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Abstract

Intermittent Visual Servoing: Efficiently Learning Policies

Robust to Instrument Changes for High-precision Surgical Manipulation

by

Samuel Paradis

Master of Science in Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Assisting surgeons with automation of surgical subtasks is challenging due to backlash, hys-

teresis, and variable tensioning in cable-driven robots. These issues are exacerbated as

surgical instruments are changed during an operation. In this work, we propose a framework

for automation of high-precision surgical subtasks by learning local, sample-efficient, accu-

rate, closed-loop policies that use visual feedback instead of robot encoder estimates. This

framework, which we call deep Intermittent Visual Servoing (IVS), switches to a learned

visual servo policy for high-precision segments of repetitive surgical tasks while relying on a

coarse open-loop policy for the segments where precision is not necessary. We train the policy

using only 180 human demonstrations that are roughly 2 seconds each. Results on a da Vinci

Research Kit suggest that combining the coarse policy with half a second of corrections from

the learned policy during each high-precision segment improves the success rate on the Fun-

damentals of Laparoscopic Surgery peg transfer task from 72.9% to 99.2%, 31.3% to 99.2%,

and 47.2% to 100.0% for 3 instruments with differing cable properties. In the contexts we

studied, IVS attains the highest published success rates for automated surgical peg transfer

and is significantly more reliable than previous techniques when instruments are changed.
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1. IVS

1.1 Introduction

Laparoscopic surgical robots such as the da Vinci Research Kit (dVRK) [20] are challenging

to accurately control using open-loop techniques because of the hysteresis, cable-stretch, and

complex dynamics of their cable-driven joints [13, 37, 18]. Furthermore, encoders are typi-

cally located at the motors, far from the joints they control, making accurate state estimation

challenging. Prior work addresses these issues by learning a model of robot dynamics from

data [18, 43, 58] for accurate open-loop control or by learning control policies that directly

command the robot to perform tasks [59]. However, these approaches tend to require many

training samples, which can take a long time to collect on a physical robot. Additionally,

learning a model of the robot’s dynamics requires accurate state estimation, which requires

motion capturing techniques using fiducials [18, 43]. Also, the learned dynamics models can

overfit to the specific cabling properties of individual instruments (see Section 1.5). Because

instrument changes are commonplace within and across surgeries, control strategies must be

robust to these shifts in cabling properties.

We propose a framework called intermittent visual servoing (IVS), which combines coarse

planning over a robot model with learning-based, visual feedback control at segments of the

task that require high precision. We use RGBD sensing to construct open-loop trajectories

to track with a coarse policy, but during intermittent servoing, we only use RGB sensing, as

it can capture images at a much higher frequency. Further, depth sensing performs poorly

when the scene is moving, so using RGB allows for continuous visual servoing while the

robot is still in motion. Typical depth sensors operate at 3.5 frames per second (FPS),

whereas commodity cameras can reach over 90 FPS. This, combined with not requiring the

robot to fully stop to sense allows for 10.0 corrective updates per second during peg transfer

experiments, compared with only 1.6 for RGBD servoing.

We use imitation learning (IL) to train a precise, visual feedback policy from expert

demonstrations. Imitation learning is a popular approach for training control policies from
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demonstrations provided by a human or an algorithmic supervisor, but may require signif-

icant amounts of data [2, 39], which is expensive in the case of a human supervisor [47].

To mitigate this requirement, the learning-based, visual feedback policy is only trained on

segments where accuracy is necessary, while we rely on a coarse open-loop policy to navi-

gate between these segments. As a result, training the local, visual feedback policy requires

fewer demonstrations than a policy trained to perform the entire task. Because this policy is

trained to directly output controls from images, it does not require explicit state estimation

techniques as in prior work. While dVRK surgical instruments can have errors up to 6 mm

in positioning [18], this is sufficient for low-precision segments such as transferring a block

between pegs.

