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Abstract

Model-Based Meta-Learning for Flight with Suspended Payloads

by

Suneel Belkhale

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sergey Levine, Chair

Transporting suspended payloads is challenging for autonomous aerial vehicles because the
payload can cause significant and unpredictable changes to the robot’s dynamics. These
changes can lead to suboptimal flight performance or even catastrophic failure. Although
adaptive control and learning-based methods can in principle adapt to changes in these
hybrid robot-payload systems, rapid mid-flight adaptation to payloads that have a pri-
ori unknown physical properties remains an open problem. We propose a meta-learning
approach that “learns how to learn” models of altered dynamics within seconds of post-
connection flight data. Our experiments demonstrate that our online adaptation approach
outperforms non-adaptive methods on a series of challenging suspended payload trans-
portation tasks. Videos and other supplemental material are available on our website
https://sites.google.com/view/meta-rl-for-flight

https://sites.google.com/view/meta-rl-for-flight
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Chapter 1

Introduction

1.1 Motivation

In traditional planning and trajectory optimization, there is an assumption that the system
dynamics can be fully characterized prior to the optimization. While this assumption holds
when considering a single robot in isolation and for very simple joint dynamics, performing
system identification becomes more challenging when the physical properties of the robotic
system yield complex dynamics or interactions. For example, a pendulum system may be
simple to model in isolation, but modeling dynamics becomes much more complicated if
this pendulum is suspended from a helicopter in the presence of variable wind. In most
real world cases, unfortunately, the robotic system is never isolated: physical properties
of the “controllable” entity cannot be decoupled from the rest of the environment, and so
performing one system identification before trajectory optimization becomes challenging in a
large number of cases. Additionally, as the robot moves between di↵erent contexts, previous
assumptions on the dynamics can fall apart. Consider a robotic quadruped tasked with
walking through smooth city landscapes versus possibly muddy and bumpy dirt trails in
nature. In the best case, a robot should be able to adapt to a wide range of contexts quickly
and reliably.

In this thesis, we view designing dynamics models as a continual task. We rely on learning
methods to train dynamics models directly from observed data rather than depending on
domain experts to perform system identification. Learning methods su↵er from a dependence
on large quantities of high quality data. When considering online adaptation to new contexts
with previous learning methods, it is infeasible to both collect enough representative data
to learn about the new context and simultaneously perform well in that context. Therefore
sample e�ciency in online adaptation is a key challenge.

We specifically consider a quadcopter adapting to the presence of di↵erent suspended pay-
loads. The quadcopter can lose control easily if adaptation takes too long, so fast online
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adaptation can be studied in this domain. Additionally, the dynamics of suspended payload
flight are stochastic and nonlinear, and thus are di�cult to model without learning tech-
niques. Most importantly, varying the payload in this domain greatly varies the observed
dynamics. For example, decreasing the length of the string produces tighter and faster
oscillations.

Our method learns to distinguish the payload context at training and test time within the
dynamics model, thereby optimizing for fast adaptation.

1.2 Related Work

Prior work on control for aerial vehicles has demonstrated impressive performance and
agility, such as enabling aerial vehicles to navigate between small openings [13], perform
aerobatics [11], and avoid obstacles [19]. These approaches have also enabled aerial vehicles
to aggressively control suspended payloads [23, 24]. These methods typically rely on manual
system identification, in which the equations of motion are derived and the physical param-
eters are estimated for both the aerial vehicle [12, 27] and the suspended payload [23, 24].
Although these approaches have successfully enabled controlled flight of the hybrid system,
they require a priori knowledge of the system, such as the payload mass and tether length [4].
When such parameters cannot be identified in advance, alternative techniques are required.

Many approaches overcome the limitations of manual system identification by perform-
ing automated system identification, in which certain parameters are automatically adapted
online according to a specified error metric [22, 8]. However, the principal drawback of man-
ual system identification—the reliance on domain knowledge for the equations of motion—
still remains. While certain rigid-body robotic systems are easily identified, more complex
phenomena, such as friction, contacts, deformations, and turbulence, may have no known
analytic equations (or known solutions). In such cases, data-driven approaches that auto-
matically model a system’s dynamics from data can be advantageous.

Prior work has also proposed end-to-end learning-based approaches that learn from raw
data, such as value-based methods which estimate cumulative rewards [25] or policy gradient
methods that directly learn a control policy [26]. Although these model-free approaches have
been used to learn policies for various tasks [14, 21], including for robots [9], the learning
process generally takes hours or even days, making it poorly suited for safety-critical and
resource-constrained quadcopters.

Model-based reinforcement learning (MBRL) can provide better sample e�ciency, while
retaining the benefits of end-to-end learning [3, 6, 15, 2]. With these methods, a dynamics
model is learned from data and then used by either a model-based controller or to train a
control policy. Although MBRL has successfully learned to control complex systems such
as quadcopters [1, 10], most MBRL methods are designed to model a single task with un-
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changing dynamics, and therefore do not adapt to rapid online changes in the dynamics of
a system.

