
How Close is your Function to Depending on a Small

Number of its Inputs?

Michael Whitmeyer

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-152

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-152.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Avishay for his guidance, help, insights, and kindness
whenever I was stuck. I have learned an incredible amount just by
witnessing his ideas and approaches to complex topics in real time.
Without his guidance, this thesis would not have been possible. I would
also like to thank Vishnu for always being available for to discuss all
manner of dumb ideas. I would not like to thank Covid-19. Go Bears.

(S A M P L E)

How Close is Your Function to Depending on a Small Number of its
Inputs?

by Michael Whitmeyer

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Avishay Tal
Research Advisor

(Date)

* * * * * * *

Professor Prasad Raghavendra
Second Reader

May 21, 2021

(S A M P L E)

May 14th, 2021

How Close is Your Function to Depending on a Small Number
of its Inputs?

by
Michael Whitmeyer

A thesis submitted in partial satisfaction of the requirements for the degree of Master of
Science in Computer Science in the Graduate Division of the University of California,

Berkeley

Committee in charge:

Professor Avishay Tal, Chair
Professor Prasad Raghavendra

Spring 2021

How Close is Your Function to Depending on a Small Number of its Inputs?

Copyright 2021
by

Michael Whitmeyer

1

Abstract

This thesis focuses on the following question: if we have query access to some f :
{−1, 1}n → {−1, 1} (meaning we can query any of its 2n outputs at will), how many queries
do we need to discern whether f is “close” or “far” from depending on only a subset of k of
its inputs? Such functions are known in the field as “k-juntas”. The main results come from
the recent work of [ITW21], which gave an improved upper bound on the query complexity

of this problem. Namely, it was shown that only 2Õ(
√
k) queries to f suffice to answer this

question. Along the way, we will provide a more detailed and leisurely survey of the other
results and progress in this area, examining other techniques and the strongest known upper
and lower bounds for variants of this problem.

To my parents.

Contents

1 Survey of Junta Testing and Variants 7
1.1 Property Testing . 7

1.1.1 Tolerant Property Testing . 8
1.2 Motivating Junta Testing . 9
1.3 Preliminaries . 10

1.3.1 Fourier Analysis of Boolean Functions 10
1.4 Testing 1-Juntas . 11
1.5 A Brief History of Junta Testing and its Variants 12

1.5.1 Distribution Free Setting . 15
1.5.2 Quantum Junta Testing . 15
1.5.3 Summary . 16

1.6 Lower Bounds for Junta Testing . 16
1.6.1 Adaptive Lower Bounds . 16
1.6.2 Nonadaptive Lower Bounds . 18
1.6.3 Quantum Lower Bounds . 19

1.7 Tolerant Junta Testing . 20
1.7.1 Tolerant Junta Testing Lower Bounds 22

1.8 New Upper Bounds for Tolerant k-junta Testing 25
1.9 Further Preliminaries . 26

1.9.1 Probability . 26
1.9.2 Further Fourier Analytic Tools/Facts 27
1.9.3 Estimating Fourier Coefficients . 28

2 New Algorithms for Tolerant k-junta Testing 30
2.1 Overview of Techniques . 30

2.1.1 Techniques for Establishing Theorem 1.8.3 30
2.1.2 Techniques for Theorem 1.8.1 . 32

2.2 Finding a Small(er) Set of Influential Coordinate Oracles 33
2.2.1 Approximate Oracles to Influential Coordinates 34
2.2.2 Implicit Access to an Underlying Junta 36
2.2.3 Influential Coordinate Oracles . 38
2.2.4 Reducing the Number of Oracles to Consider 38
2.2.5 Proof of Theorem 2.2.11 . 43

2.3 A 2Õ(
√
k)-query Tolerant Junta Tester . 45

2.3.1 Phase One: The Higher Levels . 46
2.3.2 Phase Two: The Lower Levels . 51

2

2.3.3 Proof of Theorem 2.3.1 . 55
2.4 Conclusions and Open Problems . 58

Appendix 65
A Minimax . 65

A.1 Yao’s Principle from Minimax . 65
A.2 Proof of Minimax . 66

B Constructing Influential Coordinate Oracles 67
C Maximum k-Subset Fourier Mass Approximation 71

3

List of Figures

1.1 A visualization of the tolerant property testing paradigm. Assuming the
outermost oval represents all functions f : {±1}n → {±1} and the property
at hand is represented by a class of functions Π, the goal is to distinguish
between the light grey (at most c` close to a function in Π) and the dark grey
(at least cu far from all functions in Π) regions. 21

1.2 Functions sampled according to D− in [PRW19], which is designed to be far
from all being a k-junta for all completions of the erasures. 24

4

List of Tables

1.1 Table of Nontolerant Junta Testers . 16
1.2 Nontolerant Junta Testing Lower Bounds . 20
1.3 Upper and lower bounds in tolerant junta testing. Note that the results of

[BCE+19] are only valid for certain settings of c` and cu. 26

5

6

Acknowledgements

I would like to thank Avishay for his guidance, help, insights, and kindness whenever I was
stuck. I have learned an incredible amount just by witnessing his ideas and approaches to

complex topics in real time. Without his guidance, this thesis would not have been
possible. I would also like to thank Vishnu for always being available for to discuss all

manner of dumb ideas. I would not like to thank Covid-19. Go Bears.

Chapter 1

Survey of Junta Testing and
Variants

1.1 Property Testing

The study of property testing, initiated by Blum, Luby, and Rubinfeld in their seminal work
on linearity testing [BLR90], is concerned with making fast decisions about a global object
having some global property, while only accessing (or “querying”) parts of it.

We begin our discussion with a canonical example, which was the original problem con-
sidered in [BLR90]. They wanted to decide whether a given Boolean function f : {0, 1}n →
{0, 1} was linear, meaning f(x+ y) = f(x) + f(y) for all x, y ∈ {0, 1}n.1 This is equivalent
to testing whether f =

∑
i∈S xi for some subset S ⊆ [n],2 or whether it is ε-far from every

linear function. Here, we must define what we mean when we say f and g are “ε-far”. To
discuss this example, we need the following notion of distance.

Definition 1.1.1. We define the distance of two Boolean functions f, g : {0, 1}n → {0, 1}
to be the fraction of inputs on which they disagree:

dist(f, g) :=
|{x | f(x) 6= g(x)}|

2n
= Pr[f(x) 6= g(x)].

Moreover, we can extend this notion to a class of functions C. We say f is ε-close to C if
there exists some g ∈ C such that dist(f, g) ≤ ε, otherwise we say f is ε-far from C. More
generally, dist(f, C) := ming∈C dist(f, g).

We can now return to the above discussion of linearity testers. Here, C is the family of
all linear functions. Perhaps surprisingly, [BLR90] was able to show that for any constant
ε, only a constant number of queries suffices to distinguish between the case that f ∈ C and
dist(f, C) > ε. In particular, the following was their “test” for linearity (which is perhaps
the first test you might consider trying!):

1. Choose random x ∈ {0, 1}n and y ∈ {0, 1}n.

2. Query f at x, y, and x+ y.

1Here x + y denotes coordinate-wise vector addition mod 2.
2See [O’D14], exercise 1.26 for more on this equivalence.

7

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 8

3. Accept if f(x) + f(y) = f(x+ y).

It is clear that if f is actually linear, this test will always accept. The nice result is that
if f is ε-far from linear, then this test accepts with probability at most 1− ε! A particularly
clean analysis for this fact can be found in O’Donnell [O’D14], Chapter 1.6.

The above is a favorite seminal example, and since then property testing was further
explored by Goldreich, Goldwasser, and Ron [GGR96], who drew connections to the areas
of learning theory and approximation algorithms in the context of graph properties. Even
before that, however, many were interested in property testing in the context of polynomials
and program checking, since low-degree tests are a crucial part of the proofs that MIP =
NEXP [BFL91] and NP = PCP[log n,O(1)] [ALM+92]. The latter “PCP Theorem” of course
being of great interest due to its many applications in hardness of approximation results
(see e.g. [Tre04] for a survey).

By now, property testing by itself is an extremely well-established field, and indeed at
least one textbook has been written on the topic by Goldreich [Gol17]. In this thesis we focus
on properties of Boolean functions. For convenience, we will represent Boolean functions
primarily as f : {±1}n → {±1}.3

We are now ready to state the definition, which has already been alluded to, of a property
testing algorithm A. Given ε > 0 and a class of functions C, we say that the algorithm A is
a property tester for C if it satisfies the following two conditions:

1. if f ∈ C, then A accepts f with probability at least 2/3;

2. if dist(f, g) ≥ ε for all g ∈ C, then A rejects with probability at least 2/3.4

The primary measure of efficiency for such property testing algorithms is the algorithm’s
query complexity, or the number of times it must use its black box access to f . Such
query algorithms can be adaptive in that the coordinates on which they query f depend on
previous answers, or they can be nonadaptive in that the algorithm always queries f in a
predetermined manner. In this thesis we survey both adapative and nonadaptive upper and
lower bounds, but the main result presented will be an adaptive algorithm.

1.1.1 Tolerant Property Testing

One of the first relaxations of the standard property testing model considered (sometimes
referred to as the “parameterized” regime) were testers that distinguished between f ∈ H
and f being ε-far from H ′ ⊇ H. This notion was introduced by Kearns and Ron [KR00] in
the context of testing decision trees and certain classes of neural networks. We note that if
H ′ is a strict superset of H, then the job of the tester becomes easier, and smaller query
or sample complexity is often achievable than in the regular testing model. Indeed, our
Theorem 1.8.2 is an example of a (tolerant) parameterized tester.

Tolerant testing is yet another generalization of the standard property testing model.
The notion was first introduced by Parnas, Ron, and Rubinfeld [PRR04]. Standard property

3This is largely because Fourier analysis of Boolean functions becomes easier to work with when Boolean
functions are represented in this way. In this basis, 0 7→ 1 and 1 7→ −1, and addition mod 2 corresponds to
multiplication.

4As is common for such probabilistic decision problems, the choice of 2/3 here is arbitrary. As long as
these probabilities are bounded away from 1/2, we can repeat the algorithm and take the majority vote of all
the outcomes (here, Chernoff/Hoeffding bounds are our friends) to achieve any accept/reject probabilities
that we may desire.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 9

testing entails distinguishing between functions that exactly satisfy a certain property, and
functions that are ε-far from satisfying said property. This is somewhat restrictive, and the
tolerant testing problem seeks to more generally distinguish functions that are c` close to
having the desired property, and those that are at least cu far from having the property, for
some 0 < c` < cu < 1. We also note that the notion of tolerant testing is closely related to the
notion of distance approximation – indeed, if one can estimate dist(f, C) up to additive error
(cu − c`)/2 with probability at least 2/3, then one has solved the tolerant testing problem
for that class.5 In general, tolerant testing (and therefore distance approximation), is much
more challenging than traditional property testing. Figure 1.1 provides a visualization of
the tolerant testing problem. Tolerant testing has received a lot of attention recently, see
for example [BLT20] for work on tolerant testing of decision trees and [ACCL07] [PRW20]
for work on tolerant testing of monotonicity. This thesis focuses primarily on the tolerant
testing of juntas, which we discuss extensively in Section 1.7.

1.2 Motivating Junta Testing

First and foremost, we must mention the survey by Blais [Bla10] which gave a nice overview
of the state of nontolerant junta testing at the time, which was 2010. In this section, we go
over many of the same results, but also present more recent work in the area and improved
upper and lower bounds.

In this thesis, we will focus primarily on the tolerant testing of k-juntas, which are the
class of Boolean functions on n variables which depend on only k of their inputs.

To those outside the field of property testing, the focus on juntas may at first seem a bit
puzzling. Indeed, why even further restrict ourselves to only Boolean functions? Before we
defend why juntas and Boolean functions matter so much, we must mention that much effort
has also been put into testing other properties, such as monotonicity [PRW19, ACCL07],
graph properties [GGR96] (see [Gol11] for a survey), and distribution testing (see [Can15]
for a survey), just to name a few.

Why, then, are juntas on Boolean functions so interesting6? First, there are nice con-
nections to machine learning and the learning theory community in general cares about
them a lot [GE03, Val12, MOS03]. Data is getting bigger and bigger, and as that happens
it becomes more and more likely that any function of said data actually depends on only
a small subset of it. Those are juntas! A favorite canonical example comes from genet-
ics – for example, is a disease or phenotype a function of a few genes, or far from it? If
you knew your function was a junta (or at least close), then you could in principle run a
more learning algorithm to figure out exactly which junta you were close to, rather than
just testing it. This would give you more information and arguably be more useful in the
real world, however, such learning algorithms are expensive.7 Therefore, it may be pru-
dent to first test that your function is close to a k-junta (which is cheap) before running
the expensive learning algorithm. Another nice thing about juntas is that they naturally

5The reverse direction is also true up to logarithmic factors in the query complexity – given a tolerant
tester it is possible to estimate the distance to that property. See for example section 3 in [ACCL07] and
section 5 in [PRW19].

6to me
7Learning k-juntas on n Boolean variables must information-theoretically depend on the ambient di-

mension n, and indeed the state of the art k-junta learners don’t do terribly much better than the trivial(n
k

)
poly(2k, n) algorithm one can achieve by simply iterating over all possible subsets of size k and seeing

how well they work [MOS03, Val12].

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 10

capture a lot of other types of functions. For example, dictators/antidictators (functions
f : {0, 1}n → n of the form f(x) = xi or f(x) = 1 − xi), DNFs, CNFs, decision trees,
k-linear functions (f(x) =

∑
i∈S xi mod 2, k-monomials (functions f : {0, 1}n → n of the

form f(x) =
∏
i∈S xi), and low degree polynomials are all naturally some form of juntas.

This makes juntas a very general class to work with, although it is sometimes possible to
have more efficient learning/testing algorithms for more specific kinds of juntas.

1.3 Preliminaries

Before we begin our survey, we must discuss some basic preliminaries concerning Boolean
functions. For the mjority of this thesis, we will represent Boolean functions primarily using
the multiplicative group {±1}, that is, f : {±1}n → {±1}. Occasionally, when it is more
convenient, we represent Boolean functions over Z2 = {0, 1}. The distinction is not very
consequential, it just requires translating between multiplication and addition modulo 2
(both are XOR’s).

We denote the complement f̄ to be f̄(x) := −f(x) (if we were working in the {0, 1}
basis, f̄(x) := 1− f(x)). All addition and multiplication of vectors on {0, 1}n will be taken
pointwise. For a subset S ⊆ [n], the vector z = xSyS̄ is formed by taking zi = xi for all
i ∈ S, and zi = yi for all i 6∈ S.

For a positive integer n, we denote by [n] the set {1, . . . , n}. For a distribution D, we
denote that a random variable x is sampled according to D by x ∼ D. In the case that x is
sampled uniformly at random from a set S, we will abuse notation slightly and write x ∼ S.

The binomial distribution with n trials and probability p per trial will be denoted
Bin(n, p). We denote the set {−1, 1} with the shorthand {±1}. For functions f, g from
{±1}n to {±1} we define dist(f, g) = Prx∼{±1}n [f(x) 6= g(x)]: that is, the fraction of in-
puts on which f and g differ. For a set S ⊆ [n] we will denote by {±1}S the set of possible
assignments to the variables {xi}i∈S .

1.3.1 Fourier Analysis of Boolean Functions

In this subsection we recall some tools in the analysis of Boolean functions. For a more
thorough introduction to the field, we refer the reader to [O’D14]. For every subset S ⊆ [n],
we define the parity function on the bits in S, denoted by χS : {±1}n → {±1} as χS(x) =∏
i∈S xi. It is a well-known fact that we can express uniquely any f : {±1}n → R as a linear

combination of {χS}S⊆[n]:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The coefficients {f̂(S)}S⊆[n] are referred to as the Fourier coefficients of f , and can be

calculated by f̂(S) = E[f(x)χS(x)]. We say Fourier coefficients are on level s if they
correspond to subsets of size s.

Definition 1.3.1 (Influence of Coordinates and Sets). We define the influence of coordinate
i on f : {0, 1}n → {0, 1} as

Inf i[f] := Pr[f(x) 6= f(xi)],

where the probability is taken over the uniform distribution and xi denotes the input x with
the ith coordinate flipped. It is a well-known fact (see, e.g., [O’D14, Theorem 2.20]) that

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 11

Inf i[f] =
∑
S3i f̂(S)2. We also naturally define, following the convention of [Bla09, Bla08,

BCE+19], the influence of a set S on f as

InfS [f] = 2 ·Pr
x,y

[f(x) 6= f(xS̄ , yS)].

We naturally extend the above definition and define the low-degree influence (up to level
k) of coordinate i on f as

Inf≤ki [f] =
∑

S3i,|S|≤k

f̂(S)2.

For a set T ⊆ [n] we define the projection of the function f to T , denoted f⊆T , as the par-

tial Fourier expansion restricted to sets contained in T , i.e., f⊆T (x) =
∑
S:S⊆T f̂(S)χS(x).

We observe that f⊆T depends only on coordinates in T and that it can be alternatively
defined as f⊆T (x) = Ey∼{±1}n [f(y)|yT = xT]. As suggested by the last identity, we also
denote f⊆T by favg,T .

In the regime of property testing, we define the “correlation” of two functions (which is
related the the distance between two functions) as follows.

Definition 1.3.2 (Correlation). For functions f, g : {±1}n → {±1} and a family of func-
tions G, all from {±1}n → {±1} we say that

1. f and g are c-correlated if Ex∈{±1}n [f(x)g(x)] = c;

2. f and G are c-correlated (denoted corr(f,G) = c) if maxg∈G Ex∈{±1}n [f(x)g(x)] = c.

In the paper, we will occasionally abbreviate the correlation between f and g as E[fg]
when the domain is implied. Observe that when f and g are Boolean-valued (in ±1) we
have E[fg] = 1− 2dist(f, g).

Fact 1.3.3. For functions f, g : {±1}n → R, we have Plancheral’s identity:

E
x∼{±1}n

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S) .

When f = g, this fact is known as Parseval’s identity.

Now, we define some classes of Boolean functions with properties that will be useful to
us.

Definition 1.3.4 (Junta). Let T ⊆ [n]. A function f : {±1}n → R is called a junta on T
if f depends only on coordinates in T . I.e., there exists a function g : {±1}T → R such that
f(x) = g(xT). A function is called a k-junta if it is a junta on T for some T ⊆ [n] of size
k. Following the notation of [DMN19], we denote the class of k-juntas on n inputs as Jn,k.
We also denote JU,k as the set of k-juntas with inputs inside of U , and when |U | = k then
we often denote JU := JU,k for brevity.

1.4 Testing 1-Juntas

We start with an examination of the simplest form of junta, the set of functions that depend
on at most one variable. Since we are dealing with Boolean functions, the family of such
functions is remarkably small (when considering that on n bits, there are 22n possible

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 12

functions). It only contains dictators, antidictators, and constant functions, so in total
our family contains 2n+ 2 functions. We present the following algorithm, the core ideas of
which come from [BLR90, BCH+96]:

Algorithm 1: Dictator/Constant Test

Input: f : {0, 1}n → {0, 1} (target function)
Output: “Accept” w.p. 2/3 if f is a dictator or constant function, otherwise

“Reject” w.p. 2/3 if f is ε-far from all such functions.
1 for O(1/ε) random pairs x, y ∈ {0, 1}n do

1. Verify that f(x) + f(y) = f(x+ y) (otherwise reject) /* verify linearity */

2. Verify that f(x) · f(y) = f(x · y) (otherwise reject) /* verify monomiality */

2 Accept if all tests pass.

Intuitively, Algorithm 1 checks that f is both linear and a monomial. The only such
functions for which that is true are dictators and constant functions. Since anti-dictators
are also included in the family of 1-juntas, we would also like our test to account for this.
This is a simple fix: we can run Algorithm 1 twice, once with f and another time with f̄ ,
and accept if it accepts at least once. We already established in Section 1.1 that the linearity
test works properly – it remains to note that the monomiality test will reject functions that
are parities of at least two variables:

Lemma 1.4.1 ([PRS01, BGS98]). The probability that Item 2 in Line 1 of Algorithm 1
passes for f =

∑
i∈S xi mod 2 is equal to{

1/2 + 2−|S|−1 if |S| is even

1/2 + 2−|S| if |S| is odd.

For the proof of this lemma, we refer the reader to the original work, but it is a rela-
tively simple counting argument. With this and the fact that the linearity testing part of
Algorithm 1 works, this provides us all the analysis we need to say that we have achieved a
1-Junta tester with query complexity O(1/ε). We note however that this test is somewhat
“old-fashioned” in that there are newer and perhaps even simpler dictator/antidictator tests
that can be found in Chapter 7 of [O’D14], for the curious reader.

1.5 A Brief History of Junta Testing and its Variants

Now that we have seen a simple tester for 1-juntas, it is time to move to the more challenging
task of testing k-juntas. The main goal of k-junta testers is to have a query complexity that
is independent of the ambient dimension n.8

At first glance, this might seem hopeless, but Fischer et al. [FKR+04] were the first
to come up with a clever way to “get rid of” the dependence of their tester on n. Their
insight/intuition was to partition the n inputs of f into poly(k) many “buckets”. The very
high level idea is that naturally, if f is a k-junta, then it is certainly a “k-part” junta with
respect to this partition into buckets (i.e. it is only dependent on at most k parts). The

8Note that it is not possible to have a runtime that is independent of n, since even just making a query
requires specifying the n bits of the input to the oracle.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 13

more nontrivial thing one most prove is that if f is ε-far from any k-junta, then it is also,
with high probability over the random partition of the inputs, far from a k part junta. We
formalize this more soon, but there is yet another key ingredient, which was actually first
an observation of Blum, Hellerstein, and Littlestone [BHL95], but which was used to great
effect by Blais [Bla09]. The ingredient is the following observation: if we have two inputs
x and y such that f(x) 6= f(y), then at least one of the coordinates i where xi 6= yi must
be relevant (have nonzero influence). Moreover, by performing a simple binary search over
the hybrid inputs between x and y,9 we can find such a relevant coordinate with only log n
queries. Crucially, the exact analogous procedure works to find a relevant part of f with
only O(log k) queries if we have partitioned the inputs of f into poly(k) parts/buckets.

Now that we have some high level ideas, we can present some more of the details of these
algorithms.

