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Abstract

Offline Learning for Scalable Decision Making

by

Justin Fu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

The remarkable success of modern machine learning has arguably been due to the ability of
algorithms to combine powerful models, such as neural networks, with large-scale datasets.
This data-driven paradigm has been applied to a variety of applications from computer vi-
sion and speech processing, to machine translation and question answering. However, the
majority of these successes have been in prediction problems, such as supervised learning.
In contrast, many real-world applications of machine learning involve decision making prob-
lems, where one must leverage learned models to select optimal actions that maximize some
objective of interest. Unfortunately, learned models can often fail in these situations, due
to issues such as distribution shift and model exploitation. This thesis proposes methods
and algorithms which are designed to handle these shortcomings in modern machine learn-
ing methods in order to produce reliable decision making agents. We begin in the area of
reinforcement learning, where we study robust algorithms for offline reinforcement learning
and model-based reinforcement learning. We discuss considerations for benchmarking of-
fline reinforcement learning and off-policy evaluation, and propose a variety of domains and
datasets designed to stress test state-of-the-art algorithms in the area. Finally, we study
the more general problem of model-based optimization, and show how information-theoretic
principles can guide us to construct uncertainty-aware models that mitigate exploitation.
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Chapter 1

Introduction

Over the past decade, machine learning researchers have seen ever increasing success by
combining more and more powerful models with increasingly large datasets. Beginning in
2012 with Alexnet [Krizhevsky et al., 2012] (trained on over 14 million images from the
ImageNet dataset, with a network size of 62 million parameters), researchers have scaled
methods such that today’s largest models, such as GPT-3 [Brown et al., 2020], are trained on
hundreds of billions of tokens with a network of 175 billion parameters. The impact of large
models has been enormous and we have seen these models achieve superhuman performance
on applications ranging from image speech recognition [Karita et al., 2019], recommender
systems [Zhang et al., 2019], object detection [He et al., 2017, Redmon and Farhadi, 2017,
Carion et al., 2020], medical imaging [Rajpurkar et al., 2017], machine translation [Sutskever
et al., 2014, Vaswani et al., 2017, Raffel et al., 2020], and many more.

A common theme across many of these models is that they are primarily trained on
prediction problems, using supervised or unsupervised learning. However, in many cases the
end goal of training a model is not to use it for the prediction problem it was trained on,
but to perform educated decision making on a downstream task. For example, in economics
one may wish to construct models of labor or goods markets to select policies that try to
elicit a certain outcome (such as reducing unemployment). Engineers may build physical
models of vehicles or robots to design morphologies or controllers that achieve the highest
performance or efficiency. And advertising agencies may wish to construct models of user
behavior in order to select advertisements that are the most relevant to a user.

Scaling these decision making problems to large datasets can often be difficult. A straight-
forward formulation for these problems is to cast them under the bandit or reinforcement
learning framework, and in these settings, data collection is ideally done in an online process,
where one can explore, execute decisions, and learn from their consequences. However, on-
line exploration and data collection can easily become impractical, such as in safety-critical
applications (e.g. healthcare, autonomous driving) or in domains where evaluating a decision
can be expensive or time-consuming. The alternative of optimizing decisions within a model
learned from data is often not ideal either, since complex models are notorious for being
susceptible to problems such as adversarial examples [Szegedy et al., 2014] and distribution
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shift [Shankar et al., 2019]. While in some cases these may only be a nuisance or curiosity,
if one is directly performing optimization on these models, one can easily produce decisions
that are out-of-distribution and exploit the learned model.

Robust Algorithms for Offline Decision Making

The goal of this thesis is to present algorithms and ideas that allow decision-making agents
to effectively leverage large, static datasets. The primary mechanism by which we construct
reliable decision making agents is through “robustness” and mitigating model exploitation.
Robustness in this context refers to constructing decision making agents that are reliable
in the face of uncertainty in the environment or problem specifications (e.g. as in robust
control [Zhou and Doyle, 1998]). Because the offline setting restricts us to viewing only a
finite number of samples from problem at hand, (epistemic) uncertainty is an unavoidable
fact that algorithms must cope with in order to succeed. For example, if one were to collect
a dataset for autonomous driving entirely from local roads a low speed, it would be difficult
to learn a controller for driving on the freeway or highway, and at the associated high speeds.
And even if one were to scale up data collection to many possible situations, it would still be
extremely difficult and expensive to capture every possible edge case an agent may experience
during execution (known as the “long-tail” problem in AI). Thus, as with human decision
making, it is crucial for algorithms and agents to be able to reason about where their models
are accurate, and where they lack enough data to make an educated decision.

The work presented in this thesis primarily takes a “pessimistic” approach to handling un-
certainty, which attempts to avoid situations under which an agent will experience rarely-seen
situations that could produce erroneous results. We believe a risk-averse approach to offline
learning is especially suited to many real-world problems where safety is a primary concern.
In the context of reinforcement learning, Chapter 4 explores how by avoiding Q-function
queries in low-support regions of data, we can avoid accumulation of errors during dynamic
programming. Chapter 5 explores similar accumulation of errors in the model-based RL set-
ting, where we address the issue by careful truncation of rollouts during planning. Finally,
Chapter 6 explores explicit use of uncertainty-aware models for data-driven optimization
problems when a dataset of function evaluations are provided in lieu of the ability to query
the objective function itself.

Organization and Summary of Contributions

This thesis is divided into two main parts: algorithm design (Part I) and benchmarking
recent progress in the field of offline decision making (Part II).

Part I motivates the development of robust algorithms, targeted primarily towards build-
ing decision making agents from static datasets. In Chapter 4, we explore the offline rein-
forcement learning setting. Traditional reinforcement learning requires agents to interact in
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an online fashion, learning from mistakes and rewards as the agent collects more experience.
Offline reinforcement learning presents an alternate paradigm under which learning is done
from a fixed, static dataset. We analyze error propagation introduced by action selection
in reinforcement learning algorithms, which leads us to develop the BEAR (Bootstrapping
Error Accumulation Reduction) algorithm, which minimizes error propagation and model
exploitation by selecting conservative actions to use in the Bellman operator.

In Chapter 5, we investigate robust algorithms in the context of the classic model-based
reinforcement learning problem, where a learned dynamics model is used to generate simu-
lated experience for a policy optimizer. We see in this setting that model-based reinforcement
learning suffers from similar issues with model exploitation and distribution shift as offline
reinforcement learning. To address these issues, we propose MBPO, a model-based policy
optimization algorithm which controls the length of rollouts within the model. We provide
theoretical analysis showing how the horizon length and regularization limit the worst-case
policy performance, and empirically, we demonstrated improvements in sample complexity
on simulated robotics problems. While the empirical evaluation in this work is in the more
traditional online RL setting, the ideas are nevertheless relevant for constructing algorithms
in the offline setting as well.

Chapter 6 explores the offline model-based optimization problem. In this setting, we
are interested in a more traditional optimization setup where we wish to select an input x
that maximizes some function f(x), but unlike the traditional setting we are not allowed to
query f directly and are instead given an offline dataset of input-output pairs. We propose
an uncertainty-aware method for mitigating model exploitation in this setting based on the
normalized maximum likelihood framework, and propose the NEMO (Normalized Maximum
Likelihood Estimation for Model-based Optimization) algorithm, which achieves state of the
art results on a selection of design tasks for applications ranging from biology to robotics
and materials science.

As part of an effort to accelerate progress in offline learning, in Part II, we discuss consid-
erations for benchmarking offline reinforcement learning methods. Motivated by the difficul-
ties of using ad-hoc evaluations, we introduce a set of standardized, open-source benchmarks
designed to provide easy but meaningful evaluations of algorithm performance. We propose
benchmarks in two problem settings: offline reinforcement learning (Chapter 7), where the
goal is to optimize a policy for performance, and off-policy evaluation (Chapter 8), where
the goal is either to select the best policy out of a set of candidates or evaluate the absolute
performance of a given policy. We supplement each benchmark with a comprehensive evalu-
ation of state-of-the-art algorithms in each field, and discuss both settings in which current
methods work well along with areas which need improvement.
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Chapter 2

Preliminaries and Notation

Offline decision making draws upon a wide array of concepts in machine learning and asks
many fundamental questions about what it means to learn from prior experience. We primar-
ily formalize decision making within two frameworks: reinforcement learning for problems
with sequential structure, and model-based optimization for more general problems with-
out obvious structure. In this chapter we review both of these frameworks, and introduce
notation that we will be using throughout this thesis.

2.1 Reinforcement Learning

In this section, we cover background on reinforcement learning, offline reinforcement learning
and general classes of solution methods.

Markov Decision Processes

Reinforcement learning is commonly formalized as learning in a Markov decision process
(MDP). We define an MDP as a tuple, (S,A, r, γ, Pρ0). These symbols are defined as the
following:

• S,A denotes the state and action space, respectively. These can be either continuous
or discrete, depending on the problem.

• r(s, a) is the reward or utility function.

• γ ∈ (0, 1) represents the discount factor. A smaller discount factor encourages more
short-sighted behavior, whereas a longer discount factor allows an agent to reason
about delayed rewards.

• P (s′|s, a) represents a distribution over the dynamics or transition probabilities.

• ρ0(s), represents the initial state distribution.
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An MDP is typically chosen to model sequential decision making problems, where an
agent selects actions and generates a sequence of states and actions known as a trajectory,
τ = (s0, a0, s1, a1, . . . ). The agent is formalized as a policy π(a|s) which maps a state to a
distribution over actions (or, in the deterministic case, a single action).

Solving an MDP typically means to find a policy that maximizes the expected cumulative
discounted rewards J(π) (also known as the returns). This can be described by the following
equation:

J(π) = Eπ,P,ρ0 [
∞∑
t=0

γtr(st, at)].

When a model of a system is available (formally, the transition and reward functions
are known), this problem is commonly referred to as planning. This can occur in many
real-world scenarios when the dynamics of the system can be written down or simulated.
In reinforcement learning, however, it is assumed that the transition and reward models
are unknown, and must be learned through experience and data. This brings in an ele-
ment of statistical learning, and with it interesting questions related to generalization and
distribution shift that we will explore in this thesis.

Many approaches have been proposed to solve this objective in the reinforcement learning
setting. One commonly used classification divides methods between model-based versus
model-free algorithms. Model-based methods use pre-collected experience to estimate the
transition and/or reward functions, and can then use a planning method inside the learned
models to obtain a policy. We will explore model-based methods in Chapter 5. In contrast,
model-free methods avoid explicitly modeling the dynamics or reward directly. For example,
policy gradient methods form an estimate of the gradient of J(π) with respect to the policy
and optimize the returns directly [Peters and Schaal, 2006]. An alternative class of methods
are those based on estimating value functions, or estimates of the future returns given a
current state. We review these in the next section, and discuss offline reinforcement learning
methods based on this framework in Chapter 7.

Value Functions

A key concept in reinforcement learning is the value function, or estimate of the future returns
expected from a given state and/or action. The state value function is typically denoted by
V π(s), and the state-action value is more commonly referred to as the Q-function, denoted
by Qπ(s, a). These values are defined by the following equations:

V π(s) = Eπ,P,ρ0 [
∞∑
t=0

γtr(st, at)|s0 = s].

Qπ(s, a) = Eπ,P,ρ0 [
∞∑
t=0

γtr(st, at)|s0 = s, a0 = a].
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The notation Q∗ and V ∗ are commonly used to denote the values of the optimal policy,
π∗. The optimal Q-value Q∗ is of special importance since we can obtain a deterministic
optimal policy by selecting actions that maximize the Q-function: π(s) = argmax

a
Q∗(s, a).

All value functions satisfy a recurrence relation known as the Bellman consistency equa-
tion, written from the perspective of Qπ or V π as:

Qπ(s, a) = r(s, a) + Es′∼P [V π(s′)]

V π(s) = Es′∼P,a∼π[r(s, a) +Qπ(s, a)]

Dynamic Programming

As noted in the prior section, once an optimal Q-function is obtained it is a simple process
to construct an optimal policy, by selecting actions that maximize the Q-value. This leads to
an indirect method for finding the optimal policy: we can first solve for the optimal Q-values,
and from there the optimal policy.

The process of solving for the optimal values is typically done in an iterative, dynamic
programming fashion by iterating the Bellman backup operator (denoted as T ) is defined as
the following:

T Q(s, a) = r(s, a) + Es′∼P [V (s′)]

where
V (s) = max

a
Q(s, a)

For shorthand, we denote application of the Bellman operator T on a value function V
or Q as T V and T Q, respectively. Q-iteration is a dynamic programming algorithm that
iterates the Bellman backup: Qt+1 ← T Qt. Because the Bellman backup is a γ-contraction in
the `∞ norm, andQ∗ is its fixed point, Q-iteration can be shown to converge toQ∗ [Sutton and
Barto, 2018]. A similar result can be shown for value iteration, when iterating V t+1 ← T V t.
The values of the optimal policy, Q∗ and V ∗ satisfy Bellman consistency, in the sense that
Q∗ = TQ∗ and V ∗ = TV ∗. Other values do not satisfy this with equality, and the difference,
|Q− TQ| or |V − TV | is often known as the Bellman error or Bellman residual.

Additionally, we have the similar policy evaluation backup operator T π operator given
by:

T πQ(s, a) = r(s, a) + Es′ [V (s′)]

where
V (s) = Ea∼π[Q(s, a)]

This operation can similarily be written in vector notation as T πQ or T πV . The values
of the policy being evaluated, Qπ and V π satisfy Bellman consistency for the evaluation
operator, in the sense that Qπ = T πQπ and V π = T πV π.
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When state spaces are large, function approximation is needed to represent the Q-values.
This corresponds to fitted Q-iteration (FQI) [Ernst et al., 2005], a form of approximate
dynamic programming (ADP), which forms the basis of modern deep RL methods such as
DQN [Mnih et al., 2015]. FQI projects the values of the Bellman backup onto a family of
Q-function approximators Q: Qt+1 ← Πµ(T Qt). Πµ denotes a µ-weighted `2 projection,
which minimizes the Bellman error :

Πµ(Q)
def
= argmin

Q′∈Q
Es,a∼µ[(Q′(s, a)−Q(s, a))2]. (2.1)

The values produced by the Bellman backup, (T Qt)(s, a) are commonly referred to as target
values, and when neural networks are used for function approximation, the previous Q-
function Qt(s, a) is referred to as the target network. Convergence guarantees for Q-iteration
do not cleanly translate to FQI. Πµ is an `2 projection, but T is a contraction in the `∞
norm – this norm mismatch means the composition of the backup and projection is no longer
guaranteed to be a contraction under any norm [Bertsekas and Tsitsiklis, 1996], and hence
convergence is not guaranteed.

In large action spaces (e.g., continuous), the maximization maxa′ Q(s′, a′) is generally
intractable. Actor-critic methods Sutton and Barto [2018], Fujimoto et al. [2018], Haarnoja
et al. [2018] address this by additionally learning a policy πθ that maximizes the Q-function.

Offline Reinforcement Learning

In episodic RL, the algorithm is given access to the MDP via trajectory samples for arbitrary
π of the algorithm’s choosing. Off-policy methods may use experience replay [Lin, 1992] to
store these trajectories in a replay buffer D of transitions (st, at, st+1, rt), and use an off-
policy algorithm such as Q-learning [Watkins and Dayan, 1992] to optimize π. However,
these methods still iteratively collect additional data, and omitting this collection step can
produce poor results. For example, running state-of-the-art off-policy RL algorithms on
trajectories collected from an expert policy can result in diverging Q-values [Kumar et al.,
2019].

In offline RL, the algorithm no longer has access to the MDP, and is instead presented
with a fixed dataset of transitions D = {(s, a, s′, r(s, a))}. The (unknown) policy that
generated this data is referred to as a behavior policy πB. Effective offline RL algorithms must
handle distribution shift, as well as data collected via processes that may not be representable
by the chosen policy class. Levine et al. [2020] provide a comprehensive discussion of the
problems affecting offline RL.

2.2 Model-based Optimization

In reinforcement learning, we considered problems with sequential structure. However, many
real-world problems do not necessarily conform to such structure. Instead, we can adopt the
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more generic model-based optimization (MBO) framework which resembles a generic op-
timization problem. In MBO, we assume the existence of a stochastic ground truth function
f(y|x), and are given a dataset D of inputs x along with outputs y sampled from f(y|x).
Like in standard optimization problems, the goal of MBO is to find the input value that
maximizes the true function:

x∗ = argmaxxEy∼f(y|x)[y]. (2.2)

Much like how we considered learning purely from offline data in reinforcement learning,
in offline MBO, the algorithm is not allowed to query the true function f(y|x), and must
find the best possible point x∗ using only the guidance of a fixed dataset D = {x1:N , y1:N}.
One approach to solving this problem is to introduce a separate proxy function f̂θ(y|x) ≈
f(y|x), which is learned from D as an estimate of the true function. From here, standard
optimization algorithms such as gradient descent can be used to find the optimum of the
proxy function, x̂∗ = argmaxxEy∼f̂θ(y|x)[y]. Alternatively, a trivial algorithm could be to
select the highest-performing point in the dataset. While adversarial ground truth functions
can easily be constructed where this is the best one can do (e.g., if f(x) = −∞ on any
x /∈ D), in many reasonable domains it should be possible to perform better than the best
point in the dataset.
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Chapter 3

Related Work

The work presented in this thesis is primarily concerned with offline decision making and as-
sociated challenges such as building algorithms that are robust to distribution shift. Offline
learning using large, previously-collect datasets has been successfully applied to real-world
systems such as in robotics [Cabi et al., 2019], recommender systems [Li et al., 2010, Strehl
et al., 2010, Thomas et al., 2017], and dialogue systems [Henderson et al., 2008, Pietquin
et al., 2011, Jaques et al., 2019]. Moreover, significant efforts have been made to incorpo-
rate large-scale datasets into off-policy RL [Kalashnikov et al., 2018, Mo et al., 2018, Gu
et al., 2017], but these works use large numbers of robots to collect online interaction during
training.

Chapter 4 considers offline learning in the case of model-free Q-learning algorithm, where
we identify difficulties arising from error propagation and motivate the development of the
BEAR (Bootstrapping Error Accumulation Reduction) algorithm. Errors arising from in-
adequate sampling, distributional shift, and function approximation have been rigorously
studied as “error propagation” in approximate dynamic programming (ADP) [Bertsekas and
Tsitsiklis, 1996, Munos, 2003, Farahmand et al., 2010, Scherrer et al., 2015]. These works
study how Bellman errors accumulate and propagate to nearby states via bootstrapping.
We build upon tools from this analysis to show that performing Bellman backups on static
datasets leads to error accumulation due to out-of-distribution values. Our approach is
motivated as reducing the rate of propagation of error propagation between states.

Algorithmically, most closely related to this work is batch-constrained Q-learning (BCQ)
[Fujimoto et al., 2019b] and SPIBB [Laroche et al., 2019], which also discuss instability
arising from previously unseen actions. Fujimoto et al. [2019b] show convergence properties
of an action-constrained Bellman backup operator in tabular, error-free settings. We prove
stronger results under approximation errors and provide a bound on the suboptimality of
the solution. As a consequence, although we experimentally find that [Fujimoto et al.,
2019b] outperforms standard Q-learning methods when the off-policy data is collected by an
expert, BEAR outperforms Fujimoto et al. [2019b] when the off-policy data is collected by
a suboptimal policy.

In Chapter 5 we explore the issues of distribution shift and robustness within model-
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based reinforcement learning. Model-based reinforcement learning methods are promising
candidates for real-world sequential decision-making problems due to their data efficiency
[Kaelbling et al., 1996]. Gaussian processes and time-varying linear dynamical systems pro-
vide excellent performance in the low-data regime [Deisenroth and Rasmussen, 2011, Levine
and Koltun, 2013, Kumar et al., 2016]. Neural network predictive models [Draeger et al.,
1995, Gal et al., 2016, Depeweg et al., 2016, Nagabandi et al., 2018], are appealing because
they allow for algorithms that combine the sample efficiency of a model-based approach
with the asymptotic performance of high-capacity function approximators, even in domains
with high-dimensional observations [Oh et al., 2015, Ebert et al., 2018, Kaiser et al., 2020].
Our work uses an ensemble of probabilistic networks, as in Chua et al. [2018], although our
model is employed to learn a policy rather than in the context of a receding-horizon planning
routine.

Theoretical analysis of error accumulation in model-based reinforcement learning algo-
rithms has been considered by Sun et al. [2018] and Luo et al. [2019], who bound the dis-
crepancy between returns under a model and those in the real environment of interest. Their
approaches enforce a trust region around a reference policy, whereas we do not constrain the
policy but instead consider rollout length based on estimated model generalization capacity.
Alternate analyses have been carried out by incorporating the structure of the value function
into the model learning [Farahmand et al., 2017] or by regularizing the model by control-
ling its Lipschitz constant [Asadi et al., 2018]. Prior work has also constructed complexity
bounds for model-based approaches in the tabular setting [Szita and Szepesvari, 2010] and
for the linear quadratic regulator [Dean et al., 2020].

Chapter 6 explores decision making within the offline model-based optimization (MBO)
framework. MBO has been applied to problems such as designing DNA [Killoran et al.,
2017], drugs [Popova et al., 2018], or materials [Hautier et al., 2010]. The estimation of
distribution algorithm [Bengoetxea et al., 2001] alternates between searching in the input
space and model space using a maximum likelihood objective. Kumar and Levine [2020]
propose to learn an inverse mapping from output values to input values, and optimize over
the output values which produce consistent input values. Brookes et al. [2019] propose CbAS,
which uses a trust-region to limit exploitation of the model. Fannjiang and Listgarten
[2020] casts the MBO problem as a minimax game based on the oracle gap, or the value
between the ground truth function and the estimated function. There are also several related
areas that could arguably be viewed as special cases of MBO. One is in contextual bandits
under the batch learning from bandit feedback setting, where learning is often done on
logged experience [Swaminathan and Joachims, 2015b, Joachims et al., 2018], or offline
reinforcement learning [Levine et al., 2020], where model-based methods construct estimates
of the MDP parameters [Kidambi et al., 2020, Yu et al., 2020].

In Chapter 7, we present D4RL (Datasets for Deep Data-Driven Reinforcement Learn-
ing), a benchmark for offline reinforcement learning and evaluate the performance of state-
of-the-art algorithms. Most recent work in offline RL has primarily used datasets gener-
ated by a previously trained behavior policy, ranging from a random initial policy to a
near-expert online-trained policy. This approach has been used for continuous control for
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robotics [Fujimoto et al., 2019b, Kumar et al., 2019, Wu et al., 2019, Gulcehre et al., 2020],
navigation [Laroche et al., 2019], industrial control [Hein et al., 2017], and Atari video
games [Agarwal et al., 2020b]. To standardize the community around common datasets,
several recent works have proposed benchmarks for offline RL algorithms. Agarwal et al.
[2020b], Fujimoto et al. [2019a] propose benchmarking based on the discrete Atari domain.
Concurrently to our work, Gulcehre et al. [2020] proposed a benchmark based on locomotion
and manipulation tasks with perceptually challenging input and partial observability.

In Chapter 8, we consider benchmarking and evaluation in the related area of off-policy
evaluation by introducing the DOPE (Benchmarks for Deep Off-Policy Evaluation) bench-
mark. Off-policy evaluation (OPE) has been studied extensively across a range of differ-
ent domains, from healthcare [Thapa et al., 2005, Raghu et al., 2018, Nie et al., 2020], to
recommender systems [Li et al., 2010, Dud́ık et al., 2014, Theocharous et al., 2015], and
robotics [Kalashnikov et al., 2018]. Broadly speaking we can categories OPE methods into
groups based the use of importance sampling [Precup et al., 2000], value functions [Sutton
et al., 2009, Migliavacca et al., 2010, Sutton et al., 2016, Yang et al., 2020], and learned tran-
sition models [Paduraru, 2007], though a number of methods combine two or more of these
components [Jiang and Li, 2016, Thomas and Brunskill, 2016, Munos et al., 2016]. A signif-
icant body of work in OPE is also concerned with providing statistical guarantees [Thomas
et al., 2015]. Current benchmarks and evaluation of OPE methods is based around several
metrics, including error in predicting the true return of the evaluated policy [Voloshin et al.,
2019], correlation between the evaluation output and actual returns [Irpan et al., 2019], and
ranking and model selection metrics [Doroudi et al., 2018]. As there is no single accepted
metric used by the entire community, we provide a set of candidate metrics along with the
benchmark.
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Part I

Robust Algorithms
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Chapter 4

Bootstrapping Error in Model-Free
Reinforcement Learning

Model-free Q-learning algorithms have been one of the most successful classes of RL meth-
ods, and have seen recent results such as being able to solve Atari video games entirely from
images [Mnih et al., 2015] or complex strategy games such as Go [Silver et al., 2016]. One
appeal of Q-learning is that it can learn off-policy, meaning it can learn the optimal policy
even while observing another policy act [Sutton and Barto, 2018]. This allows Q-learning
to leverage tools such as experience replay [Lin, 1992], or learning from an agent’s past
experience, to greatly accelerate learning. In principle, this means that off-policy methods
can leverage offline datasets and still extract performant or optimal policies. In practice,
however, most off-policy methods are limited in their ability to learn entirely from off-policy
data. Recent off-policy RL methods (e.g., [Haarnoja et al., 2018, Munos et al., 2016, Kalash-
nikov et al., 2018, Espeholt et al., 2018]) have demonstrated sample-efficient performance on
complex tasks in robotics [Kalashnikov et al., 2018] and simulated environments [Todorov
et al., 2012], but these methods can still fail to learn when presented with arbitrary off-policy
data without the opportunity to collect more experience from the environment. This issue
persists even when the off-policy data comes from effective expert policies, which in principle
should address any exploration challenge [De Bruin et al., 2015, Fujimoto et al., 2019b, Fu
et al., 2019]. This sensitivity to the training data distribution is a limitation of practical
off-policy RL algorithms, and one would hope that an off-policy algorithm should be able
to learn reasonable policies through training on static datasets before being deployed in the
real world.

In this chapter, we motivate an off-policy, value-based RL method that can learn from
static datasets. As we show, a crucial challenge in applying value-based methods to off-policy
scenarios arises in the bootstrapping process employed when Q-functions are evaluated on
out of out-of-distribution action inputs for computing the backup when training from off-
policy data. This may introduce errors in the Q-function and the algorithm is unable to
collect new data in order to remedy those errors, making training unstable and potentially
diverging.
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First, we formalize and analyze the reasons for instability and poor performance when
learning from off-policy data. We show that, through careful action selection, error propaga-
tion through the Q-function can be mitigated. We then propose a principled algorithm called
bootstrapping error accumulation reduction (BEAR) to control bootstrapping error in prac-
tice, which uses the notion of support-set matching to prevent error accumulation. Through
systematic experiments, we show the effectiveness of our method on continuous-control Mu-
JoCo tasks, with a variety of off-policy datasets: generated by a random, suboptimal, or
optimal policies. BEAR is consistently robust to the training dataset, matching or exceed-
ing the state-of-the-art in all cases, whereas existing algorithms only perform well for specific
datasets.

4.1 Relation to Prior Work

Our approach constrains actor updates so that the actions remain in the support of the
training dataset distribution. Several works have explored similar ideas in the context of
off-policy learning learning in online settings. Kakade and Langford [2002] shows that large
policy updates can be destructive, and propose a conservative policy iteration scheme which
constrains actor updates to be small for provably convergent learning. Grau-Moya et al.
[2018] use a learned prior over actions in the maximum entropy RL framework [Levine,
2018] and justify it as a regularizer based on mutual information. However, none of these
methods use static datasets. Importance Sampling based distribution re-weighting Munos
et al. [2016], Gelada and Bellemare [2019], Precup et al. [2001], Mahmood et al. [2015] has
also been explored primarily in the context of off-policy policy evaluation.

As discussed in Chapter 3, our algorithm is also closely related to batch-constrained Q-
learning (BCQ) [Fujimoto et al., 2019b] and SPIBB [Laroche et al., 2019]. Our work differs
in that we prove stronger results under approximation errors and provide a bound on the
suboptimality of the solution. This is crucial as it drives the design choices for a practical
algorithm. Empirically, we find BEAR achieves stronger and more consistent results than
BCQ across a wide variety of datasets and environments. As we explain below, the BCQ
constraint is too aggressive; BCQ generally fails to substantially improve over the behavior
policy, while our method actually improves when the data collection policy is suboptimal or
random. SPIBB [Laroche et al., 2019], like BEAR, is an algorithm based on constraining the
learned policy to the support of a behavior policy. However, the authors do not extend safe
performance guarantees from the batch-constrained case to the relaxed support-constrained
case, and do not evaluate on high-dimensional control tasks. REM [Agarwal et al., 2020b]
is a concurrent work that uses a random convex combination of an ensemble of Q-networks
to perform offline reinforcement learning from a static dataset consisting of interaction data
generated while training a DQN agent.
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Figure 4.1: Performance of SAC on HalfCheetah-v2 (return (left) and log Q-values (right))
with off-policy expert data w.r.t. number of training samples (n). Note the large discrepancy
between returns (which are negative) and log Q-values (which have large positive values),
which is not solved with additional samples.

4.2 Out-of-Distribution Actions in Q-Learning

Q-learning methods often fail to learn on static, off-policy data, as shown in Figure 4.1. At
first glance, this resembles overfitting, but increasing the size of the static dataset does not
rectify the problem, suggesting the issue is more complex. We can understand the source
of this instability by examining the form of the Bellman backup. Although minimizing the
mean squared Bellman error corresponds to a supervised regression problem, the targets for
this regression are themselves derived from the current Q-function estimate. The targets are
calculated by maximizing the learned Q-values with respect to the action at the next state.
However, the Q-function estimator is only reliable on inputs from the same distribution as
its training set. As a result, näıvely maximizing the value may evaluate the Q̂ estimator on
actions that lie far outside of the training distribution, resulting in pathological values that
incur large error. We refer to these actions as out-of-distribution (OOD) actions.