One approach to enable rapid adaptation to time-varying dynamical systems is meta-
learning, which is a framework for learning how to learn that typically involves fine-tuning
of a model’s parameters [5, 7, 16] or input variables [18, 20]. There has been prior work
on model-based meta-learning for quadcopters. O’Connell et al. [17] used the MAML [5]
algorithm for adapting a drone’s internal dynamics model in the presence of wind. Although
they demonstrated the meta-learning algorithm improved the model’s accuracy, the resulting
adapted model did not improve the performance of the closed-loop controller. In contrast,
we demonstrate that our meta-learning approach does improve performance of the model-
based controller. Nagabandi et al. [16] also explored meta-learning for online adaptation in
MBRL for a legged robot, demonstrating improved closed-loop controller performance with
the adapted model. Our work focuses on suspended payload manipulation with quadcopters,
which presents an especially prominent challenge due to the need for rapid adaptation in
order to cope with sudden dynamics changes when picking up payloads.

1.3 Contribution Summary

In this thesis, we present a meta-learning algorithm that enables a quadcopter to adapt
to various payloads in an online fashion. The algorithm can be viewed as a model-based
meta-reinforcement learning method: we learn a predictive dynamics model, represented by
a deep neural network, which is augmented with stochastic latent variables that represent the
unknown factors of variation in the environment and task. The model is trained with data
from di↵erent payload masses and tether lengths, using variational inference to estimate the
corresponding posterior distribution over these latent variables. This training procedure en-
ables the model to adapt to new payloads at test-time by inferring the posterior distribution
over the latent variables. While continuously adapting the model online, a controller uses
the model to control the suspended payload along a specified path. We additionally present
the hardware and software design that was required to test our algorithm in the suspended
payload setup on a commercial quadcopter.
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Chapter 2

Background

2.1 Model-Based Reinforcement Learning

In the model-based formulation of Reinforcement Learning, the robot-environment system
is represented as a Markov decision process with state st 2 Rds and action at 2 Rda , where
t is the discrete time step. At each time step, the state updates based on some unknown
continuous distribution on next states p(st+1|st, at). A trajectory refers to a single sampling
pass through of this dynamics distribution using an action sequence a0:H�1 and starting at
state s0 to recursively produce states s1:H , where H is the trajectory horizon.

Varied contexts are represented as tasks for the robot. The K given tasks are denoted
as {T1, ..., TK}, and have corresponding finite time horizons {H1, ..., HK}. The goal in each
task is to maximize the expected sum of future rewards r(st, at) 2 R over the time horizon.

In MBRL, the task is to estimate p(st+1|st, at) using a neural network with parameters ✓
using observed state transitions. Specifically, we are given a dataset Dtrain = {E1, ..., EN}
where Ei = {(si0, ai0, si1), (si1, ai1, si2), ...} represents an episode of data collection over some
time horizon. The neural network outputs parameterize the next state distribution, in our
case using gaussian mean and variance. Then, the parameters ✓ of the dynamics model are
trained via maximum likelihood:

✓
⇤ = argmax

✓

p(Dtrain|✓)

= argmax
✓

X

(s,a,s0)2Dtrain

log p✓(s
0|s, a) . (2.1)

We extend the PETS algorithm [2], which has previously been shown to learn expressive
neural network dynamics models and attain good sample e�ciency and final performance.
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In PETS, multiple dynamics models are trained in parallel. Using Model Predictive Control,
one can use the resulting dynamics function to perform trajectory optimization. Through
CEM, MPC iteratively improves the expected future rewards for an action sequence at:t+H�1

using the objective:

a
⇤
t:t+H�1 = argmax

at:t+H�1

Est:t+H⇠p✓
[r(st:t+H , at:t+H�1)] , (2.2)

Here, st:t+H is a trajectory as defined by rolling out the dynamics function as described
previously starting at st. In MPC, only the first action in the optimized sequence is used
at each time step, thereby creating a closed loop control scheme. In Algorithm 1, the full
training procedure for online MBRL is given.

Algorithm 1 Model-Based Reinforcement Learning
1: Initialize dynamics model p✓ with random parameters ✓

2: while not done do
3: Get current state st

4: Solve for action a
⇤
t given p✓⇤ and st using MPC . see (2.2)

5: Execute action a
⇤
t

6: Record outcome: Dtrain  Dtrain [ {st, a⇤t , st+1}
7: Train dynamics model p✓ using Dtrain

. see (2.1)

8: end while
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Chapter 3

Methodology

Figure 3.1: System diagram of our meta-learning for model-based reinforcement learning algorithm. In the

training phase, we first gather data by manually piloting the quadcopter along random trajectories with K

di↵erent payloads, and saving the data into a single dataset Dtrain
consisting of K separate training task-

specific datasets Dtrain .
= Dtrain

1:K . We then run meta-training to learn the shared dynamics model parameters

✓ and the adaptation parameters �1:K for each payload task. At test time, using the learned dynamics model

parameters ✓
⇤
, the robot infers the optimal latent variable �

⇤
online using all of the data Dtest

from the

current task. The dynamics model, parameterized by ✓
⇤
and �

⇤
, is used by a model-predictive controller

(MPC) to plan and execute actions that follow the specified path. As the robot flies, it continues to store

data, infer the optimal latent variable parameters, and perform planning in a continuous loop until the task

is complete.

