
Spreadsheet Bubbles: Showing Contextually Relevant

Data During Formula Editing

Nidhi Kakulawaram
John Zamfirescu-Pereira
Björn Hartmann, Ed.
Aditya Parameswaran, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-145

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-145.html

May 21, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would first like to thank Associate Professor Bj orn Hartmann and
Assistant Professor Aditya Parameswaran for their continuous guidance
and support throughout this project. None of this would be possible without
them. I would also like to thank PhD Candidate, J.D. Zamfirescu, who
worked alongside me and graciously offered his expertise. He always
offered great advice and made himself accessible to me whenever
possible. While this project was done completely remotely due to the
COVID-19 Pandemic, these three made this unexpected transition
seamless for me.

Spreadsheet Bubbles: Showing Contextually Relevant Data During Formula Editing

by

Nidhi Kakulawaram

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Björn Hartmann, Chair
Assistant Professor Aditya Parameswaran

Spring 2021

The thesis of Nidhi Kakulawaram, titled Spreadsheet Bubbles: Showing Contextually Rele-
vant Data During Formula Editing, is approved:

Chair Date

Date

University of California, Berkeley

Aditya Parameswaran 5/20/2021

Bjoern Hartmann
Bjoern Hartmann

Bjoern Hartmann
5/19/2021

Spreadsheet Bubbles: Showing Contextually Relevant Data During Formula Editing

Copyright 2021
by

Nidhi Kakulawaram

1

Abstract

Spreadsheet Bubbles: Showing Contextually Relevant Data During Formula Editing

by

Nidhi Kakulawaram

Master of Science in Computer Science

University of California, Berkeley

Associate Professor Björn Hartmann, Chair

Spreadsheets are one of the most common data management and analysis tools used today.
In recent years, there has been focus on the extensiveness of spreadsheet errors with 90-95%
of spreadsheets containing significant errors [9] [2]. We present Spreadsheet Bubbles, a novel
user interface that extends the research on error prevention by proposing a mechanism that
reduces their incidence. Through uncovering hidden data and enabling formula confirmation,
Spreadsheet Bubbles’ goals are to improve user understanding during the spreadsheet cre-
ation and manipulation process, and to ultimately reduce errors while increasing e�ciency.
Our tool succinctly presents data that is often hidden to enable the user to more easily
confirm the correctness of their logic and formulae. In addition to making hidden data visi-
ble, we also make the hidden state of intermediary results visible. Nested formulae become
increasingly di�cult to understand and to debug because the user often struggles to isolate
which function in the larger formulae is causing the incorrect results. Through Spreadsheet
Bubbles’ display of intermediary results, the user is able to visualize and validate formula
fragments. The essence of our augmented user interface is making visually distal but logically
relevant data proximate to reduce cognitive burden on the user.

i

Contents

Contents i

List of Figures ii

1 Introduction 1

2 Background: Spreadsheet Formulae 3

3 Related Work 5

3.1 Empirical Data on Spreadsheet Errors . 5
3.2 Techniques to Reduce Spreadsheet Errors . 6

4 Formative Study: Uncovering Opportunities for Design 8

5 Spreadsheet Bubbles Interaction Design 11

6 Implementation 15

6.1 Implementation Break-Down . 15
6.2 Limitations . 17

7 Discussion and Future Work 19

8 Conclusion 20

Bibliography 21

ii

List of Figures

2.1 Spreadsheet Example of Student Test Scores . 3

4.1 Weather Spreadsheet used for Pilot Study . 8
4.2 User populates column A with all the US States from the filter-demo sheet . . . 9
4.3 User uses COUNTIF to filter by the state, year, and natural disaster to count

how many entries fit the requirements . 9
4.4 User looks up which state had the biggest increase in storms 9

5.1 Design Mockup: Clickable column identifiers . 11
5.2 Design Mockup: Populated Range View highlighting range selected 12
5.3 Design Mockup: Filter View with all predicates toggled on and showing unse-

lected data . 13
5.4 Design Mockup: Filter View hiding unselected data and predicate 3 toggled o↵ 13
5.5 Lookups highlight and condensation feature . 14

6.1 Implementation Diagram . 15
6.2 Column Identifiers pop-up when a separate sheet is being referenced in the for-

mula bar . 16
6.3 Implemented Range View - highlighting selected data and showing context for

what is not selected . 16
6.4 Implemented Filter View - highlighting selected data and showing context for

what is not selected . 17

iii

Acknowledgments

I would first like to thank Associate Professor Björn Hartmann and Assistant Professor
Aditya Parameswaran for their continuous guidance and support throughout this project.
None of this would be possible without them. I would also like to thank PhD Candidate, J.D.
Zamfirescu, who worked alongside me and graciously o↵ered his expertise. He always o↵ered
great advice and made himself accessible to me whenever possible. While this project was
done completely remotely due to the COVID-19 Pandemic, these three made this unexpected
transition seamless for me.