Formally, let ζk(s, a) = |Qk(s, a) − Q∗(s, a)| denote the total error at iteration k of Q-
learning, and let δk(s, a) = |Qk(s, a)−T Qk−1(s, a)| denote the current Bellman error. Then,
we have ζk(s, a) ≤ δk(s, a) + γmaxa′ Es′ [ζk−1(s′, a′)]. In other words, errors from (s′, a′) are
discounted, then accumulated with new errors δk(s, a) from the current iteration. We expect
δk(s, a) to be high on OOD states and actions, as errors at these state-actions are never
directly minimized while training.

To mitigate bootstrapping error, we can restrict the policy to ensure that it output actions
that lie in the support of the training distribution. This is distinct from previous work (e.g.,
BCQ [Fujimoto et al., 2019b]) which implicitly constrains the distribution of the learned



CHAPTER 4. BOOTSTRAPPING ERROR IN MODEL-FREE REINFORCEMENT
LEARNING 16

policy to be close to the behavior policy, similarly to behavioral cloning Schaal [1999]. While
this is sufficient to ensure that actions lie in the training set with high probability, it is overly
restrictive. For example, if the behavior policy is close to uniform, the learned policy will
behave randomly, resulting in poor performance, even when the data is sufficient to learn a
strong policy (see Figure 4.2 for an illustration). Formally, this means that a learned policy
π(a|s) has positive density only where the density of the behaviour policy β(a|s) is more
than a threshold (i.e., ∀a, β(a|s) ≤ ε =⇒ π(a|s) = 0), instead of a closeness constraint on
the value of the density π(a|s) and β(a|s). Our analysis instead reveals a tradeoff between
staying within the data distribution and finding a suboptimal solution when the constraint
is too restrictive. Our analysis motivates us to restrict the support of the learned policy,
but not the probabilities of the actions lying within the support. This avoids evaluating the
Q-function estimator on OOD actions, but remains flexible in order to find a performant
policy. Our proposed algorithm leverages this insight.

Distribution-Constrained Backups

In this section, we define and analyze a backup operator that restricts the set of policies used
in the maximization of the Q-function, and we derive performance bounds which depend on
the restricted set. This provides motivation for constraining policy support to the data
distribution. We begin with the definition of a distribution-constrained operator:

Definition 4.2.1 (Distribution-constrained operators). Given a set of policies Π , the
distribution-constrained backup operator is defined as:

T ΠQ(s, a)
def
= E

[
R(s, a) + γmax

π∈Π
EP (s′|s,a) [V (s′)]

]
V (s)

def
= max

π∈Π
Eπ[Q(s, a)] .

This backup operator satisfies properties of the standard Bellman backup, such as con-
vergence to a fixed point, as discussed in Appendix A.1. To analyze the (sub)optimality of
performing this backup under approximation error, we first quantify two sources of error.
The first is a suboptimality bias. The optimal policy may lie outside the policy constraint set,
and thus a suboptimal solution will be found. The second arises from distribution shift be-
tween the training distribution and the policies used for backups. This formalizes the notion
of OOD actions. To capture suboptimality in the final solution, we define a suboptimality
constant, which measures how far π∗ is from Π.

Definition 4.2.2 (Suboptimality constant). The suboptimality constant is defined as:

α(Π) = max
s,a
|T ΠQ∗(s, a)− T Q∗(s, a)|.

Next, we define a concentrability coefficient [Munos, 2005], which quantifies how far the
visitation distribution generated by policies from Π is from the training data distribution.
This constant captures the degree to which states and actions are out of distribution.
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Assumption 4.2.1 (Concentrability). Let ρ0 denote the initial state distribution, and µ(s, a)
denote the distribution of the training data over S ×A, with marginal µ(s) over S. Suppose
there exist coefficients c(k) such that for any π1, ...πk ∈ Π and s ∈ S:

ρ0P
π1P π2 ...P πk(s) ≤ c(k)µ(s),

where P πi is the transition operator on states induced by πi. Then, define the concentrability
coefficient C(Π) as

C(Π)
def
= (1− γ)2

∞∑
k=1

kγk−1c(k).

To provide some intuition for C(Π), if µ was generated by a single policy π, and Π = {π}
was a singleton set, then we would have C(Π) = 1, which is the smallest possible value.
However, if Π contained policies far from π, the value could be large, potentially infinite if
the support of Π is not contained in π. Now, we bound the performance of approximate
distribution-constrained Q-iteration:

Theorem 4.2.1. Suppose we run approximate distribution-constrained value iteration with
a set constrained backup T Π. Assume that δ(s, a) ≥ maxk |Qk(s, a) − T ΠQk−1(s, a)| bounds
the Bellman error. Then,

lim
k→∞

Eρ0 [|V πk(s)− V ∗(s)|] ≤ γ

(1− γ)2

[
C(Π)Eµ[max

π∈Π
Eπ[δ(s, a)]] +

1− γ
γ

α(Π)

]
Proof. See Appendix A.2, Theorem A.2.1

This bound formalizes the tradeoff between keeping policies chosen during backups close
to the data (captured by C(Π)) and keeping the set Π large enough to capture well-
performing policies (captured by α(Π)). When we expand the set of policies Π, we are
increasing C(Π) but decreasing α(Π). An example of this tradeoff, and how a careful choice
of Π can yield superior results, is given in a tabular gridworld example in Fig. 4.2, where we
visualize errors accumulated during distribution-constrained Q-iteration for different choices
of Π.

Finally, we motivate the use of support sets to construct Π. We are interested in the
case where Πε = {π | π(a|s) = 0 whenever β(a|s) < ε}, where β is the behavior policy (i.e.,
Π is the set of policies that have support in the probable regions of the behavior policy).
Defining Πε in this way allows us to bound the concentrability coefficient:

Theorem 4.2.2. Assume the data distribution µ is generated by a behavior policy β. Let µ(s)
be the marginal state distribution under the data distribution. Define Πε = {π | π(a|s) =
0 whenever β(a|s) < ε} and let µΠε be the highest discounted marginal state distribution



CHAPTER 4. BOOTSTRAPPING ERROR IN MODEL-FREE REINFORCEMENT
LEARNING 18

starting from the initial state distribution ρ and following policies π ∈ Πε at each time step
thereafter. Then, there exists a concentrability coefficient C(Πε) which is bounded:

C(Πε) ≤ C(β) ·
(

1 +
γ

(1− γ)f(ε)
(1− ε)

)
where f(ε)

def
= mins∈S,µΠε (s)>0[µ(s)] > 0.

Proof. See Appendix A.2, Theorem A.2.2

Qualitatively, f(ε) is the minimum discounted visitation marginal of a state under the
behaviour policy if only actions which are more than ε likely are executed in the environment.
Thus, using support sets gives us a single lever, ε, which simultaneously trades off the value
of C(Π) and α(Π). Not only can we provide theoretical guarantees, we will see in our
experiments (Sec. 4.4) that constructing Π in this way provides a simple and effective method
for implementing distribution-constrained algorithms.

Intuitively, this means we can prevent an increase in overall error in the Q-estimate
by selecting policies supported on the support of the training action distribution, which
would ensure roughly bounded projection error δk(s, a) while reducing the suboptimality
bias, potentially by a large amount. Bounded error δk(s, a) on the support set of the training
distribution is a reasonable assumption when using highly expressive function approximators,
such as deep networks, especially if we are willing to reweight the transition set Schaul et al.
[2016], Fu et al. [2019]. We further elaborate on this point in Appendix A.3.

4.3 BEAR: Bootstrapping Error Accumulation

Reduction

We now propose a practical actor-critic algorithm (built on the framework of TD3 Fujimoto
et al. [2018] or SAC Haarnoja et al. [2018]) that uses distribution-constrained backups to
reduce accumulation of bootstrapping error. The key insight is that we can search for a
policy with the same support as the training distribution, while preventing accidental error
accumulation. Our algorithm has two main components. Analogous to BCQ [Fujimoto
et al., 2018], we use K Q-functions and use the minimum Q-value for policy improvement,
and design a constraint which will be used for searching over the set of policies Πε, which
share the same support as the behaviour policy. Both of these components will appear as
modifications of the policy improvement step in actor-critic style algorithms. We also note
that policy improvement can be performed with the mean of the K Q-functions, and we
found that this scheme works as good in our experiments.

We denote the set of Q-functions as: Q̂1, · · · , Q̂K . Then, the policy is updated to maxi-
mize the conservative estimate of the Q-values within Πε:

πφ(s) := max
π∈Πε

Ea∼π(·|s)

[
min

j=1,...,K
Q̂j(s, a)

]
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Figure 4.2: Visualized error propagation in Q-learning for various choices of the constraint
set Π: unconstrained (top row) distribution-constrained (middle), and constrained to the
behaviour policy (policy-evaluation, bottom). Triangles represent Q-values for actions that
move in different directions. The task (left) is to reach the bottom-left corner (G) from
the top-left (S), but the behaviour policy (visualized as arrows in the task image, support
state-action pairs are shown in black on the support set image) travels to the bottom-right
with a small amount of ε-greedy exploration. Dark values indicate high error, and light
values indicate low error. Standard backups propagate large errors from the low-support
regions into the high-support regions, leading to high error. Policy evaluation reduces error
propagation from low-support regions, but introduces significant suboptimality bias, as the
data policy is not optimal. A carefully chosen distribution-constrained backup strikes a
balance between these two extremes, by confining error propagation in the low-support
region while introducing minimal suboptimality bias.

In practice, the behavior policy β is unknown, so we need an approximate way to con-
strain π to to the set Π. To this end, We define a differentiable constraint that approximately
constrains π to Π, and then approximately solve the constrained optimization problem via
dual gradient descent. We use the sampled version of maximum mean discrepancy (MMD)
[Gretton et al., 2012] between the unknown behaviour policy β and the actor π because it can
be estimated based solely on samples from the distributions. Given samples x1, · · · , xn ∼ P
and y1, · · · , ym ∼ Q, the sampled MMD between P and Q is given by:

MMD2({x1, · · · , xn}, {y1, · · · , ym}) =
1

n2

∑
i,i′

k(xi, xi′)−
2

nm

∑
i,j

k(xi, yj) +
1

m2

∑
j,j′

k(yj, yj′).

Here, k(·, ·) is any universal kernel. In our experiments, we find both Laplacian and Gaussian
kernels work well. The expression for MMD does not involve the density of either distribution
and it can be optimized directly through samples. Empirically we find that, in the low-
intermediate sample regime, the sampled MMD between P and Q is similar to the MMD
between a uniform distribution over P ’s support and Q, which makes MMD roughly suited
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for constraining distributions to a given support set. (See Appendix A.3 for numerical
simulations justifying this approach).

Putting everything together, the optimization problem in the policy improvement step is

πφ := max
π∈∆|S|

Es∼DEa∼π(·|s)

[
min

j=1,..,K
Q̂j(s, a)

]
s.t. Es∼D[MMD(D(s), π(·|s))] ≤ ε (4.1)

where ε is an approximately chosen threshold. We choose a threshold of ε = 0.05 in our
experiments. The algorithm is summarized in Algorithm 1.

How does BEAR connect with distribution-constrained backups described in Section 4.1?
Step 5 of the algorithm restricts πφ to lie in the support of β. This insight is formally justified
in Theorems 4.1 & 4.2 (C(Πε) is bounded). Computing distribution-constrained backup
exactly by maximizing over π ∈ Πε is intractable in practice. As an approximation, we sample
Dirac policies in the support of β (Alg 1, Line 5) and perform empirical maximization to
compute the backup. As the maximization is performed over a narrower set of Dirac policies
({δai} ⊆ Πε), the bound in Theorem 4.1 still holds. Empirically, we show in Section 4.4 that
this approximation is sufficient to outperform previous methods.

Algorithm 1 BEAR Q-Learning (BEAR-QL)

input : Dataset D, target network update rate τ , mini-batch size N , sampled actions for MMD
n, minimum λ.

1: Initialize Q-ensemble {Qθi}Ki=1, actor πφ, Lagrange multiplier α, target networks {Qθ′i}
K
i=1, and

a target actor πφ′ , with φ′ ← φ, θ′i ← θi
2: for t in {1, . . . , N} do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ D

Q-update:
4: Sample p action samples, {ai ∼ πφ′(·|s′)}pi=1

5: Define y(s, a) := maxai [λminj=1,..,K Qθ′j (s
′, ai) + (1− λ) maxj=1,..,K Qθ′j (s

′, ai)]

6: ∀i, θi ← arg minθi(Qθi(s, a)− (r + γy(s, a)))2

Policy-update:
7: Sample actions {âi ∼ πφ(·|s)}mi=1 and {aj ∼ D(s)}nj=1, n preferably an intermediate integer(1-

10)
8: Update φ, α by minimizing Equation 4.1 by using dual gradient descent with Lagrange

multiplier α
9: Update Target Networks: θ′i ← τθi + (1− τ)θ′i; φ

′ ← τφ+ (1− τ)φ′

10: end for

In summary, the actor is updated towards maximizing the Q-function while still being
constrained to remain in the valid search space defined by Πε. The Q-function uses actions
sampled from the actor to then perform distribution-constrained Q-learning, over a reduced
set of policies. At test time, we sample p actions from πφ(s) and the Q-value maximizing
action out of these is executed in the environment. Implementation and other details are
present in Appendix A.4.
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4.4 Experiments

In our experiments, we study how BEAR performs when learning from static off-policy data
on a variety of continuous control benchmark tasks. We evaluate our algorithm in three
settings: when the dataset D is generated by (1) a completely random behaviour policy, (2)
a partially trained, medium scoring policy, and (3) an optimal policy. Condition (2) is of
particular interest, as it captures many common use-cases in practice, such as learning from
imperfect demonstration data (e.g., of the sort that are commonly available for autonomous
driving Gao et al. [2018]), or reusing previously collected experience during off-policy RL.
We compare our method to several prior methods: a baseline actor-critic algorithm (TD3),
the BCQ algorithm [Fujimoto et al., 2019b], which aims to address a similar problem, as
discussed in Section 4.2, KL-control [Jaques et al., 2019] (which solves a KL-penalized RL
problem similarly to maximum entropy RL), a static version of DQfD [Hester et al., 2018]
(where a constraint to upweight Q-values of state-action pairs observed in the dataset is
added as an auxiliary loss on top a regular actor-critic algorithm), and a behaviour cloning
(BC) baseline, which simply imitates the data distribution. This serves to measure whether
each method actually performs effective RL, or simply copies the data. We report the average
evaluation return over 5 seeds of the policy given by the learned algorithm, in the form of
a learning curve as a function of number of gradient steps taken by the algorithm. These
samples are only collected for evaluation, and are not used for training.

Performance on Medium-Quality Data

We first discuss the evaluation of condition with “mediocre” data (2), as this condition
resembles the settings where we expect training on offline data to be most useful. We
collected one million transitions from a partially trained policy, so as to simulate imperfect
demonstration data or data from a mediocre prior policy. In this scenario, we found that
BEAR-QL consistently outperforms both BCQ Fujimoto et al. [2019b] and a näıve off-policy
RL baseline (TD3) by large margins, as shown in Figure 4.3. This scenario is the most
relevant from an application point of view, as access to optimal data may not be feasible,
and random data might have inadequate exploration to efficient learn a good policy. We
also evaluate the accuracy with which the learned Q-functions predict actual policy returns.
These trends are provided in Appendix A.5. Note that the performance of BCQ often tracks
the performance of the BC baseline, suggesting that BCQ primarily imitates the data. Our
KL-control baseline uses automatic temperature tuning [Haarnoja et al., 2018]. We find
that KL-control usually performs similar or worse to BC, whereas DQfD tends to diverge
often due to cumulative error due to OOD actions and often exhibits a huge variance across
different runs (for example, HalfCheetah-v2 environment).
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Figure 4.3: Average performance of BEAR-QL, BCQ, Näıve RL and BC on medium-quality
data averaged over 5 seeds. BEAR-QL outperforms both BCQ and Näıve RL. Average return
over the training data is indicated by the magenta line. One step on the x-axis corresponds
to 1000 gradient steps.

Performance on Random and Optimal Datasets

In Figure 4.5, we show the performance of each method when trained on data from a random
policy (top) and a near-optimal policy (bottom). In both cases, our method BEAR achieves
good results, consistently exceeding the average dataset return on random data, and match-
ing the optimal policy return on optimal data. Näıve RL also often does well on random
data. For a random data policy, all actions are in-distribution, since they all have equal
probability. This is consistent with our hypothesis that OOD actions are one of the main
sources of error in off-policy learning on static datasets. The prior BCQ method Fujimoto
et al. [2019b] performs well on optimal data but performs poorly on random data, where
the constraint is too strict. These results show that BEAR-QL is robust to the dataset
composition, and can learn consistently in a variety of settings. We find that KL-control
and DQfD can be unstable in these settings.

Finally, in Figure 4.4, we show that BEAR outperforms other considered prior methods
in the challenging Humanoid-v2 environment as well, in two cases – Medium-quality data
and random data.

Analysis of BEAR-QL

In this section, we aim to analyze different components of our method via an ablation
study. Our first ablation studies the support constraint discussed in Section 4.3, which uses
MMD to measure support. We replace it with a more standard KL-divergence distribution
constraint, which measures similarity in density. Our hypothesis is that this should provide
a more conservative constraint, since matching distributions is not necessary for matching
support. KL-divergence performs well in some cases, such as with optimal data, but as
shown in Figure 4.6, it performs worse than MMD on medium-quality data. Even when KL-
divergence is hand tuned fully, so as to prevent instability issues it still performs worse than
a not-well tuned MMD constraint. We provide the results for this setting in the Appendix.
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Figure 4.4: Performance of BEAR-QL, BCQ, Näıve RL and BC on medium-quality (left) and
random (right) data in the Humanoid-v2 environment. Note that BEAR-QL outperforms
prior methods.

We also vary the number of samples n that are used to compute the MMD constraint.
We find that smaller n (≈ 4 or 5) gives better performance. Although the difference is
not large, consistently better performance with 4 samples leans in favour of our hypothesis
that an intermediate number of samples works well for support matching, and hence is less
restrictive.

4.5 Discussion

The goal in this chapter was to study off-policy reinforcement learning with static datasets.
We theoretically and empirically analyze how error propagates in off-policy RL due to the use
of out-of-distribution actions for computing the target values in the Bellman backup. Our
experiments suggest that this source of error is one of the primary issues afflicting off-policy
RL: increasing the number of samples does not appear to mitigate the degradation issue
(Figure 4.1), and training with näıve RL on data from a random policy, where there are no
out-of-distribution actions, shows much less degradation than training on data from more
focused policies (Figure 4.5). Armed with this insight, we develop a method for mitigating
the effect of out-of-distribution actions, which we call BEAR-QL. BEAR-QL constrains the
backup to use actions that have non-negligible support under the data distribution, but with-
out being overly conservative in constraining the learned policy. We observe experimentally
that BEAR-QL achieves good performance across a range of tasks, and across a range of
dataset compositions, learning well on random, medium-quality, and expert data.
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Figure 4.5: Average performance of BEAR-QL, BCQ, Näıve RL and BC on random data
(top row) and optimal data (bottom row) over 5 seeds. BEAR-QL is the only algorithm
capable of learning in both scenarios. Näıve RL cannot handle optimal data, since it does
not illustrate mistakes, and BCQ favors a behavioral cloning strategy (performs quite close
to behaviour cloning in most cases), causing it to fail on random data. Average return over
the training dataset is indicated by the dashed magenta line.
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Chapter 5

Model-Based Policy Optimization

In Chapter 4, we explored the effect of distribution shift during policy evaluation in the
model-free setting. We now move on the analyze the effect of these errors on performance
in the model-based RL setting, where we will find that errors can likewise be categorized
into those originating from in-distribution generalization errors (such as Bellman errors) and
distribution shift errors (such as those captured by the concentrability coefficient). While
we experimentally evaluate these ideas in an online model-based setting, similar ideas can
be applied to the offline setting, which has been explored in works such as MOReL and
MOPO [Kidambi et al., 2020, Yu et al., 2020].

While model-free methods have shown promise as a general-purpose tool for learning
complex policies from raw state inputs [Mnih et al., 2015, Lillicrap et al., 2016, Haarnoja
et al., 2018], but their generality comes at the cost of efficiency. When dealing with real-
world physical systems, for which data collection can be an arduous process, model-based
approaches are appealing due to their comparative sample complexity. Conceptually, model-
based methods are also simple: one can use an offline dataset to construct and estimate of
the dynamics of the system, and then use any policy optimization or planning algorithm
within the learned dynamics to obtain a policy.

In this chapter, we study how to most effectively use a predictive model for policy op-
timization. We first formulate and analyze a class of model-based reinforcement learning
algorithms with improvement guarantees. Although there has been recent interest in mono-
tonic improvement of model-based reinforcement learning algorithms [Sun et al., 2018, Luo
et al., 2019], most commonly used model-based approaches lack the improvement guaran-
tees that underpin many model-free methods [Schulman et al., 2015]. While it is possible to
apply analogous techniques to the study of model-based methods to achieve similar guaran-
tees, it is more difficult to use such analysis to justify model usage in the first place due to
pessimistic bounds on model error. However, we show that more realistic model error rates
derived empirically allow us to modify this analysis to provide a more reasonable tradeoff on
model usage.

We build on these insights to propose MBPO (model-based policy optimization), which
makes limited use of a predictive model to achieve pronounced improvements in perfor-
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mance compared to other model-based approaches. More specifically, we disentangle the
task horizon and model horizon by querying the model only for short rollouts. We empir-
ically demonstrate that a large amount of these short model-generated rollouts can allow
a policy optimization algorithm to learn substantially faster than recent model-based al-
ternatives while retaining the asymptotic performance of the most competitive model-free
algorithms. We also show that MBPO does not suffer from the same pitfalls as prior model-
based approaches, avoiding model exploitation and failure on long-horizon tasks. Finally,
we empirically investigate different strategies for model usage, supporting the conclusion
that careful use of short model-based rollouts provides the most benefit to a reinforcement
learning algorithm.

5.1 Relation to Prior Work

The primary contribution this work is a theoretical analysis of error accumulation in model-
based reinforcement learning due to generalization and distribution shift, as well as a practi-
cal algorithm combining an ensemble-based dynamics model (as in [Chua et al., 2018]) with
a model-free planner.

Learned models may be incorporated into otherwise model-free methods for improve-
ments in data efficiency. For example, a model-free policy can be used as an action proposal
distribution within a model-based planner [Piché et al., 2019]. Conversely, model rollouts
may be used to provide extra training examples for a Q-function [Sutton, 1990], to improve
the target value estimates of existing data points [Feinberg et al., 2018], or to provide ad-
ditional context to a policy [Du and Narasimhan, 2019]. However, the performance of such
approaches rapidly degrades with increasing model error [Gu et al., 2016], motivating work
that interpolates between different rollout lengths [Buckman et al., 2018], tunes the ratio
of real to model-generated data [Kalweit and Boedecker, 2017], or does not rely on model
predictions [Heess et al., 2015]. Our approach similarly tunes model usage during policy
optimization, but we show that justifying non-negligible model usage during most points
in training requires consideration of the model’s ability to generalize outside of its training
distribution.

Prior methods have also explored incorporating computation that resembles model-based
planning but without constraining the intermediate predictions of the planner to match
plausible environment observations [Tamar et al., 2016, Racanière et al., 2017, Oh et al.,
2017, Silver et al., 2017]. While such methods can reach asymptotic performance on par
with model-free approaches, they may not benefit from the sample efficiency of model-based
methods as they forgo the extra supervision used in standard model-based methods.

The bottleneck in scaling model-based approaches to complex tasks often lies in learning
reliable predictive models of high-dimensional dynamics [Atkeson and Schaal, 1997]. While
ground-truth models are most effective when queried for long horizons [Holland et al., 2018],
inaccuracies in learned models tend to make long rollouts unreliable. Ensembles have shown
to be effective in preventing a policy or planning procedure from exploiting such inaccuracies
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Algorithm 2 Monotonic Model-Based Policy Optimization

1: Initialize policy π(a|s), predictive model pθ(s
′, r|s, a), empty dataset D.

2: for N epochs do
3: Collect data with π in real environment: D = D ∪ {(si, ai, s′i, ri)}i
4: Train model pθ on dataset D via maximum likelihood: θ ←

argmaxθED[log pθ(s
′, r|s, a)]

5: Optimize policy under predictive model: π ← argmaxπ′ Ĵ(π′)− C(εm, επ)

6: end for

[Rajeswaran et al., 2017, Kurutach et al., 2018, Clavera et al., 2018, Chua et al., 2018].
Alternatively, a model may also be trained on its own outputs to avoid compounding error
from multi-step predictions [Talvitie, 2014, 2016] or predict many timesteps into the future
[Whitney and Fergus, 2019]. We demonstrate that a combination of model ensembles with
short model rollouts is sufficient to prevent model exploitation.

5.2 Monotonic Improvement with Model Bias

In this section, we first lay out a general recipe for MBPO with monotonic improvement. This
general recipe resembles or subsumes several prior algorithms and provides us with a concrete
framework that is amenable to theoretical analysis. Described generically in Algorithm 2,
MBPO optimizes a policy under a learned model, collects data under the updated policy,
and uses that data to train a new model. While conceptually simple, the performance of
MBPO can be difficult to understand; errors in the model can be exploited during policy
optimization, resulting in large discrepancies between the predicted returns of the policy
under the model and under the true dynamics.

Monotonic model-based improvement

Our goal is to outline a principled framework in which we can provide performance guarantees
for model-based algorithms. To show monotonic improvement for a model-based method,
we wish to construct a bound of the following form:

J(π) ≥ Ĵ(π)− C.

J(π) denotes the returns of the policy in the true MDP, whereas Ĵ(π) denotes the returns
of the policy under our model. Such a statement guarantees that, as long as we improve by
at least C under the model, we can guarantee improvement on the true MDP.

The gap between true returns and model returns, C, can be expressed in terms of two error
quantities of the model: generalization error due to sampling, and distribution shift due to the
updated policy encountering states not seen during model training. As the model is trained
with supervised learning, sample error can be quantified by standard PAC generalization
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bounds, which bound the difference in expected loss and empirical loss by a constant with
high probability [Shalev-Shwartz and Ben-David, 2014]. We denote this generalization error
by εm = maxt Es∼πD,t [DTV (p(s′, r|s, a)||pθ(s′, r|s, a))], which can be estimated in practice by
measuring the validation loss of the model on the time-dependent state distribution of the
data-collecting policy πD. For our analysis, we denote distribution shift by the maximum
total-variation distance, maxsDTV (π||πD) ≤ επ, of the policy between iterations. In practice,
we measure the KL divergence between policies, which we can relate to επ by Pinsker’s
inequality. With these two sources of error controlled (generalization by εm, and distribution
shift by επ), we now present our bound:

Theorem 5.2.1. Let the expected TV-distance between two transition distributions be bounded
at each timestep by εm and the policy divergence be bounded by επ. Let Rmax denote the max-
imum possible reward. Then the true returns and model returns of the policy are bounded
as:

J(π) ≥ Ĵ(π)−
[

2γRmax(εm + 2επ)

(1− γ)2
+

4Rmaxεπ
(1− γ)

]
︸ ︷︷ ︸

C(εm,επ)

(5.1)

Proof. See Section B.1, Theorem B.1.1.

This bound implies that as long as we improve the returns under the model Ĵ(π) by more
than C(εm, επ), we can guarantee improvement under the true returns.

Interpolating Model-Based and Model-Free Updates

Theorem 5.2.1 provides a useful relationship between model returns and true returns. How-
ever, it contains several issues regarding cases when the model error εm is high. First, there
may not exist a policy such that Ĵ(π)− J(π) > C(εm, επ), in which case improvement is not
guaranteed. Second, the analysis relies on running full rollouts through the model, allowing
model errors to compound. This is reflected in the bound by a factor scaling quadratically
with the effective horizon, 1/(1−γ). In such cases, we can improve the algorithm by choosing
to rely less on the model and instead more on real data collected from the true dynamics
when the model is inaccurate.

In order to allow for dynamic adjustment between model-based and model-free rollouts,
we introduce the notion of a branched rollout, in which we begin a rollout from a state
under the previous policy’s state distribution dπD(s) and run k steps according to π under
the learned model pθ. This branched rollout structure resembles the scheme proposed in
the original Dyna algorithm [Sutton, 1990], which can be viewed as a special case of a
length 1 branched rollouts. Formally, we can view this as executing a nonstationary policy
which begins a rollout by sampling actions from the previous policy πD. Then, at some
specified time, we switch to unrolling the trajectory under the model p and current policy
π for k steps. For simplicity, we present theorems for a version of branching (described
in Appendix B.1) which unrolls each state along a trajectory by k steps under the model,
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Figure 5.1: (a) We train a predictive model on the state distribution of πD and evaluate
it on policies π of varying KL-divergence from πD without retraining. The color of each
curve denotes the amount of data from πD used to train the model corresponding to that
curve. The offsets of the curves depict the expected trend of increasing training data leading
to decreasing model error on the training distribution. However, we also see a decreasing
influence of state distribution shift on model error with increasing training data, signifying
that the model is generalizing better. (b) We measure the local change in model error versus
KL-divergence of the policies at επ = 0 as a proxy to model generalization.

but discards intermediate states generated b the model. For completeness, we also include
the more realistic scenario where all model-generated states are included in Appendix B.1,
although the general conclusions remain the same. Under such a branching scheme, the
returns can be bounded as follows:

Theorem 5.2.2. Given returns Jbranch(π) from the k-branched rollout method,

J(π) ≥ Jbranch(π)− 2Rmax

[
γk+1επ

(1− γ)2
+
γk + 2

(1− γ)
επ +

k

1− γ (εm + 2επ)

]
. (5.2)

Proof. See Section B.1, Theorem B.1.3.
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Model Generalization in Practice

Theorem 5.2.2 would be most useful for guiding algorithm design if it could be used to
determine an optimal model rollout length k. While this bound does include two competing
factors, one exponentially decreasing in k and another scaling linearly with k, the values
of the associated constants prevent an actual tradeoff; taken literally, this lower bound is
maximized when k = 0, corresponding to not using the model at all. One limitation of the
analysis is pessimistic scaling of model error εm with respect to policy shift επ, as we do not
make any assumptions about the generalization capacity or smoothness properties of the
model [Asadi et al., 2018].

