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Contracts (or interface) theories have been proposed to formally support distributed and decentralized system
design while ensuring safe system integration. Over the last decades, a number of formalisms were proposed,
sometimes very different in their form and algebra. This motivated the quest for a unification by some authors,
e.g., specifications through contracts by Bauer et al. and the contract metatheory by Benveniste et al. to cite a
few. These generic models establish precise links between the different contract frameworks. In this paper
we propose hypercontracts, a generic model with a richer structure for its underlying model of components,
subsuming simulation preorders. While this new model remains generic, it provides a much more elegant and
richer algebra for its key notions of refinement, parallel composition, and quotient, and it allows considering
new operations. On top of these foundations, we propose conic hypercontracts, which are still generic but come
with a finite description. We show how to specialize conic hypercontracts to Assume-Guarantee contracts as
well as to Interface Automata, two known contract frameworks very different in style. We illustrate conic
hypercontracts on specifications involving security and the robustness of machine-learning components.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Embed-
ded and cyber-physical systems; •Theory of computation→ Formalisms; Formalisms; •Computing
methodologies → Modeling methodologies.

Additional Key Words and Phrases: contracts, hypercontracts, contract-based design, component-based design,
assume-guarantee, hyperproperties, downward-closed

1 INTRODUCTION
The need for compositional algebraic frameworks to design and analyze cyber-physical systems
is widely recognized. The aim is to support distributed and decentralized system design based
on a proper definition of interfaces supporting the specification of subsystems having a partially
specified context of operation, and subsequently guaranteeing safe system integration. Over the
last few decades, we have seen the introduction of several formalisms to do this: interface automata
[6, 9–11, 20], process spaces [23], modal interfaces [3, 17–19, 26], assume-guarantee contracts
[4], rely-guarantee reasoning [8, 13, 15, 16], and variants of these. The system interfaces state (𝑖)
what the component guarantees and (𝑖𝑖) what it assumes from its environment in order for those
guarantees to hold. That is, all these frameworks implement a form of assume-guarantee reasoning.
These algebraic frameworks have a notion of a component, of an environment, and of a spec-

ification, also called contract to stress the give-and-take dynamics between the component and
its environment. They all have notions of satisfaction of a specification by a component, and of
contract composition. The fundamental object they manipulate is the specification. Since many
algebraic frameworks have been proposed, there have been efforts to systematize this knowledge
by building a high-level theory of which these algebras are instantiations. Thus, Bauer et al. [2]
describe how to build a contract theory if one has a specification theory available. Benveniste et
al. [5] provide a meta-theory that builds contracts starting from an algebra of components. They
provide several operations on contracts and show how this meta-theory can describe, e.g., inter-
face automata, assume-guarantee contracts, modal interfaces, and rely-guarantee reasoning. This
meta-theory is, however, low-level, specifying contracts as unstructured sets of environments and
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implementations. As a consequence, important concepts such as parallel composition and quotient
of contracts are expressed in too abstract terms, and parallel composition was not associative (only
“sub-associative”) unless more assumptions were formulated—see [5], chapter 4.

In this work, we provide an improved theory of contracts, called hypercontracts, that addresses
the above deficiencies, by giving more structure while defining environments and implementations.
This theory is built in three stages. We begin with a theory of components. Then we state what
are the sets of components that our theory can express; we call such objects compsets, which
are equivalent to hyperproperties in behavioral formalisms [22]. From these compsets, we build
hypercontracts. We provide closed-form expressions for hypercontract manipulations. Then we
show how the hypercontract theory applies to two specific cases: downward-closed hypercontracts
and interface hypercontracts (equivalent to interface automata).

Our contributions are the following: (𝑖) a newmodel of hypercontracts possessing a richer algebra
than the metatheory of [5], (𝑖𝑖) a calculus of conic hypercontracts offering finite representations
of downward-closed hypercontracts, (𝑖𝑖𝑖) a reformulation of de Alfaro-Henzinger interface au-
tomata [9] by specializing the components of hypercontracts to be receptive languages, and (𝑖𝑣)
illustrations of hypercontracts addressing secure information flow and the robustness of data-driven
components used in safety-critical applications.

2 PRELIMINARIES
Preorders.Many concepts in this paper will be inherited from preorders. We recall that a preorder
(𝑃, ≤) consists of a set 𝑃 and a relation ≤ which is transitive (i.e., 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 implies that 𝑎 ≤ 𝑐
for all 𝑎, 𝑏, 𝑐 ∈ 𝑃 ) and reflexive (𝑎 ≤ 𝑎 for all 𝑎 ∈ 𝑃 ). A partial order is a preorder whose relation is
also antisymmetric (i.e., from 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 we conclude that 𝑎 = 𝑏).
Our preorders will come equipped with a partial binary operation called composition, usually

denoted ×. Composition is often understood as a means of connecting elements together and is
assumed to be monotonic in the preorder, i.e., we assume composing with bigger elements yields
bigger results: ∀𝑎, 𝑏, 𝑐 ∈ 𝑃 . 𝑎 ≤ 𝑏 ⇒ 𝑎 × 𝑐 ≤ 𝑏 × 𝑐.We will also be interested in taking elements
apart. For a notion of composition, we can always ask the question, for 𝑎, 𝑏 ∈ 𝑃 , what is the largest
element 𝑏 ∈ 𝑃 such that 𝑎 × 𝑏 ≤ 𝑐? Such an element is called quotient or residual, usually denoted
𝑐/𝑎. Formally, the definition of the quotient 𝑐/𝑎 is

∀𝑏 ∈ 𝑃 . 𝑎 × 𝑏 ≤ 𝑐 if and only if 𝑏 ≤ 𝑐/𝑎, (1)

which means that the quotient is the right adjoint of composition (in the sense of category theory).
A synonym of this notion is to say that composing by a fixed element 𝑎 (i.e., 𝑏 ↦→ 𝑎 × 𝑏) and taking
quotient by the same element (i.e., 𝑐 ↦→ 𝑐/𝑎) form a Galois connection. A description of the use of
the quotient in many fields of engineering and computer science is given in [14]. From this abstract
definition, we can obtain an important property of the quotient:

Proposition 2.1. The quotient is monotonic in the first argument and antitone (i.e., order-reversing)
in the second.

A partial order for which every two elements have a well-defined LUB (aka join), denoted ∨, and
GLB (aka meet), denoted ∧, is a lattice. A lattice in which the meet has a right adjoint is called
Heyting algebra. This right adjoint usually goes by the name exponential, denoted →. In other
words, the exponential is the notion of quotient if we take composition to be given by the meet,
that is, for a Heyting algebra 𝐻 with elements 𝑎, 𝑐 , the exponential is defined as

∀𝑏 ∈ 𝐻. 𝑎 ∧ 𝑏 ≤ 𝑐 if and only if 𝑏 ≤ 𝑎 → 𝑐, (2)

which is the familiar notion of implication in Boolean algebras.
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Hyperproperties. The traditional definition of a property in the formal methods community is “a
set of traces.” This notion is based on the behavioral approach to system modelling: we assume we
start with a set of behaviors B, and properties are defined as subsets of B. In this approach, design
elements or components are also defined as subsets of B. The difference between components
and properties is semantics: a component collects the behaviors that can be observed from that
component, while a property collects the behaviors meeting some criterion of interest. We say a
component𝑀 satisfies a property 𝑃 , written𝑀 |= 𝑃 , when𝑀 ⊆ 𝑃 , that is, when the behaviors of
𝑀 meet the criterion that determines 𝑃 .

Properties of this sort are also called trace properties. Many design qualities are of this type, such
as safety. But there are many system attributes that can only be determined by analyzing multiple
traces: mean response times, security attributes, reliability, etc. This suggests the need for a richer
formalism for expressing design attributes.

Hyperproperties are instead subsets of 2B . A component𝑀 satisfies a hyperproperty 𝐻 if𝑀 ∈ 𝐻 .
Since hyperproperties allow us to define exactly what components satisfy them, we can define
them using any number of behaviors of a component (as opposed to trace properties which can
only predicate about single traces). For example, one can specify secure-information-flow attributes
as follows: through a non-interference hyperproperty, we can state that a system user having
unprivileged credentials should see the same output to her execution anytime she runs the system
with the same inputs; in other words, the data of other users should not leak to what she sees. This
statement cannot be expressed as a trace property [7].

3 THE THEORY OF HYPERCONTRACTS
Our objective is to develop a theory of assume-guarantee reasoning for any kind of attribute of
cyber-physical systems. We do this in three steps:

(1) we consider components coming with notions of preorder (e.g., simulation) and parallel
composition;

(2) we discuss the notion of a compset and give it some structure—unlike the unstructured sets
of components considered in the metatheory of [5];

(3) we build hypercontracts as pairs of compsets with additional structure—capturing environ-
ments and implementations.

In this section we describe how this construction is performed, and in the next we show how some
existing and new assume-guarantee theories are instances of our considerations of this section.
We will use the theory of assume-guarantee contracts as a running example for how these notions
map to existing frameworks.

3.1 Components
In the theory of hypercontracts, the most primitive concept is the component. Let (M, ≤) be a
preorder. The elements 𝑀 ∈ M are called components. We say that 𝑀 is a subcomponent of 𝑀 ′

when𝑀 ≤ 𝑀 ′. If we represented components as automata, the statement “is a subcomponent of”
is equivalent to “is simulated by.”
There exists a partial binary operation, × : M,M → M, monotonic in both arguments, called

composition. If𝑀 ×𝑀 ′ is not defined, we say that𝑀 and𝑀 ′ are not composable (and composable
otherwise). A component 𝐸 is an environment for component𝑀 if 𝐸 and𝑀 are composable. We
assume that composition is associative and commutative.

Similarly, we assume the existence of a second, partial binary operation which is the right adjoint
of composition. This is the quotient (1) for the component theory. Given two components𝑀 and
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𝑀 ′, the quotient, denoted𝑀/𝑀 ′, is the largest component𝑀 ′′ satisfying𝑀 ′ ×𝑀 ′′ ≤ 𝑀 . In other
words, it gives us the largest component whose composition with𝑀 ′ is a subcomponent of𝑀 .
Running example. In the behavioral approach to system modeling, we start with a set B whose
elements we call behaviors. Components are defined as subsets of B. They contain the behaviors
they can display. A component𝑀 is a subcomponent of𝑀 ′ if𝑀 ′ contains all the behaviors of𝑀 , i.e.,
if𝑀 ⊆ 𝑀 ′. Component composition is given by set intersection:𝑀 ×𝑀 ′ def

= 𝑀 ∩𝑀 ′. If we represent
the components as𝑀 = {𝑏 ∈ B | 𝜙 (𝑏)} and𝑀 ′ = {𝑏 ∈ B | 𝜙 ′(𝑏)} for some constraints 𝜙 and 𝜙 ′,
then composition is𝑀 ×𝑀 ′ = {𝑏 ∈ B | 𝜙 (𝑏) ∧ 𝜙 ′(𝑏)}, i.e., the behaviors that simultaneously meet
the constraints of𝑀 and𝑀 ′. This notion of composition is independent of the connection topology:
the topology is inferred from the behaviors of the components. The quotient is given by implication:
𝑀/𝑀 ′ = 𝑀 ′ → 𝑀 .

3.2 Compsets
CmpSet is a lattice whose objects are sets of components, called compsets. In general, not every set
of components is necessarily an object of CmpSet.

CmpSet comes with a notion of satisfaction. Suppose𝑀 ∈ M and 𝐻 is a compset. We say that
𝑀 satisfies 𝐻 or conforms to 𝐻 , written𝑀 |= 𝐻 , when𝑀 ∈ 𝐻 . For compsets 𝐻,𝐻 ′, we say that 𝐻
refines 𝐻 ′, written 𝐻 ≤ 𝐻 ′, when𝑀 |= 𝐻 ⇒ 𝑀 |= 𝐻 ′, i.e., when 𝐻 ⊆ 𝐻 ′.

Since we assume CmpSet is a lattice, the greatest lower bounds and least upper bounds of finite
sets are defined. Observe, however, that although the partial order of CmpSet is given by subsetting,
the meet and join of CmpSet are not necessarily intersection and union, respectively, as the union
or intersection of any two elements are not necessarily elements of CmpSet.

3.2.1 Composition and quotient. We extend the operation of composition to CmpSet:

𝐻 × 𝐻 ′ = {𝑀 ×𝑀 ′ | 𝑀 |= 𝐻 ,𝑀 ′ |= 𝐻 ′, and𝑀 and𝑀 ′ are composable} . (3)

Composition is total and monotonic, i.e., if 𝐻 ′ ≤ 𝐻 ′′, then 𝐻 ×𝐻 ′ ≤ 𝐻 ×𝐻 ′′. It is also commutative
and associative, by the commutativity and associativity, respectively, of component composition.
We assume the existence of a second (but partial) binary operation on the objects of CmpSet.

