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Abstract

Ultrasound Detection with Silicon Microring Resonators

by

Sarika Madhvapathy

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanovic, Chair

Ultrasound imaging systems are essential for breast tumor detection, stenting operations, and
other endoscopic imaging applications. A beamforming array of silicon microring resonators
(MRRs) is a promising solution for ultrasound imaging, as MRRs have been shown to have
high sensitivity and high bandwidth. The power hungry circuitry of the analog front-end
can be easily remoted outside of the body through a probe tube due to the small diameter
of optical fibers. Using a comb laser, it is possible to interrogate an entire row with just one
input. This helps reduce the probe tube size even further, as each input for a row requires
a single optical fiber. With small diameters and remoted analog front end, the ring sensors
can be compacted into a much smaller area, thus enabling higher bandwidth and higher
resolution images. This technical report presents ultrasound receiver measurement results
as well as photonic layout and analog designs for potential future generations of the project.
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Chapter 1

Introduction

1.1 Project overview

Motivation

Ultrasound imaging systems are essential for breast tumor detection, stenting operations,
and other endoscopic imaging applications. However, while they use established technology,
commercial ultrasound imagers with piezoelectric micromachined ultrasound transducers
(PMUTs) or capacitive micromachined ultrasound transducers (CMUTs) have several draw-
backs:

• high probe form factor,

• high power consumption inside the body,

• large probe tube diameter,

• and limited bandwidth due to pitch constraints (λ/2 to avoid formation of grating
lobes, where λ is the wavelength corresponding to the operating frequency).

In the past, sub-array beamforming [2] and element level digitization [5] have been pro-
posed in order to address the difficulty of minimizing the number of interfacing cables for a
large number of sensors in order to maintain an adequately small probe tube size.

Proposed solution

A silicon microring resonator (MRR) experiences pressure-induced modulation of its res-
onant frequency due to waveguide deformation, ring elongation, and the opto-elastic effect
[7]. This resonant frequency modulation results in modulation of the output optical power,
which can be converted to a voltage through a analog front end (AFE) consisting of a ring
photodetector and a transimpedance amplifier (TIA). MRRs have also been shown to have
high sensitivity [6] and high bandwidth.
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Furthermore, the power hungry circuitry of each AFE can be easily remoted outside of
the body through the probe tube in a dual-chip scheme, as the diameter of optical fibers is
significantly smaller than that of the micro-coaxial cables used in PMUT-based ultrasound
imaging systems.

Ring resonators behave like a notch filter with the notch located at the ring’s resonant
wavelength. Using a comb laser with comb teeth parked at the flanks of the resonant wave-
lengths for each ring in a row, it is possible to interrogate an entire row with just one input.
This helps reduce the probe tube size even further, as only a single optical fiber is required
as input for all of the rows.

With diameters of approx. 10 µm and remoted analog front end, the ring sensors can be
compacted into a much smaller area, thus enabling higher bandwidth (λ/2 pitch) and higher
resolution images. For all of these reasons, implementing a beamforming array of MRRs is
a promising solution for ultrasound imaging.

1.2 Report overview

The purpose of this technical report is to provide results for the current generation of this
project as well as potential ideas for future iterations. This report surveys three different
aspects of this project:

1. measurement results,

2. photonic layout with Berkeley Photonic Generator (BPG),

3. and a potential redesign of the analog front end (AFE).
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Chapter 2

Optical Ultrasound Receiver
Measurements

Figure 2.1: Immersion PMUT impinging pressure through water onto the receiver chip.

This chapter presents the measurement setup and measurement results for the MRR
ultrasound receivers using both the on-chip analog frontend as well as an external photodiode
with transimpedance amplifier (PD-TIA) for bandwidth measurements. It also displays the
measured frequency responses of commercial PMUT immersion transducers used to impinge
pressure upon the MRR receivers (as in Figure 2.1) using a commercial hydrophone with
known sensitivity.
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2.1 Experimental setup

Calibration setup

The pressure applied onto the chip by the PMUT is not known a priori, thus requiring a
measurement setup to characterize the pressure exerted by the transducer using a commercial
hydrophone with known sensitivity. This enables an accurate receiver sensitivity estimate,
as the sensitivity for a ring is a function of the applied pressure.

Figure 2.2 details the measurement setup for the hydrophone measurements. A hole with
diameter slightly smaller than the base of a standard-size immersion ultrasonic transducer
is drilled at the bottom of a sealed resin water tank. An immersion transducer inside the
tank is screwed into a UHF-to-BNC connector on the outside of the tank through the hole,
thus sealing the bottom of the tank. The tank is propped up on either side of the hole to
make room at the bottom of the tank for the UHF-to-BNC connector and its attached BNC
cable.

An Onda HGL-series hydrophone is positioned above the transducer using an external
adjustable Thorlabs stage with the tip facing the transducer. The tank is filled with water
such that both the transducer and the hydrophone are fully immersed.

The hydrophone output is fed into an Onda pre-amplifier with 20 dB voltage gain before
being read by the oscilloscope. An arbitrary wave generator (AWG) is used to excite the
ultrasound transducer through the BNC cable at the bottom of the tank. One signal from
the AWG’s differential output is used to trigger the oscilloscope, while the other is used to
excite the transducer. The peak-to-peak voltage output of the pre-amplifier is measured on
the oscilloscope and recorded manually on a PC.
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Figure 2.2: Hydrophone measurement setup.
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Breakout board design and electrical testing setup

Figure 2.3: One 64-bit data packet, which contains the ADC output for a receiver quad.

The MRRs on the chip itself can both sense and receive, as each ring has dedicated analog
frontend (AFE) circuitry to receive the modulated signal.

The AFE for a ring is routed to a successive-approximation (SAR) analog-to-digital
converter (ADC) that converts the analog signal to a 9-bit digital signal. For each quad
of sensing rings, the ADC outputs are concatenated and appended to a 28-bit preamble,
as shown in Figure 2.3. The 64-bit packets for each quad are then serialized with a 64-to-
1 serializer and output through the hostboard’s FPGA mezzanine card (FMC) connector,
with the intent of receiving these packets through the GTX/GTH transceivers on a Xilinx
field-programmable gate array (FPGA) board and processing the data in real time.

To circumvent delays in verifying the Xilinx FPGA boards’ transceiver functionality, it is
possible to save the waveforms to an oscilloscope and process the data in post. This required
the design of a custom SubMiniature version A (SMA) breakout board to read out the serial
data, as most existing FMC breakout boards have the incorrect FMC connector type since
they are designed to connect to an FPGA board rather than a daughterboard.

