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Abstract

Dynamic Verification Library for Chisel

by

Yuan-Cheng (Anson) Tsai

Masters of Science in Electrical Engineering Computer Science

University of California, Berkeley

Professor Borivoje Nikolić, Chair

As Chipyard (Berkeley’s open-source SoC development framework) and Chisel (Berkeley’s
open-source hardware description language) are rapidly growing in popularity within both
academia and industry, the need of a compatible verification library is stronger than ever.
The industry standard UVM is not suitable with Chisel circuits, as although the generated
Verilog can be verified, readability and debuggability is challenging for large designs. More-
over, as Chisel is built upon Scala, a general multi-purpose programming language, special
high-level constructs such as type classes and generics that Chisel circuits are parameterized
by are very di�cult to represent in SystemVerilog. The open-source Chisel Verification Li-
brary remedies this disconnect between Chisel and UVM by providing high level verification
constructs for Chisel testbenches. It is modeled o↵ of UVM to contain the benefits of the
test component abstractions such as the driver and monitor, and it also supports common
interfaces such as the Decoupled and TileLink interface. Moreover, the library includes a
SVA-like specification language eDSL that enable users to write property assertions on out-
put traces. The library has been used in several applications, such as the verification of a
RAM module, L2 cache, as well as an AES cryptography accelerator.
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Chapter 1

Background and Project Introduction
1.1 Background

1.1.1 Chipyard

Developed at Berkeley, Chipyard[2] is a framework for building Chisel-based SoCs (systems-
on-chip). It is a collection of open-source Chisel generators such as the Rocket Chip SoC
generator and other Berkeley projects that together enable the generation of RISC-V SoCs.
Figure 1.1 shows the design flows supported by Chipyard.

Chipyard lacks unit or subsystem-level verification infrastructure, and as such individual
components are rarely tested at unit-level. Instead, the SoC is tested as a whole via software
tests running on its CPU cores. This can result in situations where a working design can fail
if parameterized di↵erently, as previously hidden bugs are now exposed under a di↵erent con-
figuration. As Chipyard has grown substantially in usage across both academia and industry,
there is a stronger need for infrastructure to support unit-level testing of Chisel RTL to en-
sure that individual components and subsystems are bug-free. The next sections describe
how Chisel-generated RTL is di↵erent from Verilog from the perspective of verification, and
why the current industry verification practices are inadequate for Chisel RTL.

Figure 1.1: Chipyard flows. Adapted from Chipyard paper[3].
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Figure 1.2: N-FIR Filter.

1.1.2 Chisel

Chisel is a Berkeley-made domain specific language (DSL) that adds hardware construc-
tion primitives to the Scala programming language. Embedded in a general-purpose pro-
gramming language, Chisel supports metaprogramming facilities such as parameterization
that allows designers to create circuit generators that can be re-used in many designs. In
the backend, Chisel emits FIRRTL, or Flexible Internal Representation for RTL, that can
be further compiled into the standard Verilog or SystemVerilog (SV) that can then be used
with the standard toolchains for synthesis, place and route, etc. To see Chisel in action, con-
sider the following FIR filter example that is adapted from the Chisel website[1]. Figure 1.2
displays the general block diagram of a N-FIR filter that performs convolution operations.

Using only the Chisel primitives similar to that of synthesizable Verilog, Listing 1.1
displays the implementation for a 3-point moving average implemented in a FIR filter style.

1 case class FIRIO(bitWidth: Int) extends Bundle {
2 val in = Input(UInt(bitWidth.W))
3 val out = Output(UInt(bitWidth.W))
4 }
5

6 class MovingAverage3(bitWidth: Int) extends Module {
7 val io = IO(FIRIO(bitWidth))
8

9 val z1 = RegNext(io.in)
10 val z2 = RegNext(z1)
11

12 io.out := (io.in * 1.U) + (z1 * 1.U) + (z2 * 1.U)
13 }

Listing 1.1: Verilog-like Chisel for 3-point moving average (FIR Filter)[1].

Starting at the top, the IO of the FIR filter is defined as a Chisel Bundle, a struct-like
object that groups together fields of varying types. Within the Bundle, two fields, in and
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out, are defined as UInt types (unsigned integer hardware type) that have a parameterizable
width of bitWidth. The directionality of the fields are indicated by Input and Output.

The circuit is defined on line 6 via a class that inherits from Module to declare that this
object is a hardware module. Line 7 instantiates the FIRIO and wraps it within a IO function
to declare it as the IO. On lines 9 and 10, two registers defined with the constructors RegNext
combine together to create a shift register chain that stores the values from the previous two
cycles. Note that the clock and reset ports are implicitly defined and connected to the
registers when the module is elaborated. Lastly, the Chisel := operator on line 10 connects
the sum of the multiplication operations with unsigned integers (denoted by .U) to io.out,
implementing the 3-point moving average circuit.

However, if we utilize Chisel’s strengths in that it is embedded within Scala, we can write
a generator that can create a generalized N-FIR filter defined by a list of input coe�cients:

1 // Generalized FIR filter parameterized by the convolution coefficients
2 class FirFilter(bitWidth: Int, coeffs: Seq[UInt]) extends Module {
3 // FIRIO specified in previous example
4 val io = IO(FIRIO(bitWidth))
5

6 // Create the serial-in, parallel-out shift register
7 val zs = Reg(Vec(coeffs.length, UInt(bitWidth.W)))
8 zs(0) := io.in
9 for (i <- 1 until coeffs.length) {

10 zs(i) := zs(i-1)
11 }
12

13 // Perform the multiplications
14 val products = VecInit.tabulate(coeffs.length)(i => zs(i) * coeffs(i))
15

16 // Sum up the products
17 io.out := products.reduce(_ + _)
18 }

Listing 1.2: N-FIR Filter generator[1].

The above implementation utilizes Scala constructs to create a generalizable FIR Filter
circuit. Specifically, it uses a for loop to create the shift register chain, tabulate on line
14 to create a vector of multiplications, and reduce on line 17 for the final sum. Now,
additional variants can now be defined without having to implement separate circuits:

1 // same 3-point moving average filter as before
2 val movingAverage3Filter = Module(new FirFilter(8, Seq(1.U, 1.U, 1.U)))
3 // 1-cycle delay as a FIR filter
4 val delayFilter = Module(new FirFilter(8, Seq(0.U, 1.U)))
5 // 5-point FIR filter with a triangle impulse response
6 val triangleFilter = Module(new FirFilter(8, Seq(1.U, 2.U, 3.U, 2.U, 1.U)))

Listing 1.3: Various types of FIR Filters[1].
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Moreover, there is no limit on which Scala constructs can be used. For example, the
FIR filter could have parameterized the sum function to take on di↵erent data types. The
function could be more expressive with the use of higher-order functions, typeclasses and
type generics, as shown below with an example implementation of an accumulate function
for Ring values:

1 def accumulate[T <: Data : Ring](v: Vec[T]): T = {
2 val ring = implicitly[Ring[T]]
3 v.foldLeft(ring.zero)((a, b) => ring.add(a, b))
4 }

Listing 1.4: Example of accumulate function.

Even with these software constructs, the circuit can still be generated into functional
Verilog. As mentioned earlier, Chisel can emit FIRRTL which is an RTL intermediate repre-
sentation that can then be compiled to Verilog/SystemVerilog. For simplicity, let’s consider
the FIRRTL and generated Verilog for the simple FIR circuit implemented in Listing 1.1:

1 circuit FirFilter :
2 module FirFilter :
3 input clock : Clock
4 input reset : UInt<1>
5 output io : {flip in : UInt<8>, out : UInt<8>}
6

7 reg zs : UInt<8>[3], clock
8 zs[0] <= io.in
9 zs[1] <= zs[0]

10 zs[2] <= zs[1]
11 node _T = mul(zs[0], UInt<1>("h01"))
12 node _T_1 = mul(zs[1], UInt<1>("h01"))
13 node _T_2 = mul(zs[2], UInt<1>("h01"))
14 wire products : UInt<9>[3]
15 products[0] <= _T
16 products[1] <= _T_1
17 products[2] <= _T_2
18 node _T_3 = add(products[0], products[1])
19 node _T_4 = tail(_T_3, 1)
20 node _T_5 = add(_T_4, products[2])
21 node _T_6 = tail(_T_5, 1)
22 io.out <= _T_6

Listing 1.5: Generated FIRRTL.

Above is the generated FIRRTL of the 3-point moving average FIR filter. From brief
inspection, the structure can be seen to be very similar to that of listing Listing 1.1. Next,
Listing 1.6 displays the Verilog generated from the FIRRTL code.
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1 module FirFilter(
2 input clock,
3 input reset,
4 input [7:0] io_in,
5 output [7:0] io_out
6 );
7 reg [7:0] zs_0;
8 reg [7:0] zs_1;
9 reg [7:0] zs_2;

10 wire [8:0] products_0 = zs_0 * 1'h1;
11 wire [8:0] products_1 = zs_1 * 1'h1;
12 wire [8:0] products_2 = zs_2 * 1'h1;
13 wire [8:0] _T_4 = products_0 + products_1;
14 wire [8:0] _T_6 = _T_4 + products_2;
15 assign io_out = _T_6[7:0];
16 always @(posedge clock) begin
17 zs_0 <= io_in;
18 zs_1 <= zs_0;
19 zs_2 <= zs_1;
20 end
21 endmodule

Listing 1.6: Generated Verilog.

Although Chisel circuits can be converted into Verilog, verifying a Chisel circuit is dif-
ferent than verifying a Verilog one. Verifying Chisel generated Verilog is more complex than
handwritten Verilog due to the metaprogramming features from Scala. Chisel elaboration
can consume many parameters, and those parameters can a↵ect the test execution, stimulus
generation, and correctness checking. Consider the FIR filter example: the circuit is pa-
rameterized by the bitWidth and coefficients variables, which when changed will a↵ect
stimulus generation and golden model checking. Even in more complex designs like a level 2
(L2) cache, there are many microarchitecture (uArch) parameters and interface parameters
that a↵ect circuit behavior. Moreover, Chisel circuits come with metadata about the inter-
faces around a DUT that should be utilized by the test environment to provide compatible
test components (e.g. if the interface operates on ready-valid signals). With highly param-
eterizable Chisel circuits, a notion of coverage of the RTL generation space is also needed.
To allow easy enumeration of the design space and easy testing of a DUT, it should be done
in the same language that Chisel circuits are written in, Scala.

Using Scala as the test driver host language has many benefits over the standard Ver-
ilog + SV testbench. SystemVerilog is a limited language with restricted object oriented
programming features; it lacks higher-kinded types, lacks typeclass support, lacks of co/con-
travariance for type generics, and has poor support for higher order functions (e.g. ad hoc
lambdas). For example, the earlier accumulate example shown in Listing 1.4 would be very
di�cult, if not impossible, to represent in SV. As such, industry standard SV libraries like
UVM have complex abstractions that could be represented in a more friendly way with a
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Figure 1.3: ChiselTest API overview.

general purpose programming language (see Section 1.1.4 for examples).
Scala, on the other hand, is a general-purpose programming language that o↵ers more

unified interaction interfaces and more complete functionalities. For example, Scala has easy
interaction with models written in C/C++ via JNI. Moreover, Scala language constructs
enable hybrid object oriented programming and functional programming paradigms through
classes, traits, and typeclasses. It also has the ability to utilize the Java ecosystem to build
golden models and Java’s IPC mechanisms to talk to other processes. Some of these benefits
can be seen in the ChiselTest, explained in the following section.

1.1.3 ChiselTest

ChiselTest is a test harness designed for Chisel RTL. Written in Scala, it operates as the
test interaction API between Scala and an arbitrary RTL simulator, enabling easy swapping
of di↵erent simulators. ChiselTest can also integrate with ScalaTest, the default testing
tool in Scala, using the expect() API. For a visual diagram of where ChiselTest fits in the
testbench, Figure 1.3 displays the interaction between user code, ChiselTest, and various
RTL simulators such as Treadle, Verilator, and VCS.

For simulators that run as di↵erent processes (e.g. Verilator and VCS), ChiselTest utilizes
Java’s IPC functionality to connect to them. This adds performance overhead as every
simulation cycle within the test has to communicate across processes. Treadle, on the other
hand, avoids the IPC overhead as it is a Scala-native simulator and shares the same Java
virtual machine (JVM) as the testbench.

In terms of functionality, ChiselTest contains a library that enables basic interaction with
the DUT interface such as peek, poke, step (to step the clock), and fork/join. In terms of
fork semantics, ChiselTest’s fork is similar to SV’s fork as they both execute the specified
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code block in another thread. Moreover, the join construct in ChiselTest is similar to SV’s in
that it causes the main thread to wait until all spawned threads have completed. If join is not
given, the main thread will continue to execute alongside the spawned threads. Something
to note is that ChiselTest does not natively support SV’s join_any construct (where the
main thread will wait until a thread has completed), although it can be implemented using
shared state between all spawned threads that forces all threads to prematurely end when
one completely finishes. For a brief example of using ChiselTest, consider the following code
that is testing a standard 2-input adder.

1 test(new Adder(8)){ c =>
2 fork {
3 for (i <- 1 to 3) {
4 c.io.a.poke(i.U)
5 c.clock.step()
6 }
7 } .fork {
8 for (i <- 1 to 3) {
9 c.io.b.poke(i.U)

10 c.clock.step()
11 }
12 } .join
13 c.clock.step(2)
14 c.io.a.poke(4.U)
15 c.io.b.poke(4.U)
16 c.clock.step()
17 }

Listing 1.7: Adder test code.

Figure 1.4: Adder test wave.

Line 1 defines a ChiselTest test environment with new Adder(8), or an 8-bit adder, as
the DUT. Within this test block, c refers to the DUT in simulation. Within the test, two
threads are instantiated, with each poking an input of the adder. Note that in the waveform,
the inputs increment together, as the call to c.clock.step() acts as a thread synchronizer
and blocks until all relevant threads have reached that point. When both threads finish, the
main thread then continues and waits 2 cycles before poking 4 on both inputs. Note that
if .join was not included, all three threads (2 forked + main) will be running concurrently
and cause an assertion for conflicting pokes on both inputs.

In terms of ChiselTest’s underlying implementation of fork/join, each fork block cre-
ates a parked operating system (OS) thread. During test execution, all available threads are
multiplexed such that only one thread can run at a time. When the running thread encoun-
ters a call to step(), the thread is parked and the runtime scheduler finds the next thread
to run. While the thread execution order is defined and fully deterministic, ChiselTest will
still register and check that the actions of each thread do not conflict with another’s or po-
tentially cause non-intuitive behavior. For instance, ChiselTest will throw an assertion when
multiple threads attempt to poke the same wire in the same cycle, or if a thread attempts to
poke a wire that has a combinational path with a wire that another thread is trying to peek
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Figure 1.5: ChiselTest fork/join diagram.

at the same cycle. For the latter situation, ChiselTest o↵ers a fork.region construct that
allows ordering of threads, as demonstrated in the following code snippets. There are two
pre-defined regions TestdriverMain and Monitor, with TestdriverMain regions executed
first. Lastly, if join is used on the forked threads, the main thread will remain parked
until all spawned threads complete. Figure 1.5 displays a high-level diagram of ChiselTest’s
implementation of fork/join.

