
Continual Learning with Neural Networks

Sayna Ebrahimi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-82
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-82.html

May 28, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Continual Learning with Neural Networks

by

Sayna Ebrahimi

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Jitendra Malik
Professor Alexei Efros

Spring 2020

The thesis of Sayna Ebrahimi, titled Continual Learning with Neural Networks, is approved:

Chair Date

Date

Date

University of California, Berkeley

5/24/2020

5/28/2020

5/26/2020

Continual Learning with Neural Networks

Copyright 2020
by

Sayna Ebrahimi

1

Abstract

Continual Learning with Neural Networks

by

Sayna Ebrahimi

Master of Science in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Artificial neural networks have exceeded human level performance in accomplishing sev-
eral individual tasks (e.g. voice recognition, object recognition, and video games). However,
such success remains modest compared to human intelligence that can learn and perform an
unlimited number of tasks. Humans’ ability of learning and accumulating knowledge over
their lifetime is an essential aspect of their intelligence. In this respect, continual machine
learning aims at a higher level of machine intelligence through providing the artificial agents
with the ability to learn online from a nonstationary and never-ending stream of data. A key
component of such a never-ending learning process is to overcome the catastrophic forgetting
of previously seen data, a problem that neural networks are well known to suffer from.

The work described in this thesis has been dedicated to the investigation of continual
learning and solutions to mitigate the forgetting phenomena in two common types of neural
networks: Bayesian and non-Bayesian frameworks. We assume a task incremental setting
where tasks arrive one at a time with distinct boundaries.

First, we start by building an evolving system where the capacity dynamically increases
to accommodate new tasks without compromising scalability. We do so by developing a
shared knowledge among tasks while learning features unique to each one. To further ensure
preventing forgetting we use small episodic memory containing few samples from old tasks.
We show this approach for non-Bayesian neural networks without loss of generality and
applicability to Bayesian neural networks.

Second, unique to Bayesian neural networks, as an alternative to dynamically grow the
architecture and store the old data, which might not be feasible if not impossible due to
confidentiality issues, important parameters in a model can be identified and future changes
on them get regularized. We consider a fixed network capacity where each parameter is
a distribution rather than a real-valued number. We leverage the uncertainty defined per
parameters in Bayesian setting to guide the continual learning process in determining the
important parameters; the more certain a parameter is, the less we want it to alter in favor
of learning new tasks. We show a simple yet effective regularization technique where the
learning rate of parameters is inversely scaled with their uncertainty.

2

The proposed methods in this thesis have tackled important aspects of continual learning.
They are evaluated on different benchmarks and over various learning sequences. Advances
in the state of the art of continual learning have been shown and challenges for bringing
continual learning into application were critically identified.

i

To my parents, Maryam and Hossein.

Thank you.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Continual Learning Approaches . 2

2 Continual Learning in Ordinary Neural Networks 5
2.1 Introduction . 5
2.2 Adversarial Continual learning (ACL) . 7

2.2.1 Orthogonality Constraint . 8
2.2.2 Avoiding forgetting in ACL . 9
2.2.3 Evaluation metrics . 9

2.3 Experiments . 10
2.3.1 ACL on Vision Benchmarks . 10

2.4 Results and Discussion . 11
2.4.1 ACL Performance on 20-Split miniImageNet 12
2.4.2 Ablation Studies on 20-Split miniImageNet 12
2.4.3 Visualizing the effect of adversarial learning in ACL 15

2.5 ACL Performance on a sequence of 5-Datasets 17
2.6 Additional Experiments . 17
2.7 Summary . 21

3 Continual Learning in Bayesian Neural Networks 22
3.1 Introduction . 22
3.2 Bayesian Approaches for Continual Learning 24

3.2.0.1 Natural gradient descent methods: 24
3.3 Variational Bayes-by-Backprop (BBB) . 25
3.4 Uncertainty-guided Continual Learning in Bayesian Neural Networks 26

3.4.1 UCB with learning rate regularization 26

iii

3.4.2 UCB using weight pruning (UCB-P) 27
3.5 Experimental Setup . 29

3.5.1 5-Split MNIST . 33
3.5.2 Permuted MNIST . 33
3.5.3 Alternating CIFAR10 and CIFAR100 35
3.5.4 Multiple datasets learning . 36

3.6 Single Head and Generalized Accuracy of UCB 36
3.7 Summary . 38

4 Conclusion and Future Work 40
4.1 Discussion of Contributions . 40
4.2 Future Perspectives . 41

Bibliography 42

iv

List of Figures

1.1 An illustration of the continual machine learning cycle. Data is streamed se-
quentially from different distributions and the continual learning agent tries to
transfer knowledge between tasks while retaining its performance on the seen data. 1

1.2 A Venn diagram illustrating the different continual learning approaches and their
overlaps. 3

2.1 Factorizing task-specific and task-invariant features in our method (ACL). Left:
Shows ACL at training time where the Shared module is adversarially trained
with the discriminator to generate task-invariant features (zS) while the discrim-
inator attempts to predict task labels. Architecture growth occurs at the arrival
of each task by adding a task-specific module optimized to generate orthogonal
representation (zP) to zS. To prevent forgetting, 1) Private modules are stored
for each task and 2) A shared module which is less prone to forgetting, yet is also
retrained with experience reply with a limited number of exemplars Right: At
test time, discriminator is removed and ACL uses the P module for the specific
task it is evaluated on. 6

2.2 Left: Comparing the replay buffer effect on ACC on 20-Split miniImageNet achieved by
ACL against A-GEM (Chaudhry et al., 2019a) and ER-RES (Chaudhry et al., 2019b)
when using 1, 3, 5, and 13 samples per classes within each task discussed in 2.4.2. Right:
Insensitivity of ACC and BWT to replay buffer in ACL. Best viewed in color. 15

2.3 Visualizing the effect of adversarial learning in ACL where the latent spaces of both pri-
vate and shared modules are compared against the generated features by corresponding
modules trained without a discriminator. This plot shows that the shared module has
been successfully trained to generate task-invariant features using adversarial learning
whereas in the fourth column from left, we observe that without the discriminator, the
shared module was only able to generate a non-uniform embedding 16

v

3.1 Illustration of the evolution of weight distributions – uncertain weights adapt
more quickly – when learning two tasks using UCB. (a) weight parameter initial-
ized by distributions initialized with mean and variance values randomly sampled
from N (0, 0.1). (b) posterior distribution after learning task one; while θ1 and θ2

exhibit lower uncertainties after learning the first task, θ3, θ4, and θ5 have larger
uncertainties, making them available to learn more tasks. (c) a second task is
learned using higher learning rates for previously uncertain parameters (θ1, θ2, θ3,
and θ4) while learning rates for θ1 and θ2 are reduced. Size of the arrows indicate
the magnitude of the change of the distribution mean upon gradient update. . . 23

vi

List of Tables

2.1 CL results on 20-Split miniImageNet measuring ACC (%), BWT (%), and Mem-
ory (MB). (**) denotes that methods do not adhere to the continual learning
setup: ACL-JT and ORD-JT serve as the upper bound for ACC for ACL/ORD
networks, respectively. ∗ denotes result is re(produced) by us using the original
provided code. † denotes result is obtained using the re-implementation setup by
(Serra et al., 2018). All results are averaged over 3 runs and standard deviation
is given in parentheses (b) Ablation study of ACL on miniImageNet dataset . . 13

2.2 Comparison of the effect of the replay buffer size between ACL and other baselines
including A-GEM (Chaudhry et al., 2019a), and ER-RES (Chaudhry et al., 2019b) on
20-Split miniImageNet where unlike the baselines, ACL’s performance remains unaf-
fected by the increase in number of samples stored per class as discussed in 2.4.2. The
results from this table are used to generate Fig. 2.2 below. 14

2.3 CL results on 20-Split CIFAR100 measuring ACC (%), BWT (%), and Memory
(MB). (*) denotes that methods do not adhere to the continual learning setup:
ACL-JT and ORD-JT serve as the upper bound for ACC for ACL/ORD networks,
respectively. † denotes result reported from original work. ‡ denotes result re-
ported from (Lopez-Paz et al., 2017). ∗∗ denotes result is reported by (Chaudhry
et al., 2019b). †† denotes result is obtained using the re-implementation setup by
(Serra et al., 2018). o denotes result is obtained by using the original provided
code. All results are averaged over 3 runs and standard deviation is given in
parentheses . 18

2.4 CL results on Permuted MNIST. measuring ACC (%), BWT (%), and Memory
(MB). (*) denotes that methods do not adhere to the continual learning setup:
ACL-JT and ORD-JT serve as the upper bound for ACC for ACL/ORD networks,
respectively. (†) denotes result reported from original work. (o) denotes result
is obtained by using the original provided code. (‡) denotes the results reported
by (Serra et al., 2018) and (∗∗) denotes results are reported by (Chaudhry et al.,
2019b); T shows the number of tasks. All results are averaged over 3 runs, the
standard deviation is provided in parenthesis . 19

vii

2.5 Class Incremental Learning on 5-Split MNIST. measuring ACC (%), BWT (%), and
Memory (MB). (*) denotes that methods do not adhere to the continual learning setup:
ACL-JT and ORD-JT serve as the upper bound for ACC for ACL/ORD networks,
respectively. † denotes result reported from original work. o denotes result is obtained
by using the original provided code. All results are averaged over 3 runs, the standard
deviation is provided in parenthesis . 20

3.1 Utilized datasets summary . 29
3.2 Search space for hyperparamters in BBB given by (Blundell et al., 2015) 31
3.3 Continually learning on CIFAR10/100 using AlexNet and ResNet18 for UCB

(our method) and HAT (Serra et al., 2018). BWT and ACC in %. All results are
(re)produced by us. 31

3.4 Number of Monte Carlo samples (N) in 2-Split MNIST 32
3.5 Variants of learning rate regularization and importance measurement on 2-Split

MNIST . 32
3.6 Continually learning on 5-Split MNIST. BWT and ACC in %. (*) denotes that

methods do not adhere to the continual learning setup: BBB-JT and ORD-JT
serve as the upper bound for ACC for BBB/ORD networks, respectively. All
results are (re)produced by us. 34

3.7 Continually learning on 2-Split MNIST. BWT and ACC in %. (*) denotes that
methods do not adhere to the continual learning setup: BBB-JT and ORD-JT
serve as the upper bound for ACC for BBB/ORD networks, respectively. All
results are (re)produced by us. 35

3.8 Continually learning on Permuted MNIST. BWT and ACC in %. (*) denotes
that method does not adhere to the continual learning setup: BBB-JT serves as
the upper bound for ACC for BBB network. ‡ denotes results reported by (Serra
et al., 2018). † denotes the result reported from original work. BWT was not
reported in ‡ and †. All others results are (re)produced by us. 36

3.9 Continually learning on CIFAR10/100. BWT and ACC in %. (*) denotes that
method does not adhere to the continual learning setup: BBB-JT serves as the
upper bound for ACC for BBB network. All results are (re)produced by us. . . 37

3.10 Continually learning on sequence of 8 datastes. BWT and ACC in %. (*) denotes
that method does not adhere to the continual learning setup: BBB-JT serves as
the upper bound for ACC for BBB network. All results are (re)produced by us. 38

3.11 Single Head vs. Multi-Head architecture and Generalized vs. Standard Accuracy.
Generalized accuracy means that task information is not available at test time.
SM, PM, CF, and 8T denote the 5-Split MNIST, Permuted MNIST, Alternating
CIFAR10/100, and sequence of 8 tasks, respectively. 38

viii

Acknowledgments

The past few years have brought many people across my path, and all have contributed
to my journey and accomplishment in different ways. It is important for me to recount and
recognize how so many people played a role in the completion of this thesis which is in fact
part of the longer journey of my PhD.

First and foremost, I want to express my sincere gratitude to my advisor, Professor Trevor
Darrell for taking me in as his advisee.

Trevor trusted my research ability since we met despite my different background and
changed my life forever by accepting me to be part of his research group. He guided my
research and challenged me to keep my theoretical mind sharp. He was always interested,
invested, and actively involved in my research and was always willing to give comments on,
be criticism of, and provide suggestion to improve any work I had done. I learned from him
how to think broad, yet not losing focus from the ultimate long-term agenda. His consistent
reminder for being confident and remaining strong has made me the researcher I am today.
One of the biggest strengths Trevor has instilled in me is to not give up. He has been indeed
one of the reasons I have kept fighting my cancer during all these years. I cannot thank
him enough for being there for me not just as an advisor, but like a caring family member
despite being responsible for leading such a large research group. I could always count on
him to help me find a way out of any problem. I am thankful for his continued support and
guidance as I embark on my academic journey ahead.

I would also like to thank Professor Jitendra Malik and Professor Alexei Efros who both
have been there for me as a teacher, mentor, and a committee member. I was fortunate
enough to take many of their courses which I have greatly benefited from in various different
research projects.

I cannot thank enough Marcus Rohrbach who has been a tremendous help to me through-
out my graduate career. Dr. Rohrbach as my supervisor during the 6-month summer in-
ternship at Facebook AI Research has been an amazing mentor and taught me great many
things that shaped the foundations of my research. I am also thankful to Mohamed Elhoseiny,
Franziska Meier, Roberto Calandra for their hospitality and advices during my internships
at Facebook.

I am thankful to my labmates, Samaneh Azadi, Anna Rohrbach, Suzie Petryk, Seth Park,
Devin Guillory, Erin Grant, Eric Tzang, Juddy Hoffman, Lisa Hendricks, Yang Gao, Parsa
Mahmoudieh, Evan Shelhamer, Xin Wang, and Kate Rakelly. In addition to the people that
directly informed, guided, and funded my research, many other people greatly helped me
in completing this dissertation. First of all, I would like to thank my husband, Behrooz
Shahsavari, for his constant understanding and support of my academic goals; he has been
an enormous support for me and words cannot express my gratitude for him always being
there for me. Last and foremost, I am thanking my parents, my sister and my brother who
have given me unconditional love, support and encouragement throughout my life.

1

Chapter 1

Introduction

Continual learning, also referred to as lifelong learning, or sequential learning, studies the
problem of online learning from a stream of data belonging to various tasks which arrives
incrementally. The main goal of a continual learning agent is to continue using the acquired
knowledge in learning new tasks while being able to maintain its performance on all the
acquired knowledge. For such a system or process to be efficient, the previously seen data
should not be stored as a whole and a full re-training at each point is simply infeasible at
such a large scale.

Humans can learn novel tasks by augmenting core capabilities with new skills learned
based on information for a specific novel task. We conjecture that they can leverage a

Continual Supervised Learning

T"#$,
D"#$

T"#',
D"#'

T"#(,
D"#(T", D" T$, D$ T', D' T(, D(

Previously learned knowledge

What to
transfer

Refine and
store what
needed

Input

Model Output

) = {,(, ,', … , ,. } :
Sequence of 0 unknown data or sub-data
distributions in form of paired labeled data:
D1 = 23, 43

5 = {6(, 6', … , 6.} :
Sequence of 0 unknown tasks where each task
has a cost function given its distribution:

ℒ 8, 4, 9 = 1
; <

3=(

>
ℒ 83, 43, 9

Continual Learning: Learning new tasks
without forgetting the previous ones

Figure 1.1: An illustration of the continual machine learning cycle. Data is streamed sequen-
tially from different distributions and the continual learning agent tries to transfer knowledge
between tasks while retaining its performance on the seen data.