The PCB pictured in Figure 2.4 was designed with Altium Designer. The 2-layer board
has 16 differential outputs (for a total of 32 SMA connectors) and one differential clock input
(2 more SMA connectors) that is used to clock the on-chip ADCs. 16 SMA connectors are
surface mount edge connectors and 18 are through-hole top connectors. The routing utilizes
50 Ohm coplanar ground waveguides; the ground planes on the top and bottom are stitched
together using a via array. Each differential pair was designed to have matched lengths.
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(a) Three-dimensional rendering of front of
breakout board.

(b) Three-dimensional rendering of back of
breakout board.

(c) Breakout board (left, without top SMAs soldered) connected to
hostboard (right).

Figure 2.4: FMC breakout board.



CHAPTER 2. OPTICAL ULTRASOUND RECEIVER MEASUREMENTS 8

Figure 2.5 depicts the ultrasound receiver measurement setup. A 3D printed tank made
of PLA filament is attached to the chip board using silicone; the pins on the chipboard are
covered with silicone as well to isolate them from the water that will fill the tank. The
chipboard is attached to the hostboard, which connects to the breakout board via an FMC
connector. A laser is parked at the left (stable) flank of the target ring’s Lorentzian and
is input to the sensing array through an optical fiber. The tank is filled with water and a
PMUT excited by either an AWG or an ultrasonic pulser is immersed in the water. Each
measurement (a stream of the data packets in Figure 2.3) is captured on the oscilloscope
and saved to an external drive for post-processing.

Figure 2.5: Ultrasound measurement setup.
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2.2 Ultrasonic measurements

Transducer calibration

The following measurements are included:

1. frequency response of ultrasound transducer,

2. angular response (varying horizontal distance between transducer and hydrophone),

3. and response to varying the vertical distance between the transducer and hydrophone.

The pressure in Pascals is calculated using the following formula:

Ppp [Pa] =
Vpp [V]

sensitivity [V/Pa] ·Gpre-amp

where Vpp is the peak-to-peak voltage of the pre-amplifier output and the hydrophone sen-
sitivity at a particular frequency is given by Onda calibration data. Gpre-amp = 20 dB is
the voltage gain of the pre-amplifier. Measurements to verify the linear response of each
transducer were taken as well by varying the amplitude of the sinusoidal excitation while
fixing its frequency.
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(a) Olympus A310S (5 MHz), h = 3.2 cm (b) NDT E5012-S (5 MHz), h = 3.2 cm

(c) Olympus A313S (15 MHz), h = 3.2 cm (d) Olympus V309 (5 MHz), h = 3.2 cm

(e) Olympus V312 (10 MHz), h = 1.6 cm

Figure 2.6: Transfer functions for various transducers, where h is the vertical distance be-
tween each transducer and the hydrophone.

Figure 2.6 includes the frequency response of several immersion PMUTs. Figure 2.6a
demonstrates that the transfer function of the immersion transducer degrades with extensive
use and requires a rest period after a lengthy period of excitation.
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(a) Angular measurement setup.
(b) Pressure vs. angle for A310S PMUT, h = 3.2 cm.

(c) Pressure vs. angle for V312 PMUT, h = 1.6
cm.

(d) Pressure vs. height for V312 PMUT.

Figure 2.7: Angular measurements.

The adjustable stage in the transducer measurement setup shown in Figure 2.2 has three
degrees of freedom — it can be adjusted in the x, y, and z directions. It is difficult to mount
the hydrophone such that it can be accurately placed at an angle to the hydrophone while
maintaining the same distance between the transducer and the hydrophone. Instead, the
setup illustrated by Figure 2.7a is used. The adjustable stage is varied in the y-direction
while the x and z directions remain constant. The angle, θ, between the hydrophone and the
PMUT is calculated by θ = tan−1

(
d
h

)
. Measurements were also taken varying h by adjusting

the stage only in the z-direction with the hydrophone centered over the transducer in the xy-
plane. Figure 2.7 displays the results of these positional measurements. Each measurement
was taken by exciting each transducer with a sinusoid at its resonant frequency.
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Angular measurements were taken for the A313S transducer as well, but the plot has
been omitted since the measured pressure was approximately 851 Pa for all angles.

MRR ultrasound receiver measurements

Bandwidth measurements with external TIA

Bandwidth measurements were taken using an external Thor Labs PD-TIA and measured
directly on an oscilloscope. As the frequency of the transducer excitation is swept, the peak-
to-peak voltage output of the PD-TIA is measured on the oscilloscope and recorded manually
on a PC.

(a) V309 (5 MHz), h = 1.6 cm (b) A313S (15 MHz), h = 1.6 cm

(c) V324-SU (25 MHz), h = 1.1 cm

Figure 2.8: Bandwidth measurements using various transducers, where h is the vertical
distance between each transducer and the chip and the PMUT is centered over the ring.
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Sensing ultrasonic pulse

The oscilloscope waveforms from the setup in Figure 2.5 are parsed using a Python script
to recover the received signal from the serial data packets. Figure 2.9 summarizes the script
in the form of a block diagram.

scope CSV data

 ↓ osr Pattern
alignment

{14’b1, 14’b0}

D
A

D
A

D
A

D
A

[8:0]

[17:9]

[26:18]

[35:27]

ring 1

ring 2

ring 3

ring 4

Figure 2.9: Block diagram for oscilloscope data processing code to recover analog data from
each ring in a quad.

Explanation of each block:

•  : comparator, outputs 1 if the scopep > scopen or 0 if scopep < scopen

• ↓ OSR: downsamples the bitstream by the oversampling rate (OSR), which is defined
as follows:

OSR =
fsample, scope

2 · fclk, ADC

• Pattern alignment: deserializes serial data into 64-bit packets aligned to the 28-bit
preamble {14’b1, 14’b0}, isolates the data by keeping only the first 36 bits of each
packet, and separating the data into 4 9-bit chunks

• D
A : converts 9-bit binary ADC outputs to decimal (units: SAR least significant bits

(LSBs), where 512 LSBs corresponds to the fullscale ADC output)

• : bandpass finite impulse response (FIR) filter centered at 5 MHz with cutoff

frequencies 2.5 MHz and 7.5 MHz
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(a) Unfiltered signals. (b) Filtered signals.

Figure 2.10: Received signals recovered from serialized data packets captured on oscilloscope.

Figure 2.10 shows the output of the Python script described in Figure 2.9 for a ring quad
with a pulse excitation centered at 5 MHz. Figure 2.10b shows the output of filtering the
signals in 2.10a with a 101-tap FIR bandpass filter with cutoff frequencies at 2.5 MHz and
7.5 MHz, which are the assumed lower and upper limits of the frequencies in the pulse.

