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Abstract

Exploring the E↵ects of View Transforms on
Self-Supervised Video Representation Learning

Techniques

by

Ilian H. Herzi

Master’s of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor John F. Canny: Advisor

Self-supervised video representation learning algorithms, such as pretext task learning, con-
trastive learning, and multimodal learning, have made significant progress in extracting
features that generalize well to downstream video benchmarks. All of these learning algo-
rithms rely on the underlying view transforms and research on how view transformations
impact the performance of these learning algorithms has not been thoroughly explored. In
this work, we investigate the e↵ect of many di↵erent spatial, temporal, and visual view
transforms on pretext task learning and contrastive learning. We provide a detailed analysis
of the performance of these methods on video action recognition, and investigate how di↵er-
ent methods compare by combining the learned features of several models pretrained using
di↵erent learning algorithms and/or view transforms. In our setup, certain combinations of
pretraining algorithms and view transforms perform better than supervised training alone on
the UCF-101 and HMDB action recognition datasets but underperform some of the current
state-of-the-art methods.
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Chapter 1

Introduction

Videos are ubiquitous in daily life. Sharing content through videos has quickly become
the greatest source of internet tra�c [51]. Finding solutions that can parse videos and
output the desired insight has been one of the biggest areas of research over the past few
years. Video domain problems pose a significant scale di↵erence compared to their image
domain counterparts due to the increased number of images per video and the addition
of audio data and sometimes language data. The di↵erence in size can make labeling and
interpreting videos by hand expensive. One way to ameliorate this cost is to use unsupervised
learning techniques on large unlabeled datasets to learn features that generalize well to video
downstream tasks.

Purely self-supervised representation learning methods on some benchmarks are compet-
itive and sometimes better than purely supervised approaches and approaches that pretrain
on a larger dataset and then finetune. These state-of-the-art (SOTA) approaches predom-
inately use pretext task learning, contrastive learning, or multimodal learning which we
elaborate on in Section: 2 and Section: 5.

Pretext training algorithms and contrastive learning algorithms rely heavily on the trans-
forms used to create views, which for this paper we call view transforms. Intuitively, each is
used to define a pseudo-equivalence relation that depends on the learning algorithm: pretext
tasks relate transform realizations and attempts to be instance invariant while contrastive
learning relates instances and attempts to be view transform invariant.

Recent work has analyzed how view transforms impact these learning algorithms. No-
tably, Wu et al. [66] analyze representation learning using the mutual information between
views but their experiments analyzed only 5 view transforms. Some work has also explored
combining these learning algorithms into a pretext + contrastive learning algorithm [6, 54].
However, experiments on how each view transform changes the performance of these learning
algorithms and how they interact in these frameworks is largely unexplored.

Learning what kind of view transform works best for each of these modern approaches can
help guide practitioners on the best view to use when using one of these algorithms. Using
the empirical results of this thesis, we hope to add insight to future work in representation
learning.
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In this work, we specifically investigate di↵erent spatial, temporal, spatiotemporal, visual
view transforms, and their combinations in the video action recognition task using pretext
learning, contrastive learning, and briefly pretext + contrastive learning pretraining. We
find that Rotation by 90° tends to outperform all pretext task methods while our new view
transform, FFT, inspired by human perception [57], outperforms all contrastive learning
methods on video action recognition benchmarks. We also investigate combining indepen-
dently learned features in the latent space and generally do better than a purely supervised
method in our setup.

We also briefly investigate the e↵ect of modifying the underlying backbone in the learn-
ing algorithm and find that performance depends heavily on the pretraining algorithm and
downstream learning task.
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Chapter 2

Related Works

Current work in unsupervised video representation learning algorithms can be broken down
into roughly three areas of research: methods that rely on pretext tasks, contrastive learning,
and multimodal learning (which is usually a subset of the other two learning algorithms).
Each of these techniques depends on a view transform that extracts a specific representation
from the video (note in the case of multimodal this is naturally restricted to modality views
as defined in Section: 3.1).

For pretext task learning, most methods essentially design novel view transforms to ex-
tract meaningful labels to train on. Some pretext tasks in the literature exploit spatial views
and inspire some of the view transforms described in Section: 3.2. One such method gener-
ates jigsaw puzzles, a.k.a. Spatial Jigsaw views, that creates spatial patches in each frame
and shu✏es them [1, 40, 64]. Doersch et al. use this Spatial Jigsaw view in a pretext task
that predicts the spatial order of patches [17]. Work by Jing et al explore rotations as a view
transform, explicitly predicting rotations [25]. Some pretext tasks are designed specifically
for videos and exploit their temporal views and inspire some of the view transforms described
in Section: 3.3. Work by Lee et al. shu✏e the frames and try to predict the order [31], which
is a pretext task that uses a Temporal Jigsaw view with a temporal chunk size of 1 and is
analyzed in this work. Other temporal pretext tasks predict relative video speeds, or Pace
views, and is similar to work from Wang et al., Cho et al., Yao et al. [59, 14, 69]. Wei et
al. focus on the nature of time and explicitly try to model features in the forward temporal
direction [65]. We hypothesize that learning a single direction of time can help with most
downstream tasks so long as these temporal views capture motion information about the
videos, which we explore in the InvertOrder transform Section: 3.3. Recent pretext methods
in video representation learning have proposed using both the spatial and temporal views
together exemplified by work from Kim et al. [28] which tries to order Spatiotemporal puz-
zles and Wang et al. [60] which tries to predict the motion diversity and color diversity of a
video.

Other works instead randomly select from a set of view transforms and try to predict
which transform was used. Jenni et al. create a set of Pace view transforms and attempt
to predict what Pace transformation was used; this is actually quite similar to the afore-
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mentioned Pace view prediction pretext task [59, 14, 69]. Additionally, work from Luo et
al. [35], attempt to predict spatial and temporal view transforms as a pretext task. Note
though, that all of these predicting-the-transformer based pretext tasks use carefully selected
view transforms and which combinations of transforms work best for these kinds of tasks
is still unclear. This uncertainty in part helps motivate our exploration of view transforms.
However, since this method is a high-order view transform and requires considering combina-
tions of views we leave this investigation to future work and instead focus on the independent
influence of single views on other pretraining algorithms.

In contrastive learning, some works explore modifications to the contrastive loss such
as NT-Xent in SimCLR [12]. Because exploration of contrastive losses are not the focus
of this paper we select NT-Xent for all our contrastive experiments. What makes a ‘good’
view for contrastive learning has also been examined in the literature. Tian et al. [55]
demonstrate that the best views for a given contrastive task should contain information
that’s relevant to the downstream task while minimizing noise between views. Other work
has empirically investigated the e↵ectiveness of temporal view transforms that sample clips
from both local and global temporal regions of the video [16, 33, 61]. We expand on their
findings by analyzing more view transforms and adding to their contributions. The pace
related views used in pretext training can also be used contrastive learning, where a pace
consistency is contrastively enforced between video clips [68]. Similar to the innovations in
pretext task learning, other spatiotemporal views have been investigated in the contrastive
learning framework. RSPNet [11] is trained contrastively using an alignment between pace
and spatial features on sampled clips. Other methods like CVRL [47] sample clips from a
video that vary in temporal distance and then transform those views spatially essentially
composing the two view transforms into a spatiotemporal transform. To reiterate, while we
consider a few inherently spatiotemporal view transforms like Spatiotemporal Jigsaw 3.4,
we restrict our experiments to ones that are single view transforms and not compositions of
transforms.

While we do not explicitly test the following approaches we briefly touch upon other
SOTA pretraining methods that have performed well on downstream video tasks. Since
contrastive learning acts on instances, some work has investigated operating on clusters,
coined prototypical contrastive learning, which learns clusters and optimizes the contrastive
loss and clusters in an E-M like manner [32].

