Pedagogy and Infrastructure for Upper-Division Data Science Courses

Allen Shen

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-122
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-122.html

May 14, 2021
Acknowledgement

I would like to thank Professor Joshua Hug for his guidance within the past few years. I would also like to thank Professor John DeNero and Professor Joseph Gonzalez for giving me the opportunity to teach in their courses. In addition, I want to thank Suraj Rampure, Ethan Shang, and all my other fellow course staff members for making my time at Berkeley so much more enjoyable. Finally, I want to thank my family for their endless support throughout my entire life.
Pedagogy and Infrastructure for Upper-Division Data Science Courses

by Allen Shen

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joshua Hug
Research Advisor

14-May-2021
(Date)

Professor Joseph M. Hellerstein
Second Reader

May 12, 2021
(Date)
Pedagogy and Infrastructure for Upper-Division Data Science Courses

by

Allen Shen

A thesis submitted in partial satisfaction of the requirements for the degree of Masters of Science in Electrical Engineering and Computer Science in the Graduate Division of the University of California, Berkeley

Committee in charge:

Professor Joshua Hug, Chair
Professor Joseph M. Hellerstein

Spring 2021
Abstract

Pedagogy and Infrastructure for Upper-Division Data Science Courses

by

Allen Shen

Masters of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Joshua Hug, Chair

The quick rise in popularity of data science courses has led to a need to develop scalable infrastructure to support such courses. The most essential part of this scalable infrastructure is a scalable grading system that enables instructors to automatically grade student submissions without requiring them to look at each submission individually for an extended period of time. In this work, we discuss two autograding systems that help accomplish this task by providing a means to autograde Jupyter notebook assignments and Java-based assignments. We expand on the former by highlighting a workflow for distributing and autograding Jupyter notebook assignments via Otter Grader. We then talk about the pedagogy and infrastructure that enables data systems courses to support hundreds of students, and we finally discuss tools for learning data visualization with an emphasis on the Lux Jupyter notebook widget. We hope that this work helps lay the groundwork for the development of future tools and methods that enable learning at scale for data science courses.
To my family and friends.
Acknowledgments

I would like to thank Professor Joshua Hug for his guidance within the past few years. I would also like to thank Professor John DeNero and Professor Joseph Gonzalez for giving me the opportunity to teach in their courses. In addition, I want to thank Suraj Rampure, Ethan Shang, and all my other fellow course staff members for making my time at Berkeley so much more enjoyable. Finally, I want to thank my family for their endless support throughout my entire life.
Chapter 1

Introduction

Data science has exploded in popularity in recent years due to the advance of new data-intensive systems [49] and the development of novel techniques for machine learning [5]. Following the footsteps of many other universities, data science became an undergraduate major at UC Berkeley in 2018 [44]. Since then, it has quickly become the fastest-growing major on campus, and its size now rivals the size of the computer science major [33].

In this thesis, we will focus on the pedagogy and infrastructure required to support three upper-division data science courses at UC Berkeley: Principles and Techniques of Data Science, Introduction to Database Systems, and Data Engineering. These courses are intended for junior and senior level undergraduate students, but graduate students are welcome to take them as well. Prior work has explored how courses similar to these could be incorporated in the curriculum for a data science program [1] [42] [2].

First, Chapter 2 goes over a workflow for distributing and autograding assignments in data science courses. Next, Chapter 3 talks about the pedagogy and infrastructure in data systems courses. Finally, Chapter 4 discusses tools for learning data visualization.

1.1 Principles and Techniques of Data Science

Principles and Techniques of Data Science (Data 100) [40] is an intermediate data science course at UC Berkeley. The course follows an introductory data science course called Foundations of Data Science (Data 8) [14], and it assumes a background of Data 8, introductory programming, linear algebra, and calculus. Course enrollment exceeded 1000 students per semester in recent fall/spring iterations.

Recent iterations of Data 100 have been divided into roughly three portions. In the first section of the course, students learn how to use practical data science tools for data manipulation and data visualization. These tools include but are not limited to SQL, pandas, and seaborn. The second portion of the course covers theoretical concepts behind common machine learning techniques including linear regression, logistic regression, and gradient
descent. The third and final segment of the course covers other techniques in machine learning such as decision trees, PCA, and k-means clustering.

