
Scalable Machine Learning Algorithms for Biological

Sequence Data

Jeffrey Chan

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-108

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-108.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Scalable Machine Learning Algorithms for Biological Sequence Data

by

Jeffrey Chan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Yun S. Song, Chair
Professor Ian Holmes

Professor Jennifer Listgarten

Spring 2021

Scalable Machine Learning Algorithms for Biological Sequence Data

Copyright 2021
by

Jeffrey Chan

1

Abstract

Scalable Machine Learning Algorithms for Biological Sequence Data

by

Jeffrey Chan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Yun S. Song, Chair

Recent advances in sequencing and synthesis technologies have sparked extraordinary growth
in large-scale biological experimentation and data collection. This explosive growth necessi-
tates the development of scalable yet accurate methods to investigate increasingly complex
biological questions. Machine learning has become a vital tool for addressing the needs
of computational biology blending complex statistical models with efficient computation to
uncover the underpinnings of biology.

In this dissertation, I develop three novel machine learning algorithms tailored towards bi-
ological sequence data to aid in answering such biological questions. The first method is a
general-purpose statistical framework for inference of population genetic parameters. Pre-
vious methods focused on developing model approximation methods for a restricted class
of models or reducing datasets to a set of hand-crafted summary statistics and comparing
them against simulated data. Our framework uses a exchangeable neural network which re-
spects the permutation-invariant symmetries of the data to learn the mapping from simulated
datasets to the population genetic parameters of interest.

The second method extends the ideas from the first method to a more challenging setting
where segmentation of the genotypes is necessary to determine tracts of archaic admixture.
In this setting, the data are permutation-equivariant requiring a neural network architecture
that results in accurate segmentation of archaic admixture tracts.

Finally, the third method focuses on the problem of search in protein engineering to discover
high fitness protein sequences of interest. Standard bandit optimization methods often focus
on experimental feedback that is purely sequential. In protein engineering, advances in high-
throughput synthesis and experimentation can often lead to large batches of size as large
as 105 where the size of the batch can often be much larger than the number of rounds of
experimentation. We propose a family of parallel contextual linear bandit algorithms and
analyze their regret bounds.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

1 Introduction 1
1.1 Background . 1
1.2 Overview . 2

2 Exchangeable Neural Networks 3
2.1 Introduction . 3
2.2 Related Work . 5
2.3 Methods . 6
2.4 Statistical Properties . 9
2.5 Empirical Study: Recombination Hotspot Testing 11
2.6 Discussion . 17
2.7 Proofs . 18

3 Archaic Admixture Detection 19
3.1 Introduction . 19
3.2 Structured Coalescent with Recombination 20
3.3 Method . 21
3.4 Experiments . 24
3.5 Discussion . 28

4 Parallel Linear Bandits 30
4.1 Introduction . 30
4.2 Parallelizing Linear Bandits . 35
4.3 Stable Covariances . 41
4.4 Parallel Regret Lower Bounds . 48
4.5 Experiments . 50
4.6 Conclusion . 56
4.7 Additional Experimental Details . 56

iii

4.8 Proofs . 59

Bibliography 83

iv

List of Figures

2.1 A cartoon schematic of the exchangeable architecture for population genetics. . 10
2.2 Graphical model of recombination hotspot inference: θ is the mutation rate, η

the population size function, q the relative proportion of the sample possessing
each mutation, ρ−w the recombination rate function outside of the window, ρw
the recombination rate function inside the window, h whether the window is a
hotspot, X−w the population genetic data outside of the window, and Xw the
data inside the window. The dashed line signifies that, conditioned on q, η is
weakly dependent on Xw for suitably small w, and ρ−w and ρw are only weakly
dependent on Xw and X−w. 13

2.3 (Left)Accuracy comparison between exchangeable vs nonexchangeable architec-
tures. (Right)Performance of changing the number of individuals at test time for
varying training sample sizes. 14

2.4 (Left)Comparison between the test cross entropy of a fixed training set of size
10000 and simulation-on-the-fly. (Right)Posterior calibration. The black dashed
line is a perfectly calibrated curve. The red and purple lines are for simulation-on-
the-fly after 20k and 60k iterations; the blue and green lines for a fixed training
set of 10k points, for 20k and 60k iterations. 15

2.5 (Left) ROC curve in the CEU and YRI setting for the deep learning and LDhot

method. The black line represents a random classifier. (Middle) Windows of the
HapMap recombination map drawn based on whether they matched up with our
hotspot definition. The blue and green line coincide almost exactly. (Right) The
inferred posteriors for the continuous case. The circles represent the mean of the
posterior and the bars represent the 95% credible interval. The green line shows
when the true heat is equal to the inferred heat. 16

3.1 (Left) An example of the coalescent with ghost admixture. (Top) The permutation-
equivariant network for classification. (Bottom) The permutation-equivariant
network for segmentation. 23

v

3.2 Simulation analysis of the model. Top left: The histogram of physical distance
of introgression tracts. Top right: The histogram of number of SNPs within a
introgression tract. Bottom left: Conditioned on an individual having an intro-
gression tract in a 50 SNP window (default width of the sliding genotype array
window), the proportion of the window that is introgressed. Bottom right: Num-
ber of individuals with an introgressed tract in a 50 SNP window conditioned on
at least one individual being admixed. 25

3.3 Comparison between a variety of symmetric functions for the permutation equiv-
ariant network. The four functions used are top-25 (red), top-25 concatenated
with bottom-25 (purple), max (green), and sum (blue). 26

3.4 Comparison of our method (green) against that of the CRF method (blue). The
dashed line is the precision recall of a random classifier. This method was eval-
uated on a single ancient genome and 20 individuals in the outgroup for our
method and 100 individuals in the outgroup for the CRF. 27

3.5 Comparison on the reference-free classification task of our permutation-equivariant
procedure (blue) and a single haplotype procedure which does not jointly classify
individuals in a population (green) and S∗ (red). 28

3.6 Precision-recall curves on the reference-free segmentation task of our permutation-
equivariant procedure with (green) and without(blue) post-hoc smoothing of up
to 200 SNPs. 29

4.1 Fixed context setting. From left to right: Regret of LinUCB, Lazy LinUCB,
LinTS, and Lazy LinTS for varying values of P . The mean regret is plotted
across 30 runs with the standard deviation as the shaded region. Here d = 100,
m = 104. 51

4.2 Changing context setting. From left to right: Regret of LinUCB, Lazy LinUCB,
LinTS, and Lazy LinTS for varying values of P . The mean regret is plotted across
30 runs with the standard deviation as the shaded region. Here d = 100, m = 104. 52

4.3 Doubling round coefficients. From left to right: doubling round coefficients of
LinUCB, Lazy LinUCB, LinTS, and Lazy LinTS. The mean coefficient is plotted
across 30 runs with the standard deviation as the shaded region and d = 20,
m = 103, and P = 100. 52

4.4 Top Left: The histogram of fitness values for the RandomNN dataset. Top right:
The parallel regret of the purely sequential setting for 5000 queries with a noise
standard deviation of 0.5. Bottom Left: The parallel regret for P = 10. Bottom
Right: The parallel regret for P = 100. The mean regret and standard deviation
are plotted as the solid line and shaded region in all plots. 53

4.5 Leftmost: Fitness Histogram of Landscape. Left to right: Regret of all algorithms
for P = 1, 10, and 30, respectively. Here the best superconducting material (by
temperature) as determined by the algorithm at the time is displayed. Curves
are also smoothed by a moving-average over a window of size 30 for clarity. . . 54

vi

4.6 TFBinding best arm with linear features. Leftmost: The fitness distribution of
the dataset. From left to right: The best smoothed binding affinity for each
round with error bars indicating standard deviation with P = 1, 10, and 100,
respectively. 55

4.7 TFBinding parallel regret with linear features. From left to right: P = 1, P = 10,
and P = 100. 57

4.8 RandomNN with Linear features. From left to right: P = 1, P = 10, and
P = 100. 57

4.9 TFBinding best arm with ReLU features. From left to right: P = 1, P = 10,
and P = 100. 58

4.10 TFBinding best arm with quadratic features. From left to right: P = 1, P = 10,
and P = 100. 58

vii

Acknowledgments

First and foremost, I would like to express my sincere and utmost gratitude for my advisor
Yun Song. His technical expertise combined with his “kid in a candy store” curiosity served
as a great role model from the first day I stepped into his office during undergrad. With
his support and encouragement, I was provided the freedom to explore my interests and
forge my own path. I often sought his guidance on navigating whichever research obstacle
lay before me with the knowledge and comfort that he works tirelessly for his students and
always has their best interests at heart.

I have been fortunate to have many outstanding collaborators: Sara Mathieson, Jeff
Spence, Valerio Perrone, Paul Jenkins, Aldo Pacchiano, and Nilesh Tripuraneni. Each of
them were a joy to work with and constantly taught me new things. In addition, I am
extremely grateful for my labmates throughout the years: Alan Aw, Sanjit Batra, Gonzalo
Benegas, Nick Bhattacharya, Khanh Dao Duc, Yun Deng, Dan Erdmann-Pham, Jonathan
Fischer, Geno Guerra, Ethan Jewett, Jack Kamm, Antoine Koehl, Joyce Liu, Shishi Luo,
Sebastian Prillo, Zvi Rosen, Jeff Spence, Jonathan Terhorst, Neil Thomas, Miaoyan Wang,
Yutong Wang, Alex Whatley, and Jane Yu. I could not have asked for a more intelligent
and kind group of people to learn from, bounce ideas with, and joke around with. Each
and everyone of them was instrumental to my graduate school experience. In particular, I
am incredibly indebted to Jeff Spence whose mentorship and friendship always gave me new
perspectives, research insights, and a warm “Hey Jeffers” greeting every morning.

I was warned early on that graduate school can be a rather isolating experience and
that it was vital for me to have a support system to share the ups and downs with. I am
fortunate enough to have an amazing group of friends at Berkeley who have always been
steady and present to support me throughout my time here. I am deeply thankful for and
indebted to Isabella Huang for welcoming me with open arms into her makeshift family of
Canadians and for making sure that above all else life always stays fun. To that crew of
friends —Isabella, Judy Shen, Samantha Huang, Ivan Lee, and Eleanor Siow —thank you for
making adventures around the Bay Area full of laughs, good food, and inexplicably fishing.
You made Berkeley feel like home for the past few years. I would also like to thank my
fellow EECS graduate student, Nilesh Tripuraneni for always being down to grab food at a
moment’s notice and reGhale me in his latest stories. I am also thankful to have met Libby
Kao who through her incredible kindness, empathy, and sense of humor manages to make
even the hardest days feel easier. Though I created a great support system at Berkeley,
longtime friends from high school, summer camps, and MIT reminded me of all of the facets
of life outside of academia regardless of whether they were just across the Bay or halfway
around the world. For that, I thank Jean Shiao, Kevin Tian, Diana Cai, Fan-Hal Koung,
Joseph Kim, Grace Shin, Riana LoBu, Carmen Ng, Jorge Perez, Alex Lesman, Sidhant Pai,
Alex Jaffe, and Robert Brik. Each of whom offered their own unique combination of laughs,
support, and counsel.

Lastly, I thank my parents who provided me with the financial stability and relentless
encouragement to pursue my career and intellectual interests. Their all-encompassing com-

viii

mitment to my education and learning ranged from driving me to classes and extracurriculars
to the more unorthodox quizzing me on a barrage of math puzzles when they just wanted
me to stop bickering with my sister as a child. Their support and devotion made this all
possible and to them I dedicate this dissertation.

1

Chapter 1

Introduction

1.1 Background

Advances in sequencing technologies and synthetic biology experimental techniques have
led to an explosion of biological sequence data over the last decade allowing biologists to
investigate scientific questions with much greater resolution than was previously possible. In
parallel, tremendous progress in machine learning and high-performance computing over the
past decade has paved the way for complex analyses of large biological sequence datasets to
assist in answering these scientific questions.

Blending together out-of-the-box machine learning techniques with modern datasets can
often lead to fruitful results [6]. In these settings, successes in applications such as image
processing and natural language processing can be immediately translated to questions in
biology. This has led to a rush of progress in longstanding computational biology problems.
However, occasionally the biological problem setting of interest requires tailor-made method-
ological approaches wielding the insights and ideas from the machine learning community
while wrestling often messy biological constraints. Here we focus on problem settings in two
fields that require such tailor-made approaches: population genetics and protein engineering.

Realistic population genetic models typically underpinned by combinatorial stochastic
processes yield a simple generative process, but often lead to intractable exact inference
outside of a small subset of the model class. One approach taken by population geneticists
is to make approximations that ease inference while still capturing the complexities of the
data [80, 58]. However, this is rather time consuming and not necessarily applicable to all
settings of interest leaving the opportunity ripe to combine ideas from Bayesian inference
and machine learning towards a generalizable black-box approach.

The field of protein engineering centers on a search problem where one iteratively per-
forms a set of experiments to determine the fitness of a particular batch of proteins seeking
a diverse set of high fitness proteins. This can be naturally cast as an iterative decision mak-
ing problem. While standard iterative decision making algorithms are sequential, advances
in synthetic biology allowing for parallel experimentation require batch iterative decision

CHAPTER 1. INTRODUCTION 2

making algorithms.

1.2 Overview

In this dissertation, I devise machine learning methods to address three biological problems
where biological constraints necessitated the development of new methods.

In Chapter 2, I present a framework for population genetic inference that is particularly
useful for complex models not amenable to tractable inference using the standard statistical
toolkit. In such models, the computation of the likelihood even pointwise can be intractable.
Instead, I take the approach of using population genetics simulators to generate data and
train a deep neural network to learn the mapping from observed data to posteriors over
population genetic parameters. In particular, we develop an architecture that respects the
permutation invariant structure of population genetic data to learn this mapping. This
framework can be applied in a black-box fashion across a variety of simulation-based tasks,
both within and outside biology. We demonstrate the power of our approach on the recom-
bination hotspot testing problem, outperforming the state-of-the-art.

In Chapter 3, I tackle the problem of identifying genetic variants in the human genome
derived from interbreeding with “ghost” (unknown) archaic hominids which sheds light on
how humans adapted to past environmental changes. Previous methods lack the statistical
power to confidently infer the presence of archaic admixture. I develop a flexible reference-
free Bayesian inference method which can elegantly incorporate any known population ge-
netic information while remaining flexible and robust to uncertainty. Our method proposes
a permutation-equivariant neural network tailored towards population genetic data and ap-
plies it both to classification and to segmentation (also known as chromosome painting) of
archaic DNA. We significantly outperform the state-of-the-art for reference-free classifica-
tion and segmentation of archaic DNA and comparable performance with existing reference-
dependent methods.

In Chapter 4, I present a new class of linear bandit algorithms along with accompanying
analysis for the problem of exploration in protein engineering applications. Standard bandit
algorithms are typically designed for sequential decision-making under uncertainty. However,
in protein engineering vast levels of parallelism can be performed with as many as 104 protein
sequences being evaluated at once. I present a family of parallelized linear bandit algorithms
applicable to the problem of protein engineering. I then provide analyses to understand how
underlying parameters scale as parallelism and time are varied. Finally, I demonstrate the
efficacy of our suite of algorithms on a variety of synthetic and real world datasets.

3

Chapter 2

Exchangable Neural Networks for
Population Genetic Inference

This is joint work with Valerio Perrone, Jeffrey P. Spence, Paul A. Jenkins, Sara Mathieson,
and Yun S. Song. Ben Graham and Yuval Simons provided helpful discussions. This was
first published in NeurIPS [21].

2.1 Introduction

Statistical inference in population genetics aims to quantify the evolutionary events and pa-
rameters that led to the genetic diversity we observe today. Population genetic models are
typically based on the coalescent [51], a stochastic process describing the distribution over
genealogies of a random exchangeable set of DNA sequences from a large population. In-
ference in such complex models is challenging. First, standard coalescent-based likelihoods
require integrating over a large set of correlated, high-dimensional combinatorial objects,
rendering classical inference techniques inapplicable. Instead, likelihoods are implicitly de-
fined via scientific simulators (i.e., generative models), which draw a sample of correlated
trees and then model mutation as Poisson point processes on the sampled trees to generate
sequences at the leaves. Second, inference demands careful treatment of the exchangeable
structure of the data (a set of sequences), as disregarding it leads to an exponential increase
in the already high-dimensional state space.

Current likelihood-free methods in population genetics leverage scientific simulators to
perform inference, handling the exchangeable-structured data by reducing it to a suite of
low-dimensional, permutation-invariant summary statistics [13, 79]. However, these hand-
engineered statistics typically are not statistically sufficient for the parameter of interest.
Instead, they are often based on the intuition of the user, need to be modified for each new
task, and are not amenable to hyperparameter optimization strategies since the quality of
the approximation is unknown.

The goal of this work is to develop a general-purpose inference framework for raw pop-

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 4

ulation genetic data that is not only likelihood-free, but also summary statistic-free. We
achieve this by designing a neural network that exploits data exchangeability to learn func-
tions that accurately approximate the posterior. While deep learning offers the possibility
to work directly with genomic sequence data, poorly calibrated posteriors have limited its
adoption in scientific disciplines [33]. We overcome this challenge with a training paradigm
that leverages scientific simulators and repeatedly draws fresh samples at each training step.
We show that this yields calibrated posteriors and argue that, under a likelihood-free in-
ference setting, deep learning coupled with this ‘simulation-on-the-fly’ training has many
advantages over the more commonly used Approximate Bayesian Computation (ABC) [13,
66]. To our knowledge, this is the first method that handles the raw exchangeable data in a
likelihood-free context.

As a concrete example, we focus on the problems of recombination hotspot testing and
estimation. Recombination is a biological process of fundamental importance, in which the
reciprocal exchange of DNA during cell division creates new child gamete chromosomes that
are a mosaic of the two parental chromosomes. From an evolutionary point of view, an
important consequence is that different positions on the genome have different genealogical
histories. Experiments have shown that many species exhibit recombination hotspots, i.e.,
short segments of the genome with high recombination rates [64] leading to extremely decor-
related genealogies between the flanking regions of the hotspot. The task of recombination
hotspot testing is to predict the location of recombination hotspots given genetic polymor-
phism data. Accurately localizing recombination hotspots would illuminate the biological
mechanism that underlies recombination, and could help geneticists map the mutations caus-
ing genetic diseases [38]. We demonstrate through experiments that our proposed framework
outperforms the state-of-the-art on the hotspot detection problem.

Our main contributions are:

• A novel exchangeable neural network that respects permutation invariance and maps
from the data to the posterior distribution over the parameter of interest.

• A simulation-on-the-fly training paradigm, which leverages scientific simulators to
achieve calibrated posteriors.

• A general-purpose likelihood-free Bayesian inference method that combines the ex-
changeable neural network and simulation-on-the-fly training paradigm to both dis-
crete and continuous settings. Our method can be applied to many population genetic
settings by making straightforward modifications to the simulator and the prior, includ-
ing demographic model selection, archaic admixture detection, and classifying modes
of natural selection.

• An application to a single-population model for recombination hotspot testing and
estimation, outperforming the model-based state-of-the-art, LDhot. Our approach can
be seamlessly extended to more complex model classes, unlike LDhot and other model-
based methods.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 5

Our software package defiNETti is publicly available at https://github.com/popgenmethods/
defiNETti.

2.2 Related Work

Likelihood-free methods like ABC have been widely used in population genetics [13, 66,
17, 97, 84]. In ABC the parameter of interest is simulated from its prior distribution, and
data are subsequently simulated from the generative model and reduced to a pre-chosen set
of summary statistics. These statistics are compared to the summary statistics of the real
data, and the simulated parameter is weighted according to the similarity of the statistics
to derive an empirical estimate of the posterior distribution. However, choosing summary
statistics for ABC is challenging because there is a trade-off between loss of sufficiency and
computational tractability. In addition, there is no direct way to evaluate the accuracy of
the approximation.

Other likelihood-free approaches have emerged from the machine learning community
and have been applied to population genetics, such as support vector machines (SVMs) [76,
63], single-layer neural networks [16], and deep learning [79]. Recently, a (non-exchangeable)
convolutional neural network method was proposed for raw population genetic data [29].
The connection between likelihood-free Bayesian inference and neural networks has also
been studied previously [43, 62]. An attractive property of these methods is that, unlike
ABC, they can be applied to multiple datasets without repeating the training process (i.e.,
amortized inference). However, current practice in population genetics collapses the data to
a set of summary statistics before passing it through the machine learning models. Therefore,
the performance still rests on the ability to laboriously hand-engineer informative statistics,
and must be repeated from scratch for each new problem setting.

The inferential accuracy and scalability of these methods can be improved by exploiting
symmetries in the input data. Permutation-invariant models have been previously studied in
machine learning for SVMs [81] and recently gained a surge of interest in the deep learning
literature. Recent work on designing architectures for exchangeable data include [69], [34],
and [98], which exploit parameter sharing to encode invariances.

We demonstrate these ideas on the discrete and continuous problems of recombination
hotspot testing and estimation, respectively. To this end, several methods have been devel-
oped (see, e.g., [27, 59, 95] for the hotspot testing problem). However, none of these are
scalable to the whole genome, with the exception of LDhot [9, 94], so we limit our compari-
son to this latter method. LDhot relies on a composite likelihood, which can be seen as an
approximate likelihood for summaries of the data. It can be computed only for a restricted
set of models (i.e., an unstructured population with piecewise constant population size), is
unable to capture dependencies beyond those summaries, and scales at least cubically with
the number of DNA sequences. The method we propose in this paper scales linearly in the
number of sequences while using raw genetic data directly.

https://github.com/popgenmethods/defiNETti
https://github.com/popgenmethods/defiNETti

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 6

LDhot details

The most widely-used technique for recombination hotspot testing is LDhot as described in
[9]. The method performs a generalized composite likelihood ratio test using the two-locus
composite likelihood based on [41] and [61]. The composite two-locus likelihood approximates
the joint likelihood of a window of SNPs w by a product of pairwise likelihoods

CL(ρ | x) =
∏

1≤|i−j|≤z

L(ρij | xij),

where Xij denotes the data restricted only to SNPs i and j, and ρij denotes the recombination
rate between those sites. Only SNPs within some distance, say z = 50, are considered.

Two-locus likelihoods are computed via an importance sampling scheme under a constant
population size (η = 1) as in [61]. The likelihood ratio test uses a null model of a constant
recombination rate and an alternative model of a differing recombination rate in the center
of the window under consideration:

Λ = −2 log

(
supρhot,ρbg CL(ρhot, ρbg | X)

supρconst CL(ρconst | X)

)
.

The two-locus likelihood can only be applied to a single population with constant popula-
tion size, constant mutation rate, and without natural selection. Furthermore, the two-locus
likelihood is an uncalibrated approximation of the true joint likelihood. In addition, [94]
and [9] performed simulation studies showing that LDhot has good power but their simu-
lation scenarios were unrealistic because its null hypothesis leads to a comparison against
a biologically unrealistic flat background rate. In order to fairly compare our likelihood-
free approach against the composite likelihood-based method in realistic human settings, we
extended the LDhot methodology to apply to a piecewise constant population sizes using
two-locus likelihoods computed by the software LDpop [46]. Unlike the method described in
[94], our implementation of LDhot uses windows defined in terms of SNPs rather than physi-
cal distance in order to measure accuracy via ROC curves, since the likelihood ratio test is a
function of number of SNPs. Note that computing the approximate two-locus likelihoods for
a grid of recombination values is at least O(n3), which could be prohibitive for large sample
sizes.

2.3 Methods

Problem Setup

Likelihood-free methods use coalescent simulators to draw parameters from the prior θ(i) ∼
π(θ) and then simulate data according to the coalescent x(i) ∼ P(x | θ(i)), where i is the index
of each simulated dataset. Each population genetic datapoint x(i) ∈ {0, 1}n×d typically takes
the form of a binary matrix, where rows correspond to individuals and columns indicate the

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 7

presence of a Single Nucleotide Polymorphism (SNP), a variable site in a DNA sequence1.
Our goal is to learn the posterior P(θ | xobs), where θ is the parameter of interest and xobs is
the observed data. For unstructured populations the order of individuals carries no informa-
tion, hence the rows are exchangeable. More concretely, given data X = (x(1), . . .x(N)) where

x(i) := (x
(i)
1 , . . . , x

(i)
n) ∼ P(x | θ(i)) and x

(i)
j ∈ {0, 1}d, we call X exchangeably-structured if,

for every i, the distribution over the rows of a single datapoint is permutation-invariant

P
(
x

(i)
1 , . . . , x

(i)
n | θ(i)

)
= P

(
x

(i)
σ(1), . . . , x

(i)
σ(n) | θ

(i)
)
,

for all permutations σ of the indices {1, . . . , n}. For inference, we propose iterating the
following algorithm.

1. Simulation-on-the-fly : Sample a fresh minibatch of θ(i) and x(i) from the prior and
coalescent simulator.

2. Exchangeable neural network : Learn the posterior P(θ(i) | x(i)) via an exchangeable
mapping with x(i) as the input and θ(i) as the label.

This framework can then be applied to learn the posterior of the evolutionary model pa-
rameters given xobs. The details on the two building blocks of our method, namely the ex-
changeable neural network and the simulation-on-the-fly paradigm, are given in Section 2.3
and 2.3, respectively.

Exchangeable Neural Network

The goal of the exchangeable neural network is to learn the function f : {0, 1}n×d → PΘ,
where Θ is the space of all parameters θ and PΘ is the space of all probability distributions
on Θ. We parameterize the exchangeable neural network by applying the same function to
each row of the binary matrix, then applying a symmetric function to the output of each
row, finally followed by yet another function mapping from the output of the symmetric
function to a posterior distribution. More concretely,

f(x) := (h ◦ g)
(
Φ(x1), . . . ,Φ(xn)

)
,

where Φ : {0, 1}d → Rd1 is a function parameterized by a convolutional neural network,
g : Rn×d1 → Rd2 is a symmetric function, and h : Rd2 → PΘ is a function parameterized by
a fully connected neural network. A variant of this representation is proposed by [69] and
[98]. See Figure 2.1 for an example. Throughout the paper, we choose g to be the mean of
the element-wise top decile, such that d1 = d2 in order to allow for our method to be robust
to changes in n at test time. Many other symmetric functions such as the element-wise sum,
element-wise max, lexicographical sort, or higher-order moments can be employed.

