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Abstract

The need for systems to support machine learning inference has grown as the im-

portance of machine learning in production systems has increased. Serving pipelines

of machine learning models comes with challenges of scaling, low-latency require-

ments for requests, and high computation costs for different stages of the pipeline.

In this paper we propose that by taking a dataflow abstraction we can simplify and

increase performance of serving these machine learning pipelines. The proposed

system FLOWSERVEcombines this dataflow paradigm with Cloudburst, a stateful

function as a service (FaaS) system to provide a framework to deploy and serve

machine learning pipelines at scale. We provide several logical and physical opti-

mizations that make FLOWSERVEoutperform currently used research and industry

systems.
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1 Introduction

1.1 Machine Learning

Machine learning has been an increasingly valuable tool used in a wide array of ap-

plications by many different industries. TV show recommendations on streaming

services such as Netflix, the software behind self-driving cars, and language trans-

lation services are just a few of the many ways that users interact with machine

learning on a daily basis. The machine learning cycle can be broadly separated into

two categories: training and inference. Most of the systems side research in the ma-

chine learning discipline is focused on streamlining and improving the training side

of machine learning. There are many production-grade libraries that are focused on

making developing models easier, such as Tensorflow, and PyTorch. There are also

tools that simplify training models on "Big Data" that cannot fit on a single machine,

such as MLLib and Ray RLLib. However, taking these trained models and deploy-

ing them at scale for real-time inference (also known as prediction serving) offers a

different set of challenges.

The challenges to machine learning inference can be broken down into four major

categories:

FIGURE 1.1: An example prediction serving pipeline to classify an
image using an ensemble of three models. The models are run in

parallel, and the results are combined after they finish.
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• High computation costs.

• Low-latency requirements for real-time requests.

• Support for multiple model frameworks

• Composition of multiple models for single prediction. Figure 1.1 is an example

of a machine learning inference pipeline that makes use of multiple different

models to serve a prediction.

Today, most people build their machine learning inference solutions on top of a

cloud provider based service such as AWS Sagemaker/Azure ML or use Flask

servers deployed as microservices. Both of these approaches are limited and do not

scale well, which is a major problem given the growth in interaction with machine

learning applications. Building a series of Flask servers brings up problems of

container orchestration and data shipping between containers to serve an entire

pipeline. Sagemaker doesn’t support running models in parallel and thus cannot

support pipelines such as Figure 1.1

We simplify these seemingly complex pipelines by providing an abstraction that

models machine learning inference pipelines as a series of dataflow operators.

Pipelines can be constructed by using the following operators in combination: MAP,

FILTER, JOIN, AGG, GROUPBY, LOOKUP.

Using this abstraction provides a familiar interface for engineers and data scientists

who use Pandas. The pipeline in Figure 1.1 would be expressed as:

• MAP for preprocess stage

• Parallel MAPs for the three models

• JOIN to combine results

• MAP final prediction

We present FLOWSERVE, a dataflow system for predcition serving pipelines.

FLOWSERVE provides and easy to use API for constructing pipelines, and applies

common dataflow and prediction serving optimizations such as operator fusion and

competitive execution to optimize those pipelines. These improvements are applied

without user interaction and improve performance of the pipeline.
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2 Background

2.1 Dataflow for Prediction Serving

Machine learning inference is now an integral part of many production applications,

from picking which ads to show a consumer to predicting customer churn. As these

use cases become more and more complex, however, the needs cannot be solved

efficiently by a single model. Rather, these predictions are mad by creating a en-

tire pipeline composed of different models that perform smaller tasks in parallel or

sequence.

This model of a pipeline offers a nice comparison to a dataflow DAG, where each

stage receives an input, performs a computation, and then sends the output to the

next model in the graph. This DAG approach simplifies the deployment of the

pipeline and efficient movement of the data.