On top of the base peek and poke functionality, ChiselTest also contains wrapper enqueue
and dequeue functions that simplify poking and peeking decoupled, or ready-valid, interfaces.
Below is a short code snippet of the enqueue and expectDequeue functions. Note that
the expectDequeue function contains a helper method waitForValid() that checks if the
interface is valid, as it should not be checked within the Monitor region.

def enqueue(data: T): Unit = {
x.bits.poke(data)
x.valid.poke(true.B)
fork.withRegion(Monitor) {
while (!x.ready.peek().litToBoolean) {
getSourceClock.step(1)

}
} .joinAndStep(getSourceClock)

}

Listing 1.8: ChiselTest enqueue.

def expectDequeue(data: T): Unit = {
x.ready.poke(true.B)
fork.withRegion(Monitor) {
waitForValid()
x.valid.expect(true.B)
x.bits.expect(data)

} .joinAndStep(getSinkClock)
}

Listing 1.9: ChiselTest expectDequeue.

However, these base constructs do not allow fuzzing capability other than direct stimulus
driving. Take the below naive ChiselTest testbench for a queue for example:
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1 test(new QueueModule(UInt(8.W), 8)) { c =>
2 fork {
3 for (i <- 0 until 10)
4 c.in.enqueue(i.U)
5 } .fork {
6 for (i <- 0 until 10)
7 c.out.expectDequeue(i.U)
8 } .join
9 }

Listing 1.10: Naive ChiselTest QueueModule testbench.

This test enqueues and dequeues from the queue on every cycle. If we wanted more
complex DUT interactions such as rate throttling on the enqueuing interface, we would have
to implement it ourselves as there is currently no systematic way to do this using the given
ChiselTest constructs. This can be accomplished by utilizing a counter that increments on
each cycle, and once the counter reaches a threshold, we can enqueue the next value and
reset the counter. Given that we are unable to modify the enqueue function, we would have
to poke and peek the control signals ourselves, as shown in Listing 1.11. If we also wanted
backpressure on the dequeuing interface, a similar tactic can be done with the ready signal.

1 test(new QueueModule(UInt(8.W), 8)) { c =>
2 fork {
3 // Rate throttling counter
4 var counter = 0
5 for (i <- 0 until 10) {
6 c.in.valid.poke(false.B)
7 // Example threshold of at least 5 cycles
8 while (!c.in.ready.peek() || counter < 5) {
9 // Get source clock because the Queue can be asynchronous

10 getSourceClock.step(1)
11 counter += 1
12 }
13 c.in.valid.poke(true.B)
14 c.in.enqueue(i.U)
15 // Reset counter
16 counter = 0
17 getSourceClock.step(1)
18 }
19 c.valid.poke(false.B)
20 } .fork {
21 for (i <- 0 until 10)
22 c.out.expectDequeue(i.U)
23 } .join
24 }

Listing 1.11: Naive ChiselTest QueueModule testbench with rate throttling.
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First, we can see how convoluted the code has gotten with the additional logic for rate
throttling. Second, we have now intertwined the protocol (how to drive one transaction)
with the metaprotocol (rate throttling) and with the data itself. This methodology is not
systematic and scalable, as the logic is hardcoded and baked into the test itself. If, for
example, the QueueModule was parameterizable by cycle delay, then portions of the test that
check the output may have to be re-written to account for the additional delay. Thus the
protocol, metaprotocol, and data should be separated such that these test library collateral
can be applied to other tests and designs as well. Note that there is already an industry
standard Verilog verification library, UVM, that o↵ers test component abstractions that
separate the responsibilities across multiple components.

1.1.4 Prior Work and State of the Art - UVM

The Universal Verification Methodology (UVM)[4] is a industry standardized methodol-
ogy used for verifying Verilog RTL designs. It was based on the Open Verification Method-
ology (OVM)[5], which is another dynamic verification methodology library. Both are Sys-
temVerilog based verification methodologies, and their usefulness comes from their abstrac-
tions that divide the testbench into test components that each have their distinct roles.

The UVM figures below display the clean separation of stimulus generation, DUT inter-
actions, and data consistency/model checking constructs. The first figure is the structure of
a UVM testbench:

Figure 1.6: UVM testbench layout.
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First, all of the components are housed within uvm_top. It contains the DUT and
uvm_test, which contains all the test components that interact with the DUT’s interface.
Within the uvm_test, the uvm_env holds the uvm_agent, which is responsible for interacting
with the DUT, and the uvm_scoreboard, which is responsible for checking the output of the
DUT. Looking inside the uvm_agent, the core test components are connected to the DUT’s
interface. The functionality of the uvm_driver is to both drive the transactions supplied
from the uvm_sequencer onto the DUT’s interface and receive any responses the DUT may
have. The uvm_monitor, on the other hand, only observes the DUT interface and records all
exchanged transactions. The transactions recorded by the uvm_monitor can also be sent to
other components within the environment, such as the uvm_scoreboard for output check-
ing. For the observed transactions to be forwarded, the uvm_scoreboard must contain a
uvm_subscriber for that particular monitor.

Note that all of the test components within the environment can appear in any number;
there can be multiple uvm_agents communicating on di↵erent interfaces of the DUT, multiple
uvm_scoreboards for multiple uvm_monitors, etc. The flexibility and modular usage is
possible as UVM has clean separation between its components.

Figure 1.7: UVM transactions.

Figure 1.7 describes the structure of test stimulus. Here, the uvm_transaction is
the unit abstraction that represents a single piece of data sent to the DUT. A group of
uvm_transactions forms a uvm_seqeuence, and a set of uvm_seqeuences forms a uvm_test.
Connecting this with the above diagram, the uvm_seqeuencer takes the uvm_transactions
from the uvm_test and sends them to the driver to push to the DUT. However, a distinction
to be made here is that all UVM components, including the transactions, are written in
SystemVerilog. For it to be pushed onto the DUT interface, the driver must convert the SV
datatype struct into the DUT HW datatype struct. This also applies to the transactions
observed by the monitor as well. As such, there will be two objects for each transaction.

Looking at the overall UVM structure, there are some abstractions that can be rep-
resented in a more user friendly way with a general purpose programming language. For
example, the uvm_test abstraction is essentially a wrapper for a list of sequences, which
in Scala could be recreated with Seq[Seq[Transaction]]. This Scala interpretation also
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avoids the uvm_sequence abstraction all together. Moreover, other abstractions such as
uvm_agent and uvm_subscriber are additional complexities that come from how interfaces
are connected in di↵erent phases in SV. In Scala, all of these complex abstractions can be
replaced with generic structures.

1.1.5 Motivation

As described above, there is a strong need for Scala-based verification infrastructure. It
would greatly simplify the verification of Chisel circuits by consolidating the design language
and the test language into the same one. For instance, it would enable easy enumeration of
the design space for highly parameterizable Chisel circuits. Moreover, as Scala is a general-
purpose programming language, the test infrastructure can benefit from many of the flexible
language constructs and existing software packages in the Java ecosystem: JNI for easy
interaction with C/C++ models, Java’s IPC mechanisms to talk to other processes, etc.
We’ve seen the flexibility of the IPC mechanisms through ChiselTest’s ability to easily swap
RTL simulators. And although it only provides the base functionality of interacting with a
DUT, ChiselTest provides a suitable foundation for more complex verification infrastructure
to be built on top. As such, the goal of the this verification library is to provide test
library collateral and infrastructure that can implement the UVM methodologies in a Chisel
compatible environment.

1.2 Dynamic Verification Library for Chisel

The Dynamic Verification Library for Chisel[6]1 aims to adapt UVM methodologies in a
Chisel compatible environment. As such, the library has a UVM-like hierarchical structure
that contains verification IPs (VIPs) such as drivers, monitors, and scoreboard-like checking
components that operate on the transaction level. These VIPs can be instantiated in a
ChiselTest simulation environment and connected to a DUT. Moreover, the library can be
standalone or intergrated within Chipyard, allowing for the library to be used to verify
complex designs such as level 2 caches and Rocket accelerators.

1.2.1 Library Structure

The library currently consists of three sublibraries: verifCore, verifTL, and
verifCosimGemmini. The verifCore sublibrary contains the base test components for stan-
dard interfaces such as the generic, valid-only, and decoupled interface. It also contains
an embedded SVA-like specification language for transaction-level trace verification. The
verifTL sublibrary extends verifCore by providing test components for the TileLink in-
terface, a chip-scale interconnect used in Chipyard-based SoCs. The verifCosimGemmini

1
As the verification library is still under development, the contents of this paper may be outdated at the

time of reading.
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sublibrary contains the test components required for Gemmini cosimulation, or the ability
to test Gemmini with simulations of their environment (e.g. a RISCV-ISA simulator). Note
that this report will cover only the verifCore and verifTL sublibraries.

1.2.2 Test Component Library Overview

The verification library contains test components that mimic UVM abstractions. Fig-
ure 1.8 displays what a testbench looks like using the library.

Figure 1.8: Generic library testbench diagram.

Notice the similar but simplified structure compared to the UVM testbench shown in
Figure 1.6. Starting from the bottom right, the transaction generator will generate transac-
tions to send to the driver. Note that the generator is optional, as the user can also supply
transactions directly to the driver. Transactions in this library are defined as Chisel bundles
that are, or contain, the same Chisel bundle which is used by DUT’s interface. For example,
referring back to the very Chisel example of a 3-point moving average FIR filter (Listing 1.1),
the transactions for that design could be the FIRIO bundle. By using the DUT’s interface
bundle datatype as transactions, there is no need to have separate software and hardware
versions of transactions as seen with UVM + SV. Another thing to notice is that the li-
brary does not have any transaction abstractions such as uvm_sequence found in UVM. All
collections of transactions can be easily subsumed by Scala collections such as Seq.

Moving on to the driver, it is responsible for driving the given transactions on the DUT
interface. As transactions are Chisel bundles, they can contain metadata that can configure
how the driver handles that transaction. Next, the monitor listens on the DUT interface and
records all observed transactions. The observed transactions can then be checked against a
software golden model. Note that the library does not have a explicit scoreboard class, as
the monitor and checking functions now cover that responsibility.

For more details on the implementation of the test components, see Chapter 2.
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1.2.3 Specification Language Overview

The Dynamic Verification Library for Chisel also contains an embedded SVA-like spec-
ification language. It supports the basic unit components such as Atomic Propositions
for unit boolean expressions, Time Operators to enable the checking of cycle latency, and
Implications to indicate a condition to be checked. These unit components can be com-
bined into Sequences to model correct sequential behavior of a transaction trace or subtrace.
Properties can then be used to check if a transaction trace conforms to the given Sequence.
Moreover, the specification language also has a modeling layer that supports per-property
local variables as well as global memory models for transaction checking. More details will
be covered in Chapter 3.

1.2.4 Library Application Overview

Chapter 4 will go over a few applications of the verification library. It includes test-
bench designs and results for the TLRAM, SiFive’s InclusiveCache (L2 cache), and an
AES RoCC accelerator. The TLRAM is the default RAM block used in Chipyard, and
SiFive’s InclusiveCache is the L2 cache used with the Rocket Core, an open-source RISC-
V core within Chipyard. Moreover, the AES RoCC accelerator is an AES block cipher
accelerator/co-processor for the Rocket Core. In addition to the test component applica-
tions, the chapter will also discuss how the specification language was used to verify TLRAM
output transaction traces as well as detect malicious mutations within the trace.
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Chapter 2

Test Component Library
The test component library consists of VIPs that interact with the DUT. This includes

UVM-like abstractions of test components such as transactions, fuzzers, drivers, monitors,
and even correctness checking functions. The library can be divided into two groups: the
core test components and the TileLink test components. The core test components refers
to a subset of VIPs that operate on the fundamental interfaces: generic, decoupled (ready-
valid), and valid-only interfaces. The TileLink test components are composed of VIPs that
operate on the TileLink interface, which is built upon the decoupled interface. Each of the
supported interfaces and their VIPs are described in this chapter.

2.1 Core Interfaces

2.1.1 Generic Interface

The generic interface is one that describes any simple input-output interface without
ready-valid control signals (e.g. Listing 1.1, line 1). Without such signals, the VIPs for the
generic interface will attempt to drive and monitor transactions on every cycle, as designs
that use the generic interface are usually combinational or stateful circuits with same-cycle
results. Note that the VIPs for this interface have been removed from the library, as they
can be subsumed by the bare ChiselTest constructs. However, they are still discussed here
as they provide the base implementations for the other VIPs.

2.1.2 Decoupled + Valid Only Interfaces

The decoupled and valid-only interfaces extend the generic interface by introducing ready-
valid control signals. The receiving interface is responsible for controlling the ready signal,
where a high signal signifies that the consumer is ready to accept new data on the interface.
The sending interface is responsible for controlling the valid signal, where a high signal
signifies that the producer has valid data on the interface. Only when both ready and valid
are high in the same cycle is the data interpreted to be successfully transmitted.

The decoupled interface operates with both the ready and valid signal, allowing both
the producer and consumer to control the flow of data. Complex interactions such as rate
throttling and backpressure, or when the producer decreases the rate of sending data and the
consumer decreases the rate of accepting data, are now possible. To enable these behaviors
during testing, the VIPs on this interface can be configured to add artificial delays.
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The valid-only interface di↵ers from the decoupled interface in that it only has a valid
control signal. Without a ready control signal, the consumer must always be available to
accept data. As the producer can still modify the data flow, the VIPs for this interface allow
support rate throttling configuration.

2.2 Core Transactions

All test components operate on interface-specific transactions that encapsulate all DUT
interactions into discrete data objects. As mentioned earlier, transactions are defined as
Chisel datatypes that contain the DUT’s IO and potentially other metadata. Moreover, as
the transactions are written in Chisel/Scala, they can be checked with software, avoiding
the redundancy issue in UVM where two sets of transactions are needed: a Verilog version
for the DUT itself, and a SystemVerilog version for the testbench. Each transaction type is
discussed below.

2.2.1 Generic Transactions

As the generic interface describes a simple interface with no control signals or other
metaprotocols, transactions are defined as either the DUT’s input/output datatypes or the
IO itself. Let’s take the IO from the FIR filter from earlier as example (shown again for
convenience):

1 case class FIRIO(bitWidth: Int) {
2 val in = Input(UInt(bitWidth.W))
3 val out = Output(UInt(bitWidth.W))
4 }

Listing 2.1: FIR Filter IO, Taken from Listing 1.1.

If we wanted two separate transaction types such that there is one for the input and
one for the output, our input and output transactions would simply be Chisel UInts of the
correct width. For example, an input of 100 with a width of 8 would be represented via
val inputTxn = 100.U(8.W), and the output transaction would be another 8-bit UInt.