1Sites that have > 2 bases are rare and typically removed. Thus, a binary encoding can be used.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 8

This exchangeable neural network has many advantages. While it could be argued that
flexible machine learning models could learn the structured exchangeability of the data,
encoding exchangeability explicitly allows for faster per-iteration computation and improved
learning efficiency, since data augmentation for exchangeability scales as O(n!). Enforcing
exchangeability implicitly reduces the size of the input space from {0, 1}n×d to the quotient
space {0, 1}n×d/Sn, where Sn is the symmetric group on n elements. A factorial reduction
in input size leads to much more tractable inference for large n. In addition, choices of g
where d2 is independent of n (e.g., quantile operations with output dimension independent
of n) allows for an inference procedure which is robust to differing number of exchangeable
variables between train and test time. This property is particularly desirable for performing
inference with missing data.

Simulation-on-the-fly

Supervised learning methods traditionally use a fixed training set and make multiple passes
over the data until convergence. This training paradigm typically can lead to a few issues:
poorly calibrated posteriors and overfitting. While the latter has largely been tackled by
regularization methods and large datasets, the former has not been sufficiently addressed.
We say a posterior is calibrated if for Xq,A := {x | p̂(θ ∈ A | x) = q}, we have Ex∈Xq,A

[p(θ ∈
A | x)] = q for all q, A. Poorly calibrated posteriors are particularly an issue in scientific
disciplines as scientists often demand methods with calibrated uncertainty estimates in order
to measure the confidence behind new scientific discoveries (often leading to reliance on
traditional methods with asymptotic guarantees such as MCMC).

When we have access to scientific simulators, the amount of training data available is
limited only by the amount of compute time available for simulation, so we propose simu-
lating each training datapoint afresh such that there is exactly one epoch over the training
data (i.e., no training point is passed through the neural network more than once). We refer
to this as simulation-on-the-fly. Note that this can be relaxed to pass each training point a
small constant number of times in the case of computational constraints on the simulator.
This approach guarantees properly calibrated posteriors and obviates the need for regular-
ization techniques to address overfitting. Below we justify these properties through the lens
of statistical decision theory.

More formally, define the Bayes risk for prior π(θ) as R∗π = infT ExEθ∼π[l(θ, T (x)], with
l being the loss function and T an estimator. The excess risk over the Bayes risk resulting
from an algorithm A with model class F can be decomposed as

Rπ(f̃A) − R∗π =
(
Rπ(f̃A)−Rπ(f̂)

)
︸ ︷︷ ︸

optimization error

+
(
Rπ(f̂)− inf

f∈F
Rπ(f)

)
︸ ︷︷ ︸

estimation error

+
(

inf
f∈F

Rπ(f)−R∗π
)
,︸ ︷︷ ︸

approximation error

where f̃A and f̂ are the function obtained via algorithm A and the empirical risk minimizer,
respectively. The terms on the right hand side are referred to as the optimization, estima-
tion, and approximation errors, respectively. Often the goal of statistical decision theory

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 9

is to minimize the excess risk motivating algorithmic choices to control the three sources
of error. For example, with supervised learning, overfitting is a result of large estimation
error. Typically, for a sufficiently expressive neural network optimized via stochastic op-
timization techniques, the excess risk is dominated by optimization and estimation errors.
Simulation-on-the-fly guarantees that the estimation error is small, and as neural networks
typically have small approximation error, we can conclude that the main source of error
remaining is the optimization error. It has been shown that smooth population risk surfaces
can induce jagged empirical risk surfaces with many local minima [19, 44]. We confirmed
this phenomenon empirically in the population genetic setting(Section 2.5) showing that the
risk surface is much smoother in the on-the-fly setting than the fixed training setting. This
reduces the number of poor local minima and, consequently, the optimization error. The esti-
mator corresponding to the Bayes risk (for the cross-entropy or KL-divergence loss function)
is the posterior. Thus, the simulation-on-the-fly training paradigm guarantees generalization
and calibrated posteriors (assuming small optimization error).

2.4 Statistical Properties

The most widely-used likelihood-free inference method is ABC. In this section we briefly
review ABC and show that our method exhibits the same theoretical guarantees together
with a set of additional desirable properties.

Properties of ABC Let xobs be the observed dataset, S be the summary statistic, and d
be a distance metric. The algorithm for vanilla rejection ABC is as follows. Denoting by i
each simulated dataset, for i = 1 . . . N ,

1. Simulate θ(i) ∼ π(θ) and x(i) ∼ P(x | θ(i))

2. Keep θ(i) if d(S(x(i)), S(xobs)) ≤ ε.

The output provides an empirical estimate of the posterior. Two key results regarding
ABC make it an attractive method for Bayesian inference: (1) Asymptotic guarantee:
As ε → 0, N → ∞, and if S is sufficient, the estimated posterior converges to the true
posterior (2) Calibration of ABC: A variant of ABC (noisy ABC in [28]) which injects
noise into the summary statistic function is calibrated. For detailed proofs as well as more
sophisticated variants, see [28]. Note that ABC is notoriously difficult to perform diagnostics
on without the ground truth posterior as many factors could contribute to a poor posterior
approximation: poor choice of summary statistics, incorrect distance metric, insufficient
number of samples, or large ε.

Properties of Our Method Our method matches both theoretical guarantees of ABC
— (1) asymptotics and (2) calibration — while also exhibiting additional properties: (3)

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 10

Figure 2.1: A cartoon schematic of the exchangeable architecture for population genetics.

amortized inference, (4) no dependence on user-defined summary statistics, and (5) straight-
forward diagnostics. While the independence of summary statistics and calibration are theo-
retically justified in Section 2.3 and 2.3, we provide some results that justify the asymptotics,
amortized inference, and diagnostics.

In the simulation-on-the-fly setting, convergence to a global minimum implies that a
sufficiently large neural network architecture represents the true posterior within ε-error in
the following sense: for any fixed error ε, there exist H0 and N0 such that the trained neural
network produces a posterior which satisfies

min
w

Ex

[
KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w, H)

)]
< ε, (2.1)

for all H > H0 and N > N0, where H is the minimum number of hidden units across all
neural network layers, N is the number of training points, w the weights parameterizing the
network, and KL the Kullback–Leibler divergence between the population risk and the risk
of the neural network. Under these assumptions, the following proposition holds.

Proposition 1. For any x, ε > 0, and fixed error δ > 0, there exists an H > H0, and
N > N0 such that,

KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w∗, H)

)
< δ (2.2)

with probability at least 1− ε
δ
, where w∗ is the minimizer of (2.1).

We can get stronger guarantees in the discrete setting common to population genetic
data.

Corollary 1. Under the same conditions, if x is discrete and P(x) > 0 for all x, the KL
divergence appearing in (2.2) converges to 0 uniformly in x, as H,N →∞.

The proofs are given in Section 2.7. These results exhibit both the asymptotic guaran-
tees of our method and show that such guarantees hold for all x (i.e. amortized inference).
Diagnostics for the quality of the approximation can be performed via hyperparameter opti-
mization to compare the relative loss of the neural network under a variety of optimization
and architecture settings.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 11

2.5 Empirical Study: Recombination Hotspot Testing

In this section, we study the accuracy of our framework to test for recombination hotspots.
As very few hotspots have been experimentally validated, we primarily evaluate our method
on simulated data, with parameters set to match human data. The presence of ground
truth allows us to benchmark our method and compare against LDhot. For the posterior in
this classification task (hotspot or not), we use the softmax probabilities. Unless otherwise
specified, for all experiments we use the mutation rate, µ = 1.1 × 10−8 per generation per
nucleotide, convolution patch length of 5 SNPs, 32 and 64 convolution filters for the first
two convolution layers, 128 hidden units for both fully connected layers, and 20-SNP length
windows. The experiments comparing against LDhot used sample size n = 64 to construct
lookup tables for LDhot quickly. All other experiments use n = 198, matching the size of
the CEU population (i.e., Utah Residents with Northern and Western European ancestry)
in the 1000 Genomes dataset. All simulations were performed using msprime [49]. Gradient
updates were performed using Adam [50] with learning rate 1 × 10−3 × 0.9b/10000, b being
the batch count. In addition, we augment the binary matrix, x, to include the distance
information between neighboring SNPs in an additional channel resulting in a tensor of size
n× d× 2.

Simulation Details

We encode population genetic data x as follows. Let xS be the binary n × d matrix with
0 and 1 as the common and rare nucleotide variant, respectively, where n is the number of
sequences, and d is the number of SNPs. Let xD be the n× d matrix storing the distances
between neighboring SNPs, so each row of xD is identical and the rightmost distance is set
to 0. Define x as the n × d × 2 tensor obtained by stacking xS and xD. To improve the
conditioning of the optimization problem, the distances are normalized such that they are
on the order of [0, 1].

The standard generative model for such data is the coalescent, a stochastic process de-
scribing the distribution over genealogies relating samples from a population of individuals.
The coalescent with recombination [32, 40] extends this model to describe the joint distri-
bution of genealogies along the chromosome. The recombination rate between two DNA
locations tunes the correlation between their corresponding genealogies. Population genetic
data derived from the coalescent obeys translation invariance along a sequence conditioned
on local recombination and mutation rates which are also translation invariant. In order to
take full advantage of parameter sharing, our chosen architecture is given by a convolutional
neural network with tied weights for each row preceding the exchangeable layer, which is in
turn followed by a fully connected neural network.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 12

Recombination Hotspot Details

Recombination hotspots are short regions of the genome with high recombination rate rel-
ative to the background. As the recombination rate between two DNA locations tunes
the correlation between their corresponding genealogies, hotspots play an important role in
complex disease inheritance patterns. In order to develop accurate methodology, a precise
mathematical definition of a hotspot needs to be specified in accordance with the signatures
of biological interest. We use the following:

Definition 1 (Recombination Hotspot). Let a window over the genome be subdivided into
three subwindows w = (wl, wh, wr) with physical distances (i.e., window widths) αl, αh, and
αr, respectively, where wl, wh, wr ∈ G where G is the space over all possible subwindows of
the genome. Let a mean recombination map R : G → R+ be a function that maps from a
subwindow of the genome to the mean recombination rate per base pair in the subwindow. A
recombination hotspot for a given mean recombination map R is a window w which satisfies
the following properties:

1. Elevated local recombination rate: R(wh) > k ·max
(
R(wl), R(wr)

)
2. Large absolute recombination rate: R(wh) > kr̃

where r̃ is the median (at a per base pair level) genome-wide recombination rate, and k > 1
is the relative hotspot intensity.

The first property is necessary to enforce the locality of hotspots and rule out large regions
of high recombination rate, which are typically not considered hotspots by biologists. The
second property rules out regions of minuscule background recombination rate in which
sharp relative spikes in recombination still remain too small to be biologically interesting.
The median is chosen here to be robust to the right skew of the distribution of recombination
rates. Typically, for the human genome we use αl = αr = 13 kb, αh = 2 kb, and k = 10
based on experimental findings.

To apply our framework to the hotspot detection problem, we define the overall graphical
model in Figure 2.2. The shaded nodes represent the observed variables. Denote w as a small
window (typically < 25 kb) of the genome such that Xw is the population genetic data in
that window, and X−w is the rest. Similarly, let ρw and ρ−w be the recombination map in the
window and outside of the window, respectively. While ρw and ρ−w have a weak dependence
(dashed line) on X−w and Xw respectively, this dependence decreases rapidly and is ignored
for simplicity. More precisely, weak dependence means that P (ρw, X−w) ≈ P (ρw)P (X−w)
as shown in Equation 3.1 of [42] via a Taylor expansion argument. The intuition for this is
that ρ tunes the correlation between neighboring sites so each site is effectively independent
of recombination rates at distal sites.

Let q be the relative proportion of the sample possessing each mutation, and η be the
population size function. Intuitively, η determines the rate at which the genealogies (can be
thought of as binary trees) branch. q is a summary statistic of η which we observe that allows

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 13

us to fix the population size in an empirical Bayes style throughout training for simplicity
using SMC++.

Let θ be the mutation rate and h be the indicator function for whether the window defines
a hotspot. Conditioned on q, η is only weakly dependent on Xw.

We define our prior as follows. We sample the hotspot indicator variable h ∼ Bernoulli(0.5)
and the local recombination maps ρw ∼ P̂ (ρw | h) from the released fine-scale recombination
maps of HapMap [31]. The human mutation rate is fixed to that experimentally found in
[53]. Since SMC++ is robust to changes in any small fixed window, inferring η̂ from X has
minimal dependence on ρw.

To test for recombination hotspots:

1. Simulate a batch of h and ρw from the prior and Xw from msprime [49] given h and
ρw.

2. Feed a batch of training examples into the network to learn P(h | Xw).

3. Repeat until convergence or for a fixed number of iterations.

4. At test time, slide along the genome to infer posteriors over h.

X−w Xw

θ η q ρ−w ρw

h

Figure 2.2: Graphical model of recombination hotspot inference: θ is the mutation rate, η
the population size function, q the relative proportion of the sample possessing each muta-
tion, ρ−w the recombination rate function outside of the window, ρw the recombination rate
function inside the window, h whether the window is a hotspot, X−w the population genetic
data outside of the window, and Xw the data inside the window. The dashed line signifies
that, conditioned on q, η is weakly dependent on Xw for suitably small w, and ρ−w and ρw
are only weakly dependent on Xw and X−w.

Evaluation of Exchangeable Neural Network

We compare the behavior of an explicitly exchangeable architecture to a nonexchangeable
architecture that takes 2D convolutions with varying patch heights. The accuracy under

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 14

100 200 300 400 500

80
85

90
95

10
0

Testing Size

%
A

cc
ur

ac
y

Train n = 32
Train n = 64
Train n = 128
Train n = 256
Train n = 512

Figure 2.3: (Left)Accuracy comparison between exchangeable vs nonexchangeable architec-
tures. (Right)Performance of changing the number of individuals at test time for varying
training sample sizes.

human-like population genetic parameters with varying 2D patch heights is shown in the left
panel of Figure 2.3. Since each training point is simulated on-the-fly, data augmentation is
performed implicitly in the nonexchangeable version without having to explicitly permute
the rows of each training point. As expected, directly encoding the permutation invariance
leads to more efficient training and higher accuracy while also benefiting from a faster per-
batch computation time. Furthermore, the slight accuracy decrease when increasing the
patch height confirms the difficulty of learning permutation invariance as n grows. Another
advantage of exchangeable architectures is the robustness to the number of individuals at
test time. As shown in right panel of Figure 2.3, the accuracy remains above 90% during
test time for sample sizes roughly 0.1–20× the train sample size.

Evaluation of Simulation-on-the-fly

Next, we analyze the effect of simulation-on-the-fly in comparison to the standard fixed
training set. A fixed training set size of 10000 was used and run for 20000 training batches
and a test set of size 5000. For a network using simulation-on-the-fly, 20000 training batches
were run and evaluated on the same test set. In other words, we ran both the simulation
on-the-fly and fixed training set for the same number of iterations with a batch size of 50,
but the simulation-on-the-fly draws a fresh datapoint from the generative model upon each
update so that no datapoint is used more than once. The weights were initialized with
a fixed random seed in both settings with 20 replicates. Figure 2.4 (left) shows that the
fixed training set setting has both a higher bias and higher variance than simulation-on-
the-fly. The bias can be attributed to the estimation error of a fixed training set in which
the empirical risk surface is not a good approximation of the population risk surface. The
variance can be attributed to an increase in the number of poor quality local optima in the
fixed training set case.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 15
Te

st
Cr

os
s E

ntr
op

y

Fixed Training Set Simulation-on-the-Fly

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

1.2
5

1.5
0

1.7
5

2.0
0

Figure 2.4: (Left)Comparison between the test cross entropy of a fixed training set of size
10000 and simulation-on-the-fly. (Right)Posterior calibration. The black dashed line is a
perfectly calibrated curve. The red and purple lines are for simulation-on-the-fly after 20k
and 60k iterations; the blue and green lines for a fixed training set of 10k points, for 20k and
60k iterations.

We next investigated posterior calibration. This gives us a measure for whether there
is any bias in the uncertainty estimates output by the neural network. We evaluated the
calibration of simulation-on-the-fly against using a fixed training set of 10000 datapoints. The
calibration curves were generated by evaluating 25000 datapoints at test time and binning
their posteriors, computing the fraction of true labels for each bin. A perfectly calibrated
curve is the dashed black line shown in Figure 2.4 (right). In accordance with the theory in
Section 2.3, the simulation-on-the-fly is much better calibrated with an increasing number of
training examples leading to a more well calibrated function. On the other hand, the fixed
training procedure is poorly calibrated.

Comparison to LDhot

We compared our method against LDhot in two settings: (i) sampling empirical recombina-
tion rates from the HapMap recombination map for CEU and YRI (i.e., Yoruba in Ibadan,
Nigera) [31] to set the background recombination rate, and then using this background to
simulate a flat recombination map with 10 – 100× relative hotspot intensity, and (ii) sam-
pling segments of the HapMap recombination map for CEU and YRI and classifying them
as hotspot according to our definition, then simulating from the drawn variable map.

The ROC curves for both settings are shown in Figure 2.5. Under the bivariate empirical
background prior regime where there is a flat background rate and flat hotspot, both methods
performed quite well as shown on the left panel of Figure 2.5. We note that the slight

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 16

0 20 40 60 80 100

0
50

10
0

15
0

20
0

True Heat

P
os

te
rio

r M
ea

n
an

d
95

%
 C

re
di

bl
e

In
te

rv
al

Figure 2.5: (Left) ROC curve in the CEU and YRI setting for the deep learning and LDhot

method. The black line represents a random classifier. (Middle) Windows of the HapMap
recombination map drawn based on whether they matched up with our hotspot definition.
The blue and green line coincide almost exactly. (Right) The inferred posteriors for the
continuous case. The circles represent the mean of the posterior and the bars represent the
95% credible interval. The green line shows when the true heat is equal to the inferred heat.

performance decrease for YRI when using LDhot is likely due to hyperparameters that require
tuning for each population size. This bivariate setting is the precise likelihood ratio test for
which LDhot tests. However, as flat background rates and hotspots are not realistic, we
sample windows from the HapMap recombination map and label them according to a more
suitable hotspot definition that ensures locality and rules out neglectable recombination
spikes. The middle panel of Figure 2.5 uses the same hotspot definition in the training and
test regimes, and is strongly favorable towards the deep learning method. Under a sensible
definition of recombination hotspots and realistic recombination maps, our method still
performs well while LDhot performs almost randomly. We believe that the true performance
of LDhot is somewhere between the first and second settings, with performance dominated
by the deep learning method. Importantly, this improvement is achieved without access to
any problem-specific summary statistics.

Our approach reached 90% accuracy in fewer than 2000 iterations, taking approximately
0.5 hours on a 64 core machine with the computational bottleneck due to the msprime

simulation [49]. For LDhot, the two-locus lookup table for variable population size using the
LDpop fast approximation [46] took 9.5 hours on a 64 core machine (downsampling n = 198
from N = 256). The lookup table has a computational complexity of O(n3) while per-
iteration training of the neural network scales as O(n), allowing for much larger sample
sizes. In addition, our method scales well to large local regions, being able to easily handle
800-SNP windows.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 17

Recombination Hotspot Intensity Estimation: The Continuous
Case

To demonstrate the flexibility of our method in the continuous parameter regime, we adapted
our method to the problem of estimating the intensity (or heat) of a hotspot. The problem
setup fixes the background recombination rate R(wl) = R(wr) = 0.0005 and seeks to estimate
the relative hotspot recombination intensity k. The demography is set to that of CEU. The
hotspot intensity k was simulated with a uniform distributed prior from 1 to 100.

For continuous parameters, arbitrary posteriors cannot be simply parameterized by a
vector with dimension in the number of classes as was done in the discrete parameter setting.
Instead, an approximate posterior distribution from a nice distribution family is used to
get uncertainty estimates of our parameter of interest. This is achieved by leveraging our
exchangeable network to output parameter estimates for the posterior distribution as done in
[55]. For example, if we use a normal distribution as our approximate posterior, the network
outputs estimates of the mean and precision. The corresponding loss function is the negative
log-likelihood

− log p(k|x) = − log τ(x)

2
+
τ(x)(k − µ(x))2

2
+ const, (2.3)

where µ and τ are the mean and the precision of the posterior, respectively. More flexible dis-
tribution families such as a Gaussian mixture model can be used for a better approximation
to the true posterior.

We evaluate our method in terms of calibration and quality of the point estimates to
check that our method yields valid uncertainty estimates. The right panel of Figure 2.5
shows the means and 95% credible intervals inferred by our method using log-normal as the
approximate posterior distribution. As a measure of the calibration of the posteriors, the
true intensity fell inside the 95% credible interval 97% of the time over a grid of 500 equally
spaced points between k = 1 to 100. We measure the quality of the point estimates with the
Spearman correlation between the 500 equally spaced points true heats and the estimated
mean of the posteriors which yielded 0.697. This was improved by using a Gaussian mixture
model with 10 components to 0.782. This illustrates that our method can be easily adapted
to estimate the posterior distribution in the continuous regime.

2.6 Discussion

We have proposed the first likelihood-free inference method for exchangeable population ge-
netic data that does not rely on handcrafted summary statistics. To achieve this, we designed
a family of neural networks that learn an exchangeable representation of population genetic
data, which is in turn mapped to the posterior distribution over the parameter of interest.
Our simulation-on-the-fly training paradigm produced calibrated posterior estimates. State-
of-the-art accuracy was demonstrated on the challenging problem of recombination hotspot
testing.

CHAPTER 2. EXCHANGEABLE NEURAL NETWORKS 18

The development and application of exchangeable neural networks to fully harness raw
sequence data addresses an important challenge in applying machine learning to population
genomics. The standard practice to reduce data to ad hoc summary statistics, which are
then later plugged into a standard machine learning pipelines, is well recognized as a major
shortcoming. Within the population genetic community, our method proves to be a major
advance in likelihood-free inference in situations where ABC is too inaccurate. Several works
have applied ABC to different contexts, and each one requires devising a new set of summary
statistics. Our method can be extended in a black-box manner to these situations, which
include inference on point clouds and quantifying evolutionary events.

2.7 Proofs

Proof of Proposition 1 By the Universal Approximation Theorem and the interpretation
of simulation-on-the-fly as minimizing the expected KL divergence between the population
risk and the neural network, the training procedure minimizes the objective function for any
x, ε > 0, δ > 0, we can pick a H > H0, and N > N0 such that,

min
w

Ex

[
KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w, H)

)]
< ε.

Let w∗ be a minimizer of the above expectation. By Markov’s inequality, we get for every x
and δ > 0 such that for all H > H0 and N > N0

KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w∗, H)

)
< δ

with probability at least 1− ε
δ
.

Proof of Corollary 1 As above, for any x, ε > 0, δ > 0, there exists a H > H0, and
N > N0 such that

min
w

Ex

[
KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w, H)

)]
< ε.

Furthermore, for all x, the KL is bounded at the minimizer since P(x) > 0 for all x resulting
in the following bound

KL
(
P(θ | x)

∥∥ P(N)
DL (θ | x; w∗, H)

)
< max

x

ε

P(x)

independent of x. Thus, the training procedure results in a function mapping that uniformly
converges to the posterior P(θ | x).

19

Chapter 3

Archaic Admixture Detection

This is joint work with Yun S. Song. This was first presented at the NeurIPS Machine
Learning in Computational Biology [20].

3.1 Introduction

Reconstructing the evolutionary history of how humans adapted to changing environments
and diets has received significant momentum in the past few years with the explosion of
ancient DNA samples. Such biological understanding could provide medical insights into
today’s ever-changing human lifestyle and environment. Admixture is one such evolutionary
mechanism for adaptation by inducing genetic variation in human populations. For example,
recent evidence has shown that admixture between Neanderthals and Eurasian populations
are responsible for diversity in immune genes [24].

A key challenge is improving the computational tools utilized for identifying portions of
our genomic adaptations attributed to interbreeding between modern humans and archaic
hominids. Recent studies [75, 74] have developed computational tools for analyzing the
interbreeding between modern Eurasian humans and archaic hominids (Neanderthals and
Denisovans). Their state-of-the-art utilizes a conditional random field (CRF) dependent on
access to archaic reference genomes to detect segments of archaic DNA. Reference-dependent
methods heavily rely on the archaic reference, known to be extremely noisy and contaminated
by modern human DNA. Furthermore, these methods are unable to identify admixture from
a population where DNA samples are unavailable (often referred to as a ghost population).
In a separate line of work, a reference-free method S∗ [65, 92] has been developed to test
for the existence of admixed archaic DNA. Using S∗, the authors conjecture the existence
of admixture with a ghost population in the African genome [36] though remain unable to
provide sufficient statistical evidence to confidently verify the claim. Both of these methods
are unable to directly combine information between individuals and neighboring SNPs at
multiple scales; instead, the methods reduce the data down to more manageable summary
statistics.

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 20

Our method tackles both of these problems and significantly improves on the state-of-
the-art in both classification and segmentation. Our method utilizes a deep learning-based
Bayesian inference framework to learn a mapping between the raw genetic data and the latent
variable of interest (archaic DNA or not). The exchangeability between DNA samples within
a population requires the development of a permutation-equivariant deep neural network in
order to fully leverage the information across all samples. In addition, our Bayesian inference
framework can elegantly incorporate any known inferred parameters such as archaic reference
genomes and recombination maps while also showing robustness to uncertainty over unknown
population genetic parameters.

In this chapter, we propose a more general permutation equivariant layer, demonstrate
its efficacy in the population genetics setting, and devise the first usage of permutation-
equivariant networks to the classification and segmentation tasks. We further show that our
segmentation method is the first reference-free method to identify admixed segments with
sufficient accuracy.

3.2 Structured Coalescent with Recombination

The coalescent [52, 51] is a useful generative stochastic process in evolutionary biology for
describing the genealogical history of a random sample of chromosomes. The structured coa-
lescent with recombination incorporates evolutionary processes important for understanding
and characterizing the signatures of ghost admixture including coalescence, mutation, re-
combination, and migration.