This operation is the right adjoint of composition: for compsets 𝐻 and 𝐻 ′, the residual 𝐻/𝐻 ′ (also
called quotient), is defined by the universal property (1). From the definition of composition, we
must have

𝐻/𝐻 ′ = {𝑀 ∈ M | {𝑀} × 𝐻 ′ ⊆ 𝐻 } . (4)

Running example. AssumeM contains behavioral components, as in the previous example. We
can instantiate trace properties as a lattice CmpSet. Each compset is of the form 𝐻 = 2𝑀 for some
component𝑀 ⊆ B. Observe that the satisfaction of a compset by a component𝑀 ′ ∈ 2𝑀 happens
if and only if 𝑀 ′ ≤ 𝑀 . The meet of two compsets 2𝑀 ∧ 2𝑀′ is 2𝑀∩𝑀′

= 2𝑀 ∩ 2𝑀′ , but the join
of two elements 2𝑀 ∨ 2𝑀′ is 2𝑀∪𝑀′

≠ 2𝑀 ∪ 2𝑀′ . The composition of two compsets is given by
2𝑀 × 2𝑀′

= 2𝑀∩𝑀′ , and the quotient is 2𝑀/2𝑀′
= 2𝑀/𝑀′ , where the quotient𝑀/𝑀 ′ was defined in

the introduction of the running example in page 4.

3.2.2 Convexity, co-convexity, and flatness. A compset 𝐻 is convex if𝑀,𝑀 ′ |= 𝐻 ⇒ 𝑀 ×𝑀 ′ |= 𝐻 .
In other words, 𝐻 is convex if 𝐻 × 𝐻 ≤ 𝐻 . A compset 𝐻 is co-convex if 𝐻 ≤ 𝐻 × 𝐻 .
We can say that convex compsets are those such that the composition of two components

that satisfy them also satisfies the compset. Conversely, co-convex compsets are those whose
components can be expressed as the product of two components that satisfy them. If a compset
is both convex and co-convex, it is called flat. Flat compsets 𝐻 are precisely those that satisfy
𝐻 = 𝐻 × 𝐻 . If all compsets are flat, composition in CmpSet is idempotent.
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Proposition 3.1. Convexity, co-convexity, and flatness are preserved under composition.

Proposition 3.2. If component composition is idempotent, all elements of CmpSet are co-convex.

3.2.3 Downward-closed compsets. The set of components was introduced with a partial order.
We say that a compset 𝐻 is downward-closed when 𝑀 ′ ≤ 𝑀 and 𝑀 |= 𝐻 imply 𝑀 ′ |= 𝐻 , i.e., if
a component satisfies a downward-closed compset, so does its subcomponent. Section 4.2 treats
downward-closed compsets in detail.

3.3 Hypercontracts
Hypercontracts as pairs (environments, closed-system specification). A hypercontract is a specification
for a design element that tells what is required from the design element when it operates in an
environment that meets the expectations of the hypercontract. A hypercontract is thus a pair of
compsets:

C = (E,S) = (environments, closed-system specification).
E states the environments in which the object being specified must adhere to the specification. S
states the requirements that the design element must fulfill when operating in an environment
which meets the expectations of the hypercontract. We say that a component 𝐸 is an environment
of hypercontract C, written 𝐸 |=𝐸 C, if 𝐸 |= E. We say that a component𝑀 is an implementation of
C, written𝑀 |=𝐼 C, when𝑀 × 𝐸 |= S for all 𝐸 |= E .We thus define the set of implementations I
of C as the compset containing all implementations, i.e., as the quotient:

implementations = I = S/E .
A hypercontract with a nonempty set of environments is called compatible; if it has a nonempty
set of implementations, it is called consistent. For S and I as above, the compset E ′ defined as
E ′ = S/I contains all environments in which the implementations of C satisfy the specifications
of the hypercontract. Thus, we say that a hypercontract is saturated if its environments compset is
as large as possible in the sense that adding more environments to the hypercontract would reduce
its implementations. This means that C satisfies the following fixpoint equation:

E = S/I = S/(S/E).
Hypercontracts as pairs (environments, implementations). Another way to interpret a hypercontract
is by telling explicitly which environments and implementations it supports. Thus, we would write
the hypercontract as C = (E,I). We will see that assume-guarantee theories can differ as to what
is the most convenient representation for their hypercontracts.
The lattice Contr of hypercontracts. Just as with CmpSet, we define Contr as a lattice formed
by putting together two compsets in one of the above two ways. Not every pair of compsets is
necessarily a valid hypercontract. We will define soon the operations that give rise to this lattice.

3.3.1 Preorder. We define a preorder on hypercontracts as follows: we say that C refines C′, written
C ≤ C′, when every environment of C′ is an environment of C, and every implementation of C is
an implementation of C′, i.e., 𝐸 |=𝐸 C′ ⇒ 𝐸 |=𝐸 C and𝑀 |=𝐼 C ⇒ 𝑀 |=𝐼 C′. We can express this as

E ′ ≤ E and S/E = I ≤ I ′ = S′/E ′.

Any two C, C′ with C ≤ C′ and C′ ≤ C are said to be equivalent since they have the same
environments and the same implementations. We now obtain some operations using preorders
which are defined as the LUB or GLB of Contr. We point out that the expressions we obtain are
unique up to the preorder.
Running example.Assume-guarantee contracts are often given as a pair of trace-properties (𝐴,𝐺),
where 𝐴 states the assumptions made on the environment, and 𝐺 states what the component
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in question should guarantee when operating in a valid environment (i.e., one that meets the
assumptions). We observe that any closed system obtained using environments that meet the
assumptions is restricted to 𝐺 ∩ 𝐴; thus, we set the closed-system spec to S = 2𝐴∩𝐺 . Define
the hypercontract C = (2𝐴, 2𝐴∩𝐺 ). The environments are E = 2𝐴, namely, all 𝐸 ⊆ 𝐴, and the
implementations are I = 2(𝐴∩𝐺)/𝐴 = 2𝐺/𝐴, that is, all 𝑀 ⊆ 𝐺/𝐴. Observe that S/I = E, so C is
saturated. Now suppose we have another hypercontract C′ = (2𝐴′

, 2𝐴′∩𝐺′) with environments E ′

and implementations I ′. We observe that E ≤ E ′ if and only if 𝐴 ⊆ 𝐴′; moreover, I ′ ≤ I if and
only if𝐺 ′/𝐴′ ≤ 𝐺/𝐴. This means that C′ ≤ C if and only if the assume-guarantee contracts (𝐴,𝐺)
and (𝐴′,𝐺 ′) satisfy (𝐴′,𝐺 ′) ≤ (𝐴,𝐺).

3.3.2 GLB and LUB. From the preorder just defined, the GLB of C and C′ satisfies:𝑀 |=𝐼 C ∧ C′

if and only if 𝑀 |=𝐼 C and𝑀 |=𝐼 C′; and 𝐸 |=𝐸 C ∧ C′ if and only if 𝐸 |=𝐸 C or 𝐸 |=𝐸 C′. If we
write C = (E,I), C′ = (E ′,I ′), this means that

C ∧ C′ =
∨ {C′′ = (E ′′,I ′′) ∈ Contr | I ′′ ≤ I ∧ I ′ and E ∨ E ′ ≤ E ′′} . (5)

Conversely, the LUB satisfies𝑀 |=𝐼 C ∨ C′ if and only if𝑀 |=𝐼 C or𝑀 |=𝐼 C′, and 𝐸 |=𝐸 C ∨ C′ if
and only if 𝐸 |=𝐸 C and 𝐸 |=𝐸 C′, which means that we can write

C ∨ C′ =
∧ {C′′ = (E ′′,I ′′) ∈ Contr | I ∨ I ′ ≤ I ′′ and E ′′ ≤ E ∧ E ′} . (6)

The lattice Contr has hypercontracts for objects, and meet and join as just described.

3.3.3 Parallel composition. The composition of hypercontracts C = (E,I) and C′ = (E ′,I ′),
denoted C ∥ C′, is the smallest hypercontract C′′ = (E ′′,I ′′) (up to equivalence) meeting the
following requirements:

• any composition of two implementations of C and C′ is an implementation of C′′; and
• any composition of an environment of C′′ with an implementation of C yields an environ-
ment for C′ and vice-versa.

These requirements were stated for the first time by Abadi and Lamport [1]. We can write

C ∥ C′ =
∧ C′′ = (E ′′,I ′′)

������

I × I ′ ≤ I ′′,
E ′′ × I ≤ E ′, and
E ′′ × I ′ ≤ E




=
∧ {

C′′ = (E ′′,I ′′)
���� [

I × I ′ ≤ I ′′, and
E ′′ ≤ E′

I ∧ E
I′

]}
. (7)

Running example. In our previous example, we saw that an assume-guarantee contract (𝐴,𝐺)
can be mapped to an environment/implementation hypercontract C = (2𝐴, 2𝐺/𝐴). Suppose we
have a second hypercontract C′ = (2𝐴′

, 2𝐺′/𝐴′). Applying (7), we obtain a composition formula
for these hypercontracts: C ∥ C′ =

(
2𝐴′/(𝐺/𝐴) ∧ 2𝐴/(𝐺′/𝐴′) , 2𝐺/𝐴 ∧ 2𝐺′/𝐴′ ) , whose environments

and implementations are exactly those obtained from the composition of the assume-guarantee
contracts (𝐴,𝐺) and (𝐴′,𝐺 ′) [4].

3.3.4 Mirror or reciprocal. We assume we have an additional operation on hypercontracts, called
both mirror and reciprocal, which flips the environments and implementations of a hypercontract:
C−1 = (E,I)−1 = (I, E) and C−1 = (E,S)−1 = (S/E,S). This notion gives us, so to say, the
hypercontract obeyed by the environment. The introduction of this operation assumes that for
every hypercontract C, its reciprocal is also an element of Contr. Moreover, we assume that, when
the infimum of a collection of hypercontracts exists, the following identity holds:

(∧𝑖 C𝑖 )−1 =
∨

𝑖 C𝑖−1. (8)
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3.3.5 Hypercontract quotient. The quotient or residual for hypercontracts C = (E,I) and C′′ =
(E ′′,I ′′), written C′′/C, has the universal property (1), namely ∀C′. C ∥ C′ ≤ C′′ if and only if
C′ ≤ C′′/C. We can obtain a closed-form expression using the reciprocal:

Proposition 3.3. The hypercontract quotient obeys the relation C′′/C =
(
(C′′)−1 ∥ C

)−1.
3.3.6 Merging. The composition of two hypercontracts yields the specification of a system com-
prised of two design objects, each adhering to one of the hypercontracts being composed. Another
important operation on hypercontracts is viewpoint merging, or merging for short. It can be the
case that the same design element is assigned multiple specifications corresponding to multiple
viewpoints, or design concerns [4, 24] (e.g., functionality and a performance criterion). Suppose
C1 = (E1,S1) and C2 = (E2,S2) are the hypercontracts we wish to merge. Two slightly different
operations can be considered as candidates for formalizing viewpoint merging:

• A weak merge which is the GLB (5); and
• A strong merge which states that environments of the merger should be environments of

both C1 and C2 and that the closed systems of the merger are closed systems of both C1 and
C2. If we let C1 • C2 = (E,I), we have
E = ∨ {E ′ ∈ CmpSet | E ′ ≤ E1 ∧ E2 and ∃ C′′ = (E ′′,I ′′) ∈ Contr. E ′ = E ′′} and
I = ∨ {I ′ ∈ CmpSet | I ′ ≤ (S1 ∧ S2)/E and (E,I) ∈ Contr}.

The difference is that, whereas the commitment to satisfy S2 survives when under the weak merge
when the environment fails to satisfy E1, no obligation survives under the strong merge. This
distinction was proposed in [27] under the name of weak/strong assumptions.
Running example. Given two assume-guarantee contracts (𝐴𝑖 ,𝐺𝑖 ) for 𝑖 = 1, 2, we consider the
merging of their hypercontracts. We have (2𝐴1 , 2𝐴1∩𝐺1 ) • (2𝐴2 , 2𝐴2∩𝐺2 ) = (2𝐴1∩𝐴2 , 2𝐴1∩𝐺1∩𝐴2∩𝐺2 ).
Observe that this last hypercontract has environments 2𝐴1∩𝐴2 and implementations 2(𝐺1∩𝐺2)/(𝐴1∩𝐴2) .
This is the definition of merging for assume-guarantee contracts [24].

We presented the theory of hypercontracts. Now we will consider specializations of this theory
to behavioral and interface formalisms.

4 BEHAVIORAL MODELING
Under behavioral modeling, design components are represented by the behaviors they can display.
Fix once and for all a set B whose elements we call behaviors. We setM = 2B . In this modeling
philosophy, to be a subcomponent of a component is equivalent to being its subset. The composition
of 𝑀 and 𝑀 ′ yields the component supporting the behaviors that both 𝑀 and 𝑀 ′ support. This
means that𝑀 ×𝑀 ′ = 𝑀 ∩𝑀 ′.
We will consider two ways of building the CmpSet lattice: first we will allow it to contain any

set of components, and then we will only allow it to contain downward-closed compsets.

