
Incremental Learning via Rate Reduction

Kyung Eun Baek
Yi Ma

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-130

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-130.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Incremental Learning via Rate Reduction

by Christina Baek

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Yi Ma
Research Advisor

(Date)

* * * * * * *

Professor Anant Sahai
Second Reader

(Date)

 May 13, 2021

Incremental Learning via Rate Reduction

by

Christina Baek

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yi Ma, Chair
Professor Anant Sahai

Spring 2021

1

Abstract

Incremental Learning via Rate Reduction

by

Christina Baek

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Yi Ma, Chair

Current deep learning architectures suffer from catastrophic forgetting, a failure to retain
knowledge of previously learned classes when incrementally trained on new classes. The
fundamental roadblock faced by deep learning methods is that the models are optimized
as “black boxes,” making it difficult to properly adjust the model parameters to preserve
knowledge about previously seen data. To overcome the problem of catastrophic forgetting,
we propose utilizing an alternative “white box” architecture derived from the principle of rate
reduction, where each layer of the network is explicitly computed without back propagation.
Under this paradigm, we demonstrate that, given a pretrained network and new data classes,
our approach can provably construct a new network that emulates joint training with all
past and new classes. Finally, our experiments show that our proposed learning algorithm
observes significantly less decay in classification performance, outperforming state of the art
methods on MNIST and CIFAR-10 by a large margin and justifying the use of “white box”
algorithms for incremental learning even for sufficiently complex image data.

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Interpretable Network from Rate Reduction 1
1.1 Principle of Maximal Coding Rate Reduction 1
1.2 Rate Reduction Network (ReduNet) . 3

2 ReduNet for Interpretable Incremental Learning 5
2.1 Introduction . 5
2.2 Related Work . 6
2.3 Incremental Learning with ReduNet . 8
2.4 Experiments . 12
2.5 Conclusions and Future Work . 16

3 Low Rank Approximation for Efficient ReduNet 17
3.1 Low rank approximation . 17
3.2 Block Diagonal Approximation by Eigenspace 20
3.3 Conclusion . 25

Bibliography 26

ii

List of Figures

1.1 MCR2 learns a map f(x, θ) such that the class representation Zj = f(Xj, θ) lies
on maximally uncorrelated subspaces {Sj}. 2

1.2 ReduNet Architecture in which we here adopt a slightly different normalization
than [2] but is more suitable for the incremental learning as we will see in our
derivation. 4

2.1 The joint network can be derived using simply Z0,tZ
>
0,t. We do not need the task

t data Z0,t directly. 10
2.2 Incremental learning results (accuracy) on MNIST and CIFAR-10. Both datasets

have 5 incremental batches. We also provide the upper bound (UB) given by
joint training a model utilizing the same architecture as the baseline methods.
In solid lines are regularization-based methods and in dashed are exemplar-based
methods, which saves 200 samples from previous tasks. Note that the decay in the
performance in ReduNet is simply because classification is harder to accomplish
with more classes, not because of catastrophic forgetting. 15

3.1 The first 100 eigenvalues of each class distribution of MNIST and CIFAR10.
MNIST is 32 × 32 = 784 dimensional and CIFAR10 is 28 × 28 × 3 = 3072
dimensional. Note that eigenvalues nearly decay to 0 by the 20th dimension for
both datasets. 18

3.2 We pass through the training data of MNIST and CIFAR10 through the original
ReduNet and compressed ReduNet, and compare the MCR loss ∆R(Z l) at each
layer l. We observe the loss curve for compressed ReduNet to be better than that
of true ReduNet . 20

3.3 In MNIST, we observe that only a few eigenvectors are necessary to approximate
Cj of the first layer for small tolerance values. 21

3.4 ReduNet trained on MNIST with 500 samples. Notice that the number of eigenvectors
chosen is proportional to the compression loss 24

iii

List of Tables

2.1 Test Accuracy (%) on Task 1 After Each Training Session on MNIST and CIFAR-10. 14

iv

Acknowledgments

This work was a joint effort with students Ziyang Wu and Chong You, advised by Professor
Yi Ma. I would like to thank Professor Yi Ma for the invaluable opportunities he has given
me this year to learn and grow as a student and researcher. I learned tremendously from
him and graduate students Simon, Yaodong, Chong, Xili, and others, whose dedication and
compassion inspired me on a daily basis to keep working towards a better understanding
of this field. I dedicate my thesis to my family, from whom I always receive unwavering
support.

1

Chapter 1

Interpretable Network from Rate
Reduction

1.1 Principle of Maximal Coding Rate Reduction

Given a set of training data {xi} and their corresponding labels {yi}, classical deep learning
aims to learn a nonlinear mapping h(·) : x → y, implemented as a series of simple linear
and nonlinear maps, that minimizes the cross-entropy loss. One popular way to interpret
the role of multiple layers is to consider the output of each intermediate layer as a latent
representation space. Then, the beginning layers aim to learn a latent representation z =
f(x, θ) ∈ Rd that best facilitates the later layers y = g(z) for the downstream classification
task.

x
f(x,θ)−−−→ z(θ)

g(z)−−→ y

As a concrete example, in image recognition tasks, f(·) is a convolutional backbone that
encodes an image x ∈ RH×W×C into a vector representation z = f(x, θ) ∈ Rd and g(z) = w ·
z is a linear classifier where w ∈ Rk×d and k is the number of classes. Recent work [15] shows
that this direct label fitting leads to a phenomena called neural collapse in deep networks,
where within-class variability and structural information are completely suppressed. Namely,
at the final hidden layer, the variance of each latent class distribution often converges to 0,
such that for each class, the training inputs map to a single point. Therefore, it is unclear
to what extent the feature representation captures any intrinsic structure of the data.

To address the aforementioned problem, a recent work by Yu et al . [25] presented a
framework for learning useful and geometrically meaningful representations by maximizing
the coding rate reduction (i.e., MCR2). Given m training samples of d dimension X =
[x1, . . . ,xm] ∈ Rd×m that belong to k classes, let Z = [f(x1, θ), ..., f(xm, θ)] ∈ Rd×m be the
latent representation. Let Π = {Πj}kj=1 be the membership of the data in the k classes,

where each Πj ∈ Rm×m is a diagonal matrix such that Πj(i, i) is the probability of xi
belonging to class j. Then, MCR2 aims to learn a feature representation Z by maximizing

CHAPTER 1. INTERPRETABLE NETWORK FROM RATE REDUCTION 2

Figure 1.1: MCR2 learns a map f(x, θ) such that the class representation Zj = f(Xj, θ)
lies on maximally uncorrelated subspaces {Sj}.

the following rate reduction:

∆R(Z) = R(Z)−Rc(Z,Π), (1.1)

where

R(Z) =
1

2
log det

(
I + αZZ>

)
, and (1.2)

Rc(Z,Π) =
k∑
j=1

γj
2

log det
(
I + αjZΠjZ>

)
. (1.3)

subject to the constraint that Z is properly normalized, i.e., have the Frobenius norm of
class features Zj = ZΠj scale with the number of samples in class j: ‖Zj‖2

F = mj = tr(Πj).
Above, we denote α = d/(mε2), αj = d/(tr(Πj)ε2), γj = tr(Πj)/m, and ε > 0 is a prescribed
quantization error.