At a high level, the structured coalescent (see the left panel of Fig. 3.1) is the limiting
process by which ancestral trees trace the history of relatedness among present-day indi-
viduals. In the absence of recombination, the coalescent process can be thought of as a
generative process over binary trees. Coalescent events describe the merging of children
nodes (times at which two individuals shared an ancestor) occurring at a rate parameterized
by the size of the subpopulation. Migration describes the movement of individuals between
subpopulations. Once the tree of evolutionary history is constructed, mutations are dropped
along the tree branches. All events are distributed as a Poisson point process. In the pres-
ence of recombination, there is a tree marginally at each base pair of the genome with the
recombination rate tuning the degree to which neighboring trees are correlated.

The coalescent model informs us of the types of genetic signatures that we expect from
archaic admixture. Long contiguous blocks of DNA with mutations private to the ghost
population genome due to accumulated mutations in the ghost population is one signature
of archaic admixture. The archaic reference genome would inform us which alleles are present
in the archaic population to boost accuracy.

Typical datasets in population genetics are sets of DNA samples from present-day. Most
inference tasks are then to recover the evolutionary parameters of the coalescent given data
sampled marginally at present-day. Inference is often intractable without simplifying as-

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 21

sumptions as the likelihood is often analytically and computationally intractable since the
state space of possible trees is super-exponential in n.

While difficult to compute likelihoods, the coalescent is simple to draw samples from X ∼
p(X | θ) for population genetic parameters θ. Software packages such as msprime [49] can
efficiently simulate data given population genetic parameters allowing for computationally
feasible likelihood-free inference methods.

For more details on coalescent theory, refer to [26].

3.3 Method

Permutation Equivariant Layer

With the goal of designing a neural network that can take in genotype data, we focus on de-
signing a neural network architecture that respects the permutation-equivariant symmetries
inherent in the genotype data. To do this, we need to design a neural network layer where
permutations of the input yield permutations of the output.

Let X = (x1,x2, . . . ,xn)T ∈ Rn×d be a matrix (which in our example represents a single
genotype array where the rows represent the individuals and the columns represent the SNPs)
and Sn denote the symmetric group. We wish to construct a neural network layer Φ that is
equivariant with respect to all row-permutations, that is, for every g ∈ Sn,

g(Φ(X)) = Φ(g(X)).

We use parameter sharing to encode permutation equivariance for computational efficiency
and to prevent a combinatorial explosion of parameters. Our proposed layer defines the ith
hidden unit as

Φ(X; wself,wother)i = σ
(
xi ·wself + f(x1, . . . ,xi−1,xi+1, . . . ; wother)

)
,

where σ is a pointwise nonlinearity and f : Rn−1 → R is any symmetric function parameter-
ized by wother such as the max, sum, sort, or higher-order moments. Such a neural network
layer can replace multiple neural network layers since the composition of two such layers
remains permutation equivariant, i.e. Φ1(Φ2(g(x))) = Φ1(g(Φ2(x))) = g(Φ1(Φ2(x))). This is
a generalization of the permutation equivariant layers proposed by [71], [70], and [98].

Structured Permutation Equivariant Layer

Often for archaic admixture analyses incorporating multiple populations of data can signifi-
cantly improve performance either as an outgroup or the archaic population of interest. This
requires the neural network layer to obey permutation-equivariance within a population but
not between populations. Let there instead be multiple populations such that the genotype

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 22

array for population j is defined as X(j) = (x
(j)
1 ,x

(j)
2 , . . . ,x

(j)
nj)T ∈ Rnj×d. Now we wish to

construct a neural network layer Φ that for every gj ∈ Snj
satisfies

gj · Φ(X(1), . . . ,X(J))j = Φ(g1 ·X(1), . . . , gj ·X(j), . . . , gJ ·X(J))j.

Once again we appeal to parameter sharing to encode this symmetry. Our proposed layer
defines for hidden unit i in population j

Φ(X(1), . . . ,X(J); wself,wother,wacross)ij = σ

(
x

(j)
i ·wself,j+f(x

(j)
−i ; wother,j)+

∑
k

hk(X
(k); wacross,j,k)

)

where parameters wself,wother,wacross are of size RJ ,RJ , and RJ×(J−1), respectively and we
define x

(j)
−i as all units in population j excluding unit i. In addition, f and hk are symmetric

functions as in the prequel.

Likelihood-Free Inference Framework

We modify the likelihood-free inference framework developed in [21] by incorporating an
additional latent variable.

Framework for inference of parameters θ = (α, tad, tanc) (admixture proportion, admixture
time, and ancestral time, respectively as demonstrated in Fig. 3.1), latent segmentation
parameters Z ∈ {0, 1}n×L, and population genetic data X ∈ {0, 1}n×L:

• Simulate training data on-the-fly from the prior θi ∼ p(θ) and Xi,Zi ∼ p(X,Z | θi)
via msprime.

• Train a permutation equivariant network to learn the posterior p(Zi | Xi)

• Estimate parameters of interest p(θ | Xi) =
∫
Z
p(θ | Zi,Xi)p(Zi | Xi)dZi.

In the case of ghost admixture, p(θ | Zi,Xi) = p(θ | Zi). Some parameters such as recom-
bination rate and population size functions are only weakly dependent on Zi, so we use an
empirical Bayes approach by inferring the recombination map ρ and population size function
N(t) separately and fixing the maximum likelihood estimate in the prior p(θ, ρ̂, N̂).

Due to the imbalanced number of examples of introgressed segments in the data for both
classification and segmentation, we employ an importance sampling-type weighting scheme
of the loss function to balance the classes. For admixture proportion α, we upweight the loss
for ghost DNA by 1−α

α
such that the classes are balanced.

Network Architecture

Our network architecture for classification (see Figure 3.1) uses the architecture of a standard
convolutional neural network with all of the convolutions replaced by our convolutional

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 23

Figure 3.1: (Left) An example of the coalescent with ghost admixture. (Top) The
permutation-equivariant network for classification. (Bottom) The permutation-equivariant
network for segmentation.

permutation equivariant layer followed by pooling layers. The final layer is a fully connected
permutation equivariant layer.

Our network architecture for segmentation borrows ideas from fully convolutional net-
works [60] and concatenates together convolutional permutation equivariant layer outputs
with their dilated counterparts to capture local and global information.

Estimation of Archaic Admixture Parameters

Additional parameters related to archaic admixture are typically of interest to be jointly
inferred including ancestral time (time at which the sample split from the modern popu-
lation) and admixture time (time at which the sample was admixed). An unbiased esti-
mator for the admixture proportion α is simply the average posterior of the segmentation
α̂ = 1

nL

∑
i,j p(yij = 1 | X) where yij is the label for the ith individual and position j with

class label 1 indicating presence of admixture. However, due to our importance sampling-
style class balancing scheme the neural network posteriors need to be re-calibrated. We
recalibrate the posterior by computing

p(yij = 1 | X) =
αq(yij = 1 | X)

αq(yij = 1 | X) + (1− α)q(yij = 0 | X)

where q is the uncalibrated posterior by the neural network. Note that in the case where α
is not known, we can integrate over our prior p(α).

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 24

The admixture time tad can be estimated from Zi via Ltracts ∼ Exp(ρ
2
tanc) where Ltracts

and ρ/2 is the length of contiguous ghost introgressed segments and the recombination rate,
respectively. The ancestral time tanc can be inferred from Tajima’s estimator [87].

Incorporating Additional Genetic Information

In many admixture settings, the inclusion of an outgroup reference genome which is known
to not have admixed with the ghost population can boost accuracy of classification and
segmentation. The outgroup can be easily incorporated as an additional input by using the
structured permutation equivariant neural network. A similar approach can be used with a
known archaic reference such as for Neanderthals or Denisovans.

Statistical power for detecting signatures of archaic admixture is heavily dependent on
linkage disequilibrium (determined by the recombination rate) to allow for the sharing of
statistical strength between neighboring sites. Variable recombination maps can be similarly
incorporated as a separate channel of the input.

3.4 Experiments

Our experiments are based on two demographic models to most accurately compare to
the state-of-the-art. In the reference-based and reference-free settings, we use the demo-
graphic models proposed in [75] and [92], respectively. The first demographic model was
used to infer archaic admixture between European populations and Neanderthals, so pa-
rameters are set to α = 0.03, tanc = 13000 generations, and tad = 1900 generations. The
second demographic model was used to posit ghost admixture in African populations with
parameters α = 0.03, tanc = 28000 generations, and tad = 1400 generations. For simplicity,
the per-generation mutation and recombination rate were set to realistic human rates of
µ = 1.5 × 10−8 and r = 1.2 × 10−8, respectively. However, as noted in the prequel, simula-
tions using fine-scale recombination maps or time-varying mutation rates can be used and
in principle even jointly estimated.

The neural network architecture contains 5 hidden layers with standard 1D convolutions
with patch size of 5 (with max pooling between layers in the classification setting) and
64 filters in each hidden layer. In the third and fourth layers, dilated convolutions were
performed and concatenated with dilations of size 4 to better capture multiscale information.
Training was performed with batch sizes of 50 run for 20000 training iterations.

We performed experiments in three setups:

• Segmentation with Reference: Segmentation of each SNP and individual in the presence
of a reference in comparison to the archaic reference-dependent CRF of [75].

• Reference-Free Classification: Classification of each individual in a population as pos-
sessing archaic hominid DNA in comparison to the S∗ statistic [92].

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 25

Figure 3.2: Simulation analysis of the model. Top left: The histogram of physical distance
of introgression tracts. Top right: The histogram of number of SNPs within a introgression
tract. Bottom left: Conditioned on an individual having an introgression tract in a 50 SNP
window (default width of the sliding genotype array window), the proportion of the window
that is introgressed. Bottom right: Number of individuals with an introgressed tract in a 50
SNP window conditioned on at least one individual being admixed.

• Reference-Free Segmentation: Reference-free segmentation of each SNP and individual.

We analyze the distribution of introgression tracts under the simulation model in Fig. 3.2.
The number of individuals who observe introgression at the same position drops off fairly
rapidly which agrees with the demographic model as shown in the top right of the figure.
Furthermore, most individuals who see any introgression within a 50 SNP window see a large
proportion of its SNPs as introgressed as shown in the bottom left. This indicates that there
is a high-level of class imbalance in this experimental setup.

Next, we experiment across a host of symmetric functions in Fig. 3.3 to derive a better
understanding for the properties of our structured permutation-equivariant network. Re-
assuringly, we observe overall the performance does not depend heavily on the choice of
symmetric function and symmetric functions that carry more information (sort-based func-
tions rather than single statistics such as mean and max) tend to slightly outperform others
at test time.

We analyze the reference-based segmentation of our procedure against that of [75]. We

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 26

Figure 3.3: Comparison between a variety of symmetric functions for the permutation equiv-
ariant network. The four functions used are top-25 (red), top-25 concatenated with bottom-
25 (purple), max (green), and sum (blue).

note that we had difficulty replicating the results in the paper under the experimental con-
ditions described in the paper with the exact reasoning unknown after communication with
the authors. Instead, we took the direct precicion-recall curve produced in the paper and
compared it against our method in Fig. 3.4. Note that as was shown in the simulation anal-
ysis that precision-recall is a more appropriate metric for performance than ROC curves due
to class imbalance. We outperform the CRF method with fewer individuals in the outgroup
across all recall levels. This may be due to the CRF’s very simplistic hand-crafted feature
functions which are unable to properly aggregate local and global spatial information. In-
corporating multi-scale spatial information allows us to share statistical strength between
correlated SNPs to make comparable predictions despite the absence of a reference. Further-
more, our method uses fewer individuals (20 vs 100 in the CRF method) in the outgroup
to reach superior performance. The qualitative jaggedness of the precision-recall can be
attributed to the edge effects of our sliding window procedure which can be smoothed out
post-hoc via an averaging method.

We compared against the only other reference-free method, S∗, for classification as shown
in Fig. 3.5. Our method significantly outperforms S∗ which we attributed to the relative
brittleness of S∗ to account for slight changes in demography. The structured permutation-
equivariant layer significantly outperforms that of just classifying each haplotype one at a

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 27

Figure 3.4: Comparison of our method (green) against that of the CRF method (blue). The
dashed line is the precision recall of a random classifier. This method was evaluated on a
single ancient genome and 20 individuals in the outgroup for our method and 100 individuals
in the outgroup for the CRF.

time which demonstrates the utility of our structured permutation-equivariant layer and the
information-sharing between haplotypes.

While no other methods have been developed to segment tracts of ghost archaic DNA
(DNA without an archaic hominid reference genome), several methods have been utilized
in the presence of a known archaic hominid population such as Neandrathals and Deniso-
vans [77, 67, 75]. Since neither [77] nor [67] validates their method on simulated data and
[67] admits that their method has less statistical power for detecting archaic admixture in
comparison to [75], we do not compare our method against any baselines. In Fig. 3.6, we
demonstrate that our method in the absence of an archaic hominid reference achieves rather
strong precision-recall. In addition, our method achieves significant improvements when per-
forming post-hoc smoothing similar to the procedure performed on the CRF to account for
longer-range interactions.

To test the ability of our method to estimate the admixture proportion α, we simulated
100 haplotypes over 100 SNP windows from a realistic uniform prior α ∼ U(0.01, 0.1). The
mean squared error 1

n

∑n
i=1(αi− α̂i)2 of our estimator was 0.0016 and our accuracy remained

robust. The error is expected to be even smaller when averaging estimates over genome-scale
data.

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 28

Figure 3.5: Comparison on the reference-free classification task of our permutation-
equivariant procedure (blue) and a single haplotype procedure which does not jointly classify
individuals in a population (green) and S∗ (red).

3.5 Discussion

We have proposed a novel structured permutation-equivariant neural network which accounts
for the symmetries and structure of archaic admixture segmentation and classification. This
structure accounts for multiple populations which do not observe permutation-equivariance
between members of groups but observe this property for members within groups. Applying
our method inside a statistical inference framework allows us to outperform other methods
with and without an archaic reference genome.

The development of this procedure enables the population genomics community to ad-
dress fundamental questions around the evolutionary history of modern populations. This
approach can extend further to other questions where per-SNP resolution is desirable such as
standard admixture. Additional work on the inference procedure regarding the robustness of
the procedure to model misspecification in the demography or other fundamental population
genetic parameters is essential to the exploration of this methodology on real-world data.

CHAPTER 3. ARCHAIC ADMIXTURE DETECTION 29

Figure 3.6: Precision-recall curves on the reference-free segmentation task of our
permutation-equivariant procedure with (green) and without(blue) post-hoc smoothing of
up to 200 SNPs.

30

Chapter 4

Parallelizing Contextual Linear
Bandits for Protein Engineering

This is joint work with Aldo Pacchiano, Nilesh Tripuraneni, Peter Bartlett, Yun S. Song,
and Michael I. Jordan. This work will soon be published as a preprint.

4.1 Introduction

Traditional approaches to adaptive design and search often require time and resource-intensive
modeling. However, as the cost of experimentation has steadily dropped, the amount of real
time needed for search has become the primary constraint. For example, within the field
of biology, advances in synthesis and high-throughput sequencing have shifted the the focus
from top-down mechanistic modeling towards iterative, data-driven search algorithms [10].
In protein engineering, the Nobel prize-winning approach of directed evolution [8]–which
mimics evolution via iterative rounds of measurement of modified sequences–has already
been successful in improving therapeutic antibodies [37] and changing substrate specificity
[78]. Within the realm of information technology, learning in a variety of real-world interac-
tive tasks is also well-suited to adaptive, data-driven search: such as a recommender system
which generates movie suggestions for users on the basis of binary feedback for previously
recommended movies [15]. An important property of both of these examples, is that learning
must be done via bandit feedback. Given the state of a system (i.e. a particular protein
sequence or user) the corresponding value or feedback is only observed for that particular
state.

Under these models of limited feedback, utilizing adaptive, sequential approaches to in-
telligently query the design space is critical. In recent years, bandit methods and Bayesian
optimization have been used to great effect in a variety of applications to navigate the
exploration-exploitation trade-off in the design space. The ultimate goal of such approaches
is to minimize the total amount of real time (equivalent to the number of sequential mea-
surements) needed to learn the corresponding application domain.

CHAPTER 4. PARALLEL LINEAR BANDITS 31

However, simply designing better methods that are more efficient through time neglects
an orthogonal axis through which progress is possible: parallelism at a fixed time. In
many applications of interest, it is often feasible to perform parallel measurements (or batch
queries) simultaneously. In protein engineering, batch queries can be as large as 106 sequences
while each query takes months to measure [82]. Similarly, large-scale recommender systems
can often make multiple, concurrent interactions with different users [3]. Parallelism pro-
vides a mechanism to utilize further hardware for progress, while not increasing the amount
of real time needed to learn. The drawback of making batch queries at a fixed time is that
queries within a batch will necessarily be less informed then sequential queries–since their
choice cannot benefit from the results of other experiments within the same batch.

Here we attempt to characterize the utility of parallelism in the simple setting of (con-
textual) linear bandits. In particular, we ask: can parallelism provide the same benefit as
sequentiality through time in this class of adaptive decision-making problems? Perhaps sur-
prisingly, and mirroring earlier work in distinct settings, we show the answer is often yes.
We consider the setting where P distinct processors/machines perform simultaneous queries
in batches of size P , {xt,p}Pp=1, over T distinct rounds, to an approximately linear, noisy
reward oracle rt,p ≈ x>t,pθ

? + εt,p. Importantly, the reward feedback for all P processors in
a given round, is only observed after the entire batch of all P actions has been selected.
In this setting, we ask what the price of parallelism is with respect to a single, perfectly
sequential agent querying the same reward oracle over TP rounds. Our results show that
up to a burn-in term independent of time, the worst-case regret of parallel, contextual linear
bandit algorithms can nearly match their perfectly sequential counterpart. Informally, under
the standard bandit setting where the signal-to-noise ratio is taken to be Θ(1), and d is the
dimension of the action-space, our results show that (parallel) variants of optimistic linear
bandit algorithms can achieve aggregate regret,

Õ(P · κ+ d
√
TP),

where κ is a term capturing the geometric complexity of the sequence of contexts. For
arbitrary sequences of contexts we have that κ = Õ(d), but for sequences of contexts with
additional geometric structure we provide sharper instance-dependent bounds for κ. The
second term in the former regret matches that of a purely sequential agent playing for
TP rounds, Õ(d

√
TP). The first burn-in term represents the price of parallelism which is

subleading whenever TIpre & Ω̃(Pκ2/d2). However, we note for many applications it may
be the case that P � T in the regimes of interest–so understanding the scaling of κ is
an important question. Our work is motivated by the class of design problems in which
statistical sample complexity is the primary object of interest. In between batch queries
at different time steps, the cost of inter-processor communication and computation is often
negligible. In this setting we make the following contributions:

• We introduce a family of parallelized linear bandit algorithms applicable in the general
setting of contextual bandits (which encompasses potentially changing and infinite

CHAPTER 4. PARALLEL LINEAR BANDITS 32

action sets), building on classic, optimistic algorithms such as Linear UCB and Linear
Thompson sampling.

• We present a unified treatment of these algorithms which allows a fine-grained under-
standing of the interaction of the scales of the underlying parameters, model misspec-
ification, parallelism, and context set geometry. In particular, our analysis highlights
the scale of the burn-in term ∝ P . Although asymptotically negligible as T →∞, this
term can be significant in the regime where we have TP � poly(d) but P � T–which
is realistic for many real applications.

• We provide regret lower bounds for the misspecified, linear bandit problem in the
parallel setting, confirming our algorithms are optimal up to logarithmic factors as the
time horizon tends to T →∞.

• We present a comprehensive experimental evaluation of our parallel algorithms on a
suite of synthetic and real problems. Through our theory and experiments, we show
the importance of explicitly introducing diversity into the action selections of parallel
bandit algorithms since it often leads to practical performance gains.

Related Work

Parallel sequential decision-making problems often occur in high-throughput experimental
design of synthetic biology applications. For protein engineering, [72] employs batch-mode
Gaussian Process Upper Confidence Bound(GP-UCB) while [14] uses the batched Bayesian
optimization via parallelized Thompson sampling proposed in [47]. [7] proposes a portfolio
optimization method layered atop an ensemble of optimizers. Finally, [83] utilizes a heuristic,
batched greedy evolutionary search algorithm for design. Similarly, it is well-known that
contextual linear bandit algorithms are often used in dynamic settings on large, multi-user
platforms for problems such as ad placement, web search, and recommendation [85, 15].
However, the empirical study of such domains (including our own) is limited due to the
paucity of publicly available nonstationary data sources.

Several investigations of the utility of parallelism in sequential decision-making problems
take place in the framework of Gaussian process (GP)-based Bayesian optimization. [23]
shows in a Bayesian framework, a lazy GP-bandit algorithm initialized with uncertainty
sampling, can achieve a parallel regret nearly matching the corresponding sequential regret
up to a “burn-in” term independent of time. Later, [48] showed diversity induced by deter-
minantal point processes (DPP) can induce additional, useful exploration in batched/parallel
Bayesian optimization in a comparable setting. [47] establishes regret bounds for Bayesian
optimization parallelized via Thompson sampling algorithm obtaining qualitatively similar
theoretical results to [48, 23].

A related line of work studies bandit learning under delayed reward feedback. [22] pro-
vides an early, empirical investigation of Thompson sampling under fixed, delayed feedback.

CHAPTER 4. PARALLEL LINEAR BANDITS 33

Several theoretical works in [45, 90, 91, 100] prove regret bounds for bandit algorithms un-
der known and unknown stochastic delayed feedback models. Here the reward information is
delayed by a random time interval from the time the action is proposed, and is distinct from
our setting from the batch queries result in a fixed time delay. In the setting of finite-armed
contextual bandits [25] Delayed Policy Elimination algorithm satisfies a regret bound of the
form Õ(

√
m(
√
T + τ)) where m denotes the number of actions, T the problem horizon and

τ the delay. However, these guarantees require i.i.d. stochastically generated contexts and
require access to a cost-sensitive classification oracle for their elimination-based protocol.

A more closely related line of work studies distributed bandit learning under various
models of limited communication between agents (which can make decisions in parallel).
[39, 86] study the regret of distributed arm-selection algorithms under restricted models
of communication between parallel agents in the setting of multi-armed bandits. [54] and
[96] provide distributed confidence-ball algorithms for linear bandits in peer-2-peer networks
with a focus towards limiting communication complexity. However, the algorithms in [54]
and [96] both require intra-round communication of rewards, that is incompatible with the
batch setting that we study in this work. Moreover these works are mostly concerned with
the regime T � P , reducing their practical relevance.

Our work provides a class of algorithms and regret analysis for the general linear con-
textual bandit problem in the batch setting. Moreover, our goal is to design theoretically
sound and practically useful algorithms for parallel linear bandits. Accordingly, we construct
several algorithms we analyze both theoretically and empirically.

Preliminaries

Set-up and Notation Throughout, we will use bold lower-case letters (e.g., x) to refer to
vectors and bold upper-case letters to refer to matrices (e.g., X). The norm ‖·‖ appearing on
a vector or matrix refers to its `2 norm or spectral norm respectively. A matrix-subscripted
norm ‖x‖Σ =

√
x>Σx for positive semi-definite matrix Σ. 〈x,y〉 is the Euclidean inner

product. Generically, we will use “hatted” vectors and matrices (e.g., α̂ and B̂) to refer to
(random) estimators of their underlying population quantities. We also use the bracketed
notation [n] = {1, . . . , n}. We will use &, ., and � to denote greater than, less than,
and equal to up to a universal constant and use Õ to denote an expression that hides
polylogarithmic factors in all problem parameters. Our use of O, Ω, and Θ is otherwise
standard.

Formally, we consider the (parallel) contextual linear bandit setting where at each round
t, the p-th bandit learner receives a context Xt,p ⊂ Rd and a master algorithm A commands
each learner to select an action xt,p ∈ Xt,p on the basis of all the past observations. Given an
(unobserved) function f(·) each learner simultaneously receives a noisily generated reward:

rt,p = f(xt,p) + ξt,p, (4.1)

where ξt,p is an i.i.d. noise process and f(xt,p) is approximately linear (i.e. f(xt,p) ≈ x>t,pθ
?

for some unobserved θ?). The goal of the master algorithm/processors is to utilize its access

CHAPTER 4. PARALLEL LINEAR BANDITS 34

to the sequence of rewards rt,p and joint control over the sequence of action selections xt,p
(which depends on the past sequence to events) to minimize the parallel regret:

R(T, P) =
P∑
p=1

(
T∑
t=1

f(x?t,p)− f(xt,p)

)
,

where x?t,p = arg maxx∈Xt,p f(x). We also introduce the notion of the best regret across
processors:

R∗(T) = min
p∈[P]

(
T∑
t=1

f(x?t,p)− f(xt,p)

)
.

which captures the performance of the best processor in hindsight. We note the following
relationship which follows immediately by definition of the aforementioned regrets:

Remark 1. The parallel regret and best regret satisfy,

R∗(T) ≤ R(T, P)

P
.

In the special case that there is a fixed context for all time across all processors (i.e.
Xt,p = X), as is the case for design problems, the simple regret is useful,

Rs(T, P) = f(x?)− f(xT+1,1).

The simple regret captures the suboptimality of a choice xT+1, given by a next-step policy
π(·) at the T + 1st time against the single best choice x? ∈ X .

Remark 2. There exists a randomized next-step policy π(·) (depending on the sequence of
xt,p) at the T + 1st timestep such that the simple regret satisfies

Eπ[Rs(T, P)] ≤ E
[
R(T, P)

TP

]
when there is a fixed global context X for all t ∈ [T], p ∈ [P]1.

For our analysis, we make the following standard assumptions on the bandit instance in
(4.1),

Assumption 1 (Subgaussian Noise). The noise variables ξt,p are R-subgaussian for all t ∈
[T] and p ∈ [P]. That is, for every λ

E[eλξt,p] ≤ eR
2λ2/2.

1This follows from a similar reduction from sequential regret to simple regret applicable to multi-armed
bandits in [57, Proposition 33.2].

CHAPTER 4. PARALLEL LINEAR BANDITS 35

Assumption 2 (Bounded Covariates). For all contexts Xt,p, t ∈ [T], p ∈ [P], the actions
are norm-bounded by a known upper bound:

‖x‖ ≤ L, ∀x ∈ Xt,p.