1

Chapter 1

Introduction

Spreadsheets are commonly used worldwide both in corporations and academia to manage
and analyze data. In the financial sector, approximately 71% of organizations utilize spread-
sheets as their main data management tool [4]. However, spreadsheets have a significant
error rate, with 90-95% of spreadsheets containing errors and more than 1% of spreadsheet
formula cells having errors [2] [8]. Recent work has audited spreadsheets to obtain error
rates and to build a taxonomies of error types[2] [9]. Some examples of error classes include
reference errors where users refer to the wrong set of data and copy/paste errors where a
formula is wrong due to an inaccurate use of copy/paste.

Interestingly, a copy/paste error led one of the costliest corporate spreadsheet errors to
date. JP Morgan Chase Co.’s London Whale Incident cost the company over 6 Billion
dollars [14]. There are many other similar cases where spreadsheet errors had large financial
consequences. Thus, it is vital to mitigate these spreadsheet errors. The goal of our research
is to reduce formula errors and increase user e�ciency; we introduce, Spreadsheet Bubbles,
for this purpose.

While we originally thought to build a debugging or testing tool, we noticed that there
were many prevention and subsequent debugging tactics already proposed [5] [12] [7]. Prior
work mainly aims to reduce spreadsheet errors through changing how users organize their
spreadsheets [5] or through post-hoc analyses that locate likely errors [12]. In contrast,
Spreadsheet Bubbles aim to reduce errors while users are actively engaged in constructing
and editing formulae. It does so by showing on-demand, interactive visualizations of the
working set of data referenced or manipulated by a formula, while the formula is being
edited. Thus, users can immediately see relevant data and results. We hypothesize that the
display of the working set data is especially useful when the referenced data is not currently
on screen, e.g., because a spreadsheet is large or has multiple sub-sheets.

Spreadsheet Bubbles draws inspiration from Code Bubbles [1], a User Interface that
presents the current working set of code fragments in editable “bubbles”. Code Bubbles is
especially helpful for programmers working with larger code bases when they are navigat-
ing between di↵erent files, classes, and functions. Developers can see and edit all relevant
fragments of code on one interface; thus, o✏oading their working memory and saving time.

CHAPTER 1. INTRODUCTION 2

Similarly, Spreadsheet Bubbles provides context for formula formation and manipulation
in Spreadsheets by making visually distal data but logically relevant data proximate. By
showing the working set of data and subsequent formula results, the users can understand
spreadsheet formulae and recognize errors more easily. We hypothesize that this ultimately
reduces the cognitive burden on the user.

In addition to visually showing hidden data and indices, Spreadsheet Bubbles also presents
intermediary results. From our formative study, we observed that users struggled to verify
formulae that contained intermediary results. When functions become nested in the formula
bar, the final results are dependant on intermediary results being correct. For example, if
there is a Filter function nested within a Count function, the user needs to verify that the
Filter function results first in order to verify that Count is being applied to the intended set
of data.

We designed a novel User Interface, Spreadsheet Bubbles, augmented onto spreadsheets
to visually pop-up “bubbles” to succinctly show hidden data and states with the goals of
increasing user understanding, mitigating errors, and improving e�ciency (Figures 5.1, 5.2,
5.3, 5.4).

3

Chapter 2

Background: Spreadsheet Formulae

Spreadsheet programming is done through formulae operating on ranges of data. Grid-
like cells that make columns and rows contain the data. Formulae contain functions that
manipulate or aggregate the data. A few examples of popular spreadsheet functions are
SUM, COUNT, and FILTER. Through analyzing spreadsheet functions, we were able to
distill functions into three di↵erent types:

• Range Aggregation (e.g. SUM, AVG, MAX, MIN or COUNT) - Range aggregation
functions are mathematical functions used to retrieve information or aggregate on a
range of cells.

