
Optimizations and Improvements to Cryptographic

Libraries for zkSNARKs

Alexander Wu

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-102

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-102.html

May 14, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I offer my sincerest gratitude to Professor Alessandro Chiesa and Dev Ojha
for their assistance on this project.

Optimizations and Improvements to Cryptographic Libraries for zkSNARKs

by

Alexander Wu

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alessandro Chiesa, Chair
Professor Raluca Ada Popa

Spring 2021

The thesis of Alexander Wu, titled Optimizations and Improvements to Cryptographic Li-
braries for zkSNARKs, is approved:

Chair Date

Date

Date

University of California, Berkeley

Raluca Ada Popa
May 13, 2021

Alessandro Chiesa
2021.05.14

Optimizations and Improvements to Cryptographic Libraries for zkSNARKs

Copyright 2021
by

Alexander Wu

1

Abstract

Optimizations and Improvements to Cryptographic Libraries for zkSNARKs

by

Alexander Wu

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alessandro Chiesa, Chair

With the rapid development of the theory of probabilistic proofs, zero knowledge proofs
have started to gain traction in both academic circles and industry. As such, the demand
has risen for convenient, high-performance cryptographic libraries that aid in the use of
zero knowledge proofs and other cryptographic protocols. In this report, I will discuss my
contributions to several cryptographic libraries that fulfill this demand. I will summarize the
purpose of four cryptographic libraries and describe my work to make them more ergonomic
and configurable through API reworks and other improvements. Then I will describe my
performance optimizations, namely the cap hash optimization for the BCS Compiler. Finally,
I will point out avenues for future work on these libraries.

_ _
| | o | |

_ _ __ , __, _ _ __, _ _ __ | | | | _
/ |/ | / _ / _/ | / |/ | / | / |/ | / _ |/ | |/ |/

| |_/__/ \/ _/|_/ | |_/_/|_/ | |_/__/ |__/|_/|__/|__/
|\
|/

i

Contents

Contents i

List of Figures ii

List of Tables iii

1 Overview of Libraries 1
1.1 lib↵ . 1
1.2 libfq↵t . 1
1.3 libiop . 1
1.4 libsnark . 3

2 Application Programming Interface Improvements 4
2.1 Migration of Binary Finite Fields . 4
2.2 Unified Field APIs and Tests . 5
2.3 Other Miscellaneous Improvements . 5

3 Performance and Algorithm Improvements 6
3.1 Motivation for Lowering Hash Usage . 6
3.2 Merkle Tree Cap Hash Optimization . 6
3.3 Results . 8

4 Future Work 10

Bibliography 11

ii

List of Figures

1.1 BCS Compiler . 2

3.1 Normal Merkle Tree . 7
3.2 Merkle Tree with Cap Hashing . 7
3.3 Estimated Complexity of a SNARK with and without Cap Hashing 8
3.4 Argument Sizes of Fractal SNARK with and without Cap Hashing 9

iii

List of Tables

2.1 All field classes in lib↵ and libiop . 4

iv

Acknowledgments

I o↵er my sincerest gratitude to Professor Alessandro Chiesa and Dev Ojha for their assis-
tance on this project.

1

Chapter 1

Overview of Libraries

1.1 lib↵

lib↵ is a util library for finite fields and elliptic curves written in the programming lan-
guage C++. It supports optimized computations with the prime finite field Fp as well as
field extensions such as Fp2 and Fp3 . These fields are then used in certain elliptic curves with
fixed parameters, including the Edwards Curve, Barreto-Naehrig Curves, etc. The library
has functionality for testing and profiling operation counts and runtime.

In this project, binary curves such as F2256 were added to lib↵, among other improvements.

1.2 libfq↵t

libfq↵t is a util library for Fast Fourier Transforms on finite fields written in C++.
It supports fast multipoint polynomial evaluation, fast polynomial interpolation, and fast
computation of Lagrange polynomials, in addition to multi-threading using OpenMP. The
library uses lib↵ as a dependency.