One can alternatively define a k-junta as a function f that contains a set S of size at
most k such that Inf S̄ [f] = 0. Also, the above definition suggests an extremely natural
way of estimating the influence of a set: simply sample x, y ∼ {0, 1}n and then check if
f(x) = f(xS̄yS). If the set has influence γ, then repeating this O(1/γ) suffices to see at
least one such pair (x, y) such that the check fails with high probability, and we can be
confident f depends on at least one coordinate in S. This leads to the following algorithm
found in [FKR+04]:

Algorithm 2: Fischer et al.’s [FKR+04] k-junta test

Input: f : {0, 1}n → {0, 1} (target function)
Output: “Accept” if f is a k-junta with probability 2/3, and “Reject” if f is ε-far

from any k-junta with probability 2/3.
1 Randomly partition the coordinates into O(k2) buckets S1, ..., SO(k2).
2 for each Si do
3 Check that f is independent of Si by sampling O(k2/ε) pairs x, y ∼ {0, 1}n and

verifying that f(x) = f(xS̄iySi).

4 return “Accept” if at most k such Si fail, otherwise “Reject”

[FKR+04] then proved the following lemma (using Fourier analysis of Boolean functions)
to verify the soundness of the above procedure.

Lemma 1.5.1 ([FKR+04]). If f is ε-far from every k-junta, then with high probability over
a random partition S1, ..., SO(k2) will have at least k+1 parts with influence InfS [f] > ε/k2.

The above lemma directly implies the soundness of Algorithm 2, and implies a O(k4/ε)-
query junta test, which is notably independent of n. This represented the first major
breakthrough in junta testing, and in the same paper a slightly more clever (adaptive)

algorithm that achieved Õ(k2) queries was presented. However these algorithms did not
use the aforementioned observation of Blum et al. and Blais (which was really just a clever
application of binary search). So how does this help exactly? We are now ready to present

9In more detail: let S be the set of coordinates on which x and y differ. Then we can flip the bits of x
for half of the coordinates in S, call this input z. Then either f(x) 6= f(z) or f(z) 6= f(y). Whichever is the
case, we can recurse on that pair of inputs, and this takes logn time and queries.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 14

the optimal10 adaptive algorithm of Blais [Bla09] in Algorithm 3.

Algorithm 3: Blais’s [Bla09] optimal k-junta test.

Input: f : {0, 1}n → {0, 1} (target function)
Output: “Accept” if f is a k-junta with probability 2/3, and “Reject” if f is ε-far

from any k-junta with probability 2/3.
1 Randomly partition the coordinates into O(k2) buckets S1, ..., SO(k2).
2 Initialize J = ∅. /* Start with no relevant parts of f */

3 for O(k/ε) rounds do
4 Set J ← J ∪ Find New Relevant Part(f, I, J̄). /* Use Algorithm 4 to find

new relevant part. */

5 if J contains > k relevant parts then
6 return “Reject”

7 return “Accept”

Algorithm 4: Find New Relevant Part

Input: f , Partition I of [n], subset S ⊆ [n]
Output: A bucket of the partition (in S) that contains a relevant variable to f ,

otherwise outputs the empty set
1 Sample x, y ∼ {0, 1}n u.a.r.
2 if f(x) 6= f(xS̄yS) then
3 use binary search to find a part I ∈ I (in S) with a relevant variable.
4 return I

5 Otherwise, return ∅

We must note that Algorithm 3 is slightly different than originally presented in [Bla09],
wherein Blais partitioned the inputs into buckets of size O(k9/ε5). Blais in [Bla09] also
proved his result using the Efron-Stein decomposition of functions, which extends Fourier/harmonic
analysis to more general functions with finite product domains with finite ranges. A some-
what simpler algorithm/analysis for the case of Boolean functions, wherein Blais partitions
into O(k2) buckets as we have presented in Algorithm 3, can be found in Blais’s PhD thesis
[Bla12].

What has to happen in order for this algorithm to work? Once again, it is clear that if
f is a k-junta, then it is certainly a k-part junta, so it just remains to show that if f is ε-far
then Algorithm 3 will reject with high probability. Soundness follows from the following
lemma.

Lemma 1.5.2 (Lemma 5.4 in [Bla12]). If f : {0, 1}n → {0, 1} is ε-far from any k-junta,
and I partitions [n] into O(k2) buckets, then with high probability every set J formed by
taking the union of at most k parts of I satisfies Inf J̄ [f] ≥ ε/2.

With this lemma in hand, soundness of Algorithm 3 is easy to show, and it can also be
easily verified that the algorithm makes at most O(k log k + k/ε) queries. Finally, we note

that [Bla08] gives a Õ(k3/2) query junta tester, which is slightly worse in complexity but
crucially does not require any adaptive queries.

We now mention some a few generalizations (namely, the distribution free model and the
quantum model) of the property testing model and the work that has been done in these

10We will get to why it’s optimal (for constant ε) shortly.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 15

models on the problem of junta testing.

1.5.1 Distribution Free Setting

Every algorithm and definition we have mentioned thus far have operated under the assump-
tion that the distribution over the inputs of our function is uniform. It is natural to consider
what happens when this is not the case. This model of property testing is known as the
distribution free model, and was first considered in the context of property testing by Halevy
and Kushilevitz [HK07]. For the distribution free testing of juntas, Chen et al. [LCS+19]

initially gave a Õ(k2/ε)-query algorithm with one-sided error. Notably, their algorithm
is adaptive, and they were able to show that adaptivity is crucial in the distribution-free
setting by exhibiting a Ω(2k/3) query lower bound for nonadaptively testing juntas in the
distribution free model. This was quickly followed up by the works of Bshouty [Bsh19b] and

Zhang [Zha19] who gave Õ(k/ε)-query algorithms with two-sided and one-sided error, re-
spectively. The methods utilized by Bshouty extend those of Diakonikolas et al. [DLM+07]
and result in algorithms not only for junta testing but also several subclasses of juntas.

As a precursor of what is to come in Chapter 2, which presents the recent result [ITW21],
we note that while we solve a similar problem in a different setting,11 some of our techniques
resemble those of [Bsh19b]: notably, an idea introduced in [Bsh19b] is to find a witness such
that, if all coordinates outside a subset of the coordinates are fixed to this witness’ values,
then f becomes a dictator on a single coordinate within that subset. This can be thought of
as obtaining oracle access to a relevant coordinate, an idea pervasive throughout the work of
[DMN19] and ours. The techniques in [DLM+07, DLM+08, Bsh19b] can all be categorized
in the “testing via implicit learning” paradigm, as surveyed in [Ser10].

1.5.2 Quantum Junta Testing

In a seminal paper, Beals et al. [BBC+01] introduced the quantum oracle model, wherein
one not only has query access to f , but can query f on superpositions of inputs, and receive
superpositions over the outputs. Clearly this model is strictly more powerful than the classi-
cal oracle model, since one can always just not query in superposition. The quantum analog
of property testing was subsequently defined and examined by Buhrman et al. [BFNR08], in
which they exhibited several functions with good quantum testers, yet no efficient classical
testers.

The natural question for us of course, is if the power of querying in superposition helps
for the specific problem of junta testing. This was first explored by Atici and Servedio
[AS07], who exhibited an O(k/ε) quantum query algorithm for k-junta testing.12 This
actually already showed that the quantum model provided strictly more power than the
classical model (by a logarithmic factor) due to the lower bound of Saǧlam [Sag18] (which
we discuss more in the next section), but this was not yet known at the time. [AS07] also
gave a lower bound of Ω(

√
k) for k-junta testing in this model. Subsequently, Ambainis et

al. [ABRdW16] gave an improved quantum k-junta tester that used only Õ(
√
k/ε) quantum

11As a reminder, the results in Chapter 2 pertain to the tolerant testing of juntas in the uniform distri-
bution model.

12They also had several results for the learning of k-juntas in this model (that, crucially, had query
complexity independent of n), and their work also built off of the previous work of Bshouty and Jackson
[BJ99], which demonstrated how to sample according to the Fourier spectrum of f in the quantum query
model.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 16

queries to f , which by the lower bound of [AS07] is optimal up to logarithmic factors for
constant ε.

1.5.3 Summary

Throughout this section we have discussed several algorithms and variants of junta testing.
Table 1.1 summarizes this information.

Reference Model Adaptive? Query Complexity

[FKR+04] Classical No Õ(k2)/ε

[Bla08] Classical No Õ(k3/2)/ε
[Bla09] Classical Yes O(k log k + k/ε)

[LCS+19] Distribution Free Yes Õ(k2)/ε

[Bsh19b, Bsh19a, Zha19] Distribution Free Yes Õ(k/ε)
[AS07] Quantum No O(k/ε)

[ABRdW16] Quantum Yes Õ(
√
k/ε)

Table 1.1: Table of Nontolerant Junta Testers

We remark that in Table 1.1, the results of Zhang [Zha19] and Bshouty [Bsh19b] are
quantitatively similar but use different techniques, and Zhang’s algorithm has only one sided
error.

1.6 Lower Bounds for Junta Testing

We have seen many algorithmic results in the previous sections for nontolerant junta testing.
As theoreticians, we always want to understand if we can do better, or conversely, if we can
prove that we cannot do better. The focus of this section is thus on surveying the work
that has been in the context of lower bounding the complexity of nontolerant junta testing.
Luckily, the field of property testing falls within the realm of the query model, which is a
relatively nice model to work in for lower bounds.

1.6.1 Adaptive Lower Bounds

The first lower bounds came along with the first (nontrivial) upper bounds in the paper
of Fischer et al. [FKR+04]. They showed that in order to test k-juntas, one must query

the function in at least Ω̃(
√
k) times. This lower bound was for nonadaptive algorithms,

but we mention it here since it was the first nontrivial result. We note a couple things
about this lower bound. First, it implied an Ω(log k) lower bound for adaptive algorithms.
This is because any adaptive algorithm can be made nonadaptive by simply enumerating
over all the possible answers of the q queries the adaptive algorithm makes, and querying
what the adaptive algorithm would’ve having seen those answers. This results in a at
most 2q-query nonadaptive algorithm (so more generally, a 2q lower bound for nonadaptive
algorithm implies a q lower bound for adaptive algorithms). Second, we note that the lower
bound of [FKR+04] only applied to the case when k = o(

√
n), although this is not a wholly

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 17

unreasonable assumption to make, since we usually consider k � n (otherwise there is no
need to go through all this trouble eliminating the dependency of the query complexity on
n).

[FKR+04] proved their result using Yao’s minimax principle. We discuss this principle,
and its derivation, extensively in Section A. At a high level, Yao’s principle states that
the complexity of the best randomized algorithm on the worst input corresponds to the
complexity of the best deterministic algorithm on the hardest possible input distribution,
and can be derived from the more general minimax theorem. This allows one to lower bound
the complexity of a randomized algorithm by defining a “hard” distribution over inputs
and then analyzing a deterministic algorithm over such inputs (analyzing deterministic
algorithms over distributions of inputs is often much easier than analyzing randomized
algorithm, hence why Yao’s principle is used so much in practice).

The lower bound of [FKR+04], along with their Õ(k2) upper bound, left a quartic gap
between the upper and lower bounds at the time, but these were nonetheless huge break-
throughs. We also note that the result was proven (roughly) by defining input distributions
over parity functions of size k (the “yes” instances) and parity functions of size k + 2 (the
“no” instances), and then using a random walk argument to bound the statistical distance
between these two distributions. Shortly after [FKR+04], Chockler and Gutfreund [CG04]
gave an improved lower bound of Ω(k), and as an added bonus their lower bound worked
even for adaptive algorithms. They also used Yao’s principle for their lower bound, and their
distribution was simply over completely random functions either depending on k inputs (the
yes case) or k + 1 inputs (the no case). Their analysis was also much simpler, using only
elementary arguments and inequalities. Moreover, it remained the best known lower bound
for this problem for about 15 years. This result of Chockler and Gutfreund [CG04] is the
reason we said the adaptive algorithm of Blais [PRR04] was nearly optimal – the upper and
lower bounds only differ by a logarithmic factor (for constant ε).

In 2012, Blais, Brody, and Matulef [BBM12] provided the next breakthrough in the
realm of property testing lower bounds by showing that it was possible (via relatively simple
reductions) to translate communication complexity lower bounds into property testing lower
bounds. For the unfamiliar reader, communication complexity is a model in which two
parties, usually called Alice and Bob, are trying to compute a function (of their respective
inputs) by communicating as little as possible. We shall not dwell on the details/nuances
of the communication model in this thesis, but for the curious reader we point to two
textbooks on the topic, one by Kushilevitz and Nisan [KN97] and a more recent one by Rao
and Yehudayoff [RY20].

[BBM12] achieved an Ω(k) lower bound for (adaptive) junta testing, matching the
previous best result of [CG04], by providing an Ω(k) lower bound for the problem of
k-linearity testing. Recall that linear Boolean functions are just functions of the form
f(x) =

⊕
i∈S xi =: χS(x) for some S ⊆ [n]. Their argument is so simple that we can sketch

it here briefly. It is based on a reduction from the disjointness problem in communication
complexity, in which Alice has input x and Bob has input y, and both x and y have hamming
weight k (k nonzeros), and they are trying to figure out if x and y are disjoint by exchanging
as little information as possible. Alice can thus form f = χA (where A is the set of nonzero
coordinates of her input), and likewise Bob can form g = χB . It is not hard to see that
h = f ⊕ g is 2k-linear if A and B are disjoint, otherwise it is at most 2k − 2-linear. Note
that it is also not hard to argue that any 2k−2-linear function is at least 1/2-far from being
2k-linear. Therefore, Alice can run a 2k-linearity tester on h. In more detail, whenever the
testing algorithm tries to query h on z, Alice asks Bob to send over χB(z), and then uses

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 18

χA(z) ⊕ χB(z) as the answer to the testing algorithm’s query. The total number of bits
communicated is thus the total number of queries made by the tester for h. It is well known
that the communication complexity of the disjointness problem is Ω(k), which immediately
implies the Ω(k) linearity testing lower bound, as claimed.

While the lower bound of [BBM12] improved what was known for linearity testing, and
exhibited an exciting and simple new connection between property testing and communica-
tion complexity, it did not improve the Ω(k) lower bound found in [CG04]. It did, however,
pave the way for the final improvement, which came in a recent work in 2018 of Saǧlam
[Sag18]. The lower bound in [Sag18] was also proven via the connection between communica-
tion complexity and property testing. In particular, the communication complexity problem
considered in [Sag18] was the k-hamming distance problem, wherein Alice and Bob are given
two arbitrary subsets A,B of [n] and must determine if the intersection is at most k. By
itself, this problem does not reduce to k-linearity testing as nicely as the k-disjointness prob-
lem does, but luckily [Sag18] proved a lower bound for the even simpler problem, wherein
Alice and Bob are allowed to answer arbitrarily if ‖x− y‖1 6∈ {k−2, k, k+ 2}. In particular,
[Sag18] showed the following lemma.

Lemma 1.6.1 ([Sag18], Theorem 1.8). For k2 ≤ δn, the randomized communication com-
plexity of k-Hamming distance problem is Ω(k log(k/δ)). Notably, the bound applies even to
protocols that are allowed to answer arbitrarily/incorrectly when ‖x−y‖1 6∈ {k−2, k, k+2}.

The caveat that Alice and Bob can answer arbitrarily for most inputs is actually crucial to
maintain the reduction we saw in [BBM12], which we leave as an exercise for the reader. The
proof of Lemma 1.6.1, unlike the simple arguments of [CG04] and [BBM12], is actually quite
involved, utilizing information theoretic techniques and resolving longstanding conjectures of
Blakley, Dixon, Erdös, and Simonovits. Interestingly, one cannot prove such a strong lower
bound if one is only required to answer correctly when ‖x−y‖1 ∈ {k, k+2}. Interesting, the
proof actually resembles the lower bound proof of [FKR+04] in that it analyzes a random
walk, and looks at the statistical distance between steps that are two timesteps apart. With
Lemma 1.6.1 in hand and the reduction technique of [BBM12], we have finally closed the
gap between the upper and lower bounds for adaptive junta testing (for constant ε, δ), which
by the algorithm of [Bla09] is Θ(k log k).

1.6.2 Nonadaptive Lower Bounds

In the previous subsection, we have extensively discussed adaptive lower bounds for the
k-junta problem. In Section 1.5, we saw that the best adaptive algorithm ([Bla09]) had
query complexity O(k log k + k/ε), while the best nonadaptive algorithm ([Bla08]), had

query complexity Õ(k3/2) (see Table 1.1). The natural question, which was open for many
years, was whether this gap was inherent or not. Equivalently, one may wonder whether
adaptivity truly helps for junta testing, or if there was a better nonadaptive algorithm out
there somewhere, with query complexity Õ(k). It turns out, for junta testing, adaptivity
strictly helps us. However, this was not immediately clear. Buhrman et. al. [BGMdW13]
first gave an Ω(k log k) lower bound (for constant ε) for nonadaptively testing k-linearity,
which extends trivially to an Ω(k log k) lower bound for testing k-juntas nonadaptively. This,
however, matched the upper bound of [Bla09], so it was still unclear whether adaptivity
helped. This changed in 2015 when Servedio, Tan, and Wright showed definitively that
adaptivity helps. In particular, they showed that for all ε such that k−ok(1) ≤ ε ≤ ok(1),

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 19

any nonadaptive k-junta tester must make

Ω
(k log k

εc log(log(k)/εc)

)
queries, where c < 1 is an absolute constant. This expression is somewhat cumbersome to
parse, but the main takeaway is that for certain restricted values of ε such as ε = 1/ log k,
this lower bound is asymptotically larger than the O(k log k + k/ε) upper bound given in
[Bla09].

The scene changed more dramatically in 2017, when Chen et. al. [CST+18] exhibited a

Ω̃(k3/2/ε) query lower bound for nonadaptive junta testing. This more dramatically affirmed

that adaptivity is helpful for junta testing and also confirmed that the Õ(k3/2)/ε algorithm
of [Bla08] is optimal up to polylogarithmic factors. [CST+18] proved their lower bound via
Yao’s principle, by defining distributions that (with high probability) were either k-juntas
or ε-far from k-juntas. Their choice of distribution allowed them to reduce to a simpler
problem of trying to determine the size of an unknown set (of size roughly k), with queries
than only give partial information about the set. For this simpler problem, they gave an
Ω̃(k3/2/ε) lower bound, and we refer the interested reader to their paper for more details.

In short, we have seen that the adaptive query complexity of junta testing has been
settled up to constants and the dependence on ε, while the nonadaptive query complexity
of testing juntas has been settled up to polylogarithmic factors.

1.6.3 Quantum Lower Bounds

We have already mentioned a couple of the results in quantum lower bounds in Section 1.5,
but we repeat them here in a bit more detail for completeness. The original work of Atici
and Servedio [AS07] gave an Ω(

√
k), but this came with the caveat that it only applied

to algorithms that were “Fourier sampling based”. In more detail, [BJ99] showed that in
the quantum oracle model, it is possible to simulate a draw of a set S ⊆ [n] according

to the Fourier spectrum of f (i.e. S is sampled with probability f̂(S)2) with probability
1− δ using only O(log(1/δ)) uniform quantum examples.13 For the reader unfamiliar with
Boolean Fourier/harmonic analysis, we refer to the excellent book by O’Donnell as well
as Section 1.9. The reason that such Fourier samples are interesting is precisely because
quantum algorithms can do them so easily, while it seems to be very difficult for classical
algorithms.14 As a demonstration to why these Fourier samples might be helpful for the
problem of k-junta testing, [AS07] point out that using Fourier samples to f , one can easily
distinguish between the two “hard” distributions that [CG04] used in their Ω(k) lower bound.
Thus, [AS07] had define slightly more nuanced distributions to apply Yao’s principle on,
which resulted in their Ω(

√
k) lower bound (assuming the only additional quantum power

the algorithm used was Fourier sampling).
More generally, [ABRdW16] point out that distinguishing between functions that depend

only on k+O(1) variables and functions that depend on k variables is easy, since Lemma 2.14

13Uniform quantum examples simply take in the state |1n, 1〉 and map it to a uniform superposition over
all queries and their answers,

∑
x

1
2n/2
|x, f(x)〉. We note that Fourier Sampling can be achieved with only

one uniformly random sample if one simply applies a Hadamard unitary operator after the uniform query.
14Interestingly, as we discuss later in the result of [ITW21] which we spend Chapter 2 discussing can be

seen as attempting to sample from the Fourier distribution (for interesting coordinates) above level
√
k.

Even more interestingly, we do not see immediately how quantum computers and exact Fourier sampling

may help reduce the query complexity beyond the current 2Õ(
√
k) barrier for the problem of tolerant junta

testing.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 20

in [ABRdW16] shows that at least one of the O(1) “extra” variables must have influence at
least Ω(1), and therefore will be detected with very high probability with only log k quantum
Fourier sampling queries. Hence, the distributions found in [AS07] are distributions that are
either over k inputs or k+ Ω(k) variables. However, the techniques only give a lower bound

for nonadaptive quantum testers, and the Õ(
√
k) quantum algorithm given in [ABRdW16]

used adaptive queries. Towards proving tight upper and lower bounds for the adaptive
query complexity of quantum junta testing, [ABRdW16] gave an Ω(k1/3) adaptive query
lower bound via a reduction from the collision problem, in which, at a high level, one must
determine whether a function is 2-to-1 or 1-to-1. An Ω(k1/3) quantum query lower bound
(and matching upper bound) was already known for this problem by previous work, so an
Ω(k1/3) query lower bound for quantum junta testing (via the reduction of [ABRdW16])
was directly implied. It was conjectured in [ABRdW16] that the true adaptive lower bound
for quantum junta testing should be Ω(

√
k/ε), but nothing better is currently known.

In Table 1.2, we summarize the known lower bound results and their corresponding
upper bounds.

Reference Model Adaptive? Query Lower Bound Corresponding Upper bound

[CST+18] Classical No Ω̃(k3/2/ε) Õ(k3/2)/ε [Bla08]
[CG04, BBM12] Classical Yes Ω(k) O(k log k + k/ε) [Bla09]

[Sag18] Classical Yes Ω(k log k) O(k log k + k/ε) [Bla09]

[AS07] Quantum No Ω(
√
k) O(k/ε) [AS07]

[ABRdW16] Quantum Yes Ω(k1/3) Õ(
√
k/ε) [ABRdW16]

Table 1.2: Nontolerant Junta Testing Lower Bounds

1.7 Tolerant Junta Testing

Now that we have thoroughly explored the work that has been done in the context of
standard junta testing, we are ready to begin our discussion of the current state of tolerant
junta testers.

We start by making the following (parameterized) definition of a tolerant tester. In the
following we denote by Jn,k the class of k-juntas on n variable Boolean functions, and for a
class of functions C.

