. Rather, the calibration framework aims to accurately simulate
macroscopic behavior of the granular material. For non-spherical grains, larger or smaller valued
material parameters may sufficiently compensate for a spherical approximation.
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Definitions

Let 6 = [uy, i, e]” represent a vector of the grain simulation parameters, composed of the coeffi-
cients of sliding friction U, rolling friction 1, and restitution e. Let X represent the birds-eye-view
depth image of the grains once they have reached steady-state. Variables X" and X* are used to
distinguish real from simulated depth images, respectively, and X* = g(60), where g(0) is the sim-
ulation. Because of the high-dimensional space of depth images X" and X*, we define the random
variable 7' (X) as a vector composed of statistics (such as average distance of grains from the cen-
troid) to summarize the observed state X. Let the likelihood function be defined as p(7(X)|0)
and the posterior be defined as p(0|T(X) = T(X")). The likelihood function, defined implicitly by
g(0), is often intractable to evaluate or unavailable with such complex simulations, thus motivating
the use of a likelihood-free inference approach.

Objective

Given samples of 7 (X*) and the corresponding parameters used to generate the simulations, we
would like to approximate the posterior function p(0|7T(X) = T(X")) such that, from a real ob-
servation X", we can infer granular simulation parameters 6 from the macroscopic behavior of the
material, summarized by features 7'(X). Because DEM simulations leverage various numerical
solvers and are associated with complex systems of differential equations, we choose a simulator-
agnostic inference framework that approximates the intractable posterior by sampling from the
simulator. The likelihood-free Bayesian inference framework BayesSim [169], discussed in the
following section, is used to approximate this posterior.

3.4 Methods

The goal of this chapter’s proposed framework is to estimate granular parameters 6 = [iy, i, ]
from summary statistics 7(X") using BayesSim, which approximates the posterior p(0|T(X) =
T(X")) by sampling from a simulator g(0). In this section, we discuss the BayesSim likelihood-
free framework, simulator g(6) = X*, physical experimental setup to observe X", and extraction of
summary statistics 7'(X).

Granular Parameter Inference Using BayesSim

BayesSim directly learns a conditional density function, g4 (0|7 (X)) (where ¢ is the set of learn-
able parameters of ¢), by mapping summary statistics to a mixture of K Gaussian components via
random Fourier features [168]. The Mixture Density Random Fourier Feature (MDRFF) network
learns from N pairs of parameters and summary statistics, {6;,7(X?)}Y |, generated by indepen-
dently sampling from a predefined prior distribution, p(0), and forward-simulating each sample,
0;. For twice differentiability of ¢, the Matérn kernel is used with v = 2.5, where v increases
with smoothness. The posterior is then parametrically approximated using the learned conditional
density ¢4 (6|7 (X)) and a real observation 7 (X"). The main advantages of using BayesSim over
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Figure 3.2: The simulations capture sliding friction forces (), rolling friction forces (F,), and
energy loss due to inelastic collisions for grain-grain and grain-ground interactions. These forces
are parameterized by the coefficients of sliding friction (i), rolling friction (u,), and restitution
(e), respectively. © 2020 IEEE

classical optimization methods are that the complexities and inaccuracies of the DEM simulator
and PDE solver are incorporated in the estimated posterior. The multimodality and uncertainty
of the approximated posterior can be used to analyze the accuracy with respect to the parameters
6 and robustness with respect to measurement noise. In addition, because BayesSim is an &-free
method, it improves on ABC methods by being more sample efficient and producing more accurate
posterior approximations [162] with a limited number of samples. After the initial cost of running
N simulations and training the model, BayesSim can quickly produce posterior approximations,
making it a compelling method for granular material inference problems in robotic applications.

Simulation

Critical dimensions are made equivalent in the simulated and physical scenes. The simulated
funnel, which was modeled in 3D based on the physical funnel, is positioned at an equivalent
distance above the ground surface. The spherical grains are scaled to match the diameter of a
single grain of Israeli couscous along its longest axis (4 mm). For simplicity, at the start of the
simulation, the 2000 grains are each spaced at 8 mm intervals in a 10 x 10 x 20 grid, where the
bottom grains are just below the top of the funnel.

The coefficient of restitution e is the ratio of a grain’s speed before and after a collision; this co-
efficient ranges from O to 1, corresponding to perfectly inelastic and elastic collisions, respectively.
The ranges of the coefficients of sliding friction t; and rolling friction , that create a noticeable
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diversity in granular formations are 0 to 1 and 1 x 10~ to 1 x 10~!, respectively. For this reason,
rolling friction is sampled from a logarithmic distribution. A simulated depth camera is positioned
at a birds-eye viewpoint, 29 cm from the surface ground, giving it a 58 cm x 58 cm field of view.

The solver chosen is NVIDIA Isaac’s Preconditioned Conjugate Residual (PCR) solver, and 20
inner iterations with 4 outer iterations are used in experiments [125]. The simulator runs with time
step 1/60 sec, 10 substeps, and a relaxation factor of 0.75 for stability and convergence.

Physical Setup

For the physical experiments, the funnel is positioned with its bottom tip 12 cm above the ground
surface. The surface is covered in thin, moderate-friction black velvet to limit the spread of the
grains upon impact, as well as to simplify segmentation. The primary grain used in the experiments
is Israeli couscous, which has the approximate geometry of a rounded cylinder; barley, which has
a similar density but is slightly larger and more ellipsoidal, is also used in the latter half of the
experiments. An Intel RealSense D435 depth camera is positioned at 40 cm above the ground
surface. This position was chosen to balance the trade-off between field-of-view and clarity of the
depth image. Although the raw depth images are still noisy at 40 cm, eliminating the background
using color segmentation results in well-defined point clouds of the granular formations. An ABB
YuMi dual-arm robot is used for the robot experiments.

Summary Statistic Extraction

A majority of DEM calibration work relies on extracting specific features (e.g., angle of repose) of
a conical pile in order to infer a single parameter (e.g., ;). However, initial experiments showed
that pouring grains can result in piles or rings, which may be more informative of other material
parameters. Moreover, for shallow formations, it may be difficult to measure angle of repose from
a depth image. We take a more generalizable approach and propose using a vector of 16 summary
statistics to serve as T'(X).

To extract the summary statistics features from a granular formation, the depth image X is first
downsampled by factor n. For X*, n = 20 and for X", n = 10 to match resolutions. Because the
X" are fairly noisy, a color threshold mask is used to segment pixels corresponding to the granular
formations. These pixels are then reprojected into 3D using the camera intrinsics matrix. For the
real depth image, a plane is fit to reprojected pixels corresponding to the ground surface. The
orientation of the fitted ground plane informs the centering and re-orientation of the granular point
cloud to account for camera tilt. Let r represent the vector of radial distances of grain points in
the horizontal plane from the centroid of the granular formation and z be the vector of grain point
heights.

The summary statistics of a single depth image 7'(X) are chosen as

[max(z), u(z),0(z),max(r), u(r), o(x),0(y), o (r),
IOR(x),IQR(y),IQR(r),KURT (r),dCor(r,z),df,b,A]"
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Figure 3.3: Sensitivity to observation error. An example X* is shown perturbed by different levels
of noise. 50 different test images X* were generated by evenly sampling s € [0.01,1.0]. The
resulting approximated posteriors are plotted per true value of ug, where the highest peaks corre-
spond to the brightest points. A perfect inference would result in a white line overlapping the red.
While the model is fairly robust to the level of per-pixel Gaussian depth noise applied, accuracy
is more affected by Gaussian blur. Posterior peaks become wider, and distributions can become
multimodal with 6 > 4. © 2020 IEEE

where u(-), o(-), IOR(-), KURT(-), and dCor(-,-) are the mean, standard deviation, interquartile
range, kurtosis, and distance correlation. A chi-distribution, chosen for its likeness in shape to a
cross-section of a granular formation, is fit to r. Statistics df, b, and A denote degrees of freedom,
shift, and scale, respectively, from a standardized chi probability density. These statistics were cho-
sen to summarize the dispersion and statistical dependence of the grain locations. A preliminary
ablation study suggested that subsets of 7'(X) were sufficiently descriptive in capturing the gran-
ular distributions, unless the subsets contained less than three features or the features exclusively
pertained to either r or z.

3.5 Sensitivity Tests for System Design

Preliminary Tests for System Noise

When running the simulator to train BayesSim, there are two main sources of uncertainty. The
first is purely algorithmic, due to the non-determinism of the simulator and numerical error. To
measure algorithmic uncertainty, the simulator was run 1000 times with identical conditions except
for sliding friction, where p; € {0.01,1}, evenly split. The measured summary statistics for each
Us had variances of at least two orders of magnitude smaller than their mean values.
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Second, an insufficient number of samples for training and interpolation uncertainty may con-
tribute to poor performance. To test these, a training set was created by sampling i uniformly
between 0.01 and 1. A 50-simulation testing set was generated by sampling between 0.01 and
1, independently of the training set. Supporting intuition, the accuracy of the friction coefficients
inferred by BayesSim improved with more samples. For a training set of 500 samples, the error in
the friction coefficient estimates is 0.0191 +0.0799, while for 1000 samples, the error is reduced
to 0.0062 £0.0018.

Sensitivity to Observation Error

A key assumption of our system is that the summary statistics of the real and simulated depth
images will lie within the same distribution. However, the two might not align or overlap given
drastically different observations (e.g., due to a low-quality experimental depth image). To test the
effect of observation noise on inference, we simulate two types of camera noise on a 50-sample
testing set, where (i is evenly sampled from 0.01 to 1 with all other parameters equivalent. An XY
Gaussian blur with 6 = {0,2,4,6,8} is convolved with the depth image, and pixel-wise Gaussian
noise with o = {0,0.001,0.002,0.003,0.004} is added to each depth value, with ranges chosen
to mimic realistic noise magnitudes. These two perturbations are applied independently, and the
resulting posteriors per true friction value are illustrated in Figure 3.3. As shown, inference of L
is fairly robust to pixel-wise noise, but is sensitive to high values of Gaussian blur.

Propagation of Error

Given an observation X, the approximated posterior encodes the uncertainty of the inferred param-
eters 6. Sensitivity tests were performed to investigate how this uncertainty propagates to errors
in the summary statistics 7(g(0*)). Fixing all other parameters, L, In(,), and e required errors
of £0.05, 3, 0.01, respectively, to perturb the height and average radial distance to more than the
width of a single grain. For real-world context, manufacturing applications may require that the
diameter of a granular pile be predicted to within 5% of the true value. (For example, for a pile
with base diameter equal to 50 times a grain diameter of 4 mm, an error of 1 cm may be allow-
able). With the proposed system, this specification is fulfilled by the optimal values, with allowable
variation of +0.1, 4, 0.05 that is within the performance achieved in the following experiments.

3.6 Results

Sim-to-sim Parameter Estimation

The first objective was to test the accuracy of the trained BayesSim model on simulated depth
images. Given a simulated input image X** = g(8), we aimed to quantify how close the inferred
parameters 0 = u’, ¥, e* were to 6. Furthermore, to evaluate the propagation of error in 8, a
forward simulation was run to obtain a new pile X*° = g(6*). The difference between the piles was
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Figure 3.4: Examples comparing simulated depth images of testing set and simulated depth images
from running a forward simulation with inferred parameters. Table shows corresponding errors in
inferred parameters, as well as L2 errors between summary statistics. © 2020 IEEE

evaluated via the L2-norm error between 7 (X**) and T (X*), both standardized over the summary
statistics of the training dataset. Note that, for some applications, evaluating particular subsets
of the summary statistics might be more useful (e.g., height of the granular pile or the angle of
repose). To enable generality, all 16 summary statistics defined in Section 3.4 are used to calculate
the L2-norm error. We avoid evaluating accuracy via direct comparisons of the downsampled depth
images, as the computed error would be highly sensitive to misalignments of the scattered grains
rather than reflect meaningful differences in spatial distributions.

The 50 test grain formations were simulated by randomly sampling u; and e uniformly and u,
logarithmically from their given ranges. The average error of the inferred e was —0.0008 £0.0148,
while that of us and In(u,) were 0.0380 4+ 0.0646 and —1.1695 + 0.7032, respectively. As in
Section 3.5, these error bounds correspond to negligible changes in the resulting statistics. As
shown in Figure 3.4, forward simulations of the inferred parameters for the 50 test formations
generate visually equivalent shapes. To consider as a baseline for the following experiments, the
average L2-norm error between the 50 pairs of {T(X*%), T (X*°)} was 1.582 4 0.3356.

Sim-to-sim comparisons also enable a principled approach to testing sensitivity to model error.
For instance, the grains are spherical, when in reality most grains are not. We tested sensitivity
to mismatched geometry by creating a testing set of cylindrical and cube-shaped grains, where
the diameter and length of each grain were 4 mm, the diameter of the training set spheres. Each
testing set consisted of 50 different formations which varied in L, while e and u, were fixed at 0.5
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and 1E—6, respectively. Parameters L, UU,, and e were inferred from the test formations and for-
ward simulated with spherical grains. Comparing T (X*') (with cylindrical and cubic grains) with
T(X*?) (using spherical grains) the L2-norm errors were 4.0139 + 1.0574 and 1.8301 4 1.9275,
respectively. Spherical grains can approximate formations made with cubes better than cylinders,
possibly due to the asymmetry of cylinder geometry. Depending on the application, a spherical
representation may be sufficient.

Real-to-sim Parameter Estimation

The goal of this experiment was to test whether material parameters of real-world granular forma-
tions could be inferred to produce accurate simulations of macroscopic behavior. The initial test
set was composed of real depth images of ~2000 grains of Israeli couscous, poured through a fun-
nel fixed at 12 cm above the ground surface. Ten different pours were executed, and for each, ten
consecutive depth images were collected and averaged to mitigate temporal noise from the cam-
era. For each of the averaged images {X"'}19,, summary statistics {7'(X"/)}1%, were computed,
and U, U, and e were inferred. Forward simulation was executed for each parameter set, and the
L2-error was computed between the summary statistics of the real and forward-simulated granu-
lar formations. From the ten parameter sets inferred, the five corresponding to the lowest errors
were averaged. The inferred parameters for couscous were (1, = 0.6687, 1, = 8.1506 x 107, and
e = 0.7689, and the parameters for barley were t; = 0.3807, u, = 1.0613 x 1076, and e = 0.4792.

Forward simulation with the estimated parameters captures similar macroscopic behavior as the
five real-world pours at 12 cm, with an average L2-norm error of 2.2263 £0.1377 and 2.0311 £
0.3807 for the couscous and barley formations, respectively. However, it is critical to test how
well these parameters generalize to pours at different heights. Five more pours of each grain were
performed, with each pour at a different height: {2, 4, 6, 8, 10} cm off the ground. For each
of these pours, a forward simulation was run with the same grain parameters while shifting the
funnel height. Figure 3.5 illustrates that the inferred parameters generalize reasonably well, with
relatively low L2 errors. This suggests that it may be possible under this framework to reason
about pour heights to create desired pile and ring shapes given a specific type of grain. We test this
hypothesis in the following experiment.

Robotic Demonstrations

The first demonstration evaluated whether the presented framework could enable an industrial
robot to pour granular material into a desired shape, as may be necessary in a kitchen or factory. A
new BayesSim model was trained on 1000 simulated piles. The simulator parameters L, W, and
e were set to their inferred values for couscous (0.6687, 8.1506 x 10~7, and 0.7689, respectively),
and the funnel height was uniformly sampled between 1 and 13 cm. Two summary statistics were
computed from the resulting granular formation (i.e., the 5th and 50th percentile of granular radial
distance, which approximated the inner and outer radii of a ring). BayesSim was then evaluated on
a testing set to infer the funnel height from these two summary statistics; the height was estimated
within 0.0530£0.2221 cm. For the demonstration, summary statistics were chosen to correspond
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Figure 3.5: Comparisons of real depth images of piles poured at different heights and simulated
depth images generated from running a forward simulation at the corresponding heights, using
parameters inferred from a height of 12 cm. L2 errors are listed below the depth images. © 2020
IEEE

to a desired pattern of two concentric rings with an inner pile. BayesSim inferred corresponding
funnel heights of {27.1, 10.1, 1.5} cm. The robot was commanded to pour couscous from these
heights, resulting in the desired pattern (Figure 3.6).

The second demonstration evaluated how closely the presented framework could predict un-
desirable spilling during a granular pouring task. The calibrated simulator was used to simulate
the pouring of couscous and barley into a cereal bowl, with the simulation relaxation constant in-
creased from 0.75 to 0.9 to ensure accurate simulation of high-speed collisions. The number of
grains that spilled out of the bowl was counted. The industrial robot was then used to precisely
repeat the experiment in the real-world, pouring grains into a velvet-lined cereal bowl to match
simulator conditions. As tabulated in Figure 3.6, in most cases, the calibrated simulator predicted
the number of spilled grains across different pouring heights with surprising accuracy. (Please see
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Figure 3.6: Two granular manipulation tasks were tested. (Left): The height of the funnel is
inferred to create a desired ring shape. Performance is demonstrated by creating a pattern of three
concentric rings. (Right): The calibrated simulator is used to recreate a real-life scene of pouring
grains into a bowl. At various heights, both the simulations of couscous and barley reasonably
estimate the number of grains that leave the cereal bowl. © 2020 IEEE

the supplementary video at https://youtu.be/0BvV5h2NMKA.)

3.7 Conclusions

In this chapter, the material parameters of granular materials were inferred using a new frame-
work combining likelihood-free Bayesian inference, efficient simulation, and simple experiments.
The use of GPU-based simulation and off-the-shelf depth cameras may be particularly appealing
for robotics applications. Simulation-to-simulation inference was highly accurate, and simulation-
to-experiment inference trailed closely in performance. Robotics demos showed that the inferred
parameters generalized well to different pouring heights, and furthermore, that a robot can effec-
tively reason about granular material to pour desired granular formations and predict its behavior
in dynamic scenarios.

There are numerous exciting opportunities for future work in perceiving and reasoning about
granular materials. To improve inference, observations can be amended to include temporal se-
quences of depth images, with additional summary statistics to capture transient dynamics. To
enhance simulation, NVIDIA’s Isaac Simulator can be applied to model cohesion, allowing liquid-
solid interactions (e.g., capillary bridging); in addition, simulated particle geometries could be
represented as superquadrics [165], enabling more accurate approximation of complex real-world
grain geometries. Furthermore, more elaborate robotic manipulation tasks can be explored, such
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as moving the end effector along a trajectory to create an asymmetric grain trail, or scooping and
pouring granular material into and out of assorted containers. These robotic tasks involve substan-
tial interactive forces with the granular media, which can be modeled using promising techniques
such as Granular Resistive Force Theory [202]. Ultimately, we believe similar parameters of gran-
ular materials can be extracted through the rich audio signals resulting from collisions between the
grains and their environment. We begin tackling this problem in the following chapter, where we
explore extracting physical parameters from audio signals of a single bouncing ball.
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Chapter 4

Sim-to-Real from Sound for Stochastic
Dynamics

This chapter is based on the paper “STReSSD: Sim-to-Real from Sound for Stochastic Dynamics”
[134], written in collaboration with Yashraj Narang, Dieter Fox, Ruzena Bajcsy, and Fabio Ramos.

Sound is an information-rich medium that captures dynamic physical events. This chap-
ter presents STReSSD, a framework that uses sound to bridge the simulation-to-reality gap for
stochastic dynamics, demonstrated for the canonical case of a bouncing ball. A physically-motivated
noise model is presented to capture stochastic behavior of the balls upon collision with the envi-
ronment. A likelihood-free Bayesian inference framework is used to infer the parameters of the
noise model, as well as a material property called the coefficient of restitution, from audio obser-
vations. The same inference framework and the calibrated stochastic simulator are then used to
learn a probabilistic model of ball dynamics. The predictive capabilities of the dynamics model
are tested in two robotic experiments. First, open-loop predictions anticipate probabilistic success
of bouncing a ball into a cup. The second experiment integrates audio perception with a robotic
arm to track and deflect a bouncing ball in real-time. We envision that this work is a step towards
integrating audio-based inference for dynamic robotic tasks. Experimental results can be viewed
at https://youtu.be/b7p0rgZrArk.

4.1 Introduction

The sensory modality of sound can impart practical physical intuition of the surrounding world.
In particular, sounds arising from the dynamic interaction of objects or substances through direct
contact are highly informative. These sounding interactions enable humans to accomplish various
system identification tasks, such as discerning the size [59], length [21], and material [91] of
a struck object. The abundance of information encoded in event-driven sound alone calls for the
development of robotic techniques to extract physical understanding from this evidently descriptive
modality.
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Figure 4.1: STReSSD is a framework that uses sound to bridge the sim-to-real gap for a stochastic
dynamic process (e.g., a bouncing ball). (a) Simulation is used to learn a conditional density
function relating a material and noise parameter to collision times and positions, and posteriors
over these parameters are generated from audio observations of bouncing balls. (b) A probabilistic
dynamics model is learned via the calibrated stochastic simulator. (c¢) This model is used with
real-world auditory feedback for a reactive robotic ball-tracking task.

Thus, auditory perception presents a natural sensory choice to infer properties of and track an
object that is dynamically interacting with its environment. State-of-the-art work has accomplished
impressive results in dynamic object-tracking with visual input [30, 57, 113]. However, visual
techniques are known to be sensitive to occlusions, specularities, transparencies, and poor lighting
conditions. This work serves to complement visual methods with audio perception, which is robust
to all these challenges. Furthermore, sound intrinsically is a lower-dimensional and higher-frame-
rate signal, which consequently makes it much more computationally suitable for real-time robotic
systems.

A canonical dynamical system that is of interest to both the physics and robotics communi-
ties is the bouncing ball. Indeed, a wealth of prior work in the physics community has utilized
impact sounds to estimate a ball’s coefficient of restitution, a parameter that abstracts the energy
dissipation upon collision [14, 189, 63]. Nevertheless, it is widely acknowledged that modeling a
ball’s dynamics with a constant estimate of restitution does not realistically capture its stochastic
behavior while interacting with the environment. Notably, [63] remarks that “even tiny deviations
of the shape from the perfect sphere may lead to substantial errors,” specifically, due to directional
perturbations upon collision (e.g., a tennis ball dropped on asphalt will likely veer off to a side).
Prior work has not addressed this stochastic behavior, yet there is evidently a need for modeling
these perturbations.

