Design and Application of a Co-Simulation Framework
for Chisel

Ryan Lund

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-133
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-133.html

May 15, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

First and foremost, | would like to thank Professor Borivoje Nikolic for being
my advisor over the past year. His guidance and mentorship have helped
me to become a better scholar. Additionally, | would like to thank Professor
Krste Asanovic for serving as my second reader. Next, | would like to thank
the staff and students in BWRC/ADEPT who have helped me over the
years. In particular, John Wright for bringing me into the lab, Paul Rigge for
guiding me early on, and Vighnesh lyer for serving as a mentor during my
graduate work.

| would also like to thank my research partner, Anson Tsai, who has been a
good friend ever since we met on the first day of freshman year. Finally, an
enormous thanks goes out to my parents, who have always been there for

me during my educational journey.

Design and Application of a Co-Simulation Framework for Chisel

Ryan Arvind Lund

Resear ch Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of
Cdliforniaat Berkeley, in partial satisfaction of the requirements for the degree of M aster of
Science, Plan 11.

Approval for the Report and Comprehensive Examination:

Committee;

Professor Borivoje Nikolié
Research Advisor

(Date)

* k k k k k%

ke dsersS

7
Professor Krste Asanovié
Second Reader

5/14/2021

(Date)

Krste Asanovic
5/14/2021

Abstract

As the cost to design chips increases, an ever-growing portion of the design cycle is spent
in pre-silicon verification. When performed in industry, this verification work is backed
by closed-source tools that require licenses for use. However, in the open-source domain,
developers often lack access to similar verification resources.

This work aims to increase access to verification tools in the open-source space through
the introduction of an instruction-accurate co-simulation framework for Chisel (CFC). The
framework is designed to accelerate the verification of tightly coupled accelerators by pairing
a functional model of a Rocket Chip-based core with an RTL simulation of an accelerator
under test.

CFC implements a series of tools and utilities to elaborate and simulate RoCC acceler-
ators removed from full-SoC context. Additionally, it contains utilities to convert hardware
bundles to and from protocol buffers. These elements are used along with verification IP
from the Chisel Verification Repository to create tools that connect a modified version of the
Spike ISA simulator to an RTL simulation of a RoCC accelerator. When this connection is
orchestrated by CFC’s manager object, the two simulations form a coherent model of a full
SoC. This allows SoC-level workloads to be run at RTL fidelity on an accelerator without
the overhead associated with simulating the rest of the SoC at RTL accuracy.

Beyond detailing the design of CFC, this thesis demonstrates its impact by testing CFC
on Gemmini, an open-source matrix multiplication network accelerator generator. With the
additional optimization of ChiselTest binary caching, these tests show the potential for up
to 9.72x speedup in test run time when compared to a full-SoC RTL simulation.

Contents

[1_Introduction 1
[.L1__Co-Simulation Overview| 1
-of-the- ons| 2

[L2.1 Commercial Frameworks 2

[1.2.2 Open Source Frameworks 3

(1.3 What CFC Brings to the Table| 4

2 Background| 6
RI Chisel 6
2.2 ChiselTest 6
2.3 Chipyard 7
2.4 Gemminil. 7
2.0 Spikeo 7
2.6 Protocol Buffers 7

8
[3.1 Out-of-Context Elaboration of Diplomatic Components| 8
B.1.1 Parameter Generation 9

[3.1.2 RoCC Standalone Wrapper| 11

[3.2 Translating Between Hardware Bundles and Software Messages 13
[3.2.1 Protocol Buffer to Bundle Conversionl 13

[3.2.2 Bundle to Protocol Buffer Conversionl 16

[3.3 The Co-Simulation Manager| 17
[3.3.1 Communication Over Named Pipes| 17

[3.3.2 Scala Pipe Connectors| 20

[3.3.3 Running Binaries From Scala| 20

[3.3.4 The CosimTester Traitl 20

[3.3.5 The Complete Co-Simulation Manager| 22

[3.4 Testbench Setup| 23
[3.5 Optimization - ChiselTest Binary Caching 23

[4 Application to Gemmini 25
4.1 Spike Modifications 25
[4.1.1 Threaded TileLink Memory Modell 25

[4.1.2 Fence Handling| 26

[4.1.3 Command Line Arguments 27

[4.1.4 Gemmini Specific Pipe Connectors 28

4.2 Gemmini Testbench Setup| 29
M3 Resuls oo 31
[4.3.1 Collection Methodology 32

.4 Pre-Optimization Results|. 00000 32
4.4.1 FElaboration Timel. 32

M4.4.2 Test Timel 33

[4.5 Post-Optimization Results

[5.1 Summary of Produced Tools and Results
B3 ODOITSUSS -« - oo
[5.4 Repository Links

(Bibliography/|
[A.1 Coverage Annotations fO'l" ChlselTest|

i

37
37
38
39
39

40

1 Introduction

In industry, product launch delays due to critical bugs found in post-silicon testing can
cost hundreds of millions of dollars in lost revenue and engineering expenses. Accordingly,
in contemporary design groups, approximately 60-80% of development time is spent in pre-
silicon verification [1]. These verification efforts are often aided by a collection of closed-
source tools, locked behind licenses. Unfortunately, these licenses limit tool portability and
more generally reduce access to verification flows.

In the open-source world, access to verification infrastructure lags well behind industry.
Publicly available simulators often lack support for the SystemVerilog constructs needed to
write testbenches for Verilog modules. For newer hardware description languages (HDLs),
such as Chisel, verification resources are still in early stages of development, which makes a
traditional verification flow almost impossible to implement.

To increase access to and improve upon verification resources in the open-source space,
this paper introduces a Chisel-centric co-simulation framework built upon the newly devel-
oped Chisel Verification repository [2]. This co-simulation framework for Chisel (CFC) is
developed to enhance design space exploration by allowing for high-speed and low-overhead
integration testing of hardware accelerators.

1.1 Co-Simulation Overview

Co-simulation is a verification technique wherein distinct subsystem models are coupled
and jointly simulated to create a larger coherent simulation. Given a defined communication
interface, each model is designed relative only to the interface and a specific sub-problem.
This allows each model to be built around optimally solving its given task, and without any
constraints imposed by the larger simulation.

An important distinction should be made between co-simulation, wherein different com-
ponents of a larger system are simultaneously modeled and connected, and tandem simu-
lation, wherein two models of the same device are compared against each other. Tandem
simulation is often used to compare register transfer level (RTL) functionality to that of
a functional model, which serves a different verification purpose than co-simulation. Con-
fusion can arise around this distinction because tools labeled as co-simulation frameworks
often actually perform tandem simulation. However, throughout the scope of this thesis, co-
simulation will exclusively refer to the coupling of component models into a larger coherent
simulation.

There are three main benefits to co-simulation. First, breaking a simulation apart into
several different models allows the simulation to be run in a distributed manner. This dis-
tribution can take place across several different compute resources, or a mix of compute
resources and physical emulation devices. Second, co-simulation can greatly simplify model
creation for large designs by allowing different components to be modeled in different envi-
ronments. The ability to model in different languages is particularly beneficial when building
models for mixed-signal designs. Finally, co-simulation allows different models to run at dif-
ferent speeds. This property has the most impact when models have a producer-consumer
relationship, as the producer can generate all of its output data without waiting for the
consumer.

Within the digital design space, co-simulation can used for a wide range of applications.
These applications can be broken down into three main categories. The first category is
mixed-signal verification. In this type of application, an analog model is paired with a digital
model to simulate or emulate a larger mixed-signal device. The next category is mixed-
medium verification, wherein a software RTL simulation is paired with a field programmable
gate array (FPGA) based emulation. As emulation is faster than simulation, this approach
is typically used to emulate a slower piece of hardware on the FPGA communicating with
a faster piece of hardware in software simulation. The final category is mixed-abstraction
verification. In this approach, a lower complexity functional simulation is paired with a higher
complexity RTL simulation. This approach is often applied to compare RTL behavior to a
functional model, or when the RTL behavior of only one component in a larger system is of
interest.

For a given application, a tool designer creates a co-simulation framework. This frame-
work defines the communication interface between simulations as well as the protocol for
interacting with that interface. Additionally, most frameworks contain a tool that stages
and coordinates the execution of simulations for each sub-model. A key characteristic of this
tool is its synchronization resolution, or the frequency at which the simulations it is orches-
trating are brought into alignment [3]. Typically, as synchronization frequency decreases,
simulation speed increases.

The highest frequency of synchronization is employed by phase-accurate co-simulation
frameworks. Under this regime, all models are synchronized for every unit time step, which
is most similar to real-world behavior. Cycle-accurate frameworks employ a slightly lower
frequency of synchronization. For these frameworks, models are synchronized on every clock
edge (either positive, negative, or both). The lowest frequency of synchronization occurs
in instruction-accurate frameworks. Under instruction-accurate synchronization, models are
brought into alignment either at the commit point for instructions or on instruction set
architecture (ISA) specific synchronization instructions. Due to its high resolution, phase-
accurate co-simulation is most often used for mixed-signal applications while cycle-accurate
and instruction-accurate co-simulation are most often used for all-digital applications.

1.2 State-of-the-Art Solutions

The following section describes several notable co-simulation frameworks available for
use. For each framework, a brief overview is provided, and any potential shortcomings are
discussed.

1.2.1 Commercial Frameworks

Commercial frameworks are produced by leading companies in the simulation and digital
tool space. These products are often fully featured, but require a license for use.

HDL Verifier [4] is a co-simulation framework produced by Mathworks which pairs a
Matlab-based software model with an RTL simulation. In this pairing, the software model
generates stimulus to input into the RTL simulation, and performs checks on the output from
the RTL simulation. The framework also supports reading to and writing from registers,
probing internal RTL state, and signal visualisation.

A Matlab-based software model makes HDL Verifier ideal for verifying specific types of
IP, such as digital signal pipelines or compression accelerators. However, this also limits
the tools when attempting to verify processors with tightly coupled accelerators. Software
models for processors are primarily written in C or C variants. As porting those models into
Matlab is an unrealistic task for most design teams, the use of HDL Verifier for processors
with tightly coupled accelerators is unlikely.

Xilinx also produces two tools for co-simulation, Vitis HLS [5] and ISim [6]. Vitis HLS
is most similar to HDL Verifier, pairing a C-based software model with an RTL simulation.
The co-simulation is executed in three phases. First, the software model generates stimulus
vectors to be fed into the RTL simulation. Then, the RTL simulation is run on the provided
stimulus, and its output is captured. Finally, the captured output is passed to the software
model for post-test correctness checking. This architecture is well suited for confirming
that a digital design and a C-based functional model produce identical results on the same
stimulus.

The largest drawback of Vitis HLS is that the RTL designs used in co-simulation must
be purely combinational. This makes it impossible to test any complex design with state ele-
ments. Moreover, since Vitis HLS generates stimulus entirely in the first phase of execution,
it is also impossible to test any design that makes requests back to the model. With these
constraints in mind, Vitis HLS is best suited for testing simple and purely combinational
designs at a unit level.

The second co-simulation tool produced by Xilinx is ISim, which targets mixed-medium
verification. ISim takes RTL for a design, and based on user specifications splits it into
a software simulation and FPGA emulation. The main benefit of ISim is that the entire
design is tested with RTL fidelity. Traditional software-only simulations at RTL accuracy
are typically very slow. However, because [Sim places some components onto a FPGA, large
designs can be accurately and quickly tested. Xilinx specifically denotes that this tool is
designed to accelerate the testing of large DSP IPs, which can be incredibly slow to simulate
in pure RTL simulations.

While ISim provides the ability to simulate more complex designs than the two previously
discussed tools, it too has a set of downsides. The largest downside is that using ISim requires
access to a Xilinx FPGA. While this may not be a problem for industry teams, it can limit
those without similar resources. The second, smaller, downside is that ISim performs RTL
simulation for all components of the design. If the components simulated in software are not
of interest, it would be significantly faster to replace them with purely functional C-based
simulations that communicate with the FPGA emulated RTL.

1.2.2 Open Source Frameworks

In contrast to the commercial frameworks, open-source frameworks are produced by a
wide variety of entities in the commercial and research space. These frameworks often lack
features found in their commercial counterparts, but are free for public use. The following
section discusses actively developed open-source co-simulation frameworks. Due to their
open-source nature, these frameworks vary in their maturity and level of development.

FireSim [7] is an open source tool that allows for a Rocket Chip [8] or BOOM [9] based
system on a chip (SoC) to be simulated on AWS EC2 F1 FPGA instances. One use of the

tool is to simulate a single core and attached periphery across a cluster of compute nodes.
This results in simulations that can run in the hundreds of MHz, a substantial speedup over
pure software RTL simulation.

Moreover, FireSim allows components to be modeled purely in software, which creates
the ability for it to be used as a co-simulation framework. However, this has not been done
in practice. Instead, software models are used to model far-away periphery such as disk
memory, where RTL does not exist.