To better determine how well we can expect our model to generalize in practice, we
empirically measure how the model error under new policies increases with policy change επ.
We train a model on the state distribution of a data-collecting policy πD and then continue
policy optimization while measuring the model’s loss on all intermediate policies π during
this optimization. Figure 5.1a shows that, as expected, the model error increases with the
divergence between the current policy π and the data-collecting policy πD. However, the rate
of this increase depends on the amount of data collected by πD. We plot the local change in
model error over policy change,

dεm′
dεπ

, in Figure 5.1b. The decreasing dependence on policy
shift shows that not only do models trained with more data perform better on their training
distribution, but they also generalize better to nearby distributions.

The clear trend in model error growth rate suggests a way to modify the pessimistic
bounds. In the previous analysis, we assumed access to only model error εm on the distribu-
tion of the most recent data-collecting policy πD and approximated the error on the current
distribution as εm + 2επ. If we can instead approximate the model error on the distribution
of the current policy π, which we denote as εm′ , we may use this directly. For example,
approximating εm′ with a linear function of the policy divergence yields:

ε̂m′(επ) ≈ εm + επ
dεm′

dεπ

where
dεm′
dεπ

is empirically estimated as in Figure 5.1. Equipped with an approximation of
εm′ , the model’s error on the distribution of the current policy π, we arrive at the following
bound:

Theorem 5.2.3. Under the k-branched rollout method, using model error under the updated
policy εm′ ≥ maxt Es∼πD,t [DTV (p(s′|s, a)||p̂(s′|s, a))], we have

J(π) ≥ Jbranch(π)− 2Rmax

[
γk+1επ

(1− γ)2
+

γkεπ
(1− γ)

+
k

1− γ (εm′)

]
. (5.3)

Proof. See Section B.1, Theorem B.1.2.
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While this bound appears similar to Theorem 5.2.2, the important difference is that this
version actually motivates model usage. More specifically,

k∗ = argmin
k

[
γk+1επ

(1− γ)2
+

γkεπ
(1− γ)

+
k

1− γ (εm′)

]
> 0

for sufficiently low εm′ . While this insight does not immediately suggest an algorithm design
by itself, we can build on this idea to develop a method that makes limited use of truncated,
but nonzero-length, model rollouts.

5.3 Model-Based Policy Optimization with Deep

Reinforcement Learning

We now present a practical model-based reinforcement learning algorithm based on the
derivation in the previous section. Instantiating Algorithm 2 amounts to specifying three
design decisions: (1) the parametrization of the model pθ, (2) how the policy π is optimized
given model samples, and (3) how to query the model for samples for policy optimization.

Predictive model. In our work, we use a bootstrapped ensemble of dynamics mod-
els {p1

θ, ..., p
B
θ }. Each member of the ensemble is a probabilistic neural network whose

outputs parametrize a Gaussian distribution with diagonal covariance: piθ(st+1, r|st, at) =
N (µiθ(st, at),Σ

i
θ(st, at))). Individual probabilistic models capture aleatoric uncertainty, or

the noise in the outputs with respect to the inputs. The bootstrapping procedure accounts
for epistemic uncertainty, or uncertainty in the model parameters, which is crucial in regions
when data is scarce and the model can by exploited by policy optimization. Chua et al.
[2018] demonstrate that a proper handling of both of these uncertainties allows for asymp-
totically competitive model-based learning. To generate a prediction from the ensemble, we
simply select a model uniformly at random, allowing for different transitions along a single
model rollout to be sampled from different dynamics models.

Policy optimization. We adopt soft-actor critic (SAC) [Haarnoja et al., 2018] as our
policy optimization algorithm. SAC alternates between a policy evaluation step, which
estimates Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] using the Bellman backup operator,
and a policy improvement step, which trains an actor π by minimizing the expected KL-
divergence JSAC(φ,D) = Est∼D[DKL(π|| exp{Qπ − V π})].

Model usage. Many recent model-based algorithms have focused on the setting in which
model rollouts begin from the initial state distribution [Kurutach et al., 2018, Clavera et al.,
2018]. While this may be a more faithful interpretation of Algorithm 2, as it is optimizing a
policy purely under the state distribution of the model, this approach entangles the model
rollout length with the task horizon. Because compounding model errors make extended
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Algorithm 3 Model-Based Policy Optimization with Deep Reinforcement Learning

1: Initialize policy πφ, predictive model pθ, environment dataset Denv, model dataset Dmodel

2: for N epochs do
3: Train model pθ on Denv via maximum likelihood
4: for E steps do
5: Take action in environment according to πφ; add to Denv

6: for M model rollouts do
7: Sample st uniformly from Denv

8: Perform k-step model rollout starting from st using policy πφ; add to Dmodel

9: end for
10: for G gradient updates do
11: Update policy parameters on model data: φ← φ− λπ∇̂φJ

SAC(φ,Dmodel)
12: end for
13: end for
14: end for

rollouts difficult, these works evaluate on truncated versions of benchmarks. The branching
strategy described in Section 5.2, in which model rollouts begin from the state distribution
of a different policy under the true environment dynamics, effectively relieves this limitation.
In practice, branching replaces few long rollouts from the initial state distribution with many
short rollouts starting from replay buffer states.

A practical implementation of MBPO is described in Algorithm 3.1 The primary differ-
ences from the general formulation in Algorithm 2 are k-length rollouts from replay buffer
states in the place of optimization under the model’s state distribution and a fixed number
of policy update steps in the place of an intractable argmax. Even when the horizon length
k is short, we can perform many such short rollouts to yield a large set of model samples for
policy optimization. This large set allows us to take many more policy gradient steps per
environment sample (between 20 and 40) than is typically stable in model-free algorithms.
A full listing of the hyperparameters included in Algorithm 3 for all evaluation environments
is given in Section B.3.

5.4 Experiments

Our experimental evaluation aims to study two primary questions: (1) How well does MBPO
perform on benchmark reinforcement learning tasks, compared to state-of-the-art model-
based and model-free algorithms? (2) What conclusions can we draw about appropriate
model usage?

1When SAC is used as the policy optimization algorithm, we must also perform gradient updates on the
parameters of the Q-functions, but we omit these updates for clarity.
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Figure 5.2: Training curves of MBPO and five baselines on continuous control benchmarks.
Solid curves depict the mean of five trials and shaded regions correspond to standard de-
viation among trials. MBPO has asymptotic performance similar to the best model-free
algorithms while being faster than the model-based baselines. For example, MBPO’s perfor-
mance on the Ant task at 300 thousand steps matches that of SAC at 3 million steps. We
evaluated all algorithms on the standard 1000-step versions of the benchmarks.

Comparative Evaluation

In our comparisons, we aim to understand both how well our method compares to state-of-
the-art model-based and model-free methods and how our design choices affect performance.
We compare to two state-of-the-art model-free methods, SAC [Haarnoja et al., 2018] and
PPO [Schulman et al., 2017], both to establish a baseline and, in the case of SAC, measure
the benefit of incorporating a model, as our model-based method uses SAC for policy learning
as well. For model-based methods, we compare to PETS [Chua et al., 2018], which does not
perform explicit policy learning, but directly uses the model for planning; STEVE [Buckman
et al., 2018], which also uses short-horizon model-based rollouts, but incorporates data from
these rollouts into value estimation rather than policy learning; and SLBO [Luo et al., 2019],
a model-based algorithm with performance guarantees that performs model rollouts from the
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Figure 5.3: No model: SAC run without model data but with the same range of gradient
updates per environment step (G) as MBPO on the Hopper task. Rollout length: While
we find that increasing rollout length k over time yields the best performance for MBPO
(Appendix B.3), single-step rollouts provide a baseline that is difficult to beat. Value
expansion: We implement H-step model value expansion from Feinberg et al. [2018] on top
of SAC for a more informative comparison. We also find in the context of value expansion
that single-step model rollouts are surprisingly competitive.

initial state distribution. These comparisons represent the state-of-the-art in both model-free
and model-based reinforcement learning.

We evaluate MBPO and these baselines on a set of MuJoCo continuous control tasks
[Todorov et al., 2012] commonly used to evaluate model-free algorithms. Note that some
recent works in model-based reinforcement learning have used modified versions of these
benchmarks, where the task horizon is chosen to be shorter so as to simplify the modeling
problem [Kurutach et al., 2018, Clavera et al., 2018]. We use the standard full-length version
of these tasks. MBPO also does not assume access to privileged information in the form of
fully observable states or the reward function for offline evaluation.

Figure 5.2 shows the learning curves for all methods, along with asymptotic performance
of algorithms which do not converge in the region shown. These results show that MBPO
learns substantially faster, an order of magnitude faster on some tasks, than prior model-free
methods, while attaining comparable final performance. For example, MBPO’s performance
on the Ant task at 300 thousand steps is the same as that of SAC at 3 million steps. On
Hopper and Walker2d, MBPO requires the equivalent of 14 and 40 minutes, respectively, of
simulation time if the simulator were running in real time. More crucially, MBPO learns on
some of the higher-dimensional tasks, such as Ant, which pose problems for purely model-
based approaches such as PETS.
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Design Evaluation

We next make ablations and modifications to our method to better understand why MBPO
outperforms prior approaches. Results for the following experiments are shown in Figure 5.3.

No model. The ratio between the number of gradient updates and environment sam-
ples, G, is much higher in MBPO than in comparable model-free algorithms because the
model-generated data reduces the risk of overfitting. We run standard SAC with similarly
high ratios, but without model data, to ensure that the model is actually helpful. While
increasing the number of gradient updates per sample taken in SAC does marginally speed
up learning, we cannot match the sample-efficiency of our method without using the model.
For hyperparameter settings of MBPO, see Section B.3.

Rollout horizon. While the best-performing rollout length schedule on the Hopper task
linearly increases from k = 1 to 15 (Section B.3), we find that fixing the rollout length at 1
for the duration of training retains much of the benefit of our model-based method. We also
find that our model is accurate enough for 200-step rollouts, although this performs worse
than shorter values when used for policy optimization. 500-step rollouts are too inaccurate
for effective learning. While more precise fine-tuning is always possible, augmenting policy
training data with single-step model rollouts provides a baseline that is surprisingly difficult
to beat and outperforms recent methods which perform longer rollouts from the initial state
distribution. This result agrees with our theoretical analysis which prescribes short model-
based rollouts to mitigate compounding modeling errors.

Value expansion. An alternative to using model rollouts for direct training of a policy is
to improve the quality of target values of samples collected from the real environment. This
technique is used in model-based value expansion (MVE) [Feinberg et al., 2018] and STEVE
[Buckman et al., 2018]. While MBPO outperforms both of these approaches, there are
other confounding factors making a head-to-head comparison difficult, such as the choice of
policy learning algorithm. To better determine the relationship between training on model-
generated data and using model predictions to improve target values, we augment SAC with
the H-step Q-target objective:

1

H

H−1∑
t=−1

(Q(ŝt, ât − (
H−1∑
k=t

γk−tr̂k + γHQ(ŝH , âH))2

in which ŝt and r̂t are model predictions and ât ∼ π(at|ŝt). We refer the reader to Feinberg
et al. [2018] for further discussion of this approach. We verify that SAC also benefits from
improved target values, and similar to our conclusions from MBPO, single-step model rollouts
(H = 1) provide a surprisingly effective baseline. While model-generated data augmentation
and value expansion are in principle complementary approaches, preliminary experiments
did not show improvements to MBPO by using improved target value estimates.
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a)

b)

c)

Figure 5.4: a) A 450-step hopping sequence performed in the real environment, with the
trajectory of the body’s joints traced through space. b) The same action sequence rolled out
under the model 1000 times, with shaded regions corresponding to one standard deviation
away from the mean prediction. The growing uncertainty and deterioration of a recognizable
sinusoidal motion underscore accumulation of model errors. c) Cumulative returns of the
same policy under the model and actual environment dynamics reveal that the policy is not
exploiting the learned model. Thin blue lines reflect individual model rollouts and the thick
blue line is their mean.

Model exploitation. We analyze the problem of “model exploitation,” which a number of
recent works have raised as a primary challenge in model-based reinforcement learning [Ra-
jeswaran et al., 2017, Clavera et al., 2018, Kurutach et al., 2018]. We plot empirical returns
of a trained policy on the Hopper task under both the real environment and the model in
Figure 5.4 (c) and find, surprisingly, that they are highly correlated, indicating that a policy
trained on model-predicted transitions may not exploit the model at all if the rollouts are
sufficiently short. This is likely because short rollouts are more likely to reflect the real
dynamics (Figure 5.4 a-b), reducing the opportunities for policies to rely on inaccuracies of
model predictions. While the models for other environments are not necessarily as accurate
as that for Hopper, we find across the board that model returns tend to underestimate real
environment returns in MBPO.

5.5 Discussion

We have investigated the role of model usage in policy optimization procedures through
both a theoretical and empirical lens. We have shown that, while it is possible to formulate
model-based reinforcement learning algorithms with monotonic improvement guarantees,
such an analysis cannot necessarily be used to motivate using a model in the first place.
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However, an empirical study of model generalization shows that predictive models can indeed
perform well outside of their training distribution. Incorporating a linear approximation of
model generalization into the analysis gives rise to a more reasonable tradeoff that does
in fact justify using the model for truncated rollouts. The algorithm stemming from this
insight, MBPO, has asymptotic performance rivaling the best model-free algorithms, learns
substantially faster than prior model-free or model-based methods, and scales to long horizon
tasks that often cause model-based methods to fail. We experimentally investigate the
tradeoffs associated with our design decisions, and find that model rollouts as short as a
single step can provide pronounced benefits to policy optimization procedures.
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Chapter 6

Offline Model-Based Optimization

Up to this chapter, we have primarily concerned ourselves with offline learning in the context
of sequential decision making within the offline reinforcement learning framework. However,
many real-world decision making problems often lack temporal structure, making it difficult
to apply reinforcement learning. Examples of such problems include the design of materi-
als [Mansouri Tehrani et al., 2018], proteins [Brookes et al., 2019, Kumar and Levine, 2020],
neural network architectures [Zoph and Le, 2017], or vehicles [Hoburg and Abbeel, 2014].
These problems are structured as a more traditional optimization problem, where we must
select a single input (such as the architecture of a neural network) that maximizes some ob-
jective function. We frame offline decision making in this more general setting as the offline
model-based optimization (MBO) problem, where a static dataset of input-output pairs is
available but function queries are not allowed.

A straightforward method to solving offline MBO problems would be to estimate a proxy
of the ground truth function f̂θ using supervised learning, and to optimize the input x with
respect to this proxy. However, this approach is brittle and prone to failure, because the
model-fitting process often has little control over the values of the proxy function on inputs
outside of the training set. An algorithm that directly optimizes f̂θ could easily exploit the
proxy to produce adversarial inputs that nevertheless are scored highly under f̂θ [Kumar and
Levine, 2020, Fannjiang and Listgarten, 2020].

In order to counteract the effects of model exploitation, we propose to use the normalized
maximum likelihood framework (NML) [Barron et al., 1998]. The NML estimator produces
the distribution closest to the MLE assuming an adversarial output label, and has been
shown to be effective for resisting adversarial attacks [Bibas et al., 2019]. Moreover, NML
provides a principled approach to generating uncertainty estimates which allows it to reason
about out-of-distribution queries. However, because NML is typically intractable except for
a handful of special cases [Roos et al., 2008], we show in this work how we can circumvent
intractability issues with NML in order to construct a reliable and robust method for MBO.
Because of its general formulation, the NML distribution provides a flexible approach to con-
structing conservative and robust estimators using high-dimensional models such as neural
networks.
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In this chapter we develop an offline MBO algorithm that utilizes a novel approxima-
tion to the NML distribution to obtain an uncertainty-aware forward model for optimiza-
tion, which we call NEMO (Normalized maximum likelihood Estimation for Model-based
Optimization). The basic premise of NEMO is to construct a conditional NML distribution
that maps inputs to a distribution over outputs. While constructing the NML distribution is
intractable in general, we discuss novel methods to amortize the computational cost of NML,
which allows us the scale our method to practical problems with high dimensional inputs
using neural networks. A separate optimization algorithm can then be used to optimize
over the output to any desired confidence level. Theoretically, we provide insight into why
NML is useful for the MBO setting by showing a regret bound for modeling the ground truth
function. Empirically, we evaluate our method on a selection of tasks from the Design Bench-
mark [Trabucco et al., 2021], where we show that our method performs competitively with
state-of-the-art baselines. Additionally, we provide a qualitative analysis of the uncertainty
estimates produced by NEMO, showing that it provides reasonable uncertainty estimates,
while commonly used methods such as ensembles can produce erroneous estimates that are
both confident and wrong in low-data regimes.

6.1 Relation to Prior Work

This chapter presents methods for model-based optimization algorithms based on building
uncertainty aware models using normalized maximum likelihood. In contrast to prior works
on MBO such as MINs [Kumar and Levine, 2020], CbAS [Brookes et al., 2019], or autofocused
oracles [Fannjiang and Listgarten, 2020], our approach explicitly reasons about uncertainty
to construct robust models of the problem.

A related line of work is derivative-free optimization, which is typically used in set-
tings where only function evaluations are available. This includes methods such as RE-
INFORCE [Williams, 1992] and reward-weighted regression [Peters and Schaal, 2007] in
reinforcement learning, the cross-entropy method [Rubinstein, 1999], latent variable mod-
els [Garnelo et al., 2018, Kim et al., 2018], and Bayesian optimization [Snoek et al., 2012,
Shahriari et al., 2015]. Of these approaches, Bayesian optimization is the most often used
when function evaluations are expensive and limited. However, all of the aforementioned
methods focus on the active or online setting, whereas in this work, we are concerned with
the offline setting where additional function evaluations are not available.

Our method is utilizes normalized maximum likelihood estimation, which is an information-
theoretic framework based on the minimum description length principle [Rissanen, 1978].
While the standard NML formulation is purely generative, the conditional or predictive
NML setting can be used Rissanen and Roos [2007], Fogel and Feder [2018] for supervised
learning and prediction problems. Bibas et al. [2019] apply this framework for prediction us-
ing deep neural networks, but require an expensive finetuning process for every input. The
goal of our work is to provide a scalable and tractable method to approximate the CNML
distribution, and we apply this framework to offline optimization problems.
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Figure 6.1: An illustrative example of the construction of the CNML distribution. Left We
wish to estimate the p(y|x) at some query point x, marked by the vertical red line. Middle
We compute the MLE assuming we knew the true label y, for every possible value of y.
Right Finally, we normalize the predictions across all MLE models to produce pNML. The
final prediction will likely exhibit large amounts of uncertainty on queries x far from the
dataset, because it is easier for the individual MLE estimates to overfit to these outliers.

Like CNML, conformal prediction [Shafer and Vovk, 2008] is concerned with predicting
the value of a query point ŷt+1 given a prior dataset, and provides per-instance confidence
intervals, based on how consistent the new input is with the rest of the dataset. Our work
instead relies on the NML framework, where the NML regret serves a similar purpose for
measuring how close a new query point is to existing, known data.

6.2 Normalized Maximum Likelihood

Recall from Section 2.2 that the goal of the offline model-based optimization problem is to
solve an optimization problem:

x∗ = argmaxxEy∼f(y|x)[y]. (6.1)

We can solve this problem by first constructing an estimate of the objective function f(y|x),
and then optimizing it’s expectation with respect to x using a method such as gradient
ascent.

In order to produce a conditional distribution we can use for estimating the ground truth
function that is robust to out-of-distribution inputs, we leverage the conditional or predictive
NML (CNML) framework [Rissanen and Roos, 2007, Fogel and Feder, 2018, Bibas et al.,
2019]. Intuitively, the CNML distribution is the distribution closest to the MLE assuming
the test label y is chosen adversarially. This is useful for the MBO setting since we do
not know the ground truth value y at points we are querying during optimization, and the
CNML distribution gives us conservative estimates that help mitigate model exploitation
(see Fig. 6.1). Formally, the CNML estimator is the minimax solution to a notion of regret,
called the individual regret defined as Regretind(h, y) = log p(y|x, θ̂D∪(x,y))− log h(y|x), and
pNML(y|x) = arg minh maxy′ Regretind(h, y′) [Fogel and Feder, 2018]. The notation D ∪ (x, y)
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refers to an augmented dataset by appending a query point and label (x, y), to a fixed offline
dataset D, and θ̂D∪(x,y) denotes the MLE estimate for this augmented dataset. The query
point (x, y) serves to represent the test point we are interested in modeling. The solution to
the minimax problem can be expressed as [Fogel and Feder, 2018]:

pNML(y|x) =
p(y|x, θ̂D∪(x,y))∫

y′
p(y′|x, θ̂D∪(x,y′))dy′

, (6.2)

where θ̂D∪(x,y) = arg maxθ
1

N+1

∑
(x,y)∈D∪(x,y) log p(y|x, θ) is the maximum likelihood estimate

for p using the dataset D augmented with (x, y).
The NML family of estimators has connections to Bayesian methods, and has shown to be

asymptotically equivalent to Bayesian inference under the uninformative Jeffreys prior [Ris-
sanen, 1996]. NML and Bayesian modeling both suffer from intractability, albeit for different
reasons. Bayesian modeling is generally intractable outside of special choices of the prior and
model class Θ where conjugacy can be exploited. On the other hand, NML is intractable be-
cause the denominator requires integrating and training a MLE estimator for every possible
y.

6.3 NEMO: Normalized Maximum Likelihood

Estimation for Model-Based Optimization

We now present NEMO, our proposed algorithm for high-dimensional offline MBO. NEMO
is a tractable scheme for estimating and optimizing the estimated expected value of the
target function under the CNML distribution. As mentioned above, the CNML estimator
(Eqn. 6.2) is difficult to compute directly, because it requires a) obtaining the MLE for each
value of y, and b) integrating these estimates over y. In this section, we describe how to
address these two issues, using amortization and quantization. We outline the high-level
pseudocode in Algorithm 4, and presented a more detailed implementation in Appendix C.1.

An Iterative Algorithm for Model-Based Optimization

We first describe the overall structure of our algorithm, which addresses issue a), the in-
tractability of computing an MLE estimate for every point we wish to query. In this section
we assume that the domain of y is discrete, and describe in the following section how we
utilize a quantization scheme to approximate a continuous y with a discrete one.

Recall from Section 2.2 that we wish to construct a proxy for the ground truth, which we
will then optimize with gradient ascent. The most straightforward way to integrate NML
and MBO would be to fully compute the NML distribution described by Eqn. 6.2 at each
optimization step, conditioned on the current optimization iterate xt. This would produce a
conditional distribution pNML(y|x) over output values, and we can optimize xt with respect
to some function of this distribution, such as the mean. While this method is tractable to
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Algorithm 4 NEMO: Normalized Maximum Likelihood for Model-Based Optimization

Input Model class {fθ : θ ∈ Θ}, Dataset D = (x1:N , y1:N), number of bins K, evaluation
function g(y), learning rates αθ, αx.
Initialize K models θ1:K

0 , optimization iterate x0

Quantize y1:N into K bins, denoted as bYc = {by1c, · · · bykc}.
for iteration t in 1 . . . T do

for k in 1 . . . K do
construct augmented dataset: D′ ← D ∪ (xt, bykc).
update model: θkt+1 ← θkt + αθ∇θkt

LogLikelihood(θkt ,D′)
end for
estimate CNML distribution: p̂NML(y|xt) ∝ p(y|xt, θyt )/

∑
k p(bykc|xt, θkt )

Update x: xt+1 ← xt + αx∇xEy∼p̂NML(y|x)[g(y)]
end for

implement for small problems, it will still be significantly slower than standard optimization
methods, because it requires finding the MLE estimate for every y value per iteration of the
algorithm. This can easily become prohibitively expensive when using large neural networks
on high-dimensional problems.

To remedy this problem, we propose to amortize the learning process by incrementally
learning the NML distribution while optimizing the iterate xt. In order to do this, we
maintain one model per value of y, θ̂k, each corresponding to one element in the normalizing
constant of the NML distribution. During each step of the algorithm, we sample a batch
of datapoints, and train each model by appending the current iterate xt as well as a label
yt,k to the batch with a weight w (which is typically set to w = 1/N). We then perform a
number of gradient step on each model, and use the resulting models to form an estimate
of the NML distribution pNML(yt|xt). We then compute a score from the NML distribution,
such as the mean, and perform one step of gradient ascent on xt.

While the incremental algorithm produces only an approximation to the true NML dis-
tribution, it brings the computational complexity of the resulting algorithm to just O(K)
gradient steps per iteration, rather than solving entire inner-loop optimization problems.
This brings the computational cost to be comparable to other baseline methods we evalu-
ated for MBO.

Quantization and Architecture

The next challenge towards developing a practical NML method is addressing issue b),
the intractability of integrating over a continuous y. We propose to tackle this issue with
quantization and a specialized architecture for modeling the ground truth function.

Quantization. One situation in which the denominator is tractable is when the domain
of y is discrete and finite. In such a scenario, we could train K models, where K is the size
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of the domain, and directly sum over the likelihood estimates to compute the normalizing
factor.

In order to turn the NML distribution into a tractable, discrete problem, we quantize
all outputs in the dataset by flooring each y value to the nearest bin bykc, with the size
of each interval defined as B = (ymax − ymin)/K. While quantization has potential to
induce additional rounding errors to the optimization process, we find in our experiments in
Section 6.5 that using moderate value such as K = 20 or K = 40 provides both a reasonably
accurate solution while not being excessively demanding on computation.

Figure 6.2: A diagram of the dis-
cretized logistic architecture. The
mean µ is denoted by an arrow,
which is then passed through offset
sigmoid functions to produce o.

This scheme of quantization can be interpreted as
a rectangular quadrature method, where the integral
over y is approximated as:∫

y

p(y|x, θ̂D∪(x,y))dy ≈ B
K∑
k=1

p(bykc|x, θ̂D∪(x,bykc))

Discretized logistic architecture. Quantiza-
tion introduces unique difficulties into the optimiza-
tion process for MBO. In particular, quantization re-
sults in flat regions in the optimization landscape,
making using gradient-based algorithms to optimize
both inputs x and models p(y|x, θ) challenging. In
order to alleviate these issues, we propose to model
the output using a discretized logistic architecture,
depicted in Fig. 6.2. The discretized logistic architec-
ture transforms and input x into the mean parameter
of a logistic distribution µ(x), and outputs one minus
the CDF of a logistic distribution queried at regu-
lar intervals of 1/K (recall that the CDF of a logis-
tic distribution is itself the logistic or sigmoid func-
tion). Therefore, the final output is a vector o of length K, where element k is equal to
σ(µ(x) + k/K). We note that similar architectures have been used elsewhere, such as for
modeling the output over pixel intensity values in images [Salimans et al., 2017].

We train this model by first encoding a label y as a vector ydisc, where ydisc[k ≤ bin(y)] = 1
and elements ydisc[k > bin(y)] = 0. bin(y) denotes the index of the quantization bin that y
falls under. The model is then trained using a standard binary cross entropy loss, applied
per-element across the entire output vector. Because the output represents the one minus
the CDF, the expected value of the discretized logistic architecture can be computed as
ymean(x) = Ey∼p(y|x)[g(y)] =

∑
k[g(k) − g(k − 1)]o[k]. If we assume that g normalizes all

output values to [0, 1] in uniform bins after quantization, the mean can easily be computed
as a sum over the entire output vector, ymean = 1

K

∑
k o[k]

Optimization The benefit of using such an architecture is that when optimizing for x,
rather than optimizing the predicted output directly, we can compute gradients with respect



CHAPTER 6. OFFLINE MODEL-BASED OPTIMIZATION 44

to the logistic parameter µ. Because µ is a single scalar output of a feedforward network,
it is less susceptible to flat gradients introduced by the quantization procedure. Optimizing
with respect to µ is sensible as it shares the same global optimum as ymean, and gradients
with respect to µ and ymean share a positive angle, as shown by the following theorem:

Proposition 6.3.1 (Discretized Logistic Gradients). Let µ(x) denote the mean of the dis-
cretized logistic architecture for input x, and ymean(x) denote the predicted mean. Then,

1. If x ∈ arg maxx µ(x), then x ∈ arg maxx ymean(x).

2. For any x, 〈∇xµ(x),∇xymean(x)〉 ≥ 0.

Proof. This statement directly from monotonicity. Because ymean is a sum of monotonic
functions in µ, ymean must also be a monotonic function of µ. This implies that the
global maxima are the same, and that gradients must point in the same direction since

〈∇xµ,∇xymean〉 =
〈
∇xµ,

dymean

dµ
∇xµ

〉
= dymean

dµ
||∇xµ||22 ≥ 0.

6.4 Theoretical Results

We now highlight some theoretical motivation for using CNML in the MBO setting, and
show that estimating the true function with the CNML distribution is close to an expert
even if the test label is chosen adversarially, which makes it difficult for an optimizer to
exploit the model. As discussed earlier, the CNML distribution minimizes a notion of regret
based on the log-loss with respect to an adversarial test distribution. This construction leads
the CNML distribution to be very conservative for out-of-distribution inputs. However, the
notion of regret in conventional CNML does not easily translate into a statement about
the outputs of the function we are optimizing. In order to reconcile these differences, we
introduce a new notion of regret, the functional regret, which measures the difference between
the output estimated under some model against an expert within some function class Θ.