4.1 General hypercontracts
The most expressive behavioral theory of hypercontracts is obtained when we place no restrictions
on the structure of compsets and hypercontracts. In this case, the elements of CmpSet are all
objects 𝐻 ∈ 22B , i.e., all hyperproperties. The meet and join of compsets are set intersection
and union, respectively, and their composition and quotient are given by (3) and (4), respectively.
Hypercontracts are of the form C = (E,I) with all extrema achieved in the binary operations, i.e.,
for a second hypercontract C′ = (E ′,I ′), (5), (6), and (7) are, respectively,

C ∧ C′ = (E ∪ E ′,I ∩ I ′), C ∨ C′ = (E ∩ E ′,I ∪ I ′), and C ∥ C′ =
(
E′

I ∩ E
I′ ,I × I ′

)
.
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From these follow the operations of quotient, and merging.

4.2 Conic (or downward-closed) hypercontracts
We assume that CmpSet contains exclusively downward-closed hyperproperties. Let 𝐻 ∈ CmpSet.
We say that𝑀 |= 𝐻 is a maximal component of 𝐻 when 𝐻 contains no set bigger than𝑀 , i.e., if

∀𝑀 ′ |= 𝐻. 𝑀 ≤ 𝑀 ′ ⇒ 𝑀 ′ = 𝑀.

We let 𝐻 be the set of maximal components of 𝐻 :

𝐻 = {𝑀 |= 𝐻 | ∀𝑀 ′ |= 𝐻. 𝑀 ≤ 𝑀 ′ ⇒ 𝑀 ′ = 𝑀} .

Due to the fact 𝐻 is downward-closed, the set of maximal components is a unique representation
of 𝐻 . We can express 𝐻 as

𝐻 =
⋃

𝑀 ∈𝐻 2𝑀 .

We say that 𝐻 is 𝑘-conic if the cardinality of 𝐻 is finite and equal to 𝑘 , and we write this

𝐻 = ⟨𝑀1, . . . , 𝑀𝑘⟩, where 𝐻 = {𝑀1, . . . , 𝑀𝑘 }.

4.2.1 Order. The notion of order on CmpSet can be expressed using this notation as follows:
suppose 𝐻 ′ = ⟨𝑀 ′⟩

𝑀′∈𝐻 ′ . Then

𝐻 ′ ≤ 𝐻 if and only if ∀𝑀 ′ ∈ 𝐻 ′ ∃𝑀 ∈ 𝐻. 𝑀 ′ ≤ 𝑀.

4.2.2 Composition. Composition in CmpSet becomes

𝐻 × 𝐻 ′ =
⋃

𝑀 ∈𝐻
𝑀′∈𝐻 ′

2𝑀∩𝑀′
= ⟨𝑀 ∩𝑀 ′⟩

𝑀 ∈𝐻
𝑀′∈𝐻 ′

. (9)

Therefore, if 𝐻 and 𝐻 ′ are, respectively, 𝑘- and 𝑘 ′-conic, 𝐻 × 𝐻 ′ is at most 𝑘𝑘 ′-conic.

4.2.3 Quotient. Suppose 𝐻𝑞 satisfies

𝐻 ′ × 𝐻𝑞 ≤ 𝐻.

Let𝑀𝑞 ∈ 𝐻𝑞 . We must have

𝑀𝑞 ×𝑀 ′ |= 𝐻 for every𝑀 ′ ∈ 𝐻 ′
,

which means that for each 𝑀 ′ ∈ 𝐻 ′
there must exist an 𝑀 ∈ 𝐻 such that 𝑀𝑞 × 𝑀 ′ ≤ 𝑀 ; let us

denote by𝑀 (𝑀 ′) a choice𝑀 ′ ↦→ 𝑀 satisfying this condition. Therefore, we have

𝑀𝑞 ≤ ∧
𝑀′∈𝐻 ′ 𝑀 (𝑀′)

𝑀′ , (10)

Clearly, the largest such 𝑀𝑞 is obtained by making (10) an equality. Thus, the cardinality of the
quotient is bounded from above by 𝑘𝑘′ since we have

𝐻𝑞 =

〈∧
𝑀′∈𝐻 ′ 𝑀 (𝑀′)

𝑀′

〉
𝑀 (𝑀′) ∈𝐻
∀𝑀′∈𝐻 ′

. (11)
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4.2.4 Contracts. Now we assume that the objects of CmpSet are pairs of downward-closed compsets.
If we have two hypercontracts C = (E,I) and C′ = (E ′,I ′), their composition is

C ∥ C′ =

(
E
I ′ ∧

E ′

I ,I × I ′
)
. (12)

We can also write an expression for the quotient of two hypercontracts:

C/C′ =

(
E × I ′,

I
I ′ ∧

E ′

E

)
. (13)

Now that we have covered the theory of hypercontracts and its specialization to behavioral
theories, we will consider two applications.

4.3 Application: Secure information flow
Secure information flow is a prototypical example of a design quality which trace properties are
unable to capture. It can be expressed with hyperproperties, and is in fact one reason behind their
introduction. A common information-flow attribute is non-interference, introduced by Goguen and
Meseguer [12]. It states that privileged data does not leak to an unprivileged path. Suppose 𝜎 is
one of the behaviors that our system can display, understood as the state of memory locations
through time. Some of those memory locations we call privileged, some unprivileged. Let 𝐿0 (𝜎) and
𝐿𝑓 (𝜎) be the projections of the behavior 𝜎 to the unprivileged memory locations of the system, at
time zero, and at the final time (when execution is done). We say that a component𝑀 meets the
non-interference hyperproperty when

∀𝜎, 𝜎 ′ ∈ 𝑀. 𝐿0 (𝜎) = 𝐿0 (𝜎 ′) ⇒ 𝐿𝑓 (𝜎) = 𝐿𝑓 (𝜎 ′),
i.e., if two traces begin with the unprivileged locations in the same state, the final state of the
unprivileged locations matches.

Non-interference is a downward-closed hyperproperty [22, 25], and a 2-safety hyperproperty—
hyperproperties called 𝑘-safety are those for the refutation of which one must provide at least 𝑘
traces. In our example, to refute the hyperproperty, it suffices to show two traces that share the
same unprivileged initial state, but which differ in the unprivileged final state.
As an example, consider the digital system shown in Figure 1; this system is similar to those

presented in [22, 25] to illustrate non-interference. Here we have a secret data input 𝑆 and an 𝑛-bit
public input 𝑃 . The system has an output 𝑂 . There is also an input 𝐻 which is equal to zero when
the system is being accessed by a user with low-privileges, i.e., a user who cannot use the secret
data, and equal to one otherwise. The high level hypercontract states that for all environments
with 𝐻 = 0, the implementations can only make the output 𝑂 depend on 𝑃 , the public data. We
thus write:

C =
(
⟨𝐻=0⟩ , ∃𝑓 ∈(2𝑛 → 2). 𝑂=𝑓 (𝑃)

)
=

(
⟨¬𝐻 ⟩ , ⟨𝑂=𝑓 (𝑃)⟩𝑓 ∈2𝑛→2

)
.

First we are saying that 𝑂 is a function of 𝑃 for some function 2𝑛 → 2. In the second equality, we
use the notation for 𝑘-conic compsets, saying that the implementations can evaluate any of the
possible 22𝑛 functions from 𝑛 bits to 1 bit. This means that the hyperproperty corresponding to the
implementations is 22𝑛 -conic.
Now suppose we have specifications for components that implement a function 𝑓 ∗ : 2𝑛 → 2.

One implements it when 𝑆 = 1, and the other when 𝑆 = 0. We will let 𝑠 be the proposition 𝑆 = 1.
Letting complementation have the highest precedence, followed by the meet, and followed by the
join, we have

C1 = (⟨B⟩ , ⟨𝑠 ∧ (𝑂1=𝑓
∗ (𝑃)) ∨ ¬𝑠⟩) and C2 = (⟨B⟩ , ⟨¬𝑠 ∧ (𝑂2=𝑓

∗ (𝑃)) ∨ 𝑠⟩) .
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Fig. 1. A digital system with a secret input 𝑆 and a public input 𝑃 . The overall system must meet the
requirement that the secure input does not affect the value of the output 𝑂 when the signal 𝐻 is deasserted
(this signal is asserted when a privileged user uses the system). Two components with hypercontracts C1 and
C2 are are available and possesses information-flow properties of their own. Their composite is C𝑐 . Through
the quotient C𝑞 , we discover the functionality that needs to be added in order for the design to meet the
top-level information-flow spec C𝑞 .

The environments and implementations are both 1-conic. We evaluate C𝑐 = C1 ∥ C2:

C𝑐 = (⟨B⟩ , ⟨𝑠 ∧ (𝑂1=𝑓
∗ (𝑃)) ∨ ¬𝑠 ∧ (𝑂2=𝑓

∗ (𝑃))⟩) = (E𝑐 , I𝑐 ).
Now we compute the quotient C/C𝑐 :

C/C𝑐 =
(
⟨𝐻 = 0⟩ ∧ I𝑐 ,

〈
𝑂=𝑓 (𝑃)

𝑠 ∧ (𝑂1=𝑓 ∗ (𝑃)) ∨ ¬𝑠 ∧ (𝑂2=𝑓 ∗ (𝑃))

〉
𝑓 ∈2𝑛→2

)
.

We can refine the quotient by allowing the environments to be everything, and picking from the
implementations the term with 𝑓 = 𝑓 ∗. Thus we obtain the hypercontract(

⟨B⟩ ,
〈

𝑂=𝑓 ∗ (𝑃)
𝑠 ∧ (𝑂1=𝑓 ∗ (𝑃)) ∨ ¬𝑠 ∧ (𝑂2=𝑓 ∗ (𝑃))

〉)
.

A further refinement of this is the 1-conic hypercontract

C𝑟 = (⟨B⟩ , ⟨𝑠 ∧ (𝑂=𝑂1) ∨ ¬𝑠 ∧ (𝑂=𝑂2)⟩) .
By the properties of the quotient, composing this hypercontract, which knows nothing about
𝑓 ∗, with C𝑐 will yield a hypercontract which meets the non-interference hypercontract C. Note
that this hypercontract is consistent, i.e., it has implementations (in general, refining may lead to
inconsistency).

4.4 Application: Robustness of Machine Learning systems
In recent years, systems developed for an increasing number of verticals comprise Machine Learning
(ML) components. This has spurred an interest in proving properties about these components,
particularly since some of these systems are used in safety-critical applications. Yet, even stating
what to prove comes with challenges, as ML methodologies are employed when we lack in advance
a known mathematical relation between an input and an output space, whereas the statement of a
formal property usually requires us to state the behavior that we wish the system to have.

It has been shown that existing ML components can be brittle, in the sense that small changes to
inputs can produce large changes in their outputs [31]. Thus, we are often interested in showing
that ML systems are robust: if the inputs to the ML component are sufficiently close, the outputs
should be sufficiently close [30]. Suppose X and Y are the input and output spaces where the
ML component operates. In a supervised setting, we start with a finite set of samples {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1,
where 𝑥𝑖 ∈ X and 𝑦𝑖 ∈ Y for all 𝑖 . Using this set, a learning algorithm generates a function
𝑓 : X → Y. If 𝑑X and 𝑑Y are distance metrics on the input and output spaces, for a given 𝑥 ∈ X,
we can ask that the function be robust against small variations around 𝑥 through the hyperproperty
∀𝑥 ′ ∈ X. 𝑑X (𝑥, 𝑥 ′) < 𝛿 ⇒ 𝑑Y (𝑓 (𝑥), 𝑓 (𝑥 ′)) < Y for some nonzero 𝛿 and 𝜖 . In the case of a
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classification task, where Y is finite, we can state that inputs which are close in some metric to the
samples corresponding to a known class are mapped to that class.

Consider a vehicle approaching an intersection with a stop sign. We wish the vehicle to respect
the hypercontract C = (all driving conditions, if there is a stop sign then stop vehicle within a
distance 𝐷 from the stop sign). The implementations say that the vehicle must do something when
an object is present in the physical world. An ideal perception hypercontract would be something
like C𝑝 = (all driving conditions, say there is a stop sign if and only if there is a stop sign in the
real world). Now we can let X be the space of all possible images one can encounter while driving.
Then we can say that S ⊆ X is the subset of images containing a stop sign. Currently we have
no means for characterizing S, but we construct, for example, an approximation Ŝ containing all
images which are close in some metric to images known to have stop signs. Suppose we partition
the input space in 𝑛 + 1 regions 𝑆 , X1, . . . ,X𝑛 , where X𝑖 is smaller than a 𝑑X-ball of radius 𝛿 . If we
train a classifier 𝑓 to recognize 𝐾 different categories, we require this classifier to map the values
belonging to a set in the partition to one specific class. Since the values of Ŝ must map to the stop
sign, the only choice is for the rest of the elements of the partition. This means that there are 𝐾𝑛

possible classifiers. Call F the set of all 𝐾𝑛 possible classifiers. If we call 𝑥 the image input provided
by the environment and 𝑦 its assigned class, the perception hypercontract can become

C𝑝 = (⟨all possible images⟩, ⟨𝑦 = 𝑓 (𝑥)⟩ 𝑓 ∈F).

