
Active Academic Integrity

Alex Kassil

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-157

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-157.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Michael Ball for trusting me, mentoring me, and always
being there for me when I needed anything! It has been a fun couple of
years. Michael's support opened up a world of Computer Science
Education research to me. I would like to thank John DeNero teaching me,
working with me, and supporting me! I have learned so many wonderful
things from John. A special thank you to Catherine Cang for all her support.
Finally a huge shoutout to my parents Irina Kassil and Victor Fedotov for
their unwavering love.

Active Academic Integrity

by Alex Kassil

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor John DeNero
Research Advisor

(Date)

* * * * * * *

Lecturer Michael Ball
Second Reader

(Date)

May 11, 2021

May 12, 2021

UNIVERSITY OF CALIFORNIA, BERKELEY

Active Academic Integrity

by

Alex Kassil

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Department of Electrical Engineering and Computer Sciences

May 21th, 2021

https://www.berkeley.edu/
mailto:alexkassilalex@gmail.com
https://eecs.berkeley.edu/

UNIVERSITY OF CALIFORNIA, BERKELEY

Abstract

Department of Electrical Engineering and Computer Sciences

Master of Science

by Alex Kassil

The response to academic misconduct in introductory computer science courses can po-

tentially affect the behavior and culture of students throughout their time as undergrad-

uates. Moss [1], the most commonly used system for detecting excessive collaboration,

is not well suited to assignments whose solutions are only a few lines long. This paper

describes an active approach to detecting the use of solutions from prior semesters in

which instructors change the names of various identifiers, change constants, and change

logic used in the problem. We developed a tool that searches student submission his-

tory to detect the use of identifiers, constants, and logic from prior semesters. As with

TMOSS [2], the misconduct is detected across the entire history of partially completed

student work, not just their final submission. Our developed tool was first used in CS

61A which had a Spring 2020 enrollment of around 1,800 students. There were 164

students notified and 142 penalties enforced (86.6% of notified students) for the first

homework. Over the Spring 2020 semester, there were 452 enforced cases of misconduct

on homework, labs, and projects out of 598 accusations (75.6% of cases). In Summer

2020, improvements to the tool sped up response time and reduced the false positive

rate from 24.4% to 21.9%. In Fall 2020, the false positive rate was reduced to 20.5%.

In Spring 2021, an automated early warning system further reduced the false positive

rate to 6%. The tool has also been adapted for use by another similar course, CS 88.

The paper finally discusses what was learned using this tool and communicating with

hundreds of students about academic integrity, as well as best practices for instructors

so students are caught breaking the rules before they develop bad habits that hinder

their learning and lead to persistent cheating.

https://www.berkeley.edu/
https://eecs.berkeley.edu/
mailto:alexkassilalex@gmail.com

Acknowledgements

I would like to thank Michael Ball for trusting me, mentoring me, and always being

there for me when I needed anything! It has been a fun couple of years. Michael’s

support opened up a world of Computer Science Education research to me. I would

like to thank John DeNero teaching me, working with me, and supporting me! I have

learned so many wonderful things from John. A special thank you to Catherine Cang for

all her support. Finally a huge shoutout to my parents Irina Kassil and Victor Fedotov

for their unwavering love.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction 1

2 Background and Related Work 2

2.1 Moss . 2

2.2 TAPS: A Moss Extension for Detecting Software Plagiarism at Scale . . . 4

2.3 TMOSS: Using Intermediate Assignment Work to Understand Excessive
Collaboration in Large Classes . 4

2.4 CS 61A . 5

2.5 OK . 6

3 Overview 8

4 Workflow and Best Practices 10

4.1 Setup . 10

4.2 Assignment Changes . 11

4.2.1 Bad Changes . 11

4.2.2 Good Changes . 11

4.3 Assignment Workflow . 12

4.4 Notifying Students . 12

4.5 Improving from Semester to Semester . 13

4.6 Drawbacks . 13

5 Results 14

5.1 Comparing Semesters . 19

5.2 Spring 2021 Experiment: Early Email Notifications 21

5.3 Anonymous Student Surveys . 23

5.3.1 Student Feedback . 27

iii

Contents iv

6 Conclusion 28

6.1 Discussion Items . 28

7 Contributions and Future Work 29

A Syllabus Quiz Academic Integrity Questions 30

B Referencing Previous Work/Working Ahead on Assignments Form 32

C Use of Solutions Form 34

Bibliography 35

List of Figures

2.1 Winnowing example from [3] . 3

2.2 Computing top matches in TMOSS [2] . 5

2.3 First two weeks of CS 61A . 6

2.4 An example student view of OK dashboard 6

2.5 An example of backups for an assignment in OK 7

3.1 Backup code (above) with the offending function name swap diff on
the second to last line, versus final submission (below) with the correct
variable name shifty shifts. 9

5.1 Spring 2020 Data Graph comparing how many students were flagged,
emailed, and had penalties enforced for each assignment. Notice that
Homework 1 had the largest percent of students who were emailed and
had penalties enforced, showing that many students cheat as early as the
first assignment. 14

5.2 Summer 2020 Data Graph comparing how many students were flagged,
emailed, and had penalties enforced for each assignment. This semester
the instructors preferred a more conservative approach of emailing stu-
dents, and many suspicious cases were not followed up with. 15

5.3 Fall 2020 Data Graph comparing how many students were flagged, emailed,
and had penalties enforced for each assignment. The large gap between
98 students emailed and only 57 penalties enforced for proj01 was due
to a partial change slipping through the review process, meaning both
the past semester code and current semester code were both present on
the project specification, leading to students having that code but not
committing any plagiarism. 15

