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Neural Kernels and ImageNet Multi-Label Accuracy

Alex Fang

Abstract

Inspired by the success of deep learning, we investigate the connections between neural
networks and simple building blocks in kernel space in order to create a kernel that achieves
performance closer to state of the art on CIFAR10. Additionally, we evaluate human accuracy
on ImageNet with a multi-label accuracy metric in order to better understand the robustness of
machine models. By looking at both, we can better understand different failure modes of various
machine learning models to improve performance in the field.

1 Introduction to Neural Kernels

Kernel methods have fallen out of favor due to the superiority of neural networks on modern
benchmark tasks. However, kernel methods have advantages such as nice properties and being well
understood. Recent work show a connection between neural networks trained with gradient descent
and kernel methods [4, 7, 9, 10, 12, 16, 20]. Specifically, they relate “infinitely wide” neural networks
to particular kernel spaces, showing that infinite limits of random initializations of neural networks
have equivalent kernels. Recent work has explored using such kernels on benchmark tasks [5, 21],
but has not been able to match the performance of neural networks on the majority of tasks.

Here we aim to understand empirically if there are computationally tractable kernels that approach
the expressive power of neural networks, and if there are any practical links between kernel and
neural network architectures. We take inspiration from both the recent literature on “neural tangent
kernels” (NTK) and the classical literature on compositional kernels, such as ANOVA kernels. We
describe a set of three operations in feature space that allow us to turn data examples presented
as collections of small feature vectors into a single expressive feature-vector representation. We
then show how to compute these features directly on kernel matrices, obviating the need for explicit
vector representations. We draw connections between these operations, the compositional kernels of
Daniely et al. [7], and the Neural Tangent Kernel limits of Jacot et al. [16]. These connections allow
us to relate neural architectures to kernels in a transparent way, with appropriate simple analogues
of convolution, pooling, and nonlinear rectification (Sec. 2).

Our main investigation, however, is not in establishing these connections. Our goal is to test whether
the analogies between these operations hold in practice: is there a correlation between neural
architecture performance and the performance of the associated kernel? Inspired by simple networks
proposed by David Page [26], we construct neural network architectures for computer vision tasks
using only 3⇥ 3 convolutions, 2⇥ 2 average pooling, and ReLU nonlinearities. We show that the
performance of these neural architectures on CIFAR-10 strongly predicts the performance of the
associated kernel. The best architecture achieves 96% accuracy on CIFAR-10 when trained with
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SGD on a mean squared error (MSE) loss. The corresponding compositional kernel achieves 90%
accuracy, which is, to our knowledge, the highest accuracy achieved thus far by a kernel machine on
CIFAR-10. We emphasize here that we compute an exact kernel directly from pixels, and do not
rely on random feature approximations often used in past work.

On CIFAR-10, we observe that compositional kernels provide dramatically better results than Neural
Tangent Kernels. We also demonstrate that this trend holds in the “small data” regime [5]. Here,
we find that compositional kernels outperform NTKs and neural networks outperform both kernel
methods when properly tuned and trained. Our results provide a promising starting point for
designing practical, high performance, domain specific kernel functions. We suggest that while some
notion of compositionality and hierarchy may be necessary to build kernel predictors that match
the performance of neural networks, NTKs themselves may not actually provide particularly useful
guides to the practice of kernel methods.

2 Kernel Formation

To construct our compositional kernel functions, we rely on key results from Daniely et al. [7], which
explicitly studies the duality between neural network architectures and compositional kernels.

A variety of data formats are naturally represented by collections of related vectors. For example,
an image can be considered a spatially arranged collection of 3-dimensional vectors. A sentence can
be represented as a sequence of word embeddings. Audio can be represented as temporally ordered
short-time Fourier transforms. In this section, we propose a generalization of these sorts of data
types, and a set of operations that allow us to compress these representations into vectors that can
be fed into a downstream prediction task. We then show how these operations can be expressed
as kernels and describe how to compute them. None of the operations described here are novel,
but they form the basic building blocks that we use to build classifiers to compare to neural net
architectures.

A bag of features is simply a generalization of a matrix or tensor: whereas a matrix is a list of vectors
indexed by the natural numbers, a bag of features is a collection of elements in a Hilbert space H

with a finite, structured index set B. As a canonical example, we can consider an image to be a bag
of features where the index set B is the pixel’s row and column location and H is R3: at every pixel
location, there is a corresponding vector in R3 encoding the color of that pixel. In this section we
will denote a generic bag of features by a bold capital letter, e.g., X, and the corresponding feature
vectors by adding subscripts, e.g., Xb. That is, for each index b 2 B, Xb 2 H.

If our data is represented by a bag of features, we need to map it into a single Hilbert space to
perform linear (or nonlinear) predictions. We describe three simple operations to compress a bag of
features into a single feature vector.

Concatenation. Let S1, . . . ,SL ✓ B be ordered subsets with the same cardinality, s. We write
each subset as an ordered set of indices: Sj = {ij1, . . . , ijs}. Then we can define a new bag of
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features c(X) with index set {1, . . . , L} and Hilbert space H
s as follows. For each j = 1, . . . , L, set

c(X)j = (Xij1 ,Xij2 , . . . ,Xijs) .

The simplest concatenation is setting S1 = B, which corresponds to vectorizing the bag of features.
As we will see, more complex concatenations have strong connections to convolutions in neural
networks.

Downsampling. Again let S1, . . . ,SL ✓ B be subsets, but now let them have arbitrary cardinality
and order. We can define a new bag of features p(X) with index set {1, . . . , L} and Hilbert space H.
For each j = 1, . . . , L set

p(X)j =
1

|Sj |

X

i2Sj

Xi .

This is a useful operation for reducing the size of B. Here we use the letter p for the operation as
downsampling is commonly called “pooling” in machine learning.

Embedding. Embedding simply means a isomorphism of one Hilbert space to another. Let
' : H! H

0 be a map. Then we can define a new bag of features �(X) with index set B and Hilbert
Space H

0 by setting
�(X)b = '(Xb) .

Embedding functions are useful for increasing the expressiveness of a feature space.

2.1 Kernels on bags of features

Each operation on a bag of features can be performed directly on the kernel matrix of all feature
vectors. Given two bags of features with the same (B,H), we define the kernel function

k(X, a,Z, b) = hXa,Zbi .

Note that this implicitly defines a kernel matrix between two bags of features: we compute the
kernel function for each pair of indices in B⇥ B to form a |B|⇥ |B| matrix. Let us now describe how
to implement each of the above operations introduced in Section 2.

Concatenation. Since

hc(X)j , c(Z)ki =
sX

`=1

hXij` ,Zik`i ,

we have

k(c(X), j, c(Z), k) =
sX

`=1

k(X, ij`,Z, ik`) .
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Downsampling. Similarly, for downsampling, we have

k(c(X), j, c(Z), k) =
1

|Sj ||Sk|

X

i2Sj

X

`2Sk

k(X, i,Z, `) .

Embedding. Note that the embedding function ' induces a kernel on H. If x and z are elements
of H, define

k'(x, z) = h'(x),'(z)i .