This work, as well as progress to this work, contains invaluable contributions from Minho

Hwang, Brijen Thananjeyan, Jeffrey Ichnowski, Daniel Seita, and Danyal Fer. My contri-

bution includes building the IVS architecture, leading its evaluation, creating the figures,

and writing and revising sections of this text. Minho Hwang assisted with the setup of the

dVRK, as well as the evaluation of IVS. Brijen Thananjeyan, Jeffrey Ichnowski, Daniel Seita,

and Danyal Fer provided guidance, and assisted in writing and revising sections of this text.

This thesis makes the following contributions: (1) a novel deep learning framework, IVS,

for automation of high-precision surgical tasks, (2) experiments on the FLS peg transfer

task suggesting that IVS can match state-of-the-art calibration methods in terms of accu-

racy while requiring significantly less training data, (3) experiments suggesting that IVS is

significantly more robust to instrument changes than prior methods, maintaining accuracy

across 3 robot instruments having different cabling-related properties.
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(5) VS

(3) Pick

(2) VS

(6) Place

(1) Coarse Policy

(4) Coarse Policy

Visual Servoing Pipeline

Top-Down Camera Observation Prediction Corrective Action

Peg Transfer Example

Multiple Surgical Instruments

Figure 1.1: Intermittent Visual Servoing (IVS). Visual Servoing Pipeline: To com-
pensate for cable-related effects, a policy maps images of the workspace from a top-down
RGB camera to corrective motions. Peg Transfer Example: The robot switches to a
visual feedback policy for high-precision segments of the task (green), and uses a coarse
policy to navigate between these segments (blue). Multiple Surgical Instruments: We
experiment using 3 different large needle drivers, each with unique backlash, hysteresis, and
cable tension properties.
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1.2 Related Work

Robot assisted surgery has been widely adopted based on pure teleoperation, as exemplified

by the popularity of curricula such as the Fundamentals of Laparoscopic Surgery (FLS) [11,

12]. Automating robot surgery has proven to be difficult, and so far all standard surgical

procedures using robot surgery techniques use a trained human surgeon to teleoperate the

robot arms to compensate for various forces and inaccuracies in the robot system [60]. Au-

tomating surgical robotics using cable-driven Robotic Surgical Assistants (RSAs) such as

the da Vinci [20] or the Raven II [14] is known to be a difficult problem due to backlash,

hysteresis, and other errors and inaccuracies in robot execution [33, 51, 43].

Automation of Surgical Robotics Subtasks

Automation of surgical robotics subtasks has a deep history in the robotics research lit-

erature. Key applications include cutting [57], debridement [21, 38, 51], hemostasis [15],

suturing [52, 42, 48, 41], and more broadly manipulating and extracting needles [54, 61, 9,

8].

We focus on the Fundamentals of Laparoscopic Surgery (FLS) peg-transfer surgeon train-

ing task, in which the surgeon must transfer 6 blocks from a set of pegs to another set of

pegs, and then transfer them back (Fig. 1.2). As each block’s opening has a 4.5 mm radius,

and each peg’s cylindrical is 2.25 mm wide, the task requires high precision, making it a

popular benchmark task for evaluating human surgeons [1, 5, 46, 40, 32, 44]. Prior work in

automating peg transfer suggests that servoing based on encoder readings cannot reliably

perform this task, as positioning errors lead to failure [18, 17]. As a result, sophisticated

calibration techniques are used to correct for cabling effects of the surgical instrument dur-

ing execution [18, 17]. These works, while producing effective and reliable results, result in

systems are instrument-specific. In contrast, we focus on a system that does not require ac-

curate calibration and transfers across a variety of surgical instruments with distinct cabling

properties.

