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Abstract

Learning with Humans in the Loop

by

Gokul Swamy

Master of Science in Computer Science

University of California, Berkeley

Professor Anca Dragan, Chair

Robots are starting to leave factory floors and enter daily life, sharing our roads and homes.
For this transition to be a smooth one, robots need to be able to learn to interact safely with
the highly varied environments and other agents that compose the real world. Much of this
task, at some level, requires learning from people, either by (1) developing predictive models
of human behavior to be used in motion planning, (2) imitating expert demonstrations
produced by people, or (3) learning from user feedback, often given as labels for data. With
humans in the loop, learning algorithms should be able to learn quickly from data that is both
easy and safe for people to provide. We present methods and experimental evidence that are
a useful foundation for developing scalable algorithms for each of these tasks. In Chapter 2,
we present experimental evidence for the advantages of a theory-of-mind inductive bias for
human motion prediction in the autonomous vehicle domain. In Chapter 3, we propose an
algorithm for scaling up assistive teleoperation to multiple robots and validate its e�cacy
with simulated experiments, a user study, and a hardware demonstration. In Chapter 4,
we describe a proof-of-concept system for brain-computer-interface-based shared autonomy
via deep learning and present preliminary simulated experiments. In Chapter 5, we provide
some conclusions and situate our work in a larger social and ethical context.
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Chapter 1

Introduction

All truths wait in all things

They neither hasten their own

delivery nor resist it.

Leaves of Grass

William Wordsworth

1.1 The Necessity of Learning with Humans in the
Loop

For applications from autonomous driving to manufacturing, robots are starting to cross
into human spaces. The safety and comfort of the people in these spaces should not be
thought of in purely abstract terms but as a vital component to ensuring the adoption and
positive impact of such systems. Unlike that of inanimate objects, human behavior cannot
be predicted purely via physics – people are goal driven, reactive agents that exhibit diverse
behavior based on their internal state and environmental context. This makes it a challenge
to apply approaches that have been succesful in other areas of robotics and AI. The interplay
between randomness and directedness in human behavior makes it appealing for robots to
treat them as noisily rational agents that respond to a robot’s actions [17] – an approach
termed ”optimization-centric theory of mind.”

However, to determine the form of these optimization-based models of human behavior
or to fit less structured predictors, one likely needs to collect data from people. This is
because success at a task might be dependent on human convention (e.g. driving through
an intersection) or there might be many equally good policies to complete a task and it
is hard to know a priori which one a person will choose – approaches like self-play and
population-based training are therefore insu�cient when applied naively [12].
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2 3 4

Data Efficiency

Bounded Attention Noisy Feedback Adaptation/Diversity

Data Collecting EaseHuman Safety

Figure 1.1: A conceptual map of the challenges (red) and goals (green) focused on in each
chapter (grey) of this thesis.

1.2 The Challenges of Learning with Humans in the
Loop

When we integrate people into the data-collection pipeline of our models, we introduce both
challenges and goals into the design of our algorithms.

On the goals side, we want to be able to learn without requiring large amounts of human
interaction data. Here, a more structured model of human behavior, while inaccurate in cer-
tain circumstances, can drastically reduce the sample complexity of learning algorithms, as
we explore in Chapter 2. Limited data collection is desirable even when we’re not explicitly
modeling human behavior but instead using human-generated labels to learn to perform a
task. In Chapter 3, we present an algorithm that naturally collects targeted user demonstra-
tions at areas of particularly high robot suboptimality that could be considered a form of
active learning. The ease of collecting a single datapoint is also important to consider when
evaluating human-in-the-loop learning systems. Approaches like ours in Chapter 4 that are
based on implicit feedback may one day help reduce user data generation burden.

Our results in Chapter 2 also touch on another important desideratum – the safety of the
person providing data for the robot. We investigate whether various prototypical algorithms
can learn from data of people interacting with each other or more generally from o↵-policy
data with strong constraints on robot behavior.

On the challenges side, we need to deal with the fact that people have inherent limits like
bounded attention. In Chapter 3, we present an algorithm to help a single operator super-
vise many robots by collecting data in situations with few robots where they have enough
attention to consider all options and using a cognitive model to generalize to situations with
many robots. More generally, users can make mistakes when generating data or we might
not be able to completely accurately interpret their feedback. In Chapter 4, we begin to
tackle noisy feedback through maximum entropy methods [67].

Another consideration when dealing with data from people is the diversity of human
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behavior and the fact that even a single person can adapt over time. In Chapter 4, we
present a first-pass approach to deal with these concerns via meta-learning [20].

1.3 Terminology

Throughout this thesis, we use agent and robot interchangeably. We focus mostly on robotics
applications but the key ideas are not grounded in the physicality of their instantiations.
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Chapter 2

On the Utility of Model Learning in
Human-Robot Interaction

He understood that he too was

a mere appearance, dreamt by

another.

Labyrinths

Jorge Luis Borges

2.1 Acknowledgements

The work in this section was conducted, written up, and shared publicly by the author, Jens
Schulz, Dylan Hadfield-Menell and Anca Dragan.

2.2 Introduction

An age-old debate that still animates the halls of computer science, robotics, neuroscience,
and psychology departments is that between model-based and model-free (reinforcement)
learning. Model-based methods work by building a model of the world – dynamics that tells
an agent how the world state will change as a consequence of its actions – and optimizing
a cost or reward function under the learned model. In contrast, model-free methods never
attempt to explicitly learn how the world works. Instead, the agent learns a policy directly
from acting in the world and learning from what works and what does not. Model-free
methods are appealing because the agent implicitly learns what it needs to know about the
world, and only what it needs. On the other hand, model-based methods are appealing
because knowing how the world works might enable the agent to generalize beyond its
experience and possibly explain why a decision is the best one.
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x

uR
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Q(x, uR, uH ; �)

(a) Model-Free

x uR

(b) Model-Based (c) Theory of Mind

R

H

R

H

R

H

Figure 2.1: We characterize the performance of three HRI paradigms that impose increasingly
more structure: (a) in model-free, the robot learns a policy for how to act directly, without
modeling the human; (b) in black-box model-based, the robot learns a policy for how the
human acts, and uses it when optimizing its reward; (c) in theory of mind, the robot further
assumes that the human optimizes a reward function with unknown parameters.

In neuro- and cognitive science, the debate is about which paradigm best describes human
learning [23, 37]. On the other side of campus, in AI and robotics, the debate is instead
about which paradigm enables an agent to perform its task best. As of today, model-free
methods have produced many successes [41, 54, 53], but some e↵orts are shifting towards
model-based methods [21, 47].

In the context of Human-Robot Interaction (HRI), which is our focus in this work, the
debate has a di↵erent nuance. For robots that do not work in isolation, but in worlds
that contain people, the dynamics of the world are no longer just about how physical state
changes, but also how human state changes – what the human will do next, and how that
is influenced by the robot’s action. There is thus a lot of richness in what it means to be
model-based. On the one hand, the robot can learn a model by observing human state
transitions and fitting a policy to them, as it can with any other part of the environment
(4.1,b). This is a “black-box” approach to system identification. But on the other hand, the
robot can structure its model and explicitly reason about the human di↵erently: humans,
unlike objects in the world, have agency, and treating them as such means using what Gopnik
called a “Theory of Mind” (ToM) [24]: a set of assumptions about how another agent works,
including how they decide on their actions (Fig. 4.1,c). Rather than black-box, this is a
“gray-box” approach.

When it comes to our own interaction with other people, cognitive science research has
amassed evidence that we might use such a theory of mind [13, 22, 59, 7] – in particular,
that we assume that others are approximately rational, i.e. they tend to make the decisions
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that are approximately optimal under some objective (or utility, or reward) [8]. But even if
humans do use such tools in interaction, it is not at all clear that robots ought to as well.
For robots and interaction, methods from all three paradigms exist: model-free [44, 11, 48],
regular model-based [52], and ToM-based [68, 18, 6, 30, 51].

Ideally, we’d want to settle the debate for HRI by seeing what works best in practice.
Unfortunately, several factors make it very di�cult to get a definitive answer: 1) we do not
yet have the best ToM assumptions we could get, as research in the psychological sciences
and even economics is ongoing; as a result, any answer now is tied to the current models we
have, not the ones we could have; 2) making the comparison requires immensely expensive
evaluations with robots acting in the real world and failing in their interactions around real
people – this is very di�cult especially for safety-critical tasks; 3) the answer might depend
on the amount of data that can be available to the robot, and the distribution that data
is sampled from, which is also hard to predict – therefore, what we need to know is which
paradigm to use as a function of the data available.

In this work, rather than attempting to answer the practical and more general question
of which paradigm the robot should use, our idea was to turn to a more scientific and focused
question. We do not know how wrong the eventual ToM model will still be, and we do not
know how much data we can a↵ord, but we can compare the performance of these paradigms
under di↵erent possible scenarios.

We take inspiration from recent work in learning for control [63] that studied the sample
complexity of model-based and model-free methods for a very simple system: the linear
quadratic regulator. Their idea was that performance in a controlled simple system that
we have ground truth for is informative – if a method struggles even on this system, what
chance does it have in the real world?