In robotics, simulations are often used to train robotic tasks with the assumption that the simu-
lator models realistic dynamics, yet simulations are inherently deterministic. However, to capture
realistic stochasticity within simulation, three challenges come to mind: 1) How does one automat-
ically infer these stochastic parameters? 2) How can they be incorporated into a simulator? and 3)
How can this now-stochastic simulator be utilized in a practical way for real robotic tasks?

Contributions: As more research within robotics seeks to bridge the gap between simulation
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and reality, this work contributes to the community in three specific ways (Figure 4.1). First, we
present a methodology to automatically calibrate simulators from simple features of sound. Sec-
ond, we introduce learned stochasticity into a robotics simulator, in which a physics-inspired noise
model accounts for real-world distributions observed in a bouncing ball’s dynamics, e.g., due to
uneven or rough surfaces of the ground or ball. Finally, we conduct experiments to demonstrate the
predictability of the calibrated simulator in new scenarios, as well as the use of auditory feedback
to achieve reactive control in a robotic ball-tracking task. This work combines techniques from
multiple fields so that the resulting contributions may enhance the perceptual intelligence of robots
using sound.

4.2 Related Work

Auditory Perception for Robotic Manipulation

Despite its ubiquity and low cost of capture and processing, auditory perception is not often utilized
in real-time robotic manipulation. Instead, it has been most widely used for sound localization
[146, 103] and object or material classification [18, 28, 95, 93, 190, 185, 23]. However, only
few works have successfully employed it for manipulation tasks. [54] showed that sound can be
informative of actions applied to sounding objects and thus can be used to predict forward models
of the objects. [115] and [31] also demonstrate dynamic inference from sound by using it for
feedback control while pouring liquids and grains, respectively. In contrast, in this work, sound
is additionally used to learn physically-relevant parameters, which then, combined with sound as
feedback, inform fast robotic interactions with a bouncing ball.

Simulation Calibration of Dynamics Parameters

A growing field in robotics lies in estimating the simulation-to-reality gap. Domain randomization
is a popular technique used to learn policies in simulation that are transferable to the real world
[163, 22]. [169] develops BayesSim, a likelihood-free Bayesian approach to generate mixture-of-
Gaussian posteriors over simulation parameters that are used for domain randomization. In general,
BayesSim is more sample-efficient and generates better approximations of the posteriors than other
likelihood-free inference techniques such as approximate Bayesian computation methods [162].
BayesSim has been successfully applied in different robotic contexts — for instance, in the prior
chapter, where BayesSim was used to calibrate granular material simulations, which were then
used to predict real-world behavior [133].

This chapter leverages BayesSim to approximate a posterior over a material and noise param-
eter, which is sampled for domain randomization when simulating a bouncing ball. Both [1] and
[4] use real2sim methods on video input to infer bouncing ball parameters. Our work is unique in
that sound is used in lieu of vision, and a noise model is learned to account for observed stochas-
ticity. Learning stochastic parameters has been shown to be useful in works such as [10, 9, 123],
where probabilistic models are used to make predictions of planar pushing with frictional contact.
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The only known works other than this chapter that use sound for real2sim focus on realistic sound
synthesis [229]. However, [229] acknowledge their limitations in sim2real transfer, as they rely
on bridging the gap using high-dimensional spectral features of sound. In contrast, this chapter
extracts simple features from audio, making it robust to discrepancies in vibration representations
in simulation and real life as well as more suitable for real-time applications.

Robotic Bouncing Ball Tracking

A bouncing ball is difficult to track due to uncertainties in collision dynamics. However, robot
interactions with a dynamic object require accurate tracking and trajectory predictions. Several
works have attempted bouncing-ball tracking with vision, either by using high-speed or multiple
cameras [57] or pairing low-cost cameras with sim2real tuning of physically-relevant parameters
[1, 4]. By using dynamics models trained in the tuned simulator, trajectory predictions compen-
sate for tracking uncertainties [4]. In contrast, this work presents ball tracking through sound and
physical parameter inference. The only known work that uses sound to interact with a bouncing
ball is [99], where the author designed a mechanism that continuously bounced a ball off an actu-
ated platform. However, sound is used reactively, rather than to inform predictions about the ball
dynamics.

4.3 Methods

The STReSSD framework combines BayesSim [169] with audio processing to calibrate a stochas-
tic dynamic simulator. We highly recommend referring to Section B, which illustrates an expanded
version of the STReSSD framework. The following sections detail each module in the framework.

Simulation Calibration with BayesSim

This work aims to calibrate a physics simulator using auditory signals of ball-table collisions to
closely predict real-world dynamics of the ball. Let 0 be the simulation parameters to be inferred,
and let X represent information-rich features of an auditory signal. Assuming that there is an
equivalent representation of X in simulation (X*) and the real physical environment (X”), then the
problem can be formulated as computing the posterior p(6|X") over the simulation parameters.
As in Chapter 3, this work uses a likelihood-free framework called BayesSim [169] to approxi-
mate this posterior function. Specifically, N pairs of parameters and feature vectors {6;, X’ f’: |
are first generated from forward simulations of samples from a physically-motivated prior distri-
bution, p(6). A conditional density function g (6|X*) is then learned by mapping extracted sim-
ulation features X* to a mixture of K Gaussian components with a mixture density neural network
(MDNN), parameterized by ®. The conditional density function g¢, along with a real observation
X", are used to generate an approximation of the posterior p(6|X”"). The main advantage of us-
ing BayesSim over non-Bayesian techniques (e.g., classical optimization) is that the approximated
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posterior can be informative of the uncertainties regarding the parameters 0, as well as sensitivity
to measurement noise.

Stochastic Simulation of a Bouncing Ball

Figure 4.2: (Left): The initial velocity is sampled from a Gaussian distribution and collision per-
turbations are sampled from a von Mises-Fisher distribution, centered at io/|[ii||. (Middle): 1000
samples over a sphere for different values of k for u = [0,0, 1]. (Right): Balls used in real experi-
ments.

Here, we define the simulation parameters 6 that are used to model the stochastic dynamics
of a bouncing ball. The coefficient of restitution e is a standard ratio used to quantify energy loss
upon object collision. For an object bouncing on an immovable surface, e can be calculated as
the ratio of the exiting to entering velocity of the collision. However, as velocities are difficult to
extract from sound, bounce times are used to calculate e = EQZ ggg} Eggggz if’f;;ll (see Section B.1).

While e is generally used as a constant in simulation, numerous factors contribute to nontrivial
variance in measurements of e [141]. For example, if a ball is dropped vertically onto a level
flat surface, surface asperities cause the ball to experience horizontal perturbations. Because we
are measuring e from bounce times instead of velocity, these horizontal perturbations produce a
distribution over e.

[141] address this variance by fitting a probability density over e. Instead, this chapter aims
to represent e and surface asperities as independent variables. To simulate collision perturbations,
[141] represent a ball as a composite multisphere particle with ~ 10° surface asperities. In contrast,
this chapter reduces computational complexity by imitating the stochastic dynamics of a bouncing
ball with a simple noise model. At every collision, we apply a random perturbation, sampled from
a Gaussian distribution on a sphere (i.e., the von Mises-Fisher distribution), to the direction of the
outgoing velocity vector. The von Mises—Fisher distribution on a 2-sphere (Figure 4.2) is given
by the probability density f(x;u,x) = W’ieﬂe(wa) for 3-dimensional random unit vector x,
where u is the mean direction and K is a concentration parameter.

Let iy represent a ball’s unperturbed exit velocity during a collision. To simulate a collision

up

perturbation (e.g., due to rough surfaces), a vector is sampled from f(x; 1, k), where fl = Tl

The vector is then scaled by ||ip|| to produce a perturbed exit velocity vy. Thus, the outgoing
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kinetic energy of the ball is unaffected by the perturbation. Stochastic ball dynamics are therefore
modeled by e, for energy dissipation, and «, to account for the stochasticity due to collisions.

While this model can be integrated with most standard simulators, we used NVIDIA’s Isaac
Simulator paired with a preconditioned conjugate residual (PCR) solver [125]. This
GPU-optimized simulation platform enabled the parallelization of hundreds of environments. This
was particularly useful for efficiently generating distributions of ball trajectories due to the modeled
collision perturbations.

Audio Processing

Figure 4.3: (Left): Integrated robotic system used in experiments. (Right): Real-time sound local-
ization is slightly less accurate than the offline method and produces outliers with large errors.

We hypothesized that the times and positions of the ball bounces are informative of 0 = {e, k},
as e can be expressed as a function of impact times (Section 4.3), and x affects the ball bounce
positions. This motivates our four-dimensional feature vector X, which encodes both temporal
and positional information. Letting #;, p;, and d; denote the time, positional vector, and distance
between bounce i and i + 1, then X is composed of %, dy = ||P1l|2, d2 = ||P2||2, and @, the signed
angle between p; and p, (see Section B.1). Higher dimensional spectral features were not needed
to estimate 0, but future work could leverage this additional information to, for instance, classify
the ball’s material.

Vector X is simple to extract from simulation, but, in the real-world, depends on accurate sound
localization for each bounce. We used two localization methods — an offline method for parameter
inference and an online method for real-time interaction, both of which relied on the same principle
of time delay estimation (TDE). TDE uses time delays between microphone signals to locate sound
sources (see Section B.2 for derivation). For 2D localization, only 3 microphones are necessary.

The offline and real-time methods diverged in how these time delays were calculated. Offline
time delays were calculated using phase correlation, a standard frequency-domain technique [98],
over audio segments of >20 ms. In contrast, real-time processing required fast calculations on 11
ms-length buffers of incoming audio. Peak times corresponding to the strong peaks induced by
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collisions could be detected efficiently and thus were used to calculate time delays. The offline
method was found to be slightly more accurate, with an average error of about 6.7 mm compared
to real-time’s 7.9 mm, shown in Figure 4.3 (see Section B.2 for comparisons). Experiments were
conducted in a household environment rather than a sound studio, so real-time localization was
slightly less robust. The method’s sensitivity to reverberation, or echoes from early reflections off
of walls and furniture, occasionally caused large errors in detecting true impact times. However,
the performance was a necessary trade-off to enable reactive robot interactions. Furthermore,
peak detection was generally unaffected by other factors such as noisy robot motion or acoustic
differences in ball material.

For experiments, auditory signals were captured by three AudioTechnica AT2005 USB / XLR
Microphones, which were placed around a 0.55-by-0.55 meter particle-board table, 3 inches above
the table surface. Microphone signals were streamed at 44.1 kHz in parallel to a PC through a
TASCAM 4x4 audio interface (Figure 4.3). For robot experiments, audio was processed in real-
time, and control signals were sent to a URS robot in parallel processes. The overall latency of the
system was dominated by robot motion, as bounce localization and inference ran at ~100 and 20
Hz, respectively.

Robotic Ball Tracking

Figure 4.4: (a) Ball tracking setup. (b) Example ball trajectory for noiseless method. yg, is the
y-coordinate of the inferred crossing point of the ball given the first two bounces. (c¢) Samples of
future bounce positions given the first two bounces using the stochastic noise method. The mean
and variance of the samples in the workspace plane inform the distance the paddle should travel

(dp).



CHAPTER 4. SIM-TO-REAL FROM SOUND FOR STOCHASTIC DYNAMICS 45

To illustrate the benefits of modeling dynamic stochasticity and the real-time capabilities of
audio perception, we compare two methods to accomplish the robotic task of tracking and deflect-
ing a bouncing ball using sound. The methods differ in their consideration of perturbations upon
collision. Pseudocode and equations accompanying each method are presented in appendices B.3
and B.4.

Deterministic Baseline: Dynamic Predictions without Collision Noise

Without modeling collision perturbations (thus ignoring concentration parameter ), the dynamics
of a bouncing ball are defined only by its initial conditions, gravity, and energy-dissipating forces.
For this particular method, we assume that the most significant parameter affecting ball dynamics
is e. The ball trajectory can then be defined by classical projectile equations, with e applied to
simulate energy dissipation at each bounce. Figure 4.4a-b illustrate the control scheme used to
guide the robot to contact the ball as it enters the workspace plane. The ball’s future bounces can
be extrapolated from the times and positions of the last two bounces, since here we assume that the
ball is not directionally perturbed. The goal position of the robot, denoted as (xg,yr,zg) in Figure
4.4, is then defined as the intersection of the piecewise parabolic trajectories with the robot plane.
If the ball will intersect the plane at 7z seconds before the next bounce, then the robot moves to the
goal position in that time. Otherwise, the robot moves to yr before the next bounce is observed.

Stochastic Method: Dynamic Predictions with Collision Noise

Predicting the dynamics of a ball without incorporating knowledge of collision noise may cause
the robot to be over-reactive to small perturbations in the ball’s trajectory. Furthermore, success
relies on accurate real-time sound localization, which as mentioned earlier, can occasionally be
sensitive to reverberations, causing large errors in the inferred bounce location (Figure 4.3). Thus,
we aim to incorporate the noise model to address two goals: leveraging the uncertainty of the ball’s
location to prevent the robot from over-reacting, and filtering unrealistic inferred bounce locations.

Both goals employ a second BayesSim model that generates posteriors over the next bounce
time and location, given the time and distance between the prior two bounces. The BayesSim
model, trained via the calibrated simulator, serves as a probabilistic dynamics model. At run-time,
a generated posterior is used with an elliptic envelope filter to classify if the observed bounce can
be trusted (or if it is an outlier). If the latter, the mean of the posterior is used to estimate the
bounce location.

In addition, the ball’s future trajectory is estimated by generating samples from the posterior,
which in turn are used to generate new posteriors. Thus, trajectory predictions are made by re-
cursively generating posteriors until samples intersect the plane. In this new context, BayesSim
is used as a generic regression technique to learn a transition model, which is applied recursively,
and whose predictions are averaged. This dynamics model could also be incorporated into a non-
linear filtering technique such as an Unscented Kalman Filter, although this would require defining
a sensor model. Figure 4.4c shows that the predicted future bounce location uncertainty grows
with every bounce. This uncertainty informs the end-effector motion. The smaller the variance of
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the predictions are, the closer the end-effector will move toward the goal location before the next
observation.

4.4 Experiments

Figure 4.5: (a) Sim-to-sim example posteriors of inferring e and log;,(x) from bounce times, e
and log;((x) from bounce positions, and both e and log;, (k) from times and positions. The table
summarizes average error over 1000 examples for each parameter, given a feature subset. (b) Top:
Real-to-sim posteriors become more certain with more samples. Bottom: Posteriors for real balls.

Simulation-to-Simulation Experiments

The inference framework was first tested with simulated data to assess whether bounce locations
and times were relevant measurements for the inference of the desired model variables (e and
k). Training data was generated in simulation by sampling from a physically-motivated uniform
prior distribution, with e € [0.55,0.95] and log;,(x) € [1,5]. Each simulation sampled an initial
angular and linear velocity from a Gaussian centered at O (see Figure 4.2) to mimic real-world
noise when dropping a ball. 6000 and 1000 simulations were run for the training and testing
dataset, respectively.

To measure how informative each feature in X was for each parameter in 6, an ablation study
was performed over the simulated dataset. The features were divided into two sets, one relevant to
time (X; = %), and the other, to position (X, = {d},d>,a}). Four BayesSim models were trained,
each using either X; or X, to infer one of e or k. These models were used to generate posteriors from
a testing dataset of 1000 examples, and the peaks of the posteriors were compared with the true
value of the inferred parameter. The table in Figure 4.5a summarizes the average error in inferred
parameters e and K, given a subset of features. Posteriors that are unimodal and low-variance
have higher certainty and thus relevance to the inferred parameter. As reflected in the single-
parameter posteriors of Figure 4.5a, time appears to be a more informative observation for e, while
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positional information is more relevant for k. Knowledge of both time and positional information
generates significantly more certain posteriors. Observe that the variance of the marginal posterior
for log,o(x) will naturally be greater than that of e, as estimating a noise parameter is inherently
more difficult.

Real-to-Simulation Experiments

With the assurance that X contained informative features for 6, we turned to extracting 6 to de-
scribe real bouncing balls. Note that both e and k are reflective of material-to-material interactions,
and thus are unique to each pair of object and surface. The four object-surface pairs tested were
a ping-pong ball, tennis ball, and moon ball (which has large crater-like divots) bouncing on a
smooth table, and a ping-pong ball bouncing on an asphalt surface (see Figure 4.2). This was to
demonstrate the effect of surface asperities both on the ground (asphalt) as well as on the ball (e.g.,
moon ball).

For each ball-surface pair, the ball was dropped 100 times from 0.26 meters (to match simula-
tion), and offline sound localization captured the locations and times of the bounces. Real-world
feature vector X" was extracted for each drop and used to generate a posterior over 6. Figure 4.5b
shows an example posterior generated from one sample, or drop, of the moon ball. Note that,
from one sample, the posterior is quite uncertain. However, assuming independence between each
new observation X/, the joint posterior can be generated by multiplying each individual posterior
together. As the single sample posteriors reflected strongly Gaussian structures, each mixture-of-
Gaussians was projected to a single Gaussian before multiplication. As shown in Figure 4.5b, the
joint posterior became more certain with more observations, with the joint posterior of 100 sam-
ples demonstrating strongly peaked marginals in both e and log,, (k). The resulting posteriors of
each ball-surface pair are illustrated in Figure 4.5b, and their positions relative to each other quali-
tatively reflect their real-world dynamic characteristics (e.g., the moon ball is bouncier and noisier
than the tennis ball).

Closing the Loop: Real-to-Sim-to-Real

In order to test if the dynamic model of the bouncing ball generalized well to new scenarios, an
experimental setup similar to the one constructed in [1] was used, as illustrated in Figure 4.6. The
table surface used in Section 4.4 was tilted at an angle of 10.72deg, and a plastic cup was placed
8.6 inches away from the bottom of the incline. The physical experimental setup was replicated in
simulation, and the goal was to compare the success rate of bouncing a ball against the inclined
plane into the cup in simulation and in real experiments. While a deterministic simulator would
only either fail or succeed if a ball was dropped at a specific initial position, by modeling dynamic
noise due to surface perturbations, our stochastic simulator had probabilistic success.

Using a Robotiq 2F-140 gripper to drop the ball repeatedly over the inclined surface at a fixed
position, real experiments showed similar probabilistic levels of success, with the pingpong ball
and moon ball bouncing into the cup (out of 100) 75 and 35 times, respectively. The experiment
was repeated in simulation 30 times, for each ball and their respective drop positions. For each
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Figure 4.6: (a) A robotic hand bounces the ball off the tilted table surface into the cup, or goal.
(b) Top: Spatial map of success rates for different initial positions of the ball drop. Success ranges
from lightest (0 successful) to darkest (100 successful). Bottom: Comparison of real and simulated
success rates (out of 100) dropped at the red point, with simulated success rates averaged over 30
trials of 100 simulations.

simulation, a new pair of e and log; (k) were sampled from the inferred posteriors from Section
4.4. The average simulated success rates were within close range of the real success rates, sug-
gesting that the learned dynamics model could generalize well to novel physical scenarios. This
also implies that the simulator could potentially be used for predictive measures, e.g., searching
for where to drop a ball to maximize success rate. To demonstrate this concept, we sampled suc-
cess rate (out of 100) over a discrete number of initial positions in simulation. This generated a
spatial map of probabilistic success (Figure 4.6), a capability made possible through the modeling
of collision perturbations.

Robotic Ball-Tracking Results

The goal of the ball-tracking task was to move the robot end-effector, a circular paddle with a
diameter of 4.5 inches, to touch the bouncing ball as it entered the robot workspace plane, using
only sound as feedback. Each of the methods described in Section 4.3 was evaluated for the tennis
ball, ping-pong ball, and moon ball on the following metrics: 1) success out of 30 trials (whether
or not the end-effector touched the ball), and 2) kinetic energy of the end-effector, integrated over
the trajectory. We hypothesized that, by modeling collision perturbations, the probabilistic method
would be more robust to errors in bounce localization as well as curb the reactiveness of the robot
to small perturbations in the ball’s trajectory. Both methods assumed nothing about the initial
condition of the ball, and for each trial, the ball was manually tossed onto the table in the direction
of the robot.

As shown in Figure 4.7, the stochastic method averaged an absolute increase in success rate of
24%, which corresponds to an improvement of 70%, relative to the deterministic baseline. Failure
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Figure 4.7: (Left): A successful trial. (Middle) “Outliers” signifies failures due to sound local-
ization errors, and “Missed” denotes any other failure. Compared to the deterministic baseline,
the stochastic method has higher success (an absolute increase of 24%) and fewer failures due to
outliers (an absolute decrease of 29%), averaged across all balls. This graph excludes trials that
violated the robot’s boundary constraints; an alternative graph with all 30 trials can be found in
Section 15. (Right): On average, the baseline uses more total energy than the stochastic method
over all trials and all successful trials, suggesting that the baseline is more overreactive.

cases are labeled as “outliers” for errors in bounce localization and “missed” for all other failures.
For each of the balls, a few of the 30 tosses resulted in the ball violating the robot workspace
boundaries, so those tosses were removed from analysis. Sensitivity to “outliers” in bounce local-
ization can be resolved by using dynamic predictions with collision noise described in Section 4.3.
Figure 4.7 precisely demonstrates this effect, where the number of failure cases due to outliers in
bounce localization diminished for all three balls. While the stochastic method eliminates failures
due to outliers in later bounces, it is still sensitive to outliers in the first and second bounces, since it
relies on those to generate posteriors for future bounces. Finally, Figure 4.7 shows that the average
total end-effector kinetic energy over all trials, normalized by mass and averaged across balls, was
reduced by 46% when considering collision noise versus without. This pattern is replicated when
looking at the average energy over just the successful trials (a reduction by 51%), suggesting that
the stochastic method does indeed curb over-reactions to small perturbations in a bouncing ball’s
trajectory.

4.5 Conclusions

This work presents STReSSD, a novel framework for calibrating a simulator for stochastic dy-
namics from simple, low-dimensional features of sound. A physically-motivated noise model is
learned from real audio, which enables a physics simulator to reflect real stochastic dynamics
caused by rough or uneven surfaces. Using the canonical dynamical system of a bouncing ball,
this work closes the loop on real-to-sim-to-real by demonstrating the predictive capabilities of the
learned dynamics model in both an open-loop and sound-in-the-loop robotics task. To the best of
our knowledge, this is the first robotics work that relies solely on sound to accomplish a highly
dynamic, probabilistic task. We believe that the robotic capabilities demonstrated by the devised
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framework highlight the utility of audio perception and may encourage increased integration of
sound in robotics.