2.1.1 Optimizing Prediction Pipelines

We categorize the optimizations to machine learning inference on pipelines into two

categories: logical and physical. The logical optimizations are operator fusion and

competitive execution, and the physical optimizations are fine-grained autoscaling,

batching, and data locality. These optimizations are a combination of best practices

from different dataflow and machine learning inference systems [2, 9]. Below is the

description of each of the optimizations:

Operator Fusion. Dataflow systems models each operator in the pipeline as a sep-

arate computational stage. With large inputs, however, the cost shipping data and

serialization can be expensive. With operator fusion, when there is a sequence of

events without branching, multiple logical operators can be merged into a single

physical operator, which avoids the cost of data movement but also maintains the

logical separation of stages. For example, in a cascade pipeline, the preprocessing

stage and model stage can be fused together.
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Competitive Execution. Depending on inputs, machine learning models can have

highly variable execution times. Google’s MapReduce system [4] pioneered the idea

of using competitive execution for straggler mitigation. This same idea has been

used to improve the tail (e.g., 99th percentile) latencies of machine learning models.

In short, we will trigger multiple copies of the model in parallel and return the first

returned result.

Fine-Grained Autoscaling. The various stages of a prediction pipeline have differ-

ent runtimes, computational characteristics, and require different resources,

We want the ability to scale effectively on a per model-level. For example, in pipeline

1, we would want to allocate more resources to the resnet since the preprocess stage

is relatively quick. This level of autoscaling prevents bottlenecks and allows for

efficient use of expensive resources like GPUs.

Data Locality. Model inference tasks sometimes involve large data, both in the form

of large inputs and lookups from large tables. For example, consider pipeline that

recommends shows from a vast but sparse dataset. By executing models on ma-

chines that already have this data located on them and exploiting data locality, we

lower lookup costs and improve performance.

Batching. Most models today are optimized to take in a batch of inputs versus a

single input at a time. By batching requests together, we can improve the throughput

of the system without affecting the latency much. In addition, GPUs are highly

efficient at computing on batches of data, so batching will take advantage of this

hardware as well.

2.1.2 Cloudburst

Cloudburst [11] is a stateful Functions-as-a-Service (FaaS) platform. The key goal of

the system is to enable stateful serverless programming by enabling three kinds of

state sharing: function composition, message passing, and caches that are located on

the same machines where code is run.

[11] describes the architecture and implementation of Cloudburst. The system is

built on top of Anna [13, 12], a low-latency autoscaling key-value store. Layered on

top of the KVS is a set of function executor nodes, each of which has threads which

respond to user requests and a cache that intermediates on KVS reads and writes.

The system heuristically optimizes for data locality by scheduling requests on nodes
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where input data is likely to be cached. With this architecture, Cloudburst is able

to outperform commodity FaaS platforms by orders of magnitude for stateful tasks

and significantly cuts data transfers costs.

We chose Cloudburst as the execution engine for FLOWSERVE because it directly

supported the goals of our system. Serverless systems are a natural fit for dataflow

execution because they naturally encourage a functional programming model.

And the low function composition and data retrieval costs support our latency

constraints. Despite these benefits, Cloudburst had a number of key limitations that

we had to overcome—we describe these in detail in Section 4.2.
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3 Related Work

3.1 Research Systems

3.1.1 Clipper

Clipper is a research project out of the RISE lab that provides a low-latency sys-

tem for machine learning inference. Clipper offers strong guarantees to meet a user

defined latency SLO for deployed models. Clipper packages user-defined models

and deploys them in a Docker container. It then exposes a REST API for the client

production system to query. Clipper deploys a middle layer that contains a request

queue for each deployed model. Incoming requests are placed on the queue and sent

as a batch to the model when the model container polls the queue. This improves

throughput of the system greatly, and was a inspiration for FLOWSERVE’s batching

architecture.

Clipper employs an adaptive batching scheme that adjusts the batch size to achieve

maximum throughput while still meeting the latency SLO requirement. It uses an

explore/exploit scheme to try different batch sizes until it violates the latency SLO.