A significant progress in video related benchmarks have used multimodal learning. Most
multimodal approaches are extensions of pretext or contrastive learning techniques that
use paired views from data domains other than video such as audio and text. Some work
contrastively learns from video-audio, and video-language data pairs [4, 39, 50, 3, 36, 45,
38, 37]. Recent multimodal approaches have achieved SOTA performance on video action
recognition datasets, notably Akbari et al. [2] which uses a video-audio text transformer
that incorporates video, audio, and text simultaneously, and CLIP [48] which jointly trains
an image feature extractor with a text encoder, altogether ignoring the temporal element of
videos. Patrick et al. have proposed general approaches to multimodal learning that consider
all view transforms as hierarchical multimodal, spatiotemporal, generalized transforms in the
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context of contrastive learning [44].
There is also work that uses an optical flow or motion view transform to extract some

sort of motion information and some of these approaches have also shown SOTA on video
action recognition [62]. We choose not to use optical flow because if motion information is
necessary for downstream tasks then a learning algorithm should extract this information
implicitly.

Other methods borrow techniques from masked language modeling (MLM) and use vector
sequences as representations of videos. These representations are then passed into language
architectures like BERT and trained contrastively [26]. Others use paired language and video
data in this MLM-like framework to encode representations, like in VideoBERT [53].

More recent work has explored combining pretext and contrastive learning methods,
notably in TaCo [54] and Bai et al. [6], which balance these two objectives and achieve
results that outperform either of the individual training methods used in isolation.

For this work we primarily focus on view transforms and their influence on pretext train-
ing, contrastive training, and pretext + contrastive training. We do not wish to ignore
progress in multimodal learning, however as the view transforms for multimodal learning are
well-defined we instead fixate on algorithms that utilize di↵erent views.
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Chapter 3

Methods

In this section, we give an overview of the di↵erent view transforms explored and later in
Section: 4 we motivate our general pretraining setup and our experimental setup. Our
framework consists of 1.) selecting a view transform 2.) selecting a pretraining method, and
3.) evaluating the learned features by finetuning them to our target downstream tasks, which
we also evaluate against prior work. This section describes the views while in Section: 4.8 we
describe the details of the learning algorithms, datasets, architectures, and implementation
for each of these steps. Results and a comparison of our work is listed in Chapter: 5.

3.1 Views

As mentioned earlier, the success of self-supervised representation learning algorithms de-
pends heavily on the view transform. In this chapter, we discuss all three types of views that
can be applied to the video data domain. In Figures: 3.1, 3.2, 3.3, and 3.4 we visualize some
of the transforms used in our experiment. A “*” indicates transforms that were considered
in this work but not adequately tested and should be explored in the future. Note that this
list is not exhaustive. For clarity, we define some key terms that are used throughout this
thesis. A video V 2 R(S,H,W,C). A view transform, T , is a set of N possible transformations,
Ti s.t. T = {T1, ..., TN}, where each transform is a map Ti : R(S,H,W,C) ! R(S0

,H
0
,W

0
,C

0). We
refer to Ti as a realization of a view transform and an element V 0 2 R(S0

,H
0
,W

0
,C

0) as the
generated view under T .

3.2 Spatial Views

Spatial views are generated by transformations that operate on the spatial dimensions of the
video (per-frame) and are designed to capture single-moment spatial relationships between
the data. For all of the spatial views, each transformation is applied consistently across all
frames. (i.e. a rotation by 90° would imply that each frame in the video is rotated by 90°.)
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Random Crop: The Random Crop transform follows the approach in SimCLR [12],
where a crop is randomly chosen from some set of possible crops and then applied consistently
to all frames in a video. The sizes of the possible cutouts are specified apriori.

Random Cutout: In the Random Cutout transform, a random patch is ‘cutout’ by
masking that patch to zero. Each cutout is randomly chosen from some set of possible
cutouts. The sizes of the possible cutouts are specified apriori.

2D-Fast Fourier Transform: Inspired by the De Valois model of visual perception
[57], the 2D-Fast Fourier Transform converts a spatial frame to a frequency frame using the
discrete Fast Fourier transform (DFFT) (with OpenCV and NumPy [8, 22]). Di↵erent parts
of the spatial frequencies are masked according to a random circular mask (selecting explicitly
high or low frequencies) or torus mask (selecting or excluding a band of frequencies). The
size of each mask is restricted to be less than the size of the frame. The masked frequency
frames are then converted back to the space domain. Each mask is applied consistently
across frames. This transform is a spatial filter. See Fig 3.1.

Flip: The Flip transform randomly flips each video frame either horizontally, vertically,
both, or neither (identity transform). See Fig 3.1.

Rotation: Rotation by some random angle R takes each frame within a video and
rotates the frame around its center by the same random R sampled from [0, 360] degrees.
We discretize the angle of rotation into 360

R
bins and transform only according to the bins.

Any missing pixels are filled with black pixels. See Fig 3.1.
Shear: The Shear transform randomly shears each frame within a video along the x

and/or y-axis by some shear angle amount in [�0.5, 0.5] generating a random a�ne trans-
formation matrix. We discretize the shear value into 1

S
bins to restrict the total number

of shears. For example, the “Shearx,y .25” transform consists of 16 bins, since we take the
Cartesian product of all possible shears along the x and y directions. See Fig 3.1

Spatial Jigsaw (Permutation or Relative): The Spatial Jigsaw transform, inspired
by work from Unaiza et al. and Noroozi et al. [1, 23], divides each video frame into a grid
of

p
P ⇥

p
P spatial chunks. These spatial chunks are randomly permuted and rasterized

together to maintain the original frame shape and global context. The number of possible
transformations is either the total number of permutations of the chunks P ! or the total
number of chunks per chunk where each chunk position is independently predicted with a
label corresponding to one of P labels in the grid. See Fig: 3.1.

Translate: In the Translate transform, each video frame is translated along the x and/or
y-axis by a random translation amount sampled from [�150, 150]. We discretize the transla-
tion value into 300

T
bins. All missing pixels following translation are filled with black pixels.

See Fig: 3.1.
Translate+WrapAround:* Identical to the Translate transform except black artifacts

are filled with the image pieces cutout by the translation.
Translate+Zoom: In the Translation+Zoom transform, each video frame is randomly

translated in one of 9 directions relative to the center (N, NW, W, SW, S, SE, E, NE, center
(no translation)). Because translation leaves black pixels as artifacts, once the frame is
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translated, the image is enlarged until the scaled frame fills the border of the original frame
shape whereupon it is cropped back to the original frame shape.

Zoom: In the Zoom transform, each video frame is randomly zoomed by a scale that’s
randomly selected from a finite set of Z scales. See Fig: 3.1.

3.3 Temporal Views

Temporal views are generated by transforms on the temporal axis of videos. Inspired by
work in [59, 14, 69, 47] we explore several temporal view transforms.

Invert Order: In the Invert Order transform, the frames of a video are randomly
reversed. See Fig: 3.2.

Pace: In the Pace transform, the relative frame rates are either accelerated or slowed
down with respect to the original clip’s frame rate by sampling at di↵erent paces, i.e. rates,
following the description by Wang et al. [59], but is also similar to the work Cho et al. and
Yao et al. [14, 69]. A pace equal to 1 is normal motion and a pace greater than 1 is fast
motion. We sample every pth frame where and a pace less than 1 duplicates 1

p
frames. (i.e.

for Pace {.5, 1, 2, 3, 4} we randomly select a pace, p and sample every p-th frame if p is > 1
or duplicate if p is < 1 ). See Fig: 3.2.

Temporal Jigsaw: In the Temporal Jigsaw transform the original video is divided into
T temporal chunks with an equal number of frames in each chunk. The chunks are then
permuted along the temporal axis. With T=1 this becomes equivalent to sequence sorting
seen in [31]. See Fig: 3.2.

Start Prediction*: The Start Prediction transform rotates the indices of a video and
attempts to predict where the start index is. It can be seen as a special case of the Temporal
Jigsaw transform.