CHAPTER 1. INTRODUCTION 2

lifetime of previous task experiences in the form of fundamental skills that are robust to
different task contexts. When a new task is encountered, these generic strategies form a base
set of skills upon which task-specific learning can occur. We would like artificial learning
agents to have the ability to solve many tasks sequentially under different conditions by
developing task-specific and task-invariant skills that enable them to quickly adapt while
avoiding catastrophic forgetting (McCloskey & Cohen, 1989a) using their memory.

Since the early development of neural networks, researchers studied the catastrophic
forgetting problem and proposed that the parameters sharing which allows neural networks
to generalize from seen data is the reason behind catastrophic forgetting.

1.1 Continual Learning Approaches
The existing approaches to prevent catastrophic forgetting can be broadly divided into

three categories: memory-based methods, structure-based methods, and regularization-based
methods.

Memory-based methods: Methods in this category mitigate forgetting by relying on
storing previous experience explicitly or implicitly wherein the former raw samples ((Chaudhry
et al., 2019a; Lopez-Paz et al., 2017; Robins, 1995; Rebuffi et al., 2017; Riemer et al., 2018)
are saved into the memory for rehearsal whereas in the latter a generative model such as a
GAN (Shin et al., 2017) or an autoencoder (Kemker & Kanan, 2018) synthesizes them to
perform pseudo-rehearsal. These methods allow for simultaneous multi-task learning on i.i.d.
data which can significantly reduce forgetting. A recent study on tiny episodic memories
in CL (Chaudhry et al., 2019b) compared methods such as GEM (Lopez-Paz et al., 2017),
A-GEM (Chaudhry et al., 2019a) , MER (Riemer et al., 2018), and ER-RES (Chaudhry
et al., 2019b). Similar to (Riemer et al., 2018), for ER-RES they used reservoir sampling
using a single pass through the data. Reservoir sampling (Vitter, 1985) is a better sampling
strategy for long input data compared to random selection. In this work, we explicitly store
raw samples into a very tiny memory used for replay buffer and we differ from prior work
in this line of research by how these stored examples are used by specific parts of our model
(discriminator and the shared module) to prevent forgetting in the features found to be
shared across tasks.

Structure-based methods: These methods exploit modularity and attempt to localize
inference to a subset of the network such as modules (Rusu et al., 2016; Ebrahimi et al.,
2020b), neurons (Fernando et al., 2017; Yoon et al., 2018), a mask over parameters (Mallya &
Lazebnik, 2018; Serra et al., 2018). The performance on previous tasks is preserved by stor-
ing the learned module while accommodating new tasks by augmenting the network with new
modules. For instance, Progressive Neural Nets (PNNs) (Rusu et al., 2016) statically grow
the architecture while retaining lateral connections to previously frozen modules resulting in
guaranteed zero forgetting at the price of quadratic scale in the number of parameters. (Yoon

CHAPTER 1. INTRODUCTION 3

Regularization

StructureMemory

VCL

UCB

HAT

SI MASEWC

IMM LWF LFL

UCB-P

PackNet

PNN

DEN PC

GEM

iCaRL

FearNet

ER

A-GEM

DGR

LWF: Li & Hoiem, 2016
LFL: Jung et al., 2016
EWC: Kirkpatrick et al., 2016
SI: Zenke et al., 2017
IMM: Lee et al., 2017
MAS: Aljundi, 2018
UCB: Ebrahimi et al., 2020

PNN: Rusu et al., 2016
DEN: Yoon et al., 2018
PC: Schwarz et al., 2018

ER: Robins, 1995
A-GEM: Chaudhry et al., 2019

iCaRL: Rebuffi et al., 2016
VCL: Nguyen et al., 2017
GEM: Lopez-Paz & Ranzato, 2017
HAT: Serrà et al., 2018

DGR: Shin., 2017
ACL: Ebrahimi et 1l., 2020
FearNet: Kemker et al., 2017

PackNet: Mallya, 2018
UCB-P: Ebrahimi et al., 2020

ACL

Figure 1.2: A Venn diagram illustrating the different continual learning approaches and their
overlaps.

et al., 2018) proposed dynamically expandable networks (DEN) in which, network capacity
grows according to tasks relatedness by splitting/duplicating the most important neurons
while time-stamping them so that they remain accessible and re-trainable at all time. This
strategy despite introducing computational cost is inevitable in continual learning scenarios
where a large number of tasks are to be learned and a fixed capacity cannot be assumed.

Regularization methods: In these methods (Kirkpatrick et al., 2017; Zenke et al.,
2017; Aljundi et al., 2018; Ebrahimi et al., 2020a), the learning capacity is assumed fixed
and continual learning is performed such that the change in parameters is controlled and
reduced or prevented if it causes performance downgrade on prior tasks. Therefore, for
parameter selection, there has to be defined a weight importance measurement concept to
prioritize parameter usage. For instance, inspired by Bayesian learning, in elastic weight
consolidation (EWC) method (Kirkpatrick et al., 2017) important parameters are those to
have the highest in terms of the Fisher information matrix. HAT (Serra et al., 2018) learns
an attention mask over important parameters. In (Ebrahimi et al., 2020a) we used per-
weight uncertainty defined in Bayesian neural networks to control the change in parameters.
Despite the success gained by these methods in maximizing the usage of a fixed capacity,
they are often limited by the number of tasks. In this work we propose two general continual
learning frameworks for Bayesian and non-Bayesian neural networks:

In Chapter 2, we hypothesize that representations learned to solve each task in a se-

CHAPTER 1. INTRODUCTION 4

quence have a shared structure while containing some task-specific properties. We show
that shared features are significantly less prone to forgetting and propose a novel hybrid
continual learning framework that learns a disjoint representation for task-invariant and
task-specific features required to solve a sequence of tasks. Our model combines architecture
growth to prevent forgetting of task-specific skills and an experience replay approach to pre-
serve shared skills. We demonstrate our hybrid approach is effective in avoiding forgetting
and show it is superior to both architecture-based and memory-based approaches on class
incrementally learning of a single dataset as well as a sequence of multiple datasets in image
classification.

In Chapter 3, we propose a simple yet effective regularization-based approach withing
Bayesian neural networks. Current regularization-based continual learning algorithms need
an external representation and extra computation to measure the parameters’ importance. In
contrast, we propose Uncertainty-guided Continual Bayesian Neural Networks (UCB), where
the learning rate adapts according to the uncertainty defined in the probability distribution
of the weights in networks. Uncertainty is a natural way to identify what to remember and
what to change as we continually learn, allowing to mitigate catastrophic forgetting. We
also show a variant of our model, which uses uncertainty for weight pruning and retains task
performance after pruning by saving binary masks per tasks. We evaluate our UCB approach
extensively on diverse object classification datasets with short and long sequences of tasks
and report superior or on-par performance compared to existing approaches. Additionally,
we show that our model does not necessarily need task information at test time, i.e., it does
not presume knowledge of which task a sample belongs to.

5

Chapter 2

Continual Learning in Ordinary Neural
Networks

2.1 Introduction
One line of continual learning approaches learns a single representation with a fixed

capacity in which they detect important weight parameters for each task and minimize their
further alteration in favor of learning new tasks. In contrast, structure-based approaches
increase the capacity of the network to accommodate new tasks. However, these approaches
do not scale well to the large number of tasks if they require a large amount of memory for
each task. Another stream of approaches in continual learning relies on explicit or implicit
experience replay by storing raw samples or training generative models, respectively.

In this chapter we propose a novel adversarial continual learning (ACL) method in which
a disjoint latent space representation composed of task-specific or private latent space is
learned for each task and a task-invariant or shared feature space is learned for all tasks to
enhance better knowledge transfer as well as better recall of the previous tasks. The intuition
behind our method is that tasks in a sequence share a part of the feature representation but
also have a part of the feature representation which is task-specific. The shared features
are notably less prone to forgetting and the tasks-specific features are important to retain
to avoid forgetting the corresponding task. Therefore, factorizing these features separates
the part of the representation that forgets from that which does not forget. To disentangle
the features associated with each task, we propose a novel adversarial learning approach
to enforce the shared features to be task-invariant and employ orthogonality constraints
(Salzmann et al., 2010) to enforce the shared features to not appear in the task-specific
space.

Adversarial learning has been used for different problems such as generative models (Good-
fellow et al., 2014), object composition (Azadi et al., 2018; “Compositional GAN: Learning
Image-Conditional Binary Composition”), representation learning (Makhzani et al., 2015),
domain adaptation (Tzeng et al., 2017), active learning (Sinha et al., 2019; “Variational

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 6

Shared

P1

P2

PT

Discriminator

XT-1 , XT-2 , XT-3 ,...

P′1

P′2

P′T
XT

YT

NT
Z2

Z1

Ladv

LT

Shared

PT

P′T

XT
YT

(a) Training time

(b) Test time

Shared

P1

P2

Pk

Discriminator

x1, …, xk-1

p1

p2

pk

xk

yk

zS

zP

Ladv

LT

Shared

Pk

pk

(a) Training time

(b) Test time

tk

Shared

P1

P2

PT

Discriminator

XT-1 , XT-2 , XT-3 ,...

P′1

P′2

P′T
XT

YT

Z2

Z1

Ladv

LT

Shared

PT

P′T

XT
YT

(a) Training time

(b) Test time
NT

xk

yk

Ldiff

Figure 2.1: Factorizing task-specific and task-invariant features in our method (ACL). Left:
Shows ACL at training time where the Shared module is adversarially trained with the
discriminator to generate task-invariant features (zS) while the discriminator attempts to
predict task labels. Architecture growth occurs at the arrival of each task by adding a
task-specific module optimized to generate orthogonal representation (zP) to zS. To prevent
forgetting, 1) Private modules are stored for each task and 2) A shared module which is
less prone to forgetting, yet is also retrained with experience reply with a limited number
of exemplars Right: At test time, discriminator is removed and ACL uses the P module for
the specific task it is evaluated on.

Adversarial Active Learning”), etc. The use of an adversarial network enables the model
to train in a fully-differential manner by adjusting to solve the minimax optimization prob-
lem (Goodfellow et al., 2014). Adversarial learning of the latent space has been extensively
researched in domain adaptation (Hoffman et al., 2018), and representation learning (Kim &
Mnih, 2018; Makhzani et al., 2015). While previous literature is concerned with the case of
modeling a single or multiple tasks at once (Ebrahimi et al., 2017a; Ebrahimi et al., 2017b),
with few examples (Schonfeld et al., 2019a; Schönfeld et al., 2019; Schonfeld et al., 2019b)
here we extend this literature by considering the case of continuous learning where multiple
tasks need to be learned in a sequential manner.

Once factorization is complete, minimizing forgetting in each space can be handled dif-
ferently. In the task-specific latent space, due to the importance of these features in recalling
the task, we freeze the private module and add a new one upon finishing learning a task.
The shared module, however, is significantly less susceptible to forgetting and we only use
the replay buffer mechanism in this space to the extend that factorization is not perfect, i.e.,
when tasks have little overlap or have high domain shift in between, using a tiny memory con-
taining samples stored from prior tasks will help with better factorization and hence higher
performance. We empirically found that unlike other memory-based methods in which per-
formance increases by increasing the samples from prior tasks, our model requires a very tiny

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 7

memory budget beyond which its performance remains constant. This alleviates the need to
use old data, as in some applications it might not be possible to store a large amount of data,
if any at all, after observing it. Instead, our approach leaves room for further use of memory,
if available and need be, for architecture growth. Our approach is simple yet surprisingly
powerful in not forgetting and achieves state-of-the-art results on visual continual learning
benchmarks such as MNIST, CIFAR100, Permuted MNIST, and miniImageNet.

2.2 Adversarial Continual learning (ACL)
We consider the problem of learning a sequence of T data distributions denoted as Dtr =

{Dtr1 , · · · ,DtrT }, where Dtrk = {(Xk
i ,Y

k
i ,T

k
i)
nk
i=1} is the data distribution for task k with n

sample tuples of input (Xk ∈ X), output label (Yk ∈ Y), and task label (Tk ∈ T). The goal
is to sequentially learn the model fθ : X → Y for each task that can map each task input
to its target output while maintaining its performance on all prior tasks. We aim to achieve
this by learning a disjoint latent space representation composed of a task-specific latent space
for each task and a task-invariant feature space for all tasks to enhance better knowledge
transfer as well as better catastrophic forgetting avoidance of prior knowledge. We mitigate
catastrophic forgetting in each space differently. For the task-invariant feature space, we
assume a limited memory budget of Mk which stores m samples xi=1···m ∼ Dtrj=1···k−1 from
every single task prior to k.

We begin by learning fkθ as a mapping from Xk to Yk. For C-way classification task with
a cross-entropy loss, this corresponds to

Ltask(fkθ ,Xk,Yk,Mk) = −E(xk,yk)∼(Xk,Yk)∪Mk

C∑
c=1

1[c=yk] log(σ(fkθ (xk))) (2.1)

where σ is the softmax function and the subscript i = {1, · · · , nt} is dropped for sim-
plicity. In the process of learning a sequence of tasks, an ideal fk is a model that maps the
inputs to two independent latent spaces where one contains the shared features among all
tasks and the other remains private to each task. In particular, we would like to disentangle
the latent space into the information shared across all tasks (zS) and the independent or pri-
vate information of each task (zP) which are as distinct as possible while their concatenation
followed by a task-specific head outputs the desired targets.

To this end, we introduce a mapping called Shared (SθS : X → zS) and train it to generate
features that fool an adversarial discriminator D. Conversely, the adversarial discriminator
(DθD : zS → T) attempts to classify the generated features by their task labels (Tk∈{0,··· ,T})
. This is achieved when the discriminator is trained to maximize the probability of assigning
the correct task label to generated features while simultaneously S is trained to confuse
the discriminator by minimizing log(D(S(xk))). This corresponds to the following T -way

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 8

classification cross-entropy adversarial loss for this minimax game

Ladv(D,S,Xk,Tk,Mk) = min
S

max
D

T∑
k=0

1[k=tk] log
(
D
(
S
(
xk
)))

. (2.2)

Note that the extra label zero is associated with the ‘fake’ task label paired with randomly
generated noise features of z′S ∼ N (µ,

∑
). In particular, we use adversarial learning in

a different regime that appears in most works related to generative adversarial networks
(Goodfellow et al., 2014) such that the generative modeling of input data distributions is
not utilized here because the ultimate task is to learn a discriminative representation.