While the experimental results are promising, there are various opportunities to extend this
work. Sensor fusion with vision and more robust peak-detection can improve the accuracy of real-
time sound localization. Furthermore, one could imagine utilizing the rich spectral information
from the raw audio signals to classify the material of the ball. The multivariate classification
uncertainty could then be incorporated into the BayesSim model to produce a multimodal posterior
distribution over simulation parameters. Other paths for future work include exploring simulation-
in-the-loop inference, where the simulator is calibrated in real-time and a dynamic object is tracked
using a particle filter or an Unscented Kalman Filter. Finally, we believe the framework in this
chapter may be revised to perform granular material parameter estimation using audio signals of
grain collisions. These advancements may lead to broader impact in various sub-fields of robotics,
including navigation and unseen-object manipulation.
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Part 111

Doughs and Deformable Objects: Designs of
Variable Stiffness Tactile Devices

For the remainder of this thesis, we explore the concept of embedding interactive per-
ception into the design of a tactile sensor. Chapters 5, 6, and 7 present different itera-
tions of variable stiffness soft tactile sensors that serve also as actuators. Through the
evolution of this concept, this technology ultimately enables the robot to interactively
perceive and manipulate deformable objects like dough.

Each soft tactile sensor presented in Chapters 5-7 can be categorized as a soft optical
tactile sensor. The tactile interface is composed of soft, compliant material, and the
deformations of the membrane’s surface, resulting from contact with the environment
or an object, are imaged by an optical sensor (e.g., an RGB-D camera). Development
of this category of tactile sensors has seen increased interest in the field of robotics.
Much of this aligns with ambitions of expanding the capabilities of dexterous ma-
nipulation. For instance, the GelSight sensor [221] captures high resolution contact
images, thereby enabling tasks such as USB orientation estimation [114] with touch.
Furthermore, soft tactile sensors such as the TacTip [206] and Soft-Bubble [2] can
safely conform to surrounding geometries due to their high compliance, enabling a
robot to gently palpate tissue for tumor detection or robustly handle delicate objects
like a wine glass. In [224], the authors use a GelSight sensor to estimate the hardness
of deformable objects, noting that the GelSight performs best when the “hardness” of
the object is closest to the hardness of the membrane. This observation motivates each
device presented in Part III, where they are designed to vary in stiffness in order to
expand both sensing and actuation capabilities for robotic manipulation.

We begin by studying the sensing-actuation duality of a pneumatically-actuated vari-
able stiffness tactile sensor in Chapter 5. Chapter 6 then modifies the design of the
sensor in Chapter 5, making it simpler to manufacture and integrate with an industrial
robotic hand. This new design iteration, called StRETcH, is used to measure both the
geometry and a proxy for stiffness of deformable objects like a water balloon. Part
IIT concludes with Chapter 7, where a modified version of StRETcH is used to roll a
ball of dough into logs of varying lengths. Proxy estimations of stiffness, measured
through active palpation, are shown to enable more efficient dough rolling.
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Chapter 5

A Soft Fingertip with Integrated Sensing
and Actuation

This chapter is based on the paper “Towards a Soft Fingertip with Integrated Sensing and Actua-
tion” [136], written in collaboration with Benjamin Mclnroe, Ken Goldberg, Ruzena Bajcsy, and
Ronald Fearing.

Soft material robots are attractive for safe interaction with humans and unstructured environ-
ments due to their compliance and low intrinsic stiffness and mass. These properties enable new
capabilities such as the ability to conform to environmental geometry for tactile sensing and to
undergo large shape changes for actuation. Due to the complex coupling between sensing and
actuation in high-dimensional nonlinear soft systems, prior work in soft robotics has primarily fo-
cused on either sensing or actuation. This chapter presents SOFTcell, a novel controllable stiffness
tactile device that incorporates both optical sensing and pneumatic actuation. We report details
on the device’s design and implementation and analyze results from characterization experiments
on sensitivity and performance, which show that SOFTcell can controllably increase its effective
modulus from 4.4kPa to 46.1kPa. Additionally, we demonstrate the utility of SOFTcell for grasp-
ing in a reactive control task in which tactile data is used to detect fingertip shear as a grasped
object slips, and cell pressurization is used to prevent the slip without the need to adjust fingertip
position.

5.1 Introduction

There is a growing interest in using soft materials, such as elastomers and polymers, in robots.
Two widely recognized advantages of such systems are the ability to deform and change shape in
response to internal and external loads, and their low intrinsic stiffness and mass, which makes
them especially useful for safe human-robot interaction and operation in delicate environments.
Previous studies have explored the capabilities of soft systems in both actuation and sensing [175,
205], and recent progress in soft robots has shown them to be capable of performing challenging
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tasks, including legged locomotion [201] and dexterous grasping [76].

Design of actuation, sensing, and control of these soft systems remains an active area of re-
search. Common methods of actuation include pneumatic [142] and hydraulic [166] actuation,
cable-driven tendon systems [106], smart materials such as shape-memory alloys (SMAs) [204]
and dielectric elastomers (DEAs) [83], and chemical reactions [207]. The high dimensional con-
figuration spaces and intrinsic nonlinear dynamics of soft materials present both a challenge for
control and an opportunity for extracting rich tactile information from the external environment.
Many tactile sensing technologies have been integrated into soft robotic platforms, including fiber
optic sensors [105] and flexible electronic sensors [120].

However, the embedding of rigid materials such as conductive wires or tendons in soft compo-
nents imposes constraints on maximum material strain [48]. This limits the deformation ability of
the system, and thus removes a fundamental benefit of soft material robots. To circumvent this lim-
itation of traditional tactile sensors, non-contact sensors for soft systems have been explored [42]
in order to decouple the sensing devices from the soft material. For pneumatically-driven systems,
one solution that has been explored is using pressure sensing to detect collisions [191]. Image-
based tactile sensors, which measure 2-D and 3-D deformation fields from image data, present
another attractive alternative. Spatially rich tactile information enables contact localization and
registration of finer contact dynamics.

Non-contact image-based methods have been previously used to develop soft fingertips for
tactile sensing and dexterous manipulation [172]. Begej et. al. [11] designed planar tactile sensors
that used cameras to image contact on an elastic membrane. Yamaguchi et. al. [211] developed
a low-cost tactile sensor called FingerVision that uses a transparent skin with tracking markers
to collect static and dynamic information. Hristu et. al. [69] built a gel-filled fingertip with
markers and a fixed camera that measured displacements of markers on the fingertip surface to
reconstruct 3-D geometries. A related device is the GelSight sensor, a high resolution tactile sensor
with an elastomer gel membrane coated with reflective material, which uses a coaxial camera and
illumination by multiple LEDs to capture height maps of the surface deformation [114]. Chorley
et. al. [27] developed a similar device to that of [69] called the TacTIP sensor, which includes pins
on the surface of the gel-filled membrane inspired by dermal papillae in human fingertips. The
WORMLtip sensor [66] replaced the gel-filled membrane with a pneumostatic vessel consisting of
a dielectric elastomer (DEA) sheet on one end and an elastic membrane on the other. Actuation of
the DEA allowed the surface to extend and retract for palpation tasks. However, kilovolt ranges
are needed for DEAs in comparison to pnuematically actuated robots that can operate through
miniaturized compressors and valves that typically run at household voltages [201].

Recent work has explored the possibility of function-selectable tactile sensing through pro-
grammable morphology [213]. However, the potential for both multimodal sensing and actuation
in soft tactile sensing devices remains underexplored. Stilli et. al. begins to bridge this gap by
proposing to use pressure sensing of pneumatically-driven robotic arms to detect collisions [191].
More recently, Huh et. al. present a novel soft, suction-based tactile sensor that directly measures
surface conditions using active suction flow [74]. We aim to continue to reveal the capabilities of
soft actuated tactile devices through the development and study of a new pneumatically-actuated
soft tactile sensing device, the SOFTcell (Soft Optical Feedback Tactile cell). Through the combi-
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Figure 5.1: (a) The Soft Optical Feedback Tactile cell (SOFTcell), a device towards a soft fingertip
with integrated sensing and actuation. (b) Pneumatic actuation enables controllable increase of
effective modulus and a greater than 200% increase in volume. (c) A cutaway scale diagram of
SOFTecell displaying its assembled internal components. © 2018 IEEE

nation of valve-controlled pneumatic actuation and image-based sensing, we controllably exploit
the intrinsic conformability of a soft membrane at low internal pressure for large deformation tac-
tile sensing and the increased effective modulus at high internal pressure for large load actuation.
We show that the functionality of the system is multimodal, with different pressurization states
allowing for different functionality such as improved tactile sensitivity or increased contact forces.

We further explore the utility of SOFTcell’s multimodal sensing and actuation in practical
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applications by demonstrating shear detection and grasp adjustment in a constrained manipulation
task. SOFTcell holds an object against a static wall, and the mass of the object is slowly increased.
When shear is detected due to the object slipping against the wall, the cell pressure is increased,
stabilizing the object without the need to adjust fingertip position.

The chapter is organized as follows. Section II discusses the design and fabrication of SOFT-
cell, including a discussion of the general work flow and image processing algorithms used for
tactile feedback. Section III presents a theoretical analysis of SOFTcell in the linear elastic regime
and describes the fundamental physical principles governing the controllable sensing and mechan-
ical stiffness capabilities of the device. Section IV presents the results of systematic experimental
characterization of SOFTcell and discusses empirical measurements of variable stiffness and tac-
tile sensitivity. Section V presents empirical measurements for model validation and describes
preliminary application-domain demonstrations in reactive grasping that employ both high resolu-
tion sensing and large deformation actuation. Section VI further discusses the utility of SOFTcell
and coupled soft sensor/actuator systems, followed by a discussion of future directions.

Summary of Contributions
This chapter makes the following contributions:

1. The design and fabrication of SOFTcell, a controllable stiffness device that is capable of
both spatiotemporal tactile sensing and actuation.

2. Modeling and characterization of SOFTcell’s controlled stiffness range and multimodal
sensing and actuation features.

3. A demonstration of the application of SOFTcell in a reactive control task, which requires
both spatiotemporal tactile data and actuation to exert controlled forces on the environment.

5.2 System Design and Fabrication

Design and Fabrication

Tip

The underside of the silicone skin closely resembles that of [27], a pattern of cylinders that are
inspired by Meissner’s corpuscle mechanoreceptors for sensitive tactile responses. This patterning
was chosen primarily due to its area-preserving characteristics, an important feature to simplify
image processing for a membrane that is capable of nontrivial changes in surface area. As shown
in several relevant works on tactile optical sensors ([211, 50, 223, 66, 33]), tracking features of
deformable skin such as these synthetic markers allows for acquisition of tactile data, e.g. dynamic
information like shearing or geometric information like convexity of an object. We designed and
printed a hemispherical multiple-part mold to cast the tip out of platinum-catalyzed EcoFlex 50
Silicone. In order to ensure uniform thickness throughout the membrane, a vacuum chamber was

used to remove gas from the uncured silicone. The cured silicone skin has a thickness of 1.7 mm
and an inner radius of 21.23 mm. Each cylinder is 2mm long with a radius of 1mm, and the
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cylinders are distributed uniformly across the underside of the hemisphere with a center-to-center
distance of at least 7mm. To make the cylinder features visually striking, black silicone pigment
was mixed into the EcoFlex and the cylinder tips were painted with white silicone-based paint.
The silicone membrane was fastened onto the rim of the camera and pressure capsule with cable
ties.

Camera and Pressure Capsule

A Logitech HD C310 Webcam, centered and facing towards the underside of the silicone skin,
was secured at the bottom of a capsule 3D-printed out of Polylactic Acid (PLA). The camera was
positioned 67 mm away from the rim of the capsule to optimize for its focal length and field of view.
A pressure/temperature MS5803-14BA sensor with an accuracy of £0.02 kPa under pressures up
to 1400 kPa in room temperature was also fastened inside the capsule. Flexible pipes embedded
into the capsule’s walls act as channels between solenoid valves connected to an air compressor
and the capsule’s interior, allowing the capsule to be pressurized. The capsule was sealed with hot
glue to minimize leakage of air.

Composite Setup

The device consists of the hemispherical silicone membrane attached to the pressure capsule, with
LED’s for lighting and a camera at the bottom of the cell for sensing. A cutaway diagram of the
composite setup of SOFTcell and its internal components is illustrated in Figure 5.1. The entire
cost of the SOFTcell, including all sensors and materials, amounted to under 100 USD.

System Configuration

The SOFTcell is connected to a compressor pressurized to 410 kPa, and the solenoid valves that
modulate air flow from the compressor into the SOFTcell are controlled by Matrix driver boards.
The valves are fitted with orifices that leak air so that pressure can be increased and decreased by
a single Pulse Width Modulated (PWM) solenoidal valve [143].

An Arduino Micro microcontroller relays PWM commands to the valve driver boards. The Mi-
cro and camera are both connected to a central computer. Application demonstrations reported in
Section 5.5, which require basic feedback from the camera images, involve serial communication
between a Python script and the Micro.

For the characterization experiments reported in Section 5.4, an ATI 45 six-axis force-torque
transducer is oriented in front of the SOFTcell in various configurations in order to measure the
force and torque output of the device. A second Arduino microcontroller is used to receive data
from the MS5803-14BA pressure/temperature sensor and an ATI F/T Data Acquisition (DAQ)
device is used to relay the measurements from the force-torque transducer to a MATLAB script,
which we use to further analyze the data.
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Figure 5.2: Examples of raw images captured by the internal camera, overlaid with the traces
of the trajectories of the markers. Different colors are assigned to distinguish different marker
traces. Arrows found in the bottom-left corners serve to illustrate the general directional motion
of the markers. (a) The membrane is indented radially on the left side by a spherical probe (see
Figure 5.4). (b) The membrane shears in contact with a flat surface moving upwards. (c) The
membrane experiences torsion while in contact with a twisting flat surface. © 2018 IEEE

Tactile Image Processing

We rely on the internal camera data alone for tactile feedback. At first, we considered using
pressure data from the MS5803-14BA sensor in parallel with the image data, as pressure has been
used in some prior work to determine collisions of an inflatable robot arm [191]. However, through
our own investigation, we determined that pressure signals show no substantial change that could
robustly distinguish fine membrane perturbations such as those depicted in Figure 5.2, and thus are
insufficient to be used for tactile data. We incorporate the pressure sensor in the device solely for
device characterization.

We explored using common image processing techniques to extract relevant tactile information
from the camera images. Our general preprocessing scheme began by low-pass filtering the image
with a Gaussian blur, grey-scaling the image, and applying an Otsu adaptive threshold to binarize
the image. Erosion and dilation was applied to remove false positive identifications of the cylin-
drical markers due to specular highlights, and further cleaning was performed using connected
component analysis. OpenCV’s SimpleBlobDetector was used to find the centroids of the white
markers. The centroids were then tracked with OpenCV’s implementation of optical flow for a
sparse feature set using the Lucas-Kanade method with pyramids (calcOpticalFlowPyrLK).

From the optical flow output, we can calculate a set of vectors describing the translations of
the markers from a previous frame. These vectors can then be used for dynamic tracking of the
elastic membrane, inferring contact conditions, and detecting membrane shear. In Section 5.5,
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Figure 5.3: General system workflow. Contacts are transmitted as images via the internal camera
and further modified by the image processing scheme. The vectors of marker displacements are
then interpreted as tactile feedback, e.g., a detected membrane shear. A central computer computes
a command, e.g., increase pressure, in response to the vectors, which is relayed to the microcon-
troller. The microcontroller sends a PWM signal to the solenoid valves, which in turn change
the air pressure supplied to the SOFTcell. This subsequently changes the volume and stiffness of
the elastic tip. The change in volume is captured by the internal camera as well, demonstrating
proprioceptive capabilities of the SOFTcell. © 2018 IEEE

we demonstrate these sensing modalities at 30Hz in experiment. Figure 5.2 shows example trace
vectors as the membrane is perturbed from the outside, and Figure 5.3 illustrates the workflow of
the composite system.

5.3 Model of SOFTcell

We preface our experiments with a brief discussion of theoretical motivation. Intuitively, one
expects that the SOFTcell membrane should become more rigid as internal pressure increases. The
mechanical properties of SOFTcell are a function of both the thermodynamic state of the internal
air and the strain state of the elastic membrane. Furthermore, contact forces and displacements of
the membrane will depend on the contact geometry.

For small deformations about an equilibrium state, we assume that the mechanical response of
SOFTcell can be modeled as that of an equivalent linearly elastic solid sphere subject to the same
contact conditions. This equivalent sphere has an associated elastic modulus that we refer to as the
effective modulus of SOFTcell, E*. This effective modulus provides a useful predictive measure of
SOFTcell’s variable stiffness. The mechanics of hyperelastic materials under large deformations
are complex and nonlinear. Previous work by Vella et. al. studied models of the indentation of
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pressurized spherical shells, demonstrating the nonlinear relationship between effective modulus
and internal pressure [203]. In 5.4, we show experimentally that the effective modulus provides a
good approximation to the mechanical response of SOFTcell.

In our characterization experiments, we consider indentation of SOFTcell’s membrane by sim-
ple geometries. From Hertz contact theory for the frictionless contact between elastic spheres, the
load force F and indentation depth o are related by [79]:

4/1-v 1-w\"'/1 1\ ,,
F=- — 5%/ 5.1
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where Vv;, E;, and R; are the Poisson’s ratio, elastic modulus and radius for sphere i € {1,2}.
We will restrict our experiments to the case E; << Ej, that is, the deformation of the object in
contact with SOFTcell is negligible. We can then define the effective modulus of SOFTcell under
a specified pressure state and contact condition as,

1
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Here, v is the Poisson’s ratio of the equivalent elastic sphere (v = 0.5 for ideal rubber). This
result holds for plane contact in the limit as Ry — oo.

5.4 Experimental Characterization

We characterize the variable stiffness and sensing capabilities of SOFTcell through a series of
controlled experiments. In Section IV.A, we demonstrate the dependency of sensor mechanical
stiffness, quantified here as effective modulus (Eqn. III1.2) on internal pressure. In Section IV.B,
we explore the force applied to a fixed object in contact with SOFTcell as internal pressure is peri-
odically increased and decreased. Section IV.C summarizes our sensitivity analysis of SOFTcell’s
force sensing capabilities. All recorded values for pressures are gauge pressure.

Variable Stiffness

We use an ATI 45 six-axis force-torque transducer with a mounted 1.9 cm radius spherical probe
to measure contact forces and torques on the SOFTcell. In these experiments, the SOFTcell is
inflated to a fixed initial pressure and then quasistatically indented by the probe at a series of
fixed indentation depths, both coaxially with the device and off axis by a 45 deg angle (Fig. 5.4) .
Pressure and temperature within the cell are recorded, and the reaction forces and torques on the
ATI sensor are recorded at mechanical and thermal equilibrium of SOFTcell. The results of these
experiments are shown in Figure 5.5. We find that while the load forces on SOFTcell show similar
monotonic increases with indentation depth, higher pressures result in larger load forces for the
same indentation. The coaxial contact experiments are repeated with a planar probe.
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Figure 5.4: A schematic representation of the mechanical stiffness characterization experiments.
(a) Coaxial contact with the spherical probe. (b) Radial contact at an angle of %. © 2018 IEEE

Following Eqn. III.2, we compute the effective moduli for SOFTcell at different internal pres-
sure states. The results are shown in Figure 5.5. As hypothesized, E* increases with pressure for
all contact scenarios.

Dynamic Loading and Hysteresis

Using the same experimental apparatus as in the previous section, we measure the time-varying
force imparted on a fixed probe as SOFTcell undergoes cyclic pressurization. The probe is placed
so that it is initially in point contact with the membrane of SOFTcell so that there is no deformation
of the membrane when the internal pressure of SOFTcell is the same as the ambient atmospheric
pressure. The duty cycle of the solenoidal valve connected to SOFTcell is then increased and
decreased from 0% to 100% as a triangle wave with a period of 17.5 sec (Fig. 5.6). The force
measured on the load cell closely tracks the triangle wave signal, showing the responsiveness
of SOFTcell’s actuation. Furthermore, we find that after 222 cycles at 1 Hz, the load force re-
mains consistent with a maximum peak of 1.174+1.66 x 10~* N, showing negligible hysteresis and
demonstrating the repeatability of SOFTcell’s actuation capabilities.

Sensitivity

We characterize the effect of controlling the internal pressure of SOFTcell on its sensing capa-
bilities. For the previously decribed spherical probe, the minimum detectable coaxial deflection



CHAPTER 5. A SOFT FINGERTIP WITH INTEGRATED SENSING AND ACTUATION 61

(a) 10 (b) 3
z z s
N~ 5 3 \/N é
S = o

. z 0 kPa
0 1 2 3 0 0.5 1 1.5
¢ (cm) 4 (cm)
157 d) e0;
(C) ( ) Coaxial Sphere
45} Radial Sphere
10} < Coaxial Plate
o
=] £ 30
= sl L
z 15
0 : ; 0 . .
0 0.5 1 1.5 0 2 4
0 (cm) p (kPa)

Figure 5.5: The results of the mechanical stiffness characterization experiments described in IV.A.
(a) Coaxial contact with a spherical probe. (b) Radial contact (%) with a spherical probe. (c)
Coaxial contact with a planar probe. At low pressures and higher indentations J, the planar probe
contacted the rim of the pressure capsule, so forces were not recorded. (d) SOFTcell’s effective
modulus increases as the internal pressure is increased. © 2018 IEEE

of SOFTcell above the camera’s static noise is found to be 0.6 mm. For a small deflection, we
linearize our empirical measurement of F,(§) (Fig. 5.5) at the origin to estimate minimum force
resolution. We find that minimum detectable force increases with internal pressure so that smaller
contact forces are detectable at lower pressures (Fig. 5.7).

5.5 Towards Reactive Grasping

We now utilize a different experimental setup as illustrated in Figure 5.8 in order to achieve two
goals. We first aim to validate the Hertz contact and effective modulus model of SOFTcell through
a simple shear experiment in Section 5.5, and we follow this with an implementation towards
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Figure 5.6: Comparison of coaxial and radial contact forces exerted by SOFTcell onto a fixed
force-torque sensor. The internal gauge pressure is varied between O and 6.14 kPa in a triangle
wave-like oscillation. © 2018 IEEE

simple reactive grasping in Section 5.5.