Then, we don’t need to materialize the embedding function to compute the effect of embedding a
bag of features. We only need to know k':

k(�(X), j,�(Z), k) = k'(Xj ,Zk) . (1)

We will restrict our attention to ' where we can compute k'(x, z) only from hx, zi, kxk and kzk.
This will allow us to iteratively use Equation (1) in cascades of these primitive operations.

2.2 Kernel operations on images

In this section, we specialize kernel operations to operations on images. As described in Section 2,
images are bags of three dimensional vectors indexed by two spatial coordinates. Assuming that
our images have D1 ⇥D2 pixels, we create a sequence of kernels by composing the three operations
described above.

Input kernel. The input kernel function k0 relates all pixel vectors between all pairs of images in
our dataset. Computationally, given N images, we can use an image tensor T of shape N ⇥D1 ⇥

D2 ⇥ 3 to represent the whole dataset of images, and map this into a kernel tensor Kout of shape
N ⇥D1 ⇥D2 ⇥N ⇥D1 ⇥D2. The elements of Kout = k0(T ) can be written as:

Kout[i, j, k, `,m, n] = hT [i, j, k], T [`,m, n]i .

All subsequent operations operate on 6-dimensional tensors with the same indexing scheme.

Convolution. The convolution operation cw maps an input tensor Kin to an output tensor Kout

of the same shape: N ⇥D1⇥D2⇥N ⇥D1⇥D2. w is an integer denoting the size of the convolution
(e.g. w = 1 denotes a 3⇥ 3 convolution).

The elements of Kout = cw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
wX

dx=�w

wX

dy=�w

Kin[i, j + dx, k + dy, `,m+ dx, n+ dy]

For out-of-bound location indexes, we simply zero pad the Kin so all out-of-bound accesses return
zero.
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Average pooling. The average pooling operation pw downsamples the spatial dimension, mapping
an input tensor Kin of shape N ⇥ D1 ⇥ D2 ⇥ N ⇥ D1 ⇥ D2 to an output tensor Kout of shape
N ⇥ (D1/w)⇥ (D2/w)⇥N ⇥ (D1/w)⇥ (D2/w). We assume D1 and D2 are divisible by w.

The elements of Kout = pw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
1

w4

wX

a=1

wX

b=1

wX

c=1

wX

d=1✓
Kin[i, wj + a,wk + b, `, wm+ c, wn+ d]

◆

Embedding. The nonlinearity layers add crucial nonlinearity to the kernel function, without
which the entire map would be linear and much of the benefit of using a kernel method would be
lost. We first consider the kernel counterpart of the ReLU activation.

The ReLU embedding, krelu, is shape preserving, mapping an input tensor Kin of shape N ⇥
D1 ⇥ D2 ⇥ N ⇥ D1 ⇥ D2 to an output tensor Kout of shape N ⇥ D1 ⇥ D2 ⇥ N ⇥ D1 ⇥ D2. To
ease the notation, we define two auxiliary tensors: A with shape N ⇥D1 ⇥D2 and B with shape
N ⇥D1 ⇥D2 ⇥N ⇥D1 ⇥D2, where the elements of each are:

A[i, j, k] =
p
Kin[i, j, k, i, j, k]

B[i, j, k, `,m, n] = arccos

✓
Kin[i, j, k, `,m, n]

A[i, j, k]A[`,m, n]

◆

The elements of Kout = krelu(Kin) can be written as:

Kout[i, j, k, `,m, n]

=
1

⇡

✓
A[i, j, k]A[`,m, n] sin(B[i, j, k, `,m, n])+

(⇡ �B[i, j, k, `,m, n]) cos(B[i, j, k, `,m, n])

◆

The relationship between the ReLU operator and the ReLU kernel is covered in Subsection 2.3.

In addition to the ReLU kernel, we also work with a normalized Gaussian kernel. The elements of
Kout = kgauss(Kin) can be written as:

Kout[i, j, k, `,m, n]

= A[i, j, k]A[`,m, n] exp(B[i, j, k, `,m, n]� 1)

The normalized Gaussian kernel has a similar output response to the ReLU kernel (shown in Figure
1). Experimentally, we find the Gaussian kernel to be marginally faster and more numerically stable.

2.3 Relating compositional kernels to neural network architectures

Each of these compositional kernel operations is closely related to neural net architectures, with close
ties to the literature on random features [28]. Consider two tensors: U of shape N ⇥D1 ⇥D2 ⇥D3

5



Figure 1: Comparison of the ReLU (arccosine) and Gaussian kernels (� = 1), as a function of the
angle # between two examples.

and W of shape (2w + 1)⇥ (2w + 1)⇥D3 ⇥D4. U is the input, which can be N images, w is an
integer denoting the size of the convolution (e.g. w = 1 denotes a 3⇥ 3 convolution), and W is a
tensor contains the “weights” of a convolution. Consider a simple convolutional layer followed by a
ReLU layer in a neural network:

 (U) = relu(W ⇤U)

where “⇤" denotes the convolution operation and relu denotes elementwise ReLU nonlinearity.

A convolution operation can be rewritten as a matrix multiplication with a reshaping of input
tensors. We first flatten the weights tensor W to a matrix W 0 of D4 rows and D3(2w+1)2 columns.
For the input tensor U , given the convolution size (2w + 1) ⇥ (2w + 1), we consider the “patch"
of each entry U [n, d1, d2, c] , which includes the (2w + 1) ⇥ (2w + 1) entries U [n, i, j, c], where
i 2 [d1 � w, d1 + w], j 2 [d2 � w, d2 + w]. Therefore, we can flatten the input tensor U to a matrix
U 0 of size D3(2w + 1)2 ⇥D1D2N by padding all out-of-bounds entries in the patches to zero.

The ReLU operation is shape preserving, applying the ReLU nonlinearity '(x) elementwise to the
tensor. Thus we can rewrite the above convolution and ReLU operations into

 (U) = relu(W 0U 0) = relu(W ⇤U)

Therefore, a simple convolution layer and a ReLU layer give us an output tensor  (U) of shape
N ⇥D1 ⇥D2 ⇥D4.

With the help of random features, we are able to relate the above neural network architecture to
kernel operations. Suppose the entries of W are appropriately scaled random Gaussian variables.
We can evaluate the following expectation according to the calculation in Daniely et al. [7], thereby
relating our kernel construction to inner products between the outputs of random neural networks:

E
 D4X

c=1

 (U)[i, j, k, c] (U)[`,m, n, c]

�
=

krelu
⇣
cw

�
k0(U)

�⌘
[i, j, k, `,m, n]

(2)
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where k0 is the input kernel defined in Subsection 2.2.

Similar calculations can be made for the pooling operation, and for any choice of nonlinearity for
which the above expectation can be computed. Moreover, since in Eq (2), the term inside the
expectation only depends on inner products, this relation can be generalized to arbitrary depths.