1.3 libiop

libiop is a util library for IOP-based zkSNARKs written in C++. It uses both lib↵ and
libfq↵t as a dependencies. It has support for testing, profiling, and benchmarking.

The library contains infrastructure for writing IOP protocols and compiling with the BCS
Compiler. It includes three example protocols, the Ligero, Aurora, and Fractal protocols,
as well as their compiled SNARKs. All protocols support the Rank 1 Constraint System
(R1CS) problem.

https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libfqfft
https://github.com/scipr-lab/libiop

CHAPTER 1. OVERVIEW OF LIBRARIES 2

Figure 1.1: BCS Compiler

Interactive Oracle Proofs and the BCS Compiler

Interactive oracle proofs (IOPs) are a model for proof systems that includes aspects
from both interactive proofs (IPs) and probabilistically-checkable proofs (PCPs).[1] An IOP
contains multiple rounds, where in each round, the verifier sends the prover a message, and
the prover returns an oracle to the verifier on which the verifier can perform a small number
of queries. After all rounds are completed, the verifier computes on the results to either
accept or reject the proof.

An abstract model of an interactive oracle proof can be implemented as a non-interactive
random oracle proof (NIROP) using the Ben-Sasson-Chiesa-Spooner (BCS) Compiler. An
overview of the compiler is shown in Figure 1.1. Here, the IOP prover P and verifier V
are used to construct the NIROP prover P̃ and verifier Ṽ using two random oracles, ⇢1 and
⇢2. Cryptographic hash functions are commonly used as the random oracles. The compiler
makes use of the Fiat-Shamir transformation as well as “CS Proofs” to produce and verify
a proof.

Using this compiler, we can construct zkSNARKs that are more e�cient than PCP-
based implementations. The compiler preserves the proof of knowledge and zero knowledge

CHAPTER 1. OVERVIEW OF LIBRARIES 3

properties of an IOP. The produced succinct non-interactive argument (SNARG) has the
benefit of being transparent and post-quantum, while only requiring the use of lightweight
symmetric cryptography.[2] In addition, it compiles holographic IOPs into preprocessing
SNARGs.[3]

1.4 libsnark

libsnark is a util library for elliptic curve based preprocessing zkSNARKs written in C++.
It uses both lib↵ and libfq↵t as a dependencies. It also has support for testing, profiling,
and benchmarking.

The library implements general-purpose proof systems for R1CS, Bilinear Arithmetic Cir-
cuit Satisfiability (BACS), Unitary-Square Constraint Systems (USCS), Two-input Boolean
Circuit Satisfiability (TBCS), and others. It also includes “gadget libraries” for writing
R1CS instances. Finally, it includes example applications that utilize these protocols.

https://github.com/scipr-lab/libsnark

4

Chapter 2

Application Programming Interface
Improvements

2.1 Migration of Binary Finite Fields

Before this project, the binary fields in Table 2.1 were located in the library libiop. In
order to allow other users to utilize the binary fields without having to include the entire
libiop library, and so that each library can have a single focus, these fields were moved to
the lib↵ library. The lib↵ library’s structure was modified to incorporate these fields.

name type of field mathematical expression previous location new location
Fp prime base Fp lib↵ lib↵
Fp2 prime extension Fp2 lib↵ lib↵
Fp3 prime extension Fp3 lib↵ lib↵
Fp4 prime extension Fp4 lib↵ lib↵

Fp6 2over3 prime extension F(p3)2 lib↵ lib↵
Fp6 3over2 prime extension F(p2)3 lib↵ lib↵

Fp12 2over3over2 prime extension F((p2)3)2 lib↵ lib↵
gf32 binary F232 libiop lib↵
gf64 binary F264 libiop lib↵
gf128 binary F2128 libiop lib↵
gf192 binary F2192 libiop lib↵
gf256 binary F2256 libiop lib↵

Table 2.1: All field classes in lib↵ and libiop

CHAPTER 2. APPLICATION PROGRAMMING INTERFACE IMPROVEMENTS 5

2.2 Unified Field APIs and Tests

Because the binary and non-binary fields were developed separately, their APIs were
di↵erent. In order to simplify the programming interface, and possibly allow computation
that generalizes to both types of fields, a consistent field API was developed. It is now
clearly laid out which attributes and methods are common to all fields, which are specifc to
non-binary fields, and which are specific to binary fields.