The limitations of FireSim with regards to co-simulation are twofold. First, it requires ac-
cess to cloud computing resources. While these resources greatly enhance simulation speeds,
they may be unnecessarily powerful depending on the size of the component targeted for
simulation. Second, the design of FireSim prevents a core from being modeled as a software
component. As was highlighted when discussing ISim, in cases where the core is not the
component of interest, it would be preferable to replace it with a C-based functional model
rather than spending compute cycles emulating it at RTL fidelity.

Another open source framework is Dromajo [10], produced by Esperanto Technologies.
Dromajo is a C-based RISC-V RV64GC emulator designed for RTL co-simulation. The
emulator executes programs in software simulation and generates checkpoints at user defined
stopping points. These checkpoints can then be passed to a compatible RTL simulation. At
this point, both Dromajo and the RTL simulation can resume execution from the checkpoint
simultaneously, and their traces can be compared to validate RTL correctness. Currently,
Dromajo has only been integrated for use with BOOM.

Dromajo ultimately is limited to checking an RTL emulation against a software golden
model. As previously noted, this is a form of tandem simulation rather than true co-
simulation. Accordingly, Dromajo does does not allow for coherent and simultaneous mod-
eling of distinct components to build a larger system. This makes Dromajo effective for core
validation, but limited when attempting to validate periphery.

The last open-source co-simulation framework of interest is proposed by Munoz-Quijada
et al. in their paper, SW-VHDL Co-Verification Environment Using Open Source Tools
[11]. In this framework, a pure software model is paired with an FPGA based RTL emula-
tion to create a coherent system. This pairing is accomplished by transmitting commands
between software and hardware over Unix named pipes. The major outcome of the pro-
posed framework is that workloads can run in co-simulation without modification, enabling
a faster testing flow. However, as with previous described mixed-medium and FPGA based
co-simulation environments, requiring FPGA based emulation limits the applications of this
framework. Specifically, it creates a requirement that a designer have FPGA access to engage
in co-simulation. For those with access, co-simulation can only be applied to designs that fit
on a single board.

1.3 What CFC Brings to the Table

CFC contributes to the space of open-source co-simulation frameworks by targeting SoC
level accelerator integration testing. In the Chipyard [12] environment that this framework
targets, this testing is performed with a full-SoC RTL simulation running compiled C-based
test binaries. This process is often slow and a barrier to rapid design space exploration.
Depending on the size and complexity of the SoC, elaborating a simulator can take anywhere

4

from 15 minutes to several hours.

After the simulator is built, running a simulation binary adds further delay on the order
of tens of minutes. This delay is exacerbated if verifying correctness for randomly generated
test vectors requires computationally complex golden model calculations to be performed
on the simulated SoC. Finally, if a single design change is made, the entire SoC simulation
must be rebuilt, which is needlessly wasteful given that a large majority of the design has
remained constant.

The critical insight that motivates the development of CFC is as follows. While the
entire SoC is built into an RTL simulation during accelerator integration testing, the only
component that actually requires a simulation with RTL fidelity is the accelerator itself.
This means that the simulation method used for the core within the SoC is irrelevant so
long as the proper signals can be passed to the accelerator’s RTL simulation. Accordingly,
CFC creates a set of rules and tools that allow a software simulation of a core — which is
magnitudes faster at golden model computations — to be paired with an RTL simulation
of an accelerator. These coupled components form a coherent SoC co-simulation. This
framework is most similar to that proposed by Munoz-Quijada et al., but is Chisel oriented
and does not require access to FPGAs.

CFC is further differentiated from existing SoC-level verification methods due to the
introduction of simulator binary caching. In short, the optimization allows an existing
simulation binary to be reused if the underlying Chisel code has not changed between test
runs. This is contrasted with the existing ChiselTest paradigm wherein a simulation binary
is re-built for every test run. As a result, CFC uses the same number of simulator builds
as a full-SoC simulation approach, while offering significant speedups in both build and run
times.

An additional benefit of CFC is its high level of integration with Chisel-based designs.
The components of CFC that interact with HDL devices are designed entirely in Scala and
Chisel. Due to this, co-simulation can be run from within sbt [13]. In contrast, using an
existing tool would require the elaboration of a Chisel design into Verilog and the porting of
that design into a co-simulation framework. This process would need to be repeated every
time a design change was made.

Beyond accelerating the exploration of RTL changes internal to an accelerator, CFC com-
ponents can also be used to alter the diplomatic parameters of accelerators. This simulates
the effect of elaborating an accelerator in different SoC environments without needing to
have the core RTL for that environment.

Finally, CFC is expandable. The design elements and application of CFC discussed in this
thesis are primarily targeted towards Rocket Custom Co-processor (RoCC) [8] accelerators
and the Spike RISC-V ISA simulator. However, any devices or models that implement CFC’s
communication interface and rules could be orchestrated in co-simulation. For example, the
TileLink (TL) components of CFC could be used to develop a co-simulation testbench for a
MMIO based accelerator. This expandability and CFC’s open-source nature creates a wide
range of potential future applications for the framework.

It should be noted that FireSim has also been used to test accelerators in development. In
Maas et al.’s work, A Hardware Accelerator for Tracing Garbage Collection [14], FireSim was
used to emulate a SoC containing a core, memory system, and garbage collection accelerator.
That emulation was then used to explore the performance impact of altering the accelerator’s

internal queue sizes and compression techniques.

Similarly, in Qijing Huang et al.’s work, Centrifuge: Evaluating full-system HLS-generated
heterogenous-accelerator SoCs using FPGA-Acceleration [15], FireSim was used as part of
a flow for the rapid generation and evaluation of SoCs. The Centrifuge flow generated
accelerators to replace specific software functions using high-level synthesis and modeled
their attachment to a core at one of three different locations using FireSim. This flow was
then used to find the optimal SoC for a given software workload via a design space sweep
that determined which software elements to replace with accelerators and where to attach
those accelerators.

CFC is not designed to supplant either of these characterizations. Rather, it is intended
to provide an intermediate testing space that does not require access to cloud computing
resources. Once a flow such as Centrifuge has been used to determine an optimal SoC config-
uration, CFC can be used to rapidly design and test accelerators with SoC-level workloads.
When this testing is complete, there is still the need for a FireSim-type cycle-accurate device
simulation in order to comprehensively characterize performance. In short, CFC is designed
to speed up accelerator design and SoC-level debugging. It is not designed to determine
which workloads to accelerate or to act as a performance model.

2 Background

Designing a co-simulation framework for Chisel requires not only the creation of new
infrastructure, but also the combination of many existing tools and components. This section
provides an overview of such tools and components that are used within CFC. A similar
overview is also provided for the model and accelerator used in of this thesis.

2.1 Chisel

Chisel [16] is an HDL embedded into the Scala programming language. The key advantage
of using Chisel for co-simulation is that Scala-based software elements can interact with
Chisel-based hardware elements without the need for a DPI-type connection. For example,
a Scala object can be created that reads data from an input stream, performs a software
function on that data, and then pokes the result into the IO on a Chisel-based hardware
module.

2.2 ChiselTest

ChiselTest [17] is a library that supports the creation of test harness capabilities for
Chisel-based hardware designs. These harnesses add the ability to step a design’s clock
while poking data into wires or peek at the values on wires. CFC is designed to work
within a ChiselTest testing environment, as it relies on ChiselTest threading and testbench
utilities. Additionally, ChiselTest forms the backbone of drivers and monitors from the chisel
verification repository that are used within CFC.

2.3 Chipyard

Although CFC can be operated independently from Rocket Chip, the components used
for testing in this thesis are from the Rocket Chip ecosystem. To make testing these compo-
nents a more streamlined process, CFC is designed to be used as a tool within Chipyard, a
chip development framework that unifies Rocket Core and related accelerators into a single
environment. In Chipyard, CFC is integrated as a sub-project of the verification repository.

2.4 Gemmini

Gemmini [18] is an open-source, Chisel-based hardware generator for matrix multiplica-
tion accelerators developed at UC Berkeley. For a given configuration, the generator creates
a RoCC based accelerator that is controlled using a non-standard RISC-V custom exten-
sion. The accelerator — simply referred to as Gemmini — receives commands from the
RoCC interface of a Rocket Chip-based tile and interfaces with memory through a direct TL
connection to the L2 cache.

2.5 Spike

Spike [19] is a C-base RISC-V ISA simulator that implements a functional model of RISC-
V cores. Being a functional model, Spike provides an instruction-accurate representation of
RISC-V executing on a core. This behavior is not clocked, so each instruction seen by the
simulator is fully executed before another instruction is processed. To aid in SoC simulation,
Spike supports the addition of functional coprocessor models, which emulate RoCC based
accelerators. For example, there is a Spike extension for Gemmini that is able to process
custom instructions from the Gemmini ISA.

Spike runs standard RISC-V binaries without modification. This includes binaries that
contain custom instructions as long as the proper extension is added using the ——extension
command line argument.

Several modifications were made to Spike and the Gemmini Spike extension as part of
CFC in order to enable co-simulation. These changes are discussed further in and
[Section 4] of this thesis.

2.6 Protocol Buffers

The backbone of CFC’s inter-simulation communication is Google’s protocol buffers (pro-
tobufs) [20], a language-neutral mechanism for quickly serializing structured data. After
writing a structural description, the protoc compiler can be used to generate code for a
variety of supported languages. This generated code provides key communication features
such as setting or getting message fields, serializing messages to bits, and creating new mes-
sage objects from input stream data. Since the code for each language is generated from a
common structure, every system that uses the generated code is able to communicate in a
common language.

3 Design

Several new pieces of infrastructure were created during the development of CFC. These
include test components to enable out-of-context elaboration for diplomatic components, a
communication agreement to synchronize inter-model communication over named pipes, util-
ities to convert between information on hardware wires and protocol buffers, and a manager
object that stages the entire co-simulation flow.

Figure 1| shows the components produced for CFC organized by their corresponding
section in this thesis. It also shows how these components come together to create larger
objects via the arrows linking boxes. For example, the arrow from Section 3.1 to Section
3.4 indicates that the utilities developed to enable out-of-context elaboration will be used
during testbench setup.

Figure 1: CFC components discussed in each section and where they are used.

3.1 Out-of-Context Elaboration of Diplomatic Components

As previously mentioned, a key design aspect of CFC is that devices under test (DUTS)
can be tested without the need to elaborate an entire SoC (out-of-context). For the accelera-
tors tested in this thesis, this meant that CFC had to be designed to elaborate tightly coupled
RoCC components without an attached Rocket Chip tile. This independence required extra

engineering work to achieve. Specifically, any Rocket Chip peripheral elaborated indepen-
dently from a Rocket Chip core must address both Diplomacy |21] and implicit parameters.

Diplomacy is a framework that allows a set of interconnected devices to negotiate the pa-
rameterization of their connection protocol. For each set of devices and their shared bus, the
framework cross-checks requirements, negotiates free parameters, and supplies final param-
eter bindings for each device to use in the hardware generation process. When elaborating
out-of-context, there is no set of devices to reference for the negotiation of parameters. De-
spite this, the generated hardware must elaborate such that it is compatible with the bus
interface of the core. To achieve this result, a dummy set of nodes must be created to
mimic the endpoints found in the overall system. Connecting these artificial endpoints to
the out-of-context device allows for proper negotiation to occur.

The other key to correct out-of-context elaboration is ensuring that the implicit parame-
ters needed by a device are both present and set to the correct values. In Rocket Chip-based
designs, parameters are typically passed in a Parameters object. This object acts as a key-
value mapping between specific parameters and their values. Harnessing a language-specific
feature of Scala, the parameters object is most often passed as an implicit argument (typi-
cally p). This means that if there is some Parameters named p declared in the scope of a
function or generator call, it is automatically supplied as an argument to that call.

3.1.1 Parameter Generation

In order to address the needs of Diplomacy and provide implicit parameters, CFC contains
a parameter generation utility function, getVerifParameters. It should be noted that
because this thesis focuses on co-simulation for RoCC devices, the parameter generation
utilities are targeted towards RoCC devices. Future work would be needed to augment
these utilities to allow for the elaboration a non-RoCC but Rocket-related device out-of-
context. Furthermore, getVerifParameters needs to take in arguments to guarantee that
the parameters it returns match what would be seen during an in-context elaboration. As
these parameters are critical for proper device elaboration, future work could be done to
allow for the caching and reuse of these parameters from in-context elaboration runs.

The getVerifParameters function works by taking the parameters from a minimal
Rocket configuration and augmenting them with key parameters typically set in a full system
during elaboration. Some of these parameters, such as XLen, beatBytes, and blockBytes,
must be specified by the user. Altering these arguments alters the system that the DUT
elaborates for.

Other parameters are set with non-configurable values. For example, the TileKey param-
eter is mapped to a minimal set of TileParams that define a fake “verif_tile” with a hartId
of 0, as well as default RocketCoreParams, DCacheParams, and ICacheParams. Moreover,
since the hartId of this tile is 0 and there will be no other defined tiles, the MaxHartIdBits
parameter is set to 1.