2.4 Implementation

Now we actualize the above formulations into a procedure to generate a kernel matrix from the
input data. Let A be a set of valid neural network operations. A given network architecture N is
represented as an ordered list of operations from A. Let K denote a mapping from elements of A to
their corresponding operators as defined in Subsection 2.2.

Algorithm 1 defines the procedure for constructing a compositional kernel from a given architecture
N and an input tensor X of N RGB images of shape N ⇥D ⇥D ⇥ 3. We note that the output
kernel is only a N ⇥N matrix if there exist exactly logD pooling layers. We emphasize that this
procedure is a deterministic function of the input images and network architecture.

Due to memory limitations, in practice we compute the compositional kernel in batches on a GPU.
Implementation details are given in Section 3.

Algorithm 1 Compositional Kernel
Input

N Input architecture of m layers from A

K Map from A to layerwise operators
X Tensor of input images, shape (N ⇥D ⇥D ⇥ 3)

Output
Km Compositional kernel matrix, shape (N ⇥N)

K0 = k0(X)
for i = 1 to m do

ki  K(Ni)
Ki  ki(Ki�1)

end for

3 Kernel Experiments

3 x 3 Conv ReLU 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 2x2 AvgPool 2x2 AvgPool

Figure 2: A 5 layer network from the “Myrtle” family (Myrtle5).

In this section, we first provide an overview of the architectures used in our experiments. We then
present comparison results between neural networks, NTKs, and compositional kernels on a variety
of datasets, including MNIST, CIFAR-10 (Krizhevsky [17]), CIFAR-10.1 (Recht et al. [31]), and
CIFAR-100 (Krizhevsky [17]).
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3.1 Architectures

We design our deep convolutional kernel based on the non-residual convolutional “Myrtle" networks
introduced in Page [26]. We choose this particular network because of its rare combination of
simplicity and high performance. Many components commonly used in neural networks, including
residual connections, are intended to ease training but have little or unclear effect in terms of the
function of the trained network. It is unclear how to model these neural network components in the
corresponding kernels, but equally unclear what benefit this might offer. We further simplify the
architecture by removing batch normalization and swapping out max pooling with average pooling,
for similar reasons. The remaining components are exclusively 3 ⇥ 3 convolutions, 2 ⇥ 2 average
pools, and ReLUs. More generally, we refer to all architectures that can be represented as a list of
operations from the set {conv3, pool2, relu} as the “Myrtle” family.

We work with 3 networks from this family: Myrtle5, Myrtle7 and Myrtle10, denoting the depth of
each network. An example of the Myrtle5 architecture is shown in Figure 2. The deeper variants
have more convolution and ReLU layers. Next we show convolutional neural networks from this
family can indeed achieve high accuracy on CIFAR-10, as can their kernel counterparts.

3.2 Experimental setup.

We implemented all the convolutional kernels in the tensor comprehensions framework [36] and
executed them on V100 GPUs using Amazon Web Services (AWS) P3.16xlarge instances. For
image classification tasks (MNIST, CIFAR-10, CIFAR-10.1, and CIFAR-100), we used compositional
kernels based on the Myrtle family described above. All experiments on CIFAR-10, CIFAR-10.1 and
CIFAR-100 used ZCA whitening as a preprocessing step, except for the comparison experiments
explicitly studying preprocessing. We apply “flip" data augmentation to our kernel method by
flipping every example in the training set across the vertical axis and constructing a kernel matrix
on the concatenation of the flipped and standard datasets.

For all image classification experiments (MNIST, CIFAR-10, CIFAR-10.1, and CIFAR-100) we
perform kernel ridge regression with respect to one-hot labels, and solve the optimization problem
exactly using a Cholesky factorization.

3.3 MNIST

As a “unit test," we evaluate the performance of the compositional kernels in comparison to several
baseline methods, including the Gaussian kernel, on the MNIST dataset of handwritten digits
[19]. Results are presented in Table 1. We observe that all convolutional methods show nearly
identical performance, outperforming the three non-convolutional methods (NTK, arccosine kernel,
and Gaussian kernel).
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Table 1: Classification performance on MNIST. All methods with convolutional structure have
essentially the same performance.

Method MNIST
Accuracy

NTK 98.6
ArcCosine Kernel 98.8
Gaussian Kernel 98.8
Gabor Filters + Gaussian Kernel 99.4
LeNet-5 [18] 99.2
CKN [23] 99.6
Myrtle5 Kernel 99.5
Myrtle5 CNN 99.5

3.4 CIFAR-10

Table 3 compares the performance of neural networks with various depths and their corresponding
compositional kernels on both the 10,000 test images from CIFAR-10 and the additional 2,000
“harder" test images from CIFAR-10.11 [17, 31]. We include the performance of the Gaussian kernel
and a standard ResNet32 as baselines. We train all the Myrtle CNNs on CIFAR-10 using SGD and
the mean squared error (MSE) loss with multi-step learning rate decay.

We observe that a simple neural network architecture built exclusively from 3⇥ 3 convolutions, 2⇥ 2
average pooling layers, and ReLU nonlinearities, and trained with only flip augmentation, achieves
93% accuracy on CIFAR-10. The corresponding fixed compositional kernel achieves 90% accuracy on
the same dataset, outperforming all previous kernel methods. We note the previous best-performing
kernel method from Li et al. [21] heavily relies on a data dependent feature extraction before data is
passed into the kernel function [6]. When additional sources of augmentation are used, such as cutout
and random crops, the accuracy of the neural network increases to 96%. Unfortunately due to the
quadratic dependence on dataset size, it is currently intractable to augment the compositional kernel
to the same extent. For all kernel results2 on CIFAR-10, we gained a performance improvement of
roughly 0.5% using two techniques: Leave-One-Out tilting and ZCA augmentation.

Effect of preprocessing. For all of our primary CIFAR-10 experiments, we begin with ZCA
pre-processing [13]. Table 3 also shows the accuracy of our baseline CNN and its corresponding
kernel when we replace ZCA with a simpler preprocessing of mean subtraction and standard
deviation normalization. We find a substantial drop in accuracy for the compositional kernel without
ZCA preprocessing, compared to a much more modest drop in accuracy for the CNN. This result
underscores the importance of proper preprocessing for kernel methods; we leave improvements in
this area for future work.

1
As this dataset was only recently released, some works do not report accuracy on this dataset.

2
with the exception of the experiment performed without ZCA processing
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3.5 CIFAR-100

For further evaluation, we compute the compositional kernel with the best performance on CIFAR-10
on CIFAR-100. We report our results in Table 2. We find the compositional kernel to be modestly
performant on CIFAR-100, matching the accuracy of a CNN of the same architecture when no
augmentation is used. However we note this might be due to training instability as the network
performed more favorably after flip augmentation was used. Accuracy further increased when batch
normalization was added, lending credence to the training instability hypothesis. We also note cross
entropy loss was used to achieve the accuracies in Table 2, as we had difficulty optimizing MSE loss
on this dataset. We leave further investigations on the intricacies of achieving high accuracy on
CIFAR-100 for future work.

Table 2: Accuracy on CIFAR-100. All CNNs were trained with cross entropy loss.