• Filtered Range (e.g. FILTER, COUNTIF or SUMIF) - Filtered Range functions are
functions that contain conditional statements used include or exclude certain cells in a
specified range. For example, if the user wanted to count the number of students that
passed test 4 in the example spreadsheet (Figure 2.1), they would utilize this formula:
=COUNTIF(E2:E9, E2:E9 > 70).

Figure 2.1: Spreadsheet Example of Student Test Scores

CHAPTER 2. BACKGROUND: SPREADSHEET FORMULAE 4

• Lookups (e.g. VLOOKUP, HLOOKUP or INDEX) - For lookups, the user is trying
to get an entry in a column or row with a specific search key. If the user is trying
to retrieve Greg’s test 4 score, they could use this formula: =VLOOKUP(”Greg”,

A2:E9, 5). This formula looks for a row with the entry ”Greg” and gets the 5th
element in that row.

5

Chapter 3

Related Work

3.1 Empirical Data on Spreadsheet Errors

According to several studies, approximately 90-95% of spreadsheets contain errors. In addi-
tion, spreadsheet formula cells have an error rate more than 1%[2] [8]. These errors can have
very tangible and costly consequences. A survey of financial professionals found that 71% of
organizations heavily depend on spreadsheets for a majority of their data management [4].
With current error rates, cases like the JP Morgan Chase’s London Whale Incident are not
uncommon. A spreadsheet copy/paste error cost the financial giant more than $6 Billion
[14].

Due to the frequency of errors, researchers began proposing taxonomies to categorize how
users were making errors in the first place. Panko and Halverson [9] distinguished qualitative
errors and quantitative errors. The former refers to errors that do not produce incorrect
results but are risky practices that could lead to future errors. An example of a qualitative
error is hard coding in numbers instead of utilizing cell references. If data is changed in the
future, the formula would display previous calculations instead of current ones. Conversely,
quantitative errors do lead to incorrect results and they can be further categorized into:
logical errors, which arise from selecting the incorrect function or incorrectly using a function;
mechanical errors, which arise from typing or pointing errors; omission errors, which arise
from misinterpretation of the situation to be modeled. Spreadsheet bubbles is built to address
quantitative errors so users can e�ciently and easily recognize incorrect results.

A fundamental distinction in the human error literature is between “slips” and “mistakes”
— in slips, the user has the correct mental model of the task but makes some error during the
execution of a correct plan, e.g., a typo. In mistakes, the user has an incorrect mental model
that leads them to an incorrect plan [10]. So, omission errors from the Panko/Halverson
would be considered a mistake while mechanical errors would be considered a slip.

Errors in Operational Sheets [2] aims to take it a step further than error classification by
analyzing the frequency of various types of errors. The paper audits and analyzes more than
50 spreadsheets from various sources with no more than 5 spreadsheets coming from the same

CHAPTER 3. RELATED WORK 6

Error Type Wrong Results Poor Practices

Hard-Coding 31 (11% of total) 151 (74.8% of total)
Reference 137 (48.8%) 22 (10.9%)
Logic 89 (31.7%) 17 (8.4%)
Copy/Paste 14 (5%) 3 (1.5%)
Omission 7 (2.5%) 6 (3.0%)
Data Input 3 (1.1%) 3 (1.5%)
Totals 281 202

Table 3.1: Instances of Errors and their Results - While Spreadsheet Bubbles can
prevent many error types through its visualizations, reference errors are especially targeted.
A user can easily see what is included in their selection and what is not with the Range
View. Table reproduced from Clarkeet al., Errors in Operational Sheets [5].

source. They used a combination of auditing software and manual analysis to propose an
updated taxonomy that has 7 classifications: logic errors, reference errors, placing numbers
in a formula, copy/paste error, data input error, and omission error. Hard-coding errors were
the most common occurring with 37.7% of the instances followed by reference errors at 32.9%
of the instances and logic errors with 21.9% of the instances. The remaining four error types
had minimal occurrences. For each of the seven error types, the paper also distinguishes
how many of the errors led to incorrect results and how many were considered errors due to
being poor practice. Their results can be seen in Table 3.1. Out of all errors that resulted in
incorrect outcomes, reference errors made up almost 50% of the wrong results in the study.
Spreadsheet Bubbles addresses this by making reference data visually present on the user’s
screen so they can verify that their reference is correct. This is especially helpful when
referring to data on another sheet.