Video Clip Order Prediction (VCOP)*: Video Clip Order Prediction follows the
methodology in work from Xu et al. [67] where given a video, clips at di↵erent temporal
locations are sampled and then reordered. The original goal of this task is to then predict
the correct temporal order of these clips however this view can be defined generally.

3.4 Spatiotemporal Views

Spatiotemporal transforms generate views by considering both the spatial and temporal axis
of a video simultaneously.

Spatiotemporal Jigsaw: Inspired by STPuzzle from Kim et al [28], Spatiotemporal
Jigsaw combines Spatial Jigsaw and Temporal Jigsaw, permuting 3D patches within a video.
See Fig: 3.3.

Temporal Clip Sampling*: Temporal Clip Sampling follows the methodology of CVLR
from Qian et. al in [47] where two di↵erent clips from the same video are sampled at di↵erent
temporal locations, usually before applying some other view transform.
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3.5 Visual Views

Visual views are generated by transforms that are applied at a pixel-level. These transforms
do not explicitly change the relative spatial or temporal relationships in the frames. Note,
that if the transforms are uniform at a pixel level (such as a brightness transform), a model
using batch normalization will compensate automatically.

Auto Contrast: In the Auto Contrast transform, frames either have their contrasts
normalized to map their min pixel value to 0 and their max pixel value to 255 or not
modified at all.

Color Jitter: In the Color Jitter transform, frames are randomly composed with four
transforms: brightness, contrast, saturation, and hue. Brightness is the relative lightness of
a color, contrast is the magnitude of the di↵erence in luminance, saturation is the intensity
of a hue, and a hue is a spot on the color wheel. For each of these four transforms the
parameters are discretized by C in the range [.1, 1.1]4. See Fig: 3.4.

Edge Filters: For Edge Filter transforms, a set of filter transformations are selected
beforehand and all frames within a video are transformed by a filter randomly selected from
this set. (i.e. a video can be randomly transformed by the identity, a Canny filter, the Sobel
filter, the Scharr filter, the Roberts filter, the di↵erence of Gaussians, the Farid filter, or the
Laplace transform.) See Fig: 3.4.

Invert*: The Invert view transform reverses RGB values into their complementary colors
on the color wheel. See Fig: 3.4.

Equalize*: The Equalize view transform applies a nonlinear map to create a uniform
distribution of greyscale values in the image. See Fig: 3.4.

Solarize*: The Solarize view transform inverts all pixel values above some threshold, T.
See Fig: 3.4.

Posterize*: The Posterize view transform quantizes the the integer bit representation
of the RGB values to a random bit size from {2, 4, 8}. See Fig: 3.4.

Style GAN*: Inspired by considering view generation as an video-to-video problem, The
Style GAN transform randomly selects an image-to-image translation model that has been
trained on a style from S possible style domains. All frames within a video are transformed
consistently by the translation model.

Multimodal Views

Multimodal views are transformations on paired data from multiple modalities or data that
was collected from the same source e.g. a video and an audio track. Any transform that
extracts something from paired data is considered a multimodal view.

Video Embeddings*: In the Video Embeddings transform, a video paired with some
audio and language data is transformed by a feature extractor that compresses the video
into some feature vector.

Audio Embeddings*: In the Audio Embeddings transform, sounds associated with
some video and language data are extracted and transformed into spectral frequencies using
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the Fourier transform. The spectrograms are then transformed into some audio feature
vector.

Language Embeddings*: In the Language Embeddings transform, labels or descrip-
tions paired with some video and audio data are extracted and transformed by a feature
extractor into some language embedding.

Optical Flow*: The Optical Flow transform uses dense optical flow to capture motion
features between frames of the video.

Other views

Other views that have shown success in self-supervised pretraining on videos but deviate
from the spatial, temporal, visual, and multimodal view categorization are as follows:

Counting*: In the Counting transform, counts of di↵erent visual primitives in both the
frames and patches of the frames are extracted. Inspired by Noroozi et al. [41], the original
task enforced equality between the count of frame visual primitives and the sum of detected
visual primitives in patches of the frame.

Object Recognition Labeling*: Using pretrained 2D object detection models to label
the instances in the images. A variation of enforcing visual primitives.

Spatiotemporal Statistics*: In the Spatiotemporal statistics transform, motion and
color diversity statistics are extracted from a video. Inspired by work from Wang et al. [60]
and Wang et al. [62].

Transform Recognition*: Inspired by work from Jenni et al. and Luo et al. [24, 35], a
set of view transforms, T0...TM , is selected beforehand. A view is generated by first randomly
selecting a view transform from T0...TM and then applying it on the video. This view
transform is a higher-order function that takes in arbitrary counts of other view transforms.
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Figure 3.1: Spatial Transformations
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Figure 3.2: Temporal transformations

Figure 3.3: Spatiotemporal transformations
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Figure 3.4: Visual transformations
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Chapter 4

Experimental Design

In this section, we continue from the above (Section: 3) and describe the di↵erent pretraining
algorithms used, the datasets used, the architecture used, and the setup for each experiment.

4.1 Pretext Training

The goal of pretext task-based self-supervised learning is to define a task for which labels
can be generated from view transforms (such as the ones listed in Section 3.1) usually on an
unlabeled dataset. The learning signal that trains the model comes from di↵erences in the
selected view transform realizations and ideally this signal should contain enough information
to teach the model to extract features that can be used e↵ectively in downstream tasks. (See
Fig 4.1.)

Formally, for a video V , and a view transform T = T0, ..., TN , we generate several trans-
formed views of the video T0(V ), ..., TN(V ). Then we train a model, f(Ti(V ),⇥), to predict
the target label i from the transformed view of the V , yielding some loss Lpretext that’s opti-
mized. After the model is trained to perform this task, researchers either use the mid-level
features of this model, f , (e.g. the last layer before prediction)[13] as a representation of
the video or they use the trained parameters, ⇥, to initialize a new fully trainable model
for the downstream task [25]. We opt for the former method and discuss this decision in
Section: 4.8. To reiterate, pretext tasks can be thought of as a pseudo equivalence relation
that enforces equivalence between di↵erent view realizations across video instances. (See
Fig. 4.1.)

4.2 Contrastive Training

Formally, for a video V , the identity function Id, and a view transform T = T0, ..., TN

we train a model f with parameters ⇥ that attempts to maximize the mutual information
between the Id(V ) and Ti(V ) as shown in Equation: 4.1. Some work in contrastive learning
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has investigated optimizing lower bounds on the mutual information, such as the max-
margin contrastive loss, the triplet loss, NT-Xent loss [12], and InfoNCE loss. Each of these
objectives can be used for the contrastive loss, Lcontrastive, to optimize the model. We opt
for the NT-Xent loss and discuss why in Section: 4.8.

max
⇥

I(f(Id(V ),⇥), f(Ti(V ),⇥)) 8V (4.1)

Once an objective is picked and a model trained, similar to the pretext scenario researchers
either use mid-level representations of this model [13] or use it to initialize a fully trainable
model for the downstream task. Intuitively, contrastive tasks can be thought of as pushing
di↵erent view transform realizations for a single instance closer together in a latent space
and repelling di↵erent instances via negative sampling as discussed in work from Wang et
al. [63].

Note, the importance of the mutual information between the generated views should not
be ignored. Lots of work analyzes the ideal amount of shared mutual information during
contrastive learning for optimal downstream performance; indeed, Tian et al. show that
ideal views share high downstream task-related information and low noise and Wu et al.
give theoretical conditions on good views [55, 66]. However, work by Tschannen et al.
[58] have shown that accuracies in downstream performance do not align completely with
mutual information scores as accuracies in downstream performance can be improved while
fixing the mutual information, and the mutual information can be improved while fixing the
accuracy. These conflicting observations emphasize the need to empirically analyze multiple
views in the context of these di↵erent pretraining algorithms. (See Fig 4.2 for an overview
of contrastive learning.)