We thus set up a simplified HRI system: we have a robot that needs to optimize a reward
function in the presence of a human who optimizes theirs, in response to the robot’s actions.
We instantiate this in an autonomous driving domain. This simplification from the real
world enables us to start answering two fundamental questions: 1) how big the benefit of
ToM would actually be, even in the optimistic case of having the perfect set of assumptions
about human decision making; and 2) how exactly this benefit decreases as our assumptions
become increasingly incorrect.
Findings. We uncover evidence which suggests that if we had a perfect theory of mind,
we’d reduce the sample complexity of learning compared to black-box model-based learning,
and, more importantly, we might be able to learn solely from o↵-policy data. In contrast,
we found that it is possible for black-box model based approaches to fail to improve even
with a lot of data, unless that data comes from the right distribution – the o↵-policy method
failed for us, and even iteratively collecting on-policy data did not seem to be enough in our
system without targeted exploration. ToM was surprisingly robust to wrong assumptions:
in our driving domain, even when the human deviates from ToM, it could produce useful
predictions – but this was in part due to ToM’s wrong predictions interacting well with short-
horizon planning, rather than ToM making better predictions than black-box approaches.
Further, ToM tended to transfer better: when we used a trained model to interact in a new
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HRI system, the ToM model performed better even when the human deviated substantially
from training behavior.
Limitations. These findings should be of course taken with a grain of salt. The di↵erences
we introduce between the ToM and the ground truth ”human” might not be representative
of what di↵erences we will see in real life. We also do this for one particular task, with
one particular ToM instantiation. Because of the di↵erence between accurate predictions
and useful predictions, di↵erent tasks might lead to di↵erent results. In a previous iteration
of this work, we investigated a task where a robot was attempting to influence the human
driver from behind to move out of the way: we realized that most wrong predictions would
lead to the correct plan in such a scenario, because most wrong predictions would lead to
the human moving out of the robot’s lane. We specifically designed the current task so
that being able to capture the influence on the human would actually matter more to task
performance. This is not true of all tasks. Further, the realities of planning in continuous
state-action spaces even in our relatively simple scenario, such as limited planning horizons
and convergence to local optima, put their own stamp on the findings. That said, the results
give us a glimpse at what might happen, pointing to surprisingly nuanced trade-o↵s between
ToM and black-box approaches, in particular with respect to the type of data required and
the ease of initialization.

Overall, we are excited to contribute a quantitative comparison of these paradigms for
an HRI task, along with an analysis of their degradation as we make the wrong modeling
assumptions, decrease the amount of data available, or restrict the ability to collect data
on-policy and to explore.

2.3 Interaction Learning Algorithms

Notation

For all of the following methods and experiments, we denote the human plan at time t by
ut

H
, and the robot plan at time t by ut

R
. We also denote the action executed by the human at

time t by ut

H
, and for the robot ut

R
. Both the human and robot states at time t are denoted

by xH and xR.

Robot Objective

The robot’s goal is to optimize a reward function rR(xR, xH , uR, uH) that depends on both
its state and action, as well as the human’s state and action.

Theory-of-Mind-Based Learning

In line with previous work [22, 59, 7], our ToM will assume that the human optimizes a
reward function. The robot will focus the learning on figuring out this reward via inverse
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reinforcement learning, and the ToM-based method will plan the robot’s actions using the
learned model.

In particular, the reward will have the form

rH(xH , xR, uH , uR; ✓) = ✓T�(xH , xR, uH , uR)

where ✓ is a vector of weights and � is a feature map from the current state of the system,
which depends on the robot’s state and action as well, akin to the robot’s reward. We
describe the particular features we assumed in more detail in Sec. 2.4.

To optimize their reward, the person needs to reason about the inter-dependency between
their future actions and those of the robot. Work on ToM has investigated di↵erent ways to
capture this, from infinite regress (i.e. ”I think about you thinking about me thinking about
you...”) to capping the regress to one or two levels. Our particular instance of ToM is based
on prior work which avoids regress by giving the human access to the robot’s future plan
[51], and is given by

u⇤
H
(uR; ✓) = argmax

uH

RH(xH , xR,uH ,uR; ✓) (2.1)

with R denoting the cumulative reward, i.e. the sum of rewards over a finite horizon of the
length of the trajectories uH and uR. This assumption is very strong, i.e. that the human
can read the robot’s mind. Part of our goal is to simulate the human as instantiating other
approaches, and teasing out how useful or not ToM still is when its assumptions are wrong.
This particular ToM instance will also assume that the person computes this at every step,
takes the first action, observes the robot’s new plan, and replans.

To leverage this ToM model, the robot needs to know the human reward function rH .
In our experiments, we create a dataset of demonstrations D by placing our ground-truth
human (be it a human perfectly matching the ToM model or one that does not) around
another vehicle executing various trajectories, and recording the human’s response. In the
real world, this data would be collected from people driving in response to other people. We
then run inverse reinforcement learning [1, 38, 67, 51] on D to obtain weights ✓.

Finally, given the human reward function described by the learned weights ✓, the robot
optimizes its own plan:

u⇤
R
(✓) = argmax

uR

RR(xR, xH ,uR,u
⇤
H
(uR; ✓))

with RR denoting the robot’s cumulative reward. The robot plans, takes the first action,
observes the next human action, and replans at every step. We use a Quasi-Newton opti-
mization method [4] and implicit di↵erentiation to solve this optimization problem.

The main challenge with the ToM approach is that in reality people will not act according
to u⇤

H
(✓) for any ✓. In general, ToM models will be misspecified, failing to perfectly capture

human behavior.
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Black-Box Model-Based Learning

The Theory-of-Mind approach models the human’s actions as explicitly optimizing some cost
function. An alternative is to learn this function directly from data via, e.g., a conditional
neural network, as in [52].
O↵-Policy (MB-OFF). In the “o↵-policy” black-box model-based approach, we collect a
training dataset D of human-robot interactions as in the ToM approach and fit a neural
network f to D. This allows us to estimate the human plan uH , given the human and robot
histories, the current state of the system, and the robot plan:

uH = f(HR, HH , xR, xH ,uR).

HR and HH are the state-action histories of the robot and human over a finite time horizon.
The model f is trained by minimizing the loss between f(.) and the observed data uH in
D. Specifically, we use a neural network with three fully connected layers, each with 128
neurons and ReLU activations, and train the network using ADAM [33].

Given this learned model, the vanilla model-based method generates a plan with trajec-
tory optimization, just like the ToM method:

u⇤
R
(f) = argmax

uR

RR(xR, xH ,uR, f(HR, HH , xR, xH ,uR)).

The distinction is whether the prediction about uH comes from optimizing RH , or from the
black box predictor f .
On-Policy (MB-ON). The o↵-policy approach ignores the fact that the predictive model
influences the behavior of the robot and therefore the future states on which the robot will
query the predictor. In fact, if f attains a test error rate of ✏ it can still exhibit prediction
errors that are O(✏T 2) when rolled out over a horizon T [50]. The trajectories generated
by optimizing against a fixed model induce covariate shift that reduces the accuracy of the
model.

To deal with this, a typical approach in system identification is to alternate between
fitting a model, and using it to act and collect more interaction data. This comes at a cost:
the need for data collected on-policy, from interacting with the human, rather than from
(o↵-policy/o✏ine) demonstrations.

In this method, we again use a neural network f to predict the human actions. But
unlike the previous model-based method, which relies on training data collected beforehand,
here we train f iteratively.

Of course, needing interaction with the human can be prohibitive, especially if a) a lot
of interaction data is needed, or b) the robot does not perform well initially, when its model
is not yet good, which can harm adoption or lead to safety concerns.
Idealized (MB-I). Even collecting data on-policy has no guarantee that the robot will
acquire a human model that is conducive to the optimal robot policy, i.e. if we assume the
human acts according to a function fGT , the robot learning on-policy might not converge to
u⇤
R
(fGT ). This is because the robot might not explore enough. However, getting exploration
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right is an open area of research. We thus also test a method that uses idealized exploration
– we collect data not only on-policy, but rather also ”on-the-optimal-policy”. This method
in a sense ”cheats” by getting access to data collected by acting according to u⇤

R
(fGT ) from

di↵erent initial states. We then mix this data with on-policy data, iteratively, to obtain a
model that can cover both the current and previous distributions, as well as the idealized
distribution (we found that this mixing was important to the performance compared to using
the idealized distribution alone). The reason this method is worth considering, despite the
very strong assumption of access to the idealized distribution for ”exploration”, is that robots
might be able to use human-human interaction data in situations where that optimal robot
policy might coincide with what people do with each other.

Model-Free Learning

A final approach is to employ fully model free methods, such as policy gradients or DQNs.
These methods are quite general and fast at inference time as they make no assumptions
about the environment and don’t explicitly plan online. We use Proximal Policy Optimiza-
tion (PPO) [53], a model free reinforcement learning algorithm that has had strong results in
other continuous control tasks. Although more sample e�cient approaches exist, we selected
PPO because it has been adopted as a sort of baseline for continuous control tasks.

PPO works by computing clipped gradients of expected reward with respect to the param-
eters of a policy. This gradient is estimated with rollouts using the current policy parameters
in the environment. The algorithm alternates between rolling out trajectories and perform-
ing gradient updates. See [53] for a more complete explanation of the approach. We used
the PPO2 implementation in the Stable Baselines repository [26] with default parameters
as our model-free algorithm. The primary di�culty in applying PPO to this setting is that
the human simulator we implemented (for testing what happens where ToM assumptions
are exactly right), does not, strictly speaking, fit into the environment model used for rein-
forcement learning. Because the human reacts to what the robot plans to do in the future,
the environment is di↵erent depending on the current policy parameters. We implement
this by having the human respond to a robot plan that was generated assuming the person
continues at a constant velocity for the rest of the planning horizon. Because of how precise
the controls need to be for this task, we do not sample from the distribution over actions the
robot’s policy outputs during evaluation time and instead use the mean. We also clip some
of the penalties for catastrophic events like driving o↵ the road or colliding with another ve-
hicle and terminate the episode early to not poison the reward bu↵er of the policy gradient
algorithm.

2.4 Performance under Correct Modeling
Assumptions

We begin with comparing these methods in a driving domain.
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Experiment Design

(Ground Truth) Human Simulator. For our driving domain, states are tuples of the
form (x, y, v,↵), where x and y are the positional coordinates, v the speed, and ↵ the heading.
The actions are u = (a,!), where a is a linear acceleration, and ! an angular velocity.

The ground truth human simulator plans forward over a finite time horizon T (in all
experiments, T = 5) by optimizing over a linear combination of features:
Car Proximity : This cost is based on the distance between the robot and human cars, which
represents human’s desire to not hit another vehicle. Given the human state (xH , yH , vH ,↵H)
and the robot state (xR, yR, vR,↵R), this cost is given by N ((xR, yR)|(xH , yH , �2

car
).