3.2 Techniques to Reduce Spreadsheet Errors

Due to the pervasiveness of spreadsheet errors, researchers in the field have proposed er-
ror reduction techniques [12]. Spreadsheet engineering is one of these techniques [5]. It
adopts software engineering principles as a framework for spreadsheet programming best
practices. Others argued for increase in standardized testing similar to coding test cases
[11]. Panko[7] advocates that testing should account for 25-40% of spreadsheet development
time. Spreadsheet auditing software is another proposed error reduction technique [12]. Most
error reduction techniques involve debugging after the fact or refining spreadsheet interac-
tion for prevention. In contrast, Spreadsheet Bubbles aims to reduce errors and increase
understanding during the programming of spreadsheets.

Code Bubbles principles and techniques inspired our approach to increase e�ciency and

CHAPTER 3. RELATED WORK 7

mitigate spreadsheet errors [1]. Code bubbles is a user interface that presents the current
working set of code fragments in “bubbles”. Developers spend significant time navigating
between di↵erent files and folders. Code Bubbles allows all relevant functions and definitions
to be on one interface as editable fragments. Similarly, Spreadsheet Bubbles populates
the working set of data from anywhere in the spreadsheet in “bubbles”. This reduces the
cognitive burden on the user to remember sheet and column names. In addition, it increases
e�ciency by presenting data the user would otherwise have to scroll or switch tabs for.

Current User Interface techniques exist in commercial spreadsheets to assist the user
in visually confirming their formulas. For example, popular spreadsheets, like Excel and
Google Sheets, color-code terms in a formula to show where the formula references are in
the current spreadsheet view. Users can utilize this to visually confirm that their range
selection is correct. However, it is only possible to view color coded cell ranges in the user’s
current screen. Spreadsheet Bubbles would serve as an extension of this type of visualization
to include hidden data and state. Separately, Microsoft has a tool coined the Workbook
Relational Diagram that allows users to visualize spreadsheet dependencies from a high level
using pointers [3]. Users can leverage this tool to create an interactive, graphical map of
workbook dependencies in order to further understand and debug their workbook.

8

Chapter 4

Formative Study: Uncovering

Opportunities for Design

We initiated the design process with a small (N = 2) pilot study. Inspired by spread-
sheet computational tasks from Understanding Data Analysis Workflows on Spreadsheets,[13]
the study encompassed common spreadsheet tasks like aggregation, search, manipulation,
conditional statements, filter, sheet creation, and lookup. The study utilized a Weather
spreadsheet that tracked extreme weather events over decades documenting location, date,
duration, and more.

Task: “By state, how many more severe storms were there in 2010-2015

compared to 1980-1985? Then, find the state that had the largest increase in

severe storms from the time period 1980-1985 to the time period 2010-2015”

One way to complete this task is to create a column of all US states (Figure 4.2), a
column of the number of storms from 2010-2015 in each respective state (Figure 4.3), a
column of the number of storms from 1980-1985 in each respective state, and then lastly,
a column finding the di↵erence between columns 2 and 3. Then, for part two of the task,
the user had to look up the maximum di↵erence in column 4 and identify which state this
occurred at (Figure 4.4). These tasks had the users utilize sheet referencing, range selection,

Figure 4.1: Weather Spreadsheet used for Pilot Study

CHAPTER 4. FORMATIVE STUDY: UNCOVERING OPPORTUNITIES FOR DESIGN9

Figure 4.2: User populates column A with all the US States from the filter-demo sheet

Figure 4.3: User uses COUNTIF to filter by the state, year, and natural disaster to count
how many entries fit the requirements

Figure 4.4: User looks up which state had the biggest increase in storms

CHAPTER 4. FORMATIVE STUDY: UNCOVERING OPPORTUNITIES FOR DESIGN10

aggregation, filter, conditional formulae, and look ups. During the study, we observed the
following user pain points and errors.

• When dealing with nested functions, it is di�cult to verify intermediate results. In our
study, the users had a Filter function nested in a Count function. They had to isolate
the intermediary results for filter to verify that Count is being applied to the intended
set of data. As functions and operations get more complicated, specifically with nested
formulae, intermediary results become necessary to validate.