Switching Surgical Instruments

Switching surgical instruments during surgery is both necessary and common [35]. Depend-

ing on the type of procedure, up to four instruments may be exchanged on a single arm

in rapid succession to perform a task, and this may occur multiple times over a given pro-

cedure [35]. These exchanges have been demonstrated to contribute to 10 to 30% of total
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operative time, increasing patient exposure to anesthesia [36]. Additionally, each instrument

is only permitted to be used for 10 operations regardless of the operation length due to

potential instrument degradation and even within this permitted-use window instruments

frequently fail [55, 31]. Moreover, between patients, instruments must undergo high pres-

sure, high heat sterilization that further degrades the instrument [55]. Instrument collisions

during a procedure are common and can alter the cabling properties of the instrument, neces-

sitating re-calibration in the case of automated surgery. Sophisticated, instrument-specific

calibration techniques require many long trajectories of data [18], which further increases

the wear on the instrument, reduces its lifespan, and can require time during or before a

surgical procedure to collect data. Therefore, developing policies that are efficiently trans-

ferable across instruments is critical to automation of surgical tasks, since instruments are

exchanged frequently and instrument properties change over time with increased usage.

Visual Servoing for High Precision Tasks

Visual servoing has a rich history in robotics [16, 22]. Classical visual servoing mechanisms

typically use domain-specific knowledge in the form of image features or system dynamics [6,

34]. In recent years, data-driven approaches to visual servoing have gained in popularity as

a way to generalize from patterns in larger training datasets. For example, approaches such

as Levine et al. [27] and Kalashnikov et al. [19] train visual servoing policies for grasping

based on months of nonstop data collection across a suite of robot arms. Other approaches

for learning visual servoing include Lee et al. [25], who use reinforcement learning and pre-

dictive dynamics for target following, Saxena et al. [50] for servoing of quadrotors, and

Bateux et al. [4] for repositioning robots from target images.

In this work, to facilitate rapid instrument changes, it is infeasible to obtain massive

datasets by running the da Vinci repeatedly for each new instrument, hence we prioritize

obtaining high-quality demonstrations [2, 39] at the critical moments of when the robot

inserts or removes blocks from pegs. This enables the system to rapidly learn a robust policy

for the region of interest, while relying on a coarse, open-loop policy otherwise. Coarse-to-fine

control architectures combining geometric planners with adaptive error correction strategies

have a long history in robotics [29, 49, 45, 56, 28], with works such as Lozano-Pérez et al. [29]

studying the combination of geometric task descriptions with sensing and error correction

for compliant motions. Our work is similar to that of Lee et al. [26], who use a model-based

planner for moving a robot arm in free space, and reinforcement learning for learning an

insertion policy when the gripper is near the region of interest.
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2.25 mm
2.25 mm
4.50 mm
1.15 mm

Figure 1.2: Robot Setup for FLS Peg Transfer. We use Intuitive Surgical’s da Vinci
Research Kit robot. We use red 3D printed blocks and a red 3D printed peg board. We
use a uniformly red setup to simulate the surgical environment, where color alone may not
provide sufficient signal, as surgeons rely on minute differences in color, depth and texture to
complete high-precision tasks. We use a top-down camera to generate open-loop trajectories
(RGBD) and capture the input for visual servoing (RGB). The FLS peg transfer task involves
transferring 6 blocks from the 6 left pegs to the 6 right pegs, and transferring them back
from the right pegs to the left pegs. As each block’s opening has a 4.5 mm radius, and
each peg’s cylindrical is 2.25 mm wide, the task requires high precision, making it a popular
benchmark task for evaluating human surgeons.

1.3 Problem Definition

We focus on the FLS peg transfer task, using the setup in Hwang et al. [18], which uses red 3D

printed blocks and a red 3D printed pegboard (see Fig. 1.2). In real surgical environments,

blood is common, so surgeons rely on minute differences in color, depth, and texture to

complete high-precision tasks. We use 3D printing to construct a uniformly red pegboard

setup, so the environment more accurately reflects a surgical setting. The task involves

transferring 6 blocks from the 6 left pegs to the 6 right pegs, and transferring them back

from the right pegs to the left pegs (see Fig. 1.2). As in Hwang et al. [17, 18], we focus on

the single-arm version of the task.