1.2 Introduction to Database Systems

Introduction to Database Systems (CS 186) [23] is an introductory course on the internals of modern database systems including but not limited to topics such as SQL, B+ Trees, query optimization, transactions, and recovery. It assumes a background of introductory programming, data structures, and a first course on computer architecture. Enrollment in the course has recently hovered at around 600 students per fall/spring semester.

In recent semesters, the course was offered in an online format (CS W186) with pre-recorded lectures and in-person discussion sections. Although lectures were given asynchronously, students were still expected to keep to a schedule of two lectures a week in order to keep pace with assignments.
1.3 Data Engineering

Data Engineering (CS 194-35/Info 290T-2) [8] is a course that covers the principles and practices of managing data at scale from a user’s perspective. It is not intended to directly replace a traditional database course (i.e. CS 186) even though many topics are similar. The course was first offered in the Spring 2021 semester with a cohort of around 125 undergraduate and graduate students, although a precursor to the course was offered exclusively to graduate students in the Spring 2020 semester.

Figure 1.2: Topics in CS 194-35/Info 290T-2. Topics in blue are covered in a traditional database course.

1.4 Impact of COVID-19 Pandemic

In March 2020, the COVID-19 pandemic forced universities across the world to transition to remote instruction [30]. UC Berkeley announced that most courses would be required to transition to a remote format starting March 10, 2020 [6]. As a result, computer science and data science courses were forced to adapt by offering both synchronous and asynchronous modes of instruction. Most of this work was conducted in the midst of the pandemic, during which the aforementioned classes were offered via remote instruction.
For Data 100 in particular, the instructors wanted to provide a flexible experience for students regardless of where they were situated [41]. This meant that a purely synchronously model was not feasible, and both synchronous and asynchronous options needed to be provided to optimize for remote instruction. Lectures were presented asynchronously as a series of short pre-recorded videos with a set of conceptual questions following each video. To supplement lecture content, the instructors offered both pre-recorded and live discussion sections, in addition to live lab sections.
Chapter 2

Jupyter Notebook Assignments

2.1 Introduction

Jupyter notebooks are a widely used tool for data science in industry, research, and education. Assignments in the Jupyter format can contain both coding and written/visualization questions within the same document, making the format particularly well-suited for data analysis tasks. Data scientists often use Jupyter notebooks because of their interactivity; for example, notebooks allow users to simultaneously look at data and visualizations generated from data. Moreover, users can run Jupyter notebook cells out of order, and notebooks must be run in a particular environment. All of these intricacies make autograding assignments in Jupyter notebooks more challenging compared to autograding assignments in more traditional file formats (i.e. .java, .py, .cpp, etc.).

As most other courses with autograder infrastructure are not Jupyter-based, they require specific autograder infrastructure depending on the programming language in use. For Data 100, we have used an autograder system based on Otter Grader [38], which is a Jupyter notebook autograder system developed by the Data Science Education Program (DSEP) at UC Berkeley, since the Summer 2020 semester. Otter provides a set of commands for the development, distribution, and grading of Jupyter notebook assignments. It also generates PDFs of written questions from notebook assignments; these PDFs can then be used for manual grading on Gradescope [17], which is a tool for managing and grading course assignments. Immediately after autograding is finished, PDF generation can happen in the same environment as the code autograder, so students do not have to worry about managing PDFs themselves.

Setup of Otter Grader is relatively straightforward since the package can be installed via pip. The command pip install otter-grader will install the otter binary so that Otter Grader can be used from the command line. Further documentation on the installation process can be found on the Otter Grader documentation website [39].

This chapter will focus on the usage of Otter Grader for assignments in data science courses. In particular, we will discuss how to develop assignments that are compatible with
Otter Grader and Gradescope. This chapter will not go into details regarding how Otter Grader is implemented.

Figure 2.1: A Jupyter notebook using Otter Grader.