4.3 Pretext + Contrastive Training

In Pretext + Contrastive Training we combine both the pretext and contrastive learning
objectives, simultaneously optimizing over both algorithms by combining their loss as shown
in Equation: 4.2. ↵ is a hyperparameter that balances the two losses following the methods
in TaCo [6] where performance improves as the losses of the two learning algorithms are
balanced. Combining these two tasks does not intuitively guarantee any particular gains since
pretext training seems to aggregate instances while contrastive learning seems to separate
instances. However, [6, 54] empirically show improved accuracies on downstream tasks when
these two objectives are combined. In our work, we very briefly explore this pretraining
regime with our best transforms for both learning algorithms. (See Fig 4.3)

Lpcl = Lcontrastive + ↵Lpretext (4.2)
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4.4 Combination of pretraining tasks

There are several ways to combine pretraining tasks for learning strong representations, and
in this experiment, we chose a method that combines representations of multiple individu-
ally trained models that vary across the tasks used for representation learning. To extract
the maximum possible information and make comparisons between the learned features,
each model is trained using a single view. So, while some information may be redundant,
using multiple independent models allows us to investigate the relationships between the
learned transform tasks and our downstream tasks without introducing potential multi-task
confounds. (See Fig 4.4.)

Figure 4.1: Overview of our pretext task algorithm. In the pretraining phase, a view trans-
form as described in Section 3.1 is selected. We then use a ResNet based backbone to
extract features from view realizations. These features are then passed through an MLP
classification head which attempts to identity the view realization.
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Figure 4.2: Overview of our contrastive learning algorithm. In the pretraining phase, a view
transform as described in Section 3.1 is selected. These features are then passed through
an MLP to a latent space. A contrastive loss is calculated using the two views and batch
negative.

Figure 4.3: Overview of our pretext + contrastive learning algorithm. This algorithm com-
bines the cross-entropy loss calculated in the pretext task with the contrastive loss computed
during contrastive learning. ↵ is a hyperparameter that balances the two losses.
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Figure 4.4: Overview of how we combine multiple independent tasks during finetuning. In
the evaluation phase, we combine independently pretrained models by concatenating their
embeddings and passing them to an MLP that predicts the action.

4.5 Datasets & Downstream Tasks

After selecting a view in the first phase, the two following phases of our experiments, pretrain-
ing and evaluation, rely on di↵erent video datasets. For pretraining, the model is trained
on a large, unlabeled, video dataset and then it’s evaluated on downstream video action
recognition benchmarks.

For the second phase, all models in this work are pretrained on Kinetics-700 [10]. Kinetics-
700 contains approximately 550,000 10-second training clips labeled from 1 of 700 action
classes. We do not use these labels during pretraining.

For the third phase, we investigate the performance of these methods on video action
recognition. We evaluated our models on UCF-101 [52] and HMDB [30]. UCF-101 is a video
dataset containing 13,320 clips collected from YouTube representing 101 action categories.
Clips range in length but can be up to 3 minutes long. We evaluate our methods using
3-fold evaluation, using the o�cial THUMOS splits. Note that other methods show that
training [27] on non-standard folds seems to improve performance, which we also saw in our
experiments but refrain from discussing them in this work and instead focus on the o�cial
splits.

HMDB contains 6,800 clips collected from various sources, primarily movies, representing
51 actions. Videos in HMDB range in length but can be up to 30 minutes long. We evaluate
our methods using 3-fold evaluation on the o�cial provided splits (which each contain 70
train videos and 30 test videos).
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4.6 Data Preprocessing

Techniques for preprocessing data can have varying impacts on downstream performance
and requires further exploration in future work. For our preprocessing, each video is down-
sampled to 4 FPS (an empirical trade-o↵ which we found balances the ability to see high-
frequency motion with data e�ciency costs). We then change the video’s spatial resolution
to (256, 256) by resizing the short edge of the video to length 256 and taking a center crop
of the frames. The videos are then split temporally into sub-clips of 16 frames (4 seconds)
which represent the inputs to our model. Note that we do not perform any mean-subtraction
or whitening. To reiterate, we also do not perform any additional data augmentation during
preprocessing for pretraining methods, as our goal is to evaluate the information captured
by the pretraining method and introducing data augmentation could cause confounds in
the downstream experiments. Data used for action recognition however is augmented using
flipping to compare with some of the other SOTA video representation learning methods like
in Jing et al. [25].

4.7 Model Architectures

Which model architectures work best for di↵erent pretraining tasks is still unknown. Kolesnikov
et al. show that in pretext task-based training performance depends heavily on both the
model architecture and pretext task being used [29]. Other more recent works have used
transformer-based architectures to achieve SOTA results in image recognition [18], object
detection [9], and video action recognition. Notably in the video domain, these architectures
include ViViT, a pure-transformer based model using spatial and temporal heads in attention
blocks, [5], TimeSformer which explores di↵erent self-attention schemes like divided space-
time attention [7], CLIP [48] which uses transformer-based feature extractors on images and
text (using ViT [18] for images), and VATT which also processes multimodal views using
transformers [2]. Additionally, Lu et al. [34] use pretrained NLP transformers to achieve
significant results in the vision domain. So, while these models may provide additional per-
formance gains, we restrict ourselves to a single family of architectures, the ResNet family,
to properly compare performance between pretraining experiments. We leave investigations
into the ideal matching of views, learning algorithms, and models to future work. Note
that following Harra et al. [21] we selected ResNeXt3D-18 as our backbone model, however,
after we were unable to replicate results from the literature we experimented on ResNet3D-
18, R(2+1)D, and ResNeXt3D-18 as a backbone for the Rotation 90 pretext task. Despite
ResNeXt3D-18’s superior performance on this though, we switched to this model backbone
to make our results more comparable to the literature and reran pretext experiments using
the ResNet3D-18 backbone. Results from this exploration are listed in Table: 5.2.

The ResNeXt3D-18 and ResNet3D-18 model consists of five convolutional layers where
four of them contain two ResNeXt and ResNet blocks respectively. Each convolution uses
3D batch normalization and ReLU nonlinearities. A max-pooling layer follows the first con-
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volutional layer, and adaptive average pooling follows the last layer, which unless otherwise
specified compresses the last layer into a vector. The dimension of this vector v, is v 2 R1024

unless otherwise stated.
Pretext task predictions are made by an MLP head on top of the ResNet backbone. This

MLP head consists of 2 linear layers of dimension {1024, 512, C} where C is the number of
pretext classes. We use BatchNorm and ReLU nonlinearities between layers.

For contrastive tasks, latent representations of videos are extracted from MLPs feedfor-
ward networks that model sparse autoencoders, where the latent vector from the model is
embedded into a larger dimension and then projected back down to the original dimension.
LayerNorm, Dropout, and ReLU nonlinearities are used in the higher dimensional space.
Two feedforward networks with latent dimensions 2048 are used and contrastive compar-
isons are made in R1024.

4.8 Experiments & Implementation details

In this section, we quantify the performance of di↵erent pretraining algorithms using di↵erent
view transforms by analyzing transfer performance on video action recognition benchmarks.
Note that to e↵ectively analyze the learned representations we completely freeze the
feature extraction model and don’t initialize an unfrozen model that’s trained in a fully
supervised manner. We speculate that performance could be improved if the extractor was
fully trainable but we leave this for future work. For all experiments, we use PyTorch [43]
and PyTorchLightning [19] and we train on Google Cloud Platform with four Tesla T4 GPUs
where each experiment uses a single GPU. We also use open source packages like NumPy
[22], Scikit-Image [46], PIL [15] and OpenCV [8].