3.1 Latent Variable Model

We extend PETS by considering an additional context dependent input zk 2 Rdz to our
dynamics model, where k is the current task index. zk is called the latent variable. The
new dynamics function takes the form p(st+1|st, at, zk). While st, st+1, and at are known in
the data, zk is unknown since it represents the factors that vary in the dynamics function.
In our case, the latent variable for a quadcopter with a suspended payload might represent
string length or mass. At test time, our goal is to infer this latent variable from recent state
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transitions in order to quickly adapt to new contexts. At training time, the latent variables
could be known or unknown, and we evaluate both methods.

3.2 Training with Known Latent Variables

If the factors of variation are known and quantifiable at training time, we use the training
dataset Dtrain with the dynamics variable zk for each state transition. In the suspended
payload with varying string length example, we segmented the overall training dataset by
the string length (Dtrain

1 , ...,Dtrain
K

) and assigned fixed values to the latent variable input
by the corresponding string length. We assume that each episode of collected training data
corresponds to a single task. Thus for episode i with task Tk, the state transition (si

t
, a

i

t
, s

i

t+1)
includes (si

t
, a

i

t
, s

i

t+1, zk). Training here proceeds as normal for PETS on the slightly modified
objective:

✓
⇤ .
= argmax

✓

log p(Dtrain|z1:K , ✓)

= argmax
✓

KX

k=1

X

(st,at,st+1)2Dtrain
k

log p✓(st+1|st, at, zk) . (3.1)

3.3 Training with Unknown Latent Variables

Training with known latent variables assumes we have access to the factors of variation at
training time. In many cases, the axes of variation might be hard to identify, segment, and
even measure. For a quadruped moving on jagged rocks versus smooth teflon, for example,
it is unclear how to represent the context numerically; furthermore, it may be advantageous
to let the network handle representation learning. We present an additional formulation that
requires only that the user can estimate the dimensionality of the latent variable.

In the training procedure for unknown latent variables, we simultaneously infer the context
variables for each task as well as update the dynamics parameters ✓. Instead of having
fixed context variables for each task, we represent each task with �k

.
= {µk,⌃k}, where

zk ⇠ N (µk,⌃k). At the beginning of training and testing, we set �k = N (0, I). Our
objective takes the form:

✓
⇤ = argmax

✓

max
�1:K

E[log p(Dtrain|z1:K , ✓)] (3.2)

= argmax
✓

max
�1:K

E[
KX

k=1

log p(Dtrain
k

|zk, ✓)]. (3.3)



CHAPTER 3. METHODOLOGY 8

zk ⇠ N (µk,⌃k)

�k = (µk,⌃k)

In words, this objective aims to find distributions for each task latent variable that allow
for a learned dynamics model to have the strongest predictive ability. Our meta-training
algorithm optimizes the evidence lower bound (ELBO) as a proxy for the above objective,
with gradient steps on �1:K and ✓ performed in an alternating fashion.

3.4 Testing

At test time in both cases, the parameters ✓⇤ are fixed. With meta-training complete, ✓⇤

has been designed to perform well on many tasks, so the challenge now becomes discerning
the current context. With only a few transitions in the current episode, our goal is to extract
the latent context �⇤ that maximizes the probability of these transitions occurring.

�
⇤ = argmax

�test

E[log p(Dtrain|ztest, ✓⇤)]. (3.4)

z
test ⇠ N (µtest

,⌃test)

�
test = (µtest

,⌃test)

The evidence lower bound is used again here. Equation (3.4) is used to calculate gradient
steps to improve the predictions of our learned dynamics model as more transitions are
collected. Note that with this formulation, it is not necessary to have the task at test time
be sampled from the training tasks. Since z is a continuous random variable, our aim was
that the meta-training designs a latent space in which interpolation between task latent
variables zk yields a continuous spectrum of tasks. For example, in the suspended payload
with string length variation case with dz = 1, we hope that by collecting a short string and
a long string dataset, performance generalizes to any string length in between.
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Algorithm 2 Model-Based Meta-Reinforcement Learning for Quadcopter Payload Trans-
port
1: // Training Phase
2: for Task k = 1 to K do
3: for Time t = 0 to T do
4: Get action at from human pilot

5: Execute action at

6: if zk is known then . case sect. 3.2

7: Record outcome: Dtrain  Dtrain [ {st, at, st+1, zk}
8: else . case sect. 3.3

9: Record outcome: Dtrain  Dtrain [ {st, at, st+1}
10: end if
11: end for
12: end for
13: Train dynamics model p✓⇤ given Dtrain