The section of code from getVerifParameters where all the mentioned parameters are
set is shown in [Listing 1.

The second objective of getVerifParameters is to ensure that the environment has the
necessary information for Diplomacy to successfully negotiate the bus parameters for an out-
of-context device. During in-context elaboration, this negotiation is performed using each

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

val origParams = new VerifBaseRocketConfig

// Augment the parameters
implicit val p = origParams.alterPartial {
case MonitorsEnabled => false
case TileKey => VerifTileParams
case XLen => xLen
case Pglevels => if (xLen == 64) 3 else 2
case MaxHartIdBits => 1
case SystemBusKey => SystemBusParams (
beatBytes = beatBytes,
blockBytes = blockBytes
)
}

CosimTestUtils.scala

Listing 1: Section of getVerifParameters used to set key parameters.

tile’s TL ephemeral node, which is mapped to by the TileVisibilityNodeKey parameter.
This TL ephemeral node attaches to the master TL crossbar, which in turn is attached
to the core and other peripheral devices. Due to this attachment structure, Diplomacy
negotiates bus parameters by looking for a parameterization that allows the TL ephemeral
node to communicate to all other devices on the crossbar. The connection structure for an
in-context elaboration run is shown in

Figure 2: Connections established during Figure 3: Connections established during
typical elaboration. out-of-context elaboration.

When elaborating a RoCC device out-of-context, there is no core to attach to the TL
crossbar. This means that the TL ephemeral node is not constrained by the core’s TL require-
ments, which could lead to a different set of negotiated parameters. To address these missing
constraints and to set the TL parameters for an out-of-context device, getVerifParameters
connects a set of dummy nodes to the TL crossbar based on user-supplied arguments. Ide-
ally, these arguments will be set to match the TL parameters negotiated during an in-context
elaboration.

Given a set of arguments, getVerifParameters creates a set of TLBundleParameters.
These are in turn used to create source and sink BundleBridges, which are converted into
dummy TL nodes using the BundleBridgeToTL method. During this process the pAddrBits

10

243

244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

parameter — which sets the bitwidth of memory addresses — can be modified based on one
of the user-supplied arguments. This is accomplished by adjusting the number of bits in the
address-set mask for the dummy source node connection.

Since there is no tile present during an out-of-context elaboration, getVerifParameters
creates a new TL ephemeral node and connects it and the dummy nodes to a new TL
crossbar. Finally, to ensure that the device being elaborated sees these connections, the
created TL ephemeral node is set as the TileVisibilityNodeKey in the parameters object.
During the elaboration flow, this will result in the connection structure shown in [Figure 3|

The section of getVerifParameters used to set diplomatic parameters is shown in[Listing]
2l

def verifTLUBundleParams: TLBundleParameters = TLBundleParameters(addressBits = 64, dataBits = 64,
— sourceBits = 1,

sinkBits = 1, sizeBits = 6,

echoFields = Seq(), requestFields = Seq(), responseFields = Seq(),

hasBCE = false)

val dummyInNode = BundleBridgeSource(() => TLBundle(verifTLUBundleParams))
val dummyOutNode = BundleBridgeSink[TLBundle] ()

val tlMasterXbar = LazyModule(new TLXbar)
val visibilityNode = TLEphemeralNode () (ValName("tile_master"))

visibilityNode :=* tlMasterXbar.node
t1lMasterXbar.node :=
BundleBridgeToTL (getVerifTLMasterPortParameters) :=
dummyInNode

dummyOutNode :=
TLToBundleBridge (getVerifTLSlavePortParameters(beatBytes, pAddrBits, transferSize)) :=
visibilityNode

val outParams = p.alterPartial {
case TileVisibilityNodeKey => visibilityNode
}

CosimTestUtils.scala

Listing 2: Section of getVerifParameters used to set diplomatic parameters.

3.1.2 RoCC Standalone Wrapper

With a set of dummy parameters generated, the final component needed for out-of-context
elaboration is a wrapper module for elaborated DUTs. This module takes in a function that
returns a LazyRoCC module and exposes its ports to the testbench. The need for this wrapper
module is twofold. First, the TL node in RoCC modules is an identity node. This means
that the node has a cardinality constraint on its sinks and sources. This can create a problem
during out-of-context elaboration, as different DUTs may have a different number of internal
connections. The standalone wrapper addresses this by allowing the number of sources and
sinks to be specified by the user. For each specified source, a new BundleBridgeSource
is created and connected to the LazyRoCC’s TL node. The same pattern holds for each
specified sink, except a BundleBridgeSink is used for each connection. When the module

11

14

16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

is elaborated, the IOs from those new sources and sinks are constructed and then exposed
to the testbench via the wrapper.

The second reason for needing a wrapper is that the elaboration process can automatically
optimize away wires that have no connections. In the case of the RoCCIO found in LazyRoCC
modules, if there is a wire inside the 1O that does not have a connection path to the test
harness, there is no guarantee that that wire will exist after elaboration. The optimization
away of wires can be avoided by wrapping an 10 with a dontTouch directive. However,
this would require modification to the internal HDL of a DUT to support co-simulation.
To address this, the entire RoCCIO of the LazyRoCC module inside the wrapper is tied to a
dontTouch IO port in the wrapper, exposing it to the testbench and ensuring that it does
not get optimized away. The full implementation of VerifRoCCStandaloneWrapper is shown

in [Listing 3

class VerifRoCCStandaloneWrapper(dut: () => LazyRoCC, beatBytes: Int = 8, addSinks: Int = 0, addSources: Int
— = 0)(implicit p: Parameters) extends LazyModule {
def verifTLUBundleParams: TLBundleParameters = TLBundleParameters(addressBits = 64, dataBits = 64,
< sourceBits =1,
sinkBits = 1, sizeBits = 6,
echoFields = Seq(), requestFields = Seq(), responseFields = Seq(),
hasBCE = false)

lazy val ioOutNodes = new MutableList[BundleBridgeSink[TLBundle]]
lazy val ioInNodes = new MutableList[BundleBridgeSource[TLBundle]]
val dutInside = LazyModule (dut())

for (i <- O until addSinks) {
ioOutNodes += BundleBridgeSink[TLBundle] ()
ioOutNodes (i) :=
TLToBundleBridge (TLManagerPortParameters (Seq(TLManagerParameters (address = Seq(AddressSet(0x0, Oxfff)),
supportsGet = TransferSizes(1l, 64), supportsPutFull = TransferSizes(1,64), supportsPutPartial =
<« TransferSizes(1,64))), beatBytes)) :=
dutInside.tlNode
}

for (i <- O until addSources) {
ioInNodes += BundleBridgeSource(() => TLBundle(verifTLUBundleParams))
dutInside.tlNode :=
BundleBridgeToTL (TLClientPortParameters(Seq(TLClientParameters("bundleBridgeToTL")))) :=
ioInNodes (i)

}

lazy val module = new VerifRoCCStandaloneWrapperModule(this)
}

class VerifRoCCStandaloneWrapperModule(outer: VerifRoCCStandaloneWrapper) extends LazyModuleImp(outer) {
import outer.dutInside
import outer.ioInNodes
import outer.ioOutNodes

val io = dontTouch(I0(new RoCCIO(dutInside.nPTWPorts)))
io <> dutInside.module.io

val tlOut = ioOutNodes.map{ (outNode) => outNode.makeIO()}
val tlIn = ioInNodes.map{ (inNode) => inNode.makeIO()}

VerifRoCCStandalone.scala

Listing 3: Implementation of VerifRoCCStandaloneWrapper.

12

139

140

3.2 Translating Between Hardware Bundles and Software Mes-
sages

In CFC protobufs are used to carry information between the Scala-based test harness for a
device and the software model representing the rest of the system. While this communication
system is effective when transferring information between two pieces of software, additional
translation is needed to convert the software-based key-value pairs of a protobuf into a
packet of hardware information that can be driven into a DUT. Additionally, many DUTs
require bi-directional communication with the software model, so the conversion needs to
occur in both directions: from software to hardware for testbench drivers and from hardware
to software for testbench monitors. To aid in this process, CFC introduces a set of utility
functions that allow for the mapping of protobufs to Chisel bundle literals, and vice-versa.

3.2.1 Protocol Buffer to Bundle Conversion

The first step towards creating a protobuf to bundle conversion is to define a library
of helper functions that allow for the creation of bundle literals with specific values. For a
given bundle type, there should exist one such helper that turns specified values into a Chisel
bundle literal. To aid down the line in the translation process, all such helpers for a given
category of bundle type — such as TL bundles — should exist within the same object. An
example of such a helper function for the RoCCCommand bundle is shown in [Listing 4] This
helper is contained within the VerifRoCCUtils object, which also contains a helper for the
RoCCInstruction bundle.

def RoCCCommandHelper (inst: RoCCInstruction = new RoCCInstruction, rsl: UInt = 0.U, rs2: Ulnt =

< 0.U)(implicit p: Parameters): RoCCCommand = {
new RoCCCommand().Lit(_.inst -> inst, _.rsl -> rsl, _.rs2 -> rs2, _.status -> MStatusHelper(dprv = 3.U,
— prv = 3.U))

}

CosimTestUtils.scala

Listing 4: Implementation of RoCCCommandHelper.

Using these bundle literal helpers, the naive solution for protobuf to bundle literal con-
version is to define a new conversion function for each bundle type. This converter would
accept a protobuf message matching the target type and get all the values contained in that
protobuf, or a default if the value does not exist. Those values could then be converted to
the corresponding Chisel literals and used as arguments to the bundle literal creation helper.

While this approach is effective, there are a few key downsides. The primary drawback
is that the process is time-consuming and repetitive. For each bundle conversion, a user
has to create a new conversion function that maps values to literals and then feeds those
literals into a helper function. In the extreme case where a bundle has hundreds of fields,
this could correspond to a thousand or more of lines of code. Additionally, the process is
not robust to changes in the bundle. Ideally, if a bundle’s definition changes, a user should
only have to change the bundle literal helper and the matching protobuf without having to
make changes in the converter. However, under the naive solution, adding a new field into

13

73
74

76

a bundle requires changes in three places: the bundle literal creation helper, the protobuf
declaration, and the converter.

Taking note of the repetitive key to key mapping employed by the naive solution, CFC
harnesses the power of Scala and introduces a generic protobuf to bundle conversion func-
tion: ProtoToBundle. Currently, this function is only compatible with the RoCCCommand,
RoCCInstruction, TLBundleA, and TLBundleD bundle types. However, increasing compati-
bility is as simple as defining a bundle helper and corresponding protobuf for a chosen bundle
type.

ProtoToBundle takes in three arguments: 1) a protobuf message 2) an object wrapping
a set of bundle literal creation helper functions (the helper library), and 3) the target return
type. The requirements of ProtoToBundle with regards to these arguments are as follows.
First, the helper library must contain all the bundle literal helpers needed to create a bundle
literal for the message that is passed in. In the case of a message the contains sub-messages,
bundle literal helpers matching the those sub-message types must also be contained within
that same helper library. Second, there must be a one-to-one mapping from the name of a
protobuf message or sub-message to the name of a bundle helper. This mapping is performed
by checking if a bundle helper name contains the name of a protobuf message. For example
the helper RoCCCommandHelper is a valid name for the a protobuf named RoCCCommand.
Finally, the protobuf message and bundle literal must have the same fields, and those fields
must have identical names and be of compatible types.

Assuming all these requirements are met, ProtoToBundle creates a new bundle literal
from a protobuf message using the following algorithm. For readability, the algorithm is
broken down into numbered steps accompanied by relevant code segments.

1. ProtoToBundle gets the name of the passed in protobuf (e.g. RoCCCommand) and
searches the helper library for the matching bundle literal creation function. This bun-
dle literal creation function is obtained using Scala reflections, so it is of the generic type
MethodSymbol.

val protoName = proto.getDescriptorForType.getName
val helper = getHelper(helpers, protoName)
CosimTestUtils.scala

Listing 5: Search for matching bundle literal creation function.

2. The public ProtoToBundle calls a private variant of ProtoToBundle that takes takes
in five arguments: 1) a protobuf message 2) a MethodSymbol, 3) a TypeTag, 4) a ClassTag,
and 5) a return type. The message and return type arguments are passed through from the
public function arguments, the TypeTag and ClassTag are derived from the helper library
object, and the MethodSymbol is the found bundle literal creation function.

ProtoToBundle(proto, helper, helpers, helpers, returnType)
CosimTestUtils.scala

Listing 6: Call to private ProtoToBundle.