This hypercontract has a 1-conic environment set and a 𝐾𝑛-conic implementation set. However,
the perception hypercontract, likely implemented by a neural network, is still too removed from
the description of the high-level hypercontract C. We can bridge the gap by writing the high-level
hypercontract as

C = (⟨𝑥 ∈ X⟩, 𝑥 ∈ Ŝ ⇒ stop vehicle within a distance 𝐷 from the stop sign).

Now both the system spec and the perception spec are given at the same level of abstraction.
Thus, using the quotient we can focus on what the perception specification does not capture,
namely, the control aspects of the design.

5 RECEPTIVE LANGUAGES AND INTERFACE HYPERCONTRACTS
In this section we connect the notion of a hypercontract with specifications expressed as inter-
face automata [9]. With interface theories, we bring in the notion of input-output profiles as an
extra typing for components—so far, this was not considered in our development. This effectively
partitionsM into sets containing components sharing the same profile.
Our theory of components is constructed from a new notion called receptive languages. These

objects can be understood as the trace denotations of receptive I/O automata [21]. We will consider
downward-closed, 1-conic compsets, see Section 4.2. And interface hypercontracts will be pairs
of these with a very specific structure. At the end of the section we show how the denotation of
interface automata is captured by interface hypercontracts. One novelty of our approach is that
the computation of the composition of hypercontracts, which matches that of interface automata
(as we will see), is inherited from our general theory by specializing the component and compset
operations.

5.1 The components are receptive languages
Fix once and for all an alphabet Σ. When we operate on words of Σ∗, we will use ◦ for word
concatenation, and we’ll let Pre(𝑤) be the set of prefixes of a word 𝑤 . These operations are
extended to languages: 𝐿 ◦ 𝐿′ = {𝑤 ◦𝑤 ′ | 𝑤 ∈ 𝐿 and𝑤 ′ ∈ 𝐿′}, and Pre(𝐿) =

⋃
𝑤∈𝐿 Pre(𝑤). An
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input-output signature of Σ (or simply an io signature when the alphabet is understood), denoted
(𝐼 ,𝑂), is a partition of Σ in sets 𝐼 and 𝑂 , i.e., 𝐼 and 𝑂 are disjoint sets whose union is Σ.

Definition 5.1. Let (𝐼 ,𝑂) be an io signature. A language 𝐿 of Σ is an 𝐼 -receptive language if
• 𝐿 is prefix-closed; and
• if𝑤 ∈ 𝐿 and𝑤 ′ ∈ 𝐼 ∗ then𝑤 ◦𝑤 ′ ∈ 𝐿.

The set of all 𝐼 -receptive languages is denoted L𝐼 .

Proposition 5.2. Let (𝐼 ,𝑂) be an io signature. Then L𝐼 is closed under intersection and union.

Under the subset order, L𝐼 is a lattice with intersection as the meet and union as the join. Further,
the smallest and largest elements of L𝐼 are, respectively, 0 = 𝐼 ∗ and 1 = Σ∗. It so happens that L𝐼 is
a Heyting algebra. To prove this, it remains to be shown that it has exponentiation (i.e., that the
meet has a right adjoint).

Proposition 5.3. Let 𝐿, 𝐿′ ∈ L𝐼 . The object 𝐿′ → 𝐿 = {𝑤 ∈ Σ∗ | Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿} is an element
of L𝐼 and satisfies the property (2) of the exponential.

We further explore the structure of the exponential. To do this, it will be useful to define the
following set: for languages 𝐿, 𝐿′ and a set Γ ⊆ Σ, we define the set of missing Γ-extensions of 𝐿′

with respect to 𝐿 as
MissExt(𝐿, 𝐿′, Γ) = (((𝐿 ∩ 𝐿′) ◦ Γ) \ 𝐿′) ◦ Σ∗ .

The elements of this set are all words of the form𝑤 ◦ 𝜎 ◦𝑤 ′, where𝑤 ∈ 𝐿 ∩ 𝐿′, 𝜎 ∈ Γ, and𝑤 ′ ∈ Σ∗.
These words satisfy the condition𝑤 ◦ 𝜎 ∉ 𝐿′. In other words, we find the words of 𝐿 ∩ 𝐿′ which,
when extended by a symbol of Γ, leave the language 𝐿′, and extend these words by the symbols
that make them leave 𝐿′ and then by every possible word of Σ∗.

Proposition 5.4. Let 𝐿, 𝐿′ ∈ L𝐼 . The exponential is given by 𝐿′ → 𝐿 = 𝐿 ∪MissExt(𝐿, 𝐿′,𝑂).

At this point, it has been established that each L𝐼 is a Heyting algebra. Now we move to
composition and quotient, which involve languages of different io signatures.

5.2 Composition and quotient of receptive languages
To every 𝐼 ⊆ Σ, we have associated the set of languages L𝐼 . Suppose 𝐼 ′ ⊆ 𝐼 . Then 𝐿 ∈ L𝐼 if it is
prefix-closed, and the extension of any word of 𝐿 by any word of 𝐼 ∗ remains in 𝐿. But since 𝐼 ′ ⊆ 𝐼 ,
this means that the extension of any word of 𝐿 by any word of (𝐼 ′)∗ remains in 𝐿, so 𝐿 ∈ L𝐼 ′ . We
have shown that 𝐼 ⊆ 𝐼 ′ ⇒ L𝐼 ′ ≤ L𝐼 . Thus, the map 𝐼 ↦→ L𝐼 is a contravariant functor 2Σ → 22Σ

∗
.

Since 𝐼 ′ ⊆ 𝐼 implies thatL𝐼 ≤ L𝐼 ′ , we define the embedding ] : L𝐼 → L𝐼 ′ which maps a language
of L𝐼 to the same language, but interpreted as an element of L𝐼 ′ ,

Let (𝐼 ,𝑂) and (𝐼 ′,𝑂 ′) be io signatures of Σ, 𝐿 ∈ L𝐼 , and 𝐿′ ∈ L𝐼 ′ . The composition of structures
with labeled inputs and outputs traditionally requires that objects to be composed can’t share
outputs. We say that io signatures (𝐼 ,𝑂) and (𝐼 ′,𝑂 ′) are compatible when 𝑂 ∩ 𝑂 ′ = ∅. This is
equivalent to requiring that 𝐼 ∪ 𝐼 ′ = Σ. Moreover, the object generated by the composition should
have as outputs the union of the outputs of the objects being composed. This reasoning leads us to
the definition of composition:

Definition 5.5 (composition). Let (𝐼 ,𝑂) and (𝐼 ′,𝑂 ′) be compatible io signatures of Σ. Let 𝐿 ∈ L𝐼

and 𝐿′ ∈ L𝐼 ′ . The operation of language composition, × : L𝐼 ,L𝐼 ′ → L𝐼∩𝐼 ′ , is given by

𝐿 × 𝐿′ = ]𝐿 ∧ ] ′𝐿′,
for the embeddings ] : L𝐼 → L𝐼∩𝐼 ′ and ] ′ : L𝐼 ′ → L𝐼∩𝐼 ′ .



Hypercontracts 13

The adjoint of this operation is the quotient. We will investigate when the quotient is defined.
Let 𝐼 , 𝐼 ′ ⊆ Σ with 𝐼 ⊆ 𝐼 ′, 𝐿 ∈ L𝐼 , and 𝐿′ ∈ L𝐼 ′ . Suppose there is 𝐼𝑟 ⊆ Σ such that the composition
rule × : L𝐼 ′,L𝐼𝑟 → L𝐼 is defined. This means that 𝐼 ′ ∪ 𝐼𝑟 = Σ and 𝐼 ′ ∩ 𝐼𝑟 = 𝐼 . Solving yields
𝐼𝑟 = 𝐼 ∪ ¬𝐼 ′ = 𝐼 ∪𝑂 ′.

Observe that the smallest element of L𝐼𝑟 is 𝐼 ∗𝑟 . Thus, the existence of a language 𝐿′′ ∈ L𝐼𝑟 such
that 𝐿′′ × 𝐿′ ≤ 𝐿 requires that 𝐿′ ∩ 𝐼 ∗𝑟 ⊆ 𝐿. Clearly, not every pair 𝐿, 𝐿′ satisfies this property since
we can take, for example, 𝐿 = 𝐼 ∗ and 𝐿′ = Σ∗ to obtain 𝐿′ ∩ 𝐼 ∗𝑟 = (𝐼 ∪𝑂 ′)∗ ⊈ 𝐼 ∗, provided 𝐼 ′ ≠ Σ.

We proceed to obtain a closed-form expression for the quotient, but first we define a new operator.
For languages 𝐿, 𝐿′ and sets Γ,Δ ⊆ Σ, the following set of (𝐿′, Γ,Δ)-uncontrollable extensions of
𝐿 ∩ 𝐿′:

Unc(𝐿, 𝐿′, Γ,Δ) =
{
𝑤 ∈ 𝐿∩𝐿′

����� ∃𝑤 ′ ∈ (Γ∪Δ)∗ ∧ 𝜎∈Γ.
𝑤◦𝑤 ′ ∈ 𝐿∩𝐿′ ∧ 𝑤◦𝑤 ′◦𝜎 ∈ 𝐿′\𝐿

}
◦ Σ∗. (14)

contains: (𝑖) all words of 𝐿 ∩ 𝐿′ which can be uncontrollably extended to a word of 𝐿′ \ 𝐿 by
appending a word of (Γ ∪ Δ)∗ and a symbol of Γ, and (𝑖𝑖) all suffixes of such words. Equivalently,
Unc(𝐿, 𝐿′, Γ,Δ) contains all extensions of the words𝑤 ∈ 𝐿 ∩ 𝐿′ such that there are extensions of
𝑤 by words𝑤 ′ ∈ (Γ ∪ Δ)∗ that land in 𝐿′ but not in 𝐿 after appending to the extensions𝑤 ◦𝑤 ′ a
symbol of Γ.

Proposition 5.6. Let (𝐼 ,𝑂) and (𝐼 ′,𝑂 ′) be io signatures of Σ such that 𝐼 ⊆ 𝐼 ′. Let 𝐿 ∈ L𝐼 and
𝐿′ ∈ L𝐼 ′ . Let 𝐼𝑟 = 𝐼 ∪𝑂 ′, and assume that 𝐿′∩ 𝐼 ∗𝑟 ⊆ 𝐿. Then the largest 𝐿′′ ∈ L𝐼𝑟 such that 𝐿

′′×𝐿′ ≤ 𝐿

is denoted 𝐿/𝐿′ and is given by

𝐿/𝐿′ = (𝐿 ∩ 𝐿′ ∪MissExt (𝐿, 𝐿′,𝑂 ′)) \ Unc(𝐿, 𝐿′,𝑂 ′, 𝐼 ) .

We have defined receptive languages together with a preorder and a composition operation with
its adjoint. These objects will constitute our theory of components, i.e.,M = ⊕𝐼 ∈2ΣL𝐼 .