Bandwidth and sensitivity results

The sensitivity of a ring is calculated using the following formula:

S =
δVout
δPapp

[V / Pa]

=
δλres
δPapp

δPopt
δλres

RPDGTIA

where Vout is the measured peak-to-peak output voltage, Papp is the pressure applied (cal-
culated using the transducer calibration measurements), λres is the resonant wavelength of
the ring, Popt is the input optical power, RPD is the responsivity of the photodetector, and
GTIA is the TIA gain. [7]

A 5MHz sinusoidal excitation yields a fitted peak-to-peak output of 75 LSB codes, so the
estimated receiver sensitivity is calculated as follows:

S =
600 mV

512 LSBs
· 75 LSBs · 1

12.1 kPa

= 7.3
mV

kPa
[8]
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where 600 mV is the fullscale output of the 9-bit ADC corresponding to 512 LSB codes and
12.1 kPa is the pressure applied to the chip, back-calculated from the PMUT characterization
measurements outlined in the previous section.

The bandwidth of the MRR sensors is ≥ 30 MHz (Figure 2.8c). The true bandwidth
may be higher than 30 MHz, but the PMUT with the highest resonant frequency used was
25 MHz (V324-SU).

2.3 Electrical measurements

PD

IDAC

Vout

Rf

tia

Figure 2.11: Schematic of AFE.

Figure 2.11 depicts part of the analog frontend (AFE). A 5-bit tunable pull-down current
digital-to-analog converter (DAC), IDAC , sets the common-mode voltage at the TIA output
(Vout). The tunable TIA feedback resistor Rf has 4 configuration bits, allowing for 16 gain
settings from 50kΩ to 800kΩ. AFE settings such as TIA gain (≈ Rf ) and IDAC code can be
adjusted to optimize the Lorentzian shape for each ring in order to maximize ring sensitivity
by maximizing δPopt

δλres
. These configuration bits can be updated using a Python script to

interface with the scan chain.
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1 all_lorentzians = [] # Define matrix of Lorentzians , where the Lorentzian for gain = i and

idac = j is located at all_lorentzians[i][j]

2
3 for gain in gains: # Iterate over all possible gain settings

4 set_gain(gain) # Commit gain to scan chain

5
6 lorentzians = []

7
8 for idac in idacs: # Iterate over all possible idac settings

9 set_idac(idac) # Commit idac code to scan chain

10
11 lorentzian = [] # Define Lorentzian array for the current configuration

12
13 for wavelength in wavelengths: # Sweep laser over desired range of wavelengths

14 laser.set_wavelength(wavelength)

15 SAR_output = int(get_scan_chain(ring), 2) # Scan out ADC output at this

wavelength , convert to integer

16 lorentzian.append(SAR_output)

17
18 lorentzians.append(lorentzian) # Append Lorentzian for this idac setting

19
20 all_lorentzians.append(lorentzians) # Append all Lorentzians for this gain setting

21
22 slope = [[max(np.diff(j)) / step for j in i] for i in all_lorentzians] # Find the maximum

Lorentzian slope for every configuration

23
24 # Finally , find the setting that yields the maximum possible slope

25

Listing 2.1: Pseudocode to find optimal AFE settings, loosely written in Python.

Listing 2.1 contains a simplified version of a Python script that iterates over the gain and
IDAC settings to find the optimal configuration. A Lorentzian is found for each AFE setting
by sweeping the input laser wavelength around the ring resonance and recording the SAR
output through the scan chain.
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Figure 2.12: Result of gain/IDAC sweeping script.

The output of this sweeping script is plotted in Figure 2.12. The optimal combination of
gain and IDAC code is the blue Lorentzian, which has a maximum slope of 5.365 SAR LSBs

pm
.

The Lorentzians corresponding to two non-optimal settings have been plotted as well for
comparison.
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Chapter 3

Photonic Layout

This chapter proposes an automated, fully parameterizable photonic layout design for
future generations of the ultrasound sensing chip using a commercial fiber block in order to
address the tradeoff between maximizing the number of sensing elements and minimizing
the size of the probe tube.

3.1 Berkeley Photonic Generator

Berkeley Photonic Generator (BPG) is a Python-based photonic layout automation tool.
BPG enables a user to parameterize a design such that it is easy to generate a new layout
by simply changing design parameters.

Each layout can be specified using a Python class with the following methods:

• get_params_info(cls): describes each parameter in the design

• get_default_param_values(cls): returns a dictionary with the default parameter
values for the design

• draw_layout(self): instance method that denotes the physical layout of the design

Layouts can be generated hierarchically; a top level draw_layout(self) script can in-
stantiate classes corresponding to lower-level layouts defined by the user.

3.2 Fanout for a commercial fiber block

The current layout has receiver arrays with 4 rows of 8 rings per row. To enable higher
resolution images in the future, it is vital to implement the following:

1. Significantly reduce the pitch between the MRRs.

2. Increase the total number of rings in the array.
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3. Minimize the diameter of the probe tube.

The pitch-reducing optical fiber arrays (PROFAs) proposed by Kopp et. al. [4] enable
items 2 and 3. With a minimum of 7 and a maximum of 61 channels, these hexagonal
PROFAs can enable a single comb laser input to provide input to anywhere from 6 to 60
ring rows through a tree of 50-50 multi-mode inferometer (MMI) splitters. The unused
outputs of the MMI splitter tree can be routed to other couplers to characterize the loss of
the MMI tree as well as the MMI splitting capability. Furthermore, since the grating coupler
pitch is between 35 and 45 µm, the maximum probe tube diameter is approximately 0.405
mm. This combination of reduced coupler pitch and a large number of channels addresses the
tradeoff between minimizing the amount of probe tube cabling and maximizing the number
of sensing elements on the probe tip. The face of a PROFA tip with 61 channels is illustrated
in Figure 3.1.

Figure 3.1: Microscope image of the face of the PROFA tip with 61 channels. [4, p. 610]

This chapter details the design and layout of this concept using BPG. This generator lays
out a fanout for a PROFA using one fiber as an input and the remaining fibers as outputs,
where the fiber pitch and number of fibers are fully parameterizable. The input grating
coupler is routed to the input of an MMI splitter tree; each output of the MMI splitter tree
is routed to a ring row, the output of which is routed back to the PROFA fanout. The ring
array pitch is parameterizable as well.
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3.3 Generator design

The hierarchy of the generator is as follows:
Top level generator

Grating coupler hexagonal array + fanout

MMI splitter tree + ring rows

Grating coupler hexagonal array + fanout

This generator lays out a hexagonal array of grating couplers with the specified grating
coupler pitch; it then fans out the port of each grating coupler to the right using the specified
waveguide pitch. The script calculates how many waveguides can fit between two rows of
grating couplers, and routes the remaining coupler ports that can’t fit between two rows
around the fiber block.

