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Abstract

Adaptive Text-to-Speech in Low Computational Resource Scenarios

by

Flora Xue

Master of Science in EECS

University of California, Berkeley

Professor Kurt Keutzer, Chair

Adaptive text-to-speech (TTS) system has a lot of interesting and useful applications, but
most of the existing algorithms are designed for training and running the system in the
cloud. This thesis proposes an adaptive TTS system designed for edge devices with a low
computational cost based on generative flows. The system, which is only 7.2G MACs and 42x
smaller than its baseline, has the potential to adapt and infer without exceeding the memory
constraint and edge processor capacity. Despite its low-cost, the system can still adapt to a
target speaker with the same similarity and no significant audio naturalness degradation as
with baseline models.
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Chapter 1

Introduction

Text-to-speech (TTS) system aims at generating a human voice based on a piece of text. An
adaptive TTS system requires that in addition to generating speech based on text, the voice
should also resemble that of a target speaker’s. Adaptive TTS systems can enable a bunch of
interesting and useful applications, especially on edge devices. Some examples may include:
edge medical devices can synthesize original voices for those speech-impaired 1; messaging
apps can synthesize voice messages for the sender based on their text; nighttime reading
apps can simulate a parent’s voice when reading out stories for their baby and free their
parent from this labor. Applications like these rely on e�cient adaptive TTS algorithms.

Thanks to recent advances in deep learning, there already exist models that are related
to the adaptive TTS task. Synthesizer models such as [17, 14] can predict acoustic features
(such as mel-spectrograms) from pieces of text. Vocoder models such as [8, 18, 12] can
generate audio waveforms from those predicted mel-spectrograms. Voice conversion models
such as [13, 16] can adapt a source speaker’s speech into a target speaker’s. However, most
of these models are designed to be complex models that can only be run in the cloud. Even
if we can deploy pre-trained synthesizers (e.g. [14]) to edge devices for fast mel-spectrogram
generation, we still face the computation bottleneck imposed by the latter half of the system
(i.e. from mel-spectrogram to target speaker’s speech). For example, [8] su↵ers from its
slow audio generation speed; models such as [12, 16] have high MACs which far exceeds
the capacity of edge processors; auto-regressive models such as [13, 18] have to run full
backpropagations in order to adapt to unseen speakers – for auto-regressive models, the
adaptation phase is not possible to be performed on edge devices due to memory constraint.
Therefore, we need an adaptive TTS system that has the potential to adapt and infer on
edge devices.

A number of trends happening nowadays suggest that moving systems such as adap-
tive TTS that were once cloud-based to the edge is becoming feasible and desirable. First,
hardware used in mobile phones is becoming increasingly powerful, and making e↵ective use
of this computation could lead to significant reductions in cloud computing costs. Second,

1https://deepmind.com/blog/article/Using-WaveNet-technology-to-reunite-speech-impaired-users-with-
their-original-voices
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consumers are becoming increasingly concerned about data privacy, especially concerning
speech data. Smartphones, smart TVs, and home assistants have all been accused of send-
ing sensitive data to the cloud without users’ knowledge2 . Moving the machine learning
computations to the edge would eliminate the need to send data to the cloud in the first place.
Finally, consumers are becoming increasingly reliant on speech synthesis systems, to provide
timely speech synthesis, to respond interactively to messages, etc. These applications must
work with low latency and even without a reliable Internet connection – constraints that
can only be satisfied when speech synthesis is done on-device. Responding to these trends
requires moving the inference and even adaptation of TTS models to the edge. Therefore, we
propose a low computational cost adaptive TTS system in this paper that can both generate
audios from mel-spectrograms and convert/adapt the generated voice to a target speaker’s,
such that the aforementioned applications can be e�ciently implemented on edge devices.

Assuming that a high-performance synthesizer (e.g. [14]) is present, we only need to
convert a mel-spectrogram to a target speaker’s voice. We base our system mostly on flow-
based models. The main motivation is that, di↵erent from auto-regressive models, flow-based
models have the potential to be trained on edge devices. Using the idea proposed in iRevNet
[4], we can throw away all the foward-pass activations to save memory, and re-compute
a small chunk of them as needed during backward pass. This approach can drastically
decrease the memory usage during model training to O(1), essentially keeping it well within
the memory capacity of mobile devices.

In our proposed system, we first apply a flow-based model based on Blow to convert a
source mel-spectrogram to a target mel-spectrogram. Then a carefully re-designed flow-based
vocoder network based on WaveGlow can synthesize the target speaker’s voice. Notably,
our system is significantly smaller in terms of MACs compared with the original Blow and
WaveGlow. Blow requires 53.87G MACs to convert 1 second of 16kHz speech (or 74.24G
MACs if in 22kHz), and WaveGlow requires 229G MACs to generate 1 second of 22kHz
speech. Our system only needs a total of 7.2G MACs (3.42G MACs for mel-spectrogram
conversion, and 3.78G MACs for voice synthesis) to synthesize 1 second of speech in 22kHz,
which is 42x smaller than using a concatenation of Waveglow and Blow (303G = 74.24G +
229G).