5.3 Compsets and interface hypercontracts
Using the set of components just defined, we proceed to build compsets and hypercontracts. The
compsets contain components adhering to the same io signature. Thus, again the notion of an io
signature will partition the set of compsets (and the same will happen with hypercontracts). This
means that for every compset 𝐻 , there will always be an 𝐼 ⊆ Σ such that 𝐻 ⊆ L𝐼 .
For 𝐼 ⊆ Σ, and 𝐿 ∈ L𝐼 , we will consider compsets of the form{

𝑀 ∈ 2𝐿
�� 𝐼 ∗ ⊆ 𝑀

}
, denoted by [0, 𝐿] , where 0 is 𝐼 ∗, the smallest element of L𝐼 ,

i.e., compsets are all 𝐼 -receptive languages smaller than 𝐿. We will focus on hypercontracts whose
implementations have signature (𝐼 ,𝑂) and whose environments have (𝑂, 𝐼 ). Thus, hypercontracts
will consist of pairs C = (E,S) of 𝑂- and ∅-receptive compsets, respectively. We will let

S = [0, 𝑆] = {𝑀 ∈ L∅ | 𝑀 ⊆ 𝑆}

for some 𝑆 ∈ L∅. We will restrict the environments 𝐸 ∈ E to those that never extend a word of 𝑆
by an input symbol that 𝑆 does not accept. The largest such environment is given by

𝐸𝑆 = 𝑆 ∪MissExt(𝑆, 𝑆,𝑂). (15)

Since 𝑆 is prefix-closed, so is 𝐸𝑆 . Moreover, observe that 𝐸𝑆 adds to 𝑆 all those strings that are
obtained by continuations of words of 𝑆 by an output symbol that 𝑆 does not produce. This makes
𝐸𝑆 𝑂-receptive. The set of environments is thus E = [𝑂∗, 𝐸𝑆 ].
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Having obtained the largest environment, we can find the implementations. These are given by
I = [𝐼 ∗, 𝑀𝑆 ] for𝑀𝑆 = 𝑆/𝐸𝑆 . Plugging the definition, we have

𝑀𝑆 = (𝑆 ∩ 𝐸𝑆 ∪MissExt(𝑆, 𝐸𝑆 , 𝐼 )) \ Unc(𝑆, 𝐸𝑆 , 𝐼 , ∅).
There is no word of 𝐼 ∗ which can extend a word of 𝑆 into 𝐸𝑆 \ 𝑆 . Thus,

𝑀𝑆 = 𝑆 ∪MissExt(𝑆, 𝑆, 𝐼 ).
Observe that 𝑆 and MissExt(𝑆, 𝑆, 𝐼 ) are disjoint (same for MissExt(𝑆, 𝑆,𝑂)). Thus, 𝐸𝑆 ×𝑀𝑆 = 𝑆 . In
summary, we observe that our hypercontracts are highly structured. They are in 1-1 correspondence
with a language 𝑆 ∈ L∅ and an input alphabet 𝐼 ⊆ Σ, i.e., there is a set isomorphism

L∅, 2Σ
∼−→ Contr . (16)

Indeed, given 𝑆 and 𝐼 , we build 𝐸𝑆 by extending 𝑆 by Σ \ 𝐼 = 𝑂 , and𝑀𝑆 by extending 𝑆 by 𝐼 . After
this, the hypercontract has environments, closed systems, and implementations [𝑂∗, 𝐸𝑆 ], [∅, 𝑆],
and [𝐼 ∗, 𝑀𝑆 ], respectively.

5.4 Hypercontract composition
Let 𝑆, 𝑆 ′ ∈ L∅. We consider the composition of the interface hypercontracts

C𝑅 = C𝑆 ∥ C𝑆′, where C𝑆 = ( [0, 𝐸𝑆 ], [0, 𝑆]) , C𝑆′ = ( [0, 𝐸𝑆′], [0, 𝑆 ′]) ,
and 𝐸𝑆 and 𝐸𝑆′ have signatures (𝑂, 𝐼 ) and (𝑂 ′, 𝐼 ′), respectively. From the structure of interface
hypercontracts, we have the relations

𝐸𝑆 = 𝑆 ∪MissExt(𝑆, 𝑆,𝑂) and 𝐸𝑆′ = 𝑆 ′ ∪MissExt(𝑆 ′, 𝑆 ′,𝑂 ′).
Moreover, the implementations of 𝐶,𝐶 ′ are, respectively, I = [𝐼 ∗, 𝑀𝑆 ] and I ′ = [𝐼 ′∗, 𝑀𝑆′], where

𝑀𝑆 = 𝑆 ∪MissExt(𝑆, 𝑆, 𝐼 ) and𝑀𝑆′ = 𝑆
′
∪MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′).

The composition of these hypercontracts is defined if (𝐼 ,𝑂) and (𝐼 ′,𝑂 ′) have compatible signatures.
Suppose C𝑅 = C𝑆 ∥ C𝑆′ = ( [0, 𝐸𝑅], [0, 𝑅]) for some 𝑅 ∈ L∅. Then the environments must have
signature (𝑂 ∪𝑂 ′, 𝐼 ∩ 𝐼 ′), and the implementations (𝐼 ∩ 𝐼 ′,𝑂 ∪𝑂 ′).
Finally, as usual, 𝐸𝑅 = 𝑅 ∪ MissExt(𝑅, 𝑅,𝑂 ∪ 𝑂 ′) and𝑀𝑅 = 𝑅 ∪ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′) are the

maximal environment and implementation. 𝑅 is determined as follows:

Proposition 5.7. Let C𝑆 and C𝑆′ be interface hypercontracts and let C𝑅
def
= C𝑆 ∥ C𝑆′ . Then 𝑅 is

given by the expression 𝑅 = (𝑆 ∩ 𝑆 ′) \ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)].

The quotient for interface hypercontracts follows from Proposition 3.3.

5.5 Connection with interface automata
Now we explore the relation of interface hypercontracts with interface automata. Let (𝐼 ,𝑂) be an
io signature. An 𝐼 -interface automaton [9] is a tuple 𝐴 = (𝑄,𝑞0,→), where 𝑄 is a finite set whose
elements we call states, 𝑞0 ∈ 𝑄 is the initial state, and →⊆ 𝑄 × Σ ×𝑄 is a deterministic transition
relation (there is at most one next state for every symbol of Σ). We let A𝐼 be the class of 𝐼 -interface
automata, and A = ⊕𝐼 ∈2ΣA𝐼 . In the language of interface automata, input and output symbols are
referred to as actions.
Given two interface automata (IA) 𝐴𝑖 = (𝑄𝑖 , 𝑞𝑖,0,→𝑖 ) ∈ A𝐼 for 𝑖 ∈ {1, 2}, we say that the state

𝑞1 ∈ 𝑄1 refines 𝑞2 ∈ 𝑄2, written 𝑞1 ≤ 𝑞2, if
• ∀𝜎 ∈ 𝑂,𝑞′1 ∈ 𝑄1 . 𝑞1

𝜎→1 𝑞
′
1 ⇒ ∃𝑞′2 ∈ 𝑄2. 𝑞2

𝜎→2 𝑞
′
2 and 𝑞

′
1 ≤ 𝑞′2 and

• ∀𝜎 ∈ 𝐼 , 𝑞′2 ∈ 𝑄2. 𝑞2
𝜎→2 𝑞

′
2 ⇒ ∃𝑞′1 ∈ 𝑄1. 𝑞1

𝜎→1 𝑞
′
1 and 𝑞

′
1 ≤ 𝑞′2.
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We say that 𝐴1 refines 𝐴2, written 𝐴1 ≤ 𝐴2, if 𝑞1,0 ≤ 𝑞2,0. This defines a preorder in A𝐼 .

5.5.1 Mapping to interface hypercontracts. Suppose 𝐴 = (𝑄,𝑞0,→) ∈ A𝐼 . We define the language
of 𝐴, denoted ℓ (𝐴), as the set of words obtained by “playing out” the transition relation, i.e.,
ℓ (𝐴) =

{
𝜎0𝜎1 . . . 𝜎𝑛

��� ∃𝑞1, . . . , 𝑞𝑛−1. 𝑞𝑖 𝜎𝑖→ 𝑞𝑖+1 for 0 ≤ 𝑖 < 𝑛
}
. Since ℓ (𝐴) is prefix-closed, it is an

element of L∅.
From Section 5.3, we know that interface hypercontracts are isomorphic to a language 𝑆 of L∅

and an io signature 𝐼 . The operation 𝐴 ↦→ ℓ (𝐴) maps an 𝐼 -receptive interface automaton 𝐴 to a
language of L∅. Composing this map with the map (16) discussed in Section 5.3, we have maps
A → L∅, 2Σ

∼−→ Contr.
Thus, the interface hypercontract associated to 𝐴 ∈ A𝐼 is C𝐴 =

(
[0, 𝐸ℓ (𝐴) ], [0, ℓ (𝐴)]

)
, where

𝐸ℓ (𝐴) ∈ L𝑂 is given by (15). The following result tells us that refinement of interface automata is
equivalent to refinement of their associated hypercontracts.

Proposition 5.8. Let 𝐴1, 𝐴2 ∈ A𝐼 . Then 𝐴1 ≤ 𝐴2 if and only if C𝐴1 ≤ C𝐴2 .

5.5.2 Composition. Let 𝐴1 = (𝑄1, 𝑞1,0,→1) ∈ A𝐼1 and 𝐴2 = (𝑄2, 𝑞2,0,→2) ∈ A𝐼2 . The composition
of the two IA is defined if 𝐼1 ∪ 𝐼2 = Σ. In that case, the resulting IA, 𝐴1 ∥ 𝐴2, has io signature
(𝐼1 ∩ 𝐼2,𝑂1 ∪𝑂2). The elements of the composite IA are (𝑄, (𝑞1,0, 𝑞2,0),→𝑐 ), where the set of states
and the transition relation are obtained through the following algorithm:

• Initialize 𝑄 ≔ 𝑄1 ×𝑄2. For every 𝜎 ∈ Σ, (𝑞1, 𝑞2)
𝜎→𝑐 (𝑞′1, 𝑞′2) if 𝑞1

𝜎→1 𝑞
′
1 and 𝑞2

𝜎→2 𝑞
′
2.

• Initialize the set of invalid states to those states where one interface automaton can generate
an output action which the other interface automaton does not accept:

𝑁 ≔

(𝑞1, 𝑞2) ∈ 𝑄1 ×𝑄2

�������
∃𝑞′2 ∈ 𝑄2, 𝜎 ∈ 𝑂2 ∀𝑞′1 ∈ 𝑄1. 𝑞2

𝜎→2 𝑞
′
2 ∧ ¬

(
𝑞1

𝜎→1 𝑞
′
1

)
or

∃𝑞′1 ∈ 𝑄1, 𝜎 ∈ 𝑂1 ∀𝑞′2 ∈ 𝑄2. 𝑞1
𝜎→1 𝑞

′
1 ∧ ¬

(
𝑞2

𝜎→2 𝑞
′
2

)  .
• Also deem invalid a state such that an output action of one of the interface automata makes
a transition to an invalid state, i.e., iterate the following rule until convergence:

𝑁 ≔ 𝑁 ∪

{
(𝑞1, 𝑞2) ∈ 𝑄1 ×𝑄2

��� ∃ (𝑞′1, 𝑞′2) ∈ 𝑁, 𝜎 ∈ 𝑂1 ∪𝑂2. (𝑞1, 𝑞2)
𝜎→𝑐 (𝑞′1, 𝑞′2)

}
.

• Now remove the invalid states from the IA:

𝑄 ≔ 𝑄 \ 𝑁 and →𝑐 ≔ →𝑐 \ {(𝑞, 𝜎, 𝑞′) ∈→𝑐 | 𝑞 ∈ 𝑁 or 𝑞′ ∈ 𝑁 } .
It turns out that composing IA is equivalent to composing their associated hypercontracts:

Proposition 5.9. Let 𝐴1, 𝐴2 ∈ A𝐼 . Then C𝐴1 ∥𝐴2 = C𝐴1 ∥ C𝐴2 .

Propositions 5.8 and 5.9 express that our model of interface hypercontracts is equivalent to
Interface Automata. We observe that the definition for the parallel composition of interface hyper-
contracts is straightforward, unlike for the Interface Automata (the latter involves the iterative
pruning of invalid states). In fact, in our case this pruning is hidden behind the formula (14) defining
the set Unc().

6 CONCLUSIONS
We proposed hypercontracts, a generic model of contracts providing a richer algebra than the
metatheory of [5]. We started from a generic model of components equipped with a simulation
preorder and a parallel composition. On top of them we considered compsets (or hyperproperties),
which are lattices of sets of components equipped with parallel composition and quotient; compsets
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are our generic model formalizing “properties.” Hypercontracts are then defined as pairs of compsets
specifying the allowed environments and either the obligations of the closed system or the set of
allowed implementations—both forms are useful.