2.2.1 Orthogonality Constraint

In the machine learning literature, multi-view learning, aims at constructing and/or us-
ing different views or modalities for better learning performances (Blum & Mitchell, 1998;
Xu et al., 2013). The approaches to tackle multi-view learning aim at either maximizing
the mutual agreement on distinct views of the data, or focus on obtaining a latent sub-
space shared by multiple views by assuming that the input views are generated from this
latent subspace using Canonical correlation analysis and clustering (Chaudhuri et al., 2009),
Gaussian processes (Shon et al., 2006), etc. Therefore, the concept of factorizing the latent
space into shared and private parts has been extensively explored for different data modali-
ties. Inspired by the practicality of factorized representation in handling different modalities,
here we factorize the latent space learned for different tasks using adversarial learning and
orthogonality constraints (Salzmann et al., 2010).

To facilitate training S, we use the Gradient Reversal layer (Ganin et al., 2016) that
optimizes the mapping to maximize the discriminator loss directly (LtaskS = −LD). In
fact, it acts as an identity function during forward propagation but negates its inputs and
reverses the gradients during back propagation. The training for S and D is complete when
S is able to generate features that D can no longer predict the correct task label for leading
zS to become as task-invariant as possible. The private module (PθP : X → zP), however,
attempts to accommodate the task-invariant features by learning merely the features that are
specific to the task in hand and do not exist in zS. We further factorize zS and zP by using
orthogonality constraints introduced in (Salzmann et al., 2010), also known as “difference”
loss in the domain adaptation literature (Bousmalis et al., 2016), to prevent the shared
features between all tasks from appearing in the private encoded features. This corresponds
to

Ldiff(S, P,Xk,Mk) =
T∑
k=1

||(S(xk))TP k(xk)||2F , (2.3)

where || · ||F is the Frobenius norm and it is summed over the encoded features of all P
modules encoding samples for the current tasks and the memory.

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 9

Final output predictions for each task are then predicted using a task-specific multi-layer
perceptron head which takes zP concatenated with zS ((zP ⊕ zS)) as an input.

Taken together, these loss form the complete objective for ACL as

LACL = λ1Ladv + λ2Ltask + λ3Ldiff , (2.4)

where λ1, λ2, and λ3 are regularizers to control the effect of each component. The full
algorithm for ACL is given in Alg. 1.

2.2.2 Avoiding forgetting in ACL

Catastrophic forgetting occurs when a representation learned through a sequence of tasks
changes in favor of learning the current task resulting in performance downgrade on previous
tasks. The main insight to our approach is decoupling the conventional single representation
learned for a sequence of tasks into two parts: a part that must not change because it
contains task-specific features without which complete performance retrieval is not possible,
and a part that is less prone to change as it contains the core structure of all tasks.

To fully prevent catastrophic forgetting in the first part (private features), we use compact
modules that can be stored into memory. If factorization is successfully performed, the
second part remains highly immune to forgetting. However, we empirically found that when
disentanglement cannot be fully accomplished either because of the little overlap or large
domain shift between the tasks, using a tiny replay buffer containing few samples for old
data can be beneficial to retain high ACC values as well as mitigating forgetting.

2.2.3 Evaluation metrics

After training for each new task, we evaluate the resulting model on all prior tasks.
Similar to (Lopez-Paz et al., 2017; Ebrahimi et al., 2020a), to measure ACL performance we
use ACC as the average test classification accuracy across all tasks. To measure forgetting we
report backward transfer, BWT, which indicates how much learning new tasks has influenced
the performance on previous tasks. While BWT < 0 directly reports catastrophic forgetting,
BWT > 0 indicates that learning new tasks has helped with the preceding tasks.

BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i, ACC =
1

T

T∑
i=1

RT,i (2.5)

where Rn,i is the test classification accuracy on task i after sequentially finishing learning
the nth task.

We also compare methods based on the memory used either in the network architecture
growth or replay buffer. Therefore, we convert them into memory size assuming numbers
are 32-bit floating point which is equivalent to 4bytes.

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 10

Algorithm 1 Adversarial Continual Learning (ACL)

1: procedure TRAIN(()θP , θS , θD,Dtr,Dts,m)
2: Hyper-parameters: λ1, λ2, λ3, αS , αP , αD
3: R← 0 ∈ RT×T
4: M← {}
5: fkθ = f(θS ⊕ θP)
6: for k = 1 to T do
7: for e = 1 to epochs do
8: Compute Ladv for S using (x, t) ∈ Dtrk ∪M
9: Compute Ltask using (x, y) ∈ Dtrk ∪M
10: Compute Ldiff using P k, S, and x ∈ Dtrk
11: LACL = λ1Ladv + λ2Ltask + λ3Ldiff
12: θ′S ← θS − αS∇LACL
13: θ′Pt ← θPk − αPk∇LACL
14: Compute Ladv for D using (S(x), t) and

(z′ ∼ N (µ,
∑

), t = 0)
15: θ′D ← θD − αD∇Ladv
16: M← UPDATEMEMORY(Dtrk ,M, C,m)
17: Store θPk
18: fkθ ← f(θ′S ⊕ θ′P)
19: Rk,{1···k} ← EVAL (fkθ ,Dts{1···k})

procedure UPDATEMEMORY(()Dtrk ,M, C,m)
s← m

C
B s := # of samples per class

for c = 1 to C do
for i = 1 to n do

(xki , y
k
i , t

k
i) ∼ Dtrk

M←M∪ (xk, yk, tk)

returnM

procedure EVAL(()fkθ ,Dts{1···k})
for i = 1 to k do

Rk,i = Accuracy(fkθ (x, t), y)for(x, y, t) ∈ Dtsi
return R

2.3 Experiments
In this section, we review the benchmark datasets and baselines used in our evaluation as

well as the implementation details. We then report the obtained results, an ablation study,
and a brief analysis of ACL details.

2.3.1 ACL on Vision Benchmarks

Datasets: We evaluate our approach on the commonly used benchmarks datasets for
T -split class-incrementally learning where the entire dataset is divided into T disjoint susbsets
or tasks.

We use common image classification datasets 5-Split MNIST and Permuted MNIST
(LeCun et al., 1998), previously used in (Nguyen et al., 2018; Zenke et al., 2017; Ebrahimi et
al., 2020a), 20-Split CIFAR100 (Krizhevsky & Hinton, 2009) used in (Zenke et al., 2017;
Lopez-Paz et al., 2017; Chaudhry et al., 2019a), and 20-Split miniImageNet (Vinyals et
al., 2016) used in (Chaudhry et al., 2019b; Zhang et al., 2019). We also benchmark ACL on
a sequence of 5-Datasets including SVHN, CIFAR10, not-MNIST, Fashion-MNIST
and, MNIST and report average performance over multiple random task orderings. Dataset
statistics are given in Table 2.3b in the appendix. No data augmentation of any kind has
been used in our analysis.

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 11

Baselines: From the prior work, we compare with state-of-the-art including Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Progressive neural networks (PNNs)
(Rusu et al., 2016), and Hard Attention Mask (HAT) (Serra et al., 2018) using imple-
mentations provided by (Serra et al., 2018) unless otherwise stated. For memory-based
methods including A-GEM, GEM, and ER-RES, for Permuted MNIST, 20-Split CIFAR100,
and 20-Split miniImageNet, we relied on the implementation provided by (Chaudhry et al.,
2019b), but changed the experimental setting from single to multi-epoch and without using
3 Tasks for cross validation for a more fair comparison against ACL and other baselines. On
Permuted MNIST results for SI (Zenke et al., 2017) are reported from (Serra et al., 2018),
for VCL (Nguyen et al., 2018) those are obtained using their original provided code, and for
Uncertainty-based CL in Bayesian framework (UCB) (Ebrahimi et al., 2020a) are directly
reported from the paper.

We also perform fine-tuning, and joint training. In fine-tuning (ORD-FT), an ordinary
single module network without the discriminator is continuously trained without any for-
getting avoidance strategy in the form of experience replay or architecture growth. In joint
training with an ordinary network (ORD-JT) and our ACL setup (ACL-JT) we learn all the
tasks jointly in a multitask learning fashion using the entire dataset at once which serves as
the upper bound for average accuracy on all tasks, as it does not adhere to the continual
learning scenario.

Implementation details: For all ACL experiments except for Permuted MNIST and
5-Split MNIST we used a reduced AlexNet (Iandola et al., 2016) architecture as the backbone
for S and P modules. The architecture in S is composed of 3 convolutional and 4 fully-
connected (FC) layers whereas P is only a convolutional neural network (CNN) with similar
number of layers and half-sized kernels compared to those used in S. The private head
modules (p) and the discriminator are all composed of a small 3-layer perceptron. Due to
the differences between the structure of our setup and a regular network with a single module,
we used a similar CNN structure to S followed by larger hidden FC layers to match the total
number of parameters throughout our experiments with our baselines for fair comparisons.
For 5-Split MNIST and Permuted MNIST where baselines use a two-layer perceptron with
256 units in each and ReLU nonlinearity, we used a two-layer perceptron of size 784 × 175
and 175× 128 with ReLU activation in between in the shared module and a single-layer of
size 784 × 128 and ReLU for each P . In each head, we also used an MLP with layers of
size 256 and 28, ReLU activations, and a 14-unit softmax layer. In all our experiments, no
pre-trained model is used. We used stochastic gradient descent for ACL and baselines. Our
code is provided as a zipped file included in the supplementary materials.

2.4 Results and Discussion
In the first set of experiments, we measure ACC, BWT, and the memory used by ACL

and compare it against state-of-the-art methods with or without memory constraints on

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 12

20-Split miniImageNet. Next, we provide more insight and discussion on ACL and its com-
ponent by performing an ablation study and visualizations on this dataset. In Section 2.5,
we evaluate ACL on a more difficult continual learning setting where we sequentially train
on 5 different datasets. Finally, in section (2.6), we demonstrate the experiments on class
incremental learning of single datasets commonly used in CL literature and compare the
ACC and BWT metrics against prior work.

2.4.1 ACL Performance on 20-Split miniImageNet

Starting with 20-Split miniImageNet, we split it in 20 tasks with 5 classes at a time. Table
2.1a shows our results obtained for ACL compared to several baselines. We compare ACL
with HAT as a regularization based method with no experience replay memory dependency
that achieves ACC=59.45± 0.05 with BWT=-0.04± 0.03%. Results for the memory-based
methods of ER-RES and A-GEM are re(produced) by us using the implementation provided
in (Chaudhry et al., 2019b) by applying modifications to the network architecture to match
with ACL in the backbone structure as well as the number of parameters. We only include
A-GEM in Table 2.1a which is only a faster algorithm compared to its precedent GEM with
identical performance.

A-GEM and ER-RES use an architecture with 25.6 parameters (102.6MB) along with
storing 13 images of size (84× 84× 3) per class (110.1MB) resulting in total memory size of
212.7MB. ACL is able to outperform all baselines in ACC=62.07± 0.51, BWT=0.00± 0.00,
using total memory of 121.6MB for architecture growth (113.1MB) and storing 1 sample per
class for replay buffer (8.5MB). In our ablation study in Section 2.4.2, we will show our
performance without using replay buffer for this dataset is ACC=57.66 ± 1.44. However,
ACL is able to overcome the gap by using only one image per class (5 per task) to achieve
ACC=62.07± 0.51 without the need to have a large buffer for old data in class incremen-
tally learning datasets like miniImagenet with diverse sets of classes.

2.4.2 Ablation Studies on 20-Split miniImageNet

We now analyze the major building blocks of our proposed framework such as the discrim-
inator, the shared module, replay buffer effect and the difference loss on the miniImagenet
dataset. Ablation results are summarized in Table 2.1b and are as follows:

Discriminator and shared modules: We begin by ablating the discriminator and
shared module (w/o Dis and Shared) which means only using the private modules. They
are used one at a time for each task and stored in memory for further recall (zero-forgetting
guaranteed). In 20-Split miniImageNet experiment, we use a small convolutional network
with 943.1K parameters in P and 74.2K in p (private head) for each task. The average
accuracy (ACC) for this model is 29.09 ± 5.67% where random chance is 20% as it is a
5-class problem. This ablation shows that despite obtaining zero forgetting using P modules

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 13

Table 2.1: CL results on 20-Split miniImageNet measuring ACC (%), BWT (%), and Mem-
ory (MB). (**) denotes that methods do not adhere to the continual learning setup: ACL-JT
and ORD-JT serve as the upper bound for ACC for ACL/ORD networks, respectively. ∗
denotes result is re(produced) by us using the original provided code. † denotes result is
obtained using the re-implementation setup by (Serra et al., 2018). All results are averaged
over 3 runs and standard deviation is given in parentheses (b) Ablation study of ACL on
miniImageNet dataset

(a)

Method ACC% BWT% Arch
(MB)

Replay
Buffer
(MB)

HAT∗(Serra et al., 2018) 59.45(0.05) -0.04(0.03) 123.6 -
PNN † (Rusu et al., 2016) 58.96(3.50) Zero 588 -
ER-RES∗ 57.32(2.56) -11.34(2.32) 102.6 110.1
A-GEM∗ (Chaudhry et al., 2019a) 52.43(3.10) -15.23(1.45) 102.6 110.1

ORD-FT∗∗ 28.76(4.56) -64.23(3.32) 37.6 -
ORD-JT∗∗ 69.56(0.78) - 5100 -
ACL-JT∗∗ 66.89(0.32) - 5100 -
ACL (Ours) 62.07(0.51) 0.00(0.00) 113.1 8.5

(b)

ACC% BWT%
ACL (1 sample) 62.07(0.51) 0.00(0.00)

w/o Dis and Shared 29.09(5.67) Zero
w/o Private 32.82(2.71) -28.67(3.61)

w/o Ladv (w/o Dis) 52.07(2.49) -0.01(0.01)
w/o Replay buffer 57.66(1.44) -3.71(1.31)
w/o Ldiff 60.28(0.52) 0.00(0.00)

one at a time, they are not capable of performing the task when solely used because of their
limited capacity.

Private modules: In the first ablation we showed that none of the tasks can be per-
formed well using only P modules. Ablating the Private modules leads to a similar obser-
vation for the shared module as it has only 943.1K parameters. We have performed this
ablation by fine-tuning the S module while it is adversarially trained with D. This results
in a ACC= 32.82% and BWT=-28.67% confirming the important role of private modules in

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 14

Table 2.2: Comparison of the effect of the replay buffer size between ACL and other base-
lines including A-GEM (Chaudhry et al., 2019a), and ER-RES (Chaudhry et al., 2019b) on
20-Split miniImageNet where unlike the baselines, ACL’s performance remains unaffected by the
increase in number of samples stored per class as discussed in 2.4.2. The results from this table are
used to generate Fig. 2.2 below.

Samples per class 1 3 5 13

A-GEM(Chaudhry et al., 2019a) 45.14(3.42) 49.12(4.69) 50.24(4.56) 52.43(3.10)
ER-RES(Chaudhry et al., 2019b) 40.21(2.68) 46.87(4.51) 53.45(3.45) 57.32(2.56)

ACL (ours) ACC 62.07(0.51) 61.80(0.50) 61.69(0.61) 61.33(0.40)
BWT 0.00(0.00) 0.01(0.00) 0.01(0.00) -0.01(0.02)

retaining tasks’ performance.