2.2 Related Work

In this section, we discuss some alternative tools to Otter Grader.

nbgrader

Nbgrader [36] is a similar tool for Jupyter notebook autograding. When we used nbgrader during the Spring 2018 and Fall 2018 semesters, we found that our assignment workflow was a bit tedious, so we decided to stop using the tool after the Fall 2018 semester. One limitation of nbgrader at the time was that it only allowed users to grade one assignment at a time. We preferred a grading style in which graders were responsible for a small subset of questions on an assignment rather than for all questions in a subset of all submissions. This allowed for more consistent grading as one grader would be responsible for a particular question for all submissions. In addition, the nbgrader interface took a long time to switch
between student submissions; this slowdown became very noticeable at a large scale of nearly a thousand submissions.

![Part A (2 points)](image)

Figure 2.2: Example of the nbgrader interface.

okpy

Okpy [37] is an autograding system developed by several current and former students at UC Berkeley. Although okpy provides an interface for Jupyter notebook autograding, we found that integrating our custom autograder was more challenging compared to Gradescope due to more sparse documentation.

Pandas Grader

Pandas Grader [7] is an okpy compatible autograder developed by Simon Mo and William Huang for Data 100. We used this autograder for the Spring 2019, Summer 2019, Fall 2019, and Spring 2020 semesters. Pandas Grader is based on Gofer Grader [16], a lightweight autograder library developed by Vincent Su. Although Pandas Grader allowed us to auto-grade assignments efficiently, we found that the workflow was too complex, leading to several autograder errors that were very difficult to debug. Since Pandas Grader was very intricate, it also required a lot of time to learn and maintain. As a result, we felt that we had a large knowledge gap when the teaching assistants associated with the tool left Data 100 course staff.
CHAPTER 2. JUPYTER NOTEBOOK ASSIGNMENTS

2.3 Autograder Environments

One challenge with grading Jupyter notebook assignments is maintaining consistency between the student’s programming environment and the autograder’s environment. In Data 100, we use a JupyterHub [27] server called DataHub [9]. DataHub allows users to complete their assignments in a single environment that is shared among all users, and it allows us to use nbgitpuller [35] to distribute assignments to students.

Both nbgrader and Pandas Grader combined with okpy allowed us to run the autograder in the exact same environment where the students worked since we could run these tools in the DataHub environment. This helped us maintain consistency between student and staff results. When we transitioned to Otter Grader, one downside was that we were no longer able to replicate the exact same environment on Gradescope. As such, we resorted to using pip freeze to generate a requirements.txt file that contained most of the packages from the DataHub environment. Nevertheless, we had to remove some packages from the requirements.txt file because they were not compatible with the Gradescope autograder. For future work, we recommend using the “Manual Docker Configuration” feature on the Gradescope autograder to fix the issue of environment replication.

2.4 Student Workflow

In this section, we list some of the assignment submission instructions we provide to students in Data 100.
CHAPTER 2. JUPYTER NOTEBOOK ASSIGNMENTS

Figure 2.4: Example output from `pip freeze` on DataHub.

1. After completing an assignment, navigate to Kernel > Restart & Run All. Make sure that all public test cases pass locally. Note that it is essential to restart your kernel before checking if you are passing all the test cases to ensure that your variables do not have local state such that they pass the tests in your notebook but not on the autograder. Try not to reuse variable names if possible.

2. Save your notebook under File > Save and Checkpoint. This is a very important step. If you do not save your notebook, then you might run into issues with the downloaded .zip file.

3. Run the very last cell in your notebook, which generates a .zip file for you to download to your local machine. Download the .zip file, which contains all of the necessary components of your submission.

4. Upload this .zip to the correct assignment on Gradescope.

5. A while after submitting, the autograder built-in to the Gradescope assignment will tell you which public test cases you have passed and failed. Any test cases you have failed will be marked in red, along with output of which test case you failed.

- The public test cases on Gradescope are identical to the ones that you had in your notebook. If you pass all test cases locally, you should also pass them all on Gradescope.
- The autograder on Gradescope will extract the PDF of your notebook and manually grade it for assignments that require PDF generation. No action is required on your part here.
• There are hidden test cases which are not visible when you submit. When we release grades, you will see your autograded scores (with both public and hidden tests) and written scores on Gradescope under two separate assignments.

Figure 2.5: Example of a student submission cell with Otter.

2.5 Writing Tests

Tests follow the jassign format [24]. Developed by John DeNero at UC Berkeley, jassign is a package used for the purpose of authoring and distributing Jupyter notebook assignments. Otter Grader also has its own test format, but backwards compatibility with jassign allowed us to transition seamlessly between Pandas Grader and Otter Grader.