• Range selection and sheet referencing was another pain point. The users were often
clicking and scrolling between various sheets and columns to select the intended set of
data. There were errors in range selection that ultimately led to inaccurate results.

• The user rarely got the formula correct and the desired result on their first attempt.
Often, the user had to debug their formula and consult outside resources to rectify the
issue. There were two main types of formula issues we observed: syntax issues - e.g.
misspelling a sheet name or not following expected formula format and logical issues -
e.g. choosing an incorrect function or misunderstanding the question.

From these observations, we prioritized displaying intermediary results. This would make
it easier for the users to isolate each function in order to ensure they achieved the intended
result. To assist the user in debugging and understanding a filtered range, predicates are
able to be toggled on and o↵. As previously mentioned, users frequently navigated between
sheets to retrieve column and row information. This process takes extra time for the user
and depends on their working memory to get data referencing in the original sheet correct.
We decided to summarize and display the data referenced, regardless of where the data is
located.

11

Chapter 5

Spreadsheet Bubbles Interaction

Design

With Spreadsheet Bubbles, we set out to augment a spreadsheet with explicit support for
each type of function. So, three function views were tailored to target pain points associated
which each function type.

Each view is located within an ephemeral bubble that is visually positioned to indicate
which portion of the formula the view is meant for. The bubble will disappear a few seconds
after the cursor moves away unless pinned by the user to stay. Our aim is to aid the user in
quickly identify syntactical errors and understand their logical errors to ease the process of
spreadsheet creation and manipulation.

Most formulas include a range on which a function is enacted on. As the user is typing
to potentially refer to data on another sheet, we provide clickable column identifiers so the
user can easily select a range without having to go back and forth . This view can be seen
in figure 5.1. Then, once the user completes typing the range, a range view is displayed with

Figure 5.1: Design Mockup: Clickable column identifiers

CHAPTER 5. SPREADSHEET BUBBLES INTERACTION DESIGN 12

Figure 5.2: Design Mockup: Populated Range View highlighting range selected

the selected range highlighted (e.g. Sheet3!A1:C20) and shows relevant context for what was
not selected. The range view (figure 5.2) is helpful so the user can verify what they selected
in the highlighted range but also shows the outer boundaries of what the user did not select.

Next, we created a view for filter functions that contain conditional statements to in-
clude only certain cells in a specified range. The results of nested Filter functions (e.g.
MAX(FILTER(...)), AVG(FILTER(...))) and conditional computation like SUMIF and
COUNTIF are di�cult to confirm correctness. There is hidden filtering of the range and
the user is left with a number. The user must make sure the filtered results are correct to
ensure the mathematical calculations are done on the right set of data.

For filtering ranges, we created a filter view that can display intermediary results. So,
even if the filter is nested or hidden by a conditional computation, the user is able to validate
the filter output on the specified range. The filter view is able to show selected results as
well as context for what was not selected. Similar to the Range View, selected cells will be
highlighted yellow and cells not selected are left as is. As an additional feature, the user is
able to toggle on/o↵ whether they want unselected cells to be displayed. In Figure 5.3 the
user shows unselected data and highlights selected data, and in Figure 5.4 the user hides
unselected data and only displays Filter function’s results.

To assist in the debugging and/or the exploration process for the user, the filter conditions
are able to be individually toggled on and o↵. In Figure 5.4, Predicate 3 is toggled o↵ at
the top. So, the third predicate that filters column I to only contain ”Severe Storm(s)” is
no longer applied on the range.

Lastly, we discuss the view for lookup functions like VLOOKUP, HLOOKUP and INDEX.
Lookup functions find a row or column with a specified search key and then return an
indexed element from that selected row or column. For lookups, we enable highlighting to

CHAPTER 5. SPREADSHEET BUBBLES INTERACTION DESIGN 13

Figure 5.3: Design Mockup: Filter View with all predicates toggled on and showing unse-
lected data

Figure 5.4: Design Mockup: Filter View hiding unselected data and predicate 3 toggled o↵

CHAPTER 5. SPREADSHEET BUBBLES INTERACTION DESIGN 14

Figure 5.5: Lookups highlight and condensation feature

show exactly which row and column is being selected and allow sheet condensation to make
verification as easy as possible for the user. For example, in the Figure 5.5, the search key
is ”PW” and the element in the 4th index of that row, 144, is to be returned.