Discriminator: Now, we ablate the adversarial learning aspect of our method. Elimi-
nating the role of the discriminator and hence the adversarial learning aspect of ACL, results
in a 14% drop in ACC. This result demonstrates the important role of D in ACL.

Replay buffer: We then explore the effect of using previous samples as replay buffer in
avoiding forgetting. We keep ACL in its full shape (S+P+D) but we do not use samples from
previous tasks during training. Note that the discriminator has to still predict task labels
for new task data as they become available while it has no chance of seeing the previous
examples. By comparing the ACC achieved with no memory access with the best results
obtained for ACL with memory access (ACL-1 samples) shows the effect of adding a single
image per class (5 per task) in performance gain from 57.66% to 62.07%. Unlike A-GEM,
and EP-RES approaches in which performance increases with more episodic memory, in
ACL, ACC remains nearly similar to its highest performance. We have visualized this effect
in Fig. 2.2 where on the left it illustrates the memory effect for ACL and memory-dependent
baselines when 1, 3, 5, and 13 images per class are used during training. Numbers used
to plot this figure with their standard deviation are given in Table 2.2. We also show how
memory affects the BWT in ACL in Fig. 2.2 (right) which follows the same pattern as we
observed for ACC. Being insensitive to the amount of old data is a remarkable feature of
ACL, not because of the small memory it consumes, but mainly due to the fact that access to
the old data might be prohibited or very limited in some real world applications. Therefore,
for a fixed allowed memory size, a method that can effectively use it for architecture growth
can be considered as more practical for such applications.
Orthogonality Constraint (Ldiff): Finally, we study the effect of orthogonality constraint
in our objective function defined in Eq. 2.3. The results show an increase of 2% in ACC com-
pared to when adversarial learning is the only method we use for factorization. Comparing
the performance increase resulting by adding Ladv versus Ldiff confirms that the adversarial
learning plays an important role in latent space disentanglement in our approach. We hy-

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 15

Figure 2.2: Left: Comparing the replay buffer effect on ACC on 20-Split miniImageNet achieved
by ACL against A-GEM (Chaudhry et al., 2019a) and ER-RES (Chaudhry et al., 2019b) when
using 1, 3, 5, and 13 samples per classes within each task discussed in 2.4.2. Right: Insensitivity of
ACC and BWT to replay buffer in ACL. Best viewed in color.

pothesize this is due to the discriminator having direct access to task labels while training
S, whereas difference loss performs the minimization using zS and zP only.

2.4.3 Visualizing the effect of adversarial learning in ACL

Here we illustrate the role of adversarial learning in factorizing the latent space learned
for a sequence of tasks in a continual learning setting using the T-distributed Stochastic
Neighbor Embedding (T-SNE) (Van Der Maaten, 2014) plots for the 20-Split miniImageNet
experiment.

Fig. 2.3 visualizes the latent spaces of the shared and private modules trained with and
without the discriminator. In particular, we used the model trained on the entire sequence
of 20-Split miniImageNet and evaluated it on the test-sets belonging to tasks #18, #19, and
#20 each including 100 images for 5 classes, total of 500 samples, which are color-coded with
their class labels.

We first compare the discriminator’s effect on the latent space generated by the shared
modules. As shown in Fig. 2.3, the shared modules trained with adversarial loss (second
column from left), consistently appear as a uniformly mixed distribution of encoded samples
belonging to all classes for each task. In contrast, in the generated features by shared
modules that were trained without a discriminator (fourth column from left), we observe a
non-uniformly distributed mixture of features where small clusters can be found for some
classes (e.g. tasks #18, #20) showing an entangled representation within each task.

We now move on to show the effect of the discriminator D on the private modules’ latent
spaces. As can be observed in the third column from left, private modules that were trained

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 16

w. Discriminator w/o Discriminator

Task
Number Shared Private Shared Private

Task 20

Task 19

Task 18

Tasks 1-10

Without Dis
C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Figure 2.3: Visualizing the effect of adversarial learning in ACL where the latent spaces of both
private and shared modules are compared against the generated features by corresponding modules
trained without a discriminator. This plot shows that the shared module has been successfully
trained to generate task-invariant features using adversarial learning whereas in the fourth column
from left, we observe that without the discriminator, the shared module was only able to generate
a non-uniform embedding

in a latent space factorized with a discriminator, appear to be nearly successful in uncovering
class labels in their latent space although the final classification is yet to be happening in
the private heads. As opposed to that, in the absence of the discriminator, private modules
(shown in the fifth column) generate features as entangled as those generated by their shared
module counterparts.

In the last row of Fig. 2.3, once again we used our final model trained on the entire
sequence of 20-Split miniImageNet and tested it on the first 10 tasks of the sequence one
at a time and plotted them all in a single figure for both shared and private modules with
and without the discriminator. Similar to the pattern we observed above in comparing
the shared feature space for each task with/without D, in the first column we observe a
uniformly distributed embedding, now color-coded with task labels, where distinguishing

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 17

tasks is impossible, as expected. In other words, it shows that the shared module has been
successfully trained to generate task-invariant features using adversarial learning whereas
in the fourth column from the left, we observe that without the discriminator, the shared
module was only able to generate a non-uniform embedding. This indicates the impact of
the discriminator in finding the true shared features across tasks. On the other hand, for the
private module in a setup with a discriminator (third column from left), we observe separate
clusters are generated with samples belonging to the same task which shows P is only able
to uncover task-specific features when it is trained along with a task-invariant space. Unlike
that, a private module that was trained along with a non-adversarial shared module (last
column from left), provides nearly similar feature spaces as their shared module counterpart
proving that task factorization could not occur without the presence of a discriminator in
the setting.

Note that in all the results shown in Fig. 2.3, we did not use the orthogonality constraints,
(Ldiff), to merely present the role of adversarial learning as the main mechanism used to
generate task-specific and task-invariant features.

2.5 ACL Performance on a sequence of 5-Datasets
In this section, we present our results for continual learning of 5 tasks using ACL in

Table 2.3b. Similar to the previous experiment we look at both ACC and BWT obtained for
ACL, finetuning as well as UCB as our baseline. Results for this sequence are averaged over
5 random permutations of tasks and standard deviations are given in parenthesis. CL on a
sequence of datasets has been previously performed by two regularization based approaches
of UCB and HAT where UCB was shown to be superior (Ebrahimi et al., 2020a). With
this given sequence, ACL is able to outperform UCB by reaching ACC=78.55(±0.29) and
BWT= − 0.01 using only half of the memory size and also no replay buffer. In Bayesian
neural networks such as UCB, there exists double number of parameters compared to a
regular model representing mean and variance of network weights. It is very encouraging to
see that ACL is not only able to continually learn on a single dataset, but also across diverse
datasets.

2.6 Additional Experiments
20-Split CIFAR100: In this experiment we incrementally learn CIFAR100 in 5 classes

at a time in 20 tasks. As shown in Table 2.3, HAT is the most competitive baseline, although
it does not depend on memory and uses 27.2MB to store its architecture in which it learns
task-based attention maps reaching ACC=76.96 ± 1.23%. PNN uses 74.7MB to store the
lateral modules to the memory and guarantees zero forgetting. Results for A-GEM, and
ER-Reservoir are re(produced) by us using a CNN similar to our shared module architec-
ture. We use fully connected layers with more number of neurons to compensate for the

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 18

Table 2.3: CL results on 20-Split CIFAR100 measuring ACC (%), BWT (%), and Memory
(MB). (*) denotes that methods do not adhere to the continual learning setup: ACL-JT and
ORD-JT serve as the upper bound for ACC for ACL/ORD networks, respectively. † denotes
result reported from original work. ‡ denotes result reported from (Lopez-Paz et al., 2017).
∗∗ denotes result is reported by (Chaudhry et al., 2019b). †† denotes result is obtained using
the re-implementation setup by (Serra et al., 2018). o denotes result is obtained by using
the original provided code. All results are averaged over 3 runs and standard deviation is
given in parentheses

(a) 20-Split CIFAR100

Method ACC% BWT% Arch
(MB)

Replay
Buffer
(MB)

HAT o (Serra et al., 2018) 76.96(1.23) 0.01(0.02) 27.2 -
PNN†† (Rusu et al., 2016) 75.25(0.04) Zero 93.51 -
A-GEM∗∗ (Chaudhry et al., 2019a) 54.38(3.84) -21.99(4.05) 25.4 16
ER-RES∗∗ 66.78(0.48) -15.01(1.11) 25.4 16

ORD-FT∗ 34.71(3.36) -48.56(3.17) 27.2 -
ORD-JT∗ 78.67(0.34) - 764.5 -
ACL-JT∗ 79.91(0.05) - 762.6 -
ACL (Ours) 78.08(1.25) 0.00(0.01) 25.1 -

(b) Sequence of 5 Datasets

Method ACC% BWT% Arch
(MB)

Replay
Buffer
(MB)

UCB o (Ebrahimi et al., 2020a) 76.34(0.12) −1.34(0.04) 32.8 -
ORD-FT∗ 27.32(2.41) -42.12(2.57) 16.5 -
ACL (Ours) 78.55(0.29)−0.01(0.15) 16.5 -

remaining number of parameters reaching 25.4MB of memory. We also stored 13 images per
class (1300 images of size (32 × 32 × 3) in total) which requires 16.0MB of memory. How-
ever, ACL achieves ACC=(78.08± 1.25)% with BWT=0.00± 0.01)% using only 25.1MB
to grow private modules with 167.2K parameters (0.6MB) without using memory for replay
buffer. Similar to the previous experiments on MNIST, old data is not used which is mainly
due to the overuse of parameters for CIFAR100 which is considered as a relevantly ‘easy’
dataset with all tasks (classes) sharing the same data distribution. While we leave further
discussion about this to Section 2.4.2, we mention that factorizing the shared and private
parameters in ACL prevents from using redundant parameters by only storing task-specific

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 19

Table 2.4: CL results on Permuted MNIST. measuring ACC (%), BWT (%), and Memory
(MB). (*) denotes that methods do not adhere to the continual learning setup: ACL-JT
and ORD-JT serve as the upper bound for ACC for ACL/ORD networks, respectively. (†)
denotes result reported from original work. (o) denotes result is obtained by using the
original provided code. (‡) denotes the results reported by (Serra et al., 2018) and (∗∗)
denotes results are reported by (Chaudhry et al., 2019b); T shows the number of tasks. All
results are averaged over 3 runs, the standard deviation is provided in parenthesis

Method ACC% BWT% Arch
(MB)

Replay
Buffer
(MB)

EWC‡ (Kirkpatrick et al., 2017) (T=10) 88.2 - 1.1 -
HAT† (Serra et al., 2018) (T=10) 91.6 - 1.1 -
UCB† (Ebrahimi et al., 2020a) (T=10) 91.44(0.04) -0.38(0.02) 2.2 -
VCLo(Nguyen et al., 2018) (T=10) 88.80(0.23) -7.90(0.23) 1.1 -
VCL-Co (Nguyen et al., 2018)(T=10) 95.79(0.10) -1.38(0.12) 1.1 6.3

PNN∗∗ (Rusu et al., 2016) (T=20) 93.5(0.07) Zero N/A -
ORD-FT∗ (T=10) 44.91(6.61) -53.69(1.91) 1.1 -
ORD-JT∗ (T=10) 96.03(0.02) - 189.3 -
ACL-JT∗ (T=10) 98.45(0.02) - 194.4 -
ACL (Ours) (T=10) 98.03(0.01) -0.01(0.01) 2.4 -
ACL (Ours) (T=20) 97.81(0.03) 0.00(0.00) 5.0 -
ACL (Ours) (T=30) 97.81(0.03) 0.00(0.00) 7.2 -
ACL (Ours) (T=40) 97.80(0.02) 0.00(0.00) 9.4 -

parameters in P modules. In fact, as opposed to other memory-based methods, instead
of starting from a large network and using memory to store samples, which might not be
available in practice due to confidentiality issues (e.g. medical data), ACL uses memory
to gradually add small modules to accommodate new tasks and relies on knowledge trans-
fer through the learned shared module. The latter is what makes ACL to different than
architecture-based methods such as PNN where the network grows by the entire column
which results in using a highly disproportionate memory to what is needed to learn a new
task with.

Permuted MNIST: Another popular variant of MNIST dataset in CL literature is
Permuted MNIST where each task is composed by randomly permuting pixels of the entire
MNIST dataset. To compare against values reported in prior work, we particularly report on
a sequence of T = 10 and T = 20 tasks with ACC, BWT, and memory for ACL and baselines.
To further evaluate ACL’s ability in handling more tasks, we continually learned up to 40
tasks. As shown in Table 2.4, among the regularization-based methods, HAT achieves the
highest performance of 91.6% (Serra et al., 2018) using an architecture of size 1.1MB. Vanilla

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 20

Table 2.5: Class Incremental Learning on 5-Split MNIST. measuring ACC (%), BWT (%), and
Memory (MB). (*) denotes that methods do not adhere to the continual learning setup: ACL-JT
and ORD-JT serve as the upper bound for ACC for ACL/ORD networks, respectively. † denotes
result reported from original work. o denotes result is obtained by using the original provided code.
All results are averaged over 3 runs, the standard deviation is provided in parenthesis

Method ACC% BWT% Arch
(MB)

Replay
Buffer
(MB)

EWC ∗∗ (Kirkpatrick et al., 2017) 95.78(0.35) -4.20(0.21) 1.1 -
HAT ∗∗ (Serra et al., 2018) 99.59(0.01) 0.00(0.04) 1.1 -
UCB † (Ebrahimi et al., 2020a) 99.63(0.02) 0.00(0.00) 2.2 -
VCL o(Nguyen et al., 2018) 95.97(1.03) -4.62(1.28) 1.1 -
iCaRL‡ (Rebuffi et al., 2017) 89.34(0.40) -3.24(0.34) 6.5 0.63
GEMo (Lopez-Paz et al., 2017) 94.34(0.82) -2.01(0.05) 6.5 0.63
VCL-C o (Nguyen et al., 2018) 93.6(0.20) -3.10(0.20) 1.7 0.63

ORD-FT∗ 65.96(3.53) -40.15(4.27) 1.1 -
ORD-JT∗ 99.88(0.02) - 189.3 -
ACL-JT∗ (Ours) 99.89(0.01) - 190.8 -
ACL (Ours) 99.76(0.03) 0.01(0.01) 1.6 -

VCL improves by 7% in ACC and 6.5% in BWT using a K-means core-set memory size of
200 samples per task (6.3MB) and an architecture size similar to HAT. PNN appears as a
strong baseline achieving ACC=93.5% with guaranteed zero forgetting. Finetuning (ORD-
FT) and joint training (ORD-JT) results for an ordinary network, similar to EWC and
HAT (a two-layer MLP with 256 units and ReLU activations), are also reported as reference
values for lowest BWT and highest achievable ACC, respectively. ACL achieves the highest
accuracy among all baselines for both sequences of 10 and 20 equal to ACC=98.03 ± 0.01
and ACC=97.81 ± 0.03, and BWT= − 0.01% BWT=0%, respectively which shows that
performance of ACL drops only by 0.2% as the number of tasks doubles. ACL also remains
efficient in using memory to grow the architecture compactly by adding only 55K parameters
(0.2MB) for each task resulting in using total of 2.4MB and 5.0MB when T = 10 and T = 20,
respectively for the entire network including the shared module and the discriminator. We
also observed that the performance of our model does not change as the number of tasks
increases to 30 and 40 if each new task is accommodated with a new private module. Similar
to the 5-Split MNIST experiment, we did not store old data and used memory only to grow
the architecture by 55K parameters (0.2MB).