Model Validation

For this experimental setup, we fix SOFTcell such that its tip, under atmospheric pressure, is 20.25
mm from a vertical acrylic wall (see Figure 5.8). An empty 28.37 mm wide by 76.2 mm x 76.2
mm acrylic box with mass of 31.6 g is suspended between the uninflated SOFTcell and the wall,
causing SOFTcell’s initial normal membrane deflection (9) to be 8.12 mm. SOFTcell maintains
planar contact with the box throughout the experiment. The forces from the elastic membrane are
sufficient at internal atmospheric pressure to counter the weight of the empty box.

We vary the internal pressure state of SOFTcell (0 — 3 kPa). For each pressure state, we contin-
uously increase the mass of the empty box by adding 0.8 mm diameter / 670.2 ug glass beads. As
the load increases, the gravitational force overcomes the static frictional force between the box and
the wall, causing it to slip and the SOFTcell membrane to shear. We distinguish membrane shear
from other perturbations such as pure indentation through the displacement vectors of the internal
markers. Our heuristic determines shear if the standard deviation of the angular displacement is
below an experimentally-determined conservative threshold (i.e., the displacement vectors are all
within some margin in the same direction). Once a shear in the membrane is detected, we measure
the mass of the box and repeat this process for a total of ten trials per pressure state (Fig. 5.11).

To visualize membrane shear displacement, we use SciPy’s radial basis function interpolation
class to approximate a denser map of displacements from the sparse set of displacements extracted
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Figure 5.7: The minimum detectable force (F; ;) for coaxial contact with the spherical probe vs.
the internal pressure of SOFTcell. © 2018 IEEE

from the image. A contour plot of isodisplacement level curves can then be calculated from this
dense map of interpolated displacements, providing an approximation of the global membrane
motion and deformation. Figure 5.9 depicts representative isodisplacement contour plots of the
membrane shear data measured by SOFTcell during the experiments. Each plot depicts sensor data
of membrane deflection in the direction of shear under a shear load of 0.8N. The displacement
fields of the membrane in the direction normal to shear were found to be negligible. This is
consistent with our assumption motivating the heuristic for shear detection that the direction of
shear should be relatively uniform between the markers for a planar coaxial contact.

In addition to visualizing membrane shear from the displacement data, we also plotted the spa-
tial average shear deflections over the membrane against shear load at varying internal pressures in
Figure 5.10. As the shear load increases, SOFTcell detects larger shear deflections. This illustrates,
from the clustered data of Figure 5.10 at different pressure states, given a measured average shear
deflection, approximate shear force or load can be inferred.

Finally, from our measurements of box mass at the instance of slip, we estimate the normal
force between SOFTcell and the box (Fy). We measure the normal deflection () of the membrane
at the center of contact and plot these results in Figure 5.11. From the Hertz contact model (Eq.
II1.1), we obtain a prediction for the normal force-deflection relation:

4 1
Fn(p,8) = R(p)2E"(p)8*? (5.3)
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Figure 5.8: The experimental setup for Section 5.5 and Section 5.5. (a) SOFTcell pushes a box of
glass beads against a wall, applying sufficient normal force to counter the effect of gravity; (b) a
free-body diagram of forces involved in this experimental setup. © 2018 IEEE

where R(p) is the tip radius at pressure p, and E*(p) is the effective modulus, determined
empirically through characterization experiments (Fig. 5.5). We find close agreement between our
Hertz contact and effective modulus model and empirical results. Deviations between the model
and experiment are likely due to nonlinear effects outside of the regime of Hertz contact theory.

Task Demonstration

We present preliminary investigation of the potential for SOFTcell to aid in fine manipulation tasks,
in particular, with reactive grasping. Specifically, we utilize SOFTcell’s spatiotemporal sensing
modality to extract contact conditions during a grasp. Membrane shear is measured by the sensor,
and the actuation modality is then used to perform a reactive single-finger ”grasping” adjustment
of an object under varying load.

Measuring shear and slip of objects has been well-studied throughout tactile sensing literature
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([223, 68, 137, 67, 187, 173, 193, 84]) and a few groups have incorporated this detection into
closed-loop control for grasping ([187, 137, 173, 193, 84]). Here, we take inspiration from the ex-
periments in [68] and [223] to simulate a grasp between a finger equipped with sensing (SOFTcell)
and a stationary wall or ’finger” that provides structural support, using the identical experimental
setup in Section 5.5 (Figure 5.8). SOFTcell’s actuation capability allows it to additionally adjust
the strength of the grasp based on inferred grasp quality from sensory data.

For this demonstration, we begin with the same initial conditions as in Section 5.5, with an
internal pressure state matching atmospheric pressure. SOFTcell is at an identical distance from
the acrylic wall as before, and the same acrylic box is suspended between SOFTcell and the wall.
We vary the load by pouring glass beads into the box, similar to an experiment presented in [84].
It 1s expected that at some critical mass (dependent on the internal pressure of SOFTcell), the
membrane will shear as the box transitions from static to kinetic friction contact with the acrylic
wall. When a shear is detected, the pressure within SOFTcell is increased to re-grasp the object
and prevent slip.

As we vary the load of the box, SOFTcell successfully fine-tunes the grasp in real-time by
incrementally increasing its internal pressure and subsequently the applied normal force to the
box upon each detection of a shear, countering the new gravitational loads. We set the maximum
internal pressure at 4kPa so that SOFTcell’s membrane would not contact anything other than the
box (as it grows larger, it has the potential to touch the platform on which it is mounted). At the
maximum internal pressure of 4kPa, SOFTcell is able to “grasp” a full box of glass beads with a
mass of 210.2 g. A demonstration of this reactive grasping task is captured in the corresponding
video to this chapter: https://youtu.be/hipwkohfuYI

5.6 Conclusions

In this chapter, we presented the design and fabrication of SOFTcell, a low-cost variable stiff-
ness pneumatic device capable of multimodal tactile sensing and actuation. We demonstrated that
through a single control input (the pressure state within SOFTcell), we can control both the range of
contact forces that can be detected through tactile sensing and the effective modulus for actuation.
We also demonstrated how control of internal pressure allows for SOFTcell to operate multifunc-
tionally through different sensing and actuation primitives, such as through increased sensitivity
at lower pressure states and increased grasping force at higher pressure states. We developed a
simple effective modulus model of the device based on Hertz contact theory and validated the
model empirically. This effective modulus model enables estimation of the relationship between
contact force and membrane strain depending on the cell pressure and contact conditions. Finally,
we investigate the utility of SOFTcell in a reactive grasping task, demonstrating shear detection
and variable stiffness to improve contact.

There are numerous possible directions for future work. One direct application of the SOFTcell
would be in active tactile object and environmental exploration. Figures 5.2 and 5.9 provide exam-
ples of the rich image data that can be acquired from observing interactions of the elastic membrane
with the environment. Since the SOFTcell was designed to be scalable, it could be miniaturized
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into a fingertip, although its size would ultimately be constrained by the parameters of the internal
camera. With this data, one could explore basic tactile sensing tasks such as detecting incipient
slip [68], categorizing material textures, tracing seams and object boundaries [56], reconstructing
object geometries, and estimating material stiffness through impedance matching. It would be
important to also characterize the resolution of details captured by the images when varying the
stiffness of the membrane, as this would evaluate how SOFTcell augments its multimodal tactile
capabilities through variable stiffness.

Furthermore, we imagine that the SOFTcell could be re-purposed as an end effector for legged
locomotion. Substrate properties vary dramatically in natural environments, necessitating mul-
tifunctional appendages for legged locomotion. Using SOFTcell as a robotic appendage could
improve robot mobility by controlling stiffness to actively explore surface materials [186] and to
help gain traction in challenging terrain.

This chapter explored the sensing-actuation duality inherent in a device like the SOFTcell,
demonstrating its capabilities in a manipulation task. However, we acknowledge that, because this
device is pneumatically actuated, it cannot exist independently without being tethered to a larger,
pneumatic system. Thus, we designed a different variable-stiffness tactile device in the following
chapter, one that does not require tethering and is therefore easier to integrate with a robotic arm.
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p =0.34 kPa

p=2.21kPa

Figure 5.9: Contours of uniform membrane displacement from SOFTcell sensor data for a 0.8N
shear load at different cell pressure states. Displacements are in mm, in the direction of shear.
Displacements in the direction normal to shear were negligible for all trials. © 2018 IEEE
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Figure 5.10: Average membrane shear deflection measured by SOFTcell for different shear loads at
different cell pressure states. Different deflections are measured at different shear loads (depending
on the internal pressure state), suggesting that approximate shear load can be inferred from the
spatial tactile data. © 2018 IEEE
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Figure 5.11: Results of the membrane shear experiments (Section IV.E). (a) The mass of the
grasped object at the point of slip / detected shear vs. the pressure state of SOFTcell. (b) Measured
normal force vs. normal deflection compared to theoretical predictions from the effective modulus
Hertz contact model with measured parameters. Error bars show 95% confidence interval. © 2018
IEEE



70

Chapter 6

A Soft to Resistive Elastic Tactile Hand

This chapter is based on the paper “StRETcH: a Soft to Resistive Elastic Tactile Hand” [131],
written in collaboration with Josephine Koe, and Ruzena Bajcsy.

Soft optical tactile sensors enable robots to manipulate deformable objects by capturing im-
portant features such as high-resolution contact geometry and estimations of object compliance.
This work presents a variable stiffness soft tactile end-effector called StRETcH, a Soft to Resistive
Elastic Tactile Hand, that is easily manufactured and integrated with a robotic arm. An elastic
membrane is suspended between two robotic fingers, and a depth sensor capturing the deforma-
tions of the elastic membrane enables sub-millimeter accurate estimates of contact geometries. The
parallel-jaw gripper varies the stiffness of the membrane by uniaxially stretching it, which control-
lably modulates StRETcH’s effective modulus from approximately 4kPa to 9kPa. This work uses
StRETCcH to reconstruct the contact geometry of rigid and deformable objects, estimate the stiff-
ness of four balloons filled with different substances, and manipulate dough into a desired shape.
Experimental results can be viewed at https://youtu.be/_kr5b5bs8y8.

6.1 Introduction

With the advent of home robotics, robotic interaction with deformable objects such as electrical
cables, bed sheets, and pizza dough is inevitable [177]. In particular, effective dexterous manipula-
tion of solid deformable objects like dough requires the estimation of both contact geometry [220]
as well as compliance [121]. This work aims to address the problem of estimating both stiffness
and geometry while a robot is in contact with a solid deformable object.

To achieve this, this work proposes the development and use of a Soft to Resistive Elastic
Tactile Hand, StRETcH. Different tactile sensors enable a robot to make various important mea-
surements while in contact with an object, such as contact area, force, texture, and slip detection.
Within the diverse set of existing tactile sensors, soft tactile sensors are particularly well-suited
for interacting with deformable or fragile objects due to their inherent compliance. Prior work has
demonstrated the clear benefits of soft material sensors, including sensitivity to stiffness for tumor
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detection [206], high spatial resolution for classifying different textures [222], and handling of
delicate objects like wine glasses [101]. The above mentioned soft tactile sensors are all optically-
based, which enables high resolution contact imaging without the need to embed rigid components
in the soft interface.

StRETcH is not only a soft optically-based tactile hand, but it is also able to adjust its stiffness
and therefore vary the force it exerts on the environment. This work draws on our prior work in
Chapter 5 where a soft dome-shaped fingertip called SOFTcell was developed, which explored
the idea of a controllable-stiffness tactile sensor through pneumatic actuation [136]. An improved
design of SOFTcell, which uses a depth sensor to image the deforming membrane [73], was later
applied as an assistive robotic interface to dynamically support a human arm [71] as well as to
perform geometry-dependent tasks [72]. In this work, we modify our prior sensor by designing the
membrane to be planar rather than hemispherical, and varying its stiffness using a robotic gripper to
mechanically stretch the membrane uniaxially instead of increasing its stiffness through pneumatic
actuation. The benefits of this new design include the simple manufacturing process of the end-
effector and easier control of the stiffness of the membrane via mechanical stretching rather than
pneumatic actuation. This work aims to utilize the variable stiffness feature of the end-effector to
estimate stiffnesses of different deformable objects as well as to modulate the force exerted on a
solid deformable object in a manipulation task.

The main contributions of this chapter are:

e The Soft to Resistive Elastic Tactile Hand (StRETcH), a new variable stiffness tactile end-
effector that is easy to manufacture, integrate, and use with a robotic arm.

* Modeling and experimental characterization of StRETcH and its sensitivity to contact area
and object stiffness.

* A robotic demonstration using StRETcH to actively perceive and shape a piece of soft dough.

6.2 Related Work

Soft Tactile Sensing

Existing soft tactile sensors can be categorized by their underlying sensor technology — mainly,
resistive, capacitive, piezoelectric, and optical sensing [220]. Many resistive-based sensors rely on
intricate composition of individual nodes to achieve high-dimensional contact imaging [61, 110,
194, 44]. However, embedding rigid materials such as conductive wires within a soft skin limits
the material’s strain and therefore range of deformation. Thus, highly compliant fabric-like tactile
materials [20, 6, 218] and ultra-stretchable capacitive sensors [105, 167] have been developed.
These materials are largely useful for proprioception of soft robots [105] or soft exoskeletons [20,
6], but their low-dimensional signals are insufficient for relaying contact area information. While
it has been shown that richer contact information can be extracted from much lower-dimensional
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Figure 6.1: (Left): An orthographic view of StRETcH, mounted on a robotic arm. An elastic
membrane (blue) is attached to the robotic gripper, which modulates its stiffness through stretching
when interacting with an object (red). (Right): (a) Mid-range stiffness is used to deform a soft
object; (b) Low-range stiffness is used when measuring the object’s geometry; (c) High-range
stiffness is used to exert large forces on the object. © 2021 IEEE

tactile signals [150], achieving this requires sophisticated modeling of the sensor as well as an
extensive dataset relating raw signals to known geometric values.

Recent developments in optical image-based soft tactile sensors decouple the soft interface
from the sensing mechanism, thereby achieving both high deformability and high contact resolu-
tion. Examples of such sensors include FingerVision [210], GelSight [224], TacTip [206], SOFT-
cell [136], and Soft-bubble [2]. In particular, the SOFTcell design from Chapter 5 incorporated
both optical sensing and pneumatic actuation. Specifically, SOFTcell consisted of an elastic hemi-
spherical membrane, which was imaged from within by an RGB camera and modulated in stiffness
via pneumatic pressurization. This design enabled the sensor to be used as a controllable stiffness
tactile device and explored the inherent sensing-action duality. Similar designs that use depth sens-
ing to image the membrane were later developed in [73] and [2]. This work modifies the design
of SOFTcell [136] for ease of manufacture, integration, and use with a robotic arm. We aim to
use its controllable variable stiffness to enable high resolution contact imaging as well as measure
deformable object stiffness.
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Tactile Perception of Deformable Objects

One particular advantage we would like to exploit with the variable-stiffness image-based hand
design is that it allows for high-resolution contact geometry and stiffness estimation of a wide
range of deformable objects. Conventional tactile sensors often enable measurements for one or
the other, but rarely both. This is because stiffness estimates are typically made by measuring the
displacement of a probe upon application of a known force [184, 225], active palpation [44], or
via piezoelectric resonance [82, 158], which inherently are low-dimensional signals and cannot
replicate the rich geometric information available in image-based sensors. Meanwhile, soft opti-
cal tactile sensors, while able to image high-dimensional contacts, are typically only capable of
sensing a small range of stiffnesses before deforming the object itself. For example, a soft optical
tactile sensor called GelSight was used to estimate the hardness of several objects via active palpa-
tion [224]. However, the authors note that estimates of hardness are more accurate when the object
hardness is close to the hardness of that of the sensor. Because the GelSight is a gel-filled tactile
sensor, its elastic membrane has fixed stiffness and thus its sensitivity is limited to a narrower range
of deformable objects. This work aims to address this limitation by enabling the elastic interface
to vary in stiffness.

Manipulation of Deformable Objects

This work makes use of StRETcH’s variable-stiffness to manipulate deformable objects into a
desired shape. Deformable object manipulation can be categorized into the manipulation of de-
formable linear objects, planar or cloth-like objects, and solid objects [177]. Examples of linear
object manipulation include rope manipulation [214] and knot tying [195], while planar object
manipulation includes the folding of paper [8] or cloth [192, 139].

StRETcH was designed for the manipulation of solid deformable materials such as clay or
foam. Prior work in solid deformable object manipulation depended primarily on image-based
feedback. For example, in [153, 152], a bilateral manipulator uses features extracted from a stereo-
camera and an estimation of deformation properties to shape unstructured soft objects like foam
into desired two-dimensional shapes. The authors in [183] take a sensor-less approach by designing
a unique morphing skin that wraps around sculptable materials like clay to deform the material. In
[51], the authors pair a depth sensor with a force sensor attached to a rigid roller to flatten pizza
dough into a circle. StRETcH incorporates a soft morphing skin as in [183] while maintaining a
sense of contact force, as shown in [51]. When deforming solid materials, tactile sensing plays a
large role in determining the shape and hardness of an object, making StRETcH appropriate for
such applications.
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6.3 System Design

Figure 6.2: (Left): A cross-sectional schematic of StRETcH. The membrane is stretched by x mm.
When the membrane makes contact with an object, it is deformed from its original position (dashed
blue) and can be partitioned into undeformed (solid blue), deformed but not in contact (yellow),
and deformed and in contact (red) segments. (Right): 3D points corresponding to the red, yellow,
and blue segments are extracted from the depth image, resulting in a low error in estimated contact
geometry. © 2021 IEEE

Design and Fabrication

StRETcH is comprised of an Intel RealSense Depth Camera SR305 and a flat silicone membrane
attached to a Robotiq 2-Finger Adaptive Robot Gripper, which are both fixed to a Universal Robot
URS robotic arm (see Figure 6.1). The parallel-jaw gripper serves as the stretching mechanism
for the membrane as it varies its gripper throw and can stretch the membrane up to x = 80mm
past its original length (see Figure 6.2). The silicone membrane was manufactured by pouring
platinum-catalyzed EcoFlex 50 Silicone into a flat mold, which produced a 100mm x 90mm x
2mm rectangular membrane. Velcro was sewn onto strips of cloth that were embedded into the
sides of the silicone during the curing stage. The silicone membrane was attached to 3D-printed
gripper finger mounts with velcro.
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Contact Estimation

To interpret the deformations of the membrane captured by the depth sensor, we must first under-
stand that the membrane surface can be categorically divided by its deformation state. Specifically,
we follow the classification defined in [73] to segment the membrane into the following categories
based on the estimated curvature at each point:

(a) Undeformed: the membrane lies flat at its initial depth and is assumed to not be in contact
with the object.

(b) Deformed but not in contact: the membrane is deformed but not convex along either axis of
the 2D depth image.

(c) Deformed and in contact: the membrane is deformed and is convex in either axis of the depth
image.

The segmentation of category (c) points enables estimation of contact area and geometry, as
shown in red in Figure 6.2. Segmentation is based off of the proposed algorithm in [73], which
assumes that the object in contact with the membrane is flat or convex, and the contact area of the
object is larger than a single surface element of the membrane.

Under these assumptions, membrane segmentation begins by first isolating the membrane in
the depth image. This is done by using a box mask that depends on the width of the gripper throw.
The depth image points corresponding to the membrane are projected into 3D and transformed
into coordinates relative to the membrane plane when it is flat and undeformed. Normal vectors
are then estimated from the 3D point cloud of the membrane. These normal vectors and points
are used to calculate curvature at each point. Let depth image pixel (i, j) have 3D coordinates
p(i, j) and normal vector 7i(i, j). Local curvature signals K; and K; along the i and j directions,
respectively, can then be estimated at each depth image pixel using the method presented in [151]:

ICi(iaj) = <ﬁ(i+ 17]) _ﬁ(i_ 17j)7ﬁ(i+ 17]) _ﬁ(i_ 17]))

If a curvature signal is positive, the point is locally convex in that direction; if it is negative, it
is locally concave. Thus, 3D points are categorized as in contact with the object if they exhibit
sufficiently high curvature in either direction. Additionally, any points lying above the plane of
these points are also considered to be in contact with the object, thus accounting for contacts with
flat-faced objects.

6.1)

6.4 Model of StRETcH

The StRETcH membrane becomes more rigid as it is stretched. Characterization experiments show
that the mechanical response of StRETcH is a function of the internal strain state of the elastic
membrane, caused by uniaxial stretching from the gripper and transverse loading and displacement
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of the membrane from the object in contact, which depends on the contact geometry and depth of
indentation.

The mechanics of Neo-Hookean membranes are complex and nonlinear, and, to the best of
our knowledge, there does not exist an explicit model that calculates the mechanical response
of a uniaxially stretched Neo-Hookean membrane under contact with elastic objects of varying
geometries. There exist models for spherical [15, 216, 12] and cylindrical [159, 119] rigid inden-
tation of stretched membranes, although these membranes are omnidirectionally stretched and our
experimental data does not match their power laws. Recently, numerical simulations present an
alternative to explicit models to, for example, calculate the strain due to uniaxial stress on rectan-
gular sheets of rubber [198, 198]. However, numerical simulation is often too slow for real-time
robotic use.

Instead, we borrow and revise from prior work [136, 182] the idea of modeling the membrane
as an equivalent linearly elastic solid half-space subject to the same contact conditions. This model
is not meant to represent the internal strains of the membrane, but rather, we adopt it as a template to
express StRETcH’s varying stiffness. We imagine that this equivalent half-space has an associated
elastic modulus, which we refer to as the effective modulus E*, to approximate the mechanical
response of the membrane at its different stretch states.