However, Clipper was built to serve queries to single models, not machine learning

pipelines.

3.1.2 InferLine

Inferline[3] is a research system that was built on top of Clipper to do machine learn-

ing inference on pipelines. Inferline provided three major components on top of

Clipper to serve machine learning pipelines: profiler, planner, and a reactive con-

troller.

Offline, the profiler would take a user-defined inference pipeline and derive the

DAG form of the pipeline. Using a user-provided example trace, the offline plan-

ner would estimate the end-to-end latency of the pipeline. This proactive planner
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uses a cost-optimizer that takes into account batch size, replication factor, and cost

of hardware to provide the optimal configuration for the given latency SLO.

Once the pipeline is live, the reactive controller takes into account incoming traffic

and adjusts the replication factor on a model-level basis to improve performance and

maintain latency SLOs of the system.

The DAG structure of machine learning pipelines was a useful inspiration for the

dataflow paradigm. FLOWSERVE improves on the scalability of InferLine by using

Cloudburst, a FaaS system that minimizes resource usage. Cloudburst also provides

furthuer optimizations to reduce data shipping between stages of the pipeline.

3.1.3 ParM

ParM [8] is a research system that aims to reduce tail latencies and model failures in

machine learning inference systems. In addition to sending queries to models de-

ployed in Docker containers, similar to Clipper and Inferline, ParM encodes batches

of queries using erasure codes and sends these "parity queries" to special replications

of the models called "parity models". In the case of a unavailable or failed prediction,

these models can construct an approximate prediction from the other values in the

parity query. This allows ParM to greatly reduce the tail latencies that are common

in machine learning inference systems. ParM is focused on reducing the p99 laten-

cies and prediction failures and does not offer the optimizations that FLOWSERVE

uses to reduce median latencies in prediction serving workloads. Adding replica-

tions of parity models to FLOWSERVE’s architecture would be an interesting future

optimization that would reduce tail latenices of certain workloads.

3.1.4 Dataflow Abstractions

In the past few years, dataflow has emerged as a common abstraction for construct-

ing systems around streaming data. Systems such as Naiad[10], Flink[1], and Noria

[5] implement stateful dataflow that targets scenarios where the input data continu-

ously streams into the system. In addition, systems such as Spark[14] and Dryad[7]

use this dataflow abstraction to deal with high throughput data processing. To adapt

dataflow to work for low-latency, bounded queries in interactive machine learning

inference pipelines, FLOWSERVE adds additional optimizations such as competitive

execution and fine-grained autoscaling.
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4 FlowServe

4.1 Architecture and API

Here we describe FLOWSERVE’s API, it can be used simplify machine learning infer-

ence pipelines, and how FLOWSERVE pipelines are implemented on top of Cloud-

burst. As explained in Section 2.1.2, we use Cloudburst’s serverless execution run-

time because it enables stateful serverless programming.

4.1.1 Dataflow API

The FLOWSERVE API consists of simple dataflow operators that all can bes used

with the core data abstraction, a Table. Table is an in-memory relational that has a

predefined schema, in which each row represents a query to the pipeline and has a

unique queryID. Every stage of the pipeline takes in a Table as an input and returns

a Table as an output.

Queries to the same pipeline are added to the Table, after which the operators are

applied to define the pipeline.

Table 4.1 provides a brief overview of the operator API. There are 6 key operators:

map, filter, groupby, agg, lookup, and join. The map, filter, groupby, agg, and

joinoperators are used to define the machine learning inference pipeline. The spe-

cial lookupoperator serves as the API for FLOWSERVE to query ANNA, the KVS

that Cloudburst is built on top of. FLOWSERVE takes advantage of metadata from

lookupto leverage cloudburst’s locality-based scheduling. lookup operators retrieve

data from Anna at runtime in one of two ways:

Executing Dataflows on Cloudburst. FLOWSERVE uses Cloudburst as its execution

engine. Each FLOWSERVE operator is registered as a Cloudburst function and the

whole dataflow is registered as a Cloudburst DAG—Section 2.1.2 has more details

on the Cloudburst API. At execution time, Cloudburst schedules and executes the

functions as described in [11], and results are stored in Anna, Cloudburst’s underly-

ing key-value store. lookup operators retrieve data from Anna at runtime in one of
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API Name Functionality
map Apply function to each element in

the Table
filter Apply Boolean function to each

element in the Table and keep
only true results

groupby Group elements in the Table by
the value in the given column

agg Apply a predefined aggregate
function (count, sum, min, max,
average) to the Table

lookup Retrieve an object from the un-
derlying KVS and insert into the
Table

join Join two Tables on a given key,
using the automatically assigned
query ID as a default

TABLE 4.1: An overview of the core operators supported by
FLOWSERVE.

two ways: (1) query the KVS directly (2) create references, which Cloudburst uses to

schedule functions on the same machine where data is cached to lower data shipping

costs.

4.1.2 Prediction Serving Control Flow

Here we describe how FLOWSERVE’s dataflow programming model simplifies the

implementation of control flow constructs that are common in prediction serving

pipelines. We briefly describe each construct and highlight its simplicity with a code

snippet.

Ensembles. Ensemble pipelines have a branch where the same input is sent to mul-

tiple models to compute in parallel. The pipeline then combines the results by either

taking a weighted vote of the results or returning the prediction with the highest

confidence. There are also other aggregation types that common ensemble methods

use.

Two models are evaluated in parallel (after a preprocessing stage), the results are

joined, and a final prediction is selected by the pick_best_prediction function.

Cascades. In a model cascade, models of increasing complexity are executed in se-

quence. To avoid unnecessary computation and latency, if an earlier, simpler model

returns a prediction with a confidence above a certain threshold, the latter models

are not run. This way you get sufficiently confident results with much better latency.

Figure 4.2 shows the FLOWSERVE implementation of a model cascade.
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FIGURE 4.1: Script to execute FLOWSERVE ensemble pipeline.

FIGURE 4.2: Script to execute FLOWSERVE cascade pipeline.
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FIGURE 4.3: Script to execute FLOWSERVE cascade pipeline.

After the simple model is executed, we filter out any predictions that are high con-

fidence. We join these filtered outputs with the img row to bring the original input

back into the Table and then apply the complex model. We join the simple and

complex models results using a left outer join to ensure we include results that were

filtered out by the low confidence filter as well as results from the complex model.

We use a ensemble-predict function again to select the prediction with the highest

confidence.

Competitions. This pipeline is similar to the competitive execution optimization

that we will discuss later. In this pipeline, multiple models are executed in parallel,

and the first returned model of high enough confidence is returned.

Figure 4.3 shows an implementation in FLOWSERVE. The map_compete macro takes

multiple functions and applies each one in parallel. The function that is downstream

from those parallel functions (in this case pick_first), will be configured to wait

for one result rather than all results, but will only accept the result if it meets the

confidence threshold.

4.2 Optimizing Dataflows

In this section, we describe how we implement each of the optimizations from Sec-

tion 2.1.1: operator fusion, competitive execution, fine-grained autoscaling, locality,

and batching. As we describe each optimization, we also describe extensions we

made to Cloudburst to support those optimizations.

4.2.1 Operator Fusion

Operator fusion is the simplest optimization we implement: Multiple logical oper-

ators are merged into a single physical operator. FLOWSERVE supports fusion by

implementing a multi operator, which is a meta-operator that wraps two or more



Chapter 4. FlowServe 12

of the operators detailed in Section 4.1.1. The multi operator is treated as a single

function that executes on a single location, saving costs of data shipping.