3. In the private ProtoToBundle, the fields defined in the protobuf message are converted
into key-values pairs. Those pairs are then iterated through and used to create a mapping

14

80
81
82
83
84
85
86
87
88
89
90

91

92

93
94

95
96

of arguments to Chisel literal types. How that Chisel literal is created depends on the type
of the field within the protobuf. Bools are created directly using the corresponding type to
literal function. Numerical values larger than 64-bits are stored as hex strings, so they must
be converted into BigInts and which in turn are converted into literals. Numerical values
under 64 bits require more care in the conversion process to BigInt, as protobufs encode
numerical values using Java Integers or Doubles, both of which are signed. To avoid the
field values being interpreted as signed and becoming negative, the values are shifted left
to knock off the sign bit, and then have the sign bit reintroduced after conversion. Finally,
if the field is a sub-message, a recursive call is needed to create a bundle literal for this
sub-message. In this case, the name of the sub-message is used to find a corresponding
bundle literal helper for the sub-message type, and the private ProtoToBundle is called
again recursively. This recursive structure is the motivation for including all related bundle
literal helpers inside the same library.

// Extract fields from the protobuf
val protoArgs = collection.mutable.Map[String, Anyl()
proto.getAllFields.foreach { case (field, value) =>
val fieldName = field.getName
field.getType match {
case MESSAGE =>
// Recursive case needs some extra spice
val subProto = value.asInstanceOf [com.google.protobuf.Message]
val subProtoName = subProto.getDescriptorForType.getName
val subHelper = getHelper(helperType, subProtoName)
protoArgs += (fieldName -> ProtoToBundle(subProto, subHelper, helperType, helperClass,
< subHelper.returnType))
case UINT32 => protoArgs += (fieldName -> fromBigIntToLiteral((BigInt(value.asInstanceOf [Integer] >>>
« 1) << 1) + (value.asInstanceOf[Integer] & 1)).asUInt)
case UINT64 => protoArgs += (fieldName -> fromBigIntToLiteral((BigInt(value.asInstanceOf[Long] >>> 1)
— << 1) + (value.asInstanceOf[Long] & 1)).asUInt)
case BOOL => protoArgs += (fieldName -> fromBooleanToLiteral(value.asInstanceOf [Boolean]) .asBool)
case STRING => protoArgs += (fieldName -> fromBigIntToLiteral (Biglnt(value.asInstanceOf [String],
< 16)).asUInt)
}
}

CosimTestUtils.scala

Listing 7: Conversion of protobuf fields into key-value pairs.

5. Once conversion for every field in the protobuf message is completed, the resulting
values need to be mapped to the bundle literal converter arguments. To accomplish this,
the private helper once again uses Scala reflections to gather a list of the bundle literal
converter arguments. These arguments are then used to generate a zip of argument names
and types. A zip is used instead of a map due to the fact that zips preserve ordering. This is
important because the order in which arguments appear in the initial list is the same order
in which they need to be applied in the bundle literal helper. To produce the final argument
list, the zip goes through a mapping process wherein the value in the protobuf’s argument
map is used if the argument name is present, else a default value is used. This name-based
mapping motivates the requirement for an exact match between the names of the protobuf
message field and the bundle literal fields. What is left after this process is an in-order list
of the arguments to the bundle literal helper method where those arguments all have the
type expected by the helper.

15

98
99
100
101
102

103
104
105
106
107
108

110
111
112
113
114

// Get a zip of (argument -> type) for our helper function.
// Fill undeclared values with Os and set the implicit parameters to p
val args = getArgsZip(getArgs (helper))
.map{ case (arg, typ) =>
protoArgs.getOrElse(arg, // Match arguments list to the values from the proto if present, else get a
— default
typ match {
case t if t
case t if t
case t if t

b

:= typeOf [chisel3.UInt] => 0.U
:= typeOf [chisel3.Bool] => false.B
:= typeOf [freechips.rocketchip.config.Parameters] => p

CosimTestUtils.scala

Listing 8: Production of the final arguments list.

6. The final step in the conversion process is to produce the bundle literal. Because
the bundle converter is of type MethodSymbol, its apply function accepts arguments as a
variable length list of Symbol objects. The types of these arguments and the length of the
supplied list are validated during the application process. Thus, the previously generated
list of in-order arguments can be decomposed into a variable length sequence and applied.
The resulting value is Any type, so it is cast to the target return type before being returned.

currentMirror
.reflect (helperClass)
.reflectMethod (helper)
.apply(args.toList: _x)
.asInstance0f [R]
CosimTestUtils.scala

Listing 9: Cast to target return type.

Through this lengthy process, the generic protobuf message to bundle converter addresses
the concerns raised by the naive conversion solution. A user can convert between equivalent
software and hardware messages without having to manually define a conversion function.
Moreover, the helper is agnostic to bundle structure changes as the supporting bundle literal
helpers are updated.

It is important to note that this function currently only supports conversion for messages
containing UINT32, UINT64, BOOL, STRING, and MESSAGE fields. This should not be a limiting
factor, as including more types is as simple as adding more case statements in the helper
function.

3.2.2 Bundle to Protocol Buffer Conversion

While the process of converting protobufs to bundle literals is highly complex, the inverse
process, converting bundle literals to protobufs, is significantly simpler. This conversion is
done using the Json parser built into protobuf. Given a protobuf message builder, the
parser takes a Json formatted string and automatically converts it into the builder’s target
message type. Effectively, this reduces the bundle to protobuf conversion to a bundle to Json
conversion.

16

117

118

119
120
121
122
123
124
125
126
127

128

129
130
131
132
133
134
135

The bundle to Json conversion is done by iterating recursively over a given bundle. For
each (name, value) pair in the bundle’s elements, a string is generated by pairing the name
with a string generated based on the value type. Bundle types undergo a recursive call to
generate their value strings. Other types are converted to their Java literal values, which
are then converted to strings using the default toString method. A special case exits for
numerical values wider than 64 bits, which are converted into hex strings.

With a bundle to Json converter implemented, conversion from bundle to protobuf is as
simple as first converting the bundle to Json, and then calling the protobuf Json parser on
the output. The implementations for both converters are shown in

def BundleToProto[B <: Bundle] (bundle: B, builder: com.google.protobuf.Message.Builder):

— com.google.protobuf.Message = {
com.google.protobuf.util.JsonFormat.parser() .ignoringUnknownFields() .merge("{" + BundleToJson(bundle) +
«— "}", builder)
builder.build()

¥

def BundleToJson[B <: Bundle] (bundle: B): String = {
bundle.elements.map { case (name, value) =>
value match {

case _: Bundle => s""" "${name}": { ${BundleToJson(value.asInstanceOf [Bundle])} }"""
case _: Bool => s""""$§{namel}": ${value.asInstanceOf [Bool].litToBoolean}"""
case _: UInt => value.asInstanceOf [UInt].getWidth match { // Values wider than 64.W are stored as hex

— strings
case x if x > 64 => s""""${name}": "${String.format (s"%${math.ceil(x.toDouble/4)}s",
« value.litValue.toString(16).toUpperCase).replace(" ", "0")}""""
case _ => s""""${name}": ${value.litValue}"""

}

case _ => s""""${name}": ${value.litValue}"""

}
}.mkString(",\n")
}
}

CosimTestUtils.scala

Listing 10: Implementation of BundleToProto and BundleToJson.

3.3 The Co-Simulation Manager

The co-simulation manager is the tool within CFC that controls the various simulations
and orchestrates their communication. The following section details how the co-simulation
manager and its sub-components are built.

3.3.1 Communication Over Named Pipes

CFC uses named pipes for interprocess communication (IPC). Although this type of com-
munication is often done using sockets, Scala-based socket servers do not reliably terminate
when a test fails within ScalaTest. When these failures happen, a complete restart of sbt is
needed to ensure that the server instance is deleted. In contrast, named pipes act as system
files. This means that named pipes can be created, accessed, and deleted in both C and
Scala by using standard APIs.

17

However using named pipes introduces a new set of challenges when trying to manage
coherency in IPC. The largest challenge is that named pipes block until a connection is made
on both sides. This means that if one process connects to some pipe as a reader, that process
will stall until another process connects to the same pipe as a writer. The obvious hazard
that arises because of this is deadlock — if two processes try to communicate over named
pipes but do not form connections in the same order, they will both stall indefinitely.

In order to avoid this problem, CFC defines a standard order for creating, connecting
to, and deleting named pipes. By adhering to this order, it is ensured that neither process
involved in co-simulation will stall on file operations. A summary of this standard is shown
in [Table 1. In this table ”C Action” refers to the SoC simulator and ”Scala Action” refers
to the ChiselTesters-based co-simulation testbench.

Phase C Action Scala Action

1 Open Named Pipes None
2 Open Input Streams | Open Output Streams
3 Open Output Streams | Open Input Streams
4 None Delete Named Pipes

Table 1: CFC named pipe management phases.

The ordering of pipe operations can be broken down into four phases. In the first phase
the SoC simulator is responsible for opening every pipe at the start of simulation execution.
In C, this is done using the mkfifo command. In the second phase, the SoC simulation
will open its input streams. At the same time, the co-simulation testbench is responsible
for opening its output streams. Once this step is completed the next phase starts and the
SoC simulation will open its output streams while the co-simulation testbench opens the
corresponding input streams. In both of these phases, if multiple pipes are interacted with
sequentially, then the interactions must be done in the same order on both the SoC simulation
and in the co-simulation testbench. Finally, once the testbench has finished running, it is
responsible for deleting all of the created named pipes. A graphical representation of these
phases is shown in

The other challenge introduced by named pipes is internal buffering and its impact on
short messages. In both C and Scala, stream writers contain an internal buffer that only
writes out to the target file on closure or when a certain internal capacity is reached. For
typical applications, where writers are writing long messages to static files, this buffering
can increase software performance. However, in the context of CFC, where the files being
written to are intended for real-time information transfer and the messages being sent are
often very small, this buffering behavior can result in messages not being written into a pipe
during the entirety of a co-simulation run.

In C, this issue is avoided by disabling buffering on output streams. This is done by
calling ostream.rdbuf () ->pubsetbuf (0, 0), where the ostream is of type std: :fstream.
In Scala, the issue is less easily remedied, as there is no direct function call to disable buffering
on io.outputstream objects. Moreover, calling f1ush() on an output stream object flushes

18

Figure 4: Timeline of named pipe phases.

the object’s buffer, but does not guarantee that the underlying OS buffer will be flushed.
In short, this means that calling close() is the only way to guarantee that a Scala based
io.outputstream will flush its contents to the target in real time.

Due to this limitation, CFC introduces one last communication agreement between the
SoC simulation and the co-simulation testbench, which is summarized in In order
to ensure that messages from Scala are written into the pipe in real time, CFC requires that
all Scala output streams be opened just before a write and closed immediately after that
write. To avoid any deadlock, the C side must open connections before a read is expected
and close that connection after a message is received. This agreement means that neither
side is left with a broken pipe. However, since both sides will stall waiting for the matching
connection to be made, these Scala output writes become defacto synchronization barriers.
Future work could be done to find another workaround for Scala output stream buffering,
which would remove the unintended synchronization.

Transmit Phase | Sender C Action Scala Action
Pre C None None
Pre Scala | Open Input Stream | Open Output Stream
Post C None None
Post Scala | Close Input Stream | Close Output Stream

Table 2: Post communication action agreements.

19

3.3.2 Scala Pipe Connectors

CFC ties together protobuf IPC over named pipes and hardware-to-software converters
into two object types. One reads a protobuf from an input stream, converts that message
into a bundle literal, and pushes the bundle literal into a specified port on a DUT. This
object is called a PipeDriver, as it takes input from a named pipe and drives it into a DUT.
The other object monitors a specified port on a DUT, converts the seen bundle literals into
protobuf messages, and writes those messages to an output stream. This type of object is
called a PipeMonitor, as it monitors signals from a DUT and outputs them to a named
pipe. Both of these objects types extend the empty AbstractCosimPipe trait for ease of
staging in the co-simulation manager.

On an abstract level, the method by which each object works can be described as follows.
A PipeDriver or PipeMonitor exists as an infinite loop inside a ChiselTest fork. The loop
continually checks the input source for a new message or transaction. When new data is
seen, the appropriate converter is applied to result in the output type, and then that output
is either pushed into a driver or written to a pipe. The objects are placed in forked regions
so that they can be run in parallel, which more realistically simulates a hardware only
environment by allowing for transactions to be driven or monitored on multiple interfaces
within the same clock cycle.

An example of the DecoupledPipeDriver is shown in |Listing 11, This connector is
an abstract base implementation that can be used to create a PipeDriver for any bundle
with a Decoupled wrapper. More specific implementation details on and examples of pipe
connectors are provided in [Section 4.2]

It should be noted that there are alternative methods for transmitting bundle informa-
tion between simulations other than the protobuf-based pipe connectors employed by CFC.
One significant example is the bridge protocol employed by FireSim, which performs inter-
simulation bundle transmissions using tokens. These tokens represent the per-cycle inputs
and outputs of each simulation, and their use allows for a cycle-accurate distributed simula-
tion to be maintained. However, CFC is unable to use this bridge protocol because it targets
mixed-abstraction co-simulation with a purely functional core model that cannot generate
cycle-accurate tokens.