Pretraining

For all pretext experiments we use the Adam optimizer with a learning rate of 3e-4 that
decays according to a fixed multi-step learning rate schedule of .1 after 80 and 100 epochs
with an e↵ective batch size of 1024. The model for pretext task experiments is optimized
using a cross-entropy loss where all pretext tasks require predicting which realizations of
the view transform was used. For all contrastive experiments, we change the learning rate
scheduler to a cosine learning rate scheduler that oscillates between 1e-7 and 1e-4 every
8000 steps. We also utilize the Normalized Temperature-scaled Cross Entropy (NT-Xent)
contrastive loss from SimCLR [12] with the temperature parameter set to 1.0. The batch size
for contrastive learning is 64 as this was the maximum batch size that fit in memory given
our setup. Pretext + contrastive learning follows the same optimization and learning rate
schedule as contrastive learning. The loss of pretext + contrastive is a combination of both
the pretext losses and the contrastive losses as described in 4.2. For pretext + contrastive
training, ↵ is set to 10 and the batch size is 55 (again the maximum size that fit in memory
given our setup).



CHAPTER 4. EXPERIMENTAL DESIGN 21

Finetuning on Action Recognition

Fintetuning experiments are performed on the action recognition task. We evaluate the
classification performance using a MLP head with four linear layers of dimension
2048, 1048, 512, Ctask where each layer uses BatchNorm1D and a HardSwish [49] nonlinear
function. The MLP is optimized using standard cross-entropy loss and the Adam optimizer
with learning rate 3e-4 that decays by .1 according to a fixed multi-step learning rate sched-
uler of 20 and 80 epochs. To compare with other SOTA methods like Jing et al. [25] we
additionally augment the data during finetuning with a horizontal flip augmentation (even
though this is avoided during pretraining). For HMDB, only to prevent overfitting on the
relatively small training set, we employ a dropout after each non-linearity. We also experi-
mented with logistic regression probes using the standard logistic regression module available
in Scikit Learn [46] but unfortunately, the results were inconclusive.

Combination-of-task experiments follow the same setup as pretext experiments except
that the MLP head input dimension is expanded to accommodate the number of combined
features which varies depending on the number of embeddings combined. Model backbones
will be explicitly specified.
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Chapter 5

Results and Analysis

Our main results are presented in Tables: 5.3, 5.5 and 5.16. Rotation 90° is our best single
view transform for pretext based methods and outperforms supervised baselines on UCF-
101 and HMDB while for contrastive methods Rotation 90° underperforms them. Further
work investigating the model’s performance on UCF-101 and HMDB is required as we note
a disparity between our scores and some scores reported in the literature, notably that of
Jing et al. [25]. Note that all reported accuracies are clip accuracies unless otherwise stated.

5.1 Pretext Task Experiments

Single-Transform Experiments

In this section, we present detailed results of the single view transform pretext task pretrain-
ing experiments. Table 5.2 reports validation accuracies of pretext scores. Note that in many
cases, higher pretraining accuracy seems to denote a simpler learning task and may perform
worse on downstream tasks. Table 5.3 presents performance for a single pretext task on
UCF-101 and HMDB. The MLP scores are the average of all available splits. As a baseline,
these scores are compared to the accuracies of purely supervised training regiments, where
for each train/test split of the action recognition datasets, a model trains using supervised
learning and is then evaluated on the test split. Scores are averages across splits unless
otherwise specified.

As mentioned earlier in Section 4.1, the goal of pretext task learning is to train a model
that extracts information useful for the pretext and a downstream task. We hypothesize that
the best models extract information that separates according to challenging and dissimilar
transform realizations in the latent space.

We speculate that rotation is one of the more challenging tasks to learn to separate,
as it requires models to learn about the standard orientation of objects and locally, at the
scale of convolutions, this can be challenging. Di�cult examples to classify are ones with
radial symmetry which may be infrequent when compared to di�cult examples under other
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Model Config. Pretext Val. Accuracy (MLP) UCF-101 (MLP) HMDB (MLP)

ResNeXt3D-18 96.37% 43.43% 25.54%
ResNet3D-18 93.75 % 42.98% 22.49 %

ResNet(2+1)D-18 87.27% 31.16% 15.54%

Table 5.1: Pretext Training top-1 MLP clip accuracy on UCF-101 and HMDB after pretext
task training on Rotation 90.

transforms such as flips or translations which occur more frequently. On the other hand,
view transforms which perform poorly such as the Color Jitter transform seem to share little
information with the final downstream task - indeed, learning relative pixel magnitudes may
not be all that useful when determining actions but may be better suited to other downstream
tasks where color information is more relevant like video segmentation.

It’s interesting to note that temporal view transforms such as pace and temporal jigsaw
do not do well on their own compared to other pretext methods. We hypothesize that while
these temporal views allow the model to learn important temporal features the information
is not as helpful as the learned spatial information from spatial views. The results from
Radford et al. [48] support this hypothesis as SOTA performance on UCF-101 only uses a
single frame for action recognition and completely ignores temporal information.

5.2 Model Exploration

As described in 4.7, following the results of 5.1, we were bothered by the inability to reproduce
the scores from Jing et al. [25] on UCF-101, despite using higher resolution videos as well as
a model structure that we hypothesized would more e↵ective than 3DRotNet’s ResNet3D-
18 backbone. For reference, 3DRotNet reached 62.8%, 32.5% accuracy on UCF-101 and
HMDB respectively while we reached 43.43%, 25.54 using a ResNeXt3D-18. We were able
to see similar performance gains relative to a supervised baseline like Jing et al.’ on both
action datasets. There has been little research into the optimal preprocessing methods
for video representation learning and possible di↵erences may be due to our optimization
methods (using an Adam optimizer instead of an SGD optimizer, learning rate scheduler
with milestones) which could be worse for all pretraining tasks.

Additionally, these results indicate high variance in action recognition across backbones,
even if the backbones are from the same family. As discussed in Section: 4.7, video action
recognition scores vary significantly across models despite restricting the set of models to the
same family. These results recapitulate the ideas from Kolesnikov et al. [29] that for each
learning framework the optimal model requires exploring a plethora of di↵erent architectures.
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5.3 Contrastive Task Experiments

Single-Transform Experiments

In this section we present detailed results of the single view transform contrastive experi-
ments, selecting view transforms that try to extend the work by Chen et al. [12] for video
action recognition. We note however that Chen et al. [12] explored combinations of trans-
forms by composing them while we purposefully study single view transforms in isolation.
Table 5.4 outlines the pretraining performance of single view transforms. Table 5.5 details
the MLP scores on action recognition datasets. All scores are the average of all available
splits unless otherwise stated. As a baseline, these scores are compared to the accuracies of
purely supervised methods.

The most surprising result was the correlation between best-performing views in Sim-
CLR’s ImageNet classification task [12] and worst performing views for our action recog-
nition task. Cutout, which achieved the second-best single view accuracy in SimCLR [12],
performed the worst on the action recognition task. Note though, that the poor performance
of rotation seems to mirror the performance in SimCLR. Our new proposed view transform,
FFT, performs the best in the contrastive learning setup, achieving performance that nearly
matches supervised learning. Temporal views also seem to outperform their spatial coun-
terpart unlike in pretext task training. Temporal views may conform to the conditions of a
good view presented by Tian et al. [55] since they share less information between views than
spatial views. This idea is supported by spatiotemporal view transforms performing nearly
as well as purely temporal view transforms despite the additional changes to the spatial
dimension.

5.4 Combination of Tasks

For the majority of tasks, a single pretraining algorithm is not su�cient to beat the perfor-
mance of supervised learning benchmarks, except for Rotation 90° as show in in Tables: 5.3,
5.5. By combining several of these transforms however we were generally able to outperform
our supervised baselines and we notice that as we added more pretext tasks we were able to
improve performance while for contrastive learning this wasn’t always the case.