. see (3.3)

14:

15: // Test Phase
16: Initialize variational parameters: �

⇤  {µtest
= 0,⌃

test
= I}

17: for Time t = 0 to T do
18: Solve optimal action a

⇤
t given p✓⇤ , q�⇤ , and MPC . see (2.2)

19: Execute action a
⇤
t

20: Record outcome: Dtest  Dtest [ {st, a⇤t , st+1}
21: Infer variational parameters �

⇤
given Dtest

. see (3.4)

22: end for
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Chapter 4

Experimental Design

4.1 Environment

In this chapter, the design process for experimentation will be outlined. In addition, the
iterations and improvements I made will be described in detail. Our goals at the onset of
environment design were as follows:

E1: Environment has nonlinear stochastic dynamics.

E2: PETS performs well on each task in the environment with su�cient data from that
task.

E3: PETS performance su↵ers on individual tasks when exposed to all task datasets.

E4: Environment supports a fast reaction time.

E5: Control loop budgets su�cient time for variational inference (latent variable optimiza-
tion) at test time.

Robot Selection

Quadcopters present highly nonlinear dynamics and are inherently stochastic due to wind
and other external noise (E1). In addition, having 3D space available during experimen-
tation allows for more complex and interesting demonstrations of adaptation. To minimize
risk of damage and maximize safety during data collection and experimentation, we were
primarily interested in mini and nano-quadcopters with indoor flying capabilities. I initially
ran experiments with the Crazyflie 2.0 from Bitcraze, a nano-quadcopter weighing ⇠ 27
grams with a 4 minute flight time. While these nano-quadcopters o↵ered flexibility in con-
trol and software, I found that many parts were prone to breaking, the flying time was too
short, and the quadcopter carrying capacity was minimal. We switched to the Tello from
DJI (Fig. 4.1), a mini-quadcopter weighing ⇠ 80g and supporting 13 minutes of flight. The
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Figure 4.1: DJI Tello with suspended payload.

additional thrust capability of the Tello enables a wide range of carrying and transporting
tasks. We estimate that the Tello can carry up to ⇠ 20g of additional mass. Another
advantage is that it connects to an external computer via wifi, whereas the Crazyflie only
connected via radio. The Tello is limited in software support, but the SDK supports basic
velocity control operations. We limited our action space to (vx, vy, vz) since controlling (roll,
pitch, yaw) or individual motor thrust yields less flight stability during data collection and
experimentation.

Task Selection

In order to create significant diversity in the tasks for the quadcopters (E2, E3), we ex-
plored aerial payload transport. I experimented with a wide range of payloads and connection
mechanisms. Due to its onboard downward-facing sensors for optical flow and altitude esti-
mation, I found that the simplest and most reliable tethering approach was to use a string
connected at the front of the Tello. The string placement introduces an additional torque
and reduces the overall carrying capability, but the payload is less likely to obstruct the Tello
sensors for large periods of time.

The payload target itself is a 30cm tall cylinder I designed and 3D-printed using a carbon
fiber composite to ensure it is both durable and light-weight. The cylinder has a string
attachment to easily attach and detach it from the Tello. By putting neon orange tape on
this cylinder, we can easily identify it from an external camera (Fig. 4.1).

The Tello localizes itself through optical flow and IMU data, which leads to moderate drift
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over time. This is exacerbated by the increased volatility of the IMUmeasurements due to the
suspended payload. Additionally, when transporting a payload, payload stability and control
is a more important goal than just quadcopter stability. Therefore, we keep an external
camera facing towards the quadcopter, through which we measure the pixel coordinates and
pixel area of the payload target. Specifically, I implemented a simple OpenCV filtering and
tracking script to identify the payload by its neon orange color. The observation space of our
environment includes only these measurements of the payload target (no quadcopter state
measurements).

We considered three main axes of variation for the suspended payload environment: pay-
load mass, payload rigidity, and string length. I noticed that varying the payload mass
between 0g and 20g produces a relatively small e↵ect on the overall flight dynamics; this
could be because the velocity control of the Tello is robust enough to make the dynamics
moderately agnostic to mass and inertia. Payload rigidity is a less intuitive dimension to
represent numerically and is also hard to implement in such a restrictive mass range. The
variation in string length produces meaningful changes in the oscillation of the suspended
payload, so our quantitative experiments primarily consider adaptation to di↵erent string
length.

Control Setup

Due to its size and weight requirements, the Tello does not support onboard computing.
Therefore, we use a System 76 Oryx Pro laptop with an NVIDIA GTX 1070 graphics card
to run PETS online. The laptop simultaneously interfaces with the Tello via wifi, receiving
and monitoring the Tello state and sending actions through the Tello SDK. Additionally, to
receive observations for PETS, a Logitech C290 web camera sends 640x480 images to the
laptop via USB.