5.4 Comparison of Accusations . 19

5.5 Comparison of Penalties . 19

5.6 Comparison of Email Delay . 20

5.7 “Do you think your classmates in CS61A are academically honest?” Spring
2021 had the highest percentage of responses selecting both 1 for all class-
mates are honest and 5 for all classmates are dishonest 23

5.8 “Do you think people were more academically dishonest when CS61A
was online versus in person?” The switch in Spring 2021 to the majority
selecting “The same” might be due to Berkeley courses being online for
over a year at that point in time. 24

5.9 “Have you ever been academically dishonest?” 24

5.10 “Have you ever been flagged in CS61A for academic dishonesty?” The
word flagged here is the same as emailed used in the Results section. . . . 24

v

List of Figures vi

5.11 “Have you ever been academically dishonest and not flagged on the as-
signment?” . 25

5.12 “I feel like CS61A makes sure all students have a fair grade.” For context,
students in the fall semester on average perform better than students in
the spring semester. The grade a student receives in CS 61A affects their
chances of studying Computer Science at Berkeley. 25

5.13 “I feel disadvantaged in CS61A if I do not cheat.” There is a high per-
centage of students who feel disadvantaged by not cheating. This likely
contributes to the hundreds of academic integrity cases. 26

5.14 “I feel like I would be caught if I cheated in CS61A.” Students are fairly
confident in their ability not to get caught cheating. 26

List of Tables

5.1 All data from Spring 2020 to Fall 2020 Academic Integrity Efforts 16

vii

Chapter 1

Introduction

In college courses, including introduction to Computer Science courses, some students

choose to excessively collaborate, search for answers online, or ask friends who have

taken the class before to give them answers. Studies have found as many as 70.4% [4]

of college students have cheated in college. Students commit academic misconduct for

a variety of reasons, with some common reasons being “desire to get ahead”, having

the “opportunity to cheat,” “cultural or moral acceptance of cheating as an established

norm,” “low risk of detection,” or “heavy time demands” [5]. Stress and struggle are

two other reasons. Whatever the reason, this misconduct takes away from the student’s

learning experience.

Therefore it is important to catch these students who commit academic misconduct,

inform them of why they were caught, and deal with any false positives. No student

wants to be falsely accused, and no instructor wants to enforce a penalty when the

student did not cheat.

By utilizing staff time early in the course, our developed tool allows for quick and efficient

identification of who used past semester solutions. We use this data to give students

warnings, penalties, and to teach students to be honest going forward.

1

Chapter 2

Background and Related Work

2.1 Moss

A common system used for plagiarism detection in software is Moss [1], Measure Of

Software Similarity, which automatically detects similarity between two files.

Moss finds k-grams that match between documents, where a k-gram is a contiguous

substring of length k.

Previous copying detection before Moss removed irrelevant features from text, split

text into many k-grams, selected a hashed subset of these k-grams to be a document’s

fingerprints, and checked if those hashes matched up with another document.

Here is an example:

Texts:

1. Alex Kassil

2. Alexander F. Kassil

Texts with irrelevant features removed:

1. alexkassil

2. alexanderfkassil

Texts split into 5-grams:

1. alexk lexka exkas xkass kassi assil

2. alexa lexan exand xande ander nderf derfk erfka rfkas fkass kassi assil

With a subset selection that took every other 5-gram, kassi or assil would match between

the two documents and be the one fingerprint match.

2

Background and Related Work 3

There are three desirable properties of copy-detection: whitespace insensitivity, noise

suppression, and position independence.

For whitespace insensitivity, everything other than text is removed, text is lowercased,

and for code all variable names are swapped with “V” to achieve variable name agnostic

search.

For noise suppression, a value of k needs to be selected that is not so small that the

algorithm allows too many short commonalities to be found and not so long to never

have matches.

For positional independence, fingerprints are chosen independent of position. One way

of achieving this is choosing hashes which equal 0 mod p.

The paper on ideas behind Moss [3] describes an algorithm for selecting which hashes

should be the fingerprints, with the algorithm called winnowing. The algorithm slides

a window across the hashes and repeatedly selected the minimum in the window to be

added to the list of fingerprints.

Figure 2.1: Winnowing example from [3]

Even after years of service, Moss performed its function well, with false positives, in the

form of hash collisions, never being reported. The paper goes on to state that “users

Background and Related Work 4

report that copy detection does dramatically reduce the instances of plagiarism in their

classes” [3].

In addition to the winnowing algorithm, another strong feature of Moss was it “being

provided as an Internet service. The service has been designed to be very easy to use–you

supply a list of files to compare and Moss does the rest” [1].

2.2 TAPS: A Moss Extension for Detecting Software Pla-

giarism at Scale

TAPS [6] stands for Tool Addressing Plagiarism at Scale. The original Moss project is

effective for checking single documents for plagiarism against each other as well as against

online solutions that might exist, like checking for plagiarism for one large course project.

TAPS is an extension that does much of the important preprocessing when there are

both multiple assignments in a class as well as multiple previous offerings of the course

that have had similar or identical assignments.

The problem TAPS solves is it becomes quite cumbersome to check a current batch of

assignments against each other as well as the previous ones, so TAPS:

1. Allows for mixed programming languages, and separates them before submission

to Moss

2. Deals with file management, like zip archives and multiple depths of directories

which need to be expanded and normalized before sent to Moss.