We define the peg transfer task as consisting of a series of smaller subtasks, with the
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following success criteria:

Pick: the robot grasps a block and lifts it off the pegboard.

Place: the robot securely places a block over a target peg.

We define a transfer as a successful pick followed by a successful place. A trajectory

consists of a single instance of any of the two subtasks in action. A single trial of the peg

transfer task initially consists of 6 blocks starting on one side of the peg board, each with

random configurations. A successful trial without failures consists of 6 transfers to move all

6 blocks to the other side of the board, and then 6 more transfers to move the blocks back to

the original side of the peg board. A trial can have fewer than 12 transfers if failures occur

during the process.
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1.4 IVS: Method

Subtask Segmentation and Policy Design

Due to cabling effects, tracking an open-loop trajectory to pick or place targets using robot

encoder estimates may result in positioning errors; we thus propose decomposing subtasks

into 3 phases: (1) an open-loop approach phase, (2) a closed-loop visual-servoing correction

phase, and (3) an open-loop completion phase. The open-loop phases are executed by a

coarse policy πc that tracks predefined trajectories using the robot’s odometry. The closed-

loop phases are executed by a learned, visual feedback, fine motion policy πf that corrects

the robot’s position for the subsequent completion motion. At time t, the executed policy

outputs an action vector at, as well as a termination signal φt ∈ {0, 1}, which signals to the

system to switch to the next segment.

Pick Subtask

The first segment uses an open-loop policy π0
c to execute a trajectory to a position above the

target grasp (approach). After this motion, a visual feedback policy π0
f takes over to correct

for positioning errors (correction). Once corrected, the robot again executes π0
c to perform

a predefined grasping motion relative to its current pose (completion).

Place Subtask

Similar to block picking, an open-loop policy π1
c executes a trajectory to a position above

the target placement (approach). After this motion, a visual feedback policy π1
f takes over to

correct for positioning errors (correction). Once corrected, the robot opens its jaws, resulting

in the block dropping onto the peg (completion).

Fine-Policy Data Collection

We collect demonstrations from a human teleoperator to generate a dataset to train a neural

network for a fine policy. We collect 15 trajectories on each of the 12 pegs for both subtasks,

resulting in 180 transfers, and 360 expert trajectories. Each trajectory consists of a small

corrective motion, as the teleoperator navigates the end-effector from a starting position to

the goal position. For picks, the goal position is directly above the optimal pick spot. For

places, the goal position is such that the center of the block aligns with the center of the

target peg. The starting position of each attempt is a random position within 5 mm of the

goal position. Further, due to the size of the blocks, small segments of irrelevant blocks
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(1) (2)

Raw RGB Color CropROI Crop

Figure 1.3: Data Filtering. We preprocess the images in two ways: (1) crop a 150×150
image around the center of the target peg, and (2) color-crop out all red pixels outside of a
block-sized radius from the center of the peg.

may be visible after data preprocessing (see Sec. 1.4). To capture this data property, while

collecting trajectories for a given target peg, we populate neighboring pegs with blocks.

Then, prior to each attempt, we randomize the configurations of the neighboring blocks.

For each demonstration, we capture a top-down RGB image I ∈ R1200×1900×3 and end-

effector position p ∈ R2 in the robot’s base frame estimated from encoder values at 5 Hz.

We do not record the z coordinate, because the correction phase for both subtasks will be

performed in an plane with a fixed z coordinate. While the recorded end-effector position

has errors due to cabling properties [18, 43, 17], we demonstrate empirically that the high-

frequency visual feedback policy trained from supervision extracted from these estimates is

reliable (Sec. 1.5). Each demonstration is a raw trajectory: T = {(It, pt)}Tt=0 The pick

dataset D0 = {T0,i}N0

i=1 consists of 2400 datapoints, and the place dataset D1 = {T1,i}N1

i=1

contains 1804 datapoints. The corrective pick trajectories are slightly longer than corrective

place trajectories, resulting in 3.3 additional datapoints per demonstration.