Lane Edge Proximity : This cost is based on the distance to the nearest lane edge. This
represents how humans generally prefer to stay in the middle of their lane. Letting the left
edge of some lane be Ll and the right edge Lr, the lane cost is given by: N (L1|xt, �2

lane
) +

N (Lr|xt, �2
lane

).
Forward Progress : This cost is based on the vertical distance between the next state and the
current state, representing how humans want to go forward when driving. This cost is given
by: �(yt+1 � yt).
Bounded Control : This cost is based on accelerating or trying to turn more quickly than
certain bounds, representing how humans prefer smoother rides and cars have actuator limits.
The cost is given by exp(a� amax) + exp(! � !max).
O↵road : This cost represents how drivers want to stay on the road when driving. Letting
the left edge of the road being Rl and the right edge Rr, the o↵road cost is given by exp(xt�
Rl) + exp(Rr � xt).

The weights on these features were tuned to produce plausible/natural driving in a series
of scenarios. In addition to the features and weights, the ground truth human simulator is
given the plan of the robot uR. It then solves the cost minimization in (2.1). Importantly,
this particular simulator exactly matches the assumptions made by the ToM learner (Section
2.3), in both the features used and planning method. The next section modifies the simulator
so that the ToM assumptions are wrong.
Environment. The experiment environment consists of the human and robot car on a
three-lane road, with the robot beginning in front of the person. The robot car starts in
the middle lane while the human car starts in either the middle or left lane. The robot
has a similar set of features to that of the human, incentivizing it to make progress, avoid
collisions, keep o↵ of the lane boundaries, and stay on the road. However, we add another
feature representing the penalty associated with colliding into a pair of trucks that are in
front of the robot and occupy the center and right lanes.

We chose this as our environment because for all its simplicity, it can actually capture
sophisticated interaction: given our ground truth human, to do well, the robot should merge
in front of the person in the left lane by influencing the person to make space rather than
passively waiting for the person to pass by and accumulating significantly less reward for
forward progress. We use this scenario as an interesting challenge for HRI, because it requires
being able to account for robot’s influence on the human. Accordingly, we initialize the ToM
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Figure 2.2: The test rewards of the interaction learning algorithms on the scenario with
the ground truth human simulator. The ToM learner has the smallest sample complexity,
followed by the MB-I method. The MB-ON and MB-OFF methods do not appear to improve
from their original performance. The ToM is able to consistently merge in front of the human
car most quickly, and thus obtains the highest reward, while on average, the MB-I method
waits for the person to pass before merging.

Figure 2.3: The comparison between ToM and black-box model-based for modification of
our environment setup where there are no control bounds for the cars. This matches the
result from Fig. 2.2

and black-box model-based methods by pre-training them on a dataset in which the human
drives in isolation – this makes it so that both methods get access from the start to the
basics of human driving (staying on the road, in the lane, accelerating to reach the speed
limit), without giving away any of the aspects that are important to this particular task, i.e.
the influence.
Manipulated Variables. We manipulate two variables: the interaction learning algorithm
(with the options described in the previous section) and the amount of data (number of
samples) the learner gets access to.1 For the o↵-policy methods, we use data from a di↵erent

1
Note that the uR and uH collected in training data and used in learning algorithms are not plans, but

rather actions that have been executed by the robot and human, since in reality, humans can only react to
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type of interaction where the robot drives at constant velocity near the human.
Dependent Measures. In each experiment, we measure the reward the robot accumulates
after training over test environments drawn from a more challenging subset of the training
environment initial state distribution. We train ToM and model-based 5 times with each
data sample size and measure test reward for each trained model. We train model-free only
four times due to the several orders of magnitude larger amount of data required.

Analysis

We plot the results and visualize trajectories from each paradigm in Fig. 2.2. We see that
ToM starts with higher performance even at 0 samples. This is because while both models
are pre-trained with a data from a human acting in isolation and thus make very similar
predictions, the gradients of those predictions with respect to the robot’s plan are di↵erent,
and that in turn leads to di↵erent plans. With the black-box model, the gradients are close
to 0 due to the non-reactive training data. This results in the robot planning to let the
human pass and merge behind. The ToM model, on the other hand, anticipates influence
on the human’s plan because of its structure (i.e. the collision avoidance feature), despite
pre-training on non-reactive data (which settles on a nonzero weight for said feature). This
enables the robot to figure out that it can merge in front of the human even from the start.
This speaks to a certain extent to the ease of initializing ToM: because it encodes that people
want to avoid collisions, and that human actions are influenced by robot actions, the original
solution, albeit imperfect, is already qualitatively achieving the desired outcome.

As the ToM model gets o↵-policy data from the ground truth human simulator, the
robot’s reward when planning with ToM improves. Looking at a representative trajectory
(right of Fig. 2.2), we see that the robot gets in front of the human, who slows down to
accommodate.

On the other hand, the o↵-policy model-based method, which learns from the same
demonstrations used by the ToM approach, is unable to learn to merge in front of the
human car. One explanation for this behavior is the di↵erence between the training and
test distributions – at test time the robot plans with the learned model, generating di↵erent
kinds of trajectories with di↵erent human responses than in training. Concretely, the o↵-
policy data has a mild influence of the robot’s actions on the human, whereas solving our
test merge task requires being able to model stronger influence. The ToM model can better
cope with this because it has access to the strong predefined structure various features in
the reward function, and can rely on trajectory optimization to produce the corresponding
human trajectories in new situations, given new robot trajectories.

What is more surprising at a first glance, however, is that the on-policy method also fails
to improve. This points to a potentially fundamental problem with model-based methods
in this type of interactive situation: they start not knowing how to influence the human,
so the initial policy does not attempt to merge in front and instead lets the human pass.

and learn from actions they can physically observe.
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Then, they collect data on-policy, but none of the roll-outs end up influencing the human’s
behavior enough, so their model never evolves to capture that potential stronger influence.
As a result, the robot’s policy never attempts the merge and remains at a low reward.

The idealized model-based, which ”explores” by getting access to data from the optimal
policy in response to the ground truth human model, does get up to the ToM performance,
but requires more data. We also see these results reproduced in a setting where we eliminated
the control bounds on the cars (Fig. 2.3).

For model-free learning, we used the PPO2 implementation in the Stable Baselines repos-
itory [26] with default parameters as our model-free algorithm. This method takes several
orders of magnitude more than the model-based methods and is not able to match their
performance. This can likely be attributed to the fact that the model-free method is not
handed the dynamics of the system and therefore cannot take advantage of online planning,
which is fundamental to the way model-free methods operate. Additionally, the accuracy of
the controls required to successfully perform a merge make exploration challenging in this
scenario, so the Gaussian noise used by PPO2 might also play a factor in the algorithm’s
relatively poor performance.
Takeaways. Overall, what we find confirms intuition: if we have a good model, learning its
parameters leads to good performance compared to learning from scratch. More surprising
is the performance of the black-box methods, both o↵- and on-policy. Without seeing data
of the human responding to the robot actually merging in front of them (which is what
the idealized exploration brings), the black-box approach did not seem to be able to model
this, and got stuck in the mode where the optimal solution is to go behind the human. In
contrast, ToM could more easily make that leap from the data it was trained on. In our case,
the pre-training already brought it most of the way there; in general though we expect that
ToM can for instance take o↵-policy data of mild influence (when the robot is further away)
and extrapolate it to stronger influence (when the robot is closer to the human) – this seems
to be di�cult for the black-box model, judging by the o↵-policy black-box results. On the
other hand, had we initialized ToM di↵erently, and had the o↵-policy data not contain any
influence, ToM would have looked the same as the on- and o↵-policy black box methods,
and it is entirely possible that not even an on-policy ToM could have fixed that. Overall, the
results speak mostly to the di�culty that black-box models might have in extrapolating from
one pattern of interaction to another, because they lack that structure that ToM exploits.

2.5 Performance under Incorrect Modeling
Assumptions

From what we have found in the previous section, Theory of Mind is appealing because it
has low sample complexity and works from o↵-policy data. However, the bias introduced
with this approach could lead to underfitting. To quantify this, we compare the ToM and
model-based methods when we modify the human simulator. Because of the tremendous
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Figure 2.4: The various modifications made to the ground truth human simulator. The
first row corresponds to modification of planning methodology, while the first three elements
of the second row correspond to changes in reward features. The last corresponds to an
irrational planning heuristic humans might use while under pressure.

di↵erence in terms of performance and sample complexity of the model-free method, we
chose to omit it to focus on the aforementioned comparison.

Human Simulators that Contradict Modeling Assumptions

Inconsistency in how humans plan, the “features” they might care about, or unexpected
reactions to certain actions all violate the assumptions made by the ToM learner. We aimed
to create ground truth modifications that are analogous to di↵erences between reality and
our ToM-based modeling – things that designers of these systems might get wrong. As such,
even though these are controlled experiments where we know the ground-truth, we think
they provide some indication of how real-world di↵erences would look like under di↵erent
hypotheses. We group these modifications into 3 categories:

Incorrect model of how the human plans

One way our model could be wrong is if it inaccurately captures the planning process – even
if we assume the person is actually trying to optimize for a known reward, they might not
optimize well or reason about the robot di↵erently than ToM assumes.
“Obstructed-View” – Humans have blind spots. Our instance of ToM assumes hu-
mans have a 360� vision. In reality, drivers have blind spots. To model this we hide cars that
are not in a double-cone from the human, with a vertex angle of 45�. Robots that do not
model blind spots will thus take more risky maneuvers, expecting to be seen by the person
when they are not.
“Lane-Prediction” – Humans can plan conservatively. Given the inherent risks in
driving, humans may be more cautious in their planning than necessary, taking evasive
maneuvers when there is any chance of danger. This simulator swerves out of the current
lane if the robot angles itself slightly towards said lane. A robot that does not know this
might not be able to influence the human as much is possible. Note that this no longer
matches our ToM’s assumption that the human gets access to the robot’s plan.
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Figure 2.5: ToM vs black-box model-based on di↵erent simulators. ToM is relatively robust
to simulator modifications. This is in part due to the structure it is imposing being useful
in low sample complexity regimes despite being wrong, but also because its predictions end
up being wrong in a way that help compensate for the robot’s planning suboptimality (see
Fig. 2.6).

“Myopic” – Humans might not plan ahead for as long as the robot assumes.
Another assumption ToM makes about the human’s reasoning is that it plans as far forward
as the robot does. In reality, however, humans may be more myopic, and plan forward for
a shorter time horizon than we assume. Our “Myopic” human simulator only plans forward
for one step.