Definition 6.4.1 (Functional Regret). Let q(y|x) be an estimated conditional distribution,
x represent a query input, and y∗ represent a label for x. We define the functional regret of
a distribution q as:

Regretf (q,D,x, y∗) = |Ey∼q(y|x)[g(y)]− Ey∼p(y|x,θ̂)[g(y)]|

Where θ̂ is MLE estimator for the augmented dataset D∪(x, y∗) formed by appending (x, y∗)
to D.

A straightforward choice for the evaluation function g is the identity function g(y) = y,
in which case the functional regret controls the difference in expected values between q and
the MLE estimate p(y|x, θ̂). We now show that the functional regret is bounded for the
CNML distribution:
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Theorem 6.4.1. Let pNML be the conditional NML distribution defined in Eqn. 6.2. Then,

∀x max
y∗

Regretf (pNML,D, x, y∗) ≤ 2gmax

√
Γ(D, x)/2.

Γ(D, x) = log{∑y p(y|x, θ̂D∪(x,y))} is the minimax individual regret, and gmax = maxy∈Y g(y).

Proof. There are two lemmas we will use in our proof. First, the difference in expected value
between two distributions p(x) and q(x) can be bounded by the total variation distance
TV (p, q) and the maximum function value fmax = maxx f(x):

|Ep(x)[f(x)]− Eq(x)[f(x)]| = |
∑
x

[p(x)− q(x)]f(x)|

≤ fmax|
∑
x

[p(x)− q(x)]|

= fmax2TV (p(x), q(x))

Second, Fogel and Feder [2018] show that the NML distribution obtains the best possible
minimax individual regret of

max
y

Regretind(pNML,D, x, y) = log{
∑
y

p(y|x, θ̂D∪(x,y))} def
= Γ(D, x)

Using these two facts, we can show:

Regretf (pNML,D, x, y∗) = |Ey∼pNML(y|x)[g(y)]− Ey∼p(y|x,θ̂D∪(x,y∗))
[g(y)]|

≤ 2gmaxTV (p(y|x, θ̂D∪(x,y∗)), pNML(y|x))

≤ 2gmax

√
1

2
KL(p(y|x, θ̂D∪(x,y∗)), pNML(y|x))

≤ 2gmax

√
1

2
max
q

Ey∼q(y|x)[log p(y|x, θ̂D∪(x,y))− log pNML(y|x)]

= 2gmax

√
Γ(D, x)/2

Where we apply the total variation distance lemma from lines 1 to 2. From lines 2 to
3, we used Pinsker’s inequality to bound total variation with KL, and from lines 3 to 4 we
used the fact that the maximum regret is always greater than the KL, i.e.

KL(p(y|x, θ̂D∪(x,y∗)), pNML(y|x)) = Ey∼p(y|x,θ̂)[log p(y|x, θ̂D∪(x,y∗))− log pNML(y|x)]

≤ Ey∼p(y|x,θ̂)[log p(y|x, θ̂D∪(x,y))− log pNML(y|x)]

≤ max
q

Ey∼q(y|x)[log p(y|x, θ̂D∪(x,y))− log pNML(y|x)]

On the final step, we substituted the definition of Γ(D, x) as the individual regret of the
NML distribution pNML.
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This statement states that, for any test input x, the CNML estimator is close to the best
possible expert if the test label y is chosen adversarially. Importantly, the expert is allowed
to see the label of the test point, but the CNML estimator is not, which means that if the
true function lies within the model class, this statement effectively controls the discrepancy
in performance between the true function and pNML. The amount of slack is controlled by the
minimax individual regret Γ [Fogel and Feder, 2018], which can be interpreted as a measure
of uncertainty in the model. For large model classes Θ and data points x far away from the
data, the individual regret is naturally larger as the NML estimator becomes more uncertain,
but for data points x close to Θ the regret becomes very small. This behavior can be easily
seen in Fig. 6.3, where the CNML distribution is very focused in regions close to the data
but outputs large uncertainty estimates in out-of-distribution regions.

6.5 Experiments

In our experimental evaluation, we aim to 1) evaluate how well the proposed quantized
NML estimator estimates uncertainty in an offline setting, and 2) compare the performance
of NEMO to a number of recently proposed offline MBO algorithms on high-dimensional
offline MBO benchmark problems. Our code is available at https://sites.google.com/

view/nemo-mbo

Modeling with Quantized NML

We begin with an illustrative example of modeling a function with quantized NML. We
compared a learned a quantized NML distribution with a bootstrapped ensemble method
[Breiman, 1996] on a simple 1-dimensional problem, shown in Fig. 6.3. The ensemble method
is implemented by training 32 neural networks using the same model class as NML, but with
resampled datasets and randomized initializations. Both methods are trained on a discretized
output, using a softmax cross-entropy loss function. We see that in areas within the support
of the data, the NML distribution is both confident and relatively accurate. However, in
regions outside of the support, the quantized NML outputs a highly uncertain estimate. In
contrast, the ensemble method, even with bootstrapping and random initializations, tends to
produce an ensemble of models that all output similar values. Therefore, in regimes outside
of the data, the ensemble still outputs highly confident estimates, even though they may be
wrong.

High-Dimensional Model-Based Optimization

We evaluated NEMO on a set of high-dimensional MBO problems. The details for the tasks,
baselines, and experimental setup are as follows, and hyperparameter choices with additional
implementation details can be found in Appendix C.1.

https://sites.google.com/view/nemo-mbo
https://sites.google.com/view/nemo-mbo
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Figure 6.3: A comparison of uncertainty estimates between quantized NML and boot-
strapped ensembles. Left: A small training dataset collected using the ground truth function
sin(x) and quantized into 32 bins. Each dot represents a data point. Middle: Predictions
from quantized CNML, where darker regions indicate outputs with high estimated proba-
bility. The ground truth is marked by a dotted blue line. Note that in regions where there
is little data, the NML distribution tends to correctly output a very diffuse distribution
with uncertain outputs. Right: Predictions from a bootstrap ensemble of 32 models. In
out-of-support regions far from the data, the bootstrap ensemble tends to underestimate
uncertainty and produce overconfident predictions.

Tasks

We evaluated on 6 tasks from the Design-bench [Trabucco et al., 2021], modeled after real-
world design problems for problems in materials engineering [Hamidieh, 2018], biology [Sark-
isyan et al., 2016], and chemistry [Gaulton et al., 2012], and simulated robotics. Because
we do not have access to a real physical process for evaluating the material and molecule
design tasks, Design-bench follows experimental protocol used in prior work [Brookes et al.,
2019, Fannjiang and Listgarten, 2020] which obtains a ground truth evaluation function by
training a separate regressor model to evaluate the performance of designs. For the robotics
tasks, designs are evaluated using the MuJoCo physics simulator [Todorov et al., 2012].

Superconductor. The Superconductor task involves designing a superconducting ma-
terial that has a high critical temperature. The input is space is an 81-dimensional vector,
representing properties such as atomic radius and valence of elements which make up the
material. This dataset contains a total of 21,263 superconductoring materials proposed
by Hamidieh [2018].

GFP. The goal of the green fluorescent protein (GFP) task is to design a protein with
high fluorescence, based on work proposed by Sarkisyan et al. [2016]. This task requires
optimizing a 238-dimensional sequence of discrete variables, with each dimension representing
one amino acid in the protein and taking on one of 20 values. We parameterize the input
space as logits in order to make this discrete problem amenable to continuous optimization.
In total, the dataset consists of 5000 such proteins annotated with fluorescence values.

MoleculeActivity. The MoleculeActivity task involves designing the substructure of
a molecule that exhibits high activity when tested against a target assay [Gaulton et al.,
2012]. The input space is represented by 1024 binary variables parameterized by logits,
which corresponds to the Morgan radius 2 substructure fingerprints. This dataset contains
a total of 4216 data points.
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The final 3 tasks, HopperController, AntMorphology, and DKittyMorphology,
involve designing robotic agents. HopperController involves learning the parameters of a
5126-parameter neural network controller for the Hopper-v2 task from OpenAI Gym [Brock-
man et al., 2016]. The Ant and DKitty morphology tasks involve optimizing robot param-
eters such as size, orientation, and joint positions. AntMorphology has 60 parameters, and
DKittyMorphology has 56 parameters.

Baselines

In addition to NEMO, we evaluate several baseline methods. A logical alternative to NEMO
is a forward ensemble method, since both NEMO and ensemble methods maintain a list of
multiple models in order to approximate a distribution over the function value, and ensembles
are often used to obtain uncertainty-aware models. We implement an ensemble baseline by
training K networks on the task dataset with random initializations and bootstrapping, and
then optimizing the mean value of the ensemble with gradient ascent. In our results in
Table 6.1, we label the ensemble as “Ensemble” and a single forward model as “Forward”.
Additionally, we implement a Bayesian optimization baseline wth Gaussian processes (GP-
BO) for the Superconductor, GFP, and MoleculeActivity tasks, where we fit the parameters
of a kernel and then optimize the expected improvement according to the posterior. We
use an RBF kernel for the Superconductor task, and an inner product kernel for the GFP
and MoleculeActivity tasks since they have large, discrete input spaces. Note that the GP
baseline has no variance between runs since the resulting method is completely deterministic.

We evaluate 3 state-of-the-art methods for offline MBO: model inversion networks (MINs)
[Kumar and Levine, 2020], conditioning by adaptive sampling (CbAS) [Brookes et al., 2019],
and autofocused oracles [Fannjiang and Listgarten, 2020]. MINs train an inverse mapping
from outputs y to inputs x, and generate candidate inputs by searching over high values of
y and evaluating these on the inverse model. CbAS uses a generative model of p(x) as a
trust region to prevent model exploitation, and autofocused oracles expands upon CbAS by
iteratively updating the learned proxy function and iterates within a minimax game based
on a quantity known as the oracle gap.

6.6 Results and Discussion

Our results are shown in Table 6.1. We follow an evaluation protocol used in prior work for
design problems [Brookes et al., 2019, Fannjiang and Listgarten, 2020], where the algorithm
proposes a set of candidate designs, and the 100th and 50th percentile of scores are reported.
This mimics a real-world scenario in which a batch of designs can be synthesized in parallel,
and the highest performing designs are selected for use.

For each experiment, we produced a batch of 128 candidate designs. MINs, CbAS, and
autofocused oracles all learn a generative model to produce candidate designs, so we sampled
this batch from the corresponding model. Ensemble methods and NEMO do not maintain
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generative models, so we instead optimized a batch of 128 particles. We report results
averaged of 16 random seeds.

NEMO outperforms all methods on the Superconductor task by a very large margin,
under both the 100th and 50th percentile metrics, and in the HopperController task under the
100th percentile metric. For the remaining tasks (GFP, MoleculeActivity, AntMorphology,
and HopperMorphology), NEMO also produces competitive results in line with the best
performing algorithm for each task. These results are promising in that NEMO performs
consistently well across all 6 domains evaluated, and indicates a significant number of designs
found in the GFP and Superconductor task were better than the best performing design in
the dataset. In Section 6.6, we present learning curves for NEMO, as well as an ablation
study demonstrating the the beneficial effect of NML compared to direct optimization on
a proxy function. Note that unlike the prior methods (MINs, CbAS, Autofocused), NEMO
does not require training a generative model on the data, only a collection of forward models.

Ablation Studies

In this section, we present 3 ablation studies. The first is on the effect of NML training, by
comparing NEMO to optimizing a pretrained baseline neural network. The second ablation
study investigates the architecture choice, comparing the discretized logistic architecture to
a standard feedforward neural network. The final ablation study investigates the ratio of
model optimization steps to input optimization steps. Each logging iteration in these figures
corresponds to 50 loop iterations as depicted in Algorithm 6.

Effect of NML

In this section, we present learning curves for NML, as well as an ablation study comparing
NML (orange curve) against a forward optimization algorithm without NML (blue curve),
labeled “No NML”. The “No NML” algorithm is identical to the NML algorithm detailed in
Alg. 6, except the NML learning rate αθ is set to 0.0. This means that the only model training
that happens is done during the pretraining step. For illustrative purposes, we initialize the
iterates from the worst-performing scores in the dataset to better visualize improvement,
rather than initializing from the best scores which we used in our final reported numbers.

The scores on the Superconductor task are shown in the following figure. Removing
NML training makes it very difficult for training on most designs, as shown by the poor
performance on the 50th percentile metric.
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100th Perc. Superconductor GFP MoleculeActivity
NEMO (ours) 127.0 ± 7.292 3.359 ± 0.036 6.682 ± 0.209

Ensemble 88.01 ± 10.43 2.924 ± 0.039 6.525 ± 0.1159
Forward 89.64 ± 9.201 2.894 ± 0.001 6.636 ± 0.066

MINs 80.23 ± 10.67 3.315 ± 0.033 6.508 ± 0.236
CbAS 72.17 ± 8.652 3.408 ± 0.029 6.301 ± 0.131

Autofoc. 77.07 ± 11.11 3.365 ± 0.023 6.345 ± 0.141
GP-BO 89.72 ± 0.000 2.894 ± 0.000 6.745 ± 0.000

Dataset Max 73.90 3.152 6.558

HopperController AntMorphology DKittyMorphology
NEMO (ours) 2130.1 ± 506.9 393.7 ± 6.135 431.6 ± 47.79

Ensemble 1877.0 ± 704.2 - -
Forward 1050.8 ± 284.5 399.9 ± 4.941 390.7 ± 49.24

MINs 746.1 ± 636.8 388.5 ± 9.085 352.9 ± 38.65
CbAS 547.1 ± 423.9 393.0 ± 3.750 369.1 ± 60.65

Autofoc. 443.8 ± 142.9 386.9 ± 10.58 376.3 ± 47.47
Dataset Max 1361.6 108.5 215.9

Table 6.1: 100th percentile ground truth scores and standard deviations over a batch of 128
designs for each task, averaged across 16 trials.

50th Perc. Superconductor GFP MoleculeActivity
NEMO (ours) 66.41 ± 4.618 3.219 ± 0.039 5.814 ± 0.092

Ensemble 48.72 ± 2.637 2.910 ± 0.020 6.412 ± 0.123
Forward 54.06 ± 5.060 2.894 ± 0.000 6.401 ± 0.186

MINs 37.32 ± 10.50 3.135 ± 0.019 5.806 ± 0.078
CbAS 32.21 ± 7.255 3.269 ± 0.018 5.742 ± 0.123

Autofoc. 31.57 ± 7.457 3.216 ± 0.029 5.759 ± 0.158
GP-BO 72.42 ± 0.000 2.894 ± 0.000 6.373 ± 0.000

HopperController AntMorphology DKittyMorphology
NEMO (ours) 390.2 ± 43.37 326.9 ± 5.229 180.8 ± 34.94

Ensemble 362.5 ± 80.09 - -
Forward 185.0 ± 72.88 318.0 ± 12.05 255.3 ± 6.379

MINs 520.4 ± 301.5 184.8 ± 29.52 211.6 ± 13.67
CbAS 132.5 ± 23.88 267.3 ± 16.55 203.2 ± 3.580

Autofoc. 116.4 ± 18.66 176.7 ± 59.94 199.3 ± 8.909

Table 6.2: 50th percentile ground truth scores and standard deviations over a batch of 128
designs for each task, averaged across 16 trials.
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The scores on the MoleculeActivity task follow a similar trend.

And finally, the scores on the GFP task also display the same trend.

Architecture Choice

In this ablation study, we investigate the efficacy of the discretized logistic architecture.
As a baseline, we compared against a standard feedforward network, trained with a softmax
cross-entropy loss to predict the discretized output y. We label this network as ”Categorical”,
because the output of the network is a categorical distribution. All other hyperparameters,
including network layer sizes, remain unchanged from those reported in Appendix. C.1.

On the Superconductor task, both the discretized logistic and categorical networks score
well on the 100th percentile metric, but the Categorical architecture displays less consistency
in optimizing designs, as given by poor performance on the 50th percentile metric.
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On the MoleculeActivity task, the Categorical network performs comparatively better,
but still underperforms the discretized logistic architecture.

Ratio of Optimization Steps

In this ablation study, we investigate the effect of the ratio of model optimization steps to
input optimization step. For this experiment, we fix the learning rate αx to the hyperpa-
rameter values in Appendix. C.1, fix the input optimization steps to 1, and vary the number
of model optimization steps we take.

We first investigate the Superconductor task, using a small model learning rate αθ =
0.0005. In this setting, we see a clear trend that additional model optimization steps are
helpful and increase convergence speed.
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Using a higher learning rate of αθ = 0.05, a smaller amount of steps works better, which
suggests that it is easy to destabilize the learning process using a higher learning rate.

A similar trend holds true in the MoleculeActivity task, albeit less pronounced. The
following figure uses a learning rate of αθ = 0.0005, and we once again see that more model
optimization steps leads to increased performance.



CHAPTER 6. OFFLINE MODEL-BASED OPTIMIZATION 54

And using a learning rate of αθ = 0.05, the advantage becomes less clear.

Overall, while we performed a grid search over the learning rates to achieve the highest
performance, using a large number of model optimization steps with a small learning rate
αθ appears to be a consistent strategy which performs well.

6.7 Discussion

We have presented NEMO (Normalized Maximum Likelihood Estimation for Model-Based
Optimization), an algorithm that mitigates model exploitation on MBO problems by con-
structing a conservative model of the true function. NEMO generates a tractable approxi-
mation to the NML distribution to provide conservative objective value estimates for out-of-
distribution inputs. Our theoretical analysis also suggests that this approach is an effective
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way to estimate unknown objective functions outside the training distribution. We evaluated
NEMO on a number of design problems in materials science, robotics, biology, and chem-
istry, where we show that it attains very large improvements on two tasks, while performing
competitively with respect to prior methods on the other four.
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Part II

Benchmarks and Evaluation
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Chapter 7

Benchmarking Offline Reinforcement
Learning

While offline reinforcement learning (RL) holds the promise leveraging large, previously-
collected datasets in the context of sequential decision making, current methods have not
yet fulfilled the promise of utilizing these algorithms in a meaningful way to solve real-world
application domains such as robotics, autonomous driving, and healthcare. While recent
work has investigated technical reasons for this [Fujimoto et al., 2019b, Kumar et al., 2019,
Wu et al., 2019], a major challenge in addressing these issues has been the lack of standard
evaluation benchmarks to guide and measure progress. Ideally, such a benchmark should: a)
be composed of tasks that reflect challenges in real-world applications of data-driven RL, b)
be widely accessible for researchers and define clear evaluation protocols for reproducibility,
and c) contain a range of difficulty to differentiate between algorithms, especially challenges
particular to the offline RL setting.

Most recent works [Fujimoto et al., 2018, Wu et al., 2019, Kumar et al., 2019, Peng et al.,
2019, Agarwal et al., 2020b] use existing online RL benchmark domains and data collected
from training runs of online RL methods. However, these benchmarks were not designed
with offline RL in mind and such datasets do not reflect the heterogenous nature of data
collected in practice. Wu et al. [2019] find that existing benchmark datasets are not sufficient
to differentiate between simple baseline approaches and recently proposed algorithms. Fur-
thermore, the aforementioned works do not propose a standard evaluation protocol, which
makes comparing methods challenging.

In this chapter, we present Datasets for Deep Data-Driven Reinforcement Learning
(D4RL), a benchmark targeted towards policy optimization algorithms which attempt to
find the best policy given a dataset of interaction. We focus our design around tasks and
data collection strategies that exercise dimensions of the offline RL problem likely to oc-
cur in practical applications, such as partial observability, passively logged data, or human
demonstrations. To serve as a reference, we benchmark state-of-the-art offline RL algo-
rithms [Haarnoja et al., 2018, Kumar et al., 2019, Wu et al., 2019, Agarwal et al., 2020b,
Fujimoto et al., 2019b, Nachum et al., 2019, Peng et al., 2019, Kumar et al., 2020] and pro-



CHAPTER 7. BENCHMARKING OFFLINE REINFORCEMENT LEARNING 58

vide reference implementations as a starting point for future work. While previous studies
(e.g., [Wu et al., 2019]) found that all methods including simple baselines performed well on
the limited set of tasks used in prior work, we find that most algorithms struggle to perform
well on tasks with properties crucial to real-world applications such as passively logged data,
narrow data distributions, and limited human demonstrations. By moving beyond simple
benchmark tasks and data collected by partially-trained RL agents, we reveal important and
unappreciated deficiencies of existing algorithms.

7.1 Relation to Prior Work

The main points of difference between D4RL and other related work, such as RL Un-
plugged [Gulcehre et al., 2020] and Fujimoto et al. [2019a] lies in the selection of tasks
and datasets. RL Unplugged is a benchmark mainly focused on locomotion and manipu-
lation tasks with perceptually challenging input and partial observability. Fujimoto et al.
[2019a] also proposes a visually challenging benchmark based on the Atari domain. While
these are important contributions, both benchmarks suffer from the same shortcomings as
prior evaluation protocols: they rely on data collected from online RL training runs. In
contrast with these benchmarks, in addition to collecting data from online RL training runs,
D4RL focuses on a range of dataset collection procedures inspired by real-world applica-
tions, such as human demonstrations, exploratory agents, and hand-coded controllers. As
alluded to by Wu et al. [2019] and as we show in our experiments, the performance of current
methods depends strongly on the data collection procedure, demonstrating the importance
of modeling realistic data collection procedures in a benchmark.

7.2 Task Design Factors

In order to design a benchmark that provides a meaningful measure of progress towards
realistic applications of offline RL, we choose datasets and tasks to cover a range of properties
designed to challenge existing RL algorithms. We discuss these properties as follows:
Narrow and biased data distributions, such as those from deterministic policies, are
problematic for offline RL algorithms and may cause divergence both empirically [Fujimoto
et al., 2019b, Kumar et al., 2019] and theoretically [Munos, 2003, Farahmand et al., 2010,
Kumar et al., 2019, Agarwal et al., 2020a, Du et al., 2020]. Narrow datasets may arise
in human demonstrations, or when using hand-crafted policies. An important challenge in
offline RL is to be able to gracefully handle diverse data distributions without algorithms
diverging or producing performance worse than the provided behavior. A common approach
for dealing with such data distributions is to adopt a conservative approach which tries to
keep the behavior close to the data distribution [Fujimoto et al., 2019b, Kumar et al., 2019,
Wu et al., 2019].
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Undirected and multitask data naturally arises when data is passively logged, such
as recording user interactions on the internet or recording videos of a car for autonomous
driving. This data may not necessarily be directed towards the specific task one is trying
to accomplish. However, pieces of trajectories can still provide useful information to learn
from. For example, one may be able to combine sub-trajectories to accomplish a task. In
the figure to the upper-right, if an agent is given trajectories from A-B and B-C in a dataset
(left image), it can form a trajectory from A-C by combining the corresponding halves of the
original trajectories. We refer to this property as stitching, since the agent can use portions
of existing trajectories in order to solve a task, rather than relying on generalization outside
of the dataset.

Figure 7.1: An example of stitch-
ing together subtrajectories to solve
a task.

Sparse rewards. Sparse reward problems pose chal-
lenges to traditional RL methods due to the difficulty
of credit assignment and exploration. Because of-
fline RL considers fixed datasets without exploration,
sparse reward problems provide an unique opportu-
nity to isolate the ability of algorithms to perform
credit assignment decoupled from exploration.
Suboptimal data. For tasks with a clear objective,
the datasets may not contain behaviors from optimal
agents. This represents a challenge for approaches
such as imitation learning, which generally require ex-
pert demonstrations. We note prior work (e.g., [Fujimoto et al., 2019b, Kumar et al., 2019,
Wu et al., 2019]) predominantly uses data with this property.
Non-representable behavior policies, non-Markovian behavior policies, and par-
tial observability. When the dataset is generated from a partially-trained agent, we ensure
that the behavior policy can be realized within our model class. However, real-life behav-
ior may not originate from a policy within our model class, which can introduce additional
representational errors. For example, data generated from human demonstrations or hand-
crafted controllers may fall outside of the model class. More generally, non-Markovian
policies and tasks with partial observability can introduce additional modeling errors
when we estimate action probabilities under the assumption that the data was generated
from a Markovian policy. These errors can cause additional bias for offline RL algorithms,
especially in methods that assume access to action probabilities from a Markovian policy
such as importance weighting [Precup et al., 2000].
Realistic domains. As we discussed previously, real-world evaluation is the ideal setting for
benchmarking offline RL, however, it is at odds with a widely-accessible and reproducible
benchmark. To strike a balance, we opted for simulated environments which have been
previously studied and are broadly accepted by the research community. These simulation
packages (such as MuJoCo, Flow, and CARLA) have been widely used to benchmark online
RL methods and are known to fit well into that role. Moreover, on several domains we
utilize human demonstrations or mathematical models of human behavior in order to provide
datasets generated from realistic processes. However, this did have the effect of restricting
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our choice of tasks. While recent progress has been made on simulators for recommender
systems (e.g., [Ie et al., 2019]), they use “stylized” user models and they have not been
thoroughly evaluated by the community yet. In the future as simulators mature, we hope to
include additional tasks.

In addition, we include a variety of qualitatively different tasks to provide broad coverage
of the types of domains where offline RL could be used. We include locomotion, traffic
management, autonomous driving, and robotics tasks. We also provide tasks with a wide
range in difficulty, from tasks current algorithms can already solve to harder problems that
are currently out of reach. Finally, for consistency with prior works, we also include the
OpenAI Gym robotic locomotion tasks and similar datasets used by Fujimoto et al. [2019b],
Kumar et al. [2019], Wu et al. [2019].

7.3 Tasks and Datasets

Given the properties outlined in Section 7.2, we assembled the following tasks and datasets.
All tasks consist of an offline dataset (typically 106 steps) of trajectory samples for training,
and a simulator for evaluation. The mapping is not one-to-one – several tasks use the same
simulator with different datasets. Appendix D.3 lists domains and dataset types along with
their sources and Appendix D.2 contains a more comprehensive table of statistics such as
size.

Maze2D. (Non-markovian policies, undirected and multitask
data) The Maze2D domain is a navigation task requiring a 2D agent
to reach a fixed goal location. The tasks are designed to provide a
simple test of the ability of offline RL algorithms to stitch together
previously collected subtrajectories to find the shortest path to the
evaluation goal. Three maze layouts are provided. The “umaze”
and “medium” mazes are shown to the right, and the “large” maze
is shown below.

The data is generated by selecting goal locations at random and then using a planner that
generates sequences of waypoints that are followed using a PD controller.

In the figure on the left, the waypoints, represented by circles, are
planned from the starting location (1) along the path to a goal (2).
Upon reaching a threshold distance to a waypoint, the controller up-
dates its internal state to track the next waypoint along the path to
the goal. Once a goal is reached, a new goal is selected (3) and the
process continues. The trajectories in the dataset are visualized in Ap-
pendix D.7. Because the controllers memorize the reached waypoints,
the data collection policy is non-Markovian.
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AntMaze. (Non-markovian policies, sparse rewards, undirected and
multitask data) The AntMaze domain is a navigation domain that replaces the 2D ball from
Maze2D with the more complex 8-DoF “Ant” quadraped robot. We introduce this domain
to test the stitching challenge using a morphologically complex robot that could mimic real-
world robotic navigation tasks. Additionally, for this task we use a sparse 0-1 reward which
is activated upon reaching the goal.

The data is generated by training a goal reaching policy
and using it in conjunction with the same high-level way-
point generator from Maze2D to provide subgoals that guide
the agent to the goal. The same 3 maze layouts are used:
“umaze”, “medium”, and “large”. We introduce three flavors
of datasets: 1) the ant is commanded to reach a specific goal
from a fixed start location (antmaze-umaze-v0), 2) in the “di-
verse” datasets, the ant is commanded to a random goal from
a random start location, 3) in the “play” datasets, the ant is
commanded to specific hand-picked locations in the maze (which are not necessarily the goal
at evaluation), starting from a different set of hand-picked start locations. As in Maze2D,
the controllers for this task are non-Markovian as they rely on tracking visited waypoints.
Trajectories in the dataset are visualized in Appendix D.7.

Gym-MuJoCo. (Suboptimal agents, narrow data
distributions)

The Gym-MuJoCo tasks (Hopper, HalfCheetah,
Walker2d) are popular benchmarks used in prior
work in offline deep RL [Fujimoto et al., 2019b, Ku-
mar et al., 2019, Wu et al., 2019]. For consistency,
we provide standardized datasets similar to previous work, and additionally propose mixing
datasets to test the impact of heterogenous policy mixtures. We expect that methods that
rely on regularizing to the behavior policy may fail when the data contains poorly performing
trajectories.

The “medium” dataset is generated by first training a policy online using Soft Actor-
Critic [Haarnoja et al., 2018], early-stopping the training, and collecting 1M samples from
this partially-trained policy. The “random” datasets are generated by unrolling a randomly
initialized policy on these three domains. The “medium-replay” dataset consists of record-
ing all samples in the replay buffer observed during training until the policy reaches the
“medium” level of performance. Datasets similar to these three have been used in prior
work, but in order to evaluate algorithms on mixtures of policies, we further introduce a
“medium-expert” dataset by mixing equal amounts of expert demonstrations and subop-
timal data, generated via a partially trained policy or by unrolling a uniform-at-random
policy.
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Adroit. (Non-representable policies, narrow data distributions, sparse rewards, realistic)
The Adroit domain [Rajeswaran et al., 2018] (pictured left) involves controlling a 24-DoF
simulated Shadow Hand robot tasked with hammering a nail, opening a door, twirling a pen,
or picking up and moving a ball. This domain was selected to measure the effect of a narrow
expert data distributions and human demonstrations on a sparse reward, high-dimensional
robotic manipulation task.