15

Chapter 6

Implementation

6.1 Implementation Break-Down

We built Spreadsheet Bubbles on top of Luckysheet, a configurable, open source spreadsheet
available online[6]. When the user edits a formula or selects a new cell, we parse the formula
text to discern if and which view to present and what the bubble must contain. We then
utilize HTML to display the Bubbles and its’ contents.

If the user is in the process of referring to data from another sheet, Spreadsheet Bubbles
populates all of the column names from that sheet in a bubble above the formula bar as
shown in Figure 6.2. We do this by parsing the formula bar text every time the user presses
a key to see whether a bubble must pop up. Generally, we pop up bubbles if the user
types an exclamation point, a comma, or an end parenthesis. When the user types an
exclamation point, they are referring to data in another sheet, so Spreadsheet Bubbles pops
up the column identifier bubble for the sheet referenced. For example, if the user types in

Figure 6.1: Implementation Diagram

CHAPTER 6. IMPLEMENTATION 16

Figure 6.2: Column Identifiers pop-up when a separate sheet is being referenced in the
formula bar

Figure 6.3: Implemented Range View - highlighting selected data and showing context for
what is not selected

”COUNT(Sheet1!”, Spreadsheet Bubbles recognizes that the user will be referring to Sheet1
data and pulls column names from that sheet to make range selection easier (Figure 6.2).

In our original design (Figure 5.1), we meant for the column identifier view to be clickable,
so that the column reference would automatically populate in the formula bar. However,
our implementation at the moment is not clickable.

For Range Views, Spreadsheet Bubbles parses the formula bar to see if the last character
type was either a comma or end parenthesis. If the user typed one of those two characters,
the tool searches to see if a range was typed before the exclamation point or end parenthesis.
Then, a bubble is populated with the range the user typed. To retrieve data from anywhere
in the spreadsheet to display in the bubble, we utilized the getRangeValue(...) function

CHAPTER 6. IMPLEMENTATION 17

Figure 6.4: Implemented Filter View - highlighting selected data and showing context for
what is not selected

from the Luckysheet API. Once the spreadsheet data is received, we display the range in
the bubble highlighting the selected data. We include the surrounding unselected data as
context, but do not highlight the cells to indicate that the cells are not a part of the selected
range (Figure 6.3).

If the parsed formula text detects a filter formula like SUMIF, COUNTIF, or FILTER,
the tool is directed to populate a filter view bubble. We use the getRangeValue(...) function
from the Luckysheet API to retrieve the relevant spreadsheet data for the specified range.
Unfortunately, the Luckysheet API does not expose their function execution to developers.
So, we edited the the files functionImplementation.js and formula.js in the source code to
enable ample access to spreadsheet data and under the hood functions. Specifically, we
created an accessible function called SBexecfunction in formula.js to be able to execute the
filter function on any range of data with any conditions we specify. Then, we had to allow
the functions to return more than one entry in functionImplementation.js since the source
code originally only allowed single dimensional arrays to be returned.

After retrieving the filtered data from our SBexecfunction, Spreadsheet Bubbles displays
it, highlights it, and surrounds it with context (Figure 6.4). Essentially, if a cell was selected
in accordance to the filter conditions, we highlight the selected data and include the cells
above and below it to show context with unselected data.

6.2 Limitations

Due to time constraints and the complexity of working with Luckysheet, not all features
from our design in Chapter 5 were able to be fully implemented. We were unable to position
the bubble underneath the specific part of the formula it is depicting. So, at the moment, the
bubbles are stagnant. In addition, while the clickable column identifier above the formula

CHAPTER 6. IMPLEMENTATION 18

bar from Figure 5.1 appears, the user cannot click columns in the bubble to populate column
names in the formula bar. Lastly, the Filter View does not currently have options to hide
unselected data and toggle specific predicates on and o↵ like in Figure 5.4.

19

Chapter 7

Discussion and Future Work

Spreadsheet Bubbles augments an enhanced User Interface onto existing Spreadsheet so-
lutions. In the future, we see Spreadsheet Bubbles possibly existing as a Google Chrome
extension working on Google Sheets. Once Spreadsheet Bubbles is able to be fully imple-
mented, a user study is important to objectively test the error prevention and e�ciency
increase Spreadsheet Bubbles can achieve.