Method CIFAR-100
Accuracy

Myrtle10-Gaussian Kernel 65.3
Myrtle10-Gaussian Kernel + Flips 68.2
Myrtle10 CNN 64.7
Myrtle10 CNN + Flips 71.4
Myrtle10 CNN + BatchNorm 70.3
Myrtle10 CNN + Flips + BatchNorm 74.7

3.6 Subsampled CIFAR-10

In this section, we present comparison results in the small dataset regime using subsamples of
CIFAR-10, as investigated in Arora et al. [5]. Results are shown in Figure 3. Subsampled datasets
are class balanced, and standard deviations are computed over 20 random subsamples, as in Arora
et al. [5].

Figure 3: Accuracy results on random subsets of CIFAR-10, with standard deviations over 20 trials.
The 14-layer CNTK results are from Arora et al. [5].
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Table 3: Classification performance on CIFAR-10.

Method CIFAR-10
Accuracy

CIFAR-10.1
Accuracy

Gaussian Kernel 57.4 -
CNTK + Flips [21] 81.4 -
CNN-GP + Flips [21] 82.2 -
CKN [23] 82.2 -
Coates-NG + Flips [31] 85.6 73.1
Coates-NG + CNN-GP + Flips [21] 88.9 -
ResNet32 92.5 84.4
Myrtle5 Kernel + No ZCA 77.7 62.2
Myrtle5 Kernel 85.8 71.6
Myrtle7 Kernel 86.6 73.1
Myrtle10 Kernel 87.5 74.5
Myrtle10-Gaussian Kernel 88.2 75.1
Myrtle10-Gaussian Kernel + Flips 89.8 78.3
Myrtle5 CNN + No ZCA 87.8 75.8
Myrtle5 CNN 89.8 79.0
Myrtle7 CNN 90.2 79.7
Myrtle10 CNN 91.2 79.9
Myrtle10 CNN + Flips 93.4 84.8
Myrtle10 CNN + Flips + CutOut + Crops 96.0 89.8

Results. We demonstrate that in the small dataset regime explored in Arora et al. [5], our
convolutional kernels significantly outperform the NTK on subsampled training sets of CIFAR-
10. We find a network with the same architecture as our kernel severely underperforms both the
compositional kernel and NTK in the low data regime. As with CIFAR-100 we suspect this is a
training issue as once we add batch normalization the network outperforms both our kernel and the
NTK from Arora et al. [5].

4 ImageNet Background

The past decade has seen substantial progress on a wide range of machine learning benchmarks. A
key challenge for the field now is translating the emerging technologies into safe, dependable, and
secure systems that can be deployed in the real world and in interactions with humans. However,
it is not clear whether machine learning currently has the evaluation methodology to underwrite
dependable performance. In short, what can we expect from a trained model with a good benchmark
score?

Machine learning benchmarks evaluated with standard train / test splits only provide a narrow
guarantee for future performance: as long as the data comes from the same distribution as the
test set, we can expect a model to behave similarly well. However, i.i.d. data is a highly idealized
scenario and small deviations from the data distribution can lead to substantially worse performance
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[11, 15, 25, 27, 30, 33, 34]. Providing broader performance guarantees is difficult because tasks in
machine learning are often incompletely defined (what set of pixel values counts as a cat?). Instead
of precisely characterizing the actual task of interest, we approximate it through train and test
sets. The hope is that a model with good performance on this train / test split can imitate human
behavior on the task of interest.

Unfortunately, we have little understanding of the extent to which current benchmark protocols can
measure the relative generalization capabilities of trained models and humans on a given task. While
widely used datasets such as ImageNet [8, 32] and SQuAD [29] have human baselines, it is unclear
what conclusions we can draw from a direct comparison in the i.i.d. scenario favored by machine
learning models. Trained models that “surpass” the human baseline on a benchmark still often fail
in a variety of ways, while humans are usually reliable in a wide range of scenarios. Moreover, the
benchmarks often attempt to render immeasurable ambiguous, cultural, and subjective aspects of
their tasks measurable in a way that does not capture important dimensions of human experience,
thus making the benchmarks problematic from a human perspective.

Here, we take a step towards a more comprehensive understanding of machine performance relative
to human generalization capabilities. We focus on the ImageNet dataset since it has been a key
benchmark in the past decade of machine learning and has a widely cited human vs. machine
comparison [2, 14, 32]. The core part of our study is an extensive experimental comparison of human
and machine behavior on ImageNet not only in terms of absolute accuracy, but also in terms of
robustness to small distribution shifts. As the ultimate goal of a classification model is to process
images beyond the benchmark test set, robustness is a crucial property of a trained model. We
hope that our multi-dimensional approach will lead to improved evaluation methodology for trained
classifiers more broadly. In addition, our results provide context for earlier claims about super-human
performance on ImageNet.

To enable a thorough and semantically coherent evaluation of machine robustness, our experiment
addresses the following questions concerning classification accuracy on ImageNet:

• What is a meaningful evaluation metric for ImageNet? Initially, most ImageNet models were
evaluated using the top-5 metric, which was also employed in the aforementioned human vs.
machine comparison [32]. Since then, the field has moved to measuring top-1 accuracy, which
leads to a harder task and may affect the comparison of models and humans. However, a
non-trivial fraction of images in ImageNet has more than one correct label, which makes the
top-1 metric overly stringent.

To address this issue, we re-annotate 40,000 images with multi-label annotations specific to
each image.

• How widely do trained humans vary on ImageNet? The 2014 study only compared CNNs
against two humans, and only one human was evaluated on more than 300 images [32]. As
with many tasks, there may be substantial variation in human behavior on ImageNet as well.

To gain a broader picture, we evaluate five trained labelers on 2,000 images each.

• How robust are humans and models to small distribution shifts? The 2014 study was conducted
only on the ImageNet test set, which is drawn from the same distribution as the ImageNet
training set. This leaves out important aspects of human generalization as humans reliably
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recognize objects in a variety of scenarios.

To measure robustness, we utilize two separate test sets and evaluate humans and models on
both.

Our main result is that robustness to small, naturally occurring distribution shifts is a performance
dimension on which humans are still substantially better than all ImageNet classifiers. To establish
this fact, we compare humans and machines not only on the standard ImageNet test set,3 but also
on the test set from the ImageNetV2 replication study [30].4 The authors of ImageNetV2 followed
the ImageNet creation process to construct a new test set that is close to the original, e.g., they used
the same data source (Flickr) and the same data cleaning process (Mechanical Turk). Nevertheless,
all current ImageNet models have substantially lower accuracy on the ImageNetV2 test set.

We find that this gap in model performance persists even after we re-labeled both test sets consistently
with multi-label annotations. In contrast, all of our five human labelers see at most a 1% difference
between the two datasets. Moreover, our five labelers show substantially less variation in robustness
than in classification accuracy. These findings demonstrate that robustness to small distribution
shift is a performance dimension not captured by most current benchmark evaluations, although
humans still substantially outperform trained classifiers on this metric.