2.6 Assignment Metadata

For the first cell of the notebook, we use the following metadata. This cell will get removed for the student version of the assignment.

BEGIN ASSIGNMENT
files:
 - file1
 - file2
generate:
 pdfs:
 course_id: xxxxxx
 assignment_id: yyyyyy
 show_hidden: true
requirements: requirements.txt
overwrite_requirements: true
run_tests: false

In the rest of this section, we describe these flags in more detail.
CHAPTER 2. JUPYTER NOTEBOOK ASSIGNMENTS

Figure 2.6: An example question following the jassign format.

- **files**: This is a list of supporting files required for the assignment. All file paths should go from the assignment notebook directory.

- **course_id** and **assignment_id**: These come from the Gradescope URL of the PDF assignment. The first set of numbers is the course_id, and the second set of numbers is the assignment_id.

- **show_hidden**: Setting this to true will make it so that results for hidden tests will be released to students after grades are published on Gradescope.

- **requirements**: This should correspond to the requirements.txt file for the Gradescope autograding container. The path is relative to the notebook directory.

- **overwrite_requirements**: Setting this to true will replace the default requirements.txt file given by Otter.

- **run_tests**: We set this to false so that all tests are not run when building the assignment.
2.7 Building Assignments

We create a Gradescope autograder assignment for every assignment, and we create a Gradescope PDF assignment for each assignment that requires PDF generation. To generate the autograder and student versions of an assignment, we run the `otter assign` command after running all of the cells of the assignment notebook. For assignments that require PDF generation, this step requires authentication with a Gradescope account so that Otter can generate a token to upload to the Gradescope PDF assignment. After generating the autograder and student versions of an assignment, we test the assignment on DataHub with the following the steps:

- We make sure that PDF generation works and that the generated PDF includes all questions that need to be manually graded.
- We run all tests on the autograder version of the notebook to check that they all pass.
- We ensure that the student version of the notebook does not include any solutions or hidden tests.

After building the assignment, we download the `autograder.zip` file generated by Otter and upload the file to the corresponding programming assignment on Gradescope. Then, we make sure that the autograder version of the assignment passes all the tests on Gradescope.

2.8 Outcomes

A benefit of Otter is that it allows students to see their scores for public tests shortly after they submit an assignment. Previously, students had to wait weeks and sometimes months before they could see their grades for an assignment. Under the old system, students would run a cell that submits their assignment to okpy or nbgrader, but this process would not grade their assignment.

Another benefit of the Otter integration with Gradescope is that students submit all assignments and see all of their grades on Gradescope, removing the need to look at multiple platforms to see their grades. Previously, we had to compile grades on both okpy and Gradescope, which led to a lot of overhead with merging grades between the two sources. After our move to Otter Grader, students often commented that they appreciated seeing all of their grades in one location.

On the staff side, providing prompt feedback has reduced the autograding overhead, and we have to deal with much fewer autograder regrade requests as a result. We are also able to find and fix autograder bugs earlier in the assignment development process. Furthermore, we believe that Otter is much easier to learn and use compared to our old autograding systems. We do not feel like there is a large learning gap with Otter because many members of our course staff were able to learn the intricacies of Otter without many issues.
Unfortunately, Gradescope does not currently provide an easy way to generate overall grades using grades from individual assignments. We would recommend exploring Total Course Points [43] as a potential solution to this problem; this is what UC Berkeley’s CS 61C: Great Ideas in Computer Architecture (Machine Structures) uses for reporting overall grades. As an alternative solution, many other Berkeley computer science courses generate a PDF grade report describing the overall grade breakdown for each individual student on Gradescope.
Chapter 3

Teaching Data Systems Courses

3.1 Introduction

Teaching data systems courses such as CS 186 (Introduction to Database Systems) and CS 194-35/Info 290T-2 (Data Engineering) to hundreds of students requires scalable infrastructure to support each individual student without causing too much of a burden to instructors. Developing such infrastructure takes a lot of time and is sometimes not worth the effort for smaller courses. For larger courses, autograders are often used to handle hundreds of student submissions at the same time so that instructors do not have to look at each submission individually. For data systems courses in particular, assignments require students to use many different types of programming languages and tools, each of which requires its own unique autograder.