This coding rate measure utilizes local ε-ball packing to estimate the coding rate of the
latent distribution from finite samples [13]. R(Z), known as the expansion term, represents
the total coding length of all features Z while Rc(Z,Π), named compression term, measures
the sum of coding lengths of each latent class distribution. They are called expansion
and compression terms respectively, since to maximize ∆R, the first coding rate term is
maximized and the second coding rate term is minimized.

The features learned by MCR2 have precise statistical and geometric interpretations
formalized in the following theorem.

Theorem 1.1.1. (Theorem 2.1 in [25]) Suppose Z∗ = Z∗1 ∪ · · · ∪Z∗k is the optimal solution
that maximizes the rate reduction (1.1) with the extra constraint that rank(Zj) ≤ dj , ∀j ∈
{1, . . . , k}. As long as the ambient space is adequately large (d ≥

∑k
j=1 dj), we have:

1. Between-class Discriminative: The subspaces are all orthogonal to each other, i.e.
(Z∗i)

>Z∗j = 0 for i 6= j.

CHAPTER 1. INTERPRETABLE NETWORK FROM RATE REDUCTION 3

2. Maximally Diverse Representation: As long as the coding precision is adequately high,

i.e., ε4 < minj

{
mj
m

d2

d2j

}
, each subspace achieves its maximal dimension, i.e. rank(Z∗j) =

dj. In addition, the largest dj − 1 singular values of Z∗j are equal.

In [25], it is demonstrated empirically that maximizing ∆R(Z) enforces each latent
class distribution to be a low-dimensional subspace-like distribution of approximately d

k

dimension with class balance i.e. among all such discriminative representations, it prefers
the one that spans the whole ambient space. The data points are distributed isotropically in
each subspace except for possibly one dimension. In addition, these class distributions are
orthogonal to each other (See Figure 1.1). Thus, by maximizing the coding rate difference,
the features become between-class discriminative, whilst maintaining intra-class diversity.
We refer interested readers to [25] for detailed proofs and empirical results.

1.2 Rate Reduction Network (ReduNet)

While an existing neural network architecture (such as ResNet) can be used for feature
learning with MCR2, a follow-up work [2] showed that a novel architecture can be explicitly
constructed without back-propagation via emulating the projected gradient ascent scheme
for maximizing ∆R(Z). This produces a “white box” network, called ReduNet, which has
precise statistical and geometric interpretations. We review the construction of ReduNet as
follows.

Let Z be initialized as the training data, i.e., Z0 = X. Then, the projected gradient
ascent step for optimizing the rate reduction ∆R(Z) in (1.1) is given by

Z`+1 ∝ Z` + η

(
∂∆R

∂Z

∣∣∣
Z`

)
= Z` + η

(
E`Z` −

k∑
j=1

γjC
j
`Z

j
`

)
s.t. ‖Zj

`+1‖
2
F = tr(Πj) = mj ∀j ∈ {1, .., k},

(1.4)

where we use Zj
` = Z`Π

j ∈ Rd×m to denote the feature matrix associated with the j-th class
at the `-th iteration, and η > 0 is the learning rate. The matrices E` and Cj

` are obtained
by evaluating the derivative ∂∆R

∂Z
at Z`, given by

E` = α
(
I + αZ`Z

>
`

)−1
, (1.5)

Cj
` = αj

(
I + αjZ

j
`Z

j>
`

)−1

. (1.6)

Observe that E` ∈ Rd×d is applied to all features Z` and it expands the coding length
of the entire data. Meanwhile, Cj

` ∈ Rd×d is applied to features from class j, i.e., Zj
`, and it

compresses the coding lengths of the j-th class.

CHAPTER 1. INTERPRETABLE NETWORK FROM RATE REDUCTION 4

Figure 1.2: ReduNet Architecture in which we here adopt a slightly different normalization
than [2] but is more suitable for the incremental learning as we will see in our derivation.

Each projected gradient step can be interpreted as one layer of a neural network composed
of matrix multiplication and subtraction operators, with E` and Cj

` being parameters
associated with the `-th layer computed using training data (See Figure 1.2). Then, given a
test sample x ∈ Rd, its feature can be computed by setting z0 = x and iteratively carrying
out the following incremental transform

z`+1 ∝ z` + η
(
E`z` −

k∑
j=1

γjC
j
`z`π

j(z`)
)
. (1.7)

Notice that the increment depends on πj(z`), the membership of the feature z`, which is
unknown for the test data. Therefore, [2] presented a method that replaces πj(z`) in (1.7)
by the following estimated membership

π̂j`(z) =
exp

(
−λk‖Cj

`z‖
)∑k

j=1 exp
(
−λk‖Cj

`z‖
) ∈ [0, 1], (1.8)

where λ > 0 is a confidence parameter. This leads to a nonlinear operator σ
(
C1
`z`, . . . ,C

k
`z`
) .

=∑k
j=1 γjC

j
`z`π̂

j
` that, after being plugged into (1.7), produces a nonlinear layer as summarized

in Figure 1.2. Stacking multiple such layers produces a multi-layer neural network for
extracting discriminative features. Then, a nearest subspace classifier as we will discuss
in Section 2.4 can classify the data. Note that each layer is interpretable and computed
explicitly.

Note that when membership is known, ReduNet is simply a linear transformation for
each class data. Additionally, note that El −

∑k
j=1 γjC

i
l cannot move the data Z l towards

a direction that is not spanned by Z l. Thus, the final representation achieved by each class
does not necessarily span all d

k
dimensions like the globally optimal configuration (Theorem

1.1.1) if the initial data lies on a lower dimensional subspace.

5

Chapter 2

ReduNet for Interpretable
Incremental Learning

The work in this chapter was published at the Conference on Computer Vision and Pattern
Recognition (CVPR) 2021 by the author, Ziyang Wu, Chong You, and Yi Ma [23].

2.1 Introduction

Humans are capable of acquiring new information continuously while retaining previously
obtained knowledge. This seemingly natural capability, however, is extremely difficult for
deep neural networks (DNNs) to achieve. Incremental learning (IL), also known as continual
learning or life-long learning, thus studies the design of machine learning systems that can
assimilate new information without forgetting past knowledge.

In incremental learning, models go through rounds of training sessions to accumulate
knowledge for a particular objective (e.g . classification). Specifically, under class incremental
learning (class-IL), an agent has access to training data from a subset of the classes, known
as a task, at each training session and is evaluated on all seen classes at inference time.
The overarching goal is to precisely fine-tune a model trained on previously seen tasks to
additionally classify new classes of data. However, due to the absence of old data, such models
often suffer from catastrophic forgetting [14], which refers to a drastic drop in performance
after training incrementally on different tasks.

In the last few years, a flurry of continual learning algorithms have been proposed for
DNNs, aiming to alleviate the effect of catastrophic forgetting. These methods can be
roughly partitioned into three categories: 1) regularization-based methods that often involve
knowledge distillation [12, 6, 19, 26], 2) exemplar-based methods that keep partial copies of
data from previously learned tasks [16, 1, 22], and 3) modified architectures that attempt
to utilize network components specialized for different tasks [17, 19, 11]. In practice, these
algorithms exhibit varying performance across different datasets and their ability to mitigate
catastrophic forgetting is inadequate. Factors including domain shift [18] across tasks and

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 6

imbalance of new and past classes [22] are part of the reason.
The fundamental roadblock in deep continual learning is that DNNs are trained and

optimized in a “black box” fashion. Each model contains millions of mathematical operations
and its complexity prevents humans from following the mapping from data input to prediction.
Given our current limited understanding of network parameters, it is difficult, if not impossible,
to precisely control the parameters of a pre-trained model such that the decision boundary
learned fits to new data without losing its understanding of old data.