However, if we wanted to consolidate the input and output into one transaction, the
transactions would then be the DUT’s IO Bundle. For example, an input of 100 with
a width of 8 would be represented via val inputTxn = FIRIO(8).Lit(_.in -> 100.U,
_.out -> 0.U). Note that out could be set to anything as it is defined as an Output and
would not be driven to the DUT. For the output transaction, it would be created the same
way except with out defined with the real output.
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2.2.2 Decoupled + Valid-Only Transactions

As briefly mentioned in Section 2.1.2, the rate at which the VIPs push transaction on
the DUT can be configured. This is done via two custom transaction bundles, DecoupledTX
and ValidTX, that hold metadata fields. Below is the code for DecoupledTX:

1 class DecoupledTX[T <: Data](gen: T) extends Bundle {
2 val data: T = gen.cloneType
3 val waitCycles: UInt = UInt(32.W)
4 val postSendCycles: UInt = UInt(32.W)
5 val cycleStamp: UInt = UInt(32.W)
6 ...
7 // Helper fn to create DecoupledTX with given params
8 def tx(data: T, waitCycles: Int, postSend: Int): DecoupledTX[T]
9 ...

10 }

Listing 2.2: DecoupledTX implementation.

The metadata fields are waitCycles (cycles to wait before sending data), postSendCycles
(cycles to wait after sending data), and cycleStamp (when data was received). The first two
will be used by the driver to determine when to push a transaction to the DUT, while the
last field will be written by the monitor to mark when the data was observed. As for the
datatype of the data field, it will correspond to the DUT’s IO. For an example, let’s look at
the IO of the QueueModule used earlier in the example in Listing 1.10:

1 class QueueModule[T <: Data](ioType: T, entries: Int) extends Module {
2 val in = IO(Flipped(Decoupled(ioType)))
3 val out = IO(Decoupled(ioType))
4 ...
5 }

Listing 2.3: QueueModule implementation.

In the code above, Decoupled is a Chisel construct that wraps the enclosed datatype with
ready-valid signals. Moreover, the Flipped operator reverses the direction of the signals.
Recall that the queue earlier was instantiated via QueueModule(UInt(8.W), 8), meaning
that both in and out are decoupled ports with the datatype of 8-bit unsigned integers.
Thus, the input and output transactions would be of type DecoupledTX(UInt(8.W)). The
following code shows an example of creating an input transaction:

1 val inTxnProto = new DecoupledTX(UInt(8.W))
2 val inputTxn = inTxProto.tx(100.U, 4, 5)

Listing 2.4: DecoupledTX example.
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Note that line 1 is creating a transaction prototype, and line 2 is utilizing the helper
function to create an input transaction with a data payload as 100.U, waitCycles of 4, and
postSendCycles of 5.

Moving on to ValidTX, the implementation is exactly the same, as it is a functional
parity of DecoupledTX but for the valid-only interface. Thus, all the above also applies for
ValidTX.

Note that both DecoupledTX and ValidTX’s datatype T can be any Chisel datatype,
including Bundle types. Moreover, as bundles are concretized to their types, bundles with
di↵ering generic types are considered di↵erent objects (e.g. DecoupledTX[UInt] is di↵erent
from DecoupledTX[SInt]). This type requirement is helpful as Scala will statically catch
errors if a wrong transaction type is used. However, due to Chisel’s width inference, mis-
matched widths will not be caught during compile time but instead will be caught during
runtime.

2.2.3 Randomization - SMTSampler

In terms of transaction randomization, the library utilizes the Maltese-SMT project[7]
to enable constrained randomization of transaction fields. The API is straightforward: call
.rand() on a Chisel Bundle type with a boolean function representing the field constraints
of the bundle. Using the FIRIO as an example, FIRIO(8).rand{ b => b.in > 10.U &&
b.in < 20.U } will return a FIRIO bundle with an 8-bit input that is between 10 and 20.

2.3 Core Sequencers

For a transaction to reach the DUT, it must be sent to a driver. In UVM, sequencers
are responsible for sending sequences, or groups of transactions, to the driver to drive on
the DUT interface. In this library, however, the use of sequencers is optional, as all drivers
have public functions that allow the user to directly pass in transactions. In cases where
there are message handshakes or special message ordering such as in TileLink connections, a
sequencer-like object can be used to feed transactions into the driver to ensure that message
handshake and ordering rules are followed. For examples of TileLink sequencers, please refer
to Section 2.8.6.

2.4 Core Drivers

As an active test component, the driver is responsible for driving transactions onto the
DUT interface. The sections below will go into detail on how the drivers are implemented
for each core interface.
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2.4.1 Generic Driver

While there are di↵erent variants of drivers for each interface, they all have a common
implementation: a forked thread that has a continuous while loop that pokes the DUT IO
when a transaction is available, as shown in Listing 2.5. If there are no transactions available,
the while loop will continue to step the clock forward. The transactions are fed via an internal
mutable queue that the user can access and fill using a method push(tx: Seq[T]): Unit
(not shown). The usage of a non-constrained infinite loop can pose some problems with
test determinism, however, as the loading of transactions into the internal state can take a
non-deterministic amount of simulation clock cycles. If all of the transaction data were to be
preloaded before the start of the simulation, then cycle nondeterminism would be avoided.
Nondeterminism is mainly an issue when it comes to the initial latency of starting up the
simulation (e.g. dead cycles at the beginning of a simulation) or when stimulus is designed
to be reactive to the DUT behavior during testing.

1 // Queue that can be continuously loaded with transactions
2 val inputTransactions = new mutable.Queue()
3 fork {
4 while (true) {
5 if (inputTransactions.nonEmpty) {
6 dutInterface.pokePartial(inputTransactions.pop)
7 }
8 clock.step()
9 }

10 }

Listing 2.5: Generic driver implementation.

2.4.2 Decoupled + Valid-Only Drivers

As mentioned previously in Section 2.2.2, the rate at which the drivers push transactions
is configurable via the metadata fields contained in both DecoupledTX and ValidTX.

Starting with the decoupled interface, there are two types of drivers: the master variant
to control the valid signal while the slave1 variant to control the ready signal. The mastering
driver builds upon the generic driver by adding logic before and after poking the DUT. Before
each transaction is driven, the driver sits idle (steps the clock forward) for waitCycles cycles.
Similarly, the driver does the same and waits for postSendCycles cycles after driving the
transaction. The code implementation is shown in the Appendix, Listing A.1.

The implementation for the slaving driver is much simpler as it only has to stall waitCycles
amount of cycles after receiving a transaction. As such, the code is shown below in full. Note
that in this case waitCycles is not set by the transaction, but by a parameter that is passed
into the class constructor (not shown). Another thing to note is that the driver does not

1
The outdated terms master and slave are used in this paper to avoid confusion and remain consistent

with the TileLink spec, which currently uses the outdated terminology. See Section 2.8 for more information.
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store or process the received data — it simply drives the ready signal. Instead, the monitor
is responsible for storing the transactions. The reason for using a separate slaving driver
instead of a monitor to control the ready signal is that the monitor is a passive component
and thus should not drive anything on the interface.

1 while (true) {
2 interface.ready.poke(false.B)
3 while (idleCycles > 0) {
4 idleCycles -= 1
5 clock.step()
6 }
7 interface.ready.poke(true.B)
8 if (interface.valid.peek().litToBoolean) {
9 idleCycles = waitCycles

10 }
11 clock.step()
12 }

Listing 2.6: Decoupled driver slave implementation.

As for the valid-only interface, there is only the mastering driver as there is no ready
signal. Moreover, as the ValidTX is a functional parity of DecoupledTX, the driver for the
valid-only interface is almost exactly the same with the exception of the ready signal.

2.5 Core Monitors

Unlike the driver, the monitor is a passive element that is responsible for recording all
exchanged transactions on the interface. As such, the monitor implementations are fairly
uniform across all interfaces.

2.5.1 Generic Monitor

1 val storedTransactions = new mutable.Queue()
2 fork.withRegion(Monitor) {
3 while (true) {
4 storedTransactions += dutInterface.peek()
5 clock.step()
6 }
7 }
8

9 def clearMonitoredTransactions() = monitoredTransactions.clear()

Listing 2.7: Generic monitor implementation.
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Similar to the driver, the monitor for the generic interface contains an infinite non-
blocking while loop that peeks the DUT interface on every cycle. The transactions are
stored within an internal list that can be publicly accessed by the user. The internal list can
also be cleared with the method clearMonitoredTransactions.

Note that the storing of transactions within the monitor deviates from UVM, where
monitors only peek the interface and send observed transactions elsewhere, like to a score-
board. As such, the monitor implementation in this library can be thought as a hybrid of
UVM’s monitor and scoreboard, with the exception of transaction checking. Instead, the
transactions are processed and checked outside the monitor, as explained in the Section 2.6.

2.5.2 Decoupled + Valid-Only Monitors

Both the decoupled and valid-only monitors are similar to that of the generic interface:

1 while (true) {
2 if (interface.valid.peek() && interface.ready.peek()) {
3 val t = new DecoupledTX(interface.bits)
4 val tLit = t.Lit(_.data -> interface.bits.peek(), _.cycleStamp -> cycleCount.U)
5 monitoredTransactions += tLit
6 }
7 cycleCount += 1
8 clock.step()
9 }

Listing 2.8: Decoupled monitor implementation.

The di↵erence here is that the monitors only peek the interface when it observes that
the control signals are high: both ready and valid for decoupled, and valid for valid-only.
Moreover, there is an additional cycleCount counter to keep track of when each transaction
was observed. Everything else remains the same; the monitor contains an internal list that
stores all valid transactions, and it can be accessed in the testbench. Note that only the
DecoupledMonitor is shown, as the only di↵erence in ValidMonitor is on line 2-3.

2.6 Core Scoreboards

Currently, the library does not contain a special abstractions that directly mimic a UVM
scoreboard. Instead, they are implemented as forked imperative checkers in the main simu-
lation function that instantiates the test components; they retrieve monitored transactions
and compare them against a golden model.

2.6.1 Golden Models

Golden models in this library can be written in Scala and other languages such as C
and C++ (integrated via JNI). Moreover, as golden models are software based, they can
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be re-used anywhere in the testbench. As an example, later sections describe how the
TLMemoryModel, a golden model for basic TileLink memory devices, is used as a slaving
function for the TileLink driver as well as a golden model for the TLRAM. For more information
on the TLMemoryModel, see Section 2.8.8. For information on the TLDriverSlave and its
usage in the TLRAM testbench, see Section 4.1.1.

2.7 Example Testbench

Revisiting the example QueueModule from Chapter 1, recall that the issue earlier was
that complex interface interactions such as rate throttling and backpressure were di�cult
to introduce without intertwining the protocol, metaprotocol, and data. Now, with test
components that are cleanly separated, the test can now be reconstructed as shown below.

1 test(new QueueModule(UInt(8.W), 8)) { c =>
2 // Defining Push Driver, Pull Driver, Output Monitor
3 val enqDriver = new DecoupledDriverMaster(c.clock, c.in)
4 val deqDriver = new DecoupledDriverSlave(c.clock, c.out, waitCycles = 5)
5 val deqMonitor = new DecoupledMonitor(c.clock, c.out)
6

7 // Defining input transactions + sending to Driver
8 val txProto = new DecoupledTX(UInt(8.W))
9 val inputTxns = Seq(txProto.tx(165.U, 0, 1), txProto.tx(15.U, 3, 2),

10 txProto.tx(251.U, 1, 2), txProto.tx(29.U, 4, 3))
11 enqDriver.push(inputTxns)
12 c.clock.step(100)
13

14 // Collecting output, generating golden trace, and check matches (Scoreboard)
15 val output = deqMonitor.monitoredTransactions
16

17 val model = new SWQueue(8, UInt(8.W))
18 val swoutput = model.process(inputTxn, cycles = 100, waitCycles = 5)
19

20 output.zip(swoutput).foreach {
21 case (dut_out, sw_out) =>
22 assert(dut_out.data.litValue() == sw_out.data.litValue())
23 assert(dut_out.cycleStamp.litValue() == sw_out.cycleStamp.litValue())
24 }
25 }

Listing 2.9: Queue testbench with rate throttling and backpressure.

Lines 3-5 define both drivers on the master and slave interface as well as the output
monitor on the slave interface. Note that the driver on the slave interface (line 4) is configured
by a parameter waitCycles, which defines the number of cycles to wait in between accepting
transactions (backpressure). Next, on lines 8-12, input DecoupledTX transactions are formed
with hardcoded values and parameters and then given to the driver to push to the DUT.
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Once the clock has been advanced (constant 100 cycles for this example), the DUT output
is then extracted from the monitor. Lines 17-18 then demonstrate how a golden model is
used to generate a golden trace. Note that SWQueue is a software-implementation of a cycle-
accurate queue that consumes and produces DecoupledTX transactions. On lines 20-24, the
DUT output data payload and cycle stamp is then compared with the golden output.

Note that one caveat of this test structure is that the whole DUT output trace is generated
before checking against a golden model, causing the testbench to have linear memory usage.
One method of resolving this for constant memory usage is to have the checks done per cycle,
but it would require changes to the golden model to support cycle-by-cycle processing.

For another testbench, an AES RoCC Accelerator testbench is described in Section 4.1.3.

2.8 TileLink Test Components

Now that the core test components have been covered, we can take a look at the test
components within the verifTL subproject, as it builds o↵ the Decoupled VIPs. For a brief
overview, TileLink is a SoC-level interconnect standard that connects multiple masters to
multiple slave2 devices, similar to AXI. It contains protocols for cache-coherent memory
access and thus is a common interconnect standard used in Chisel SoCs. The basics of
TileLink will be covered in the below sections, starting with the interface.

2.8.1 TileLink Interface

To introduce the interface, a TileLink connection consists of 5 logically independent
channels that transfer messages sent between master and slave components. The diagram
shown in Figure 2.1 displays the directionality of each channel.

Figure 2.1: TileLink connection diagram.

Channels A and D are the core channels required to perform any type of memory op-
eration. Channel A is used to transmit memory requests of a master, whether it be to

2
Repeat of footnote 1: The outdated terms master and slave are used in this paper to avoid confusion

and remain consistent with the TileLink spec, which currently uses the outdated terminology.
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access/write data or to cache the data. Channel D is responsible for transmitting a response
back to the master in the form of a data response or acknowledgement.

Channels B, C, and E are additional channels that enable the permission management
of cached blocks of data. Channels B and C are similar to that of Channels A and D in
the way that both Channel A and B carry requests while Channel C and D carry responses.
The di↵erence is the directionality, where requests are sent to the master. Channel E is
responsible for carrying a final acknowledgement of a cache block transfer from the original
requester (used for serialization).

Each channel, operating independently from each other, transmits a channel-specific
TLChannel datatype over a decoupled interface. For example, Channel A transmits TLBundleA
datatypes. A simplified code snippet of the TileLink connection is shown below:

1 class TLBundle(val params: TLBundleParameters) extends Record
2 {
3 def a: DecoupledIO[TLBundleA] = Decoupled(new TLBundleA(params))
4 def b: DecoupledIO[TLBundleB] = Decoupled(new TLBundleB(params).flip)
5 def c: DecoupledIO[TLBundleC] = Decoupled(new TLBundleC(params))
6 def d: DecoupledIO[TLBundleD] = Decoupled(new TLBundleD(params).flip)
7 def e: DecoupledIO[TLBundleE] = Decoupled(new TLBundleE(params))
8 ...

Listing 2.10: TLBundle definition - simplified.

Each TLChannel datatype contains fields that together describe a request or response.
Below are two tables that briefly describe the fields of TLBundleA and TLBundleD. The
semantics of each field will be discussed in the following sections.