Recent iterations of CS 186 contain assignments in three different programming languages: SQL, Java, and the MongoDB Query Language (MQL) [34]. There is one project in SQL and one project in MQL which serve to give students practice with querying data in those languages. In addition, the course contains a larger Java project, which is split up into four distinct projects. In these four projects, the student is required to implement parts of a relational database management system (i.e. B+ Trees, Joins and Query Optimization, Concurrency, and Recovery).

3.2 edX to Gradescope

Prior to and including the Spring 2020 semester, lecture content for CS W186 (the online version of CS 186) was delivered via edX [12], a massive open online course (MOOC) provider. Although an autograder system was developed to support the course projects on edX, exams (whether in person or online) needed to appear on Gradescope, so students had to look at both edX and Gradescope for course grades. In the Fall 2020 and Spring 2021 semesters, both the lecture content and the autograder was transferred to Gradescope, ensuring that all graded assignments appeared on Gradescope instead of being split across multiple platforms.
This in turn made Gradescope the single source of truth for all course grades. If they wanted, an instructor could decide to use edX for lecture content and Gradescope for grading infrastructure instead of using Gradescope for both. In other words, the same sustainable grading infrastructure could be used regardless of which platform was used for lecture content.

Before CS 186 made the transition from edX to Gradescope, several other UC Berkeley courses had made the same transition, including but not limited to CS 61C (Machine Structures), CS 169 (Software Engineering), and CS 188 (Introduction to Artificial Intelligence). For CS 61C and CS 188 respectively, Stephan Kaminsky and Aditya Baradwaj have developed a script that converts from edX’s online assignment format to Gradescope’s online assignment format [13].

Figure 3.1: A module from the edX version of CS W186.
Java Autograders on Gradescope

Currently, the CS 186 course staff uses GitHub Classroom to distribute projects to students, and students submit their projects to Gradescope via GitHub. The autograder for Java assignments is based on the java-mvn [18] autograder sample from Gradescope. As such, it uses the jh61b [26] library developed by Josh Hug for CS 61B (Data Structures) at UC Berkeley. This library uses a JUnit Listener framework to run user-annotated JUnit test cases and to output results in the format required for Gradescope. A popular alternative to jh61b is jgrade [25].
The custom CS 186 Gradescope autograder provides the following features on top of the java-mvn autograder sample:

- Post-processing of results to show students whether their code successfully compiled and whether their submission contains all of the necessary files.

- Structure that allows the course staff to pick which project to run the autograder on by changing a single line of code.

- Custom configuration of overall point values and automatic calculation of how many points each test case is worth using the total number of test cases.

Future work on the autograder involves the following:

- A deeper dive into security. Prior work has shown that students can hack the autograder by exploiting the structure of the Gradescope autograder system [19] [45].

- Additional functionality for rate limiting student submissions and for pulling the autograder directly from a private GitHub repository.
• Allowing the autograder to run a strict subset of the test cases corresponding to a class
 (instead of all test cases).

Feedback

Students found CS 186 more organized following the transition from edX to Gradescope. On a mid-semester survey, students were asked how organized they felt the course was relative to other Berkeley upper division courses on a scale from 1 (least organized) to 5 (most organized). For the Spring 2020 semester (pre-Gradescope transition), the average organization rating was 3.9057 with standard deviation of 1.0062. On the other hand, the average organization rating was 4.0482 with a standard deviation of 0.9954 for the Fall 2020 semester (post-Gradescope transition).

Course staff also found the Gradescope autograder easier to understand because of the excellent documentation that Gradescope provides for its autograding system. Gradescope also abstracts away the complexity of Docker containers, so users do not have to have intricate knowledge of Docker to build and maintain an autograder.

3.3 Data Engineering Assignments

The assignments for the Spring 2021 offering of Data Engineering consisted of 5 projects and 5 multivitamins. Multivitamins were short written assignments designed to keep students on schedule and to check for basic understanding of concepts from lecture while projects were longer assignments that gave students hands-on practice with the data engineering tools they were learning in lecture. For the first 4 projects, we required students to use DataHub similar to Data 100. For the fifth and final project, we allowed students to work either locally or on DataHub.