3.3.3 Running Binaries From Scala

Co-simulation requires that the Scala-based testbench is able to invoke an external sim-
ulator on a specified test binary with any necessary arguments. Additionally, this process
needs to capture the standard out, standard error, and exit code for correctness checking. To
accomplish this, a runCommand utility function is defined within the VerifCosimTestUtils
object. This function takes in a command as a sequence of Strings, representing the space
separated arguments to be executed in the command line, and returns the captured output
values as a tuple. The full implementation of runCommand is shown in [Listing 12|

3.3.4 The CosimTester Trait

The last component needed for the full cosim manager is a utility to determine the
path in which a testbench is running. This allows the manager to create named pipes in

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

272
273
274
275
276
277
278
279
280
281

abstract class DecoupledPipeDriver[T <: Data, D] (pipeName: String, clock: Clock) (implicit p: Parameters,
— cosimTestDetails: CosimTestDetails) extends AbstractCosimPipe {

val driver: DecoupledDriverMaster [T]
val inputStreamToProto: (java.io.InputStream) => D

def pushIntoDriver (message: D): Unit
val pipe = s"${cosimTestDetails.testPath.get}/cosim_run_dir/${pipeName}"
fork {

while (!Files.exists(Paths.get(pipe))) {

Thread.sleep(250)
}

val in = new FileInputStream(pipe)
clock.step()
while (true) {

if (in.available != 0) {
val message = inputStreamToProto(in)

if (message != null) {
pushIntoDriver (message)
}
}
clock.step()
}
}

}

CosimPipeConnectors.scala

Listing 11: Implementation of DecoupledPipeDriver.

def runCommand(cmd: Seq[Stringl): (Int, String, String) = {
val stdoutStream = new ByteArrayOutputStream
val stderrStream = new ByteArrayOutputStream
val stdoutWriter = new PrintWriter(stdoutStream)
val stderrWriter = new PrintWriter(stderrStream)
val exitValue = cmd.!(ProcessLogger(stdoutWriter.println, stderrWriter.println))
stdoutWriter.close()
stderrWriter.close()
(exitValue, stdoutStream.toString, stderrStream.toString)

CosimTestUtils.scala

Listing 12: Implementation of runCommand.

the appropriate sub-directories of test_run_dir. In order to accomplish this, a new trait
CosimTester is defined that must be added to any co-simulation test class. For any given
test case of the test class, the trait creates an object CosimTestDetails that contains the
sbt root and test run directory. This object is implicitly passed to the CosimManager. The
implementations of both CosimTester and CosimTestDetails are shown in

In future work, this trait could be expanded to capture thread information for identical
tests running multiple times in parallel. Currently, running such tests will not work in co-
simulation, as the pipes created are per test rather than per thread and test combination.
However, if CosimTestDetails could capture thread information, then the pipe paths could
be prefixed with thread information, solving this problem.

21

29
30
31
32

33
34
35
36
37
38
39
40
41
42
43

class CosimTestDetails {
var sbtRoot: Option[String] = None
var testName: Option[String] = None
def testPath: Option[String] = if (sbtRoot.nonEmpty && testName.nonEmpty) Some(sbtRoot.get +
< "/test_run_dir/" + sanitizeFileName(testName.get)) else None

}

trait CosimTester extends TestSuiteMixin { this: TestSuite =>
implicit val cosimTestDetails = new CosimTestDetails

abstract override def withFixture(test: NoArgTest): Outcome = {
cosimTestDetails.sbtRoot = Some(s"${File(".").toAbsolute}")
cosimTestDetails.testName = Some(test.name)
super.withFixture(test)
}
}

CosimTestUtils.scala

Listing 13: Implementation of CosimTester and CosimTestDetails.

3.3.5 The Complete Co-Simulation Manager

Now, with all of the necessary building blocks defined, the complete CosimManager
object can be built. The constructor takes in three arguments: 1) a simulator, 2) a se-
quence of no argument functions that create AbstractPipeConnectors, and 3) an implicit
CosimTestDetails. These are considered to be constants to the manager object. Note that
the simulator is searched for using the standard system PATH variable. This means that any
installed simulator can be invoked from its name without needing a full path to the install
location.

To run a simulation, the CosimManager has a run function, which takes in three argu-
ments: 1) simulation arguments as a sequence of Strings, 2) the path to a test binary to
execute as a String, and 3) a correctness check function that maps the exit code of running
the simulation to a Boolean value. It should be noted that the manager is set up to search
for targets relative to the sbt root. In the Chipyard context this is the top level chipyard
directory.

When called, the run method invokes the supplied simulator on the given target. The
supplied simulation arguments are also passed to the sim, as well as an automatically gener-
ated -—cosim-path argument. This last argument is a special addition made to the standard
Spike simulator that both enables co-simulation mode and informs the Spike where to create
and connect to named pipes.

Next, the CosimManager starts each of the AbstractPipeConnector objects. By running
the connectors in simultaneous forked regions, concurrent traffic to and from multiple ports
can be maintained.

At this point, the co-simulation process is in full swing. Given proper synchronization
barriers, it is assured that the software simulation thread cannot terminate until the hardware
simulation is no longer working. Thus, the CosimManager steps the clock until the simulation
thread terminates. A discussion of how synchronization barriers are constructed using Fence
commands occurs in [Section 4l

To conclude a co-simulation run, the manager asserts that the output of the correctness
check lambda applied to the exit code from the simulation thread is true. This is the

22

only assertion made during the co-simulation check. All other correctness checks should be
performed inside the C-based simulator binary.

The generalized testing environment orchestrated by a CosimManager object during the
duration of its run method is shown in

Figure 5: Test environment orchestrated by a CosimManager.

3.4 Testbench Setup

Creating a co-simulation testbench is done in a similar manner to any other Chisel Testers
based testbench, with a few key differences to add in the components of CFC. First, with
CosimTester must be added to the outer level test class. This enables the implicit passing
of test directory information to internal CFC components.

Next, an implicit parameter set should be created to allow for the proper out-of-context
elaboration of any diplomatic module. This is done using the getVerifParameters utility.
Additionally, the test module should be wrapped in an appropriate standalone wrapper,
configured to match device specifics. This wrapped module becomes the DUT for a given
testbench. Because the DUT is a LazyModule, a given test case is formed around the module
element of the DUT, which represents its elaborated hardware form.

Within a given test case, all the necessary pipe connectors should be created for the
various ports of the DUT as defined by their constructors. Then, a new CosimManager
should be created for a software simulator and a sequence containing all of the defined pipe
connectors. Finally, to run a co-simulation workload in the test case, the manager’s run
function should be called on a sequence of desired simulation args, a target binary, and a
lambda for exit code checking.

A testbench skeleton implementing the above mentioned components is shown in
This skeleton is expanded upon in to create a full testbench for Gemmini.

3.5 Optimization - ChiselTest Binary Caching

When built upon a standard ChiselTest backbone, a co-simulation test will elaborate a
given DUT for every single test that is run. While this is highly advantageous in periods of

23

22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52

class CosimTestSkeleton extends AnyFlatSpec with CosimTester with ChiselScalatestTester {
// Create implicit parameter set
implicit val p: Parameters = VerifTestUtils.getVerifParameters()

// Create device under test
val dut = LazyModule(
new VerifRoCCStandaloneWrapper (
() => // Create a new Lazy RoCC based DUT
)

val simPath = // Select simulator
val simArgs = // Set simulator arguments

it should "Run some test binary" in {
val simTarget = // Path to test binary relative to Chipyard root

// Test using Verilator, simulation caching, and waveform generation
test(dut.module) .withAnnotations(Seq(VerilatorBackendAnnotation, CachingAnnotation, WriteVcdAnnotation))
— {c=

// Create pipe connectors

val commandPipe = () => new RoCCCommandPipeDriver ("RoCCCommandPipe", c.clock, c.io.cmd)

val tlPipe = () => new TLPipeConnector ("TLAPipe", "TLDPipe", c.clock, c.tlOut(0))

// Create other pipe connectors here

// Create CosimManager object using simulator path and pipes connectors
val manager = new CosimManager (simPath, Seq(commandPipe, t1lPipe), c.clock)

// Run the manager on the target test binary and assert that the exit code is 0
manager .run(simArgs, simTarget, x => x == 0)

CosimTestSkeleton.scala

Listing 14: Co-simulation testbench skeleton.

rapid design change, a downside emerges when a large number of tests are run on a single
stable design.

Consider the extreme case where elaborating a full SoC and accelerator simulator takes
20 minutes and each subsequent test run on the generated simulator takes one minute. At the
same time, assume that running a co-simulation test takes a total of two minutes to elaborate
the accelerator and run a test. If the quantity of tests run exceeds 15, it takes more time to
run in co-simulation than compared to elaborating the monolithic SoC simulation. This is
the exact opposite of what co-simulation hopes to achieve.

In order to address this shortcoming, an optimization was added to ChiselTest to allow
the caching and re-use of Verilator simulation binaries between test runs. In brief, the
optimization specifies a new annotation CachingAnnotation that can be used to enable
caching for a given test case. When this is the case, two hashes are generated, one for the
high FIRRTL of the DUT and one for the annotations supplied to the test. If these hashes
match the hashes of the last test run, then the existing Verilator binary in the test’s run
directory is used. Otherwise, the new hashes are saved into the test’s run directory and a
new Verilator binary is generated. The net result of this annotation is that tests run on
identical DUTs do not waste time re-elaborating identical simulators.

24

4 Application to Gemmini

A key goal in the development of CFC was to improve the debugging environment for
Gemmini, the open-source matrix-multiply accelerator, in order to allow for rapid feature
development. This verification is built upon the CFC base framework, with specific modifi-
cations made to support features needed by Gemmini and its corresponding software tests.

Once the changes were implemented, a full testbench was built and used to run a series
of tests. The results of these tests provide a basis to compare CFC to a full-SoC simulation.

4.1 Spike Modifications

Most of modifications made to support Gemmini were added to the Gemmini extension for
Spike. One such change occurs in the gemmini t: :custom3 function located in gemmini.cc.
In the default Gemmini extension, this function processes incoming RoCC Commands and
triggers the appropriate software modeling functions. However in the co-simulation enabled
extension, custom3 issues RoCC Commands to the co-simulation testbench as protobufs
over named pipes rather than processing them locally. In effect, this disables the software
Gemmini model in favor of the RTL Gemmini model.

A similar modification must be made to the customX instruction for any RoCC accelerator
with an existing Spike extension that wishes to use Spike as the software simulation in a co-
simulation testbench. Non-Spike software simulators should be modified in a similar matter,
with the details dictated by specific simulation architecture.

Beyond adding the ability to issue RoCC commands to a co-simulation testbench, other
Spike modifications were made to provide continual processing of TileLink memory traf-
fic, to ensure hardware-software synchronization on fence instructions, and to allow for
co-simulation mode to be enabled via a command-line argument. The specifics of these
modifications are discussed in detail below.

4.1.1 Threaded TileLink Memory Model

The first attempt to create a software-based memory model for RTL Gemmini simulation
to interact with revolved around using fence instructions as servicing points. When a fence
was seen by the software sim, it would check for and service any incoming memory requests
until the RTL simulation indicated that it was no longer busy.

While this approach would have successfully allowed for TL requests to be processed, it
introduced a major issue. In a real Rocket-based SoC, TL requests are made directly to a
memory device or peripheral. The servicing of these requests occurs on a per-device basis,
independently of the core. However, in the process-during-fence model, the core is acting as
if it is responsible for servicing memory requests. This eliminates the possibility of observing
behavior wherein the core performs an operation at the same time as a memory request is
serviced. Additionally, the bunched and all-at-once processing of memory requests creates
an unrealistic memory environment for Gemmini in co-simulation.

To address these shortcomings, the threaded TL memory model was created. This model
is built around a memory processing object, the t1_memory_t. The t1 memory_t object’s run
method starts an infinite loop that scans for memory requests on a named pipe, processes

25

those requests, and responds on a different named pipe. In the Gemmini extension, a new
t1l memory_t object is created. That object’s run method is then run in a new thread through
the use of the pthread library. As a benefit of using pthread, the memory thread can be
cleanly terminated in spite of running in an infinite loop by using the pthread cancel
method in the Gemmini extension’s destructor.

Since the processor thread and the memory thread operate on the same underlying mmu_t
object, which represents the SoC’s memory, special precautions had to be taken to make
memory operations thread safe. To accomplish this, a mutex was defined in each mmu_t
object. Then, the macro that creates load and stores operations was modified to include
a std::lock guard on the mmu t’s mutex. When a load or store function is called, the
lock _guard stalls until a lock can be acquired on the mutex. Once the lock is acquired, the
function can execute, performing a load to store on the underlying memory object. When
the function returns, the lock guard falls out of scope, and its destructor unlocks the mutex.
As a result, only one thread can execute a load or store to the same mmu t at a given time.

All told, the threaded TL memory model allows for a memory processing thread to safely
run independently of the core. Requests can be processed as soon as they are seen, and
responses are sent back within one hardware cycle thanks to the relative speed of Spike
when compared to an RTL simulation. The code for the memory model can be found in
tl memory.h and t1l memory.cc.