ROS Network

I used Robot Operating System (ROS) Kinetic to manage internal communication on
the laptop. ROS enables modularity in hardware and software components. Figure 4.2
shows the design of the ROS-based communication network. The low latency system design
allows for high modularity, full recordings, and flexible recording playback. This allows for
arbitrary controllers in the loop, and the ROS network abstraction allows plug and play of
any quadcopter, desktop, or control strategy. This choice was validated when we decided to
switch to the Tello from the Crazyflie, which required changing only a few lines of code. The
key ROS nodes are described below.

MPC: The MPC node receives observations from the External Camera node and the Copter
node, runs MPC on the PETS dynamics model based on some user specified cost function,
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and then sends actions back to the Copter node. While the MPC node is not running action
selection, it performs the optimization described in Section 3.4.

Copter: The Copter node synchronously sends velocity actions to the Tello and asyn-
chronously monitors the Tello state. This includes checking for crashes, lost connections,
and low battery. It also performs takeo↵ and landing when requested by the Data Capture
or Joystick node.

Ext Cam: The External Camera node receives images from the web camera, runs simple
OpenCV filtering to extract the pixel coordinates and area of the target, and then sends
these to the MPC node.

Visualizer: The visualizer node aggregates the information into a visual representation. An
example of this is shown in Figure 4.3, with action sequences, overlayed predicted trajectories,
goal positions, etc.

Data Capture: the Data Capture node is used as a high level manager of the experimen-
tation flow. This node signals the start and ends of episodes when all participating nodes
are “ready” and/or upon a user input through the joystick. It also coordinates takeo↵ and
landing, crash handling, and joystick overrides. Additionally, the data capture node records
all the ROS messages into the standard rosbag storage format. Rosbags can be replayed
easily for o✏ine testing. This central experiment controller proved invaluable in preventing
crashes, streamlining data collection, debugging timing and algorithmic issues, and minimiz-
ing latency.

Figure 4.2: ROS Network diagram
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Figure 4.3: ROS visualization node example. Upper left: current external camera image with the goal

position (blue), payload target position (green), platform position (magenta), future trajectories (white).

Upper middle: 3D cartesian velocity plot of the current action. Lower left: latent variable history (1D) for

this episode, showing µ and � converging. Lower middle: predictive loss history of the model, note that it

decreases as the latent value converges. Right column: MPC action selections from t = ⌧ to t = ⌧ +H � 1

for up-down, left-right, and forward-back axes.

Control Flow

The control flow is as follows: first, the controller computes an action for the latest received
observation; then this action gets sent across the network to the quadcopter; the quadcopter
then performs the action, all while we continually poll the quadcopter for state information.
Due communication and inertial lag, it is often the case that actions do not manifest for
several time steps. I mitigated the e↵ects of this by including a state and action history as
part of our “state” that gets fed into PETS. I chose the length of this history by picking the
history length that minimizes the validation loss of the PETS model.

Our experiments illustrate that actions indeed do not have immediate e↵ects; this can be
attributed to communication lag, inertial lag, and observation lag (camera processing time).
We estimate that on average, it takes 150ms for actions to be reflected in the state. Therefore,
with the design of our system, it became particularly important to ensure that latency is
similar at training versus test time, which implies that the latency of action selection must
be as small as possible.
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Figure 4.4: Visual diagram for the time split of one control loop. We minimize action selection time

(reactivity) and thereby maximize latent inference time (adaptability)

Controller Timing

In additional to overall performance, control frequency is important for both E4 and E5. I
experimented with di↵erent model sizes and horizon lengths to minimize this action selection
time while also allowing for optimal overall performance. I found that a relatively shallow
4 layer network and an action horizon of 5 can operate action selection at a frequency of
10-20Hz (action selection time of 0.05-0.1 seconds). A constant horizon has diminishing
predictive power as the overall control frequency gets faster, however. Therefore I chose a
time horizon of 1.25 seconds with a horizon length of 5, yielding a �t of 0.25. This leaves
roughly 0.15-0.2 seconds per iteration for the latent inference. The 4Hz control frequency
reflects a balance in trade-o↵ space between reactivity of the controller (react within 0.25
seconds), latent computation time (60-80% of total time), and long predictive horizons (1.25
seconds into future).

Note that it is very important to devote all computational resources to action selection at
test time since this minimizes overall control lag as discussed previously (we want to send our
choice in action as soon as possible). Therefore, we do not have a separate thread running
latent computation in parallel. Instead, we rigidly separate the two computations. This can
be seen visually in Figure 4.4.

Data collection

Our previous PETS code base was written in Tensorflow and was not flexible enough to
support our algorithmic additions. Therefore, I created a PyTorch repository to support
latent variable training and testing in PETS. This repository implements the MPC node
described above. Since quadcopter flight is sensitive to small changes in actions, I collected
training and validation data o✏ine via manual joystick flight rather than using random
actions or training PETS online. Additional noise was injected on top of the expert actions
to improve the coverage of the dataset. Roughly 40 minutes of data (roughly 10k data
points) were needed to learn dynamics models on each task.
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4.2 Evaluation

During experimentation, we hoped to compare prior approaches with our approaches in
our selected environment. Our goals for experiment design were as follows:

X1: Quantitatively demonstrate adaptability of our method compared to non-adaptive
methods on the string pickup task.