Although one may wish to create a parent class that all fields inherit from in order to
reduce code duplication and enforce the API, C++ class inheritance significantly hinders
performance. Because the fields are performance critical for many applications, I chose to
keep each class separate and thoroughly document the API instead. If one wishes to write
code that generalizes to all fields, C++ templates can be used.

To enforce this API, every single attribute and method in the API is tested through
Google unit tests. There are separate tests for all fields, all binary fields, and all non-binary
fields.

The field utils in libiop were also moved into lib↵, and more thorough tests were developed
for them.

2.3 Other Miscellaneous Improvements

In lib↵, more comprehensive tests were added for all finite fields, as well as the utils
such as bigint, power, conversions between fields and bits, and random element generation.
The testing methodology was re-worked. Bugs were fixed and APIs were revised to be more
consistent. Field parameters were separated from the corresponding elliptic curves. The
documentation was updated.

In libiop, similar improvements were made. Better debug printouts were added, for
example, oracles used in the protocol were given names, and their names are printed for
each round when the protocol is run. Algorithms were refactored, for example, all instances
of the hashchain computation for the BCS prover and verifier were refined and extracted
into a single function. Code style and documentation were improved.

After lib↵ was modified, the libraries that use it as a dependency, namely libfq↵t, libiop,
and libsnark, were all updated to be compatible with the new version.

6

Chapter 3

Performance and Algorithm
Improvements

3.1 Motivation for Lowering Hash Usage

The computation needed to run a SNARK primarily includes the algebra and hashing.
In some cases, the hashing may take up a significant amount of runtime. For example,
when executing the recursive Fractal SNARK protocol, hashing takes up the vast majority
of computation. This is because the SNARK must be encoded in R1CS to input into another
SNARK, and this can only be e�ciently performed on algebraic hashes such as Poseidon,
which are much slower than standard hashes like Blake2.[4]

In these cases, reducing the number of hashes performed in a SNARK protocol has the
potential to significantly improve performance. Below, I will describe one such optimization.

3.2 Merkle Tree Cap Hash Optimization

To compile oracle-based IOPs into SNARKs, the resulting prover generates Merkle trees
based on the oracles. The oracle is padded and split into a number of leaves, as can be seen
in Figure 3.1. In this example, the oracle is of length 32, and split into 8 leaves each of size
4. A hash function, referred to as the leaf hash, is applied to each leaf and entered into the
bottom-most layer of the Merkle tree. Then a two-to-one hash function, referred to as the
node hash, is applied to construct a binary Merkle tree. The root is then used for further
computation and given to the verifier.

To generate a membership proof to the oracle, the auxiliary hashes for all paths from
the required leaves to the root are given. For example, if an IOP verifier asks for the proof
for the leaves underneath (h) and (i) in Figure 3.1, the hashes (g), (j), and (b) are provided
in the membership proof. Then the verifier would be able to calculate (h), (c), (i), (d), (a),
and the root and verifier membership.

CHAPTER 3. PERFORMANCE AND ALGORITHM IMPROVEMENTS 7

Figure 3.1: Normal Merkle Tree

Figure 3.2: Merkle Tree with Cap Hashing

In most applications of an IOP protocol, a large number of leaves will require membership
proofs (though still much less than the total number of leaves). In that case, many inner
nodes in the top layers will be able to be calculated without them being in the auxiliary
hashes. For example in Figure 3.1, if (h), (i), and (m) require proofs, the inner nodes (a),
(b), (c), (d), and (f) can all be calculated and the only required auxiliary hash in the first
three layers is (e). However, since it is a binary tree, we still need to compute every node
hash to get the root. To save computation, we can instead remove some top layers and
make some inner nodes direct children of the root. See Figure 3.2. In this example, the cap
size is 4, but in general it can be any positive power of 2. Now instead of three hashes to
compute the root from (c), (d), (e), and (f), only one hash is required. This might increase
the number of auxiliary hashes required, but if there are a large number of queried leaves,
the increase will be negligible.