In this work, we take a drastically different approach to incremental learning. We avoid
“black box” architectures entirely, and instead utilize a recently proposed “white box” DNN
architecture derived from the principle of rate reduction [2]. Termed ReduNet, each layer of
this DNN can be explicitly computed in a forward-propagation fashion and each parameter
has precise statistical interpretations. The so-constructed network is intrinsically suitable
for incremental learning because the second-order statistics of any previously-seen training
data is preserved in the network parameters to be leveraged for future tasks.

We propose a new incremental learning algorithm utilizing ReduNet to demonstrate
the power and scalability of designing more interpretable networks for continual learning.
Specifically, we prove that a ReduNet trained incrementally can be constructed to be equivalent
to one obtained by joint training, where all data, both new and old, is assumed to be available
at training time. Finally, we observe that ReduNet performs significantly better on MNIST
[9] and CIFAR-10 [7] in comparison to current continual DNN approaches.

2.2 Related Work

Since the early success of deep learning in classification tasks such as object recognition,
attention has lately shifted to the problem of incremental learning in hopes of designing deep
learning systems that are capable of continuously adapting to data from non-stationary and
changing distributions.

Incremental learning can refer to different problem settings and most studies focus on
three widely accepted scenarios [20]. Most of the earlier works [12, 17, 6, 19] study the
task incremental (task-IL) setting, where a model, after trained on multiple tasks, must be
able to classify on data belonging to all the classes it has seen so far. However, the model is
additionally provided a task-ID indicating the task or subset of classes each datapoint belongs
to. Models trained under this setting are thus required to distinguish among typically only
a small number of classes. Recent works [24, 27] explore the more difficult class incremental
(class-IL) setting, where task-ID is withheld at inference time. This setting is considerably
more difficult since without the task-ID, each datapoint could potentially belong to any of
the classes the model has seen so far. The other setting, known as domain incremental
learning (domain-IL) differs from the previous two settings in that each task consists of all
the classes the model needs to learn. Instead, a task-dependent transformation is applied to
the data. For example, each task could contain the same training data rotated by differing

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 7

degrees and the model must learn to classify images of all possible rotations without access
to the task-ID.

Deep continual learning literature from the last few years can be roughly partitioned into
three categories as follows:

Regularization-based methods usually attempt to preserve some part of the network
parameters deemed important for previously learned tasks. Knowledge distillation [4] is a
popular technique utilized to preserve knowledge obtained in the past. Learning without
Forgetting (LwF) [12], for example, attempts to prevent the model parameters from large
drifts during the training of the current task by employing cross-entropy loss regularized by
a distillation loss. Alternatively, elastic weight consolidation (EWC) [6] attempts to curtail
learning on weights based on their importance to previously seen tasks. This is done by
imposing a quadratic penalty term that encourages weights to move along directions with
low Fisher information. Schwarz et al . [19] later proposed an online variant (oEWC) that
reduces the cost of estimating the Fisher information matrix. Similarly, Zenke et al . [26]
limits the changes of important parameters in the network by using an easy-to-compute
surrogate loss during training.

Exemplar-based methods typically use a memory buffer to store a small set of data
from previous tasks in order to alleviate catastrophic forgetting. The data stored is used
along with the data from the current task to jointly train the model. Rebuffi et al . [16]
proposed iCaRL which uses a herding algorithm to decide which samples from each class to
store during each training session. This technique is combined with regularization with a
distillation loss to further encourage knowledge retention [16]. A recent work by Wu et al .
[22] achieved further improvements by correcting the bias towards new classes due to data
imbalance, which they empirically show causes degradation in performance for large-scale
incremental learning settings. This is accomplished by appending a bias-correction layer
at the end of the network. Another increasingly popular approach is to train a generative
adversarial network (GAN) [5, 21] on previously seen classes and use the generated synthetic
data to facilitate training on future tasks.

Architecture-based methods either involve designing specific components in the architecture
to retain knowledge of previously seen data or appending new parameters or entire networks
when encountering new classes of data. Progressive Neural Network (PNN) [17], for example,
instantiates a new network for each task with lateral connection between networks in order
to overcome forgetting. This results in the number of networks to grow linearly with respect
to the number of tasks as training progresses. Progress & Compress (P & C) [19] utilizes one
network component to learn the new task, then distills knowledge into a main component
that aggregates knowledge from previously encountered data. Li et al . [11], proposes a neural
architecture search method that utilizes a separate network to learn whether to reuse, adapt,
or add certain building blocks of the main classification network for each task encountered.

Our work studies the more difficult class-IL scenario and does not involve regularization
or storing any exemplars. Our method thus can be characterized as an architecture-based
approach. However, our method differs with the aforementioned works in several important
aspects. First, we use a “white box” architecture that is computed exactly in a feed-forward

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 8

manner. Moreover, the network, when trained under class-IL scenario, can be shown to
perform equivalently to one obtained from joint training while most existing works [11, 19,
17] based on modified architectures target the less challenging task-IL setting. We discuss
the differences in more detail later in Section 2.3, after we have introduced our method
properly.

2.3 Incremental Learning with ReduNet

In this paper, we tackle the task of class incremental learning, formalized as follows. Suppose
we have a stream of tasks D1,D2, . . . ,Dt, . . ., where each task Dt consists of data from kt
classes, i.e, Dt = {X(t−1)·kt+1, . . . ,X t·kt} where Xj is a set of points in class j. The classes
in different tasks are assumed to be mutually exclusive. Furthermore, it is assumed that
the tasks arrive in an online setting, meaning that at timestep t when data Dt arrives, the
data associated with old tasks {Di, i < t} becomes unavailable. Therefore, the objective is
to design a learning system that can adapt the model from the old tasks so as to correctly
classify on all tasks hitherto, i.e., D1, . . . ,Dt. In addition, we assume that we are not given
the information on the task a test data belongs to, making this problem significantly more
challenging than task-IL.

In this section, we show that ReduNet can perfectly adapt to a new task without
forgetting old tasks. Specifically, we present an algorithm to adapt the ReduNet constructed
from data {Di, i < t} by using only the data in Dt, so that the updated ReduNet is exactly
the same as the ReduNet constructed as if data from all tasks {Di, i ≤ t} were available.

Derivation of Incrementally-Trained ReduNet

Without loss of generality, we consider the simple case with two tasks t and t′ where t is
treated as the old task and t′ is treated as the new task. Assume that t and t′ contain mt,
mt′ training samples and kt, kt′ distinct classes, respectively. We denote such training data
by Z0,t ∈ Rd×mt (for task t) and Z0,t′ ∈ Rd×mt′ (for task t′), and assume that they have
been normalized by Frobenius norm as described in (1.4). For ease of notation, we label the
classes as {1, ..., kt} for task t and {kt + 1, ..., kt + kt′} for task t′.

Let Θt be the ReduNet of depth L trained on task t as described in Section 1.2. Given
the new task Z0,t′ , our objective is to train a network Θt→t′ that adapts Θt to have good
performance for both tasks t and t′. Next, we show that a network Θt→t′ can be constructed
from Θt andZ0,t′ such that it is equivalent to Θ obtained from training onZ0 = [Z0,t|Z0,t′] ∈
Rd×m where m = mt +mt′ .