Hertz contact theory [79] relates the load force F and indentation depth 6 for frictionless con-
tact between:

1. an elastic half-space and an elastic sphere:

F= %‘(33@1/2( 1 ;:2 - ,;:%)‘1 62)
2. an elastic half-space and a rigid cylinder
F =2RJOE™ (6.3)
3. an elastic half-space and a rigid cone
F = 25° E* (6.4)

(1 —v?)tan(0))

where R is the radius of the sphere and cylinder, 0 is the angle between the conical surface and
the elastic surface, and E* and v are the effective elastic modulus and Poisson’s ratio of the half-
space. We use the Poisson’s ratio of ideal rubber (0.5) for v. E, and v,, are the elastic modulus and
Poisson’s ratio of the elastic sphere, but in characterization experiments, the indenters are rigid,
so it is assumed that E* << E,. Characterization experiments measure the mechanical response
of the membrane against all three basic geometries and in various stretch states and indentation
depths. All contact loads are centered, transverse, and normal to the membrane surface. Despite
mechanical differences between elastic membranes and half-spaces, this simplified representation
enables fast and empirically accurate load force estimations (Section 6.5).
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6.5 Experimental Characterization

Variable Stiffness

Figure 6.3: (a) Indentation depth J vs. load force F for varying stretch states for a 20mm diameter
hemispherical rigid indenter; (b) 8 vs. F for varying stretch states for a 20mm diameter cylindrical
rigid indenter; (¢) & vs. F for varying stretch states for a 45deg conical rigid indenter; (d) O vs.
F for varying diameter hemispherical indenters with a membrane stretched by 30mm; (e) Stretch
distance x vs. effective modulus E* for varying diameter hemispherical indenters; (f) x vs. E* for
indenters of varying geometry. © 2021 IEEE
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To characterize the varying stiffness of S(RETcH under different contact conditions, we measured
the contact force of a rigid hemisphere, cylinder, and cone, as well as rigid hemispheres with
different diameters, on the membrane at various uniaxial stretch states (x) and indentation depths
(0). A clamped ATI Axia80 EtherNet Force/Torque (F/T) sensor was used for force measurements,
and 3D-printed probes of hemispheres, cylinders, and a cone were attached to the F/T sensor
through friction coupling with a 3D-printed interface. The URS robot was commanded to press
the membrane into the probe up to 15mm in depth in the z-axis of the F/T sensor, with 1mm
steps, generating a vector of indentation depth to force data pairs. This was repeated 5 times each
for 7 total stretch states, from zero applied tension to a Cauchy strain of 0.8 (the membrane was
stretched up to 60mm beyond its original length). The dots in Figure 6.3 correspond to the force
data measured at each contact condition.

Using equations from Section IV, an effective modulus (E*) was fit for each stretch state to the
pairs of force to indentation depth data. The calibrated model with the estimated effective modulus
is shown as the solid lines in Figure 6.3. As shown in graphs (a)-(d), the resulting model adheres
closely to the real data. Deviations occur for small indentations, but past 3mm indentations, the
model performs well, especially under the condition of spherical and conical contact. Additionally,
Figure 6.3(d) shows that as the contact area increases, the load force increases as well. Finally, the
averaged estimated effective moduli E* (in kPa) at each stretch state for the different scenarios
(contact area and geometry) were plotted in Figure 6.3 (e) and (f), respectively. As shown in both
graphs, the effective moduli monotonically increase in the operating region, which demonstrates
that StRETcH indeed does have variable stiffness. The cylindrical and hemispherical data also
show low variance over 5 trials, demonstrating that this variable stiffness is reasonably repeatable
and controllable.
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Contact Estimation Sensitivity

Figure 6.4: (a) Example estimated contacts with cylinders of varying diameters; (b) Errors in esti-
mated diameter along the stretch direction j for different indentation depths & and stretch distances
x; (¢) Errors in estimated diameter in the i direction for different § and x; (d) Absolute total error in
estimated diameter along the i& j directions for different  and x. (b-d) demonstrate higher contact
estimation accuracy for larger d and lower x. © 2021 IEEE

In addition to characterizing StRETcH’s variable stiffness, membrane indentation experiments
were also performed to quantify the sensitivity of StRETcH in measuring contact geometry (see
Section 6.3). Five right circular cylinder probes were used in this characterization, ranging from
10mm to 30mm in diameter. For each cylinder, the URS was again commanded to press the mem-
brane into the probe up to 15mm, in the direction of the length of the cylinder, for the 7 stretch
conditions characterized in the prior section. The error in estimated diameter along the i and j
directions were calculated for each scenario and depicted in Figure 6.4.

As shown in Figure 6.4(a), the sensor is capable of sub-millimeter accuracy when estimating
contact of the varying circular faces. However, this level of sensitivity arose under specific contact
conditions. Figures 6.4(b) and (c) visualize the diameter error for the 20mm cylinder under differ-
ent indentation depths and stretch distances in the 7 and j directions. As shown in these two plots,
in general, the high-sensitivity region corresponds to larger indentation depths and lower stretch
states. The high-accuracy region improved with decreasing diameter, since larger flat contact areas
resulted in lower curvatures registered by the contact estimation algorithm. Indentation depths of
less than 2mm tended to perform poorly for all five cylinders. Furthermore, it appears that the
more the membrane is uniaxially stretched, the greater the indentation depth is needed to achieve
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sub-millimeter accuracy. This matches the intuition that the stiffer the membrane is, the greater the
force necessary for the membrane to conform to the geometry.

Estimating Load Force from Estimated Contact

Figure 6.5: (a) Alternative visualization of Figure 6.3(e). Negative exponential curves are fitted to
the datapoints (which are the average E* over five trials). The vertical line denotes corresponding
effective moduli for an estimated spherical contact with radius R*. (b) A logarithmic function is fit
to the corresponding points lying on the vertical line 2R* in plot (a). The fitted function estimates
E* given the stretch distance x for the particular geometry of radius R*. (c) Generated 6§ vs. F
functions for the specific radius R*. © 2021 IEEE

The above characterization experiments present S(RETcH as a multimodal system: at low stretch
states, the hand has high sensitivity to contact geometry, and higher stretch states enable greater
contact forces. Here, we examine the accuracy of load force estimation given the estimated contact
geometry at a particular indentation depth & and stretch distance x.

Let us consider contact with a rigid spherical object that has an estimated radius of R*. To
estimate the contact force of StRETcH with the object, we need to derive a model of E*(x) for the
specific radius R*. First, note that the datapoints in Figure 6.3(e) can be equivalently represented
as in Figure 6.5(a). For each stretch distance, a negative exponential curve is fit, where each curve
is a function of the contact diameter. This enables estimations of E* for a particular contact radius
R* at different stretch distances. A logarithmic function can then be fit (see Figure 6.5(b)) to model
E* for different stretch distances x, given the estimated radius R*. Load force F* is thus estimated
by plugging E*, R* and 0 into Equation 6.2. Figure 6.5(c) shows 6 — F curves for R* and various
values of x, which are generated using the model in Figure 6.5(b).

We tested the accuracy of estimating F* given the estimated radius R* with leave-one-out cross-
validation. Specifically, using four of the five curves in Figure 6.3(e) to fit the model for E* given x
and R*, we tested the accuracy of the estimated F* against ground truth for indentations of the left-
out data. On average, the estimated load force had an error of 0.023 +-0.011N, which is less than
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1% of the total range of the operating region. Thus, using the model in Section 6.4, StRETcH’s
mechanical response can be estimated given contact conditions and stretch state.

6.6 Experiments

Figure 6.6: 3D reconstructions of contacts with a: wooden cube, wooden triangular prism, wooden
half-cylinder, wooden bridge, glass snowman, paper cube, paper half-cylinder, paper pyramid, wire
circle, and wire triangle. © 2021 IEEE

3D reconstruction of deformable and clear objects

To demonstrate the capabilities of StRETcH as a tactile hand, we first used it to reconstruct the
geometry of several objects. As shown in Figure 6.6, StRETcH was capable of reconstructing the
contact of several basic geometric shapes as well as soft enough to conform to highly deformable
material such as paper and wire. When contact is made, the 3D points associated with the estimated
contact area are transformed into the robot world coordinates. As the robot moves to collect a new
observation through StRETcH, the object point cloud is updated with every new contact. This
allows for the reconstruction of “multi-view” objects such as the wire circle. For this section, the
robot was jogged to multiple positions if necessary (e.g, for the larger objects such as the wooden
bridge, snowman, and wire objects). The membrane was kept at its lowest stretch state (zero
applied tension) to maintain its high sensitivity and conformability in the case of encountering a
deformable object.

The 3D reconstructed geometries match closely to the corresponding objects. From the wooden
objects, it is clear that the membrane, at its low stretch state and indentation depth, causes the
estimated geometry to be smoother, rounding out the corners and edges of the shapes. However,
the dimensions of the contacts are within 2 mm of error from the real dimensions. The glass
snowman, which would normally not be imaged properly through traditional vision, is found to
have three domes. The paper 3D objects are imaged with accurate reconstruction, and, despite
making contact with StRETcH, the heights of the paper objects are maintained, with an error of
3 mm. Finally, the robot collected multiple viewpoints of the highly deformable wire circle and
triangle, reconstructing the original wire geometry.
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Estimation of deformable object stiffness

Figure 6.7: (Top): Stiffness estimations in N/mm for balloons filled with air, water, chia pudding,
and chia seeds. (Bottom): Active sensing is used to determine stiffness. Plots display force modu-
lation of StRETcH (shown in red) as it increases its indentation depth (moving along the curve to
the right) and stretch width (moving to higher curves) until a deformation is sensed. 6-F curves
are generated using the learned model described in Section 6.5. © 2021 IEEE

This section demonstrates how StRETcH actively interacts with a deformable object to estimate its
stiffness. Four balloons were filled with approximately the same volume of air, water, a mixture of
water and chia seeds, and chia seeds. When water and chia seeds combine, the mixture becomes
very viscous relative to water. Qualitatively, the air balloon was the least stiff, followed by water,
chia pudding, and chia seeds. Each balloon was fixed inside a cup so it would not move during
palpation experiments. The exposed portions of the balloons were approximately hemispherically
shaped.

To estimate stiffness, the robot algorithm begins by estimating the radius of the balloon. This
is done using the lowest stiffness regime of StRETcH, which, as shown in Section 6.5, has greater
sensitivity to geometry due to high conformability under zero uniaxial strain. The robot takes note
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of the balloon’s height and presses StRETcH’s membrane into the balloon up to 10mm. After
observing the contact at 10mm, a sphere is fit to the estimated contact points. Estimating the
geometry is necessary, as Figure 6.3(e) shows that the effective modulus E* varies with the contact
area.

The robot proceeds to increase its stretch state incrementally and continues pressing the mem-
brane into the balloon until the height of the balloon is sensed to have dropped below a certain
threshold from its original height. We set this to 1.5mm as sensor noise was on the order of
+1mm. At this point of deformation, the force F* exerted by the membrane onto the deformable
balloon can be calculated using the fitted model described in Section 6.5.

A proxy for stiffness in N/mm is then determined. Approximating the object as an elastic
body with one degree of freedom, the stiffness is calculated by dividing F'* by the deflection of the
balloon under the membrane’s imposed force. As shown in the upper table of Figure 6.7, StRETcH
is capable of repeatably estimating the stiffness of a wide range of substances. Note that, although
these are technically proxy values for stiffness due to the simplified representation of the balloons,
the estimated values are sufficient for differentiating between materials within this range.

Finally, Section 6.5’s model can be used to improve the robot’s active sensing capabilities. The
lower plots of Figure 6.7 display example indentation depth () to load force (F) curves at different
stretch states (x), with higher curves corresponding to higher stretch states. The red lines denote
the indentation depths and stretch states explored until a deformation is sensed for that particular
object. As shown in the plots, if no deformation is sensed by StRETcH before the membrane is
stretched any further, the model can be used to calculate the indentation depth to begin palpation
for the next stretch state such that the force applied by the membrane is monotonically increasing
until the deformation is sensed. This demonstrates that StRETcH can incorporate the model to
actively adjust during system identification of the object in question.
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Rolling a piece of dough and forming a sphere

Figure 6.8: Example cookies formed from cubes of Play-Doh. (Top): The dough begins as a
cube; (Middle): The dough is rolled into a sphere using medium stiffness; (Bottom): The dough is
flattened into a cookie using high stiffness. © 2021 IEEE

We conclude with a demonstration of the use of StRETcH to form a cookie out of Play-Doh by
rolling the dough until it forms a sphere and then pressing it into the shape of a cookie. This
task necessitates three different stiffness regimes of StRETcH: (1) low stiffness to measure the
geometry of the object; (2) medium stiffness to match the estimated force necessary to deform the
object when rolling it; and (3) high stiffness to compress the dough ball into a cookie.

First, the algorithm presented in Section 6.6 is used to estimate the force necessary to deform
the piece of dough. StRETcH adjusts its stretch state to reflect the estimated stiffness given the
current geometry of the dough formation. The URS proceeds to then roll the dough in a circle,
checking the height of the object in parallel at 1Hz. When the standard deviation of the last ten
observed object heights is less than 1mm, the robot stops rolling the piece of dough and assumes
it is now a sphere. The high conformability of StRETcH enables tracking of the dough ball’s
height while providing enough stiffness to deform the dough during rolling. Furthermore, while
traction resulting from tangential motions applied to the dough with large indentation depth is not
modeled, these additional forces contribute in shaping the dough. Finally, StRETcH engages its
highest stiffness by stretching to its maximum width and pressing down onto the dough to form
a cookie. If the dough was successfully shaped as a sphere, the cookie would be round. The

circularity, or I% of each cookie was calculated, with 0.785 and 1 corresponding to a perfect

square and circle, respectively. As shown in Figure 6.8, StRETcH successfully shaped the cookies
(with average circularity of 0.888) from cubes of dough.
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6.7 Conclusions

In this work, we presented a Soft to Resistive Elastic Tactile Hand called StRETcH. Modifying the
design of the tactile sensor developed in [136, 73], StRETcH consists of an easily-manufactured
membrane that is imaged by a depth sensor and uniaxially stretched by a parallel-jaw gripper.
Contact geometry estimation using StRETcH can exhibit as low as sub-millimeter accuracy, and
StRETcH can reconstruct the geometry of deformable objects such as paper cubes and wire shapes.
The new actuation design enables controllable effective modulus from 4kPa to 9kPa. With a cal-
ibrated model of the mechanical response of StRETcH, errors in estimated contact forces are on
average less than +0.025N. Furthermore, by modulating its stiffness, SC(RETcH was able to effi-
ciently estimate a proxy stiffness for balloons filled with different materials. We concluded with a
demonstration of StRETcH working in three different stiffness regimes to 1) estimate the geometry
of a piece of dough, 2) deform the dough during rolling, and 3) press the dough ball into a cookie
shape.

This work demonstrates new capabilities of variable stiffness soft tactile hands, and future
work aims to improve on the design and modeling of StRETcH as well as to develop more efficient
algorithms for manipulating solid deformable objects. First, the stiffness of StRETcH (and there-
fore the exerted force) is upper-bounded due to the thickness of the membrane and the maximum
allowable stretch from the robotic gripper. Future designs of the sensor will focus on exploring
new materials that have a larger range of stiffness when stretched (e.g., reinforcing the membrane
with flexible fibers) and designing new mechanisms for uniaxial stretching that could miniaturize
StRETcH onto an individual robotic finger for more dexterous in-hand manipulation. Further-
more, while the Hertz contact model approximation was shown to fit the experimental data quite
closely, we fully acknowledge that a membrane is mechanically quite different and much more
complex than an elastic half-space. Therefore, more physically-accurate modeling may be done by
pairing state-of-the-art numerical simulation of membranes such as in [197] with a learning-based
approach presented in [150] to estimate the contact force and stiffness of an object from contact
geometry and the stretch state of the sensor. One could also imagine using a highly stretchable
sensing skin such as in [105] to directly sense the internal strain of the membrane, which, paired
with numerical simulation, could potentially make more accurate predictions of contact forces. Fi-
nally, StRETcH was able to roll a block of dough into roughly a sphere, but each roll-out required
on average ten minutes, with some lasting up to twenty. In the following chapter, we explore using
reinforcement learning techniques with StRETcH to efficiently shape dough into logs of varying
lengths.
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Chapter 7

Deformable Elasto-Plastic Object Shaping

This chapter is based on the paper “Deformable Elasto-Plastic Object Shaping with an Elastic
Hand and Model-Based Reinforcement Learning” [130], written in collaboration with Ruzena
Bajcsy.

Deformable solid objects such as clay or dough are prevalent in industrial and home environ-
ments. However, robotic manipulation of such objects has largely remained unexplored in liter-
ature due to the high complexity involved in representing and modeling their deformation. This
chapter addresses the problem of shaping elasto-plastic dough by proposing to use a novel elastic
end-effector to roll dough in a reinforcement learning framework. The transition model for the
end-effector-to-dough interactions is learned from one hour of robot exploration, and doughs of
different hydration levels are rolled out into varying lengths. Experimental results are encourag-
ing, with the proposed framework accomplishing the task of rolling out dough into a specified
length with 60% fewer actions than a heuristic method. Furthermore, we show that estimating
stiffness using the soft end-effector can be used to effectively initialize models, improving robot
performance by approximately 40% over incorrect model initialization. Experimental results can
be viewed at https://youtu.be/SKpmaglL1CY.

7.1 Introduction

Robotic manipulation of deformable objects has applications in various domains, including robotic
surgery, home robotic solutions, and automated food preparation. A ubiquitous challenge that per-
sists throughout this area of robotics research is that robotic interactions with deformable material
are highly complex, often nonlinear, and difficult to model. These complexities impose additional
challenges of tractability in action selection for manipulating the deformable object. The partic-
ular task this work focuses on is shape-servoing elasto-plastic solid (3-dimensional) deformable
objects. Specifically, the goal is to find a sequence of rolling actions to apply to a ball of dough
to efficiently form it into a desired length. Rolling out dough into a log is a crucial part of many
dough manipulation tasks, from dumpling making to bread shaping.
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Figure 7.1: (left): Diagram of the robotic system. The elastic hand is used to roll the elasto-plastic
dough back and forth. The gripper changes the hand’s stiffness via stretching, which modulates
the force imposed by the hand onto the dough. The overhead depth camera is used to track the
progression of the dough’s shape. (right): Four frames taken from a rollout of a dough ball into a
10 inch log. Image is colorized to match the diagram on the left. © 2021 IEEE

To address this task, we designed an elastic end-effector attachment for a parallel jaw gripper
that can vary in stiffness via stretching. This design is a revision of the StRETcH sensor [131]
presented in Chapter 6, a variable stiffness tactile end-effector. Changes were incorporated to
compensate for kinematic limits of the robot arm and to allow for deeper contacts with the dough.
Soft robotic end-effectors have low intrinsic stiffness and mass, making them particularly useful
for handling delicate objects such as coral reefs [52] and wine glasses [2]. However, they can be
challenging to manufacture or require additional tethering, cabling, and hardware. In contrast, the
proposed elastic end-effector attachment is easy to assemble and can be made from two elastic
bands. Furthermore, with the aid of a depth camera rigidly mounted above the work surface, it can
be used to estimate the stiffness of objects with an active palpation technique proposed in the prior
chapter.

Manipulation of clay or dough is typically non-prehensile, i.e., it involves pushing or moving
the object against a surface [25]. In this work, we design a simple action space to roll out a piece
of dough against a horizontal flat surface and track the dough’s shape progression with a low-
dimensional feature space. These simplifications help condense the complexity of the task, making
model-based reinforcement learning a tractable solution. Dynamics models are learned for specific
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dough through random exploration, and experiments demonstrate that model-based reinforcement
learning is an effective way to complete the given task of dough rolling. Furthermore, we show
that stiffness estimation can be used to match the correct dough model for more efficient rolling.
To our best knowledge, this is the first work to propose a solution using a soft robotic end-effector
to shape-servo a deformable elasto-plastic object.

The main contributions of this chapter are:

* A new elastic end-effector attachment designed for shaping solid deformable objects that is
cost-effective and easy to integrate with a parallel-jaw gripper. The elastic end-effector is
also used to estimate the stiffness of different dough, which improves rolling performance.

* An algorithm leveraging model-based reinforcement learning and simple featurization and
actions that enable tractable optimization for the real-time solid deformable object manipu-
lation task.

* Robotic experiments that roll doughs of different hydration levels into varying lengths. These
experiments serve to quantify and demonstrate the efficacy of the proposed hardware and
software framework.

7.2 Related Work

Deformable Object Manipulation

Commonplace in many domains like the home environment, deformable objects are categorized
as linear, planar, and solid objects [177]. Efforts in robotic manipulation of deformable objects
have largely focused on manipulating linear objects such as rope [214, 195] and cables [231], as
well as planar objects like paper [8], cloth [139, 129] and gauze [199]. This particular work is
interested in studying the manipulation of solid deformable objects like dough, which remains the
least researched category within robotic deformable object manipulation [177].

The complexities involved in representing a solid deformable object’s shape as well as mod-
eling its interactions with a robot and the environment contribute to the difficulty of this area
of research. Thus, there has been significant effort in designing effective ways to parameterize
deformable objects. For instance, a variety of approaches have been proposed for tracking the con-
tour or shape of a deformable object during manipulation, ranging from continuum mechanics and
simulation-based methods [164, 55] to neural network-based methods for contour segmentation
and deformation tracking [35, 34, 188]. However, due to the nature of this work’s defined task and
its objective, simple geometric features are demonstrated to be a sufficient parameterization of the
dough.

In terms of designing control or action selection policies to effectively manipulate deformable
solid objects, prior work has utilized both model-based [65, 219] and model-free adaptive methods
[153, 25]. While simulation-based methods have been shown to be quite useful in the space of
linear and planar object manipulation [195, 53], it is more computationally expensive to collect
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large amounts of data for physically-realistic simulations of dough. Learning from demonstrations
has therefore been cited to be the most popular method for training a robot to shape deformable
objects [147], accomplishing tasks such as shaping sand [25] and pizza dough [51]. Similar to
the work in [65, 219], this work uses a model-based method, where material-relevant parameters
are estimated and then used to guide the control strategy. However, the model does not explicitly
represent the deformations of the object but rather captures its transitions resulting from robot
interactions. Because this work is model-based, it requires significantly less data than model-free
methods.

This work is unique in that it is the first work to propose using a soft robotic end-effector as the
tool for shape-servoing dough. Furthermore, intentional design of simple feature and action spaces
allows for real-time model-based reinforcement learning to solve the desired task.

Soft Robotic End-effectors

A soft robotic end-effector was designed specifically for the task of rolling and shaping dough.
Composed entirely of an elastic band, the end-effector’s variable stiffness allows it to be sensitive
to highly deformable objects while capable of imposing enough force to exert work on the object
in order to change its shape. Soft robotic end-effectors have been used for grasping objects as
delicate as coral reef [52], maneuvering fragile wine glasses [2], and supporting and interacting
with humans [71]. The ability to conform to the environment and controllably vary in stiffness
is crucial when handling soft, elasto-plastic objects like dough, which will permanently deform
under large forces or flatten from rigid end-effectors.