Pretext combinations only

Focusing on pretext task pretrained models, we present expanded results when using com-
binations of several transforms in Tables: 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12. Learned embed-
dings are combined using the methods described in Section: 4.4. We also explore di↵erent
features learned by di↵erent rotation tasks to see how modifying the complexity of the view
transform alters the learned features. We note in Table: 5.10 that despite using the same
view transform, modifying the rotation appears to learn orthogonal features as performance
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improves when multiple rotations are combined. Generally, we see that combinations of
model embeddings trained on di↵erent pretext tasks appear to do better than either sin-
gle pretext task. This seems reasonable as adding additional representations increases the
amount of information captured in the features. The best combination of pretext tasks using
the ResNeXt3D-18 visual backbone comes from Rotation 90° and Rotation 12° on UCF101
and Rotation 90° and Rotation 12° on HMDB. It appears that this trend does not increase
as more embeddings are combined. It’s possible that beyond a certain latent dimension size
the MLP may contain too many parameters and be overfitting to the downstream training
split during finetuning.

Contrastive combinations only

Combining contrastive transforms interestingly does not always mirror the performance gains
seen in pretext combinations. We present expanded results when using combinations of
several transforms in Tables: 5.13, 5.14, 5.15, and 5.15.

While most combinations increase in performance when combined, like the temporal
views, spatiotemporal views, and FFT views, others like Cutout when combined with FFT
perform worse than a single independent model. This suggests that the MLPs are unable
to reconcile the di↵erent embeddings from the di↵erent models. It’s possible that during
the training phase, the model considers both features equally and gets trapped in a local
minimum that uses both features rather than completely ignore the feature from the Cutout
pretrained model resulting in performance that’s closer to the average of the two. While we
experimented with other optimization routines and learning rate schedulers we were unable
to reconcile this unintuitive decrease in performance.

Pretext + Contrastive

In this section, we present results on our preliminary investigations on pretext + contrastive
learning by analyzing this framework using Rotation 90° and FFT which performed optimally
on the action recognition task when transferred from pretext task training and contrastive
learning. We also compare this method to a combination task that uses Rotation 90° and
FFT views. Results are presented in 5.16

The most startling preliminary result from these experiments is that pretext + contrastive
learning significantly underperforms our best model Rotation 90°. This may be due to a
model that has not converged yet as this model trained for less than 100 epochs. Another
interesting observation is that the Rotation 90° and FFT combination task performs much
better than the pretext + contrastive learning task. Clearly, more work is necessary to fully
analyze this pretraining algorithm.
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Comparison to other methods

Table: 5.17 gives the performance of other SOTA self-supervised models. In many cases, our
methods appear to perform better than supervised baselines in our setup but significantly
underperform results reported in the literature. On the UCF-101 dataset, our best models
fail to outperform transfer from a pretrained Kinetics model. This is not surprising as
pretext tasks with objectives that align closer to downstream task objects are best suited
to capture downstream relevant information. Thus a model that trains on a more di�cult
action recognition task contains features that transfer easily to another action recognition
task.

Another core di↵erence between our methods and other work is that we fully freeze our
feature extractor. Some experiments performed by Jing et al. explicitly test this [25] by
unfreezing di↵erent levels of the network and observing better performance compared to a
fully frozen network.

More work is needed however to reconcile what exactly is causing these disparities in
scores.
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Transform (s) Transform Config Pretext Val. Accuracy (MLP)

AutoContrast on-o↵, 2 classes 79.97%
Color Jitter [.1, 1.1]3 ⇥ [�.5, .5], 4⇥ 4⇥ 4⇥ 5 multilabel classes, 22.20%
Edge Filter 10 edge filters, 10 classes 83.75%

FFT (Circular Mask) 14 frequency masks 100. %
Flip left, right, up, down, 4 classes 43.75%

Invert Order on-o↵, 2 classes 50.03%
Pace 4 paces, 4 classes 76.84%

Rotation 90�, 4 classes 96.37%
Rotation 72�, 5 classes, 99.93%
Rotation 60�, 6 classes 89.41%
Rotation 30�, 12 classes 80.29%

Rotation+Zoom 72�, 5 classes 99.28%
Shear X&Y [�.5, .5]2, 16 classes 99.15%

Spatial Jigsaw (Permutation) 4 pieces, 24 classes 96.86%
Spatial Jigsaw (Relative) 4 pieces, 44 multilabel classes 71.94%
Spatial Jigsaw (Relative) 9 pieces, 99 multilabel classes 49.23%

Temporal Jigsaw 4 pieces, 24 classes 52.44%
Translate X&Y [�150, 150]2, 36 classes 98.03%
Translate+Zoom 10 scales, 10 classes 43.92%

Zoom 10 scales, 10 classes 63.99%
3DRotNet [25] 90�, 4 classes 92.72%

Video Cloze Procedure (VCP) [35] 5 spatial, temporal transform, 5 classes 78.42%

Table 5.2: Pretext Training top-1 pretraining accuracy on Kinetics-700. ResNeXt3D-18 is
used as the backbone for all view transforms.
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Pretext Transform UCF-101 (MLP) HMDB (MLP)

Supervised Training 35.61% 14.13%

Flip 27.59% ± 0.58% 14.49% ±1.48%
Rotation-90 43.43 % ± 1.16% 25.54 % ±2.83%

Rotation-90 ResNet3D-18 42.98% 22.49%
Rotation-72 13.15% ± 1.91% 6.55% ±0.08%
Rotation-60 33.29% ± 0.10% 19.27% ±0.24%
Rotation-12 28.85% ± 0.19% 14.39% ±0.12%
Shear-0.25 11.53% ± 1.54% 12.19% ±11.47%

Translate+Zoom-9 14.17% ± 0.44% 7.14% ±0.06%
Spatial Jigsaw (Permutation)-4 23.29 % ± 0.49% 10.89% ± 0.25%
Spatial Jigsaw (Relative)-9 30.37% ± 0.63% 16.00% ±0.92%

Spatial Jigsaw (Relative)-4 ResNet3D-18 26.67% 12.83%
Spatial Jigsaw (Relative)-4 14.63% ± 0.64% 7.78% ±0.36%

Pace-{.5, 1, 2, 3, 4} 16.27% ± 0.01% 7.89% ±0.02%
AutoContrast 13.92% ± 0.27% 7.88% ±0.08%
Color Jitter 14.59% ± 0.78% 7.48% ±0.54%

Edge-Filter-10 7.71% ± 0.47% 5.88% ±1.62%
Zoom-9 9.79% ± 1.65% 8.02% ±0.09%

Temporal Jigsaw-4 14.88% ± 0.08% 8.25% ±0.11%
Rotate+Zoom-72 16.24% ± 0.45% 9.05% ± 0.43%
Invert Order 5.420% 3.717%
Translate 6.80% 1.524%

FFT (Circular Mask) ResNet3D-18 27.33 % 35.00%

Table 5.3: Top-1 action recognition accuracy on UCF-101 and HMDB when using a single
pretext task for training. The rotation methods perform optimally, with decreased perfor-
mance when using five discretization buckets. These tasks are followed in performance by the
Spatial Jigsaw, Flip and Autocontrast methods. All methods use a ResNeXt3D-18 backbone
unless explicitly mentioned in the config.
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Transform (s) Transform Config Contrastive Loss Val. Accuracy (MLP)

Cutout 6 crops scales 7.421 83.63%
FFT (Circular Mask) 14 masks 7.811 97.15%
FFT (Torus Mask) 12 masks 7.812 99.52%

Rotation 90° 7.731 99.98%
Temporal Jigsaw+Pace 4 temporal chunks x 4 paces 7.791 99.37%
Spatiotemporal Jigsaw 4x4x4 spatiotemporal chunks 7.696 99.98%

Table 5.4: Contrastive Training top-1 pretraining accuracy on Kinetics-700. Models used for
all transforms are ResNeXt3D-18

Contrastive Transform UCF-101 (MLP) HMDB (MLP)

Supervised Training 36.36%* 26.00%*
Cutout 9.184% 4.702%

FFT (Circular Mask) 33.19% 17.41%
FFT (Torus Mask) 31.43 % 16.60 %

Rotation-90 13.25 % 9.937%
Temporal Jigsaw+Pace 24.85 % 15.27 %
Spatiotemporal Jigsaw 24.81 % 12.11 %

Table 5.5: Top-1 action recognition accuracy on UCF-101 and HMDB when using a single
transform for contrastive learning. All methods use a ResNet3D-18 backbone.A “*” indicates
experiments run only on the first split.

Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Pace-{.5, 1, 2, 3, 4}, Rotation-90 46.77% 25.55%

Pace-{.5, 1, 2, 3, 4}, Rotation-72 19.56% 9.400%
Pace-{.5, 1, 2, 3, 4}, Rotation-60 36.61% 20.34%
Pace-{.5, 1, 2, 3, 4}, Rotation-12 30.88% 16.41%

Pace-{.5, 1, 2, 3, 4}, Spatial Jigsaw (permutation)-4 27.69% 13.09%
Pace-{.5, 1, 2, 3, 4}, Spatial Jigsaw (relative)-9 31.72% 18.63%

Pace-{.5, 1, 2, 3, 4}, Shear X,Y-.25 18.05 % 8.076%
Pace-{.5, 1, 2, 3, 4}, Translate-50 19.99% 9.605%

Pace-{.5, 1, 2, 3, 4}, Translate+Zoom-9 19.31% 10.36%

Table 5.6: Action Recognition top-1 accuracies on all datasets when using a pretext-task
paired with the Pace temporal transform. All methods use a resolution of (16,256,256,3)
and the ResNeXt-18 visual backbone. UCF-101 (MLP) split values are reported on the first
split only.
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Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Auto Contrast, Color Jitter-.25 19.23 % 10.14%
Auto Contrast, Edge Filter-10 14.97% 7.896%

Auto Contrast, Flip 28.32% 14.60%
Auto Contrast, Rotation-90 43.21% 22.75 %
Auto Contrast, Rotation-72 16.74% 8.898%
Auto Contrast, Rotation-60 33.69% 18.17%
Auto Contrast, Rotation-12 28.76% 14.32%

Auto Contrast, Spatial Jigsaw (permutation,4) 23.92% 11.88%
Auto Contrast, Spatial Jigsaw (relative,9) 30.73% 18.14%

Auto Contrast, Pace-{.5, 1, 2, 3, 4} 20.3% 11.51%
Auto Contrast, Shear X,Y-.25 14.81% 8.364%
Auto Contrast, Translate-50 17.11% 8.819%

Table 5.7: Action Recognition top-1 accuracies on all datasets when using a pretext-task
paired with Auto Contrast. All methods use a resolution of (16,256,256,3) and the ResNeXt-
18 visual backbone. UCF-101 reports accuracies on the first split only in order to compare
to 3DRotNet [25]. HMDB mean scores on all three splits are reported

Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Color Jitter, EdgeFilter-10 8.540% 7.581%
Color Jitter, Flip 28.38% 15.58%

Color Jitter, Rotation-90 43.27% 15.02%
Color Jitter, Rotation-72 17.7% 9.073%
Color Jitter, Rotation-60 34.63% 17.06%

Color Jitter, Rotation-12 29.16% 15.02%
Color Jitter, Spatial Jigsaw-4 25.51% 11.43%

Color Jitter, Spatial Jigsaw (relative) -9 30.64% 15.83%
Color Jitter, Shear X,Y -.25 16.2% 7.910%
Color Jitter, Translate-50 17.87% 8.052%

Color Jitter, Translate+Zoom-9 19.34% 10.70%

Table 5.8: Action Recognition top-1 accuracies on all datasets when using a pretext-task
paired with ColorJitter. All methods use a resolution of (16,256,256,3) and the ResNeXt-18
visual backbone.
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Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Edge Filter-10, Flip 14.89% 14.56%
Edge Filter-10, Rotation-90 44.44% 24.05%
Edge Filter-10, Rotation-72 13.98% 7.42%
Edge Filter-10, Rotation-60 32.36% 17.83%
Edge Filter-10, Rotation-12 29.94% 13.90%

Edge Filter-10, SpatialJigsaw (permutation)-4 22.57% 10.23%
Edge Filter-10, SpatialJigsaw (relative)-9 31.13% 16.89%

Edge Filter-10, Shear X,Y -.25 11.95% 5.887%
Edge Filter-10, Translate -50 12.89% 8.15%

Edge Filter-10, Translate+Zoom 15.04% 8.15%
Flip, Rotation-90 45.87% 24.76%
Flip, Rotation-72 28.94% 15.44%
Flip, Rotation-60 35.61% 19.56%
Flip, Rotation-12 31.33% 16.74%

Flip, SpatialJigsaw (permutation)-4 31.5% 15.46%
Flip, SpatialJigsaw (relative) -9 37.33% 20.83%

Flip, Shear X,Y -.25 28.89% 15.48%
Flip, Translate-50 28.52% 15.66%

Flip, Translate+Zoom 29.52% 15.48%

Table 5.9: Action Recognition top-1 accuracies on all datasets when using a pretext-task
paired with Edge Filter-10 or Flip. All methods use a resolution of (16,256,256,3) and the
ResNeXt-18 visual backbone.

Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Rotation-90, Rotation-72 44.24% 22.65%
Rotation-90, Rotation-60 50.05% 25.11%
Rotation-90, Rotation-12 47.03% 23.77%
Rotation-72, Rotation-60 34.07% 18.31%
Rotation-72, Rotation-12 80.39% 14.22%
Rotation-60, Rotation-12 36.78% 19.79%

Table 5.10: Action Recognition top-1 accuracies combinations of di↵erent rotations. All
methods use a resolution of (16,256,256,3) and the ResNeXt-18 visual backbone.
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Pretext Transform (s) UCF-101 (MLP) split-1 HMDB (MLP)

Rotation-90, Spatial Jigsaw (permutation)-4 45.36% 23.29%
Rotation-90, Shear X,Y -.25 44.31% 23.21%

Rotation-90, Translate+Zoom-9 44.38% 23.61%

Table 5.11: Action Recognition top-1 accuracies on all datasets when using a pretext-task
paired with the Rotation-task. All methods use a resolution of (16,256,256,3) and the
ResNeXt-18 visual backbone.

Pretext Transform (s)
UCF-101

(MLP) split-1

HMDB (MLP)

split-1

Rotation-90,Rotation-72,Rotation-
60,Rotation-12,Flip, Shear-.25, Spatial Jigsaw
(Permutation,4), Spatial Jigsaw (Relative)-4,
Spatial Jigsaw (relative)-9, Translate-50,
Translate+Zoom-10,Pace-{.5, 1, 2, 3, 4}, In-
vert Order, Temporal Jigsaw-4,Autocontrast,
Color Jitter-.25, Edge-10

46.25% 19.27%

Table 5.12: Action Recognition top-1 accuracy on the first split in UCF101 and HMDB
when models trained on pretext tasks using all spatial, all temporal, and all visual trans-
forms combined. The MLP from Section 4 is modified to {10000, 5000, 2048, 1024, 512, C}
to accommodate the large feature space

View Transform (s) UCF-101 (MLP) HMDB (MLP)

Cutout, FFT (Circular Mask) 28.5% 11.59%
Cutout, FFT (Torus Mask) 29.65% 8.353%

Cutout, Rotate 17.79% 7.698%
Cutout, Temporal Jigsaw+Pace 25.79% 10.81%
Cutout, Spatiotemporal Jigsaw 22.02% 9.789%

Table 5.13: Action Recognition top-1 accuracies on all datasets when combining transforms
with the Cutout embeddings from contrastive learning. All methods use a resolution of
(16,256,256,3) and the ResNet-18 visual backbone.
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View Transform (s) UCF-101 (MLP) HMDB (MLP)

FFT (Circular Mask), FFT (Torus Mask) 33.27 % 10.82 %
FFT (Circular Mask), Rotate 24.72% 9.534 %

FFT (Circular Mask), Temporal Jigsaw+Pace 34.65% 10.78%
FFT (Circular Mask), Spatiotemporal Jigsaw 29.08% 10.29%

FFT (Torus Mask), Rotate 25.96% 12.87%
FFT (Torus Mask), Temporal Jigsaw+Pace 35.9 % 15.92%
FFT (Torus Mask), Spatiotemporal Jigsaw 30.66% 14.45%

Table 5.14: Action Recognition top-1 accuracies on all datasets when combining trans-
forms with the FFT embeddings from contrastive learning. All methods use a resolution of
(16,256,256,3) and the ResNet-18 visual backbone.