Section 4.1 of the paper will introduce the implementation of the mel-spectrogram con-
version model. Section 4.2 will introduce the network optimizations based on Waveglow that
can lead to significant e�ciency improvements. Chapter 5 demonstrates that the proposed
system, despite being extremely lightweight, can generate voices for di↵erent speakers with-
out a significant loss to the audio quality and achieves a comparable similarity to the target
speaker.

Our code, trained models, and generated samples are publicly available at https://

github.com/floraxue/low-cost-adaptive-tts.

2https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-
whole-time
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Chapter 2

Related Works

2.1 Adaptive TTS

Adaptive TTS is generally achieved either by retraining the whole vocoder network on a
new speaker’s speech, or by employing separate speaker embeddings that can be quickly
learned in the model. [7] introduces an adaptable TTS system with LPCNet. This system
has an auto-regressive architecture, and is therefore not able to be trained on edge devices
as explained in the Introduction. In addition, when adapting to new speakers, the network
needs to be retrained on the new speaker’s voice using at least 5 minutes of audio samples,
or 20 minutes of audio samples for optimal performance. Comparing to other works such
as [1] which only uses several seconds of audio, the system is not very e�cient in terms
of adaptation. [1] learns an unseen speaker’s characteristics with only a few samples by
introducing a model adaptation phase. While the idea of adding an adaptation phase is
interesting and can be applied in our system, its results are still based on WaveNet [8],
which means that its audio generation is slower than real-time.

2.2 Vocoder Models

In 2016, Oord et al. [8] proposed WaveNet, which achieves human-like audio synthesis per-
formance. However, as we mentioned above, its slow synthesis speed (slower than real-time)
makes it ine�cient for online speech synthesis. Its successors such as WaveRNN [5] and
LPCNet [18] can synthesize with much faster than real-time (on a GPU). In addition, the
LPCNet [18] is also a lightweight model that can be run on mobile devices. Although Wav-
eRNN and LPCNet have the above benefits, a major drawback of both models is that they are
auto-regressive, making it impossible to adapt to new speakers on edge devices. Non-auto-
regressive models are thus the best directions for us to build upon. Among these non-auto-
regressive ones, Parallel WaveNet [9] and Clarinet [10] are harder to train and implement
than the autoregressive ones due to their complex loss functions and the teacher-student
network architecture, according to the argument from [12]. To the best of our knowledge,
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Waveglow [12] is the current state-of-the-art vocoder that uses a fully feed-forward architec-
ture to generate high-quality voices.

2.3 Voice Conversion

Voice Conversion, di↵erent from adaptive TTS, solves the audio to audio conversion prob-
lem instead of the text to audio generation problem. Works from this field is still highly
related with adaptive TTS since the core problem of converting between identities is com-
mon. Recently, AutoVC [13] and Blow [16] proposed approaches to perform voice conversion
with high audio quality and similarity to target speaker. While AutoVC is able to perform
zero-shot and high-quality voice conversion to unseen speakers, it is still an auto-regressive
model, which hinders its training on edge devices. On the other end of the spectrum, Blow
is a promising model for edge devices deployment since its fully convolutional architecture.
However, its huge computational cost (measured in term of MACs) makes it impossible to
run inference on edge devices.
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Chapter 3

Preliminaries

3.1 Flow-based Models

Flow-based models are first proposed in Glow [6]. Di↵erent from other generative mod-
els, flow-based models directly model the data distribution p(x). While p(x) is normally
intractable in other generative models, flow-based models can still model it through its
architectural design. These models can learn a series of invertible transformations that bi-
jectively turn x from the data distribution into a latent variable z, where z is from a Gaussian
distribution. During inference, the model draws a Gaussian sample and transforms it back
to the data distribution.

Waveglow

WaveGlow is a flow-based model that generates an audio waveform conditioned on a mel-
spectrogram. The architecture is similar to that of Glow [6], with changes introduced for
speech synthesis. Its general architecture is explained in detail below, since the e�ciency
improvement introduced in Section 4.2 requires a detailed analysis of its original architecture.

Instead of convolving the waveforms directly, WaveGlow first groups nearby samples to
form a multi-channel input x 2 R

L,Cg , where L is the length of the temporal dimension
and Cg is the number of grouped audio samples per time step (The number of samples in
the waveform is just L ⇥ Cg). This grouped waveform x is then transformed by a series
of bijections, each of which takes x(i) as input and produces x(i+1) as output. Within each
bijection, the input signal x(i) is first processed by an invertible point-wise convolution, and
the result is split along the channel dimension into x

(i)
a ,x

(i)
b 2 R

L,Cg/2. x
(i)
a is then used to

compute a�ne coupling coe�cients (log s(i), t(i)) = WN(x(i)
a ,m). s

(i)
, t

(i) 2 R
L,Cg/2 are the

a�ne coupling coe�cients that will be applied to x
(i)
b , WN(·, ·) is a WaveNet-like function,

or WN function for short, m 2 R
Lm,Cm is the mel-spectrogram that encodes the audio, Lm is

the temporal length of the mel-spectrogram and Cm is the number of frequency components.
Next, the a�ne coupling layer is applied: x