Soft robotic end-effectors have also been coupled with tactile sensing. Capable of providing
high-resolution images of contact area, soft tactile sensors have been used to detect tumors in
tissue [206] as well as estimate the hardness of fruits [224].The proposed end-effector in this
chapter is a variation of the Soft to Resistive Elastic Tactile Hand (StRETcH) [131], which is a
variable stiffness tactile end-effector made of elastic material. In Chapter 6, S(RETcH was used to
measure both the stiffness of different objects as well as their geometry under contact. Preliminary
experiments showed promising results in using variable stiffness to roll a block of Play-Doh into
a sphere via a heuristic circular motion. We hope to expand on that concept by pairing the new
iteration of StRETcH with an action-selection algorithm to roll a ball of Play-Doh into logs of
different lengths.

Model-Based Reinforcement Learning

The proposed action-selection algorithm for this work is rooted in model-based reinforcement
learning. Reinforcement learning (RL) has been used to manipulate linear and planar objects using
both model-free [117, 129, 78] and model-based approaches [62, 46]. Much of this prior work
relies on simulation in order to collect training data, as physical experiments are expensive. How-
ever, simulated representations of three-dimensional deformable objects like clay or dough are
complex or physically inaccurate and thus have not been substantially explored. Model-free RL
has been shown to be effective at learning control policies directly from high-dimensional input,
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although these methods require a considerable amount of data, while model-based RL is much
more sample efficient at the cost of scaling poorly with high-dimensional tasks [122]. This chapter
largely takes inspiration from the model-based RL framework proposed in Nagabandi et. al. [149],
which highlights the sample efficiency achieved with a model-based approach. Furthermore, the
parameterization of observations and simplification of the action space ensures that this task is
low-dimensional and therefore optimization is tractable. Data collection for training the transition
model of the nonlinear end-effector-to-dough interactions is simulation-free and only uses approx-
imately one hour of real robot time per dough. Experiments demonstrate that model-based RL
efficiently accomplishes the task of dough rolling, even for poorly initialized models.

7.3 Problem Statement

Definitions and Objective

The objective of this chapter is to design a policy to select a sequence of rolling actions to apply to
a ball of dough, using the elastic end-effector, to form it into a desired length. More specifically,
at time step ¢, the dough will be in a state s, € S. In reality, s; will represent a partial observation
of the true state of the dough. Using the elastic end-effector, the robot can apply a rolling action
a, € A to the dough. Upon execution of the action, the dough will transition to a new state ;.
This transition is assumed to be captured by an underlying dynamics or transition function f :
SxA—=S.

Since the goal is to find a sequence of actions that will form the dough into the desired shape
in the least amount of steps, the problem can be naturally formulated in a reinforcement learning
(RL) framework. In RL, a reward r; = r(s;, a,) is received at each time step ¢, and the robot or agent
is tasked with taking the action that will maximize the cumulative reward over future time steps.
We design the reward function to directly reflect task progression, i.e., the shape of the dough at
time 7 (s,) relative to the goal state s,. Thus, an H-length sequence of future actions can be selected
by evaluating the objective function at each time step ¢:

H-1
(..., 5—1) = argmax Y V'r(Siimain) (7.1)

ar,...,aQ, —
1yt +H li’l:O

where ¥ € [0, 1] is a discount factor that places more weight on more immediate rewards.

Assumptions

The interaction between an elastic membrane and an elasto-plastic object is complex and difficult to
model, but the following assumptions allow for a tractable, real-time solution. First, when the robot
is not in contact with the dough, we assume that the dough’s state is in equilibrium and unchanging.
This allows for the simplification of transition dynamics, where each state observation s; is taken
at a time step r when the robot is no longer in contact with the dough. The transition function
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Figure 7.2: (a): Featurization of a point cloud of dough. The state observation [/, w, h] is extracted
by finding the minimum bounding box enclosing this point cloud. The yellow region signifies
where the robot will contact the dough in the next roll. (b): Each roll is state-dependent. The
length of the elastic band ¢ and the distance of the roll d are fixed to be equivalent and lower-
bounded by w. The depth of the indentation 6 is upper-bounded by 4. © 2021 IEEE

f models the change in state due to this applied action and thus is not time-dependent. Rather,
the problem can now be considered in a discrete-time formulation, where samples are observed
between what are assumed to be stationary interactions. Additional assumptions include that the
dough is uniform, it is not sticky or softer than the elastic membrane when un-stretched, and there
exists enough friction between the dough and the work surface so that the dough will roll instead
of slide under applied forces from the end-effector. Furthermore, the goal states are assumed to be
reachable from the initial spherical state of the dough. With these assumptions, explicitly modeling
the complex interactions between the dough and the soft elastic end-effector can be circumvented.
Instead, the transition function f summarizes the bulk effects due to the applied actions at a sparse
timescale that is sufficiently descriptive and computationally friendly.

7.4 Methods

Featurization of Dough

Due to the objective’s geometric nature, a low-dimensional feature vector was used to capture the
shape of the dough. The chosen state space is defined as S = {I,w,h,x;,y;}, a five-dimensional
space composed of the length, width, and height (in meters) of the minimum bounding box en-
closing the dough, and the x — y position of the highest point of the dough (x,y;,z,). The goal
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states are uniform cylinders of varying lengths, so this low-dimensional feature space is sufficient
for the task. For more complicated objectives, e.g., forming a shape that cannot be parameterized
by simple geometric features, a larger state space can be explored.

To extract these features from the original point cloud of the dough, a depth image of the
workspace is sampled when the end-effector is not in contact with the dough. The depth image
is projected into a 3D point cloud using camera intrinsics, and the point cloud is transformed into
world coordinates, with the origin centered at the base of the robot. The workspace surface and
the robot end-effector are filtered from the transformed point cloud, resulting in a point cloud of
the surface of the dough. The highest point (x;,yy,z;) is determined from the filtered point cloud.
h is calculated by subtracting the maximum height (z;) of the point cloud from the height of the
workspace surface, and / and w are calculated by finding the minimum-area bounding rectangle
of the points, projected into the x — y plane. Feature extraction is illustrated for an example point
cloud in Figure 7.2a.

Simplified Action Space

While we acknowledge the diversity of actions that can achieve the desired goal states, we greatly
simplify the search problem by reducing the action space to five dimensions. To do this, we
constrain most of the rolling motion applied at each step ¢. Furthermore, added heuristic constraints
compress the effective search space to two dimensions.

First, let a rolling motion m(¢,d,x,y,z) be defined by the length of the elastic band ¢ (i.e., the
gripper throw), the distance of the roll d, and the position (x,y,z) of the robot hand where the roll
begins and ends. Each rolling motion is constrained to move in a back and forth motion along the
direction of the x-axis, which should lie approximately perpendicular to the length of the dough
formation. Thus, the entire roll begins with the robot end-effector positioned at (x,y,z), moves to
position (x+ o * %, ¥,2), position (x — ot * %, ,2), and ends at position (x,y,z), where & is randomly
assigned 1 or —1 each time ¢ for symmetry.

To further simplify the search space over actions A € {/,d,x,y,z}, a heuristic policy targets
every roll to begin at the x — y position of the highest point of the dough formation (x;,ys,zp);-
That is, the roll motion fixes x = x;, and y = y;,. Roll distance d is also constrained to equal the
parallel jaw gripper throw /. These heuristic constraints keep the dough fairly even during rollouts
and reduce the effective action space. Thus, the two remaining variables for the rolling motion
m are ¢ and z. We lower bound the range of ¢ at time ¢ by the width of the dough w at that time
step. Varying ¢ subsequently varies the stiffness of the elastic band, which consequently changes
the force applied to the dough during rolling contact. Finally, the vertical depth at which the elastic
band presses into the dough can be calculated by 6 = z;, —z. We impose the following bounds
to the depth & € [0.005, 4] to guarantee contact with the dough for all rolls while ensuring that
the robot does not violate physical boundaries. The effective two-dimensional action search space
used to parameterize the rolling motion thus consists of the length of the elastic band ¢ and the
pressing depth 6 = z;, — z. These are summarized in the diagram in Figure 7.2b. Note that all roll
motions are executed at the same speed.
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Random Exploration

Random interactions with the dough are used for two purposes — to collect data to learn a dynamics
function f and to use as comparison against the proposed action-selection algorithms. At time
step ¢, a random action a, = (¢;, &) is uniformly sampled from a state-dependent distribution.
Specifically, the length of the elastic band ¢; is sampled from a uniform distribution bounded by
[We, lmax|, Where wy is the current width of the dough and ¢, is the maximum gripper throw.
The pressing depth & is sampled from a uniform distribution bounded by [0.005,%;]. Once the
random action g, is sampled, a rolling motion m(¥;,4;,xy,yn,zn — &) is executed, i.e., the gripper
is commanded to stretch the elastic band to length ¢;, the distance of the roll is ¢;, and the start and
end position of the roll is defined by (x;,ys, 21 — &)-

Random exploration thus consists of a sequence of actions sampled from the updating state-
dependent bounds for an indeterminate amount of time for off-policy learning or until the goal
state is reached. We determine that the goal state is reached if the Euclidean distance from the
current state s; to the desired state s, is less than a pre-defined €.

Heuristic Rolling

For the proposed heuristic rolling method, each roll is still applied at the position of the highest
point of the dough formation (x;,yy,), but a fixed policy is used for action selection. ¢; is fixed at
%Zmax for high force output, and & is fixed at zj, — (z¢/2). At first, & was fixed at zj, — z,, or the
difference in height of the current state to the goal state. However, this proved to be an inefficient
heuristic as the dough state progressed toward the goal, since ¢; would gradually decrease and
subsequently the imposed force would decrease as well. We therefore chose to fix & at z, — (z4/2)
for greater force output throughout the rollout, although any choice of ¢, and §; is arbitrary without
explicit knowledge of the hand-dough dynamics. These fixed actions are applied until the goal
state is reached (the Euclidean distance from the current state to the desired state is less than &€).

Dynamics Model

Training data for the dynamics model is collected via random exploration, resulting in a series of
trajectories (Sg, o, - .. ,Sy—1,ay—1,SN ), each of which has N transitions. Training set D, ff consists
of input state-action pairs {(s;,a,)} with a corresponding output set of {s, | —s,}. Note that only
a subspace of the state space ({¢,w,h}) and action space ({¢,0}) is used to learn the dynamics
model, since (xj,y;,) in early experiments did not demonstrate significant effect on the subsequent
transition, while the remaining action space was heuristically constrained. The dynamics model
fo (st,a,), parameterized by weights 0, can be learned via multiple machine learning techniques.
Given the low-dimensional state and action spaces, we chose to represent fg with a linear regres-
sion model with polynomial features of degree 2.
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Rolling with Model-Based Reinforcement Learning

In order to perform action-selection using model-based reinforcement learning, we largely take
inspiration from recent advances in model-based RL robotics research [208, 149, 102, 148]. These
works use Model Predictive Control (MPC) to select the next action to execute within a Reinforce-
ment Learning framework to iteratively improve the dynamics model. Model Predictive Control
solves the objective defined by Eqn. 7.1 at each time step ¢, executes the first action in the optimal
sequence a;, and repeats this process at the next time step once state s;, is observed. MPC as-
sumes knowledge of system dynamics, so the executed action sequence may be suboptimal given
an incorrect or poorly-initialized model. To compensate for these errors, the reinforcement learn-
ing framework iteratively refines the dynamics model by refitting the weights of fg every T steps,
using both the original data D, along with the on-policy data collected during execution D,,.

Iterative Random Shooting with Refinement (Cross Entropy Method)

MPC for nonlinear systems is an active area of research, and there are several methods that can be
used to optimize the objective function in Equation 7.1. One such method that is considered for
this work 1is iterative random shooting with refinement, which is a cross-entropy method (CEM)
approach [17]. Random-sampling shooting samples K candidate action sequences of length H
for a planning horizon of H steps and selects the action sequence corresponding to the highest
cumulative reward (Zf;ol Y'r(St+n,8r4n)), where future states s, for n € [1, H) are predicted via
the trained dynamics model fg(S;+n—1,8s+n—1). The CEM approach improves random-sampling
by iteratively refining the mean and variance of the sampling distribution for M iterations, taking
the mean of the last distribution as the optimal action sequence. In other words, for each iteration,
random-sampling shooting generates K candidate action sequences by sampling:

a ~ N(u" M), Vk € K,t € [0,H),m € [0,M)

After K sequences are sampled, the top N sequences (A;,,) corresponding to the highest cumulative
rewards are used to refine the mean and variance of the next iteration:

,Utm—H = Bmean(Atop) +(1=p)w",vt € [0,H)

£/ = Bvar(Asgp) + (1— B)E", V1 € [0, H)

where f3 is used to smooth the updates. After M iterations, MVt € [0, H) is chosen as the optimal
action sequence.

Numerical Optimization with Powell’s Method

An alternative gradient-free approach is to maximize the objective in Equation 7.1 using a nu-
merical technique such as Powell’s conjugate direction method. Given the low-dimensional ac-
tion and state space, for a short-term planning horizon, this remains a tractable solution. We use
Scipy’s minimize function implementation of Powell’s method to solve for the optimal sequence
(a;,...,a, 1), given Equation 7.1 and the transition function fy(s;,a,) to estimate future states.
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Model Matching via Stiffness Estimation

In Chapter 6, we demonstrated how a proxy for the stiffness of deformable objects can be estimated
by palpating the objects from above and mapping the indentation depth and stretch state of the
elastic hand to a predicted output force F [131]. That is, we fit a model F = h(¢,§), and a one-
dimensional measure for stiffness is calculated by dividing F by the object’s z deflection. As
discussed in Chapter 6, h(¢,0) is also dependent on contact geometry, but given that stiffness
estimation is used only for initializing the model, and the dough is assumed to be spherical with
a known diameter, this work does not consider the effect of contact geometry when estimating
the imposed force. A reasonable estimate of force can be made by first measuring the varying
force while modulating the indentation depth and stretch state of the elastic hand against a rigid,
hemispherical probe (of equivalent diameter as the dough) attached to an ATI Axia80 EtherNet
Force/Torque sensor. These force measurements are depicted in Figure 7.3 and the model F =
h(£,0) is fit to this data. As shown in Figure 7.3, force output increases with increasing indentation
depth and stretch. When estimating the stiffness of an object, the robot actively palpates the object
until a deflection is observed by the overhead camera. At the point of deflection, the predicted
force is divided by the amount of deflection, giving a proxy estimate of stiffness in N /mm.

We can use these proxy estimates of stiffness to initialize dynamics models for unknown dough.
The stiffness of a dough is dependent on its hydration level, or its water content, and stiffness
directly affects the material properties and subsequently the nonlinear dynamics of the dough. In
Section 7.5, we discuss how we design a soft dough, a stiff dough, and a medium-stiff dough by
varying their hydration levels. We train a separate model for the dry and hydrated dough. However,
to estimate the dynamics of an unknown dough, e.g. the medium-stiffness dough, we can linearly
interpolate the predictions from the two given models by weighting their predictions based on
stiffness. That is, let the stiffness and model of the dry and hydrated dough be defined as oy,
fd,y(-), Ohydrated> and fhydmted(-). If the estimated stiffness of the unknown dough is G,,,t0wn» then
the corresponding dynamics model for the new dough is:

St+1 = (1 - ﬁ) *fhydrated(staat) ‘I'ﬁ *fdry(styat) (72)

Ounknown — Ghyd rated
. . Odry—Ohydrated . . . .
simply linearly related to the resulting dynamics of the dough, but later experimental sections show

that initializing the dynamics model by this method still improves performance over incorrectly
initializing it to either fryqrarea(-) OF fary(-).

where f = and Oypknown s bounded by [Ophygrared, Oary]. Stiffness is likely not

7.5 Experimental Setup

Elastic Hand Design

The design of the elastic hand is a variation of Chapter 6’s StRETcH [131], a soft tactile hand
attached to a parallel jaw gripper that varies in stiffness via opening and closing the gripper. In
StRETCcH, tactile images are observed via an overhead camera mounted rigidly to the robot arm.
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Figure 7.3: Indentation depth J vs. load force F for varying stretch states for a 30mm diameter
hemispherical rigid indenter. © 2021 IEEE

However, the configuration of the elastic membrane along the length of the robot fingers was
kinematically limiting for this task. Thus, for this chapter, the StRETcH sensor was redesigned
with the elastic surface rotated by 90 degrees (see Figures 7.1 and 7.2). Furthermore, the only
materials used to construct this new end-effector attachment were two elastic bands. The stretchier
band was used as the soft contact interface for the dough. The stiffer elastic material was sewn
into two separate loops, which were sewn to each end of the stretchier band. The stiff loops acted
as sleeves that were securely attached to the robot fingers via friction fit, positioning the softer
band between the fingers. This attachment was cost-effective to make and required no additional
hardware or cabling.

Physical Setup

The elastic end-effector attachment was secured via friction fit to a Robotiq 2-Finger Adaptive
Robot Gripper, which was attached to a Universal Robot URS arm. In contrast to the experimental
setup in Chapter 6, in which the camera was mounted rigidly to the robotic arm, this chapter fixes
the Intel RealSense Depth Camera SR305 at a stationary position, looking down at a slight angle
onto the workspace surface. The reachable workspace surface was approximately 1ftx 1ft.

Dough Consistency

Play-Doh was used as the elasto-plastic material for all experiments. Some of the following ex-
periments explored rolling dough of varying stiffnesses. To create three different stiffnesses from
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the same Play-Doh, each 50 gram portion of Play-Doh was hydrated at a different hydration level.
To hydrate the dough, different amounts of water were kneaded into the dough until the water was
completely absorbed. The more water incorporated, the softer the dough became.

Using the method developed in Chapter 6 and described in Section 7.4, the robot measured
the stiffness of 50 grams of dough when hydrated with 1, 2, 3, 4, and 5 grams of water. The
approximate stiffnesses were 1.23, 0.97, 0.85, 0.67, and 0.49 N/mm, respectively. Thus, the three
doughs used for experiments in Sections 7.6 and 7.6 were hydrated with approximately 1, 3, and 5
grams of water. Beyond 6 grams, the dough became too sticky to shape using the elastic membrane.
The rest of this chapter refers to the doughs as:

dough A B C
water (g) 5 3 1
stiffness (N/mm) 0.49 0.85 1.23

Table 7.1: Hydration levels and proxy stiffness values of doughs A, B, and C.

Data Collection

We collected a total of two hours of training data, with one hour each for dough A and C. Each
initialization began with the dough hand-rolled into a roughly spherical shape. The dataset for
dough A consisted of four initializations, with 150 random actions sampled for each. For dough
C, the training trajectories consisted of six initializations, with 100 random actions sampled for
each. Random exploration was restarted with a new initialization once rate of progress (dough-
lengthening) appeared to diminish substantially, which accounts for the difference in initializations
between dough A and C. Each dough dataset had a total of 600 actions and transitions, and a
separate model was trained for each dataset.

7.6 Results

Comparison of Rolling Algorithms

We begin by comparing the four proposed action-selection methods: random sampling, a heuristic
method with a fixed action policy, RL with random shooting and CEM, and RL using numerical
optimization. Both RL algorithms use MPC for action selection and iteratively refine the dynamics
model as the robot experiences new data. For both RL methods, the planning horizon (H) and
model iteration horizon (7") were both chosen to be 10 steps, and the CEM method additionally
used K = 100, M = 3, B = 0.5 as hyperparameters. New data D, were weighted 10x more than
D, s when re-fitting fo(-). For this experiment, all rolling was performed on dough A, and the
dynamics models were initialized to f4. For each method, six independent rollouts were run for
five different goal lengths of 2, 4, 6, 8, and 10 inches, and the number of steps until the goal was
reached was recorded.
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Figure 7.4: (top) Number of steps to roll a ball of dough into the goal length for four different
action-selection methods. 6 trials are represented per bar and error bars reflect a 95% confidence
interval. (bottom) An example of the dough state progression at each time step for all four methods.
© 2021 IEEE

Figure 7.4 summarizes the results of the experiment. The heuristic method was on average
27.6 £ 6.1% more efficient than purely random sampling, and both RL methods were more effi-
cient than the heuristic method (33.4 £ 18% and 63.1 £ 18.3%, respectively). Numerical optimiza-
tion was more efficient than RL with CEM across all goals, so the following experiments used
numerical optimization.
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Figure 7.5: (a): Comparison of using a fixed vs. iterative model for Model Predictive Control.
The iterative model is refined every 7' = 5 steps from new data collected at run-time. In both
scenarios, the initial model is incorrect (dough A is initialized with f¢ and vice versa). The goal
states for doughs A and C are 6in and 4in in length, respectively. 15 trials are represented per bar.
(b): Comparison of incorrectly initializing the model vs. initializing the model using the estimated
stiffness of the dough. Dough A is incorrectly initialized with f¢, Dough C is incorrectly initialized
with f4, and Dough B is initialized by either f4 or fc with equal probability. The goal states for
Doughs A, B, and C are 6in, Sin, and 4in in length, respectively. 10 trials are represented per bar.
© 2021 IEEE

Comparison of Fixed versus Iterative Models

In the first experiment, the dynamics model was initialized correctly for the corresponding dough,
and model-based RL methods achieved the goal state efficiently. In this experiment, we tested the
robustness of the RL framework to iteratively correct a poorly-initialized or incorrect dynamics
model. To do so, we compared using MPC to roll out dough using a fixed dynamics model versus
an iteratively improved model using RL. Furthermore, for both cases, we incorrectly initialized
the dynamics model — dough A trials were initialized with fc, and similarly dough C trials were
initialized with f4. This experiment aimed to test the self-correcting ability of the RL framework.
The goal states of dough A and C were set to 6in and 4in in length, respectively. This difference
was to compensate for the fact that dough C was stiffer and thus took longer to roll out than dough
A. For this experiment, numerical optimization directly solved Equation 7.1 with H =5 as the
planning horizon at each step and 7 = 5 steps were taken before each model iteration. As in the
previous experiment, new data D,,, were weighted 10x more than D, s when re-fitting fo (+). For
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both fixed and iterative models, 15 rollouts were run per dough.