4.2.2 Competitive Execution

Competitive execution is used to reduce the tail latency (95th or 99th percentile) of

operators that have highly variable execution times. In order to implement this, we

create multiple parallel replicas of the operator. We then need to return the result of

the first finished computation. By default Cloudburst’s DAG execution API assumes

that for a function to be executed, every function that precedes it in the DAG must

have finished executing (wait-for-all semantics). To support competitive execution—

both as an optimization and as a form of control flow (see Section 4.1.2—-we would

like to execute many replicas in parallel and pick the first result that is returned

(wait-for-one). We modified Cloudburst’s DAGs to support a wait-for-one execution

mode. In this mode, the Cloudburst executors will execute a function as soon as it

receives one result from an upstream function, rather than waiting for all upstream

functions.

Optionally, users can provide invalid responses for these functions—if the function

returns an invalid response, it will be re-queued instead of being marked finished.

The executor will then wait for another result from an upstream function before

executing the function again. If all upstream results cause the function to return an

invalid response, then the user will receive an error.

4.2.3 Fine-Grained Autoscaling

Each operator in a dataflow will naturally have different properties—memory con-

sumption, resource requirements, variability, runtime, and so on. This is particularly

pronounced in prediction serving, where for example a pipeline might have a CPU-

intensive preprocessing stage followed by a GPU-based model evaluation stage. In

this context, it is useful to be able to allocate resources in a fine-grained fashion,

specifically to the stages of the pipeline that are performance bottlenecks. Continu-

ing our example, if the preprocessing stage was serialized and slow, while the GPU

stage was efficient and supported batching, it would be unwise (and expensive!) to

scale all parts of the pipeline uniformly.

FLOWSERVE’s dataflow model makes it easy to scale in a fine-grained way. Since

each operator is registered and deployed as a separate Cloudburst function,
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FLOWSERVE’s pipelines are well-suited to take advantage of existing autoscaling

techniques on serverless infrastructure. Furthermore, the dataflow model ensures

that users can focus on pipeline logic, while FLOWSERVE is responsible for managing

how pipeline stages are combined and deployed.

Cloudburst, like all FaaS systems, natively supports autoscaling by adding and re-

moving replicas of individual functions as load changes. Since FLOWSERVE was

designed to run on Cloudburst’s DAG API, we are able to naturally leverage the

autoscaling system it provides. We also extended the autoscaling system to sup-

port multi-class autoscaling for GPU and CPU resources (see Section 4.2.5 for more

details).

4.2.4 Data Locality

An important part of many prediction pipelines are data retrievals—for example,

a recommender system might first look at a user’s recent history, then query the

database for a set of candidate products and their weights before returning a set

of recommended items. This is why we support lookup as a first-class operator

in FLOWSERVE. However, simply gathering data and shipping it to downstream

dataflow operators is slow and expensive. Cloudburst’s API, however, requires

users to specify data accesses before each request is executed, which conflicts with

the dynamic nature of many prediction pipelines. To avoid data shipping, we imple-

ment two optimizations. First, we fuse the lookup operator with whatever is down-

stream from it to avoid shipping data between operators, and second we implement

“continuations.” Within a pipeline, FLOWSERVE automatically rewrites lookup op-

erators to leverage continuations—users simply specify what Table column has their

dynamic lookup key. FLOWSERVE automatically converts that into a KVS reference

that Cloudburst can process and inserts a continuation that Cloudburst can inter-

pret.

Cloudburst: Continuations. Cloudburst, by default, optimizes DAG schedules for

data locality by attempting to schedule functions on machines that might have data

accesses cached. As described above, these lookups are often dynamic, meaning

Cloudburst’s scheduler does not have the opportunity to optimize for locality.

To avoid this pitfall, we added support for continuations in Cloudburst. This enables

multiple DAGs to be chained together as a part of a single logical request. After
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one DAG finishes executing, rather than returning the result to the user, the execu-

tor that finished the DAG will send the result to the scheduler, which will use the

result as the input to the continuation DAG. As usual, the scheduler will inspect the

arguments to look for KVS references, which it will then use to optimize its func-

tion placement. This allows Cloudburst to ensure that a dynamically generated data

lookup will still be executed on a machine where the data is likely to be cached.