(i+1)
b = x

(i)
b

N
s
(i) + t

(i)
,x

(i+1)
a = x

(i)
a , where
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N
denotes element-wise multiplication. Finally, x(i)

a and x
(i+1)
b are concatenated along the

channel dimension.
The majority of the computation of WaveGlow is in the WN functions WN(·, ·), illus-

trated in Figure 4.4. The first input to the function is processed by a point-wise convolution
labeled start. This convolution increases the number of channels of x(i)

a from Cg/2 to a much
larger number. In WaveGlow, Cg = 8, and the output channel size of start is 256. Next,
the output is processed by a dilated 1D convolution with a kernel size of 3 named in layer.
Meanwhile, the mel-spectrogram m is also fed into the function. The temporal length of
the mel-spectrogram Lm is typically much smaller than the length of the reshaped audio
waveform L. In WaveGlow, Lm = 63, Cm = 80, L = 2, 000, Cg = 8. So in order to match
the temporal dimension, WaveGlow upsamples m, and then passes it through a convolu-
tion layer named cond layer. The output of in layer and cond layer are combined in the
same way as WaveNet [8] through the gate function, whose output is then processed by a
res skip layer. The output of this layer has a temporal length of L = 2000 and a channel
size of 512 in the original WaveGlow. It is then split into two branches along the channel
dimension. This structure is repeated 8 times and at the last one, the output of res skip layer
is then processed by a point-wise convolution named end. This convolution computes the
transformation factors s(i) and t

(i) and compresses the channel size from 512 to Cg = 8.

Blow

Blow is also a flow-based model with a similar invertible architecture as WaveGlow. The
model generates audio waveform conditioned on speaker embeddings learned during train-
ing. The model is largely based on Glow [6], but it introduced several changes that are
critical to voice conversion: 1) it uses a single scale architecture, i.e. the intermediate la-
tent representations are kept to the same dimension throughout the flows; 2) it organizes
12 flows into a block, and increases the number of blocks (8 blocks in its architecture) to
create a deep architecture, therefore increasing the model’s receptive field; 3) it models the
latent space z as a speaker-independent space, such that the speaker traits are all stored
in the speaker embeddings; 4) it uses hyperconditioning to convolve the speaker’s identity
with input waveform; 5) the speaker embeddings are shared across the model, and 6) it uses
data augmentation to improve the performance. Our mel-spectrogram conversion model
introduced in Section 4.1 inherits these changes.

3.2 Computational Complexity of Blow and

Waveglow

According to the source code of Blow and WaveGlow, we calculate the computational cost of
the two models. The details of the calculation can be found in our source code. To generate
1 second of 16kHz audio, Blow requires 53.87G MACs, or 74.24G MACs if the audio is
sampled at 22kHz. To generate 1 second of 22kHZ audio, WaveGlow requires 229G MACs.
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In WaveGlow, among all the layers, in layers accounts for 47%, cond layers accounts for
39%, and res skip layer accounts for 14%.
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Chapter 4

Methodology

4.1 Flow-based Lightweight Mel-spectrogram

Conversion: Blow-Mel

Overview

The lightweight mel-spectrogram conversion model is similar to [16], but some improvements
are introduced to make the model work e�ciently with mel-spectrograms. A schematic of
the model is plotted in Figure 4.2.

The input of the model is a mel-spectrogram x and a speaker id y. The mel-spectrogram
is fed into several steps of flow to get a latent variable z. The steps of flow are a series
of invertible transformations that transform the input mel-spectrogram from its data dis-
tribution into a latent Gaussian space represented by z. There are 96 steps of Flows in
total in this architecture. Within each step of Flow, the input features first go through a
convolutional layer with kernel width 1 to mix the input channels. Under such kernel width,
this convolutional layer is inherently invertible. Then the convolutional output goes through
an ActNorm layer. The ActNorm output is split into two halves, xa and xb, in its channel
dimension. xb is used as the input to the Coupling Net, and the output is again equally
divided in channel to be a scaler s and a shifter t. The scaler and the shifter are used to
perform a�ne transformation on xa, such that x

0
a = s ⇤ (xa + t). The final output of the

Flow is a channel concatentation of the transformed x
0
a and the original xb. Note that even if

the Coupling Net is not invertible, the Flow is still invertible: with knowledge of the Flow’s
output, the original value of xa can be easily recovered after another forward pass on the
Coupling Net.

The speaker’s identity is integrated with the input mel-spectrogram within the Coupling
Net. The speaker id y selects the corresponding speaker embedding in the embedding table.
The embedding table is randomly initialized and learned during training. The speaker em-
bedding goes through and Adapter, which is a fully connected layer. The produced vector
becomes weights in the hyperconvolution layer (kernel width 3). The hyperconvolution can
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Figure 4.1: Overview of the Blow-mel model.

therefore convolve the speaker identity information with the input features. The output of
hyperconvolution then goes through two convolutional layers, where the first one is 480 to
480 channels with a kernel width 1, and the second one is 480 to 160 channels with a kernel
width 3.

The model is trained as a common flow-based model as introduced in [6] with a log
likelihood that consists of two parts: the first part compares the z against a unit Gaussian,
and the second part is the summed log determinant of each layer.