3. Filters, since a student should not have their nth assignment checked against their

own (n - 1)th assignment, since matches are likely when assignments build upon

each other.

This saved an instructor time organizing, submitting, and filtering class assignments for

the purpose of software plagiarism detection by reducing the total time spent from 50

hours to only 10 minutes.

2.3 TMOSS: Using Intermediate Assignment Work to Un-

derstand Excessive Collaboration in Large Classes

An extension to Moss that is similar in spirit to our work is TMOSS [2], Temporal Mea-

sure of Software Similarity. The TMOSS algorithm relies on the fact that students often

Background and Related Work 5

have backups of intermediate assignment work, like git history or okpy [7] submission

history. By utilizing the submission history as well as the final submission for plagiarism

detection, while time analyzing increases, TMOSS is “almost twice as effective as tra-

ditional software similarity detectors in identifying the number of students who exhibit

excessive collaboration” [2]. Also of interest is the paper also finds “that such students

[who cheat] spend significantly less time on their assignment, use fewer class tutoring

resources, and perform worse on exams than their peers” [2].

Below is the algorithm from the TMOSS paper, which adds comparison of intermedi-

ate backups of each student to every other student’s submission as well as any online

solutions.

Figure 2.2: Computing top matches in TMOSS [2]

Moss, TMOSS, and TAPS are variable name unaware. That is so a student is not able

to just change variable names to avoid plagiarism detection. Active Academic Integrity

on the other hand is hyper aware of variable name. Moss, TMOSS, and TAPS do not

work well for programming assignments with solutions that only one or a few lines of

code, like in CS 61A [8]. Active Academic Integrity does not have this problem and is

complementary to using Moss/TMOSS/TAPS.

2.4 CS 61A

CS 61A: Structure and Interpretation of Computer Programs [8] is the first required

Computer Science course that Computer Science, Electrical Engineering & Computer

Sciences, and Data Science majors take at the University of California, Berkeley.

Background and Related Work 6

Figure 2.3: First two weeks of CS 61A

The course covers programming paradigms, program structures, interpreters, and meth-

ods of abstraction, and is taught in Python, Scheme, and SQL.

2.5 OK

OK is a software tool that CS 61A and many other computer science and data science

courses use to collect and grade student work.

Figure 2.4: An example student view of OK dashboard

Background and Related Work 7

Figure 2.5: An example of backups for an assignment in OK

The main feature Active Academic Integrity uses from OK is the submission history.

Every time a student tests their code, a snapshot of their code gets uploaded to OK.

This snapshot is referred to as a backup.

Chapter 3

Overview

In Fall 2019, a problem on the first homework was changed for pedagogical reasons.

When grading, a Teaching Assistant noticed that a few students failed the first homework

because they simply submitted last semester’s first homework.

In Spring 2020, we started actively changing variable names and program logic on the

homework, lab, and project assignments. Students in this course use a system called

okpy [7] to test their code locally and submit it to the autograder. Every time a student

tests their code, a copy gets created as a backup submission and sent to our servers.

We then download each backup for every student and search their code for past variable

names or program logic. Over the course of a semester there are over a million different

backups.

What we discovered is that hundreds of students at some point during the course copy

code from somewhere when they are stuck on a problem. They paste the code they find

online into their submission file, run the tests, then get an error message due to invalid

variable names, fix their code, and then submit the file. If we just looked at their final

submissions we could never tell they copied their code, but by looking at their backups

we can see when the students committed academic misconduct.

Unfortunately, there were some students who committed academic misconduct, were

notified, and then still committed academic misconduct on a future assignments. These

students received harsher penalties on future offenses.

8

Overview 9

Figure 3.1: Backup code (above) with the offending function name swap diff on
the second to last line, versus final submission (below) with the correct variable name

shifty shifts.

The figure above is an example of what the system catches. One backup, out of 97,

contains swap diff, the variable name used in the previous semester, as opposed to

shifty shifts. The final submission is a completely valid submission and contains no

clue that this solution was copied.

Chapter 4

Workflow and Best Practices

This section is for other instructors to learn about how we set up our Active Academic

Integrity pipeline and what we learned from over a year of academic integrity work.

The two guiding principles of our work were teaching students to be honest and mini-

mizing student stress. These principles shaped our policies.

4.1 Setup

Both these principles influenced one of our very first assignments, the Homework 1 Syl-

labus Quiz. On it we had a question pertaining to academic honesty which linked to

our syllabus section on academic honesty, as well as tested the students on their under-

standing by giving them scenarios that occurred in previous semesters. The question

and answers can be found in A.

The next thing we did was download past semester course rosters and compare them

to the current semester’s course roster to see which students are retaking. They would

also have good reason to have past semester solutions from when they took the course.

Some students work on past semester assignments during the semester. For example, to

get ahead before the next project is released. We had another form that could be filled

out at any time for this scenario. The question and answers can be found in B.

10

Workflow and Best Practices 11

4.2 Assignment Changes

To be confident a student utilized a past semester solution when solving a problem,

we decided to change problems. Using several semesters worth of changes, we present

examples of good changes and bad changes.

4.2.1 Bad Changes

Variable name changes x to y, f to g, previous score to prev score are all not good. Each

have the same issue. Students are likely to think of the other variable name naturally

when solving the problem and not be referencing a past semester solution!

For example, if a problem was

def update_score(previous_score , x):

...

and the next semester the problem was

def update_score(prev_score , y):

...