As shown in Figure 7.5(a), the iterative model outperformed the fixed dynamics model using
MPC. Using RL to iteratively refine the dynamics model reduced the number of steps to reach
the goal by, on average, 45.8%. Furthermore, it was originally expected that MPC initialized by
dough C would select more aggressive (high force output) actions to compensate for the higher
stiffness and thus the fixed model would outperform the iterative model for dough A. However, as
dough A’s state got closer to 6in, we observed actions by the robot that were less and less effective
at inducing change in the dough’s state. This was because the datapoints of dough C were very
sparse in that goal range due to the nature of the stiffer dough and limited training time. However,
by allowing model iteration via the RL framework, the model was quickly updated to better reflect
the dough’s true dynamics and the goal was reached in a short amount of time steps.

Figure 7.6 illustrates the average actions selected throughout the task, where the x-axis is the
percent of total steps taken before the goal was reached. Comparing the fixed (red) and iterative
(yellow) trends, one can see how the iterative model corrects throughout the progression of the
task, although with considerably higher variance. For dough A, while the fixed model has the
robot repeatedly performing a shallow roll with low ¢, the iterative model pulls the action space
towards higher values for /. For dough C, the iterative model applied either high ¢ and low &
actions or low ¢ and maximum 6 actions, resulting in high variance between the different rollouts.

Stiffness Estimation for Model Matching

It is likely that robots will not have models for every dough they will need to manipulate. We have
seen that the RL framework can compensate for an incorrect or poorly-trained model by iteratively
refining the dynamics model. However, we hypothesized that estimating stiffness could improve
model initialization and therefore execute the task more efficiently than initializing the dynamics
model to a random dough. This was a reasonable proposition, since stiffness reflects material
properties relevant to dough dynamics.

To test this hypothesis, we compared using model-based RL (using numerical optimization)
with incorrect initialization versus initialization via stiffness estimation. For each initialization
method, 10 rollouts for doughs A, B, and C were run, with goal states of 6, 5, and 4in, respectively.
For incorrect initialization, dough A was initialized with /¢, and dough C was initialized with f4.
For dough B, for which there was no learned model, 5 of its rollouts were initialized with fA,
and the other 5 were initialized with fc. For the initialization method that incorporated estimated
stiffness, the dynamics model was initialized by Equation 7.2. This experiment used the same
hyperparameters as in Section 7.6.

As shown in Figure 7.5(b), initializing the models based on stiffness was significantly more
efficient than initializing the model incorrectly. On average, initializing the model via stiffness
estimations improved performance by 39.6%. Dough B took more steps to reach its goal than
doughs A and C, which may suggest that the interpolation method can be optimized to better
reflect the relationship between stiffness and dough dynamics (i.e., this relationship is nonlinear).

Figure 7.6 compares the incorrectly initialized (yellow) and the stiffness-initialized (blue) mod-
els. The actions selected throughout the rollouts have considerably lower variance when the model
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Figure 7.6: (left): Comparison of actions chosen throughout the progression of the task for dough
A, with red, yellow, and blue corresponding to the fixed incorrect dynamics model of fc, iterative
dynamics model initialized at fc, and stiffness-initialized model, respectively. The top graph is
the gripper throw (length of the elastic band, ¢) and the bottom graph is rolling depth 6. (right):
Comparison of actions for dough C, where the incorrect initialized dynamics model is f4. © 2021
IEEE

is initialized by stiffness. The policy that seems to work effectively for dough A is initially rolling
with low ¢ and high 0, and gradually increasing ¢ throughout the rollout. For dough C, the se-
lected action sequences tended to prefer high ¢ and o for high force-output, which is consistent
with dough C’s higher stiffness. Because many of the actions tended to prefer higher stiffness of
the end-effector, a future consideration is to explore higher-stiffness elastic bands, or bands with
greater ranges of variable stiffness.

7.7 Conclusions

To the best of our knowledge, this is the first work that accomplishes deformable manipulation
using a soft end-effector on elasto-plastic dough. The novel end-effector is not only cost-effective
and easy to integrate with a parallel-jaw gripper, but it also can vary in stiffness, which allows
it to effectively manipulate soft deformable objects like dough. A model-based RL framework
is leveraged to roll dough into different lengths, where simple featurization and actions enable
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tractable, real-time optimization. The robot is capable of accomplishing the task after only one
hour of random exploration, and the RL framework iteratively improves the transition model to
compensate for incorrect or poorly-defined models. Real robot experiments demonstrate high
efficacy of the proposed system, with RL action-selection exceeding the heuristic method by more
than 60% in efficiency. Furthermore, stiffness estimation using the soft end-effector enables better
model initialization, which consequently improves the robot’s performance by approximately 40%.

We hope the experimental results of this chapter can inspire more efforts in tackling deformable
solid object manipulation. Although the interactions involved in deformable object manipulation
are highly complex and difficult to model, task-specific design of the state and action spaces can
enable the robotic task to be much more tractable. In future work, other low-dimensional parame-
terizations of dough can be explored, including neural network-based encoders that may facilitate
in tasks requiring the manipulation of dough into more complex geometries and shapes. Further-
more, more model representations should be experimentally compared, including Gaussian Process
Regression and Neural Network Dynamic Models. Ultimately, we hope these findings can be used
to manipulate real dough into complex shapes such as pretzels and challah bread, which all require
rolling dough into logs.
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Part IV

Discussion and Future Work
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Chapter 8

Towards Dexterous Manipulation of
Liquids, Grains, and Doughs

This thesis develops new techniques in interactive perception to learn physical properties of lig-
uids, grains, and doughs, materials commonly found in environments like the kitchen but which
often present challenges for existing robotic systems. Through the use of non-traditional sensory
modalities such as sound and soft tactile sensing, the robot estimates material properties such as the
coefficient of restitution and a proxy for stiffness. As these measurements directly relate to the dy-
namics of the material, the robot is able to reason about the material using simple representations.
This leads the robot to demonstrate more accurate or efficient manipulation of that material.

We begin our exploration of interactive perception in Part [ by examining liquids inside a con-
tainer. In Chapter 2, analytic equations of liquids at steady state and sloshing liquids reveal that
there is a direct connection between material properties of the liquid and forces and torques expe-
rienced by the container. From this observation, it is clear that an effective interactive perception
framework for this system would be composed of a Force/Torque sensor mounted at the wrist of
the robot, paired with intentional slow and fast rotations of the container. This sensor-interaction
combination enables the robot to estimate the mass, volume, and viscosity of liquids inside of a
container. Furthermore, using the estimate of volume, the robot is able to precisely pour a desired
amount of water from the container.

Following this work, Part II studies the perception of stochastic dynamics in the form of gran-
ular materials and a single, bouncing ball. Granular material modeling is still an active area of
research, so for Part II of this thesis, we look beyond analytic equations to model these materi-
als. We first note that the material properties and stochastic dynamics experienced by grains and a
bouncing ball are directly related to collision dynamics. Thus, Part II involves robotic interactions
that intentionally induce these collisions. Given that the collisions reflect the material properties
of the grains and bouncing ball, we explore two different approaches in Part II. In Chapter 3, we
deduce that the steady state of an aggregate of grains reflects their dynamic history, and thus we
choose a single, point-cloud of a steady-state granular formation as the observation for the numer-
ous collisions that result in that formation. In Chapter 4, each ball collision is explicitly observed,
so sound is deemed a sensible modality for making real-time observations of the bouncing ball.
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Ultimately, these observations are used within a similar framework to automatically calibrate a
simulation representation for the material or object. The method underlying this technology, a
likelihood-free Bayesian inference approach called BayesSim, is shown to be effective at tuning
simulators to match real-life distributions. Using this simulation representation of the granular ma-
terials and bouncing ball, Part II demonstrates how a robot could thus reason about the materials
to pour grains into a certain pattern or to predict the behavior of a bouncing ball in order to deflect
it in real-time.

Part III steers in a different direction in order to effectively perceive doughs by designing a
series of variable-stiffness tactile sensors. Traditional tactile sensors are observed to be insufficient
for perceiving deformable solid objects like dough. Tactile sensors composed of rigid components
deform very soft objects, thus unable to measure geometric features or contact geometry. Mean-
while, compliant tactile sensors often lack the resolution to measure contact geometry. Thus, Part
III presents three different iterations of soft, optical tactile sensors, which are compliant enough
to measure the geometric features of soft objects without deforming them in the process. The
developed sensors pivot from prior soft, optical tactile sensors in that they incorporate a variable-
stiffness compliant membrane. Chapter 5 studies the sensing-actuation duality that is intrinsic to
this variable-stiffness mechanism. Chapter 6 expands on this idea by modifying the design of the
sensor in Chapter 5, making it easier to manufacture and integrate with an industry-standard robotic
parallel-jaw gripper. Finally, Chapter 7 uses a modified version of the sensor from Chapter 6 to
manipulate balls of dough into logs of varying lengths. Chapters 6 and 7 use the variable-stiffness
tactile sensor to measure a proxy for stiffness of dough, which enables more effective manipula-
tion of the dough. Furthermore, as the dynamic interaction between a soft membrane and dough is
quite complex and difficult to model, Chapter 7 explores the use of a data-driven model to capture
the dynamic interactions of the sensor and deformable solid object.

We hope this thesis will serve as inspiration for new ideas in robotic perception and manipu-
lation of unstructured or deformable materials like liquids, grains, and doughs. In particular, we
look forward to the following future directions:

Multi-Modal Sensor Fusion: This thesis applies various sensory modalities — some under-
explored in literature, others employing new design principles — and demonstrates the many uses
of these sensory frameworks for the perception of complex materials such as liquids and dough.
To better equip robots with richer state-knowledge of these materials, we believe this technology
would be most effective when used together as well as combined with existing visual systems.
For instance, the task of pouring cereal into a bowl involves several sensory signals — tactile and
force sensing instruct how the cereal box must be agitated to sufficiently shake out grains of cereal;
visual sensing generates a feedback signal to avoid spilling cereal outside the bowl; sound signals
shift as the cereal begins piling onto itself instead of hitting the ceramic surface of the bowl. The
incorporation of multiple sensor modalities could lead to more robust state estimations and pre-
dictions, and, consequently, more robust manipulation capabilities. Furthermore, drawing from a
diverse set of sensors enables robots to use slow but high-dimensional observations (e.g., video)
for some subtasks and fast but low-dimensional observations (e.g., sound) for other subtasks. One
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takeaway from this thesis is that there is no “perfect” sensor that is adequate for all tasks. Instead,
a more holistic approach would be to employ the “best” sensor for a given interaction and purpose.
Integrating many sensors allows a robot to experience the most informative signals it can observe
during any task.

Exploring New Forms of Representation: In this thesis, we explore representations ranging
from explicit analytic physics models to simulation representations to data-driven models. Future
work may benefit from studying different methods for encoding the rich signals observed by the
various types of perception frameworks presented in this thesis. For instance, while Chapter 4
demonstrates how sound is an effective sensory modality for real-time robotic applications, this
work only grazes the surface of the rich information underlying vibrations and sound. We thus
pose the questions: What forms of representations can capture the most informative features of
sound signals? What forms of representations are most robust to noise factors from the environ-
ment or sensors? How do these features change depending on the task? Do these representa-
tions enable explicit modeling of the material or do they require building a model through prior
experience or data? Can these representations be encoded and interpreted without introducing
significant latency to the real-time robotic system? While these serve as example considerations to
take when exploring the modality of sound, similar questions should be posed for other perception
frameworks. As with the work in this thesis, exploring different representations may lead to new
insights into the materials (e.g., Chapter 2) or sensors (e.g., Chapter 7) themselves.

Dynamic Manipulation of Unstructured Materials: Lastly, while this thesis primarily focuses
on the perception of unstructured materials, we envision that the developed frameworks may lead
to improved manipulation of these materials. In all the presented robotic demonstrations, many
aspects of the robotic action space are fixed, thus greatly simplifying control. However, in order to
match the fluidity of motion present in human-levels of dexterity, we believe investigating in more
dynamic control strategies can lead to more efficient and effective manipulation capabilities. For
instance, in Chapter 2, a simple rotation is applied to the container to pour a specific amount of
liquid. However, the same volume of a liquid can be poured in different amounts of time depending
on the motion of the robotic hand. What dynamic control strategy could be used to optimize for
time versus spillage? Another example that would require a more sophisticated control strategy is
sifting grains from a box. What sort of sensory modality could be used as feedback to precisely sift
out a specific amount of grains, and how might this dynamic motion be learned? Finally, in Chapter
7, dough is rolled out into logs of varying lengths. While the reinforcement learning framework
demonstrates improvements in efficiency when compared to a heuristic policy, the action space is
limited to back-and-forth motions along the axis of the StRETcH sensor. However, human bakers
exhibit highly dynamic motions when rolling and shaping dough, and these motions efficiently
manipulate dough at rates that are magnitudes faster. We hope that, with new tools such as the
StRETcH end-effector, future studies in dough manipulation can make use of a richer action space
to interact more dynamically with these unstructured materials.
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Appendix A

Derivations for Chapter 2

A.1 Liquid Mass

Given the force oriented in the positive y direction, f,, of the static world frame, which aligns
with the negative of the gravitational force vector, then f, is due to the collective mass of the end-
effector attachment, i.e., the mass of the container m,, the mass of the gripper my, and the mass of
the contained liquid, m,. We want to find my, and all other quantities are known, so:

fy = g(me+mg+my)

Hfg—mg—me =my

A.2 Liquid Volume

Here, we derive the piecewise continuous equations that define the analytic model of liquid volume
in a circular cylindrical container. First, we rewrite the torque 7, about the wrist of the robot in
terms of the centers of mass of the attached system (see Figure A.1):

T, = fyXm
MgXg + McXe + MyXy

mg+mc+m€

= g(mg +mc+my)

As depicted in Figure A.1, the world frame is anchored at the center of the gripper. Thus,
Xg = 0. Since we assume that the container has a shell with a uniform density, then relative to
the world frame, x. = (L/2— L) sin 6. Note that %, will be a function of the rotation angle 6, the
volume V, and the container geometry. Thus, we get an expression of 7, as a function of 6 and V:



APPENDIX A. DERIVATIONS FOR CHAPTER 2 124

Figure A.1: A cross-sectional diagram defining variables used to derive liquid volume calculations.
Example locations of center of masses of the container, gripper, and liquid are illustrated.

7,(0) = g(mgx 0+ me* ((L/2— Lg) sin0) +my x%,(6,V))
= g(me((L/2—Lg)sin 0) +myxe(6,V))

Finding V becomes an optimization problem, where we want to minimize the residuals between
the measured torques at different rotation angles 7,(60) and our model-based estimated values:

V = argmin||7,(6) — g(mc(L/2— Lg) sin 6 +mx,(6,V)) H;
%

Below, we show full derivations of how we define the piecewise nonlinear function %,(6,V).
All calculations of )Ef* and )7?* are made with respect to a shifted body frame B*, where the origin
is centered at the bottom face of the cylindrical container (see Figure A.2). To transform the center
of mass coordinates to world coordinates, the following transformation is applied:

X cos—0 —sin—0 Lgsin(—0)] [&F*
)7?/ = |sin—6 cos—6 —Licos—0 )7?*

1 0 0 1 1
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Figure A.2: An illustration of the shifted body frame Bx, with respect to which the center of mass
equations )E?* and )7?* are initially defined. X,(6,V) is defined with respect to the world frame, so
a transformation is necessary once )Z?* and y‘?* are computed.

and since we restrict the following definitions to 6 € [0, %] (symmetric reasoning leads to the
derivation of the full range for theta), we can rewrite the transformation as:

x) cos® sin® —L,sin@] [xB*
¥/ | = |—sin® cos® —LycosO| |57
1 0 0 1 1

Thus, we can calculate the expression X;(6,V) used in the optimization for V, which is equiv-
alent to )EZV:

%(68,V) =i cos 8 +75*sin@ — Lysin O

Case 1: Bottom end covered, top end dry
Finding the bounds for /

This case occurs when /4, > hpoiim and h is within the bounds hpys0n and hyop. Geometric
reasoning finds that /j,0m = 2Rsin 0 and h;,, = Lcos 0. Thus, we have the case condition that
Lcos® > 2Rsin 6 and h € [2Rsin 0, Lcos 6.
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Figure A.3: Diagram depicting Case 1 for liquid center of mass and volume calculations.

Finding the expression for V

A simple way to find the expression for V for this specific case is by breaking the liquid volume
into two parts, corresponding to the two values h; and h;, denoted in Figure A.3.
We first find A, with respect to known values R and 6:

hy

tan0 = —

an R

2Rtan 6 = hy

We can write A in terms of 4, R, and 0:
h
cosO =
hi+hy

hicos@ +hycosO =h
hicos@ =h—hycos6

h
hy = _
! cos 6 2
h
h = —2Rtan 6
cos 6

Then the volumes corresponding to A and &, are simply 7R and %nthz. In terms of &, R,
and 0, the combined volume can be expressed as such:

V = R*(

h
—2Rtan 0) + R’ tan O
cos 6
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Finding expressions for the center of mass coordinates
Calculated with respect to a shifted body frame, with the origin centered at the red ring in Figure

A.3, we solve the following integrals:
VRZ=x2 (R+x)tan O+h;
/ xdydzdx

ol o) [ Lk
//R_x (R+x) tanexdzdx+/ /’;:

VRZ=x2

2(Rtan6+h1)/ x\/RZ—xzdx+2tan9/ xzx/Rz—xzdx}
—R —R

1,5 ot

g(R/xf)/z )

hlxdza’x]

—R

2(Rtan 6 + hy)(—

1 X
+2tan O (= (xVRE=7%%(2x* — R*) + R* arctan ———
(50 (24~ R =)

1 b/ T
Z(R*Z _ _p*Z
8( 2 2)}

= — [Ztane

1
— —7R*tan6
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VRZ—x2  p(R+x)tan 0+h
Pkl [ -3 [
VRZ=x2

VR2—x2
/ / ((R+x)tan @ + hy)*dzdx
szx

= {/ ((R+x)*tan? O +2(R+ x)h  tan 6 + h3)\/R xzdx}
—R

1 R
=V {(Rz tan> 6 + 2Rh, tan 6 +h%)/ VR? — X2dx
—R
R R

1 X R
Rtan 8 + 1y )% (= (x\V/R2=% + R*arctan ———
( VG E==|_
—i—(2Rtan294—2}11tane)(—l(litz/xzf/2 ’ )4—tan26}i4 arctan ————— ’
3 R 8 \/E_x —R

! (Rtan 6 + hy)? R-l—tan@ K
Ty | ' 8

1 h TR? TR*
= — | (Rtan® + —— —2Rtan6)* —— +tan> 0 —
[( an +cos6 an0) 5~ +tan 3 }

Case 2: Bottom end partially covered, top end dry
Finding the bounds for /

The bounds for 4 that define this case depend on the comparison between #,,, = Lcos6 and
Mportom = 2R sin 0. This case occurs when 4 € [0,a] for a = min[Lcos 0,2Rsin 6]
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Figure A.4: Diagrams depicting Case 2 for liquid center of mass and volume calculations. (Left)

for htop > hbottom- (Right) for htop < hbottom-

Finding the expression for V

To simplify our expressions, we define the following variables. Let @ = R —

To find an expression for V, we evaluate the following integral:

VR2—x2  ptan®(x— R+sm9)
/ / / dydzdx
VRZ—x2

= 2tan O (x — R2 — x2
R— sin

sin @

R
:—2atan6/ \/Rz—xzdx+2tan9/ xV R? — x%dx
o o

1 Rlo2
= —2atan6 —(x\/RZ—xz—l—RzarctanL) — =tan6
2 RZ_x2 o 3
2
:—atanG R*> — av/R? — a2 — R*arctan +-tan®
VR? —az) 3
(and letting B =VR?—0a?)
283 R?
—tane(i—oc(n——ocﬁ R arctana))

2 B

)

sin

-

(R®

9 and 8 =

x2)3/2

062)3/2

|

VR? — Z.



APPENDIX A. DERIVATIONS FOR CHAPTER 2 130

Finding expressions for the center of mass coordinates

When finding the expressions for the center of mass coordinates, we again use the simplifying
variables ot = R — and 8 = VR? — o2. We evaluate the following integrals:

h
sin 6

VRZ—xZ  ptanO(x—a)
< ) / / / xdydzdx
VRZ—x2

T
= / xtan9(x—a)2\/R2—x2dx]
LJ O
1 R R
=7 —2(xtan6/ x\/Rz—xzdx+2tan9/ x2\/R2—x2dx]
o (04
12 > ol 1 2 p2 4 X "
= — | Zatan O(R* —x*)?| + ~tan6(x\/R? —x2(2x> — R?) + R*arctan ———)
V|3 o« 4 RZ—x2"|q
1 2 1
=— ——atanG(Rz—a2)3/2+—tanQ(ER4—OC\/RZ—a2(2a2—R2)—R4arctanL)
Vi 3 4 2 RZ — a2
1 2 | R4 o
Vtan@ {——a[p 4(2R4—a[3(2a2—R2)—R4arctanﬁ)}

1 /M VR2—x2  ptanf(x—a)
T e / / / ydydzdx
V RZ —x2

R
/ tan® 0 (x — a)*\/R? — x2dx
R
/ tan® 6 (x*> — 2xat + o?)/ R? — x2dx
o
1 R R R
=y [tan2 90&2/ VR? — x2dx — 2tan® 906/ x\V/ R? — x2dx + tan? 6/ x>/ R? —xzdx]
o
1 R
[2 tan> 906 (xV R?— x2 4+ R*arctan ———

kR
+ §tan2 0a((R* —x*)"?)

)

)

V VR? x2

%)

R? —x

(04 04

1
+g tan® 0 (x\/R2? — x2(2x* — R*) + R* arctan

11 2
= {5 tan? Baz(ng — a\/R? — a2 — R arctan RZL—OCZ) — §tan2 0 (R> — o)’

1 /4 o
+—tan’ O(ZR* — avV/R? — 02(20> — R*) — R* arctan ———)

8 2 R2—a2

1 1 o
= Vtan 0 [2 2(2R —af — Rzarctanﬁ)— Zapd+ ( R4—aﬁ( 2_R? —R4arctan3)



APPENDIX A. DERIVATIONS FOR CHAPTER 2 131

7 i
[/ V)
e LY N A J

Figure A.5: Diagrams depicting Case 3 for liquid center of mass and volume calculations. (Left)
for hiop > Mporiom- (Right) for hiop < hporrom- Red triangles correspond to volume (case 2) with
height 4 — Lcos 0 to be subtracted from volume (case 1) with height 4.

Case 3
Finding the bounds for /

For this specific case, the bounds for 4 again rely on a comparison between h;,, = Lcos6 and
hpottom = 2R sin 6. This case occurs when 4 € [or, Lcos 6 + 2R sin 8] for oo = max[Lcos 6,2Rsin 0].