4.1.2 Fence Handling

As mentioned in previous sections, a key component of the co-simulation environment is
the ability to synchronize hardware and software at critical points or on key instructions.
The existing Spike simulation is a single threaded, single issue, purely functional model.
Accordingly, attached accelerator models must complete any given instruction before the
processor can move on to the next program instruction. However, RoCC instructions without
the xd bit set do not block the processor until completion because they do not issue a RoCC
response. This means that in the real world, multi-cycle accelerator actions can exist, while
in the Spike architecture, they cannot.

This discrepancy creates issues when testing RoCC accelerators such as Gemmini, which
have xd set to zero in their ISAs, and contain internal command queues.

In order to address this problem, a handler for the fence instruction was added to Spike.
In normal Spike, fence instructions are handled like no-ops, consuming a cycle with no other
changes to the processor state. In the CFC specific version of Spike, a fence () function is
added to the extension t class that all accelerator software models are based on. When
a fence is seen, Spike checks if it has an enabled extension, and if it does, it calls on that
extension’s fence () function. In order to preserve the default no-op behavior of base Spike
for accelerators models without a custom fence implementation, the fence () function has
an empty default implementation in extension.h. In essence, this modifications allows an
attached accelerator model to define its own set of rules for handling a fence.

In the Gemmini extension, when a fence instruction is seen, the called method sends a
GemminiFenceReq over a named pipe and then spins in a loop, processing no further instruc-
tions. The request contains a single field, denoting the number of RoCC commands sent
prior to the request being issued. On the other end of the named pipe is special type of pipe

26

connector named the FencePipe. When a FencePipe sees an incoming GemminiFenceReq
from the software sim, it spins until the busy signal in Gemmini’s RoCCIO bundle goes low.
When busy is low, it indicates that Gemmini has no further pending instructions to process,
which would place it in line with the fence. Additionally, the FencePipe will spin until the
number of commands pushed into Gemmini matches the number of commands specified in
the fence request. This additional check prevents the case where busy is low because a fence
request has been issued to Gemmini before it has time to process any commands. Once both
checks are satisfied, the FencePipe sends a GemminiFenceResp back to the software sim.
When Spike sees a GemminiFenceResp, it exits the infinite loop and continues processing the
instruction flow. This ensures that both Spike and Gemmini are brought into sync on fence
instructions.

depicts the program flow of Spike with the addition of fence handling as well
as the custom3 modifications discussed in [Section 4.1l Note that all non-fence and non-
custom3 instructions are handled in the same manner as unmodified Spike.

Figure 6: Modified Spike program flow.

4.1.3 Command Line Arguments

Another addition made to Spike in support of Gemmini co-simulation is the -~-cosim-path
command line argument. This argument allows a user to specify the directory in which the
simulation will create and connect to named pipes. Moreover, by making the default argu-
ment null, the flag can be used as a switch to enable or disable co-simulation features, such
as sending out RoCC commands over named pipes instead of processing them in software.

27

50

51
52
53
54
55
56

57
58

The largest benefit of this addition is that a single Spike installation can be used to run both
co-simulation testbenches and normal full software tests.

4.1.4 Gemmini Specific Pipe Connectors

In order to support Gemmini, specific pipe connectors needed to be created to support
its RoCC Command and TL ports.

The RoCCCommandPipeDriver is a simple example of a PipeDriver used to drive new
commands into the corresponding port on Gemmini. The connector is built upon the

DecoupledCosimPipeDriver described in [Section 3.3.2, and its implementation is shown
in [Listing 15|

class RoCCCommandPipeDriver (pipeName: String, clock: Clock, io: DecoupledIO[RoCCCommand]) (implicit p:
— Parameters, cosimTestDetails: CosimTestDetails) extends DecoupledPipeDriver [RoCCCommand,
— RoCCProtos.RoCCCommand] (pipeName, clock) {

val driver = new DecoupledDriverMaster(clock, io)
val inputStreamToProto = (in: java.io.InputStream) => RoCCProtos.RoCCCommand.parseDelimitedFrom(in)

override def pushIntoDriver (message: RoCCProtos.RoCCCommand): Unit = {
driver.push(new DecoupledTX(new RoCCCommand) .tx(VerifProtoBufUtils.ProtoToBundle (message,
«s VerifBundleUtils, new RoCCCommand)))
}
}

CosimPipeConnectors.scala

Listing 15: Implementation of RoCCCommandPipeDriver.

In contrast to the RoCCCommandPipeDriver, the TLPipe, used to interface with the
threaded TL memory model, is a more complex example of a pipe connector. The pipe
is built around the TLDriverSlave from the tilelink package in the Chisel Verification
Repository library. In high level terms, the driver monitors a TL-A port for an incoming
request. When that request is seen, the driver passes that request to a processing function,
which models a response to the observed TL-A message. Finally, the driver pushes the TL-D
message returned by the processing function into a TL-D port. Due to this functionality, a
majority of the TLPipe is contained within its processing function.

The TLCosimMemoryInterface processing function is responsible for sending memory
requests to and reading memory responses from the threaded TL memory model. In order to
properly handle burst messages, the function is defined on the TLCosimMemoryBufferState
type. This type contains a sequence of observed TL-A messages. If an observed TL-A
message does not form a complete transaction, a new state is formed by appending the
observed message onto the state’s existing sequence. Once the state’s sequence of TL-A
messages forms a complete transaction (either a single message or all the messages of a
burst request), the TLCosimMemoryInterface sends each message over a named pipe to the
threaded TL memory model. The processing function then accumulates the TL-D responses
it sees into a sequence. Once that sequence forms a complete transaction, it is returned and
the TL-D messages it contains are pushed into Gemmini.

If each TL-A from a burst request were independently sent by the TLCosimMemoryInterface,

the processing function would wait for a TL-D response before sending any of the other TL-A

28

messages from that burst request. At the same time the TL memory model has received a
TL-A message but needs the rest of the burst request before it can send any TL-D response.
In this case, both sides of the communication chain would be stuck waiting for messages
that can never be received. Therefore waiting for a complete transaction to be present
before sending any of the observed TL-A avoids deadlock.

The implementation of TLPipe is shown in [Listing 16]

4.2 Gemmini Testbench Setup

The co-simulation testbench for Gemmini is largely created in the manner discussed
in For simplicity, a dut variable, referencing a Gemmini module wrapped in a
VerifRoCCStandaloneWrapper is declared for the entire GemminiCosimTest class. However,
because this variable references a LazyModule, the Gemmini module will be re-elaborated for
each test case independently. In a similar vein, simPath and simArgs variables are defined
for the entire class, as Spike will always be the desired sim, and Gemmini will always be the
desired simulation extension.

In an individual test case, a variable for the target co-simulation software workload is
defined. Then, pipe connectors are created for Gemmini’s RoCC Command port and TL
port. Additionally, a FencePipe connector is created for synchronization. These connectors
are placed into a sequence and passed to the constructor for a CosimManager along with
the global simulator variable, in this case Spike. Next, the testbench calls the run method
of the newly created manager with globally defined simulation arguments and the locally
defined simulation target. Successful C-based Gemmini tests return an exit code of 0, so the
manager’s exit code lambda checks for that value. As described in previous sections, the
success of the testbench is based on if this lambda check asserts to true.

The complete environment orchestrated by the CosimManager during the execution of
run within each test case is depicted in Note that this is a refinement upon the

environment depicted in

Figure 7: Test environment orchestrated by the CosimManager during a Gemmini test.

An example of a test case used to execute the mvin mvout-baremetal test is shown in
Listing 17| This can be thought of as a boilerplate example of how to run Gemmini tests in

co-simulation.

29

98 case class TLCosimMemoryBufferState(txnBuffer: Seq[TLChannel])

99
100 class TLCosimMemoryInterface(tlaPipe: String, tldPipe: String, bundleParams: TLBundleParameters)
101 (implicit p: Parameters, cosimTestDetails: CosimTestDetails) extends
< TLSlaveFunction[TLCosimMemoryBufferState] {
102 while (!Files.exists(Paths.get(tlaPipe)) || !Files.exists(Paths.get(tldPipe))) {
103 Thread.sleep(250)
104 }
105
106 // NOTE: Scala convention is to open inputs before outputs in matching pairs
107 val tld_pipe = new FileInputStream(tldPipe)
108
109 override def response(tx: TLChannel, state: TLCosimMemoryBufferState): (Seq[TLChannell,
— TLCosimMemoryBufferState) = {
110 tx match {
111 case txA: TLBundleA =>
112 val tla_buffer = state.txnBuffer :+ txA
113 if (TLUtils.isCompleteTLTxn(tla_buffer, 16)) {
114 tla_buffer.foreach(tla => {
115 val tla_proto = VerifProtoBufUtils.BundleToProto(tla, TLProtos.TLA.newBuilder())
116
117 val tla_pipe = new FileOutputStream(tlaPipe)
118 tla_proto.writeTo(tla_pipe)
119 tla_pipe.close()
120 b
121
122 var tld_buffer = Seq[TLChannel] ()
123 do {
124 var tld_proto = com.verif.TLProtos.TLD.parseDelimitedFrom(tld_pipe)
125 while(tld_proto == null) {
126 tld_proto = com.verif.TLProtos.TLD.parseDelimitedFrom(tld_pipe)
127 }
128 tld_buffer = tld_buffer :+ VerifProtoBufUtils.ProtoToBundle(tld_proto, VerifBundleUtils, new
< TLBundleD(bundleParams))
129 } while (!TLUtils.isCompleteTLTxn(tld_buffer, 16))
130
131 (tld_buffer, TLCosimMemoryBufferState(Seq()))
132 } else {
133 (Seq(), TLCosimMemoryBufferState(tla_buffer))
134 }
135 case _ => 777
136 ¥
137 }
138}
139
140 class TLPipeConnector(tlaName: String, tldName: String, clock: Clock, io: TLBundle)
141 (implicit p: Parameters, cosimTestDetails: CosimTestDetails) extends AbstractCosimPipe {
142
143 val tlaPipe = s"${cosimTestDetails.testPath.get}/cosim_run_dir/${tlaName}"
144 val tldPipe = s"${cosimTestDetails.testPath.get}/cosim_run_dir/${tldNamel}"
145
146 val driver = new TLDriverSlave(clock, io, new TLCosimMemoryInterface(tlaPipe, tldPipe, io.params),
< TLCosimMemoryBufferState(Seq()))
147}

CosimPipeConnectors.scala

Listing 16: Implementation of TLPipe.

In order to run a different test, the only line that needs to be changed is the one shown
in [Listing 18 which defines the simulation target. All other lines can remain the same.

30

29
30
31
32
33
34
35

46
47
48
49

51

52
53
54
55
56
57

83

71

class CosimTest extends AnyFlatSpec with CosimTester with ChiselScalatestTester {
implicit val p: Parameters = VerifTestUtils.getVerifParameters()

val dut = LazyModule(
new VerifRoCCStandaloneWrapper (
/**x SET YOUR CONFIGURATION FOR COSIM HERE *x*x/
() => new Gemmini(OpcodeSet.custom3, GemminiConfigs.defaultConfig.copy(use_dedicated_tl_port = true,
meshRows = 4, meshColumns = 4, rob_entries = 4)),
beatBytes = 16,
addSinks = 1
))

it should "Run mvin_mvout-baremetal" in {
val simTarget = "generators/gemmini/software/gemmini-rocc-tests/build/bareMetalC/mvin_mvout-baremetal"

test (dut.module) .withAnnotations(Seq(VerilatorBackendAnnotation, CachingAnnotation, WriteVcdAnnotation))
- {c=
val commandPipe = () => new RoCCCommandPipeDriver ("RoCCCommandPipe", c.clock, c.io.cmd)
val fencePipe = () => new FencePipeConnector("GemminiFenceReqPipe", "GemminiFenceRespPipe", c.clock,
— c.io)
val tlPipe = () => new TLPipeConnector ("TLAPipe", "TLDPipe", c.clock, c.t1lOut(0))

val manager = new CosimManager (simPath, Seq(commandPipe, fencePipe, t1lPipe), c.clock)
manager .run(simArgs, simTarget, x => x == 0)

CosimTest.scala

Listing 17: Boilerplate code for Gemmini co-simulation tests.

val simTarget = "generators/gemmini/software/gemmini-rocc-tests/build/bareMetalC/matmul-baremetal"
GemminiCosimTest.scala

Listing 18: Definition of the simulation target.

4.3 Results

In order to measure the performance difference between a co-simulation testbench and a
tradition full-SoC simulation, a series of tests were performed and timed using both testing
methodologies. In both methodologies, the simulators were built with settings that produced
waveform dumps, as these dumps would be critical to debugging applications. Moreover,
each set of tests was performed on both 4x4 Gemmini and 16x16 Gemmini configurations,
where the NxN configuration represents a default Gemmini modified to have N rows, N
columns, and N ROB entries.