Definition 1.7.1. For constants 0 < c` < cu < 1/2 and a given k′, k ∈ N with k′ ≥ k, a
(k, k′, c`, cu) tolerant junta tester is an algorithm that, given oracle access to f : {±1}n →
{±1},

1. if dist(f,Jn,k) ≤ c` accepts with probability 2/3;

2. if dist(f,Jn,k′) ≥ cu rejects with probability 2/3.

There are already a lot of parameters in this definition, so it is important to parse
it carefully. In words, a (k, k′, c`, cu) distinguishes (with constant probability) between
functions that are c`-close to k juntas, and cu-far from all k′-juntas.

Our definition is convenient because it incorporates both tolerant and parameterized
testers. For example, when c` = 0 the tester is non-tolerant and when k′ = k the tester is

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 21

Π

cu

c`

Figure 1.1: A visualization of the tolerant property testing paradigm. Assuming the outer-
most oval represents all functions f : {±1}n → {±1} and the property at hand is represented
by a class of functions Π, the goal is to distinguish between the light grey (at most c` close
to a function in Π) and the dark grey (at least cu far from all functions in Π) regions.

non-parameterized.15 Parnas, Ron, and Rubinfeld in their seminal work [PRR04] showed
that while standard property testers, when querying uniformly, are weakly tolerant, entirely
new algorithms are usually needed to tolerant test with better parameters. Tolerant junta
testing was first considered by Diakonikolas et al. [DLM+07] which used the aforementioned
observation from [PRR04] to show that a standard tester from [FKR+04] actually gave a
(k, k, poly(γk), γ) tolerant tester. Chakraborty et al. [CFGM12] subsequently showed that a
similar analysis to that of Blais [Bla09] gave a (k, k, γ/C, γ) tolerant junta tester (for some
constant C) using exp(k/γ) queries.

More recently, Blais et al. [BCE+19, Theorem 1.2] showed a concrete tradeoff between
the query complexity and the amount of tolerance. In particular, they gave an algorithm
which, given k, γ, and ρ ∈ (0, 1), is a (k, k, ργ/16, γ) tolerant junta tester. The query com-

plexity of the algorithm is O
(

k log k
γρ(1−ρ)k

)
. This expression requires parsing; note that when

ρ is a constant bounded away from zero, this yields an exp(k) query algorithm, but when
ρ = 1/k this yields a poly(k) query algorithm. We also note that there is an undesirable mul-
tiplicative “gap” between cu and c` that precludes one from tolerantly testing for arbitrary
close values of cu and c` (i.e., in [BCE+19], cu ≥ 16c` for all choices of ρ). For example, one
could not distinguish between functions that are 0.05-close and 0.1-far from being a k-junta
with this algorithm. The recent work of De, Mossel, and Neeman [DMN19] addressed this,
giving an algorithm for any arbitrary γ, ε > 0 that required 2kpoly(k, 1

ε) queries and was a
(k, k, γ, γ + ε) tolerant junta tester.

In the relaxed setting (when k′ 6= k), [BCE+19, Theorem 1.1] also gave an algorithm
which used poly(k, 1

γ) queries to f and was a (k, 4k, γ/16, γ) tolerant junta tester. While k′

has a good dependence on k in this theorem, this once again posed the issue of not allowing
for arbitrary cu and c` values. This was again resolved by [DMN19, Corollary 1.6], which

15We note that in the above definition we upper bound cu < 1/2 since k-juntas are closed under comple-
ments, meaning if g ∈ Jn,k, then −g ∈ Jn,k.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 22

gave a (k,O(k2/ε2), γ, γ + ε) tolerant junta tester with query complexity poly(k, 1
ε) at the

expense of k′ having a worse dependence on k.
It is interesting to note that the techniques used to obtain the results from [BCE+19] and

[DMN19] are quite different, and yield results that are qualitatively similar but quantita-
tively incomparable. The results from [BCE+19] extend the techniques of [FKR+04, Bla08,
Bla09], which partition the n input coordinates into poly(k) disjoint sets or “buckets”. As
discussed in Section 1.5, it is immediate that any k-junta is a k-part junta, but in [Bla09]
it was shown that with high probability a function that is far from being a k-junta is also
far from being a “k-part junta”. The results of [BCE+19] extend the idea of considering
the relationship between k-juntas and k-part juntas in the context of tolerant testing. In
particular, they showed the following (easy to prove) lemma.

Lemma 1.7.2 (Lemma 3.3 in [BCE+19]). For f : {±1}n → {±1} and k ≥ 1, let α =
dist(f,Jn,k) and let I be any partition of [n] into ` ≥ k parts. Then there exists a collection

of r ≤ k of the buckets Ii1 , ..., Iir ∈ I such that, defining V =
⋃ir
j=i1

Ij,

InfV [f] ≤ 4α.

In other words, f is 2α close to a k-part junta with respect to the partition I.

Lemma 1.7.2 combined with Lemma 1.5.2, which we already saw in Section 1.5 in the
context of nontolerant testers, give a natural approach towards tolerant junta testing, which
is exactly the approach taken in [BCE+19]. The idea is to partition f ’s inputs into O(k2)
buckets I and then to determine how close f is to a k-part junta with respect to the partition

I. A brute force algorithm doing this would take approximately
(
O(k2)
k

)
= 2Õ(k) queries.

[BCE+19] were able to achieve their main result of O
(

k log k
γρ(1−ρ)k

)
queries by taking advantage

of the fact that Inf is a submodular function, and thus utilize state of the art algorithms
for submodular function optimization under cardinality constraints16 as well as a clever
technique to recycle queries.

On the other hand the techniques in [DMN19] suggest a completely new way of at-
tacking the problem of tolerant k-junta testing, and indeed junta testing in general. The
core idea in [DMN19] was to get access to “oracles” to coordinates of f which have large
low-degree influence. Here, when we say coordinate oracle for input i, we mean we have
constructed/found a (randomized) function g such that, with high probability, g(x) = ±xi.
These coordinate oracles are obtained with high probability via a combination of random
restrictions and noise operators to the original function. In Section B we extensively discuss
how [DMN19] achieved access to these oracles for influential coordinates. Intuitively, it
suffices to only consider coordinates/inputs to f which have a large influence up to a small
loss in correlation (this is formalized in Claim 2.2.6). Once we have obtained access to these
coordinates with large influence, they can be used to search, in a brute force manner, for
the nearest k-junta, resulting in the exponential query algorithm of [DMN19].

1.7.1 Tolerant Junta Testing Lower Bounds

In terms of lower bounds for tolerant testing of juntas, two recent works addressed the non-
adaptive case. Levi and Waingarten [LW19] demonstrated that there exists 0 < ε1 < ε2 <

1/2 such that any (k, k, ε1, ε2) tolerant junta tester requires Ω̃(k2) non-adaptive queries to

16One must optimize over subsets of a certain size for this problem.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 23

f . In particular, this result demonstrated that the tolerant testing regime is quantitatively
harder than the standard testing regime, in which the Õ(k3/2)-query non-adaptive query al-
gorithm of [Bla08] is known (and indeed optimal due to [CST+18]). Subsequently, Pallavoor,
Raskhodnikova, and Waingarten [PRW19] demonstrated that for any k ≤ n/2 there exists
0 < ε1 < ε2 < 1/2 (with ε1 = O(1/k1−η) and ε2 = Ω(1/

√
k)) such that every nonadaptive

(k, k, ε1, ε2)-tolerant junta tester requires at least 2k
η

queries to f , for any 0 < η < 1/2. 17

This exponentially improved the best known lower bounds, and indeed showed the tolerant
testing problem, at least in the case of nonadaptive algorithms, is exponentially harder than
the nontolerant testing of juntas.

We discuss the techniques of [PRW19] here briefly, since they are novel, interesting, and
not terribly difficult to state. One of the major techniques utilized in [PRW19] to great
effect is the notion of an erasure resilient tester. In this model, some of f ’s outputs have
been erased, so that now f : {0, 1}n → {0, 1,⊥}, where ⊥ represents an erased value.

Definition 1.7.3 (Erasure Resilient Testing). We say that an algorithm A, given query
access to f : {0, 1}n → {0, 1,⊥}, is an α-erasure resilient ε-tester for property Π if for any
f with at most α fraction of its outputs erased, A accepts with probability 2/3 if the erasures
can be filled in so that f ∈ Π, and A rejects with probability 2/3 if for every completion of
erasures results in a function that is ε-far from Π.

What is nice about this model is that its query complexity lies somewhere in between
the standard property testing model and the tolerant testing model. More specifically, a
standard tester is simply a special case of an erasure resilient tester with α set to zero.
Moreover, and crucially for [PRW19], a tolerant tester that accepts functions α-close to Π
and rejects functions that are ε-far (for ε > α), can be used to get an α-erasure resilient
ε-tester. The reason is simple: the erasure resilient tester can just fill in the erasures with
random values and run the tolerant tester. [PRW19] proved their lower bound for erasure
resilient testers, which naturally extended to a lower bound for tolerant testing of juntas.18

As is common, [PRW19] uses Yao’s principle for their lower bound. In order to do so,
they define two distributions, D+ and D−, which are designed such that there exists a
completion of the erasures that makes f+ ∼ D+ a n/2-junta which has at most α fraction
of its outputs erased, and D−, which is designed so that no completion of the erasures of
f− ∼ D− results in a function that is ε-close to being a n/2-junta. The distribution of D−
is visualized in Figure 1.2. The procedure for sampling f− ∼ D− and f+ ∼ D+ is as follows,
assuming n is a multiple of 4. Let η ∈ (0, 1/2).

1. Sample a uniformly random subset [n] of size n/2, and call it M . If |xM | > n/4, set
f−(x) = 1, and otherwise if |xM | < n/4, set f−(x) = 0.

2. For each x with |xM | = n/4 (so the exact middle layer of the subcube {0, 1}M (note
this has size Θ(2n/2/

√
n) via Stirling’s formula) if |xM | ∈ [n/4 − nη, n/4 + nη], set

f(x) = ⊥. Otherwise we do the following:

(a) For D−, f(x) = bxM if |xM | > n/4 + nη and f(x) = 1− bxM if |xM | < n/4 + nη,
for a random bit bxM .

17We note that this lower bound does not necessarily rule out poly(k) exp(1/ε) nonadaptive query
(k, k, ε1, ε2) (where ε = ε2 − ε1) tolerant junta testers due to the setting of ε1 and ε2 in their hard in-
stance.

18The techniques in [PRW19] also give lower bounds for the tolerant testing of monotonicity and unateness,
but we just focus on the application to tolerant junta testing.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 24

⊥

1− bxM

⊥· · ·

0

1 |xM | = n/4 ± O
(
n1/2

)

{0, 1}M {0, 1}M

· · ·

{0, 1}M

bxM
bxM

1− bxM

Figure 1.2: Functions sampled according to D− in [PRW19], which is designed to be far
from all being a k-junta for all completions of the erasures.

(b) For D+, we make the M subcubes “constant” by setting f(x) = bxM if |xM | >
n/4 + nη or |xM | < n/4 + nη , for a random bit bxM .

Crucially, with very high probability, [PRW19] showed that functions sampled according
to D− is at least ε = Ω(1/

√
n) far from being a n/2-junta (for any completion of the

erasures), while every function can trivially be completed to be a n/2 junta. Note that α is
also on the order of nη/

√
n, via Stirling’s approximation. Now, we come to the crux of the

argument, which is surprisingly simple.
The key is to notice that the only chance any tester has of distinguishing between f− ∼

D− and f+ ∼ D+ is to sample two queries x and y such that xM = yM , yet x and y fall on
opposite ends of the M subcube, i.e. either

1. |xM | > n/4 + nη and |yM | < n/4− nη or

2. |xM | < n/4− nη and |yM | > n/4 + nη.

Call the event that a nonadaptive tester queries such an (x, y) pair B. Then we have the
following lemma:

Lemma 1.7.4 (Claim 4.11 in [PRW19]). For any nonadaptive algorithm making q ≤ 2n
η

queries, we have
Pr[B] < 1/8.

Thus, with probability at least 7/8 the f− ∼ D− and f+ ∼ D+ look exactly the same to the
algorithm.

Proof. Note that in order for B to happen, x and y must equal on M but differ in at least
t = 2nη + 2 coordinates in M . For a uniformly random M , we have that this happens with

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 25

probability at most (
n−t
n/2

)(
n
n/2

) ≤ 2−t.

A simple union bound over the at most q2 pairs of points the tester queries completes
the argument.

This concludes the sketch of the lower bound technique in [PRW19]. We now turn to
discuss our new upper bounds, originally appearing in [ITW21], before summarizing the
upper and lower bounds for tolerant junta testing in Table 1.3.

1.8 New Upper Bounds for Tolerant k-junta Testing

As we have previously noted, the main results of this section and thesis come from [ITW21].
Our first result is a subexponential-in-k query tolerant junta tester in the standard (non-
relaxed) setting. In fact, we obtain an ε-accurate estimate of the distance of f to the class
of k-juntas.

Theorem 1.8.1. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the
distance of f from the class of k-juntas to within additive error ε with probability 2/3 using

2Õ(
√
k/ε) adaptive queries to f . In particular, when ε is constant, this yields a 2Õ(

√
k)-query

algorithm. However, the algorithm still requires exp(k/ε) time.

A simple corollary of the above theorem is that for any 0 < c` < cu < 1/2, we have a
(cu, c`, k, k) tolerant junta tester with the same query complexity as in Theorem 1.8.1, where
ε = (cu−c`)/2. This is an improvement of the results of [DMN19, BCE+19], whose tolerant
junta testers when k′ = k required exponential query complexity in k in the worst case. We
note that although we obtain this improvement, our algorithm still requires exp(k) time.
In Appendix C, we show a result solving a similar problem19 with an improved dependence

on ε, giving an algorithm requiring only 2Õ(
√
k log(1/ε))-queries and exp(k log(1/ε)) time (see

Theorem 2.3.10).
In the relaxed/parameterized setting when k′ 6= k, we give a polynomial-in-k query

tolerant junta tester that is valid for any setting of cu and c`, and reduces k′ dependence on
k to be linear instead of quadratic due to the result of [DMN19, Corollary 1.6].

Theorem 1.8.2. For any γ, ε > 0 and k ∈ N, there is an algorithm with query complexity
poly(k, 1/ε) that is a (k,O(k/ε2), γ, γ + ε)-tolerant junta tester.

Theorem 1.8.2 is a simple corollary of the following theorem we prove.

Theorem 1.8.3. Let ε > 0, k ∈ N, and k′ = O(k/ε2). Then, there exists an algorithm that
given parameters k, ε and oracle access to f makes at most poly(k, 1/ε) queries to f and
returns a number α such that with high probability (at least 0.99)

1. α ≤ dist(f,Jn,k) + ε

2. α ≥ dist(f,Jn,k′)− ε
19In particular, this problem is the problem of finding the subset of k inputs that “contain” the most

Fourier mass – see Section 1.9 and Theorem 2.3.10 for more details.

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 26

Indeed, to solve the problem in Theorem 1.8.2 we can apply the algorithm from Theo-
rem 1.8.3 with ε = (cu − c`)/3 and accept if and only if α < 1

2 (cu + c`). If dist(f,Jn,k) ≤ c`
we have that with high probability α ≤ c`+ε < 1

2 (cu+ c`) and we will accept. On the other
hand, if dist(f,Jn,k′) ≥ cu we have that with high probability α ≥ cu − ε > 1

2 (cu + c`) and
we will reject.

Both of the algorithms used to prove Theorem 1.8.1 and Theorem 1.8.3 rely on the fact
that we can get approximate oracle access to influential coordinates of f using techniques
from [DMN19]. From there, we analyze the Fourier coefficients of f after a series of random
restrictions in order gain more information about the relevant coordinates of f at different
Fourier levels. Along the way, we give an algorithm which provides us with oracle access to
a junta in the following sense:

Theorem 1.8.4 (Informal). Let f : {±1}n → {±1}, D = {g1, . . . , gk′} be a set of functions
giving oracle access to a certain set of coordinates. Let g be a function from {±1}k′ → [−1, 1]
defined by g(x) = E[f(y)|g1(y) = x1, . . . , gk′(y) = xk′]. Then g can be computed by a
randomized algorithm that runs in expected time poly(k′).

We note that one can view this as an oracle access to the junta, without even figuring
out the coordinates on which the junta depends. More details on the ideas behind both
algorithms can be found in Section 2.1.

Now that we have surveyed previous results and stated our main theorems, we can
summarize the state of affairs for tolerant junta testing in Table 1.3.

Adaptive? k′ Lower Bound Upper bound

No k Ω(2k
0.499

) [PRW19] None

Yes k Ω(k log k) [Sag18] 2Õ(
√
k/ε) [ITW21]

Yes 4k None poly(k/ε) [BCE+19]
Yes O(k/ε2) None poly(k/ε) [ITW21]

Table 1.3: Upper and lower bounds in tolerant junta testing. Note that the results of
[BCE+19] are only valid for certain settings of c` and cu.

1.9 Further Preliminaries

Before we dive into the technical details presented in Chapter 2, we need to establish some
more preliminaries.

1.9.1 Probability

We recall the following Chernoff/Hoeffding bounds.

Fact 1.9.1. If X1, . . . , XN are independent random variables bounded in [0, 1] and X̄ :=
1
N

∑N
i=1Xi, then we have

Pr[|X̄ −E[X̄]| ≥ η] ≤ 2 exp(−2Nη2),

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 27

Furthermore, denoting by p = E[X̄], we have

Pr[X̄ ≤ p− η] ≤ exp(−2Nη2),

Pr[X̄ ≤ (1− η)p] ≤
(

e−η

(1− η)1−η

)pN
≤ exp

(
−η

2pN

2

)
.

1.9.2 Further Fourier Analytic Tools/Facts

We start with the following claim, which tells us exactly what the nearest junta to f is on
a given subset S.

Claim 1.9.2 (Nearest k-junta on a Subset). For a function f : {±1}n → [−1, 1] and a
subset T ⊆ [n], the Boolean-valued junta-on-T most correlated with f is given by

sgn(favg,T (x)) = sgn

(
E

y∈{±1}n
[f(y)|yT = xT]

)
.

Furthermore, the correlation between f and sgn(favg,T (x)) is simply Ex∼{±1}n [|favg,T (x)|].

Proof. Let g : {±1}n → [−1, 1] be any junta-on-T . It suffices to show that Ex[f(x)g(x)] ≤
E[f(x)sgn(favg,T (x))], as we do next. Indeed, for any g(x) that is a junta-on-T we have
g(x) = g′(xT) for some g′ : {±1}T → [−1, 1]. Thus, we have

E
x∼{±1}n

[f(x)g(x)] = E
x∼{±1}n

[f(x)g′(xT)]

= E
x∼{±1}n

[
g′(xT) · E

y∼{±1}n
[f(y)|xT = yT]

]
= E
x∼{±1}n

[g′(xT)favg,T (x)]

≤ E
x∼{±1}n

[|favg,T (x)|]

= E
x∼{±1}n

[sgn(favg,T (x)) · favg,T (x)]

= E
x∼{±1}n

[f(x)sgn(favg,T (x))].

We will also be considering the Fourier mass at different levels of the spectrum, as defined
below.

Definition 1.9.3. For a function f : {±1}n → R we define:

W≤k[f] =
∑
|S|≤k

f̂(S)2 .

The definitions of W≥k[f], W=k[f], and similar follow from a natural extension.
Another useful tool in Boolean Function Analysis is the noise operator Tρ, which intu-

itively collapses the Fourier mass of f to the lower levels. For a vector x ∈ {±1}n we denote
by Nρ(x) the distribution over vectors y ∈ {±1}n such that for each coordinate i ∈ [n]
independently yi = xi with probability (1 + ρ)/2 and yi = −xi otherwise (alternatively,

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 28

E[xiyi] = ρ). For a function f : {±1}n → R we denote by Tρf : {±1}n → R the function
defined by

Tρf(x) = E
y∼Nρ(x)

[f(y)]

There’s also a nice Fourier expression for the function Tρf given by Tρf(x) =
∑
S⊆[n] f̂(S)ρ|S|.

We will need a simple fact about the noise operator.

Fact 1.9.4. For any function f : {±1}n → R and any ρ ∈ [−1, 1] we have that E[|Tρf |] ≤
E[|f |].

Proof.

E
x∼{±1}n

[|Tρf(x)|] = E
x∼{±1}n

[| E
y∼Nρ(x)

[f(y)]|] ≤ E
x∼{±1}n

[E
y∼Nρ(x)

|f(y)|] = E
y∼{±1}n

[|f(y)|].

We will also make use of random restrictions, which, similar to the noise operator Tρ,
intuitively push the Fourier mass of f onto the lower levels and often simplify f significantly.

Definition 1.9.5 (Restriction). Consider the class of functions on {±1}n. A restriction

is a pair (J, z) where J ⊆ [n], and z ∈ {±1}J . Given a function f : {±1}n → R, and a
restriction (J, z), the restricted function fT→z : {±1}T → R is defined by fT→z(x) = f(y)
where yT = x and yT = z.

Definition 1.9.6 (δ-Random Restriction). For δ ∈ [0, 1] we say that J is a δ-random subset
of S if it is formed by including each element independently with probability δ, which we
denote as J ⊆δ S. A δ-random restriction, denoted (J, z) ∼ Rδ, is sampled by taking J to

be a δ-random subset J on [n], and taking z to be a uniformly random string in {±1}J .

Occasionally, we will abuse notation and think of fT→z as a function from {±1}n to {±1}
that ignores bits outside T . For example, fT→z : {±1}n → {±1} is given by fT→z(x) =
f(xT , zT). Finally, we will use the following fact on random restrictions:

Fact 1.9.7. For a function f : {±1}n → R and sets S ⊆ J ⊆ [n] we have

E
z∈{±1}J

[f̂J→z(S)2] =
∑

R⊆[n],R∩J=S

f̂(R)2.

1.9.3 Estimating Fourier Coefficients

The following claim is a standard tool in many learning algorithms. It establishes that
estimating Fourier coefficients of a Boolean function f can be done with a few queries to f .

Claim 1.9.8. Suppose f : {±1}n → {±1} and S ⊆ [n] then there exists an algorithm that

estimates f̂(S) up to additive error ε with probability at least 1 − δ that makes O((1/ε2) ·
log(1/δ)) samples.

Proof Sketch. Estimate f̂(S) by sampling m = O((1/ε2)·log(1/δ)) uniformly random inputs
x(1), . . . ,x(m) and taking the empirical mean of 1

m

∑m
i=1 f(x(i)) ·χS(x(i)). The claim follows

from Fact 1.9.1.

The next claim generalizes the claim to a bounded function f : {±1}n → [−1, 1]. For
that generalization, we need the definition of a randomized algorithm computing a bounded
function f .