Preprocessing of Visual Feedback Policy Training Data

Image Filtering

To train a single model on all 180 demonstrations, regardless of the target peg, we (1) crop

images around the peg, and (2) color crop other blocks (see Fig. 1.3). For (1), we crop a

150×150 image centered on the target peg. For (2), we color-crop out all red pixels outside

of a block-sized radius from the center of the target peg. This removes the other blocks from

the input image as much as possible while keeping the instrument, target block, and target

peg visible. Hereafter, we let It refer to the image after preprocessing the raw image (see
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p1

p0

p2
p3 p4 p5

a0

a1
a2

a3 a4 a5

ν

λ

p6=pT
a6

Do Not Terminate
Terminate
Corrective Action
Expert Trajectory

Figure 1.4: Supervision Extraction with Labeled Example. Top: The action at,
indicated by the arrows, is a vector of length 1 mm (λ) in the direction pt′ − pt traveled by
the expert trajectory, where pt is the current waypoint and pt′ is the next waypoint that is
at least 1 mm (λ) distance from pt. The extracted termination label, indicated by the color
of the waypoint, is 1 if the distance to the final position in the trajectory pT is less than
2 mm (ν), and 0 otherwise. Each waypoint corresponds to an image, and each image receives
both a corrective action label and a termination signal label. Bottom: Preprocessed images
(see Fig. 1.3) from a corrective place trajectory with labels extracted using method described
above.

Fig. 1.3).

Supervision Extraction

We additionally process the datasets to extract supervision for subsequent learning. For an

input raw trajectory T , we transform it via mappings Πa and Πo that extract the action

executed and a terminal condition, respectively (see Fig. 1.4).

Corrective Action Extraction: We transform T to get the action-labeled dataset

Ta = Πa(T ) = {(It, at)}Tt=1, where at = λ pt′−pt
‖(pt′−pt)‖2
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s.t.t′ = min ({t′′ | t′′ > t ∧ pt′′ − pt2 ≥ λ} ∪ {T}) . The action at is a vector of length λ in the

direction pt′ − pt traveled by the demonstration trajectory, where pt′ is the next waypoint

that is at least λ distance from pt. In the case the distance to the final position in the

trajectory pT is less than λ, pt′ = pT . In experiments, we set the λ hyperparameter to 1 mm,

as 1 mm is an upper bound on the expected Cartesian distance traveled by the end-effector

per corrective update.

Terminal Condition Extraction: We extract a binary completion label for each image.

We transform T to get the action-labeled dataset To = Πo(T ) = {(It, φt)}Tt=1, where φt =

1 {‖pT − pt‖2 ≤ ν}. The flag φt is 1 if the distance to the final position pT is less than the

hyperparameter ν. In experiments, we set ν to 2 mm, as 2 mm is strict enough to reliably

confirm termination, and lenient enough to prevent label imbalance, as 30% of images are

labeled positively.

Constructing the Visual Feedback Policy

We train the visual feedback policy πf for each subtask from demonstrations using supervised

learning. The policy takes in a top-down RGB image It as input and outputs (at, φt), where

at is an action vector and φt is a termination condition.

Training the Visual Feedback Policy

The policy consists of an ensemble of 4 Convolutional Neural Networks [23, 24], denoted by

fθ[1..4] . Each individual model fθi consists of alternating convolution and max pooling layers,

following by dense layers separated by Dropout [53]. We use an ensemble of k models to make

the policy more robust, and we evaluate for k ∈ {1, 2, 4, 8} in Table 1.1. We select k to be 4.