Parameter Description
row layout package Layout package for a ring row
row class package Class package for a ring row
row params List of params for a ring row
gc layout package Layout package for the grating coupler
gc class package Class package for the grating coupler
wg bend radius Waveguide bend radius
wg pitch Minimum pitch between adjacent waveguides
rout List of ring radii in a row
gc pitch Pitch between grating couplers
min coupler row Number of couplers in the top row of the array

Table 3.1: Fiber array fanout parameters.

draw_layout(self) code:

1 gc_pitch = self.params[’gc_pitch ’]

2 min_coupler_row = self.params[’min_coupler_row ’]

3 wg_pitch = self.params[’wg_pitch ’]

4 wg_bend_radius = self.params[’wg_bend_radius ’]

5
6 num_rows = 2 * min_coupler_row - 1

7
8 gc_layout_package = self.params[’gc_layout_package ’]

9 gc_cls_name = self.params[’gc_class_package ’]

10
11 gc_lay_module = importlib.import_module(gc_layout_package)

12 gc_cls = getattr(gc_lay_module , gc_cls_name)

13
14 gc_master = self.new_template(params=dict(), temp_cls=gc_cls)

15
16 num_couplers = min_coupler_row

17 start_offset_x = 0
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18 offset_y = 0

19
20 # Calculate maximum number of waveguides that will fit between coupler rows

21 max_wgs = math.floor(gc_pitch / np.sqrt (2) / wg_pitch) - 1

22 around_offset_y = min(num_couplers - 1, max_wgs - 1) * wg_pitch \

23 + wg_pitch - 2 * wg_bend_radius

24 around_offset_x = gc_pitch

25
26 end_x = (2 * min_coupler_row - 1) * gc_pitch

27
28 idx = 0

29 min_actual_y = 0

30
31 top_gc_rows = []

32 bottom_gc_rows = []

33
34 # Iterate over array rows to generate grating coupler array

35 for i in range(num_rows):

36 dir = 1

37 num_around = num_couplers - max_wgs - 1

38
39 # Iterate over all grating couplers in a row

40 for j in range(num_couplers):

41 if i < min_coupler_row - 1:

42 dir = -1

43 elif i > min_coupler_row - 1:

44 dir = 1

45 offset_x = start_offset_x + j * gc_pitch

46 gc_inst = self.add_instance(master=gc_master ,

47 loc=(offset_x , offset_y),

48 orient=’R180’)

49 gc_port = gc_inst[’INPUT ’]

50
51 # Begin route at output of grating coupler

52 router = WgRouter(gen_cls=self , init_port=gc_port ,

53 layer=(’rx1phot ’, ’drawing ’), name=’route {}{}’.format(i, j),

54 wg_params ={’bend_type ’: ’trajECE ’, ’radius ’: wg_bend_radius ,

55 ’AngleTurnEuler ’: .5})

56 if dir == 1:

57 dir1 = ’left’

58 dir2 = ’right’

59 else:

60 dir2 = ’left’

61 dir1 = ’right’

62
63 # Last coupler in a row

64 if j == num_couplers - 1:

65 loc = router.port.center

66 router.cardinal_router(points =[(end_x , loc [1])],

67 bend_params=dict(radius=wg_bend_radius ,

68 bend_type=’trajCirc ’))

69 if i == min_coupler_row - 1:

70 router_start = router

71
72 # Can’t fit all waveguides between rows

73 elif (j < num_couplers - max_wgs - 1 and i != min_coupler_row - 1) \

74 or (i == min_coupler_row - 1 and (num_couplers - j) // 2 > max_wgs):

75 if dir == 1:

76 around_offset_x = around_offset_x - wg_pitch

77 around_offset_y = around_offset_y

78
79 dist = 1 + j * wg_pitch

80 (router
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81 .add_straight_wg(length =0.5)

82 .add_90_bend(direction=dir1 ,

83 bend_params=dict(radius=wg_bend_radius , bend_type=’circular ’))

84 .add_straight_wg(length=dist))

85 loc = router.port.center

86 if i == min_coupler_row - 1:

87 num_around = num_couplers - 2 * max_wgs

88 if dir == -1:

89 actual_x = around_offset_x + (num_around - 1 - 2 * j // 2) * wg_pitch

90 actual_y = around_offset_y - 2 * wg_bend_radius + i * gc_pitch / \

91 np.sqrt (2) + wg_pitch * (idx - 3 * j // 2 + num_around - 1)

92 else:

93 actual_x = around_offset_x + wg_pitch

94 actual_y = around_offset_y - 2 * wg_bend_radius + (num_rows - 1 - i) \

95 * gc_pitch / np.sqrt (2) + wg_pitch * (- j // 2 + idx + 1)

96 elif dir == -1:

97 actual_x = around_offset_x + (num_around - 1 - 2 * j) * wg_pitch

98 actual_y = around_offset_y - 2 * wg_bend_radius + i * gc_pitch / np.sqrt(

99 2) + wg_pitch * (idx - 3 * j + num_around)

100 else:

101 actual_x = around_offset_x

102 actual_y = around_offset_y - 2 * wg_bend_radius + (num_rows - 1 - i) * \

103 gc_pitch / np.sqrt (2) + wg_pitch * (-j + idx)

104 if loc[0] > -around_offset_x:

105 if dir == 1:

106 idx -= 1

107 router.add_90_bend(direction=dir1 ,

108 bend_params=dict(radius=wg_bend_radius ,

109 bend_type=’circular ’))

110 loc = router.port.center

111 (router

112 .cardinal_router(points =[(- actual_x + wg_bend_radius , loc [1])],

113 bend_params=dict(radius=wg_bend_radius ,

114 bend_type=’trajCirc ’))

115 .add_90_bend(direction=dir2 , bend_params=dict(radius=wg_bend_radius ,

116 bend_type=’circular ’))

117 .add_straight_wg(length=actual_y)

118 .add_90_bend(direction=dir2 , bend_params=dict(radius=wg_bend_radius ,

119 bend_type=’circular ’)))

120 loc = router.port.center

121 router.cardinal_router(points =[(end_x , loc [1])],

122 bend_params=dict(radius=wg_bend_radius ,

123 bend_type=’trajCirc ’))

124 if dir == -1:

125 idx += 1

126 else:

127 (router

128 .add_straight_wg(length=around_offset_y + min(i, num_rows - 1 - i)

129 * gc_pitch / np.sqrt (2))

130 .add_90_bend(direction=dir2 ,

131 bend_params=dict(radius=wg_bend_radius ,

132 bend_type=’circular ’)))

133 loc = router.port.center

134 router.cardinal_router(points =[(end_x , loc [1])],

135 bend_params=dict(radius=wg_bend_radius ,

136 bend_type=’trajCirc ’))