While Rajeswaran et al. [2018] propose utilizing human
demonstrations, in conjunction with online RL fine-tuning, our
benchmark adapts these tasks for evaluating the fully offline
RL setting. We include three types of datasets for each task,
two of which are included from the original paper: a small
amount of demonstration data from a human (“human”) (25
trajectories per task) and a large amount of expert data from a
fine-tuned RL policy (“expert”). To mimic the use-case where
a practitioner collects a small amount of additional data from
a policy trained on the demonstrations, we introduce a third

dataset generated by training an imitation policy on the demonstrations, running the policy,
and mixing data at a 50-50 ratio with the demonstrations, referred to as “cloned.” The
Adroit domain has several unique properties that make it qualitatively different from the
Gym MuJoCo tasks. First, the data is collected in from human demonstrators. Second, each
task is difficult to solve with online RL, due to sparse rewards and exploration challenges,
which make cloning and online RL alone insufficient. Lastly, the tasks are high dimensional,
presenting a representation learning challenge.

FrankaKitchen. (Undirected and multitask data, realistic)
The Franka Kitchen domain, first proposed by Gupta et al.
[2020], involves controlling a 9-DoF Franka robot in a kitchen
environment containing several common household items: a
microwave, a kettle, an overhead light, cabinets, and an oven.
The goal of each task is to interact with the items in order to
reach a desired goal configuration. For example, one such state
is to have the microwave and sliding cabinet door open with
the kettle on the top burner and the overhead light on. This domain benchmarks the effect
of multitask behavior on a realistic, non-navigation environment in which the “stitching”
challenge is non-trivial because the collected trajectories are complex paths through the
state space. As a result, algorithms must rely on generalization to unseen states in order to
solve the task, rather than relying purely on trajectories seen during training.

In order to study the effect of “stitching” and generalization, we use 3 datasets of human
demonstrations, originally proposed by Gupta et al. [2020]. The “complete” dataset consists
of the robot performing all of the desired tasks in order. This provides data that is easy
for an imitation learning method to solve. The “partial” and “mixed” datasets consist of
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undirected data, where the robot performs subtasks that are not necessarily related to the
goal configuration. In the “partial” dataset, a subset of the dataset is guaranteed to solve the
task, meaning an imitation learning agent may learn by selectively choosing the right subsets
of the data. The “mixed” dataset contains no trajectories which solve the task completely,
and the RL agent must learn to assemble the relevant sub-trajectories. This dataset requires
the highest degree of generalization in order to succeed.

Flow. (Non-representable policies, realistic) The Flow
benchmark [Vinitsky et al., 2018] is a framework for study-
ing traffic control using deep reinforcement learning. We
use two tasks in the Flow benchmark which involve con-
trolling autonomous vehicles to maximize the flow of traffic
through a ring or merge road configuration (left).

We use the Flow domain in order to provide a task that simulates real-world traffic
dynamics. A large challenge in autonomous driving is to be able to directly learn from
human behavior. Thus, we include “human” data from agents controlled by the intelligent
driver model (IDM) [Treiber et al., 2000], a hand-designed model of human driving behavior.
In order to provide data with a wider distribution as a reference, we also include “random”
data generated from an agent that commands random vehicle accelerations.

Offline CARLA. (Partial observability, non-representable policies,
undirected and multitask data, realistic) CARLA [Dosovitskiy et al.,
2017] is a high-fidelity autonomous driving simulator that has previ-
ously been used with imitation learning approaches [Rhinehart et al.,
2019, Codevilla et al., 2018] from large, static datasets. The agent
controls the throttle (gas pedal), the steering, and the break pedal for
the car, and receives 48x48 RGB images from the driver’s perspective
as observations. We propose two tasks for offline RL: lane following
within a figure eight path (shown to the right, top picture), and navi-
gation within a small town (bottom picture). The principle challenge of the CARLA domain
is partial observability and visual complexity, as all observations are provided as first-person
RGB images.

The datasets in both tasks are generated via hand-designed controllers meant to emulate
human driving - the lane-following task uses simple heuristics to avoid cars and keep the car
within lane boundaries, whereas the navigation task layers an additional high-level controller
on top that takes turns randomly at intersections. Similarly to the Maze2D and AntMaze
domains, this dataset consists of undirected navigation data in order to test the “stitching”
property, however, it is in a more perceptually challenging domain.

Evaluation protocol. Previous work tunes hyperparameters with online evaluation inside
the simulator, and as Wu et al. [2019] show, the hyperparameters have a large impact
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on performance. Unfortunately, extensive online evaluation is not practical in real-world
applications and this leads to over optimistic performance expectations when the system is
deployed in a truly offline setting. To rectify this problem, we designate a subset of tasks
in each domain as “training” tasks, where hyperparameter tuning is allowed, and another
subset as “evaluation” tasks on which final performance is measured (See Appendix D.4
Table D.3).

To facilitate comparison across tasks, we normalize scores for each environment roughly
to the range between 0 and 100, by computing

normalized score = 100 ∗ score− random score

expert score− random score
.

A normalized score of 0 corresponds to the average returns (over 100 episodes) of an agent
taking actions uniformly at random across the action space. A score of 100 corresponds
to the average returns of a domain-specific expert. For Maze2D, and Flow domains, this
corresponds to the performance of the hand-designed controller used to collect data. For
CARLA, AntMaze, and FrankaKitchen, we used an estimate of the maximum score pos-
sible. For Adroit, this corresponds to a policy trained with behavioral cloning on human-
demonstrations and fine-tuned with RL. For Gym-MuJoCo, this corresponds to a soft-actor
critic [Haarnoja et al., 2018] agent.

7.4 Evaluation

We evaluated recently proposed offline RL algo-
rithms and several baselines on our offline RL
benchmarks. This evaluation (1) provides base-
lines as a reference for future work, and (2) iden-
tifies shortcomings in existing offline RL algo-
rithms in order to guide future research. The
average normalized performance for all tasks is
plotted in the figure to the right. It is clear that
as we move beyond simple tasks and data col-
lection strategies, differences between algorithms
are exacerbated and deficiencies in all algorithms are revealed. See Table 7.1 for normalized
results for all tasks, Table 7.2 for unnormalized scores, and Appendix D.5 for experimental
details.

We evaluated behavioral cloning (BC), online and offline soft actor-critic (SAC) [Haarnoja
et al., 2018], bootstrapping error reduction (BEAR) [Kumar et al., 2019], and behavior-
regularized actor-critic (BRAC) [Wu et al., 2019], advantage-weighted regression (AWR)
[Peng et al., 2019], batch-constrained Q-learning (BCQ) [Fujimoto et al., 2019b], and Al-
gaeDICE [Nachum et al., 2019]. We note that REM was originally designed for discrete
action spaces, and the continuous action version has not been developed extensively. In
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most domains, we expect online SAC to outperform offline algorithms when given the same
amount of data because this baseline is able to collect on-policy data. There are a few
exceptions, such as for environments where exploration challenges make it difficult to find
high-reward states, such as the Adroit and maze domains.

Overall, the benchmarked algorithms obtained the most success on datasets generated
from an RL-trained policy, such as in the Adroit and Gym-MuJoCo domains. In these
domains, offline RL algorithms are able to match the behavior policy when given expert
data, and outperform when given suboptimal data. This positive result is expected, as it
is the predominant setting in which these prior algorithms have been benchmarked in past
work.

Another positive result comes in the form of sparse reward tasks. In particular, many
methods were able to outperform the baseline online SAC method on the Adroit and AntMaze
domains. This indicates that offline RL is a promising paradigm for overcoming exploration
challenges, which has also been confirmed in recent work [Nair et al., 2020]. We also find
that conservative methods that constrain the policy to the dataset, such as BEAR, AWR,
CQL, and BCQ, are able to handle biased and narrow data distributions well on domains
such as Flow and Gym-MuJoCo.

Tasks with undirected data, such as the Maze2D, FrankaKitchen, CARLA and AntMaze
domains, are challenging for existing methods. Even in the simpler Maze2D domain, the
large maze provides a surprising challenge for most methods. However, the smaller instances
of Maze2D and AntMaze are very much within reach of current algorithms. Mixture dis-
tributions (a form of non-representable policies) were also challenging for all algorithms we
evaluated. For MuJoCo, even though the medium-expert data contains expert data, the
algorithms performed roughly on-par with medium datasets, except for hopper. The same
pattern was found in the cloned datasets for Adroit, where the algorithms mostly performed
on-par with the limited demonstration dataset, even though they had access to additional
data.

We find that many algorithms were able to succeed to some extent on tasks with controller-
generated data, such as Flow and Carla-lane. We also note that tasks with limited data,
such as human demonstrations in Adroit and FrankaKitchen, remain challenging. This po-
tentially points to the need for more sample-efficient methods, as big datasets may not be
always be available.

7.5 Discussion

In this chapter we introduced the D4RL (Datasets for Deep Data-driven Reinforcement
learning) benchmark, which focuses on benchmarking and evaluating algorithms for pol-
icy optimization in offline reinforcement learning. For each benchmark, we motivated our
task selection by properties reflected in real-world tasks, such as narrow data distribution,
undirected behavior, or temporally-extended control. Existing benchmarks have largely con-
centrated on robotic control using data produced by policies trained with RL [Fujimoto et al.,



CHAPTER 7. BENCHMARKING OFFLINE REINFORCEMENT LEARNING 66

2019b, Kumar et al., 2019, Wu et al., 2019, Gulcehre et al., 2020, Dulac-Arnold et al., 2021].
This can give a misleading sense of progress, as we have shown in our experiments that
many of the more challenging properties that we expect real-world datasets to have appear
to result in a substantial challenge for existing methods.
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Chapter 8

Benchmarking Off-Policy Evaluation

In chapter 7, we presented a platform for benchmarking algorithms focused on policy opti-
mization for offline reinforcement learning. In this chapter, we turn our focus to the related
and equally important problems of policy evaluation and policy selection. Similar to the
motivation for policy optimization, there are many real-world scenarios in which we need to
measure the performance of a policy (a predominant application example is in recommender
systems [Li et al., 2010]) or to estimate the best performing policy out of a set (such as
in offline A/B testing). Moreover, off-policy evaluation is potentially a crucial component
in evaluating the performance of offline RL algorithms on real-world tasks, since it can be
difficult to evaluate such systems online.

Although considerable theoretical [Thomas and Brunskill, 2016, Swaminathan and Joachims,
2015a, Jiang and Li, 2016, Wang et al., 2017, Yang et al., 2020] and practical progress [Gilotte
et al., 2018, Nie et al., 2020, Kalashnikov et al., 2018] on OPE algorithms has been made
in a range of different domains, there are few broadly accepted evaluation tasks that com-
bine complex, high-dimensional problems commonly explored by modern deep reinforcement
learning algorithms [Bellemare et al., 2013, Brockman et al., 2016] with standardized evalu-
ation protocols and metrics. Our goal is to provide a set of tasks with a range of difficulty,
excercise a variety of design properties, and provide policies with different behavioral pat-
terns in order to establish a standardized framework for comparing OPE algorithms. We put
particular emphasis on large datasets, long-horizon tasks, and task complexity to facilitate
the development of scalable algorithms that can solve high-dimensional problems.

In this chapter, we present Benchmarks for Deep Off-Policy Evaluation (DOPE), which
is a benchmark targeted towards the related goals of policy evaluation and selection. These
two problem settings (evaluation and selection) are primarily useful in situations when one
is given a set of policies and must either estimate or rank their performance, such as in
digital advertising. Like D4RL presented in chapter 7, DOPE is designed to measure the
performance of OPE methods by 1) evaluating on challenging control tasks with properties
known to be difficult for OPE methods, but which occur in real-world scenarios, 2) evaluating
across a range of policies with different values, to directly measure performance on policy
evaluation, ranking and selection, and 3) evaluating in ideal and adversarial settings in terms



CHAPTER 8. BENCHMARKING OFF-POLICY EVALUATION 70

of dataset coverage and support. These factors are independent of task difficulty, but are
known to have a large impact on OPE performance. To achieve 1, we selected tasks on a
set of design principles outlined in Section 8.3. To achieve 2, for each task we include 10 to
96 policies for evaluation and devise an evaluation protocol that measures policy evaluation,
ranking, and selection as outlined in Section 8.2. To achieve 3, we provide two domains with
differing dataset coverage and support properties described in Section 8.4.

8.1 Relation to Prior Work

Figure 8.1: In Off-Policy Evaluation
(top) the goal is to estimate the value
of a single policy given only data. Of-
fline Policy Selection (bottom) is a
closely related problem: given a set
of N policies, attempt to pick the best
given only data.

Our work is closely related to [Paine et al., 2020]
which studies OPE in a similar setting, however in
our work we present a benchmark for the community
and compare a range of OPE methods. Voloshin
et al. [2019] have also recently proposed benchmark-
ing for OPE methods on a variety of tasks ranging
from tabular problems to image-based tasks in Atari.
Our work differs in several key aspects. Voloshin et al.
[2019] is composed entirely of discrete action tasks,
whereas out benchmark focuses on continuous ac-
tion tasks. Voloshin et al. [2019] assumes full support
for the evaluation policy under the behavior policy
data, whereas we designed our datasets and policies
to ensure that different cases of dataset and policy
distributions could be studied. Finally, all evalua-
tions in Voloshin et al. [2019] are performed using the
MSE metric, and they do not provide standardized
datasets. In our work, we provide a variety of policies
for each problem which enables one to evaluate met-
rics such as ranking for policy selection, and a wide
range of standardized datasets for reproducibility.

8.2 Policy Evaluation Metrics

We consider policy evaluation in the purely offline set-
ting. The typical setup for this problem formulation is that we are provided with a discount
γ, a dataset of trajectories collected from a behavior policy D = {(s0, a0, r0, s1, . . .)}, and
optionally the action probabilities for the behavior policy πB(at|st). In many practical appli-
cations, logging action propensities is not possible, for example, when the behavior policy is
a mix of ML and hard-coded business logic. For this reason, we focus on the setting without
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propensities to encourage future work on behavior-agnostic OPE methods. For the methods
that require propensities, we estimate the propensities with behavior cloning.

The objective can take multiple flavors, as shown in Fig. 8.1. A common task in OPE
is to estimate the performance, or value, of a policy π (which may not be the same as πB)
so that the estimated value is as close as possible to V π under a metric such as MSE or
absolute error. A second task is to perform policy selection, where the goal is to select the
best policy or set of policies out of a group of candidates. This setup corresponds to how
OPE is commonly used in practice, which is to find the best performing strategy out of a
pool when online evaluation is too expensive to be feasible.

Evaluation Protocol

Figure 8.2: Error is a natural mea-
sure for off-policy evaluation. How-
ever for policy selection, it is suffi-
cient to (i) rank the policies as mea-
sured by rank correlation, or (ii) se-
lect a policy with the lowest regret.

The goal of DOPE to provide metrics for policy rank-
ing, evaluation and selection. Many existing OPE
methods have only been evaluated on point estimates
of value such as MSE, but policy selection is an impor-
tant, practical use-case of OPE. In order to explicitly
measure the quality of using OPE for policy selec-
tion, we provide a set of policies with varying value,
and devise two metrics that measure how well OPE
methods can rank policies.

For each task we include a dataset of logged ex-
periences D, and a set of policies {π1, π2, ..., πN} with
varying values. For each policy, OPE algorithms must
use D to produce an estimate of the policy’s value.
For evaluation of these estimates, we provide ”ground
truth values” {V π1 , V π2 , ..., V πN} that are computed
by running the policy for M ≥ 1000 episodes, where the exact value of M is given by
the number of episodes needed to lower the error bar on the ground truth values to 0.666.
The estimated values are then compared to these ground truth values using three different
metrics encompassing both policy evaluation and selection (illustrated in Figure 8.2; see
Appendix E.1 for mathematical definitions).

Absolute Error This metric measures estimate accuracy instead of its usefulness for
ranking. Error is the most commonly used metric to assess performance of OPE algorithms.
We opted to use absolute error instead of MSE to be robust to outliers.

Regret@k This metric measures how much worse the best policies identified by the
estimates are than the best policy in the entire set. It is computed by identifying the top-k
policies according to the estimated returns. Regret@k is the difference between the actual
expected return of the best policy in the entire set, and the actual value of the best policy
in the top-k set.

Rank correlation This metric directly measures how well estimated values rank policies,
by computing the correlation between ordinal rankings according by the OPE estimates and



CHAPTER 8. BENCHMARKING OFF-POLICY EVALUATION 72

ordinal rankings according to the ground truth values.

8.3 Task Design Factors

We describe our motivating properties for selecting tasks for the benchmark as follows:
High Dimensional Spaces (H) High-dimensionality is a key-feature in many real-world

domains where it is difficult to perform feature engineering, such as in robotics, autonomous
driving, and more. In these problems, it becomes challenging to accurately estimate quan-
tities such as the value function without the use of high-capacity models such a neural
networks and large datasets with wide state coverage. Our benchmark contains complex
continuous-space tasks which exercise these challenges.

Long Time-Horizon (L) Long time horizon tasks are known to present difficult chal-
lenges for OPE algorithms. Some algorithms have difficulty doing credit assignment for these
tasks. This can be made worse as the state dimension or action dimension increases.

Sparse Rewards (R) Sparse reward tasks increase the difficulty of credit assignment
and add exploration challenges, which may interact with data coverage in the offline setting.
We include a range robotics and navigation tasks which are difficult to solve due to reward
sparsity.

Temporally extended control (T) The ability to make decisions hierarchically is
major challenge in many reinforcement learning applications. We include two navigation
tasks which require high-level planning in addition to low-level control in order to simulate
the difficulty in such problems.

8.4 Tasks

DOPE contains two domains designed to provide a more comprehensive picture of how well
OPE methods perform in different settings. These two domains are constructed using two
benchmarks previously proposed for offline reinforcement learning: RL Unplugged [Gulcehre
et al., 2020] and D4RL (presented in chapter 7), and reflect the challenges found within
them.

The DOPE RL Unplugged domain is constrained in two important ways: 1) the data
is always generated using online RL training, ensuring there is adequate coverage of the
state-action space, and 2) the policies are generated by applying offline RL algorithms to the
same dataset we use for evaluation, ensuring that the behavior policy and evaluation policies
induce similar state-action distributions. Using it, we hope to understand how OPE methods
work as task complexity increases from simple Cartpole tasks to controlling a Humanoid body
while controlling for ideal data.

On the other hand, the DOPE D4RL domain has: 1) data from various sources (includ-
ing random exploration, human teleoperation, and RL-trained policies with limited explo-
ration), which results in varying levels of coverage of the state-action space, and 2) policies
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that are generated using online RL algorithms, making it less likely that the behavior and
evaluation policies share similar induced state-action distributions. Both of these result in
distribution shift which is known to be challenging for OPE methods, even in simple tasks.
So, using it we hope to measure how well OPE methods work in more practical data settings.

DOPE RL Unplugged

DeepMind Control Suite (Tassa et al., 2018) is a set
of control tasks implemented in MuJoCo (Todorov et
al., 2012). We consider the subset included in RL
Unplugged. This subset includes tasks that cover a
range of difficulties. From Cartpole swingup, a simple
task with a single degree of freedom, to Humanoid
run which involves control of a complex bodies with
21 degrees of freedom. All tasks use the default feature representation of the system state,
including proprioceptive information such as joint positions and velocity, and additional
sensor information and target position where appropriate. The observation dimension ranges
from 5 to 67.

Datasets and policies We train four offline RL algorithms (D4PG [Barth-Maron et al.,
2018], ABM [Siegel et al., 2020], CRR [Wang et al., 2020] and behavior cloning), varying
their hyperparameters. For each algorithm-task-hyperparameter combination, we train an
agent with 3 random seeds on the DM Control Suite dataset from RL Unplugged and record
policy snapshots at exponentially increasing intervals (after 25k learner steps, 50k, 100K,
200K, etc). Following Gulcehre et al. [2020], we consider a deterministic policy for D4PG and
stochastic policies for BC, ABM and CRR. The datasets are taken from the RL Unplugged
benchmark, where they were created by training multiple (online) RL agents and collecting
both successful and unsuccessful episodes throughout training. All offline RL algorithms are
implemented using the Acme framework [Hoffman et al., 2020].

DOPE D4RL

As part of the DOPE benchmark, we use a subset of the D4RL tasks presented in chapter 7.
Gym-MuJoCo tasks. Gym-MuJoCo consists of several continuous control tasks im-

plemented within the MuJoCo simulator [Todorov et al., 2012] and provided in the OpenAI
Gym [Brockman et al., 2016] benchmark for online RL. We include the HalfCheetah, Hop-
per, Walker2D, and Ant tasks. We include this domain primarily for comparison with past
works, as a vast array of popular RL methods have been evaluated and developed on these
tasks [Schulman et al., 2015, Lillicrap et al., 2016, Schulman et al., 2017, Fujimoto et al.,
2018, Haarnoja et al., 2018].

Gym-MuJoCo datasets and policies. For each task, in order to explore the effect of
varying distributions, we include 5 datasets originally proposed by Fu et al. [2020]. 3 corre-
spond to different performance levels of the agent – “random”, “medium”, and “expert”. We
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Statistics
cartpole cheetah finger fish humanoid walker walker manipulator manipulator
swingup run turn hard swim run stand walk insert ball insert peg

Dataset size 40K 300K 500K 200K 3M 200K 200K 1.5M 1.5M
State dim. 5 17 12 24 67 24 24 44 44
Action dim. 1 6 2 5 21 6 6 5 5
Properties - H, L H, L H, L H, L H, L H, L H, L, T H, L,T

Statistics maze2d antmaze halfcheetah hopper walker ant hammer door relocate pen

Dataset size 1/2/4M 1M 1M 1M 1M 1M 11K/1M 7K/1M 10K/1M 5K/500K
# datasets 1 1 5 5 5 5 3 3 3 3
State dim. 4 29 17 11 17 111 46 39 39 45
Action dim. 2 8 6 3 6 8 26 28 30 24
Properties T T, R H H H H H, R H, R H, R H, R

Table 8.1: Task statistics for RLUnplugged tasks (top) and D4RL tasks (bottom). Dataset
size is the number of (s, a, r, s′) tuples. For each dataset, we note the properties it possesses:
high dimensional spaces (H), long time-horizon (L), sparse rewards (R), temporally extended
control (T).

additionally include a mixture of medium and expert dataset, labeled “medium-expert”, and
data collected from a replay buffer until the policy reaches the medium level of performance,
labeled “medium-replay”. For policies, we selected 11 policies collected from evenly-spaced
snapshots of training a Soft Actor-Critic agent [Haarnoja et al., 2018], which covers a range
of performance between random and expert.

Maze2D and AntMaze tasks. Maze2D and AntMaze are two maze navigation tasks
originally proposed in D4RL [Fu et al., 2020]. The domain consists of 3 mazes ranging from
easy to hard (“umaze”, “medium”, “large”), and two morphologies: a 2D ball in Maze2D
and the “Ant” robot of the Gym benchmark in AntMaze. For Maze2D, we provide a less
challenging reward computed base on distance to a fixed goal. For the AntMaze environment
reward is given only upon reaching the fixed goal.

Maze2D and AntMaze datasets and policies. Datasets for both morphologies
consists of undirect data navigating randomly to different goal locations. The datasets
for Maze2D are collected by using a high-level planner to command waypoints to a low-
level PID controller in order to reach randomly selected goals. The dataset in AntMaze
is generated using the same high-level planner, but the low-level planner is replaced with
a goal-conditioned policy trained to reach arbitrary waypoints. Both of these datasets are
generated from non-Markovian policies, as the high-level controller maintains a history of
waypoints reached in order to construct a plan to the goal. We provide policies for all
environments except “antmaze-large” by taking training snapshots obtained while running
the DAPG algorithm [Rajeswaran et al., 2018]. Because obtaining high-performing policies
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Figure 8.3: Online evaluation of policy checkpoints for 4 Offline RL algorithms with 3 random
seeds. We observe a large degree of variability between the behavior of algorithms on different
tasks. Without online evaluation, tuning the hyperparameters (e.g., choice of Offline RL algorithm
and policy checkpoint) is challenging. This highlights the practical importance of Offline policy
selection when online evaluation is not feasible. See Figure E.7 for additional tasks.

for “antmaze-large” was challenging, we instead used imitation learning on a large amount
of expert data to generate evaluation policies. This expert data is obtained by collecting
additional trajectories that reach the goal using a high-level waypoint planner in conjunction
with a low-level goal-conditioned policy (this is the same method as was used to generate
the dataset, Sec. 5 [Fu et al., 2020]).

Adroit tasks. The Adroit domain is a realistic simulation based on the Shadow Hand
robot, first proposed by Rajeswaran et al. [2018]. There are 4 tasks in this domain: opening
a door (“door”), pen twirling (“pen”), moving a ball to a target location (“relocate”), and
hitting a nail with a hammer (“hammer”). These tasks all contain sparse rewards and are
difficult to learn without demonstrations.

Adroit datasets and policies. We include 3 datasets for each task. The “human”
dataset consists of a small amount of human demonstrations performing the task. The
“expert” dataset consists of data collected from an expert trained via DAPG [Rajeswaran
et al., 2018]. Finally, the “cloned” dataset contains a mixture of human demonstrations
and data collected from an imitation learning algorithm trained on the demonstrations. For
policies, we include 11 policies collected from snapshots while running the DAPG algorithm,
which range from random performance to expert performance.

8.5 Evaluation

The goal of our evaluation is two-fold. First, we wish to measure the performance of a
variety of existing algorithms to provide baselines and reference numbers for future research.
Second, we wish to identify shortcomings in these approaches to reveal promising directions
for future research.
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Baselines

We selected six methods to evaluate, which cover a variety of approaches that have been
explored for the OPE problem.

Fitted Q-Evaluation (FQE) As in Le et al. [2019], we train a neural network to
estimate the value of the evaluation policy π by bootstrapping from Q(s′, π(s′)). We tried
two different implementations, one from Kostrikov and Nachum [2020]1 and another from
Paine et al. [2020] labeled FQE-L2 and FQE-D respectively to reflect different choices in loss
function and parameterization.

Model-Based (MB) Similar to Paduraru [2007], we train dynamics and reward models
on transitions from the offline dataset D. Our models are deep neural networks trained to
maximize the log likelihood of the next state and reward given the current state and action,
similar to models from successful model-based RL algorithms [Chua et al., 2018, Janner
et al., 2019]. We follow the setup detailed in Zhang et al. [2021]. We include both the feed-
forward and auto-regressive models labeled MB-FF and MB-AR respectively. To evaluate
a policy, we compute the return using simulated trajectories generated by the policy under
the learned dynamics model.

Importance Sampling (IS) We perform importance sampling with a learned behavior
policy. We use the implementation from Kostrikov and Nachum [2020]3, which uses self-
normalized (also known as weighted) step-wise importance sampling [Precup et al., 2000].
Since the behavior policy is not known explicitly, we learn an estimate of it via a max-
likelihood objective over the dataset D, as advocated by Xie et al. [2019], Hanna et al. [2019].
In order to be able to compute log-probabilities when the target policy is deterministic, we
add artificial Gaussian noise with standard deviation 0.01 for all deterministic target policies.

Doubly-Robust (DR) We perform weighted doubly-robust policy evaluation Thomas
and Brunskill [2016] using the implementation of Kostrikov and Nachum [2020]3. Specifically,
this method combines the IS technique above with a value estimator for variance reduction.
The value estimator is learned using deep FQE with an L2 loss function. More advanced
approaches that trade variance for bias exist (e.g., MAGIC [Thomas and Brunskill, 2016]),
but we leave implementing them to future work.

DICE This method uses a saddle-point objective to estimate marginalized importance
weights dπ(s, a)/dπB(s, a); these weights are then used to compute a weighted average of
reward over the offline dataset, and this serves as an estimate of the policy’s value in the
MDP. We use the implementation from Yang et al. [2020] corresponding to the algorithm
BestDICE.2

Variational Power Method (VPM) This method runs a variational power iteration
algorithm to estimate the importance weights dπ(s, a)/dπB(s, a) without the knowledge of
the behavior policy. It then estimates the target policy value using weighted average of
rewards similar to the DICE method. Our implementation is based on the same network

1Code available at https://github.com/google-research/google-research/tree/master/policy_

eval.
2Code available at https://github.com/google-research/dice_rl.

https://github.com/google-research/google-research/tree/master/policy_eval
https://github.com/google-research/google-research/tree/master/policy_eval
https://github.com/google-research/dice_rl
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Figure 8.4: DOPE RL Unplugged Mean overall performance of baselines.

Figure 8.5: DOPE D4RL Mean overall performance of baselines.

and hyperparameters for OPE setting as in Wen et al. [2020]. We further tune the hyper-
parameters including the regularization parameter λ, learning rates αθ and αv, and number
of iterations on the Cartpole swingup task using ground-truth policy value, and then fix
them for all other tasks.

Results

To facilitate aggregate metrics and comparisons between tasks and between DOPE RL Un-
plugged and DOPE D4RL, we normalize the returns and estimated returns to range between
0 and 1. For each set of policies we compute the worst value Vworst = min{V π1 , V π2 , ..., V πN}
and best value Vbest = max{V π1 , V π2 , ..., V πN} and normalize the returns and estimated re-
turns according to x′ = (x− Vworst)/(Vbest − Vworst).

We present results averaged across DOPE RL Unplugged in Fig. 8.4, and results for
DOPE D4RL in Fig. 8.5. Overall, no evaluated algorithm attains near-oracle performance
under any metric (absolute error, regret, or rank correlation). Because the dataset is finite,
we do not expect that achieving oracle performance is possible. Nevertheless, based on recent
progress on this benchmark (e.g., Zhang et al. [2021]), we hypothesize that the benchmark has
room for improvement, making it suitable for driving further improvements on OPE methods
and facilitating the development of OPE algorithms that can provide reliable estimates on
the types of high-dimensional problems that we consider.