CHAPTER 3. PERFORMANCE AND ALGORITHM IMPROVEMENTS 8

Figure 3.3: Estimated Complexity of a SNARK with and without Cap Hashing

3.3 Results

This optimization, referred to as “cap hash optimization”, was carried out on libiop’s BCS
Compiler. Because the actual number of hashes calculated in a SNARK is highly random,
and very large circuit sizes are required for it to exhibit the optimization benefits, I opted
to perform an estimate of the time save. Figure 3.3 is a plot of the generated complexity
estimates of computing on a circuit before and after the cap hash. Note that the verifier time
and number of constraints do not share the same units. Both the verifier time and number
of constraints are visibly lower when the Merkle tree has a cap hash with cap size 256. A
low number of R1CS constraints is critical for e�cient recursive SNARKs.

Although I did not show the real runtimes of a SNARK with cap hashing, I did record the
total argument sizes that resulted from several executions of the Fractal SNARK protocol.
Figure 3.4 shows a comparison of the actual argument sizes for an execution without cap
hashing and one with a cap size of 64. It shows that cap hashing allows for a real decrease
in the argument size generated by the BCS Compiler.

In conclusion, cap hashing allows a SNARK protocol to have a more e�cient verifier
and smaller argument size. This is particularly helpful for SNARKs where the hashes are a
significant bottleneck such as recursive Fractal SNARKs.

CHAPTER 3. PERFORMANCE AND ALGORITHM IMPROVEMENTS 9

Figure 3.4: Argument Sizes of Fractal SNARK with and without Cap Hashing

10

Chapter 4

Future Work

Possible continuations of this project include:

• Moving the binary fields from libiop to lib↵ is an instance of modularizing the libraries
so each one is concerned with only one focus. Continuing this trend, the elliptic
curves located in lib↵ should be moved to a new library, perhaps called libecc, since as
the name suggests lib↵ is primarily concerned with finite fields. This may be slightly
involved, because the non-binary fields on their own do not include the right parameters
and cannot be tested unless fields are taken in from the curves.

• The fields in lib↵ were not made to inherit from a parent field class due to performance
concerns. The API was enforced through tests, but it may be worth further investigat-
ing whether there are other methods of enforcing it and possibly avoid the duplicate
code, without taking a performance penalty.

• Many more minor improvements can be made to libiop. The library is an academic
proof-of-concept prototype, and still requires extensive bug fixes and refactoring.

11

Bibliography

[1] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.
Cryptology ePrint Archive, Report 2016/116. https://eprint.iacr.org/2016/116.
2016.

[2] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct Arguments in the
Quantum Random Oracle Model. Cryptology ePrint Archive, Report 2019/834. https:
//eprint.iacr.org/2019/834. 2019.

[3] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography. Cryptology ePrint Archive, Report 2019/1076.
https://eprint.iacr.org/2019/1076. 2019.

[4] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography. Cryptology ePrint Archive, Report 2019/1076.
https://eprint.iacr.org/2019/1076. 2019.

https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2019/834
https://eprint.iacr.org/2019/834
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1076

	Contents
	List of Figures
	List of Tables
	Overview of Libraries
	libff
	libfqfft
	libiop
	libsnark

	Application Programming Interface Improvements
	Migration of Binary Finite Fields
	Unified Field APIs and Tests
	Other Miscellaneous Improvements

	Performance and Algorithm Improvements
	Motivation for Lowering Hash Usage
	Merkle Tree Cap Hash Optimization
	Results

	Future Work
	Bibliography