Increasing input frame size for a larger receptive field

A common issue in flow-based models applied in the speech field is to increase the receptive
field size. This problem is less prominent in this mel-spectrogram conversion model, since
mel-spectrogram is already a condensed representation of audio waveform, but it still exists.
According to the original setup of Blow [16], the input frame size is 4096, which corresponds
to around 256ms of audio at 16kHz. However, after the STFT operation with window size
256 to get mel-spectrograms, the input size becomes 16, which is too small and creates issue
for deep network training. Therefore, we increased the input frame size to 16384 samples on
22kHz audio, which is roughly 743ms. This makes the receptive field much larger, and the
model can thus learn the relationship between more phonemes (which are around 50ms to
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180ms).

Removing squeeze operation between blocks

While the original Blow model proposes to squeeze the input into a progression of 2, 4, 8, ...
256 channels before passing into each block, the mel-spectrogram conversion model does not
need a squeeze operation between blocks at all. The main reason is that it does not need to
increase the receptive field and fold the audio for better training. Since the mel-spectrogram
is extracted as an 80 channel input, the channel size between blocks is fixed at 80.

Following the removal of squeeze operations, the latent dimensions between Flows are
fixed. Therefore, it is not necessary to use a di↵erent output channel size for di↵erent
Coupling Nets, and the channel size is fixed at 160 to accommodate the mel-spectrogram
channel size.

Learning speaker embeddings by using a dynamic combination of

expert embeddings: Blow-mel-coe↵

To promote the learning of shared attributes between certain speakers while also preserving
the ability to learn distinct speaker embeddings, we also experimented with a novel way to
dynamically combine expert embeddings to create an embedding for a given speaker.

To achieve this, we first extract all the learned embeddings after training the model on
the full dataset. From this embedding table, we run principle component analysis and com-
pute a number of principle components from the embeddings. The principle components
are stored as expert embeddings in the subsequent training and inference stage. During
the next training stage, each speaker from the training set corresponds to a vector of coe�-
cients. The coe�cients can be used to linearly combine expert embeddings (i.e. the principle
components). These coe�cients are randomly initialized and learned during training. The
inference step is similar to the original one, where a forward pass is performed with a source
mel-spectrogram and source coe�cient to get the latent vector z, and the z flows reversely
in the model with the target coe�cient to generate target mel-spectrogram.

A schematic of the coe�cient version of the model is plotted in Figure 4.2.



CHAPTER 4. METHODOLOGY 11

/jId�]N��Y]q

,QYHUWLEOH��[��&RQY

$FW1RUP

$IILQH�7UDQVIRUP
$IILQH�7UDQVIRUP�&RXSOLQJ�1HW

&RXSOLQJ�
1HW

$GDSWHU +\SHU&RQY

5H/8

&RQY

5H/8

&RQY

/dI<XIg�
�ZDIGGQ[O

/dI<XIg�
�ZDIGGQ[O

r

r¢< r¢D

r¢D

§h��j¨

$IILQH�7UDQVIRUP

[BD¶� �V���[BD���W�
[� �FRQFDW�[BD¶��[BE�

/jId�]N��Y]q

/jId�]N��Y]q

/jId�]N��Y]q

���
���

 <jI[j�6<gQ<DYI�v

�[dkj�!IYhdIE�r
/dI<XIg����s

�ZDIGGQ[O�"

���

/dI<XIg�
�ZDIGGQ[O

0<DYI

����

�ZDIGGQ[O�s

���

�ZDIGGQ[O�Ã

�ZDIGGQ[O�Â

/jId�]N��Y]q

ÂÁÉ

ÂÃÉ

(a) The vanilla Blow-mel structure

/jId�]N��Y]q

,QYHUWLEOH��[��&RQY

$FW1RUP

$IILQH�7UDQVIRUP
$IILQH�7UDQVIRUP�&RXSOLQJ�1HW

&RXSOLQJ�
1HW

$GDSWHU +\SHU&RQY

5H/8

&RQY

5H/8

&RQY

/dI<XIg�
�ZDIGGQ[O

/dI<XIg�
�ZDIGGQ[O

r

r¢< r¢D

r¢D

§h��j¨

$IILQH�7UDQVIRUP

[BD¶� �V���[BD���W�
[� �FRQFDW�[BD¶��[BE�

/jId�]N��Y]q

/jId�]N��Y]q

/jId�]N��Y]q

���
���

 <jI[j�6<gQ<DYI�v

�[dkj�!IYhdIE�r/dI<XIg����s

]INNQEQI[j�"

���

/dI<XIg
]INNQEQI[j�

0<DYI

����

]INNQEQI[j�s

���

]INNQEQI[j�Ã

]INNQEQI[j�Â

�]j�+g]GkEj�

�rdIgj�
�ZDIGGQ[Oh

ÂÁÉ

ÉÁ

ÉÁ

ÂÃÉ

/jId�]N��Y]q

(b) The coe�cient version of the Blow-mel structure

Figure 4.2: Structure of the coe�cient version of the Blow-mel structure (in (b)), with its
comparison to the vanilla Blow-mel in (a). The main di↵erence is the way in computing the
speaker’s embedding. In both of the graphs, the tables in green are learned during training
(the speaker embedding table, with shape 108*128 in (a), and the speaker coe�cient table,
with shape 108*80 in (b)). The expert embedding table for (b) is extracted from pre-trained
vanilla Blow-mel.
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4.2 Flow-based Lightweight Vocoder: SqueezeWave