Incorrect model of what the human cares about

Another class of inconsistency in modeling deals with reward features.
“Nonisotropic-Distance” – Humans care about avoiding other cars, but we might
not know how sensitive they are to getting close to di↵erent areas of another car.
The original human simulator has a cost based on a Gaussian that takes in the Euclidean
distance between the centers of the two cars, the “Nonisotropic-Distance” simulator modifies
the cost contours to be longer than they are wide, as show in Figure 2.4. This models the
fact that some people are more comfortable with cars to their sides rather than in their own
lane.
“Bounded-Controls”– We might not know people’s preferences for speed or their
control limitations. Human drivers have di↵erent preferences for how fast they turn or
accelerate as well as cars with di↵erent control bounds. To model this, the ground truth
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human simulator’s values of amax and !max (see section 3.A) are reduced to amax

2 , !max

2 ,
reducing the capability of the human to react to the robot.
“Blindspot-Protective” – Humans might additionally care about not having an-
other car in their blindspot. A subclass of modifications we have not yet considered
is where the human might use features in planning that the robot might not know about.
One example of this might be discomfort with having cars in one’s blindspot. Drivers might
speed up or slow down to avoid such an arrangement. This modification models this dislike
by adding additional points of Gaussian cost where blindspots are, as illustrated in Fig. 2.4.
“Panicking” – Humans might be heuristic-driven. Humans might also use heuris-
tics that are irrational. Our “Panicking” modification combines the slower speed of the
“Bounded-Controls” modification with an additional heuristic of stopping immediately if
another car is fewer than 2 car-lengths behind. This is inspired by a newer driver, whose
inexperience causes him to drive slowly and panic when another car approaches.

A modification purposefully detrimental to the robot

Our last modification is meant to purposefully create dangerous situations when the robot
is using the ToM assumption. “Aggressive” – Humans might want to stay in front
of autonomous cars. New autonomous vehicles might seem dangerous to drivers and they
may want to stay in front of them so they do not have to worry about false stops by the
car. This modification is implemented by flipping the sign of the car-avoidance feature and
moving the center of the Gaussian to a spot in front of the robot car.

Analysis

Fig. 2.5 and Fig. 2.6 plot the performance of ToM and black-box model-based2. For the
latter, we used the idealized distribution when possible by getting the robot to plan with
the ground truth modified model and collecting data. Additionally, we also collected data
from the robot planning with the unmodified model (”MB-N” in the plots, which performs
comparably).

Overall, we see the ToM performing better initially across the board, and black-box
catching up in most modifications with enough data. Surprisingly, we do not see black-box
surpassing the performance of ToM. We found this to be caused by an interesting facet of
planning in these environments, rather than by the predictions failing to improve. ToM also
ends up with imperfect predictions, but the robot planning with it achieves higher reward
nonetheless. This is because our planner uses a short horizon and is locally optimal. As the
trajectories in Fig. 2.6 show, the ToM method incorrectly predicts that the aggressive human
will slow down more than they actually do. This fools the short horizon planner into deeming
that merging in front of the human is the right option. While this is not actually right with
respect to reward over that short horizon when interacting with the aggressive human, it

2
Panicking results were analogous to bounded-controls and myopic and were ommitted from the plot.
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Figure 2.6: Rewards and sample trajectories for the aggressive human experiment. We see
ToM doing better whereas black-box model based fails to improve the robot’s reward as
it gets more data. This is not so much a reflection on the predictions, but rather on the
influence these predictions have on the planning output: ToM wrongly predicts the person
would slow down so it deems optimal to merge in front when using a short horizon planner;
this is not actually optimal for the short planing horizon when interacting with the ”real”
human, but leads to higher cumulative reward over the entire horizon.

ends up being the right decision for the long term, at least according to the reward function
we specified. The robot ends up with an aggressive merge which accumulates more reward
overall than the black-box model-based method. In a few of the modifications, the black-box
approach failed to improve the robot’s performance with more data, again because of the
di↵erence between prediction accuracy and planning with those predictions when using a
suboptimal planner. There were also cases where ToM obtained maximum reward from the
start, and that is because some modifications make the human slower and less aggressive,
which enables the merge to happen seamlessly even from the start, when ToM operates solely
based on the pre-training.
Takeaways. The ToM performance tends to quickly asymptote, and it typically does so at
a higher reward that the black-box methods. This is in part because these misspecified ToM
models make wrong predictions that help compensate, in our environment, for the planner’s
short horizon. While we expect that in general, when given data from the right distribution,
black-box model-based asymptotes to higher robot reward than ToM, our finding speaks
to the intricate relationship between prediction and planning, and how better predictions
do not always lead to better plans. This is a subtle aspect that practitioners will need to
consider in the design of algorithms for robots that interact with people.



CHAPTER 2. ON THE UTILITY OF MODEL LEARNING IN HUMAN-ROBOT
INTERACTION 19

Myo. B-C B-P Pan. L-P O-V Non. Agg.
0

1000

2000

3000

4000

5000

6000

7000

8000

R
ob

ot
C

um
ul

at
iv

e
R

ew
ar

d

Transfer Performance Across Incorrect Models
ToM MB-I

Figure 2.7: Results from testing the models trained with the original human simulation in
the modified simulations. Overall, ToM tends to transfer better.

2.6 Transferability of Learned Models

Finally, we study the transferability of the models trained against the original human. We
compare their performance when tested against the modified simulators from the previous
section. Fig. 2.7 shows that all models transfer better when changes are small.

Some modifications (myopic, bounded controls, and pankicking) make the human go
slower in our environment, thereby making the merge that ToM attempts have high reward
(even higher than with the original human). Despite the change in human behavior, ToM
keeps making predictions that enable the robot to merge. On the other hand, the shift in
the input distribution causes poor predictions from black-box model based, which in turn
leads to poor performance. ToM also handles the aggressive and obstructed-view humans
better. The blindspot-protective and lane-prediction humans behave similarly enough to the
original human that both methods retain their original performance.

2.7 Discussion

Summary. We provided what is, to the best of our knowledge, the first comparison between
model-free, black-box model-based, and Theory-of-Mind-based methods for interaction. We
used a simple driving task to quantify the performance advantage of ToM-based when we
have made the right assumptions, as well its data collection advantage: it does not seem to
require on-policy interaction data during learning, and can be trained on observed human-
human data.
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We also found that black-box model-based methods can perform as well as ToM, but
the training distribution matters: in our example, neither o↵- nor on-policy was successful,
and instead the robot added exploration to on-policy via an idealized distribution (coming
from the ground truth optimal policy). These methods did not seem able to extrapolate
from mild e↵ects of the robot on the human (in o↵-policy data) to strong e↵ects (needed
in the test environment). They also required much more data (an order of magnitude in
our experiments). Further, we found that the model-free method required several orders of
magnitude more data and was not able to achieve anywhere near the performance of the
other methods considered.

We also studied what happens as ToM’s assumptions become increasingly wrong by
emulating the kinds of deviations we might expect to encounter. Lastly, we saw that ToM
methods seem to transfer better.
Limitations. Ultimately, our work does not answer the question of which type of model to
use, it merely provides a few data points that are based on hypothetical human behavior.
Our results are also for a particular domain, environment, and a particular ToM model.
There are a few major caveats to these results as a consequence. First, the interaction with
the planner suboptimality led to ToM actually benefit from its wrong assumptions. In other
enviroments, the opposite might be true, i.e. that ToM might combine particularly poorly
with a short planning horizon. On average, we expect that black-box model-based methods
eventually surpass the ToM performance with enough data, unlike what happened in our
environment. Second, even with perfect planners, more accurate prediction does not always
mean better performance, which can again a↵ect these results. In some environments, such
as the robot starting behind the person and accelerating to move the person out of the way,
random predictions are just as useful as accurate ones, and a black-box approach would
perform really well from the start. Third, the environment also made it so that ToM could
start with a very high performance just based on pre-training. It is not clear how much easier
it is to pre-train ToM generally. Further, even though on-policy black-box model-based did
not perform well in our environment, this can be addressed with better exploration without
requiring the idealized distribution (at the cost of data and cumulative regret), or by mixing
in relevant enough human-human interaction data.

Overall, these results only scratch the surface of understanding the trade-o↵s with using
Theory-of-Mind approaches for inductive bias in HRI. These trade-o↵s are not just based
on sample complexity, but are instead complicated by the interaction between prediction
accuracy and planning suboptimality, and by the feasibility of collecting on-policy data and
of exploring. Looking forward, we are also excited to research hybrid methods that might
be able to take advantage of the best of each paradigm: using ToM assumptions in low-data
regimes, having flexibility when there is enough data.
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Chapter 3

Scaled Autonomy: Enabling Human
Operators to Control Robot Fleets

A certain type of perfection can

only be realized through a

limitless accumulation of the

imperfect.

Kafka on the Shore

Haruki Murakami
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3.2 Introduction

Sliding autonomy [16, 34, 10, 56] is a promising approach to deploying robots with imperfect
control policies: while a fleet of autonomous robots acts in separate environments, a human
operator monitors their states, and can intervene to help a robot via teleoperation when the
robot encounters a challenging state. Imagine, for instance, a fleet of delivery robots: at
any given time, most of them may be driving in easy conditions with few pedestrians, while
one of them encounters a crowded sidewalk and requires operator intervention. Ideally, the
performance of such a human-robot centaur team would scale smoothly with the increasing
capabilities of the robot: as autonomy improves, challenging states become rarer, and a
single human operator should be able to control a larger fleet of robots.
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Figure 3.1: We learn which robot a user would prefer to control, by observing the user manage
a small number of robots. We then use the learned preference model to help the user control
a much larger number of robots. We evaluate our method (a) on a simulated navigation task
and real hardware demonstration (b) through controlled, synthetic experiments with expert
agents that stand in for users, and a human user study with twelve participants (c).

Unfortunately, while the user may be a skilled operator, they have limited attention. As
the fleet grows larger, the user’s ability to maintain awareness of the states of all robots and
identify the robot that most requires intervention degrades.

We propose to overcome this challenge by automating the operator’s choice of which
robot to control. Given a large number of robots running in separate environments, our
approach is to train a model that predicts which robot the user would teleoperate, if the
user had the ability to analyze all the robots’ current states quickly enough. Our insight is
that we can use decisions that the operator makes in easy settings with only a few robots,
where they can feasibly pay attention to all the robots’ current states, to train a predictive
model of user behavior that generalizes to challenging settings with many robots.