4.2.5 Batching

Batching is a well-known optimization for prediction serving workloads, particu-

larly when systems can take advantage of the extreme parallelism afforded by hard-

ware accelerators like GPU. Clipper [2] pioneered the technique of loading single

requests that arrive at the same time on a queue and shipping them as a batch to the

model. FLOWSERVE’s dataflow model makes batching particularly easy because it

does not require any user program modifications; whether an operator receives one

input or many, they can merged into a single Table and treated as a batch.

Cloudburst: Batching & GPUs. To support batching as a possible optimization—

particularly for pipelines that use GPUs—we had to modify Cloudburst’s executors.

We extended the Cloudburst API to annotate functions that support batching as a

part of a DAG. When an executor thread is executing a batching-enabled function,

it dequeues all execution requests it has received (by default, Cloudburst threads

only dequeue one request at a time). It treats this group of dequeued requests as a

batch and executes all of them in a single function call. The maximum batch size is

configurable and defaults to 20 requests. In addition, we modified the kubernetes

configuration to add an nvidia-kubernetes-plugin that installs packages on the func-

tion executor nodes that allow the function pods to communicate with the GPUs.

These optimizations together help FLOWSERVE to increase throughput greatly.
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5 Performance Analysis

5.1 Evaluation

In this section, we study FLOWSERVE’s performance in detail. Section 5.1.1 first

studies each of the optimizations discussed in Section 4.2 in isolation, using synthetic

workloads.

We ran all experiments in the us-east-1a AWS availability zone. All Cloudburst

function executors were run on c5.2xlarge instances, except machines with GPUs

which were p2.xlarge instances.

5.1.1 Optimization Microbenchmarks

We first present microbenchmarks that study each of the optimizations detailed in

Section 4.2—operator fusion, competitive execution, locality, batching

Operator Fusion

Our first microbenchmark studies the benefits of operator fusion on linear chains of

functions. As discussed earlier, the main benefit of fusing operators is avoiding the

cost of serializing and shipping data between compute locations. Correspondingly,

the experiment varies two parameters: the length of the function chain and the size

of data passed between functions. The functions themselves do not do any compu-

tation: They take an input of the given size and return an output of the same size.

The output is passed downstream to the next function in the chain.

For each combination of chain length and size, we measure an optimized (fused)

pipeline as well as an unoptimized pipeline. The fused pipelines execute all n func-

tions in a single Cloudburst function, while the unfused pipelines execute each stage

in a separate Cloudburst function. Figure 5.1 reports median (box) and 99th per-

centile (whisker) latencies for each setting.

As expected, for each input data size, the median latency of the optimized pipelines

is constant, with minor variations. The 99th percentile latencies have slightly more
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FIGURE 5.1: A study of the benefits of operator fusion as a function
of chain length (2 to 10 functions) and data size (10KB to 10MB). We
report median latency of each configuration In brief, operator fusion
improves performance in all settings and achieves speedups of 3-5×

for the longest chains of functions.

variation, which is generally expected of tail latencies, but there is no discernible

trend in the measurements, and the variations are not significant. The latencies of

the unoptimized pipelines in each data size increase roughly linearly with the length

of the function chain. This is again as expected, as the cost of data movement will

increase linearly with the length of the chain. While performance is relatively close

for the smaller chains (improvements of of 20-40%), fusing longer chains of functions

leads to improvements of 3-4×.

Takeaway: Operator fusion in FLOWSERVE can lead to improvements of up to 4× in

latency by avoiding the overheads of data serialization and data movement between function

executors.