137
138 if actual_y > min_actual_y and dir == -1:

139 min_actual_y = actual_y

140 if dir == -1:

141 around_offset_x = around_offset_x + wg_pitch

142 around_offset_y = around_offset_y

143
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144 # Can fit waveguide between rows

145 else:

146 if i == min_coupler_row - 1:

147 dist = 1 + (num_couplers - j - 2) // 2 * wg_pitch + wg_pitch - \

148 2 * wg_bend_radius

149 else:

150 dist = 1 + (num_couplers - j - 2) * wg_pitch + wg_pitch - 2 * wg_bend_radius

151 (router

152 .add_straight_wg(length =0.5)

153 .add_90_bend(direction=dir1 ,

154 bend_params=dict(radius=wg_bend_radius , bend_type=’circular ’))

155 .add_straight_wg(length=dist)

156 .add_90_bend(direction=dir2 ,

157 bend_params=dict(radius=wg_bend_radius , bend_type=’circular ’)))

158 loc = router.port.center

159 router.cardinal_router(points =[(end_x , loc [1])],

160 bend_params=dict(radius=wg_bend_radius ,

161 bend_type=’trajCirc ’))

162 if dir == 1:

163 top_gc_rows.append(router)

164 else:

165 bottom_gc_rows.append(router)

166 dir = -dir

167
168 if i < min_coupler_row - 1:

169 start_offset_x = start_offset_x - gc_pitch / 2

170 num_couplers = num_couplers + 1

171 else:

172 start_offset_x = start_offset_x + gc_pitch / 2

173 num_couplers = num_couplers - 1

174 offset_y = offset_y + gc_pitch * 1 / np.sqrt (2)

175
176 top_gc_rows = sorted(top_gc_rows , key=lambda x: x.port.center [1])

177 bottom_gc_rows = sorted(bottom_gc_rows , key=lambda x: x.port.center [1])

178
179 # Extract output ports

180 for idx , row in enumerate(top_gc_rows):

181 row.extract_port(’TOP_’ + str(idx))

182
183 for idx , row in enumerate(bottom_gc_rows [:: -1]):

184 row.extract_port(’BOTTOM_ ’ + str(idx))

185
186 # Extract input port

187 router_start.extract_port(’CENTER ’)

Listing 3.1: Generator for grating coupler fanout.
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MMI splitter tree + ring rows

This generator lays out a binary MMI splitter tree based on the number of possible
outputs in the fiber array fanout. It calculates the tree depth as follows:

depth = dlog2 ne

where n is the number of outputs. It then lays out n MRR rows, which means that there
are 2depth − n unused splitter tree outputs.

Parameter Description
switch tree layout package Layout package for the binary switch tree
switch tree class package Class package for the binary switch tree
switch elem pitch Element pitch for the binary switch tree
row layout package Layout package for a ring row
row class package Class package for a ring row
row params List of params for a ring row
wg pitch Minimum pitch between adjacent waveguides
wg bend radius Waveguide bend radius
contact name start ind The start index for contact label names
num rings per row The number of rings per row in this array
coupling gap base 1 Initial coupling gap of left array
coupling gap pitch 1 Pitch with which coupling gap increments - left array
rout List of ring radii in a row
min coupler row Number of couplers in the top row of the array

Table 3.2: MMI splitter tree + ring rows parameters.

draw_layout(self) code:

1 switch_tree_layout_package = self.params[’switch_tree_layout_package ’]

2 switch_tree_cls_name = self.params[’switch_tree_class_package ’]

3
4 switch_tree_lay_module = importlib.import_module(switch_tree_layout_package)

5 switch_tree_cls = getattr(switch_tree_lay_module , switch_tree_cls_name)

6
7 row_layout_package = self.params[’row_layout_package ’]

8 row_cls_name = self.params[’row_class_package ’]

9
10 row_lay_module = importlib.import_module(row_layout_package)

11 row_cls = getattr(row_lay_module , row_cls_name)

12
13 min_coupler_row = self.params[’min_coupler_row ’]

14
15 # Add routes , ring rows , and grating couplers

16 num_rows = 3 * sum([2 * i for i in range(1, min_coupler_row)])

17
18 tree_depth = math.ceil(math.log2(num_rows))

19 row_offset = (2 ** tree_depth - num_rows) // 2
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20 num_rings_tot = num_rows * self.params[’num_rings_per_row ’] - 1

21
22 switch_tree_params = dict(element_pitch=self.params[’switch_elem_pitch ’],

23 input_port_name=’IN_TOP ’, tree_depth=tree_depth)

24
25 switch_tree_master = self.new_template(params=switch_tree_params , temp_cls=switch_tree_cls)

26 switch_tree_inst_left = self.add_instance(master=switch_tree_master , loc=(0, 0))

27
28 self.extract_photonic_ports(inst=switch_tree_inst_left , port_names =[’INPUT’])

29
30 contact_name_ind = 0

31
32 for ind in range(num_rows):

33
34 curr_dict = deepcopy(self.params["row_params"])

35 name_str = ’Mod1_ ’

36 coupling_gap_var = dict(

37 ring_params_list =[dict(rout=self.params[’rout’][x],

38 coupling_slot=self.params[’coupling_gap_base_1 ’] + x *

39 self.params[’coupling_gap_pitch_1 ’]) for x in

40 range(self.params[’num_rings_per_row ’])])

41
42 contact_name_dict = dict(

43 ring_labels =[dict(N=name_str + ’RingCat ’ + ’<’ + str(num_rings_tot - x) + ’>’,

44 P=name_str + ’RingAn ’ + ’<’ + str(num_rings_tot - x) + ’>’) for

45 x in range(contact_name_ind , contact_name_ind

46 + self.params[’num_rings_per_row ’], 1)],

47 heater_labels =[dict(N=name_str + ’HeaterP ’ + ’<’ + str(num_rings_tot - x) + ’>’,

48 P=name_str + ’HeaterN ’ + ’<’ + str(num_rings_tot - x) + ’>’) for

49 x in range(contact_name_ind , contact_name_ind

50 + self.params[’num_rings_per_row ’], 1)])

51
52 if ind % 2 == 1:

53 contact_name_dict[’ring_labels ’]. reverse ()

54 contact_name_dict[’heater_labels ’]. reverse ()

55
56 curr_dict.update(contact_name_dict)

57 contact_name_ind += self.params[’num_rings_per_row ’]

58
59 curr_dict.update(coupling_gap_var)

60
61 row_master = self.new_template(params=curr_dict , temp_cls=row_cls)

62
63 switch_port = switch_tree_inst_left[’OUTPUT_ ’ + str(ind + row_offset)]

64
65 router = WgRouter(gen_cls=self ,

66 init_port=switch_port ,

67 layer=(’rx1phot ’, ’drawing ’),

68 name=’route’ + str(ind + 1))

69
70 row_inst = self.add_instance_port_to_port(inst_master=row_master ,

71 instance_port_name=’PORT1 ’,

72 self_port=router.port ,

73 reflect=True)

74
75 self.extract_photonic_ports(inst=row_inst , port_names =[’PORT0’],

76 port_renaming ={’PORT0 ’: ’OUTPUT_ {}’.format(ind + 1)})

Listing 3.2: Generator for splitter tree + ring rows.
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Top-level generator

The top-level generator instantiates the fiber array as well as the MMI splitter tree and
ring rows. It then iteratively routes all ring row outputs back to the ports of the grating
coupler fanout.