Assumption 3 (Almost-Linear Rewards). The function f(·) is ε-close to linear in that for
all contexts Xt,p and ∀x ∈ Xt,p, there exists a parameter θ? such that

|f(x)− x>θ?| ≤ ε.

Further, this underlying parameter θ? satisfies the norm bound:

‖θ?‖ ≤ S.

In the context of the above conditions we define the signal-to-noise ratio as:

snr =

(
LS

R

)2

(4.2)

in analogy with the classical setting of offline linear regression. Note that while we allow ε to
be arbitrary, our guarantees are only non-vacuous when ε is suitably small. Thus f(x) should
be thought of a function that is nearly linear. Although we only consider linear algorithms
in this paper, we note that our methods can easily be generalized using finite-dimensional
feature expansions (i.e. the kernel trick) and random feature approximations [68] to increase
the flexibility of our model class.

4.2 Parallelizing Linear Bandits

We consider several algorithms for linear bandits which provably achieve a nearly perfect
parallel speed-up. Most of these algorithms are inspired by the optimism principle. Such
algorithms maintain a running estimate of θ̂t ≈ θ? and the empirical covariance matrix of
queried observations:

Vt,p = λId +
t−1∑
a=1

P∑
b=1

xa,bx
>
a,b +

p−1∑
k=1

xt,kx
>
t,k

which are used to construct a confidence ellipsoid in parameter space where λ is a regular-
ization parameter. The best parameter in this set of plausible parameters–which allows the
estimation of a maximum hypothetical reward–is used to optimistically guide exploration in
the feature space. We use the notation Ft,p−1 to define the filtration of all events that have
occurred up until and including the revelation of context Xt,p. Despite the topical differ-
ences in these algorithms, there is a common thread which ties together their analyses in the
parallel setting in our framework2:

2The choice of 2 in the upper bound here is arbitrary and can be replaced with any universal constant
c > 1 without changing our results up to constants.

CHAPTER 4. PARALLEL LINEAR BANDITS 36

Algorithm 1 Parallel LinUCB

Input: P, T,R, S, L, λ, ε, DR Routine.
1: for t = 1 : T do
2: Compute θ̂t, Vt,1, and βt as in (4.6) and (4.7).
3: for p = 1 : P do
4: Given Xt,p, compute yt,p ← arg maxx∈Xt,p maxθ∈Ct,0 x>θ for Ct,0(θ̂t,Vt,1, βt, ε) as in

(4.6).
5: end for
6: Compute Ṽt+1,1 = Vt,1 +

∑P
p=1 yt,py

>
t,p.

7: if Ṽt+1,1 � 2Vt,1 then
8: for p = 1 : P do
9: Set xt,p ← yt,p and query xt,p to receive reward rt,p

}
Executed In Parallel

10: end for
11: else
12: Set {xt,p}Pp=1 ← DR(Ft,P)
13: for p = 1 : P do
14: Query xt,p to receive reward rt,p

}
Executed In Parallel

15: end for
16: end if
17: end for

Condition 1. [Critical Covariance Inequality] An (estimated) covariance matrix Vt,p ∈
Ft,p−1 is said to satisfy the critical covariance inequality at round t for processor p if

Vt,1 � Vt,p � 2Vt,1. (4.3)

We refer to any round t for which the aforementioned inequality does not hold for any
p ∈ {2, . . . , P} as a doubling round.

For the standard purely sequential setting of linear bandits (i.e. P = 1), in each interac-
tion round we select xt, gain the information rt, update our model, and iterate. However, in
parallel setting we must jointly select xt,p for all p ∈ [P] before seeing any additional rewards
in round t. Condition 1 ensures that up a factor of 2, there is no direction along which our
estimate of the covariance changes too rapidly within a single round. If we imagine unrolling
the parallel dimension p sequentially across time (i.e. consider the lexigraphic ordering of
pairs (t, p)), Condition 1 ensures the covariance estimate is quasi-static intra-round. The
significance of this simple condition, is that once we receive reward rt,p for p ∈ [P] at the end
of the round t, it is nearly as if we received the reward rt,p immediately after selecting xt,p.
We later provide more intuition as how this factors into our analysis and what algorithms
satisfy this property.

Finally, in the event a particular round t is a doubling round, we allow our algorithms
to call a doubling round routine, {xt,p}Pp=1 ← DR(Ft,P), where as before Ft,P is the σ-

CHAPTER 4. PARALLEL LINEAR BANDITS 37

Algorithm 2 Parallel Lazy LinUCB

Input: P, T,R, S, L, λ, ε, DR Routine.
1: for t = 1 : T do
2: Compute θ̂t, and βt as in (4.6) and (4.7).
3: for p = 1 : P do
4: Compute Ṽt,p = Vt,1 +

∑p−1
k=1 yt,ky

>
t,k.

5: Given Xt,p, compute yt,p ← arg maxx∈Xt,p maxθ∈Ct,p x>t θ for Ct,p(θ̂t, Ṽt,p, βt, ε) as in
(4.6).

6: end for
7: Compute Ṽt+1,1 = Vt,1 +

∑P
p=1 yt,py

>
t,p.

8: if Ṽt+1,1 � 2Vt,1 then
9: for p = 1 : P do

10: Set xt,p ← yt,p and query xt,p to receive reward rt,p

}
Executed In Parallel

11: end for
12: else
13: Set {xt,p}Pp=1 ← DR(Ft,P)
14: for p = 1 : P do
15: Query xt,p to receive reward rt,p

}
Executed In Parallel

16: end for
17: end if
18: end for

algebra containing all information regarding past contexts, rewards, and selected actions.
The doubling round routine allows our algorithm to make a different choice of actions instead
of the actions {yt,p}Pp=1 suggested by the optimistic algorithm if round t is a doubling round.
In many cases, this routine can simply be taken to be the identity map and non-trivial
parallelism gains are still obtained. However, in Section 4.3 we provide an example of a
nontrivial choice of doubling round routine that can exploit the geometry of the context sets
for improved performance.

Throughout the following sections our regret upper bounds are stated with high-probability.
That is, we claim R(T, P) ≤ rate with probability at least 1 − O(δ) where rate has at
most O(log(1

δ
)) dependence on δ. However, under Assumptions 2 and 3, the total regret can

always be trivially bounded as O(LSTP). Thus, our high probability regret bounds can be
easily converted to upper bounds in expectation at the cost of only logarithmic factors by
setting δ ∝ (1

TP
)2, for example.

Linear Upper Confidence Bound (UCB) Algorithms

We first show how two natural algorithms, which are parallelized variants of the classic
LinUCB algorithm of [1], obtain the optimal sequential regret, up to a burn-in term, when

CHAPTER 4. PARALLEL LINEAR BANDITS 38

they satisfy Condition 1. In the following we use

θ̂t = arg min
θ

1

2

t−1∑
a=1

P∑
b=1

(ra,b − x>a,bθ)2 + λ‖θ‖2
2 (4.4)

to refer to the least-squares estimator using data until round t, and

Ct,p(θ̂t,Vt,p, βt, ε) = {θ : ‖θ − θ̂t‖Vt,p ≤
√
βt(δ) +

√
(t− 1)Pε} (4.5)

for Vt,p = λId +
t−1∑
a=1

P∑
b=1

xa,bx
>
a,b +

p−1∑
k=1

xt,kx
>
t,k where (4.6)

√
βt(δ) = R

√
log

(
det(Vt,0)

λdδ2

)
+
√
λS ≤ R

√
d log

(
1 + tPL2/λ

δ

)
+
√
λS (4.7)

to refer to a confidence ellipsoid which uses θ̂t as its center, but allows the matrix Vt,p (which
includes intra-round updates) to modulate the exploration directions. As we will argue, these
confidence ellipsoids satisfy the “optimism” property in that they contain the unobserved θ?

with high probability. We note that the confidence ellipsoids also include an addition term
∝ ε to accommodate the nonlinearity of the objective.

Algorithm 1 exploits parallelism in a simple fashion. It finds the best optimistic upper
bound on the reward in round t for each context and allocates each of its P parallel resources
to querying those arms. Although this seems redundant (if for example all the context sets
are equal), this strategy can still provide benefit because when Algorithm 1 queries a common
arm x, P times, the effective variance in the noise of the observed reward is reduced by a
factor of 1/P . As Theorem 2 shows, even this simple parallelism-enabled noise reduction
strategy can provide significant benefit.

Algorithm 2 naturally encourages diversity in its parallel exploration strategy within a
given round. Within a round t, Algorithm 2 queries new actions xt,p in the standard LinUCB
fashion via an optimistic approach with an important caveat: while the covariance matrix
is sequentially updated using the queried actions, a “stale” mean estimate (with data from
the first t − 1 round) is used in the construction of its corresponding confidence ellipsoid
since the rewards rt,p are not available intra-round. This update strategy exploits a key
property of the linear regression estimator used to construct the confidence ellipsoid. The
covariance matrix used to modulate exploration across directions does not depend on the
rewards rt,p (although the mean estimate does)3. One pitfall of such an approach is that
shrinking the predicted variance in the absence of corresponding observations can lead to
an “overconfident” algorithm which may incorrectly exclude the true parameter θ? from
its confidence set. We compensate this aggressive exploration strategy by also using a lazy
threshold width

√
2βt(δ) which is inflated by a small multiplicative factor to allay this effect.

Our main result follows which bounds the regret of both Algorithm 1 and Algorithm 2.

3This is closely related to the fact that the conditional covariance of jointly Gaussian random variable
only depends on the covariance of the original matrix.

CHAPTER 4. PARALLEL LINEAR BANDITS 39

Theorem 2. Let Assumptions 1, 2 and 3 hold and Dt denote the event that round t is a
doubling round (see Condition 1). Then, for any choice of doubling-round routine DR, the
regret of both Algorithms 1 and 2 satisfy,

R(T, P) ≤ O

(
LSP ·

T∑
t=1

1[Dt]

)
+ Õ

(√
dTP max(R

√
d+
√
λS +

√
TPε, LS)

)
(4.8)

with probability at least 1− δ.

We now make several comments to interpret the result.

• The second term in Theorem 2 represents the near-optimal (up to log factors) regret a
single processor could achieve in a total of TP rounds interacting with a bandit instance
in a purely sequential fashion4. The first term in Theorem 2 represents the price of
parallelization. Theorem 2 hints at the prospect of obtaining a near-optimal worst-
case regret (as T →∞) if the estimate of the covariance can be stabilized intra-round
(so the algorithms do not suffer too many doubling-rounds). Perhaps surprisingly we
show how the Condition 1 can be enforced such that the first term in Theorem 2 is
independent of T and d in the sequel. This can even be done in several cases when the
choice of the doubling-round routine DR is taken to be the identity map.

• Theorem 2 also explicitly represents the scales of noise, covariates and parameters,
and model misspecification (i.e. the values in Assumptions 1, 2 and 3) instead of
enforcing the standard normalizations these quantities are Θ(1) as is standard in the
bandits literature (see [57]). Explicitly representing these quantities allows a fine-
grained understanding of the interplay between parallelism and quantities such as snr,
which may vary from application to application.

• The cost of misspecification in the regret is high. An ε-level of misspecification5 con-
tributes a linearly-scaling regret of ε

√
dTP in both T and P . Balancing the trade-off

between the variance Õ(Rd
√
TP) and misspecification bias Õ(ε

√
dTP) is more nuanced

in the setting of sequential learning compared to that of i.i.d. supervised learning. In
particular Theorem 2 suggests that especially at long timescales and large levels of
parallelism, the errors compounded by using an inflexible feature set can easily over-
whelm the reduced exploration needed when regressing in a low-dimensional space. If
large values of P are desired using a flexible feature expansions (with a higher effective
dimension) may be desirable.

Section 4.3 provides several sufficient conditions under which the covariance stability can
be naturally satisfied. Further, Section 4.4 provides instances showing in the regime of
sufficiently large TP the regret bounds in Theorem 2 are unimprovable.

4The standard choice of regularizer in the sequential setting is taken as λ = L2.
5Note this is only non-vacuous when ε � LS/

√
d since the regret can always be trivially bounded by

O(LSTP) under our assumptions.

CHAPTER 4. PARALLEL LINEAR BANDITS 40

Linear Thompson Sampling (TS) Algorithms

Following Section 4.2, we show two parallel variants of linear Thompson sampling (TS) [5, 4,
2] can obtain optimal sequential regret, up to a burn in-term, when they satisfy Condition 1.
Despite being among the oldest bandit methods, and having worse worst-case theoretical
guarantees compared to their deterministic counterparts, Thompson sampling methods often
achieve excellent performance in practice [88, 73] .

We use the same notation as in Section 4.2 and refer to the least-squares estimator using
data until round t as θ̂t, and defined as in Equation 4.4, to describe our parallel TS variants.
Algorithm 3 is the corresponding Thompson sampling version of Algorithm 1. During each
round p ∈ [P], Algorithm 3 samples P independent candidate parameters {θ̃t,p}Pp=1 to induce

exploration over the parameter set. Solving the optimization problems argmaxx∈Xt,p
x>θ̃t,p

over the possibly processor dependent contexts Xt,p, induces p distinct arm choices for the
different processors {xt,p}Pp=1. While Algorithm 3 does not update the covariance of the

sampling distribution while producing each of the P candidate models {θ̃t,p}Pp=1, Algorithm 4
mirrors Algorithm 2. Algorithm 4 proceeds by sampling the model parameters sequentially
across the different processors, but updates the sampling covariance matrix in between each
sampling step intra-round.

Our main result is the following bound for Algorithms 3 and 4:

Theorem 3. Let Assumptions 1, 2 and 3 hold and Dt denote the event that round t is a
doubling round (see Condition 1). Then, for any choice of doubling-round routine DR, the
regret of both Algorithms 3 and 4 satisfy,

R(T, P) ≤ O

(
LSP ·

T∑
t=1

1[Dt]

)
+ Õ

(
d

√
TP

(
1 +

L2

λ

)(
R
√
d+ S

√
λ+
√
TPε

))
(4.9)

with probability at least 1− 3δ, whenever δ ≤ 1
6
.

We now make several comments on the result,

• Theorem 3 has a similar flavor to Theorem 2–allowing for near perfect parallelization
(as T → ∞) relative to the the sequential Thompson sampling algorithm when the
first term is independent of T 6. As before, Condition 1 can be enforced such that the
first term in independent of T .

• Note that even in the sequential setting, the regret of linear Thompson sampling suffers
an extra multiplicative

√
d factor relative to LinUCB [2], . The parallel variants of

Thompson inherit this
√
d factor as Theorem 3 shows. Despite this extra dimension-

dependent factor (which is needed to maintain the optimism property when using the
noisily sampled candidate models for exploration) the performance of the Thompson
sampling algorithm is often excellent in practice [73] which motivates its study.

6The standard bound for TS in the sequential setting can be obtained by setting λ = L2.

CHAPTER 4. PARALLEL LINEAR BANDITS 41

Algorithm 3 Parallel LinTS

Input: P, T,R, S, L, λ, ε, DR Routine.
1: for t = 1 : T do
2: Compute θ̂t, Vt,1, and βt as in (4.4), (4.6) and (4.7).
3: for p = 1 : P do
4: Sample ηt,p ∼ N (0, Id).
5: Compute parameter θ̃t,p = θ̂t +

(√
βt +

√
(t− 1)Pε

)
V
−1/2
t,1 ηt,p.

6: Given Xt,p, compute yt,p ← arg maxx∈Xt,p x>θ̃t,p.
7: end for
8: Compute Ṽt+1,1 = Vt,1 +

∑P
p=1 yt,py

>
t,p.

9: if Ṽt+1,1 � 2Vt,1 then
10: for p = 1 : P do
11: Set xt,p ← yt,p and query xt,p to receive reward rt,p

}
Executed In Parallel

12: end for
13: else
14: Set {xt,p}Pp=1 ← DR(Ft,P)
15: for p = 1 : P do
16: Query xt,p to receive reward rt,p

}
Executed In Parallel

17: end for
18: end if
19: end for

4.3 Stable Covariances

We demonstrate how Condition 1 can be naturally satisfied in a variety of settings. The
bounds presented here have a common structure which takes the form:

R(T, P) ≤ Õ

R√snr · P · κ︸ ︷︷ ︸
burn-in

+R(TP, 1)

 (4.10)

where R(TP, 1) captures the regret of that learning algorithm operating in purely sequential
fashion and κ is a geometry-dependent constant. The price of parallelism is factored into the
burn-in term. Although this term is subleading as T →∞, for many applications of interest
(such as protein engineering) it may be the case that P ∼ T or P � T . Thus understanding
the value of κ, as a function of the context set geometry, is a question of interest.

Arbitrary Contexts

Our first result shows in the general setting of linear contextual bandits, a uniform bound
holds on the number of doubling rounds for any sequence of actions selected.

CHAPTER 4. PARALLEL LINEAR BANDITS 42

Algorithm 4 Parallel Lazy LinTS

Input: P, T,R, S, L, λ, ε, DR Routine.
1: for t = 1 : T do
2: Compute θ̂t, and βt as in (4.6) and (4.7).
3: for p = 1 : P do
4: Compute Ṽt,p = Vt,1 +

∑p−1
k=1 yt,ky

>
t,k.

5: Sample ηt,p ∼ N (0, Id).
6: Compute parameter θ̃t,p = θ̂t +

(√
2βt +

√
2(t− 1)Pε

)
V
−1/2
t,p ηt,p.

7: Given Xt,p, compute yt,p ← arg maxx∈Xt,p x>θ̃t,p.
8: end for
9: Compute Ṽt+1,1 = Vt,1 +

∑P
p=1 yt,py

>
t,p.

10: if Ṽt+1,1 � 2Vt,1 then
11: for p = 1 : P do
12: Set xt,p ← yt,p and query xt,p to receive reward rt,p

}
Executed In Parallel

13: end for
14: else
15: Set {xt,p}Pp=1 ← DR(Ft,P)
16: for p = 1 : P do
17: Query xt,p to receive reward rt,p

}
Executed In Parallel

18: end for
19: end if
20: end for

Lemma 1. Let {Xt,p}T,Pt=1,p=1 be an arbitrary sequence of contexts. If Assumption 2 holds and
the covariance is estimated as in (4.7), then almost surely over any sequence xt,p of selected

covariates, the number of total doubling rounds is bounded by at most
⌈

d
log(2)

log
(

1 + TPL2

dλ

)⌉
.

Proof. First, note if round t is a doubling round, then there must exist some v ∈ Sd such
that v>Vt,P+1v > 2v>Vt,1v. An application of Lemma 12 shows this implies det(Vt,P+1) >
2 det(Vt,1). So if k doubling rounds elapse by the end of time T it must be the case that

det(VT,P+1) > 2k det(V1,0) =⇒ log
(

det(VT,P+1)

det(V1,0)

)
> k log(2). However by Lemma 11, for

any sequence of selected covariates satisfying Assumption 2, we have that log
(

det(VT,P+1)

detV1,0

)
≤

d log
(

1 + TPL2

dλ

)
. So it follows k <

⌈
d

log(2)
log
(

1 + TPL2

dλ

)⌉
.

Lemma 1 ensures in broad generality, the number of doubling rounds bounded by Õ(d).
Instantiating our previous results then gives,

CHAPTER 4. PARALLEL LINEAR BANDITS 43

Corollary 2. In the setting of Theorem 2, choosing λ = L2 and taking the doubling-routine
DR as the identity map, the regret of both Algorithms 1 and 2 satisfy,

R(T, P) ≤ Õ
(
R ·
(
P
√
snr · d+

√
dTP (

√
d+
√
snr +

ε

R

√
TP)

))
with probability at least 1− δ. In the setting of Theorem 3 with the choice λ = L2 and also
taking the doubling-routine DR as the identity map, the regret of Algorithms 3 and 4 satisfy,

R(T, P) ≤ Õ
(
R
(
P
√
snr · d+ d

√
TP (
√
d+
√
snr +

ε

R

√
TP
))

(4.11)

with probability at least 1− 3δ, whenever δ ≤ 1
6
.

Proof of Corollary 2. Note by Lemma 1, we must have that
∑T

t=1 1[Dt] ≤ d d
log(2)

log
(

1 + TPL2

dλ

)
e.

An application of Theorems 2 and 3 gives the result after choosing λ = L2.

We can interpret the result as follows.

• The baseline regret of Linear UCB and Lazy Linear UCB interacting in a purely se-
quential fashion (with the standard choice of regularizer λ = L2) for TP rounds scales
as,

R(TP, 1) ≤ Õ(R
√
dTP · (

√
d+
√
snr +

ε

R

√
TP)),

with analogous expression inflated by an extra
√
d holding for Thompson sampling

and Lazy Thompson sampling. The canonical normalizations for the noise, parameter,
and covariates in the literature assume snr = R = Θ(1) as well as ε = 0, which
simplifies to the oft-stated (and optimal) regret Õ(d

√
TP). In this case, if T ≥ Ω̃(P),

the regret of our parallel algorithms nearly matches the optimal worst-case regret of a
single sequential agent.

• The result in Corollary 2 suggests when we opt for a large choice of P , parallelism is par-
ticularly beneficial in the small snr regime. The fact that a low fidelity data-generation
process benefits parellelism may seem counter-intuitive. This property arises in part
because the algorithms we consider are optimistic – so environments with large snr
have large parameter norms necessitating the usage of large confidence sets which in-
duce more regret.

Arbitrary Contexts with a Stable Initializer

Our next result shows in the general setting of contextual bandits, choosing a large regularizer
guarantees a well-conditioned initialization for the empirical covariance that persists for all
time.

Lemma 2. Let Assumption 2 hold. Then almost surely over any sequence of selected xt,p,
the covariance estimate in (4.7) satisfies Condition 1 for all t ∈ [T] if λ = PL2.

CHAPTER 4. PARALLEL LINEAR BANDITS 44

Proof. Vt,p � Vt,1 follows immediately since Vt,p − Vt,1 =
∑p−1

k=1 xt,kx
>
t,k � 0. To show

the second conclusion, consider an arbitrary vector v ∈ Sd. Then v>Vt,pv = v>Vt,1v +
v>
∑p−1

k=1 xt,kx
>
t,kv ≤ v>Vt,0v + pL2 ≤ v>Vt,1v + v>(λI)v ≤ 2v>Vt,1v under the setting of

the result, which gives the conclusion.

Lemma 2 shows with appropriate choice of regularizer, no round is ever a doubling
round for the standard estimate of the empirical covariance. Combining with our previous
guarantees gives,

Corollary 3. In the setting of Theorem 2, if the regularizer is chosen as λ = PL2 and the
doubling-routine DR taken as the identity map, then the regret of Algorithms 1 and 2 satisfy,

R(T, P) ≤ Õ
(
R
√
dTP ·

(√
d+
√
snr
√
P +

ε

R

√
TP
))

with probability at least 1−δ. In the setting of Theorem 3 if λ = PL2 and the doubling-routine
DR taken as the identity map, the regret of Algorithms 3 and 4 satisfy,

R(T, P) ≤ Õ
(
Rd
√
TP

(√
d+
√
snr
√
P +

ε

R

√
TP
))

with probability at least 1− 3δ, whenever δ ≤ 1
6
.

Proof of Corollary 3. The result follows by combining Lemma 2 with Theorems 2 and 3 since
no round is a doubling round for all t ∈ [T].

We now make several comments on the result.

• A large regularizer ensures a stable covariance estimate (and no doubling rounds),
but comes at the cost of introducing additional bias (depending on P) into the least-
squares estimate. Such bias factors into the second term of the regret since it must be
compensated for by using wider confidence sets in the algorithms. Moreover, such a
bias results in error that scales multiplicatively in regret as

√
T .

• For P ·snr ≤ Õ(d), by Corollary 3, the regret of our parallel algorithms nearly matches
the optimal worst-case regret of a corresponding single sequential agent.

Finite Context Sets

Next we show how structure in the context set (in this case, finiteness of the action space)
can be leveraged to bound the number of doubling rounds without modifying the standard
choices of the hyperparameters for the optimistic algorithms considered here.

Lemma 3. Let Xt,p ⊂ X = {xi}mi=1 for all t ∈ [T], p ∈ [P] where |X | = m is a finite set
of vectors. If Assumption 2 holds and the covariance is estimated as in (4.7), then almost
surely over any sequence xt,p of selected covariates, the number of total doubling rounds is
bounded by at most m · log2(dP e).

CHAPTER 4. PARALLEL LINEAR BANDITS 45

Proof. We first recall from Condition 1 that in a doubling round at time t

Vt,P+1 6� 2Vt,1. (4.12)

If Xt,p ⊂ X = {xi}mi=1 where |X | = m is a finite set of vectors, then

Vt,1 = λId +
m∑
i=1

wt,1(i)xix
>
i

Where wt,1(i) corresponds to the number of times action xi has been played by all processors
up to and including all P actions played at time t − 1. Whenever t is a doubling round
and (4.12) holds, there must exist i ∈ [m] such that

wt,P+1(i) > 2wt,1(i). (4.13)

since otherwise for all i it would hold that wt,P+1(i) ≤ 2wt,1(i) implying that Vt,P+1 � 2Vt,1

contradicting (4.12). Observe that each time (4.13) holds, wt,P+1(i) − wt,1(i) > wt,1(i),
implying that during round t arm i was pulled more times than the total number of times
it has been pulled thus far. Then, for all i ∈ [m], the difference wt,P+1(i)− wt,1(i) ≤ P and
therefore for any i ∈ [m] condition (4.13) cannot hold for more than dlog2(P)e iterations.
Since there are only m underlying vectors in the contexts the result follows.

This observation implies a bound for our parallel bandit algorithms over finite context
sets:

Corollary 4. In the setting of Theorem 2, assume the context sets Xt,p ⊂ X for all t ∈
[T], p ∈ [P] where |X | = m is a finite set of vectors. Then choosing λ = L2 and taking the
doubling-routine DR as the identity map, the regret of both Algorithms 1 and 2 satisfy,

R(T, P) ≤ Õ
(
R ·
(
P
√
snr ·m+

√
dTP (

√
d+
√
snr +

ε

R

√
TP)

))
with probability at least 1− δ. In the setting of Theorem 3 with the choice λ = L2 and also
taking the doubling-routine DR as the identity map, the regret of Algorithms 3 and 4 satisfy,

R(T, P) ≤ Õ
(
R
(
P
√
snr ·m+ d

√
TP (
√
d+
√
snr +

ε

R

√
TP
))

(4.14)

with probability at least 1− 3δ, whenever δ ≤ 1
6
.