SQL

The first three projects used the ipython-sql [11] package in conjunction with a PostgreSQL database server on DataHub. These projects differed from traditional SQL assignments because students needed to perform data manipulation tasks using SQL instead of simply querying data from the database. As such, students needed a more intricate understanding of SQL, and they had to learn more SQL constructs than a typical database course would teach.

The first project required students to use SQL to process data from the IMDB database [22]. Although there were lots of simple query-based tasks in this project, we also included multiple questions that required the use of more sophisticated SQL constructs such as REGEXP_REPLACE. Although most of our students had prior experience with SQL, the project helped serve as an introductory project for those who did not.
In the second project, students explored how database management systems optimize query execution and how users can further tune the performance of their queries. The project worked with Lahman’s Baseball Database [29], an open source collection of baseball statistics from 1871 to 2020 with batting statistics, team statistics, managerial records, Hall of Fame records, etc. Students used the `EXPLAIN ANALYZE` command to analyze query performance, and they came up with ways to improve their queries using the information outputted from the command.

The third project served as a successor to the first project. In this project, we used one month of data from sensors in buildings at UC Berkeley. Notably, this dataset was extremely messy, and students needed to clean the dataset using techniques such as outlier detection, entity resolution, and linear interpolation in SQL.

Question 2bi:

We want the number part of the info column and the latest (maximum) earnings value for a particular film. Clean info for the gross earnings information and extract the dollar amount as an float. The resulting table should have columns for the gross as a float, movie_id, and title.

We are going to need this table later on when calculating the movie’s profit so let’s save the query as a view called movie_gross.

To take a look at our cleaned data, display the title for the top 10 highest grossing films along with their movie_id and gross.

- **HINT:** We extracted the rating above just like how we want to isolate the dollar amount as a string (There are multiple ways of doing this).
- **HINT:** Look at the `regexp_replace` function and the 'g' tag

```sql
In [31]: %sql result_2bi <<
DROP VIEW IF EXISTS movie_gross;
CREATE VIEW movie_gross AS
...
```

```python
In [ ]: grader.check("q2bi")
```

Figure 3.4: An example question from Project 1 involving data manipulation.

MongoDB

Our fourth project went over semi-structured JSON data with a focus on MongoDB, a database system that stores data in a construct known as documents. We used the Yelp Academic Dataset [48], which contains a dataset of businesses, reviews, and users. Our goal with this project was to teach students what MongoDB can (and cannot) do with respect to its documents and to compare and contrast MongoDB with other data representation formats such as the relational model and the DataFrame model. Similar to the first three projects, we included questions that involved data manipulation in MongoDB in addition to simpler querying tasks.
Data Build Tool

Our fifth and final project used the data build tool (dbt) [10]. This was a fairly open-ended project that allowed students to have the flexibility of exploring their own datasets and to build their own data pipelines.

Grading

Similar to Data 100, we used Otter Grader to autograde the first four projects. The fifth project was graded manually by the course staff. Notably, we could not follow the same steps as described in the previous chapter because the DataHub PostgreSQL server and MongoDB server were not present in the Gradescope autograder environment. Instead of attempting to replicate these servers on Gradescope, we resorted to an alternative method that involved converting SQL relations to pandas DataFrames, which would then be written to CSV files. Students would submit these CSV files to Gradescope, and our tests would use pandas to read and grade these CSV files. This was not an ideal solution because students’ SQL code would not be run on the autograder; however, it allowed us to write local tests without worrying about any post-processing overhead on the autograder end. We also needed to tell students to use \texttt{ORDER BY} and \texttt{LIMIT} in their SQL queries so that their output would be small and deterministic. For the MongoDB project, we also resorted to \texttt{pickle} for serialization because some of the MongoDB objects could not be easily converted to CSV files. For future work, we definitely recommend finding a way to replicate the database servers on Gradescope with the least amount of overhead so that student queries could be run on different relations in the autograder environment.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{3.5.png}
\caption{An example of the grading workflow for a question on Project 3.}
\end{figure}
Chapter 4

Tools for Learning Data Visualization

4.1 Introduction

Data visualization is one of the most essential elements in data scientist’s toolkit, and it is a topic that is covered extensively in many data science courses. In recent offerings of Data 100, two entire lectures have been devoted to data visualization principles and tools. Although the course primarily uses Python tools such as matplotlib and seaborn to generate data visualizations, it alludes to other popular alternatives such as plotly and altair.