A student might think of x as a common variable used to hold a value and use that

instead of y, or might read to themselves prev score as previous score and use the wrong

variable name. To reduce student stress, we wanted to minimize the number of false

positives, and changes like these led to false positives.

Even changes like dollar to euro can lead to false positives, as seeing one currency can

make a student think of another.

4.2.2 Good Changes

Good changes should make it stand out when a student copies a past semester solution.

One very effective change was for a recursive problem in a project to change the name

of the function from swap diff to shifty shifts. The new name was themed and it

was very unlikely someone would randomly type the old function name. Another was

where we had a similar name for the problem, but changed what was actually asked of

the student to be completely different. Backups containing valid solutions to the old

version of the problem were simply nonsensical for the new version. Themed and longer

identifiers also work quite well.

Workflow and Best Practices 12

A similar method can be used for exam randomization, where students get different

copies of the exam with the same problems, but different variable names. An example

from that is having CC-BY-NC-SA, PublicDomain, CreativeCommons, or YouTube-

StandardLicense for a variable name that students have to write or having PaperReam,

GumPack, or PencilPouch as a variable to use in a problem. Long and distinct was what

we found that worked best, but we took care not to make identifiers too distracting or

ruin problems by changing them.

4.3 Assignment Workflow

Now that the changes to the assignment were made, and students finished the assign-

ment, the next step was to search student code for past semester solutions. Our tool

downloaded and parsed all student code. By combining Python with Google Spread-

sheets, the tool was able to skip over students who might have a valid reason for con-

taining past semester code, as discussed in 4.1.

We then searched the student code for past semester identifiers, constants, or logic by

specifying what code snippits to find in the student code submission history. Everything

found was uploaded to a google sheet to allow for multiple people to easily review what

was flagged.

When reviewing backups, we decided to skip over any student code that was only slightly

suspicious and only pursue cases that seemed obvious and egregious to us. We also looked

at the code snapshots before and after the flagged backup, as well as time between

backups.

4.4 Notifying Students

After flagged backups are reviewed, it is time to notify students. To save time on email

writing, as part of our tool [9] we had a way to generate emails based on what the

student was flagged for. The email explained what assignment the student was flagged

for, and asked the student to fill out a form, example in C explaining what happened.

About 60% of students admitted and apologized at this point, while the rest denied

committing any sort of academic misconduct.

For the students who denied committing academic misconduct, if it was a real false

positive where the student had a valid reason for having this past semester code show

up in their backups, then we let the student know that. Otherwise, then we sent over

all the evidence to the student, leading to a discourse over email.

Workflow and Best Practices 13

For repeat offenders, we had harsher penalties. In Fall 2020, our penalty structure was

zero on assignment for first offense, zero on assignment and 2/3 letter grade deduction

for second offense, and failing the course for a third offense. A next offense was when a

student had a backup containing past semester code after we had notified them for the

previous offense.

4.5 Improving from Semester to Semester

The second semester utilizing Active Academic Integrity was different than the first.

Most solutions found online for our course are many years old, and we found students

mostly copied those as opposed to the most recent semester’s solutions. So instead of

making as many changes as we did the first semester, we made fewer changes. Instead

we reviewed what changes had a high false positive rate and updated those changes and

related problems.

4.6 Drawbacks

There are some drawbacks with using Active Academic Integrity. The main one is the

tool is not designed to catch students who over collaborate with another student from

a current semester and share answers. They would not have any past semester code.

There is a straightforward solution to this problem. Utilize Moss and TMOSS instead,

which both are designed to identify instances of peer to peer over collaboration. In this

sense Active Academic Integrity and Moss and TMOSS are complementary, since they

strive to identify different types of academic misconduct. In our case, running Moss

identified only several students who seemed to have over collaborated on the projects,

and was not effective at all at identifying if students over collaborated on homework

assignments, since the homework assignments were so short, that two students having

identical code when solutions to problems are only a few lines long was not unlikely.

Chapter 5

Results

Hundreds of students have been caught using past solutions in CS 61A in each of the

past few semesters, none of whom would have been caught if it were not for our effort

building Active Academic Integrity. These students are now being notified in one of

their first computer science courses. Not alerting these students may lead to bad habits,

being caught in a later course, or never being caught at all.

In the figures and table below, flagged means a backup was manually reviewed, emailed

means student got a notification saying they have been flagged for cheating, and penalty

enforced means the student received a penalty for that assignment.

Figure 5.1: Spring 2020 Data Graph comparing how many students were flagged,
emailed, and had penalties enforced for each assignment. Notice that Homework 1 had
the largest percent of students who were emailed and had penalties enforced, showing

that many students cheat as early as the first assignment.

14

Results 15

Figure 5.2: Summer 2020 Data Graph comparing how many students were flagged,
emailed, and had penalties enforced for each assignment. This semester the instructors
preferred a more conservative approach of emailing students, and many suspicious cases

were not followed up with.

Figure 5.3: Fall 2020 Data Graph comparing how many students were flagged,
emailed, and had penalties enforced for each assignment. The large gap between 98
students emailed and only 57 penalties enforced for proj01 was due to a partial change
slipping through the review process, meaning both the past semester code and current
semester code were both present on the project specification, leading to students having

that code but not committing any plagiarism.