Proof of Corollary 4. By Lemma 3, we have that
∑T

t=1 1[Dt] ≤ mdlog2(P)e. An application
of Theorems 2 and 3 gives the result after choosing λ = L2.

We now interpret this result.

CHAPTER 4. PARALLEL LINEAR BANDITS 46

• As before, the second terms in Corollary 4 captures the effect of perfect parallel speed-
up–it is the regret that a single agent would achieve playing for a total of TP rounds
while the first term in Corollary 4 is a burn-in term that bounds the number of rounds
which may not be doubling rounds.

• Relative to Corollary 2 the scaling on the burn-in term ∝ P , contains a factor m
instead of d. Thus, if m � d, Corollary 4 shows how the algorithms considered here
can take advantage of additional structure in the context set to mitigate the the cost
of parallelism.

• The Proof of Corollary 4 does not exploit any correlation structure in the action set to
bound the number of doubling rounds–for example, clusters of arms that are tightly
bunched together in the global context space under a suitable notion of distance. Un-
der natural conditions on the action set, sharper instance-dependent bounds may be
possible.

Rich Context Sets

Finally we consider a setting where we are presented with a sequence of context sets Xt,p
with regularity structure we formally define as follows,

Definition 2. The contexts Xt,p and distributions πt,p(·) are a pair of rich exploration con-
texts/distributions if there exists χ2, π2

max and π2
min such that,

• x ∼ πt,p(·) satisfies x ∈ Xt,p almost surely for all t ∈ [T], p ∈ [P].

• For any sequence xt,p ∈ Xt,p selected by the bandit algorithm for t ∈ [T],
∑P

p=1 xt,px
>
t,p ≤

Pχ2I.

• Given xt,p ∼ πt,p(·), with population mean and covariance defined as, E[xt,p] = µt,p
and E[(xt,p − µt,p)(xt,p − µt,p)

>] = Σπt,p , we have that π2
maxI � Σπt,p � π2

minI for all
t ∈ [T], p ∈ [P].

Intuitively, Definition 2 guarantees the sequence of presented contexts are (1) sufficiently
similar since there is a common p.s.d. ordering for the covariances across all contexts and
(2) sufficiently cover all directions in Rd when the parameters χ2, π2

max and π2
min are of the

same order. If these conditions are satisfied then exploration distributions exist which can
uniformly explore all directions of the underlying context sets well. We now provide a simple
example of a set of stochastically generated contexts which obey Definition 2. For each
processor, let there be a single context set randomly generated as Xp = {x : x ∼ D(·)}mi=1

where D(·) is a O(1)-subgaussian and O(1)-bounded distribution in Rd such that Xt,p = Xp
for all t ∈ [T], p ∈ [P]. Now define πt,p(·) as the uniform distribution over all the vectors
in a given context Xp at time t. Then using a simple matrix concentration argument, we

CHAPTER 4. PARALLEL LINEAR BANDITS 47

Algorithm 5 Random Exploration Subroutine

Input: πt,p(·).
1: for p = 1 : P do
2: Sample xp ∼ πt,p(·)
3: end for
4: return {xp}Pp=1

can verify there exists χ2 ≤ Õ(1/d), π2
max ≤ Õ(1/d) and π2

min ≥ Ω̃(1/d) in Definition 2 when
P ≥ Ω̃(d) (with probability at least 1− δ over the randomness in D(·) and π(·)).

Sampling from a rich exploration policy (when it exists) can serve as effective doubling-
round subroutine, since it can help stabilize the covariance intra-round in later rounds. Ran-
dom exploration helps stabilize the covariance in later rounds as a consequence of concentra-
tion: given a set of randomly sampled covariates {xi,p}N,Pi=1,p=1, we expect 1

NP

∑N
j=1

∑P
p=1 xi,px

>
i,p ≈

Σπ, where Σπ ≈ Σπt,p for all t ∈ [T], p ∈ [P]. So if a significant number of doubling rounds
occur (during which Algorithm 5 is used as DR), then later rounds are unlikely to be doubling
rounds since the covariance matrix will have a large component proportional π2

minI � Σπ in
its spectrum.

Using this idea we obtain,

Corollary 5. In the setting of Theorem 2, assume Definition 2 holds for some rich ex-
ploration policies, {πt,p(·)}T,Pt=1,p=1, and context pairs, {Xt,p}T,Pt=1,p=1. Then choosing λ = L2

and taking the doubling-routine DR as Algorithm 5 with these πt,p(·), the regret of both
Algorithms 1 and 2 satisfy,

R(T, P) ≤ Õ

(
R ·
(√

snr ·
(
L2π2

max

π4
min

+ P
χ2

π2
min

)
+
√
dTP (

√
d+
√
snr +

ε

R

√
TP)

))
with probability at least 1− 2δ. In the setting of Theorem 3 with the choice λ = L2 and also
taking the doubling-routine DR as Algorithm 5 with this πt,p(·), the regret of Algorithms 3
and 4 satisfy,

R(T, P) ≤ Õ

(
R

(√
snr ·

(
L2π2

max

π4
min

+ P
χ2

π2
min

)
+ d
√
TP (
√
d+
√
snr +

ε

R

√
TP

))
with probability at least 1− 4δ, whenever δ ≤ 1

6
.

We can provide further intepretation of this result as follows.

• The guarantee presented here resembles that of Corollary 4. However, here the coef-
ficient on the burn-in term (which bounds the number of doubling rounds) scales as
L2π2

max

π4
min

+ P χ2

π2
min

and is valid even for infinite context sets7. The scaling with χ2

π2
min

is

7Recall the coefficient in Corollary 4 scales as m where is a bound on the number of distinct vectors in
the presented contexts.

CHAPTER 4. PARALLEL LINEAR BANDITS 48

natural. Quantities proportional to χ2

π2
min

represent the cost of the non-homogeneous

geometry of the presented contexts.

• In contrast to Corollaries 2, 3 and 4, Corollary 5 takes advantage of a common geometric
structure in the presented contexts Xt,p. Corollary 4 is applicable to general context
sets (for which we may have π2

min ≈ 0). However, if m = Θ(exp(d)) for example, the
guarantee degrades badly. Similarly, Corollary 2 has a burn-in term scaled by d. If the
context sets are well-conditioned, in the sense that χ2

π2
min
� d, then the parallelism cost

here is significantly lower then in the aforementioned cases.

• In the example of rich context sets/distributions pair presented in the text, we can

have L2π2
max

π4
min

+ P χ2

π2
min
≤ Õ(P) with high probability when P & Ω̃(d). As P → ∞, the

burn-in term only scales as Õ(P), which up to logarithmic factors, is free of any explicit
dependence on the size of the context sets.

4.4 Parallel Regret Lower Bounds

Lastly, we show that the upper bounds on the parallel regret provided in the previous
sections are nearly matched by complementary information-theoretic lower bounds on the
parallel regret under natural parameter scalings. Our regret lower bounds seek to capture
two specific terms. The first is the regret induced by the learning and optimally playing θ?

for a well-specified model and the second is the cost of misspecification. Together this is
captured in,

Theorem 4. For any parallel bandit algorithm, there exists bandit environments satisfying
Assumptions 1, 2 and 3,

1. such that when ε = 0 there is a single global context set (i.e. X = Xt,p for all t ∈
[T], p ∈ [P]) for which,

E[R(T, P)] ≥ Ω
(
Rd
√
TP
)

(4.15)

when T ≥ dmax(1, 1
3
√

2
√
snr

),

2. and a single (finite) global context set with m vectors such that when d = d8 log(m)/ε2e,
R = 0 and LS ≥ 1,

E[R(T, P)] ≥ Ω

(
ε

√
d− 1

log(m)
·min(TP,m− 1)

)
. (4.16)

The proof of Theorem 4 reposes on three separate parts. The first component is a
reduction which argues the minimax regret of a parallel bandit algorithm, presented with
contexts fixed across processors, must be at least as much as its sequential counterpart given

CHAPTER 4. PARALLEL LINEAR BANDITS 49

access to the same number of total arm queries. The first part of Theorem 4 then follows
from a standard construction for lower bounding the sequential regret of a bandit instance
when the context set is taken to be a sphere. The second part is a (noiseless) lower bound
which uses a probabilistic argument to witness a finite context set, function f , and θ? for
which the misspecification level must show up multiplicatively in the regret. We now make
several comments to further interpret these results.

• Together the terms (4.15) and (4.16) show the main components of Theorem 2 are
unavoidable – in particular the term corresponding to the variance of learning Rd

√
TP

and the term capturing the magnitude of misspecification ε
√
dTP .

• The first term (4.15) in Theorem 4, captures the variance of learning under optimism
in the parallel regret. For this portion of the lower bound, the context set is taken to be
the sphere which satisfies the conditions of a rich exploration set when the exploration
distribution is taken as the uniform distribution over the spherical shell (here ` = L).
Hence for snr . d and ε = 0, the guarantee from Corollary 5 matches this lower bound
up to logarithmic factors for sufficiently large T . Similarly in the regime P . d, the
guarantee from Corollary 3 which holds in the absence of any additional structure on
the context sets, also matches this lower bound up to logarithmic factors when ε = 0.

• To gain further intuition for (4.16) it is helpful to consider the high-dimensional scaling
limit where m = Θ(dk) for k � 1 and TP � m. Then under the conditions of the
result, we can see for any ε there exists a sufficiently large d so that the parallel
regret satisfies ≥ Ω̃(ε

√
dTP). Hence (in the realistic regime) where the context set

contains large numbers of context vectors and there are not sufficiently many queries
to observe all m of them, the ε

√
dTP in the regret within Theorem 2 is unavoidable

up to logarithmic factors.

• Capturing the necessity of the “burn-in” terms, which represent the price of parallelism
in our upper bounds, is an interesting but challenging research direction. In particular,
because in many applications the information-theoretic limits of learning when P ∼ T
may be of interest. However, the interplay between the structure of the context set
and the burn-in terms in the upper bounds in Corollaries 2, 3, 4 and 5 seems quite
nuanced8. Any such lower bounds capturing these dependencies will likely need to be
constructed on a case-specific basis for different context set geometries as well as be
geared towards the small T regime.

8Note that an additive dependence of Ω(P) must at least be necessary, since at time T = 1 the algorithm
must make P queries to an arbitrary set of contexts in the absence of any information about the underlying
bandit environment.

CHAPTER 4. PARALLEL LINEAR BANDITS 50

4.5 Experiments

Here we explore the performance of the parallel linear bandit algorithms presented in this
paper on several synthetic and real problem instances of increasing complexity. While anal-
ysis in the bandits literature is often focused on minimizing regret, in the batch setting best
arm identification may be of primary interest for some practical design settings where no
cost is incurred for additional arms after the best performing arm within a round. Hence,
we explore the performance of our family of algorithms in both parallel regret and best arm
identification.

In the synthetic data settings, we investigate both a perfectly linear setting and a mis-
specified setting generated from the output of a randomly initialized neural network. The
real data instances are derived from a material science and biological sequence design appli-
cations to provide breadth across a variety of context set geometries and application-specific
behaviors. In the real data settings, we consider the performance over parallel variants of all
algorithms considered herein against a baseline which is the ε-greedy algorithm. Note that
this baseline makes no structural assumptions on the conditional model yi|xi (and as such
is “unbiased”) but also is not able to take advantage of the covariates xi, since it doesn’t
construct a regression model to guide exploration.

For all experimental setups, we fix the total number of arm queries TP and run with
3 different levels of parallelism (i.e. P = {1, 10, 30} for the superconductor setting and
P = {1, 10, 100} for all others) over 30 separate trials. All algorithms use a doubling round
routine which is set to the identity map. As is common, for both Thompson sampling
variants, we avoided inflating the confidence set radius by the additional

√
d factor so it

matches the confidence sets of the other algorithms. The misspecification parameter was set
to 0 for all experiments. The hyperparameters of each algorithm were tuned via a post-hoc
grid search over a logarithmically-spaced grid for the random neural network and real data
experiments (see Section 4.7 for details) as in [30].

Synthetic Experiments

We begin by testing the ability of our optimistic algorithms to parallelize on simulated data.
We consider a problem in d = 100 with a linear reward oracle whose underlying parameter
θ?/‖θ?‖ for θ? ∼ N (0, Id) subject to Gaussian additive noise ε ∼ N (0, 1). We then generate
a fixed, global context set X = {xi/‖xi‖2}mi=1 for xi ∼ N (0, Id) with m = 104 actions. We
then set Xt,p = X for all t ∈ [T] and p ∈ [P]. The hyperparameters of the algorithms were
chosen according to their theoretically-motivated values λ = 1, R = 1, S = 1 with δ = 1/T .
As Fig. 4.1 shows, the parallel versions of each of the algorithms asymptotically achieve a
nearly perfect speed-up with respect to parallelism as measured by the regret. As T → ∞
the performance of the different types of base algorithms are comparable.

Next we investigate the parallelism of our methods under changing context sets. We
generate a random context set Xt,p = {xi/‖xi‖2}mi=1 for xi ∼ N (0, Id) with m = 104 actions
for each timestep-processor pair (t, p) with hyperparameters set as before. Once again we

CHAPTER 4. PARALLEL LINEAR BANDITS 51

see in Fig. 4.2 that each algorithm achieves near perfect speed-up as measured by parallel
regret and all base algorithms are asymptotically comparable.

Finally, from our theoretical results we recall the importance of the covariances Vt,p

remaining quasi-static intra-round. We examine this behavior in the synthetic linear reward
setting by determining the minimal doubling round coefficient αmin

t,p for each arm query
which satisfies 0 � αVt,1 −Vt,p, we call α the doubling round coefficient. That is, for any
doubling round coefficient α ≥ αmin

t,p for all p ∈ [P], the critical covariance inequality is
satisfied and no doubling round is triggered for that round. Note that in our theoretical
results, we arbitrarily set α = 2 for our analysis. As before, we generate a fixed global
context and theoretically-motivated hyperparameter values, but this time with d = 20 and
m = 103. We then run the algorithms without calling any doubling round routines and
observe how the doubling round coefficient changes through time for P = 100. At each
(t, p) timestep, we compute αmin

t,p and plot it against the number of arm queries as shown in
Fig. 4.3. As expected, we qualitatively notice a sawtooth pattern in all algorithms as the
minimal doubling round coefficient increases for fixed t as the covariance Vt,p gets updated
for each additional processor p which then resets back down at the end of each round.
Additionally, all algorithms experience a dropoff in minimal doubling round coefficient with
each successive round indicating that the covariance gets more stable as more arms are
queried with all algorithms having an essentially flat αmin

t,p near 1 as t ≥ 2000. Finally, we
observe that in the fixed context setting where diversity of arms isn’t introduced via the
context, LinUCB has the highest doubling round coefficients since the algorithm chooses the
same arm for all processors leading for significant changes in the shape of the covariance
within a round making the algorithm susceptible to overconfidence. Note that the other 3
algorithms have much smaller doubling round coefficients for a much shorter time due to the
increased diversity in actions played in the bandit algorithm.

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l R

eg
re

t

1e4 LinUCB
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l R

eg
re

t

1e4 Lazy LinUCB
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l R

eg
re

t

1e4 LinTS
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

Pa
ra

lle
l R

eg
re

t

1e4 Lazy LinTS
P=1, T=100000
P=10, T=10000
P=100, T=1000

Figure 4.1: Fixed context setting. From left to right: Regret of LinUCB, Lazy LinUCB,
LinTS, and Lazy LinTS for varying values of P . The mean regret is plotted across 30 runs
with the standard deviation as the shaded region. Here d = 100, m = 104.

CHAPTER 4. PARALLEL LINEAR BANDITS 52

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pa
ra

lle
l R

eg
re

t

1e3 LinUCB
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pa
ra

lle
l R

eg
re

t

1e3 Lazy LinUCB
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pa
ra

lle
l R

eg
re

t

1e3 Lazy LinUCB
P=1, T=100000
P=10, T=10000
P=100, T=1000

0.0 0.2 0.4 0.6 0.8 1.0

Total Arm Queries 1e5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pa
ra

lle
l R

eg
re

t

1e3 Lazy LinTS
P=1, T=100000
P=10, T=10000
P=100, T=1000

Figure 4.2: Changing context setting. From left to right: Regret of LinUCB, Lazy LinUCB,
LinTS, and Lazy LinTS for varying values of P . The mean regret is plotted across 30 runs
with the standard deviation as the shaded region. Here d = 100, m = 104.

0 500 1000 1500 2000 2500

Total Arm Queries
0

20

40

60

80

100

Do
ub

lin
g

Ro
un

d
Co

ef
f LinUCB

0 500 1000 1500 2000 2500

Total Arm Queries

0

20

40

60

80

100

Do
ub

lin
g

Ro
un

d
Co

ef
f Lazy LinUCB

0 500 1000 1500 2000 2500

Total Arm Queries
0

20

40

60

80

100
Do

ub
lin

g
Ro

un
d

Co
ef

f LinTS

0 500 1000 1500 2000 2500

Total Arm Queries

0

20

40

60

80

100

Do
ub

lin
g

Ro
un

d
Co

ef
f Lazy LinTS

Figure 4.3: Doubling round coefficients. From left to right: doubling round coefficients of
LinUCB, Lazy LinUCB, LinTS, and Lazy LinTS. The mean coefficient is plotted across 30
runs with the standard deviation as the shaded region and d = 20, m = 103, and P = 100.

Randomly Initialized Neural Network Data

Recent studies ([7], [18]) have modeled fitness landscapes from biological sequence design
problems with randomly initialized neural networks as both share many statistical prop-
erties in common. Furthermore, randomly initialized neural network exhibit nearly linear
properties which are essential to the guarantees for our algorithms as demonstrated in the
prequel while deviating from a linear model enough to serve as a good testbed for model
misspecification. The “biological sequence” input is modeled as a 14-length binary string
xi ∈ {0, 1}14 (m = 16, 384 sequences) to mimic the combinatorial nature of biological se-
quences. The fitness landscape f(xi) is modeled by a feedforward neural network with 3
hidden layers (of size 128, 256, and 512 hidden units) where each weight is i.i.d. sampled
via Xavier initialization w ∼ Unif(−

√
6/(hi + hi+1),

√
6/(hi + hi+1) where hi is the number

of units in layer i. The output yi of the randomly initialized feedforward neural network
can be thought of as the oracle fitness landscape which we wish to optimize. Note unlike
in common use cases for neural networks the initialized weights are never modified. To
model experimental noise, we add Gaussian noise to generate the reward ri = yi + εi where

CHAPTER 4. PARALLEL LINEAR BANDITS 53

εi ∼ N (0, 0.52).
Our family of bandit algorithms were run with both linear features only (d = 14) and

quadratic features (d = 210). In this setting, we first verify that a linear model is appropriate.
The best fit linear model for linear features and quadratic features had an R2 of 0.7 and
0.87, respectively.

As Fig. 4.4 demonstrates the quadratic feature setting, the variance between runs of the
parallel regret for the lazy methods tends to be much higher than the non-lazy methods
due to the correlation of covariance updates within a batch. LinUCB performs the best
upfront in the purely sequential setting due to the high early round cost that Thompson
sampling pays upfront while paying a much lower price in regret in successive rounds. In
higher parallelism regimes, Thompson sampling performs the best in terms of parallel regret
after the first few hundred arm queries. This indicates that Thompson sampling benefits
from encouraging diversity.

In comparison as shown in Fig. 4.8, the linear features perform demonstrably worse
in terms of parallel regret than the quadratic features in just a few hundred arm queries
across all levels of parallelization. Furthermore, the performance of LinUCB in the linear
feature setting suffers most significantly relative to the other methods further confirming
that diversity is important in settings of model misspecification.

4 2 0 2 4
Fitness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

De
ns

ity

Fitness Histogram

0 1 2 3 4 5
Total Arm Queries 1e3

1

0

1

2

3

4

5

6

Pa
ra

lle
l R

eg
re

t

1e2 P=1, T=5000
TS
LinUCB

0 1 2 3 4 5
Total Arm Queries 1e3

0

1

2

3

4

Pa
ra

lle
l R

eg
re

t

1e3 P=10, T=500
TS
Lazy TS
Lazy LinUCB
LinUCB

0 1 2 3 4 5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

lle
l R

eg
re

t

1e4 P=100, T=50
TS
Lazy TS
Lazy LinUCB
LinUCB

Figure 4.4: Top Left: The histogram of fitness values for the RandomNN dataset. Top right:
The parallel regret of the purely sequential setting for 5000 queries with a noise standard
deviation of 0.5. Bottom Left: The parallel regret for P = 10. Bottom Right: The parallel
regret for P = 100. The mean regret and standard deviation are plotted as the solid line
and shaded region in all plots.

Superconductor Data

To assess the utility of the parallel bandit algorithms in a realistic setting we constructed
a semi-synthetic problem using the UCI dataset in [35] consisting of a collection of super-
conducting materials along with their maximum superconducting temperature. The dataset
consists of m = 21, 263 superconducting materials, each with a d = 81-dimensional feature

CHAPTER 4. PARALLEL LINEAR BANDITS 54

vector, xi, containing relevant attributes of the materials chemical constituents and a super-
conducting critical temperature yi. We construct a finite-armed bandit oracle over the m
arms which returns a reward ri = yi + εi for εi ∼ N (0, 1002) (since maxi yi = 185.0). The
task in this example is to find the best (highest temperature) superconducting material (or
arm as measured by yi) given access to a total number of arm queries � m.

0 25 50 75 100 125 150 175

Fitness
0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Fitness Histogram

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SC
 T

em
pe

ra
tu

re
 o

f B
es

t
1e2 P=1, T=3000

LinUCB
TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SC
 T

em
pe

ra
tu

re
 o

f B
es

t

1e2 P=10, T=300

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

SC
 T

em
pe

ra
tu

re
 o

f B
es

t

1e2 P=30, T=100

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

Figure 4.5: Leftmost: Fitness Histogram of Landscape. Left to right: Regret of all algorithms
for P = 1, 10, and 30, respectively. Here the best superconducting material (by temperature)
as determined by the algorithm at the time is displayed. Curves are also smoothed by a
moving-average over a window of size 30 for clarity.

As Fig. 4.5 shows, although ε-greedy is a simple algorithm, it can achieve reasonable
performance (at the cost of high variance), when P = 1. Indeed prior work has shown
that other greedy (linear bandit) algorithms are formidable baselines in setting with diverse
covariates [12]. However, in our setting, it is still outperformed by all the linear bandit
algorithms studied herein. We also see all algorithms quickly saturate to find superconducting
materials with temperatures yi ≈ 120.

In the cases of P = 10, and P = 30 we see all the parallel variants of the linear algorithms
studied herein achieve non-trivial parallelism gains; that is the number of sequential rounds
needed to discover this best material does not scale linearly with P for any of the methods.
Remarkably, Thompson sampling suffers almost no loss in performance even when P = 30 in
this setting with real data where model misspecification is in full force. Thompson sampling
outperforms all other algorithms when P = 10 and P = 30. As our results show, explicitly
introducing diversity into the selection of actions provides value in this setting.

Transcription Factor Binding

In order to evaluate the effectiveness of the family of proposed parallelized linear bandit
algorithms in a realistic biological sequence design setting, we utilized a fully characterized
experimental transcription factor binding affinity dataset from [11] (using the software pack-
age in [83]). Changes in transcription factor binding affinity has been shown to have impact
on gene regulatory function and subsequently is associated with disease risk. The dataset

CHAPTER 4. PARALLEL LINEAR BANDITS 55

experimentally characterizes the binding affinity of all possible length-8 DNA sequence mo-
tifs (m = 48 = 65, 536) to a transcription factor DNA binding domain providing a good
benchmark for our bandit methods in a real biological application with the combinatorial
structure common in biological sequence design. In this setting the number of arms m is
O(exp(d)).

Often in biological sequence design problems quadratic features are used to model pair-
wise interactions (referred to as epistasis in biology). We compared linear features with
random ReLU features and a quadratic kernel and found linear features work best in and
provide additional insight in Section 4.7.

The fully characterized landscape allows for exact computation of parallel regret and
analysis of the impact of realistic forms of model misspecification. Each arm xi was one-
hot encoded. The scaled binding affinity yi ∈ [0, 1] measured the binding of the arm xi
for the SIX6 REF R1 transcription factor target. The finite-armed bandit oracle as in the
superconductor setting was modeled as ri = yi + εi where εi ∼ N (0, 0.32). The task for this
application is to find the sequence with the highest transcription factor binding affinity.

In evaluating the best arm reported across varying levels of parallelism, we can see that
LinUCB and ε-greedy consistently performs the worst with the other 3 algorithms(Lazy
LinUCB, Thompson sampling, and Lazy Thompson sampling) perform comparably. This
implies that diversity of arms is important particularly when the model is misspecified. Note
that the right tail of the fitness histogram is rather heavy for this task such that getting to
an arm with fitness above 0.9 is rather simple in the noiseless setting and can be optimized
in few arm queries as was shown in [7]. However, since biological experiments often have
large experimental error we add noise with standard deviation of 0.3 making the problem
significantly harder leading to worse performance of algorithms preventing ε-greedy from
beating the 0.9 threshold at all. Similarly, we find the same relative performance of methods
in terms of parallel regret as shown in Section 4.7.

0.0 0.2 0.4 0.6 0.8 1.0
Fitness

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Fitness Histogram

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=1, T=2500

LinUCB
TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=10, T=250

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=100, T=25

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

Figure 4.6: TFBinding best arm with linear features. Leftmost: The fitness distribution of
the dataset. From left to right: The best smoothed binding affinity for each round with error
bars indicating standard deviation with P = 1, 10, and 100, respectively.