Competitive Execution

Next, we turn our attention to reducing tail latencies for operators that have high

variance in runtime using competitive execution. As discussed in Section 4.2, the

general approach to reducing tail latencies is to execute multiple replicas of the high

variance operator in parallel and simply select the result from the replica that fin-

ishes executing first. To model such a workload, construct a 3-stage pipeline in

which the first and third operators are pass-through operators that do no compu-

tation. The second function draws a sample from one of three Gamma distributions,

with low, medium, and high variances, respectively. The function sleeps for the



Chapter 5. Performance Analysis 17

FIGURE 5.2: Measured latency distributions (1st, 25th, 50th, 75th,
and 99th percentile) as a function of the number of additional repli-
cas computed of a high-variance function. The runtime of the func-
tion is drawn from the Gamma distributions visualized in Figure 5.2.
Adding more replicas reduces both median and tail latencies, espe-

cially for the high variance function.

amount of time in the sample (in milliseconds) before returning and triggering the

next third stage. Our Gamma distributions have a fixed shape parameter (α) of 3.0

and have shape parameters (β) of of 1.0, 2.0, and 4.0; the higher the shape parame-

ter, the higher the variance of the distribution. Thus, the variance in runtime of the

whole dataflow is dependent on the value drawn from the corresponding Gamma

distribution.

To measure the benefits of competitive execution, we add additional replicas of the

high-variance function, as discussed in Section 4.2.2. Figure 5.2 shows our results;

the boxes on each graph show the interquartile range, and the whiskers show the

1st and 99th percentile latencies. In all cases, increasing from 1 replica to 3 replicas

reduces tail latencies significantly: 71%, 94%, and 86% for low, medium, and high

variance respectively. Similarly, median latencies reduced by 39%, 63%, and 62% for

each of the settings.

Beyond 3 replicas, improvements vary. For the low variance setting, increasing from

3 to 7 replicas yields a 30% improvement in tail latency and only a 7% improvement

at median. However, for the high variance settings, there is a 50% improvement in

99th percentile latency and a 31% improvement in median latency.

Takeaway: Increasing the number of replicas reduces both tail and median latencies, with

particularly significant improvements for extremely highly-variable dataflows.

Locality

Next, we look at the benefits of data locality. As we described in Section 4.2, data

locality in FLOWSERVE is achieved with two dataflow rewrites: fusing lookups with
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FIGURE 5.3: Median latency for a data-intensive pipeline on
FLOWSERVE with the fusion and continuations optimizations en-
abled, only fusion enabled, and neither enabled. The pipeline
retrieves large objects from storage and returns a small result;
FLOWSERVE’s optimizations reduce data shipping costs by schedul-
ing requests on machines where the data is likely to be cached. For
small data, the data shipping cost is only a milliseconds, but for the
medium and large inputs, FLOWSERVE’s optimizations enable orders

of magnitude faster latencies.

downstream operators and inserting continuations to take advantage of Cloud-

burst’s scheduling heuristics. To measure the benefits of locality, we measured the

incremental benefits of both these rewrites.

We picked a representative task in which a small set of objects (in our case, 100)

was each accessed a few (10) times in a random order. The pipeline consists map to

dynamically pick which object to access, followed by a lookup of the object, followed

by a second map to compute a result (the sum of elements in an array). We vary

the data size from 8KB and 8MB, and Figure 5.3 shows our results. We warm up

the caches in Cloudburst by issuing requests for each of the data items once before

starting the benchmark.

The Naive bar implements neither optimization—data is simply retrieved from the

KVS in the execution of a regular operator and shipped downstream to the next

operator. The Fusion Only bar merges the lookup operator with the subsequent map

operator to avoiod data movement costs. The Fusion + Continuations bar inserts a

continuation between the first map and the lookup to leverage locality.

For small data sizes, our optimizations yield minimal wins—the cost of shipping

8KB of data is negligible, and the Naive implementation is only 2.5ms slower than
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FIGURE 5.4:

having both optimizations implemented. As we increase data size, the Naive per-

formance significantly worsens—for each request, the data is moved once from the

KVS to the cache and again from the lookup to the second map. Similarly, the Fusion

Only operator avoids one round of data shipping (between operators), but still must

retrieve data from the cache. With the continuations optimization implemented,

FLOWSERVE is able to take advantage of locality-aware scheduling and for the

largest is 15× faster than Fusion Only and 22× faster than the Naive implementa-

tion. Tail latencies, however, do increase with data size for the optimized version, as

the handful of requests that incur cache misses will still pay data shipping costs.