Parameter Description
fiber arr layout package Layout package (path) to the fiber array
fiber arr class package Class package (class name) to the fiber array
fiber arr params dict of params for the fiber array
splitter rows layout package Layout package (path) to the splitter + ring rows
splitter rows class package Class package (class name) to the splitter + ring rows
wg bend radius Radius of the waveguide bends
wg width Waveguide width
wg pitch Minimum waveguide pitch
min coupler row Number of couplers in the top row of the array

Table 3.3: Top level parameters.

draw_layout(self) code:

1 # Add fiber array first as (0, 0)

2 fiber_arr_layout_package = self.params[’fiber_arr_layout_package ’]

3 fiber_arr_cls_name = self.params[’fiber_arr_class_package ’]

4
5 gen_params = dict(min_coupler_row=self.params[’min_coupler_row ’], wg_pitch=self.params[’

wg_pitch ’])

6
7 fiber_arr_lay_module = importlib.import_module(fiber_arr_layout_package)

8 fiber_arr_cls = getattr(fiber_arr_lay_module , fiber_arr_cls_name)

9
10 fiber_arr_master = self.new_template(params=gen_params , temp_cls=fiber_arr_cls)

11 fiber_arr_inst = self.add_instance(master=fiber_arr_master , loc=(0, 0))

12
13 # Calculating total number of ring rows and MMI splitter tree depth

14 num_rows = 3 * sum([2 * i for i in range(1, fiber_arr_master.params[’min_coupler_row ’])])

15 tree_depth = math.ceil(math.log2(num_rows))

16
17 wg_pitch = self.params[’wg_pitch ’]

18
19 # Route center -most grating coupler to input of MMI splitter tree

20 router = WgRouter(gen_cls=self ,

21 init_port=fiber_arr_inst[’CENTER ’],

22 layer=(’rx1phot ’, ’drawing ’),

23 name=’route0 ’,

24 wg_params ={’bend_type ’: ’trajECE ’, ’radius ’: 10, ’AngleTurnEuler ’: .5})

25
26 splitter_rows_layout_package = self.params[’splitter_rows_layout_package ’]

27 splitter_rows_cls_name = self.params[’splitter_rows_class_package ’]

28
29 splitter_rows_lay_module = importlib.import_module(splitter_rows_layout_package)

30 splitter_rows_cls = getattr(splitter_rows_lay_module , splitter_rows_cls_name)

31
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32 splitter_rows_master = self.new_template(params=gen_params , temp_cls=splitter_rows_cls)

33
34 row_pitch = splitter_rows_master.params[’switch_elem_pitch ’]

35
36 router.add_straight_wg(length =50 + num_rows // 2 * wg_pitch)

37 router.add_s_bend(length =30, shift_left=row_pitch // 2)

38
39 splitter_rows_inst = self.add_instance_port_to_port(inst_master=splitter_rows_master ,

40 instance_port_name=’INPUT ’,

41 self_port=router.port)

42
43 row_offset = (2 ** tree_depth - num_rows) // 2 # Calculate number of unused splitter

outputs

44
45 # Route all ring row outputs to fiber array fanout

46 for route_num in range(1, num_rows + 1):

47 if route_num < (num_rows) // 2 + 1:

48 dir = ’left’

49 out_len = route_num + 1

50 row = fiber_arr_inst[’TOP_{}’.format(route_num)]

51 end_y = row.center [1]

52 else:

53 dir = ’right’

54 out_len = num_rows - route_num + 2

55 row = fiber_arr_inst[’BOTTOM_ {}’.format(num_rows - route_num)]

56 end_y = row.center [1]

57
58 router = WgRouter(gen_cls=self ,

59 init_port=splitter_rows_inst[’OUTPUT_ {}’.format(route_num)],

60 layer=(’rx1phot ’, ’drawing ’),

61 name=’route0 ’,

62 wg_params ={’bend_type ’: ’trajECE ’, ’radius ’: 10, ’AngleTurnEuler ’:

.5})

63
64 (router

65 .add_straight_wg(length=wg_pitch)

66 .add_straight_wg(length=wg_pitch * out_len)

67 .add_90_bend(direction=dir ,

68 bend_params=dict(radius=self.params[’wg_bend_radius ’], bend_type=’circular

’))

69 .add_straight_wg(length =100 + (out_len + row_offset) * row_pitch + out_len * wg_pitch)

70 .add_90_bend(direction=dir ,

71 bend_params=dict(radius=self.params[’wg_bend_radius ’], bend_type=’circular

’))

72 .add_straight_wg(length=row_pitch * splitter_rows_master.params[’num_rings_per_row ’]

73 + 2 * out_len * wg_pitch + 90 * tree_depth)

74 .add_90_bend(direction=dir ,

75 bend_params=dict(radius=self.params[’wg_bend_radius ’], bend_type=’circular

’)))

76
77 diff = abs(router.port.center [1] - end_y) - 2 * self.params[’wg_bend_radius ’]

78
79 (router

80 .add_straight_wg(length=diff)

81 .cardinal_router(points =[row.center],

82 bend_params=dict(radius=self.params[’wg_bend_radius ’], bend_type=’

trajCirc ’)))

Listing 3.3: Generator for top level layout.
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3.4 Generated layouts

Figure 3.2 displays fanouts for PROFA tips of different sizes with the grating couplers
omitted. Figure 3.2a has 19 channels with wg_pitch = 5 µm, Figure 3.2b has 37 channels
with a waveguide pitch of 5 µm, and Figure 3.2c has 61 channels with wg_pitch = 6 µm.
The grating coupler pitch for each fanout is 40 µm. Note that all the coupler outputs that
do not fit between coupler rows are routed around the fiber block. Therefore, the maximum
wg_pitch is reached when the total number of couplers is equal to 2· max_wgs, where max_wgs
(see line 21 in Listing 3.1) is the maximum number of waveguides that will fit between coupler
rows with the given gc_pitch and wg_pitch. Using too small a value for wg_pitch may
result in unwanted coupling. The reduced pitch between the couplers limits the maximum
waveguide bend radius (wg_bend_radius) as well, which could potentially result in lossy
waveguides.