First, a test was performed to time the elaboration and building of a simulation binary
(referred to simply as elaboration), without running any tests on the produced simulator.
For the co-simulation testbench, this consisted of running an empty test on a Gemmini
module. For the full-SoC simulation, this consisted of calling make debug on a properly
parameterized GemminiRocketConfig.

After benchmarking elaboration times, the time to run a test binary using either sim-
ulation method was recorded. This test was performed for the mvin mvout-baremetal,
matrix add-baremetal, and matmul-baremetal test binaries, which represent increasing

31

level of computational complexity.

4.3.1 Collection Methodology

In order to present an accurate picture of run times, all tests were performed five times
per configuration. This repetition was used to control for inter-test variation. The results of
these repeated tests are displayed in a table within each section.

To ensure a controlled collection environment, all results were gathered using a VMware
Fusion-based virtual machine running Ubuntu 64-bit 20.04.1 with 10 GB of RAM and 4
processor cores. Verilator was used as the simulator backend. The raw time values presented
correspond to run times with this system and environment configuration. The times were
measured using the Unix time command for SoC tests, and the sbt elapsed time measure
for co-simulation tests. Recognizing that different machines may run faster or slower than
the testing configuration, relative speedups are also presented where appropriate.

4.4 Pre-Optimization Results

The pre-optimization results are those gathered before the addition of Verilator binary
caching to ChiselTest.
4.4.1 Elaboration Time

shows the elaboration times recorded for both the 4x4 and 16x16 Gemmini
configurations.

Configuration | Run | Full SoC | Cosim.
1 1197 67
2 1144 73
4x4 3 1105 70
4 1062 68
5 977 69
1 7156 353
2 7112 337
16x16 3 7072 357
4 7085 380
D 6835 352

Table 3: Pre-Optimization elaboration times (sec).

For the 4x4 configuration, the full-SoC had an average elaboration time of 1097 seconds,
while co-simulation had an average elaboration time of 69.4 seconds. This represents an
average elaboration time speedup of 15.8x when using co-simulation. For the 16x16 con-
figuration the speedup was slightly larger at 19.8x, with an average of 7052 seconds for a

32

01 = Cosim.
01
16x16| 119.8

Figure 8: Elaboration speedup relative to
full-SoC simulation.

full SoC-elaboration versus an average of 355.8 seconds for a co-simulation elaboration. The
relative speedups are shown in [Figure 8|

Of note is that the speedup seen does not scale directly with the relative change in Gem-
mini size. While the difference in size between a 4x4 and 16x16 Gemmini is approximately
16x, the change in elaboration speedup was only about 1.25x. This is likely due to the fact
that core elaboration dominates the overall speedup figure. Any speedups seen in Gemmini
elaboration between the two configurations only results in a small change in overall speedup
when factoring in the large constant speedup from eliminating core elaboration.

4.4.2 Test Time

shows the run times for the mvin_mvout, matrix_add, and matmul tests run on
both Gemmini configurations using both simulation methods.

For the 4x4 configuration, co-simulation had an average mvin_mvout run time of 74.2
seconds, an average matrix_add run time of 76.2 seconds, and an average matmul run time
of 106.4 seconds. In comparison, the full-SoC had average run times of 133.8, 149.2, and
539.6 seconds respectively.

In both simulation methods, the run times follow the same pattern, with t,,emw >
tmatriz.add > tmvin.meout- HOWever, the relative increases in time between different levels
of test complexity are less in co-simulation than they are in full-SoC simulation. This is
likely due to the dominance of elaboration time (69.4 seconds per test on average) in co-
simulation. When the average co-simulation elaboration time is subtracted from the average
co-simulation test run time, the relative increases become more similar.

For the 16x16 configuration, co-simulation had an average mvin_mvout run time of 430.6
seconds, an average matrix_add run time of 421.6 seconds, and an average matmul run time
of 441.2 seconds. In comparison, the full-SoC had average run times of 269, 291.8, and
897.8 seconds respectively. The full dataset used to compute the averages for both this
configuration and the 4x4 configuration are shown in [Table 4.

33

Config. | Run mvin_mvout matrix_add matmul
SoC | Cosim. | SoC | Cosim. | SoC | Cosim.
1 123 89 189 75 552 104
2 147 77 158 84 541 117
4x4 3 137 68 139 74 568 99
4 120 69 131 73 472 104
5 142 68 129 76 565 108
1 272 391 299 445 931 431
2 267 433 289 485 896 511
16x16 3 268 411 293 438 890 441
4 271 446 288 357 882 407
5 267 472 290 383 890 416

Table 4: Pre-Optimization test run times (sec).

There are a few interesting results that come out of the 16x16 Gemmini configuration.
First, while the full-SoC run times still follow the ordering described above, the co-simulation
run times do not. Specifically t,,0trizadd # tmvin.mvout- From this it seems that 16x16 co-
simulation run time is so greatly dominated by elaboration time that variations in elaboration
time obscure the actual differential in test run time. Additionally, while the run times
for co-simulation were strictly less than the run times for full-SoC simulation in the 4x4
configuration, this does not hold for the 16x16 configuration. For the smaller mvin_mvout
and matrix_add test cases, the overhead of re-elaboration in co-simulation (355.8 seconds on
average) is significant enough to make the full-SoC simulation faster than the co-simulation.

These findings will be revisited [Section: 4.5 when elaboration is cached for repeated
co-simulation runs.

Figure 9 displays the absolute test run times of co-simulation and full-SoC simulation for
both configurations. These run times are converted into speedups relative to the full-SoC

simulation in

. - B6 |z 41(44%? *én mvin_mvout D&]G%OE% = .
mvin_mvout o = 4X4 D0 4x4 Cosim
o oa8 =,16x16 Cosim = 16x16 Cosim
' = 16x16 SoC —
__EICI H069
matrix_add % 121.6 matrix-add 196
[76.2
I 897.8 7
matmul — 441;% . matmul 203
539.6 [| 5.07
1 106.4
Figure 9: Avg. test run time (sec). Figure 10: Avg. test speedup relative to

full-SoC simulation.

While co-simulation elaborates Gemmini in each test run, the full-SoC simulation does

34

not. If the average elaboration time for a SoC with configuration c is 7., the approximate
total time consumed to run n tests on a full-SoC simulation can be approximated to tgoc . =
Ve + Tsoc,c ¥, Where Tgoc c is the average run time for the target test on a full-SoC simulation
of configuration c. In contrast, the total time consumed to run n tests in co-simulation can
be approximated t0 tcosim.c = TCosim,c ¥ Where Tepsim o 1S the average run time for the target
test on configuration ¢ in co-simulation.

The ratio tf;”% provides insight into the speedup relationship between co-simulation

and full-SoC simulation. The ratio allows the calculation of an asymptotic minimum possible
speedup in all cases. Moreover, in the case where tg,cc. > tcosim,c finding the point where
the ratio equals one determines the number of tests needed to make co-simulation a less
time-efficient simulation method. Analysis of Losime for all tests is shown in [Table 5| In

tSoC,c

brief, un-optimized co-simulation is a faster simulation method for all configurations and
tests except for when 16x16 mvin_mvout is run over 52 times or 16x16 matrix_add is run
over 54 times.

Config. Test tf;’:% Asymptotic Speedup | Convergence
mvin_mvout | 1.80 + 1278 1.80x N/A
4x4 | matrix_add | 1.96 + &2 1.96x N/A
matmul | 5.07 + 132 5.07x N/A
mvin_mvout | 0.67 + & 0.67x 52.39
16x16 | matrix_add | 0.69 + &7 0.69x 54.33
matmul | 2.03 + B8 2.03x N/A

t i
Table 5: f;’—cm analysis for pre-optimized co-simulation.
oC,c

4.5 Post-Optimization Results

The post-optimization results are those gathered after addition of Verilator binary caching
to ChiselTest.

After the addition of Verilator binary caching, the co-simulation run times for both
Gemmini configurations significantly decreased. For the 4x4 configuration, mvin_mvout had
an average run time of 20.6 seconds, matrix_add had an average run time of 22.8 seconds,
and matmul had an average run time of 56.6 seconds. The 16x16 configuration has average
run times of 53.2 seconds, 58.6 seconds, and 92.4 seconds respectively. The full dataset used
to compute these new averages are shown in [Table 6.

displays these run times relative to the full-SoC, while converts the

run times into relative speedups. The largest takeaway from these figures is that with opti-
mized ChiselTest there is no longer a test for which co-simulation has a slower run time that

35

Config. | Run | mvin_mvout | matrix_add | matmul

1 21 23 43

2 20 22 48

4x4 3 21 23 65
4 22 23 62

5 19 23 65

1 50 67 81

2 52 54 84
16x16 3 55 57 105
4 53 54 91

5 56 61 101

Table 6: Test run times for optimized co-simulation (sec).

a full-SoC simulation. In fact, co-simulation has around or over 5x speedup for all test bina-
ries across all configurations. Even more compelling is that for the most complex workload,
matmul, co-simulation exhibits a speedup of over 9.5x across both Gemmini configurations.

An additional comparison can be made between the test run times for co-simulation
with and without ChiselTest optimizations. These results are shown as relative speedups in
[Figure 13. This figure shows that even in the most elaboration-dominated testbench, 4x4
Gemmini matmul, optimized ChiselTest still contributes a significant 1.88x speedup in test
run time.

[269 = 4x4 Cosim . [5.06
) = mvin_mvout =
mvin_mvout O 502{ . = 4x4 SoC 65 1= 4x4 Cosim
T206 =16x16 Cosim = 16x16 Cosim
' = 16x16 SoC =
[291.8 4] 4.98
matrix_add %? 492 matrix_add [6.54
0228
I 897.8
924
T matmmnl 955
156.6
Figure 11: Avg. test run times for opti- Figure 12: Avg. test speedup relative to
mized co-simulation (sec). full-SoC simulation.

tC’os'Lm,c

focs can be revisited for the post-optimization results. With the
addition of caching, the formula used to approximate the total time to run n tests in co-
simulation changes to tcosime = TCosime + ACosime ¥ (B — 1) where Toosim.c is the average
uncached run time for the target test on configuration ¢ in co-simulation, and Acosim,e is
the average cached run time. Since there is now no longer any test case for which which
full-SoC simulation run time is less than co-simulation run time, the ratio now only provides
information about an asymptotic minimum possible speedup. Analysis of tf;’o% for post-

Finally, the ratio

36

. | 8.09
mvin_mvout |
3.6 = 4x4 Cosim

=16x16 Cosim

| 7.19

matrix_add T 334

matmul AT
11.88

Figure 13: Avg. test speedup relative to
pre-optimization co-simulation.

optimization results are shown in [Table 7l Note that the asymptotic speedups shown match
the relative speedups shown in due to the relative dominance of test run time
versus elaboration time as n approaches infinity.

Config. Test % Asymptotic Speedup
mvin_mvout | 2o t133.8n 6.50x

74.2+420.6(n—1)

4x4 matrix_add % 6.54x
matmul L097$539.6n 9.53x

106.4456.6(n—1

)
: 7052+133.8
mvin_mvout W 5.06x
16x16 matrix_add m 4.98x
matmul 10521 133.8n) 9.72x

441.2492.4(n—1

Table 7: Cosime analysis for optimized co-simulation.

tSnC,c

5 Conclusion

5.1 Summary of Produced Tools and Results

This paper introduced CFC, an instruction-accurate co-simulation framework for Chisel
that enables rapid accelerator design space exploration by pairing a software model of a
Rocket core with an RTL simulation of a RoCC accelerator. Building this framework led
to the development of wrappers to enable diplomatic devices to elaborate out-of-context. It
also required the creation of utilities to enable signals on hardware wires to be translated
to and from protocol buffers. Applying CFC to Gemmini led to custom modifications to
Spike, enabling a single simulator to be used for both full functional simulation and co-
simulation. Finally, developing CFC led to implementation of Verilator binary caching within

37

ChiselTest to optimize performance. This development has impact beyond CFC, speeding
up ChiselTest-based testbenches for all tests that reuse a DUT.

Testing CFC on Gemmini showed significant improvements in both elaboration and sim-
ulation time. In elaboration, CFC was an average of 15.8x faster than elaborating a full-SoC
simulation for a 4x4 Gemmini configuration and 19.8x faster for a 16x16 Gemmini configu-
ration. With ChiselTest binary caching enabled, CFC was able to execute the matmul test
binary an average of 9.72x faster than a full-SoC simulation for a 4x4 Gemmini and 9.53x
faster for a 16x16 Gemmini configuration. Similar results were found for the mvin_mvout
and matrix_add benchmarks as well, with 4x4 configuration speedups of 6.50x and 6.54x and
16x16 configuration speedups of 5.06x and 4.98x respectively.

These significant increases in simulation speed, as well as the ability to quickly test
an accelerator against different processor environments motivates the continued use and
development of CFC as a verification tool.