We specialized hypercontracts by restricting them to pairs of downward closed compsets (where
downward closed refers to the component preorder), and then to conic hypercontracts, whose
environments and closed systems are described by a finite number of components. Conic hyper-
contracts possess Assume/Guarantee contracts as a specialization. Specializing them in a different
direction provided us with a compact and elegant model of interface hypercontracts, which are
conic hypercontracts built on top of input/output components specified as receptive languages. We
showed that interface hypercontracts coincide with interface automata; however, our formulas for
the parallel composition are direct and do not need the iterative procedure of state pruning, needed
in interface automata. We illustrated the versatility of our model on the definition of contracts for
information flow in security.
The flexibility and power of our model suggests that a number of directions that were opened

in [5], but not explored to their end, can now be re-investigated withmuch better tools: contracts and
testing, subcontract synthesis (for requirement engineering), contracts and abstract interpretation,
contracts in physical systemmodeling.1 Furthermore, contracts were also developed in the neighbor
community of control, whichmotivates us to establish further links. In particular, Saoud et al. [28, 29]
proposed a framework of Assume/Guarantee contracts for input/output discrete or continuous
time systems. Assumptions vs. Guarantees are properties stated on inputs vs. outputs; with this
restriction, reactive contracts are considered and an elegant formula is proposed for the parallel
composition of contracts.
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A PROOFS
A.1 Hypercontract theory

Proof of Proposition 2.1. Let (𝑃, ≤) be a preorder and 𝑎, 𝑏, 𝑐 ∈ 𝑃 . Further, suppose the quo-
tients 𝑎/𝑐 and 𝑏/𝑐 are defined, and 𝑎 ≤ 𝑐 . Then (𝑎/𝑐) × 𝑐 ≤ 𝑎 ≤ 𝑏. Thus, 𝑎/𝑐 ≤ 𝑏/𝑐 . This shows
that the quotient is monotonic in the first argument. Now suppose the quotients 𝑐/𝑎 and 𝑐/𝑏 are
defined. It follows that, (𝑐/𝑏) × 𝑎 ≤ (𝑐/𝑏) × 𝑏 ≤ 𝑐 . This implies that 𝑐/𝑏 ≤ 𝑐/𝑎. We conclude the
quotient is antitone in the second argument. □

Proof of Proposition 3.1. Suppose 𝐻 and 𝐻 ′ are convex compsets. Then (𝐻 × 𝐻 ′) × (𝐻 ×
𝐻 ′) = (𝐻 × 𝐻 ) × (𝐻 ′ × 𝐻 ′) ≤ 𝐻 × 𝐻 ′, so their composition is convex. If 𝐻 and 𝐻 ′ are co-convex
compsets, 𝐻 ×𝐻 ′ ≤ (𝐻 ×𝐻 ) × (𝐻 ′ ×𝐻 ′) = (𝐻 ×𝐻 ′) × (𝐻 ×𝐻 ′), so their composition is co-convex.
The preservation of flatness follows from the preservation of convexity and co-convexity. □

Proof of Proposition 3.2. Suppose 𝐻 is a compset and𝑀 |= 𝐻 . Since component composition
is idempotent,𝑀 = 𝑀 ×𝑀 , so𝑀 |= 𝐻 × 𝐻 . □

Proof of Proposition 3.3.

C′′/C =
∨

{C′ | C ∥ C′ ≤ C′′} =
∨ C′ = (E ′,I ′)

������

I × I ′ ≤ I ′′,
E ′′ × I ≤ E ′, and
E ′′ × I ′ ≤ E




=
©«
©«
∨ C′ = (E ′,I ′)

������

I × I ′ ≤ I ′′,
E ′′ × I ≤ E ′, and
E ′′ × I ′ ≤ E


ª®¬

−1ª®®¬
−1

(8)
=

©«
∧ C′ = (I ′, E ′)

������

I × I ′ ≤ I ′′,
E ′′ × I ≤ E ′, and
E ′′ × I ′ ≤ E


ª®¬

−1

=
©«
∧ C′ = (I ′, E ′)

������

E ′′ × I ≤ E ′,
I ′ × I ≤ I ′′, and
I ′ × E ′′ ≤ E


ª®¬

−1

=
(
(C′′)−1 ∥ C

)−1
. □

A.2 Receptive languages and hypercontracts
Proof of Proposition 5.2. Suppose 𝐿, 𝐿′ ∈ L𝐼 . If𝑤 is contained in 𝐿 ∩ 𝐿′, and𝑤𝑝 is a prefix of

𝑤 , then𝑤 is contained in both 𝐿 and 𝐿′, and so is𝑤𝑝 , which means intersection is prefix-closed.
Moreover, for any𝑤 ′ ∈ 𝐼 ∗, we have𝑤 ◦𝑤 ′ ∈ 𝐿 and𝑤 ◦𝑤 ′ ∈ 𝐿′, so𝑤 ◦𝑤 ′ ∈ 𝐿 ∩ 𝐿′. We conclude
that 𝐿 ∩ 𝐿′ ∈ L𝐼 .

Similarly, if𝑤 is contained in 𝐿 ∪ 𝐿′, then we may assume that𝑤 ∈ 𝐿. Any prefix𝑤𝑝 of𝑤 is also
contained in 𝐿, so𝑤𝑝 ∈ 𝐿 ∪ 𝐿′, meaning that union is prefix-closed. In addition, for every𝑤 ′ ∈ 𝐼 ∗,
we have𝑤 ◦𝑤 ′ ∈ 𝐿, so𝑤 ◦𝑤 ′ ∈ 𝐿 ∪ 𝐿′. This means that 𝐿 ∪ 𝐿′ ∈ L𝐼 . □

Proof of Proposition 5.3. First we show that 𝐿′ → 𝐿 ∈ L𝐼 . Let𝑤 ∈ 𝐿′ → 𝐿. If𝑤𝑝 is a prefix
of𝑤 then Pre(𝑤𝑝 ) ∩ 𝐿′ ⊆ Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿, so 𝐿′ → 𝐿 is prefix-closed.

Now suppose𝑤 ∈ 𝐿′ → 𝐿 and𝑤 ∈ 𝐿. Then for𝑤𝐼 ∈ 𝐼 ∗,𝑤 ◦𝑤𝐼 ∈ 𝐿, so Pre(𝑤 ◦𝑤𝐼 ) ⊆ 𝐿. Suppose
𝑤 ∈ 𝐿′ → 𝐿 and 𝑤 ∉ 𝐿. Let 𝑛 be the length of 𝑤 . Since 𝑤 ∉ 𝐿, 𝑛 > 0 (the empty string is in 𝐿).
Write 𝑤 = 𝜎1 . . . 𝜎𝑛 for 𝜎𝑖 ∈ Σ. Let 𝑘 ≤ 𝑛 be the largest natural number such that 𝜎1 . . . 𝜎𝑘 ∈ 𝐿′
(note that 𝑘 can be zero). If 𝑘 = 𝑛, then𝑤 ∈ 𝐿′∩ Pre(𝑤) ⊆ 𝐿, which is forbidden by our assumption
that 𝑤 ∉ 𝐿. Thus, 𝑘 < 𝑛. Define 𝑤𝑝 = 𝜎1 . . . 𝜎𝑘+1. Clearly, 𝑤𝑝 ∉ 𝐿′. For any 𝑤Σ ∈ Σ∗, since 𝐿′ is
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prefix-closed, we must have Pre(𝑤 ◦𝑤Σ) ∩ 𝐿′ = Pre(𝑤𝑝 ) ∩ 𝐿′ = Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿. We showed that
any word of 𝐿′ → 𝐿 extended by a word of 𝐼 ∗ remains in 𝐿′ → 𝐿. We conclude that 𝐿′ → 𝐿 ∈ L𝐼 .
Now we show that 𝐿′ → 𝐿 has the properties of the exponential. Suppose 𝐿′′∈L𝐼 is such that

𝐿′∩𝐿′′ ⊆ 𝐿. Let𝑤∈𝐿′′. Then Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿, which means that 𝐿′′ ≤ 𝐿′ → 𝐿. On the other hand,

𝐿′ ∩ (𝐿′ → 𝐿) = 𝐿′ ∩ {𝑤 ∈ Σ∗ | Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿} ⊆ 𝐿.

Thus, any 𝐿′′ ≤ 𝐿′ → 𝐿 satisfies 𝐿′′ ∩ 𝐿′ ≤ 𝐿. This concludes the proof. □

Proof of Proposition 5.4. From Prop. 5.3, it is clear that 𝐿 ⊆ 𝐿′ → 𝐿. Suppose 𝑤 ∈ 𝐿′ ∩ 𝐿.
Since 𝐿 and 𝐿′ are 𝐼 -receptive,𝑤 ◦ 𝜎 ∈ 𝐿 ∩ 𝐿′ for 𝜎 ∈ 𝐼 . Assume 𝜎 ∈ 𝑂 . If𝑤 ◦ 𝜎 ∉ 𝐿′, then we can
extend 𝑤 ◦ 𝜎 by any word 𝑤 ′ ∈ Σ∗, and this will satisfy Pre(𝑤 ◦ 𝜎 ◦𝑤 ′) ∩ 𝐿′ = Pre(𝑤) ∩ 𝐿′ ⊆ 𝐿

due to the fact 𝐿′ is prefix-closed. If 𝑤 ◦ 𝜎 ∈ 𝐿′ \ 𝐿, then 𝑤 ∉ 𝐿′ → 𝐿. Thus, we can express the
exponential using the closed-form expression of the proposition. □

Proof of Proposition 5.6. Suppose 𝑤 ∈ 𝐿/𝐿′ and 𝑤 ∈ 𝐿 ∩ 𝐿′. We have not lost generality
because 𝜖 ∈ 𝐿 ∩ 𝐿′. We consider extensions of𝑤 by a symbol 𝜎 :

a. If 𝜎 ∈ 𝐼 , 𝜎 is an input symbol for both 𝐿′ and the quotient.
i. 𝐿 is receptive to 𝐼 , so𝑤 ◦ 𝜎 ∈ 𝐿;
ii. 𝐿′ is receptive to 𝐼 ⊆ 𝐼 ′, so𝑤 ◦ 𝜎 ∈ 𝐿′; and
iii. 𝐿/𝐿′ must contain𝑤 ◦ 𝜎 because the quotient is 𝐼𝑟 -receptive.

b. If 𝜎 ∈ 𝑂 ∩ 𝐼 ′, then 𝜎 is an output of the quotient, and an input of 𝐿′.
i. 𝐿′ is 𝐼 ′-receptive, so𝑤 ◦ 𝜎 ∈ 𝐿′;
ii. 𝜎 is an output symbol for both 𝐿 and 𝐿/𝐿′, so none of them is required to contain𝑤 ◦𝜎 ;

and
iii. if𝑤 ◦ 𝜎 ∈ 𝐿′ \ 𝐿, the extension𝑤 ◦ 𝜎 cannot be in the quotient. Otherwise, it can.

c. If 𝜎 ∈ 𝑂 ′, 𝜎 is an output for 𝐿′ and an input for the quotient.
i. Neither 𝐿 nor 𝐿′ are 𝑂 ′-receptive;
ii. 𝐿/𝐿′ is 𝑂 ′-receptive, so we must have𝑤 ◦ 𝜎 ∈ 𝐿/𝐿′; and
iii. if𝑤 ◦ 𝜎 ∈ 𝐿′ \ 𝐿, we cannot have𝑤 ◦ 𝜎 ∈ 𝐿/𝐿′.

Starting with a word 𝑤 in the quotient, statements a and b allow or disallow extensions of that
word to be in the quotient. However, statements c.ii and c.iii impose a requirement on the word𝑤
itself, i.e., if c.iii is violated, c.ii implies that𝑤 is not in the quotient. Statements a.iii and c.ii impose
an obligation on the quotient to accept extensions by symbols of 𝐼 and 𝑂 ′; and those extensions
may lead to a violation of c.iii. Thus, we remove from the quotient all words such that extensions
of those words by elements of 𝐼 ∪𝑂 ′ end up in 𝐿′ \ 𝐿. The expression of the proposition follows
from these considerations. □

Proof of Proposition 5.7. From the principle of hypercontract composition, we must have

𝐸𝑅 ≤ 𝑈 def
= (𝐸𝑆′/𝑀𝑆 ) ∧ (𝐸𝑆/𝑀𝑆′) and (17)

𝐿
def
= 𝑀𝑆′ ×𝑀𝑆 ≤ 𝑀𝑅 . (18)

Observe that the quotients 𝐸𝑆′/𝑀𝑆 and 𝐸𝑆/𝑀𝑆′ both have io signature 𝑂 ∪𝑂 ′, so the conjunction
in (17) is well-defined as an operation of the Heyting algebra L𝑂∪𝑂′ . We study the first element:

𝐸𝑆′/𝑀𝑆 = (𝐸𝑆′ ∩𝑀𝑆 ∪MissExt(𝐸𝑆′, 𝑀𝑆 ,𝑂)) \ Unc(𝐸𝑆′, 𝑀𝑆 ,𝑂,𝑂
′).

We attempt to simplify the terms. Suppose𝑤 ∈ 𝐸𝑆′ ∩ (𝑀𝑆 \𝑆). Then all extensions of𝑤 lie in𝑀𝑆 \𝑆 .
This means that MissExt(𝐸𝑆′, 𝑀𝑆 ,𝑂) = MissExt(𝐸𝑆′, 𝑆,𝑂). Moreover, if a word is an element of



20 Incer, Benveniste, Sangiovanni-Vincentelli, and Seshia

𝐸𝑆′ \ 𝑆 ′, all its extensions are in this set, as well (i.e., it is impossible to escape this set by extending
words). Thus, Unc(𝐸𝑆′, 𝑀𝑆 ,𝑂,𝑂

′) = Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂
′). We have

𝐸𝑆′/𝑀𝑆 = (𝐸𝑆′ ∩𝑀𝑆 ∪MissExt(𝐸𝑆′, 𝑆,𝑂)) \ Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂
′).

Now we can write

𝑈 = [(𝐸𝑆′ ∩𝑀𝑆 ∪MissExt(𝐸𝑆′, 𝑆,𝑂)) ∩ (𝐸𝑆 ∩𝑀𝑆′ ∪MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′))] \
[Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂

′) ∪ Unc(𝑆,𝑀𝑆′,𝑂
′,𝑂)] .