CHAPTER 1. SURVEY OF JUNTA TESTING AND VARIANTS 29

Definition 1.9.9 (Randomized Algorithm for a Bounded Function). Let f : {±1}n →
[−1, 1] be a bounded function. We say that algorithm A is a randomized algorithm for f if
on any fixed input x algorithm A outputs a random bit y ∈ {±1} with E[y] = f(x).

Claim 1.9.10. Let f : {±1}n → [−1, 1], and let A be a randomized algorithm for f . Then,

there exists an algorithm making O((1/ε2) · log(1/δ)) calls to A that estimates f̂(S) up to
additive error ε with probability at least 1− δ.

Proof Sketch. We estimate f̂(S) by sampling m = O((1/ε2) · log(1/δ)) uniformly random
inputs x(1), . . . ,x(m), applying A to each of them to get random bits (y1,y2, . . . ,ym), and
taking the empirical mean of 1

m

∑m
i=1 yi · χS(x(i)). Note that for each i ∈ [m] we have that

yi · χS(x(i)) is a {±1} random variable with expectation

E
x(i),yi

[yi · χS(x(i))] = E
x(i)

[
E
yi

[yi|x(i)] · χS(x(i))

]
= E

x(i)
[f(x(i)) · χS(x(i))] = f̂(S).

The claim follows from Fact 1.9.1.

Chapter 2

New Algorithms for Tolerant
k-junta Testing

2.1 Overview of Techniques

Both of our algorithms rely on only having to consider a subset of influential coordinates,
rather than all n input variables. This is obtained using results from [DMN19], and is
discussed further in Section 2.2 (and the approach of [DMN19] for obtaining the oracles
is discussed in Section 2.2.1). For now, we simply assume that we are only dealing with
poly(k, 1/ε) coordinates S. For simplicity of presentation, we ignore dependence on ε, and
focus only the dependence on k. Thus, in this section, assume that ε is a small universal
constant, e.g., ε = 0.01.

2.1.1 Techniques for Establishing Theorem 1.8.3

Our first result shows how to further reduce the number of coordinates we need to consider
down to O(k/ε2), while only losing at most ε amount of correlation with the maximally
correlated k-junta. In establishing Theorem 1.8.3, we first develop intuition behind a new
notion of normalized influence that we introduce next:

Definition 2.1.1 (Normalized Influence). Let f : {±1}n → R. We define the normalized
influence of coordinate i on f as

NInf i[f] =
∑
S3i

f̂(S)2

|S|
.

We also naturally define the normalized influence below level k:

NInf≤ki [f] :=
∑
|S|≤k
S3i

f̂(S)2

|S|
.

The next claim states that the sum of normalized influences of f equals its variance.

Claim 2.1.2. For any function f : {±1}n → R, we have that
∑
i NInf i[f] = Var[f].

30

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 31

Proof. We have that

∑
i∈[n]

NInf i[f] =
∑
i∈[n]

∑
S3i

f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

∑
i∈S

f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

|S| f̂(S)2

|S|
=
∑
S⊆[n]
S 6=∅

f̂(S)2 = Var[f],

where the last equality follows from Parseval’s identity.

Remark 2.1.3. We note that for a balanced Boolean function f (that is, one where Ex[f(x)] =
0) the normalized influences form a probability distribution on the coordinates i.

The idea behind establishing Theorem 1.8.3 begins with the observation the these nor-
malized influences can be thought of as defining a sub-probability distribution over the input
coordinates of f , since these are non-negative numbers whose sum is at most 1. The weight
assigned to coordinate i, similar to the regular influence, captures how important i is to f ,
but assigns a higher relative weight to the coordinates with Fourier mass coming from the
lower levels of the Fourier decomposition.

The second important observation for us is that for any set T of size at most k we can
write ∑

i∈T
NInf≤ki [f] =

∑
i∈T

∑
|S|≤k
∅6=S3i

f̂(S)2

|S|
≥
∑
i∈T

∑
S⊆T
S3i

f̂(S)2

|S|
=

∑
∅6=S⊆T

f̂(S)2. (2.1)

Intuitively, this shows that if some set of coordinates captures large amount of Fourier
mass, then this same subset of coordinates also is very likely to be sampled by our sub-
probability distribution defined by the normalized influences. Our idea follows this line of
thought – we get decent estimates for all of the normalized influences, and sample coordinates
from this estimated distribution. Let T be the “target set” of size k, i.e., the one for which
the closest k-junta to f is a junta on T . Without loss of generality we can assume that T
captures constant fraction of the Fourier mass, meaning

∑
∅6=S⊆T f̂(S)2 ≥ Ω(1). Otherwise,

the best correlation of f with a k-junta is o(1) < ε and the task of ε-accurately estimating
the distance to the set of k-juntas becomes trivial. Assuming T captures constant fraction of
the Fourier mass, Equation (2.1) tells us that we will sample i ∈ T with constant probability
mass. Thus, sampling from this distribution O(k) times means we will have seen most of T
up to a small loss in correlation.

To actually estimate these normalized influences, we apply a series of log 10k random
restrictions to our function f (first take 1-random restrictions, then 1/2-random restrictions,

then 1/4-random restrictions, and so on), and then show that summing f̂J̄→z({i})2 for each

of these restrictions is sandwiched between NInf≤ki [f] and NInf i[f]:

1

2
NInf≤ki [f] ≤

log 10k∑
i=0

E
(J,z)∼R2−i

[
f̂J̄→z({i})2

]
≤ 2NInf i[f].

This would allow us to effectively sample from a proxy distribution that still samples i ∈ T
with constant probability.

We repeat the process iteratively, sampling coordinates one at a time, until we either
sampled all of T or sampled a subset T ′ ⊆ T for which we have that the best junta on T ′ is
almost as correlated with f as the best junta on T . Since the process samples a coordinate
in T with constant probability in each round, after O(k) iterations we are likely to succeed,

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 32

giving us a set U of O(k) coordinates that contains either T or T ′ (as above). Finally, we
show we can estimate, up to a small additive error, the best correlation of a junta-on-U with
f , given only approximate oracle access to the coordinates in S. By the above discussion
the estimate we get is lower bounded by the best correlation with a k-junta up to a small
additive error. It is also upper bounded (trivially) with the best correlation of f with a
O(k)-junta, since |U | = O(k).

2.1.2 Techniques for Theorem 1.8.1

A limitation of the algorithm we described in the previous subsection is that it only samples
one coordinate at a time. In particular, suppose we want to find T exactly, instead of a
superset U of T . Then, the naive algorithm would need to consider all subsets of U of size
k, estimating the best correlation with a junta on each of them. This gives a exp(O(k))-
query algorithm. It would be nicer if we can devise a sampling algorithm that outputs,
with constant probability, many coordinates of T at a time. Such a sampling algorithm
would reduce the number of possibilities for T in the second stage. In particular, consider
the case that the nearest k-junta to f had significant amount of Fourier mass on higher
levels, say at level ≈ k or maybe ≈

√
k. In this case it would be nice to be able to sample

from the Fourier distribution of f , that would give us a large subset of T with constant
probability. We note that sampling from the Fourier distribution of a Boolean function
is easy for a quantum algorithm but hard for a randomized algorithm. Nevertheless, the
(classical) algorithm we describe in this section takes inspiration from this, and samples
subsets of size

√
k according to the Fourier mass of f above level

√
k of each subset, in time

and query complexity exp(Õ(
√
k)).

We will start with the preliminary that we have reduced to the case of only having to
consider the coordinates in S ⊆ [n] with |S| ≤ O(k/ε2), using our aforementioned algorithm
from the previous section, incurring only a small additive loss in correlation with the closest
k-junta. We start with the following definition that generalizes normalized influences of
coordinates to normalized influences of sets of coordinates.

Definition 2.1.4. For a given subset U ⊆ [n], we define its normalized influence as follows:

NInfU [f] :=
∑

S:U⊆S

f̂(S)2(|S|
|U |
) .

We also have the natural extension of NInf≤kU [f] =
∑
S: |S|≤k,U⊆S

f̂(S)2

(|S||U|)
, analogous to Def-

inition 2.1.1.

This is a direct generalization of the quantity in Definition 2.1.1. In particular, we

consider taking |U | =
√
k. Note there are 2Õ(

√
k) such U within the coordinates in S, and we

can think of these normalized influences as once again defining a sub-probability distribution

over subsets of size
√
k. It likely does not sum to 1, but rather sums to W≥

√
k

S [f] ≤ 1. We

show that these normalized influences at exactly level
√
k can once again be approximated

to within a constant factor via a sequence of random restrictions to f :

1

2
NInf≤kU [f] ≤

2
√
k log 10k∑
i=0

E
(J,z)∼Rpi

[
f̂J̄→z(U)2

]
≤ 3NInfU [f],

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 33

where p =
(

1− 1
2
√
k

)
. For more details on this statement, see Theorem 2.3.1.

We are now ready to outline the overall algorithm in Section 2.3. Suppose T ⊆ S is
the subset on which the nearest k-junta (within S) is defined. Our algorithm can then be
broken down into two phases:

Phase 1. We get a proxy for NInfU for all |U | =
√
k. This is achieved by performing a series

of random restrictions to f .

We consider these proxies as a distribution, and sample a constant (this constant is
actually dependent on ε, see Section 2.3 for details) number of subsets of size

√
k. With

high probability, one of these is in our set of interest T , provided T has a non-negligible
amount of Fourier mass above level

√
k.

We don’t know which of the subsets we sample are actually in T , so we start a branch-
ing process. For each subset we sampled, we restrict f ’s values in that subset, and
recursively sample from sets of size

√
k using the steps described above. Our branching

process will have depth at most
√
k since at each level we sample

√
k new coordinates,

and T can have at most k relevant coordinates. This phase of our algorithm produces

2Õ(
√
k) possible subsets of our target set T .

Phase 2. With high probability, one of the branches in the above process will have captured most
of the coefficients of T that are relevant above level

√
k on the Fourier spectrum. Each

branch of this process represents a different possibility for what T may be, so for each
branch we randomly restrict f so that the coordinates sampled in that branch are fixed,
which effectively moves most of the mass of T to levels below

√
k. We then estimate

all the Fourier coefficients of this restricted f below level
√
k, allowing us to get an

estimate for the closest k-junta on any subset using these estimated coefficients. Each

estimation of a Fourier coefficient requires 2Õ(
√
k)-queries to estimate to the desired

accuracy, and there are 2Õ(
√
k) Fourier coefficients to estimate, so overall we make

at most 2Õ(
√
k) queries. From there, for each possible subset of B ⊆ T outputted by

phase one, we brute force over all possible subsets of size k containing B, estimating the
correlation f has with the closest k-junta on that subset using our estimated Fourier
coefficients. This last step takes exponential time in k. We emphasize that while our
runtime is exponential in k, our query complexity is only exponential in Õ(

√
k).

In the entire above explanation, we have eliminated the dependence on ε for simplicity. We
also only consider T for conceptual and analytic simplicity – in reality, we have no idea what
T is, and indeed it is exactly what we are looking for. Therefore, more work must be done
in order to show that we do not accidentally pick the wrong set, for which our estimates
may be inaccurate. To get around this subtle issue, we further apply a noise operator in
order to ensure that the significant parts of f lie below level roughly

√
k. We discuss this

further in Section 2.3.2.

2.2 Finding a Small(er) Set of Influential Coordinate
Oracles

In this section, we detail the process of constructing oracles to coordinates with large low-
degree influence. We expand upon the techniques in [DMN19], reducing the number of

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 34

coordinates one needs to consider to produce a highly correlated k-junta (assuming one
exists).

2.2.1 Approximate Oracles to Influential Coordinates

In this subsection we outline and generalize the methods used by [DMN19] to achieve oracle
access to coordinates with large low-degree infuence in f . We start with the following
definitions from their paper, repeated here for clarity:

Definition 2.2.1 ([DMN19, Def. 3.1]). Let D be a set of functions mapping {±1}n to {±1}.
We say that D is an oracle for the coordinates in S if

• for every g ∈ D, there is some i ∈ S such that g = ±Dicti; and

• for every i ∈ S, there is some g ∈ D such that g = ±Dicti.

In other words, D is an oracle for S if D = {Dicti : i ∈ S} “up to sign”.

However, it is not tractable to achieve perfect access to such oracles, so we have to settle
for the following weaker notion of approximate oracles:

Definition 2.2.2 ([DMN19, Def. 3.2]). Let D be a set of functions mapping {±1}n to {±1}.
We say that D is an ν-oracle for the coordinates in S if

• for every g ∈ D, there is some i ∈ S such that g is ν-close to ±Dicti; and

• for every i ∈ S, there is exactly one g ∈ D such that g is ν-close to ±Dicti; and

• For every g ∈ D, and δ > 0, there is a randomized algorithm that compute g(x)
correctly on any x ∈ {±1}n with probability at least 1− δ, using poly(k, log 1

δ) queries
to f .

Lemma 3.6 in [DMN19] establishes that we can achieve access to a set D of approximate

oracles to S ⊇ {i : Inf≤ki [f] ≥ ε2/k} of bounded size.
More specifically, we have the following corollary:

Corollary 2.2.3 ([DMN19, Lemma 3.6]). With poly(k, 1
ε , log 1

δ) · 1
ν queries to f , we can

gain access to an approximate oracle set D in the sense that for every coordinate i such that

Inf≤ki [f] ≥ ε2

k , there exists a g ∈ D such that g is ν-close to ±Dicti with probability at least
1− δ. Furthermore, |D| ≤ poly(k, 1

ε , log(1/δ)).

We outline the techniques for achieving this lemma in Section 2.2.1, but for the remainder
of this chapter we will utilize it as a black box.

For our purposes, we take ν = 0.1 and δ = 2−poly(k,
1
ε) in all our algorithms. Since we

will make much fewer than 2poly(k/ε)-many queries to the coordinate oracles, we can assume
that all of our oracles are indeed ν = 0.1 close to dictators/anti-dictators, since by a union
bound this is true with high probability.

It is important to note that we do not have a description of which coordinates are
influential: from an information theoretic standpoint this would require query complexity
dependent on n. What we do have is oracle access to these coordinates in the sense that for
all i such that Inf≤ki [f] ≥ ε2/k, there exists gi ∈ D such that gi(x) ≈ ±Dicti(x), that is, D
contains dictators or anti-dictators to every influential coordinate. Using simple techniques

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 35

of local correction we can simplify this: we need only consider dictators to each coordinate
in the oracle. Also, we can convert closeness on average x to high probability correctness
for all x (i.e., a worst-case guarantee).

Lemma 2.2.4. Suppose f is ν-close to ±Dicti. For any x ∈ {±1}n, LocalCorrect(f, x)
samples a random y ∼ {±1}n and outputs f(y)f(x·y), where x·y is pointwise multiplication.
Then,

∀x : Pr
y∼{±1}n

[LocalCorrect(f, x) 6= Dicti(x)] ≤ 2ν.

Proof. Suppose that f is ν close to Dicti. Then we have Pry∼{±1}n [f(y) 6= Dicti(y)] ≤ ν,
and since x · y has the same distribution as y, Pry∼{±1}n [f(x · y) 6= Dicti(x · y)] ≤ ν. Let
A be the event that f(y) 6= Dicti(y) and let B be the event that f(x · y) 6= Dicti(x · y).
Clearly if LocalCorrect(f, x) 6= Dicti(x) then at least one of A and B must have occurred
(since Dicti(x) = Dicti(x · y) · Dicti(y)). Thus, by the union bound, we have

Pr
y∼{±1}n

[LocalCorrect(f, x) 6= Dicti(x)] ≤ Pr[A ∪B] ≤ Pr[A] + Pr[B] ≤ 2ν

A similar argument shows that if f is ν close to −Dicti, then LocalCorrect(f, x) is not equal to
(−Dicti(y))(−Dicti(x · y)) = Dicti(y)Dicti(x · y) = Dicti(x) with probability at most 2ν.

Given a noisy black box computing h which is ν-close to g = ±Dicti, local correction will
compute Dicti with high probability, on every input x. Critically, we can treat potentially
faulty ±Dicti oracles as correct Dicti oracles provided suitably many repetitions.

Corollary 2.2.5. If f is ν-close to ±Dicti for ν = 0.1, then repeating LocalCorrect(f, x)
independently poly(k, 1/ε) times and taking the majority outcome results in an incorrect
value for Dicti(x) with probability at most 2−poly(k,1/ε).

Proof. Clear from applying the first bound in Fact 1.9.1 with N = O(poly(k/ε)) and η =
(1− 2ν − 0.5) = 0.3 in this case.

We also show that restricting our attention to S we have not lost more than ε in the
best correlation of f with a k-junta. This is proved in the following claim.

Claim 2.2.6. Let f : {±1}n → {±1} and let g : {±1}n → {±1} be a k-junta on U . Let
τ > 0. Take

S =
{
i ∈ U

∣∣∣ Inf≤ki [f] ≥ τ2

k

}
Then, there is a junta on S with correlation at least E[fg]− τ with f .

Proof. To prove this claim, we define a function on the set S such that the loss in correlation
is at most τ . Consider:

g′(x) = gavg,S(x) = E
y

[g(y)|yS = xS]

First, we note g′ is a function over only the variables in S. Second, it is bounded in [−1, 1],
so it is not quite Boolean, but it can be randomized rounded to a Boolean function, with the
expected correlation with f equaling E[fg′]. Thus, it suffices to show that E[fg′] ≥ E[fg]−τ
to deduce that there exists a randomize rounding of g′ to a Boolean function g′′ with
E[fg′′] ≥ E[fg]− τ . We also recall that

ĝ′(T) =

{
ĝ(T) if T ⊆ S
0 otherwise

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 36

We thus have:

|E[fg]−E[fg′]| =
∣∣∣∣ ∑
T*S
T⊆U

f̂(T)ĝ(T)

∣∣∣∣ ≤√√√√√∑
T*S
T⊆U

f̂(T)2 ≤
√√√√ ∑
i∈U\S

∑
T3i
T⊆U

f̂(T)2

≤
√ ∑
i∈U\S

Inf≤ki (f) ≤
√
k · τ

2

k
= τ

Finally, the below corollary summarizes what we have achieved in this section.

Corollary 2.2.7. With poly(k, 1
ε , log 1

δ) queries to f , we can gain access to an approximate

oracle set D for a set of coordinates {i : Inf≤ki ≥ ε2

k } ⊆ S ⊆ [n]. Moreover, these coordinates
and oracles satisfy the following properties.

• For every coordinate i ∈ S, there exists a g ∈ D such that g is 0.1-close to Dicti with
probability at least 1− δ.

• dist(f,Jn,k)− dist(f,JS,k) ≤ ε.

• |S| ≤ poly(k, 1/ε, log(1/δ)).

• For any algorithm A that uses at most q queries to D, we can use LocalCorrect from
Lemma 2.2.4 with error δ/q to assume that we actually have perfect access to each
coordinate oracle, up to an additive loss of δ in confidence and a multiplicative overhead
of poly(log(q/δ)) in query complexity.

Proof. The first and the third bullet point follow from Corollary 2.2.3. The second bullet
point follows from Claim 2.2.6. To achieve the last point, we can use Corollary 2.2.5 every
time we make a “query” to an oracle in our algorithm. Thus every “query” to an oracle
g ≈ ±Dicti at x involves poly(log(q/δ)) many repetitions of LocalCorrect(g, x), which results
in an incorrect value with probability at most δ/2q, as noted above. Recall that Corol-
lary 2.2.3 guarantees that we can output g(x) correctly with probability 1− δ/2q with only
a poly(k, log(q/δ)) queries to f . Since we only ever make at most q queries to our coordinate
oracles, we can assume that LocalCorrect(g, x) = Dicti(x) in all queries. This happens with
probability at least 1− δ by the union bound.

Therefore, for the rest of this thesis, we will assume that we have oracle access to exact
dictators.

2.2.2 Implicit Access to an Underlying Junta

An important consequence of having coordinate oracles is that it allows us to reduce the
input size of the function dramatically. Suppose f : {±1}n → {±1} and we have D =
{g1, . . . , gk′} are randomized algorithms that for any x ∈ {±1}n output gi(x) = Dictji(x) =
xji . We have that j1, . . . , jk′ ∈ [n] are a set of k′ distinct coordinates. Let U = {j1, . . . , jk′}.
We want to get access to the following function: g(x1, . . . , xk′) = E[f(y)|yj1 = x1, yj2 =
x2, . . . , yjk′ = xk′]. More precisely, given x1, . . . , xk′ we want to sample uniformly from all
y ∈ {±1}n that satisfy yj1 = x1, yj2 = x2, . . . , yjk′ = xk′ and apply f on this y.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 37

The following algorithm that runs in poly(k, log(1/δ)) time samples y from such a dis-
tribution.

Algorithm 5: Sampling a uniformly random input consistent with the oracles’
values

Input: f (target function), D = {g1, . . . , gk′} (coordinate oracles),
(x1, . . . , xk′) ∈ {±1}k′

Output: A vector y ∈ {±1}n with (g1(y), . . . , gk′(y)) = (x1, . . . , xk′)
1 Sample y ∼ {±1}n and let z ∈ {±1}k′ be the vector of evaluations of {g1, . . . , gk′}

on y;
2 while z 6= x do
3 repeat
4 Let y′ be a copy of y, but flip each bit independently with probability 1

k′ ;
5 Let z′ be the vector of evaluations of {g1, . . . , gk′} on y′;

6 until dist(x, z′) < dist(x, z)
7 y = y′;
8 z = z′;

9 return y

Theorem 2.2.8. Algorithm 5 with probability 1− δ runs in time poly(k′, log(1/δ)).

Proof. We focus on the number of iterations of the inner repeat loop. Given (y, z) with
z 6= x we analyze the time it takes to find a (y′, z′) with dist(z′, x) < dist(z, x). Since x 6= z
without loss of generality we can assume that x1 6= z1.

To get (y′, z′) with dist(z′, x) < dist(z, x), it suffices to sample a vector y′ with y′j1 = x1

and y′j2 = yj2 , y
′
j3

= yj3 , . . . , y
′
jk′

= yjk′ . Indeed, since we are flipping each coordinate with

probability 1/k′ the probability of sampling such a y′ is exactly 1/k′ ·(1−1/k′)k
′−1 ≥ 1/(ek′).