The key to generalizing the user’s choices from easy to hard settings is to treat them as
observations of relative preferences between robots: every choice the person makes to control
one particular robot instead of any of the other robots is assumed to be an approximately
optimal decision, with respect to maximizing the user’s utility function. Every choice gives
us information about that utility, namely that the utility of controlling the chosen robot was
higher than the utility of controlling any other robot. We can thus use observations of the
operator’s choices to fit a model of their utility function. At test time, we apply the learned
model to the current state of each robot, and automatically switch the user to controlling
the robot with the highest predicted likelihood of being chosen.

We test our method in simulation and through an in-person user study, on a simulated
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navigation task and real hardware demonstration. In the navigation task, the robot must
successfully navigate through a video game environment with hazards and health packs
to reach a goal state (see schematic in Figure 3.4). We initially evaluate our method in
synthetic experiments where we simulate user input under ideal assumptions, and where we
have access to ground-truth user preferences. We find that our method e↵ectively generalizes
the user’s choices in easy settings with a small number of robots to challenging settings with
a large number of robots. We also find that modeling the user’s choices as a function of
relative preferences between robots is important for this generalization. To show that our
results extend to real user data, we conduct an in-person user study with twelve human
participants, where we evaluate each participant’s ability to manage twelve robots with and
without assisted choice. We find that assisted choice enables users to perform significantly
better than they can on their own.

3.3 Related Work

In shared autonomy, a human operator and robot collaborate to control a system which
neither the operator nor the robot could control e↵ectively by themselves [2]. Previous work
in this area [30, 19, 48, 55, 9] has focused on some combination of inferring user intent
and acting to achieve it. We instead focus on helping the user process information quickly
enough to manage a fleet of robots. The problem we tackle is more akin to that addressed
by a continuously-running search engine like the Remembrance Agent [49], which assists a
user’s decision-making by displaying information relevant to the user’s current context.

The closest prior work is in sliding autonomy [16, 34, 10, 56] and active learning [15],
where the robot can request user intervention in challenging or uncertain situations. Prior
methods tend to require knowledge of the task in order to determine when user intervention
is needed. Our method makes minimal assumptions about the task, and instead allocates
the user’s attention using a learned model of the user’s preferences. To our knowledge, we
are the first to use a general-purpose learning approach to allocating operator interventions.

3.4 Learning to Allocate Operator Interventions

Our goal is to help the user choose which robot to control at any given time. To do so, we
learn to mimic the way the user manages a small number of robots, then use the learned
model to assist the user in controlling a large number of robots.

Problem Formulation

We formalize the problem of automating the operator’s decision of which robot to control as
one of estimating the operator’s internal scoring function: a function that maps the state
of a robot to a real-valued score of how useful it would be to take control of the robot, in
terms of maximizing cumulative task performance across robots.
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User choice model. Let [n] denote {1, 2, ..., n}, i 2 [n] denote the i-th robot in a fleet of n
robots, and it

H
2 [n] denote the robot controlled by the user at time t. We assume the user

selects robot it
H

using the Luce choice model [40],

P[it
H
= i] = e�(s

t

i
)/

nX

j=1

e�(s
t

j
), (3.1)

where � : S ! R is the user’s scoring function, and st
i
is the state of robot i at time t.

In other words, we assume users choose to control higher-scoring robots with exponentially
higher probability. Crucially, we also assume that the score of each robot is independent of
the other robots. This makes it possible to scale the model to a large number of robots n,
which would not be practical if, e.g., scores depended on interactions between the states of
di↵erent robots.
User rationality model. We assume the user’s control policy ⇡H : S⇥A! [0, 1] maximizes
the user’s utility function R. At time t, the user chooses a robot it

H
to control, then controls

it using their policy ⇡H . We assume the user’s scoring function � maximizes the cumulative
task performance of all robots:

� = argmax
�2�

E
"
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, at
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) | ⇡H , ⇡R

#
, (3.2)

where T is the episode horizon. The actions at
i
are determined by whether the user was in

control and executed their policy ⇡H , or the robot relied on its own policy ⇡R. Formally,

P[at
i
= a] = P[it

H
= i]⇡H(a|sti) + (1� P[it

H
= i])⇡R(a|sti), (3.3)

where the user’s choice P[it
H
= i] of whether or not to control robot i is modeled in Equation

3.1.1

Robot policy. We assume the robot policy ⇡R is identical for each of the n robots, and
that it does not perfectly maximize the user’s utility function R. Our method is agnostic
to how ⇡R is constructed: e.g., it could be a decision tree of hard-coded control heuristics,
or a planning algorithm equipped with a forward dynamics model of the environment. In
this work, we choose ⇡R to be a learned policy that is trained to imitate user actions. This
allows us to make minimal assumptions about the task and environment, and enables the
robot policy to improve as the amount and quality of user demonstration data increases.
Knowns and unknowns. We assume we know the robot policy ⇡R, but we do not know
the user’s utility function R, the user’s control policy ⇡H , or the user’s scoring function �.2

1
We assume the user’s scoring function � is optimal with respect to the utility objective in Equation 3.2

for the sake of clarity. However, our method is still useful in settings where � is suboptimal. In such settings,

our method will, at best, match the performance of the user’s suboptimal �.
2
We assume the user’s utility function R is unknown for the sake of clarity. However, our method is

also useful in settings where the user’s utility function R is known, but the utility-maximizing policy ⇡H is

di�cult to compute or learn from demonstrations.



CHAPTER 3. SCALED AUTONOMY: ENABLING HUMAN OPERATORS TO
CONTROL ROBOT FLEETS 25

Problem statement. Our assumptions about the user’s rationality may not hold in settings
with a large number of robots n: because the user has limited attention, they may not be
able to evaluate the scores of the states of all robots at all times using their internal scoring
function �. As a result, they may make systematically suboptimal choices that do not
maximize the expected cumulative task performance across all robots.

Our Method

Our aim is to help the user maximize the expected cumulative task performance across all
robots, in settings with a large number of robots n. We do so by learning a scoring model
�̂ and using it to automate the user’s choice of which robot to control. In conjunction, we
train the robot policy ⇡R to imitate user action demonstrations – collected initially on a
single robot, then augmented with additional demonstrations collected as the user operates
each robot chosen by the scoring model �̂.

We split our method into four phases. In phase one, we train the robot policy ⇡R

using imitation learning. The user controls a single robot in isolation, and we collect a
demonstration dataset Ddemo of state-action pairs (s, a). Our method is agnostic to the
choice of imitation learning algorithm. In phase two, we learn a scoring model �̂ by asking
the user to manage a small number of robots, observing which robot it

H
the user chooses to

control at each timestep based on their internal scoring function �, then fitting a parametric
model of � that explains the observed choices. In phase three, we enable the user to manage
a large number of robots by using the learned scoring model �̂ to automatically choose which
robot to control for them. In phase four, we update the robot’s imitation policy ⇡R with the
newly-acquired user action demonstrations from phase three.
Phase one (optional): training the robot policy ⇡R. In this work, we train the
robot policy ⇡R to imitate the user policy ⇡H . We record state-action demonstrations Ddemo

generated by the user as they control one robot in isolation, and use those demonstrations
to train a policy that each robot can execute autonomously during phases two and three.
We implement ⇡R using a simple nearest-neighbor classifier that selects the action taken in
the closest state for which we have a demonstration from ⇡H . Formally,

⇡R(a|s) =
(
1 if (·, a) = argmin(s0,a0)2Ddemo

ks� s0k2
0 otherwise.

(3.4)

We choose a simple imitation policy for ⇡R in order to model real-world tasks for which even
state-of-the-art robot control policies are suboptimal. Improving the autonomous robot
policy ⇡R is orthogonal to the objective of this paper, which is to enable an arbitrary robot
policy ⇡R to be improved by the presence of a human operator capable of intervening in
challenging states.
Phase two: learning the scoring model �̂. Our approach to assisting the user involves
estimating their scoring function �. To do so, we have the user manage a small number of
robots n. While the user operates one robot using control policy ⇡H , the other robots take
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actions using the robot policy ⇡R trained in phase one. The user can monitor the states
of all robots simultaneously, and freely choose which robot to control using their internal
scoring function �. We observe which robot it

H
the user chooses to control at each timestep,

and use these observations to infer the user’s scoring function �. In particular, we compute
a maximum-likelihood estimate by fitting a parametric model �̂ = �✓ that minimizes the
negative log-likelihood loss function,

`(✓;D) =
X

(st1,...,s
t
n,i

t

H
)2D

��✓

⇣
sit

H

⌘
+ log

 
nX

j=1

e�✓(stj)

!
, (3.5)

where D is the training set of observed choices, and ✓ are the weights of a feedforward neural
network �✓.3 The learned scoring model �̂ is optimized to explain the choices the user made
in the training data, under the assumptions of the choice model in Equation 3.1. Fitting a
maximum-likelihood estimate �̂ is the natural approach to learning a scoring model in our
setting, since the MLE can be used to mimic the user’s internal scoring function and thereby
assist choice in phase three, and because it can be accomplished using standard supervised
learning techniques for training neural networks.
Phase three: assisted choice. At test time, we assist the user at time t by automatically
switching them to controlling the robot with the highest predicted likelihood of being chosen:
robot argmax

i2[n] �̂(s
t

i
). This enables the user to manage a large number of robots n, where

the user is unable to evaluate the scores of the states of all robots simultaneously using their
internal scoring function �, but where we can trivially apply the learned scoring model �̂ to
the states of all robots simultaneously.
Phase four (optional): improving the robot policy ⇡R. While performing the task
in phase three, the user generates action demonstrations (s, a) as they control each chosen
robot – demonstrations that can be added to the training data Ddemo collected in phase one,
and used to further improve the robot policy ⇡R through online imitation learning. One of
the aims of assisted choice in phase three is to improve the quality of these additional demon-
strations, since operator interventions in challenging states may provide more informative
demonstrations.