X1.1: Show adaptation on a set of known trajectories for each method.

X2: Compare the known latent variable with the unknown latent variable formulation.

X3: Demonstrate that inferring the latent variable reduces trajectory following error.

X4: Provide an end-to-end task to demonstrate real world e�cacy.

Model Architecture

As discussed in Section 4.1, we use a fully connected neural network with 4 hidden layers
of width 200 for all experiments. The raw inputs to the model consist of the current pixel
coordinates and area, a past history of states and actions, and the latent variable. Through
validation, the optimal history length was found to be 8 (2 seconds of history) for most
tasks. Instead of passing in the raw past states, I found that passing in deltas between each
consecutive time step minimized over-fitting to the high dimensional input. Additionally, the
pixel area is not normally distributed across data collection, which can create problems for
network training. By taking the square root of the area, I found that the “side length” has
a normal distribution, and is therefore a stronger feature input. The output of the network
represents a delta state, such that the predicted next observation is st+1 = st + �st where
�st ⇠ p✓(·|st, at, zk). The inputs and outputs are normalized across the training dataset so
that each dimension is N (0, 1).

Latent Variable Evaluation

For the Tello experiments, our latent variable represented string lengths of 18CM (latent
value -1) and 30CM (latent value 1). In order to properly show X1.1 and X3, I designed
three representative evaluation trajectories to follow during adaptation:

(1) square: Travels clockwise in a square pattern in the image plane. This is the simplest
task and tests straight line following.

(2) circle: Travels clockwise in a circular pattern in the image plane. This task is medium
di�culty and evaluates curve following.

(3) figure8: Travels in a figure-8 pattern in the ground plane. This is the hardest task
since it involves forward back control and simultaneous left-right control.
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These are fixed length trajectories that can be compared quantitatively with ease. The
main metric (cost function) we use for quality is mean squared error between the current
position and the goal position along the trajectory for this time step. Note that the squared
error terms are weighted by the inverse standard deviation of each dimension in the obser-
vation space for consistency. We evaluate each trajectory on baseline policies, our method
with known latent variables, and our method with unknown latent variables (X1, X2).

End-to-End Task

Since our quantitative tests are controlled in both space and time, our qualitative test aims
to demonstrate a real world use case of our method that is not constrained to a specific time
frame. To us, the most compelling end-to-end task was a full pick-up and drop-o↵ sequence
for a payload. Since we require the payload target to be present at all times for recording
observations, I designed and 3D-printed an additional ground payload that can be picked
up at close range via a light-weight magnet, as shown in Figure 4.5. The magnetic pick-up
radius is very sensitive to the weight of the payload, so we decouple the magnet and the
ground payload through another 3D printed element that contains the magnet and connects
to the ground payload with a string. The payload target has an opposite polarity magnet
to pick up the ground payload. 5-10k data points were collected for the payload target only
and the payload target + ground payload configurations.

Initially, the Tello follows some trajectory, adapting to just carrying the payload target.
The pick up sequence starts with a color-coded platform on the ground specifying the 3D
location of the ground payload, which sits on top of the platform. MPC moves the payload
target within the magnetic pick-up radius, and then lifts the ground payload into the air. It
then proceeds to follow some trajectory while the algorithm adapts to the new context, and
then moves to the drop-o↵ location, where a human is waiting to manually detach the magnet
and ground payload with a grabber claw. Once the magnet is detached, the Tello once again

(a) (b) (c) (d) (e)

Figure 4.5: Our meta-reinforcement learning method controlling a quadcopter transporting a suspended

payload in an end-to-end task. This task is challenging since each payload induces di↵erent system dynamics,

which requires the quadcopter controller to adapt online. The controller learned via our meta-learning

approach is able to (a) fly towards the payload, (b) attach the cable tether (payload target) to the ground

payload using a magnet, (c) take o↵, (d) fly towards the goal location while adapting to the newly attached

payload, and (e) deposit the payload using an external detaching mechanism.
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adapts. This sequence targets autonomous aerial delivery applications and demonstrates the
e�cacy of our method (X4). By enabling continuous adaptation, this sequence also allows
us to test the e↵ect of the latent variable on tracking error (X3).

Additional Use-Cases

In addition to the end-to-end test, we employed our approach to demonstrate simple
obstacle avoidance. For obstacle avoidance, we placed a recycling bin in the flight path
of the Tello, and created a way-point sequence for flight to bypass it in the ground plane.
This task aims to illustrate the trajectory following capabilities of our method in unknown
dynamics contexts, since our method adapts as the Tello completes its trajectory.