5-Split MNIST: As the last experiment in this section, we continually learn 0 − 9
MNIST digits by following the conventional pattern of learning 2 classes over 5 sequential
tasks (Nguyen et al., 2018; Zenke et al., 2017; Ebrahimi et al., 2020a). As shown in Table 2.5,
we compare ACL with regularization-based methods with no memory dependency (EWC,
HAT, UCB, Vanilla VCL) and methods relying on memory only (GEM and iCaRL), and

CHAPTER 2. CONTINUAL LEARNING IN ORDINARY NEURAL NETWORKS 21

VCL with K-means Core-set (VCL-C) where 40 samples are stored per task. ACL reaches
ACC=(99.76± 0.03)% with zero forgetting outperforming UCB with ACC=99.63% which
uses nearly 40% more memory size. In this task, we only use architecture growth (no
experience replay) where 54.3K private parameters are added for each task resulting in
memory requirement of 1.6MB to store all private modules. Our core architecture has a
total number of parameters (420.1K). We also provide naive finetuning results for ACL and
a regular single-module network with (268K) parameters (1.1MB). Joint training (multi-task
learning) results for the regular network (ORD-JT) is computed as ACC=99.89±, 0.01 for
ACL which requires 189.3MB for the entire dataset as well as the architecture. Joint training
only serves as an upper-bound and is not a continual learning baseline.

2.7 Summary
In this work, we proposed a novel hybrid continual learning algorithm – Adversarial

Continual Learning (ACL) – that factorizes the representation learned for a sequence of
tasks into task-specific and task-invariant features where the former is important to be fully
preserved to avoid forgetting and the latter is empirically found to be remarkably less prone
to forgetting. To the best of our knowledge this is the first work that uses adversarial
learning along with orthogonality constraints to disentangle the shared and private latent
representations which results in compact private modules that can be stored into memory and
hence, efficiently preventing forgetting. To further improve mitigating forgetting problem in
the shared module, we used a small memory replay buffer. However, this additional memory
usage is not critical in our approach.

22

Chapter 3

Continual Learning in Bayesian Neural
Networks

3.1 Introduction
Humans can easily accumulate and maintain knowledge gained from previously observed

tasks, and continuously learn to solve new problems or tasks. Artificial learning systems
typically forget prior tasks when they cannot access all training data at once but are presented
with task data in sequence.

Overcoming these challenges is the focus of continual learning, sometimes also referred
to as lifelong learning or sequential learning. Catastrophic forgetting (McCloskey & Cohen,
1989b; McClelland et al., 1995) refers to the significant drop in the performance of a learner
when switching from a trained task to a new one. This phenomenon occurs because trained
parameters on the initial task change in favor of learning new objectives.

Given a network of limited capacity, one way to address this problem is to identify the
importance of each parameter and penalize further changes to those parameters that were
deemed to be important for the previous tasks (Kirkpatrick et al., 2017; Aljundi et al., 2018;
Zenke et al., 2017). An alternative is to freeze the most important parameters and allow
future tasks to only adapt the remaining parameters to new tasks (Mallya & Lazebnik, 2018).
Such models rely on the explicit parametrization of importance. We propose here implicit
uncertainty-guided importance representation.

Bayesian approaches to neural networks (MacKay, 1992b) can potentially avoid some of
the pitfalls of explicit parameterization of importance in regular neural networks. Bayesian
techniques, naturally account for uncertainty in parameters estimates. These networks repre-
sent each parameter with a distribution defined by a mean and variance over possible values
drawn from a shared latent probability distribution (Blundell et al., 2015). Variational in-
ference can approximate posterior distributions using Monte Carlo sampling for gradient
estimation. These networks act like ensemble methods in that they reduce the prediction
variance but only use twice the number of parameters present in a regular neural network.

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 23

(a) (b) (c)

Illustration of evolution of weight distributions through learning two tasks. (a) circles represent
weight parameters, initialized by distributions with mean and variance values randomly sampled
from Ɲ(0,0.1). As an example we show five color-coded and plot their distributions. (b) Shows
posterior distribution after learning Task 1. While W1 and W2 exhibit lower uncertainties (more
contributions in learning Task 1), W3, W4, and W5 appear to have larger uncertainties, with the
highest STD in W5, making them available to learn more tasks. (c) Task 2 is learned using higher
learning rates for previously uncertain parameters (W3 and W4, W5) while learning rates for W1
and W2 are moderated according to their predicted low uncertainty after finishing task 1.

p(𝜃)

𝜃 𝜃 𝜃

Training Task 1 Training Task 2

1

3

2

4

p(𝜃) p(𝜃)

5

p(y| x,[𝜃1,𝜃2,𝜃3,𝜃4,𝜃5]) ⩰ p(y) p(y| x,[𝜃1,𝜃2,𝜃3,𝜃4,𝜃5]) ⩰
p(y|x,[𝜃1,𝜃2])

p(y| x, [𝜃1,𝜃2,𝜃3,𝜃4,𝜃5]) ⩰
p(y|x,[𝜃1,𝜃2,𝜃3,𝜃4])

Figure 3.1: Illustration of the evolution of weight distributions – uncertain weights adapt
more quickly – when learning two tasks using UCB. (a) weight parameter initialized by
distributions initialized with mean and variance values randomly sampled from N (0, 0.1).
(b) posterior distribution after learning task one; while θ1 and θ2 exhibit lower uncertainties
after learning the first task, θ3, θ4, and θ5 have larger uncertainties, making them available
to learn more tasks. (c) a second task is learned using higher learning rates for previously
uncertain parameters (θ1, θ2, θ3, and θ4) while learning rates for θ1 and θ2 are reduced. Size
of the arrows indicate the magnitude of the change of the distribution mean upon gradient
update.

We propose to use the predicted mean and variance of the latent distributions to character-
ize the importance of each parameter. We perform continual learning with Bayesian neural
networks by controlling the learning rate of each parameter as a function of its uncertainty.
Figure 3.1 illustrates how posterior distributions evolve for certain and uncertain weight dis-
tributions while learning two consecutive tasks. Intuitively, the more uncertain a parameter
is, the more learnable it can be and therefore, larger gradient steps can be taken for it to
learn the current task. As a hard version of this regularization technique, we also show that
pruning, i.e., preventing the most important model parameters from any change and learning
new tasks with the remaining parameters, can be also integrated into UCB. We refer to this
method as UCB-P.

Our main contirbutions are as follows: We propose to perform continual learning with
Bayesian neural networks and develop a new method which exploits the inherent measure of
uncertainty therein to adapt the learning rate of individual parameters (Sec. 3.4). Second, we
introduce a hard-threshold variant of our method that decides which parameters to freeze
(Sec. 3.4.2). Third, in Sec. 3.5, we extensively validate our approach experimentally,
comparing it to prior art both on single datasets split into different tasks, as well as for
the more difficult scenario of learning a sequence of different datasets. Forth, in contrast
to most prior work, our approach does not rely on knowledge about task boundaries at

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 24

inference time, which humans do not need and might not be always available. We show
in Sec. 3.6 that our approach naturally supports this scenario and does not require task
information at test time, sometimes also referred to as a “single head” scenario for all tasks.
We refer to evaluation metric of a “single head" model without task information at test time
as “generalized accuracy".

3.2 Bayesian Approaches for Continual Learning
Using Bayesian approach in learning neural networks has been studied for few decades

(MacKay, 1992b; MacKay, 1992a). Several approaches have been proposed for Bayesian
neural networks, based on, e.g., the Laplace approximation (MacKay, 1992a), Hamiltonian
Monte Carlo (Neal, 2012), variational inference (Hinton & Van Camp, 1993; Graves, 2011),
and probabilistic backpropagation (Hernández-Lobato & Adams, 2015). Variational con-
tinual learning (Nguyen et al., 2018) uses Bayesian inference to perform continual learning
where new posterior distribution is simply obtained by multiplying the previous posterior by
the likelihood of the dataset belonging to the new task. They also showed that by using a
core-set, a small representative set of data from previous tasks, VCL can experience less for-
getting. In contrast, we rely on Bayesian neural networks to use their predictive uncertainty
to perform continual learning. Moreover, we do not use episodic memory or any other way
to access or store previous data in our approach.

3.2.0.1 Natural gradient descent methods:

A fast natural gradient descent method for variational inference was introduced in (Khan
& Nielsen, 2018) in which, the Fisher Information matrix is approximated using the gen-
eralized Gauss-Newton method. In contrast, in our work, we use classic gradient descent.
Although second order optimization algorithms are proven to be more accurate than the first
order methods, they add considerable computational cost. (Tseran et al., 2018; Chen et al.,
2019) both investigate the effect of natural gradient descent methods as an alternative to
classic gradient descent used in VCL and EWC methods.

GNG (Chen et al., 2019) uses Gaussian natural gradients in the Adam optimizer (Kingma
& Ba, 2015) in the framework of VCL because as opposed to conventional gradient methods
which perform in Euclidian space, natural gradients cause a small difference in terms of
distributions following the changes in parameters in the Riemannian space. Similar to VCL,
they obtained their best performance by adding a coreset of previous examples. (Tseran
et al., 2018) introduce two modifications to VCL called Natural-VCL (N-VCL) and VCL-
Vadam. N-VCL (Tseran et al., 2018) uses a Gauss-Newton approximation introduced by
(Schraudolph, 2002; Graves, 2011) to estimate the VCL objective function and used natural
gradient method proposed in (Khan et al., 2018) to exploit the Riemannian geometry of
the variational posterior by scaling the gradient with an adaptive learning rate equal to σ−2

obtained by approximating the Fisher Information matrix in an online fashion. VCL-Vadam

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 25

(Tseran et al., 2018) is a simpler version of N-VCL to trade-off accuracy for simplicity which
uses Vadam (Khan et al., 2018) to update the gradients by perturbing the weights with a
Gaussian noise using a reparameterization trick and scaling by σ−1 instead of its squared.
N-VCL/VCL-Vadam both use variational inference to adapt the learning rate within Adam
optimizer at every time step, whereas in our method below, gradient decent is used with
constant learning rate during each task where learning rate scales with uncertainty only
after finishing a task. We show extensive comparison with state-of-the-art results on short
and relatively long sequence of vision datasets with Bayesian convolutional neural networks,
whereas VCL-Vadam only rely on multi-layer perceptron networks. We also like to highlight
that this is the first work which evaluates and shows the working of convolutional Bayesian
Neural Networks rather than only fully connected MLP models for continual learning.

3.3 Variational Bayes-by-Backprop (BBB)
In this section, we review the Bayes-by-Backprop (BBB) framework which was intro-

duced by (Blundell et al., 2015); to learn a probability distribution over network parameters.
(Blundell et al., 2015) showed a back-propagation-compatible algorithm which acts as a reg-
ularizer and yields comparable performance to dropout on the MNIST dataset. In Bayesian
models, latent variables are drawn from a prior density p(w) which are related to the obser-
vations through the likelihood p(x|w). During inference, the posterior distribution p(w|x) is
computed conditioned on the given input data. However, in practice, this probability distri-
bution is intractable and is often estimated through approximate inference. Markov Chain
Monte Carlo (MCMC) sampling (Hastings, 1970) has been widely used and explored for this
purpose, see (Robert & Casella, 2013) for different methods under this category. However,
MCMC algorithms, despite providing guarantees for finding asymptotically exact samples
from the target distribution, are not suitable for large datasets and/or large models as they
are bounded by speed and scalability issues. Alternatively, variational inference provides
a faster solution to the same problem in which the posterior is approximated using opti-
mization rather than being sampled from a chain (Hinton & Van Camp, 1993). Variational
inference methods always take advantage of fast optimization techniques such as stochastic
methods or distributed methods, which allow them to explore data models quickly. See
(Blei et al., 2017) for a complete review of the theory and (Shridhar et al., 2018) for more
discussion on how to use Bayes by Backprop (BBB) in convolutioal neural networks.

Let x ∈ IRn be a set of observed variables and w be a set of latent variables. A neural
network, as a probabilistic model P (y|x,w), given a set of training examples D = (x,y) can
output y which belongs to a set of classes by using the set of weight parametersw. Variational
inference aims to calculate this conditional probability distribution over the latent variables
by finding the closest proxy to the exact posterior by solving an optimization problem.

We first assume a family of probability densities over the latent variables w parametrized
by θ, i.e., q(w|θ). We then find the closest member of this family to the true conditional
probability of interest P (w|D) by minimizing the Kullback-Leibler (KL) divergence between

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 26

q and P which is equivalent to minimizing variational free energy or maximizing the expected
lower bound:

θ∗ = arg minθ KL
(
q(w|θ)‖P (w|D)

)
(3.1)

The objective function can be written as:

LBBB(θ,D) = KL
[
q(w|θ)‖P (w)

]
− Eq(w|θ)

[
log(P (D|w))

]
(3.2)

Eq. 3.2 can be approximated using N Monte Carlo samples wi from the variational posterior
(Blundell et al., 2015):

LBBB(θ,D) ≈
N∑
i=1

log q(wi|θ)− logP (wi)− log(P (D|wi)) (3.3)

We assume q(w|θ) to have a Gaussian pdf with diagonal covariance and parametrized
by θ = (µ, ρ). A sample weight of the variational posterior can be obtained by sampling
from a unit Gaussian and reparametrized by w = µ+ σ ◦ ε where ε is the noise drawn from
unit Gaussian, and ◦ is a pointwise multipliation. Standard deviation is parametrized as
σ = log(1 + exp(ρ)) and thus is always positive. For the prior, as suggested by (Blundell
et al., 2015), a scale mixture of two Gaussian pdfs are chosen which are zero-centered while
having different variances of σ2

1 and σ2
2. The uncertainty obtained for every parameter

has been successfully used in model compression (Han et al., 2015) and uncertainty-based
exploration in reinforcement learning (Blundell et al., 2015). In this work we propose to use
this framework to learn sequential tasks without forgetting using per-weight uncertainties.

3.4 Uncertainty-guided Continual Learning in Bayesian
Neural Networks

In this section, we introduce Uncertainty-guided Continual learning approach with Bayesian
neural networks (UCB), which exploits the estimated uncertainty of the parameters’ poste-
rior distribution to regulate the change in “important” parameters both in a soft way (Section
3.4.1) or setting a hard threshold (Section 3.4.2).

3.4.1 UCB with learning rate regularization

A common strategy to perform continual learning is to reduce forgetting by regularizing
further changes in the model representation based on parameters’ importance. In UCB the
regularization is performed with the learning rate such that the learning rate of each param-
eter and hence its gradient update becomes a function of its importance.