Each model fθi uses a processed 150×150×3 image It as input and outputs estimates at,i and

φt,i of the supervisor action and terminal conditions respectively. Each model trains on 150

randomly sampled trajectories, with 30 for testing. We train each network by minimizing

lMSE +µlCE on sampled batches of its training data, where lMSE is a Mean Square Error loss

on the action prediction, lCE is a cross-entropy loss for the terminal condition prediction,

and µ is a relative weighting hyperparameter. Each model trains for 40 seconds on a K80

GPU. The weights in the convolutional layers are shared, as useful convolutional filters are

likely similar across subtasks, while the weights in the dense layers are independent. Sharing

layers provides more supervision when training the filters.
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Table 1.1: Ablation Study Varying Number of Models in Ensemble. We compare IVS
with differing number of models in the ensemble across 3 full trials of peg transfer (36 transfers).
More models results in a more robust policy, but due to compute limitations, less frequent servoing.
More frequent servoing results in higher precision, as both the corrective action and the termination
signal are updated more frequently. The goal is to find a balance between maximizing robustness
(many models) and maximizing update frequency (few models). We use an ensemble of 4 models.

Num Models Update Frequency Transfer Success Rate

1 15.6 97.2%
2 12.8 98.6%
4 10.0 100.0%
8 7.1 100.0%

Querying the Visual Feedback Policy

Once trained, we evaluate the ensemble of models in parallel with a filtered RGB image

(Sec. 1.4). We let πf (It) = (at, φt) =
(
1
4

∑4
i=1 at,i,

∑4
i=1 1 {φt,i ≥ ω} ≥ κ

)
,

where ω and κ are a hyperparameters set to 0.70 and 3 respectively. We hand-tune these

hyperparameters to maximize speed and minimize false positives. The predicted action is

the mean action across the ensemble, and the predicted termination condition checks if at

least κ models predict termination with probability greater than ω.
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Figure 1.5: IVS Example. Example of IVS correcting positioning errors. Top row (pick
subtask): IVS removes pickup error with 5 corrective updates in 0.6 seconds. We overlay
small blue circles to highlight an optimal pick location on the block, defined as the graspable
point furthest from the peg along the edge closest to the robot. The positioning of the robot
is off due to the inaccuracy of the coarse policy, as the end-effector is not positioned over the
block (Frame 1). We then switch to the learned policy, and visual servoing guides the end-
effector over a pick point (Frames 2-5), and once determined a safe pickup is possible, picks
the block successfully (Frame 6). Bottom row (place subtask): IVS removes placement
error with 12 corrective updates in 1.2 seconds. We overlay small green circles to highlight
the location of the pegs. The positioning of the robot is off due to the inaccuracy of the
coarse policy, as the peg is not under the block (Frame 1). We then switch to the learned
policy, and visual servoing guides the block over the peg (Frames 2-5), and once determined
a safe situation to drop, places the block successfully (Frame 6).

1.5 Experiments

The experimental setup has a top-down RGBD camera and uses the teleoperation inter-

face [20] to collect demonstrations on the dVRK. Training data are collected on a single

instrument, but the system is tested with 3 different instruments that have unique dynamics

due to differences in cabling properties. We use the position of the blocks and pegs estimated

by an RGBD image to construct trajectories for picks and places, but only use RGB images

for visual servoing.

We benchmark IVS against two baselines:

• Uncalibrated Baseline (UNCAL): This is a coarse open-loop policy, implemented

using the default unmodified dVRK controller. The trajectories are tracked in closed-
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loop with respect to the robot’s odometry, but open-loop with respect to vision.

• Calibrated Baseline (CAL): This is a calibrated open-loop policy [18] that is the

current state-of-the-art method for automating peg transfer. To correct for backlash,

hysteresis, and cable tension, the authors train a recurrent dynamics model to estimate

the true position of the robot based on prior commands. Similar to the uncalibrated

baseline, the robot tracks reference trajectories in closed-loop with respect to the po-

sition estimated by the recurrent model, but open-loop with respect to visual inputs.