Taking the first homework as an example, we flagged and then accused 164 students out

of the 1452 initially enrolled, or 11.3% of the class. Out of those who were accused, we

only enforced 142 penalties. The most common reason for not penalizing students was

Results 16

Semester Assignment Flagged Emailed Enforced Email Delay in Days
After Assignment Due

Spring 2020 hw01 185 168 142 2
Spring 2020 hw02 165 82 61 5
Spring 2020 proj01 363 42 26 63
Spring 2020 hw03 20 19 19 49
Spring 2020 proj02 124 61 46 42
Spring 2020 lab05 72 56 25 41
Spring 2020 hw04 175 37 31 35
Spring 2020 proj03 179 52 37 27
Spring 2020 hw05 81 81 65 23
Summer 2020 lab01 134 1 1 10
Summer 2020 hw01 130 10 6 6
Summer 2020 hw02 106 1 0 6
Summer 2020 lab02 14 4 2 5
Summer 2020 lab03 22 10 7 21
Summer 2020 hw03 75 7 7 21
Summer 2020 proj01 172 38 31 20
Summer 2020 lab05 57 8 7 18
Summer 2020 hw04 73 24 19 14
Summer 2020 lab06 97 0 0 11
Summer 2020 hw05 41 22 17 19
Summer 2020 proj02 36 29 26 17
Summer 2020 lab09 24 9 8 16
Summer 2020 hw06 40 35 30 12
Summer 2020 lab10 199 2 1 11
Summer 2020 proj03 110 53 37 10
Summer 2020 lab11 67 23 17 9
Summer 2020 hw07 101 16 12 5
Summer 2020 lab12 50 0 0 4
Summer 2020 lab13 18 0 0 2
Fall 2020 hw01 199 49 42 5
Fall 2020 proj01 254 98 57 4
Fall 2020 hw02 139 35 25 3
Fall 2020 proj02 104 31 24 10
Fall 2020 hw03 63 23 22 29
Fall 2020 hw04 19 15 13 22
Fall 2020 proj03 94 57 46 14
Fall 2020 hw05 24 23 17 11
Fall 2020 hw07 67 3 3 24
Fall 2020 hw08 37 36 34 17
Fall 2020 proj04 67 45 39 12
Fall 2020 hw09 78 58 54 3

Table 5.1: All data from Spring 2020 to Fall 2020 Academic Integrity Efforts

they were retaking the course and simply copied their own past solutions or they had

audited the course and solved past semester assignments as a way to prepare. For any

other plausible explanations we decided to not penalize students.

Results 17

By the end of the Spring 2020 semester, we had sent a total of 598 notices to students,

one for each lab, homework, or project a student was flagged and accused for. Out of

those 598 accusations, we enforced 452 of them, or 75.6%. The human review process

between what was flagged and what was emailed made sure students were only emailed

if they had past semester code. There were cases, however, where students had valid

reasons for having the past semester code show up in their submission history.

Example of a bad variable change:

def product(n, f):

""" Return the product of the first n terms in a sequence.

n -- a positive integer

f -- a function that takes one argument to produce the term

>>> product(3, identity) # 1 * 2 * 3

6

>>> product(5, identity) # 1 * 2 * 3 * 4 * 5

120

>>> product(3, square) # 1^2 * 2^2 * 3^2

36

>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2

14400

>>> product(3, increment) # (1+1) * (2+1) * (3+1)

24

>>> product(3, triple) # 1*3 * 2*3 * 3*3

162

"""

"*** YOUR CODE HERE ***"

Here the previous second parameter to product was called term instead of f.

def summation(n, term):

""" Sum the first n terms of a sequence.

>>> summation (5, cube)

225

"""

total , k = 0, 1

while k <= n:

total , k = total + term(k), k + 1

return total

This change is bad for a few reasons. One is the word “term” is still in the problem de-

scription, and a student might then use term instead of f. The main reason is the lecture

example for summation used the old variable names, so students who watched lecture

and attempted to build off the lecture example to solve this problem were incorrectly

emailed.

One common reason for false positives were course staff making changes that were not

properly compared to lecture examples and course textbook. If students referenced the

Results 18

textbook or lecture material they would copy that as an example and then be incorrectly

flagged. Another reason was changes were too simple, like changing a variable name n

to x that students could conceivably solve the problem with the wrong variable name

and not be copying for an outside source.

At the end of Spring 2020, we had enforced penalties to 232 unique students, and the

class enrollment was 1173 students.

We identified two main areas of improvement after the Spring 2020 offering. One was

the false positive rate, especially after the first homework. We ideally want no false

positives, since a false accusation is stressful for students. To solve this we made better

variable name changes and asked the class at the beginning of the semester if they

had worked on the material previously and asked them to provide their past work, as

described in the Workflow and Best Practices section. The second was the sheer amount

of manual work. We had some basic scripts to search backups, but to make it easier

we automated uploading suspicious backup links to a spreadsheet, sending emails, and

making personalized responses to those who want to argue their case.

The Summer 2020 offering was 828 students initially and then 625 students at the end

of the summer. We notified students 292 times and had penalties enforced for 228 of

those notifications, or 78.1%, a increase compared to Spring 2020. Software we built

helped us reduce our time between the assignment due date and when we notify students

from upwards of a month to being on a weekly schedule. Receiving an accusation a

month after a student turned in their code is not as helpful as within a few days, and

timely accusations leave more time for the students to learn from the experience and

never commit academic misconduct again. Better software helped both speed up and

standardize the process of flagging, reviewing, and finally notifying students.

The Fall 2020 offering started with 2054 students, ending with 1755 enrolled. We accused

students 473 times and enforced 376 of those accusations, or 79.5%.

Results 19

5.1 Comparing Semesters

Figure 5.4: Comparison of Accusations

Figure 5.5: Comparison of Penalties

In Spring 2020 we emailed everyone who was slightly suspicious for first two assignments.