To start, consider the initial expansion term E0 ∈ Rd×d and compression terms Cj
0 at

layer 0 of the joint network Θ given by

E0 = α
(
I + αZ0Z

>
0

)−1

= α
(
I + α

(
Z0,tZ

>
0,t +Z0,t′Z

>
0,t′

))−1
,

(2.1)

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 9

and

Cj
0 =

αj
(
I + αjZ

j
0,tZ

j>
0,t

)−1

, if j ≤ kt,

αj

(
I + αjZ

j
0,t′Z

j>
0,t′

)−1

, else
(2.2)

where α = d/(mε2) and αj = d/(tr(Πj)ε2).

Note that the term Zj
0,t′Z

j>
0,t′ can be directly computed from input data Zj

0,t′ . On the

other hand, the term Zj
0,tZ

j>
0,t cannot be directly computed from input data as Zj

0,t is from
the old task, which is no longer available under the IL setup. Our key observation is that
Zj

0,tZ
j>
0,t can be computed from the network Θt. Specifically, by denoting the compression

matrices of Θt as {Cj
`,t} for ` ∈ {0, ..., L− 1}, we have

Zj
0,tZ

j>
0,t =

(
(Cj

0,t/αj)
−1 − I

)
/αj. (2.3)

Next, we show by induction that one can recursively compute E` and {Cj
`} of Θ for

` > 0 from (2.1) and (2.2). To construct layer 1 of Θ, we observe that the output features
of class j at layer 0 before normalization is as follows.

P j
0 = (Z0 + ηE0Z0 − η

k∑
i=1

γiC
i
0Z

i
0)Πj (2.4)

= Zj
0 + ηE0Z

j
0 − ηγjC

j
0Z

j
0 (2.5)

=
(
I + ηE0 − ηγjCj

0︸ ︷︷ ︸
Lj0∈Rd×d

)
Zj

0. (2.6)

Notice the term Lj0 only depends on quantities already obtained at layer 0. To compute E1

and Cj
1, we need the covariance matrix of P j

0, which we observe to be

T j
1 = P j

0P
j>
0 = Lj0Z

j
0Z

j>
0 L

j>
0 . (2.7)

Notice that T j
1 can be expressed with known quantities of Lj0 and Zj

0,tZ
j>
0,t if j ≤ kt or

Zj
0,t′Z

j>
0,t′ if j > kt. The remaining step would be to re-scale T j

1 as the updated representation

P j
0 needs to be normalized to get Zj

1. Recall that we adopt the normalization scheme that
imposes the Frobenius norm of each class Zj to scale with mj:

‖Zj
1‖2
F = mj ⇐⇒ tr

(
Zj

1Z
j
1

>)
= mj. (2.8)

The re-scaling factor is then easy to calculate:

Zj
1Z

j>
1 =

mj

tr(T j
1)
T j

1. (2.9)

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 10

Figure 2.1: The joint network can be derived using simply Z0,tZ
>
0,t. We do not need the

task t data Z0,t directly.

From above, we see that we can obtain the correct value of the covariance matrix Zj
1Z

j>
1 ,

from which we can derive E1 and Cj
1 for layer 1 of the joint network Θ and obtain Zj

2,t′ .

With these values, we can compute T j
2.

By the same logic, we can recursively updateE` andCj
` for all ` > 1. Specifically, once we

have obtained Zj
`−1Z

j>
`−1 and Lj`−1, it is straightforward to compute T j

` = L`−1Z
j
`−1Z

j>
`−1L

j>
`−1

and therefore obtain

Zj
`Z

j>
` =

mj

tr(T j
`)
T j
`. (2.10)

Note that we never need to access Z0,t ∈ Rd×mt directly. Instead, we iteratively update the

covariance matrix Zj
`−1,tZ

j>
`−1,t ∈ Rd×d for each class j using the procedure described. This

concludes our induction and Algorithm 1 describes the entire training process for incremental
learning on two tasks. The procedure is illustrated in Figure 2.1. This procedure can be
naturally extended to settings with more than two tasks.

Comparison to Existing Methods

Incremental learning with ReduNet offers several nice properties: 1) Each parameter of the
network has an explicit purpose, computed precisely to emulate the gradient ascent on the
feature representation. 2) It does not require a memory buffer which is often needed in
many state-of-the-art methods [16, 22, 1]. 3) It can be proven to behave like a network
reconstructed from joint training, thus eliminating the problem of catastrophic forgetting.

Note that many existing works without relying on exemplars [12, 6, 19, 26] regularize the
original weights of the model at each training session, effectively freezing certain parts of the

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 11

Algorithm 1 Incremental Learning with ReduNet

1: Input: Network Θt with parameters E`,t and {Cj
`,t}, data Zj

0,t′ ∀j ∈ {kt+1, ..., kt+kt′}.
2: Compute Σj

0,t = Zj
0,tZ

j>
0,t , ∀j ∈ {1, ..., kt} by (2.3).

3: for ` = 0, 1, 2, ..., L− 1 do
4: Σ`,t =

∑kt
j=1 Σj

`,t,

5: Σ`,t′ =
∑kt+kt′

j=kt+1Z
j
`,t′Z

j>
`,t′ ,

6: E` = α
(
I + α(Σ`,t + Σ`,t′)

)−1
,

7: Lj` = I + ηE` − ηγjCj
` ∀j ∈ {1, ..., kt},

8: for j = 1, 2, ..., kt do

9: Cj
` = αj

(
I + αjΣ

j
`

)−1
,

10: T j
`+1,t = Lj`Σ

j
`,tL

j>
` ,

11: Σj
`+1,t =

mj

tr(T j`+1,t)
T j
`+1,t.

12: end for

13: Z`+1,t′ ∝ Z`,t′ + ηE`Z`,t′ − η
kt+kt′∑
i=kt+1

γiC
i
`Z

i
`,t′

14: s.t. ‖Zj
`+1,t′‖2

F = mj.
15: end for
16: Output: Network Θ with parameters E` and {Cj

`}.

network. Different tasks, however, tend to depend on different parts of the network, which
eventually leads to conflicts on which parameters to regularize as the number of tasks to learn
increases. These methods, as we see later in Figure 2.2, empirically perform sub-optimally in
the class-IL setting. This in fact reveals the fundamental limitation that underlies in many
incremental learning methods: a lack of understanding of how individual weights impact the
learned representation of data points. ReduNet, on the other hand, sidesteps this problem
by utilizing a fully interpretable architecture.

One notable property of ReduNet, at its current form, is that its width grows linearly with
the number of classes as a new compression term Cj

` is appended to each layer whenever
we see a new class. On the surface, this makes ReduNet similar to some architecture-
based methods [11, 17] that dynamically expand the capacity of the network. However,
there exists a major difference. ReduNet is naturally suited for class-IL scenario, whilst the
aforementioned works do not address class-IL directly. Instead they only directly address
task-IL, which they accomplish by optimizing a sub-network per task. These networks, which
are designed to accomplish each task individually, fail to properly share information between
the sub-networks to discriminate between classes of different tasks. ReduNet accomplishes
class-IL by not only appending the class compression terms Cj to the network, but also
modifying the expansion term E` to share information about classes of all previous tasks.