In order to further challenge the algorithm, we fixed the Tello way-point in the camera
frame but let the camera be moved by a human observer. First, we moved the external
camera in a hallway environment with multiple turns to demonstrate this camera following
behavior. For the next experiment, using a simple “wand” I designed to hold the camera,
we manually provide way-points by moving the camera in 3D space. Since the observation
frame is moving, actions are no longer in the same frame of reference as the observations,
so this task illustrates the robustness of the learned dynamics models. We perform a pick-
up similar to the end-to-end task using this camera following approach to demonstrate our
method’s ability to adapt even in a moving reference frame.
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Chapter 5

Experimental Results

5.1 Baselines

Using the environment described in Section 4.1, I evaluated our meta-learning approach
with both known and unknown latents against the following baselines:

1. MBRL without history: The state consists only of the current payload pixel location
and pixel area.

2. MBRL with history: The state consists of the concatenation of past states and
actions, and therefore represents a simple meta-learning approach.

3. PID Controller: The PID constants were manually tuned based on a new trajectory
not used in evaluation. There is one PID controller per cartesian velocity axis, and the
state consists of the pixel location and area.

5.2 Results

For each of the methods, I ran five experiments each on the square, circle, and figure8
trajectories to evaluate the trajectory following capabilities of each method. Table 5.1 shows
the results for each approach in terms of average pixel tracking error, with visualizations
of a subset of the trajectories shown in Fig. 5.1. Both the online adaptation methods (our
approach and MBRL) better track the specified goal trajectories compared to the non-
adaptation methods (MBRL without history and PID controller) which shows that online
adaptation leads to better performance. Our approach meta-trained with unknown latent
variables also outperforms our approach trained with known latent variables, which highlights
that our approach does not require a priori knowledge of the suspended payloads during
training to successfully adapt at test time.
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Algorithm

Avg. Tracking Error (pixels) for each Task Path and Payload String Length (cm)

Circle Square Figure-8

18 30 18 30 18 30

Ours (unknown variable) 23.62±2.67 24.41±3.90 23.88±2.81 26.57±3.84 24.67±1.33 29.08±6.00

Ours (known variable) 31.81±6.49 30.49±2.65 26.37±3.63 31.68±4.68 29.84±2.84 28.28±3.76

MBRL without history 1 1 1 1 1 1
MBRL 39.96±4.40 42.36±2.84 32.37±2.40 39.26±5.16 34.17±1.90 41.01±7.26

PID controller 70.58±4.01 67.98±2.50 65.79±9.99 69.53±6.85 90.15±10.40 86.37±9.27

Table 5.1: Comparative evaluation of our method for the tasks of following a circle, square or figure-8

trajectory with either an 18cm or 30cm payload cable length. The table entries specify the average pixel

tracking error over 5 trials, with 1 denoting when all trials failed the task by deviating outside of the

camera field of view. Note that the cable length was not given to any method a priori, and therefore online

adaptation was required in order to successfully track the specified path. Our method was able to most

closely track all specified paths for all payloads.

In addition to our method showing better closed-loop performance, the latent variable
of our dynamics model is consistent in its interpretation. Fig. 5.2 and Fig. 5.3 show the
inferred latent variable and tracking error while our model-based policy is executing at test
time. We observe that the dynamics variable converges to di↵erent values depending on
the cable length, which shows that our test-time inference procedure is able to di↵erentiate
between the dynamics of the two di↵erent payloads. More importantly, as the inferred value
converges, our learned model-based controller becomes more accurate and is therefore better
able to track the desired path.

5.3 End-to-End Pick-up Task

Fig. 5.4 shows sample images of the full end-to-end pick-up and drop-o↵ task at each of
the stages. Our approach is able to complete the full task by adapting to each new context
it encounters. Note that due to the small magnetic pick-up radius, picking up the ground
payload requires a high degree of precision. The best baseline method, for example, was
too unstable to reliably pick up the ground payload with the same planned trajectory. By
inferring the latent variable value, the planner is better able to follow specified trajectories
after each change in dynamics. Importantly, this demonstrates the continuous nature of our
approach, with a single iteration of this task taking almost 2 minutes and changing dynamics
contexts three times.

5.4 Additional Use-Cases

Fig. 5.5 illustrates our method applied to the obstacle avoidance task. Note that the
algorithm simultaneously avoids the obstacle and adapts to the current dynamics context.
Fig. 5.6 demonstrates the successful camera following ability in a hallway with multiple
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turns and varying lighting, which can a↵ect the OpenCV payload target detection and thus
a↵ect observations to our method. In Fig. 5.7, the pick-up portion of the end-to-end task is
recreated with the camera wand following technique, and our method successfully adapts to
the new context even under the strain of a moving frame of reference.