Table 4 summarizes the outcome of our experiment. On both test sets, there is substantial variation
among humans: the gap between the highest and lowest accuracy achieved by a human is 5.4% on
the original test set and 5.6% on the new test set. On the original dataset, three of our five labelers
outperform the currently best published ImageNet model, with the median human being 0.2% more
accurate than the best model. On the ImageNetV2 test set, all five labelers outperform all trained
models, and the median human is 5.2% better than the best model.5 Importantly, humans see
almost no drop between the two test sets, while all models suffer a substantial accuracy difference.
This trend is also visualized in Figure 4, which shows the accuracies of 71 ImageNet models and five
human labelers. All humans are close to the y = x diagonal, while the models follow a linear trend
substantially below this diagonal.

While the majority of our labelers outperforms the currently best published ImageNet model, we
emphasize that we do not see our numbers as a definite human baseline in terms of absolute accuracy.
First, we believe that more thoroughly trained humans will achieve higher accuracy than the best
humans in our evaluation. Most human errors are currently in fine-grained class distinctions among
the animal classes and particularly dog breeds, while our best labelers already achieve more than
99.5% accuracy on the object classes (substantially outperforming the best models on this subset).

More importantly, we view robustness to small, naturally occuring distribution shift as the main
metric of interest in our evaluation. Humans show substantially less variation in robustness than in
accuracy, and the past decade of model development has led to little progress in this metric. We
believe that addressing this gap is an important research direction for reliable machine learning.

3
We use the terms “test set” and “validation set” interchangeably in the context of ImageNet so that we can use

the same term for both ImageNet and ImageNetV2. While ImageNet has distinct validation and test sets, the labels

for the test set were never released and most papers report scores on the validation set.
4
Specifically, we utilized the MatchedFrequency test set from Recht et al. [30]. For conciseness, we simply refer to

this test set as ImageNetV2.
5
Here we only describe the point estimates. Section 8 contains a discussion of statistical significance.
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Table 4: Human and model multi-label accuracy on the ImageNet validation dataset and ImageNetV2.
The gap is measured as multi-label accuracy on ImageNet validation minus multi-label accuracy
on ImageNetV2. The confidence intervals are 95% Clopper-Pearson intervals. The AdvProp model
[38] is an EfficentNet-B8 trained with AdvProp and the FixRes model [22, 35] is a ResNext-32x48d
trained on one billion images from Instagram.

ImageNet multi-label accuracy (%)

Participant Original V2 Gap

resnet50 84.2 [81.8, 86.4] 75.7 [73.2, 78.7] 8.4
AdvProp 93.6 [91.9, 95.0] 88.3 [86.5, 90.6] 5.3
FixRes 95.5 [94.0, 96.7] 89.6 [87.9, 91.8] 5.9

Human A 91.9 [90.0, 93.5] 91.1 [89.6, 93.2] 0.8
Human B 94.7 [93.1, 96.0] 93.9 [92.6, 95.6] 0.8
Human C 96.2 [94.9, 97.3] 96.7 [95.9, 98.1] -0.5
Human D 95.7 [94.3, 96.9] 94.8 [93.7, 96.4] 0.9
Human E 97.3 [96.0, 98.2] 96.5 [95.6, 97.9] 0.7

5 Experiment setup

We conducted our experiment in four phases: (i) initial multi-label annotation, (ii) human labeler
training, (iii) human labeler evaluation, and (iv) final annotation review. Figure 5 provides a detailed
timeline of the experiment. In total, five human labelers participated in the experiment, denoted A
through E. All five participants are anonymized authors of this manuscript. While evaluating more
humans would have provided additional information, the scale of the experiment made it difficult
to incentivize others to invest the time and effort required to familiarize themselves with the 1,000
ImageNet classes and to label thousands of images.

In detail, the four phases of the experiment were:

1. Initial multi-label annotation. Labelers A, B, and C provided multi-label annotations for a
subset of size 20,000 from the ImageNet validation set and 20,683 images from all three ImageNetV2
test sets collected by Recht et al. [30]. At this point, labelers A, B, and C already had extensive
experience with the ImageNet dataset. We further discuss the annotation process in Section 6.

2. Human labeler training. Using a subset of the remaining 30,000 unannotated images in the
ImageNet validation set, labelers A, B, C, D, and E underwent extensive training to understand
the intricacies of fine-grained class distinctions in the ImageNet class hierarchy. The exact training
process is detailed in Section 7.

3. Human labeler evaluation. For the human labeler evaluation, we generated a class-balanced
random sample containing 1,000 images from the 20,000 annotated images of the ImageNet validation
set and 1,000 images from ImageNetV2. We combined the two sets and randomly shuffled the
resulting 2,000 images. Then, the five participants labeled these images over the course of 28 days.

4. Final annotation review. Lastly, all labelers reviewed the additional annotations generated in
the human labeler evaluation phase. We discuss the main results from our evaluation in Section 8.
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Figure 4: Multi-label accuracies for both CNN models and human participants on the ImageNet
validation set versus their accuracies on the ImageNetV2 test set. The confidence intervals are 95%
Clopper-Pearson confidence intervals.
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Figure 5: Timeline for the four phases of our experiment. 1) Initial multi-label annotation: First,
starting in November 2018, human labelers A, B, and C annotated a set of images from ImageNetV2
and the ImageNet validation set with multi-label annotations. 2) Human labeler training: Then, after
a long break, on October 14, 2019, all five participants began training on a 3,000 image subset of
the original ImageNet validation set. (Humans were not trained on ImageNetV2.) 3) Human labeler

evaluation: Next, starting on December 18, 2019, humans labeled 2,000 images from a random,
class-balanced sample including 1,000 images from the ImageNet validation dataset and 1,000 images
from ImageNetV2. The evaluation dataset did not include any of the images used in training. 4)
Final annotation review: Finally, all five labelers reviewed the annotations collected for the 2,000
image evaluation dataset.
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6 Multi-label annotations

In this section, we describe the details of the multi-label annotation process for the ImageNet
validation dataset and ImageNetV2. We first explain why multi-label annotations are necessary
for proper accuracy evaluation on ImageNet by outlining the pitfalls of the two most widely used
accuracy metrics, top-1 and top-5.

Top-1 accuracy. Top-1 accuracy is the standard accuracy measure used in the classification
literature. It measures the proportion of examples for which the predicted label matches the single
target label. However, the assumption that each image has a single ground truth label from a
fixed set of classes is often incorrect. ImageNet images, such as Figure 6a, often contain multiple
objects belonging to different classes (e.g. desk, laptop, keyboard, space bar, screen, and mouse
frequently all appear in the same image). Moreover, even for images for which a class is prominent
the ImageNet label might refer to another class present in the image. For example, in Figure 6b
the class gown is central and appears in the foreground, but the ImageNet label is picket fence.
As a result, one is not guaranteed to achieve high top-1 accuracy by identifying the main objects
in images. In other words, top-1 accuracy can be overly stringent by penalizing predictions that
appear in the image but do not correspond to the target label.