3.5 Simulation Experiments

In our first experiment, we simulate human input, in order to understand how our method
performs under ideal assumptions. We seek to answer two questions: (1) does a model
trained on data from a small fleet generalize to a large fleet, and (2) is our idea of treating
choices as observations of preferences important for this generalization? Simulating user
input enables us to assess not just the task performance of our learned scoring model, but
also its ability to recover the true internal scoring function; e.g., by posing counterfactual

3
In our experiments, we used a multi-layer perceptron with two layers containing 32 hidden units each

and ReLU activations.
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questions about how often the predictions made by our learned scoring model agree with the
choices that would have been made by a simulated ground-truth scoring function.

Experiment Design

Setup. We evaluate our method on a custom navigation task in the DOOM environment [32].
In the navigation task, the robot navigates through a video game environment containing
three linked rooms filled with hazards and health packs to reach a goal state (see screenshot
in Figure 4.1 and schematic in Figure 3.4). The robot receives low-dimensional observations
s 2 R4 encoding the robot’s 2D position, angle, and health, and takes discrete actions that
include moving forward or backward and turning left or right. The default reward function
outputs high reward for making progress toward the goal state and collecting health packs
while avoiding hazards. To introduce stochasticity into the environment, we randomize the
initial state of each robot at the beginning of each episode.
Simulating user input. Although simulating user input is not a part of our method, it
is useful for experimentally evaluating our method under ideal assumptions. We simulate
the human operator with a synthetic user policy ⇡H trained to maximize the environment’s
default reward function via deep reinforcement learning – in particular, the soft actor-critic
algorithm [25]. Note that our algorithm is not aware of the utility function R, and simply
treats the reinforcement learning agent ⇡H the same way it would treat a human user. We
choose the simulated ground-truth scoring function � to be the gain in value from running
the user policy ⇡H instead of the robot policy ⇡R,

�(st
i
) = V ⇡H (st

i
)� V ⇡R(st

i
), (3.6)

where V denotes the value function, which we fit using temporal di↵erence learning [62] on
the environment’s default rewards. Note that our choice of � does not necessarily maximize
the cumulative task performance of all robots, as assumed in Equation 3.2 in Sec. 3.4. It
is a heuristic that serves as a replacement for human behavior, for the purposes of testing
whether we can learn a model of � that performs as well as some ground-truth �. We would
like to emphasize that our method does not assume knowledge of ⇡H or �, and that the
design decisions made above are solely for the purpose of simulating user input in synthetic
experiments.
Manipulated variables. We manipulate the scoring function used to select the robot
for the synthetic user to control. The scoring function is either (1) the ground-truth scoring
function �, (2) a model of the scoring function trained using our method �̂luce, or (3) a model
of the scoring function trained using a baseline classification method �̂base.

Our method follows the procedure in Sec. 3.4: in phase two, it fits a scoring model �̂luce

to explain observations of the user’s choices in a setting with a small number of robots n = 4,
under the modeling assumptions in Sec. 3.4.

The baseline method fits a scoring model �̂base that assumes a much simpler user choice
model than our method: that the user selects robot i with probability �(�(st

i
)), where � is the
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sigmoid function. In other words, the baseline method trains a binary classifier to distinguish
between states where the user intervened and states where the user did not intervene. Unlike
our method, this approach does not model the fact that the user chose where to intervene
based on relative di↵erences in scores, rather than the absolute score of each robot. Because
of this modeling assumption, the baseline may incorrectly infer that a state st

i
was not worth

intervening in because the user did not select robot i at time t, when, in fact, the user would
have liked to intervene in robot i at time t if possible, but ended up selecting another robot
j that required the user’s attention even more than robot i.

We test each scoring function in a phase-three setting with a large number of robots
n = 12. At each timestep, we use the scoring function to choose which robot to control:
the chosen robot executes an action sampled from the user policy ⇡H , while all other robots
execute actions sampled from the robot policy ⇡R.

We also test each scoring function in a phase-four setting, where we re-train the robot’s
imitation policy ⇡R using the newly-acquired user demonstrations from phase three, then
evaluate ⇡R by running it on a single autonomous robot.
Dependent measures. To measure the performance of the human-robot team in
the phase-three setting with n = 12 robots, we compute the cumulative reward across all
robots. To measure the predictive accuracy of each learned scoring model, we compute
the top-1 accuracy of the robot ranking generated by the learned scoring models �̂luce and
�̂base relative to the ranking produced by the ground-truth scoring function �. To measure
the data impact of each scoring model on the quality of demonstrations used to improve
the robot policy ⇡R in phase four, we evaluate the task performance of the robot’s imitation
policy ⇡R after being re-trained on the user action demonstrations generated in phase three.
Hypothesis H1 (generalization). Our learned scoring model �̂luce performs nearly as
well as the ground-truth scoring function � in the phase-three setting with a large number
of robots, in terms of both the cumulative reward of the human-robot team and the data
impact on the performance of a single robot.
Hypothesis H2 (modeling relative vs. absolute preferences). Our learned scoring
model �̂luce outperforms the baseline scoring model �̂base, in terms of all dependent measures
– cumulative reward, predictive accuracy, and data impact.

Analysis.

Figure 3.2 plot the performance and data impact of each scoring function for the navigation
task. In line with our hypotheses, �̂luce outperforms �̂base in all measures, while perform-
ing slightly worse than �. In terms of predictive accuracy, we find that �̂luce generalizes
reasonably well: it agrees 79% of the time with the ground truth, compared to 32% for
�̂base, which translates to better team performance. Furthermore, demonstration data from
assisted choice with �̂luce induces a stronger imitation policy ⇡R. One explanation for this
result is that collecting expert action demonstrations in challenging states leads to a better
imitation policy ⇡R than demonstrations in less challenging states. Users tend to prefer to
take over robots in states that are challenging for the robot policy ⇡R. Our learned scoring
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Figure 3.2: Left: our learned scoring model �̂luce outperforms the baseline scoring model
�̂base, while performing slightly worse than the ground-truth (GT) scoring function �. Re-
wards are averaged across all twelve robots, and across 250 trials. Right: the scoring function
a↵ects which states the user demonstrates actions in during phase three, which in turn a↵ect
the performance of the imitation policy after re-training with the new demonstrations in
phase four. The ground-truth (GT) scoring function � leads to the best imitation perfor-
mance, followed by our method �̂luce. The baseline �̂base induces less informative demonstra-
tions. Rewards are for a single robot policy ⇡R that runs without human intervention, and
are averaged across 250 trials of 8 episodes each.

Unassisted Assisted F(1,11) p-value

Q1 2.92 4.50 17.49 < 0.01
Q2 2.25 3.92 13.75 < 0.01
Q1

⇤
2.67 4.17 17.47 < 0.01

Q2
⇤

2.92 3.25 0.88 0.37

Figure 3.3: Q1: it was easy to guide the robots to their goals. Q2: I was successful at
guiding the robots. Q⇤: Q after objective measures revealed. Survey responses on a 7-point
Likert scale, where 1 = Strongly Disagree, 4 = Neither Disagree nor Agree, and 7 = Strongly
Agree.

model may capture that preference and, through assisted choice, allocate the user’s expert
actions to more challenging states. These results suggest that our assisted choice method
might be useful for active learning [57] in the context of training robots via imitation [5] –
one possible direction for future work.

3.6 User Study

The previous section analyzed our method’s performance with synthetic data. Here, we
investigate to what extent those results generalize to real user data.
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Figure 3.4: Performance of the human-robot team in phase three, averaged across twelve
participants and eight trials per participant (top), and the robot’s imitation policy in phase
four (bottom). In the navigation task, the agent starts at s and navigates to g, while avoiding
the darker gray hazard region and collecting health packs indicated by crosses. The heat
maps render the learned scoring models �̂ of three di↵erent users, showing the positions
where the model predicts each user would most prefer to take control of the robot. Darker
indicates higher predicted score, and orange circles are peaks.

Experiment Design

Setup. We use the navigation task for the study, which is split into the four phases described
in Sec. 3.4. In phase one, we collect data for training our robot policy ⇡R via imitation:
participants control a single robot – initialized with a uniform random policy – using the
arrow keys on a keyboard, correcting it whenever it performs an action they would prefer
it did not. We do this for ten episodes. In phase two, we collect data to train our scoring
model �̂: participants manage n = 4 robots, which they monitor simultaneously. Participants
manually choose which robot to control. In phase three, participants manage n = 12 robots,
and either manually choose which robot to control, or let the learned scoring model choose
which robot to control for them. In phase four, we re-train the imitation policy ⇡R on the
action demonstrations from phase three, and evaluate the task performance of ⇡R in isolation.
Manipulated variables. We manipulate whether or not the user is assisted by the learned
scoring model �̂ in choosing which of the n = 12 robots to control at any given time in
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phase three. In the manual condition, the user is able to view the states of all robots
simultaneously, and freely selects which robot to control using their internal scoring function
�. In the assisted condition, every fifteen timesteps the user is automatically switched to
controlling the robot with the highest predicted likelihood of being chosen according to the
learned scoring model �̂.4

Dependent measures. As in the synthetic experiments, we measure performance of
the human-robot team using the cumulative reward across all robots, and data impact
using the reward achieved by a single robot running the imitation policy ⇡R after training
on the user demonstrations generated in the phase-three setting with n = 12 tobots. We
also conduct a survey using Likert-scale questions to measure subjective factors in the user
experience, like the user’s self-reported ease of use and perception of success with vs. without
assisted choice. We administered this survey after each condition, once before and once after
revealing the cumulative reward to the participants.
Hypothesis H3. We hypothesize that assisted choice will improve our objective and sub-
jective dependent measures.
Subject allocation. We conducted the user study with twelve participants, nine male
and three female, with a mean age of twenty-one. We used a within-subjects design and
counterbalanced the order of the two conditions: manual choice, and assisted choice.

Analysis.

Objective measures. We ran a repeated-measures ANOVA with the use of assisted choice
(vs. manual choice) as a factor and trial number as a covariate on the performance of the
human-robot team. Assisted choice significantly outperformed manual choice (F (1, 184) =
12.96, p < .001), supporting H3 (see left plot in Figure 3.4). Assisted choice also slightly
improved the performance of the robot’s imitation policy ⇡R in phase four (see the right
plot in Figure 3.4), although the di↵erence was not statistically significant (F(1,23)=.31,
p=.59). One explanation for this result is that switching the user to a di↵erent robot every
15 timesteps was not frequent enough to produce the number of informative demonstrations
needed to significantly improve ⇡R.