Every student that had any past semester code or variable name or solution show up in

their submission history was notified. Later in Spring 2020 we switched to only emailing

people who had extremely suspicious backup. We only notified people who had either

Results 20

full or near full solutions from a past semester show up in their backups, as opposed to

partial or incorrect solutions with past semester variable names.

Figure 5.6: Comparison of Email Delay

A lot of time was spent discussing who to accuse, and reviewing backups in Spring 2020.

The biggest lesson learned was that it is fine not to notify students about everything

they were flagged for, but coming to that decision took a lot of discussion and looking

at flagged student backups. Now we consider what the previous submission looked like

compared to the flagged one, how likely a student is to accidentally write this wrong code

if they were not using a past semester solution, whether a verbal hint from a friend might

have led them to type what was flagged, and how many problems they were flagged for

on a specific assignment.

In Summer 2020 we developed software to make process faster and more streamlined

to review backups and send emails. Specifically the software reduced the time to parse

and upload the flagged backups to a spreadsheet for one assignment from 2 hours to 10

minutes. Automating email sending allowed that portion to be reduced from 1 hour to

a few seconds. The Summer 2020 software work resulted in Summer 2020 and Fall 2020

having a much faster turnaround time compared to Spring 2020, and we were able to

review more assignments.

Results 21

5.2 Spring 2021 Experiment: Early Email Notifications

Getting notified earlier about a potential academic integrity infraction is more likely to

cause the student to change their habits. We understand that students come from very

different backgrounds. The students do not all have a strong understanding of what is

and is not allowed, and especially near a deadline are pressed to search for and submit

work that is not their own. Whatever the reason, we want students to want to stop

themselves, and an early warning realtime was our proposed solution.

Imagine a student is working hard on an assignment. It is late and the deadline is

approaching. The student is struggling to debug a particularly tricky problem related

to using Object Oriented Programming to create a Vending Machine. The student

chooses to search “CS 61A Vending Machine solutions” online and copy a snippet from

the first link, just to check their logic. While comparing that snippet to their wrong

solution and testing things out, the student notices a new email in their inbox.

Subject: Reminder about CS61A Academic Honesty

Hi {Preferred name from welcome survey},

Our automated system noticed something suspicious as you were working on {

assignment }. If you have any questions , please reply back to this email.

No penalties have been applied in your case. This email is just a reminder of our

policies , as well as a set of links to resources.

The system will sometimes flag perfectly innocent code , so we don ’t automatically

apply penalties. Nevertheless , we think that it might be a good idea to make

sure you are aware of the resources we have to help you succeed in CS61A ,

and of the penalties we can apply in cases of inappropriate copying.

Piazza is the place to ask any questions you have , with regards to anything ,

especially any assignment difficulties you may have. Piazza is open at all

hours any day , and you can even make a private post with your code that a

staff member will get to and help you get unstuck!

Office Hours is the place to get live one on one help with a member of staff. The

schedule of office hours is here and then you can visit oh.cs61a.org to sign

up for the office hour queue while office hours are running.

Parties are a place to work with staff and students in a session dedicated to a

single assignment. The schedule for parties is here.

We also want to remind you about our Academic Honesty Policy. Specifically , do

not use solutions from other people , whether you come upon them from

searching online or asking someone for answers. Sadly many students have been

caught being academically dishonest and have suffered grade penalties.

Here are the penalties for Academic Dishonesty in CS61A:

Results 22

1. The first offense will be a 0 on the assignment (if homework)/questions

flagged (if project).

2. For a second offense , the minimum penalty is 1/3’s of a letter grade

reduction. (E.g., reducing your final grade from an A- to a B+.)

3. A third offense can result in failing the course.

In addition , any collaboration on an exam will result in at least negative points

on that exam.

Best ,

CS61A Course Staff

Such a warning would likely leave a strong impression on the student, have them quickly

delete all the copied code, and hopefully be forever aware of the potential ramifications

of utilizing an online solution. Hopefully when tempted again to look online or ask a

friend who has taken the class before for their answers, the student will remember this

moment. What’s more, is the student is notified on your their first offense realtime, as

opposed to days, weeks, or even a month later when many more assignments have been

assigned.

After receiving the automated email, students in CS 61A either responded with a “Thank

you for the warning, it won’t happen again”, or some asked why they were emailed, and

that is when we showed the specific submission backup with the past semester code, and

made it clear that this semesters version of the assignment did not have that phrase or

variable name or logic to solve the problem.

But it is not magic, it simply is removing the check between flagging and sending out

emails to students. As the figures above showed, there are plenty of false positives in

what is flagged. So in Spring 2021, we had a near real-time system that would every

hour download all student backups and then automatically email students. We checked

which search terms from past semesters had a high flag to notify student rate, and those

we allowed an automated system to download all the backups, search for the terms,

and send emails if a student was flagged for the first time. Each student got at most

one automated email, and future offenses led the student to receive point penalties as

opposed to just a warning.

The experiment was highly effective. Out of the 1075 students initially enrolled in the

course, 246 received this automated warning email, or 22.8%.

Out of those 246 students, another 83 students again committed academic misconduct

and were notified a second time after they received the automated warning. These

students were given no credit on the assignments they were notified about. 5 of these

cases were deemed to be false positives.

Results 23

Out of those 83 students, another 11 students again committed academic misconduct

and were notified a third time. These students got an additional penalty of a 2/3 letter

grade reduction on top of no credit for the assignments they were notified about.