For class-IL, such methods that also append new parameters to the architecture fail to
completely address the problem of catastrophic forgetting. One can see why with a simple

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 12

example. Consider an ensemble learning technique where for each class j, we train an all-
versus-one model that predicts whether a data point belongs to class j or not. At each task,
we can feed the available data points into each model, labeled as 1 if it belongs in that
class or 0 otherwise. However, by optimizing such “black box” models by back-propagation,
we again arrive at the problem of catastrophic forgetting. Specifically, the model only sees
training points of its own class only for one task or training session. For the remaining tasks,
all data points that it must train will be of label 0, which prevents standard gradient descent
from correctly learning the desired all-versus-one decision boundary, and there is no clear
way to precisely address this optimization problem.

Although it is natural to expect the network to expand as the number of classes increases,
it remains interesting to see if the growth of certain variations of the ReduNet can be
sublinear instead of linear in the number of classes.

2.4 Experiments

We evaluate the proposed method on MNIST and CIFAR-10 datasets in a class-IL scenario
and compare the results with existing methods. In short, for both MNIST and CIFAR-10,
the 10 classes are split into 5 incremental batches or tasks of 2 classes each. After training
on each task, we evaluate the model’s performance on test data from all classes the model
has seen so far. The same setting is applied to all other methods we compared to.

Datasets

We compare the incremental learning performance of ReduNet on the following two standard
datasets.
MNIST [10]. MNIST contains 70,000 greyscale images of handwritten digits 0-9, where
each image is of size 28 × 28. The dataset is split into training and testing sets, where the
training set contains 60,000 images and the testing dataset contains 10,000 images.
CIFAR-10 [8]. CIFAR-10 contains 60,000 RGB images of 10 object classes, where each
image is of size 32 × 32. Each class has 5,000 training images and 1,000 testing images.
We normalize the input data by dividing the pixel values by 255, and subtracting the mean
image of the training set.

Implementation Details

We implement ReduNet for each training dataset in the following manner.
ReduNet on MNIST. To construct a ReduNet on MNIST, we first flatten the input image
and represent it by a vector of dimension 784. Then, with a precision ε = 0.5 in the MCR2

objective (1.1), we apply 200 iterations of projected gradient iterations to compute E` and
Cj
` matrices for each iteration `. The learning rate is set to η = 0.5 × 0.933` at the `-th

iteration. These matrices are the parameters of the constructed ReduNet. Given a test

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 13

data, its feature can be extracted with the incremental transform in (1.7) with estimated
labels computed as in (1.8) with parameter λ = 1. At each training session, we update the
ReduNet by the procedure described in Algorithm 1.

We note that hyper-parameter tuning in ReduNet does not require a training/validation
splitting as in regular supervised learning methods. The hyper-parameters described above
for ReduNet are chosen based on the training data. This is achieved by evaluating the
estimated label through (1.8) on the training data, and comparing such labels with ground
truth labels. Then, the model parameter ε, learning rate η and the softmax confidence
parameter λ are chosen as those that gives the highest accuracy with the estimated labels
(at the final layer).
ReduNet on CIFAR-10. We apply 5 random Gaussian kernels with stride 1, size 3×3 on
the input RGB images.1 This lifts each image to a multi-channel signal of size 32× 32× 5,
which is subsequently flattened to be a R5,120 dimensional vector. Subsequently, we construct
a 50-layer ReduNet with all other hyper-parameters the same as those for MNIST. All
hyperparameters stated above, including the depth of the network, were chosen such that
the ∆R loss has sufficiently converged.
Comparing Methods. We compare our approach to the following state of the art algorithms:
iCaRL [16], LwF [12], oEWC [19], SI [26] and DER [1]. For these algorithms, we utilize the
same benchmark and training protocol as Buzzega et al . [1]. For MNIST, we employ a fully-
connected network with two hidden layers comprised of 100 ReLU units. For CIFAR-10,
we rely on ResNet18 without pre-training [3]. All the networks were trained by stochastic
gradient descent. For MNIST, we train on one epoch per task. For CIFAR-10, we train
on 100 epochs per task. The number of epochs were chosen based on the complexity of
the dataset. For each algorithm, batch size, learning rate, and specific hyperparameters for
each algorithm were selected by performing a grid-search using 10% of the training data as
a validation set and selecting the hyperparameter that achieves the highest final accuracy.
The optimal hyperparameters utilized for the benchmark experiments are reported in [1].

The performance of state of the art algorithms utilizing a replay buffer highly depends
on the number of exemplars, or samples from previous tasks, it is allowed to retain. We test
on two exemplar-based algorithm, iCaRL and DER. For both MNIST and CIFAR-10, we set
the total number of exemplars to 200.

Nearest Subspace Classification

By the principle of maximal rate reduction, the ReduNet f(X, θ) extracts features such that
each class lies in a low-dimensional linear subspace and different subspaces are orthogonal.
As suggested by the original MCR2 work [2], we utilize a nearest subspace classifier to classify
the test data featurized to maximize ∆R. Given a test sample ztest = f(xtest, θ), the label

1This choice is limited by our current computational resources. Although this choice is not adequate
to achieve top classification performance, it is adequate to verify the advantages of our method in the
incremental setting.

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 14

Algorithm MNIST CIFAR-10
Task 1 Task 2 Task 3 Task 4 Task 5 Task 1 Task 2 Task 3 Task 4 Task 5

LwF 0.999 0.009 0.0 0.0 0.0 0.979 0.0 0.0 0.0 0.0
oEWC 1.0 0.004 0.0 0.0 0.0 0.981 0.0 0.0 0.0 0.0

SI 0.997 0.004 0.001 0.0 0.0 0.989 0.0 0.0 0.0 0.0
iCaRL (200 Exemplars) 0.999 0.806 0.708 0.612 0.596 0.964 0.720 0.427 0.362 0.313
DER (200 Exemplars) 0.999 0.967 0.941 0.883 0.735 0.985 0.816 0.608 0.404 0.292

ReduNet(Ours) 0.999 0.994 0.993 0.989 0.987 0.875 0.754 0.714 0.642 0.562
Upper Bound (UB) 0.999 0.995 0.990 0.988 0.982 0.989 0.971 0.957 0.963 0.920

Table 2.1: Test Accuracy (%) on Task 1 After Each Training Session on MNIST and CIFAR-
10.

predicted by a nearest subspace classifier is

y = arg min
y∈1,...,k

∥∥(I −U yU y>)ztest
∥∥2

2
, (2.11)

where U y is a matrix containing the top x principal components of the covariance of the
training data passed through ReduNet, i.e. ZtrainZ

>
train for Ztrain = f(X train, θ).

Since we do not have access toZtrain during evaluation, we instead collect theCj matrices
at the very last layer L and extract the covariance matrix Σj

L to be further processed by
SVD. For MNIST, we utilize the top 28 principal components. For CIFAR-10, we utilize the
top 15 principal components.

Results and Analysis

In this section, we evaluate the class-IL performance of incremental ReduNet against three
regularization-based methods (oEWC, SI, LwF) and two replay-based methods leveraging
200 exemplars (iCaRL, DER) on MNIST and CIFAR-10. We also provide the upper bound
(UB) achieved by joint training a model utilizing the same architecture as the baseline
methods. After the model is trained on each task, performance is evaluated by computing
the accuracy on test data from all classes the model has seen so far. To observe the degree of
forgetting, we record the model’s performance on Task 1 after training on each subsequent
task. For both MNIST and CIFAR-10, we observe a substantial performance increase by
utilizing incremental ReduNet as shown in Figure 2.2. Additionally, we observe ReduNet
shows significantly less forgetting (see Table 2.1).