Figure 3.4 illustrates the learned scoring models �̂ of two di↵erent users in the study. Each
model is qualitatively di↵erent, showing that our method is capable of learning personalized
choice strategies. The model for the first user predicts they prefer to take control of robots
near the goal position – a strategy that makes sense for this particular user, since the
autonomous robot policy trained in phase one was not capable of completing the task near
the end. The models for the second user predicts they would prefer to intervene near health
packs, which makes sense since the robot policies trained to imitate that user tended to fail
at maneuvering close to health packs.

4
We also tried a more flexible interface where, instead of automatically switching the user to the predicted

robot, the interface continued showing all robots’ states and merely highlighted the robot with the highest

predicted likelihood of being chosen. The users in this pilot study tended to get confused by the suggestion

interface, and preferred to be automatically switched to the predicted robot.
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Figure 3.5: Left: performance of the human-robot team in phase three, averaged across five
one-minute trials. Right: as in Figure 3.4, the heat map shows the learned scoring model.

Subjective measures. Table 3.3 shows that users self-reported that they found it easier
to guide the robots to their goals and were more successful at guiding the robots in the
assisted choice condition compared to the manual choice condition. The table also shows the
results of running a repeated-measures ANOVA on each response. The improvement with
our method was significant in all but one case: how successful users felt after we revealed
their score to them.

3.7 Hardware Demonstration

The previous sections analyzed our method’s performance on a simulated navigation task.
Here, we investigate to what extent those results generalize to real hardware.

We evaluate our method with a single human user driving laps with up to three NVIDIA
JetBot mobile robots while avoiding centrally-placed buckets and surrounding obstacles (see
Figures 4.1 and 3.5). We use an OptiTrack motion capture system to measure the positions
and orientations of the robots. We enable the user to control each robot’s velocity – via
discrete keyboard actions for driving left, right, forward, and backward – while looking
through the robot’s front-facing camera. The reward function outputs +1 upon each lap
completion. Each episode lasts one minute.

We repeat the three phases from Sec. 3.6. In phase one, we collect 2000 state-action
demonstrations for training our robot policy ⇡R via imitation. In phase two, we collect 1300
examples of a human’s preferences (st1, s

t

2, i
t

H
) to train our scoring model �̂: the human – an

author, for the purposes of our demonstration – manages n = 2 robots, which they monitor
simultaneously. In phase three, they manage n = 3 robots, and either manually choose which
robot to control, or let the learned scoring model choose which robot to control for them
every five seconds.

As in Sec. 3.6, we manipulate whether or not the user is assisted by the learned scoring
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model �̂ in choosing which of the n = 3 robots to control at any given time in phase three.
We measure performance of the human-robot team using the cumulative reward across
all robots.

We find that again, assisted choice improves the performance of the human-robot team
in phase three (Figure 3.5). The learned scoring model �̂ helpfully predicts high scores for
states close to the bucket, the boundary of the environment, or a corner where the robot
tends to get stuck, where user interventions tend to be concentrated during phase two.

3.8 Limitations and Future Work

We have evaluated our method in a simulated environment, and demonstrated its feasibility
on real hardware in a controlled lab setting. For complex, real-world tasks, it may be the
case that learning a scoring model is as di�cult as learning the user’s policy. In such cases,
exploiting our method’s ability to gather useful demonstration data by focusing the user’s
attention on informative states would be an interesting area for further investigation.

Another direction for future work could be to investigate tasks where users tend to
change their control policies and internal scoring models as the number of robots increases,
and whether iteratively applying our method addresses non-stationary user models.
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Chapter 4

Neural Decoding from BCI Feedback
Alone

We think of the key,

each in his prison

The Waste Land

T.S. Eliot

4.1 Acknowledgements

The work in this section was conducted and written up by the author, Siddharth Reddy,
Sergey Levine, and Anca Dragan.

4.2 Code

We believe the code for our experiments can serve as a useful starting point for further
investigations so we open-source it at https://github.com/gkswamy98/meta-rl-bci/.

4.3 Introduction

In shared autonomy [30], user input is melded with robot action before being executed on
some system. One particularly exciting class of shared autonomy systems is those based on
brain-computer interfaces (BCIs) [42] because of their potential to help those with motor
paralysis regain some level of autonomy. For these systems to be truly general purpose, a user
should be able to freely specify what they wish the system to do rather than selecting from a
predefined set of limited goals. Prior work has looked at removing the need for a pre-defined
goal space via reinforcement learning [48] but required multiple sources of user input, making
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Figure 4.1: We propose a method for performing neural decoding purely from BCI feedback.
We first train a baseline policy and error director (a) by having the user focus on an easily
computable optimal action and then have the robot execute it or a clearly suboptimal action.
We use the user’s response to the robot’s action to train an error classifier. Then, we fine-
tune our policy using the trained error classifier as a reward signal for reinforcement learning
(b).

it di�cult for those with limited motor control to benefit from such an approach. Instead,
we propose a system that is able to learn to decode user inputs purely from neural feedback.
Our approach has two phases. In the first phase, we automatically generate tasks in which
the user can easily imagine the optimal action at each timestep. The system computes the
optimal action and a clearly suboptimal action, then randomly samples one of them and
executes it. We record the user’s neural response to the action, and train a binary error
classifier to predict whether or not the most recent action was optimal given the observed
features in the user’s neural response signal. Then, we treat the labels predicted by the error
classifier as rewards, and fine-tune our control policy to the user’s desired task via o↵-policy
maximum entropy deep reinforcement learning.

4.4 Related Work

A general challenge with data gathered from BCIs is the change over time of a single user’s
background brain noise and the di↵erence across users of this noise. This factor also makes
it di�cult to collect data iteratively over time to improve a policy [50] mapping from brain
states to actions because of the shift in state distribution over time. Instead, we treat
past datasets as tasks from a distribution over possible neural decoding problems and apply
a meta-learning approach to learn network initializations that can quickly adapt to new
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datastreams over time [43]. We believe this facet of our approach is crucial to reducing the
warm-up time required every time the headset is removed as well.

Our work on robot error detection builds on the detection of event-related potentials
(ERPs) from BCIs [60]. To have clean data for training a classifier, it is important that
during data collection, errors occur infrequently enough that the subject does not feel fatigue
or start to mix events together. This is known as the “oddball paradigm” and we borrow
the standard parameters for it [29].

For detecting controls, we turn to steady-state visually evoked potentials (SSVEPs) for
their excellent signal-to-noise ratio [28]. When a user focuses on an area of a screen that
pulses at a certain frequency (usually in the 7 Hz to 14 Hz range), a standing wave is
produced that is clearly detectable by electrodes located near the back of a user’s head.
These waves are distinct and strong enough to enable users to spell out words purely by
focusing on di↵erent areas of the screen [14]. We use a separate frequency for each control
action a person could want to take.

To detect intended user controls and ERPs, we use the EEGNet architecture, both for
its performance and ease of being incorporated into gradient-based meta-learing and deep
reinforcement learning approaches [36]. For SSVEP detection, we use the modified param-
eters from [64]. Because of the relatively limited amount of data we collect and to prevent
overfitting, we scale down parameters to a fraction of their prescribed values while keeping
the relative ratios constant.

In the style of Reddy et al. [48], we use deep reinforcement learning to fine-tune our
control policy. Because the reward feedback decoded from BCI signals will be noisy, we
adopt a maximum entropy approach [67]. To not waste user time doing on-policy updates
during training, we adopt an o↵-policy maximum entropy deep reinforcement learning algo-
rithm, Soft Actor Critic [25]. Prior work has looked at using ERP based feedback to assist
reinforcement learning agents [3], [66]. However, these approaches have the user watch an
agent that does not attempt to map from their brain states to actions – controls are instead
autonomously generated or delivered via some mechanism like a joystick.

Unfortunately because of issues with our hardware, the experiments we present in this
section are done via simulated BCI input. We borrow the methods and parameters of Krol et
al. for simulating ERPs [35] and add in phase-shifted sine waves at the appropriate frequency
for simulating SSVEPs.

4.5 Bootstrapping Human Feedback for Training
Neural Decoders

Interface Design

To generate data for training our error detector and control policy, we designed an interface
that was then implemented in PyGame [58]. We focus on 2D cursor control because of the
applicability to a wide variety of computer-based tasks but believe a similar method could
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Figure 4.2: A schematic of our user interface. Goals are positions on the screen and the
user can signal to move the cursor up, down, left, or right by focusing on the corresponding
block, each of which pulse at a distinct frequency.

be used for more specific tasks like typing. To move the cursor in a particular direction, the
user focuses visually on the corresponding control block (light grey in Fig. 4.2). Each block
pulses at a di↵erent frequency and has a di↵erent color (omitted for clarity in the schematic)
– we choose f1 = 8.25, f2 = 10.25, f3 = 12.25, f4 = 14 (all measured in Hertz) to space out
frequencies in the detectable range and prevent low least common multiples that can show
up as harmonics in the detected Fourier spectrum. We generate goals by randomly sampling
points within the bounds of the screen. To allow the user to both respond to execution errors
and think of the next action to take, it is critical to space out robot actions temporally [66],
[3]. The cursor moves every 2.5 seconds with the data from the earlier part of the interval
being used to train the error classifier and that from the latter being used to train the control
policy.