TLBundleA
Field Description
opcode Message type
param Sub-opcode identifier
size Log (base 2) of operation size
source Master source identifier
address Target byte address
mask Byte lane select
data Data payload
corrupt Corrupt data indicator

Table 2.1: TLBundleA fields.

TLBundleD
Field Description
opcode Message type
param Sub-opcode identifier
size Log (base 2) of operation size
source Master source identifier
sink Slave sink identifier
denied Denied request indicator
data Data payload
corrupt Corrupt data indicator

Table 2.2: TLBundleD fields.
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2.8.2 TileLink Protocol

When it comes to protocol compliance, there are two areas in which the TileLink messages
must meet the spec. First, the fields within a message must be legal (e.g. the opcode must
be a legal value for the channel, the param must be valid for the message type, etc.). Second,
the ordering of messages must follow handshake protocols. For example, if a master requests
data from a memory device, the device must respond with either the data or a response
indicating that the request was denied.

There are three compliance levels in TileLink. From basic to complex, the first level of
compliance is TL-UL, or TileLink-Uncached Lightweight, followed by TL-UH, or TileLink-
Uncached Heavyweight, followed by the highest level of TL-C, or TileLink-Cached. Moreover,
the levels of compliance build o↵ the previous (i.e. TL-UH supports TL-UL, TL-C supports
TL-UH and TL-UL). The following sections will briefly describe each compliance level3.

2.8.2.1 TileLink-Uncached Lightweight

In TL-UL, there are two types of memory operations: Get (read) and Put (write). More-
over, there are two subtypes of Put: PutFullData and PutPartialData. PutFullData is
used to write a contiguous block of data, while PutPartialData used to write arbitrary
aligned data at a byte granularity. There are two response message types: AccessAck (no
data payload), and AccessAckData (with data payload). The table below describes the
handshake protocols:

Message (A) Response (D)
Get AccessAckData
PutFullData AccessAck
PutPartialData AccessAck

Table 2.3: TL-UL handshake protocols.

As these operations are uncached, they only travel on Channels A and D. Moreover,
the data payload in messages for TL-UL can only span one beat, or a single TLBundleA or
TLBundleD transaction. The maximum data payload size is determined by beatBytes, which
is also related to the physical width of the TileLink connection. This connection parameter,
along with others, are determined by both the parameters of the master and slave interfaces.
More on this in Section 2.8.2.4.

2.8.2.2 TileLink-Uncached Heavyweight

TL-UH builds o↵ of TL-UL by adding two more types of messages: Atomic operations
and Hint operations. Atomic operations modify an existing value in memory via a arithmetic

3
The following sections are meant to be quick introductions to the main components of the TileLink

protocol — some details have been intentionally left out. For complete details, the entire TileLink spec can

be found here[8].
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or logical operation and return the old data value to the requestor. Hint messages notify
the memory of an upcoming operation for potential performance optimization.

Moreover, TL-UH allows burst messages, or messages that span multiple beats. This
enables single operations on data larger than the width of the physical bus, as it can now
be split among multiple TLBundleA and TLBundleD messages. Note that all messages that
involve data payloads can be burst messages. The table below describes the added handshake
protocols in TL-UH.

Message (A) Response (D)
ArithmeticData AccessAckData
LogicalData AccessAckData
Hint HintAck

Table 2.4: Added TL-UH handshake protocols.

2.8.2.3 TileLink-Cached

TL-C is the highest conformance level, and it enables master agents to cache blocks of
data. It adds a new set of transfer operations that create or remove cached copies of data
blocks via the transfer of read or write permissions. There are three types of transfer
operations: Acquire, which gives the requesting master read or write permissions on a
cached block, Release, which the requesting master agent voluntarily gives up read or write
permissions on a cached block, and Probe, which the requesting slave agent forcibly removes
a master agent’s read or write permissions on a cached block. Note that the specific message
types will not be discussed here, as the details are not needed for the contents of this paper.

TL-C also introduces the 3 other channels: B, C, and E. As mentioned earlier, Channels
B and C are mirrored versions of Channels A and D as they transmit requests from a slave
agent to a master agent. These channels are used for Probe and Release messages, as well
as any memory operation that needs to be forwarded to a master agent with a cached version
of a block. As a result, all earlier messages discussed in TL-UL and TL-UH that travel on
Channel A and D can now be sent via Channel B and C respectively. Channel E is solely
used for GrantAck, or grant acknowledgement, messages. The table below describes the
added handshake protocols in TL-C in simplified form (see spec[8] for more details).

Message (Channel) Response (Channel)
Acquire (A) Grant, GrantData (D)
Probe (B) ProbeAck, ProbeAckData (C)
Release (C) ReleaseAck (D)
Grant (D) GrantAck(E)

Table 2.5: Added TL-C handshake protocols - simplified.
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2.8.2.4 TileLink Parameters

The protocol conformance level of a TileLink connection is automatically determined by
the parameters of the master and slave interface. Represented by a TLMasterPortParameters
and a TLSlavePortParameters object, the master and slave interface parameters are used
to create a TLBundleParameters object that defines the parameters of the entire TileLink
connection (e.g. the wire widths of each field). Note that the bundle parameters are automat-
ically created when a TileLink connection is formed via an automatic process called Diplo-
macy. These parameters are important, as they are used to create channel messages that are
compatible with the specific TileLink connection. For example, the previous code snippet of
the TileLink interface (Listing 2.10) shows params being passed into each TLChannel object.

2.8.3 TileLink Protocol Checker

As the protocol is critical in determining proper TileLink operation, a TileLink Protocol
Checker VIP was implemented to provide light sanity checks on the transactions observed
on the connection4. Note that it only checks the protocol of the messages (e.g. legal opcode,
size, handshakes etc), but does not check data payload or logical correctness (e.g. expected
data, repeated/conflicting Release requests, etc.). Moreover, the TileLink Protocol Checker
supports all levels of conformance (TL-UL, TL-UH, TL-C).

The protocol checker has two main functionalities. First, it checks if the fields of all trans-
actions are compliant with the TileLink parameters. Referencing the fields of a TLBundleA
(Table 2.1) for example, the opcode needs to be a valid message type, the size must be
within the maximum allowed message size, etc. Second, the protocol checker needs to ensure
that all message handshakes are complete and that there are no unexpected transactions. For
instance, after a Get request, there must be the correct number of AccessAckData responses
with the same source ID.

To accomplish these two tasks, the protocol checker iterates through each transaction
in order. First, depending on the message type, the transaction’s fields are checked for
compliance. Second, it checks and updates an internal hashmap that maps source ID to
handshake progress to ensure that the current transaction is expected. For instance, if it
sees a response transaction with a given source ID of 1, the protocol checker will ensure that
the internal state is expecting a response transaction with a source ID of 1. Note that because
the protocol checker has internal state, transaction status and progress are preserved across
function calls. Moreover, the protocol checker can also be integrated with the TLMonitor for
light sanity checks, as shown in Section 2.8.9.

4
The library also contains another TileLink protocol checker that is created using the specification lan-

guage API. While that variant currently only supports up to TL-UH compliance, it supports data correctness

checking. More details on the SLTileLink protocol checker can be found in Section 4.2.1 — it is recommended

to first read Chapter 3 for information on the specification language API.
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2.8.4 TileLink Transactions

To create TileLink transactions, we will again utilize the DecoupledTX construct as each
channel operates on the decoupled interface. The following code snippet is an example of
creating a transaction for Channel A:

1 // Creating a TLBundleA object
2 val inputTLA = new TLBundleA(param).Lit(_.opcode -> 4.U,...)
3

4 // Transaction Prototype for TLBundleA
5 val txnProto = new DecoupledTX(new TLBundleA(param))
6 val inputTxn = txnProto.tx(inputTLA, 4, 5)

Listing 2.11: TLBundleA transaction example.

The setup is very similar to the earlier DecoupledTX example, except with an TLBundleA
object is the data payload. On line 2, a TLBundleA object is defined and populated with
specific fields. Next, on line 5, the transaction prototype to take in that specific TLBundleA
datatype is defined. Finally, on line 6, the tx function is used to create a DecoupledTX with
a data payload of inputTLA, waitCycles of 4, and postSendCycles of 5. Note that the
param object above is a TLBundleParameters object, as explained in Section 2.8.2.4.

2.8.5 TileLink Transaction Generator

To generate TileLink transactions, the library contains a TLTransactionGenerator that
can be configured to generate transactions of all protocol compliance levels. The user can
select specific message types to be generated via the class signature shown in Listing 2.12.

1 class TLTransactionGenerator(
2 params: TLSlavePortParameters, bundleParams: TLBundleParameters,
3 overrideAddr: Option[AddressSet] = None,
4 get: Boolean = true, putFull: Boolean = true, putPartial: Boolean = true,
5 burst: Boolean = false, arith: Boolean = false,
6 logic: Boolean = false, hints: Boolean = false,
7 tlc: Boolean = false, cacheBlockSize: Int = -1, acquire: Boolean = false)

Listing 2.12: TLTransactionGenerator configuration options.

To generate transactions, the function def generateTransactions(numbTxn : Int,
permState: RWPermState) is used to generate a sequence of numbTxn TileLink transactions.
The RWPermState object is a state object that keeps track of read and write permissions of
cached blocks and will only be used if TL-C is enabled. This is needed for TL-C as blocks
can be cached by the master agent, which in this case is mocked the transaction generator.
The RWPermState is used to ensure that generated TL-C transactions follow protocol (e.g. a
generated Release message is releasing an existing cache block). Note that the RWPermState
need not to be created or modified by the user, as it is managed by the TLCFuzzer.
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2.8.6 TileLink-U and TileLink-C Fuzzer

Similar to the Sequencer object in UVM, the TLUFuzzer and TLCFuzzer VIPs are re-
sponsible for dispatching transactions to TileLink drivers to send to the DUT. Transactions
can either be manually defined (e.g. a directed test) and/or be randomly generated (e.g. a
random test) via a TLTransactionGenerator. Moreover, these fuzzers are compliant with
the TileLink protocol. For example, if the manually defined stimulus only contained requests
with the same source ID, the fuzzers will only dispatch one request at a time and will wait
for the response before dispatching the next. To accomplish this, the fuzzers contain internal
state that keep track of which source IDs are in flight. Additionally, the TLCFuzzer also
keeps track of read and write permissions of cached blocks via a RWPermState object that
is also passed into the transaction generator, as described in the previous section. To keep
these internal states updated, the fuzzer requires access to the response transactions. As
a result, most implementations will have a fuzzer paired with a TLMonitor such that the
monitor that will forward all response transactions to the fuzzer.

In terms of usage, both fuzzers contain a method def next(resp: Seq[TLChannel]):
Seq[TLChannel] that consumes transactions seen by the monitor and returns a new TileLink
request to be driven to the DUT. Note that the returned transactions represent a complete
request and may be multiple transactions in the case of burst messages. As mentioned above,
the transactions returned by the fuzzer are either manually defined or randomly generated by
the transaction generator. Transactions are only randomly generated when all of the directed
stimulus is sent (i.e. directed stimulus has priority). Note that directed stimulus can be
supplied to a fuzzer via the constructor or via def addTxns(add: Seq[TLChannel]): Unit.

2.8.7 TileLink Drivers

As the TileLink interface consists of 5 channels operating via the decoupled interface, the
Tilelink drivers consist of 5 decoupled drivers. Moreover, as there is a mastering and slaving
interface, there are two types of TileLink drivers as well. Starting with the TileLink driver
on mastering interface, the simplified code implementation is shown below:

1 private val aDriver = new DecoupledDriverMaster(interface.a)
2 // Note: dDriver and bDriver just consume transactions blindly
3 private val dDriver = new DecoupledDriverSlave(interface.d, 0)
4 private val bDriver = if (interface.hasBCE) new DecoupledDriverSlave(interface.b, 0)
5 private val cDriver = if (interface.hasBCE) new DecoupledDriverMaster(interface.c)
6 private val eDriver = if (interface.hasBCE) new DecoupledDriverMaster(interface.e)
7

8 def push(tx: Seq[TLChannel]): Unit = {
9 // **Logic that filters transactions to the correct driver

10 }

Listing 2.13: TLDriverMaster implementation - simplified.
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Separate decoupled drivers are instantiated with the directions corresponding to the
master interface as seen in Figure 2.1. The full code can be found at Listing A.2.

As for the TileLink driver for the slaving interface, it is required to respond to memory re-
quests sent by a master. To enable this, the driver utilizes a state monad, TLSlaveFunction,
that has the following trait (abstract) definition:

1 trait TLSlaveFunction[S] {
2 def response(tx: TLChannel, state: S): (Seq[TLChannel], S)
3 def respondFromState(txns: Seq[TLChannel], state: S): (Seq[TLChannel], S) = {
4 // ** Logic that batch process transactions using response()
5 }
6 }

Listing 2.14: TLSlaveFunction trait - simplified.

Above, the trait is defined with a configurable datatype S that is used as the memory state
to respond to TileLink requests, as shown in the functions response and respondFromState.
The function response takes in a TileLink request tx and state and returns a Seq of
response messages along with an updated state. The respondFromState is a wrapper for the
response function to allow for batch processing. Note that the library has a TLMemoryModel
VIP (Section 2.8.8) that implements the trait to respond to TileLink requests.

Below is a simplified code snippet describing how the TLSlaveFunction is used to respond
to requests within the TLDriverSlave.

1 private val aDriver = new DecoupledDriverSlave...
2 private val dDriver = new DecoupledDriverMaster...
3 // ** B,C,E driver code not shown here
4 private val monitor = new TLMonitor...
5 var state = initialState
6

7 fork {
8 while (true) {
9 val txFromMaster = monitor.getMonitoredTransactions()

10 // Generating response transactions and updating state
11 val (responseTxns, newState) = slaveFn.respondFromState(txFromMaster, state)
12 state = newState
13 dDriver.push(responseTxns)
14 clock.step()
15 }
16 }

Listing 2.15: TLDriverSlave implementation - simplified.

On lines 1-3, separate decoupled drivers are instantiated with the directions correspond-
ing to the slaving interface. There is also an additional TLMonitor defined on line 4 to
forward requests to the slaving function. Then, within the fork defined on lines 7-15, the
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TLSlaveFunction is used to respond to requests. Specifically, line 11 demonstrates how the
respondFromState function is called, and lines 12-13 display how the state is updated and
the response transactions are driven back to the master. The full code implementation can
be found in Listing A.3.

2.8.8 TileLink Memory Model

The TLMemoryModel is a software-based golden memory model for uncached TileLink con-
nections. As mentioned previously, it utilizes a state-monad and extends TLSlaveFunction
with the function definitions listed in Listing 2.14. Under the hood, the memory model uti-
lizes a state object with the definition: case class State(mem: Map[WordAddr, Array[Byte]],
burstStatus: BurstStatus). The mem object holding the memory state is a Map of word
addresses to byte arrays of size beatBytes (a word). Instead of using byte addresses, the
memory map uses word addresses because a TileLink transaction’s data payload is natu-
rally aligned to beatBytes, guaranteeing that no single beat will contain data that spans
across multiple words in the memory map. Next, the BurstStatus object keeps track of any
on-going burst messages, as the memory model processes one beat at a time.