As seen in 5.6, we had large time difference between when the assignment was due and

when students were notified. The automated email system greatly reduced the time

between when a student potentially commits academic misconduct and a student is

notified.

5.3 Anonymous Student Surveys

At the end of Spring 2020 and Fall 2020, we added an optional survey to the end

of the final survey titled “Anonymous form to help improve CS 61A with regards to

academic honesty” and asked students to fill it out. We had 265 responses in Spring

2020, 74 responses in Fall 2020, and 29 responses in Spring 2021. Below are some graphs

aggregating student answers.

Figure 5.7: “Do you think your classmates in CS61A are academically honest?”
Spring 2021 had the highest percentage of responses selecting both 1 for all classmates

are honest and 5 for all classmates are dishonest

Results 24

Figure 5.8: “Do you think people were more academically dishonest when CS61A
was online versus in person?” The switch in Spring 2021 to the majority selecting “The
same” might be due to Berkeley courses being online for over a year at that point in

time.

Figure 5.9: “Have you ever been academically dishonest?”

Figure 5.10: “Have you ever been flagged in CS61A for academic dishonesty?” The
word flagged here is the same as emailed used in the Results section.

Results 25

Figure 5.11: “Have you ever been academically dishonest and not flagged on the
assignment?”

Figure 5.12: “I feel like CS61A makes sure all students have a fair grade.” For
context, students in the fall semester on average perform better than students in the
spring semester. The grade a student receives in CS 61A affects their chances of studying

Computer Science at Berkeley.

Results 26

Figure 5.13: “I feel disadvantaged in CS61A if I do not cheat.” There is a high
percentage of students who feel disadvantaged by not cheating. This likely contributes

to the hundreds of academic integrity cases.

Figure 5.14: “I feel like I would be caught if I cheated in CS61A.” Students are fairly
confident in their ability not to get caught cheating.

Results 27

5.3.1 Student Feedback

Here are a few select quotes from the anonymous surveys:

“I was flagged on an early homework which I did indeed violate academic honesty on,

but I received an email about it about 1-2 months later. This is too long, and I think

it’d be wiser to grade assignments sooner and notify students about potential academic

dishonesty, because they would be much more likely to stop violating the academic

honesty policy (if they were copying code from others, from websites, etc.), and this

would not only help them learn more effectively by actually having to do the assignments,

but also prevent them from committing further violations and potentially worrying about

other assignments they may not have been honest on, but were dishonest on them before

getting the notification that their work was flagged.” - student from Spring 2020

“Let up on dishonesty. It shouldn’t be considered dishonest to browse stack overflow.

99% of professional programmers do this on a daily basis. In fact, knowing how to

Google is one of the most useful skills you can have as a developer. There should be no

reason why we can’t do the same in this course.” - student from Spring 2020

“I cheated once and I got caught for it. I think you guys are really good at what you

do. Thank you for giving me the wake up call I needed.” - student from Spring 2020

“I’ve never been compelled to make academically dishonest decisions in THIS class...”

- student from Fall 2020

Chapter 6

Conclusion

With a new method to detect cheating, hundreds of students were caught. Iterations

and improvements in policy and scripting lead to reducing False Positive Rates every

semester, from 24.4% in Spring 2020 to 21.9% in Summer 2020 to 20.5% in Fall 2020

to 6.02% in Spring 2021. Active Academic Integrity is complementary to Moss, and in

some cases better. Notably, it is better when assignments have solutions that are only a

few lines long. This system does catch students who copy past semester solutions, and

improvements in software helped reduce turnaround time, which is good for encouraging

students to change bad habits earlier.

6.1 Discussion Items

How remedial should an academic integrity process be, and how harsh should punish-

ments be for getting caught cheating?

Is this system only catching students because it is novel?

Should evidence be shown to student when they are emailed?

One drawback of this system compared to Moss is that it will never catch a student

copying/over collaborating with a current semester classmate. Is using an online/past

semester solution worse than getting answers from a current classmate?

What should be done when a student claims to coincidentally use a past semester vari-

able?

28

Chapter 7

Contributions and Future Work

All our work is open source https://github.com/alexkassil/active_academic_integrity

and we hope other educators can adopt it for their courses. One planned area of exten-

sion is to have the system work seamlessly with git as well as okpy. Finally making a

website interface instead of just command line scripts and spreadsheets would make the

tool more accessible to others.

29

https://github.com/alexkassil/active_academic_integrity

Appendix A

Syllabus Quiz Academic Integrity

Questions

Refer to https://inst.eecs.berkeley.edu/ cs61a/fa20/articles/about.html#academic-honesty

to answer questions from this section

Alyssa and Ben are students in 61A unless otherwise noted. Select all scenarios that

VIOLATE academic honesty

�3 Alyssa and Ben work on a HOMEWORK assignment together. They work on it

together on the same screen or send each other their code and as a result, have

similar answers

� Alyssa and Ben work on a HOMEWORK assignment together. They share ideas

and talk through it together but they do not share answers or look at each other’s

screens

� Alyssa and Ben work on a PROJECT together, and they are project partners for

this project. They talk through it and work on it together on the same screen,

and as a result have identical answers

� Alyssa and Ben work on a HOMEWORK assignment together. Alyssa finishes

first and helps Ben finish by looking at Ben’s code

�3 Alyssa and Ben work on a HOMEWORK assignment together. Alyssa finishes

first and helps Ben by showing Alyssa’s code to Ben

�3 Alyssa is a 61A student this semester and Charles was a student in Summer 2020.