Reshaping audio waveforms

After carefully examining the network structure of WaveGlow, we identified that a major
source of the redundancy comes from the shape of the input audio waveform to the network.
In the original WaveGlow, the input waveform is reshaped to have a large temporal dimension
and small channel size (L = 2000, Cg = 8). This leads to high computational complexity
in three ways: 1) WaveGlow is a 1D convolutional neural network, and its computational
complexity is linear in L. 2) Mel-spectrograms have a much coarser temporal resolution than
the grouped audio: in the original WaveGlow, L = 2000 but Lm = 63. In order to match the
temporal dimensions of the two signals, WaveGlow upsamples the mel-spectrogram before
passing it through cond layers. The upsampled mel-spectrograms are highly redundant since
new samples are simply interpolated from existing ones. Therefore, in WaveGlow, most of
the computations in cond layers are not necessary. 3) Inside each WN function, the 8-
channel input is projected to have a large intermediate channel size, typically 256 or 512. A
larger channel size is beneficial since it increases the model capacity. However, at the output
of WN, the channel size is compressed to Cg = 8 to match the audio shape. Such drastic
reduction creates an “information bottleneck” in the network and information encoded in
the intermediate representation can be lost.

To fix this, we simply re-shape the input audio x to have a smaller temporal length
and a larger channel size, while keeping the internal channel sizes within the WN function
the same. In our experiments, we implement two settings: L = 64, Cg = 256 or L =
128, Cg = 128. (The total number of samples are changed from 16,000 to 16,384.) When
L = 64, the temporal length is the same as the mel-spectrogram, so no upsampling is needed.
When L = 128, we change the order of operators to first apply cond layer on the the mel-
spectrogram and then apply nearest-neighbor upsampling. This way, we can further reduce
the computational cost of the cond layers.

Depthwise convolutions

Next, we replace 1D convolutions in the in layer with depthwise separable convolutions.
Depthwise separable convolutions are popularized by [2] and are widely used in e�cient
computer vision models, including [15, 20]. In this work we adopt depthwise separable
convolutions to process 1D audio.

To illustrate the benefits of depthwise separable convolutions, consider a 1D convolutional
layer that transforms an input with shape Cin ⇥ Lin into an output with shape Cout ⇥ Lout,
where C and L are the number of channels and temporal length of the signal, respectively.
For a kernel size K, the kernel has shape K⇥Cin⇥Cout, so the convolution costs K⇥Cin⇥
Cout ⇥ Lout MACs. A normal 1D convolution combines information in the temporal and
channel dimensions in one convolution with the kernel. The depthwise separable convolution
decomposes this functionality into two separate steps: (1) a temporal combining layer and
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Figure 4.3: Normal convolutions vs. depthwise separable convolutions. Depthwise separable
convolutions can be seen as a decomposed convolution that first combines information from
the temporal dimension and then from the channel dimension.

(2) a channel-wise combining layer with a kernel of size 1. Step 1 is called a depthwise
convolution, and step 2 is called a pointwise convolution. The di↵erence between a normal
1D convolution and a 1D depthwise separable convolution is illustrated in Figure 4.3. After
applying the depthwise separable convolution, the computational cost for step-1 becomes
K ⇥ Cin ⇥ Lin MACs and for step-2, Cin ⇥ Cout ⇥ Lin. The reduction of computation is
therefore

Cin ⇥ Cout ⇥ Lin +K ⇥ Cin ⇥ Lin

K ⇥ Cin ⇥ Cout ⇥ Lin
=

1

Cout
+

1

K
.

In our setup, K = 3 and Cout = 512, so using this technique leads to around 3x MAC
reduction in the in layers.

Other improvements

In addition to the above two techniques, we also make several other improvements: 1)
since the temporal length is now much smaller, WN functions no longer need to use dilated
convolutions to increase the receptive fields, so we replace all the dilated convolutions with
regular convolutions, which are more hardware friendly; 2) Figure 4.4 shows that the outputs
of the res skip layers are split into two branches. Hypothesizing that such a split is not
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necessary since the topologies of the two branches are almost identical, we merge them
into one and reduce the output channel size of the res skip layers by half. The improved
SqueezeWave structure is illustrated in Figure 4.5.
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Chapter 5

Evaluation

The evaluation is divided into two sections. In the first section, we compare the lightweight
vocoder SqueezeWave with WaveGlow in terms of e�ciency and audio quality. In the second
section, we compare the mel-spectrogram converter Blow-mel with Blow in terms of e�ciency,
audio quality and similarity.

5.1 Vocoder

Experimental Setup

Our experimental setup is similar to that of [12]: we use the LJSpeech dataset [3], which has
13,100 paired text/audio examples. We use a sampling rate of 22050Hz for the audio. We
extract mel-spectrograms with librosa, using an FFT size of 1024, hop size 256 and window
size 1024. We split the dataset into a training and a test set, and the split policy is provided
in our source code. We reproduce the original WaveGlow model by training from scratch on
8 Nvidia V100 32GB RAM GPUs with a batch size 24. We train our lightweight vocoder
with 24GB-RAM Titan RTX GPUs using a batch size of 96 for 600k iterations. Detailed
configurations are available in our code. Table 5.1 summarizes the comparison in terms of
audio quality and e�ciency of the two models.