While all algorithms achieve sub-optimal performance, some perform better than others.
We find that on the DOPE RL Unplugged tasks model based (MB-AR, MB-FF) and di-
rect value based methods (FQE-D, FQE-L2) significantly outperform importance sampling
methods (VPM, DICE, IS) across all metrics. This is somewhat surprising as DICE and
VPM have shown promising results in other settings. We hypothesize that this is due to
the relationship between the behavior data and evaluation policies, which is different from
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Figure 8.6: Rank correlation for each baseline algorithm for each RL Unplugged task con-
sidered.

standard OPE settings. Recall that in DOPE RL Unplugged the behavior data is collected
from an online RL algorithm and the evaluation policies are learned via offline RL from the
behavior data. In our experience all methods work better when the behavior policy is a
noisy/perturbed version of the evaluation policy. Moreover, MB and FQE-based methods
may implicitly benefit from the architectural and optimization advancements made in policy
optimization settings, which focus on similar environments and where these methods are
more popular than importance sampling approaches. Note that within the MB and FQE
methods, design details can create a significant difference in performance. For example model
architecture (MB-AR vs MB-FF) and implementation differences (FQE-D vs FQE-L2) show
differing performance on certain tasks.

On DOPE D4RL, direct value based methods still do well, with FQE-L2 performing best
on the Absolute Error and Regret@1 metrics. However, there are cases where other methods
outperform FQE. Notably, IS and DR outperform FQE-L2 under the rank correlation metric.
As expected, there is a clear performance gap between DOPE RL Unplugged and DOPE
D4RL. While both domains have challenging tasks, algorithms perform better under the
more ideal conditions of DOPE RL Unplugged than under the challenging conditions of
DOPE D4RL (0.69 vs 0.25 rank correlation respectively).

In Fig. 8.6 we show the rank correlation for each task in DOPE RL Unplugged. Most tasks
follow the overall trends, but we will highlight a few exceptions. 1) Importance sampling
is among the best methods for the humanoid run task, significantly outperforming direct
value-based methods. 2) while MB-AR and FQE-D are similar overall, there are a few tasks
where the difference is large, for example FQE-D outperfroms MB-AR on finger turn hard,
and manipulator insert ball, where as MB-AR outperforms FQE-D on cartpole swingup, fish
swim, humanoid run, and manipulator insert peg. We show the scatter plots for MB-AR
and FQE-D on these tasks in Fig 8.7 which highlights different failure modes: when MB-AR
performs worse, it assigns similar values for all policies; when FQE-D performs worse, it
severely over-estimates the values of poor policies.

We present more detailed results, separated by task, in Appendix E.2. Note in particular
how in Table E.4, which shows the regret@1 metric for different D4RL tasks, the particular
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Figure 8.7: Scatter plots of estimate vs ground truth return for MB-AR and FQE-D on
selected tasks.

choice of dataset for the Gym-MuJoCo, Adroit, and AntMaze domains causes a significant
difference in the performance of OPE methods. This indicates the importance of evaluating
multiple distinct datasets, with different data distribution properties (e.g., more narrow
datasets, such as expert data, vs. broader datasets, such as random data), as no tested
method is reliably robust to the effects of dataset variation.

High-dimensional tasks requiring temporally extended control were also challenging, as
highlighted by the performance on the AntMaze domain. No algorithm was able to achieve
a good absolute error value on such tasks, and importance sampling was the only method
able to achieve a correlation consistently above zero, suggesting that these more complex
tasks are a particularly important area for future methods to focus on.

8.6 Discussion

In this chapter we presented the Deep Off-Policy Evaluation (DOPE) benchmark, which
aims to provide a platform for studying policy evaluation and selection across a wide range
of challenging tasks and datasets. In contrast to prior benchmarks, DOPE provides multiple
datasets and policies, allowing researchers to study how data distributions affect perfor-
mance and to evaluate a wide variety of metrics, including those that are relevant for offline
policy selection. In comparing existing OPE methods, we find that no existing algorithms
consistently perform well across all of the tasks, which further reinforces the importance of
standardized and challenging OPE benchmarks. Moreover, algorithms that perform poorly
under one metric, such as absolute error, may perform better on other metrics, such as cor-
relation, which provides insight into what algorithms to use depending on the use case (e.g.,
policy evaluation vs. policy selection).
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Chapter 9

Conclusion

In this thesis, we explored the challenge of learning intelligent decision making systems from
offline data. This represents a fundamental paradigm shift from many commonly used frame-
works for decision making such as reinforcement learning which require online interaction.
We explored offline learning in two settings - reinforcement learning for sequential decision
making problems, and model-based optimization for problems with more generic structure.
In reinforcement learning, we explored algorithms in two popular settings: model-free Q-
learning methods and model-based methods. In both of these settings, we theoretically
analyzed the effect of distribution shift due to policy optimization, and proposed practi-
cal algorithms to mitigate model exploitation. In the model-based optimization setting, we
turned to uncertainty-aware models and utilized the normalized maximum likelihood frame-
work, showing how it could devise novel designs in application areas ranging from drug design
to robotics.

However, there are limitations to the proposed methods. All of the proposed algorithms
fall under the umbrella of enforcing robustness. We assume that learned models are inher-
ently vulnerable to distribution shift, and construct our algorithms in a way to mitigate
out-of-distribution inputs. While this general approach can be effective from a safety stand-
point, it can also be very limiting and result in overly pessimistic algorithms and analysis.
An alternative to building robust algorithms is to build robustness into the models them-
selves. For example, we can leverage underlying structure in the problems to identify when
models can extrapolate accurately, or train models using modern techniques that limit the
effectiveness of adversarial attacks.

A natural trend in machine learning has been that larger and larger datasets have been
collected to tackle more challenging problems. We believe that offline learning is the key to
making the leap from solving prediction problems to decision making problems, and hope
that the ideas presented in this thesis can provide a path towards building robust methods
that can be applied safely and inexpensively on real-world challenges.
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database composition in deep reinforcement learning. In Deep reinforcement learning
workshop at Advances in Neural Information Processing Systems, 2015.



BIBLIOGRAPHY 83

S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. On the sample complexity of the linear
quadratic regulator. Foundations of Computational Mathematics, 20(4):633–679, 2020.

M. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In International Conference on Machine Learning, 2011.

S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft. Learning and policy
search in stochastic dynamical systems with bayesian neural networks. In International
Conference on Learning Representations, 2016.

S. Doroudi, P. S. Thomas, and E. Brunskill. Importance sampling for fair policy selection.
In International Joint Conference on Artificial Intelligence, 2018.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In Conference on Robot Learning, 2017.

A. Draeger, S. Engell, and H. Ranke. Model predictive control using neural networks. IEEE
Control Systems Magazine, 1995.

S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang. Is a good representation sufficient
for sample efficient reinforcement learning? In International Conference on Learning
Representations, 2020.

Y. Du and K. Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning.
In International Conference on Machine Learning, 2019.

M. Dud́ık, D. Erhan, J. Langford, L. Li, et al. Doubly robust policy evaluation and opti-
mization. Statistical Science, 29(4):485–511, 2014.

G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester.
Challenges of real-world reinforcement learning: definitions, benchmarks and analysis.
Machine Learning, pages 1–50, 2021.

F. Ebert, C. Finn, S. Dasari, A. Xie, A. X. Lee, and S. Levine. Visual foresight:
Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(Apr):503–556, 2005.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
actor-learner architectures. In International Conference on Machine Learning, 2018.

C. Fannjiang and J. Listgarten. Autofocused oracles for model-based design. Advances in
Neural Information Processing Systems, 2020.



BIBLIOGRAPHY 84
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A. Piché, V. Thomas, C. Ibrahim, Y. Bengio, and C. Pal. Probabilistic planning with se-
quential Monte Carlo methods. In International Conference on Learning Representations,
2019.

O. Pietquin, M. Geist, S. Chandramohan, and H. Frezza-Buet. Sample-efficient batch rein-
forcement learning for dialogue management optimization. ACM Transactions on Speech
and Language Processing (TSLP), 7(3):1–21, 2011.

M. Popova, O. Isayev, and A. Tropsha. Deep reinforcement learning for de novo drug design.
Science advances, 4(7):eaap7885, 2018.

D. Precup, R. S. Sutton, and S. Singh. Eligibility traces for off-policy policy evaluation. In
International Conference on Machine Learning, 2000.

D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with
function approximation. In International Conference on Machine Learning, 2001.

S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puig-
domènech Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia, D. Hassabis,
D. Silver, and D. Wierstra. Imagination-augmented agents for deep reinforcement learn-
ing. In Advances in Neural Information Processing Systems, 2017.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and
P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21:1–67, 2020.

A. Raghu, O. Gottesman, Y. Liu, M. Komorowski, A. Faisal, F. Doshi-Velez, and E. Brun-
skill. Behaviour policy estimation in off-policy policy evaluation: Calibration matters.
arXiv preprint arXiv:1807.01066, 2018.

A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran. EPOpt: Learning robust neural
network policies using model ensembles. In International Conference on Learning Repre-
sentations, 2017.



BIBLIOGRAPHY 91

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demon-
strations. In Robotics: Science and Systems, 2018.

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz,
K. Shpanskaya, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with
deep learning. arXiv preprint arXiv:1711.05225, 2017.

J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

N. Rhinehart, R. McAllister, and S. Levine. Deep imitative models for flexible inference,
planning, and control. In International Conference on Learning Representations, 2019.

J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

J. Rissanen and T. Roos. Conditional nml universal models. In 2007 Information Theory
and Applications Workshop, pages 337–341. IEEE, 2007.

J. J. Rissanen. Fisher information and stochastic complexity. IEEE transactions on infor-
mation theory, 42(1):40–47, 1996.

T. Roos, T. Silander, P. Kontkanen, and P. Myllymaki. Bayesian network structure learning
using factorized nml universal models. In 2008 Information Theory and Applications
Workshop, pages 272–276. IEEE, 2008.

R. Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1(2):127–190, 1999.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

K. S. Sarkisyan, D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov,
D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, N. S. Bogatyreva, P. K.
Vlasov, E. S. Egorov, M. D. Logacheva, A. S. Kondrashov, D. M. Chudakov, E. V. Putint-
seva, I. Z. Mamedov, D. S. Tawfik, K. A. Lukyanov, and F. A. Kondrashov. Local fitness
landscape of the green fluorescent protein. Nature, 533(7603):397–401, May 2016. ISSN
1476-4687. doi: 10.1038/nature17995.

S. Schaal. Is imitation learning the route to humanoid robots?, 1999.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2016.



BIBLIOGRAPHY 92

B. Scherrer, M. Ghavamzadeh, V. Gabillon, B. Lesner, and M. Geist. Approximate modified
policy iteration and its application to the game of tetris. Journal of Machine Learning
Research, 16:1629–1676, 2015. URL http://jmlr.org/papers/v16/scherrer15a.html.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-
tion. In International Conference on Machine Learning, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(Mar):371–421, 2008.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175,
2015.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

V. Shankar, A. Dave, R. Roelofs, D. Ramanan, B. Recht, and L. Schmidt. Do image classifiers
generalize across time? arXiv preprint arXiv:1906.02168, 2019.

N. Y. Siegel, J. T. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert, T. Lampe,
R. Hafner, and M. Riedmiller. Keep doing what worked: Behavioral modelling priors for
offline reinforcement learning. In International Conference on Learning Representations,
2020.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529:484–503, 2016.

D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold,
D. Reichert, N. Rabinowitz, A. Barreto, and T. Degris. The predictron: End-to-end
learning and planning. In International Conference on Machine Learning, 2017.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012.

A. Strehl, J. Langford, L. Li, and S. M. Kakade. Learning from logged implicit exploration
data. In Advances in Neural Information Processing Systems, 2010.

W. Sun, G. J. Gordon, B. Boots, and J. Bagnell. Dual policy iteration. In Advances in
Neural Information Processing Systems, 2018.

http://jmlr.org/papers/v16/scherrer15a.html


BIBLIOGRAPHY 93

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.
Advances in Neural Information Processing Systems, 2014.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming. In International Conference on Machine Learning,
1990.

R. S. Sutton and A. G. Barto. c. MIT Press, second edition, 2018.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora.
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Appendix A

Bootstrapping Error Accumulation
Reduction

A.1 Distribution-Constrained Backup Operator

In this section, we analyze properties of the constrained Bellman backup operator, defined
as:

T ΠQ(s, a)
def
= E

[
R(s, a) + γmax

π∈Π
EP (s′|s,a) [V (s′)]

]
where

V (s)
def
= max

π∈Π
Eπ[Q(s, a)].

Such an operator can be reduced to a standard Bellman backup in a modified MDP. We
can construct an MDP M ′ from the original MDP M as follows:

• The state space, discount, and initial state distributions remain unchanged from M .

• We define a new action set A′ = Π to be the choice of policy π to execute.

• We define the new transition distribution p′ as taking one step under the chosen policy
π to execute and one step under the original dynamics p: p′(s′|s, π) = Eπ[p(s′|s, a)].

• Q-values in this new MDP, QΠ(s, π) would, in words, correspond to executing policy
π for one step and executing the policy which maximizes the future discounted value
function in the original MDP M thereafter.

Under this redefinition, the Bellman operator T Π is mathematically the same operation
as the Bellman operator under M ′. Thus, standard results from MDP theory carry over -
i.e. the existence of a fixed point and convergence of repeated application of T Π to said fixed
point.
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A.2 Error Propagation Proofs

In this section, we provide proofs for Theorem 4.2.1 and Theorem 4.2.2.

Theorem A.2.1. Suppose we run approximate distribution-constrained value iteration with
a set constrained backup T Π. Assume that δ(s, a) ≥ maxk |Qk(s, a) − T ΠQk−1(s, a)| bounds
the Bellman error. Then,

lim
k→∞

Eρ0 [|Vk(s)− V ∗(s)|] ≤
γ

(1− γ)2

[
C(Π)Eµ[max

π∈Π
Eπ[δ(s, a)]] +

1− γ
γ

α(Π)

]
Proof. We first begin by introducing V Π, the fixed point of T Π. By the triangle inequality,
we have:

Eρ0 [|Vk(s)− V ∗(s)|] = Eρ0 [|Vk(s, a)− V Π(s) + V Π(s)− V ∗(s)|]
≤ Eρ0 [|Vk(s)− V Π(s)|]︸ ︷︷ ︸

L1

+Eρ0 [|V Π(s)− V ∗(s)|]︸ ︷︷ ︸
L2

First, we note that maxπ Eπ[δ(s, a)] provides an upper bound on the value error:

|Vk(s)− T ΠVk−1(s)| = |max
π

Eπ[Qk(s, a)]−max
π

Eπ[T πQk−1(s, a)]|
≤ max

π
Eπ[|Qk(s, a)− T πQk−1(s, a)|]

≤ max
π

Eπ[δ(s, a)]

We can bound L1 with

L1 ≤
2γ

(1− γ)2
[C(Π)]Eµ[max

π∈Π
Eπ[δ(s, a)]]

by direct modification of the proof of Theorem 3 of Farahmand et al. [2010] or Theorem 1
of Munos [2005] with k = 1 (p = 1), but replacing V ∗ with V Π and T with T Π, as T Π is a
contraction and V Π is its fixed point. An alternative proof involves viewing T Π as a backup
under a modified MDP (see Appendix A.1), and directly apply Theorem 1 of Munos [2005]
under this modified MDP. A similar bound also holds true for value iteration with the T Π

operator which can be analysed on similar lines as the above proof and Munos [2005].
To bound L2, we provide a simple `∞-norm bound, although we could in principle apply

techniques used to bound L1 to get a tighter distribution-based bound.∥∥V Π − V ∗
∥∥
∞ =

∥∥T ΠV Π − T V ∗
∥∥
∞

≤
∥∥T ΠV Π − T ΠV ∗

∥∥
∞ +

∥∥T ΠV Π − T V ∗
∥∥
∞

≤ γ
∥∥V Π − V ∗

∥∥
∞ + α(Π)

Thus, we have
∥∥V Π − V ∗

∥∥
∞ ≤

α
1−γ . Because the maximum is greater than the expectation,

L2 = Eρ0,π[|V Π(s)− V ∗(s)|] ≤
∥∥V Π − V ∗

∥∥
∞.

Adding L1 and L2 completes the proof.
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Theorem A.2.2. Assume the data distribution µ is generated by a behavior policy β, such
that µ(s, a) = µβ(s, a). Let µ(s) be the marginal state distribution under the data distribution.
Let us define Πε = {π | π(a|s) = 0 whenever β(a|s) < ε}. Then, there exists a concentrability
coefficient C(Πε) is bounded as:

C(Πε) ≤ C(β) ·
(

1 +
γ

(1− γ)f(ε)
(1− ε)

)
where f(ε)

def
= mins∈S,µΠ(s)>0[µ(s)].

Proof. For notational clarity, we refer to Πε as Π in this proof. The term µΠ is the high-
est discounted marginal state distribution starting from the initial state distribution ρ and
following policies π ∈ Π. Formally, it is defined as:

µΠ
def
= max
{πi}i: ∀ i, πi∈Π

(1− γ)
∞∑
m=1

mγm−1ρ0P
π1 · · ·P πm

Now, we begin the proof of the theorem. We first note, from the definition of Π, ∀ s ∈
S ∀ π ∈ Π, π(a|s) > 0 =⇒ β(a|s) > ε. This suggests a bound on the total variation
distance between β and any π ∈ Π for all s ∈ S, DTV (β(·|s)||π(·|s)) ≤ 1 − ε. This means
that the marginal state distributions of β and Π, are bounded in total variation distance
by: DTV (µβ||µΠ) ≤ γ

1−γ (1− ε), where µΠ is the marginal state distribution as defined above.

This can be derived from Schulman et al. [2015], Appendix B, which bounds the difference
in returns of two policies by showing the state marginals between two policies are bounded
if their total variation distance is bounded.

Further, the definition of the set of policies Π implies that ∀ s ∈ S, µΠ(s) > 0 =⇒
µβ(s) ≥ f(ε), where f(ε) > 0 is a constant that depends on ε and captures the minimum
visitation probability of a state s ∈ S when rollouts are executed from the initial state
distribution ρ while executing the behaviour policy β(a|s), under the constraint that only
actions with β(a|s) ≥ ε are selected for execution in the environment. Combining it with
the total variation divergence bound, maxs ||µβ(s)− µΠ(s)|| ≤ γ

1−γ (1− ε), we get that

sup
s∈S

µΠ(s)

µβ(s)
≤ 1 +

γ

(1− γ)f(ε)
(1− ε)

We know that, C(Π)
def
= (1− γ)2

∑∞
k=1 kγ

k−1c(k) is the ratio of the marginal state visita-
tion distribution under the policy iterates when performing backups using the distribution-
constrained operator and the data distribution µ = µβ. Therefore,

C(Πε)

C(β)
def
= sup

s∈S

µΠ(s)

µβ(s)
≤ 1 +

γ

(1− γ)f(ε)
(1− ε)
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A.3 Additional Details Regarding BEAR-QL

In this appendix, we address several remaining points regarding the support matching for-
mulation of BEAR-QL, and further discuss its connections to prior work.

Why can we choose actions from Πε, the support of the training
distribution, and need not restrict action selection to the policy
distribution?

In Section 4.2, we designed a new distribution-constrained backup and analyzed its prop-
erties from an error propagation perspective. Theorems 4.2.1 and 4.2.2 tell us that, if the
maximum projection error on all actions within the support of the train distribution is
bounded, then the worst-case error incurred is also bounded. That is, we have a bound
on maxπ∈Πε Eπ[δk(s, a)]. In this section, we provide an intuitive explanation for why action
distributions that are very different from the training policy distributions, but still lie in the
support of the train distribution, can be chosen without incurring large error. In practice, we
use powerful function approximators for Q-learning, such as deep neural networks. That is,
δk(s, a) is the Bellman error for one iteration of Q-iteration/Q-learning, which can essentially
be viewed as a supervised regression problem with a very expressive function class. In this
scenario, we expect a bounded error on the entire support of the training distribution, and
we therefore expect approximation error to depend less on the specific density of a data-
point under the data distribution, and more on whether or not that datapoint is within the
support of the data distribution. I.e., any point that is within the support would have a
comparatively low error, due to the expressivity of the function approximator.

Another justification is that, a different version of the Bellman error objective renor-
malizes the action-distributions to the uniform distribution by applying an inverse behavior
policy density weighting. For example, Antos et al. [2008], Antos et al. [2007] use this variant
of Bellman error:

Qk+1 = argminQ

N∑
i=1,ai∼β(·|si)

1

β (ai|si)

(
Q (si, ai)−

[
R(s, a) + γmax

a′∈A
Qk (si+1, a

′)

])2

This implies that this form of Bellman error mainly depends upon the support of the be-
haviour policy β (i.e. the set of action samples sampled from β with a high-enough probability
which we formally refer to as β(a|s) ≥ ε in the main text). In a scenario when this form of
Bellman error is being minimized, δk(s, a) is defined as

δk(s, a) =
1

β(a|s) |Qk(s, a)− T Qk−1(s, a)|

The overall error, hence, incurred due to error propagation is expected to be insensitive to
distribution change, provided the support of the distribution doesn’t change. Therefore, all
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policies π ∈ Πε incur the same amount of propagated error (|Vk − VΠ|) whereas different
amount of suoptimality biases – suggesting the existence of a different policy in Πε which
propagates the same amount of error while having a lower suboptimality bias. However, in
practice, it has been observed that using the inverse density weighting under the behaviour
policy doesn’t lead to substantially better performance for vanilla RL (not in the setting
with purely off-policy, static datasets), so we use the unmodified Bellman error objective.

Both of these justifications indicate that bounded δk(s, a) is reasonable to expect under
in-support action distributions.

Details on connection between BEAR-QL and
distribution-constrained backups

Distribution-constrained backups perform maximization over a set of policies Πε which is
defined as the set of policies that share the support with the behaviour policy. In the
BEAR-QL algorithm, πφ is maximized towards maximizing the expected Q-value for each
state under the action distribution defined by it, while staying in-support (through the
MMD constraint). The maximization step biases πφ towards the in-support actions which
maximize the current Q-value. By sampling multiple Dirac-delta action distributions - δai -
and then performing an explicit maximum over them for computing the target is a stochastic
approximation to the distribution-constrained operator. What is the importance of training
the actor to maximize the expected Q-value? We found empirically that this step is important
as without this maximization step and high-dimensional action spaces, it is likely to require
many more samples (exponentially more, due to curse of dimensionality) to get the correct
action that maximizes the target value while being in-support. This is hard and unlikely, and
in some experiments we tried with this variant, we found it to lead to suboptimal solutions.
At evaluation time, we use the Q-function as the actor. The same process is followed. Dirac-
delta action distribution candidates δai are sampled, and then the action ai that is gives
the empirical maximum over the Q-function values is the action that is executed in the
environment.

How effective is the MMD constraint in constraining supports of
distributions?

In Section 4.3, we argued in favour of the usage of the sampled MMD distance between
distributions to search for a policy that is supported on the same support as the train dis-
tribution. Revisiting the argument, in this section, we argue, via numerical simulations, the
effectiveness of the MMD distance between two probability distributions in constraining the
support of the distribution being learned, without constraining the distribution density func-
tion too much. While, MMD distance computed exactly between two distribution functions
will match distributions exactly and that explains its applicability in 2-sample tests, however,
with a limited number of samples, we empirically find that the values of the MMD distance
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computed using samples from two d-dimensional Gaussian distributions with diagonal covari-

ance matrices: P
def
= N (µP ,ΣP ) and Q

def
= N (µQ,ΣQ) is roughly equal to the MMD distance

computed using samples from Uα(P )
def
= [ Uniform(µ1

P ±αΣ1,1
P )]×· · ·× [ Uniform(µdP ±αΣd,d

P )]
and Q. This means that when minimizing the MMD distance to train distribution Q, the
gradient signal would push Q towards a uniform distribution supported on P ’s support as
this solution exhibits a lower MMD value – which is the objective we are optimizing.

Figure A.1 shows an empirical comparison of MMD(P,Q) when Q = P , computed by
sampling n-samples from P , and MMD(Uα(P ), Q) (also when Q = P ) computed by sampling
n-samples from Uα(P ). We observe that MMD distance computed using limited samples can,
in fact, be higher between a distribution and itself as compared to a uniform distribution
over a distribution’s support and itself. In Figure A.1, note that for smaller values of n
and appropriately chosen α (mentioned against each figure, the support of the uniform
distribution), the estimator for MMD(Uα(P ), P ) can provide lower estimates than the value
of the estimator for MMD(P, P ). This observation suggests that when the number of samples
is not enough to sample infer the distribution shape, density-agnostic distances like MMD
can be used as optimization objectives to push distributions to match supports. Subfigures
(c) and (d) shows the increase in MMD distance as the support of the uniform distribution
is expanded.

In order to provide a theoretical example, we refer to Example 1 in Gretton et al. [2012],
and extend it. First, note that the example argues that a fixed sample size of samples drawn
from a distribution P , there exists another discrete distribution Q supported on m2 samples

from the support set of P , such that there atleast is a probability

(
m2

m

)
m!
m2m > 1− e−1 >

0.63 that a sample from Q is indeed a sample from P as well. So, with a smaller value of
m, no 2-sample test will be able to distinguish between P and Q. We would also note that
this example is exactly the argument that our algorithm build upon. We further extend
this example by noting that if Q were rather not completely supported on the support of
P , then there exists atleast a probability of ε that a sample from Q lies outside the support
of P . This gives us a lower bound on the value of the MMD estimator, indicating that the
MMD 2-sample test will be able to detect this distribution due to an irreducible difference
of ε
√

miny∈Extremal(P) Ex∼P [k(x, y)] (where y is an ”extremal point” in P ’s support) in the
MMD estimate.
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Algorithm 5 Importance-Sampled BEAR-QL

input : Dataset D, target network update rate τ , mini-batch size N , sampled actions for MMD
n, minimum λ, policy gradient clipping constants β1, β2;β1 ≤ β2, MMD threshold constant ε

1: Initialize Q-ensemble {Qθi}Mi=1, actor πφ, set-determining policy πset, Lagrange multiplier α,
target networks {Qθ′i}

M
i=1, and a target actor πφ′ , with φ′ ← φ, θ′i ← θi

2: for t in {1, . . . , N} do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ D

Q-update:
4: Sample m action samples, {ai ∼ πφ′(·|s′)}ni=1

5: Define y = 1
m

∑
ai

[λminj=1,..,M Qθ′j (s
′, ai) + (1− λ) maxj=1,..,M Qθ′j (s

′, ai)]

6: ∀i, θi ← arg minθi(Qθi(s, a)− (r + γy))2

Set-update and Actor-update:
7: Sample actions A1(s) ≡ {âi ∼ πset(·|s)}mi=1 and A2(s) ≡ {aj ∼ D(s)}nj=1, n << m
8: Update πset, α:

πset, α← arg min
πset

max
α≥0

√
(1− δ) varkEa∼πset(·|s)[Q̂k(s, a)]

δ
+ αEs∼D([MMD(A1, A2)]− ε)

9: Update φ using Importance Sampled Policy Gradient:

πφ ← max
πφ

Es∼DEa∼πset(·|s)
([ πφ(a|s)
πset(a|s)

]β2

β1

Q(s, a)
)

10: Update Target Networks: θ′i ← τθi + (1− τ)θ′i; φ
′ ← τφ+ (1− τ)φ′

11: end for

A.4 Additional Experimental Details

Data collection We trained behaviour policies using the Soft Actor-Critic algorithm Haarnoja
et al. [2018]. In all cases, random data was generated by running a uniform at random policy
in the environment. Optimal data was generated by training SAC agents in all 4 domains
until convergence to the returns mentioned in Figure 4.5. Mediocre data was generated by
training a policy until the return value marked in each of the plots in Figure 4.3. Each
of our datasets contained 1e6 samples. We used the same datasets for evaluating different
algorithms to maintain uniformity across results.

Choice of kernels In our experiments, we found that the choice of the kernel is an im-
portant design decision that needs to be made. In general, we found that a Laplacian ker-

nel k(x, y) = exp(−||x−y||
σ

) worked well in all cases. Gaussian kernel k(x, y) = exp(−||x−y||
2

2σ2 )
worked quite well in the case of optimal dataset. For the Laplacian kernel, we chose σ = 10.0
for Cheetah, Ant and Hopper, and σ = 20.0 for Walker. However, we found that σ = 20.0
worked well for all environments in all settings. For the Gaussian kernel, we chose σ = 20.0
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for all settings. Kernels often tend to not provide relevant measurements of distance espe-
cially in high-dimensional spaces, so one direction for future work is to design right kernels.
We further experimented with a mixture of Laplacian kernel with different bandwidth pa-
rameters σ (1.0, 10.0, 50.0) on Hopper-v2 and Walker2d-v2 where we found that it performs
comparably and sometimes is better than a simple Laplacian kernel, probably because it is
able to track supports upto different levels of thresholds due to multiple kernels.

More details about the algorithm At evaluation time, we find that using the greedy
maximum of the Q-function over the support set of the behaviour policy (which can be
approximated by sampling multiple Dirac-delta policies δai from the policy πφ and performing
a greedy maximization of the Q-values over these Dirac-delta policies) works best, better
than unrolling the learned actor πφ in the environment. This was also found useful in
Fujimoto et al. [2019b]. Another detail about the algorithm is deciding which samples to
use for computing the MMD objective. We train a parameteric model πdata which fits a
tanh-Gaussian distribution to a given the states s, πdata(·|s) = tanhN (µ(·|s), σ(·|s)) and
then use this to sample a candidate n actions for computing the MMD-distance, meaning
that MMD is computed between a1, · · · , aN ∼ πdata and πφ. We find the latter to work
better in practice. Also, computing the MMD distance between actions before applying the
tanh transformation work better, and leads to a constraint, that perhaps provides stronger
gradient signal – because tanh saturates very quickly, after which gradients almost vanish.