This method uses 1800 data points, however a full trajectory is executed between each

sample. IVS collects 4204 data points, but at a much higher frequency, with consecu-

tive data points less than a millimeter apart and each trajectory taking a few seconds

to collect. As a result, both methods take around 30 minutes to collect data, but we ob-

serve in Section 1.5 that the data used for IVS can be reused for different instruments,

unlike the data used by CAL.

Accuracy Results

Overall, IVS achieves a pick and place success rate of 99.2% and 100.0% respectively. IVS

succeeds on 118 of 119 transfers, resulting in a 99.2% transfer success rate, exceeding the

uncalibrated baseline by over 25%. See Table 1.2 for details and we illustrate an example of

IVS correcting positioning errors in Figure 1.5.

Timing Results

The goal is to produce higher success rates, rather than to reduce the timing. However, we

find that the proposed method is only marginally slower than the baselines (see Table 1.2).

Due to fast image capture and continuous servoing via RGB imaging, we are able to both

update the robot’s velocity and check for termination 10 times per second, minimizing ad-

ditions to the mean transfer time. As a result, the mean transfer time is only 1.5 seconds

slower than the uncalibrated baseline, and 0.7 seconds slower than the calibrated baseline.

We report IVS timing results in Table 1.3. On average, each pick requires 2.2 mm of

correction, spanning 0.7 seconds and 7 corrective updates, and each place requires 1.9 mm

of correction, spanning 0.5 seconds and 5 corrective updates.



CHAPTER 1. IVS 15

Transferability Results

To conduct instrument transfer evaluation, we experiment using 3 large needle driver instru-

ments: A, B, and C (Fig. 1.1 bottom). Each has inconsistent cabling characteristics, and

we trained IVS with data only from instrument A.

We investigate whether models learned from data using one instrument can transfer to

another instrument without modification. This is challenging, because different surgical

instruments, even of the same type, have different cabling properties due to differences

in wear and tear. However, the visual servoing algorithm does not rely on the cabling

characteristics of any specific instrument, but rather only requires that the robot is able

to roughly correct in the desired direction. We hypothesize that errors in executing the

corrective motion can be mitigated over time by executing additional corrective motions, as

long as the cumulative error is decreasing. However, the calibrated baseline uses an observer

model that explicitly predicts the motion of the robot based on prior commands, which

requires learning the dynamics of the specific instrument used in training which may not be

sufficiently accurate on a new instrument. We report transferability results in Table 1.4 and

observe that the calibrated baselines suffer significantly on different instruments, and the

IVS model trained on Instrument A does not decrease in performance.
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Table 1.3: IVS Efficiency Benchmark. We analyze efficiency of IVS on 3 large needle driver
instruments (see Fig. 1.1). On average, IVS moves the end-effector 4.1 mm, requiring an additional
1.2 seconds per transfer.

Pick
Instrument Corrective Updates Time (sec) Distance (mm)

A 5.75 ± 2.10 0.60 ± 0.19 1.71 ± 0.65
B 7.73 ± 2.63 0.77 ± 0.22 2.52 ± 0.78
C 7.43 ± 3.03 0.74 ± 0.26 2.24 ± 0.85
Mean 7.01 ± 2.77 0.70 ± 0.24 2.17 ± 0.84

Place
Instrument Corrective Updates Time (sec) Distance (mm)

A 4.90 ± 4.82 0.52 ± 0.43 2.04 ± 1.77
B 5.63 ± 4.20 0.58 ± 0.37 2.12 ± 1.57
C 4.68 ± 4.21 0.49 ± 0.37 1.78 ± 1.43
Mean 4.97 ± 4.47 0.52 ± 0.39 1.93 ± 1.58

Table 1.4: Instrument Transfer Comparison. Benchmark comparing performance on 10 full
trials of peg transfer (120 transfers) across 3 different surgical instruments with unique cabling
characteristics of the uncalibrated baseline, calibrated baseline trained on each instrument, and
IVS trained on one instrument. IVS consistently beats both baselines, while remaining robust to
instrument changes.