As for read and write operations, the memory model updates the State object accord-
ingly. Below is the implementation for a Get operation:

1 val byteAddr = txA.address.litValue()
2 val wordAddr = (byteAddr / bytesPerWord).toLong
3 val wordsToProcess = ceil(pow(2, txA.size.litValue().toInt) / bytesPerWord).toInt
4 ...
5 case TLOpcodes.Get =>
6 val responseTxs = (0 until wordsToProcess).map {
7 wordIdx => TLMemoryModel.read(state.mem, wordAddr + wordIdx, bytesPerWord,

txA.mask.litValue().toInt, maskReads),!
8 }.map {
9 word => AccessAckData(word, txA.size.litValue().toInt, txA.source.litValue().toInt,

denied=false),!
10 }
11 (responseTxs, state)

Listing 2.16: TLMemoryModel ”Get” implementation.

On lines 1-3, the transaction’s byte address is converted into a word address and the
number of words to read is calculated. Then, on lines 6-10, the response transactions are
generated via nested map statements, with the first map (line 7) reading in the data word
via TLMemoryModel.read and the second map (line 9) packaging it into a AccessAckData
message. The response transactions are returned along with the unchanged state, as this is
a read operation. The implementation for write operations, however, is more complex due to
beat requests. Although it is not covered, the code is shown in the appendix in Listing A.4.
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2.8.9 TileLink Monitor

Like all monitors, the TileLink monitor’s function is to observe all transactions on a
TileLink interface. As there are five channels, there will be five DecoupledMonitor objects:

1 private val aMonitor = new DecoupledMonitor...
2 private val bMonitor = new DecoupledMonitor...
3 ... // ** Monitors for C, D, and E are instantiated the same way
4

5 def getMonitoredTransactions(): Seq[DecoupledTX[TLChannel]] = {
6 val tx = //* Logic that collects all transactions from monitors and sorts by cycleStamp
7 if (protocolChecker.isDefined) {protocolChecker.get.check(tx.map {_.data})}
8 tx
9 }

Listing 2.17: TLMonitor implementation - simplified.

The main di↵erence for the TileLink monitor is that it can be instantiated with an
optional TLProtocolChecker that will check the observed transactions for protocol compli-
ance. Note that this check is only performed when getMonitoredTransactions is called.
See Section 2.8.3 for more information on the TileLink Protocol Checker. The complete code
implementation can be found in Listing A.5.

2.8.10 TileLink Standalone Blocks

In order to test TileLink modules standalone (e.g. in a unit test), additional wrapper
classes that connect to the dangling TileLink endpoints must be used, as TileLink connections
require both sides of the interface to be defined. In this library, they are defined as standalone
blocks. The listing below displays a simplified version of TLRAMStandalone:

1 class TLRAMStandalone (val mPortParams: TLMasterPortParameters, ...
2 ) (implicit p: Parameters) extends LazyModule {
3 val ram = LazyModule(new TLRAM(...))
4

5 // Connect TLRAM's endpoint to Bridge object that can be poked/peeked
6 val bridge = BundleBridgeToTL(mPortParams)
7 val ioInNode = BundleBridgeSource(() => TLBundle(TLBundleParameters(mPortParams,

ram.node.edges.out.head.slave))),!
8 ram.node := bridge := ioInNode
9

10 // Exposing IO
11 val in = InModuleBody { ioInNode.makeIO() }
12 lazy val module = new LazyModuleImp(this) {}
13 }

Listing 2.18: TLRAM standalone block implementation - simplified.
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The important code to focus on are on lines 6-8. In line 6, a BundleBridgeToTL object
is instantiated with the given mPortParams; its function to mock the master interface that
will connect to TLRAM’s slave interface. Then, on line 7, we define an endpoint node,
BundleBridgeSource, such that the BundleBridgeTL can be poked and peeked by TileLink
VIP. Note that the endpoint node is configured by a TLBundleParameters object that is
automatically generated from the master and slave port parameters. On line 8, the compo-
nents are then connected together. Line 11 then exposes the BundleBridgeSource as an IO
port. In the perspective of the TLRAM, it sees that it is fully connected to a TileLink master
device but in reality it would be connected to a TileLink test component. Figure 2.2 displays
a visual diagram of the components in the TLRAMStandalone block. Note that the master
and slave interface parameters are defined by the DUT/user, while the bundle parameters
are automatically generated.

Figure 2.2: TLRAM standalone block diagram.

2.8.11 Application Examples

Applications using the TileLink test components can be found in Section 4.1, including
a full testbench for the TLRAM module, the InclusiveCache (L2), as well as an AES RoCC
accelerator. The examples will describe in more detail on how the TileLink test components
interact with each other to create a fully functional testbench.
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Chapter 3

SVA-like Specification Language as an
eDSL
3.1 Introduction

3.1.1 Motivation

The motivation of creating a SVA-like specification language API came about when we
were creating a testbench to verify an L2 cache. With the standard UVM-like testbench
setup described in the previous chapter, we would need a golden SW model of the L2 cache
for correctness checking. However, such a model would have to be designed to mimic the
specific internals of the L2 cache (e.g. the uArch). The model would only be useful for that
specific cache, and it would go against the original direction of implementing infrastructure
to verify any L2 cache. One alternative would be to have a generic cache golden model
that generates a relative/partial ordering of transactions that could be reordered to match
specific uArch designs, but it would increase the testing complexity substantially.

Instead of defining a cycle accurate SW model of what should happen on the interface,
we would prefer a method of systematically describing valid behaviors to a checker function
that could check if an output trace violates the valid behaviors. Moreover, we would want
to describe a language for specifying these valid behaviors, called properties. This language
should be portable across cycle-level properties (e.g. ensuring that the data is not changed
when valid is high until ready is asserted) and transaction-level properties (e.g. after a Get
request, there is an AccessAckData response with the same source ID).

In industry, there is already a language that does this: SystemVerilog Assertions, or
SVA. In brief, it allows users to describe the behavior of a design through assertions on
specified properties. SVA is used mostly everywhere in industry, and it is very familiar
among verification engineers. However, similar to the reasons of creating test components
in Chisel for a unified test and DUT environment, we would prefer an SVA-like specification
language that is embedded in Scala. The following sections will first briefly introduce SVA
in more detail and then introduce SpecLang, the SVA-like specification language API for
Scala.
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3.1.2 SystemVerilog Assertions (SVA)

SystemVerilog Assertions is a language that allows designers to verify their design using
assertions that represent properties of the design. In terms of assertions, there are two types:
immediate and concurrent. Immediate assertions are similar to an if statement, with the
di↵erence that if the statement is false, the assertion fails and the simulator reports the error.
For example, an immediate assertion assert (A == B) states that A must be equal to B.
Note that the immediate assertion is evaluated like a procedural statement and follows code
ordering for execution.

Concurrent assertions, on the other hand, enable users to write complex expressions that
support temporal restrictions based on a clock edge. The complex expression, indicated by
a property, is built using a sequence that describes the checked sequential logic. Take the
following SVA assertion statement as an example:

1 assert property (@(posedge Clock) Req |-> ##[1:2] Ack);

Listing 3.1: SVA property example.

Here, the property is checking for the sequential behavior described by the sequence:
Req |-> ##[1:2] Ack. Breaking it down, both Req and Ack are boolean expressions (e.g.
they return true if a request or acknowledgement is seen), |-> is the implication operator,
and ##[1:2] is a temporal operator used to denote temporal restrictions. Note that the
@(posedge Clock) qualifier means that the values are sampled at every clock edge. Putting
everything together, the sequence is describing that after every request, there must be a
acknowledgement after 1 to 2 cycles. For example purposes, let’s simplify Req and Ack to
boolean functions that check if its corresponding signals are high. Figure 3.1 displays a few
waveforms of traces that pass and fail the above assertion.

(a) Traces that pass property. (b) Traces that fail property.

Figure 3.1: Example waveforms for Req-Ack property.

The two traces on the left pass, as the ack signals are high within the expected boundaries
(1 to 2 cycles). The traces on the right fail as the ack signals are too late and too early,



CHAPTER 3. SVA-LIKE SPECIFICATION LANGUAGE AS AN EDSL 36

respectively. Although this example is very simplified, the SVA constructs described are
generalizable and allow designers to describe arbitrary automata to be asserted.

In terms of assertion statements, there are four types: assert, cover, assume, and
restrict. The assert type, as shown above, is used to check if the given property is true.
The cover type is similar to assert in that it can take in a property, but instead of checking
the correctness of the property, it monitors property evaluation for coverage. The assume
and restrict types are mainly used for formal tools and not simulators, so it is not covered
in this introduction.

Overall, SVA is a mature design specification language and is used everywhere in industry.
Although not mentioned here, SVA contains many features not only specific to test simulators
but also to formal tools as well. To read more about SVA and all of its features, the IEEE
standard for SystemVerilog can be found here[9], with SVA covered in Chapter 16.

3.1.3 Specification Language API (SpecLang)

The Specification Language API, or SpecLang for short, is a SVA-like specification lan-
guage embedded in Scala. Note that at the time of writing, this project is in its early
stages, and that only a subset of SVA functionalities are implemented. That being said,
SpecLang has a workable set of functions that enable users to define any property to be
asserted on a given output trace. Moreover, the language contains a modeling layer that
enables per-property local variable support as well as global memory model support. In
terms of coverage, each property collects basic statistics such as how many times the prop-
erty passed and failed. One thing to note is that the SpecLang constructs are currently not
synthesizable, but it is something that to be implemented in the future.

This chapter will describe the syntax of SpecLang as well as the di↵erent components
in detail. For applications of SpecLang, see Section 4.2 for how it is used to re-define the
TileLink protocol checker and check for malicious mutations of a TLRAM output trace. Note
that there was not have enough time to use SpecLang to test the L2, but the application
with the TLRAM demonstrates that it can be extended to test the L2.

3.2 Abstract Syntax Tree

Below is the abstract syntax tree (AST) for SpecLang. Each asterisk (*) describes a
SpecLang object, each dash (-) describes methods of the object, and each plus (+) describes
ways of combining other SpecLang objects to create the specified object.
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Note: T -> Transcation DataType, M -> Memory State DataType

* AtmProp/AP: Unit Boolean Function
- check(T, HashMap, Option[SLMemState]) => Boolean
+ AP & AP => AP
+ AP | AP => AP

* TimeOp/TO: Time Constraint Function
- check(Cycles) => Boolean
- invalid(Cycles) => Boolean

* Implication/Imp: Enables Assertion Checking within Sequence
* PropSet: Condensed Representation of AP+TO or Imp within Sequence

- check(T, HashMap, Option[SLMemState]) => Boolean
- invalid(CycleStamp, LastPassedCycle) => Boolean
- isImplication => Boolean
- isIncomplete => Boolean

* Sequence: Collection of PropSet objects
+ AP + AP/TO/Imp => Sequence
+ Sequence + AP/TO/Imp => Sequence
+ Sequence + Sequence => Sequence
+ Sequence * # => Sequence

* Property: Enables checking of Sequence on transaction trace
- check(Seq[T], Seq[SLMemState]) => Boolean

* SLMemoryState/SLMemState: Memory State from Global Model
- get(Int) => M

* SLMemoryModel/SLMemModel: Global Memory Model
- model(Seq[T]) => Seq[Option[SLMemState]]

Listing 3.2: SpecLang AST.

3.3 Sequence Elements

A sequence element is a SpecLang object that creates Sequence objects when combined
with other sequence elements. So far, they are AtmProp, TimeOp, and Implication. Note
that these objects are not directly used in Sequence objects, as a condensed form is used
instead. See Section 3.4 for more information on the implementation of Sequence objects.

3.3.1 Atomic Propositions

Atomic Propositions (AtmProp) are one of the base building blocks for creating sequences,
as they allow the user to specify correct behavior via a boolean function. The user-defined
boolean function takes in a transaction, a hashmap for local variables, and an optional
SLMemoryState object for global memory state. The hashmap is a map from String -> H,
where H can be any datatype, and its purpose is to allow data sharing between atomic
propositions within the same sequence. On the other hand, the SLMemoryState object is
used to define a static global memory state for each transaction and is visible to all atomic
propositions operating on that transaction.



CHAPTER 3. SVA-LIKE SPECIFICATION LANGUAGE AS AN EDSL 38

The signature for an atomic proposition is AtmProp[T,H,M](proposition: (T, HashMap
[String,H], Option[SLMemoryState[M]]) => Boolean, desc: String). The parame-
ter proposition holds the boolean function that the atomic proposition checks for, or
matches on, and the desc is a string description of what the proposition is checking. Note
that each atomic proposition is concretized to [T,H,M], or the transaction, hashmap, and
memory state datatypes. Moreover, there is a shorthand definition qAP[T,H,M](proposition:
(...), desc: String = "Default") that utilizes the sourecode package[10] to automat-
ically set the description of the proposition to the variable name as default. For example,
the below code demonstrates how to instantiate an atomic proposition that matches if a
given TLChannel object is a Get request and stores the transcation’s source field into the
hashmap. This value stored in the map can then be read by a successive atomic proposition
in the same sequence, as shown in later examples.

1 def IsGetOpFn(t: TLChannel, h: HashMap[String, Int], m: Option[SLMemoryState[UInt]]) =>
Boolean {,!

2 t match {
3 case t: TLBundleA =>
4 h("source") = t.source.litValue()
5 t.opcode.litValue() == TLOpcodes.Get
6 case _ => false
7 }
8 val IsGetOpAP = qAP(IsGetOpFn) // Description of AP will be "IsGetOpAP"

Listing 3.3: Atomic proposition for TileLink ”Get” request.

With regards to checking if the atomic proposition is matched, there is a method check(t:
TLChannel, h: HashMap[String, Int], m: Option[SLMemoryState[UInt]]) that calls
and returns the boolean of the proposition function.

As atomic propositions are essentially boolean functions, boolean operators & and | can
be used to combine multiple atomic propositions into one. For instance, continuing o↵ the
earlier example, if there were another atomic proposition that checked if a TileLink message’s
param field was 0, the & operator can be used to combine them and create a new atomic
proposition that is true if the message is a Get request with a param field of 0.

3.3.2 Time Operators

Time operators (TimeOp) introduce timing constraints for atomic propositions within a
sequence. The object signature is as follows: TimeOp(lowerCycles: Int, upperCycles:
Int), where lowerCycles is used to define the lower limit of cycles and upperCycles is used
to define the upper limit of cycles. For open-ended constraints (i.e. at least, at most), -1
can be used as a wildcard for the lower or upper limit. In terms of shorthand definitions,
there are two options: ###(lower, upper) and ###(exact). Note that in SpecLang, it is
assumed that each transaction in the trace corresponds to one cycle.
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To see TimeOp objects in action, let’s continue the TileLink Get Request code example
shown above in Listing 3.3. The below code example creates a sequence that specifies a
complete TileLink Get handshake:

1 def IsAckDataOpFn(t: TLChannel, h: HashMap[String, Int], m: Option[SLMemoryState[UInt]])
=> Boolean {,!