As shown in the following equations, in particular, we scale the learning rate of µ and ρ
for each parameter distribution inversely proportional to its importance Ω to reduce changes

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 27

in important parameters while allowing less important parameters to alter more in favor of
learning new tasks.

αµ ← αµ/Ωµ (3.4)
αρ ← αρ/Ωρ (3.5)

The core idea of this work is to base the definition of importance on the well-defined uncer-
tainty in parameters distribution of Bayesian neural networks, i.e., setting the importance
to be inversely proportional to the standard deviation σ which represents the parameter
uncertainty in the Bayesian neural network:

Ω ∝ 1/σ (3.6)

We explore different options to set Ω in our ablation study presented in Table 3.5. We
empirically found that Ωµ = 1/σ and not adapting the learning rate for ρ (i.e. Ωρ = 1)
yields the highest accuracy and the least forgetting.

The key benefit of UCB with learning rate as the regularizer is that it neither requires
additional memory, as opposed to pruning technique nor tracking the change in parameters
with respect to the previously learned task, as needed in common weight regularization
methods.

More importantly, this method does not need to be aware of task switching as it only needs
to adjust the learning rates of the means in the posterior distribution based on their current
uncertainty. The complete algorithm for UCB is shown in Algorithm 2 with parameter
update function given in Algorithm 3.

3.4.2 UCB using weight pruning (UCB-P)

In this section, we introduce a variant of our method, UCB-P, which is related to recent
efforts in weight pruning in the context of reducing inference computation and network
compression (Liu et al., 2017; Molchanov et al., 2016). More specifically, weight pruning
has been recently used in continual learning (Mallya & Lazebnik, 2018), where the goal is to
continue learning multiple tasks using a single network’s capacity. (Mallya & Lazebnik, 2018)
accomplished this by freeing up parameters deemed to be unimportant to the current task
according to their magnitude. Forgetting is prevented in pruning by saving a task-specific
binary mask of important vs. unimportant parameters. Here, we adapt pruning to Bayesian
neural networks. Specifically, we propose a different criterion for measuring importance: the
statistically-grounded uncertainty defined in Bayesian neural networks.

Unlike regular deep neural networks, in a BBB model weight parameters are represented
by probability distributions parametrized by their mean and standard deviation. Similar to
(Blundell et al., 2015), in order to take into account both mean and standard deviation, we
use the signal-to-noise ratio (SNR) for each parameter defined as

Ω = SNR = |µ|/σ (3.7)

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 28

Algorithm 2 Uncertainty-guided Continual Learning with Bayesian Neural Networks UCB
1: Require Training data for all tasks D = (x,y), µ (mean of posterior), ρ, σ1 and σ2 (std for the scaled

mixture Gaussian pdf of prior), π (weighting factor for prior), N (number of samples in a mini-batch),
M (Number of minibatches per epoch), initial learning rate (α0)

2: αµ = αρ = α0

3: for every task do
4: repeat
5: ε ∼ N (0, I)
6: σ = log(1 + exp(ρ)) B Ensures σ is

always positive
7: w = µ+ σ ◦ ε Bw = {w1, . . . ,wi, . . . ,wN} posterior samples of weights
8: l1 =

∑N
i=1 logN (wi|µ, σ2) B l1 := Log-posterior

9: l2 =
∑N
i=1 log

(
πN (wi | 0, σ2

1) + (1− π)N (wi | 0, σ2
2)
)

B l2 := Log-prior
10: l3 =

∑N
i=1 log(p(D|wi)) B l3 := Log-likelihood

of data
11: LBBB = 1

M (l1 − l2 − l3)
12: µ← µ− αµ∇LBBBµ
13: ρ← ρ− αρ∇LBBBρ
14: until loss plateaus
15: αµ, αρ ← LearningRateUpdate(αµ, αρ, σ, µ) B See Algorithm 3 for UCB and 4 for UCB-P

Algorithm 3 LearningRateUpdate in UCB
1: Given: αµ, αρ, σ
2: for each parameter do
3: Ωµ ← 1/σ
4: Ωρ ← 1
5: αµ ← αµ/Ωµ

6: αρ ← αρ/Ωρ

Algorithm 4 LearningRateUpdate in UCB-P
1: Given: αµ, αρ, σµ
2: for each parameter j in each layer l do
3: Ω← |µ|/σ B Signal to noise ratio
4: if Ω[j] ∈ top p% of Ωs in l then
5: αµ = αρ = 0

SNR is a commonly used measure in signal processing to distinguish between “useful”
information from unwanted noise contained in a signal. In the context of neural models,
the SNR can be thought as an indicative of parameter importance; the higher the SNR, the
more effective or important the parameter is to the model predictions for a given task.

UCB-P, as shown in Algorithms 2 and 4, is performed as follows: for every layer, convo-
lutional or fully-connected, the parameters are ordered by their SNR value and those with
the lowest importance are pruned (set to zero). The pruned parameters are marked using

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 29

Table 3.1: Utilized datasets summary

Names #Classes Train Test

FaceScrub (Ng & Winkler, 2014) 100 20,600 2,289
MNIST (LeCun et al., 1998) 10 60,000 10,000
CIFAR100 (Krizhevsky & Hinton, 2009) 100 50,000 10,000
NotMNIST (Bulatov, 2011) 10 16,853 1,873
SVHN (Netzer et al., 2011) 10 73,257 26,032
CIFAR10 (Krizhevsky & Hinton, 2009) 10 39,209 12,630
TrafficSigns (Stallkamp et al., 2011) 43 39,209 12,630
FashionMNIST (Xiao et al., 2017) 10 60,000 10,000

a binary mask so that they can be used later in learning new tasks whereas the important
parameters remain fixed throughout training on future tasks. Once a task is learned, an as-
sociated binary mask is saved which will be used during inference to recover key parameters
and hence the exact performance to the desired task.

The overhead memory per parameter in encoding the mask as well as saving it on the disk
is as follows. Assuming we have n tasks to learn using a single network, the total number of
required bits to encode an accumulated mask for a parameter is at max log2 n bits assuming
a parameter deemed to be important from task 1 and kept being encoded in the mask.

3.5 Experimental Setup
Datasets: We evaluate our approach in two common scenarios for continual learning: 1)

class-incremental learning of a single or two randomly alternating datasets, where each task
covers only a subset of the classes in a dataset, and 2) continual learning of multiple datasets,
where each task is a dataset. We use Split MNIST with 5 tasks (5-Split MNIST) similar to
(Nguyen et al., 2018; Chen et al., 2019; Tseran et al., 2018) and permuted MNIST (Srivas-
tava et al., 2013) for class incremental learning with similar experimental settings as used
in (Serra et al., 2018; Tseran et al., 2018). Furthermore, to have a better understanding of
our method, we evaluate our approach on continually learning a sequence of 8 datasets with
different distributions using the identical sequence as in (Serra et al., 2018), which includes
FaceScrub (Ng & Winkler, 2014), MNIST, CIFAR100, NotMNIST (Bulatov, 2011), SVHN
(Netzer et al., 2011), CIFAR10, TrafficSigns (Stallkamp et al., 2011), and FashionMNIST
(Xiao et al., 2017). Table 3.1 shows a summary of the datasets utilized in our work along
with their size and number of classes. In all the experiments we resized images to 32×32×3
if necessary. For datasets with monochromatic images, we replicate the image across all
RGB channels. No data augmentation of any kind has been used in our analysis.

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 30

Baselines: Within the Bayesian framework, we compare to three models which do not
incorporate the importance of parameters, namely fine-tuning, feature extraction, and joint
training. In fine-tuning (BBB-FT), training continues upon arrival of new tasks without any
forgetting avoidance strategy. Feature extraction, denoted as (BBB-FE), refers to freezing
all layers in the network after training the first task and training only the last layer for the
remaining tasks. In joint training (BBB-JT) we learn all the tasks jointly in a multitask
learning fashion which serves as the upper bound for average accuracy on all tasks, as it
does not adhere to the continual learning scenario. We also perform the counterparts for
FT, FE, and JT using ordinary neural networks and denote them as ORD-FT, ORD-FE, and
ORD-JT. From the prior work, we compare with state-of-the-art approaches including Elas-
tic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Incremental Moment Matching
(IMM) (Lee et al., 2017), Learning Without Forgetting (LWF) (Li & Hoiem, 2016), Less-
Forgetting Learning (LFL) (Jung et al., 2016), PathNet (Fernando et al., 2017), Progressive
neural networks (PNNs) (Rusu et al., 2016), and Hard Attention Mask (HAT) (Serra et al.,
2018) using implementations provided by (Serra et al., 2018). On Permuted MNIST results
for SI (Zenke et al., 2017) are reported from (Serra et al., 2018). On Split and Permuted
MNIST, results for VCL (Nguyen et al., 2018) are obtained using their original provided
code whereas for VCL-GNG (Chen et al., 2019) and VCL-Vadam (Tseran et al., 2018) re-
sults are reported from the original work without re-implementation. Because our method
lies into the regularization-based regime, we only compare against baselines which do not
benefit from episodic or coreset memory.

Hyperparameter tuning: Unlike commonly used tuning techniques which use a vali-
dation set composed of all classes in the dataset, we only rely on the first two task and their
validations set, similar to the setup in (Chaudhry et al., 2019a). In all our experiments we
consider a 0.15 split for the validation set on the first two tasks. After tuning, training starts
from the beginning of the sequence. Our scheme is different from (Chaudhry et al., 2019a),
where the models are trained on the first (e.g. three) tasks for validation and then training is
restarted for the remaining ones and the reported performance is only on the remaining tasks.

Training details: It is important to note that in all our experiments, no pre-trained
model is used. We used stochastic gradient descent with a batch size of 64 and a learning
rate of 0.01, decaying it by a factor of 0.3 once the loss plateaued. Dataset splits and batch
shuffle are identically in all UCB experiments and all baselines.

Bayes-by-backprop (BBB) Hyperparamters: Table 3.2 shows the search space for
hyperparamters in the BBB algorithm (Blundell et al., 2015) which we used for tuning on
the validation set of the first two tasks.

Network architecture: For Split MNIST and Permuted MNIST experiments, we have
used a two-layer perceptron which has 1200 units. Because there is more number of pa-
rameters in our Bayesian neural network compared to its equivalent regular neural net, we

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 31

Table 3.2: Search space for hyperparamters in BBB given by (Blundell et al., 2015)

BBB hyperparamters − log σ1 − log σ2 π
Search space {0, 1, 2} {6, 7, 8} {0.25,0.5,0.75}

Table 3.3: Continually learning on CIFAR10/100 using AlexNet and ResNet18 for UCB (our
method) and HAT (Serra et al., 2018). BWT and ACC in %. All results are (re)produced
by us.

Method BWT ACC

HAT (AlexNet) 0.0 78.3
HAT (ResNet18) −9.0 56.8
UCB (AlexNet) −0.7 79.44
UCB (ResNet18) −0.7 79.70

ensured fair comparison by matching the total number of parameters between the two to
be 1.9M unless otherwise is stated. For the multiple datasets learning scenario, as well as
alternating incremental CIFAR10/100 datasets, we have used a ResNet18 Bayesian neural
network with 7.1-11.3M parameters depending on the experiment. However, the majority of
the baselines provided in this work are originally developed using some variants of AlexNet
structure and altering that, e.g. to ResNet18, resulted in degrading in their reported and
experimented performance as shown in Table 3.3. Therefore, we kept the architecture for
baselines as AlexNet and ours as ResNet18 and only matched their number of parameters
to ensure having equal capacity across different approaches.

Number of Monte Carlo samples: UCB is ensured to be robust to random noise
using multiple samples drawn from posteriors. Here we explore different number of samples
and the effect on final performance for ACC and BWT.We have used Ωµ = 1/σ as importance
and regularization has been performed on mean values only. Following the result in Table
3.4 we chose the number of samples to be 10 for all experiments.

Pruning procedure and mask size: Once a task is learned, we compute the perfor-
mance drop for a set of arbitrary pruning percentages from the maximum training accuracy
achieved when no pruning is applied. The pruning portion is then chosen using a threshold
beyond which the performance drop is not accepted. Mask size is chosen without having
the knowledge of how many tasks to learn in the future. Upon learning each task we used
a uniform distribution of pruning ratios (50-100%) and picked the ratio resulted in at most
1%, 2%, and 3% forgetting for MNIST, CIFAR, and 8tasks experiments, respectively. We

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 32

Table 3.4: Number of Monte Carlo samples (N) in 2-Split MNIST

Method N BWT (%) ACC (%)

UCB 1 0.00 98.0
UCB 2 0.00 98.3
UCB 5 −0.15 99.0
UCB 10 0.00 99.2
UCB 15 −0.01 98.3

Table 3.5: Variants of learning rate regularization and importance measurement on 2-Split
MNIST

Method µ ρ Importance Ω BWT (%) ACC (%)

UCB x - 1/σ 0.00 99.2
UCB - x 1/σ −0.04 98.7
UCB x x 1/σ −0.02 98.0
UCB x - |µ|/σ −0.03 98.4
UCB - x |µ|/σ −0.52 98.7
UCB x x |µ|/σ −0.32 98.8

UCB-P x x |µ|/σ −0.01 99.0
UCB-P x x 1/σ −0.01 98.9

did not tune this parameter because in our hyperparameter tuning, we only assume we have
validation sets of the first two tasks.

Parameter regularization and importance measurement: Table 3.5 ablates differ-
ent ways to compute the importance Ω of an parameter in Eq. 3.4 and 3.5. As shown in Table
3.5 the configuration that yields the highest accuracy and the least forgetting (maximum
BWT) occurs when the learning rate regularization is performed only on µ of the posteriors
using Ωµ = 1/σ as the importance and Ωρ = 1.

Performance measurement: Let n be the total number of tasks. Once all are learned,
we evaluate our model on all n tasks. ACC is the average test classification accuracy across
all tasks. To measure forgetting we report backward transfer, BWT, which indicates how
much learning new tasks has influenced the performance on previous tasks. While BWT < 0
directly reports catastrophic forgetting, BWT > 0 indicates that learning new tasks has

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 33

helped with the preceding tasks. Formally, BWT and ACC are as follows:

BWT =
1

n

n∑
i=1

Ri,n −Ri,i, ACC =
1

n

n∑
i=1

Ri,n (3.8)

where Ri,n is the test classification accuracy on task i after sequentially finishing learning
the nth task. Note that in UCB-P, Ri,i refers the test accuracy on task i before pruning and
Ri,n after pruning which is equivalent to the end of sequence performance. In Section 3.6,
we show that our UCB model can be used when tasks labels are not available at inference
time by training it with a “single head” architecture with a sum of number of classes for all
tasks. We refer to the ACC measured for this scenario as “Generalized Accuracy”.