Top-5 accuracy. To partially remedy issues with top-1, the organizers of the ImageNet challenge
[32] measured top-5 accuracy, which considers a classification correct if any of the five predictions
matches the target label. However, allowing five guesses on all images on fine-grained classification
tasks such as ImageNet can make certain class distinctions trivial. For example, there are five turtles in
the ImageNet class hierarchy (mud turtle, box turtle, loggerhead turtle, leatherback turtle,
and terrapin), which can be difficult to distinguish, but given an image of a turtle, a classifier can
guess all five turtle classes to ensure that it predicts the correct label.

Multi-label accuracy. For multi-label accuracy, every image has a set of target labels and a
prediction is marked correct if it corresponds to any of the target labels for that image. Due to the
limitations of top-1 and top-5 accuracy, as well as ambiguity in the target class for many images,
multi-label annotations are necessary for rigorous accuracy evaluation on ImageNet.

6.1 Types of multi-label annotations

Next, we discuss three categories of multi-label annotations that arose in our study, exemplified in
Figure 6.

Multiple objects or organisms. For images that contain multiple objects or organisms corre-
sponding to classes in the ImageNet hierarchy, we added an additional target label for each entity in
the scene. For example, Figure 6a shows an image with target label desk that also contains multiple
different objects corresponding to ImageNet classes. When there are multiple correct objects or
organisms, the target class does not always correspond to the most central or largest entity in the
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(a) desk (b) picket fence (c) African elephant (d) lakeshore

Figure 6: Examples from the ImageNet validation of scenarios where multi-label annotations are
necessary. Multiple objects or organisms: In Figure 6a, the ImageNet label is desk but screen,
monitor, coffee mug and many more objects in the scene could count as correct labels. Figure
6b shows a scene where the target label picket fence is counterintuitive because it appears in
the background of the image while classes groom, bowtie, suit, gown, and possibly hoopskirt are
more prominently displayed in the foreground. b) Synonym or subset relationships: This image
has ImageNet label African elephant, but can be labeled tusker as well, because every African
elephant with tusks is a tusker. c) Unclear images: This image is labeled lakeshore, but could
also be labeled seashore as there is not enough information in the scene to distinguish the water
body between a lake or sea.

scene. For example, in Figure 6b, the target class picket fence appears in the background of the
image, but classes groom, bow tie, suit, gown, and hoopskirt all appear in the foreground.

Synonym or subset relationships. If two classes are synonyms of each other, or a class is
a subset of another class, we considered both classes to be correct target labels. For example,
the ImageNet class tusker is defined as any animal with visible tusks. Since warthog, African
elephant and Indian elephant all have prominent tusks, these classes are all technically subsets
of tusker. Figure 6c shows an African elephant that additionally has tusker as a correct label.

Unclear images. In certain cases, we could not ascertain whether a label was correct due to
ambiguities in the image or in the class hierarchy. Figure 6d shows a scene which could arguably be
either a lakeshore or a seashore.

6.2 Collecting multi-label annotations

Next, we detail the process we used to collect multi-label annotations. We first collected the top-1
predictions of 71 pre-trained ImageNet models published from 2012 to 2018. Then, over a period
of three months, participants A, B and C reviewed all predictions made by the models on 40,683
images from ImageNet and ImageNetV2. Participants first researched class distinctions extensively –
the details of this research are covered in 7. The three participants then categorized every unique
prediction made by the 71 models on the 40,683 images (a total of 182,597 unique predictions) into
correct or incorrect, thereby allowing each image to have multiple correct labels.

In total, we found that 18.2% of the ImageNet validation images have more than one correct label.
Among images with multiple correct labels, the mean number of correct labels per image is 2.3.
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Figure 7: The relationship between top-1, top-5, and multi-label accuracy on ImageNet test
for all 71 models in our test bed. The left figure plots multi-label vs. top-1 accuracy accuracy.
Multi-label accuracy makes the task easier than top-1 accuracy, with a median improvement of
8.9% between top-1 and multi-label scores. The right figure plots multi-label vs. top-5 accuracy
accuracy. Multi-label accuracy is more stringent than top-5 accuracy, with a median drop of 7.4%
between top-5 and multi-label scores.

The multi-label accuracy metric. Multi-label accuracy is computed by counting a prediction
as correct if and only if it was marked correct by the expert reviewers during the annotation stage.
We note that we performed a second annotation stage after the human labelers completed the
experiment, as explained in Section 7.3.

In Figure 7, we plot each model’s top-5 and top-1 accuracy versus its multi-label accuracy. Every

model prediction was reviewed individually for correctness. Higher top-1 and top-5 accuracy
correspond to higher multi-label accuracy with relatively few changes in model rankings across the
different metrics. However, for all models, top-1 accuracy underestimates multi-label accuracy
(models see a median improvement of 8.9% when comparing multi-label to top-1) while top-5
overestimates multi-label accuracy (models see a median drop of 7.4% when comparing multi-label
accuracy to top-5). While multi-label accuracy is highly correlated with top-1and top-5accuracy,
we assert that neither top-1nor top-5measure a semantically meaningful notion of accuracy.

7 Human accuracy measurement process

We now describe the human evaluation portion of our experiment. Annotators A, B, & C participated
in the initial annotation review and thus saw all 40,683 evaluation images and labels from ImageNet
and ImageNetV2. To remedy the possibility that annotators A, B & C unintentionally memorized
the evaluation labels, two precautions were taken. First, annotators A, B, & C did not look at the
data for six months. Second, we introduced annotators D & E, neither of whom had seen the test
images prior to evaluation.
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7.1 Human labeler training

After a six month period of inactivity, in October 2019, all five participants began a training regimen
for the labeling task. Previously, participants A, B, C undertook a similar training for the initial
multi-label annotation review. All training was carried out using a the 30,000 ImageNet validation
images that would not be used for the final evaluation. The primary goal of training was to familiarize
humans with the ImageNet class hierarchy.

The initial human accuracy study by Russakovsky et al. [32] details three main failure modes of
humans: fine-grained distinctions, class unawareness, and insufficient training images. We address
all three failure modes with our training regimen:

Fine-grained distinctions. There are many difficult class distinctions in ImageNet, but humans
tend to struggle with fine-grained distinctions within the 410 animal classes and 118 dog classes.
Even the scientific community disagrees about the exact taxonomy of specific species. For instance,
while tiger beetles are often classified as a subfamily of ground beetle, this classification isn’t
universally accepted among entomologists [3, 37]. Similar issues arise in other animal families, such
as the mustelines, monkeys, and wolves.

To help humans perform well on fine-grained class distinctions, we created training tasks containing
only images from certain animal families. The training tasks gave labelers immediate feedback on
whether they had made the correct prediction or not. These targeted training tasks were created
after labelers identified classes for which they wanted additional training. Labelers trained on
class-specific tasks for dogs, insects, monkeys, terriers, electric rays and sting rays, and marmots and
beavers. After training, labelers reviewed each other’s annotations as a group and discussed the class
distinctions. Labelers also wrote a labeling guide containing useful information for distinguishing
similar classes, discussed in more detail in Section 7.2.