Takeaway: FLOWSERVE’s continuations and fusion enable it to take advantage of data

locality by removing data shipping costs and scheduling for data locality. This leads to an

order of magnitude improvement in latencies for non-trivial data accesses.

Batching

Finally, we look at the benefits of batching. Since batching is most often used with

GPUs, we introduce GPUs in this experiment and measure the effects of batching

on GPUs vs. CPUs. We picked a pipeline with a single machine learning model

(the AlexNet image classification model in PyTorch) and no other operators. Impor-

tantly enabling batching only required changing two lines of code—receiving a list

of multiple inputs and calling torch.stack to combine them into a single tensor.

We varied the batch size from 1 to 40. We asynchronously issued k requests (where

k is the batch size) from a single client in order to control the batching and measure
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the time until all results are returned. Figure 5.4 shows our results. The top graph

in Figure 5.4 reports latencies (on a log-scale graph), and the bottom graph reports

throughput.

For a batch size of 1, the GPU has roughly a 6× better latency and throughput than

the CPU. As we increase the batch size, we find that the latencies for both imple-

mentations increase sublinearly with the GPU generally outperforming the CPU—

between batch sizes 1 and 20, GPU latencies increased 6× and CPU latency about

11×. This 6× increase in latency is still well below the threshold for model execu-

tions in real-time pipelines [6]. Similarly, GPU throughput increased almost 3.5×

while CPU throughput increased only 2×.

Past batch size 20, performance begins to trail off. For the GPU, we see a 67% increase

in latency between sizes 20 and 40 and only a 20% increase in throughput. The CPU

sees a 70% increase in latency and 16% throughput improvement. This is because the

largest batch size is saturating the compute resources available to the model, forcing

a linear execution of susbsets of the batches. Note that the optimal batch size likely

varies from model to model and would need to be tuned.

Takeaway: FLOWSERVE’s dataflow model enables simple prediction pipeline to increase

performance by over 3× without significantly compromising on latency.
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6 Conclusion
6.1 Future Work

There are several different extensions to FLOWSERVE that could improve perfor-

mance of the system. First, we can implement the adaptive batching policy that

Inferline pioneered. Rather than taking a fixed max batch size, we can use an ex-

plore/exploit program to determine the optimal batch size based on example traces

fed to the system. Adaptive batch could also be applied on a more granular, per

model level, since different models may work best with different batch sizes.

Another optimization to borrow from the Inferline work would be cached inputs for

the whole pipeline. By implementing a LRU cache at the input level, FLOWSERVE

would be able to handle very bursty but dense request load.

There is also work to be done on sharing GPUs between functions. Currently, each

FLOWSERVE function served on a GPU is isolated due to pod constraints. However,

this isn’t the most efficient use of the GPU, as inference often doesn’t use the full ca-

pability of the GPU. There is work done on multiplexing GPUs that could be applied

in FLOWSERVE as well.

6.2 Closing Summary

The goal of this project was to provide a new abstraction to think about machine

learning inference for pipelines in the form of dataflow. We proposed FLOWSERVE

as a system that uses this dataflow paradigm to simplify the challenges of doing in-

ference on a pipeline. FLOWSERVE provides familiar dataflow operators as an API

to deploy these inference pipelines as a DAG. FLOWSERVE provides optimizations

to serve these pipelines on Cloudburst in five different areas: operator fusion, com-

petitive execution, fine-grained autoscaling, data locality, and batching. We show

that we achieve improvements on top of current research and industrial inference

systems, both in microbenchmarks and end-to-end pipelines of various type.
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