2 t match {
3 case t: TLBundleD =>
4 t.opcode.litValue() == TLOpcodes.AccessAckData &&
5 t.source.litValue() == h("source")
6 case _ => false
7 }
8 }
9 val IsAckDataAP = qAP(IsAckDataOpFn)

10

11 // IsGetOpAP is from earlier example
12 val GetHandshakeBasicSeq = IsGetOpAP + ###(1,-1) + IsAckDataAP

Listing 3.4: Time operator example: TileLink ”Get” handshake sequence.

In the above code, lines 1-9 defines another atomic proposition that checks if the current
transaction is a AccessAckData message that has the same source field as the preceding
Get request. Line 12 then defines a sequence that is matched when after a Get request, an
AccessAckData message with the same source field is observed. If the time operator was
not included, then both atomic propositions would try to match in the same cycle. Moreover,
note that this sequence does not assert anything, as it does not contain an Implication.
See the following section for more information.

To check if a time operator is matched, the method check(elapsedCycles: Int) returns
true if the elapsed cycles are within the given bounds. However, as a time operator that
mismatches on a given cycle can still match on a future cycle (e.g. an ”at least” operator),
there is an additional method invalid(elapsedCycles: Int) that returns true if the time
operator can never meet the time requirement (i.e. elapsedCycles > upperCycles).

3.3.3 Implications

Implications (Implication) signify that the subsequent sequence elements must checked
and asserted if and only if the preceding sequence elements were successfully matched. When
all preceding conditions are met, the implication has been activated.

In terms of object signature, there are no parameters. The instantiation of an Implication
object is new Implication. Note that there is also a shorthand Implies that does the same
thing. The example below extends the previous example by enabling assertions checking in
the Sequence via an Implies:
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1 // See previous code examples for function implementations
2 def IsGetOpFn(...) => Boolean {...}
3 def IsAckDataOpFn(...) => Boolean {...}
4

5 val IsGetOpAP = qAP(IsGetOpFn)
6 val IsAckDataAP = qAP(IsAckDataOpFn)
7

8 val GetHandshakeBasicSeq = IsGetOpAP + Implies + ###(1,-1) + IsAckDataAP

Listing 3.5: Implication example: TileLink ”Get” handshake sequence pt. 2.

In the above code, the added Implication denotes that after a Get message, there must
be a AccessAckData message with the same source field that follows in at least 1 cycle. If
the entire sequence is not matched, an assertion will be thrown.

3.4 Sequences

The Sequence object is used to describe and match sequential behaviors, as seen in
the above example with the TileLink Get handshake sequence. It is created by combining
any number of atomic propositions, whether via the addition operator (+) or via the se-
quence constructor: new Sequence[T,H,M](input: SequenceElement*). Note that there
is a shorthand to creating sequences: qSeq[T,H,M](input: SequenceElement*). More-
over, sequences can be created via other sequences via either the addition operator (+) or
the static repetition operator (*), which is a wrapper of the + operation:

1 // + Operator with Sequence Elements
2 val seq1 = AP1 + Implies + ###(1, -1) + AP2
3 // Sequence Constructor
4 val seq2 = qSeq(AP3, ###(1, -1), AP4)
5

6 // + Operator with Sequences
7 val combSeq1 = seq1 + seq2 // AP1 + Imp + ###(1, -1) + AP2 + AP3 + ###(1, -1) + AP4
8

9 // * Operator with Sequences
10 val combSeq2 = seq1 * 2 // AP1 + ###(1, -1) + Imp + AP2 + AP1 + Imp + ###(1, -1) + AP2
11

12 // Nested operators supported
13 val combSeq3 = (AP1 + Implies + ###(1, -1) + AP2) + (AP3 + ###(1, -1) + AP4) * 2

Listing 3.6: Sequence creation and operators.

While sequences objects are created via sequence elements, the underlying implementa-
tion utilizes a list of PropSet (proposition set) objects, where each PropSet is a condensed
representation of the sequence elements. Each PropSet object groups together atomic propo-
sitions that share a common time operator to simplify sequence matching as well as to reduce
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the number of elements to check. More information on PropSet objects is found in the fol-
lowing section.

3.4.1 Proposition Sets (PropSet)

PropSet objects are used as condensed representations of sequence elements within a
sequence. Users should not need to directly instantiate them during normal use, but they
can be constructed via the constructor: new PropSet[T,H,M](ap: AtmProp[T,H,M], to:
TimeOp, implication: Boolean = false, incomplete: Boolean = false). A PropSet
object is defined by an atomic proposition and a time operator that are checked together dur-
ing matching. However, there are additional flags and indicators for various types of PropSet
objects: the implication field in the constructor is used to denote empty PropSet objects
that hold the original implication ordering relative to the other sequence elements, and the
incomplete flag is to indicate that a PropSet object does not have an atomic proposition
defined yet (created when appending a TimeOp to an existing sequence).

The intended use of PropSet objects is to group atomic propositions that share the same
time operator for easier sequence matching. Take the abstract code in Listing 3.7 as an
example. Looking at the sequence element definition on line 2, there needs to be at least
9 match operations in order for the entire sequence to be matched (one for each sequence
element). Moreover, in the case where multiple atomic propositions are dependent on a time
operator (e.g. AP2, AP3, AP4 all share the TO1 time constraint), multiple checks will be
repeated on failure. For instance, if TO1, AP2, and AP3 match but AP4 mismatches on a
given cycle, in the next cycle TO1, AP2, and AP3 would have to be checked again along
with AP4 to ensure that they are still matched. To simplify this matching process, PropSet
objects are used to group atomic propositions that share the same time operator such that
they can be all checked at the same time. Line 5 displays how the sequence elements are
grouped into PropSet objects. In this case, the minimum number of match operations
decreases to 4, and in the case where a match fails on a cycle, only that PropSet would have
to be checked again on the next cycle.

1 // User definition (9 total sequence elements)
2 val seq = AP1 + Implies + TO1 + AP2 + AP3 + AP4 + TO2 + AP5 + AP6
3

4 // PropSet grouping (4 total PropSet objects)
5 val seq = (AP1) + (Implies) + (TO1 + AP2 + AP3 + AP4) + (TO2 + AP5 + AP6)

Listing 3.7: PropSet grouping visualization.

In terms of checking whether a PropSet is matched, there are two methods check()
and invalid() that returns true if the PropSet’s atomic propositions match on the current
cycle or if the PropSet’s time operator is invalid, respectively. Note that for check, the time
operator is matched first such that the function can short circuit and prevent the check for the
atomic proposition to occur. This is because atomic propositions could have state changes
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via local variables (e.g. counters) that should only be updated when the time operator
is matched. However, this does not prevent state updates if the atomic proposition itself
fails — it is the user’s responsibility to ensure that the state change is gated by the proper
conditional statement. Note that for implication PropSet objects, check always returns true
and invalid always returns false.

3.5 Properties

A Property object is used to check whether a given transaction trace adheres the sequen-
tial behavior encoded within a Sequence object. It is instantiated with either the following
constructor new Property[T,H,M](seq: Sequence[T,H,M], name: String) or the short-
hand qProp[T,H,M](input: Sequence[T,H,M], desc: String = "Default") that utilizes
the sourcecode package[10] to automatically set the description to the variable name as de-
fault, similar to qAP for atomic propositions. With a Property object, the check(input:
Seq[T], mems: Seq[Option[SLMemoryState[M]]] = Seq()) method can be called in or-
der to check whether the given transaction trace input matches the sequential behavior
specified by the Property’s Sequence. Note that the check method also takes in a sequence
of optional SLMemoryState objects that define global memory states at each transaction cycle
and are used in atomic proposition matching (see Section 3.6 and Section 3.6.1). Moreover,
Property objects automatically collect primitive coverage data that provide an overview on
sequence match successes and failures. See Section 3.5.1 for more information on property
coverage collection. The below abstract code briefly demonstrates the creation and usage of
a Property object.

1 // Creating Sequence
2 val seq = AP + Implies + TimeOp + AP + ...
3

4 // Creating property with above sequence (via shorthand)
5 val prop = qProp[T,H,M](seq)
6

7 // Check transaction trace
8 // Note: Memory states are generated via memory model (see later section)
9 prop.check(transactionTrace, Some(memoryStates))

10

11 // Print coverage
12 prop.getCoverage()

Listing 3.8: SpecLang property example.

To correctly match all occurrences of the sequence within a transaction trace, each
Property object contains internal state to keep track of all concurrent property instances
that occur from overlapping sequences. A property instance, or a pending/ongoing sequence
match, is initiated when a transaction matches the first PropSet of the sequence. When this
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occurs, a new property instance, along with other data such as its local variable hashmap,
is created and kept track in the internal state.

In terms of the checking process, the check method iterates through the transaction
trace and checks if each transaction creates a new property instance or matches an existing
incomplete property instance. As it is possible for a transaction to initiate a new property
instance and match an existing one at the same time, the transaction will be checked against
existing instances first. If a matched transaction completes a property instance (i.e. all
PropSet objects were matched), the completed property instance and its corresponding
hashmap are removed from the local state. If the transaction fails to match on an existing
property instance, the function will also check to see if the PropSet is invalid (missed time
constraint). If it is invalid, the instance and corresponding hashmap are removed from the
internal state. A failure is noted if the removed instance had an activated implication.

When the function is finished iterating through each transaction, each incomplete prop-
erty instance is checked for activated implications. Activated implications within incomplete
instances are noted as failures as the implication was never met.

3.5.1 Coverage Collection

As mentioned earlier, each Property object collects primitive coverage on sequence
matches and failures. During transaction trace checking, the Property object keeps track
of how many times each PropSet object within a sequence was correctly matched or com-
pletely failed (invalid). From this information, we can extract additional statistics such as
how many times the property was activated, how many of the activated properties passed
or failed, as well as the per-PropSet object pass/fail rate. Moreover, additional transaction
coverage data is collected by marking which transactions successfully matched a PropSet
object. Below is a simplified example of using coverage:

1 // Creating property that checks if all Get messages have a zero param field
2 val getParamSeq = IsGetOP + Implies + ParamZero
3 val getParamProp = qProp[...](getParamSeq)
4

5 // Input transactions pseudocode
6 val input = Seq(Get, Get, Put, Put, BadGet, Get)
7 getParamProp.check(input) // Will fail check
8 getParamProp.getCoverage()

Listing 3.9: Coverage example code - simplified.

In the above code, line 3 defines a sequence that describes that all TileLink Get messages
must have a param field of zero. Line 7 then defines the input trace with a malformed Get
message with a non-zero param field, named BadGet. Once the trace has been checked via
line 8, the coverage is printed on line 9 with the actual output shown in Listing 3.10. The
output displays that there were 4 activated properties (4 Getmessages) but one of them failed
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the check. It also lists which AP Group (PropSet) it failed on, along with the transaction
coverage and bitmap.

PROPERTY COVERAGE DATA (Property getParamProp):

# of Activated Properties: 4
# of Completed Properties: 3
# of Failed Properties: 1

Coverage stats of each AP Group: (PASS #, FAIL #)
AtmProp: If is Get request : (4, 0)
AtmProp: Param field is zero : (3, 1)
Transaction coverage: (4/6)
Transaction coverage bitmap:
[1, 1, 0, 0, 1, 1]

END OF COVERAGE REPORT.

Listing 3.10: Coverage output.

3.6 Memory Model

The SLMemoryModel is responsible for generating SLMemoryState objects that correspond
to global memory states for each transaction in the trace. As the memory model implemen-
tation is dependent on the given design, the library only gives a skeleton as to what the
memory model should look like; the implementation will be entirely up to the user. The
object trait definition is as follows:

trait SLMemoryModel[T,M] {
def model(input: Seq[T]): Seq[Option[SLMemoryState[M]]]

}

Listing 3.11: SLMemoryModel trait.

The memory model is only required to have a method model that takes in the input
transaction trace and outputs the corresponding SLMemoryState objects at each transaction.
Note that T is the transaction datatype while M is the memory state datatype. For a real
application of a SLMemoryModel object, see Section 4.2.2 for an example of a TileLink memory
model that is used to test the TLRAM module.

3.6.1 Memory State

Similar to the memory model, the SLMemoryState objects are largely dependent on the
design as well as the intended use case. As such, the skeleton is defined as:
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trait SLMemoryState[M] {
def get(addr: Int): M

}

Listing 3.12: SLMemoryState trait.

The only requirement is that the state must have a get function that takes in an in-
teger address and returns data of type M. For a quick example, the following code is an
implementation of a generic UInt memory state:

class SLUIntMemoryState(init: HashMap[Int, UInt]) extends SLMemoryState[UInt] {
// Non-destructive
val int_state = init.clone()

def get(addr: Int): UInt = {
int_state(addr)

}
}

Listing 3.13: Generic UInt SLMemoryState example.

The underlying data structure used to store state is a HashMap[Int, UInt]. For an
application of a SLMemoryState object, a TileLink example can be found in Section 4.2.2.

3.7 Application Examples

Although the current state of SpecLang o↵ers a limited subset of SVA features, it consists
of a workable set of functions that can be used to define arbitrary properties that can
be asserted on any given output trace. Section 4.2 describes how SpecLang was used to
redefine the TileLink protocol checker, and how it was used to detect incorrect TLRAM output
transaction traces.
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Chapter 4

Library Applications
4.1 Library Test Components

Throughout its development, the library’s test components have been used to verify
components ranging from TileLink memory modules to custom accelerators and components.

4.1.1 TLRAM Verification

The TLRAM module is a Chipyard default RAM design for the TileLink interface. As it is
a TileLink component, it is configured by the interface parameters: address space (also used
to determine size), set of legal operations, set of legal parameters, etc. Outside of TileLink
interface parameters, it also contains robustness features such as ECC functionality. In
terms of operations, it is able to support all operations defined in the TL-UH protocol (see
Section 2.8.2.2). To verify the TLRAM module, we only focused on the protocol and data
correctness of the output — other features such as ECC functionality were not verified.

4.1.1.1 Test Setup

In terms of test components, Figure 4.1 displays the testbench setup. Starting from the
top left, the TLU-Fuzzer is responsible for sending stimuli (directed or randomly generated)
to the TLDriver, which in turn drives the transactions to the DUT. Another copy of the
stimuli is also sent to the TLMemoryModel, which will produce the expected output used for
output correctness checking later on. At the same time, two TLMonitor objects observe the
transactions on the TileLink connection between the driver and the DUT. The left monitor
forwards the transactions to the fuzzer while the right one records transactions for output
checking. Note that only one of the monitors contains a protocol checker (PC). Once all
of the stimuli has been driven and all response transactions are observed, the entire DUT
transaction trace is checked for protocol compliance and compared with the output of the
golden model for correctness.

Input Stimulus

In terms of input stimulus, both directed and randomly generated stimuli were used. The
directed tests were used to sanity check basic functionality such as handling burst messages
and special operations, and the random tests were to verify overall correctness by introducing
a large number of stimuli.
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Figure 4.1: TLRAM test setup.

Test Coverage

To ensure that the DUT was properly tested, RTL coverage, a measurement of the design
RTL exercised by the test, was collected across the various directed and random tests to check
for completeness. Merged coverage across all directed and random tests resulted in 93.7%
Line, 95.88% Condition, 66.93% Toggle, and 96.23% Branch coverage, resulting in an overall
score of 88.18% coverage. More details on the coverage collection for the TLRAM tests are
described in Section 4.1.4.