Other hyperparameters Other hyperparameters include the following – (1) The variance
of the Gaussian σ2 /(standard deviation of) Laplacian kernel σ: We tried a variance of
10, 20, and 40. We found that 10 and 20 worked well across Cheetah, Hopper and Ant,
and 20 worked well for Walker2d; (2) The learning rate for the Lagrange multiplier was
chosen to be 1e-3, and the log of the Lagrange multiplier was clipped between [−5, 10]
to prevent instabilities; (3) For the policy improvement step, we found using average Q
works better than min Q for Walker2d. For the baselines, we used BCQ code from the
official implementation accompanying Fujimoto et al. [2019b], TD3 code from the official
implementation accompanying Fujimoto et al. [2018] and the BC baseline was the VAE-
based behaviour cloning baseline also used in Fujimoto et al. [2019b]. We evaluated on
10 evaluation episodes (which were separate from the train distribution) after every 1000
iterations and used the average score and the variance for the plots.

A.5 Additional Experimental Results

In this section, we provide some extra plots for some extra experiments. In Figure A.2 we
provide the difference between learned Q-values and Monte carlo returns of the policy in
the environment. In Figure A.3 we provide the trends of comparisons of Q-values learned
by BEAR-QL and BCQ in three environments. In Figure A.4 we compare the performance
when using the MMD constraint vs using the KL constraint in the case of three environments.
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In order to be fair at comparing to MMD, we train a model for the behaviour policy and
constrain the KL-divergence to this behaviour policy. (For MMD, we compute MMD using
samples from the model of the behaviour policy.) Note that in the case of Half Cheetah with
medium-quality data, KL divergence constraint works pretty well, but it fails drastically in
the case of Hopper and Walker2d and the Q-values tend to diverge. Figure A.4 summarizes
the trends for 3 environments.

We further study the performance of the KL-divergence in the setting when the KL-
divergence is stable. In this setting we needed to perform extensive hyperparameter tuning
to find the optimal Lagrange multiplier for the KL-constraint and plain and simple dual
descent always gave us an unstable solution with the KL-constraint. Even in this case
tuned hyperparameter case, we find that using a KL-constraint is worse than using a MMD-
constraint. Trends are summarized in Figure A.5.

As described in Section A.3, we can achieve a reduced overall error ||Vk(s) − V ∗(s)||, if
we use the MMD support-matching constraint alongside importance sampling, i.e. when we
multiply the Bellman error with the inverse of the behaviour policy density. Empirically, we
tried reweighting the Bellman error by inverse of the fitted behavior policy density, alongside
the BEAR-QL algorithm. The trends for two environments and medium-quality data are
summarized in Figure A.6. We found that reweighting the Bellman error wasn’t that useful,
although in theory, it provides an absolute error reduction as described by Theorem 4.1. We
hypothesize that this could be due to the possible reason that when optimizing neural nets
using stochastic gradient procedures, importance sampling isn’t that beneficial [Byrd and
Lipton, 2019].
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(a) N (0, 0.1), U(−0.1, 0.1) (b) N (0, 1.0), U(−1.5, 1.5)

(c) N (0, 1.0), U(−2.0, 2.0)

(d) N (0, 1.0), U(−4.0, 4.0)

Figure A.1: Comparing MMD distance between a 1-d Gaussian distribution (P ) and itself
(P ), and a uniform distribution over support set of the P and the distribution P . The
parameters of the Gaussian distribution (P ) and the uniform distribution being consid-
ered are mentioned against each plot. (’Self’ refers to MMD(P, P ) and ’Uniform’ refers to
MMD(P,U(P )).) Note that for small values of n ≈ 1 − 10, the MMD with the Uniform
distribution is slightly lower in magnitude than the MMD between the distribution P and
itself (sub-figures (a), (b) and (c)). For (d), as the support of this uniform distribution is
enlarged, this leads to an increase in the value of MMD in the uniform approximation case –
which suggests that a near-local minimizer for the MMD distance can be obtained by making
sure that the distribution which is being trained in this process shares the same support as
the other given distribution.
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Figure A.2: The trend of the difference between the Q-values and Monte-Carlo returns:
Q−MC returns for 2 environments. Note that a high value of Q−MC corresponds to more
overestimation. In these plots, BEAR-QL is more well behaved than BCQ. In Walker2d-v2,
BCQ tends to diverge in the negative direction. In the case of Ant-v2, although roughly the
same, the difference between Q values and Monte-carlo returns is slightly lower in the case of
BEAR-QL suggestion no risk of overestimation. (This corresponds to medium-quality data.)
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Figure A.3: The trends of Q-values as a function of number of gradient steps taken in case of
3 environments. BCQs Q-values tend to be more unstable (especially in the case of Walker2d,
where they diverge in the negative direction) as compared to BEAR-QL. This corresponds
to medium-quality data.



APPENDIX A. BOOTSTRAPPING ERROR ACCUMULATION REDUCTION 107

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000

6000
MMD vs KL: HalfCheetah-v2

KL

MMD

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

500

1000

1500

2000

2500

3000
MMD vs KL: Walker2d-v2

KL

MMD

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500
MMD vs KL: Hopper-v2

KL

MMD

Figure A.4: Performance Trends (measured in AverageReturn) for Hopper-v2, HalfCheetah-
v2 and Walker2d-v2 environments with BEAR-QL algorthm but varying kind of constraint.
In general we find that using the KL constraint leads to worse performance. However, in some
rare cases (for example, HalfCheetah-v2), the KL constraint learns faster. In general, we
find that the KL-constraint often leads to diverging Q-values. This experiment corresponds
to medium-quality data.
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Figure A.5: Performance Trends (measured in Average Returns) for Hopper-v2 and
Walker2d-v2 environments with BEAR-QL algorithm with an extensively tuned KL-
constraint and the MMD-constraint from. Note that the MMD-constraint still outperforms
the KL-constraint.
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Figure A.6: BEAR with importance sampled Bellman error minimization. We find that
importance sampling isn’t that beneficial in practice.
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Appendix B

Model-Based Policy Optimization

B.1 Model-Based Policy Optimization with

Performance Guarantees

In this appendix, we provide proofs for bounds presented in Chapter 5.
We begin with a standard bound on model-based policy optimization, with bounded

policy change επ and model error εm.

Theorem B.1.1 (MBPO performance bound). Let the expected total variation between two
transition distributions be bounded at each timestep by maxt Es∼πD,t [DTV (p(s′|s, a)||p̂(s′|s, a))] ≤
εm, and the policy divergences are bounded as maxsDTV (πD(a|s)||π(a|s)) ≤ επ. Then the
returns are bounded as:

J(π) ≥ Ĵ(π)− 2γRmax(εm + 2επ)

(1− γ)2
− 4Rmaxεπ

(1− γ)

Proof. Let πD denote the data collecting policy. As-is we can use Lemma B.2.3 to bound
the returns, but it will require bounded model error under the new policy π. Thus, we need
to introduce πD by adding and subtracting J(πD), to get:

J(π)− Ĵ(π) = J(π)− J(πD)︸ ︷︷ ︸
L1

+ J(πD)− Ĵ(π)︸ ︷︷ ︸
L2

We can bound L1 and L2 both using Lemma B.2.3.
For L1, we apply Lemma B.2.3 using δ = επ (no model error because both terms are

under the true model), and obtain:

L1 ≥ −
2Rmaxγεπ
(1− γ)2

− 2Rmaxεπ
1− γ

For L1, we apply Lemma B.2.3 using δ = επ + εm and obtain:

L2 ≥ −
2Rmaxγ(εm + επ)

(1− γ)2
− 2Rmaxεπ

1− γ
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Figure B.1: The conceptual illustration of the branched rollout generating process, with
k = 2. The top row (i = 0) represents the original trajectory, and the horizontal arrows
represent transitions under the pre-branch policy and dynamics. Each state is then advanced
forward by one step (represented by diagonal arrows) under the post-branch policy and
dynamics to generate a new trajectory for i = 1, with the initial state appended to the
beginning of the trajectory. We repeat this process K times, and average the occupancy
measures of each individual rollout (associated with i) to obtain the occupancy measure
of the final averaged K-branched rollout. The standard K-branched rollout only uses the
trajectory corresponding to i = K.

Adding these two bounds together yields the desired result.

Next, we describe bounds for branched rollouts. We define a branched rollout as a rollout
which begins under some policy and dynamics (either true or learned), and at some point
in time switches to rolling out under a new policy and dynamics for k steps. Our definition
is motivated by our practical implementation based on experience replay in a Dyna-like
algorithm, and provide a conceptual illustration in Fig. B.1. The unbranched trajectory
(i = 0) typically represents data collected in the environment under our old policy. We then
simulate each state forward up to K steps under the model and new policy, and add these
experiences to the replay memory. We precisely define the mechanics of how the occupancy
measure of the rollout in two schemes: the K-branched rollout, and the averaged K-branched
rollout. The standard K-branched rollout only uses i = k, and discards all states for i < k.
The averaged K-branched rollout instead computes the mean over all i = 0 to i = k. THe
standard branched rollout has simpler bounds (which display the same trends as the averaged
rollout), but the averaged branch rollout is closer to our practical algorithm, which adds all
model-generated states to the replay memory with equal weight.

Definition B.1.1 (Standard K-Branched Rollout). The occupancy measure of the standard
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K-branched rollout is defined as:

ρbranch,k(s, a) =
∞∑
t=0

γtpk,t(st = s, at = a)

Where pi,t(s, a) denotes the state-action marginal of the pre-branch dynamics advanced under
the post-branch dynamics ppost(s′|s, a) and policy πpost(a|s). It is defined as follows:

pi,t(st, at) =
∑

st−1,at−1

πpost(at|st)ppost(st|st−1, at−1)pi−1,t−1(st−1, at−1)

and pi=0,t(s, a) represents the state-action marginal under only the pre-branch dynamics,
and pi,t≤0(s) = ρ0(s) is fixed to the initial state distribution.

Definition B.1.2 (Averaged K-Branched Rollout). The occupancy measure of the averaged
K-branched rollout is defined as the average of the standard branched rollout:

ρ̄branch,k(s, a) =
1

k + 1

k∑
i=0

ρbranch,i(s, a)

We first present the simpler bound where the model error is bounded under the new
policy, which we label as εm′ . This bound is difficult to apply in practice as supervised
learning will typically control model error under the dataset collected by the previous policy.

Theorem B.1.2. Let the expected total variation between two the learned model is bounded
at each timestep under the expectation of π by maxt Es∼πt [DTV (p(s′|s, a)||p̂(s′|s, a))] ≤ εm′,
and the policy divergences are bounded as maxsDTV (πD(a|s)||π(a|s)) ≤ επ. Then under the
standard branched rollouts scheme with a branch length of k, the returns are bounded as:

J(π) ≥ Jbranch(π)− 2Rmax

[
γk+1επ

(1− γ)2
+

γkεπ
(1− γ)

+
k

1− γ (εm′)

]
Proof. As in the proof for Theorem B.1.1, the proof for this theorem requires adding and
subtracting the correct reference quantity and applying the corresponding returns bound
(Lemma B.2.4).

The choice of reference quantity is a branched rollout which executes the old policy πD
under the true dynamics until the branch point, then executes the new policy π under the
true dynamics for k steps. We denote the returns under this scheme as JπD,π. We can split
the returns as follows:

J(π)− Jbranch = J(π)− JπD,π︸ ︷︷ ︸
L1

+ JπD,π − Jbranch︸ ︷︷ ︸
L2

We can bound both terms L1 and L2 using Lemma B.2.4.
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L1 accounts for the error from executing the old policy instead of the current policy. As
there is no difference between J(π) and Jπ,π, we can compare Jπ,π with JπD,π. This term
only suffers from error before the branch begins, and we can use Lemma B.2.4 εpre

π ≤ επ and
all other errors set to 0. This implies:

|J(π)− JπD,π| ≤ 2Rmax

[
γk+1

(1− γ)2
επ +

γk

1− γ επ
]

L2 incorporates model error under the new policy incurred after the branch. Again we
use Lemma B.2.4, setting εpost

m ≤ εm′ and all other errors set to 0. This implies:

|J(π)− JπD,π| ≤ 2Rmax

[
k

1− γ εm′
]

Adding L1 and L2 together completes the proof.

Corollary B.1.2.1 (Theorem B.1.2 for averaged K-branched rollouts). Let the expected total
variation between two the learned model is bounded at each timestep under the expectation
of π by maxt Es∼πt [DTV (p(s′|s, a)||p̂(s′|s, a))] ≤ εm′, and the policy divergences are bounded
as maxsDTV (πD(a|s)||π(a|s)) ≤ επ. Then under the averaged branched rollouts scheme with
a branch length of k, the returns are bounded as:

J(π) ≥ Jbranch(π)− 2Rmax

1− γ

[
γεπ

(k + 1)(1− γ)2
+

επ
(k + 1)(1− γ)

+
k + 2

2
(εm′)

]
The next bound is an analogue of Theorem B.1.2 except using model errors under the

previous policy πD rather than the new policy π.

Theorem B.1.3. Let the expected total variation between two the learned model is bounded
at each timestep under the expectation of π by maxt Es∼πD,t [DTV (p(s′|s, a)||p̂(s′|s, a))] ≤ εm,
and the policy divergences are bounded as maxsDTV (πD(a|s)||π(a|s)) ≤ επ. Then under
standard branched rollouts scheme with a branch length of k, the returns are bounded as:

J(π) ≥ Jbranch(π)− 2Rmax

[
γk+1επ

(1− γ)2
+
γk + 2

(1− γ)
επ +

k

1− γ (εm + 2επ)

]
Proof. This proof is a short extension of the proof for Theorem B.1.2. The only modification
is that we need to bound L2 in terms of the model error under the πD rather than π.

Once again, we design a new reference rollout. We use a rollout that executes the old
policy πD under the true dynamics until the branch point, then executes the old policy πD
under the model for k steps. We denote the returns under this scheme as JπD,π̂D . We can
split L2 as follows:

JπD,π − Jbranch = JπD,π − JπD,π̂D︸ ︷︷ ︸
L3

+ JπD,π̂D − Jbranch︸ ︷︷ ︸
L4
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Once again, we bound both terms L3 and L4 using Lemma B.2.4.
The rollouts in L3 differ in both model and policy after the branch. This can be bound

using Lemma B.2.4 by setting εpost
π = επ and εpost

m = εm. This results in:

|JπD,π − JπD,π̂D | ≤ 2Rmax

[
k

1− γ (εm + επ) +
1

1− γ επ
]

The rollouts in L4 differ only in the policy after the branch (as they both rollout under
the model). This can be bound using Lemma B.2.4 by setting εpost

π = επ and εpost
m = 0. This

results in:

|JπD,π̂D − Jbranch| ≤ 2Rmax

[
k

1− γ (επ) +
1

1− γ επ
]

Adding L1 from Theorem B.1.2 and L3, L4 above completes the proof.

Corollary B.1.3.1 (Theorem B.1.3 for averaged K-branched rollouts). Let the expected total
variation between two the learned model is bounded at each timestep under the expectation
of π by maxt Es∼πD,t [DTV (p(s′|s, a)||p̂(s′|s, a))] ≤ εm, and the policy divergences are bounded
as maxsDTV (πD(a|s)||π(a|s)) ≤ επ. Then under the averaged branched rollouts scheme with
a branch length of k, the returns are bounded as:

J(π) ≥ Jbranch(π)− 2Rmax

1− γ

[
γεπ

(k + 1)(1− γ)2
+

1

(k + 1)(1− γ)
επ +

k

2
(εm + 2επ) + 2επ

]

B.2 Useful Lemmas

In this section, we provide proofs for various lemmas used in our bounds.

Lemma B.2.1 (TVD of Joint Distributions). Suppose we have two distributions p1(x, y) =
p1(x)p1(y|x) and p2(x, y) = p2(x)p2(y|x). We can bound the total variation distance of the
joint as:

DTV (p1(x, y)||p2(x, y)) ≤ DTV (p1(x)||p2(x)) + max
x

DTV (p1(y|x)||p2(y|x))

Alternatively, we have a tighter bound in terms of the expected TVD of the conditional:

DTV (p1(x, y)||p2(x, y)) ≤ DTV (p1(x)||p2(x)) + Ex∼p1 [DTV (p1(y|x)||p2(y|x))]
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Proof.

DTV (p1(x, y)||p2(x, y)) =
1

2

∑
x,y

|p1(x, y)− p2(x, y)|

=
1

2

∑
x,y

|p1(x)p1(y|x)− p2(x)p2(y|x)|

=
1

2

∑
x,y

|p1(x)p1(y|x)− p1(x)p2(y|x) + (p1(x)− p2(x))p2(y|x)|

≤ 1

2

∑
x,y

p1(x)|p1(y|x)− p2(y|x)|+ |p1(x)− p2(x)|p2(y|x)

=
1

2

∑
x,y

p1(x)|p1(y|x)− p2(y|x)|+ 1

2

∑
x

|p1(x)− p2(x)|

= Ex∼p1 [DTV (p1(y|x)||p2(y|x))] +DTV (p1(x)||p2(x))

≤ max
x

DTV (p1(y|x)||p2(y|x)) +DTV (p1(x)||p2(x))

Lemma B.2.2 (Markov chain TVD bound, time-varying). Suppose the expected KL-divergence
between two transition distributions is bounded as maxt Es∼pt1(s)DKL(p1(s′|s)||p2(s′|s)) ≤ δ,
and the initial state distributions are the same – pt=0

1 (s) = pt=0
2 (s). Then the distance in the

state marginal is bounded as:
DTV (pt1(s)||pt2(s)) ≤ tδ

Proof. We begin by bounding the TVD in state-visitation at time t, which is denoted as
εt = DTV (pt1(s)||pt2(s)).

|pt1(s)− pt2(s)| = |
∑
s′

p1(st = s|s′)pt−1
1 (s′)− p2(st = s|s′)pt−1

2 (s′)|

≤
∑
s′

|p1(st = s|s′)pt−1
1 (s′)− p2(st = s|s′)pt−1

2 (s′)|

=
∑
s′

|p1(s|s′)pt−1
1 (s′)− p2(s|s′)pt−1

1 (s′) + p2(s|s′)pt−1
1 (s′)− p2(s|s′)pt−1

2 (s′)|

≤
∑
s′

pt−1
1 (s′)|p1(s|s′)− p2(s|s′)|+ p2(s|s′)|pt−1

1 (s′)− pt−1
2 (s′)|

= Es′∼pt−1
1

[|p1(s|s′)− p2(s|s′)|] +
∑
s′

p(s|s′)|pt−1
1 (s′)− pt−1

2 (s′)|
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εt = DTV (pt1(s)||pt2(s)) =
1

2

∑
s

|pt1(s)− pt2(s)|

=
1

2

∑
s

(
Es′∼pt−1

1
[|p1(s|s′)− p2(s|s′)|] +

∑
s′

p(s|s′)|pt−1
1 (s′)− pt−1

2 (s′)|
)

=
1

2
Es′∼pt−1

1
[
∑
s

|p1(s|s′)− p2(s|s′)|] +DTV (pt−1
1 (s′)||pt−1

2 (s′))

= δt + εt−1

= ε0 +
t∑
i=0

δt

=
t∑
i=0

δt = tδ

Where we have defined δt = 1
2
Es′∼pt−1

1
[
∑

s |p1(s|s′) − p2(s|s′)], which we assume is upper
bounded by δ. Assuming we are not modeling the initial state distribution, we can set
ε0 = 0.

Lemma B.2.3 (Returns bound). Suppose the expected KL-divergence between two dynamics
distributions is bounded as maxt Es∼pt1(s)DKL(p1(s′, a|s)||p2(s′, a|s)) ≤ εm, and maxsDTV (π1(a|s)||π2(a|s)) ≤
επ. Then the returns are bounded as:

|J1 − J2| ≤
2Rγ(επ + εm)

(1− γ)2
+

2Rεπ
1− γ

Proof. Here, J1 denotes returns of π1 under dynamics p1(s′|s, a), and J2 denotes returns of
π2 under dynamics p2(s′|s, a).

|J1 − J2| = |
∑
s,a

(p1(s, a)− p2(s, a))r(s, a)|

= |
∑
s,a

(
∑
t

γtpt1(s, a)− pt2(s, a))r(s, a)|

= |
∑
t

∑
s,a

γt(pt1(s, a)− pt2(s, a))r(s, a)|

≤
∑
t

∑
s,a

γt|pt1(s, a)− pt2(s, a)|r(s, a)

≤ Rmax

∑
t

∑
s,a

γt|pt1(s, a)− pt2(s, a)|

We now apply Lemma B.2.2, using δ = εm + επ (via Lemma B.2.1) to get:

DTV (pt1(s)||pt2(s)) ≤ t(εm + επ)
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And since we assume maxsDTV (π1(a|s)||π2(a|s)) ≤ επ, we get

DTV (pt1(s, a)||pt2(s, a)) ≤ t(εm + επ) + επ

Thus, plugging this back in we get:

|J1 − J2| ≤ Rmax

∑
t

∑
s,a

γt|pt1(s, a)− pt2(s, a)|

≤ 2Rmax

∑
t

γtt(εm + επ) + επ

≤ 2Rmax(
γ(επ + εm)

(1− γ)2
+

επ
1− γ )

Lemma B.2.4 (Returns bound, branched rollout). Assume we run a branched rollout
of length k. Before the branch (“pre” branch), we assume that the dynamics distribu-
tions are bounded as maxt Es∼pt1(s)DKL(ppre

1 (s′|s, a)||ppre
2 (s′|s, a)) ≤ εpre

m and after the branch

as maxt Es∼pt1(s)DKL(ppost
1 (s′|s, a)||ppost

2 (s′|s, a)) ≤ εpost
m . Likewise, the policy divergence is

bounded pre- and post- branch by εpre
π and εpost

π , respectively. Then the standard K-step re-
turns are bounded as:

|J1 − J2| ≤ 2Rmax

[
γk+1

(1− γ)2
(εpre
m + εpre

π ) +
k

1− γ (εpost
m + εpost

π ) +
γk

1− γ ε
pre
π +

1

1− γ ε
post
π

]
And the averaged K-step returns are bounded as:

|J1−J2| ≤
2Rmax

1− γ

[
k

2
(εpost
m + εpost

π ) +
γ

(k + 1)(1− γ)2
(εpre
m + εpre

π ) +
1

(k + 1)(1− γ)
εpre
π + εpost

π

]
Proof. We first analyze the divergence for a particular i, and then we will average this
quantity from i = 1 to i = k to obtain the final bound.

We begin by bounding state marginals at each timestep, similar to Lemma B.2.3. Recall
that Lemma B.2.2 implies that state marginal error at each timestep can be bounded by the
state marginal error at the previous timestep, plus the divergence at the current timestep.
Thus, letting d1(s, a) and d2(s, a) denote the state-action marginals, we can write:

For t ≤ i:

DTV (dt1(s, a)||dt2(s, a)) ≤ t(εpost
m + εpost

π ) + εpost
π ≤ i(εpost

m + εpost
π ) + εpost

π

and for t ≥ i:

DTV (dt1(s, a)||dt2(s, a)) ≤ (t− i)(εpre
m + εpre

π ) + i(εpost
m + εpost

π ) + εpre
π + εpost

π



APPENDIX B. MODEL-BASED POLICY OPTIMIZATION 117

We can now bound the difference in occupancy measures by averaging the state marginal
error over time, weighted by the discount:

DTV (d1(s, a)||d2(s, a)) ≤ (1− γ)
∞∑
t=0

γtDTV (dt1(s, a)||dt2(s, a))

≤ (1− γ)
i∑
t=0

γt(i(εpost
m + εpost

π ) + εpost
π )

+ (1− γ)
∞∑
t=i

γt[(t− i)(εpre
m + εpre

π ) + i(εpost
m + εpost

π ) + εpre
π + εpost

π ]

≤ i(εpost
m + εpost

π ) + εpost
π +

γi+1

1− γ (εpre
m + εpre

π ) + γiεpre
π

Next, to obtain a bound for the averaged branched rollout, we average this bound over
k:

1

k + 1

k∑
i=0

i(εpost
m + εpost

π ) + εpost
π +

γi+1

1− γ (εpre
m + εpre

π ) + γiεpre
π

=
1

k + 1
[
k(k + 1)

2
(εpost
m + εpost

π ) +
γ

1− γ
1− γk+1

1− γ (εpre
m + εpre

π ) +
1− γk+1

1− γ εpre
π ] + εpost

π

≤ k

2
(εpost
m + εpost

π ) +
γ

(k + 1)(1− γ)2
(εpre
m + εpre

π ) +
1

(k + 1)(1− γ)
εpre
π + εpost

π

Multiplying this bound by 2Rmax

1−γ to convert the state-marginal bound into a returns bound
completes the proof.
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B.3 Hyperparameter Settings
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N epochs 400 15 300 125 300

E
environment steps

1000
per epoch

M
model rollouts

400
per environment step

B ensemble size 7

network architecture
MLP with 4 hidden MLP with 4 hidden

layers of size 200 layers of size 400

G
policy updates

40 20
per environment step

k model horizon 1
1→ 25 1→ 15 1→ 25

over epochs over epochs over epochs
20→ 100 20→ 100 20→ 300

Table B.1: Hyperparameter settings for MBPO results shown in Figure 5.2. x → y over
epochs a → b denotes a thresholded linear function, i.e. at epoch e, f(e) = min(max(x +
e−a
b−a · (y − x), x), y)
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Appendix C

Model-Based Optimization

C.1 Experimental Details

Detailed Pseudocode

There are a number of additional details we implemented in order to improve the performance
of NEMO for high-dimensional tasks. These include:

• Using the Adam optimizer [Kingma and Ba, 2015] rather than stochastic gradient
descent.

• Pretraining the models θ in order to initialize the procedure with an accurate initial
model.

• Optimizing over a batch of M designs, in order to follow previous evaluation protocols.

• Optimizing with x with respect to the internal scores µ instead of EpNML
[g(y)].

• Using target networks for the NML model, originally proposed in reinforcement learn-
ing algorithms, to improve the stability of the method.

We present pseudocode for the practical implementation of NEMO below:

Hyperparameters

The following table lists the hyperparameter settings we used for each task. We obtained
our hyperparameter settings by performing a grid search across different settings of αθ, αx,
and τ . We used 2-layer neural networks with softplus activations for all experiments. We
used a smaller networks for GFP, Hopper, Ant, and DKitty (64-dimensional layers) and a
lower discretization K for computational performance reasons, but we did not tune over
these parameters.

For baseline methods, please refer to Trabucco et al. [2021] for hyperparameter settings.
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Algorithm 6 NEMO – Practical Instantiation

Input Model class Θ, Dataset D = (x1:N , y1:N), number of bins K, batch size M , learning
rates αθ, αx, target update rate τ
Initialize K models θ1:K

0

Initialize batch of optimization iterates B0 = x1:M
0 from the best performing x in D.

Pretrain θ1:K
0 using supervised learning on D.

Initialize target networks θ̄1:K
0 ← θ1:K

0 .
Quantize y1:N into K bins, denoted as bYc = {by1c, · · · bykc}.
for iteration t in 1 . . . T do

for k in 1 . . . K do
Sample x′t from batch Bt.
Construct Augmented dataset: D′ ← D ∪ (x′t, bykc)
Compute gradient gθ ← ∇θyt

LogLikelihood(θyt ,D′)
Update model θyt using Adam and gθ with learning rate αθ.

end for
Update target networks θ̄yt+1 ← τθyt+1 + (1− τ)θ̄yt
for m in 1 . . .M do

Compute internal values µk(xmt ) from target networks θ̄yt for all k ∈ 1, · · · , K
Compute gradient gx for xmt : ∇x

1
K

∑
k µ

k(xmt )
Update xmt using Adam and gradient gx with learning rate αx.

end for
end for

Superconductor MoleculeActivity GFP Hopper Ant DKitty
Learning rate αθ 0.05 0.005
Learning rate αx 0.1 0.01 0.001

Network Size 256,256 64,64
Discretization K 40 20

Batch size M 128
Target update rate τ 0.05
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Appendix D

Benchmarking Offline Reinforcement
Learning

D.1 Results by Domain

The following tables summarize performance for each domain (excluding CARLA, due to all
algorithms performing poorly), sorted by the best performing algorithm to the worst.
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D.2 Task Properties

The following is a full list of task properties and dataset statistics for all tasks in the bench-
mark. Note that the full dataset for “carla-town” requires over 30GB of memory to store,
so we also provide a subsampled version of the dataset which we used in our experiments.
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Domain Task Name Controller Type # Samples

Maze2D

maze2d-umaze Planner 106

maze2d-medium Planner 2 ∗ 106

maze2d-large Planner 4 ∗ 106

AntMaze

antmaze-umaze Planner 106

antmaze-umaze-diverse Planner 106

antmaze-medium-play Planner 106

antmaze-medium-diverse Planner 106

antmaze-large-play Planner 106

antmaze-large-diverse Planner 106

Gym-MuJoCo

hopper-random Policy 106

hopper-medium Policy 106

hopper-medium-replay Policy 200920
hopper-medium-expert Policy 2× 106

halfcheetah-random Policy 106

halfcheetah-medium Policy 106

halfcheetah-medium-replay Policy 101000
halfcheetah-medium-expert Policy 2× 106

walker2d-random Policy 106

walker2d-medium Policy 106

walker2d-medium-replay Policy 100930
walker2d-medium-expert Policy 2× 106

Adroit

pen-human Human 5000
pen-cloned Policy 5 ∗ 105

pen-expert Policy 5 ∗ 105

hammer-human Human 11310
hammer-cloned Policy 106

hammer-expert Policy 106

door-human Human 6729
door-cloned Policy 106

door-expert Policy 106

relocate-human Human 9942
relocate-cloned Policy 106

relocate-expert Policy 106

Flow

flow-ring-random Policy 106

flow-ring-controller Policy 106

flow-merge-random Policy 106

flow-merge-controller Policy 106

FrankaKitchen
kitchen-complete Human 3680
kitchen-partial Human 136950
kitchen-mixed Human 136950

CARLA
carla-lane Planner 105

carla-town Planner 2 ∗ 106 full
105 subsampled

Table D.1: Statistics for each task in the benchmark. For the controller type, “planner”
refers to a hand-designed navigation planner, “human” refers to human demonstrations, and
“policy” refers to random or neural network policies.
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D.3 Task and Datasets

The following table lists the tasks and dataset types included in the benchmark, including
sources for each.