On MNIST, we observe a 3% decay in accuracy across the tasks on ReduNet versus a
20-80% decay on benchmark methods (Figure 2.2). We measure decay as the difference in
average accuracy between the first and last task. ReduNet retains a classification accuracy
of 96%. This is of no surprise since MNIST is relatively linearly separable, allowing second-
order information about the data to be sufficient for ReduNet to correctly classify the
digits. We observe that even for a very simple task as MNIST, competing continual learning

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 15

2 3 4 5 6 7 8 9 10
Classes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MNIST

UB
ReduNet(Ours)
LwF
EWC
SI
iCaRL

2 3 4 5 6 7 8 9 10
Classes

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10

UB
ReduNet(Ours)
LwF
EWC
SI
iCaRL

Figure 2.2: Incremental learning results (accuracy) on MNIST and CIFAR-10. Both
datasets have 5 incremental batches. We also provide the upper bound (UB) given by joint
training a model utilizing the same architecture as the baseline methods. In solid lines are
regularization-based methods and in dashed are exemplar-based methods, which saves 200
samples from previous tasks. Note that the decay in the performance in ReduNet is simply
because classification is harder to accomplish with more classes, not because of catastrophic
forgetting.

algorithms fail spectacularly due to catastrophic forgetting. In fact, as shown in Table 2.1,
models trained by regularization-based methods retain 0% accuracy for classes 0 and 1 after
incrementally training on digits 2 to 5 (up to Task 3). The drastic decay in performance of
benchmark methods is expected and replicated often in class-IL literature [1, 24]. Note that
ReduNet observes no catastrophic forgetting and the decay in performance is due to the fact
that classification is increasingly harder to accomplish with more classes.

Similar improvement in performance utilizing ReduNet is also observed on CIFAR-10,
a more complex image dataset. We observe a 42-80% decay in accuracy for benchmark
methods, whereas incremental ReduNet observes a 34% decrease (in Figure 2.2). The

CHAPTER 2. REDUNET FOR INTERPRETABLE INCREMENTAL LEARNING 16

algorithm that achieves the closest performance to ReduNet is iCaRL and DER, exemplar-
based methods that require access to 200 previously observed exemplars. Certainly, as can
be seen by the 88% accuracy on Task 1 of CIFAR-10, ReduNet at its current basic form (only
using 5 randomly initialized kernels without back-propagation) is not able to reach the same
classification accuracy as ResNet-18 for complex image classification tasks. It is thus not
surprising that DER, based on more established network architectures, exceeds ReduNet in
terms of average accuracy. However, as shown in Table 2.1, ReduNet decays gracefully and
significantly outperforms other methods in terms of forgetting, retaining over 55% accuracy
on Task 1 versus less than 30% by DER.

We note that ReduNet is currently a slower training framework given its current naive
implementation using CuPy. Utilizing a single NVIDIA TITAN V GPU, each task training
session took approximately 1500 seconds for MNIST and 9200 seconds for CIFAR10. On
the other hand, joint training a model by back-propagation for each task took 23 and 2500
seconds for MNIST and CIFAR10, respectively.

2.5 Conclusions and Future Work

We demonstrated through an incremental version of the recently proposed ReduNet, the
promise of leveraging interpretable network design for continual learning. The proposed
network has shown significant performance increases in both synthetic and complex real
data, even without utilizing any fine-tuning with back-propagation. It has clearly shown
that if knowledge of past learned tasks are properly utilized, catastrophic forgetting needs
not to happen as new tasks continue to be learned.

We purpose of this work is not to push the state of art classification accuracy or efficiency
on any single large-scale real-world dataset. Rather we want to use the simplest experiments
to show beyond doubt the remarkable effectiveness and great potential of this new framework.
Using CIFAR-10 as an example, simply utilizing a relatively small set of 5 random lifting
kernels was already sufficient for a decent incremental classification performance. We believe
that to achieve better performance for more complex tasks and datasets, judicious design or
learning of more convolution kernels would be needed. This leaves plenty of room for further
improvements.

This work also opens up a few promising new extensions. As we have mentioned earlier,
the current framework requires the width of the network to grow linearly in the number of
classes. It would be interesting to see if some of the filters can be shared among old/new
classes so that the growth can be sublinear. In the next chapter, we will discuss several
approaches to decrease the memory footprint of incremental ReduNet.

To a large extent, the rate reduction gives a unified measure for learning discriminative
representations in supervised, semi-supervised, and unsupervised settings. We believe our
method can be easily extended to cases when some of the new data do not have class
information.

17

Chapter 3

Low Rank Approximation for Efficient
ReduNet

As we’ve observed in the previous chapter, incremental ReduNet tends to have a large
memory footprint that increases linearly in the number of classes k. Namely, given d
dimensional data, each layer requires one to save k + 1 d × d weight matrices: El,t, {Cj

l,t}.
In this chapter, we discuss naive, yet effective methods at reducing this memory footprint.

3.1 Low rank approximation

Though real world data such as images are often high dimensional, we often expect the data
from each class to lie on low dimensional curved manifolds. For example, for MNIST and
CIFAR-10, the singular values of the sample covariance matrix of each class is very small
across most dimensions (Figure 3.1). Thus, the matrices are approximately low-rank.

We may utilize this understanding to find a substantially compressed version of ReduNet
with equal performance. Namely, note that given that the distribution of class j, ZjZ

>
j , is

low rank, I − 1
αj
Cj is also low rank where Cj is the corresponding compression matrix.

1

αj
Cj = (I + cjZjZ

>
j)−1 = Ujdiag

(
1

1 + cjλji

)
Uj
>

⇒ I − 1

αj
Cj = Ujdiag

(
1− 1

1 + cjλji

)
Uj
>

(3.1)

We may find a low rank approximation of the compression matrix by optimizing over the
following objective.

min
Dj

∥∥∥∥(I − 1

αj
Cj)−Dj

∥∥∥∥2

F

subject to rank(Dj) <
d

k

(3.2)

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 18

Figure 3.1: The first 100 eigenvalues of each class distribution of MNIST and CIFAR10.
MNIST is 32× 32 = 784 dimensional and CIFAR10 is 28× 28× 3 = 3072 dimensional. Note
that eigenvalues nearly decay to 0 by the 20th dimension for both datasets.

where d is the ambient dimension and k is the number of classes.The rank constraint is chosen
based off the fact that with class balance, the globally optimal configuration Z∗j spans at

most a d
k

dimensional subspace.
The above objective has a closed form solution given by Dj = U j[:

d
k
]λj[:

d
k
]U j[:

d
k
]>

where U j[:
d
k
] and λj[:

d
k
] are the top d

k
eigenvectors of I − 1

αj
Cj and their corresponding

eigenvalues, respectively.
To be more flexible with the rank constraint, we may alternatively approximate I− 1

αj
Cj

up to a certain tolerance ∥∥∥(I − 1
αj
Cj)−Dj

∥∥∥2

F∥∥∥(I − 1
αj
Cj)

∥∥∥2

F

≤ τ (3.3)

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 19

and greedily choose the the eigenvectors of I − 1
αj
Cj until the approximation is below the

tolerance. Specifically,

Algorithm 2 Greedy Low Rank Approximation

1: Input: ε, Zj

2: r = 1, error =∞
3: U ,λ,V = SVD(ZjZ

T
j)

4: while error > ε do
5: Dj = U [: r]diag(λ[: r])V [: r]T

6: error =

∥∥∥∥(I− 1
αj

Cj)−Dj

∥∥∥∥2
F∥∥∥∥(I− 1

αj
Cj)

∥∥∥∥2
F

7: r+ = 1
8: end while
9: Output: U [: r],λ[: r],V [: r]

From Dj, we may approximately recover Cj by doing Cj = αj(I−Dj). By saving r ≤ d
k

top eigenvalues and corresponding eigenvectors of I − 1
αj
Cj the memory required to save

each layer of ReduNet at least reduces to

Original: (k + 1)× d× d =⇒ Compressed: 2× d× d+ d

The extra d term comes from saving the eigenvalues. Note that the memory of this compressed
network is now independent on the number of classes.