Finding the expression for V

The resulting cylindrical wedge of this specific case can be simply calculated as the volumetric
difference of a Case 1 wedge with height 4; = & and a Case 2 wedge with height hip = h— Lcos 6.
A cross-section of the Case 2 wedge is depicted in red in Figure A.5. If we let V;(-) denote the
volume formula for case (i) as a function of height (-), then the volume of the cylindrical wedge
can be calculated as:

V3(h) =Vi(hy) — Va(hy)

Finding the expressions for the center of mass coordinates

Additionally, let iz () and )7’2 (+) denote the center of mass formulas for case (i) as functions of
height (). Note that, since the centers of mass are calculated in reference to the shifted body
frame, with the origin centered at the red dot in Figure A.5, the values for )7?2(-) will be shifted
by the length of the container, L. The center of mass coordinates, with respect to the shifted body
frame, are thus calculated as such:
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Figure A.6: Diagram depicting Case 4 for liquid center of mass and volume calculations. Red
triangle corresponds to volume (case 2) with height 4 — Lcos 6 to be subtracted from volume (case
2) with height A.

% (m)Vi(l) =3 (ha)Va(h2)
b Vi(h1) = Va(ha)
. 35, (h)Vi(ht) = (77, (h2) + L) Va(ha)
= Vi(h) = Va(h2)
Case 4
Finding the bounds for /

This specific case only occurs when Lcos 0 < 2Rsin6 and h € [Lcos0,2Rsin 0].

Finding the expression for V

The resulting cylindrical wedge of this specific case can be simply calculated as the volumetric
difference of a Case 2 wedge with height #; = h and a Case 2 wedge with height hp = h— Lcos 6.
A cross-section of the subtracted Case 2 wedge is depicted in red in Figure A.5. As before, let V;(-)
denote the volume formula for case (i) as a function of height (-). The volume of the cylindrical
wedge can be calculated as:

Va(h) =Va(hy) —Va(ho)
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Finding the expressions for the center of mass coordinates

As before, let £ (-) and yB denote the center of mass formulas for case (i) as functions of height
(+). Note that, s1nce the centers of mass are calculated in reference to the shifted body frame, with
the origin centered at the red dot in Figure A.5, the values for )7}?2 () will be shifted by the length of
the container, L. The center of mass coordinates, with respect to the shifted body frame, are thus
calculated as such:

T (h)Va(ln) = 3 (ha)Va(h2)
“ Va(h) = Vz( 2)
5 0 (h)Va(h) = (77, (o) + L)Va(h2)

Ch Va(hy) — Va(hy)

A.3 Liquid Viscosity

Low-viscous fluids

By inducing sloshing and observing the slosh-induced forces and torques caused by the shifting
center of mass of the ever-evolving liquid volume, we can estimate the viscosity of the liquid. A
decaying oscillatory wave in either force or torque can be used to estimate this value. As noted in
Section 2.4, the authors of [43, 138, 75] define the following empirical model. Let

peak amplitude of oscillation

B peak amplitude of oscillation one cycle later
be the logarithmic decrement of the decaying oscillation. The damping ratio is then defined by:
A
T

For an upright circular cylindrical tank, the damping ratio of the first symmetric mode is given by:

v 0.318 1—(h/R)
=0.7 1 1
r=90 9\/ R3/2g1/2 [ + sinh 1.84h/R (cosh1.84h/R+ )}

where Vv is the kinematic viscosity of the liquid, R is the radius of the tank, and 4 is the fill-level
of the tank. We want an expression for dynamic viscosity, t = vp. Thus, we first rearrange the

above equation.
% 0.318 1—(h/R)
=0.7 1 1
=0 9\/ R3/2 1/2{ +sinh1.84h/R (coshl.84h/R+ )}

0.318 1—(h/R) 2
— 7079 | 1 1
? [ +smh1.84h/R (cosh1.84h/R+ )}

V:}’Z\/RTg{O.79<1+ 0518 < 1—(h/R) H))]‘Z

sinh 1.84A/R \ cosh1.84h/R

Y= R3/2 1/2
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Z

N h

Figure A.7: (Left): Cross-section of liquid flow; (Middle): Highlighted regions (red+grey) are
to denote where liquid is present immediately after the rotation of the container. Liquid flows
through the cross-sectional area illustrated on the left. (Right): Highlighted regions (red+grey) are
to denote where liquid is present after reaching steady state. The red regions are to illustrate the
change in location of mass before and after liquid flow.

Plugging in the expression for y and multiplying by p, the density of the liquid, we get an expres-
sion for the dynamic viscosity (:

)2\/@[0‘7%” 0.318 ( 1—(h/R) H))r

sinh 1.84h/R \ cosh1.84h/R

A
'u_p(\/27r2+A2

High-viscous fluids

Instead of observing sloshing dynamics, the viscosity for high-viscous fluids can be estimated
by measuring the rise-time of the overdamped torque response induced by rotating the container.
Specifically, the approximate time it takes for the liquid to settle from and to the states illustrated
in the middle and right diagrams of Figure A.7 can be used to calculate mass flux, which relates to
dynamic viscosity .

Mass flux Q can be approximated by %, where ¢, is the measured 10-90% rise time of the
damped torque response, Amy is the change in mass over that time ¢, (corresponding to the red
region in Figure A.7, and A is the cross-sectional area through which the mass flows. As shown
in Figure A.7, A is the circular segment with height 4,. The formula for this cross-sectional area
is given by: A = %2(06 —sina), where o = 2 arccos R}hz. With an estimated volume V, s, can be
found by searching for the height of the liquid at steady state when the container is tilted by 90deg.
Finally, letting /& be the height of the liquid at steady state when the container is tilted by Odeg,

shown on the right in Figure A.7, we can approximate Amy by the mass quantity estimated to move
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during fluid flow induced by the rotation. This corresponds to the mass of the region highlighted in
red. We can find Amy by multiplying the total mass of the liquid, m,, by the ratio of liquid volume
that changes location before and after fluid flow. The volume of the red region can be calculated
as: V — Ah. Thus, Amy = my(Y=AL),

14
. pgcosﬂhg

For a free surface flow on an inclined plane, mass flux is defined as: O = IR Thus,
osehg

we can rearrange this equation to find u: u = pgcz—g. Plugging in our approximation of Q and
0 =0, we get:
pgh%VtrA
H = (v —An)
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Appendix B

Framework Details for Chapter 4

B.1 Feature vector X

Feature vector X is composed of four elements. Let X; refer to the feature in X relevant to time and
X), refer to the three features relevant to position. Below, we derive the relationship between the
coefficient of restitution e and feature X;, as well as how the features in X, are extracted from the
positions of the first three ball bounces.

Figure B.1: (Left): A graph of the vertical trajectory of a ball over time, labeled with relevant
variables for extracting X;. (Right): xy planar positions of ball bounces are denoted by the open
circles, and relevant variables for extracting X), are labeled.

Derivation of X; from ¢

The coefficient of restitution e is an expression relating the relative kinetic energy of a system
before and after a collision. For a bouncing ball on a perfectly rigid surface, e can be expressed by

the following ratio:
KE ..
e — \/ after collision (B. 1)
KEbefore collision
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We would like to extract e from audio signals of a bouncing ball, assuming that it is dropped
with O initial linear velocity. With this assumption, the problem can be simplified to 1-dimension,
where the ball travels only in the vertical direction (this is, of course, assuming for now that the
ball is not perturbed upon collision). Letting v; and v, be the ball velocity before and after the 2nd
bounce (see Figure B.1), then e can be rewritten in terms of the entering and exiting velocities:

1/2 2
- /WEZE (B.2)
Vomvy vy

However, velocities are difficult to measure or perceive with sound. Thus, we want to relate e
to the times between bounces 1 and 2 (¢1) and bounces 2 and 3 (#;). Let 41 and h; be defined by the
heights depicted in Figure B.1. Assuming that, between collisions, the bouncing ball trajectory can
be defined by classical projectile equations (assuming an absence of factors such as air resistance),
then v can be related to #; by the following derivation:

We know from classical projectile equations that:

15

5) = (B.3)

1 1
Emv% = mgh; and Eg(

Then combining the above equations, we get a relationship for v; and #4:

— — — —_ — = — B.4
138 ) =3 B4)
Thus, e can be rewritten in terms of the times between bounces:
t
e=22_"2 (B.5)
Vi 5]

Because we wanted to infer the parameter e, we chose X; = %

In reality, perturbations occur at each bounce due to factors such as surface asperities. Con-
sequently, the velocity of the ball has both horizontal and vertical components. Letting d; and d»
be defined by the horizontal distances between bounces 1 and 2 and bounces 2 and 3, respectively,
then e would actually be derived from the ratio in Equation B.2 as:

2 2
V2 \/Vzhorizomal + v2vertical (dZ/lz)z + gz (t2/2)2
e=_—= =\ 772 22 (B.6)
Vi V2 12 (41/n1)* +8%(1/2)
Lhorizontal 1
However, since we capture positional information in the last three features of X, we decided

to separate the temporal information from the positional information. Thus, we chose the simpler
ratio of e for X;, which only depended on #; and #,.

vertical
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Extracting X, from ball bounce locations

The last three features of X, or X;,, encode positional information regarding the first three bounces.
Letting p; be the positional vector from the location of bounce 1 to the location of bounce 2, and
P> be the positional vector from the location of bounce 2 to the location of bounce 3 (see Figure
B.1), then the distances between the bounces can be calculated as:

di = ||p1]]2 and d> = || p2||2 (B.7)

We use d; and d as the second and third features of X. Combined with the temporal informa-
tion in X;, a more accurate estimation of ¢ can be inferred.

The last feature of X, encodes directional perturbations upon collision. Specifically, we find
the signed angle a between p; and p; via the following expression:

P1.P2, — P2, D1,
[P []]21]

L
el

L) (B.8)

o = sign( — -
1Al {172l

) % arccos(

1
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Figure B.2: A flow diagram detailing the STReSSD framework. (A): Simulation is used to learn
the conditional density function g (0|X*) relating parameters e and x to observation features
X = [%,dl,dz, o). 6000 independent simulations are run to generate the training set to learn ge.
(B): Feature extraction of real data begins by observing the peaks of raw audio signals, finding
the time delays between pairs of microphones, and locating the bounces. The low-dimensional
feature vector X" is thus extracted from raw data. (C): The simulator is calibrated using real obser-
vations to match a particular ball’s dynamic behavior. A posterior over the parameters 6 = [e, k] is
approximated using the learned conditional density function g¢ and the real observation X”. Pos-
teriors from different observations of the same ball can be multiplied to generate a more peaked
joint posterior. The calibrated simulator samples from this joint posterior. (D): The calibrated
simulator from (C) is used to make open-loop dynamic predictions of the ball. (E): The calibrated
simulator is used for robotic ball-tracking. A new training set is generated by forward simulating
the calibrated simulator, with relevant parameters sampled from the joint posterior in (C). New
features (X; = [t;,d;] and X;11 = [t;+1,d;+1,04+1]) are extracted from this simulator and a second
conditional density function approximates a transition function for the stochastic dynamics of the
ball. The transition function is used to estimate the next bounce location and time, given the last
two bounces. The transition function can be applied recursively to predict future ball bounces.
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B.2 Sound localization

In this section, we derive the Time Delay Estimation equations for 2D-localization using 3 micro-
phones and compare the accuracy of offline and real-time sound localization methods.

Time Delay Estimation with 3 Microphones

Figure B.3: Locating the source of a sound using time delay estimation involves finding the inter-
section of two conics, defined by the time delays between pairs of microphones.

Let vyouna be the speed of sound through air, ®45 and P4 be the time delays between signals
received at microphones A and B and A and C, and denote the positions of the ball strike and
microphones as s = (sy, sy,0), a = (0,0,z), b = (bx,by,z), and ¢ = (cx, ¢y, z), respectively. Then the
time delay ®,4p is a function of the relative distances of the microphones to the ball strike, or

DPap = (Ils —all2 = [ls = bl|2) (B.9)

sound
Thus, solving for the location of the ball strike is equivalent to finding the intersection of two
conics (see Figure B.3):

Vsoundq)AB = ||S_a||2 - ||S—b||2 and VsoundchC = ||S_a||2 - ||S_ C||2 (B-IO)

A nonlinear optimizer is used to find this intersection. Because there can be more than one
solution, we initialize the optimizer with a location inside the convex hull of the microphone posi-
tions.
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Comparison of Offline and Real-Time Sound Localization

Figure B.4: A comparison of (a) offline and (b) online sound localization. Ground truth positions
were recorded by tapping a piece of paper layered with a carbon sheet. These positions were
converted to world coordinates via an automated image processing script. Observe that outliers
occasionally arise when using the less-accurate real-time sound localization method. However, the
displacement errors of the outliers are sufficiently large such that they can be easily filtered.

B.3 Dynamic Predictions without Collision Noise

Below, we supplement the description of dynamic predictions without collision noise in Section
4.3 with relevant equations. The robot control sequence is summarized in Algorithm 1.

Let (x;,yi), t;, and d; be the position of the most recent bounce, time, and distance between
the most recent and prior bounces (see Figure B.5). Assuming that the ball travels in a piecewise
parabolic trajectory with no directional perturbations upon each bounce, we can estimate the exit
velocity of the ball rebounding from the bounce to be defined by:

_ed, _egt;
Ve(xyi) = 7 and Ve(zi) = T
where g is the gravitational constant, the xy subscript refers to the horizontal velocity of the ball,
and the z subscript refers to the vertical velocity component of the ball. These estimates allow us to
calculate whether or not the ball will intersect the plane before the next bounce. First, denote dr as
the horizontal distance from the most recent bounce to the robot plane along the direction of travel
(see Figure B.5). The distance and time of the next bounce relative to the most recent bounce, or
di+1 and t; 11, can be calculated by:

(B.11)

dip1 = e*d; and tiy | = ef; (B.12)
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Then to calculate whether or not the ball will intersect the robot plane before the next bounce, we
check if
di+1 > dp (B.13)

If true, the ball will intersect the plane before it lands again in fg seconds, so the end-effector
must be moved to the intersection point (xg,ygr,zg) in fg seconds. If the ball will not intersect the
plane before it lands again, the end-effector moves to yg in #;;; seconds before the next bounce is
observed.

The intersection point (xg,yr,zg) is partially pre-determined and therefore fixed by the place-
ment of the robot (which sits at x = xg). We can calculate yg by finding the intersection between
line x = xg and the line connecting the last two ball bounce positions (see Figure B.5). This inter-
section occurs at:

yi_yi—lxR+(yi_Yi_Yi—1xi) (B.14)

Xi — Xi—1 Xi — Xi—1

YR =

Figure B.5: Dynamic predictions without collision noise assume a piecewise parabolic trajectory
for the ball, based on the most recent two bounces. The robot moves to the intersection of this
predicted trajectory and the robot workspace plane.

Finally, if it is determined that the ball will intersect the robot workspace plane before it
bounces again, classical projectile equations can be used to calculate tg and zg:
fo dr . dgt;
k= N ed,'

(B.15)

v
exy;
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2k = vegegtn— 01k = ()5 — (SR (B.16)
Algorithm 1: Robot Control using Dynamic Predictions without Collision Noise
Result: Positions the end-effector of a robotic arm to meet a bouncing ball

1 while Received bounce position and times do

2 (x,y) < bounce location;

3 if First bounce then

4 \ Move end-effector to position y;

5 else

6 if After next bounce, the ball will intersect the robot plane at (yg,zg) then

7 ‘ Move end-effector to position (yg,zg) in g seconds;

8 else

9 \ Move end-effector to yg in ¢, seconds (before the next bounce is observed);
10 end
11 end
12 end

B.4 Dynamic Predictions with Collision Noise

In this section, the algorithm for making dynamic predictions with collision noise is outlined in
Algorithm 2. Additionally, a complete breakdown of all 30 tosses per ball is included, and the
failure modes due to outliers are compared between Algorithm 1 and Algorithm 2. Finally, two
real examples are shown with freeze-frames in Section 15 to detail the algorithmic steps associated
with each bounce event.
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Algorithm 2: Robot Control using Dynamic Predictions with Collision Noise
Result: Positions the end-effector of a robotic arm to meet a bouncing ball

1 while Received bounce position and times do

2 (x,y) < bounce location;

3 if First bounce then

4 ‘ Move end-effector to position y;

5

6

7

else if Second bounce then
next_bounce_posterior <— Generate posterior for next bounce position and time ;
Look ahead k bounces to generate n samples where the ball will intersect the plane

B

8 if Any samples intersect the plane of the robot then
9 Move « ¢! distance toward mean of samples, where o is the standard
deviation of the intersection points on the robot plane ;
10 else
1 if Bounce position is an outlier then
12 ‘ Replace bounce location with the mean of next_bounce_posterior ;
13 Repeat lines 6-9 ;
14 end
15 end

As discussed in Section 4.3, a new BayesSim model is trained to generate posteriors over the
next bounce time and location, given the time and distance between the prior two bounces. After
the second bounce is observed, this new BayesSim model can be used to generate a posterior for
the next bounce position and time. Furthermore, the model can be used to recursively sample future
bounce positions until they pass the robot workspace plane. For example, let k be the number of
bounces to look ahead and n be the number of samples to generate at each future bounce. Given
the last two bounces i and i — 1, a posterior over the future bounce i + 1 is generated using the
BayesSim model. This posterior is sampled n times, and each sample can be used to create a
new posterior with the most recent bounce i. Thus, n posteriors over bounce i + 1 are generated.
This is repeated up to k times until the sample intersects the workspace plane. A maximum of
n* samples are generated in this step. In experiments, we found that n = 10 and k = [2,4] were
sufficient at capturing the uncertainty in future bounce locations and did not significantly add to
the latency of the entire algorithm (this inference step ran at about 20 Hz). We varied k depending
on how reactive we wanted the robot to be. For instance, the moonball is highly uncertain at each
collision, so we used k = 2. In contrast, since the ping-pong ball experienced lower collision noise,
we used k = 4.

At every subsequent bounce after the second bounce, the bounce location is classified as either
an outlier or an inlier by using an elliptic envelope filter with the future bounce posterior generated
at the prior bounce. If the bounce location is determined to be an outlier, then the mean of that
posterior is used in place of the outlier location. This extra check was implemented to compensate
for inaccurate real-time bounce localization due to high reverberation. In the following section, we
compare the sensitivity to outliers using Algorithms 1 and 2.
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Full Breakdown of Success and Failures out of all 30 Tosses

Figure B.6: ”Outliers” signifies failures due to errors in sound localization, "Boundaries” refers
to failures due to the ball violating robot workspace boundaries, and "Missed” denotes any other
failure. All 30 tosses are represented in this graph.

Section 4.4 performs analysis on the tosses that do not violate the robot’s workspace constraints.
For completeness, we include a full breakdown of all 30 tosses in Figure B.6, which includes the
failures due to the ball violating the robot workspace boundaries. As shown in Figure B.6, few
to none of the tosses violate the boundary for the tennis ball and ping pong ball, but almost a
third of the tosses for the moon ball result in boundary violations. This is because the moonball
experiences highly stochastic collisions.

Comparison of Sensitivity to Outliers with Algorithms 1 and 2

In Figure B.7, we break down the failure modes of both Algorithms 1 and 2 due to outliers in sound
localization. As shown in the graph, both methods are sensitive to outliers in the first or second
bounce. Because Algorithm 2 relies on accurate first and second bounce locations to predict future
bounce distributions, there currently is not a way to adjust for these errors. We believe that we
can eliminate these outliers by implementing more efficient real-time processing, for instance, by
using a real-time audio-processing language called SuperCollider, or by training a neural network
to perform fast peak detection. However, by considering collision noise for dynamic predictions,
Figure B.7 shows that Algorithm 2 successfully filters out outliers in any subsequent bounces and
can compensate for their errors.
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Figure B.7: We categorize the failures due to outliers in bounce localization by the bounce at
which the outlier occurs. Note that Algorithm 2 successfully filters out outliers as long as they
occur after the second bounce. The robot is able to use, instead, the mean of the posterior over
which the bounce should have occurred, which subsequently leads to more accurate ball trajectory
predictions.

Example robot trials with captions

Below, we detail two real robotic examples with freeze-frames to depict the steps of Algorithm 2.
Example 1: Success with no outliers

Figure B.8: The first bounce is located.

Figure B.9: The second bounce is located.
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Figure B.10: The 1st and 2nd measured locations are used to predict the distribution over the 3rd
bounce location.

Figure B.11: The 2nd measured location and the 3rd bounce location distribution are used to
predict the distribution of the robot plane intersections.

Figure B.12: Inlier: the audio-based localization of the 3rd bounce lies within the predicted distri-
bution and is trusted. This leads to a successful prediction of the robot plane intersection, and the
robot comes into contact with the ball
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Example 2: Success with an outlier

Figure B.13: The first bounce is located.

Figure B.14: The second bounce is located.

Figure B.15: The 1st and 2nd measured locations are used to predict the distribution over the 3rd
bounce location.

Figure B.16: The 2nd measured location and 3rd bounce location distribution are used to predict
the distribution over the 4th bounce location.
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Figure B.17: The 3rd and 4th bounce location distributions are used to predict the distribution over
the 5th bounce location.

Figure B.18: The 4th and 5th bounce location distributions are used to predict the distribution of
the robot plane intersections.

Figure B.19: Outlier: the audio-based localization of the 3rd bounce lies far from the predicted
distribution and is ignored.

Figure B.20: The mean of the predicted distribution for the 3rd bounce is used in lieu of the outlier.
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Figure B.21: The 2nd measured location, as well as the 3rd predicted location, are used to predict
the distribution of the 4th bounce.

Figure B.22: The 3rd predicted location, as well as the 4th bounce location distribution, are used
to predict the distribution of the 5th bounce.

Figure B.23: The 4th and 5th bounce location distributions are used to predict the distribution of
the robot plane intersections.

Figure B.24: Inlier: the audio-based localization of the 4th bounce lies within the predicted distri-
bution.
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Figure B.25: The 3rd predicted location, as well as the 4th measured location, are used to predict
the distribution of the 5th bounce.

Figure B.26: The 4th measured location and the distribution of the 5th bounce are used to predict
the distribution of the robot plane intersections.

Figure B.27: Inlier: the audio-based localization of the 5th bounce lies within the predicted distri-
bution.

Figure B.28: Successful prediction