Method

Our method (Algorithm 1), consists of three phases that build upon each other to produce
a control policy that is well fit to both the user’s current mental state and their desired goal
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distribution.
Phase 1: Meta-learning from past data. Because of the shifts in background brain noise,
user attention, headset position, a trained neural decoder that works very well one day may
not be able to perform nearly as well the next day. However, given the structure present in
the data, using it to find a network initialization that enables sample-e�cient learning might
allow users to have to spend less and less time configuring decoding the neural interface.
To accomplish this task, we use REPTILE [43], a first-order gradient-based meta-learning
method that is easy to implement. We train the initialization for the reward decoder R
via minimizing the cross-entropy loss on the previously collected datasets of error-related
and non-error related potentials, DERP

1..n�1. We perform the same procedure for the policy ⇡
on past control-related datasets, DCTRL

1..n�1. For initializing the state-action value function Q,
we use DCTRL

1..n�1 and a mean-squared error loss where the target is the one-hot vector of the
correct action – our episodes are only a single action long and we give +1 reward for the
correct action and 0 otherwise so this is a su�cient initialization.
Phase 2: Training via imitating an optimal controller. Because ERPs are only
accurate if they occur infrequently enough, we need to train the policy su�ciently well
before we can fine-tune it to a user’s desired task via reinforcement learning. We do this by
choosing simple tasks where optimal actions are easy for the user to compute, and ask the
user to imagine the optimal action a⇤. We add their recorded signals here to DCTRL

n
with

label a⇤. The robot then executes the optimal action a⇤ with probability 1� perror, or with
probability perror executes a clearly suboptimal action (e.g., going away from the goal). We
set perror = 0.2. We then record the user’s neural response to this action via BCI and create
a dataset of responses to optimal and suboptimal actions, DERP

n
. These datasets are then

used to train ⇡, R,Q using the same loss functions as above.
Phase 3: Fine-tuning via reinforcement learning. Because the labels generated by R
are noisy, we adopt a maximum entropy reinforcement learning (MaxEnt RL) approach [67].
We would like to be able to perform o↵-policy training without the user in the loop, so as
to reduce the number of user interactions and not force the user to constantly adapt to a
changing policy. We use the TF2RL implementation of the Soft Actor Critic algorithm to
perform o↵-policy MaxEnt RL [45]. At each timestep, the policy takes in user brain state s
and decodes an action a. The action is then executed. The user responds, and we decode a
reward by applying R to the data streamed from the BCI. We then get the next state from
the user for control decoding, s0. These (s, a, r, s0) tuples are added to a replay bu↵er B
that is used as the data source for Soft Actor-Critic. In contrast to the datasets we collect
in Phase 2, we do not save these datapoints because of the noise in r that might harm the
initialization of future decoders.
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Algorithm 1: Neural Decoding from BCI Feedback Alone

Data: DCTRL

1..n�1, D
ERP

1..n�1: past datasets, BCI(·): live data filtered and denoised
Result: ⇡: policy mapping from brain states to control actions
/* Phase 1: Meta-learning from past data */

⇡  REPTILE(DCTRL

1..n�1, loss = cross-entropy) ;
Q REPTILE(DCTRL

1..n�1, loss = MSE) ; // Use one-hot labels

R REPTILE(DERP

1..n�1, loss = cross-entropy) ;
/* Phase 2: Training via imitating an optimal controller */

DCTRL

n
, DERP

n
= {}, {};

while under time limit do
DCTRL

n
= DCTRL

n
[ BCI(·) ;

Compute optimal action a⇤;
if x ⇠ U [0, 1]  perror then

a = ā⇤ ; // Take action that is clearly suboptimal

else
a = a⇤

end
Execute a ;
DERP

n
= DERP

n
[ BCI(·) ;

end
Train ⇡ on DCTRL

n
via supervised learning ;

Train Q on DCTRL

n
via supervised learning ;

Train R on DERP

n
via supervised learning ;

Save DCTRL

n
and DERP

n
;

/* Phase 3: Fine-tuning via reinforcement learning */

B = {} ;
while under time limit do

s BCI(·);
a ⇡(s);
Execute a ;
r  R(BCI(·));
B  B [ (s, a, r) ;

end
Train ⇡, Q on B via Soft Actor-Critic ;

4.6 Simulated Experiments

Unfortunately, due to issues with our hardware, we were only able to conduct simulated
experiments to test our previously described method.
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Simulator Design

To enforce some level of realism in our experiments, we designed our simulator to have
parameters close to that of the expected real-world data. We use Brainflow [46], an open-
source framework that enables both easy streaming from hardware boards and simulating
brain background noise as the bedrock for our simulations. The data is streamed at 250 Hz
across 8 channels. After grabbing noise from the simulated board, we add in the signal (both
SSVEPs and ERPs). For SSVEPs, we generate a sine wave at the appropriate frequency
and add it into a single channel of the sample (because the SSVEP is a local e↵ect near the
back of the head). We randomly shift the phase for each each generated sample. We choose
a signal-to-noise-ratio (SNR) much lower than that seen in real-life systems. For ERPs, we
build upon the work of Krol et al. [35] and simulate the ERP as the sum of several scaled and
shifted Gaussian PDFs. We simulate the P1, N1, and P3 peaks of a standard ERP. We add
this waveform (scaled to the same SNR as Krol et al.) to 3

4 of the channels because ERPs are
a global e↵ect. After adding in the signal, we perform task-specific filtering and denoising
before training our networks. For ERP detection, we bandpass filter data between 0.5 Hz
and 40 Hz before performing rolling median and wavelet-based denoising. We also scale
each sample by the inverse of the per-channel standard deviation. For control decoding, we
bandpass filter data between 6 Hz (to eliminate spurious harmonics) and 50 Hz (to preserve
legitimate harmonics) and then perform the same denoising. Note that the denoising is
performed per-task – because of the di↵erence in input distributions for the tasks, applying
a rolling filter before segmenting each sample into the per-task intervals would severely harm
task performance. For both tasks, we found this filtering and denoising to be critical for
good performance and avoiding overfitting. We collect 30 minutes of data for training the
baseline models and 15 minutes of data for fine tuning.

Analysis

We were able to collect limited datasets on BCI hardware (Fig. 4.3) which seem to indicate
that as we suspected, there is limited transfer across sessions for detecting ERPs. Because
of how similar the generated signals are between datasets, we did not have the need to use a
meta-learned initialization for our simulated experiments. Akinola et al. note that they need
around a 60 percent ERP decoding accuracy for neural feedback to be useful in training Deep
RL agents [3]. However, because of the complexity of the task we are performing, we noted we
needed above 40 percent control policy task accuracy before fine-tuning and above 75 percent
ERP detection accuracy to be able to successfully train an agent. This is well within the
accuracies reported for these tasks by other sources ([66], [64]). The reinforcement learning
results are only from trials that satisfied these criterion. For fine-tuning with reinforcement
learning, to test the adaptive capabilities of our method, we focus on a subset of possible
goals and cursor start positions that require the cursor to move upwards and to the left only,
rather than the full set of start and end positions. Because of this, we do not freeze any
weights but if the user’s goal distribution is su�ciently close to the task distribution in the
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ERP Classification Transfer Perfomance

Figure 4.3: Test accuracy for a network trained on one balanced dataset and tested on
another. While the main diagonal is around 60, the o↵-diagonal elements are around a half,
indicating limited transfer given this is a binary classification problem.
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Figure 4.4: On the left, we display validation performance after supervised training of R
(ERP classifier) and ⇡ (control decoder). On the right, we display task performance before
and after reinforcement learning from simulated human feedback. All of these results are
generated on at least four independent datasets.

previous stage, to make sure the noisy labels do not harm the existing featurizers, we would
recommend training only the fully-connected parts of the EEGNets.

As we can see in Fig. 4.4, we are able to e↵ectively decode ERP feedback on our collected
datasets as well as controls. We match the performance on these tasks seen by other groups
([66], [64]). We also see a significant improvement in user-specific task performance after
fine tuning via RL.
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4.7 Limitations and Future Work

Our preceding results are based purely on simulated experiments so a controlled user study
is among the most immediate of our next steps in more problem domains. We also focus
on discrete action spaces and it is not immediately apparent how one could generalize this
method to continuous spaces due to needing to visually render each of the SSVEP-inducing
boxes. However, even for discrete action spaces, the curse of dimensionality might make our
method di�cult to apply for su�ciently high-dimensional tasks. We are therefore interested
in combining our work with that of Jeon et al. to scale to more complex shared autonomy
scenarios [31].
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Chapter 5

Conclusions

Zeal without prudence is like a

ship adrift.

A Portrait of the Artist as a

Young Man

James Joyce

5.1 Summary

In the preceding three chapters, we presented experimental evidence and methods for deal-
ing with the subtleties of learning with humans in the loop. We explored the benefits of
assuming structure in behavior even when it is not totally accurate, an algorithm for learn-
ing generalizable models of user behavior by modeling their decision process, and described
a proof-of-concept system for seamless human-machine collaboration. As discussed in each
chapter, these results should be taken with a grain of salt – none of these algorithms are
field-deployable but we believe they contain key insights that, with su�cient replication and
more extensive experiments, could serve as a useful foundation for building robots that are,
by design, more considerate in their interactions with people.

5.2 On the Impact of Our AI

All of the methods described in this thesis, at some level, require data to be collected from
people. Beyond the application-specific considerations we focused on previously, the general
idea of collecting data from people brings up concerns of privacy and the centralization of
power. While these issues are outside the scope of this thesis, we wish to briefly highlight their
importance and relevance to the successful and mutually beneficial deployment of systems
based on the preceding ideas.
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Making sure that the data collected from users for training learning systems remains
secure is important both for personal safety and widespread adoption. We refer interested
readers to the work of Stoica et al. for an overview of challenges and approaches to dealing
with the systems side of the above algorithms [61]. While movement data like that required
for the algorithm described in Chapter 2 might be su�ciently general to be easily anonymiz-
able, EEG data like that used in the algorithm in Chapter 4 is incredibly personal and, if
linkable to a specific person, could in theory be used to remove the veil that protects our
thoughts from being read [27]. There is limited work on security for brain-computer inter-
faces but we hope that as the technology becomes more powerful, there is more focus on
making sure it is used responsibly, building on preliminary work like that of Li et al. [39].

Another ethical concern we wish to highlight is that with better models of user behavior,
the ongoing e↵orts of large corporations to monetize attention [65] may become even more
successful and lead to even higher levels of concentration of power and data (the two being
linked via said models). However, we do not believe any of the methods in this thesis could
be directly be applied towards such goals.

Lastly, we would like to flag a potentially hazardous application of the method de-
scribed in Chapter 3: the scaling of human operator attention for supervising fleets of semi-
autonomous weaponized machines. While we believe significant work would be needed to
apply such a method to such an application, we would like those who build upon our work to
consider the broader impacts of what they are contributing to. In the words of John Donne:

No man is an island.
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