CHAPTER 4. PARALLEL LINEAR BANDITS 56

4.6 Conclusion

In this work, we present several parallel (contextual) linear bandit algorithms inspired by
the optimism principle. Utilizing the notion of covariance stability, we provide a unified
analysis of their regret in a variety of settings. Our regret upper bounds establish the
performance of these algorithms is nearly identical to their sequential counterparts (with the
same total number of arm queries) up to a burn-in term which may depend on the context
set geometry. Finally, we show that the parallelism gains suggested by our theory can also
be achieved in several real datasets motivated by practical design problems and demonstrate
the importance of diversity in problems that contain model misspecification. Interesting
directions for future work including extending the results herein to a suitably defined notion
of best-arm identification. Similarly, understanding the impact of parallelism in simple,
greedy heuristic algorithms (which nonetheless perform well in practice [12, 83]) is another
important direction. Another interesting direction is leveraging parallel processors to devise
online model selection and hyperparameter tuning strategies. Lastly, in applications such as
protein engineering, it is often of interest to discover a diverse set of high-reward sequences
under suitable notions of diversity.

4.7 Additional Experimental Details

In this section we provide all of the experimental details for training the bandit algorithms.

Hyperparameters

The synthetic hyperparameters were fixed to the theoretical values. For the randomly ini-
tialized neural network experiments, the grid for the regularizer λ, norm bound S, and
noise subgaussianity R were: {0.01, 0.1, 1.0, 10.0, 100.0} which was selected post-hoc for
each experiment. For the superconductor experiments, the grid for all 3 parameters were:
{0.1, 1.0, 10.0}. For the transcription factor binding dataset, the parameters grid was λ =
{1.0, 10.0}, R = {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}, and S = {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}.
For ε-greedy, the parameter grid was set over ε = {0.01, 0.02, . . . , 0.99} across all relevant
experiments.

Feature Engineering for Random Neural Network

Two feature sets were considered:

• Linear features xi was encoded as a 14-length feature vector

• Linear + Quadratic features where interaction terms of xi were included in 105 quadratic
features alongside the original 14 linear features into a 119 features.

The resulting parallel regret plots are shown in Fig. 4.8.

CHAPTER 4. PARALLEL LINEAR BANDITS 57

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

lle
l R

eg
re

t

1e3 P=1, T=2500
LinTS
LinUCB

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

lle
l R

eg
re

t

1e3 P=10, T=250
LinTS
Lazy LinTS
Lazy LinUCB
LinUCB

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pa
ra

lle
l R

eg
re

t

1e3 P=100, T=25
LinTS
Lazy LinTS
Lazy LinUCB
LinUCB

Figure 4.7: TFBinding parallel regret with linear features. From left to right: P = 1, P = 10,
and P = 100.

0 1 2 3 4 5
Total Arm Queries 1e3

0

1

2

3

4

5

Pa
ra

lle
l R

eg
re

t

1e3 P=1, T=5000
TS
LinUCB

0 1 2 3 4 5
Total Arm Queries 1e3

0

1

2

3

4

5

6

Pa
ra

lle
l R

eg
re

t

1e3 P=10, T=500
TS
Lazy TS
Lazy LinUCB
LinUCB

0 1 2 3 4 5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa
ra

lle
l R

eg
re

t

1e4 P=100, T=50
TS
Lazy TS
Lazy LinUCB
LinUCB

Figure 4.8: RandomNN with Linear features. From left to right: P = 1, P = 10, and
P = 100.

Feature Engineering for Transcription Factor Binding

Three feature sets were considered:

• Linear features xi was one-hot encoded into a 32-length feature vector.

• 250 random ReLU features where a 250× 32 random matrix W is sampled such that
Wij ∼ Normal(0, 1). Then, the feature map was evaluated as:

φ(xi) =
1√
250

ReLU

(
Wxi√

32

)

CHAPTER 4. PARALLEL LINEAR BANDITS 58

• Linear + Quadratic features where xi was one-hot encode and all 32 linear features
and 528 quadratic features were combined into a 560-length vector.

The off-line test R2 (without added noise in the yi) on a train set of TP = 2500 matching
the number of total arm queries yields values 0.15, 0.26, 0.29 for linear, ReLU, and quadratic
respectively. This matches with the number of features and level of expressivity of the model
class. However, as shown in Figs. 4.9 and 4.10 the linear features perform the best followed
by the ReLU features, and then the quadratic features. One can gain further insight by
examining the off-line test R2 for a smaller training size and see that the larger feature
expansions accrue variance making the linear features perform the best. This matches our
understanding that model fitting is less statistically efficient in an online setting.

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=1, T=2500

LinUCB
TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=10, T=250

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=100, T=25

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

Figure 4.9: TFBinding best arm with ReLU features. From left to right: P = 1, P = 10,
and P = 100.

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=1, T=2500

LinUCB
TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=10, T=250

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

0.0 0.5 1.0 1.5 2.0 2.5
Total Arm Queries 1e3

0.0

0.2

0.4

0.6

0.8

1.0

Bi
nd

in
g

Af
fin

ity
 o

f B
es

t

P=100, T=25

LinUCB
Lazy LinUCB
TS
Lazy TS
Eps Greedy

Figure 4.10: TFBinding best arm with quadratic features. From left to right: P = 1, P = 10,
and P = 100.

CHAPTER 4. PARALLEL LINEAR BANDITS 59

4.8 Proofs

In this section we provide the proofs of the regret upper bounds and lower bound for all of
the algorithms considered.

Proofs for Section 4.2

Here we include the Proof of Theorem 2.

Proof of Theorem 2. We first decompose the regret for Algorithm 1 by splitting into the
linear term and misspecification component.

R(T, P) =
T∑
t=1

(
P∑
p=1

f(x?t,p)− f(xt,p)

)

=
T∑
t=1

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)
+

T∑
t=1

(P∑
p=1

f(x?t,p)− 〈x?t,p,θ?〉+ f(xt,p)− 〈xt,p,θ?〉
)
.

The second term can be immediately upper bounded as,

T∑
t=1

(P∑
p=1

f(x?t,p)− 〈x?t,p,θ?〉+ f(xt,p)− 〈xt,p,θ?〉
)
≤ 2εTP.

using Assumption 3. We now approach the linearized reward term. We split this term in
each round over the event Dt,

T∑
t=1

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)
=

T∑
t=1

1[Dt]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)

+
T∑
t=1

1[Dct]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)

The first term here can be bounded using Assumptions 2 and 3 along with the Cauchy-

Schwarz inequality which gives
(∑P

p=1〈x?t,p − xt,p,θ
?〉
)
≤ 2LSP so:

T∑
t=1

1[Dt]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)
≤ 2LSP

T∑
t=1

1[Dt].

Note the above bounds hold for any choices of xt,p ∈ Xt,p selected by any doubling-round
routine. We now turn our attention to the second term. For this term we use essentially
the same techniques to bound the instantaneous regret by the exact same value for both
Algorithm 1 and Algorithm 2, but separate the analysis into two cases for clarity.

CHAPTER 4. PARALLEL LINEAR BANDITS 60

• For Algorithm 1 we refer to the optimistic model of processor p at round t as:

θ̃t,p = argmax
θ∈Ct,1(θ̂t,Vt,1,βt(δ),ε)

(
max
x∈Xt,p

〈x,θ〉
)

for Algorithm 1. Conditioned on the event in Theorem 9–which we denote E1–the
models θ̃t,p are optimistic:

〈xt,p, θ̃t,p〉1[E1] ≥ 〈x?t,p,θ?〉1[E1].

Hence,

1[E1]1[Dct]〈x?t,p − xt,p,θ
?〉 ≤ 1[E1]1[Dct]〈xt,p, θ̃t,p − θ?〉 ≤

1[E1]1[Dct]‖xt,p‖V−1
t,p
‖θ̃t,p − θ?‖Vt,p ≤ 2

√
21[E]1[Dct]‖xt,p‖V−1

t,p
‖θ̂t − θ?‖Vt,1

using optimism in the first inequality, Cauchy-Schwartz in the second, and the fact that
on event Dct round t is not a generalized doubling round in the in the final inequality.
Finally, recall on the event E1, 1[E1]‖θ̂t − θ?‖Vt,1 ≤ (

√
βt(δ) +

√
(t− 1)Pε))1[E1] and

note βt(δ) is an increasing function of t so βt(δ) ≤ βT (δ) for all t ≤ T . Hence it follows,

1[E1]1[Dct]〈x?t,p − xt,p,θ
?〉 ≤ 1[E1]2

√
2(
√
βT (δ) +

√
(t− 1)Pε)‖xt,p‖V−1

t,p

additionally relaxing 1[Dct] ≤ 1.

• For Algorithm 2 we also refer to the optimistic model of processor p at round t as:

θ̃′t,p = argmax
θ∈Ct,p(θ̂t,Vt,p,2βt(δ),2ε)

(
max
x∈Xt,p

〈x,θ〉
)
.

Conditioned on the event of Theorem 10 restricted to not being a doubling round, the
models θ̃′t,p are optimistic:

〈xt,p, θ̃′t,p〉1[E2]1[Dct] ≥ 〈x?t,p,θ?〉1[E2]1[Dct].

Hence,

1[E2]1[Dct]〈x?t,p − xt,p,θ
?〉 ≤ 1[E2]1[Dct]〈xt,p, θ̃′t,p − θ?〉 ≤

1[E2]1[Dct]‖xt,p‖V−1
t,p
‖θ̃′t,p − θ?‖Vt,p

using optimism in the first inequality, Cauchy-Schwartz in the second. Finally, on the
event E2∩Dct , 1[E2]1[Dct]‖θ̃′t,p−θ?‖Vt,p ≤ 2

√
2
√
βt(δ)1[E2]1[Dct] ≤ 2

√
2
√
βT (δ)1[E2]1[Dct].

Hence it follows,

1[E2]1[Dct]〈x?t,p − xt,p,θ
?〉 ≤ 2

√
21[E2](

√
βT (δ) +

√
(t− 1)Pε)‖xt,p‖V−1

t,p

additionally relaxing 1[Dct] ≤ 1.

CHAPTER 4. PARALLEL LINEAR BANDITS 61

The remainder of the proof follows identically for both Algorithms 1 and 2. Without loss of
generality we use E to refer to either event E1 or E2 in the following (note both hold with
probability at least 1− δ by Theorems 7 and 8). Recalling that the instantaneous regret is
≤ 2LS we can combine this bound with the aforementioned bounds to conclude that,

1[E] ·

(
T∑
t=1

1[Dct]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

))
(i)

≤ 1[E] ·

√√√√TP

(
T∑
t=1

1[Dct]

(
P∑
p=1

〈x?t,p − xt,p,θ?〉2
))

(ii)

≤ 4
√

21[E]

√√√√TP
T∑
t=1

P∑
p=1

min((LS)2, 2(βT (δ) + (t− 1)Pε2)‖xt,p‖2
V−1

t,p

)

(iii)

≤ 4
√

21[E]

√√√√TP
T∑
t=1

P∑
p=1

min((LS)2, 2(βT (δ) + TPε2)‖xt,p‖2
V−1

t,p

)

(iv)

≤ 4
√

21[E]

√
TP2(βT (δ) + TPε2) max

(
2,

(LS)2

2(βT (δ) + TPε2)

)

·

√√√√ T∑
t=1

P∑
p=1

log

(
1 +

T∑
t=1

P∑
p=1

‖xt,p‖2
V−1

t,p

)
(v)

≤ 81[E]
√
TP max(

√
2
√
βT (δ) +

√
TPε, LS) ·

√
d log

(
1 +

TPL2

λ

)
.

Inequality (i) follow by Cauchy-Schwarz. Inequality (ii) employs both our bounds on the
instantaneous regret. Inequality (iii) follows by upper bounding t − 1 ≤ T for the mis-
specification term. Inequality (iv) follows because for all a, x > 0, we have min(a, x) ≤
max(2, a) log(1 + x). Inequality (v) follows because

T∑
t=1

P∑
p=1

log(1 + ‖xt,p‖2
V−1

t,p
) ≤ d log

(
1 +

PTL2

λ
)

)
by instantiating Lemma 11. Assembling the bounds in the original regret splitting over
doubling rounds and accounting for the original misspecification term shows that,

1[E]R(T, P) ≤ 1[E]8 ·

(
LSP

T∑
t=1

1[Dt] +
√
TP max(

√
2(
√
βT (δ) +

√
TPε), LS)

·

√
d log

(
1 +

TPL2

λ

)
+ εTP

)

CHAPTER 4. PARALLEL LINEAR BANDITS 62

where
√
βT (δ) ≤ R

√
d log

(
1+TPL2/λ

δ

)
+
√
λS. This inequality holds on the event E which

occurs with probability at least 1− δ for both Algorithm 1 and Algorithm 2. Inserting this
value for βT (δ) and hiding logarithmic factors shows on the event E ,

R(T, P) ≤ Õ

(
LSP ·

T∑
t=1

1[Dt] +
√
dTP max(

√
2(R
√
d+
√
λS +

√
TPε), LS)

)

Proofs of Section 4.2

We start by stating a folklore lemma regarding the anti-concentration properties of a Gaus-
sian distribution.

Concentration and Anti-Concentration properties of the Gaussian distribution

Lemma 4. Let X be a random variable distributed according to N (µ, σ2), a one dimensional
Gaussian distribution with mean µ and variance σ2. The following holds:

P (X − µ ≥ τ) ≥ 1√
2π

στ

τ 2 + σ2
exp

(
− τ 2

2σ2

)
We will also make use of the following concentration inequality for Lipschitz functions of

Gaussian vectors:

Theorem 5 (Theorem 2.4 in [93]). Let η ∼ N (0, Id) be a standard Gaussian vector and
let f : Rd → R be L−Lipschitz with respect to the Euclidean norm. Then the variable
f(η)− E [f(η)] is subgaussian with parameter at most L and hence:

P (f(X) ≥ E [f(X)] + t) ≤ exp

(
− t2

2L2

)
We’ll make use of these two results to prove Lemma 5 which we restate for the reader’s

convencience:

Lemma 5. The Gaussian distribution satisfies (anticoncentration) for every v ∈ Rd with
‖v‖ = 1:

Pη∼N (0,Id)

(
v>η ≥ 1

)
≥ 1

4
. (4.17)

And (concentration), ∀δ ∈ (0, 1):

Pη∼N (0,Id)

(
‖η‖ ≤

√
d+

√
2 log

(
1

δ

))
≥ 1− δ. (4.18)

CHAPTER 4. PARALLEL LINEAR BANDITS 63

Proof. Equation 4.17 is a simple consequence of the following two observations:

1. For any unit norm vector v ∈ Rd the random variable X = v>η is distributed as a one
dimensional Gaussian with unit variance N (0, 1).

2. Setting parameters µ = 0, σ = 1, and τ = 1 Lemma 4 implies that P (X ≥ 1) ≥
1√
2π
· 1

2
exp(−1

2
) ≥.

Equation 4.18 instead follows from Theorem 5. Since the function f(·) = ‖ · ‖ is
1−Lipschitz and Eη∼N (0,Id) [‖η‖] ≤ (Eη∼N (0,Id) [‖η‖2])1/2 =

√
d :

Pη∼N (0,Id)

(
‖η‖ ≥

√
d+

√
2 log

(
1

δ

))
≤ δ.

The result follows.

Recall that:

√
βt(δ) = R

√
log

(
det(Vt−1,0)

λdδ2

)
+
√
λS ≤ R

√
d log

(
1 + tPL2/λ

δ

)
+
√
λS

Concentration of θ̃t,p

The main objective of this section is to show that with high probability the sampled param-
eter θ̃t,p is not too far from the true parameter θ? for all times t and processors p. The result
is encapsuled by Lemma 6.

Lemma 6. Let:

γt,p(δ) :=
√

2(
√
βt(δ) +

√
(t− 1)Pε)

(
√
d+ 2

√
log

(
t(P − 1) + p

δ

)
+ 1

)
.

The following conditional probability bound holds:

P
(
1[Dct ∩ E]‖θ̃t,p − θ?‖Vt,p ≥ γt,p(δ)

∣∣∣Ft,p−1

)
≤ δ

2(t(P − 1) + p)2
(4.19)

And therefore with probability at least 1− 2δ and for all t ∈ N simultaneously:

‖θ̃t,p − θ?‖Vt,p ≤ γt,p(δ) (4.20)

We refer to this event as E ′.

In order to prove Lemma 6 let’s start by showing that for any time-step t and processor
t the sample θ̃t−1,p is close to θ? with high probability:

CHAPTER 4. PARALLEL LINEAR BANDITS 64

Lemma 7. The following conditional probability bound holds:

P

(
‖θ̃t,p − θ̂t‖Vt,p ≥

√
2βt(δ)

(
√
d+ 2

√
log

(
t(P − 1) + p

δ

)) ∣∣∣Ft,p−1

)
≤ δ

2(t(P − 1) + p)2

Where Ft,p−1 corresponds to the sigma algebra generated by all the events up to and including
the reveal of contexts Xt,p. And therefore with probability at least 1 − δ simultaneously and
unconditionally for all t ∈ N:

‖θ̃t,p − θ̂t‖Vt,p ≤
√

2(
√
βt(δ) +

√
(t− 1)Pε)

(
√
d+ 2

√
log

(
t(P − 1) + p

δ

))

Proof. In order to bound ‖θ̃t,p−θ̂t‖Vt,p we make use of Lemma 5. Observe that by definition:

‖θ̃t,p − θ̂t‖Vt,p =
√

2(
√
βt(δ) +

√
(t− 1)Pε)‖ηt,p‖2. (4.21)

Therefore a simple use of Lemma 5 implies that (concentration):

Pηt,p∼N (0,Id)

(
‖ηt,p‖ ≤

√
d+ 2

√
log

(
t(P − 1) + p

δ

)∣∣∣Ft,p−1

)
≤ δ

2(t(P − 1) + p)2
.

And therefore as a consequence of Equation 4.21:

P

(
‖θ̃t,p − θ̂t‖Vt,p ≥

√
2(
√
βt(δ) +

√
(t− 1)Pε)

(
√
d+ 2

√
log

(
t(P − 1) + p

δ

)) ∣∣∣Ft,p−1

)
≤ δ

2(t(P − 1) + p)2

Furthermore, a simple union bound implies that for all t ∈ N:

P

(
∃t s.t. ‖ηt,p‖2 ≥

√
d+ 2

√
log

(
t(P − 1) + p

δ

))
≤ δ

2

∞∑
t=1

P∑
p=1

1

(t(P − 1) + p)2
≤ δ

(4.22)
Combining equations 4.21 and 4.22 yields:

P

(
‖θ̃t,p − θ̂t‖Vt,p ≤

√
2(
√
βt(δ) +

√
(t− 1)Pε)

(
√
d+ 2

√
log

(
t(P − 1) + p

δ

)))
≤ δ

Lemma 7, conditioning on the 1 − δ probability event E , a simple use of the triangle
inequality along with the identity

∑P
p=1

∑∞
t=1

1
(t(P−1)+p)2

= π2

6
< 2 finalizes the proof of

Lemma 6. From now on we will denote as E ′ to the 1 − 2δ probability event defined by
Lemma 6.

CHAPTER 4. PARALLEL LINEAR BANDITS 65

Anti-concentration of θ̃t,p

The main objective of this section will be to prove the following upper bound for the instan-
taneous regret θ>? x?t,p − θ>? xt,p in the event the round is not a doubling round and E ′ holds.
This is one of the main components of the proof of Theorem 3.

Lemma 8. Let θ̃′t,p be a copy of θ̃t,p, equally distributed to θ̃t,p and independent of it con-

ditionally on Ft,p−1. We call x′t,p to the resulting argmax action argmaxx∈Xt,p
〈θ̃′t,p,x〉. The

following inequality holds:

1[Dct ∩ E ′]
(
θ>? x?t,p − θ>? xt,p

)
≤ 2γt,p(δ)

1
4
− δ

2(t(P−1)+p)2

1[Dct ∩ E ′]E
[
‖x′t,p‖V−1

t,p

∣∣∣Ft,p−1

]
+ γt,p(δ)1[Dct ∩ E ′]‖xt,p‖V−1

t,p
.

Before proving Lemma 8 we show that with constant probability, the estimated value of
the action taken at time and processor tuple (t, p) is optimistic with constant probability:

Lemma 9. For all t ∈ N :

P
(
θ̃>t,pxt,p ≥ θ>? x?t,p

∣∣∣Ft,p−1, E
)
≥ 1

4

Proof. Recall that whenever E holds:

‖θ̂t − θ?‖Vt,p ≤
√

2(
√
βt(δ) +

√
(t− 1)Pε).

Notice that by definition xt,p satisfies:

θ̃>t,pxt,p ≥ θ̃>t,px
?
t,p.

Therefore:

θ̃>t,px
?
t,p =

(
θ̃t,p − θ̂t

)>
x?t,p +

(
θ̂t − θ?

)>
x?t,p + θ>? x?t,p

(i)

≥
√

2(
√
βt(δ) +

√
(t− 1)Pε)η>t,pV

−1/2
t,p x?t,p − ‖θ̂t − θ?‖Vt,p‖x?t,p‖V−1

t,p
+ θ>? x?t,p

(ii)

≥
√

2(
√
βt(δ) +

√
(t− 1)Pε)η>t,pV

−1/2
t,p x?t,p

−
√

2(
√
βt(δ) +

√
(t− 1)Pε)‖x?t,p‖V−1

t,p
+ θ>? x?t,p

=
√

2(
√
βt(δ) +

√
(t− 1)Pε)

(
η>t,pV

−1/2
t,p x?t,p − ‖V

−1/2
t,p x?t,p‖2

)
.

Inequality i holds as a consequence of Cauchy Schwartz inequality. Inequality (ii) holds by
conditioning on E and because t ∈ N .

By Equation 4.17 in Lemma 5, and by noting that x?t,p is conditionally independent of

ηt,p, we can infer that η>t,pV
−1/2
t,p x?t,p ≥ ‖V

−1/2
t,p x?t,p‖2 with probability at least 1/4. The result

follows.

CHAPTER 4. PARALLEL LINEAR BANDITS 66

Let’s define the set of optimistic model parameters:

Θt,p = {θ ∈ Rd s.t. max
x∈Xt,p

x>θ ≥ (x?t,p)
>θ?}.

Where Dt denotes the event that round t is a doubling round. We now show how to
bound the instantaneous regret rt,p during all rounds by using these results:

Proof of Lemma 8. Recall that E ′ is the event defined by Equation 4.20 in Lemma 6 ap-
plied to the {θ̃t,p}t,p sequence. Define {E ′′t,p}t,p be the corresponding event family defined by

Equation 4.19 in Lemma 6 applied to the {θ̃′t,p}t,p sequence. It follows that P(E ′′t,p|Ft,p−1) ≥
1 − δ

2(t(P−1)+p)2
. Notice that if Dct ∩ E ′ holds (meaning ‖θ̃t,p − θ?‖Vt,p ≤ δt,p and because

xt,p = argmaxx∈Xt,p
θ̃>t,pxt,p then:

θ̃>t,pxt,p ≥ inf
θ∈C(θ?,Vt,p,γt,p(δ))

max
x∈Xt,p

θ>t,px := θ̄>t,px̄t,p.

When θ̃′t,p is optimistic:

θ>? x?t,p − θ̃>t,pxt,p ≤ 〈θ̃′t,p,x′t,p〉 − θ̄>t,px̄t,p

∣∣∣θ̃′t,p ∈ Θt,p. (4.23)

Therefore:

1[Dct ∩ E ′]
(
θ>? x?t,p − θ>? xt,p

)
= 1[Dct ∩ E ′]

(
θ>? x?t,p − θ̃>t,pxt,p

)
+ 1[Dct ∩ E ′]

(
θ̃>t,pxt,p − θ>? xt,p

)
≤ 1[Dct ∩ E ′]

(
θ>? x?t,p − θ̃>t,pxt,p

)
+ 1[Dct ∩ E ′]‖θ̃t,p

− θ?‖Vt,p‖xt,p‖V−1
t,p

(i)

≤ 1[Dct]E
[
1[E ′]

(
〈θ̃′t,p,x′t,p〉 − θ̄>t,px̄t,p

) ∣∣∣Ft,p−1, θ̃
′
t,p ∈ Θt,p, E ′′t,p

]
+ 1[Dct ∩ E ′]‖θ̃t,p − θ?‖Vt,p‖xt,p‖V−1

t,p

(ii)

≤ 1[Dct]E
[
1[E ′]〈θ̃′t,p − θ̄t,p,x

′
t,p〉
∣∣∣Ft,p−1, θ̃

′
t,p ∈ Θt,p, E ′′t,p

]
+

1[Dct ∩ E ′]‖θ̃t,p − θ?‖Vt,p‖xt,p‖V−1
t,p

(iii)

≤ 1[Dct]E
[
1[E ′]‖θ̃′t,p − θ̄t,p‖Vt,p‖x′t,p‖V−1

t,p

∣∣∣Ft,p−1, θ̃
′
t,p ∈ Θt,p, E ′′t,p

]
+ 1[Dct ∩ E ′]‖θ̃t,p − θ?‖Vt,p‖xt,p‖V−1

t,p

(iv)

≤ 2γt(δ)1[Dct ∩ E ′]E
[
‖x′t,p‖V−1

t,p

∣∣∣Ft,p−1, θ̃
′
t,p ∈ Θt,p, E ′′t,p

]
+

1[Dct ∩ E ′]‖θ̃t,p − θ?‖Vt,p‖xt,p‖V−1
t,p

(v)

≤ 2γt,p(δ)
1
4
− δ

2(t(P−1)+p)2

1[Dct ∩ E ′]E
[
‖x′t,p‖V−1

t,p

∣∣∣Ft,p−1

]
+

γt,p(δ)1[Dct ∩ E ′]‖xt,p‖V−1
t,p

CHAPTER 4. PARALLEL LINEAR BANDITS 67

Inequality (i) follows by Equation 4.23, (ii) by the definition of x̄t, (iii) is a consequence
of Cauchy Schwartz, (iv) follows by the definition of E ′ and E ′′t,p, and (v) follows because

‖x′t,p‖V−1
t,p

is nonnegative and because by Lemma 6, it follows that P
(
θ̃′t,p ∈ Θt, E ′′t,p|Ft,p−1

)
≥

1
4
− δ

2(t(P−1)+p)2
. The result follows.

Ancilliary Lemmas

In the proof of Theorem 3 we will also make use of the following supporting result:

Lemma 10. Similar to Lemma 8, let θ̃′t,p copy of θ̃t,p, equally distributed to θ̃t,p and indepen-

dent conditionally on Ft,p−1. We call x′t,p to the resulting argmax action argmaxx∈Xt,p
〈x, θ̃′t,p〉.