Figure 3.3 displays the generated top-level layouts for each possible number of PROFA
channels. In each image, the coupler array and fanout (with couplers omitted) is at the
bottom. The coupler output at the center of the fanout routes to the input of the MMI
splitter tree in the middle of the image. The MMI splitter outputs route to the ring rows at
the top of the image; the ring row outputs are then routed back to the coupler fanout. In
each generated layout, num_rings_per_row = 16, wg_pitch = 5 µm, and the pitch between
rings (switch_elem_pitch) is 50µm.

Feature Current fiber block PROFA
Number of input couplers 1 1
Number of output couplers/ring rows 4 6-60
Grating coupler pitch 250µm 35-45µm
Ring pitch 220µm 50µm
Total number of rings 32 96-960
Approximate sensing array dimensions 0.75mm x 1.54mm 0.75mm x 0.25mm-2.95mm

Table 3.4: Current fiber block vs. PROFA implementation (assuming the PROFA imple-
mentation uses 16 rings per row).
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(a) 19 channels
(b) 37 channels

(c) 61 channels

Figure 3.2: BPG generated fanouts for PROFA fiber blocks.
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(a) 7 channels (b) 19 channels

(c) 37 channels

(d) 61 channels

Figure 3.3: BPG generated top level layouts to sense ultrasound with PROFA fiber blocks.
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Chapter 4

Analog Frontend Redesign

This chapter explores a potential alternate transimpedance amplifier (TIA) implemen-
tation for the chip analog frontend (AFE). It is important to minimize TIA noise to avoid
thermal noise from the metal-oxide-semiconductor field-effect transistors (MOSFETs) domi-
nating the system over the shot noise from the photodetector; it is also desirable to maximize
the TIA’s open-loop voltage gain AV . The gain Vout

Iin
of a TIA is defined as follows:

GTIA = − AV
1 + AV

Rf

Therefore, as AV →∞, GTIA → −Rf , where Rf is the feedback resistance.

4.1 Existing Topology

PD

Vout

Rf

tia

Figure 4.1: Schematic of current AFE implementation.
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The existing AFE consists of a MRR photodetector (PD) in series with an inverter-based
TIA with a variable feedback resistance Rf . The schematic for the existing AFE is illustrated
in Figure 4.1.

This TIA is a current-reuse TIA; as the input is connected to the gates of both the
NMOS and the PMOS, the effective transconductance Gm is the sum of the NMOS and
PMOS gm’s. For the following analysis, the DC operation points gm and ro are approximated
to be the same for the NMOS and the PMOS.

Gain analysis

To find the gain (Vout/Iin) of the TIA, the voltage gain AV = GmRout is found first in
order to evaluate the TIA gain as follows:

Vout
Iin

= − AV
1 + AV

Rf = − GmRout

1 +GmRout

Rf

(gmp + gmn)Vg

Vout

i2dn + i2dp

Rf
vg

Iin

gdsp + gdsn

Figure 4.2: Small signal model of current TIA implementation with equivalent noise gener-
ator, where i2dn = 4kTγgmn∆f and i2dp = 4kTγgmp∆f .

By inspection of figure 4.2, the effective transconductance Gm of the circuit is gmp+gmn and
the output resistance Rout = rop||ron = (gdsp + gdsn)−1. Therefore,

Vout
Iin

= − (gmp + gmn)(rop||ron)

1 + (gmp + gmn)(rop||ron)
Rf

≈ −
2gm · 12ro

1 + 2gm · 12ro
Rf

≈ − gmro
1 + gmro

Rf
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Noise spectral density analysis

Ignoring the thermal noise from the feedback resistor, the total noise due to the thermal
noise from the MOSFETs at the output is as follows:

i2noise, out = i2dn + i2dp

= 4kTγ(gmn + gmp)∆f

→ v2noise, out = i2noise, out ·R2
out

= 4kTγ
gmn + gmp

(gdsp + gdsn)2
∆f

≈ 2kTγgmr
2
o∆f

4.2 Proposed Topology

The proposed TIA topology for the AFE is utilized in the piezoelectric ultrasound imag-
ing scheme presented by D’Urbino et al [3]. It is illustrated in Figure 4.3 with feedback
resistor and photodetector omitted. A feedback resistor Rf is connected between V − and
Vout. The photodetector output is routed to V − and V + is connected to a reference voltage
(Vref). This TIA is also a current-reuse TIA, so the effective transconductance Gm will be
approximately the sum of the NMOS and PMOS gm’s. Unlike the existing TIA topology,
this has a differential input.

M2

M3

M6

M5

M4

M1

Vout

Vbias

V − V +

Figure 4.3: Schematic of proposed AFE implementation with feedback resistor omitted.

For the following analysis, gm and ro are assumed to be the same for M2, M3, M5,
and M6. M1 and M4 are assumed to have the same gm (but different from the gm of the
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complementary transistors, as M1 and M4 are assumed to be in triode). Since M1 and M4
are assumed to be in triode, they can be replaced with resistances Ron,p and Ron,n. The effect
of the feedback from the drains of M2 and M3 to the gate of M1 is assumed to be negligible.

Gain analysis

Transconductance

To find the transconductance Gm, the output is shorted and a differential input (V + =
1
2
vid, V

− = −1
2
vid) is applied to the circuit. Gm is evaluated as the output current Iout divided

by vid. The node between the sources of M3 and M5 is incremental ground because M3 and
M5 have equal and opposite currents due to the differential input. The node between the
sources of M3 and M6 is incremental ground for the same reason. This means that the circuit
can be split into two differential half-circuits. Figure 4.4 displays the righthand half circuit.

M6

M5

Iout vid
2

Figure 4.4: Schematic for Gm calculation.

Iout = gm5
vid
2

+ gm6
vid
2

=
1

2
vid(gm5 + gm6)

→ Gm =
1

2
(gm5 + gm6)

Output resistance

To find the output resistance, all independent sources are shorted and a test voltage is
attached to the output as shown in Figure 4.5.
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M6

M5M3

M2

i5i3

i2

i6

Ron,n

Itest
−
+ Vtest

Ron,p

Req5

Req6

Figure 4.5: Schematic for Rout calculation.

RD

ReqS

(a) Looking into the source

RS

ReqD

(b) Looking into the drain

Figure 4.6: Equivalent MOSFET resistances.

The equivalent resistances in Figure 4.6 are ReqS = ro+RD

gmro+1
(4.6a) and ReqD = ro + gmroRS
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(4.6b). These equivalences are used to solve for the output resistance of the TIA.