Experiments

MNIST

We run 50-layer Redunet on MNIST with 1000 training samples from each of the 10 classes.
We set learning rate to be η = 0.1 and ball packing error to be ε2 = 0.5. Each image is
28×28 = 784, so the dimension of E and Cj is 784×784. We derive the compressed network
by saving the d

k
-rank approximation of the compression matrices {Cj

l } at each layer l.

CIFAR10

For CIFAR10, we run a 50-layer Redunet with 1000 training samples from each of the 10
classes. We set learning rate to be η = 0.1 and ball packing error to be ε2 = 0.5. Each image
is 32× 32× 3 = 3072 dimensions, so the dimension of E and Cj is 3072× 3072. We derive
the compressed network by saving the d

k
-rank approximation of the compression matrices

{Cj
l } at each layer l.

We compare the losses and feature representations between original ReduNet and approximate

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 20

0 10 20 30 40 50
Layer

100

200

300

400

500

600

R

Approximate R
True R

(a) MNIST

0 10 20 30 40 50
Layer

500

1000

1500

2000

2500

3000

R

Approximate R
True R

(b) CIFAR10

Figure 3.2: We pass through the training data of MNIST and CIFAR10 through the original
ReduNet and compressed ReduNet, and compare the MCR loss ∆R(Z l) at each layer l. We
observe the loss curve for compressed ReduNet to be better than that of true ReduNet

ReduNet. Recall that the class distributions of MNIST are already quite low rank and
separable (Figure 3.1). Since the class distributions of CIFAR10 and MNIST are low
dimensional, we observe that the low rank approximations of the compression matrices Cj

l

are close to the original matrices. Furthermore, compressed ReduNet achieved better loss
curves than true ReduNet. By compressing ReduNet up to some tolerance, we were able to
reduce the memory footprint of the network even further 3.3.

3.2 Block Diagonal Approximation by Eigenspace

We may further compress the model from our knowledge that the eigenvectors of each
class distribution ZjZ

>
j must be some linear combination of the eigenvectors of the joint

distribution ZZ> =
∑

j ZjZ
>
j . In fact, at a critical point Z∗ of the loss ∆R, the eigenvectors

of ZZ> is precisely equal to the eigenvectors of ZjZ
>
j . This statement is formalized in the

following theorem.

Theorem 3.2.1. If Z∗ is a local maxima of ∆R(Z), then each eigenvector with positive

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 21

0.01 0.04 0.07 0.10 0.13 0.16 0.19 0.22 0.25 0.28 0.31 0.34 0.37 0.40 0.43 0.46 0.49 0.52 0.55 0.58 0.61 0.64 0.67 0.70 0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97
tolerance

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

r
r vs tolerance

class 0
class 1
class 2
class 3
class 4

Figure 3.3: In MNIST, we observe that only a few eigenvectors are necessary to approximate
Cj of the first layer for small tolerance values.

corresponding eigenvalue of the class subspace Z∗jZ
∗>
j must be an eigenvector of the whole

distribution Z∗Z∗>.

Proof. Recall MCR2 objective:

max ∆R(Z) = R(Z, ε)−Rc(Z, ε|Π) s.t. ‖Zj‖2
F = mj ∀j ∈ {1, ..., k} (3.4)

By first order necessary conditions, note that Z is a stationary point if for each class
distribution ∇Zj∆R = ajZj for some constant aj ∈ R. Recall that the gradient is

∂∆R

∂Zj

=
(
E − γjCj

`

)
Zj (3.5)

So at a stationary point, each sample zji in Zj for i ∈ 1, ...,mj satisfies

(E − γjCj)z
j
i = ajz

j
i .

Furthermore, note that each eigenvector ujl of ZjZ
>
j for 0 ≤ l ≤ d with corresponding

eigenvalue λjl > 0, is some linear combination of class samples

ujl =

mj∑
i=1

αiz
j
i .

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 22

Thus,

(E − γjCj)u
j
l

=

mj∑
i=1

αi(E − γjCj)z
j
i

= aj

mj∑
i=1

αiz
j
i

= aju
j
l

(3.6)

Since Cju
j
l = αj(1 + cjλ

j
l)
−1ujl and (E − γjCj)u

j
l = aju

j
l , we may conclude that

Eujl = aju
j
l + γjCju

j
l

=
(
aj + γjαj(1 + cjλ

j
l)
−1
)
ujl .

(3.7)

Therefore, the eigenvectors (with positive eigenvalue) of each class subspace ZjZ
>
j must also

be an eigenvector of the whole distribution ZZ>.

Thus, we may simply utilize the eigenvectors of I − 1
α
E = U (I − (I + αΣ)−1)U> as

a dictionary for the model, and use them to approximate the eigenvectors of I − 1
αj
C =

U j (I − (I + αjΣj)
−1)U>j . Additionally, at a critical point, we know that the eigenvectors

of I − 1
αj
Cj with positive corresponding eigenvalues is equal to approximately d

k
of the

eigenvalues of I − 1
α

Formally, we solve the following objective

min
Dj

∥∥(I −Cj)−UDjU
>∥∥2

F

subject to rank(Dj) <
d

k

(3.8)

Similar to low-rank approximation, we may be more flexible with the rank constraint by
approximating I − 1

αj
Cj up to a certain tolerance∥∥∥(I − 1

αj
Cj)−UDjU

>
∥∥∥2

F∥∥∥(I − 1
αj
Cj)

∥∥∥2

F

≤ τ. (3.9)

We may solve the objective up to some tolerance using the following greedy algorithm
(Algorithm 3).

Essentially, the algorithm projects each eigenvector u ∈ U of I − E onto each class
subspace ‖(I −Cj)u‖2 and selects the top r ≤ d

k
eigenvectors in I − 1

α
E with largest

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 23

Algorithm 3 Greedy Block Diagonal Approximation

1: Input: ε, Zj, Z
2: r = 1, error =∞
3: U ,λ,V = SVD(ZZT)

4: Sort columns ui of U by
∥∥∥(I − 1

αj
Cj)ui

∥∥∥2

2
in descending order

5: while error > ε do
6: Dj = minDj

∥∥(I −Cj)−U [: r]DjU [: r]>
∥∥2

F
= U [: r]>(I −Cj)U [: r]

7: error =

∥∥∥∥(I− 1
αj

Cj)−UDjU
>
∥∥∥∥2
F∥∥∥∥(I− 1

αj
Cj)

∥∥∥∥2
F

8: r+ = 1
9: end while

10: πj = Indices corresponding to columns of U chosen
11: Output: Dj, πj

projection to approximate I − 1
αj
Cj. By saving Dj ∈ Rr×r and π ∈ Rr for r ≤ d

k
instead of

Cj, the memory at least reduces to

Original: (k+ 1)× d× d =⇒ Compressed: k× r× r+ d× d+ k× d = (1 +
1

k
)× d× d+ d

Additionally, we may reduce the computation needed during forward passing of test
data at the label approximation layers. Specifically, once Dj is computed, we can save
computation by no longer requiring passing each Cj with data Z every time. Concretely,
given A = U>Z, we can obtain EZ = UΣ−1U>Z = UΣ−1A.