With probability at least 1− δ:

T∑
t=1

P∑
p=1

E[‖x′t,p‖V−1
t,p
|Ft,p−1] ≤

T∑
t=1

P∑
p=1

‖xt,p‖V−1
t,p

+
2L√
λ

√
TP log(1/δ)

Proof. Define the martingale difference sequence Zt,p = ‖xt,p‖V−1
t,p
− E[‖x′t,p‖V−1

t,p
|Ft,p−1] (the

indexing is lexicographic over pairs (t, p)). It is easy to see that |Zt,p| ≤ 2 L√
λ
, since for all

valid x ∈ Xt,p, ‖x‖V−1
t,p
≤ L√

λ
for all t, p pairs. Consequently a simple use of Hoeffding bound

yields the result.

Proof of Theorem 3

We proceed to prove the general version of Theorem 3:

Theorem 6. Let Assumptions 1, 2 and 3 hold and Dt denote the event that round t is a
doubling round (see Condition 1). Then the regret of both Algorithms 3 and 4 satisfy ,

R(T, P) ≤ Õ

(
LSP ·

T∑
t=1

1[Dt] + εTP

+ 4γT (δ)

(√
dTP

(
1 +

L2

λ

)
ln

(
dλ+ TPL

dλ

)
+

2L√
λ

√
TP log(1/δ)

))

with probability at least 1− 3δ, whenever δ ≤ 1
6
. Here

γT (δ) =
√

2(
√
βT (δ) +

√
(T − 1)Pε)

(
√
d+ 2

√
log

(
T (P − 1) + P

δ

)
+ 1

)
.

CHAPTER 4. PARALLEL LINEAR BANDITS 68

Proof of Theorem 3. The regret in terms of f(·) can be linearized at the cost of an addi-
tive 2ε

√
dTP as in the Proof of Theorem 2. After this we can decompose the regret for

Algorithm 3, splitting on the event each round over the event Dt,

R(T, P) =
T∑
t=1

 P∑
p=1

〈x?t,p − xt,p,θ
?〉︸ ︷︷ ︸

rt,p

=

T∑
t=1

1[Dt]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)
+

T∑
t=1

1[Dct]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)

The first term can be bounded using Assumptions 2 and 3 along with the Cauchy-Schwarz

inequality which gives
(∑P

p=1〈x?t,p − xt,p,θ
?〉
)
≤ 2LSP so:

T∑
t=1

1[Dt]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)
≤ 2LSP

T∑
t=1

1[Dt].

This holds for any sequence of xt,p chosen by the doubling round routine DR. We turn our
attention to the second term.

T∑
t=1

1[Dct]

(
P∑
p=1

〈x?t,p − xt,p,θ
?〉

)

=
T∑
t=1

(
P∑
p=1

1[Dct ∩ E ′]〈x?t,p − xt,p,θ
?〉

)
+

T∑
t=1

(
P∑
p=1

1[Dct ∩ (E ′)c]〈x?t,p − xt,p,θ
?〉

)

Notice that:

T∑
t=1

P∑
p=1

1[Dct ∩ (E ′)c]〈x?t,p − xt,p,θ
?〉 ≤

T∑
t=1

P∑
p=1

21[Dct ∩ (E ′)c]LS ≤ 2LSTP1[(E ′)c]

And therefore we can forget this term when we condition on E ′, an event that occurs
with probability at least 1− 2δ (recall E ′ as the event from Lemma 6).

CHAPTER 4. PARALLEL LINEAR BANDITS 69

It remains to bound the first term of Equation 4.24.

T∑
t=1

P∑
p=1

1[Dct ∩ E ′]〈x?t,p − xt,p,θ
?〉

(i)

≤
T∑
t=1

P∑
p=1

8

1− 3δ
γt,p(δ)1[Dct ∩ E ′]E

[
‖x′t,p‖V−1

t,p
|Ft,p−1

]
+

γt,p(δ)1[Dct ∩ E ′]‖xt,p‖V−1
t,p

(ii)

≤
T∑
t=1

P∑
p=1

8

1− 3δ
γt,p(δ)E

[
‖x′t,p‖V−1

t−1,p−1
|Ft−1,p−1

]
+ γt,p(δ)‖xt,p‖V−1

t,p

(iii)

≤
(

8

1− 3δ
+ 1

)
γT,P (δ)

(
T∑
t=1

P∑
p=1

‖xt,p‖V−1
t−1,p−1

+
2L√
λ

√
TP log(1/δ)

)
≤ 16γT (δ)

(
√
TP

T∑
t=1

P∑
p=1

‖xt,p‖2
V−1

t−1,p−1

+
2L√
λ

√
TP log(1/δ)

)
≤ 16γT (δ)

(√
dTP

(
1 +

L2

λ

)
ln

(
dλ+ TPL

dλ

)
+

2L√
λ

√
TP log(1/δ)

)
Inequality (i) holds by Lemma 8 and the assumption that δ ≤ 1

6
. Inequality (ii) holds because

all terms ‖x′t,p‖V−1
t,p

and ‖xt,p‖V−1
t,p

are nonnegative. Inequality (iii) holds with probability

at least 1 − δ and is a consequence of lexicographic monotonicity (in t, p) of γt,p(δ) and
Lemma 10. The last two inequalities are a simple consequence of the determinant lemma
(Lemma 11).

Auxiliary Results

Here we summarize the self-normalized vector martingale inequality used to establish the
confidence ball for the least-squares estimator in a well-specified linear model,

rt,p = x>t,pθ
? + ξt,p. (4.24)

Here ξt,p is an i.i.d. noise process.

CHAPTER 4. PARALLEL LINEAR BANDITS 70

Theorem 7. [Theorem 1 in [1]] For all t ∈ N:

‖θ̂t − θ?‖Vt,1 ≤
√
βt(δ)

with probability at least 1− δ. Moreover, on this event by definition,

θ? ∈ C(θ̂t,Vt,1, βt(δ)).

We can now prove a generalization of this result which applies to the analysis of the lazy
LinUCB algorithm in a well-specified model.

Theorem 8. Let N ⊆ [T] be the set of rounds which are not doubling rounds (see Condi-
tion 1). Then,

∀t ∈ N, ‖θ̂t − θ?‖Vt,p ≤
√

2
√
βt(δ)

with probability at least 1− δ. Moreover, on this event by definition,

θ? ∈ C(θ̂t,Vt,p, 2βt(δ)).

Proof. Let N ⊆ N be the set of rounds which are not doubling rounds. Then if t ∈ N ,

‖θ̂t − θ?‖Vt,p ≤
√

2‖θ̂t − θ?‖Vt,1

from the definition in Condition 1. Hence,

P[‖θ̂t − θ?‖Vt,p ≥
√

2
√
βt(δ), t ∈ N] ≤ P[‖θ̂t − θ?‖Vt,1 ≥

√
βt(δ), t ∈ N] ≤

P[‖θ̂t − θ?‖Vt,1 ≥
√
βt(δ),∀t ∈ N] ≤ δ.

where the final inequality follows by Theorem 7.

Define E to the 1− δ probability event defined in Theorem 8:

E := {∀t ∈ N, ‖θ̂t − θ?‖Vt,p ≤
√

2
√
βt(δ)}

We are now in a position to prove generalizations of these results which provide valid
confidence sets for the linear regression estimator in misspecified models. In summary, the
confidence sets are modified with a growing, additive correction to accommodate the bias
arising from the misspecification.

Theorem 9. If the rewards are generated from a model satisfying Assumption 3, then for
all t ∈ N:

‖θ̂t − θ?‖Vt,1 ≤
√
βt(δ) +

√
(t− 1)Pε

with probability at least 1− δ. Moreover, on this event by definition,

θ? ∈ C(θ̂t,Vt,1, βt(δ), ε).

CHAPTER 4. PARALLEL LINEAR BANDITS 71

Proof. The argument uses a bias-variance decomposition. First, define the linearized reward
r̃a,b = x>a,bθ

? + ξa,b and linear estimator using these rewards as θ̃ = V−1
t,1 (
∑t−1

a=1

∑P
b=1 xa,br̃a,b).

By definition, ra,b−r̃a,b = εa,b (which all satisfy |εa,b| ≤ ε uniformly for all xa,b by assumption).
Then,

θ̂t − θ? = θ̃ − θ? = θ̃ − θ? + V−1
t,0 (

t−1∑
a=1

P∑
b=1

xa,bεa,b) =⇒

‖θ̂t − θ?‖Vt,1 ≤ ‖θ̃t − θ?‖Vt,1 + ‖
t−1∑
a=1

P∑
p=1

xa,bεa,b‖V−1
t,1

The first term can be bounded by
√
βt(δ) with probability 1−δ exactly by using Theorem 7.

Using the projection bound in [99, Lemma 8] it follows that,

‖
t−1∑
a=1

P∑
p=1

xa,bεa,b‖V−1
t,1
≤
√

(t− 1)Pε (4.25)

since |εa,b| ≤ ε uniformly for all a, b.

The analogue for the lazy confidence set follows similarly,

Theorem 10. Let N ⊆ [T] be the set of rounds which are not doubling rounds (see Condi-
tion 1). Then, If the rewards are generated from a model satisfying Assumption 3, for all
t ∈ N :

‖θ̂t − θ?‖Vt,p ≤
√

2(
√
βt(δ) +

√
(t− 1)Pε)

with probability at least 1− δ. Moreover, on this event by definition,

θ? ∈ C(θ̂t,Vt,1, 2βt(δ), 2ε).

Proof. First, if t ∈ N ,

‖θ̂t − θ?‖Vt,p ≤
√

2‖θ̂t − θ?‖Vt,1

from the definition in Condition 1. The remainder of the argument follows as in the previous
result,

P[‖θ̂t − θ?‖Vt,p ≥
√

2(
√
βt(δ) +

√
(t− 1)Pε), t ∈ N] ≤ P[‖θ̂t − θ?‖Vt,1 ≥√

βt(δ) +
√

(t− 1)Pε, t ∈ N] ≤ P[‖θ̃t − θ?‖Vt,1 ≥
√
βt(δ),∀t ∈ N] ≤ δ.

where the final inequality follows by Theorem 7, since θ̃ = V−1
t,1 (
∑t−1

a=1

∑P
b=1 xa,br̃a,b) is the

estimator utilizing the linearized rewards.

CHAPTER 4. PARALLEL LINEAR BANDITS 72

Next we recall the elliptical potential lemma which control the volumetric growth of the
space spanned by sequence of covariance matrices.

Lemma 11. [Lemma 19.4 in [57]] Let V0 ∈ Rd×d be a positive-definite matrix, x1, . . . ,xn ∈
Rd be a sequence of vectors with ‖xi‖ ≤ L for all i ∈ [n], and Vn = V0 +

∑
s≤n xsx

>
s . Then,

n∑
s=1

log(1 + ‖xs‖2
V−1

s−1
) = log

(
detVn

detV0

)

log

(
detVn

detV0

)
≤ d log

(
tr(V0) + nL2

d

)
− log(detV0)

Finally, we state a prove a simple fact from linear algebra.

Lemma 12. If A � B � 0,

∀x 6= 0 ∈ Rd,
x>Ax

x>Bx
≤ det(A)

det(B)
.

Proof of Lemma 12. To this end, let x = B−1/2y for y ∈ Rd. Then note that,

sup
x6=0

x>Ax

x>Bx
= ‖B−1/2AB−1/2‖2

by the definition of the operator norm. Similarly, we can rewrite det(A)
det(B)

= det(B−1/2AB−1/2).

The claim then follows because all the eigenvalues of B−1/2AB−1/2 are ≥ 1. Note that

inf
x:‖x‖2=1

x>B−1/2AB−1/2x = 1 + x>B−1/2(A−B)B−1/2x ≥ 1

since A � B.

Proofs in Section 4.3

We now present the proof of Corollary 5.

Proof of Corollary 5. As a consequence of Theorem 2 we have for any choice of doubling
round routine that the regret of Algorithm 1 and Algorithm 2 obeys,

1[E]R(T, P) ≤ 1[E]8·

LSP
T∑
t=1

1[Dt]︸ ︷︷ ︸
A

+
√
TP max(

√
βT (δ) +

√
TPε, LS) ·

√
d log

(
1 +

TPL2

λ

)
+ εTP︸ ︷︷ ︸

B

CHAPTER 4. PARALLEL LINEAR BANDITS 73

where
√
βT (δ) ≤ R

√
d log

(
1+TPL2/λ

δ

)
+
√
λS. This inequality holds on the event E which

occurs with probability at least 1−δ for both Algorithm 1 and Algorithm 2. Now we introduce

an additional event G = {
∑T

t=1 1[Dt] ≥ d105

P
L2π2

max

π4
min

log(4d
δ

)e}. Then we can consider two cases,

• First,

1[Gc](A+B) ≤ 1[Gc]
(
LS

⌈
105

P

L2π2
max

π4
min

log(
4d

δ
)

⌉
+B

)
simply by definition of the event.

• Second, by definition of the Vt,p and G all rounds which are not doubling rounds
(denoted by the set N) lead to randomly generated covariates being used to esti-
mate the covariance. Let r1 ∈ N be the first doubling round to exceed the threshold

d105

P
L2π2

max

π4
min

log(4d
δ

)e. We claim (with high probability) there can be no more doubling

rounds after round r1. This follows since first by Lemma 13 on the event G,

‖
∑
a∈N

P∑
p=1

xa,px
>
a,p − (Σπa,p + µa,pµ

>
a,p))‖2 ≤

{
1
10
π2

min|N |P when |N | > 1
1
10
π2

minP when |N | = 1

with probability at least 1− δ (denote this further event C). This previous inequality
follows by considering the two separate cases where |N | > 1 and |N | = 1 respectively.
Thus in any round t > r1 we must have with probability 1− δ,

Vt,1 �
∑
a∈N

P∑
p=1

(Σπa,p + µi,pµ
>
i,p)−

π2
min|N |P

10
I � 9

10
|N |Pπ2

minI when |N | > 1

Vt,1 � P (Σπ1,p + µ1,pµ
>
1,p)−

`2P

10
I � 9

10
P`2I when |N | = 1

using Definition 2. In summary for all |N | ≥ 1 we then have that

Vt,1 �
9

10
|N |Pπ2

minI.

If, additionally it is the case that |N | ≥ d10
9

χ2

π2
min
e, let r2 be the first round after which

this occurs. Then it follows that for all t > max(r1, r2),

1[C](
P∑
p=1

xt,px
>
t,p) � 1[C]Pχ2I � 9

10
|N |Pπ2

minI � Vt,1, (4.26)

so no t > max(r1, r2) can be a doubling round on this event. Concluding we have that,

1[G]1[C]A ≤ LSP ·max(d105

P

L2π2
max

π4
min

log(
4d

δ
)e, d10

9

χ2

π2
min

e).

CHAPTER 4. PARALLEL LINEAR BANDITS 74

Together, we obtain,

1[G]1[C](A+B) ≤ 1[G]1[C]
(
LSP ·max(d105

P

L2π2
max

π4
min

log(
4d

δ
)e, d10

9

L2

`2
e) +B

)
Assembling and summing these two cases, then shows that,

1[C](A+B) ≤ (LSP ·max(d105

P

L2π2
max

π4
min

log(
4d

δ
)e, d10

9

χ2

`2
e) +B).

So it follows that,

1[E]1[C]R(T, P) ≤ 1[E]1[C] · 8 · (LSP ·max(d105

P

L2π2
max

π4
min

log(
4d

δ
)e, d10

9

χ2

`2
e)+

√
TP max(

√
βT (δ) +

√
TPε, LS) ·

√
d log

(
1 +

TPχ2

λ

)
+ εTP)

where both E and C hold with probability 1− δ. We can simplify the first term to,

LSP ·max(d105

P

L2π2
max

π4
min

log(
4d

δ
)e, d10

9

χ2

`2
e)

≤ Õ(LSP · (105

P

L2π2
max

π4
min

log(
4d

δ
) + 1 +

χ2

`2
)) ≤ Õ(LS(

L4

`4
+ P

χ2

`2
))

Hiding logarithmic factors, this implies that,

R(T, P) ≤ Õ

(
R

(
(
L2‖Σπ‖
`4

+ P
χ2

`2
)
√
snr + d

√
TP +

ε

R
TP

))
with probability at least 1− 2δ.

An identical argument establishes the result for the Thompson sampling algorithms save
with Thompson sampling regret R(T, P) used in place of the LinUCB regrets in the previous
argument.

We now present the matrix concentration result we use,

Lemma 13. Let Definition 2 and Assumption 2 hold and consider N i.i.d. copies of sets
(with P elements) sampled from Algorithm 5, labeled as {xi,p}N,Pi=1,p=1. Then,

‖ 1

NP
(
N∑
i=1

P∑
p=1

xi,px
>
i,p − (Σπi,p + µi,pµ

>
i,p))‖2 ≤ 12

(
L
√
π2

max

√
log(4d/δ)

NP
+
L2 log(4d/δ)

NP

)

with probability at least 1− δ.

CHAPTER 4. PARALLEL LINEAR BANDITS 75

Proof. We first center the expression around its mean Eπi,p [xi,p] = µi,p. That is,

‖ 1

NP

N∑
i=1

P∑
p=1

xi,px
>
i,p − (Σπi,p + µi,pµ

>
i,p)‖2 ≤

‖ 1

NP

N∑
i=1

P∑
p=1

(xi,p − µi,p)(xi,p − µi,p)> −Σπi,p‖2 + 2‖ 1

NP

N∑
i=1

P∑
p=1

µi,p(xi,p − µi,p)> − µi,pµ>i,p‖2

We now apply the matrix Bernstein inequality to control this first term [89, Theorem
1.6.2]. Note that for all i, ‖(xi,p − µi,p)(xi,p − µi,p)>‖ ≤ 2L2 and the matrix variance is
bounded by

‖E[(xi,p − µi,p)(xi,p − µi,p)> −Σπi,p)2]‖2 ≤ ·‖E[‖xi,p − µ‖2
2(xi,p − µ)(xi,p − µ)>)]‖2 ≤ 2L2π2

max

. Thus we obtain,

‖ 1

NP

N∑
i=1

P∑
p=1

(xi,p − µi,p)(xi,p − µi,p)> −Σπi,p‖2 ≤ 4

(
L
√
π2

max

√
log(4d/δ)

NP
+
L2 log(4d/δ)

NP

)
(4.27)

with probability at least 1 − δ/2. For the second term note by Jensen’s inequality that
‖µi,p‖2 = ‖E[xi,p]‖2 ≤ E[‖xi,p‖2] ≤ L since ‖xi,p‖2 ≤ L. An identical calculation before to
bound almost surely bound this term and its matrix variance we have that,

‖ 1

NP

N∑
i=1

P∑
p=1

µi,p(xi,p − µi,p)> − µi,pµ>i,p‖2 ≤ 4

(
L
√
π2

max

√
log(4d/δ)

NP
+
L2 log(4d/δ)

NP

)

by the matrix Bernstein inequality with probability at least 1 − δ/2. Summing the terms
and applying a union bound over the events on which they hold gives the result.

Proofs in Section 4.4

Here we include the proof of the main lower bound.

Proof of Theorem 4. The proof follows by first noting that in each of the instances claimed
a single, fixed global context vector is used for all time and processors. Hence the parallel
to sequential regret reduction established in Proposition 12 is applicable. Thus it suffices
to establish the lower bounds for R(TP, 1) in lieu of R(T, P) for the instances claimed.
The first term/result is an immediate consequence of Lemma 14. The second term/result
we can obtain from Lemma 16. For the validity of the results, we inherit the constraints

d ≥ d8 log(m)L2/ε2e and S ≥ ‖θ?‖2 = ε
L

√
d−1

8 log(m)
=⇒ ε2 ≤ 8(LS)2 log(m)

d−1
. If we take

d = d8 log(m)/ε2e then the second constraint reduces too ε2 ≤ 8(LS)2 log(m)
8 log(m)/ε2

=⇒ LS ≥ 1.

CHAPTER 4. PARALLEL LINEAR BANDITS 76

Parallel to Sequential Reduction

Here we establish the reduction from parallel regret to sequential regret when considering
parallel linear bandits where there is a single fixed action set/context set across all processors
at a given time. So Xt,p = Xt across all processors p ∈ [P]. Additionally, we assume as in
the preamble that the reward of an action x is determined by r = f(x) + ε–so the law
of the rewards is completely specified by a mean reward function f and mean-zero noise
distribution ε.

We formalize the reduction from parallel to sequential bandits by first defining the canon-
ical bandit environment. We consider the bandit instance to be indexed by the law of the
rewards and the sequence of context sets.

Sequential In a model of purely sequential interaction we consider instances defined by
two ingredients:

• the conditional distribution of the policy πt(·|xi<t,Xi≤t, ri<t).

• the sequence of reward distributions νs ≡ Pt(·|xi<t,Xi≤t, ri<t, f) ≡ Pxt(·|f) for selected
actions and the sequence of presented contexts Xt.

Parallel In a model of parallel interaction, there are two ingredients:

• the conditional distribution of policy ψt,p(·|xi,j<t,p,Xi≤t, ri,j<t,p).

• the sequence of reward distributions νp ≡ Pt,p(·|xi,j<t,p,Xi≤t, ri,j<t,1) ≡ Pxt,p(·|f) for
selected actions and sequence of selected contexts Xt (which for fixed t are equal across
all p ∈ [P]).

To formalize the reduction we make the following claim:

Proposition 11. If we consider the lexicographic ordering for t, p ∈ [T, P], then for any
sequence of parallel policy-environment interactions with law (ψt,p(·),Pt,p(·|f)) and presented
context sets Xt (identical across p ∈ [P]), there exists a corresponding coupling to a purely
sequential bandit environment (πm(·),Pm(·|f)) for m ∈ [TP] and sequence of context sets
Xm = Xt for m ∈ [tP, (t+ 1)P] with an identical distribution.

Proof. We can construct the sequential environment inductively from the sequence of parallel
interaction by coupling. To see this consider the first round of parallel interactions which
are described by the measure,

ΠP
p=1ψ1,p(·|xi,j<1,p,X1, ri,j<1,1)Px1,p(·|f).

By defining the measure over sequential policy-environment interactions,

ΠP
m=1πm(·|xa<mXm, ra<m)Pxm(·|f)

CHAPTER 4. PARALLEL LINEAR BANDITS 77

we can set, πm(·|xa<mXa<m, ra<m) = ψ1,p(·|xi,j<1,pX1, ri,j<1,1) by ignoring the conditioning on
the further contexts and reward information in the sequential interaction to enforce equality
of the policies. Since the policies are tamen to be identical, by coupling the randomness
between the sequential and parallel policies/environments, the sequence of selected actions
will be identical (this uses the fact the context sets in the parallel blocm and sequential
interaction can be tamen equal). Inductively proceeding with the construction over the
blocms of parallel interaction completes the argument.

With this claim in hand the reduction follows since the expected regret of an algorithm
over an environment (in expectation) is determined by the law of the policy-environment
interactions. Before beginning we first introduce the following notation for the expected
parallel regret (further indexed by policy and environment,

Rψ,νp(T, P) =
T∑
t=1

P∑
p=1

max
x∈Xt

µ(x)− Eψ,νp [µ(x)] (4.28)

where ψ denotes the parallel policy and νp the parallel environment indexed by the mean re-
ward and sequence of context sets. Similarly, the sequential regret can be defined analogously
as,

Rπ,νs(TP, 1) =
TP∑
a=1

max
x∈Xa

µ(x)− Eπ,νs [µ(x)] (4.29)

where π denotes the sequential policy and νs the sequential environment indexed by the
mean reward and sequence of context sets which are fixed to be the same over consecutive
blocms of length P .

Proposition 12. Consider both a parallel bandit policy/environment class and sequential
bandit policy/environment class as defined in Proposition 11. Then,

inf
ψ

sup
νp

Rψ,νp(T, P) ≥ inf
π

sup
νs

Rπ,νs(TP, 1) (4.30)

where the infima over ψ is tamen place over the class of all parallel policies and the infima
on the right hand side is tamen over the class of all sequential policies.

Proof. By the the preceding claim in Proposition 11 every pair of parallel (ψ, νp) measures
can be reproduced by a corresponding sequential measure (π, νs). Let the set of such induced
sequential policies be P . So the pointwise inequality,

Rψ,νp(T, P) = Rπ,νs(TP, 1) (4.31)

holds by simply re-indexing the summation in lexigraphic order since the expectations are
identical. Hence, for a fixed ψ (and induced π) the equality also holds after taming a
supremum over the same indexing set on both sides (parameterized by f and Xt),

sup
νp

Rψ,νp(T, P) = sup
νs

Rπ,νs(TP, 1) (4.32)

CHAPTER 4. PARALLEL LINEAR BANDITS 78

Now taming an infima over the policy class ψ and equivalent induced sequential policy class
shows,

inf
ψ

sup
νp

Rψ,νp(T, P) = inf
π∈P

sup
νs

Rπ,νs(TP, 1) ≥ inf
π

sup
ν1

Rπ,νs(TP, 1) (4.33)

by relaxing the final infima to tame place over the class of all sequential policies.

Unit Ball Lower Bound

Here we record the lower bound over a fixed action set for the unit ball for a sequential
bandit instance. The proof is an immediate generalization of [57, Theorem 24.2] with the
scales restored. Throughout this section we assume that the rewards are generated as,

rt,p = x>t,pθ
? + ξt,p (4.34)

where ξt,p ∼ N (0, R2).

Lemma 14. Let the fixed action set X = {x ∈ Rd : ‖x‖2 ≤ L} and parameter set Θ =

{±∆}d for ∆ = R
√
d

3
√

2TL
. If T ≥ dmax(1, 1

3
√

2
√
snr

), then for any policy π, there is a vector

θ? ∈ Θ such that:
Rπ,(X ,θ)(T, 1) ≥ Ω

(
Rd
√
T
)
.

Proof of Lemma 14. Let A = {x ∈ Rd : ‖x‖2 ≤ L} and θ ∈ Rd such that ‖θ‖2
2 = S2. Let

∆ = R
√
d

3
√

2TL
and θ ∈ {±∆}d and for all i ∈ [d] define τi = min(T,min(t :

∑t
s=1 x2

s,i ≥ αn
d
}.