3.5.1 5-Split MNIST

We first present our results for class incremental learning of MNIST (5-Split MNIST)
in which we learn the digits 0 − 9 in five tasks with 2 classes at a time in 5 pairs of 0/1,
2/3, 4/5, 6/7, and 8/9. Table 3.6 shows the results for reference baselines in Bayesian and
non-Bayesian neural networks including fine-tuning (BBB-FT, ORD-FT), feature extraction
(BBB-FE, ORD-FE) and, joint training (BBB-JT, ORD-JT) averaged over 3 runs and stan-
dard deviations are given in Table 3.6. Although the MNIST dataset is an “easy” dataset,
we observe throughout all experiments that Bayesian fine-tuning and joint training perform
significantly better than their counterparts, ORD-FT and ORD-JT. For Bayesian methods,
we compare against VCL and its variations named as VCL with Variational Adam (VCL-
Vadam), VCL with Adam and Gaussian natural gradients (VCL-GNG). For non-Bayesian
methods, we compare against HAT, IMM, and EWC (EWC can be regarded as Bayesian-
inspired). VCL-Vadam (ACC=99.17%) appears to be outperforming VCL (ACC=98.20%)
and VCL-GNG (ACC=96.50%) in average accuracy. However, full comparison is not possible
because forgetting was not reported for Vadam and GNG. Nevertheless, UCB (ACC=99.63%)
is able to surpass all the baselines including VCL-Vadam in average accuracy while in zero
forgetting it is on par with HAT (ACC=99.59%). We also report results on incrementally
learning MNIST in two tasks (2-Split MNIST) in Table 3.7, where we compare it against
PackNet, HAT, and LWF where PackNet, HAT, UCB-P, and UCB have zero forgetting while
UCB has marginally higher accuracy than all others.

3.5.2 Permuted MNIST

Permuted MNIST is a popular variant of the MNIST dataset to evaluate continual learn-
ing approaches in which each task is considered as a random permutation of the original
MNIST pixels. Following the literature, we learn a sequence of 10 random permutations
and report average accuracy at the end. Table 3.8 shows ACC and BWT of UCB and
UCB-P in comparison to state-of-the-art models using a small and a large network with
0.1M and 1.9M parameters, respectively. The accuracy achieved by UCB (ACC=91.44 ±

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 34

Table 3.6: Continually learning on 5-Split MNIST. BWT and ACC in %. (*) denotes that
methods do not adhere to the continual learning setup: BBB-JT and ORD-JT serve as the
upper bound for ACC for BBB/ORD networks, respectively. All results are (re)produced by
us.

Method BWT ACC

VCL-Vadam (Tseran et al., 2018) - 99.17± 0.05
VCL-GNG (Chen et al., 2019) - 96.50± 0.07
VCL (Nguyen et al., 2018) -0.56± 0.03 98.20± 0.03
IMM (Lee et al., 2017) -11.20± 1.57 88.54± 1.56
EWC (Kirkpatrick et al., 2017) -4.20± 1.08 95.78± 1.08
HAT (Serra et al., 2018) 0.00± 0.02 99.59± 0.02
ORD-FT∗ -9.18± 1.12 90.60± 1.12
ORD-FE∗ 0.00± 1.56 98.54± 1.57
BBB-FT∗ -6.45± 1.99 93.42± 1.98
BBB-FE∗ 0.00± 2.23 98.76± 2.23
UCB-P (Ours) -0.72± 0.04 99.32± 0.04
UCB (Ours) 0.00± 0.04 99.63± 0.03

ORD-JT∗ 0.00± 0.02 99.78± 0.02
BBB-JT∗ 0.00± 0.01 99.87± 0.01

0.04%) using the small network outperforms the ACC reported by (Serra et al., 2018) for
SI (ACC=86.0%), EWC (ACC=88.2%), while HAT attains a slightly better performance
(ACC=91.6%). Comparing the average accuracy reported in VCL-Vadam (ACC=86.34%)
and VCL-GNG (ACC=90.50%) as well as obtained results for VCL (ACC=88.80%) shows
UCB with BWT=(0.03% ± 0.00%) is able to outperform other Bayesian approaches in ac-
curacy while forgetting significantly less compared to VCL with BWT=−7.9%. While we
do not experiment with memory in this work, not surprisingly adding memory to most ap-
proaches will improve their performance significantly as it allows looking into past tasks.
E.g. (Chen et al., 2019) report ACC=94.37% for VCL-GNC when adding a memory of size
200.

Next, we compare the results for the larger network (1.9M). While HAT and UCB have
zero forgetting, UCB, reaching ACC=97.42 ± 0.01%, performs better than all baselines
including HAT which obtains ACC=97.34± 0.05% using 1.9M parameters. We also observe
again that BBB-FT, despite being not specifically penalized to prevent forgetting, exhibits
reasonable negative BWT values, performing better than IMM and LWF baselines. It is
close to joint training, BBB-JT, with ACC=98.1%, which can be seen as an upper bound.

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 35

Table 3.7: Continually learning on 2-Split MNIST. BWT and ACC in %. (*) denotes that
methods do not adhere to the continual learning setup: BBB-JT and ORD-JT serve as the
upper bound for ACC for BBB/ORD networks, respectively. All results are (re)produced by
us.

Method BWT ACC

PackNet (Mallya & Lazebnik, 2018) 0.04± 0.01 98.91± 0.03
LWF (Li & Hoiem, 2016) −0.22± 0.04 99.12± 0.03
HAT (Serra et al., 2018) 0.01± 0.00 99.02± 0.00
ORD-FT −6.81± 0.03 92.42± 0.02
ORD-FE 0.04± 0.04 97.90± 0.04
BBB-FT −0.61± 0.03 98.44± 0.03
BBB-FE 0.02± 0.05 98.03± 0.05
UCB-P (Ours) 0.03± 0.04 99.02± 0.01
UCB (Ours) 0.01± 0.00 99.18± 0.01
ORD-JT∗ 0.02± 0.03 99.13± 0.03
BBB-JT∗ 0.03± 0.02 99.51± 0.02

3.5.3 Alternating CIFAR10 and CIFAR100

In this experiment, we randomly alternate between class incremental learning of CIFAR10
and CIFAR100. Both datasets are divided into 5 tasks each with 2 and 20 classes per task,
respectively. Table 3.9 presents ACC and BWT obtained with UCB-P, UCB, and three
BBB reference methods compared against various continual learning baselines. Among the
baselines presented in Table 3.9, PNN and PathNet are the only zero-forgetting-guaranteed
approaches. It is interesting to note that in this setup, some baselines (PathNet, LWF,
and LFL) do not perform better than the naive accuracy achieved by feature extraction.
PathNet suffers from bad pre-assignment of the network’s capacity per task which causes
poor performance on the initial task from which it never recovers. IMM performs almost
similar to fine-tuning in ACC, yet forgets more. PNN, EWC, and HAT are the only baselines
that perform better than BBB-FE and BBB-FT. EWC and HAT are both allowed to forget
by construction, however, HAT shows zero forgetting behavior. While EWC is outperformed
by both of our UCB variants, HAT exhibits 1% better ACC over UCB-P. Despite having a
slightly higher forgetting, the overall accuracy of UCB is higher, reaching 79.4%. BBB-JT
in this experiment achieves a positive BWT which shows that learning the entire sequence
improves the performance on earlier tasks.

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 36

Table 3.8: Continually learning on Permuted MNIST. BWT and ACC in %. (*) denotes that
method does not adhere to the continual learning setup: BBB-JT serves as the upper bound
for ACC for BBB network. ‡ denotes results reported by (Serra et al., 2018). † denotes the
result reported from original work. BWT was not reported in ‡ and †. All others results are
(re)produced by us.

Method #Params BWT ACC

SI (Zenke et al., 2017)‡ 0.1M - 86.0
EWC (Kirkpatrick et al., 2017)‡ 0.1M - 88.2
HAT (Serra et al., 2018)‡ 0.1M - 91.6
VCL-Vadam† 0.1M - 93.34
VCL-GNG† 0.1M - 94.62
VCL 0.1M −7.90± 0.23 88.80± 0.23
UCB (Ours) 0.1M −0.38± 0.02 91.44± 0.04
LWF (Li & Hoiem, 2016) 1.9M −31.17± 0.05 65.65± 0.05
IMM (Lee et al., 2017) 1.9M −7.14± 0.07 90.51± 0.08
HAT (Serra et al., 2018) 1.9M 0.03± 0.05 97.34± 0.05
BBB-FT 1.9M −0.58± 0.05 90.01± 0.05
BBB-FE 1.9M 0.02± 0.03 93.54± 0.04
UCB-P (Ours) 1.9M −0.95± 0.06 97.24± 0.06
UCB (Ours) 1.9M 0.03± 0.00 97.42± 0.01
BBB-JT∗ 1.9M 0.00± 0.00 98.12± 0.01

3.5.4 Multiple datasets learning

Finally, we present our results for continual learning of 8 tasks using UCB-P and UCB in
Table 3.10. Similar to the previous experiments we look at both ACC and BWT obtained
for UCB-P, UCB, BBB references (FT, FE, JT) as well as various baselines. Considering
the ACC achieved by BBB-FE or BBB-FT (58.1%) as a lower bound we observe again that
some baselines are not able to do better than BBB-FT including LFL, PathNet, LWF, IMM,
and EWC while PNN and HAT remain the only strong baselines for our UCB-P and UCB
approaches. UCB-P again outperforms PNN by 3.6% in ACC. HAT exhibits only −0.1%
BWT, but our UCB achieves 2.4% higher ACC.

3.6 Single Head and Generalized Accuracy of UCB
UCB can be used even if the task information is not given at test time. For this purpose,

at training time, instead of using a separate fully connected classification head for each task,
we use a single head with the total number of outputs for all tasks. For example in the

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 37

Table 3.9: Continually learning on CIFAR10/100. BWT and ACC in %. (*) denotes that
method does not adhere to the continual learning setup: BBB-JT serves as the upper bound
for ACC for BBB network. All results are (re)produced by us.

Method BWT ACC

PathNet (Fernando et al., 2017) 0.00± 0.00 28.94± 0.03
LWF (Li & Hoiem, 2016) −37.9± 0.32 42.93± 0.30
LFL (Jung et al., 2016) −24.22± 0.21 47.67± 0.22
IMM (Lee et al., 2017) −12.23± 0.06 69.37± 0.06
PNN (Rusu et al., 2016) 0.00± 0.00 70.73± 0.08
EWC (Kirkpatrick et al., 2017) −1.53± 0.07 72.46± 0.06
HAT (Serra et al., 2018) 0.04± 0.06 78.32± 0.06
BBB-FE 0.04± 0.02 51.04± 0.03
BBB-FT −7.43± 0.07 68.89± 0.07
UCB-P (Ours) −1.89± 0.03 77.32± 0.03
UCB (Ours) −0.72± 0.02 79.44± 0.02
BBB-JT∗ 1.52± 0.04 83.93± 0.04

8-dataset experiment we only use one head with 293 number of output classes, rather than
using 8 separate heads, during training and inference time.

Table 3.11 presents our results for UCB and BBB-FT trained with a single head against
having a multi-head architecture, in columns 4-7. Interestingly, we see only a small per-
formance degrade for UCB from training with multi-head to a single head. The ACC re-
duction is 0.3%, 2.6%, 5.1%, and 4.1% for 2-Split MNIST, Permuted MNIST, Alternating
CIFAR10/100, and sequence of 8 tasks experiments, respectively.

We evaluated UCB and BBB-FT with a more challenging metric where the prediction
space covers the classes across all the tasks. Hence, confusion of similar class labels across
tasks can be measured. Performance for this condition is reported as Generalized ACC in
Table 3.11 in columns 2-3. We observe a small performance reduction in going from ACC
to Generalized ACC, suggesting non-significant confusion caused by the presence of more
number of classes at test time. The performance degradation from ACC to Generalized
ACC is 0.2%, 2.6%, 3.1%, and 3.1% for 2-Split MNIST, Permuted MNIST, Alternating
CIFAR10/100, and sequence of 8 tasks, respectively. This shows that UCB can perform
competitively in more realistic conditions such as unavailability of task information at test
time. We believe the main insight of our approach is that instead of computing additional
measurements of importance, which are often task, input or output dependent, we directly
use predicted weight uncertainty to find important parameters. We can freeze them using a
binary mask, as in UCB-P, or regularize changes conditioned on current uncertainty, as in
UCB.

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 38

Table 3.10: Continually learning on sequence of 8 datastes. BWT and ACC in %. (*)
denotes that method does not adhere to the continual learning setup: BBB-JT serves as the
upper bound for ACC for BBB network. All results are (re)produced by us.

Method BWT ACC

LFL -10.0 8.61
PathNet 0.00 20.22
LWF -54.3 28.22
IMM -38.5 43.93
EWC -18.04 50.68
PNN 0.00 76.78
HAT -0.14 81.59
BBB-FT -23.1 43.09
BBB-FE -0.01 58.07
UCB-P (Ours) -2.54 80.38
UCB (Ours) -0.84 84.04
BBB-JT∗ -1.2 84.1

Table 3.11: Single Head vs. Multi-Head architecture and Generalized vs. Standard Accuracy.
Generalized accuracy means that task information is not available at test time. SM, PM,
CF, and 8T denote the 5-Split MNIST, Permuted MNIST, Alternating CIFAR10/100, and
sequence of 8 tasks, respectively.

Generalized ACC ACC
Single Head Single Head Multi Head

Exp UCB BBB-FT UCB BBB-FT UCB BBB-FT
SM 98.7 98.1 98.9 98.7 99.2 98.4
PM 92.5 86.1 95.1 88.3 97.7 90.0
CF 71.2 65.2 74.3 67.8 79.4 68.9
8T 76.8 47.6 79.9 53.2 84.0 43.1

3.7 Summary
In this chapter, we proposed a continual learning formulation with Bayesian neural net-

works, called UCB, that uses per-parameter uncertainty predictions to guide the continual
learning agent. We showed how the important parameters can be either fully preserved
through a saved binary mask (UCB-P) or allowed to change conditioned on their uncer-
tainty for learning new tasks (UCB). We demonstrated the effectiveness of UCB in contin-
ually learning short and long sequences of benchmark datasets compared against baselines

CHAPTER 3. CONTINUAL LEARNING IN BAYESIAN NEURAL NETWORKS 39

and prior work. We also showed how UCB can also be deployed as a task-free algorithm by
using a single head setting where tasks information is not available at test time.

40

Chapter 4

Conclusion and Future Work

4.1 Discussion of Contributions
This thesis aimed to explore continual learning in two different neural networks fomula-

tion: Bayesian and non-Bayesian networks.. In the first part, we mainly focused on formu-
lating continual learning in a general setting where we used architecture growth and memory
replay to prevent forgetting. In the second part, we developed a regularization-based model
in Bayesian neural networks guided by the uncertainty defined per parameters. Summary of
our key contributions is provided as follow:

• Chapter 2: we propose a novel hybrid continual learning algorithm – Adversarial Con-
tinual Learning (ACL)– that factorizes the representation learned for a sequence of
tasks into task-specific and task-invariant features where the former is important to be
fully preserved to avoid forgetting and the latter is empirically found to be remarkably
less prone to forgetting. The novelty of our work is that we use adversarial learning
along with orthogonality constraints to disentangle the shared and private latent rep-
resentations which results in compact private modules that can be stored into memory
and hence, efficiently preventing forgetting. A tiny replay buffer, although not critical,
can be also integrated into our approach if forgetting occurs in the shared module.
We evaluated ACL on CL benchmark datasets and established a new state of the
art on 20-Split miniImageNet, 5-Datasets, 20-Split CIFAR100, Permuted MNIST, and
5-Split MNIST.