Alyssa asks Charles for help on a question, and Charles helps Alyssa by looking

30

https://inst.eecs.berkeley.edu/~cs61a/fa20/articles/about.html#academic-honesty

Appendix 31

at his solution and walking her through his solution verbally, but doesn’t send his

code to Alyssa

�3 Ben searches online for 61A homework solutions, only to compare to his code and

figure out why his own code is wrong, not copy completely.

Any Previous CS61A Work?

Some students either are taking CS61A for another time after dropping or have done

some of the assignments in the past. It is totally fine to reference your past work, but

please let us know how far you got into the assignments so you do not get flagged for

academic misconduct by our cheating detection software.

If you do not have access to your previous solutions or you do not plan to use your

previous solutions, please answer no for this question.

Have you worked on any CS61A assignments in the past?

• Yes

• No

Previous CS61A Work

Having already done some of the material in CS61A in the past does make redoing that

material easier. While you are allowed to look at your own past answers, we recommend

you try each problem from scratch without referencing your past solutions, since students

who retake the course or have already done the assignments learn more by trying the

assignments from scratch. Also assignments change every semester, so directly copy and

pasting your previous semester solutions sometimes does not work at all!

Upload your past work here

Please put all your .py/.sql/.scm files in one folder, zip that folder, and upload it here,

do not upload extras like ok/scheme editor/tests/guis.

Appendix B

Referencing Previous

Work/Working Ahead on

Assignments Form

Some students, either due to repeating the course or previewing the material beforehand,

or getting a leg up on an assignment before it is released have their own answers/work

from a previous semester.

What is not ok is using a friends past semester work and claiming it is your own.

Please select which assignment you are using previous work from and upload the file

from the assignment.

For most assignments just upload the one .py/.scm/.sql file

For the scheme project just upload scheme.py and questions.scm by filling out the form

twice.

**This form is only for those who have more assignments they worked on after submitting

the syllabus quiz. For example to get ahead you worked on last semester’s ants project

before it was released**

Which assignment did you work on?

• List of Assignments

Upload the .py/.sql/.scm file that is your own work that you will be referencing

What semester is the assignment from?

32

Appendix 33

• List of Semesters

Space for adding any extra information you might want to share with the staff

Appendix C

Use of Solutions Form

Which assignments were you flagged for?

• List of Assignments

Do you agree that accessing solutions to CS 61A assignments, whether they are currently

or formerly posted to the web or asking someone who has previously or currently taken

the course for answers is not allowed and a violation of the academic honesty policy

of the course? This is not an admission of guilt, but just a confirmation of the course

policies.

• Yes

• No

Do you admit that you have violated the academic honesty policy of the course in some

way? We want you to tell the truth. That being said, if you believe you’re not guilty,

don’t hesitate to mark “no” and explain yourself in the box below.

• Yes

• No

Is there anything else you’d like to say/share?

34

Bibliography

[1] Alex Aiken. A system for detecting software similarity. https://theory.stanford.

edu/~aiken/moss/. Accessed: 2021-05-02.

[2] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. TMOSS: Using Inter-

mediate Assignment Work to Understand Excessive Collaboration in Large Classes.

SIGCSE ’18: Proceedings of the 49th ACM Technical Symposium on Computer Sci-

ence Education, pages 110–115, February 2018. doi: 10.1145/3159450.3159490. URL

https://stanford.edu/~cpiech/bio/papers/tmoss.pdf.

[3] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local Algorithms for

Document Fingerprinting. SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, pages 76–85, 2003. doi: 10.

1145/872757.872770. URL http://theory.stanford.edu/~aiken/publications/

papers/sigmod03.pdf.

[4] Jr. Bernard E. Whitley. Factors Associated with Cheating among College Students:

A Review. Research in higher Education, Vol, 39, No. 3, pages 235–274, 1998. doi:

10.1023/A:1018724900565. URL https://link.springer.com/content/pdf/10.

1023%2FA%3A1018724900565.

[5] Mark G Simkin and Alexander McLeod. Why do college students cheat? Journal

of Business Ethics, 94(3):441–453, 2010. URL http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.620.5105&rep=rep1&type=pdf.

[6] Dana Sheahen and David Joyner. Taps: A moss extension for detecting software

plagiarism at scale. In Proceedings of the Third (2016) ACM Conference on Learn-

ing @ Scale, L@S ’16, page 285–288, New York, NY, USA, 2016. Association for

Computing Machinery. ISBN 9781450337267. doi: 10.1145/2876034.2893435. URL

https://doi.org/10.1145/2876034.2893435.

[7] Ok: Automate grading & personalize feedback. https://okpy.org/. Accessed:

2021-05-02.

35

https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
https://stanford.edu/~cpiech/bio/papers/tmoss.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
https://link.springer.com/content/pdf/10.1023%2FA%3A1018724900565
https://link.springer.com/content/pdf/10.1023%2FA%3A1018724900565
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.620.5105&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.620.5105&rep=rep1&type=pdf
https://doi.org/10.1145/2876034.2893435
https://okpy.org/

Bibliography 36

[8] Cs 61a: Structure and interpretation of computer programs. https://cs61a.org/.

Accessed: 2021-05-02.

[9] Active academic integrity source code. https://github.com/alexkassil/active_

academic_integrity. Accessed: 2021-05-02.

https://cs61a.org/
https://github.com/alexkassil/active_academic_integrity
https://github.com/alexkassil/active_academic_integrity