Information from the American Kennel Club [1] was frequently used to understand and disambiguate
difficult dog breeds. We also reached out to a member of the local chapter of the club for aid with
dog identification. Since some dogs may be mixed-breeds, it may be impossible to disambiguate
between similar dog breeds from pictures alone. Fortunately, the ImageNet dog labels are of high
quality as they are derived from the Flickr image description, which are often authored by the owner
of the dog.

Class unawareness. For the 590 object categories in ImageNet, recall is the primary difficulty for
untrained humans. To address this, we built a labeling user interface that allowed annotators to
either search for a specific ImageNet class or explore a graphical representation of the ImageNet
classes based on the WordNet [24] hierarchy.

Insufficient training images. The two annotators in [32] trained on 500 and 100 images respec-
tively, and then had access to 13 training images per class while labeling. In our experiment, human
labelers had access to 100 training images per class while labeling.

7.2 Labeling guide

During training, the participants constructed a labeling guide that distilled class specific analysis
learned during training into key discriminative traits that could be referenced by the labelers during
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the final labeling evaluation. The labeling guide contained detailed entries for 431 classes.

7.3 Final evaluation and annotation review.

On December 18th 2019, 1,000 images were sampled from ImageNet Validation and 1,000 images
were sampled from ImageNetV2 and shuffled together. The datasets were sampled in a class balanced
manner.

Between December 19th 2019 and January 16th 2020 all 5 participants labeled 2,000 images in
order to produce the main results of this work. The only resources the labelers had access to during
evaluation were 100 randomly sampled images from the ImageNet training set for each class, and
the labeling guide. The participants spent a median of 26 seconds per image, with a median labeling
time of 36 hours for the entire labeling task.

After the labeling task was completed, an additional multi-label annotation session was necessary.
Since each image only contained reviewed labels for classes predicted by models, to ensure a fair
multi-label accuracy, the human predictions for the 2,000 images had to be manually reviewed. To
minimize bias, participants were not allowed to view their predicted labels after the task, and random
model predictions were seeded into the annotation review such that every image had both model
and human predictions to be reviewed. Compared to labels from the initial annotation review from
November 2018, after the final annotation review, labels were unchanged for 1320 images, added for
531 images, and modified for 239 images. The modifications were due to a much greater knowledge
of fine-grained class distinctions by the participants after the training phase.

8 Human Accuracy Results

In this section we discuss two key facets of our experimental findings: a comparison of human
and machine accuracies on ImageNet, and a comparison of human and machine robustness to the
distribution shift between the ImageNet validation set and the ImageNet-V2 test set. We also
consider these comparisons on three restricted sets of images.

The main results of our work are illustrated in Figure 4. We can see that all the human labelers fall
close to the dotted line, indicating they their accuracies on the two datasets are within 1%. Moreover,
we can see that the accuracies of three of the human labelers are better than the performance
of the best model on both the original ImageNet validation set and on the ImageNet-V2 test set.
Importantly, we note that labelers D and E, who did not participate in the initial annotation period,
performed better than the best model.

Figure 4 shows that the ImageNet validation set confidence intervals of the best 4 humans labelers
and of the best model overlap. However, McNemar’s paired test rejects the null hypothesis that the
FixResNeXt model (the best model) and Human E (the best human labeler) have the same accuracy
on the ImageNet validation set distribution with a p-value of 0.037. In Figure 4 we observe that
the confidence intervals of Humans C, D, and E on the ImageNetV2 test set do not overlap with
the confidence interval of the best model. McNemar’s test between Human B and the FixResNeXt
model on ImageNetV2 yields a p-value of 2⇥ 10�4.
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Table 5: Human and model multi-label accuracy on three subsets of the ImageNet and ImageNetV2
test sets. These results suggest that human labelers have an easier time identifying objects than
dogs and organisms. Moreover, human labelers are highly accurate on images on which they spent
little time to assign a label.

ImageNet multi-label accuracy (%)

All Images Without Dogs Objects Only Fast Images
Participant Original V2 Original V2 Original V2 Original V2

resnet50 84.2 75.7 84.9 76.8 82.5 72.8 86.8 79.6
AdvProp 93.6 88.3 94.1 89.3 92.3 86.7 94.9 91.3

FixResNeXt 95.5 89.6 96.0 90.1 95.0 89.1 96.2 92.3

Human A 91.9 91.1 94.2 93.4 97.0 96.7 97.6 97.5
Human B 94.7 93.9 96.9 96.0 98.3 97.8 98.5 98.5
Human C 96.2 96.7 98.4 98.6 99.1 99.8 99.1 99.7
Human D 95.7 94.8 97.3 96.6 98.8 98.4 99.3 98.3
Human E 97.2 96.5 98.7 97.3 98.8 97.0 99.5 98.6

Difficult images: One of the benefits of our experiments is the potential insight into the failure
modes of image classification models. To have a point of comparison let us start with the human
labelers. There were 10 images which were misclassified by all human labelers. These images
consisted of one image of a monkey and nine images of dogs. On the other hand, there were
27 images misclassified by all 71 models considered by us. Interestingly, 19 out of these images
correspond to object classes and 8 correspond to organism classes. We note that there are only two
images that were misclassified by all models and human labelers, both of them containing dogs. Four
of the 27 images which were difficult for the models are displayed in Figure 8. It is interesting that
the failure cases of the models consist of many images of objects while the failure cases of human
labelers are exclusively images of animals.

Figure 8: Four images which were misclassified by all 71 models, two from ImageNet (first two) and
two from ImageNetv2. The correct target labels for these images are cup, spotlight, yawl, nail
Accuracies without dogs: To understand the extent to which models are better than the human
labelers at classifying dogs and animals, we compute their accuracies on two restricted sets of images.
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First, we computed accuracies by excluding the 118 dog classes. In this case, Table 5 shows an
increase in the accuracy of the best model ([35]) by 0.6% on ImageNet images and by 1.1% on
ImageNetV2 images. However, the mean increase of the human labelers’ accuracies is 1.9% on
ImageNet and 1.8% on ImageNetV2. Before we interpret this result, we must establish whether the
changes in accuracies shown in Table 5 are meaningful. There are 882 non-dog classes in ImageNet.
We use the bootstrap to estimate changes in accuracies when the data is restricted to 882 classes.
We compute accuracies over 1000 trials as follows: we sample without replacement 882 classes and
compute the accuracies of the human labelers on the images whose main labels are in the sampled
classes. All trials yield smaller changes in accuracy than those shown in Table 5. This simulation
indicates that the increase in human performance on non-dog images is significant.

Therefore, the relative gap between human labelers and models increases on both ImageNet and
ImageNetV2 when we remove the images containing dogs. This suggests that the dog images are
more difficult for the human labelers participating in our experiment than for the models.

Accuracies on objects: To further understand the strengths and weaknesses of the models and
human labelers, we compute their accuracies on the subset of data which have objects as their
main labels, as opposed to organisms. There are 590 object classes. In Table 5 we can see the
stark contrast in performance between human labelers and models on images of objects. The mean
increase of the human labelers’ accuracies is 3.3% on ImageNet and 3.4% on ImageNetV2, whereas
the accuracy of the best model decreased by 0.5% on both ImageNet and ImageNetV2. A bootstrap
simulation similar to the one described for the “Without Dogs” comparison reveals that human
accuracy increase is significant. This result suggests that images of objects are substantially easier
for the human labelers than the models.