Results

We consider three metrics of computational e�ciency: 1) MACs required per second of
generated audio, 2) number of model parameters, and 3) actual speech generation speed, in
generated samples per second, on a Macbook Pro and a Raspberry Pi 3b+.

In terms of the audio quality, we use Mean Opinion Score (MOS) as the metric as in
[17, 8, 12, 11]. We crowd-source our MOS evaluation on Amazon Mechanical Turk. We use
10 fixed sentences for each system, and each system/sentence pair is rated by 100 raters.
Raters are not allowed to rate the same sentence twice, but they are allowed to rate another
sentence from the same or a di↵erent system. We reject ratings that do not pass a hidden
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quality assurance test (ground truth vs. obviously unnatural audio). We report MOS scores
with 95% confidence intervals.

According to the results table 5.1, WaveGlow achieves MOS scores comparable to those
for ground-truth audio. However, the computational cost of WaveGlow is extremely high, as
it requires 228.9 GMACs to synthesize 1 second of 22kHZ audio. SqueezeWave models are
much more e�cient. The largest model, SW-128L, with a configuration of L=128, Cg=256
requires 61x fewer MACs than WaveGlow. With reduced temporal length or channel size,
SW-64L (106x fewer MACs) and SW-128S (214x fewer MACs) achieves slightly lower MOS
scores but significantly lower MACs. Quantitatively, MOS scores of the SqueezeWave mod-
els are lower than WaveGlow, but qualitatively, their sound qualities are similar, except
that audio generated by SqueezeWave contains some background noise. Noise cancelling
techniques can be applied to improve the quality. Readers can find synthesized audio of all
the models from our source code. We also train an extremely small model, SW-64S, with
L=64, Cg=128. The model only requires 0.69 GMACs, which is 332x fewer than WaveGlow.
However, the sound quality is obviously lower, as reflected in its MOS score.

We deploy WaveGlow and SqueezeWave to a Macbook Pro with an Intel i7 CPU and a
Raspberry Pi 3B+ with a Broadcom BCM2837B0 CPU. We report the number of samples
generated per second by each model in Table 5.2. On a Mackbook, SqueezeWave can reach a
sample rate of 123K-303K, 30-72x faster than WaveGlow, or 5.6-13.8x faster than real-time
(22kHZ). On a Raspberry Pi computer, WaveGlow fails to run, but SqueezeWave can still
reach 5.2k-21K samples per second. SW-128S in particular can reach near real-time speed
while maintaining good quality.
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Models MOS GMACs Ratio Params
GT 4.62 ± 0.04 – – –

WaveGlow 4.57 ± 0.04 228.9 1 87.7 M
SW-128L 4.07 ± 0.06 3.78 61 23.6 M
SW-128S 3.79 ± 0.05 1.07 214 7.1 M
SW-64L 3.77 ± 0.05 2.16 106 24.6 M
SW-64S 2.74 ± 0.04 0.69 332 8.8 M

Table 5.1: A comparison of SqueezeWave and WaveGlow. SW-128L has a configuration of
L=128, Cg=256, SW-128S has L=128, Cg=128, SW-64L has L=64, Cg=256, and SW-64S has
L=64, Cg=128. The quality is measured by mean opinion scores (MOS). The main e�ciency
metric is the MACs needed to synthesize 1 second of 22kHz audio. The MAC reduction ratio
is reported in the column “Ratio”. The number of parameters are also reported.

Models Macbook Pro Raspberry Pi
WaveGlow 4.2K Failed
SW-128L 123K 5.2K
SW-128S 303K 15.6K
SW-64L 255K 9.0K
SW-64S 533K 21K

Table 5.2: Inference speeds (samples generated per second) on a Mackbook Pro and a Rasp-
berry Pi.
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5.2 Mel-spectrogram Adaptation

Experimental Setup

We use a similar setup as in [16] to run our experiments. We use the VCTK [vctk] dataset,
which contains 46 hours of audio spoken by 108 speakers 1. Each speaker speaks a subset
of all the sentences, where di↵erent subsets have intersections. We downsample the dataset
from 48kHz to 22kHz for training our model such that it agrees with the vocoders. When
reproducing Blow, we downsample the dataset to 16kHz following their setup. The dataset
is randomly split into training, validation and testing set using a 8:1:1 ratio. In the splitting
script, we only split on the utterances, not the speakers, meaning that all of the speakers
are present in each split. In addition, we follow Blow to ensure that the same sentence do
not appear in di↵erent splits, so that data leakage is prevented.

Since the model takes mel-spectrograms as inputs, we use the same mel-spectrogram
extraction process as in Section 5.1. We train our model for three days on 4 Nvidia P100
GPUs, with a batch size of 1024, an Adam optimizer and an initial learning rate of 1e � 4.
We employ a learning rate annealing policy: if the model’s validation loss stops improving for
10 consecutive epochs, the learning rate will be timed by 0.2. If the learning rate annealing
happens twice, the training is stopped.

The trained model is used to convert mel-spectrogram of a source speech to a target mel-
spectrogram. The conversion is performed using the test set utterances as source speech, and
the target speakers are randomly selected from the 108 speakers. We perform the conversion
between all possible gender combinations.