4.1.2 SiFive’s Inclusive Cache (L2) Verification

SiFive’s InclusiveCache is an open-source L2 cache for the TileLink interface, and it
is commonly used in RocketChip designs. It has the highest TileLink protocol compliance
as it supports all operations defined in the TL-C protocol (see Section 2.8.2.3). In terms of
configurability, the InclusiveCache is parameterized via TileLink interface parameters as
well as a custom CacheParameters object that contains cache related details such as number
of ways and sets as well as the size of each cache block. For verification, we only focused on
the TileLink protocol correctness of the output — cache uArch protocol and data correctness
were not checked. See note at the end of the section for more information.

4.1.2.1 Test Setup

In terms of test setup, it is similar to that of the TLRAM testbench with the exception that
the InclusiveCache has two TileLink interfaces: one on the TL-C protocol for the L1 cache
and another on the TL-UH protocol for the backing DRAM memory as shown in Figure 4.2.

Starting with the L1 port, a TLDriver drives transactions from the TLC-Fuzzer to the
L2. At the same time, two TLMonitors record all transactions on the L1-L2 interface — one
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Figure 4.2: SiFive’s InclusiveCache (L2) test setup.

monitor (without protocol checking) is used to forward L2 requests to the TLC-Fuzzer to
determine responses (e.g. if L2 sends a probe request, L1 needs to respond) and the other
monitor (with protocol checking) is used to check for protocol compliance.

The configuration on the DRAM port consists of a TLDriverSlave1 to mock the backing
DRAM memory and a TLMonitor to record and check for protocol compliance at the end
of the test. Moreover, the memory state within the TLDriverSlave can be initialized with
custom values by the user before the test is run.

Input Stimulus

Similar to the TLRAM tests, both directed and randomly generated stimuli were used. The
directed tests were used as sanity checks to ensure that the cache is able to correctly process
requests such as loading cache blocks from DRAM, writing back dirty blocks, revoking cache
block permissions, etc. Once the directed tests were verified, randomized tests were used to
cover a bigger breadth of operation in terms of addresses and message ordering. Note that
data correctness and L2 uArch specific protocol compliance were not checked, and only the
TileLink protocols (TL-C for L1 and TL-U for DRAM) were checked.

Test Coverage

RTL coverage was also collected across the various directed and random tests to check for
completeness. Merged coverage across all directed and random tests resulted in 77.54% Line,
82.24% Condition, 39.27% Toggle, and 79.45% Branch coverage, resulting in an overall score
of 69.92% coverage. The total coverage is much lower compared to that of the TLRAM tests,
and we suspect it is due to the much bigger design and complexity of the InclusiveCache in

1
Repeat of footnote 1 from Chapter 2: The outdated terms master and slave are used in this paper to

avoid confusion and remain consistent with the TileLink spec, which currently uses the outdated terminology.



CHAPTER 4. LIBRARY APPLICATIONS 49

that both the directed and randomized tests together are unable to exercise a considerable
portion of the RTL. Due to limited time and shift of focus towards the development of the
specification language API, more comprehensive tests for the InclusiveCache were left as
future work.

L2 uArch Protocol and Data Correctness

The reason for not verifying the uArch protocol and data correctness is that it would
have required a golden model that essentially re-implemented the cache in software. A model
with this detail would be specifically designed for this cache and would not be scalable to
other cache designs with a di↵erent uArch. Instead, we directed our e↵ort into developing
a general specification language API in Scala (SpecLang) that would be easier to represent
uArch details (see Chapter 3). Although we did not have the time to implement the L2 testing
using SpecLang, we were able to re-verify the TLRAM module as described in Section 4.2.2.

4.1.3 AES RoCC Accelerator Verification

The AES RoCC (Rocket Custom Coprocessor) Accelerator was designed in the Spring
2021 o↵ering of EE290C to provide AES block cipher hardware acceleration for the SoC that
the whole course taped out. In terms of operation, the accelerator receives instructions from
the Rocket core via the RoCCIO interface and accesses data (i.e. key and plain/ciphertext
data) via a TileLink interface to the backing memory of the SoC. To verify the accelerator
for tapeout, the decoupled and TileLink test components as well as Java’s standard cryp-
tography library were utilized to build fully randomized accelerator-level tests that checked
for functional correctness.

4.1.3.1 Test Setup

For the test setup shown in Figure 4.3, two sets of test components are used. On the left,
a DecoupledDriver acting as a master agent drives instructions from the stimulus generator
on the RoCCIO; at the same time, a DecoupledMonitor is observing all instructions and
responses on the interface. On the right, a TLDriverSlave, in the place of the backing
DRAM memory, interfaces with the accelerator via TileLink and supplies the key and text
data randomly generated via the stimulus generator. Note that there is also a TLMonitor
attached to the interface that checks for protocol compliance. At the top, a software model
of the AES block cipher (implemented via Java’s standard cryptography library) computes
the expected results to be compared with the accelerator’s actual results.

Input Stimulus

Similar to the above tests, both directed and randomly generated stimuli were used. The
directed tests consisted of the example test vectors given in the NIST publication of the
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Figure 4.3: AES RoCC Accelerator test setup.

block ciphers[11] and were used as sanity tests. The randomized tests were then used to
verify that the functionality is still correct for random input key and data values.

In terms of input stimulus, the stimulus generator is responsible for generating the type
of operation (encryption or decryption), the key size (128 or 256 bit), the key data, the text
data (blocks to encrypt or decrypt), as well as the addresses in which the key and text data
are stored in memory. The type of operation, key size, and addresses for the key and text
data are sent to the DecoupledDriver in the form of instructions. The key and text data,
along with their addresses, are sent to the TLDriverSlave such that the accelerator can
access the correct data. Moreover, the data is also sent to the software model to generate
the correct result for output checking.

Test Coverage

RTL coverage was also collected across the various directed and random tests to check
for completeness. Merged coverage across all directed and random tests resulted in 97.32%
Line, 95.98% Condition, 63.45% Toggle, and 95.52% Branch coverage, resulting in an overall
score of 88.07% coverage. For more details on the process of coverage collection, Section 4.1.4
describes how it was done in the TLRAM tests as an example.

4.1.4 Other: Coverage Collection

As ChiselTest interfaces with RTL simulators such as Verilator and VCS (as mentioned
in Section 1.1.3), the test infrastructure is able to utilize the built-in coverage collection
tools within the simulators. For example, VCS supports various types of automatic coverage
collection: Line, Conditional, Toggle, Branch, and Structural (all of the above). To enable



CHAPTER 4. LIBRARY APPLICATIONS 51

coverage collection within the tests, flags such as StructuralCoverageAnnotation can be
added to the test to enable the corresponding coverage collection.

For example purposes, we will go over the coverage of the TLRAM tests. Below, Table 4.1
displays the individual coverage of each directed test (D), random test (R), as well as total
merged coverage of the tests.

Score Line (%) Cond (%) Toggle (%) Branch (%)
1. Basic Burst (D) 73.94 91.34 79.41 37.95 87.06
2. Atomic (D) 75.91 90.94 84.71 39.31 88.68
3. Non-Aligned (D) 75.87 90.94 84.12 39.99 88.41
4. Random (R) 88.09 93.7 95.88 66.56 96.23
Merged 1,2 76.86 91.34 84.71 41.91 89.49
Merged 1,2,3 79.87 91.34 89.41 47.08 91.64
Merged 1,2,3,4 88.18 93.7 95.88 66.93 96.23

Table 4.1: TLRAM test coverage.

Starting with directed tests (labeled with a ’(D)’), the coverage scores, or average %
coverage across the di↵erent metrics, are around mid-70’s. The reason for the lower coverage
is due to directed tests only testing a specific type of operation (e.g. the Atomic directed test
only had atomic operations as input stimulus). With the randomized testing, the coverage
score rose to high-80’s, as this test did not have any restrictions on input stimulus and was
able to test more of the design. Note that the Line, Condition, and Branch coverage metrics
for the randomized test are all in the mid-90’s, while the Toggle coverage metric is only at
66%, thus bringing down the average coverage score.

To consider the total coverage of the entire testbench, the coverage of each test were
merged as shown in the bottom of the table. As coverage is only collected per test, VCS’s
URG (Unified Report Generator) was used to merge coverage statistics across di↵erent tests
on the same design. Moreover, to demonstrate the incremental coverage of each test, the
merged statistic of each additional test is shown. Each additional test increased the total
coverage score, with the total coverage of all tests very similar to the randomized test.

4.1.5 Other: Testbench Performance

To briefly mention testbench performance, let’s take a look at previous TLRAM test again
as an example. For a randomized test of 1000 transactions, it took 67,408 simulation cycles
and approximately 14.2 seconds to execute (averaged across 5 runs). This comes out to be a
frequency of 4747 Hz (cycle/second) and a throughput of 2.107 ⇤ 10�4 second/cycle. This is
actually quite slow for a testbench simulation, and even more so as TLRAM is a relatively small
design. With further investigation with YourKit[12], a Java Profiler, we found that there
is non-optimal execution of threads where most threads are sitting idle waiting to be run.
Moreover, the threads are executed for a small amount of time before switching to another,
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resulting in a very high thread switching overhead. Figure 4.4 displays the resulting thread
execution during a test. Throughout the test execution, threads spend most of their time
parked (yellow) and a small amount of time running (green).

Figure 4.4: Thread execution of TLRAM test - YourKit.

This non-optimal thread execution behavior is most likely caused by how ChiselTest han-
dles Fork/Join constructs. As described in Section 1.1.3, ChiselTest multiplexes each forked
thread such that only one thread can run a time. This is to ensure that signal interaction
behaviors are deterministic during simulation, but as a result, test performance degrades
due to high thread switching overhead in addition to a single-threaded-like execution style.
That being said, ChiselTest is still under heavy development and performance optimizations
are very possible in the future.

4.2 Specification Language

To demonstrate that the specification language API (Chapter 3) can be used to define
arbitrary sequential rules, the TileLink protocol checker was recreated using the API. More-
over, as the specification language has a modeling layer that supports local variables and
global memory states, the new protocol checker is able to check for data correctness if given
a corresponding memory model. To verify that the new TileLink protocol checker is correct,
both correct and incorrect TLRAM output traces were passed in to ensure that it was able to
correctly detect the incorrect traces.
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4.2.1 TLProtocolChecker + TLMemoryModel Revisisted

As the purpose of the TLProtocolChecker is to check that a given transaction trace
follows the sequential rules of TileLink, it was a perfect application to demonstrate the
usability of the specification language API. Note that this variant of the TileLink protocol
checker currently only supports up to TL-UH protocol compliance, but it can be extended
to support TL-C compliance.

4.2.1.1 TLSLProtocolChecker

TLSLProtocolChecker, which is the SpecLang version of the TLProtocolChecker, fol-
lows similar checking methods as described in Section 2.8.3 in that it checks two areas:
message field compliance and message handshake compliance. To accomplish this, the pro-
tocol checker contains two sets of properties, with one set to check fields and the other set
to check for handshakes.

Message Field Compliance Checking

As message field compliance checking only involves checking fields within a single trans-
action, the properties in this set will not contain a time operator and will take on the form of
MSG_TYPE + Implies + FIELD_APs. Moreover, because there is no time operator, all field
APs can be combined via the & operator to create a composite AP that contains all checks
for a given message type’s fields. As field correctness is often shared between messages (e.g.
the address field in ALL messages must be aligned), the protocol checker defines unit APs
for each field and creates combinations of them for specific message types. Listing 4.1 dis-
plays a code snippet of how the fields within Get and Arithmetic messages are checked. At
the top, unit APs are defined for each field. Those unit APs are then combined to create
composite APs for specific message types, as shown on lines 11-12. The composite APs are
then used to define properties for each message type, as shown on lines 13-14. Again, note
that no time operators are used as these properties are meant to only check within a single
transaction. During operation, the protocol checker ensures that all properties are checked
on the transaction trace.
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1 // Unit APs for each field
2 val IsGetOp = // AP that checks if PARAM field is GET
3 val ZeroParam = // AP that checks if PARAM field is zero
4 val ArithParam = // AP that checks if PARAM field is legal for arith. messages
5 def SizeWithinMaxTx(...) = // AP that checks if SIZE is within legal sizes
6 val AlignedAddr = // AP that checks if ADDRESS is aligned
7 def ContiguousMask(...) = // AP that checks if MASK field is contiguous
8 ...
9

10 // Composite APs for each message type
11 def GetAP(beatBytes: Int, maxTxSize: Int) = IsGetOp & ZeroParam &

SizeWithinMaxTx(maxTxSize) & AlignedAddr & ContiguousMask(beatBytes) & ZeroCorrupt,!
12 def ArithAP(beatBytes: Int, maxTxSize: Int) = IsArithOp & ArithParam &

SizeWithinMaxTx(maxTxSize) & AlignedAddr & ContiguousMask(beatBytes),!
13

14 // Functions that return a property for the specified maxTxSize
15 def GetProperty(maxTxSize: Int) = qProp(IsGetOp + Implies + GetAP(beatBytes, maxTxSize))
16 def ArithProperty(maxTxSize: Int) = qProp(IsArithOp + Implies + ArithAP(beatBytes,

maxTxSize)),!
17 ...

Listing 4.1: TLSLProtocolChecker field properties code snippet - simplified.

Message Handshake Compliance Checking

As handshakes compliance checking occurs across multiple transactions, the properties
will take on the general form of REQ_TYPE + Implies + ###(CYCLE_DELAY) + RESP_TYPE.
Moreover, as request and response messages are matched by the source field, there are
special APs that utilize the modeling layer to store the source value in a local variable that
is checked when matching the response message. The code shown in Listing 4.2 displays how
handshake properties are created for Get messages.

On lines 10-11 of Listing 4.2, helper sequences are created from the APs defined on lines 2-
7 to represent parts of the handshake. Focusing on line 10, this sequence checks if the current
message is a Get message and stores the source and size fields in local variables. Moreover,
as the message could be a multi-beat request, the sequence is dynamic in that it utilizes
the SizeCheck AP to match a specific beat count (e.g. GetInitSequence(4) will return a
sequence that matches a Get request of 4 beats). Line 11 then describes the sequence that
matches the response message: it must have the same source and size fields as the request,
and it also needs to have the expected data specified by the memory model (not shown). Line
14 gives an example of a single beat Get handshake property. However, in the case of burst
messages, there is either repeated requests (writing) or responses (reading). This is remedied
by utilizing the static repetition operator, as shown on line 17. By passing in a specific beat
count to the GetHandshakeProp function, it will return a property with the corresponding
GetInitSequence sequence to match the request along with the corresponding repetitions
of AccessAckDataCheckSequence sequences. Note that the protocol checker enumerates all
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possible burst sizes and creates a property for each case. And similar to the message field
properties, all message handshake properties are checked across the transaction trace.

Along with the message handshake properties, the protocol checker also contains a non-
message-specific property that checks for any extra requests or responses that may appear
in the transaction trace. It does this by first traversing the entire transaction trace to count
the number of requests and responses and then checking if they match. This property is
needed since the message handshake properties above do not check for extra responses (e.g.
property finishes checking when it sees the expected number of responses but nothing more)
or missing requests (e.g. property never gets activated).