Observe that

𝐸𝑆′ ∩𝑀𝑆 ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′) = (𝑆 ′ ∪MissExt(𝑆 ′, 𝑆 ′,𝑂 ′)) ∩𝑀𝑆 ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′)
= 𝑀𝑆 ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′) = 𝑀𝑆 ∩MissExt(𝑆, 𝑆 ′,𝑂 ′).

The last equality comes from the following fact: if a word of MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′) is obtained by
extending a word of (𝐸𝑆 \ 𝑆) ∩ 𝑆 ′ by 𝑂 ′, the resulting word is still an element of 𝐸𝑆 , which means
it cannot be an element of𝑀𝑆 because𝑀𝑆 and 𝐸𝑆 are disjoint outside of 𝑆 . Therefore,

𝑈 =


(𝑆 ∩ 𝑆 ′) ∪
(𝑀𝑆 ∩MissExt(𝑆, 𝑆 ′,𝑂 ′)) ∪
(𝑀𝑆′ ∩MissExt(𝑆 ′, 𝑆,𝑂)) ∪
(MissExt(𝐸𝑆′, 𝑆,𝑂) ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′))


\ [Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂

′) ∪ Unc(𝑆,𝑀𝑆′,𝑂
′,𝑂)] .

(19)
We can write

MissExt(𝐸𝑆′, 𝑆,𝑂) ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′) =
MissExt(𝐸𝑆′, 𝑆,𝑂) ∩MissExt(𝑆, 𝑆 ′,𝑂 ′) ∪
MissExt(𝑆 ′, 𝑆,𝑂) ∩MissExt(𝐸𝑆 , 𝑆 ′,𝑂 ′) ∪
MissExt(MissExt(𝑆 ′, 𝑆 ′,𝑂 ′), 𝑆,𝑂) ∩MissExt(MissExt(𝑆, 𝑆,𝑂), 𝑆 ′,𝑂 ′).

Note that MissExt(𝐸𝑆′, 𝑆,𝑂) ∩MissExt(𝑆, 𝑆 ′,𝑂 ′) = MissExt(𝑆, 𝑆,𝑂) ∩MissExt(𝑆, 𝑆 ′,𝑂 ′). Hence
(𝑀𝑆 ∩MissExt(𝑆, 𝑆 ′,𝑂 ′)) ∪ (MissExt(𝐸𝑆′, 𝑆,𝑂) ∩MissExt(𝑆, 𝑆 ′,𝑂 ′))
= MissExt(𝑆, 𝑆 ′,𝑂 ′) ∩ (𝑀𝑆 ∪MissExt(𝐸𝑆′, 𝑆,𝑂))
= MissExt(𝑆, 𝑆 ′,𝑂 ′) ∩ (𝑀𝑆 ∪MissExt(𝑆, 𝑆,𝑂)) = MissExt(𝑆, 𝑆 ′,𝑂 ′).

Finally, we observe that the set MissExt(MissExt(𝑆 ′, 𝑆 ′,𝑂 ′), 𝑆,𝑂)∩MissExt(MissExt(𝑆, 𝑆,𝑂), 𝑆 ′,𝑂 ′)
must be empty since the words of the first term have prefixes in 𝑆 \ 𝑆 ′, and the second in 𝑆 ′ \ 𝑆 .
These considerations allow us to conclude that

𝑈 ≤

(𝑆 ∩ 𝑆 ′) ∪

MissExt(𝑆, 𝑆 ′,𝑂 ′) ∪
MissExt(𝑆 ′, 𝑆,𝑂).

 \
[
Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂

′) ∪ Unc(𝑆,𝑀𝑆′,𝑂
′,𝑂)

]
.

To simplify the expression a step further, suppose 𝑤 ∈ Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂
′) and has a prefix in

𝑆 ′ ∩ (𝑀𝑆 \ 𝑆). Then 𝑤 ∉ 𝑆 ∩ 𝑆 ′. The words of MissExt(𝑆, 𝑆 ′,𝑂 ′) do not have prefixes in 𝑆 ′ \ 𝑆 ,
so𝑤 ∉ MissExt(𝑆, 𝑆 ′,𝑂 ′). The words of MissExt(𝑆 ′, 𝑆,𝑂) belong to 𝐸𝑆 , which is disjoint from𝑀𝑆

outside of 𝑆 . Thus,𝑤 ∉ MissExt(𝑆 ′, 𝑆,𝑂).
We just learned that the words of Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂

′) having a prefix in 𝑆 ′∩ (𝑀𝑆 \𝑆) are irrelevant
for the inequality above. Now consider a word𝑤 of Unc(𝑆 ′, 𝑀𝑆 ,𝑂,𝑂

′) with no prefix in 𝑆 ′∩ (𝑀𝑆 \𝑆).
Let𝑤𝑝 be the longest prefix of𝑤 which is in 𝑆 ∩ 𝑆 ′. There is a word𝑤 ′ ∈ (𝑂 ∪𝑂 ′)∗ and a symbol
𝜎 ∈ 𝑂 such that𝑤𝑝 ◦𝑤 ′ ∈ 𝑆 ′ ∩𝑀𝑆 and𝑤𝑝 ◦𝑤 ′ ◦ 𝜎 ∈ 𝑀𝑆 \ 𝑆 ′. Suppose𝑤 ′ is not the empty string.
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Then we can let 𝜎 ′ be the first symbol of𝑤 ′. Then𝑤𝑝 ◦𝜎 ′ ∈ 𝑀𝑆 \ 𝑆 , so 𝜎 ′ ∈ 𝑂 ′. But this means that
𝑤 ∈ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂). If𝑤 ′ is empty,𝑤𝑝 ∈ 𝑆 ∩ 𝑆 ′ and𝑤𝑝 ◦𝜎 ′ ∈ 𝑀𝑆 \ 𝑆 ′. Since 𝜎 ∈ 𝑂 ,𝑤𝑝 ◦𝜎 ∈ ∩𝑀𝑆

if and only if it belongs to 𝑆 . Thus, 𝑤𝑝 ◦ 𝜎 ′ ∈ 𝑆 \ 𝑆 ′, which means that 𝑤 ∈ Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′). We
can thus simplify the upper bound on 𝐸𝑅 to

𝑈 =


(𝑆 ∩ 𝑆 ′) ∪

MissExt(𝑆, 𝑆 ′,𝑂 ′) ∪
MissExt(𝑆 ′, 𝑆,𝑂)

 \ [Unc(𝑆
′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)] . (20)

Define 𝑅 def
= (𝑆 ∩ 𝑆 ′) \ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)]. We want to show that 𝑈=

𝑅 ∪MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′). Note that we only have to prove that

MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′) =
[
MissExt(𝑆, 𝑆 ′,𝑂 ′) ∪
MissExt(𝑆 ′, 𝑆,𝑂)

]
\ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)] . (21)

Proof of (21). Suppose 𝑤 ∈ MissExt(𝑆, 𝑆 ′,𝑂 ′) \ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)]. Write
𝑤 = 𝑤𝑝 ◦ 𝜎 ◦𝑤 ′, where 𝑤𝑝 is the longest prefix of 𝑤 which lies in 𝑆 ∩ 𝑆 ′, 𝜎 ∈ 𝑂 ′, and 𝑤 ′ ∈ Σ∗.
𝑤𝑝 ∉ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)] because all its extensions would be in this set if 𝑤𝑝

were in this set, and we know that𝑤 is not in this set. It follows that𝑤𝑝 ∈ 𝑅 and since𝑤𝑝 ◦ 𝜎 ∉ 𝑅,
𝑤𝑝 ◦ 𝜎 and all its extensions are in 𝑅 ∪MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′). Thus,𝑤 ∈ 𝑅 ∪MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′)

The same argument applies when

𝑤 ∈ MissExt(𝑆 ′, 𝑆,𝑂) \ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)] .
We conclude that the right hand side of (21) is a subset of the left hand side.

Now suppose that𝑤 ∈ MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′) and write𝑤 = 𝑤𝑝 ◦𝜎 ◦𝑤 ′, where𝑤𝑝 is the longest
prefix of𝑤 contained in 𝑅, 𝜎 ∈ 𝑂 ∪𝑂 ′, and𝑤 ′ ∈ Σ∗. From the definition of 𝑅,𝑤𝑝 ∈ 𝑆 ∩ 𝑆 ′. Suppose
𝑤𝑝 ◦ 𝜎 ∈ 𝑆 ∩ 𝑆 ′. Then

𝑤𝑝 ◦ 𝜎 ∈ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)] ,
which means that𝑤𝑝 also belongs to this set (because 𝜎 ∈ 𝑂 ∪𝑂 ′). This contradicts the fact that
𝑤𝑝 ∈ 𝑅, so our assumption that𝑤𝑝 ◦ 𝜎 ∈ 𝑆 ∩ 𝑆 ′ is wrong. Then𝑤𝑝 is also the longest prefix of𝑤
contained in 𝑆 ∩ 𝑆 ′.
Without loss of generality, assume 𝜎 ∈ 𝑂 . Suppose 𝑤𝑝 ◦ 𝜎 ∉ 𝑆 . Then 𝑤 ∈ MissExt(𝑆 ′, 𝑆,𝑂).

Moreover, since𝑤𝑝 ∈ 𝑅,𝑤𝑝 ◦ 𝜎 ∉ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)]. Since𝑤𝑝 ◦ 𝜎 ∉ 𝑆 ∩ 𝑆 ′, we
have𝑤 ∉ [Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪ Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂)]. Thus,𝑤 is in the right hand set of (21).
Now suppose𝑤𝑝 ◦ 𝜎 ∉ 𝑆 ′. If𝑤𝑝 ◦ 𝜎 ∈ 𝑆 , then𝑤𝑝 ∈ Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′), which contradicts the fact

that 𝑤𝑝 ∈ 𝑅. We must have 𝑤𝑝 ◦ 𝜎 ∉ 𝑆 , which we already showed implies that 𝑤 is in the right
hand set of (21).
An analogous reasoning applies to 𝜎 ∈ 𝑂 ′. We conclude that the right hand side of (21) is a

subset of the left hand side, and this finishes the proof of their equality. ■

This result and (17) tell us that 𝐸𝑅 ≤ 𝑅 ∪MissExt(𝑅, 𝑅,𝑂 ∪𝑂 ′). Now we study the constraint
(18). We want to show that 𝑅 yields the tightest bound 𝐿 ≤ 𝑅 ∪MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′) which also
respects the bound (17).

Proof. Observe that 𝐿 = (𝑆 ′ ∪MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′)) ∩ (𝑆 ∪MissExt(𝑆, 𝑆, 𝐼 )). First we will show
that 𝐿 ⊆ 𝑅∪MissExt(𝑅, 𝑅, 𝐼∩𝐼 ′). Suppose𝑤 ∈ 𝐿. Then𝑤 belongs to at least one of the sets (1) 𝑆∩𝑆 ′,
(2) 𝑆 ∩MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′), (3) 𝑆 ′ ∩MissExt(𝑆, 𝑆, 𝐼 ), or (4) MissExt(𝑆, 𝑆, 𝐼 ) ∩MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′). We
analyze each case:
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(1) Suppose 𝑤 ∈ 𝑆 ∩ 𝑆 ′. If 𝑤 ∈ 𝑅, then clearly 𝑤 ∈ 𝑅 ∪MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′). Suppose 𝑤 ∉ 𝑅.
Then there is word𝑤 ′ ∈ (𝑂∪𝑂 ′)∗ and either a symbol 𝜎 ∈ 𝑂 such that𝑤 ◦𝑤 ′ ◦𝜎 ∈ 𝑆 \𝑆 ′ or
a symbol 𝜎 ∈ 𝑂 ′ such that𝑤 ◦𝑤 ′ ◦𝜎 ∈ 𝑆 ′ \𝑆 . Write𝑤 = 𝑤𝑝 ◦𝑤 ′′ such that𝑤 ′′ is the longest
suffix of𝑤 which belongs to 𝑂 ∪𝑂 ′. It follows that the last symbol of𝑤𝑝 is an element of
𝐼 ∩ 𝐼 ′. Since𝑤 ∉ 𝑅, neither does𝑤𝑝 . This shows that for every word𝑤𝑟 ◦ 𝜎𝑟 ∈ 𝑆 ∩ 𝑆 ′ such
that𝑤𝑟 ∈ 𝑅 but𝑤𝑟 ◦ 𝜎𝑟 ∉ 𝑅, we must have 𝜎𝑟 ∈ 𝐼 ∩ 𝐼 ′.
Let 𝑤 ′

𝑝 be the longest prefix of 𝑤𝑝 which lies in 𝑅. By assumption, 𝑅 is not empty. If we
write𝑤 = 𝑤 ′

𝑝 ◦𝑤 ′′, the first symbol of𝑤 ′′ is in 𝐼 ∩ 𝐼 ′. Thus,𝑤 ∈ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′).
(2) Observe that MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′) = MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′ ∩ 𝐼 ) ∪MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′ ∩𝑂). Moreover,

𝑆 ∩MissExt(𝑆 ′, 𝑆 ′, 𝐼 ∩ 𝐼 ′) ⊆ MissExt(𝑆 ∩ 𝑆 ′, 𝑆 ∩ 𝑆 ′, 𝐼 ∩ 𝐼 ′) ⊆ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′).
Suppose𝑤 ∈ 𝑆 ∩MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′∩𝑂). Then𝑤 ∈ Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′), so𝑤 ∉ 𝑅. Let𝑤𝑖 be the
longest prefix of𝑤 which lies in 𝑆 ∩ 𝑆 ′. Then𝑤𝑖 ∉ 𝑅, either. Let𝑤𝑝 be the longest prefix of
𝑤𝑖 which is in 𝑅. Then𝑤𝑖 ∈ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′), and therefore, so does𝑤 .