Rout =
Vtest
Itest

Itest = i5 + i6 =
Vtest
Req5

+
Vtest
Req6

Req5 = ro5 + gm5ro5 · (Ron,p||ReqS,3)

= ro5 + gm5ro5 ·
(
Ron,p

∣∣∣∣∣∣ ro3 + gm2ro2Ron,n

gmro3 + 1

)
≈ ro5 + gm5ro5 ·

(
Ron,p

∣∣∣∣∣∣ 1

gm
+Ron,n

)
(gmro � 1)

The transconductance gm of a MOSFET in saturation is defined as

gm =
δIDS
δVGS

∣∣∣∣∣
VDS

= µCox
W

L
(|VGS| − |VT |)

and the on resistance of a MOSFET in triode is

Ron =
δVDS
δIDS

∣∣∣∣∣
VGS

=
1

µCox
W
L

(|VGS| − |VT |)

assuming the square law model for a MOSFET. It can therefore be assumed that Ron and
1
gm

are of similar magnitude and Ron � Ron + 1
gm

. Therefore,

Req5 ≈ ro5(1 + gm5Ron,p)

Req6 ≈ ro6(1 + gm6Ron,n) (symmetry)

Rout = ro5(1 + gm5Ron,p)||ro6(1 + gm6Ron,n)

=
1

2
ro(1 + gmRon)

Therefore, the voltage gain is AV = (gm1 + gm2) (ro5(1 + gm5Ron,p)||ro6(1 + gm6Ron,n)) and
the TIA gain is

Vout
Iin
≈ −

2gm · 12ro(1 + gmRon)

1 + 2gm · 12ro(1 + gmRon)
Rf

= − gmro(1 + gmRon)

1 + gmro(1 + gmRon)
Rf

Noise analysis

To calculate the noise current variance at the TIA output, the individual contributions
from each equivalent noise generator shown in Figure 4.7 is considered using superposition.
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M2

M3

M6

M5

i2d2

i2d3

i2d6

i2d5

Ron,p i2d4

Ron,n i2d1

Iout
Vout

Figure 4.7: Schematic of proposed AFE implementation with equivalent noise generators,
where i2dk = 4kTγgmk∆f .

Intuitively, it can be seen in Figure 4.7 that this circuit has twice the number of noise
sources due to the two branches of the circuit in addition to the noise contributions from
the tail transistors. Therefore, the noise spectral density at the output is expected to be
significantly larger than that of the current TIA implementation (2kTγgmr

2
o∆f , calculated

in Section 4.1). This will be verified in simulation in Section 4.3.

Comparison of the two topologies

Both topologies utilize current reuse and are able to leverage the transconductance of
both the NMOS and PMOS inputs. The proposed TIA has a differential input, which allows
for common mode noise cancellation. However, the output noise spectral density of the
proposed topology is significantly larger than noise of the current topology. The proposed
topology has a higher voltage gain due to its larger output resistance, so its TIA gain is
closer to −Rf as desired.

The tail NMOS and PMOS transistors limit the output voltage headroom, but since they
can be operated in triode, the drain voltage can be close to the rail [1] and headroom is not
affected significantly.

As the proposed topology has 4 more transistors than the current topology, each AFE
will take up a larger area. Assuming the complementary transistors (M2, M3, M5, and M6)
in the proposed topology have the same gm = 2ID

V ∗ as the input pair in the current topology,
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the proposed topology would require twice as much current as the existing TIA due to its
differential nature. However, the larger area and higher power consumption do not matter
too much, as the AFE is remoted outside of the body where size and power consumption are
less of a constraint.

The bias voltage in the proposed topology enables greater user control over the tail
current and power consumption. Furthermore, the self-biased tail transistor M1 eliminates
the need for a complex common mode feedback loop [3]. If the common mode input voltage
range is limited, M4 can be self-biased as well by connecting its gate to the drains of M2
and M3 [1].

4.3 Simulation Results

Simulations were run to verify the gain and noise analyses from the previous section and
help compare the relative performance of the two topologies.

Figure 4.8: Schematic of testbench with both TIA implementations (including DC operating
points) with feedback resistor omitted.

Figure 4.8 includes a schematic of the testbench for both topologies. The noise con-
tribution of the feedback resistor was neglected. The transistors were sized such that gmp
and rop for the PMOS transistors in each complementary pair are the same and gmn and
ron for the NMOS transistors in each complementary pair are the same across both circuits.
The tail NMOS at the bottom was sized with twice the width of the complementary NMOS
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transistors and the tail PMOS at the top was sized with twice the width of the comple-
mentary PMOS transistors. The following parameters were used: VDD = 1.2V, Vb = 0.8V,
Vref = 0.6V, and f = 30MHz, where f is the frequency of the sinusoidal voltage input.

(a) PSS simulation setup. (b) PNOISE simulation setup

Figure 4.9: Noise simulation setup.

Figure 4.9 displays the simulation setup for the noise analysis. A periodic steady state
(PSS) simulation is run first to determine the periodic operating point and a PNOISE sim-
ulation is run subsequently to calculate the total noise.
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Figure 4.10: Voltage gain AV of each TIA implementation.

(a) Integrated noise for current topology (V). (b) Integrated noise for proposed topology (V).

Figure 4.11: Noise simulation results.

As shown in 4.10, the voltage gain of the proposed TIA (≈ 5.45) is slightly higher than
the gain of the existing TIA (≈ 5.2). This aligns with the calculations in Sections 4.1 and
4.2:

AV,proposed
AV,current

= 1 + gmRon > 1

Figure 4.11 displays the integrated noise at the output for each TIA topology. As expected,
the noise at the output of the proposed topology (10.397 mV) is significantly higher than
the noise at the output of the current topology (6.9402 mV) by a factor of about 1.5.
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Chapter 5

Conclusion and Future Work

Silicon MRRs are a promising alternative to established PMUT and CMUT based ultra-
sound imaging systems. By demonstrating proof of concept through measurement results
and optimizing both the photonic layout and circuit design of the system, MRR-based ul-
trasound imaging presents a solution for the disadvantages of commercial systems.

An important next step in testing the current prototype chip is to transition to processing
data in real-time on an FPGA as well as implement beamforming in order to generate real-
time images (as opposed to using the script detailed in Figure 2.9). In terms of photonic
layout, implementing a smaller size, lower power frontend for the sensing rings will help
accommodate a 50 µm pitch between the MRRs and thus enable the layout demonstrated in
Chapter 3. Furthermore, as the topology proposed in Chapter 4 does not appear significantly
advantageous over the current inverter-based TIA due to its greater thermal noise, it is worth
exploring alternate TIA implementations.
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