Thus, we get that the runtime of the repeat loop is stochastically dominated by a geometric
random variable with success probability 1/(ek′). Thus with probability at least 1 − δ/k′,
it finishes after O(k′ · log(k′/δ)) iterations. We run the inner repeat loop at most k′-times,
thus by union bound, with probability at least 1 − δ the entire process end after at most
O(k′

2 · log(k′/δ)) executions of line 5. We note that execution line 5 actually requires
k′ queries to g1, . . . , gk′ , each of them takes poly(k) = poly(k′) time. thus overall, with
probability at least 1− δ, our algorithm run in time poly(k′, log(1/δ)).

Theorem 2.2.9. Algorithm 5 samples uniformly from the set of inputs {y′ : (g1(y′), . . . , gk′(y
′)) =

(x1, . . . , xk′))}.

Proof. Let U = {j1, . . . , jk′} be the set of coordinates for which {g1, . . . , gk′} are oracles
to. Algorithm 5 certainly samples a vector y with yj1 = x1, . . . , yjk′ = xk′ . We want to
show additionally that Algorithm 5 samples yU uniformly at random. In fact, at any point
in the algorithm the distribution over yU is uniform. This is clearly true in the first step
where y ∼ {±1}n, and remains true along the algorithm as we apply independent noise to
coordinates in U and decide whether to apply the noise or not according to the value of yU
which is independent of yU .

We will consider algorithms computing non-Boolean function like g = favg,S for some
subset S ⊆ [n]. Note that g is a function whose range in [−1, 1], but not necessarily a
Boolean function.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 38

Theorem 2.2.10 (Formal version of Theorem 1.8.4). Let f : {±1}n → {±1}, D =
{g1, . . . , gk′} be a set of coordinate oracles. Let g be a function from {±1}k′ → [−1, 1]
defined by g(x) = E[f(y)|g1(y) = x1, . . . , gk′(y) = xk′]. Then g has a randomized algorithm
in the sense of Definition 1.9.9 computing it that runs in expected time poly(k′).

Proof. Given x = (x1, . . . , xk′) apply Algorithm 5 on f , D and x to get a vector y ∈ {±1}n.
Return f(y). It is clear that since y is a uniform input subject to g1(y) = x1, . . . , gk′(y) = xk′
that our algorithm is a randomized algorithm for g.

2.2.3 Influential Coordinate Oracles

As above, denote as S the superset of the low-degree influential coordinates of f , and D
as the set of approximate oracles to said coordinates, obtained via Corollary 2.2.3 with
parameter ν = 0.1. As we discussed in Section 2.2.1, we assume (with a small loss in error
probability, and a small multiplicative factor on query complexity) that we have exact access
to dictators for each influential coordinate. We work towards proving the following improved
version of a corollary that appeared in [DMN19]:

The idea will be to take D, a set of k′ = poly
(
k, 1

ε

)
coordinate oracles, and somehow

“prune” it down to a set D′ of at most O(kε2) coordinate oracles, such that that the loss in
the most correlated junta on this smaller set of coordinates is at most ε

max
g∈JD,k

E[fg]− max
g∈JD′,k

E[fg] ≤ ε.

2.2.4 Reducing the Number of Oracles to Consider

Starting with a set of poly(k/ε) set of oracles D for a set S containing the influential
coordinates of f , our goal in this section is to prune the number of oracles to O(k/ε2) in a way
that incurs only a small loss in correlation with the nearest k-junta. [DMN19] achieved their
theorem by noting that applying a standard noise operator to f did not affect its proximity to

the nearest k-junta significantly, while also guaranteeing that at most k2

ε2 coordinates could
have large influence. They then were able to estimate the influence of every coordinate in D
despite only having (approximate) oracle access to the influential coordinates, and thus were
able to determine which oracles were actually oracles to influential coordinates, of which
there were less than k2/ε2.

Our approach, as explained at a high level in Section 2.1, is to estimate the normalized
influence of each coordinate in S, which is done via a sequence of random restrictions to

f . In words, the below algorithm estimates for each coordinate i ∈ S the quantity λ≈2d

i =

E(J,z)∼R
2−d

[f̂J̄→z({i})2], where (J, z) ∼ R2−d parameterize a 2−d-random restriction to f .

Then, λi is defined to be sum over a series of random restrictions d = 0, ..., log 10k of λ≈2d

i .
The core idea of our algorithm is that this sum over Fourier coefficients on the first level
of restricted versions of f is a proxy for NInf i[f]. In other words, we have the following
theorem:

Theorem 2.2.11. Let f : {±1}k′ → R, where k′ = |D|. Let i ∈ [k′]. Let

λi[f] =

log(10k)∑
m=0

λ≈2m

i [f], where λ≈2m

i [f] = E
(J,z)∼R2−m

[f̂J̄→z({i})2].

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 39

Then, 1
2NInf≤ki [f] ≤ λi[f] ≤ 2NInf i[f].

We postpone the proof of Theorem 2.2.11 to Section 2.2.5. The definition of λi naturally
gives rise to an algorithm for estimating λi that we present next. The algorithm would
return for each i ∈ [k′] an estimate λ̃i that would be close to λi with high probability.

Algorithm 6: Estimating λi

Input: f : {±1}k′ → [−1, 1] along with randomized algorithm A computing f
(recall Def. 1.9.9). Parameters 1− δ (confidence), ε (additive error) and k.

Output: Estimates (λ̃1, . . . , λ̃k′) for (λ1, . . . , λk′).
1 Let m = poly(k, k′, 1/ε, log(1/δ))

2 Initialize λ̃i = 0 for all i ∈ [k′];
3 for d = 0 to log 10k do

4 Initialize λ̃≈2d

i = 0 for all i ∈ [k′];
5 repeat m times
6 Let (J, z) ∼ R2−d be a 2−d-random restriction.

7 Estimate f̂J̄→z({j}) for all j ∈ J up to additive error ε
6 log(10k) with

probability 1− δ/poly(k, k′,m) using Claim 1.9.10 and algorithm A.

8 Denote by f̃J̄→z({j}) the estimated Fourier coefficient.

9 Update λ̃≈2d

j = λ̃≈2d

j + f̃J̄→z({j})2 for all j ∈ J .

10 Let λ̃≈2d

i = λ̃≈2d

i /m for all i ∈ [k′];

11 Let λ̃i =
∑
d λ̃
≈2d

i ;

12 return (λ̃1, λ̃2, . . . , λ̃k′)

Lemma 2.2.12. With probability at least 1 − δ we have that for all i ∈ [k′] it holds that

|λ̃i − λi| ≤ ε.

Proof. If j /∈ J the Fourier coefficient of f̂J̄→z is 0 and so our estimate is correct in that
case. In the case j ∈ J , each estimation of the Fourier coefficient is correct up to additive
error η = ε/6 log(10k) with probability at least 1 − δ/poly(k, k′,m). Thus, we get that

f̃J̄→z({j})2 = (f̂J̄→z({j}) ± η)2 = f̂J̄→z({j})2 ± 2η|f̂J̄→z({j})| ± η2 = f̂J̄→z({j})2 ± 3η.

Furthermore, we have that E(J,z)∼R
2−d

[f̂J̄→z({j})2] = λ≈2d

j , thus by Fact 1.9.1 we have that

the empirical mean of m = poly(1/ε, log(k), log(k′), log(1/δ)) copies of f̃J̄→z({j})2 is within

additive error ε/(2 log(10k)) from λ≈2d

j with probability at least 1 − δ/(k′ log(10k)). By

union bound, all these estimates are within the error bound, and we get that |λ̃≈2d

j −λ≈2d

j | ≤
3η + ε/(2 log(10k)) ≤ ε/(log(10k)). Overall, we get that |λ̃j − λj | ≤ ε for all j ∈ [k′] with
probability at least 1− δ.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 40

With Algorithm 6 in hand, we are ready to present the pruning procedure.

Algorithm 7: Reduce Number of Oracles

Input: f (target function), D (influential coordinate oracles, where D are oracles
for S). Parameters ε and δ.

Output: A subset D′ ⊆ D of size O(kε2) such that we lose at most ε in correlation
with f .

1 Initialize D′ = ∅;
2 Let m = O((k + log(1/δ))/ε2)
3 repeat m times
4 Let {g1, . . . , gk′} = D −D′, and {gk′+1, . . . , g|D|} = D′

5 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by

f ′(x1, . . . , xk′) = E
y∼{±1}n

[f(y)|g1(y) = x1, . . . , gk′(y) = xk′ , gk′+1(y) = z1, . . . , gk′+|D′|(y) = z|D′|].

and let A be the randomized algorithm for f ′ from Theorem 2.2.10.
6 Apply Algorithm 6 on f ′ using the randomized algorithm A for f ′ with

confidence 1− δ
2m and accuracy ε2

48·|S| =⇒ λ̃ = (λ̃1, . . . , λ̃k′).

7 Let our distribution P be defined by λ̃, normalized appropriately.
8 Sample i ∼ P , and add gi to D′.
9 return D′

Lemma 2.2.13. With probability at least 1− δ, Algorithm 7 returns a set of oracles D′ to
a subset of coordinates S ′ ⊆ S, such that

max
g∈JS,k

E[fg]− max
g∈JS′,k

E[fg] ≤ ε.

To prove Lemma 2.2.13, which tells us our algorithm succeeds and directly implies The-
orem 1.8.3, we will need a few more lemmas.

We denote the event E that in the entire execution of Algorithm 7 all λ̃i were ε2/(48 · |S|)
close to the real λi. We note that by union bound this event happens with probability at
least 1− δ/2.

Suppose T is the (unknown) set of k oracles for which the best-k junta approximating f
is a junta on T . We want to show that our algorithm either samples all the coordinates in
T , or it samples a subset T ′ of T that captures all but ε2/4 of the Fourier mass of f on T .

Claim 2.2.14. Assume the event E happens. Then, with probability at least 1− δ/2, after
m iterations, we will have either:

1. sampled i for all i ∈ T , our target set;

2. sampled i for all i ∈ T ′ ⊆ T , where
∑
S⊆T ′ f̂(S)2 ≥

∑
S⊆T f̂(S)2 − ε2/4.

Proof. In each iteration, assume we have not yet satisfied either items. Let V be the subset
of coordinates in T that we have not yet sampled. Let T ′ = T \ V . By assumption,

ε2/4 <
∑
S⊆T

f̂(S)2 −
∑
S⊆T ′

f̂(S)2 =
∑

S⊆T :S∩V 6=∅

f̂(S)2.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 41

Let S ′′ = S \ S ′. We have that |S ′′| = k′. Now note that up to relabeling of coordinates
f ′ from Algorithm 7 is the same as (favg,S)S′→z, where z was randomly chosen. For brevity,
denote by fz = (favg,S)S′→z. Note that for any fixed z, fz is a function that depends only
on the coordinates in S ′′.

By Fact 1.9.7, we have

E
z

 ∑
∅6=S⊆V

f̂z(S)2

 =
∑

R:∅6=(R∩S′′)⊆V

f̂avg,S(R)2 =
∑
R⊆S:

∅6=(R∩S′′)⊆V

f̂(R)2 ≥
∑

R⊆T :R∩V 6=∅

f̂(R)2

> ε2/4. (2.2)

Next, by applying Theorem 2.2.11, for any fixed z, we have∑
i∈V

λi[fz] ≥
1

2

∑
i∈V

NInf≤ki [fz] ≥
1

2

∑
∅6=S⊆V

f̂z(S)2.

By the assumption that E happens, the λ̃i are ε2

48·|S| -accurate, and we get that

∑
i∈V

λ̃i[fz] ≥
1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48 · |S|
· |V | ≥ 1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48
.

On the other hand by applying Theorem 2.2.11 again we see that∑
i∈S′′

λi[fz] ≤ 2 ·
∑
i∈S′′

NInf i[fz] = 2 ·Var[fz] ≤ 2

and thus
∑
i∈S′′ λ̃i[f] ≤ 2 + k′ · ε2

48·|S| ≤ 2 + ε2

48 ≤ 3 (under the assumption that E happens).

Overall, the probability to sample an element from V is at least

1

3
·

1

2

∑
∅6=S⊆V

f̂z(S)2 − ε2

48

 =
1

6

∑
∅6=S⊆V

f̂z(S)2 − ε2

3 · 48

By taking expectation over z, and using Equation (2.2) we see that the probability to sample
an element from V overall is at least

E
z

1

6

∑
∅6=S⊆V

f̂z(S)2 − ε2

3 · 48

 ≥ 1

6
· ε

2

4
− ε2

3 · 48
>
ε2

30
.

We get that in each iteration as long as we don’t satisfy Items (1) and (2) above, we
sample an element from i ∈ T with probability at least ε2/30. By repeating the process

m = O(k+log(1/δ)
ε2) times we would sample all of T , or get stuck at some T ′ satisfying

Item (2), with probability at least 1− δ/2, using Fact 1.9.1.

Next, we show that finding T ′ is almost as good as finding T in the sense that the
best correlation by juntas-on-T ′ with f is up to small additive error the best correlation by
juntas-on-T with f .

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 42

Lemma 2.2.15. Suppose we have some subset T such that
∑
S⊆T f̂(S)2 = c, and we then

identified a subset T ′ ⊆ T such that
∑
S⊆T ′ f̂(S)2 ≥ c− ε2

4 . Then∣∣∣∣ max
g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]

∣∣∣∣ ≤ ε
Proof. We know that argmaxg∈JT,kE[fg] = sgn(favg,T) and similarly argmaxg∈JT ′,kE[fg] =

sgn(favg,T ′). Then we have that∣∣∣∣ max
g∈JT,k

E[fg]− max
g∈JT ′,k

E[fg]

∣∣∣∣ = E[f(x)(sgn(favg,T (xT))− sgn(favg,T ′(xT ′))]

= E
xT

[
E
xT

[f(xT , xT)] (sgn(favg,T (xT))− sgn(favg,T ′(xT ′))

]
= E
xT

[favg,T (xT) (sgn(favg,T (xT))− sgn(favg,T ′(xT ′))]

≤ 2 E
xT

[|favg,T (xT)− favg,T ′(xT ′)|]

(Since z(sgn(z)− sgn(z′)) ≤ 2|z − z′| for all z, z′ ∈ R)

≤ 2

√
E
xT

[
(favg,T (xT)− favg,T ′(xT ′))2

]
= 2

√∑
S⊆T

f̂(S)2 − 2
∑
S⊆T ′

f̂(S)2 +
∑
S⊆T ′

f̂(S)2

≤ 2

√
ε2

4
= ε .

Proof of Lemma 2.2.13. Let g be the k-junta that maximizes E[fg] among all k-juntas on
S. Let T be the set of variables on which g depends. By Claim 2.2.14 we either sample
oracles to all of T or to a subset T ′ for which∑

S⊆T ′
f̂(S)2 ≥

∑
S⊆T

f̂(S)2 − ε2/4.

In the second case, by Lemma 2.2.15, we incur a loss in correlation of at most ε with our
nearest k-junta. In the first case, we lose no correlation with the closest k-junta, and by a
union bound our probability of failure is at most δ.

The above concludes the proof of Lemma 2.2.13. Finally, Theorem 1.8.3 is implied by
Lemma 2.2.13, as shown below.

Theorem 2.2.16 (Theorem 1.8.3, restated). Let ε > 0, k ∈ N, and k′ = C(k/ε2) for
some universal constant C. Then, there exists an algorithm that given f, k, ε makes at most
poly(k, 1/ε) queries to f and returns a number α such that with probability at least 0.99

1. α ≤ maxg∈Jn,k′ E[fg] +O(ε)

2. α ≥ maxg∈Jn,k E[fg]−O(ε)

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 43

Proof. Set δ = 2−poly(k,1/ε). We first apply Corollary 2.2.3 from [DMN19]. This gives
us poly(k, 1

ε , log(1/δ)) = poly(k/ε) coordinate oracles D to coordinates S that includes all

coordinates i with Inf≤ki [f] ≥ ε2

k . By Claim 2.2.6 we see that

max
g∈JS,k

E[fg] ≥ max
g∈Jn,k

E[fg]− ε

Next, we apply Algorithm 7 to get a subset D′ ⊆ D to coordinates S ′ ⊆ S such that with
high probability

max
g∈JS′,k

E[fg] ≥ max
g∈JS,k

E[fg]− ε

We take α to be the estimation of the correlation of the best junta on S ′ with f . By
Claim 1.9.2 we have that maxg∈JS′ E[fg] = E[|favg,S′(x)|]. To estimate the latter, we use a
randomized algorithm that computes favg,S′ given by Theorem 2.2.10. We randomly sample
O(1/ε2) many values for x and estimate for each of them |favg,S′(x)| up to additive error
ε/2 via the randomized algorithm with expected value favg,S′(x).

Assume that α is a ε-additive approximation to maxg∈JS′ E[fg]. In this case, we claim
that α satisfies both items from the theorem’s statement. Indeed,

1. α ≤ maxg∈JS′ E[fg] + ε ≤ maxg∈Jn,k′ E[fg] + ε.

2. α ≥ maxg∈JS′ E[fg]−ε ≥ maxg∈JS′,k E[fg]−ε ≥ maxg∈JS,k E[fg]−2ε ≥ maxg∈Jn,k E[fg]−
3ε.

Next, we analyze the number of queries of our algorithm. Obtaining the initial set
of coordinate oracles D takes poly(k, 1/ε, log(1/δ)) = poly(k, 1/ε) queries. Then, we go
on to run Algorithm 7 that makes m = O((k + log(1/δ))/ε2) iterations, each making
poly(k, 1/ε, log(1/δ)) queries. Next, to estimate E[|favg,S′(x)|] we require poly(1/ε) samples
from randomized algorithm for favg,S′(x) each such sample translate to poly(k, 1/ε) samples
to f . Finally, we note that each “query” to an oracle incurs an overhead of poly(log(k, 1/ε))
queries to f along with an o(1) additive loss in confidence by Corollary 2.2.7. Overall, we
make poly(k, 1/ε) queries.

2.2.5 Proof of Theorem 2.2.11

We now present the proof of Theorem 2.2.11.

Proof of Theorem 2.2.11. We express λi in terms of the Fourier spectrum of f . Using
Fact 1.9.7,

λi =

log(10k)∑
m=0

∑
S:S3i

f̂(S)2 · Pr
J⊆2−m [k′]

[S ∩ J = {i}]

=

log(10k)∑
m=0

∑
S:S3i

f̂(S)2 · Pr
J⊆2−m [k′]

[|S ∩ J | = 1] · 1

|S|

=
∑
S:S3i

f̂(S)2

|S|
·

log(10k)∑
m=0

Pr
J⊆2−m [k′]

[|S ∩ J | = 1]

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 44

It therefore suffices to show that for any non-empty set S such that |S| ≤ k it holds that

1

2
≤

log(10k)∑
m=0

Pr
J(m)⊆2−m [k′]

[|S ∩ J (m)| = 1] ≤ 2 . (2.3)

From which it is clear that λi ≤ 2 ·
∑
S:S3i

f̂(S)2

|S| = 2 · NInf i[f] and similarly λi ≥
1
2

∑
S3i,
|S|≤k

f̂(S)2

|S| = 1
2NInf≤ki [f].

We move to prove Equation (2.3). The first observation is that an equivalent way to

sample J (m) ⊆2−m [k′] is to sample m independent set J
(m)
1 , . . . , J

(m)
m ⊆1/2 [k′] and take

their intersection J (m) = J
(m)
1 ∩ · · · ∩ J (m)

m . Furthermore, by linearity of expectation

∞∑
m=0

Pr
J(m)⊆2−m [k′]

[|S∩J | = 1] =
∞∑
m=0

E
J

(m)
1 ⊆1/2[k′],

J
(m)
2 ⊆1/2[k′],

...

[
1|S∩J(m)

1 ∩···∩J(m)
m |=1

]
= E
J1⊆1/2[k′],

J2⊆1/2[k′],
...

[∞∑
m=0

1|S∩J1∩···∩Jm|=1

]

which in essence means that the choices for J
(1)
1 , J

(2)
1 , . . . can be the same set J1, and

similarly for any Ji.
To analyze the latter expectation, we note that it can be described as the expected value

of the following random process:

1 X ← 0
2 for i = 1, 2, . . . , log(10k) do
3 if S = ∅ then
4 halt!;

5 if |S| = 1 then
6 increment X;

7 Sample Ji ⊆1/2 [k′];
8 S ← S ∩ Ji;

It therefore suffices to show that the expected value of the above random process is
bounded in [1/2, 2]. In the analysis, we consider also the infinite horizon process that keeps
on going until S = ∅. We observe that the expected values of both processes depend only on
the size of the initial S from symmetry. For any t ∈ {0, 1, . . . , k′}, denote by Ft the expected
value of the infinite horizon process starting with a set S of size t. For the finite horizon

process with i iterations, we let the expected value be denoted by F
(i)
t . We observe that

F0 = 0, and furthermore that F1 = 2 since starting from a set of size 1 the random variable

X would behave like geometric random variable with p = 1/2. Similarly, F
(i)
1 = 2− 1

2i−1 as
it is the minimum of i and a geometric random variable with p = 1/2.

Furthermore, for the infinite horizon process, we observe that we have the following
recurrence

Ft =
t∑

a=0

(
t
a

)
2t
· Fa,

for t ≥ 2 or equivalently

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 45

We show by induction that 1/2 < F
(log 10k)
t ≤ 2 for t ≥ 1. The base case t = 1 was discussed

above. Applying the induction hypothesis we have

Ft · (1− 2−t) =
t−1∑
a=0

(
t
a

)
2t
· Fa ≤

t−1∑
a=0

(
t
a

)
2t
· 2 ≤ (1− 2−t) · 2.

Dividing both sides by (1−2−t) gives the inequality Ft ≤ 2, which implies that F
(log 10k)
t ≤ 2.

For the lower bound, we consider the indicator random variable Y
(i)
t , where t = |S|,

which equals 1 if |S| = 1 at some point during the above process before iteration i. We note

that Y
(log 10k)
t is a lower bound for the value of X in the finite horizon process, and Yt is a

lower bound for the value of X at the end of the infinite horizon process. First, we claim
that E[Yt] = Pr[Yt = 1] ≥ 2/3 for all t ≥ 1. The base case of t = 1 is certainly true, and we
also have, similar to before, that

E[Yt] · (1− 2−t) =

t−1∑
a=0

(
t
a

)
2t

E[Ya]

≥ 0 · 1

2t
+ 1 · t

2t
+

2

3
·
t−1∑
a=2

(
t
a

)
2t︸ ︷︷ ︸

1− 2+t

2t

=
2

3
+
t− 2

3 (2 + t)

2t
≥ 2

3
+
t/3− 4/3

2t
≥ 2

3
− 2/3

2t
=

2

3
· (1− 2−t)

which holds for all t ≥ 2, and thus Pr[Yt = 1] ≥ 2/3. However, this only holds for the infinite
horizon random process. Let A be the event that S = ∅ by iteration log 10k, and note that

Pr[A] = Pr[Bin(|S|, 1
10k) = 0] ≥ Pr[Bin(k, 1

10k) = 0] =
(
1− 1

10k

)k ≥ 1− k
10k = 0.9. Finally,

we claim that for all t ≥ 2 we have that Pr[Y
(log 10t)
t] ≥ 1/2. Note that for Yt to happen, it

must be the case that either A happens or Y
(log 10t)
t happens. Thus, by a union bound

2
3 ≤ Pr[Yt = 1] ≤ Pr[Y

(log 10t)
t = 1] + Pr[A] ≤ Pr[Y

(log 10t)
t = 1] + 0.1 ,

which implies Pr[Y
(log 10t)
t = 1] > 1/2. Finally, F

(log 10t)
t ≥ Pr[Y

(log 10t)
t = 1] > 1/2 as

desired.