Accuracies on fast images: Whereas CNN models spend the same amount of time classifying
different images, the human labelers spent anywhere from a couple of seconds to 40 minutes labeling
one image. What does the amount of time spent by humans labeling an image say about that image?
We compute accuracies of all models and human labelers on the subset of images for which the
median time spent by the human labelers to label it was at most 60 seconds. Out of a total of 2000
images used in the evaluation, there are 756 such images from ImageNet (77% of images) and 714
such images from ImageNetV2 (73% of images). We observe a dramatic increase in the accuracies
of the human labelers, suggesting that human labelers know when an image is difficult for them
and spend more time labeling it. The accuracies of the models also increase on “Fast Images.” This
result is intuitive, suggesting that images that humans label quickly are more likely to be correctly
classified by models. We present results for these images in Table 5.

9 Future Work

The kernels in this work advance the state of the art of kernel methods for image classification, but
they are still limited by computational cost. Important future work to make these kernels more
viable include finding ways to reduce computational cost, allow for data augmentation, and search for
better architectures. To tie together kernels with ImageNet, we are currently working on using these
kernels to achieve deep neural network levels of accuracy on ImageNet by using approximation to
reduce computational cost. Approximation allows these kernels for ImageNet to be computationally
tractable, as well as make data augmentation more practical.
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In addition to the above, we are also exploring whether these simpler approaches to image classification
work well on different tasks. To do so, we are working on using random features as an approximation
to kernels and applying them to various Kaggle image classification competitions to determine
whether these approaches can match neural networks in a wide variety of tasks, ranging from
classifying human protein patterns to classifying human driver behavior.

Acknowledgements

The work presented here is joint work with others, including Vaishaal Shankar, Wenshuo Guo,
Sara Fridovich-Keil, Becca Roelofs, Horia Mania, Ludwig Schmidt, and Professors Jonathan Ragan-
Kelley and Ben Recht. I would like to especially thank Vaishaal for his mentorship, Professor
Jonathan Ragan-Kelley for being my research advisor, and Professor Ben Recht for additional
research guidance.

References

[1] American kennel club. URL https://www.akc.org/.

[2] Economic Report of the President. 2019. https://www.govinfo.gov/app/collection/erp/2
019.

[3] Subfamily cicindelinae - tiger beetles, Oct 2019. URL https://bugguide.net/node/view/375.

[4] Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generalization in overparameterized neural
networks, going beyond two layers. In Advances in Neural Information Processing Systems,
2019.

[5] Arora, S., Du, S. S., Li, Z., Salakhutdinov, R., Wang, R., and Yu, D. Harnessing the power
of infinitely wide deep nets on small-data tasks. In International Conference on Learning

Representations, 2020.

[6] Coates, A. and Ng, A. Y. Learning feature representations with k-means. In Neural networks:

Tricks of the Trade, pp. 561–580. Springer, 2012.

[7] Daniely, A., Frostig, R., and Singer, Y. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In Advances in Neural Information

Processing Systems, 2016.

[8] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition

(CVPR), 2009. http://www.image-net.org/papers/imagenet_cvpr09.pdf.

[9] Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient descent finds global minima of
deep neural networks. In International Conference on Machine Learning, 2019.

[10] Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations,
2019.

23



[11] Fawzi, A. and Frossard, P. Manitest: Are classifiers really invariant? In British Machine Vision

Conference (BMVC), 2015. https://arxiv.org/abs/1507.06535.

[12] Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. Linearized two-layers neural
networks in high dimension, 2019.

[13] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y. Maxout
networks. In International Conference on Machine Learning, 2013.

[14] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on

computer vision, pp. 1026–1034, 2015.

[15] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corrup-
tions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[16] Jacot, A., Hongler, C., and Gabriel, F. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems, 2018.

[17] Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, 2009.

[18] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] LeCun, Y., Cortes, C., and Burges, C. The mnist dataset of handwritten digits, 1998.

[20] Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., and Pennington, J.
Wide neural networks of any depth evolve as linear models under gradient descent. In Advances

in Neural Information Processing Systems, 2019.

[21] Li, Z., Wang, R., Yu, D., Du, S. S., Hu, W., Salakhutdinov, R., and Arora, S. Enhanced
convolutional neural tangent kernels, 2019.

[22] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., and
van der Maaten, L. Exploring the limits of weakly supervised pretraining. In Proceedings of the

European Conference on Computer Vision (ECCV), pp. 181–196, 2018.

[23] Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C. Convolutional kernel networks. In
Advances in Neural Information Processing Systems, 2014.

[24] Miller, G. A. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
39–41, 1995.

[25] Ovadia, Y., Snoek, J., Fertig, E., Lakshminarayanan, B., Nowozin, S., Sculley, D., Dillon, J.,
Ren, J., and Nado, Z. Can you trust your model’s uncertainty? evaluating predictive uncertainty
under dataset shift. In Advances in Neural Information Processing Systems, pp. 13969–13980,
2019.

[26] Page, D. myrtle.ai, 2018. URL https://myrtle.ai/how-to-train-your-resnet-4-archite
cture/.

[27] Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset Shift in

Machine Learning. The MIT Press, 2009.

24



[28] Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In Advances in

neural information processing systems, pp. 1177–1184, 2008.

[29] Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD: 100,000+ questions for machine
comprehension of text. In Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2016. URL https://www.aclweb.org/anthology/D16-1264.

[30] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do imagenet classifiers generalize to
imagenet? 2019. URL http://arxiv.org/abs/1902.10811.

[31] Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do imagenet classifiers generalize to
imagenet? In International Conference on Machine Learning, 2019.

[32] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Li, F.-F. ImageNet large scale visual recognition
challenge. International Journal of Computer Vision, 2015. https://arxiv.org/abs/1409.0
575.

[33] Shankar, V., Dave, A., Roelofs, R., Ramanan, D., Recht, B., and Schmidt, L. A systematic
framework for natural perturbations from videos. CoRR, abs/1906.02168, 2019. URL http:
//arxiv.org/abs/1906.02168.

[34] Torralba, A. and Efros, A. A. Unbiased look at dataset bias. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2011. http://people.csail.mit.edu/torralba/publicat
ions/datasets_cvpr11.pdf.

[35] Touvron, H., Vedaldi, A., Douze, M., and Jégou, H. Fixing the train-test resolution discrepancy,
2019.

[36] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W. S., Verdoolaege,
S., Adams, A., and Cohen, A. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730, 2018.

[37] Wikipedia contributors. Tiger beetle — Wikipedia, the free encyclopedia, 2019. URL https:
//en.wikipedia.org/w/index.php?title=Tiger_beetle&oldid=932794435. [Online;
accessed 1-February-2020].

[38] Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., and Le, Q. V. Adversarial examples improve
image recognition, 2019.

25