(3) If𝑤 ∈ 𝑆 ′ ∩MissExt(𝑆, 𝑆, 𝐼 ), an analogous reasoning applies.
(4) Suppose𝑤 ∈ MissExt(𝑆, 𝑆, 𝐼 ) ∩MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′). If𝑤 has a prefix in 𝑆 ′ ∩MissExt(𝑆, 𝑆, 𝐼 )

or 𝑆 ∩ MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′), then the reasoning of the last two points applies, and we have
𝑤 ∈ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′). Suppose 𝑤 has no such a prefix, and write 𝑤 = 𝑤𝑝 ◦𝑤 ′, where
𝑤𝑝 is the longest prefix of 𝑤 which lies in 𝑆 ∩ 𝑆 ′. Let 𝜎 be the first symbol of 𝑤 ′. Then
𝑤𝑝 ◦ 𝜎 ∈ MissExt(𝑆, 𝑆, 𝐼 ) ∩ MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′), which means that 𝜎 ∈ 𝐼 ∩ 𝐼 ′. Thus, 𝑤 ∈
MissExt(𝑆 ∩ 𝑆 ′, 𝑆 ∩ 𝑆 ′, 𝐼 ∩ 𝐼 ′) ⊆ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′).

We have shown that 𝐿 ⊆ 𝑅 ∪MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′). Now suppose𝑤 ∈ 𝑅 ∪MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′). If
𝑤 ∈ 𝑅 then clearly𝑤 ∈ 𝑆∩𝑆 ′ ⊆ 𝐿. Suppose𝑤 ∈ MissExt(𝑅, 𝑅, 𝐼 ∩ 𝐼 ′) and let𝑤𝑟 be the longest prefix
of𝑤 contained in 𝑅 and 𝜎𝑟 the symbol that comes immediately after𝑤𝑟 in𝑤 . Clearly 𝜎𝑟 ∈ 𝐼 ∩ 𝐼 ′.

If𝑤𝑟 ◦𝜎𝑟 ∈ 𝑆 \ 𝑆 ′, then𝑤𝑟 ◦𝜎𝑟 cannot be an element of 𝑅. If it were, we would have 𝐸�̂� × 𝑆 ⊈ 𝐸𝑆′ ,
violating the bound (17). The same applies when𝑤𝑟 ◦ 𝜎𝑟 ∈ 𝑆 ′ \ 𝑆 .

If𝑤𝑟 ◦ 𝜎𝑟 ∉ 𝑆 ∪ 𝑆 ′, then𝑤 ◦ 𝜎𝑟 ∈ MissExt(𝑆 ′, 𝑆 ′, 𝐼 ′) ∩MissExt(𝑆, 𝑆, 𝐼 ) ⊆ 𝐿.
If𝑤𝑟 ◦ 𝜎𝑟 ∈ 𝑆 ∩ 𝑆 ′, then𝑤𝑟 ◦ 𝜎𝑟 ∈ Unc(𝑆 ′, 𝑆,𝑂,𝑂 ′) ∪Unc(𝑆, 𝑆 ′,𝑂 ′,𝑂), which means that𝑤𝑟 ◦ 𝜎𝑟

is not allowed to be an element of 𝑅; otherwise, there would be a contradiction of (17). ■

We conclude that 𝑅 = 𝑅. □

Proof of Proposition 5.8. Suppose that 𝐴1 ≤ 𝐴2. We want to show that𝑀ℓ (𝐴1) ≤ 𝑀ℓ (𝐴2) and
𝐸ℓ (𝐴2) ≤ 𝐸ℓ (𝐴1) . We proceed by induction in the length 𝑛 of words, i.e., we will show that this
relations hold for words of arbitrary length.

Consider the case 𝑛 = 1. Suppose 𝜎 ∈ 𝑀ℓ (𝐴1)∩Σ. If 𝜎 ∈ 𝐼 , then 𝜎 ∈ 𝑀ℓ (𝐴2) because of 𝐼 -receptivity.
If 𝜎 ∈ 𝑂 , then 𝜎 ∈ ℓ (𝐴), so there exists 𝑞1 ∈ 𝑄1 such that 𝑞1,0

𝜎→1 𝑞1, which means that there exists
𝑞2 ∈ 𝑄2 such that 𝑞2,0

𝜎→2 𝑞2. Thus, 𝜎 ∈ ℓ (𝐴2) ⊆ 𝑀ℓ (𝐴2) . We have shown that𝑀ℓ (𝐴1) ⊆ 𝑀ℓ (𝐴2) for
𝑛 = 1. An analogous reasoning shows that 𝐸ℓ (𝐴2) ⊆ 𝐸ℓ (𝐴1)

Suppose the statement is true for words of length 𝑛. Let𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴1) , where𝑤 ∈ Σ∗ is a word
of length 𝑛, and 𝜎 ∈ Σ. By the inductive assumption,𝑤 ∈ 𝑀ℓ (𝐴2) .

• If 𝜎 ∈ 𝐼 , then𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴2) due to 𝐼 -receptiveness.
• Let 𝜎 ∈ 𝑂 and𝑤 ∉ ℓ (𝐴1). Then we can write𝑤 = 𝑤𝑝 ◦𝑤 ′, where𝑤𝑝 is the longest prefix
of𝑤 which lies in ℓ (𝐴1) (suppose it has length 𝑙). Let 𝜎 ′ be the first symbol of𝑤 ′; clearly
𝜎 ′ ∈ 𝐼 . Since𝑤 ∈ ℓ (𝐴2) and this set is prefix-closed,𝑤𝑝 ∈ ℓ (𝐴2). Since𝑤𝑝 ∈ ℓ (𝐴1)∩ ℓ (𝐴2),
there exist {𝑞 𝑗,𝑖 ∈ 𝑄 𝑗 }𝑘𝑖=1 (for 𝑗 ∈ {1, 2}) such that 𝑞 𝑗,𝑖−1

𝑤𝑖→𝑗 𝑞 𝑗,𝑖 for 0 < 𝑖 ≤ 𝑘 , where 𝑤𝑖

is the 𝑖-th symbol of𝑤𝑝 . Since the IA are deterministic, we must have 𝑞1,𝑖 ≤ 𝑞2,𝑖 . Suppose
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there were a 𝑞2 ∈ 𝑄2 such that 𝑞2,𝑘
𝜎′
→2 𝑞2; since 𝑞1,𝑘 ≤ 𝑞2,𝑘 and 𝜎 ′ ∈ 𝐼 , this would mean

that there exists 𝑞1 ∈ 𝑄1 such that 𝑞1,𝑘
𝜎′
→1 𝑞1, which would mean that𝑤𝑝 ◦ 𝜎 ′ ∈ ℓ (𝐴1), a

contradiction. We conclude that such 𝑞2 does not exist, which means that𝑤𝑝 ◦ 𝜎 ′ ∉ ℓ (𝐴2),
which means that𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴2) because of I-receptiveness.

• Finally, if 𝜎 ∈ 𝑂 and 𝑤 ∈ ℓ (𝐴1), then there exist {𝑞1,𝑖 ∈ 𝑄1}𝑛𝑖=1 such that 𝑞1,𝑖−1
𝑤𝑖→1 𝑞1,𝑖

for 0 < 𝑖 ≤ 𝑛, where 𝑤𝑖 is the 𝑖-th symbol of 𝑤 . Since 𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴1) , 𝑤 ∈ ℓ (𝐴1), and
𝜎 ∈ 𝑂 , we must have𝑤 ◦ 𝜎 ∈ ℓ (𝐴1). This means that there must exist 𝑞1,𝑛+1 ∈ 𝑄1 such that
𝑞1,𝑛

𝜎→1 𝑞1,𝑛+1. We know that𝑤 ∈ 𝑀ℓ (𝐴2) by the induction assumption. If𝑤 ∉ ℓ (𝐴2), then
clearly𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴2) . If𝑤 ∈ ℓ (𝐴2), there are states {𝑞2,𝑖 ∈ 𝑄2}𝑛𝑖=1 such that 𝑞2,𝑖−1

𝑤𝑖→2 𝑞2,𝑖

for 0 < 𝑖 ≤ 𝑛. Moreover, there exists 𝑞𝑛+1 ∈ 𝑄1 such that 𝑞𝑛
𝜎→1 𝑞𝑛+1 and 𝑞1,𝑛 ≤ 𝑞2,𝑛 , there

must be a 𝑞2,𝑛+1 ∈ 𝑄2 such that 𝑞2,𝑛
𝜎→2 𝑞2,𝑛+1, which means that𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴2) .

We have shown that𝑀ℓ (𝐴1) ⊆ 𝑀ℓ (𝐴2) . An analogous argument proves that 𝐸ℓ (𝐴2) ⊆ 𝐸ℓ (𝐴1) .
Now suppose that 𝑀ℓ (𝐴1) ⊆ 𝑀ℓ (𝐴2) and 𝐸ℓ (𝐴2) ⊆ 𝐸ℓ (𝐴1) . We want to show that 𝑞1,0 ≤ 𝑞2,0. We

proceed by coinduction.
Let 𝑛 be a natural number. Suppose there exist sets {𝑞 𝑗,𝑖 ∈ 𝑄 𝑗 }𝑛𝑖=1 with 𝑗 ∈ {1, 2} such that

𝑞1,𝑖 ≤ 𝑞2,𝑖 for all 𝑖 and a word 𝑤 of length 𝑛 such that 𝑞 𝑗,𝑖−1
𝑤𝑖→𝑗 𝑞 𝑗,𝑖 for 0 < 𝑖 ≤ 𝑛. Suppose there

exists 𝑞1,𝑛+1 ∈ 𝑄1 and 𝜎 ∈ 𝑂 such that 𝑞1,𝑛
𝜎→1 𝑞1,𝑛+1. Then 𝑤 ◦ 𝜎 ∈ 𝑀ℓ (𝐴1) ⊆ 𝑀ℓ (𝐴2) . Observe

that 𝑤 ∈ ℓ (𝐴2), so we must have 𝑤 ◦ 𝜎 ∈ ℓ (𝐴2). This means there must be a 𝑞2,𝑛+1 ∈ 𝑄2 such
that 𝑞2,𝑛

𝜎→2 𝑞2,𝑛+1. We assume that 𝑞1,𝑛+1 ≤ 𝑞2,𝑛+1. Similarly, suppose there exists 𝑞′2,𝑛+1 ∈ 𝑄2

and 𝜎 ∈ 𝐼 such that 𝑞2,𝑛
𝜎→2 𝑞

′
2,𝑛+1. Then 𝑤 ◦ 𝜎 ∈ 𝐸ℓ (𝐴2) ⊆ 𝐸ℓ (𝐴1) . Since 𝑤 ∈ ℓ (𝐴1), we must

have 𝑤 ◦ 𝜎 ∈ ℓ (𝐴1). Thus, there must exist 𝑞′1,𝑛+1 ∈ 𝑄1 such that 𝑞1,𝑛
𝜎→1 𝑞

′
1,𝑛+1. We assume that

𝑞1,𝑛+1 ≤ 𝑞2,𝑛+1. This finished the coinductive proof. □

Proof of Proposition 5.9. Let 𝐴𝑖 have io signatures (𝐼𝑖 ,𝑂𝑖 ) for 𝑖 ∈ {1, 2}. For composition
to be defined, we need 𝐼1 ∪ 𝐼2 = Σ. Let C𝐴𝑖

be the interface contract associated with 𝐴𝑖 . From
Proposition 5.7 and Section 5.3, the composition C𝐴1 ∥ C𝐴2 is isomorphic to 𝐼1 ∩ 𝐼2 and the L∅
language 𝑅 = (ℓ (𝐴1) ∩ ℓ (𝐴2)) \ [Unc(ℓ (𝐴1) , ℓ (𝐴2) ,𝑂2,𝑂1) ∪ Unc(ℓ (𝐴2) , ℓ (𝐴1) ,𝑂1,𝑂2)]. From
Section 5.5.2, we deduce that ℓ (𝐴1 ∥ 𝐴2) = 𝑅. The proposition follows. □
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