The output mel-spectrogram is then plugged into downstream vocoders to transform into
an audio waveform. We use our lightweight vocoder, which is trained as described in Section
5.1. As a way to perform abelation, we also present the audio generation result using a
pretrained WaveGlow, which is available at its code repository 2. Note that both of the
pretrained vocoders are trained from the single speaker LJSpeech dataset.

As a baseline, we also reproduce Blow by following the experimental setup described in
its paper. It is trained using the same dataset for 15 days on three GeForce RTX 2080-Ti
GPUs. Since Blow is a voice to voice conversion model, its output will be directly used for
comparison. Since the data set is the same our model’s, its voice conversion is performed on
the same source sentences and the same set of randomly selected target speakers.

Audio Naturalness Results

To evaluate the audio naturalness, or the amount of artifacts and distortions in the audio,
we use MOS scores with scale from 1 to 5 as defined in 5.1. Since the test set contains 4412
utterances, we only sample 100 random utterance from this set to get faster MOS rating
results. For each Mechanical Turk worker, they see a random 10 utterances from the 100.

1The dataset claims to contain 109 speakers, but the person ”p315” does not have any utterances.
2https://github.com/NVIDIA/waveglow
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We collect 500 responses from the workers, so that each of the 100 audios are rated for 50
times on average. Raters are only allowed to rate the same system once (i.e. only rate 10
di↵erent sentences) to ensure the diversity of raters on the same system. Quality assurance
measures similar to 5.1 are implemented to ensure the quality of the responses. Invalid
responses are rejected and excluded from the results. We also report the 95% confidence
interval on the MOS scores.

Models MOS
Blow 2.89 ± 0.03

Blow-mel with WaveGlow 2.76 ± 0.03
Blow-mel with SqueezeWave 2.33 ± 0.03

Table 5.3: A summarized comparison of the audio naturalness result of Blow, Blow-mel with
WaveGlow and Blow-mel with SqueezeWave. The naturalness is measured by mean opinion
scores (MOS).

Table 5.3 shows a comparison of the baseline Blow model, our lightweight mel-spectrogram
conversion model (Blow-mel) with two di↵erent downstream vocoder models (SqueezeWave
introduced in Section 4.2 and WaveGlow). In general, the lightweight mel-spectrogram con-
version model does not introduce a significant audio quality degradation.

We also summarize the MOS score results by gender categories in Figure 5.1 (i.e. Male
to Male, Male to Female, Female to Male, Female to Female). As we can see from the graph,
when the target speaker is a male, the results for our models (Blow-mel with SqueezeWave
and Blow-mel with WaveGlow) are significantly lower than that for Blow. This is likely
because of the fact that SqueezeWave and WaveGlow are both pre-trained on LJSpeech,
which contains a single female speaker. Therefore, even if the model can be directly deployed
to generate male’s voices, the quality may not be desirable. This issue can potentially be
resolved by pre-training both models on the VCTK dataset, but we will leave this for further
exploration due to time constraint. When the target speaker is a female, our models’ MOS
scores are comparable to that of Blow’s, and Blow-mel with WaveGlow and even outperform
Blow. This result suggests that our Blow-mel model itself potentially does not introduce any
performance degradation, but only improvement (e.g. improved ability to model phoneme
transitions due to the increased receptive field). When converting across genders, all three
of the systems are performing worse than between genders. This trend is commonly found
in most voice conversion systems and is considered normal due to the larger gap between
female and male acoustic features (such as pitches).
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Figure 5.1: A detailed comparison on the naturalness MOS scores categorized by gender.
M2M stands for Male to Male, M2F stands for Male to Female, F2M stands for Female to
Male, and F2F stands for Female to Female.

Similarity Results

In order to properly evaluate the voice conversion quality, we also need to verify the model’s
ability to generate a speech that is similar to the target speaker’s voice. We use crowd-
sourced feedback from Amazon Mechanical Turk to evaluate the similarity. Our setup is
similar to that of [16], which is based on [19]. We use the same 100 utterances as in the
audio naturalness evaluation, and each Mechanical Turk worker see 10 random utterances
from this set. Each utterance is placed next to its corresponding target speaker’s real speech
recording, forming a pair of voice conversion audio and target audio. For each pair of
recordings, the worker is asked to answer if or not these two recordings are possibly from the
same speaker. Note that the worker cannot see which one is a generated voice conversion
audio, and which one is a real speech recording. The worker is also asked to ignore possible
distortions or artifacts in the audios. The worker can choose an answer from the following
4 choices: ”Same speaker: absolutely sure”, ”Same speaker: not sure”, ”Di↵erent speaker:
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not sure”, and ”Di↵erent speaker: absolutely sure”.
We collect 500 responses from the workers, with each response containing 10 pairs of

ratings. So each pair of audios receive on average 50 ratings. Raters are not allowed to
submit more than one response for each system. We also employ quality assurance measures
on these responses. In addition to the 10 pairs of audios, a worker also needs to answer
4 additional pairs of hidden tests without knowing they are tests. 2 pairs of the tests are
”ground truth tests”, where each pair consists of two exact audios. 2 pairs of the tests are
”negative tests”, where each pair consists of a female’s real speech recording and a male’s
real speech recording. If a worker choose any of the two ”di↵erent” for the ground truth
tests, or any of the two ”same” for negative tests, the response is considered invalid. Invalid
responses are rejected and excluded from the reported results.