• Chapter 3: we propose a continual learning formulation with Bayesian neural networks,
called UCB, that uses uncertainty predictions to perform continual learning: important
parameters can be either fully preserved through a saved binary mask (UCB-P) or
allowed to change conditioned on their uncertainty for learning new tasks (UCB). We
demonstrated how the probabilistic uncertainty distributions per weight are helpful to
continually learning short and long sequences of benchmark datasets compared against
baselines and prior work. We show that UCB performs superior or on par with state-of-

CHAPTER 4. CONCLUSION AND FUTURE WORK 41

the-art models such as HAT (Serra et al., 2018) across all the experiments. Choosing
between the two UCB variants depends on the application scenario: While UCB-P
enforces no forgetting after the initial pruning stage by saving a small binary mask per
task, UCB does not require additional memory and allows for more learning flexibility
in the network by allowing small forgetting to occur. UCB can also be used in a single
head setting where the right subset of classes belonging to the task is not known during
inference leading to a competitive model that can be deployed where it is not possible
to distinguish tasks in a continuous stream of the data at test time. UCB can also be
deployed in a single head scenario and where tasks information is not available at test
time.

4.2 Future Perspectives
Now, we describe some of the future directions that immediately follow from the quanti-

tative and qualitative analysis provided in this work:

• Directions to expand ACL approach: ACL is introduced as a task-aware algorithm
in which we assume task descriptions are available during test time. The validity of
this assumption can be questionable in real-world applications where this information
might not be available. Further expanding this approach can focus on overcoming
this limitation by using single head technique where the performance might drop in
exchange for becoming task-independent.

• Directions to expand continual learning in Bayesian neural networks: De-
spite being strong and mathematically grounded, Bayesian neural networks in gen-
eral are computationally more expensive than regular neural nets. To facilitate using
BNNs one can explore paths to reduce expenses associated with using double number
of parameters in such networks. Another direction to enhance BNNs’ capabilities in
modeling task-free CL would be removing the assumption of clear boundaries between
tasks by determining their correlation between the change in parameters’ uncertainty
during tasks transitions.

42

Bibliography

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M. & Tuytelaars, T. Memory aware
synapses: Learning what (not) to forget in Proceedings of the European Conference on
Computer Vision (ECCV) (2018), 139–154.

2. Azadi, S., Pathak, D., Ebrahimi, S. & Darrell, T. Compositional gan: Learning condi-
tional image composition (2018).

3. Azadi, S., Pathak, D., Ebrahimi, S. & Darrell, T. Compositional GAN: Learning Image-
Conditional Binary Composition.

4. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: A review for
statisticians. Journal of the American Statistical Association 112, 859–877 (2017).

5. Blum, A. & Mitchell, T. Combining labeled and unlabeled data with co-training in Pro-
ceedings of the eleventh annual conference on Computational learning theory (1998),
92–100.

6. Blundell, C., Cornebise, J., Kavukcuoglu, K. &Wierstra, D.Weight Uncertainty in Neu-
ral Network in Proceedings of the 32nd International Conference on Machine Learning
(eds Bach, F. & Blei, D.) 37 (PMLR, 2015), 1613–1622.

7. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D. & Erhan, D. Domain sep-
aration networks in Advances in neural information processing systems (2016), 343–
351.

8. Bulatov, Y. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html (2011).

9. Chaudhry, A., Ranzato, M., Rohrbach, M. & Elhoseiny, M. Efficient Lifelong Learning
with A-GEM in International Conference on Learning Representations (2019).

10. Chaudhry, A. et al. Continual Learning with Tiny Episodic Memories. arXiv preprint
arXiv:1902.10486 (2019).

11. Chaudhuri, K., Kakade, S. M., Livescu, K. & Sridharan, K. Multi-view clustering via
canonical correlation analysis in Proceedings of the 26th annual international conference
on machine learning (2009), 129–136.

12. Chen, Y., Diethe, T. & Lawrence, N. Facilitating Bayesian Continual Learning by Nat-
ural Gradients and Stein Gradients. arXiv preprint arXiv:1904.10644 (2019).

BIBLIOGRAPHY 43

13. Ebrahimi, S., Elhoseiny, M., Darrell, T. & Rohrbach, M. Uncertainty-guided Contin-
ual Learning with Bayesian Neural Networks in International Conference on Learning
Representations (2020). https://openreview.net/forum?id=HklUCCVKDB.

14. Ebrahimi, S., Meier, F., Calandra, R., Darrell, T. & Rohrbach, M. Adversarial Continual
Learning. arXiv preprint arXiv:2003.09553 (2020).

15. Ebrahimi, S., Rohrbach, A. & Darrell, T. Gradient-free policy architecture search and
adaptation. arXiv preprint arXiv:1710.05958 (2017).

16. Ebrahimi, S., Rohrbach, A. & Darrell, T. Gradient-Free Supervised and Unsupervised
Learning with Rewards in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (2017).

17. Ebrahimi, S., Sinha, S. & Darrell, T. Variational Adversarial Active Learning.

18. Fernando, C. et al. Pathnet: Evolution channels gradient descent in super neural net-
works. arXiv preprint arXiv:1701.08734 (2017).

19. Ganin, Y. et al. Domain-adversarial training of neural networks. The Journal of Ma-
chine Learning Research 17, 2096–2030 (2016).

20. Goodfellow, I. et al. Generative adversarial nets in Advances in neural information
processing systems (2014), 2672–2680.

21. Graves, A. Practical variational inference for neural networks in Advances in neural
information processing systems (2011), 2348–2356.

22. Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149
(2015).

23. Hastings, W. K. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika (1970).

24. Hernández-Lobato, J. M. & Adams, R. Probabilistic backpropagation for scalable learn-
ing of bayesian neural networks in International Conference on Machine Learning
(2015), 1861–1869.

25. Hinton, G. E. & Van Camp, D. Keeping the neural networks simple by minimizing
the description length of the weights in Proceedings of the sixth annual conference on
Computational learning theory (1993), 5–13.

26. Hoffman, J. et al. CyCADA: Cycle-Consistent Adversarial Domain Adaptation in In-
ternational Conference on Machine Learning (2018), 1989–1998.

27. Iandola, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

28. Jung, H., Ju, J., Jung, M. & Kim, J. Less-forgetting learning in deep neural networks.
arXiv preprint arXiv:1607.00122 (2016).

https://openreview.net/forum?id=HklUCCVKDB

BIBLIOGRAPHY 44

29. Kemker, R. & Kanan, C. FearNet: Brain-Inspired Model for Incremental Learning in
International Conference on Learning Representations (2018). https://openreview.
net/forum?id=SJ1Xmf-Rb.

30. Khan, M. E. & Nielsen, D. Fast yet simple natural-gradient descent for variational
inference in complex models in 2018 International Symposium on Information Theory
and Its Applications (ISITA) (2018), 31–35.

31. Khan, M. E. et al. Fast and scalable Bayesian deep learning by weight-perturbation in
Adam. arXiv preprint arXiv:1806.04854 (2018).

32. Kim, H. & Mnih, A. Disentangling by factorising. arXiv preprint arXiv:1802.05983
(2018).

33. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization in International
Conference on Learning Representations (2015).

34. Kirkpatrick, J. et al.Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 201611835 (2017).

35. Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images tech.
rep. (Citeseer, 2009).

36. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86, 2278–2324 (1998).

37. Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W. & Zhang, B.-T. Overcoming catastrophic for-
getting by incremental moment matching in Advances in Neural Information Processing
Systems (2017), 4652–4662.

38. Li, Z. & Hoiem, D. Learning Without Forgetting in European Conference on Computer
Vision (2016), 614–629.

39. Liu, Z. et al. Learning efficient convolutional networks through network slimming in
Proceedings of the IEEE International Conference on Computer Vision (2017), 2736–
2744.

40. Lopez-Paz, D. et al. Gradient episodic memory for continual learning in Advances in
Neural Information Processing Systems (2017), 6467–6476.

41. MacKay, D. J. A practical Bayesian framework for backpropagation networks. Neural
computation 4, 448–472 (1992).

42. MacKay, D. J. Bayesian methods for adaptive models PhD thesis (California Institute
of Technology, 1992).

43. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. & Frey, B. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644 (2015).

44. Mallya, A. & Lazebnik, S. Packnet: Adding multiple tasks to a single network by iterative
pruning in IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018).

https://openreview.net/forum?id=SJ1Xmf-Rb
https://openreview.net/forum?id=SJ1Xmf-Rb

BIBLIOGRAPHY 45

45. McClelland, J. L., McNaughton, B. L. & O’reilly, R. C. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review 102, 419
(1995).

46. McCloskey, M. & Cohen, N. J. in Psychology of learning and motivation 109–165 (El-
sevier, 1989).

47. McCloskey, M. & Cohen, N. J. in Psychology of learning and motivation 109–165 (El-
sevier, 1989).

48. Molchanov, P., Tyree, S., Karras, T., Aila, T. & Kautz, J. Pruning Convolutional Neu-
ral Networks for Resource Efficient Inference in International Conference on Learning
Representations (ICLR) (2016).

49. Neal, R. M. Bayesian learning for neural networks (Springer Science & Business Media,
2012).

50. Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning in
NIPS workshop on deep learning and unsupervised feature learning (2011).

51. Ng, H.-W. & Winkler, S. A data-driven approach to cleaning large face datasets in
Image Processing (ICIP), 2014 IEEE International Conference on (2014), 343–347.

52. Nguyen, C. V., Li, Y., Bui, T. D. & Turner, R. E. Variational Continual Learning in
International Conference on Learning Representations (2018).

53. Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. icarl: Incremental classifier
and representation learning in CVPR (2017).

54. Riemer, M. et al. Learning to learn without forgetting by maximizing transfer and
minimizing interference. arXiv preprint arXiv:1810.11910 (2018).

55. Robert, C. & Casella, G. Monte Carlo statistical methods (Springer Science & Business
Media, 2013).

56. Robins, A. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science
7, 123–146 (1995).

57. Rusu, A. A. et al. Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

58. Salzmann, M., Ek, C. H., Urtasun, R. & Darrell, T. Factorized orthogonal latent spaces
in Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (2010), 701–708.

59. Schönfeld, E., Ebrahimi, S., Sinha, S., Darrell, T. & Akata, Z. Cross-Linked Variational
Autoencoders for Generalized Zero-Shot Learning (2019).

60. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T. & Akata, Z. Generalized zero-and
few-shot learning via aligned variational autoencoders in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2019), 8247–8255.

BIBLIOGRAPHY 46

61. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T. & Akata, Z. Generalized Zero-Shot
Learning via Aligned Variational Autoencoders in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops (2019).

62. Schraudolph, N. N. Fast curvature matrix-vector products for second-order gradient
descent. Neural computation 14 (2002).

63. Serra, J., Suris, D., Miron, M. & Karatzoglou, A. Overcoming Catastrophic Forgetting
with Hard Attention to the Task in Proceedings of the 35th International Conference
on Machine Learning (eds Dy, J. & Krause, A.) 80 (PMLR, 2018), 4548–4557.

64. Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual learning with deep generative replay
in Advances in Neural Information Processing Systems (2017), 2990–2999.

65. Shon, A., Grochow, K., Hertzmann, A. & Rao, R. P. Learning shared latent structure
for image synthesis and robotic imitation in Advances in neural information processing
systems (2006), 1233–1240.

66. Shridhar, K., Laumann, F. & Liwicki, M. Uncertainty Estimations by Softplus normal-
ization in Bayesian Convolutional Neural Networks with Variational Inference. arXiv
preprint arXiv:1806.05978 (2018).

67. Sinha, S., Ebrahimi, S. & Darrell, T. Variational adversarial active learning in Proceed-
ings of the IEEE International Conference on Computer Vision (2019), 5972–5981.

68. Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F. & Schmidhuber, J. Compete
to compute in Advances in neural information processing systems (2013), 2310–2318.

69. Stallkamp, J., Schlipsing, M., Salmen, J. & Igel, C. The German traffic sign recognition
benchmark: a multi-class classification competition in Neural Networks (IJCNN), The
2011 International Joint Conference on (2011), 1453–1460.

70. Tseran, H., Khan, M. E., Harada, T. & Bui, T. D. Natural Variational Continual Learn-
ing in Continual Learning Workshop@ NeurIPS 2 (2018).

71. Tzeng, E., Hoffman, J., Saenko, K. & Darrell, T. Adversarial discriminative domain
adaptation in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017), 7167–7176.

72. Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. The Journal of
Machine Learning Research 15, 3221–3245 (2014).

73. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. Matching networks for one
shot learning in Advances in neural information processing systems (2016), 3630–3638.

74. Vitter, J. S. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS) 11, 37–57 (1985).

75. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, The MIT License (MIT) Copyright c© 2017 Zalando
SE. https://tech.zalando.com, arXiv preprint arXiv:1708.07747 (2017).

BIBLIOGRAPHY 47

76. Xu, C., Tao, D. & Xu, C. A survey on multi-view learning. arXiv preprint arXiv:1304.5634
(2013).

77. Yoon, J., Yang, E., Lee, J. & Hwang, S. J. Lifelong Learning with Dynamically Expand-
able Networks in International Conference on Learning Representations (2018).

78. Zenke, F., Poole, B. & Ganguli, S. Continual Learning Through Synaptic Intelligence
in Proceedings of the 34th International Conference on Machine Learning (eds Precup,
D. & Teh, Y. W.) 70 (PMLR, 2017), 3987–3995.

79. Zhang, M., Wang, T., Lim, J. H. & Feng, J. Prototype Reminding for Continual Learn-
ing. arXiv preprint arXiv:1905.09447 (2019).

	Contents
	List of Figures
	List of Tables
	Introduction
	Continual Learning Approaches

	Continual Learning in Ordinary Neural Networks
	Introduction
	Adversarial Continual learning (ACL)
	Orthogonality Constraint
	Avoiding forgetting in ACL
	Evaluation metrics

	Experiments
	ACL on Vision Benchmarks

	Results and Discussion
	ACL Performance on 20-Split miniImageNet
	Ablation Studies on 20-Split miniImageNet
	Visualizing the effect of adversarial learning in ACL

	ACL Performance on a sequence of 5-Datasets
	Additional Experiments
	Summary

	Continual Learning in Bayesian Neural Networks
	Introduction
	Bayesian Approaches for Continual Learning
	Natural gradient descent methods:

	Variational Bayes-by-Backprop (BBB)
	Uncertainty-guided Continual Learning in Bayesian Neural Networks
	UCB with learning rate regularization
	UCB using weight pruning (UCB-P)

	Experimental Setup
	5-Split MNIST
	Permuted MNIST
	Alternating CIFAR10 and CIFAR100
	Multiple datasets learning

	Single Head and Generalized Accuracy of UCB
	Summary

	Conclusion and Future Work
	Discussion of Contributions
	Future Perspectives

	Bibliography