View Transform (s) UCF-101 (MLP) HMDB (MLP)

Rotate-90, Temporal Jigsaw+Pace 23.81% 11.11%
Rotate-90, Spatiotemporal Jigsaw 19.75% 9.412%

Temporal Jigsaw+Pace, Spatiotemporal Jigsaw 26.49% 11.94%

Table 5.15: Action Recognition top-1 accuracies on all datasets when combining transforms
with the Rotate 90 and Temporal Jigsaw+Pace embeddings from contrastive learning. All
methods use a resolution of (16,256,256,3) and the ResNet-18 visual backbone.

View Transforms Method UCF101 (MLP) HMDB (MLP)

CircularFFT, Rotation-90 pretext+contrastive learning 32.38% 29.42%
CircularFFT, Rotation-90 pretext, contrastive learning combined embeddings 46.42 % 23.29 %

Table 5.16: Top-1 action recognition accuracy on UCF-101 and HMDB when using a pre-
text+contrastive learning for our two best view transforms. We also compare this to com-
bining their independently learned embeddings from pretext task learning and contrastive
learning. All methods use a ResNet3D-18 backbone
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Pretrained on Method Resolution Model UCF101 HMDB

Kinetics-400 STPuzzle [28] 224 ResNet3D-18 65.8% 33.7%
Kinetics-400 VCOP [67] 112 R(2+1)D 72.4% 30.9%
Kinetics-400 VRLPP [59] 112 R(2+1)D-18 75.9% 35.9%
Kinetics-400 VTHCL [68] 112 ResNet3D-18 80.6% 48.6%
Kinetics-400 PRP [69] 112 ResNet3D18 66.5% 29.7%
Kinetics-400 STS [60] 112 R(2+1)D-18 77.8% 40.7%
Kinetics-400 Lorre et al [33] 224 ResNet-18 70.5% 41.1%
Kinetics-400 RSPNet [11] 112 ResNet3D-18 74.3% 41.8%
Kinetics-400 IDT [56] 112 ResNet3D-18 73% 41.6%
Kinetics-400 SSTL [61] 112 ResNet3D-18 79.1% 49.7%
Kinetics-400 TaCo [6] 112 ResNet3D-18 85.1% 51.6%

TaCo Frozen 112 ResNet3D-18 59.63 26.7
Kinetics-400 DPC [20] 128 ResNet3D-18 68.2% 34.5%
Kinetics-400 VIE [70] 112 ResNet3D-18 72.3% 44.8%
Kinetics-400 Supervised pretraining [26] 112 ResNeXt101 97.46% 81.79%
Kinetics-400 ResNeXt101 BERT [26] 112 ResNeXt101 BERT 98.10% 83.55%

Kinetics-600 Temporal Transform Prediction (RTT) [24] 112 ResNet3D-18 79.3% 49.8%
Kinetics-600 CVRL [47] 112 ResNet3D-50 92.2% 66.7%

Kinetics-700 Rotation-90 (ours) 256 ResNeXt-18 43.43% 25.54%
Kinetics-700 Rotation-90, Rotation-60 (ours) 256 ResNeXt-18 50.05% 25.11%
Kinetics-700 Circular FFT(ours) 256 ResNet3D-18 31.43 % 16.60 %
Kinetics-700 Circular FFT, Temporal Jigsaw+Pace(ours) 256 ResNet3D-18 35.9% 15.92%
Kinetics-700 VCP [35] 112 C3D 68.5% 32.5%
Kinetics-700 OPN [31] 112 ResNet3D-18 56.3% 22.1%
Kinetics-700 Pace Pred [14] 112 R(2+1)D-18 74.82% 36.82%
Kinetics-700 TCL [16] 112 ResNet3D-18 84.1% 53.6%
Kinetics-700 VideoMoCo [42] 112 ResNet3D-18 74.1% 43.6%
Kinetics-700 3DRotNet [25] 112 ResNet3D-18 62.8% 29.6%
Kinetics-700 Jigsaw [1] 112 Ca↵eNet 55.4% 27%
Kinetics-700 Pretext+Contrastive [54] 112 ResNet3D-18 82.3% 43.2%
Kinetics-700 Supervised pretraining [27] 112 ResNet3D-18 87.9% 57.1%

ASR VATT [2] 224 Transformers 89.6% 65.2%
WIT CLIP + LR [48] 112 ResNet50-2D 76.4% -

Kinetics-700 HAF+BoW/FV Hallucinating [62] 112 I3D - 82.37%
IG65M R(2+1)D BERT [26] 112 R(2+1)D BERT 98.96% 85.1%

Table 5.17: Comparison of our methods to state of the art methods on video action recog-
nition in UCF-101 and HMDB
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Chapter 6

Future Work

This work gives an overview of the di↵erent performances of view transforms in combination
with current SOTA video representation learning algorithms, however further work is re-
quired to fully understand some emerging questions in this study and this field. Unintuitive
combinations of learning algorithms, like pretext + contrastive, perform well on downstream
video tasks and illustrates that we do not fully understand the kind of representations that
are being extracted by the model. It also suggests that combining multiple pretraining exper-
iments could be helpful in practice and one interesting study could incorporate multimodal
learning with pretext and contrastive learning. Another important area that needs to be
explored further is whether or not certain kinds of view transforms perform well with certain
architectures; while the ResNet model family was selected as a control for this experiment
other architectures like Transformers should be investigated. These self-supervised learning
tasks can also be considered as a video-to-video translation task where the view transforms
are simply translations between videos. With this in mind, we should explore SOTA trans-
lation architectures, like image-to-image style GANs and expand on techniques like the ones
proposed by Pan et al. [42] that incorporates adversarial examples. Another line of research
that would be interesting to investigate following recent successes in Bertasius et al. [7]
(who introduce large amounts of inductive bias to a transformer during training), would
be to explore the e↵ects of explicitly biasing the latent space. Such biases could explicitly
ask models trained to enforce some sort of structure during pretext training or contrastive
training, which would also have the added benefit of making the space more interpretable.
Finally, and most importantly, all combinations of view transform, architecture, and video
tasks should be compared to accurately determine whether there is an underlying pattern
that boosts performance in all pretraining techniques.
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Chapter 7

Conclusion

In this work, we explored multiple view transforms and their interactions with pretext task
learning and contrastive learning on the video action recognition task. We introduce new view
transforms, FFT-based spatial filters, and a new method, the combination task, for analyz-
ing individual pretraining tasks by combining learned embeddings that are then transferred
to a downstream task. We observe that the Rotation 90° pretext task pretraining transfers
the best to video action recognition benchmarks while Rotation 90° contrastive pretraining
does poorly. We also observe that FFT-based spatial filter contrastive pretraing transfers the
best for all contrastive learning methods. Additionally, in our combination task experiments,
combining features generally boosts performance on video action recognition benchmarks,
implying that di↵erent view transforms with di↵erent pretraining techniques capture orthog-
onal features. We are encouraged by our findings however more work is necessary to fully
understand what information is extracted by self-supervised learning techniques and make
our results more comparable to the literature.
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