Domain Source Dataset Types
Maze2D N/A UMaze, Medium, Large
AntMaze N/A UMaze, Diverse, Play
Gym-MuJoCo Brockman et al. [2016] Expert, Random, Medium (Various)

Todorov et al. [2012] Medium-Expert, Medium-Replay
Adroit Rajeswaran et al. [2018] Human, Expert [Rajeswaran et al., 2018]

Cloned
Flow Wu et al. [2017] Random, Controller
Franka Kitchen Gupta et al. [2020] Complete, Partial, Mixed [Gupta et al., 2020]
CARLA Dosovitskiy et al. [2017] Controller

Table D.2: Domains and dataset types contained within our benchmark. Maze2D and
AntMaze are new domains we propose. For each dataset, we also include references to the
source if originally proposed in another work. Datasets borrowed from prior work include
MuJoCo (Expert, Random, Medium), Adroit (Human, Expert), and FrankaKitchen (Com-
plete, Partial, Mixed). All other datasets are datasets proposed by this work.

D.4 Training and Evaluation Task Split

The following table lists our recommended protocol for hyperparameter tuning. Hyperpa-
rameters should be tuned on the tasks listed on the left in the “Training” column, and
algorithms should be evaluated without tuning on the tasks in the right column labeled
“Evaluation”.
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Domain Training Evaluation

Maze2D
maze2d-umaze maze2d-eval-umaze
maze2d-medium maze2d-eval-medium
maze2d-large maze2d-eval-large

AntMaze

ant-umaze ant-eval-umaze
ant-umaze-diverse ant-eval-umaze-diverse
ant-medium-play ant-eval-medium-play
ant-medium-diverse ant-eval-medium-diverse
ant-large-play ant-eval-large-play
ant-large-diverse ant-eval-large-diverse

Adroit

pen-human hammer-human
pen-cloned hammer-cloned
pen-expert hammer-expert
door-human relocate-human
door-cloned relocate-cloned
door-expert relocate-expert

Gym

halfcheetah-random hopper-random
halfcheetah-medium hopper-medium
halfcheetah-mixed hopper-mixed
halfcheetah-medium-expert hopper-medium-expert
walker2d-random ant-random
walker2d-medium ant-medium
walker2d-mixed ant-mixed
walker2d-medium-expert and-medium-expert

Table D.3: Our recommended partition of tasks into “training” tasks where hyperparame-
ter tuning is allowed, and “evaluation” tasks where final algorithm performance should be
reported.

D.5 Experiment Details

For all experiments, we used default hyperparameter settings and minimal modifications to
public implementations wherever possible, using 500K training iterations or gradient steps.
The code bases we used for evaluation are listed below. We ran our experiments using Google
cloud platform (GCP) on n1-standard-4 machines.

• BRAC and AlgaeDICE: https://github.com/google-research/google-research

• AWR: https://github.com/xbpeng/awr

• SAC: https://github.com/vitchyr/rlkit

• BEAR: https://github.com/aviralkumar2907/BEAR

https://github.com/google-research/google-research
https://github.com/xbpeng/awr
https://github.com/vitchyr/rlkit
https://github.com/aviralkumar2907/BEAR
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• BCQ: https://github.com/sfujim/BCQ

• CQL: https://github.com/aviralkumar2907/CQL

D.6 Assessing the Feasibility of Hard Tasks

(a) carla-town

(b) antmaze-large (c) maze2d-large

Few prior methods were able to successfully solve
carla-town or the larger AntMaze tasks. While includ-
ing tasks that present a challenge for current meth-
ods is important to ensure that our benchmark has
room for improvement, it is also important to provide
some confidence that the tasks are actually solvable.
We verified this in two ways. First, we ensured that
the trajectories observed in these tasks have adequate
coverage of the state space. An illustration of the tra-
jectories in the CARLA and AntMaze tasks are shown
below, where trajectories are shown as different col-
ored lines and the goal state is marked with a star.
We see that in carla-town and AntMaze, each lane or
corridor is traversed multiple times by the agent.

Second, the data in AntMaze was generated by
having the ant follow the same high-level planner in
the maze as in Maze2D. Because Maze2D is solvable
by most methods, we would expect this to mean that
AntMaze is potentially solvable as well. This While
the dynamics of the ant itself are much more complex,
its walking gait is a relatively regular periodic motion,
and since the high-level waypoints are similar, we would expect the AntMaze data to provide
similar coverage as in the 2D mazes, as shown in the figures on the right. While the Ant
has more erratic motion, both datasets cover the the majority of the maze thoroughly. A
comparison of the state coverage between Maze2D and AntMaze on all tasks is shown in the
following Appendix section D.7.

D.7 Maze Domain Trajectories

In this section, we visualized trajectories for the datasets in the Maze2D and AntMaze
domains. Each image plots the states visited along each trajectory as a different colored
line, overlaid on top of the maze. The goal state is marked as a white star.

https://github.com/sfujim/BCQ
https://github.com/aviralkumar2907/CQL
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Figure D.2: Trajectories visited in the Maze2D domain. From left-to-right: maze2d-umaze,
maze2d-medium, and maze2d-large.

Figure D.3: Trajectories visited in the AntMaze domain. Top row, from left-to-right:
antmaze-umaze, antmaze-medium-play, and antmaze-large-play. Bottom row, from left-to-
right: antmaze-umaze-diverse, antmaze-medium-diverse, and antmaze-large-diverse.
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Appendix E

Benchmarking Off-Policy Evaluation

E.1 Off-policy Evaluation Metrics

The metrics we use are defined as follows:
Absolute Error We evaluate policies using absolute error in order to be robust to

outliers. The absolute error is defined as the difference between the value and estimated
value of a policy:

AbsErr = |V π − V̂ π| (E.1)

Where V π is the true value of the policy, and V̂ π is the estimated value of the policy.
Regret@k Regret@k is the difference between the value of the best policy in the entire

set, and the value of the best policy in the top-k set (where the top-k set is chosen by
estimated values). It can be defined as:

Regret @ k = max
i∈1:N

V π
i − max

j∈topk(1:N)
V π
j (E.2)

Where topk(1 : N) denotes the indices of the top K policies as measured by estimated values
V̂ π.

Rank correlation Rank correlation (also Spearman’s ρ) measures the correlation be-
tween the ordinal rankings of the value estimates and the true values. It can be written
as:

RankCorr =
Cov(V π

1:N , V̂
π

1:N)

σ(V π
1:N)σ(V̂ π

1:N)
(E.3)

E.2 Detailed Off-policy Evaluation Results

Detailed results figures and tables are presented here. We show results by task in both
tabular and chart form, as well as scatter plots which compare the estimated returns against
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the ground truth returns for every policy.

Chart Results

First we show the normalized results for each algorithm and task.
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Figure E.1: Absolute error for each baseline algorithm for each RL Unplugged task consid-
ered.
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Figure E.2: Rank correlation for each baseline algorithm for each RL Unplugged task con-
sidered.
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Figure E.3: Regret@1 for each baseline algorithm for each RL Unplugged task considered.
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Figure E.4: Absolute error for each baseline algorithm for each D4RL task domain considered.
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Figure E.5: Rank correlation for each baseline algorithm for each D4RL task domain con-
sidered.
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Figure E.6: Regret@1 for each baseline algorithm for each D4RL task domain considered.
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Figure E.7: Online evaluation of policy checkpoints for 4 Offline RL algorithms with 3 random
seeds. We observe a large degree of variability between the behavior of algorithms on different
tasks.

Tabular Results

Next, we present the results for each task and algorithm in tabular form, with means and
standard deviations reported across 3 seeds.
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Cartpole Cheetah Finger Fish Humanoid
swingup run turn hard swim run

A
b
so

lu
te

E
rr
o
r

b
tw

.
O

P
E

a
n

d
g
ro

u
n

d
tr

u
th Variational power method 37.53±3.50 61.89±4.25 46.22±3.93 31.27±0.99 35.29±3.03

Importance Sampling 68.75±2.39 44.29±1.91 90.10±4.68 34.82±1.93 27.89±1.98

Best DICE 22.73±1.65 23.35±1.32 33.52±3.48 59.48±2.47 31.42±2.04

Model based - FF 6.80±0.85 13.64±0.59 35.99±3.00 4.75±0.23 30.12±2.40

FQE (L2) 19.02±1.34 48.26±1.78 27.91±1.18 19.82±1.57 56.28±3.52

Doubly Robust (IS, FQE) 24.38±2.51 40.27±2.05 25.26±2.48 20.28±1.90 53.64±3.68

FQE (distributional) 12.63±1.21 36.50±1.62 10.23±0.93 7.76±0.95 32.36±2.27

Model based - AR 5.32±0.54 4.64±0.46 22.93±1.72 4.31±0.22 20.95±1.61

Walker Walker Manipulator Manipulator
Median ↓

stand walk insert ball insert peg

A
b
so

lu
te

E
rr
o
r

b
tw

.
O

P
E

an
d

gr
ou

n
d

tr
u

th Variational power method 96.76±3.59 87.24±4.25 79.25±6.19 21.95±1.17 46.22
Importance Sampling 66.50±1.90 67.24±2.70 29.93±1.10 12.78±0.66 44.29
Best DICE 27.58±3.01 47.28±3.13 103.45±5.21 22.75±3.00 31.42
Model based - FF 23.34±2.41 52.23±2.34 34.30±2.55 121.12±1.58 30.12
FQE (L2) 6.51±0.71 18.34±0.95 36.32±1.07 31.12±2.37 27.91
Doubly Robust (IS, FQE) 26.82±2.66 24.63±1.69 13.33±1.16 22.28±2.34 24.63
FQE (distributional) 21.49±1.41 27.57±1.54 9.75±1.10 12.66±1.39 12.66
Model based - AR 19.12±1.23 5.14±0.49 17.13±1.34 9.71±0.70 9.71

Table E.1: Average absolute error between OPE metrics and ground truth values at a discount
factor of 0.995 In each column, absolute error values that are not significantly different from the
best (p > 0.05) are bold faced. Methods are ordered by median.
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Cartpole Cheetah Finger Fish Humanoid
swingup run turn hard swim run
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C
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tw

.
O

P
E
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n

d
g
ro

u
n

d
tr

u
th Importance Sampling −0.23±0.11 −0.01±0.12 −0.45±0.08 −0.17±0.11 0.91±0.02

Best DICE −0.16±0.11 0.07±0.11 −0.22±0.11 0.44±0.09 −0.10±0.10

Variational power method 0.01±0.11 0.01±0.12 −0.25±0.11 0.56±0.08 0.36±0.09

Doubly Robust (IS, FQE) 0.55±0.09 0.56±0.08 0.67±0.05 0.11±0.12 −0.03±0.12

Model based - FF 0.83±0.05 0.64±0.08 0.08±0.11 0.95±0.02 0.35±0.10

FQE (distributional) 0.69±0.07 0.67±0.06 0.94±0.01 0.59±0.10 0.74±0.06

FQE (L2) 0.70±0.07 0.56±0.08 0.83±0.04 0.10±0.12 −0.02±0.12

Model based - AR 0.91±0.02 0.74±0.07 0.57±0.09 0.96±0.01 0.90±0.02

Walker Walker Manipulator Manipulator
Median ↑

stand walk insert ball insert peg

R
an

k
C

or
re
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ti
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b

tw
.

O
P

E
an

d
gr

ou
n

d
tr

u
th Importance Sampling 0.59±0.08 0.38±0.10 −0.72±0.05 −0.25±0.08 −0.17

Best DICE −0.11±0.12 −0.58±0.08 0.19±0.11 −0.35±0.10 −0.11
Variational power method −0.35±0.10 −0.10±0.11 0.61±0.08 0.41±0.09 0.01
Doubly Robust (IS, FQE) 0.88±0.03 0.85±0.04 0.42±0.10 −0.47±0.09 0.55
Model based - FF 0.82±0.04 0.80±0.05 0.06±0.10 −0.56±0.08 0.64
FQE (distributional) 0.87±0.02 0.89±0.03 0.63±0.08 −0.23±0.10 0.69
FQE (L2) 0.96±0.01 0.94±0.02 0.70±0.07 −0.48±0.08 0.70
Model Based - AR 0.96±0.01 0.98±0.00 −0.33±0.09 0.47±0.09 0.90

Table E.2: Spearman’s rank correlation (ρ) coefficient (bootstrap mean ± standard deviation)
between different OPE metrics and ground truth values at a discount factor of 0.995. In each
column, rank correlation coefficients that are not significantly different from the best (p > 0.05)
are bold faced. Methods are ordered by median. Also see Table E.3 and Table E.1 for Normalized
Regret@5 and Average Absolute Error results.
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Cartpole Cheetah Finger Fish Humanoid
swingup run turn hard swim run

R
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t@
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E
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n

d
tr

u
th Importance Sampling 0.73±0.16 0.40±0.21 0.64±0.05 0.12±0.05 0.31±0.09

Best DICE 0.68±0.41 0.27±0.05 0.44±0.04 0.35±0.24 0.84±0.22

Variational power method 0.50±0.13 0.37±0.04 0.45±0.13 0.02±0.02 0.56±0.08

Doubly Robust (IS, FQE) 0.28±0.05 0.09±0.05 0.56±0.12 0.61±0.12 0.99±0.00

FQE (L2) 0.06±0.04 0.17±0.05 0.30±0.11 0.50±0.03 0.99±0.00

Model based - FF 0.02±0.02 0.24±0.12 0.43±0.04 0.00±0.00 0.44±0.02

FQE (distributional) 0.03±0.09 0.11±0.09 0.10±0.12 0.49±0.06 0.24±0.15

Model based - AR 0.00±0.02 0.01±0.02 0.63±0.11 0.03±0.02 0.32±0.06

Walker Walker Manipulator Manipulator
Median ↓

stand walk insert ball insert peg

R
e
g
re

t@
5

fo
r

O
P

E
vs
.

gr
ou

n
d

tr
u

th Importance Sampling 0.54±0.11 0.54±0.23 0.83±0.05 0.22±0.03 0.54
Best DICE 0.24±0.07 0.55±0.06 0.44±0.07 0.75±0.04 0.44
Variational power method 0.41±0.02 0.39±0.02 0.52±0.20 0.32±0.02 0.41
Doubly Robust (IS, FQE) 0.02±0.01 0.05±0.07 0.30±0.10 0.73±0.01 0.30
FQE (L2) 0.04±0.02 0.00±0.02 0.37±0.07 0.74±0.01 0.30
Model based - FF 0.18±0.10 0.03±0.05 0.83±0.06 0.74±0.01 0.24
FQE (distributional) 0.03±0.03 0.01±0.02 0.50±0.30 0.73±0.01 0.11
Model based - AR 0.04±0.02 0.04±0.02 0.85±0.02 0.30±0.04 0.04

Table E.3: Normalized Regret@5 (bootstrap mean ± standard deviation) for OPE methods vs.
ground truth values at a discount factor of 0.995. In each column, normalized regret values that are
not significantly different from the best (p > 0.05) are bold faced. Methods are ordered by median.
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Halfcheetah Halfcheetah Halfcheetah Halfcheetah Halfcheetah
expert medium medium-expert medium-replay random

A
b

s.
E

rr
o
r IS 1404±152 1217±123 1400±146 1409±154 1405±155

VPM 945±164 1374±153 1427±111 1384±148 1411±154

Best DICE 944±161 1382±130 1078±132 1440±158 1446±156

Doubly Robust 1025±95 1222±134 1015±103 1001±129 949±126

FQE (L2) 1031±95 1211±130 1014±101 1003±132 938±125

Antmaze Antmaze Antmaze Antmaze Antmaze
large-diverse large-play medium-diverse medium-play umaze

A
b

s.
E

rr
o
r IS 0.62±0.01 0.85±0.00 0.55±0.01 0.81±0.00 0.62±0.04

VPM 0.02±0.02 0.26±0.24 0.07±0.05 0.11±0.06 0.12±0.03

Best DICE 5.55±0.36 19.62±1.28 2.42±1.56 19.47±2.15 14.97±1.93

Doubly Robust 0.99±0.01 1.59±0.01 0.61±0.03 1.47±0.01 0.87±0.04

FQE (L2) 0.53±0.01 0.78±0.00 0.29±0.01 0.71±0.01 0.39±0.03

Antmaze Door Door Door Hammer
umaze-diverse cloned expert human cloned

A
b

s.
E

rr
o
r IS 0.14±0.02 891±188 648±122 870±173 7403±1126

VPM 0.12±0.03 1040±188 879±182 862±163 7459±1114

Best DICE 0.17±0.04 697±79 856±134 1108±199 4169±839

Doubly Robust 0.11±0.02 424±73 1353±218 379±65 6101±679

FQE (L2) 0.11±0.03 438±81 1343±84 389±60 5415±558

Hammer Hammer Maze2d Maze2d Maze2d
expert human large medium umaze

A
b

s.
E

rr
o
r IS 3052±608 7352±1118 45.61±10.43 61.29±7.78 50.20±9.16

VPM 7312±1117 7105±1107 44.10±10.69 60.30±8.37 62.81±8.40

Best DICE 3963±758 5677±936 42.46±9.66 58.97±9.57 21.95±4.69

Doubly Robust 3485±590 5768±751 22.94±6.82 23.64±4.96 76.93±4.42

FQE (L2) 2950±728 6000±612 24.31±6.56 35.11±6.33 79.67±4.93

Pen Pen Pen Relocate Relocate
cloned expert human cloned expert

A
b

s.
E

rr
o
r IS 1707±128 4547±222 3926±128 632±215 2731±147

VPM 2324±129 2325±136 1569±215 586±135 620±214

Best DICE 1454±219 2963±279 4193±244 1347±485 1095±221

Doubly Robust 1323±98 2013±564 2846±200 412±124 1193±350

FQE (L2) 1232±105 1057±281 2872±170 439±125 1351±393

Relocate Ant Ant Ant Ant
human expert medium medium-expert medium-replay

A
b

s.
E

rr
o
r IS 638±217 605±104 594±104 604±102 603±101

VPM 806±166 607±108 570±109 604±106 612±105

Best DICE 4526±474 558±108 495±90 471±100 583±110

Doubly Robust 606±116 584±114 345±66 326±66 421±72

FQE (L2) 593±113 583±122 345±64 319±67 410±79

Ant Hopper Hopper Hopper Walker2d
random expert medium random expert

A
b

s.
E

rr
o
r IS 606±103 106±29 405±48 412±45 405±62

VPM 570±99 442±43 433±44 438±44 367±68

Best DICE 530±92 259±54 215±41 122±16 437±60

Doubly Robust 404±106 426±99 307±85 289±50 519±179

FQE (L2) 398±111 282±76 283±73 261±42 453±142

Walker2d Walker2d Walker2d Walker2d Median
medium medium-expert medium-replay random

A
b

s.
E

rr
o
r IS 428±60 436±62 427±60 430±61 603.82

VPM 426±60 425±61 424±64 440±58 585.53
Best DICE 273±31 322±60 374±51 419±57 530.43
Doubly Robust 368±74 217±46 296±54 347±74 411.99
FQE (L2) 350±79 233±42 313±73 354±73 398.37
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Halfcheetah Halfcheetah Halfcheetah Halfcheetah Door
expert medium-expert medium-replay random cloned

R
a
n

k
C

o
rr

.

Best DICE −0.44±0.30 −0.08±0.35 −0.15±0.41 −0.70±0.22 0.18±0.31

VPM 0.18±0.35 −0.47±0.29 −0.07±0.36 0.27±0.36 −0.29±0.36

FQE (L2) 0.78±0.15 0.62±0.27 0.26±0.37 −0.11±0.41 0.55±0.27

IS 0.01±0.35 −0.06±0.37 0.59±0.26 −0.24±0.36 0.66±0.22

Doubly Robust 0.77±0.17 0.62±0.27 0.32±0.37 −0.02±0.38 0.60±0.28

Door Hammer Hammer Maze2d Maze2d
expert cloned expert large medium

R
a
n

k
C

o
rr

.

Best DICE −0.06±0.32 0.35±0.38 −0.42±0.31 0.56±0.21 −0.64±0.23

VPM 0.65±0.23 −0.77±0.22 0.39±0.31 −0.26±0.33 −0.05±0.39

FQE (L2) 0.89±0.09 −0.15±0.33 0.29±0.34 0.30±0.36 0.16±0.38

IS 0.76±0.17 0.58±0.27 0.64±0.24 0.63±0.19 0.44±0.25

Doubly Robust 0.76±0.13 −0.70±0.20 0.49±0.31 0.31±0.36 0.41±0.35

Pen Relocate Ant Ant Ant
expert expert expert medium medium-expert

R
a
n

k
C

o
rr

.

Best DICE −0.53±0.30 −0.27±0.34 −0.13±0.37 −0.36±0.28 −0.33±0.40

VPM 0.08±0.33 0.39±0.31 −0.42±0.38 −0.20±0.31 −0.28±0.28

FQE (L2) −0.01±0.33 −0.57±0.28 −0.13±0.32 0.65±0.25 0.37±0.35

IS −0.45±0.31 0.52±0.23 0.14±0.41 −0.17±0.32 −0.21±0.35

Doubly Robust 0.52±0.28 −0.40±0.24 −0.28±0.32 0.66±0.26 0.35±0.35

Ant Ant Hopper Hopper Hopper
medium-replay random expert medium random

R
a
n

k
C

o
rr

.

Best DICE −0.24±0.39 −0.21±0.35 −0.08±0.32 0.19±0.33 −0.13±0.39

VPM −0.26±0.29 0.24±0.31 0.21±0.32 0.13±0.37 −0.46±0.20

FQE (L2) 0.57±0.28 0.04±0.33 −0.33±0.30 −0.29±0.33 −0.11±0.36

IS 0.07±0.39 0.26±0.34 0.37±0.27 −0.55±0.26 0.23±0.34

Doubly Robust 0.45±0.32 0.01±0.33 −0.41±0.27 −0.31±0.34 −0.19±0.36

Walker2d Walker2d Walker2d Walker2d Walker2d
expert medium medium-expert medium-replay random

R
a
n

k
C

o
rr

.

Best DICE −0.37±0.27 0.12±0.38 −0.34±0.34 0.55±0.23 −0.19±0.36

VPM 0.17±0.32 0.44±0.21 0.49±0.37 −0.52±0.25 −0.42±0.34

FQE (L2) 0.35±0.33 −0.09±0.36 0.25±0.32 −0.19±0.36 0.21±0.31

IS 0.22±0.37 −0.25±0.35 0.24±0.33 0.65±0.24 −0.05±0.38

Doubly Robust 0.26±0.34 0.02±0.37 0.19±0.33 −0.37±0.39 0.16±0.29

Median

R
a
n

k
C

o
rr

.

Best DICE −0.19
VPM −0.05
FQE (L2) 0.21
IS 0.23
Doubly Robust 0.26
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Halfcheetah Halfcheetah Halfcheetah Halfcheetah Halfcheetah
expert medium medium-expert medium-replay random

R
eg

re
t@

1 Best DICE 0.32±0.40 0.82±0.29 0.38±0.37 0.30±0.07 0.81±0.30

VPM 0.14±0.09 0.33±0.19 0.80±0.34 0.25±0.09 0.12±0.07

Doubly Robust 0.11±0.08 0.37±0.15 0.14±0.07 0.33±0.18 0.31±0.10

FQE (L2) 0.12±0.07 0.38±0.13 0.14±0.07 0.36±0.16 0.37±0.08

IS 0.15±0.08 0.05±0.05 0.73±0.42 0.13±0.10 0.31±0.11

Antmaze Antmaze Antmaze Antmaze Antmaze
large-diverse large-play medium-diverse medium-play umaze

R
eg

re
t@

1 Best DICE 0.54±0.34 0.96±0.13 0.04±0.11 0.09±0.10 0.69±0.39

VPM 0.88±0.27 0.45±0.30 0.14±0.10 0.03±0.08 0.62±0.32

Doubly Robust 0.83±0.30 0.93±0.21 0.05±0.07 0.17±0.31 0.42±0.36

FQE (L2) 0.93±0.25 1.00±0.03 0.16±0.10 0.05±0.19 0.41±0.35

IS 0.39±0.26 0.71±0.20 0.14±0.09 0.18±0.06 0.86±0.06

Antmaze Door Door Door Hammer
umaze-diverse cloned expert human cloned

R
eg

re
t@

1 Best DICE 0.42±0.28 0.65±0.45 0.37±0.27 0.10±0.27 0.67±0.48

VPM 0.63±0.32 0.81±0.33 0.03±0.03 0.69±0.24 0.72±0.39

Doubly Robust 0.79±0.14 0.11±0.08 0.05±0.07 0.05±0.09 0.78±0.38

FQE (L2) 0.64±0.37 0.11±0.06 0.03±0.03 0.05±0.08 0.36±0.39

IS 0.22±0.36 0.02±0.07 0.01±0.04 0.45±0.40 0.03±0.15

Hammer Hammer Maze2d Maze2d Maze2d
expert human large medium umaze

R
eg

re
t@

1 Best DICE 0.24±0.34 0.04±0.08 0.15±0.08 0.44±0.05 0.03±0.07

VPM 0.04±0.07 0.18±0.29 0.66±0.10 0.24±0.24 0.06±0.12

Doubly Robust 0.09±0.09 0.46±0.23 0.21±0.16 0.27±0.14 0.03±0.07

FQE (L2) 0.05±0.04 0.46±0.23 0.20±0.14 0.31±0.14 0.03±0.07

IS 0.01±0.04 0.19±0.30 0.16±0.23 0.15±0.15 0.02±0.12

Pen Pen Pen Relocate Relocate
cloned expert human cloned expert

R
eg

re
t@

1 Best DICE 0.12±0.08 0.33±0.20 0.04±0.09 0.96±0.18 0.97±0.07

VPM 0.36±0.18 0.25±0.13 0.28±0.12 0.11±0.29 0.76±0.23

Doubly Robust 0.13±0.06 0.05±0.07 0.09±0.08 0.18±0.27 0.98±0.08

FQE (L2) 0.12±0.07 0.11±0.14 0.07±0.05 0.29±0.42 1.00±0.06

IS 0.14±0.09 0.31±0.10 0.17±0.15 0.63±0.41 0.18±0.14

Relocate Ant Ant Ant Ant
human expert medium medium-expert medium-replay

R
eg

re
t@

1 Best DICE 0.97±0.11 0.62±0.15 0.43±0.10 0.60±0.16 0.64±0.13

VPM 0.77±0.18 0.88±0.22 0.40±0.21 0.32±0.24 0.72±0.43

Doubly Robust 0.17±0.15 0.43±0.22 0.12±0.18 0.37±0.13 0.05±0.09

FQE (L2) 0.17±0.14 0.43±0.22 0.12±0.18 0.36±0.14 0.05±0.09

IS 0.63±0.41 0.47±0.32 0.61±0.18 0.46±0.18 0.16±0.23

Ant Hopper Hopper Hopper Walker2d
random expert medium random expert

R
eg

re
t@

1 Best DICE 0.50±0.29 0.20±0.08 0.18±0.19 0.30±0.15 0.35±0.36

VPM 0.15±0.24 0.13±0.10 0.10±0.14 0.26±0.10 0.09±0.19

Doubly Robust 0.28±0.15 0.34±0.35 0.32±0.32 0.41±0.17 0.06±0.07

FQE (L2) 0.28±0.15 0.41±0.20 0.32±0.32 0.36±0.22 0.06±0.07

IS 0.56±0.22 0.06±0.03 0.38±0.28 0.05±0.05 0.43±0.26

Walker2d Walker2d Walker2d Walker2d Median
medium medium-expert medium-replay random

R
eg

re
t@

1 Best DICE 0.27±0.43 0.78±0.27 0.18±0.12 0.39±0.33 0.38
VPM 0.08±0.06 0.24±0.42 0.46±0.31 0.88±0.20 0.28
Doubly Robust 0.25±0.09 0.30±0.12 0.68±0.23 0.15±0.20 0.25
FQE (L2) 0.31±0.10 0.22±0.14 0.24±0.20 0.15±0.21 0.24
IS 0.70±0.39 0.13±0.07 0.02±0.05 0.74±0.33 0.18

Table E.4: Regret for D4RL
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Scatter Plots

Finally, we present scatter plots plotting the true returns of each policy against the estimated
returns. Each point on the plot represents one evaluated policy.
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Figure E.8: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE RL Unplugged.



APPENDIX E. BENCHMARKING OFF-POLICY EVALUATION 139

0

0.5

1

1.5

2

Es
tim

at
e

IS DR FQE-L2 VPM DICE
ant

expert

0

0.5

1

1.5

2

ant
m

edium

0

0.5

1

1.5

2

ant
m

edium
expert

0

0.5

1

1.5

2

ant
m

edium
replay

0

0.5

1

1.5

2

ant
random

0

0.5

1

1.5

2

antm
aze

large
diverse

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
Return (d=0.995)

antm
aze

large
play

Figure E.9: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 1).
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Figure E.10: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 2).
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Figure E.11: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 3).
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Figure E.12: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 4).
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Figure E.13: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 5).
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Figure E.14: Scatter plots of estimate vs ground truth return for each baseline on each task
in DOPE D4RL (part 6).
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