We will set α = L2 at the end of the proof but in order to mame the derivations clearer and
easier to read we will meep this α explicit. Then for any policy π:

Rπ,(X ,θ)(T, 1) = ∆Eθ

[
T∑
t=1

d∑
i=1

(
L√
d
− xt,isign(θi)

)]

≥ ∆
√
d

2L
Eθ

[
T∑
t=1

d∑
i=1

(
L√
d
− xt,isign(θi)

)2
]

≥ ∆
√
d

2L

d∑
i=1

Eθ

[
τi∑
t=1

(
L√
d
− xt,isign(θi)

)2
]

Where the first inequality uses that ‖xt‖2
2 ≤ L2. Fix i ∈ [d]. For x ∈ {−1, 1}, define

Ui(x) =
∑τi

t=1

(
L√
d
− xt,ix

)2

. And let θ′ ∈ {±∆}d be another parameter vector with θj = θ′j
for j 6= i and θ′i = −θi. Assume without loss of generality that θi > 0. Let Pθ and Pθ′) be the
laws of Ui(1) w.r.t. the bandit learner interaction measure induced by θ and θ′ respectively.
By a simple calculation we conclude that:

CHAPTER 4. PARALLEL LINEAR BANDITS 79

KL(Pθ,Pθ′) ≤ 2
∆2

4R2
Eθ

[
τi∑
t=1

x2
t,i

]
(4.35)

Also, observe that:

Ui(1) =

τi∑
t=1

(
L/
√
d− xt,i

)2

≤ 2L2

τi∑
t=1

1

d
+ 2

τi∑
t=1

x2
t,i ≤

(
2L2T + 2αT

d
+ 2L2

)
Then:

Eθ[Ui(1)] ≥ Eθ′ [Ui(1)]−
(

2L2T + 2αT

d
+ 2L2

)√
KL(Pθ,Pθ′)

≥ Eθ′ [Ui(1)]−
(

2L2T + 2αT

d
+ 2L2

)
∆

2R

√√√√Eθ

[
τi∑
t=1

x2
t,i

]

≥ Eθ′ [Ui(1)]−
(

2L2T + 2αT

d
+ 2L2

)
∆

2R

√
Tα

d
+ L2

≥ Eθ′ [Ui(1)]−
(

2L2T + 4αT

d

)
∆

2R

√
2Tα

d

The last inequality follows by assuming αn ≥ dL2, which holds because by assumption
d ≥ L2 (recall α = L2).

We can then conclude that:

Eθ [Ui(1)] + Eθ′ [Ui(−1)] ≥ Eθ′ [Ui(1) + Ui(−1)]−
(

2L2T + 4αT

d

)
∆

2R

√
2Tα

d

= 2Eθ′
[
τiL

2

d
+

τi∑
t=1

x2
t,i

]
−
(

2L2n+ 4αT

d

)
∆

2R

√
2Tα

d

≥ min

(
2αT

d
,
2L2T

d

)
−
(

2L2T + 4αT

d

)
∆

2R

√
2Tα

d

Therefore using the Randomization Hammer we conclude there must exist a parameter
θ ∈ {±∆}d such that Rπ,(X ,θ)(T, 1) such that:

Rπ,(X ,θ)(T, 1) ≥ d
∆
√
d

2L

(
min

(
2αT

d
,
2L2T

d

)
−
(

2L2T + 4αT

d

)
∆

2R

√
2Tα

d

)
.

CHAPTER 4. PARALLEL LINEAR BANDITS 80

Let α = L2 and ∆ = R
√
d

3
√

2TL
. In this case:

Rπ,(X ,θ)(T, 1) ≥ Rd

6
√

2

√
T .

The additional constraint on T comes from the fact we must have that S ≥ ‖θ?‖2 =
√
d∆ =

Rd
3
√

2TL
=⇒ T ≥ dR

3
√

2LS
= d

3
√

2
√
snr

.

Misspecification Lower Bound

In this section record a scale-aware version of the lower bound for misspecified linear bandits
from [56]. For future reference, recall the definition of misspecification stated in Assumption 3
specialized to a finite context set of size m: Let X ⊂ Rd be a finite context set of size m. A
function f : X → R is ε−close to linear if there is a parameter θ? such that for all x ∈ X ,

|f(x)− x>θ?| ≤ ε.

Before stating our main result we will require the following supporting lemma from [56],

Lemma 15. For any ε, L > 0, and d ∈ [m] with d ≥ d8 log(m)L2/ε2e, and an action set
X = {xi}mi=1 ⊂ Rd satisfying ‖xi‖2 = L for all i and such that for all i, j ∈ [m] with i 6= j,

|x>i xj| ≤ L2
√

8 log(m)
d−1

.

Proof. This is simply a slightly modified version of in [56, Lemma 3.1].

Lemma 16. Let ε, L > 0 and m ∈ N. For any d ∈ [m] with d ≥ d8 log(m)L2/ε2e consider a
finite action set X ⊂ Rd of size m satisfying ‖xi‖ = L for all i ∈ [m]. Then for any policy
π, there is a parameter θ?, ε-close to a function f : X → Rm for which:

Rπ,(X ,θ?,f)(T, 1) ≥ ε

√
d− 1

8 log(m)

min(T,m− 1)

4
.

Moreover, this parameter θ? satisfies ‖θ?‖2 = ε
L

√
d−1

8 log(m)
.

Proof. Observe that by assumption since d ≥ d8 log(m)L2/ε2e we have that ε ≥ L
√

8 log(m)
d

.

By Lemma 15, we may choose X = {xi}mi=1 ⊂ Rd satisfying:

1. ‖xi‖2 = L for all i ∈ [m].

2. |x>i xj| ≤ L2
√

8 log(m)
d−1

for all i 6= j.

CHAPTER 4. PARALLEL LINEAR BANDITS 81

We now consider a family of m bandit instances indexed by each of the arms xi ∈ X .

For any xi ∈ X define θ?i = δxi with δ = ε
L2

√
d−1

8 log(m)
and define fi as:

fi(x) =

{
L2δ if x = xi

0 o.w.

By definition fi is ε−close to linear since for all x ∈ X with x 6= xi,

〈x,θ?i 〉 ≤ δL2

√
8 log(m)

d− 1
= ε and 〈xi,θ?〉 = L2δ

Denote by x(t) the action played by algorithm π at time t and define

τi = max
{
t ≤ n : x(s) 6= xi∀s ≤ t

}
. Then E[Rπ,(X ,θ?,f)(T, 1)] ≥ L2δEi[τi]. Where Ei denotes the expectation under the law of
bandit problem θ?i and algorithm π. Observe that any algorithm π that queries arm xj with
j 6= i more than once before pulling arm xi will have a larger Ei[τi] than one that only queries
each arm once before querying arm xi. This means that in order to lower bound Ei[τi] we
can restrict ourselves to algorithms π that do not repeat an arm pull before τi. In fact we
can assume algorithm π behaves the same for all i ∈ [m]. Observe that for such algorithms
whenever facing problem θ?i and t ≤ τi, the law of the rewards is independent of xi for all
i ∈ [m]. Let f0 : X → R denote the zero function such that f(x) = 0 for all x ∈ X and
let E0 be the expectation under the law of the bandit problem induced by f0 and algorithm
π. Let Ti be the first time that algorithm A encountered arm i when interacting with f0.
Observe that since the interactions of π with fi before τi + 1 and the interactions of A with
f0 before A pulls xi (or the time runs up) are indistinguishable Ei[τi] = E0[min(T, Ti − 1)].
A simple averaging argument shows that

1

m

∑
i

Rπ,(X ,θ?,f)(T, 1) ≥ L2δ

m

m∑
i=1

Ei[τi] =
L2δ

m

m∑
i=1

E0 [min(T, Ti − 1)]

=
L2δ

m
E0

[
m∑
i=1

min(T, Ti − 1)

]
Since π is assumed to interact with f0 by never pulling the same arm twice, {Ti − 1}mi=1 =
{i− 1}mi=1. Using this fact, we can write

1

m

m∑
i=1

min(T, Ti − 1) =
1

m

min(m,T)∑
i=1

i− 1 + 1(T ≤ m− 1)T.

In order to bound the expression above we analyze two cases, first when T ≤ m, and second
when T > m. In the first case

1

m

min(m,T)∑
i=1

i− 1 + 1(T ≤ m− 1)T =
1

m

(
T (T − 1)

2
+ T (m− T).

)

CHAPTER 4. PARALLEL LINEAR BANDITS 82

Let’s consider two sub-cases. If T −1 ≥ m
2

, then 1
m

(
T (T−1)

2
+ T (m− T)

)
≥ T

4
. If T −1 <

m
2

then m− T > m−
(
m
2

+ 1
)

= m
2
− 1. And therefore 1

m

(
T (T−1)

2
+ T (m− T)

)
≥ T

2
− T

m
>

T
2
− 1. It follows that whenever T ≤ m (and T > 1), then 1

m

(
T (T−1)

2
+ T (m− T)

)
≥ T

4
.

Now let’s consider the case when T > m. If this holds,

1

m

min(m,T)∑
i=1

i− 1 + 1(T ≤ m− 1)T =
m− 1

2
.

Assembling these facts together we conclude that in all cases,

1

m

m∑
i=1

min(T, Ti − 1) ≥ min(T,m− 1)

4
.

The result follows by noting this implies there must exist one θ?i such that

Rπ,(X ,θ?,f)(T, 1) ≥ ε

√
d− 1

8 log(m)

min(T,m− 1)

4
.

The result follows.

83

Bibliography

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. “Improved algorithms for
linear stochastic bandits”. In: (2011), pp. 2312–2320.

[2] Marc Abeille, Alessandro Lazaric, et al. “Linear thompson sampling revisited”. In:
Electronic Journal of Statistics 11.2 (2017), pp. 5165–5197.

[3] Alekh Agarwal et al. “Making contextual decisions with low technical debt”. In: arXiv
preprint arXiv:1606.03966 (2016).

[4] Shipra Agrawal and Navin Goyal. “Further optimal regret bounds for thompson sam-
pling”. In: (2013), pp. 99–107.

[5] Shipra Agrawal and Navin Goyal. “Thompson sampling for contextual bandits with
linear payoffs”. In: (2013), pp. 127–135.

[6] Christof Angermueller et al. “Deep learning for computational biology”. In: Molecular
systems biology 12.7 (2016), p. 878.

[7] Christof Angermueller et al. “Population-Based Black-Box Optimization for Biologi-
cal Sequence Design”. In: arXiv preprint arXiv:2006.03227 (2020).

[8] Frances H Arnold. “Design by directed evolution”. In: Accounts of chemical research
31.3 (1998), pp. 125–131.

[9] A. Auton, S. Myers, and G. McVean. “Identifying recombination hotspots using pop-
ulation genetic data”. In: arXiv: 1403.4264 (2014).

[10] Ruth E Baker et al. “Mechanistic models versus machine learning, a fight worth
fighting for the biological community?” In: Biology letters 14.5 (2018), p. 20170660.

[11] Luis A Barrera et al. “Survey of variation in human transcription factors reveals
prevalent DNA binding changes”. In: Science 351.6280 (2016), pp. 1450–1454.

[12] Mohsen Bayati et al. “Unreasonable Effectiveness of Greedy Algorithms in Multi-
Armed Bandit with Many Arms”. In: Advances in Neural Information Processing
Systems 33 (2020).

[13] M. A. Beaumont, W. Zhang, and D. J. Balding. “Approximate Bayesian computation
in population genetics”. In: Genetics 162.4 (2002), pp. 2025–2035.

[14] David Belanger et al. “Biological Sequences Design using Batched Bayesian Opti-
mization”. In: (2019).

BIBLIOGRAPHY 84

[15] Alberto Bietti, Alekh Agarwal, and John Langford. “A contextual bandit bake-off”.
In: arXiv preprint arXiv:1802.04064 (2018).

[16] MGB Blum and O François. “Non-linear regression models for Approximate Bayesian
Computation”. In: Statistics and Computing 20.1 (2010), pp. 63–73.

[17] S. Boitard et al. “Inferring population size history from large samples of genome-wide
molecular data-an approximate Bayesian computation approach”. In: PLoS genetics
12.3 (2016), e1005877.

[18] David H Brookes and Jennifer Listgarten. “Design by adaptive sampling”. In: arXiv
preprint arXiv:1810.03714 (2018).

[19] Alon Brutzkus and Amir Globerson. “Globally optimal gradient descent for a convnet
with gaussian inputs”. In: arXiv preprint arXiv:1702.07966 (2017).

[20] Jeffrey Chan and Yun S Song. “A Structured Permutation-Equivariant Network for
Reference-free Archaic Admixture”. In: NIPS Computational Biology Workshop. 2017.

[21] Jeffrey Chan et al. “A likelihood-free inference framework for population genetic data
using exchangeable neural networks”. In: Advances in neural information processing
systems 31 (2018), p. 8594.

[22] Olivier Chapelle and Lihong Li. “An empirical evaluation of thompson sampling”. In:
(2011), pp. 2249–2257.

[23] Thomas Desautels, Andreas Krause, and Joel W Burdick. “Parallelizing exploration-
exploitation tradeoffs in gaussian process bandit optimization”. In: Journal of Ma-
chine Learning Research 15 (2014), pp. 3873–3923.

[24] Olga Dolgova and Oscar Lao. “Evolutionary and medical consequences of archaic
introgression into modern human genomes”. In: Genes 9.7 (2018), p. 358.

[25] Miroslav Dudik et al. “Efficient optimal learning for contextual bandits”. In: arXiv
preprint arXiv:1106.2369 (2011).

[26] Richard Durrett. Probability models for DNA sequence evolution. Springer Science &
Business Media, 2008.

[27] P. Fearnhead. “SequenceLDhot: detecting recombination hotspots”. In: Bioinformat-
ics 22 (24 2006), pp. 3061–3066.

[28] P. Fearnhead and D. Prangle. “Constructing summary statistics for approximate
Bayesian computation: semi-automatic approximate Bayesian computation”. In: Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 74.3 (2012),
pp. 419–474.

[29] Lex Flagel, Yaniv J Brandvain, and Daniel R Schrider. “The Unreasonable Effective-
ness of Convolutional Neural Networks in Population Genetic Inference”. In: bioRxiv
(2018), p. 336073.

BIBLIOGRAPHY 85

[30] Dylan Foster et al. “Practical contextual bandits with regression oracles”. In: (2018),
pp. 1539–1548.

[31] R. A. Gibbs et al. “The international HapMap project”. In: Nature 426.6968 (2003),
pp. 789–796.

[32] R. C. Griffiths. “Neutral two-locus multiple allele models with recombination”. In:
Theoretical Population Biology 19.2 (1981), pp. 169–186.

[33] C. Guo et al. “On Calibration of Modern Neural Networks”. In: arXiv:1706.04599
(2017).

[34] N. Guttenberg et al. “Permutation-equivariant neural networks applied to dynamics
prediction”. In: arXiv:1612.04530 (2016).

[35] Kam Hamidieh. “A data-driven statistical model for predicting the critical tempera-
ture of a superconductor”. In: Computational Materials Science 154 (2018), pp. 346–
354.

[36] Michael F Hammer et al. “Genetic evidence for archaic admixture in Africa”. In:
Proceedings of the National Academy of Sciences 108.37 (2011), pp. 15123–15128.

[37] Robert E Hawkins, Stephen J Russell, and Greg Winter. “Selection of phage anti-
bodies by binding affinity: mimicking affinity maturation”. In: Journal of molecular
biology 226.3 (1992), pp. 889–896.

[38] J. Hey. “What’s So Hot about Recombination Hotspots?” In: PLoS Biol 2.6 (2004),
e190.

[39] Eshcar Hillel et al. “Distributed exploration in multi-armed bandits”. In: Advances
in Neural Information Processing Systems 26 (2013), pp. 854–862.

[40] R. R. Hudson. “Properties of a neutral allele model with intragenic recombination”.
In: Theoretical population biology 23.2 (1983), pp. 183–201.

[41] R. R. Hudson. “Two-locus sampling distributions and their application”. In: Genetics
159.4 (2001), pp. 1805–1817.

[42] P. A. Jenkins and Y. S. Song. “An asymptotic sampling formula for the coalescent
with Recombination”. In: The Annals of Applied Probability 20.3 (2010), pp. 1005–
1028.

[43] B. Jiang et al. “Learning Summary Statistic for Approximate Bayesian Computation
via Deep Neural Network”. In: arXiv:1510.02175 (2015).

[44] Chi Jin et al. “Minimizing Nonconvex Population Risk from Rough Empirical Risk”.
In: arXiv preprint arXiv:1803.09357 (2018).

[45] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. “Online learning under delayed
feedback”. In: (2013), pp. 1453–1461.

[46] J. A. Kamm et al. “Two-locus likelihoods under variable population size and fine-scale
recombination rate estimation”. In: Genetics 203.3 (2016), pp. 1381–1399.

BIBLIOGRAPHY 86

[47] Kirthevasan Kandasamy et al. “Parallelised bayesian optimisation via thompson sam-
pling”. In: (2018), pp. 133–142.

[48] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli. “Batched gaussian process
bandit optimization via determinantal point processes”. In: (2016), pp. 4206–4214.

[49] J. Kelleher, A. M. Etheridge, and G. McVean. “Efficient coalescent simulation and
genealogical analysis for large sample sizes”. In: PLoS computational biology 12.5
(2016), e1004842.

[50] D. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv:1412.6980
(2014).

[51] J. F. C. Kingman. “The coalescent”. In: Stochastic processes and their applications
13.3 (1982), pp. 235–248.

[52] John FC Kingman. “On the genealogy of large populations”. In: Journal of Applied
Probability 19.A (1982), pp. 27–43.

[53] A. Kong et al. “Rate of de novo mutations and the importance of father’s age to
disease risk”. In: Nature 488.7412 (2012), pp. 471–475.

[54] Nathan Korda, Balazs Szorenyi, and Shuai Li. “Distributed clustering of linear bandits
in peer to peer networks”. In: (2016), pp. 1301–1309.

[55] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scal-
able predictive uncertainty estimation using deep ensembles”. In: (2017), pp. 6402–
6413.

[56] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. “Learning with good feature
representations in bandits and in rl with a generative model”. In: (2020), pp. 5662–
5670.

[57] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press,
2020.

[58] Heng Li and Richard Durbin. “Inference of human population history from individual
whole-genome sequences”. In: Nature 475.7357 (2011), pp. 493–496.

[59] J. Li, M. Q. Zhang, and X. Zhang. “A new method for detecting human recombination
hotspots and its applications to the HapMap ENCODE data”. In: The American
Journal of Human Genetics 79.4 (2006), pp. 628–639.

[60] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: (2015), pp. 3431–3440.

[61] G. A. T. McVean et al. “The Fine-Scale Structure of Recombination Rate Variation
in the Human Genome”. In: Science 304 (5670 2004), pp. 581–584.

[62] G. Papamakarios and I. Murray. “Fast ε-free Inference of Simulation Models with
Bayesian Conditional Density Estimation”. In: arXiv:1605.06376 (2016).

BIBLIOGRAPHY 87

[63] P. Pavlidis, J. D. Jensen, and W. Stephan. “Searching for footprints of positive se-
lection in whole-genome SNP data from nonequilibrium populations”. In: Genetics
185.3 (2010), pp. 907–922.

[64] T. D. Petes. “Meiotic recombination hot spots and cold spots”. In: Nature Reviews
Genetics 2.5 (2001), pp. 360–369.

[65] Vincent Plagnol and Jeffrey D Wall. “Possible ancestral structure in human popula-
tions”. In: PLoS genetics 2.7 (2006), e105.

[66] J K Pritchard et al. “Population growth of human Y chromosomes: a study of Y
chromosome microsatellites”. In: Mol Biol Evol 16.12 (1999), pp. 1791–8.

[67] Kay Prüfer et al. “The complete genome sequence of a Neandertal from the Altai
Mountains”. In: Nature 505.7481 (2014), p. 43.

[68] Ali Rahimi, Benjamin Recht, et al. “Random Features for Large-Scale Kernel Ma-
chines.” In: 3.4 (2007), p. 5.

[69] S. Ravanbakhsh, J. Schneider, and B. Poczos. “Deep Learning with Sets and Point
Clouds”. In: arXiv:1611.04500 (2016).

[70] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Deep learning with sets
and point clouds”. In: arXiv preprint arXiv:1611.04500 (2016).

[71] Siamak Ravanbakhsh, Jeff Schneider, and Barnabás Póczos. “Equivariance Through
Parameter-Sharing”. In: Proceedings of Machine Learning Research 70 (June 2017).
Ed. by Doina Precup and Yee Whye Teh, pp. 2892–2901. url: http://proceedings.
mlr.press/v70/ravanbakhsh17a.html.

[72] Philip A Romero, Andreas Krause, and Frances H Arnold. “Navigating the protein
fitness landscape with Gaussian processes”. In: Proceedings of the National Academy
of Sciences 110.3 (2013), E193–E201.

[73] Daniel Russo et al. “A tutorial on thompson sampling”. In: arXiv preprint arXiv:1707.02038
(2017).

[74] Sriram Sankararaman et al. “The combined landscape of Denisovan and Neanderthal
ancestry in present-day humans”. In: Current Biology 26.9 (2016), pp. 1241–1247.

[75] Sriram Sankararaman et al. “The genomic landscape of Neanderthal ancestry in
present-day humans”. In: Nature 507.7492 (2014), pp. 354–357.

[76] D. R. Schrider and A. D. Kern. “Inferring selective constraint from population ge-
nomic data suggests recent regulatory turnover in the human brain”. In: Genome
biology and evolution 7.12 (2015), pp. 3511–3528.

[77] Andaine Seguin-Orlando et al. “Genomic structure in Europeans dating back at least
36,200 years”. In: Science 346.6213 (2014), pp. 1113–1118.

[78] Fathima Aidha Shaikh and Stephen G Withers. “Teaching old enzymes new tricks:
engineering and evolution of glycosidases and glycosyl transferases for improved gly-
coside synthesis”. In: Biochemistry and Cell Biology 86.2 (2008), pp. 169–177.

http://proceedings.mlr.press/v70/ravanbakhsh17a.html
http://proceedings.mlr.press/v70/ravanbakhsh17a.html

BIBLIOGRAPHY 88

[79] S. Sheehan and Y. S. Song. “Deep Learning for Population Genetic Inference”. In:
PLoS Computational Biology 12.3 (2016), e1004845.

[80] Sara Sheehan, Kelley Harris, and Yun S Song. “Estimating variable effective popula-
tion sizes from multiple genomes: a sequentially Markov conditional sampling distri-
bution approach”. In: Genetics 194.3 (2013), pp. 647–662.

[81] P. K. Shivaswamy and T. Jebara. “Permutation invariant svms”. In: (2006), pp. 817–
824.

[82] Sam Sinai and Eric Kelsic. “A primer on model-guided exploration of fitness land-
scapes for biological sequence design”. In: arXiv preprint arXiv:2010.10614 (2020).

[83] Sam Sinai et al. “AdaLead: A simple and robust adaptive greedy search algorithm
for sequence design”. In: arXiv preprint (2020).

[84] V. C. Sousa et al. “Approximate Bayesian Computation Without Summary Statistics:
The Case of Admixture”. In: Genetics 181.4 (2009), pp. 1507–1519.

[85] Adith Swaminathan and Thorsten Joachims. “Counterfactual risk minimization: Learn-
ing from logged bandit feedback”. In: (2015), pp. 814–823.

[86] Balazs Szorenyi et al. “Gossip-based distributed stochastic bandit algorithms”. In:
(2013), pp. 19–27.

[87] Fumio Tajima. “Evolutionary relationship of DNA sequences in finite populations”.
In: Genetics 105.2 (1983), pp. 437–460.

[88] William R Thompson. “On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples”. In: Biometrika 25.3/4 (1933), pp. 285–
294.

[89] Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In: Founda-
tions of computational mathematics 12.4 (2012), pp. 389–434.

[90] Claire Vernade, Olivier Cappé, and Vianney Perchet. “Stochastic bandit models for
delayed conversions”. In: arXiv preprint arXiv:1706.09186 (2017).

[91] Claire Vernade et al. “Linear bandits with stochastic delayed feedback”. In: (2020),
pp. 9712–9721.

[92] Benjamin Vernot and Joshua M Akey. “Resurrecting surviving Neandertal lineages
from modern human genomes”. In: Science 343.6174 (2014), pp. 1017–1021.

[93] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48.
Cambridge University Press, 2019.

[94] J. D. Wall and L. S. Stevison. “Detecting Recombination Hotspots from Patterns of
Linkage Disequilibrium”. In: G3: Genes, Genomes, Genetics (2016).

[95] Y. Wang and B. Rannala. “Population genomic inference of recombination rates
and hotspots”. In: Proceedings of the National Academy of Sciences 106.15 (2009),
pp. 6215–6219.

BIBLIOGRAPHY 89

[96] Yuanhao Wang et al. “Distributed bandit learning: Near-optimal regret with efficient
communication”. In: arXiv preprint arXiv:1904.06309 (2019).

[97] D. Wegmann, C. Leuenberger, and L. Excoffier. “Efficient Approximate Bayesian
Computation coupled with Markov chain Monte Carlo without likelihood”. In: Ge-
netics 182.4 (2009), pp. 1207–1218.

[98] M. Zaheer et al. “Deep Sets”. In: Neural Information Processing Systems (2017).

[99] Andrea Zanette et al. “Learning Near Optimal Policies with Low Inherent Bellman
Error”. In: arXiv preprint arXiv:2003.00153 (2020).

[100] Zhengyuan Zhou, Renyuan Xu, and Jose Blanchet. “Learning in generalized linear
contextual bandits with stochastic delays”. In: (2019), pp. 5197–5208.

	Contents
	List of Figures
	Introduction
	Background
	Overview

	Exchangeable Neural Networks
	Introduction
	Related Work
	Methods
	Statistical Properties
	Empirical Study: Recombination Hotspot Testing
	Discussion
	Proofs

	Archaic Admixture Detection
	Introduction
	Structured Coalescent with Recombination
	Method
	Experiments
	Discussion

	Parallel Linear Bandits
	Introduction
	Parallelizing Linear Bandits
	Stable Covariances
	Parallel Regret Lower Bounds
	Experiments
	Conclusion
	Additional Experimental Details
	Proofs

	Bibliography