2.3 A 2Õ(
√
k)-query Tolerant Junta Tester

In this section, we prove Theorem 1.8.1. Throughout this section, we assume that we already
applied Algorithm 7 to reduce the number of coordinate oracles to O(k/ε2). We denote by
D the set of oracles we get, and by S ⊆ [n] the set of coordinate to which they are oracles
to. Suppose that the best k-junta approximation of f is a junta-on-T , for a set T ⊆ S of
size k. We call T the “target set”. Note that T is unknown to the algorithm, and in fact,
identifying T (or a close approximation to T) from all subsets of size k of S is the crux of
the problem.

We start with the observation that if we were somehow able to identify all of the variables
of T that capture most of the Fourier mass above level thr, then we could simply restrict

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 46

f by randomly fixing these variables, leaving us with the task of identifying the best k-
junta approximation of f , given that we know the best k-junta has most its Fourier mass
below level thr. For the latter case, there are only

(|S|
thr

)
Fourier coefficients to estimate, and

estimating these to sufficient accuracy allows one to estimate the the correlation f has with
any subset U ⊆ S such that |U | ≤ k.

We are now ready to present the details of the algorithm. The algorithm can be broken
down into two main steps. First, we find, with high probability, a set B ⊆ T that captures
almost all Fourier mass of T above level thr. This first step, which we call “phase one”, closely
resembles the techniques in Section 2.2 in that we utilize a series of random restrictions
to estimate normalized influences. The main difference is that rather than considering
normalized influences of individual coordinates, we now consider normalized influences of
sets of size thr. The goal of phase one is to produce at least one subset B of our target set
T which effectively captures most of the Fourier mass within T above level thr. Once we
have done that, we have reduced to the scenario of the closest k-junta to f having most
of its Fourier mass below level thr, which can be solved via estimating all of the Fourier
coefficients below level thr.

2.3.1 Phase One: The Higher Levels

First, we prove an analogous theorem to Theorem 2.2.11, which relates λU [f] to NInfU [f]
for all U :

Theorem 2.3.1. Let f : {±1}` → R. Let U ⊆ [`], where ` = |D| and |U | ≤ k. Let

λU [f] =

2|U | log(10k)∑
m=0

λ≈p
−m

U [f], where λ≈p
−m

U [f] = E
(J,z)∼Rpm

[f̂J̄→z(U)2]

for p = 1− 1
2|U | . Then, 1

2 ·NInf≤kU [f] ≤ λU [f] ≤ 3 ·NInfU [f].

Again, we postpone the proof of this to the end of this section in Section 2.3.3.
The definition of λU [f] is naturally algorithmic, and therefore we can design the following

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 47

algorithm to approximate the values of λU [f] for all sets U of size thr =
√
εk.

Algorithm 8: Estimating λU ’s

Input: f : {±1}k′ → [−1, 1] along with a randomized algorithm A computing f
(recall Def. 1.9.9). Parameters 1− δ (confidence), ε (additive error) and k.

Output: Estimates {λ̃U}|U |=thr for {λU}|U |=thr.
1 Let m = poly(k, k′, 1/ε, log(1/δ))

2 Initialize λ̃U = 0 for all U ⊆ [k′], |U | = thr =
√
εk

3 Let p =
(
1− 1

2thr

)
4 for d = 0 to 2thr log 10k do

5 Initialize λ̃≈p
−d

U = 0 for all U ⊆ [k′] such that |U | = thr
6 repeat m times
7 Let (J, z) ∼ Rpd be a pd-random restriction.

8 Estimate f̂J̄→z(U) for all U ⊆ J of size thr up to additive error ε
12thr log(10k)

with probability 1− δ

(k
′

thr)m·2thr log(10k)
using Claim 1.9.10 and algorithm A.

Denote by f̃J̄→z(U) the estimated Fourier coefficient.

9 Update λ̃≈p
−d

U = λ̃≈p
−d

U + f̃J̄→z(U)2 for all U ⊆ J of size thr.

10 Let λ̃≈p
−d

U = λ̃≈p
−d

U /m for all U ⊆ J of size thr;

11 Let λ̃U =
∑
d λ̃
≈p−d
U ;

12 return {λ̃U}|U |=thr

Lemma 2.3.2. With probability at least 1 − δ we have that for all U ⊆ [k′] of size thr it

holds that |λ̃U − λU [f]| ≤ ε.

Proof. This proof closely follows that of Lemma 2.2.12. If U 6⊆ J the Fourier coefficient of

f̂J̄→z(U) is 0 and so our estimate is correct in that case. In the case U ⊆ J , each estimation
of the Fourier coefficient is correct up to additive error η = ε

12thr log(10k) with probability at

least 1 − δ/ exp(k, k′,m). Thus, we get that f̃J̄→z(U)2 = (f̂J̄→z(U) ± η)2 = f̂J̄→z(U)2 ±
2η|f̂J̄→z(U)| ± η2 = f̂J̄→z(U)2 ± 3η. Furthermore, we have that E(J,z)∼R

pd
[f̂J̄→z(U)2] =

λ≈p
−d

U , thus by Fact 1.9.1 we have that the empirical mean ofm = poly(1/ε, poly(k), poly(k′), log(1/δ))

copies of f̃J̄→z(U)2 is within additive error ε/(4thr log(10k)) from λ≈p
−d

U with probability at
least 1− δ

(k
′

thr)m·2thr log(10k)
. By union bound, all these estimates are within the error bound,

and we get that∣∣∣λ̃≈p−dU − λ≈p
−d

U

∣∣∣ ≤ 3η + ε/(4thr log(10k)) ≤ ε/(2thr log(10k)).

Overall, we get that |λ̃U − λU [f]| ≤ ε for all |U | = thr with probability at least 1− δ.

Since we are sampling sets of size thr, we need to sample at most k/thr =
√
k/ε =: α

distinct subsets of T of size thr in order to capture all the potential mass of T above level

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 48

thr.

Algorithm 9: Branching Process

Input: f (target function), D (where D are coordinate oracles for S) a current
depth t, a current subset D′ ⊆ D of coordinate oracles, ε, δ

Output: Return collection of subsets of D of size at most k.
1 Let α = k/thr =

√
k/ε

2 Let r = O(1/ε2) and ` = 2(r + 1)3α+log(2/δ)

/* r + 1 is the branching factor, and ` is an upper bound on the number

of nodes in the branching process (the process depth is

3α+ log(2/δ)). */

3 if t = 3α+ log(2/δ) or |D′| > k − thr then
4 return {D′}
5 Let {g1, ..., gk′} = D −D′ and {gk′+1, ..., g|D|} where k′ = |D| − |D′|
6 Sample z ∈ {±1}|D′|. Let f ′ : {±1}k′ → R be the function defined by

f ′(x1, . . . , xk′) = E
y∼{±1}n

[f(y)|g1(y) = x1, . . . , gk′(y) = xk′ , gk′+1(y) = z1, . . . , g|D|(y) = z|D′|],

and let A be the randomized algorithm for f ′ from Theorem 2.2.10.
7 Apply Algorithm 8 on f ′ using the randomized algorithm A for f ′ with confidence

1− δ
2` and accuracy ε2

48·(|D|thr)
=⇒ λ̃ = {λ̃U}|U |=thr.

8 Let our distribution P be defined by λ̃, normalized appropriately

9 Sample M1, ...,Mr ∼ λ̃
10 Let L = {}.
11 for M = ∅,M1, ...,Mr do
12 L = L ∪ BranchingProcess(f,D, t+ 1,D′ ∪ {gi : i ∈M}, ε, δ)
13 return L

Lemma 2.3.3. With probability at least 1−δ, at least one of the subsets Algorithm 9 returns
is a set of coordinate oracles to B ⊆ T such that

E
z

[∑
S⊆T\B
|S|>thr

f̂B→z(S)2

]
≤ ε2/4. (2.4)

The reason for Equation (2.4) becomes clear in Section 2.3.2, where we show that as-
suming the inequality, we lose at most an additive error of ε/2 to the nearest k-junta if we
ignore the Fourier mass above level thr after restricting B. As before, in order to prove
the above lemma, we prove a claim capturing the algorithm’s progress towards satisfying
Equation (2.4).

We denote the event E that in the entire execution of Algorithm 9 all of the λ̃U were
ε2/48 ·

(|D|
thr

)
close to the real λU . We note that by a union bound, this happens with

probability at least 1− δ/2.
Suppose again that T is the (unknown) set of k coordinates for which the best k-junta

approximating f is a junta on T . If T has Fourier mass less than ε2/4 above level thr then
one of the subsets that Algorithm 9 will return is the empty set, which satisfies the claim.
Therefore, henceforth we assume that T has at least ε2/4 Fourier mass above level thr. We

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 49

show that in such a case, each Mi for i = 1, . . . , r will be a subset of T with probability at
least Ω(ε2).

Claim 2.3.4. Assume D′ are coordinate oracles to S ′ ⊆ T . Suppose also that

E
z

[∑
S⊆T\S′
|S|>thr

f̂S′→z(S)2

]
> ε2/4.

Then, conditioned on E, when running the Branching Process on D′, each Mi will be with
probability at least ε2/40 a collection of thr new coordinate oracles to coordinates in T .

Proof. Similar to the proof of Claim 2.2.14, denote by fz = (favg,S)S′→z, and note that f ′

is up to relabeling of coordinates the same function as fz. Denote V ⊆ T as the part of the
target set we have not yet sampled, so V = T \ S ′. Then, using our assumption, we have
that

ε2/4 < E
z

[∑
S⊆V
|S|>thr

f̂S′→z(S)2

]

=
∑
S⊆V
|S|>thr

∑
R⊆[n]:

R∩S′=S

f̂(R)2 (Fact 1.9.7)

=
∑
S⊆V
|S|>thr

∑
R⊆S:

R∩S′=S

f̂(R)2 (if R 6⊆ S then R ∩ S ′ 6= S)

=
∑
S⊆V
|S|>thr

∑
R⊆S:

R∩S′=S

f̂avg,S(R)2

= E
z

[∑
S⊆V
|S|>thr

f̂z(S)2

]
.

Next, by applying Theorem 2.3.1, we have that∑
U⊆V
|U |=thr

λU [fz] ≥
1

2

∑
U⊆V

NInf≤kU [fz] ≥
1

2

∑
U⊆V :|U |=thr

∑
S:U⊆S⊆V

f̂z(S)2(|S|
|U |
) =

1

2

∑
|S|>thr
S⊆V

f̂z(S)2

Then, using the assumption that E happens, the λ̃U are ε2

48·(|S|thr)
-accurate, and we get that

∑
U⊆V
|U |=thr

λ̃U [fz] ≥
1

2

∑
|S|>thr
S⊆V

f̂z(S)2 − ε2

48 ·
(|S|
thr

) · (k

thr

)
≥ 1

2

∑
|S|>thr
S⊆V

f̂z(S)2 − ε2

48
.

On the other hand, again by applying Theorem 2.3.1, we have that∑
U⊆S
|U |=thr

λU [fz] ≤ 3
∑
U⊆S
|U |=thr

NInfU [fz] ≤ 3W≥thr[fz] ≤ 3.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 50

This implies that
∑
U λ̃U ≤ 3 + ε2

48·(|S|thr)
·
(|S|
thr

)
≤ 4. Overall, the probability to sample U ⊆ V

is at least

1

4

1

2

∑
|S|>thr
S⊆V

f̂z(S)2 − ε2

48

 =
1

8

∑
|S|>thr
S⊆V

f̂z(S)2 − ε2

4 · 48
.

Taking an expectation over z, we see that the probability to sample a subset of V is at least

E
z

[
1

8

∑
|S|>thr
S⊆V

f̂z(S)2 − ε2

4 · 48

]
≥ 1

8
· ε

2

4
− ε2

4 · 48
≥ ε2

40
.

We are now ready to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. By Claim 2.3.4, if our special set T has at least ε2/4 mass on the

levels above thr, then if we sample according to our distribution λ̃ = {λ̃U}|U |=thr, we will
see U ⊆ T with probability at least ε2/40. Then, if we sample r = O(ε−2) subsets in
Algorithm 9, applying the multiplicative Chernoff bound in Fact 1.9.1, we see at least one
subset of T with probability at least p ≥ 0.9 each time we sample M1, ...,Mr in Algorithm 9.
In order for Algorithm 9 to successfully find Bi with the desired property, it suffices to have
sampled from T at least α times in our branching process. Therefore, we can treat our
N := (3α+log(2/δ)) depth branching process as aX = Bin(N, p) random variable. Applying
a standard Chernoff bound (second case in Fact 1.9.1), we have that our probability of failure
is

Pr[X < α] = Pr[X < α
N]

= Pr[X < 0.9− (0.9− α
N)]

≤ exp(−2N(0.9− α
N)2) (Using Fact 1.9.1)

≤ exp(−2N(0.81− 2 αN))

≤ exp(−1.5N + 4α)

≤ exp(− log(2/δ)) = δ/2.

This shows that, by a union bound with event E , one of the branches of our algorithm find’s
a Bi satisfying Equation (2.4) with probability at least 1− δ.

Claim 2.3.5. The query complexity of phase one of the algorithm for constant δ (failure

probability) is 2Õ(
√
k/ε).

Proof. All of our queries to f in phase one come from estimating fourier coefficients using
Claim 1.9.10 in Algorithm 8. We require that the estimated Fourier coefficients be accurate

to within 1/poly(k, 1/ε) with confidence 1− O(1/`) = 1− 2−Ω̃(
√
k/ε), which is possible via

Fact 1.9.1 with query complexity poly(k/ε). However, we do this O(`) = 2Õ(
√
k/ε) times

during the branching process, which yields the final overall query complexity.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 51

2.3.2 Phase Two: The Lower Levels

Now, we are ready to use Algorithm 9. Our strategy will be to take the subsets outputted
from Algorithm 9 one at time, randomly fixing those coordinates, and then treating this
restricted version of f as if all its Fourier mass were below level thr (recall that thr =

√
εk).

Let T be the target set of size k on which there exists a k-junta which best approximates
f . Assume that the first part of the algorithm is successful in yielding at least one B ⊆ T
such that:

E
z∈{±1}B

[∑
S⊆T\B
|S|>thr

f̂B→z(S)2
]
≤ ε2/4. (2.5)

Let g be the maximizer of maxg′∈JT E[fg′]. Recall that by Claim 1.9.2 we have that g =
sgn(favg,T) and

corr(f,JT) = E[fg] = E
y∈{±1}T

[|favg,T (y)|] = E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣(favg,T)B→z(x)

∣∣∣∣ (2.6)

= E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆T\B

f̂B→z(S)χS(x)

∣∣∣∣
(2.7)

Furthermore, using the assumption in Eq. (2.5) it is an easy calculation to show that (2.7)
equals

E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆T\B,|S|≤thr

f̂B→z(S)χS(x)

∣∣∣∣± ε/2.
Similarly, for any set U ⊆ S of size k containing B (think of U as a candidate for T) we

have that the best correlation between a junta-on-U and f is

corr(f,JU) = E
z∈{±1}B

E
x∈{±1}U\B

∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)

∣∣∣∣. (2.8)

Now, however, the right hand side in Eq. (2.8) is not necessarily approximated by the
low-degree counterpart as above for T . Indeed, we would like to estimate Eq. (2.8) for all
candidates U ⊆ S of size k containing B, and pick the set with best estimated correlation.

Based on our assumption on T , we can replace
∑
S⊆U\B f̂B→z(S)χS(x) with its low-degree

part
∑
S⊆U\B,|S|≤thr f̂B→z(S)χS(x) for U = T , but its not clear whether we can do it in

general.
In particular, if U satisfies

E
z∈{±1}B

[∑
S⊆U\B,
|S|>thr

f̂B→z(S)2
]
> ε2/4, (2.9)

then taking the low-degree part can give an overestimate to the correlation with the best
junta on U .1 We settle for an estimate that is ε-accurate for the target set T assuming it
satisfies Equation (2.5), and is not overestimating by more than ε for any other set U ⊇ B

1To see a simple example of how this can happen, consider f(x, y) = 1−x− y +xy. Then one can verify
that E[|f(x, y)|] = 1 < 1.5 = E[|1− x− y|].

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 52

of size k. Towards this goal, we first apply a noise operator that would essentially eliminate
most of the contribution from sets larger than

√
k/ε log(1/ε) regardless of whether U satisfies

Eq. (2.20) or not. This is captured by the following claim.

Claim 2.3.6. Let ρ = 1 −
√
ε/k, z ∈ {±1}B and denote by h = fB→z and hlow =

h≤(
√
k/ε)·log(1/ε) (i.e., hlow is the truncated Fourier expansion of h that zeroes out all Fourier

coefficients above level (
√
k/ε) · log(1/ε)). For any U : B ⊆ U ⊆ S it holds that∣∣∣∣corr (Tρh,JU)− corr

(
Tρh

low,JU
) ∣∣∣∣ ≤ ε.

Proof. We have∣∣∣∣corr (Tρh,JU)− corr
(
Tρh

low,JU
) ∣∣∣∣

=

∣∣∣∣∣ E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

ĥ(S)χS(x)ρS
∣∣∣ − E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B,

|S|≤(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρS
∣∣∣∣∣∣∣∣

≤ E
x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B,

|S|>(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

∣∣∣∣∣

≤

√√√√√√√ E
x∈{±1}U\B

(∑
S⊆U\B,

|S|>(
√
k/ε)·log(1/ε)

ĥ(S)χS(x)ρ|S|

)2

=

√√√√√
∑

S⊆U\B,
|S|>(
√
k/ε)·log(1/ε)

ĥ(S)2ρ2|S| ≤
√
ρ2(
√
k/ε)·log(1/ε) ≤ ε.

Next, we show that applying a noise operator to f does not affect its correlation with a
set U of size k, under the condition that most of the Fourier mass of fB→z falls on the lower

levels, i.e., Ez

[∑
S⊆U\B,|S|≥

√
k
f̂B→z(S)2

]
≤ ε2/4. Recall that this is what was guaranteed

with high probability from the output of Algorithm 9 for our target set T .

Claim 2.3.7. Let ρ = 1−
√
k/ε. Given U : B ⊆ U ⊆ S such that Ez

[∑
S⊆U\B,
|S|≥thr

f̂B→z(S)2
]
≤

ε2/4, we have that ∣∣∣E
z
corr(Tρ(fB→z),JU)−E

z
corr(fB→z,JU)

∣∣∣ ≤ 1.2ε.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 53

Proof. Similar to the proof of Claim 2.3.6, we have∣∣∣∣∣ E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ − E

z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x) · ρ|S|
∣∣∣∣∣∣∣∣

≤ E
z∈{±1}B

x∈{±1}U\B

∣∣∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

∣∣∣∣∣
≤

√√√√√√ E
z∈{±1}B

x∈{±1}U\B

 ∑
S⊆U\B

f̂B→z(S)χS(x)(1− ρ|S|)

2

=

√√√√ E
z∈{±1}B

[∑
S⊆U\B

f̂B→z(S)2 · (1− ρ|S|)2

]

≤

√√√√ E
z∈{±1}B

[∑
S⊆U\B:|S|≤thr

f̂B→z(S)2 · (1− ρ|S|)2 +
∑

S⊆U\B:|S|>thr

f̂B→z(S)2 · (1− ρ|S|)2

]

≤
√

(1− ρthr)2 + ε2/4 ≤
√
ε2 + ε2/4 ≤ 1.2 · ε.

The next lemma gives an algorithm that on any B, satisfying Equation (2.5), outputs
U : B ⊆ U ⊆ S with corr(f,JU) ≥ corr(f,JT)−O(ε), with high probability.

Lemma 2.3.8 (Algorithm and Analysis for Phase-Two). Let ε, δ > 0. There’s an algorithm
that with probability at least 1− δ, gives ε-accurate estimates c̃U to

cU = E
z∈{±1}B

E
x∈{±1}T\B

∣∣∣∣ ∑
S⊆U\B:|S|≤

√
k/ε·log(1/ε)

f̂B→z(S)χS(x)ρ|S|
∣∣∣∣

for all U : B ⊆ U ⊆ S of size k simultaneously. We return (U, c̃U) for the set U with
maximal c̃U .

Complexity The procedure uses log(1/δ)2Õ(
√
k/ε) queries and runs in time log(1/δ)2k·Õ(1/ε).

Correctness In the case where all estimates are ε-accurate, the following holds. If B ⊆ T
satisfies Equation (2.5), the above procedure would return (U, c̃U) with c̃U ≥ corr(f,JT)−
3.2ε. Moreover, regardless of whether T and B satisfy Equation (2.5), we have
c̃U ≤ corr(f,JU) + 2ε.

Proof. First we show that we can estimate all cU up to error ε simultaneously with high
probability using the aforementioned query complexity and running time. We sample t =
O(log(1/δ)/ε2) different z ∈ {±1}B , and estimate for each value of z the Fourier coefficients

of f̂B→z(S) of all sets S ⊆ S of size at most ζ =
√
k/ε · log(2

ε) up to additive error ε/
(
k
≤ζ
)

=

2−Ω̃(
√
k/ε) with probability 1− δ

t·(k≤ζ)
, which is possible via Fact 1.9.1 with log(1/δ)2Õ(

√
k/ε)

queries. Fact 1.9.1 guarantees that with probability 1 − δ for all sampled z, all estimated

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 54

low-degree Fourier coefficients are within the additive error bound, in which case we have
estimates for all cU up to error ε simultaneously with probability 1− δ.