5.2 Potential For Future Use

While this thesis focused on using CFC to test Gemmini, there are a wide range of
other potential use cases. The first use case is testing other accelerators. CFC can be
expanded to include support for other existing RoCC accelerators such as Hwacha, which
will dramatically increase the speed at which new changes to these devices can be tested
at the SoC-integration level. Moreover, CFC can be used to aid in the development of new
accelerators, allowing for faster bring-up of new IP.

Another use case for CFC is transaction capture and replay. In this application, a
co-simulation run is performed on a DUT and the protobuf transactions for that run are
recorded. Those transactions can be replayed into the DUT with different delays or relative
orderings in order to simulate modified processor environments. For example, the captured
RoCC commands can be pushed into the DUT at various rates of cycles per instruction to
model processors with different instruction injections rates. Similarly, variable delays can be
added to commands that occur after branch instructions to simulate the impact of faster or
slower branch prediction resolution.

Finally, CFC can be used to quickly simulate the impact of different memory environ-
ments. One way that the memory environment can be changed is by simulating the impact of
different bus widths or supported bus operations. For instance, changing the beatBytes pa-
rameter of the VerifRoCCStandaloneWrapper wrapping a RoCC device will simulate chang-
ing the TL bus width. Another way to change the memory environment is by modifying
the number of wait cycles used by the TLDriverSlave inside the TLPipeConnector. In
the Gemmini tests, the wait cycles were set to zero, so new TL messages were pushed into
Gemmini as soon as they arrived. However, by increasing this value it is possible to test the
impact of memory system latency on device functionality.

Beyond these detailed future use cases, there are a wide range of other use applications for
CFC. Some examples include protocol compliance checking and debugging SoC level bugs.
This list will likely grow with future developments and additional research.

38

5.3 Open Issues

While CFC is sufficiently developed for use with Gemmini, there are a few open issues
that offer potential for future research and development. The largest such issue is avoiding
deadlock. In particular, the fact that named pipes block until both a reader and writer
are connected to them creates an immense challenge during the initial startup phase of co-
simulation. Imagine the situation where a producer and consumer attempt to connect to two
different named pipes, A and B. If the producer opens an output stream to A before B and
the consumer opens an input stream to B before A, then a deadlock will occur. CFC avoids
such deadlocks by establishing a specific order in which named pipes should be connected.

Future work could be done to develop a system that avoids deadlock without the need
for such a tenuous system. One proposal for how to achieve this is to create a master list
of named pipes with their writers and readers demarked in some fashion. The writers and
readers can then programmatically negotiate an order in which to open connections such
that deadlock is avoided. This is somewhat similar to how Diplomacy is used to negotiate
bus parameters during elaboration.

Another open issue with CFC is that it cannot be used to estimate device performance.
Because Spike is a functional simulator, CFC is an instruction-accurate framework wherein
synchronization only occurs between Spike and the RTL simulation on fence instructions.
Additionally, because Spike is significantly faster than the RTL simulation, all of the RoCC
commands that occur before a fence are available to the RTL simulation immediately fol-
lowing startup or the completion of one fence prior.

While the instruction-accurate approach has the advantage of flexibility and ease of im-
plementation, it removes the ability to characterize performance measurements such as cycle
count. This issue would be remedied by converting CFC into a cycle-accurate framework,
trading off speed for increased real world accuracy. Doing so would require a cycle ac-
curate software model be used in the place of Spike. To enable this transition, the same
co-simulation components added to Spike would need to be added to this new simulation.
Additionally, work would need to be done to introduce a communication method for clock
synchronization such that software and hardware clock steps occur at the same time. In the
meantime, a tool such a FireSim is the best option for performance profiling.

5.4 Repository Links

e Main CFC components: https://github.com/TsaiAnson/verif/tree/master/cosim
e Modified Spike: https://github.com /ryan-lund/esp-isa-sim

e Chipyard with CFC: https://github.com/ryan-lund/chipyard/tree/cosim

39

https://github.com/TsaiAnson/verif/tree/master/cosim
https://github.com/ryan-lund/esp-isa-sim
https://github.com/ryan-lund/chipyard/tree/cosim

Bibliography

1]

=)

Ot

—_— — — —
D
= =L =

[13]
[14]

[15]

Janick Bergeron. Writing Testbenches: Functional Verification of HDL Models. Springer
US, 2003. 1SBN: 978-1-4020-7401-1.

Chisel Verification Repository. URL: https://github.com/tsaiAnson/verif.

Andreas Hoffmann, Tim Kogel, and Heinrich Meyr. “A Framework for Fast Hardware-
Software Co-simulation”. In: In Design, Automation and Test in Europe DATE’01.
2001, pp. 760-765. URL: http://citeseerx. ist . psu.edu/viewdoc/download ;
jsessionid=FE129429ED386A525420146CF43DB8CD 7doi=10.1.1.12.6229&rep=
repl&type=pdfl

HDL Verifier. URL: https://www.mathworks.com/products/hdl-verifier.html.
Vitis HLS. URL: https://www.xilinx.com/products/design-tools/vitis.html.
Xilinx IStm. URL: https://www.xilinx.com/products/design-tools/isim.html.

Sagar Karandikar et al. “FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud”. In: Proceedings of the 45th Annual International
Symposium on Computer Architecture. ISCA ’18. Los Angeles, California: IEEE Press,
2018, pp. 29-42. 1sBN: 978-1-5386-5984-7. pDOI: 10.1109/ISCA.2018.00014. URL:
https://doi.org/10.1109/ISCA.2018.00014.

Krste Asanovié¢ et al. The Rocket Chip Generator. Tech. rep. UCB/EECS-2016-17.
EECS Department, University of California, Berkeley, Apr. 2016. URL: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17 .html.

Jerry Zhao et al. “SonicBOOM: The 3rd Generation Berkeley Out-of-Order Machine”.
In: Fourth Workshop on Computer Architecture Research with RISC-V. May 2020.

Dromagjo. URL: https://github.com/chipsalliance/dromajo.

Maria Munoz-Quijada, Luis Sanz, and Hipolito Guzman-Miranda. “SW-VHDL Co-
Verification Environment Using Open Source Tools”. In: Electronics 9.12 (2020). 1SSN:
2079-9292. DOI: [10.3390/electronics9122104. URL: https://www.mdpi.com/2079-
9292/9/12/2104.

Alon Amid et al. “Chipyard: Integrated Design, Simulation, and Implementation Frame-
work for Custom SoCs”. In: IEEE Micro 40.4 (2020), pp. 10-21. 1sSN: 1937-4143. DOT:
10.1109/MM.2020.2996616.

sbt. URL: https://www.scala-sbt.org/.

Martin Maas, Krste Asanovi¢, and John Kubiatowicz. “A Hardware Accelerator for
Tracing Garbage Collection”. In: 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA). 2018, pp. 138-151. pOI: |10.1109/ISCA.
2018.00022.

Qijing Huang et al. “Centrifuge: Evaluating full-system HLS-generated heterogenous-

accelerator SoCs using FPGA-Acceleration”. In: 2019 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD). 2019, pp. 1-8. DOI:|10.1109/ICCAD45719.
2019.8942048.

40

https://github.com/tsaiAnson/verif
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FE129429ED386A525420146CF43DB8CD?doi=10.1.1.12.6229&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FE129429ED386A525420146CF43DB8CD?doi=10.1.1.12.6229&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=FE129429ED386A525420146CF43DB8CD?doi=10.1.1.12.6229&rep=rep1&type=pdf
https://www.mathworks.com/products/hdl-verifier.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/isim.html
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/chipsalliance/dromajo
https://doi.org/10.3390/electronics9122104
https://www.mdpi.com/2079-9292/9/12/2104
https://www.mdpi.com/2079-9292/9/12/2104
https://doi.org/10.1109/MM.2020.2996616
https://www.scala-sbt.org/
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1109/ICCAD45719.2019.8942048
https://doi.org/10.1109/ICCAD45719.2019.8942048

J. Bachrach et al. “Chisel: Constructing hardware in a Scala embedded language”. In:
DAC Design Automation Conference 2012. June 2012, pp. 1212-1221. por: 10.1145/
2228360.2228584.

ChiselTest. URL: https://github.com/ucb-bar/chisel-testers?2.

Hasan Genc et al. “Gemmini: An Agile Systolic Array Generator Enabling System-
atic Evaluations of Deep-Learning Architectures”. In: arXiv preprint arXiv:1911.09925
(2019).

Spike. URL: https://github.com/riscv/riscv-isa-sim.

Kenton Varda. Protocol Buffers: Google’s Data Interchange Format. Tech. rep. Google,

June 2008. URL: http://google-opensource.blogspot.com/2008/07/protocol-
buffers-googles—data.htmll

Henry Cook, Wesley Terpstra, and Yunsup Lee. “Diplomatic Design Patterns : A
TileLink Case Study”. In: First Workshop on Computer Architecture Research with
RISC-V. CARRV’17. Boston, Massachusetts, Oct. 2017.

Verilator. URL: https://www.veripool.org/verilator/.

41

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://github.com/ucb-bar/chisel-testers2
https://github.com/riscv/riscv-isa-sim
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
https://www.veripool.org/verilator/

Appendices

A Additional Feature Additions

The following appendix covers features that were created during the development of CFC
but ultimately not used within the framework. While unused within CFC, these features are
still useful for other projects.

A.1 Coverage Annotations for ChiselTest

One of the main reasons for testing a component under co-simulation is to expose the
device to real world workloads. Doing so lets a designer see what coverage is achieved on
realistic workloads. This coverage information is often automatically collected by software
simulators when specific flags are passed during their compilation process. However, while
the process of adding coverage is simple from the simulator side, Chisel Test lacked the ability
to add these flags.

In order to add specific directives for simulation, ChiselTest uses annotations added to a
test harness. For example, the VerilatorBackendAnnotation annotation directs ChiselTest
to use Verilator as the backend simulator for the RTL emitted by the test harness.

To add support for coverage to ChiselTest, a set of new annotations was added. The
LineCoverageAnnotation, ToggleCoverageAnnotation, BranchCoverageAnnotation, and
ConditionalCoverageAnnotation annotations turn on coverage collection for the structural
elements that correspond to their name. In cases where full structural coverage is desired,
the StructuralCoverageAnnotation annotation turns on all of the previously mentioned
annotations. Finally, the UserCoverageAnnotation annotation turns on coverage for user
defined cover-points. It is important to note that these annotations have no effect if the
selected backend simulator does not support that coverage type. For example, since Treadle
does not support any type of coverage collection, passing any of these new annotations along
with the TreadleBackendAnnotation would do nothing. Table 8 summarizes the coverage
types supported for each ChiselTest backend.

Treadle | Verilator | VCS
Line X X
Toggle X X
Branch X
Conditional X
Structural X X
User X X

Table 8: Backends and supported coverage types.

When any of these new annotations are passed to a test harness, the executive for the
test’s selected backend simulator interprets them and creates the proper string of coverage

42

flags for the simulator. Those flags are then appended onto the global flags list that is
used during simulator compilation. [Listing 19 illustrates how the flag map is created and
appended to the global flags for VCS.

98 val coverageFlags = (compiledAnnotations collect {
99 case LineCoverageAnnotation => List("line")

100 case ToggleCoverageAnnotation => List("tgl")

101 case BranchCoverageAnnotation => List("branch")
102 case ConditionalCoverageAnnotation => List("cond")
103 case UserCoverageAnnotation => List("assert")

104 case StructuralCoverageAnnotation => List("line", "tgl", "branch", "cond")
105 }) .flatten.distinct match {

106 case Nil => Seq()

107 case flags => Seq("-cm " + flags.mkString("+"))
108 }

113 val vcsFlags = moreVcsFlags ++ coverageFlags

VcsExecutive.scala

Listing 19: Creation of coverage flag map for VCS.

43

	Introduction
	Co-Simulation Overview
	State-of-the-Art Solutions
	Commercial Frameworks
	Open Source Frameworks

	What CFC Brings to the Table

	Background
	Chisel
	ChiselTest
	Chipyard
	Gemmini
	Spike
	Protocol Buffers

	Design
	Out-of-Context Elaboration of Diplomatic Components
	Parameter Generation
	RoCC Standalone Wrapper

	Translating Between Hardware Bundles and Software Messages
	Protocol Buffer to Bundle Conversion
	Bundle to Protocol Buffer Conversion

	The Co-Simulation Manager
	Communication Over Named Pipes
	Scala Pipe Connectors
	Running Binaries From Scala
	The CosimTester Trait
	The Complete Co-Simulation Manager

	Testbench Setup
	Optimization - ChiselTest Binary Caching

	Application to Gemmini
	Spike Modifications
	Threaded TileLink Memory Model
	Fence Handling
	Command Line Arguments
	Gemmini Specific Pipe Connectors

	Gemmini Testbench Setup
	Results
	Collection Methodology

	Pre-Optimization Results
	Elaboration Time
	Test Time

	Post-Optimization Results

	Conclusion
	Summary of Produced Tools and Results
	Potential For Future Use
	Open Issues
	Repository Links

	Bibliography
	Appendices
	Additional Feature Additions
	Coverage Annotations for ChiselTest