1 // Handshake APs
2 val SaveSource = // AP that saves SOURCE into a local variable (REQ)
3 val SaveSize = // AP that saves SIZE into local variable (REQ)
4 def SizeCheck(...) = // Configurable AP that matches SIZE to # of beats (REQ)
5 val CheckSource = // AP that checks if SOURCE matches the local variable (RESP)
6 val CheckSize = // AP that checks if SIZE matches the local variable (RESP)
7 val CheckData = // AP that checks if DATA matches the memory state (RESP)
8

9 // Helper sequences to match part of GET handshake
10 def GetInitSequence(beatCount: Int) = qSeq(IsGetOp & SaveSource & SaveSize &

SizeCheck(beatCount, beatBytes)),!
11 val AccessAckDataCheckSequence = qSeq(###(1, -1), IsAccessAckDataOp & CheckSource &

CheckSize & CheckData),!
12

13 // Example one-beat GET handshake property
14 val OneBeatGetProp = qProp(GetInitSequence(beatCount) + Implies +

AccessAckDataCheckSequence),!
15

16 // Dynamic multi-beat GET handshake property using static repetition
17 def GetHandshakeProp(beatCount: Int) = qProp(GetInitSequence(beatCount) + Implies +

(AccessAckDataCheckSequence * beatCount)),!

Listing 4.2: TLSLProtocolChecker handshake properties code snippet - simplified.

4.2.1.2 TLSLMemoryModel

As the TLSLProtocolChecker supports data correctness checking, the TLSLMemoryModel
is implemented to generate the required memory states for each transaction. It is imple-
mented as a wrapper for the TLMemoryModel. In terms of generating the memory states, the
memory model iterates through the given transaction trace and produces either a mem-
ory state or a filler object for each transaction. When a write request is encountered,
the TLSLMemoryModel will update its internal state; when a response message with data is
reached, it will generate a TLSLMemoryState with the expected data according to its internal
state. Note that the memory state object is optimized for Tilelink — as each transaction
can hold at most one data value, each memory state only carries one data value instead of
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the entire memory state. In contrast to Listing 3.13, the optimized memory state shown in
Listing 4.3 only carries one data value rather than an entire hashmap.

1 // Custom optimized TL memory state (only one data value per transaction)
2 class TLSLMemoryState(init: UInt = 0.U) extends SLMemoryState[UInt] {
3 var int_state = init
4

5 def get(addr: Int): UInt = {
6 int_state // Addr unused
7 }
8 }

Listing 4.3: Optimized TLSLMemoryState for TileLink.

4.2.2 TLRAM Output Trace Mutation Tests

To test the functional correctness of the TLSLProtocolChecker, trace mutation tests
were used to verify that the protocol checker is able to correctly detect transaction traces
that fail to meet protocol compliance. The test setup is shown in Figure 4.5: take an
existing verified transaction trace and maliciously mutate some transactions within it. If
the protocol checker correctly detects the mutation in the modified trace, then the mutation
is caught and the protocol checker passes the test. The use of mutations in the output
trace is to mimic the output of a faulty TLRAM design. Although it would be more accurate
to mutate the design itself, trace mutations accomplish the same in a simpler fashion. In
terms of mutations, several modifications were used: adding extra transactions, removing
transactions, modifying transaction fields, and combining both good and bad traces together.
All mutations were designed to introduce protocol-breaking modifications, with the exception
where two good traces are combined. For the cases where individual transactions were
modified, the TLSLProtocolChecker was able to detect the mutations and correctly flag all
malformed traces. For the cases where traces were combined, the protocol checker correctly
flagged all cases when a malformed trace was created.

Figure 4.5: TLRAM trace mutation test setup.
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Chapter 5

Conclusion and Future Work
The verification library presented in this work can accomplish many types of verification

tasks. It includes a library of VIPs to interact with common DUT interfaces such as the
decoupled and TileLink interface, as shown by the testbench designs in Chapter 4 that
verify the TLRAM, InclusiveCache (L2), and an AES RoCC accelerator. The library also
contains an embedded specification language to define and check transaction-level properties,
as shown in the TLRAM trace mutation tests.

While the library in its current state is usable, it has performance limitations and issues
with VIP determinism arising from the use of infinite loops in the VIP body and the use of
unsynchronized, but safely accessed, mutable data structures.

5.1 VIP Determinism

One area of future work is to define a VIP API such that a VIP is deterministic and
able to handle combinational paths through a DUT by construction. Consider the case of a
combinational path through a DUT and VIPs on each interface driving stimulus as shown
in Figure 5.1.

Figure 5.1: VIP race condition with combinational logic.

In this example, there is a combinational path from the slave (right) port’s ready signal
to the master1 (left) port’s ready signal. If we were using Verilog to drive stimulus into
the DUT using 2 threads as shown in the figure, there would be a race condition. Verilog
simulators do not have a specified order of execution so the simulation process can potentially
vary across simulators and across runs from the same simulator. If we tried expressing the

1
Repeat of footnote 1 from Chapter 2: The outdated terms master and slave are used in this paper to

avoid confusion and remain consistent with the TileLink spec, which currently uses the outdated terminology.
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same stimulus driving algorithm using chiseltest, we would get a runtime error that catches
this source of non-determinism, but doesn’t give us a way to fix it.

To resolve this issue, we have been prototyping an API where a VIP is defined as a set
of functions, shown below.

1 trait VIP[I, S] {
2 def drive(io: I, state: S): I
3 def update(io: I, state: S): S
4 }

Listing 5.1: Deterministic API prototype.

The drive function specifies how a VIP should poke an interface I given a current state
S. The update() function is called right before the clock on the interface is actually stepped
with the latest values of the interface so the VIP can update its state. This fundamentally
amounts to describing a VIP as an explicit FSM.

Now, the simulation runtime can perform fixpoint iteration to resolve combinational
paths through a DUT:

1. Peek the interfaces of a DUT

2. Pass the peeked value to each VIP’s drive() function

3. Poke the values returned by each drive() into the DUT and force combinational
propagation through the DUT

4. Repeat from step 1 until the values driven into the DUT no longer change

This procedure guarantees deterministic VIPs and proper handling of combinational
paths. It also has the benefit of removing new thread creation from the testbench com-
ponents to improve performance.

5.2 VIP Synthesizability

If the VIP’s state type S were restricted to a subtype of chisel3.Data, a VIP implemen-
tation becomes a description of a Chisel circuit. This would make the VIP and the fixpoint
iteration runtime synthesizable and able to be packed into the simulation binary with the
DUT RTL.

Future work involves generalizing this approach for the specification language eDSL too,
and using synthesizable VIPs to reduce the IPC overhead of communication between Scala
and the RTL simulator.
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Appendix A

Test Component Library Code

1 while(true) {
2 if (inputTransactions.nonEmpty && idleCycles == 0) {
3 val t = inputTransactions.dequeue()
4

5 // Setting waitCycles
6 if (t.waitCycles.litValue().toInt > 0) {
7 idleCycles = t.waitCycles.litValue().toInt
8 while (idleCycles > 0) {
9 idleCycles -= 1

10 clock.step()
11 }
12 }
13 while (!interface.ready.peek().litToBoolean) {
14 clock.step()
15 }
16

17 interface.valid.poke(true.B)
18 interface.pokePartial(t.data)
19 clock.step()
20

21 interface.valid.poke(false.B)
22

23 // Setting postSendCycles
24 idleCycles = t.postSendCycles.litValue().toInt
25 } else {
26 if (idleCycles > 0) idleCycles -= 1
27 clock.step()
28 }
29 }

Listing A.1: DecoupledDriverMaster implementation.
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1 private val aDriver = new DecoupledDriverMaster(clock, interface.a)
2 // dDriver and bDriver just consume transactions blindly
3 private val dDriver = new DecoupledDriverSlave(clock, interface.d, 0)
4 // Conditional instantiation as Channels B,C,E are optional (only defined if interface

allows),!
5 private val bDriver = if (interface.params.hasBCE) Option(new DecoupledDriverSlave(clock,

interface.b, 0)) else None,!
6 private val cDriver = if (interface.params.hasBCE) Option(new

DecoupledDriverMaster(clock, interface.c)) else None,!
7 private val eDriver = if (interface.params.hasBCE) Option(new

DecoupledDriverMaster(clock, interface.e)) else None,!
8

9 // Push method filters transactions into their respective channels
10 // e.g. all TLBundleA transactions go to the driver for Channel A
11 // Note: Catches error where user tries to send something on Channel B or D
12 def push(tx: Seq[TLChannel]): Unit = {
13 tx.foreach { channel: TLChannel =>
14 assert(channel.isLit())
15 channel match {
16 case a: TLBundleA =>
17 val txProto = new DecoupledTX(new TLBundleA(params))
18 val tx = txProto.tx(a)
19 aDriver.push(tx)
20 case c: TLBundleC =>
21 val txProto = new DecoupledTX(new TLBundleC(params))
22 val tx = txProto.tx(c)
23 cDriver.get.push(tx)
24 case e: TLBundleE =>
25 val txProto = new DecoupledTX(new TLBundleE(params))
26 val tx = txProto.tx(e)
27 eDriver.get.push(tx)
28 case _ =>
29 throw new RuntimeException("TLDriverMaster got a TLBundleB or TLBundleD which

can't be driven"),!
30 }
31 }
32 }

Listing A.2: TLDriverMaster implementation.
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1 private val aDriver = new DecoupledDriverSlave[TLBundleA](clock, interface.a, 0)
2 private val dDriver = new DecoupledDriverMaster[TLBundleD](clock, interface.d)
3 // Conditional instantiation as Channels B,C,E are optional (only defined if interface

allows),!
4 private val bDriver = if (interface.params.hasBCE) Option(new

DecoupledDriverMaster(clock, interface.b)) else None,!
5 private val cDriver = if (interface.params.hasBCE) Option(new DecoupledDriverSlave(clock,

interface.c, 0)) else None,!
6 private val eDriver = if (interface.params.hasBCE) Option(new DecoupledDriverSlave(clock,

interface.e, 0)) else None,!
7 private val monitor = new TLMonitor(clock, interface)
8

9 var state = initialState
10

11 fork {
12 while (true) {
13 // extract TLBundle A,C,E (request / GrantAck channels)
14 val txFromMaster = monitor.getMonitoredTransactions().map(_.data).flatMap{
15 case _:TLBundleD | _:TLBundleB => None
16 case other => Some(other)
17 }
18 // Generating response transaction and new state from slaving function
19 val (responseTxns, newState) = slaveFn.respondFromState(txFromMaster, state)
20 state = newState
21 dDriver.push(responseTxns.collect{ case t: TLBundleD => t }.map {
22 t: TLBundleD =>
23 new DecoupledTX(new TLBundleD(params)).tx(t)
24 })
25 if (params.hasBCE) {
26 bDriver.get.push(responseTxns.collect{ case t: TLBundleB => t }.map {
27 t: TLBundleB =>
28 new DecoupledTX(new TLBundleB(params)).tx(t)
29 })
30 }
31 clock.step()
32 }
33 }

Listing A.3: TLDriverSlave implementation.
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1 // Memory in this model is word addressed
2 val byteAddr = txA.address.litValue()
3 val wordAddr = (byteAddr / bytesPerWord).toLong
4 val wordsToProcess = ceil(pow(2, txA.size.litValue().toInt) / bytesPerWord).toInt
5 ...
6 case TLOpcodes.PutPartialData | TLOpcodes.PutFullData =>
7 val writeData = txA.data.litValue()
8 val writeMask = txA.mask.litValue().toInt
9 if (state.burstStatus.isDefined) {

10 // Currently in a write burst
11 val burstStatus = state.burstStatus.get
12 val newMem = TLMemoryModel.write(state.mem, burstStatus.baseAddr +

burstStatus.currentBeat, writeData, writeMask, bytesPerWord),!
13 val newBurstStatus = if ((burstStatus.currentBeat + 1) == burstStatus.totalBeats) {
14 None
15 } else {
16 Some(burstStatus.copy(currentBeat = burstStatus.currentBeat + 1))
17 }
18 (Seq.empty[TLChannel], state.copy(mem = newMem, burstStatus = newBurstStatus))
19 } else {
20 val newMem = TLMemoryModel.write(state.mem, wordAddr, writeData, writeMask,

bytesPerWord),!
21 if (wordsToProcess == 1) {
22 // Single beat write
23 (Seq(AccessAck(txA.size.litValue().toInt, txA.source.litValue().toInt)),

state.copy(mem = newMem)),!
24 } else {
25 // Starting a burst
26 val burstStatus = TLMemoryModel.BurstStatus(wordAddr, 1, wordsToProcess)
27 (Seq(AccessAck(txA.size.litValue().toInt, txA.source.litValue().toInt)),

state.copy(mem = newMem, burstStatus = Some(burstStatus))),!
28 }
29 }

Listing A.4: TLMemoryModel ”PutPartial/Full” implementation.
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1 private val aMonitor = new DecoupledMonitor[TLChannel](clock, interface.a)
2 private val dMonitor = new DecoupledMonitor[TLChannel](clock, interface.d)
3 private val bMonitor = if (interface.params.hasBCE) Option(new

DecoupledMonitor[TLChannel](clock, interface.b)) else None,!
4 private val cMonitor = if (interface.params.hasBCE) Option(new

DecoupledMonitor[TLChannel](clock, interface.c)) else None,!
5 private val eMonitor = if (interface.params.hasBCE) Option(new

DecoupledMonitor[TLChannel](clock, interface.e)) else None,!
6

7 def getMonitoredTransactions(): Seq[DecoupledTX[TLChannel]] = {
8 // Collecting all transactions from monitors
9 val tx = aMonitor.monitoredTransactions ++

10 dMonitor.monitoredTransactions ++
11 bMonitor.map(_.monitoredTransactions).getOrElse(Seq()) ++
12 cMonitor.map(_.monitoredTransactions).getOrElse(Seq()) ++
13 eMonitor.map(_.monitoredTransactions).getOrElse(Seq())
14 // Clearing transactions to avoid repetition
15 aMonitor.monitoredTransactions.clear()
16 dMonitor.monitoredTransactions.clear()
17 if (interface.params.hasBCE) {
18 bMonitor.get.monitoredTransactions.clear()
19 cMonitor.get.monitoredTransactions.clear()
20 eMonitor.get.monitoredTransactions.clear()
21 }
22 // Sorting by cycle stamp and running protocol checker if available
23 val res = tx.sortBy(_.cycleStamp.litValue())
24 if (protocolChecker.isDefined) {protocolChecker.get.check(res.map {_.data})}
25 res
26 }

Listing A.5: TLMonitor implementation.


	Contents
	List of Listings
	List of Figures
	List of Tables
	Background and Project Introduction
	Background
	Dynamic Verification Library for Chisel

	Test Component Library
	Core Interfaces
	Core Transactions
	Core Sequencers
	Core Drivers
	Core Monitors
	Core Scoreboards
	Example Testbench
	TileLink Test Components

	SVA-like Specification Language as an eDSL
	Introduction
	Abstract Syntax Tree
	Sequence Elements
	Sequences
	Properties
	Memory Model
	Application Examples

	Library Applications
	Library Test Components
	Specification Language

	Conclusion and Future Work
	VIP Determinism
	VIP Synthesizability

	Bibliography
	Test Component Library Code