Next, we show the correctness of the procedure. On the one hand, in the assumed case,

i.e., that T satisfies Ez

[∑
S⊆T\B,|S|≥thr f̂B→z(S)2

]
≤ ε2

4 , we will have by Claim 2.3.6 and

Claim 2.3.7 that
cT ≥ corr(f,JT)− 2.2ε (2.10)

Since we output the set U with maximal c̃U , and since all estimates are correct up to ε
we know that we output U with

c̃U ≥ c̃T ≥ cT − ε. (2.11)

Combining Equations (2.10) and (2.11) together we get

c̃U ≥ cT − ε ≥ corr(f,JT)− 3.2ε.

We move to prove the furthermore part, i.e., that c̃U ≤ corr(f,JU) + 2ε regardless of
whether T andB satisfy Equation (2.5). We start by showing that for any set U (whatsoever)
we have that corr(f,JU) ≥ cU − ε. Indeed, by Claim 2.3.6 we have

cU ≈ε E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

and since the noise operator can only reduce `1-norm (see Fact 1.9.4), we see that for all
z ∈ {±1}B it holds that

E
x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣ ≤ E

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣

Thus,

cU ≤ ε+ E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)ρ|S|
∣∣∣

≤ ε+ E
z∈{±1}B

x∈{±1}U\B

∣∣∣ ∑
S⊆U\B

f̂B→z(S)χS(x)
∣∣∣ = ε+ corr(f,JU)

Since |cU − c̃U | ≤ ε, we get that c̃U ≤ cU + ε ≤ corr(f,JU) + 2ε.

After phase one, we can apply Lemma 2.3.8 to each B from phase one, and get a set
UB : B ⊆ UB ⊆ S of size k, along with an estimate of the correlation of f to JUB . This
leads to the proof of Theorem 1.8.1 which we restate next.

Theorem 2.3.9. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate the
distance of f from the class of k-juntas to within additive error ε with probability 2/3 using

2Õ(
√
k/ε) adaptive queries to f . In particular, when ε is constant, this yields a 2Õ(

√
k)-query

algorithm. However, the algorithm still requires exp(k/ε) time.

Proof. Let ε0 = ε/6

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 55

1. We first apply the result of [DMN19] to reduce the down to only poly(k, 1/ε0) coor-
dinates. This incurs a loss in correlation of at most ε0, and fails with probability at
most δ1, which we can set to be 1/20, by Corollary 2.2.3.

2. Next, we apply our Theorem 1.8.3, which reduces the number of oracles we have to
consider down to O(k/ε2

0), incurs an additive loss in correlation of at most ε0, and
fails with probability at most δ2 = 1/20.

3. Then, we run phase 1 of our algorithm, which fails with probability at most δ3 = 1/20
by Lemma 2.3.3.

4. Finally, we apply Lemma 2.3.8 to every B outputted by Algorithm 9 to get a set
UB and an estimate C̃UB for the correlation of f with JUB We iterate on all sets B
returned by phase-1 and return UB with the highest estimate of correlation.

There are ` = O(1
ε20

)3
√
k/ε0+log(2/δ3) = 2Õ(

√
k/ε0) branches, and thus if we apply the

algorithm from lemma 2.3.8 with δ = 1/(20`), we get that all this step fail with
probability at most 1/20 by a union bound.

By a union bound, each of these steps succeeds with probability at least 1 − 4/20 ≥
2/3. In the case all steps succeeds, we return a set U with c̃U ≥ corr(f,Jn,k) − 5.2ε0.
In addition, the moreover part in Lemma 2.3.8 guarantees that c̃U ≤ corr(f,JU) + 2ε0 ≤
corr(f,Jn,k) + 2ε0. We get that the returned value is within 5.2ε0 < ε of corr(f,Jn,k).

Finally, since dist(f,Jn,k) =
1+corr(f,Jn,k)

2 we get that 1+c̃U
2 is an ε/2-accurate approximation

of dist(f,Jn,k). Finally, we note that the query complexities of phase 1 and phase 2 are

both 2Õ(
√
k/ε), but the runtime is exponential due to lemma 2.3.8.

Finally, we mention that if our goal is not to estimate to correlation with the nearest
k-junta to f , but rather to simply estimate the most amount of Fourier mass any subset of
k variables contains, then we have the following theorem with an improved dependence on
ε:

Theorem 2.3.10. Given a Boolean function f : {±1}n → {±1}, it is possible to estimate
the most mass any subset of at most k variables of f has to within additive error ε with

probability 2/3 using 2Õ(
√
k log(1/ε)) adaptive queries to f . In particular, when ε is constant,

this yields a 2Õ(
√
k)-query algorithm. However, the algorithm still requires exp(k log(1/ε))

time.

We leave the proof of this theorem, which involves simple modifications to the algorithm
presented in this section, to Section C.

2.3.3 Proof of Theorem 2.3.1

We now present the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1. The proof is very similar to the previous proof of Theorem 2.2.11,
so we explain how to modify it to this case.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 56

We express λU in terms of the Fourier spectrum of f .

λU =

2|U | log(10k)∑
m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [`]

[S ∩ J = U]

=

2|U | log(10k)∑
m=0

∑
S:S⊇U

f̂(S)2 · Pr
J⊆pm [`]

[|S ∩ J | = |U |] · 1(|S|
|U |
)

=
∑

S:S⊇U

f̂(S)2(|S|
|U |
) · 2|U | log(10k)∑

m=0

Pr
J⊆pm [`]

[|S ∩ J | = |U |]

It suffices to show that for any non-empty set S of size at least |U | and at most k it
holds that

2|U | log(10k)∑
m=0

Pr
J⊆pm [`]

[|S ∩ J | = |U |] ∈ [1/2, 3] . (2.12)

Again, we can analyze the sum on the left hand side of Equation (2.12) as the expected final
value of X in the following random process:

1 X ← 0
2 for i = 1, 2, . . . , 2|U | log(10k) do
3 if |S| < |U | then
4 halt!

5 if |S| = |U | then
6 increase X

7 Sample Ji ⊆p [`]
8 S ← S ∩ Ji

By symmetry the expected value depends only on the size of the initial set S. As before,
we denote by Ft its expected value starting with a set S of size t with an infinite horizon,

and F
(i)
t as the expected value of X at the end of the above process with finite horizon i.

We start by analyzing F|U |. In this case, X is a geometric random variable with stopping

probability 1− p|U |. Thus, its expectation is

F|U | = 1/(1− p|U |) = 1/(1− (1− 1/2|U |)|U |) ∈ [2, 3].

This implies that F
(2|U | log(10k))
|U | ≤ F|U | ≤ 3. For t > |U | in the infinite horizon case we have

the recurrence

Ft =
t∑

a=0

Fa ·Pr[Bin(t, p) = a] =
t−1∑
a=|U |

Fa ·Pr[Bin(t, p) = a] + Ft ·Pr[Bin(t, p) = t] (2.13)

or equivalently

Ft ·Pr[Bin(t, p) < t] =
t−1∑
a=|U |

Fa ·Pr[Bin(t, p) = a] (2.14)

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 57

We prove by induction that for t ≥ |U | it holds that Ft ≤ F|U |. The claim clearly holds
for t = |U |. For t > |U | we can apply induction and get

Ft ·Pr[Bin(t, p) < t] ≤
t−1∑
a=|U |

F|U | ·Pr[Bin(t, p) = a] ≤ F|U | ·Pr[Bin(t, p) < t],

and thus Ft ≤ F|U |. This immediately implies that F
(2|U | log(10k))
t ≤ Ft ≤ 3. On the other

hand we prove that F
(2|U | log(10k))
t ≥ 1/2 as long as t ≤ k. To do so, we once again introduce

the indicator random variable Y
(i)
t , where t = |S|, and which equals 1 if |S| = |U | at some

point during the above process before iteration i. We note that Y
(2|U | log(10k))
t is a lower

bound for the value of X in the above process, and Yt is a lower bound for the value of
X at the end of the infinite horizon process. We note that the case |U | = 1 was already

lower bounded in Section 2.2.5, where it was shown that E[Y
(log(10k))
t] ≥ 1/2, and therefore

E[Y
(2|U | log(10k))
t] ≥ 1/2. It remains to show that the E[Y

(2|U | log(10k))
t] ≥ 1/2 is true for any

set |U | ≥ 2.
First, we show that Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |]. Towards this goal, it
would suffice to prove that 3 ≤ Pr[Bin(t, p) = i + 1]/Pr[Bin(t, p) = i] for i < |U | and
t ≥ |U |+ 1. This would suffice since in this case

|U |−1∑
i=0

Pr[Bin(t, p) = i] ≤
|U |−1∑
i=0

3i

3|U |
Pr[Bin(t, p) = |U |] ≤ 1

2
·Pr[Bin(t, p) = |U |].

Indeed, The ratio between the two aforementioned probabilities is

Pr[Bin(t, p) = i+ 1]

Pr[Bin(t, p) = i]
=

(
t
i+1

)(
t
i

) ·pi+1(1− p)t−(i+1)

pi(1− p)t−i
=
t− i
i+ 1

· p

1− p
≥ 2

|U |
·1− 1/2|U |

1/2|U |
=

2− 1/|U |
1/2

≥ 3

as needed. Now, we claim that E[Yt] = Pr[Yt = 1] ≥ 2/3 for all t ≥ 1. The base case of
t = 1 is certainly true. Assuming we have Pr[Bin(t, p) < |U |] ≤ 1

2 Pr[Bin(t, p) = |U |] we
have

E[Yt] ·Pr[Bin(t, p) < t] =

t−1∑
a=|U |

E[Ya] · Pr[Bin(t, p) = a]

≥ Pr[Bin(t, p) = |U |] +
t−1∑

a=|U |+1

Pr[Bin(t, p) = a] E[Ya]

≥ Pr[Bin(t, p) = |U |] +
2

3
Pr[Bin(t, p) ∈ [|U |+ 1, t− 1]]

=
2

3
Pr[Bin(t, p) < t]− 2

3
Pr[Bin(t, p) < |U |] +

1

3
Pr[Bin(t, p) = |U |]

≥ 2

3
Pr[Bin(t, p) < t]

which implies that E[Yt] ≥ 2/3. Finally, let A be the event that S = ∅ by iteration
2|U | log(10k), and note that

Pr[A] = Pr[Bin(|S|, (1− 1
2|U |)

2|U | log(10k)) = 0]

≥ Pr[Bin(k, e− log(10k)) = 0] = Pr[Bin(k, 1
10k) = 0] ≥ 0.9

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 58

as was shown in the proof for Theorem 2.2.11 in Section 2.2.5. Finally, we claim that for all

t ≥ 2 we have that Pr[Y
(2|U | log 10k)
t] ≥ 1/2. Indeed, we have that

Pr[Y
(2|U | log 10k))
t = 1] ≥ Pr[Yt = 1]−Pr[A] ≥ 2

3 − 0.1 ≥ 1
2 .

as desired, provided |S| ≤ k.

2.4 Conclusions and Open Problems

We conclude by mentioning some future research directions. First, we believe some of
the techniques discussed in this thesis could lead to other interesting work in property
testing, learning theory, or Boolean function analysis in general. In particular, the procedure
in Algorithm 5 makes use of a random process to get access to an underlying junta, a
subprocedure that could be useful in other learning or testing algorithms. In addition, we
are able to approximate the quantities NInf i and NInfU , that serve as key steps in our
algorithms. These quantities seems natural on their own, and would likely find further
applications in the analysis of Boolean functions. In particular, they seem to capture more
accurately the intuition that “influences measures the importance of coordinates”. While
the total influence of a Boolean function can be any number between Var[f] and n ·Var[f]
the total normalized influence equals exactly Var[f], and thus normalized influences can be
seen as a distribution of the variance among the coordinates.

Interestingly, our algorithms strongly resemble certain quantum algorithms and indeed
were inpsired by them. In particular, the sampling of coordinates is done through the
Fourier distribution, a process which can be done much more efficiently with a quantum
algorithm, as discussed in Section 1.5.2. This idea was leveraged in [AS07, ABRdW16] to
provide fast quantum algorithms for testing juntas in the standard property testing regime.
Indeed, if the nearest k-junta to f has its mass on higher levels (say above

√
k or even k/2),

then Fourier sampling is extremely effective and provides a cleaner way of sampling subsets
according to the Fourier distribution than the related classical technique we provided in
Section 2.3. However, the issue arises when the nearest k-junta has Fourier mass on lower
levels (below

√
k or log k or even a constant, for example). In this case, it is not clear to us

how quantum algorithms provide any advantage over classical ones.
We now list some more concrete open questions that we hope can be resolved in the near

future.

Open Question 2.4.1. Can we close the gap between the Ω(k1/3) lower bound and Õ(
√
k/ε)

upper bound for the adaptive quantum junta testers, as exhibited in Table 1.2? Moreover,
can we close the gap in the nonadaptive case?

Open Question 2.4.2. Can quantum Fourier sampling techniques be applied in a more
clever way to give faster algorithms in the tolerant testing regime?

Open Question 2.4.3. Is it possible improve the lower bound of 2k
0.499

for nonadaptive
tolerant junta testing given in [PRW19]? In particular, can we improve it using the erasure-
resilient model, or do we need different techniques, or does there actually exist a matching
upper bound? A more modest goal would be exhibiting any nontrivial nonadaptive tolerant
junta tester.

Open Question 2.4.4. Can we provide any improved lower bounds for the adaptive tolerant
testing of juntas? Existing techniques [LW19, PRW19] are only for nonadaptive algorithms,
and any lower bound of ω(k log k) would be interesting.

CHAPTER 2. NEW ALGORITHMS FOR TOLERANT K-JUNTA TESTING 59

Open Question 2.4.5. Is the purely exponential time complexity inherent for the tolerant
testing of k-juntas? We suspect the answer is yes, at least under reasonable complexity-
theoretic assumptions.

Finally, a clear open question is how good of a lower bound one can prove on the query
complexity of the tolerant junta testing problem. Our main result Theorem 1.8.1, rules out
strictly exponential-in-k query lower bounds for k-junta distance approximation. [PRW20]
proved a non-adaptive query complexity lower bound of 2k

η

for (k, k, ε1, ε2)-tolerant junta
testing (given a particular choice of 0 < ε1 < ε2 < 1/2), for any 0 < η < 1/2. While this is

quite close to our upper bound of 2Õ(
√
k), our algorithm is highly adaptive, while the lower

bound due to [PRW20] applies only to nonadaptive algorithms.

Acknowledgements

We thank Anindya De, Shafi Goldwasser, Amit Levi, and Orr Paradise for very helpful
discussions.

Bibliography

[ABRdW16] Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Ef-
ficient quantum algorithms for (gapped) group testing and junta testing. In
SODA, pages 903–922. SIAM, 2016. 15, 16, 19, 20, 58

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimat-
ing the distance to a monotone function. Random Structures & Algorithms,
31(3):371–383, 2007. 9

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and hardness of approximation problems. In FOCS,
pages 14–23. IEEE Computer Society, 1992. 8

[AS07] Alp Atici and Rocco A. Servedio. Quantum algorithms for learning and testing
juntas. Quantum Inf. Process., 6(5):323–348, 2007. 15, 16, 19, 20, 58

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald
de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778–797,
2001. 15

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds
via communication complexity. Comput. Complex., 21(2):311–358, 2012. 17,
18, 20

[BCE+19] Eric Blais, Clément L. Canonne, Talya Eden, Amit Levi, and Dana Ron.
Tolerant junta testing and the connection to submodular optimization and
function isomorphism. ACM Trans. Comput. Theory, 11(4):24:1–24:33, 2019.
5, 11, 21, 22, 25, 26

[BCH+96] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos A. Kiwi, and Madhu
Sudan. Linearity testing in characteristic two. IEEE Trans. Inf. Theory,
42(6):1781–1795, 1996. 12

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic expo-
nential time has two-prover interactive protocols. Comput. Complex., 1:3–40,
1991. 8

[BFNR08] Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig. Quantum
property testing. SIAM J. Comput., 37(5):1387–1400, 2008. 15

60

BIBLIOGRAPHY 61

[BGMdW13] Harry Buhrman, David Garćıa-Soriano, Arie Matsliah, and Ronald de Wolf.
The non-adaptive query complexity of testing k-parities. Chic. J. Theor. Com-
put. Sci., 2013, 2013. 18

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and
nonapproximability-towards tight results. SIAM J. Comput., 27(3):804–915,
1998. 12

[BHL95] Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence
of finitely or infinitely many irrelevant attributes. J. Comput. Syst. Sci.,
50(1):32–40, 1995. 13

[BJ99] Nader H. Bshouty and Jeffrey C. Jackson. Learning DNF over the uniform
distribution using a quantum example oracle. SIAM J. Comput., 28(3):1136–
1153, 1999. 15, 19

[Bla08] Eric Blais. Improved bounds for testing juntas. In APPROX-RANDOM,
volume 5171 of Lecture Notes in Computer Science, pages 317–330. Springer,
2008. 11, 14, 16, 18, 19, 20, 22, 23

[Bla09] Eric Blais. Testing juntas nearly optimally. In STOC, pages 151–158. ACM,
2009. 11, 13, 14, 16, 18, 19, 20, 21, 22

[Bla10] Eric Blais. Testing juntas: A brief survey. In Property Testing, volume 6390
of Lecture Notes in Computer Science, pages 32–40. Springer, 2010. 9

[Bla12] Eric Blais. Testing properties of boolean functions. PhD Thesis, 2012. 14

[BLR90] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. In STOC, pages 73–83. ACM, 1990.
7, 12

[BLT20] Guy Blanc, Jane Lange, and Li-Yang Tan. Testing and reconstruction via
decision trees. CoRR, abs/2012.08735, 2020. 9

[Bsh19a] Nader H. Bshouty. Almost optimal distribution-free junta testing. In Compu-
tational Complexity Conference, volume 137 of LIPIcs, pages 2:1–2:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 16

[Bsh19b] Nader H. Bshouty. Almost optimal testers for concise representations. CoRR,
abs/1904.09958, 2019. 15, 16

[Can15] Clément L. Canonne. A survey on distribution testing: Your data is big. but
is it blue? Electron. Colloquium Comput. Complex., 22:63, 2015. 9

[CFGM12] Sourav Chakraborty, Eldar Fischer, David Garćıa-Soriano, and Arie Matsliah.
Junto-symmetric functions, hypergraph isomorphism and crunching. In Com-
putational Complexity Conference, pages 148–158. IEEE Computer Society,
2012. 21

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf.
Process. Lett., 90(6):301–305, 2004. 17, 18, 19, 20

BIBLIOGRAPHY 62

[CST+18] Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu
Xie. Settling the query complexity of non-adaptive junta testing. J. ACM,
65(6):40:1–40:18, 2018. 19, 20, 23

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt
Rubinfeld, Rocco A. Servedio, and Andrew Wan. Testing for concise rep-
resentations. In FOCS, pages 549–558. IEEE Computer Society, 2007. 15,
21

[DLM+08] Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, and
Andrew Wan. Efficiently testing sparse GF(2) polynomials. In ICALP (1),
volume 5125 of Lecture Notes in Computer Science, pages 502–514. Springer,
2008. 15

[DMN19] Anindya De, Elchanan Mossel, and Joe Neeman. Junta correlation is testable.
In FOCS, pages 1549–1563. IEEE Computer Society, 2019. 11, 15, 21, 22, 25,
26, 30, 33, 34, 38, 43, 55, 67, 70

[FKR+04] Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnit-
sky. Testing juntas. J. Comput. Syst. Sci., 68(4):753–787, 2004. 12, 13, 16,
17, 18, 21, 22

[GE03] Isabelle Guyon and Andre Elisseeff. An introduction to variable and feature
selection. J. Mach. Learn. Res., 3:1157–1182, 2003. 9

[GGR96] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its
connection to learning and approximation. In 37th Annual Symposium on
Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA,
14-16 October, 1996, pages 339–348. IEEE Computer Society, 1996. 8, 9

[Gol11] Oded Goldreich. Introduction to testing graph properties. In Studies in Com-
plexity and Cryptography, volume 6650 of Lecture Notes in Computer Science,
pages 470–506. Springer, 2011. 9

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University
Press, 2017. 8

[HK07] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM
J. Comput., 37(4):1107–1138, 2007. 15

[H̊01] Johan H̊astad. Some optimal inapproximability results. J. ACM,
48(4):798–859, July 2001. 67

[ITW21] Vishnu Iyer, Avishay Tal, and Michael Whitmeyer. Junta distance approxima-
tion with sub-exponential queries. Electron. Colloquium Comput. Complex.,
28:4, 2021. 1, 15, 19, 25, 26

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge
University Press, 1997. 17

[KR00] Michael J. Kearns and Dana Ron. Testing problems with sublearning sample
complexity. J. Comput. Syst. Sci., 61(3):428–456, 2000. 8

BIBLIOGRAPHY 63

[LCS+19] Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie.
Distribution-free junta testing. ACM Trans. Algorithms, 15(1):1:1–1:23, 2019.
15, 16

[LW19] Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unate-
ness testing via rejection sampling of graphs. In ITCS, volume 124 of LIPIcs,
pages 52:1–52:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
22, 58

[MOS03] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning juntas.
In STOC, pages 206–212. ACM, 2003. 9

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
2014. 7, 8, 10, 12, 69

[PRR04] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing
and distance approximation. Electron. Colloquium Comput. Complex., (010),
2004. 8, 17, 21

[PRS01] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Proclaiming dictators
and juntas or testing boolean formulae. In RANDOM-APPROX, volume 2129
of Lecture Notes in Computer Science, pages 273–284. Springer, 2001. 12

[PRW19] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten.
Approximating the distance to monotonicity of boolean functions. CoRR,
abs/1911.06924, 2019. 4, 9, 23, 24, 25, 26, 58

[PRW20] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten.
Approximating the distance to monotonicity of boolean functions. In SODA,
pages 1995–2009. SIAM, 2020. 9, 59

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity: and Applica-
tions. Cambridge University Press, 2020. 17

[Sag18] Mert Saglam. Near log-convexity of measured heat in (discrete) time and
consequences. In FOCS, pages 967–978. IEEE Computer Society, 2018. 15,
18, 20, 26

[Ser10] Rocco A. Servedio. Testing by implicit learning: A brief survey. In Property
Testing, volume 6390 of Lecture Notes in Computer Science, pages 197–210.
Springer, 2010. 15

[Tre04] Luca Trevisan. Inapproximability of combinatorial optimization problems.
Electron. Colloquium Comput. Complex., (065), 2004. 8

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applica-
tions to learning parities and juntas. In FOCS, pages 11–20. IEEE Computer
Society, 2012. 9

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure
of complexity (extended abstract). In FOCS, pages 222–227. IEEE Computer
Society, 1977. 65

BIBLIOGRAPHY 64

[Zha19] Xiaojin Zhang. Near-optimal algorithm for distribution-free junta testing.
CoRR, abs/1911.10833, 2019. 15, 16

Appendix

A Minimax

This section is devoted to rederiving the minimax theorem via the separating hyperplane
theorem, and explaining its connection to lower bounds for randomized algorithms via Yao’s
principle [Yao77].2 We shall go about this backwards, first using the minimax theorem to
derive Yao’s principle, and then we will circle back and prove the minimax theorem.