Instrument UNCAL CALA CALB CALC IVSA

A 72.6% 97.5% 48.1% 55.2% 99.2%
B 31.3% 58.5% 98.3% 67.0% 99.2%
C 47.2% 27.8% 81.6% 97.4% 100.0%

Mean 50.5% 69.8% 77.3% 79.2% 99.4%
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2. Conclusions & Future Work

2.1 Discussion of IVS

In this work, we presented intermittent visual servoing. IVS maintains performance across

different instruments surprisingly well (see Table 1.4), and this transferability is critical to

implementing automated surgical techniques where instruments are being exchanged fre-

quently and an instrument’s properties are expected to change over time.

2.2 Extensions of IVS

We evaluate IVS using the FLS peg transfer task, a common training task for surgeons. IVS

is an enticing method to further advance surgical robotics, as it allows us to develop efficient

and effective policies that are robust to surgical instrument changes. In future work, we

will investigate how to further optimize IVS, and apply it to surgical cutting [57], surgical

suturing [52], and non-surgical applications such as assembly [28], to evaluate the ability of

IVS to generalize. Further, in order to apply IVS to other tasks in the future, additional

research into learning the switching model between the coarse policy and the visual servo

policy should be conducted. In this work, we learn the switch from the visual servo policy

to the coarse policy, but the switch from the coarse policy to the visual servo policy is

hard-coded, which may not be possible in future tasks.

More specifically, surgical suturing is receiving a considerable amount of research at-

tention in the medical robotics field recently. Lu et al. explore surgical knot tying [30],

Barnoy et al. apply model-free reinforcement learning to surgical suturing in sim [3], Sen

et al. present a specialized mechanical needle guide [52], D‘Ettorre et al. and Chiu et al.

investigate regrasping needles [10, 7], and Zhong et al. explore needle insertion with active

tissue deformation [61]. Missing from above works is a fully autonomous, reliable system

for suturing an artificial wound, due to the complex nature of the task, and the high preci-

sion maneuvering required from the dVRK. However, IVS may be a great candidate method
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for reliably automating surgical suturing, as it decomposes well into short, high precision

subtasks: aligning the needle for insertion, grasping the needle for extraction, and needle

handover, with coarse motions between each. If each individual subtask can be automated,

this work suggests the entire task may be reliably automated.

2.3 Limitations of IVS

While IVS shows promising results, its ability to adapt to new tasks is not fully evaluated

in this work. Peg transfer corrections are rigid, and purely 2 dimensional. In real surgery,

as well as more complex training tasks, such as surgical suturing, 3 dimensional corrections

may be required. Further, the peg transfer environment contains simple and consistent

visual signals: align the end effector over the block, and align the block over the peg. In the

real surgical environment, visual signals are much more complex and inconsistent. Further,

patients move during surgeries, typically due to breathing. However, IVS was developed with

these issues in mind, as the method involves simplifying the task for efficient learning and

dynamically adapting to errors, making it a promising technique in complex environments.

Regardless, the ability of IVS to reliably output more complex corrections, as well as work

reliably in more visually complex scenes, is an area future work will need to explore.

2.4 Reflections

Leading this project, among countless small lessons learned, there are two takeaways that

stick out. For one, I experienced the tremendous amount of trial-and-error, experimentation,

and overall meticulousness required to conduct valid and sound science. Science is an art,

and its advancement relies on thorough analysis, abundant experimentation, and perhaps a

weird idea or two. Second, I experienced first-hand how the solutions of yesterday help solve

the problems of today. This work built upon a tremendous amount of research by many labs

over many years, and I hope this work serves as a stepping stone for a problem of tomorrow.
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