Lux [31] is a data visualization project which is implemented as a Jupyter notebook extension; the extension allows users to quickly visualize pandas DataFrames by graphing interesting distributions, correlations, and trends. In response to feedback from previous users who stated that they wanted greater control over the visualization process, we seek to find ways to generate code that users are then able to use to modify existing Lux visualizations.

Our proposed solution is a to_code function for Lux visualization objects. Although Lux currently has a to_Altair function to retrieve the altair code corresponding to a visualization, this code is very specific to a certain visualization, and there is not a lot of room for customization. We aim to produce generated code that would allow users to make modifications from the DataFrame level, to adjust values presented in the visualization, and to customize cosmetic features such as font, color, axes labels, etc.

By providing accompanying documentation to our generated code, we also hope that our function will help enable students to learn data visualization packages for the first time. Generally, students find that matplotlib and seaborn are easier to learn compared to the plotly and altair; however, all four packages have their own intricacies and nuances. Experienced users of these packages can easily write code to generate their desired visualizations; however, novice users often have trouble writing code from scratch. With our function, novice users can first understand how different parts of code can affect the outputted visualization before generating entire visualizations without any skeleton code.
4.2 Related Work

Prior need finding work has shown that programming languages are essential in creating abstractions for the data visualization process [32]. One participant in a prior study stated the following:

Once you have made a visualization [using programming tools], if you want to tweak things about it, you can. Just put what you do into a script, add some parameters, and you could repeatedly get the same visualization with variations... It will generate the thing automatically, you don’t have to create a whole picture by hand again.

Other need finding has shown that users are frustrated with data visualization tools in computational notebook environments [4]. Users often need to change small bits of code to tailor visualizations to their needs, and data scientists frequently export code to redo exploratory data analysis outside of their computational notebook. Lux provides a way for users to export visualizations (with the “download” button), and our proposed tool provides flexibility for users to tweak code to generate their desired visualizations.

There has also been a lot of ongoing research to make data visualization tools more accessible to users. B2 [46] is a data visualization tool developed by Wu, Hellerstein, and Satyanarayan at UC Berkeley and MIT CSAIL. The tool attempts to bridge the gap between code and interactive data visualization in computational notebooks by providing data visualizations corresponding to pandas DataFrames. While B2 is extremely instructional with an interactive widget directing users to which parts of code to modify in order to change
features of a graph, it is too complex of a system to integrate with Lux, which aims to let users visualize many relationships at once.

Penrose [47] provides a domain-specific language (DSL) for visualization based on mathematical concepts. In Penrose, visual representations are user-defined in a constraint-based specification language, and diagrams are generated automatically via constrained numerical optimization. Visualizations in Penrose are more abstract in nature, so they are not very pertinent to Lux. However, we found the DSL useful for the purpose of describing pertinent aspects of mathematical objects.

Pylustrator is a Python package that allows users to create figures for publications in a reproducible manner [15]. The package provides an interactive interface that allows users to tweak visualizations, and it shows users the code corresponding to their changes. The plot editor in MATLAB also behaves in a similar way to Pylustrator as it provides a “Show-M-Code” function that gives users the code corresponding to the visualization they generated in the plot editor. Both of these tools are limited in scope and do not work for the `altair` visualization package.

We were also influenced by the nbgather project [20], which extracts the code that generates a visualization in a Jupyter notebook. In this project, Head, et al. use program slicing to find the appropriate notebook cells from a Jupyter notebook that may be executed out of order. They benefit from the execution order which helps generate an execution log from which a parse tree can be constructed. This use case contrasts from ours as the code we are trying to generate exists across a multitude of files as opposed to an execution log of a Jupyter notebook. It would be difficult for us to construct a similar log and to determine which lines should be included in a slice.
4.3 User Studies

We made a prototype of our suggested `to_code` function using program tracing techniques. Then, we tested our prototype of our `to_code` function on four users to determine the usefulness of the function. All four participants were familiar with `pandas` and `matplotlib`, but they had no prior experience with `Lux` and `altair`.