A.1 Yao’s Principle from Minimax

We first state the minimax theorem in the setting of two player games. Consider player
one having a choice over m “pure” strategies, and player two have a choice over n pure
strategies. If player 1 plays strategy i and player 2 plays strategy j, then the “payoff” will
be Pij . The goal of player one is to maximize the expected payoff, while the goal of player
two is to minimize it. We can encode all the possible payoffs into a matrix P , and then
associate each “pure” strategy with a corresponding standard basis vector. For example, if
player one uses pure strategy i, while player two uses pure strategy j, then the the payoff
is eTi Pej = Pij . However, we also allow the players to use “mixed” strategies, i.e. we can
replace any basis vector ei with a vector p such that

∑
i pi = 1 and all the entries are

nonnegative. We are now ready to state the minimax theorem, which says that

min
p

max
q
qTPp = max

q
min
p
qTPp. (2.15)

Let us pause and interpret what this is saying. Somewhat counterintuitively, the LHS
of the above equation corresponds to player 1 going second (despite the maximization be-
ing on the “inside”). This is because the maximization occurs for a fixed strategy p of
player two. Player two (on the left hand side), must try to come up with a strategy that
minimizes the payoff, assuming (correctly) that player 1 will act optimally after they have
made their choice. Likewise, the RHS corresponds to player two going first. With this
perspective/interpretation of the above, it is clear that the left hand side is greater than or
equal to the right hand side. The surprising thing is the equality itself, which we prove in
Section A.2.

Now, we can discuss Yao’s principle. In a nutshell, Yao’s principle gives an equivalence
between two types of randomness within algorithms: randomness in the algorithm itself
and randomness over the inputs. Fix some model of computation for computing a Boolean
function f (in this thesis, the model is almost always the query model, but one can also

2Much of this section was taken from Ronald De Wolf’s nice writeup https://homepages.cwi.nl/ rde-
wolf/simonlowerbound.pdf.

65

APPENDIX 66

consider other models/complexity measures, such as communication complexity). We denote
Rε(f) as the minimal complexity among all randomized algorithms that compute f(x) with
success probability at least 1− ε.3 We also let Dµ

ε (f) be the minimal complexity among all
deterministic algorithms that compute f on at least 1 − ε fraction of all inputs, which are
weighed according to the input distribution µ. Yao’s lemma says the following:

Rε(f) = max
µ

Dµ
ε (f).

In words: the complexity of any randomized algorithm solving a problem is equal to
the complexity of a deterministic algorithm solving the problem on the hardest possible
distribution of inputs. It has proven extremely useful for proving lower bounds for random-
ized algorithms, since it is often much easier to analyze a deterministic algorithm (over a
distribution of inputs) than a randomized one. Yao’s principle is actually a direct corollary
of the minimax theorem, as we will now see. First, we note that WLOG we may take the
inner optimization to be over pure strategies,4 so Equation (2.15) becomes:

min
p

max
ei

eTi Pp = max
q

min
ej

qTPej .

Now, we interpret this equation in the context of computation. We can think of player 1
as picking an algorithm, while player 2 picks a distribution over inputs. The pure strategies
for player 1 are all deterministic algorithms with complexity at most c, and the mixed
strategies of course correspond to randomized algorithms. Pure strategies for player 2 are
just inputs, and randomized strategies are then distributions over inputs. Finally, the payoff
matrix has Pij = 1 if algorithm i correctly computes f on input j. Now, on the left hand
side, eTi Pp is the fraction of inputs on which deterministic algorithm i is correct, where
the inputs are weighed according to p, so maxi e

T
i Pp is this fraction for the best possible

algorithm. So the LHS gives the optimal fraction of correct inputs achievable by complexity
c deterministic algorithms on input distribution p.

On the other hand, qTPej is the success probability on input ej achieved by the ran-
domized algorithm given by probability distribution q over deterministic algorithms, and
minej q

TPej is its success probability on the hardest input. Thus, the RHS gives the high-
est worst-case success probability achievable by randomized algorithms with complexity c.
Since these two quantities are equal for all complexities c, and minimizing the payoff for a
given complexity is equivalent to maximizing the complexity for a given payoff, we have

Rε(f) = max
p

Dp
ε(f).

A.2 Proof of Minimax

We sketch a short proof of the minimax theorem via the separating hyperplane lemma. The
separating hyperplane lemma says that if U, V are two disjoint, convex subsets of Rn, then
there exists a hyperplane with normal vector z such that for all u ∈ U we have 〈u, v〉 ≤ α,
and for all v ∈ V we have 〈v, z〉 ≥ α for some α.

3In practice we normally just take ε = 1/3, since we can always repeat the algorithm and achieve better
ε by taking the majority vote.

4One of the rows/columns must produce the highest inner product, so it makes sense to just put all the
weight/probability mass on that one column/row.

APPENDIX 67

Recall it was clear in Equation (2.15) that the LHS was at least as large as the RHS,
since in the LHS the “maximizer” is going first. We would like to show the other direction;
namely, we want to show that minp maxq q

TPp ≤ maxq minp q
TPp.

In order to achieve this, consider

D = {Pp :
∑

pi = 1}.

Recalling that WLOG we can take the inner optimizations to be over deterministic strategies,
suppose towards a contradiction that there exists some c such that

min
p

max
q
qTPp < c < max

q
min
p
qTPp. (2.16)

Then consider
C = {x ∈ Rm : ∀i, xi ≤ c}.

The only way Equation (2.16) can happen is if C ∩D = ∅. Why? If they intersect then
there is a choice for p by player two that results in Pp ∈ C, and no matter what q is, since it is
a probability vector, we will have maxq minp q

TPp ≤ c, contradicting Equation (2.16). But
now, since we know C and D are two convex, disjoint sets, we can apply the aforementioned
separating hyperplane lemma to conclude that there is some probability vector q such that
〈q, d〉 ≥ c for every d ∈ D, since clearly 〈q, c〉 ≤ c for any probability vector q. But this also
contradicts (the left hand side) of Equation (2.16).

B Constructing Influential Coordinate Oracles

In this section, we summarize the technique introduced in [DMN19] for gaining access to
coordinates with large low-degree influence. To do so, we will need the following operator,
which was inspired by Hastad’s dictator vs no-notable tester in [H̊01].

Definition B.1. Let η ∈ [−1, 1]n and Zη denote the product distribution on {−1, 1}n where
the expectation of the ith bit is ηi. For any f : {−1, 1}n → R, we define the operator

Hasηf(x) = E
y1,y2∈{±1}n,y3∈Zη

[f(y1)f(y2)f(x · y1 · y2 · y3)].

Its Fourier expansion can be written as:

Hasηf(x) =
∑
S

f̂3(S)χS(x)ηS .

where · denotes coordinate-wise multiplication (an XOR operation) and ηS =
∏
j∈S

ηj.

A consequence of this definition is that Hasηf could have a good approximation to certain
dictator function for the right choice of η. In particular, many of the ηS terms could be
very small or even zero for larger S, depending on how we choose η. The following lemma
is the key to making this intuition come to fruition:

Lemma B.2. Suppose that |f̂({1})| ≥ κ, where κ ∈ (0, 1), and let α = κ3

16 . Choose
η ∈ {0, α}n randomly so that Pr[ηi = α] = κ2/16, independently for every i. Then with
probability at least Ω(κ6), for every x ∈ {±1}n,

|Hasηf(x)− f̂3(∅)− αf̂3({1})x1| ≤
α

4
|f̂({1})|3. (2.17)

APPENDIX 68

Proof. Let ρ = κ6/16 = Pr[ηi = α]. Let Γ = {i : |f̂({i})| ≥ κ3/8}; since
∑
S f̂(S)2 < 1, we

have |Γ| ≤ 64κ−6. Let E be the event that η1 = α and ηj = 0 for all j ∈ Γ \ {1}. That
is, E roughly represents the event of us “zeroing out” the other influential coordinates of f .
Then we have Pr[E] = p(1− p)|Γ|−1 ≥ p(1− p)64κ−6

= Ω(κ6). Therefore, it suffices to show
that the inequality in the statement holds when E happens, as E happens with the desired
probability. Using the fourier expansion of Hasηf , we have the following:

Hasηf(x)− f̂3(∅)− αf̂3({1})x1 =
∑

1<j≤n

ηj f̂
3(j)xj +

∑
|S|>1

ηS f̂3(S)χS(x)

=
∑
j /∈Γ

ηj f̂
3(j)xj +

∑
|S|>1

ηS f̂3(S)χS(x).
(2.18)

Where the second equality holds on event E. Now, we have∑
j /∈Γ

ηj f̂
3(j)xj ≤ α

κ3

8

∑
j /∈Γ

f̂2(j) ≤ ακ3

8
,

since f̂(j) < k3/8 for all j /∈ Γ. We also have∑
|S|>1

ηS f̂3(S)χS(x) ≤ α2
∑
|S|>1

f̂2(S)χS(x) ≤ α2.

Then by the triangle inequality we have

|Hasηf(x)− f̂3(∅)− αf̂3({1})x1| ≤
ακ3

8
+ α2 ≤ ακ3

4
≤ α

4
|f̂({1})|3.

We have just shown that if |f̂(i)| is large enough there is a good probability that:

|Hasηf(x)− f̂3(∅)− αf̂3({i})xi| ≤
α

4
|f̂({i})|3,

which means in particular:

Hasηf(x)− f̂3(∅) = αf3({i})xi · (1± 1/4).

The important thing to note about the above equation is that the sign of the right hand
sign is entirely determined by the sign of xi. This means that if we take the sign of the
above expression, it will be a dictator for the influential coordinate i! This is exactly what
we wanted, so this is exactly what we do next:

g(f) = sgn(Hasηf(x)− f̂3(∅)) = sgn(Hasηf(x)−E[f]3). (2.19)

The above function g will be our candidate dictator/oracle for our influential coordinate i.
We first note that g requires randomness (queries to f) in order to estimate Hasηf(x) and
E[f]. By a simple Chernoff bound, with O(κ−12 log 1

δ) queries to f , we can estimate both
E[f] and Hasη(f) to additive accuracy O(κ6) with probability 1 − δ. We can once again
choose δ = 2−poly(k) (similar to the definition of the ν-oracle) to make the evaluation of g
correct with very high probability while keeping our query complexity low enough.
We also note that Lemma B.2 gives dictators only with probability Ω(κ6). This means

APPENDIX 69

we will need a way to test whether or not our candidate oracle g is actually a dictator.
To do so, we use a modification of the standard dictator/anti-dictator test presented in
Chapter 7 of [O’D14], which makes 3 queries to f and accepts f with probability 1 if f
is a dictator/anti-dictator, and rejects f with probability at least O(ε) if f is ε-far from a
dictator/anti-dictator. Then we can simply repeat many times and apply a chernoff bound
to obtain the following theorem:

Theorem B.3 (Chapter 7 of [O’D14]). There is an algorithm Dictator-test which given

an error parameter v > 0 and confidence parameter δ̃ > 0, makes O(v−1 log δ̃−1) queries to
f : {±1}n → {−1, 1} and has the following properties:

• if f : {±1}n → {±1} is a dictator or an anti-dictator, then it accepts with probability
1

• Any f : {±1}n → {±1} which is v-far from every dictator and anti-dictator is accepted

with probability at most δ̃.

With this tool, we are now ready to formally give the algorithm for constructing our set
of oracles to coordinates with large low-degree influence. See Algorithm 1 in the next page.

Lemma B.4 (Establishes Corollary 2.2.3). Algorithm 1 (Construct-coordinate-oracle)
has the following guarantee:

1. The number of oracles in D is at most poly(k, τ−1, log(1/δ))

2. The query complexity of the procedure is v−1 · poly(k, τ−1, log(1/δ))

Proof. Since we generate g(x) MT times, by the definition of M,T , the number of oracles in
D is at most poly(k, τ−1, log(1/δ)). On the other hand, query complexity of the algorithm is
MT times the query complexity of Dictator Test which is v−1 · poly(k, τ−1, log(1/δ)).

APPENDIX 70

Algorithm 10: Construct-coordinate-oracle

Input: f (target function), k (arity of junta), δ (confidence parameter), v ≤ 1/8
(first accuracy parameter), τ second accuracy parameter

Output: An oracle D
/* Construct the initial oracles */

1 Let T = Ck2τ−2 log(1/δ) and let M = Ck4τ−7 log(1/δ);

2 Let δ̃ = δ/(MT);
3 Initialize D = ∅;
4 repeat T times
5 Sample ρ according to R1/k (as in Definition 1.9.6)
6 repeat M times
7 Sample η (as in Lemma B.2);
8 Let g(x) = sgn(Hasηf|ρ(x)−E[f|ρ(x)]3);

9 Apply Dictator-Test to g with confidence δ̃ and accuracy v;
10 if Dictator Test accepts then
11 Add g to D

/* Clear out duplicates */

12 Let N = C log(MT/δ), and sample x(1), ..., x(N) ∈ {±1}n independently and
uniformly;

13 while there exist g 6= h ∈ D such that |N−1
∑
i g(x(i))h(x(i))| ≥ 1

2 do
14 Remove g from D

15 return D

Claim B.5 (Correctness of Construct-Coordinate-Oracle). With probability 1−δ, there

is some set S ⊇ {i : Inf≤ki ≥ τ2/k} such that the output of Construct-coordinate-oracle
is an ν-oracle to S.

The proof of the claim will be done in two parts. In the first part, we will show that
for every influential coordinate i, at least one iteration of the outer loop will sample ρ for

which f̂|ρ(i) is large. Then, for this execution of the outer loop, we will argue that at least
one iteration of the inner loop will find an oracle for an coordinate i.

Fact B.6. If X is a random variable bounded in [0, 1], with E[X] ≥ ε, then Pr[X ≥ ε/2] ≥
ε/2.

Fact B.7. Let f : {±1}n → R and let J ⊆ [n]. Then Ez∈{±1}J̄ [f̂J̄→z(S)2] =
∑
T f̂(T)2 ·

1T∩J=S .

Claim B.8 (Claim 3.7 in [DMN19]5). If Inf≤ki [f] ≥ δ and ρ is a 1/k-random-restriction,

then with probability δ
6k , |f̂|ρ({i})| ≥

√
δ/6.

Proof. Let ρ = (J, z) be a 1/k-random restriction, where J is the set of alive coordinates
and z ∈ {±1}J̄ is an assignment to the other variables. Suppose we condition on the event,
denoted E , that our random restriction keeps coordinate i alive (i.e., i ∈ J). Note that

5This claim appeared in a weaker form in [DMN19], and we present a version with improved parameters
and a more self-contained proof here.

APPENDIX 71

otherwise f̂J̄→z({i}) = 0. Conditioned on E , we have

E
J,z

[
f̂J̄→z({i})2

∣∣∣ E] = E
J

[∑
S

f̂(S)2 · 1S∩J={i}

∣∣∣ E] (Fact B.7)

=
∑
S3i

f̂(S)2 ·Pr[S ∩ J = {i} | E]

=
∑
S3i

f̂(S)2 · (1− 1/k)|S|−1

≥ (1− 1/k)k−1 ·
∑
S3i
|S|≤k

f̂(S)2

≥ 1

e
· Inf≤ki [f] ≥ δ

3
.

Then, by Fact B.6, we have that Pr[f̂J̄→z({i})2 ≥ δ
6 | E] ≥ δ

6 . Since i ∈ J with

probability 1/k, this tells us that with probability at least δ
6k we have that |f̂J̄→z(i)| ≥√

δ/6.

In particular, for the above claim we care about the setting when δ = τ2

k .
Assuming this lemma, a simple union bound with our choice of T in the algorithm

implies that for every i with Inf≤ki (f) ≥ τ2/k there is at least one iteration of the outer

loop for which |f̂|ρ(i)| ≥ τ√
6k

. Fixing this outer iteration, we can apply the same union

bound argument to the inner loop with our choice of M since each iteration has Ω(τ6k−3)
probability of producing g that is close to some dictator. Thus it suffices to prove the above
claim, and we have proved the correctness of Construct-Coordinate-Oracle.

C Maximum k-Subset Fourier Mass Approximation

In this section, we sketch a proof of Theorem 2.3.10, which involves simple modifications
and observations about our algorithm. The main difference is that we sample from the
normalized influence subdistribution at a different Fourier level – namely, we let thr :=

√
k

and α = k/thr =
√
k in Algorithm 8 and Algorithm 9, respectively (recall that before,

thr =
√
εk). This improves the query complexity dependence on ε in Phase 1.

Claim C.1. The query complexity of phase one of the algorithm for constant δ (failure

probability) is 2Õ(
√
k log(1/ε)).

Proof. The proof is analogous to the proof of Claim 2.3.5, so we just point out the differences.
We still require our Fourier coefficients to be accurate to within 1/poly(k, 1/ε), and we

require confidence 1 − O(1/`) = 1 − 2Ω̃(
√
k log(1/ε)). However, now our branching process

now has depth only O(
√
k), so we need only repeat this O(`) = 2Õ(

√
k log(1/ε)) times, which

yields the improved query complexity.

In Phase 2, we argue that it is not necessary to apply a noise operator in order to
only consider Fourier mass below level thr after Phase 1. Recall that we applied this noise

APPENDIX 72

operator in Section 2.3.2 in order to deal with the case that a particular U satisfied

E
z∈{±1}B

[∑
S⊆U\B,
|S|>thr

f̂B→z(S)2
]
> ε2/4. (2.20)

If this happened, then we could not rule out the possibility that taking the low-degree part
of f within U gives an overestimate to the correlation with the best k-junta. However, now
we are not concerned with the junta correlation, but rather which set has the most mass,
so we claim we do not have to worry about this possibility anymore. To see this, suppose
we have identified B ⊆ U , and note that∑

S⊆U

f̂(S)2 = E
x

[f(x)favg,U (x)]

= E
z∈{±1}B

[
E
x

[fB→z(x)(favg,U)B→z(x)]

]
= E

z

[∑
S⊆U
|S|≤thr

f̂B→z(S)2 +
∑
S⊆U
|S|>thr

f̂B→z(S)2

]

≥ E
z

[∑
S⊆U
|S|≤thr

f̂B→z(S)2

]
.

Therefore, we no longer have to apply any noise operator, which negates the necessity
of Claim 2.3.6 and Claim 2.3.7. It therefore suffices in Lemma 2.3.8 to estimate the mass of
each set, rather than the correlation, as

mU = E
z

[∑
S⊆U
|S|≤thr

f̂B→z(S)2

]
.

To do so, as in the proof of Lemma 2.3.8 we let t = O(log(1/δ)/ε2) be the number of
random samples of z we take. Then we estimate all the Fourier coefficients below level
thr. This requires estimating f̂(S) for all S ⊆ S of size at most thr up to additive error

ε/
(
k
≤κ
)

= 2Ω̃(
√
k log(1/ε)) with probability 1 − δ

t·(k
≤κ)

, which is possible via Fact 1.9.1 with

log(1/δ)2Õ(
√
k log(1/ε)) queries. The rest of our argument and algorithm is exactly the same

as in Section 2.3.

	Survey of Junta Testing and Variants
	Property Testing
	Tolerant Property Testing

	Motivating Junta Testing
	Preliminaries
	Fourier Analysis of Boolean Functions

	Testing 1-Juntas
	A Brief History of Junta Testing and its Variants
	Distribution Free Setting
	Quantum Junta Testing
	Summary

	Lower Bounds for Junta Testing
	Adaptive Lower Bounds
	Nonadaptive Lower Bounds
	Quantum Lower Bounds

	Tolerant Junta Testing
	Tolerant Junta Testing Lower Bounds

	New Upper Bounds for Tolerant k-junta Testing
	 Further Preliminaries
	Probability
	Further Fourier Analytic Tools/Facts
	Estimating Fourier Coefficients

	New Algorithms for Tolerant k-junta Testing
	Overview of Techniques
	Techniques for Establishing theorem:improved-dmn
	Techniques for theorem:main-result

	Finding a Small(er) Set of Influential Coordinate Oracles
	Approximate Oracles to Influential Coordinates
	Implicit Access to an Underlying Junta
	Influential Coordinate Oracles
	Reducing the Number of Oracles to Consider
	Proof of theorem:ninf-ub-lb

	A 2O"0365O(k)-query Tolerant Junta Tester
	Phase One: The Higher Levels
	Phase Two: The Lower Levels
	Proof of theorem:ninf-ub-lb-set

	Conclusions and Open Problems

	Appendix
	Minimax
	Yao's Principle from Minimax
	Proof of Minimax

	Constructing Influential Coordinate Oracles
	Maximum k-Subset Fourier Mass Approximation

	4dd76ee0-0968-4748-8a5c-edf23193fdd8.pdf
	Survey of Junta Testing and Variants
	Property Testing
	Tolerant Property Testing

	Motivating Junta Testing
	Preliminaries
	Fourier Analysis of Boolean Functions

	Testing 1-Juntas
	A Brief History of Junta Testing and its Variants
	Distribution Free Setting
	Quantum Junta Testing
	Summary

	Lower Bounds for Junta Testing
	Adaptive Lower Bounds
	Nonadaptive Lower Bounds
	Quantum Lower Bounds

	Tolerant Junta Testing
	Tolerant Junta Testing Lower Bounds

	New Upper Bounds for Tolerant k-junta Testing
	 Further Preliminaries
	Probability
	Further Fourier Analytic Tools/Facts
	Estimating Fourier Coefficients

	New Algorithms for Tolerant k-junta Testing
	Overview of Techniques
	Techniques for Establishing theorem:improved-dmn
	Techniques for theorem:main-result

	Finding a Small(er) Set of Influential Coordinate Oracles
	Approximate Oracles to Influential Coordinates
	Implicit Access to an Underlying Junta
	Influential Coordinate Oracles
	Reducing the Number of Oracles to Consider
	Proof of theorem:ninf-ub-lb

	A 2O"0365O(k)-query Tolerant Junta Tester
	Phase One: The Higher Levels
	Phase Two: The Lower Levels
	Proof of theorem:ninf-ub-lb-set

	Conclusions and Open Problems

	Appendix
	Minimax
	Yao's Principle from Minimax
	Proof of Minimax

	Constructing Influential Coordinate Oracles
	Maximum k-Subset Fourier Mass Approximation