CHAPTER 5. EXPERIMENTAL RESULTS 22

Ours (Unknown) Ours (Known) MBRL

C
ir
cl
e

S
qu

ar
e

F
ig
u
re
-8

Figure 5.1: Comparison of our meta-learning approach with unknown and known factors of variation versus

model-based reinforcement learning (MBRL) with past states and actions concatenated. The tasks are to

either follow a circle or square in the image plane, or a figure-8 parallel to the ground. The specified goal

paths are colored in red and the path taken by each approach is shown in cyan. Our approaches are better

able to adapt online and follow the specified trajectories.
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Figure 5.2: Visualization of the inferred latent variable and tracking error over time for the task of following

a figure-8 trajectory. We show our approach trained with known variables (left column) and unknown

variables (right column) with either a payload cable length of 18cm (top row) or 30cm (bottom row).

For all approaches, the inferred latent variable converges as the quadcopter flies and adapts online. The

converged final latent values are di↵erent depending on the cable length, which shows the online adaptation

mechanism is able to automatically di↵erentiate between the di↵erent payloads. Furthermore, as the latent

value converges, the tracking error also reduces, which demonstrates that there is a correlation between

inferring the correct latent variable and the achieved task performance.
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Figure 5.3: As the quadcopter follows the circle trajectory using our model-based controller, our approach

adapts online to the a priori unknown payload by inferring the latent value which maximizes the dynamics

models accuracy. This online adaptation reduces the tracking error as the quadcopter flies, enabling the

quadcopter to successfully complete the task.

Figure 5.4: Visualization of our approach successfully completing the full quadcopter payload transporta-

tion task. The task consists of three distinct phases: before the quadcopter picks up the payload, while the

payload is in transit to the goal, and after the payload is dropped o↵. Our approach continuously adapts

the latent dynamics variable online using the current test-time dataset, and flushes the test-time dataset

each time the quadcopter transitions between phases, which are delineated by the vertical black lines. The

inferred latent variable is the same for when no payload is attached, but di↵erent when the payload is at-

tached, which demonstrates that our inference procedure successfully infers the latent variable depending

on the payload. Within each phase, the tracking error also reduces over time, which shows that our online

adaptation mechanism improves closed-loop performance.
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Figure 5.5: Our approach enables a quadcopter to transport a suspended payload around an obstacle.

The user first defines a path that goes around the obstacle in the pixel space of the external camera. Our

approach then encourages the suspended payload to follow this path while simultaneously adapting to the

properties of the suspended payload.

Figure 5.6: Our approach enables a quadcopter to control a suspended payload to follow a target. The

target is the external camera that is used to track the suspended payload. Our approach encourages the

suspended payload to stay in the center of the camera image and at a specific pixel size, and therefore as

the external camera moves, the quadcopter moves in order to keep the suspended payload centered.

Figure 5.7: Our approach enables a quadcopter to follow trajectories dictated using a “wand”-like interface.

The wand consists of mounting the external camera that is used to track the suspended payload on the end

of a stick. By defining the cost function to encourage the suspended payload to stay centered, as the user

moves the wand, our approach enables the quadcopter to adapt online to the specific payload while keeping

the payload centered in the external camera’s field-of-view.
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Chapter 6

Discussion

6.1 Conclusion

In this project, I presented a meta-learning approach for model-based reinforcement learn-
ing and demonstrated online adaptation for a quadcopter with varying suspended payloads.
Using PETS, we use a deep neural network to learn the underlying dynamics of each environ-
ment. We augment this network by adding a context-specific latent variable as an input to
the PETS model, considering both supervised and unsupervised values. The latent variable
is optimized to improve the accuracy of the dynamics model both at training and test time.
Our experimental setup maximizes the training time for this latent variable while prioritiz-
ing fast reaction times for the planning algorithm. Through our quantitative experiments,
we observe a meaningful reduction in trajectory following error with our adaptive method
compared to adaptive and non-adaptive baselines. Our qualitative experiments demonstrate
that the inference of the latent variable does improve closed-loop performance.

6.2 Future Work

While our approach allowed for successful control of a quadcopter with a suspended pay-
load, our control inputs were limited to Cartesian velocities. In order to enable more complex
maneuvers and fine-tuned adaptation, one would need lower level control (e.g. pitch, roll,
yaw or individual motor thrust). As touched upon in Section 4.1, lower level control brings
new challenges that are worth tackling in the future. Additionally, estimating the position
of the payload target may be di�cult in di↵erent conditions with the limited OpenCV ap-
proach used in this project. In the future, it will be worthwhile to explore learning directly
from images since this could enable even better adaptation. For our end-to-end task, we
require manually specifying when the suspended payload was successfully picked up and
dropped o↵ in order to reset our latent variable memory; another area of future study is
removing this requirement for human oversight so the algorithm becomes fully autonomous.
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In addition, future work might extend this algorithm to arbitrary payloads on UAVs with
larger thrust capacity. Furthermore, testing in the presence of constraints like wind and low
visibility could present additional “contexts” for the meta-learning algorithm. Solving these
challenges will enable a wide variety of real-world aerial payload manipulation abilities, and
this project represents a meaningful step towards this goal.
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