Models Similarity to Target Num Valid Raters
Blow 40.16% 430

Blow-mel with WaveGlow 48.63% 430
Blow-mel with SqueezeWave 40.94% 427

Table 5.4: A summarized comparison of the audio similarity result of Blow, Blow-mel with
WaveGlow and Blow-mel with SqueezeWave. The similarity is measured by crowd-sourced
responses from Amazon Mechanical Turk. Answering ”Same speaker: absolutely sure” or
”Same speaker: not sure” are counted as similar, while answering ”Di↵erent speaker: not
sure”, and ”Di↵erent speaker: absolutely sure” are counted as not similar.

Table 5.4 summarizes the similarity result. We can see that Blow-mel with both vocoders
can achieve a comparable result as with the original Blow. This indicates that the reduction
in computational complexity does not introduce degradation in terms of similarity.

Note that the similarity score from Blow is significantly lower than that reported in its
paper. Given that we use the same question wording (i.e. instructions) and question setup
(i.e. pairing converted audios with real target speech) for each rater, we deduct this is
likely because of the di↵erence in selecting utterances to rate and our rater groups. Blow
reports that it uses 4 utterances selected from the 4412 test set to rate each system under
comparison. The criteria for selecting the 4 utterances is not known. However, we randomly
selected 100 utterances from the 4412 test set to rate each system. Our utterances set
used for rating is more random and diverse, so we believe our results have more statistical
significance than Blow’s. In addition, within Blow’s rater group, 8 out of the 33 raters have
speech processing expertise, so it is possible that some of the raters may already know the
expected performance when rating the audio pairs. However, our raters group of 500 people
can be considered as a random sample from all Mechanical Turk workers, so they may not
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have an expectation on the performance of the systems. We believe that our group of raters
may better represent the general public, and our results are thus more plausible.

We also present a more detailed comparison with more granularity in Figure 5.2. We
categorize the utterances into four categories, Male to Male, Male to Female, Female to
Male, and Female to Female. We also present the degree of the workers’ confidence in these
ratings. From the graph we can see that Blow-mel with WaveGlow outperforms Blow in all
gender categories. In addition, Blow-mel with SqueezeWave shows a lower similarity when
target speakers are males, which means that the audio quality might have adversely impacted
the similarity rating. Even if we have clearly instructed the raters to ignore artifacts and
distortions, the audio quality degradation may have influenced the worker’s ability to identify
speaker characteristics in the audio. With a SqueezeWave pretrained on VCTK for better
audio quality, it is possible that the similarity can be further improved.

Figure 5.2: A detailed comparison on the similarity MOS scores categorized by gender and
confidence levels. M2M stands for Male to Male, M2F stands for Male to Female, F2M
stands for Female to Male, and F2F stands for Female to Female. blow baseline stands for
the original Blow model. blow mel sw stands for our Blow-mel with SqueezeWave model,
and blow mel wg stands for our Blow-mel with WaveGlow model.
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Results for Blow-mel with coe�cient (Blow-mel-coe↵)

We also run the adaptive TTS system with Blow-mel-coe↵ to convert mel-spectrograms and
SqueezeWave/WaveGlow to generate audio waveform. However, the generated audios does
not demonstrate that this method is e↵ective enough in terms of generalizing to di↵erent
speakers. With the principle components extracted from the 108 speaker embeddings, there
are 2 speakers whose embedding cannot be spanned by a linear combination by the 108
speakers. This causes the generated audios to be silence for the two speakers, while all the
other speakers can still generate legitimate outputs. To verify that the embedding space is
diverse and therefore cannot be easily collapsed to lower dimensions, we also explore the
percentage of the explained variance out of the total variance for each singular value during
PCA. We find that the first singular value only explains 3.3% of the total variance. Overall,
there are only 3 singular values that can each explain more than 3% of the total variance.
If we look at the number of singular values that can each explain more than 1% of the total
variance, there are still only 40. Although the Blow-mel-coe�cient model is not feasible,
the above findings indicate that the embedding space learned in the pre-trained Blow-mel is
considerably di↵erent for each speaker.
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Chapter 6

Conclusion

In this thesis, propose an adaptive TTS system that can be used for training and inference
on edge devices where the memory and computational power is limited. We base our system
on flow-based models to bypass the memory constraint, and re-design model architectures
to compress the model to a fewer MACs. We evaluate our low-cost system both separately
for audio generation (SqueezeWave vs WaveGlow) and mel-spectrogram conversion (Blow-
mel with WaveGlow vs Blow), and together for mel-spectrogram to target speech generation
(Blow-mel with SqueezeWave vs Blow). We demonstrate that our proposed system can
generate speech with comparable similarity to the baseline model and no significant loss
to the audio quality. As future work, we could potentially improve the audio quality by
pretraining the vocoder on a multispeaker dataset, or exploring new ways of learning shared
characteristics from speaker embeddings. We would also extend the system by employing an
adaptation phase to learn the speaker embedding for unseen speakers, and finally deploying
the system onto edge devices.
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