In the user study, the users would have two similarly di�cult tasks on two separate
Spreadsheets. The tasks and Spreadsheets must be di↵erent so solving one problem does not
inform the other. For each task, we would observe the number of times the user goes back
and forth between sheets, the length of time it takes to solve the problem, and pain points the
user ran into. We would also ask users afterwards how Spreadsheet Bubbles changed their
workflow and overall Spreadsheet manipulation experience. This user study would ideally
be done with non-programmers that have experience in working with Spreadsheets. Based
on the user study results, we would iterate on Spreadsheet Bubbles’ design.

In the process of visualizing hidden data and state in spreadsheets, we uncovered more
design questions. A computer screen has limited real estate and we have yet to figure out
how to best optimize the space bubbles take up. In addition, due to the bubbles’ limited size,
we must e�ciently summarize the spreadsheet data to convey the most salient information
in our bubble.

Formula manipulation and creation in Spreadsheets can very quickly get complex and
di�cult to debug. More formula support is necessary, especially since Spreadsheets do not
often give detailed, helpful feedback. In general, assistance and mechanisms of aide in the
process of Spreadsheet creation and manipulation need to be explored more.

20

Chapter 8

Conclusion

We present Spreadsheet Bubbles, an enhanced User Interface, augmented onto spreadsheets
with the goal of making the spreadsheet workflow more e�cient and less error prone. Spread-
sheet Bubbles uncovers the working set of hidden state and data to reduce cognitive burden
on the user; Thus, users are able to visually confirm their logic with ease, and save time and
e↵ort by avoiding going back and forth between data sets.

Spreadsheets are here to stay. They are used in every industry for countless di↵erent
purposes from financial modeling to inventory tracking to event planning. We must con-
tinue innovating and rethinking within this space. Spreadsheet Bubbles is only the start of
leveraging an augmented User Interface to enhance the Spreadsheet user experience.

21

Bibliography

[1] Andrew Bragdon et al. “Code bubbles: Rethinking the user interface paradigm of
integrated development environments”. In: vol. 1. Jan. 2010, pp. 455–464. doi: 10.
1145/1806799.1806866.

[2] Steve Clarke et al. “Errors in Operational Spreadsheets”. In: Jan. 2011, pp. 236–247.
doi: 10.4018/978-1-60960-577-3.ch011.

[3] Compare workbooks using Spreadsheet Inquire. url: https://support.microsoft.
com/en-us/office/compare-workbooks-using-spreadsheet-inquire-ebaf3d62-
2af5-4cb1-af7d-e958cc5fad42.

[4] Future of Financial Reporting Survey 2017 - FSN - The Modern Finance Forum.
June 2019. url: https://fsn.co.uk/research-papers/future-of-financial-
reporting-survey-2017/.

[5] Thomas Grossman. “Spreadsheet Engineering: A Research Framework”. In: (Nov.
2007).

[6] Luckysheet. Jan. 2021. url: https://mengshukeji.github.io/LuckysheetDocs/
guide/.

[7] Raymond Panko. “Recommended Practices for Spreadsheet Testing”. In: (Jan. 2008).

[8] Raymond Panko. “Revisiting the Panko-Halverson Taxonomy of Spreadsheet Errors”.
In: (Oct. 2008).

[9] Raymond R Panko and RP Halverson. “Spreadsheets on trial: A survey of research on
spreadsheet risks”. In: Proceedings of HICSS-29: 29th Hawaii International Conference
on System Sciences. Vol. 2. IEEE. 1996, pp. 326–335.

[10] James Reason. Human error. Cambridge University Press, 1990.

[11] Gregg Rothermel et al. “A Methodology for Testing Spreadsheets”. In: ACM Trans.
Softw. Eng. Methodol. 10 (Jan. 2001), pp. 110–147. doi: 10.1145/366378.366385.

[12] Simon Thorne and D. Ball. “A Review of Spreadsheet Error Reduction Techniques”. In:
Communications of the Association for Information Systems 25 (Jan. 2009), pp. 413–
424. doi: 10.17705/1CAIS.02534.

[13] Pingjing Yang et al. “Understanding Data Analysis Workflows on Spreadsheets: Road-
blocks and Opportunities”. In: (2020).

BIBLIOGRAPHY 22

[14] Arwin Zeissler, Daisuke Ikeda, and Andrew Metrick. “JPMorgan Chase London Whale
A: Risky Business”. In: Journal of Financial Crises 1.2 (2019).