Also, we can compute CjZ = (I − (I −Cj)approx)Z = Z − U [:,πj]D
>
j A[πj, :] where

U [:,πj] is selecting columns of U and A[πj, :] is selecting rows of A given indices πj. The
expensive operation of multiplying a d× d matrix with the data matrix of dimension d×m
only needs to occur once for each ReduNet layer the data passes through.

Namely, the computational complexity reduces to

Original: O((k+1)d2n) =⇒ Compressed: O(2d2n)︸ ︷︷ ︸
A+EZ

+O(kdrn) +O(kdr2)︸ ︷︷ ︸
CjZ

= O(3d2n)+O(kdr2)

Experiments

We train a 50 layer ReduNet on 500 samples of 5 classes MNIST. We train the model with
tolerance τ = 0.01, learning rate η = 0.1, and ball packing error ε2 = 0.1. We observe the
following loss curves and number of eigenvectors chosen to approximate the class distributions
at each layer (3.4).

Recall that the dimension of vectorized MNIST images is 784. With a tolerance of
τ = 0.01, each class chose approximately 550 vectors to approximate Cj at each layer.

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 24

0 10 20 30 40 50
Layer

100

200

300

400

500

600

700

800

Lo
ss

Layer vs Loss
low_diagonal R
low_diagonal R
low_diagonal Rc

true R
true R
true Rc

(a) We plot the training loss over iterations using approximated Cj ’s and true
Cj ’s.

0 10 20 30 40 50
Layer

535

540

545

550

555

r

Layer vs r
class 0 r
class 1 r
class 2 r
class 3 r
class 4 r

(b) Number of eigenvectors r selected over iterations to approximate Cj .

Figure 3.4: ReduNet trained on MNIST with 500 samples. Notice that the number of
eigenvectors chosen is proportional to the compression loss

CHAPTER 3. LOW RANK APPROXIMATION FOR EFFICIENT REDUNET 25

Additionally, we see that with further training, the number of eigenvectors r needed to
approximate each class’s compression matrix decreases. This is as expected, since at a local
minima of the MCR2 objective, the eigenvector of ZZ> become closer to the eigenvectors
of ZjZ

>
j , ∀j. However 550 vectors is no where close to d

k
= 784

5
which implies that that it

is difficult to approximate Zj using a subset of eigenvectors of Z, especially at the initial
layers. Additionally, this suggests it takes a while for Z to converge to an optimal solution.

3.3 Conclusion

From our experiments, we conclude that low rank approximation of the covariance matrices
is an efficient way to reduce memory of ReduNet. By setting τ = 0.1 we found a significant
reduction in memory footprint in both our experiments in MNIST and CIFAR10 3.3. For
future work, it would be interesting to see if we can identify low rank memory reduced
networks for the Convolutional ReduNet [2], whereE andCj are circulant matrices. Additionally,

26

Bibliography

[1] P. Buzzega et al. “Dark Experience for General Continual Learning: a Strong, Simple
Baseline”. In: Adv. Neural Inform. Process. Syst. (2020).

[2] Ryan Chan et al. “Deep Networks from the Principle of Rate Reduction”. In: arXiv
preprint arXiv:2010.14765 (2020).

[3] Kaiming He et al. “Deep residual learning for image recognition”. In: IEEE Conf.
Comput. Vis. Pattern Recog. (2016).

[4] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015).

[5] Ronald Kemker and Christopher Kanan. “Fearnet: Brain-inspired model for incremental
learning”. In: arXiv preprint arXiv:1711.10563 (2017).

[6] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”. In:
PNAS (2017).

[7] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. In: Technical
report (2009).

[8] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

[9] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun.com/exdb/mnist/
(1998).

[10] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[11] Xilai Li et al. “Learn to grow: A continual structure learning framework for overcoming
catastrophic forgetting”. In: arXiv preprint arXiv:1904.00310 (2019).

[12] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: Eur. Conf. Comput.
Vis. (2016).

[13] Yi Ma et al. “Segmentation of multivariate mixed data via lossy data coding and
compression”. In: IEEE transactions on pattern analysis and machine intelligence 29.9
(2007), pp. 1546–1562.

BIBLIOGRAPHY 27

[14] Michael McCloskey and Neal J Cohen. “Catastrophic interference in connectionist
networks: The sequential learning problem”. In: Psychology of learning and motivation.
Vol. 24. Elsevier, 1989, pp. 109–165.

[15] Vardan Papyan, X.Y. Han, and David Donoho. “Prevalence of Neural Collapse during
the Terminal Phase of Deep Learning Training”. In: PNAS (2020).

[16] Sylvestre-Alvise Rebuffi et al. “iCaRL: Incremental Classifier and Representation Learning”.
In: IEEE Conf. Comput. Vis. Pattern Recog. (2017).

[17] Andrei A Rusu et al. “Progressive neural networks”. In: arXiv preprint arXiv:1606.04671
(2016).

[18] Kate Saenko et al. “Adapting visual category models to new domains”. In: European
conference on computer vision. Springer. 2010, pp. 213–226.

[19] Jonathan Schwarz et al. “Progress & Compress: A scalable framework for continual
learning”. In: ICML (2018).

[20] Gido van de Ven and Andreas Tolias. “Three scenarios for continual learning”. In: Adv.
Neural Inform. Process. Syst. (2018).

[21] Chenshen Wu et al. “Memory replay gans: Learning to generate new categories without
forgetting”. In: Advances in Neural Information Processing Systems. 2018, pp. 5962–
5972.

[22] Yue Wu et al. “Large scale incremental learning”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 374–382.

[23] Ziyang Wu et al. “Incremental learning via rate reduction”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2021).

[24] Lu Yu et al. “Semantic Drift Compensation for Class-Incremental Learning”. In: IEEE
Conf. Comput. Vis. Pattern Recog. (2020).

[25] Yaodong Yu et al. “Learning Diverse and Discriminative Representations via the
Principle of Maximal Coding Rate Reduction”. In: Adv. Neural Inform. Process. Syst.
(2020).

[26] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual Learning Through
Synaptic Intelligence”. In: ICML (2017).

[27] Junting Zhang et al. “Class-incremental learning via deep model consolidation”. In:
The IEEE Winter Conference on Applications of Computer Vision. 2020, pp. 1131–
1140.

	Contents
	List of Figures
	List of Tables
	Interpretable Network from Rate Reduction
	Principle of Maximal Coding Rate Reduction
	Rate Reduction Network (ReduNet)

	ReduNet for Interpretable Incremental Learning
	Introduction
	Related Work
	Incremental Learning with ReduNet
	Experiments
	Conclusions and Future Work

	Low Rank Approximation for Efficient ReduNet
	Low rank approximation
	Block Diagonal Approximation by Eigenspace
	Conclusion

	Bibliography