We prepared a short tutorial notebook to introduce our participants to some of Lux’s features and its primary use case as a widget that provides potential data visualizations associated with pandas DataFrames. In addition, the tutorial describes how to create desired visualizations on-demand using the Lux Vis object, and it introduces the user to our `to_code` function for the purpose of tweaking existing visualizations.

For all our user studies, we chose to use MyBinder [3], which turns Git repositories into interactive Jupyter notebooks by building a Docker image of the corresponding repository. MyBinder helped ensure that all participants in our user study had access to the exact same environment while they were interacting with our prepared Jupyter notebook.

After completing the tutorial, we told our participants to complete two short tasks, which consisted of changing the figure size (Task 1) and y-axis label (Task 2) of a plot. Owing to prior work [28], we alternated between which task was given first among the participants in our user study. Users were allowed to use whatever resources they wanted for both tasks except for the `to_code` function, which was given to the user after they completed one of the two tasks.

For evaluative purposes, we timed how long users took to complete each of the two tasks with a maximum of 5 minutes per task, and we asked users to explain their thought process as they worked through the tasks [21]. At the end of the user study, participants completed
a short survey, which contained the following questions:

- How reliable was the generated code (on a scale of 1 to 4)?
- How trustworthy was the generated code (on a scale of 1 to 4)?
- Would this feature of providing the code for a visualization created using Lux fit well into your workflow with data visualization in Jupyter notebooks? (Yes or No)
- Overall, is this feature of providing the code for a visualization created using Lux useful for you? (Yes or No)

4.4 Conclusions from User Studies

Before obtaining access to the to_code function, none of our participants completed the first task within the allocated 5 minutes. After our intervention, participants finished the second task in 1 minute and 43 seconds on average. For the first task, users often referred to official documentation and examples through Google and Stack Overflow. Corroborating with prior work [50], two of our four users tried to find similarities between the APIs of matplotlib and altair by attempting to recreate the altair plot in matplotlib.
Figure 4.5: Example output from our suggested `to_code` function.

<table>
<thead>
<tr>
<th>Table 4.1: User completion times for tasks. DNF means that the user did not finish in the allotted 5 minute time frame. 1:20 indicates 1 minute and 20 seconds. The first task was given before our intervention, and the second task was given after our intervention.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Task Completion Time</td>
</tr>
<tr>
<td>DNF</td>
</tr>
<tr>
<td>DNF</td>
</tr>
<tr>
<td>DNF</td>
</tr>
<tr>
<td>DNF</td>
</tr>
</tbody>
</table>

All four participants stated that our intervention would work well with their current data visualization workflow in Jupyter notebooks while three of the four users claimed that the feature of providing code for a visualization would be useful for them. Although users generally found that the generated code was reliable and trustworthy, they were not able to completely parse the large amount of unfamiliar code, and they wanted to know the purpose of each line of code. Nevertheless, all of our participants successfully tweaked `altair` code despite having no prior experience with the package.
Table 4.2: Reliability and trustworthiness of generated code on a scale from 1 to 4.

<table>
<thead>
<tr>
<th>Reliability</th>
<th>Trustworthiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

4.5 Future Work

Based on user feedback, we would like to find ways to provide accompanying documentation for any generated code. We would also like to implement some sort of accuracy testing for our function so that we could test that the generated code correctly produces all of the visualizations produced by Lux. The concrete implementation of our suggested to_code function beyond our initial prototype would require additional work in program tracing, and more work would be needed to extend Lux to other plotting libraries such as matplotlib. Last but not least, we hope to incorporate this tool in an educational setting in the future to see if it helps students learn to program with an unfamiliar data visualization package.
Chapter 5

Conclusion

In this work, we examined the pedagogy and infrastructure required to support three upper-division data science courses at UC Berkeley. We discussed how Berkeley data science courses use Otter Grader to distribute and autograde Jupyter-based assignments, and we described how courses use the jh61b library in conjunction with Gradescope to autograde Java-based assignments. For a new data engineering course, we highlighted five projects that emphasize data manipulation tasks over data querying tasks, and for the Lux data visualization widget, we conducted a user study to determine the usefulness of a to_code function that allows users to view, edit, and extend existing data visualizations. We hope that this work serves as the foundation for future work that augments learning in data science courses.
Bibliography

