
PyPlover: A System for GPU-enabled Serverless Instances

Ryan Yang
Nathan Pemberton
Jichan Chung
Randy H. Katz, Ed.
Joseph Gonzalez, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-74
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-74.html

May 28, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Nathan Pemberton and Jichan Chung for their
contributions to this project. In particular, Nathan helped in retrieving
benchmarks for this project in the evaluation section. Jichan was able to
translate the CUDA function calls in the CNN neural network to PyPlover
function calls.

PyPlover: A System for GPU-enabled Serverless Instances

by Ryan Yang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Randy Katz
Research Advisor

25 May 2020

(Date)

* * * * * * *

Professor Joseph Gonzalez
Second Reader

(Date)

Abstract

PyPlover: A System for GPU-enabled Serverless Instances

by

Ryan Yang, Nathan Pemberton, Jichan Chung

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Randy Katz

Demand for GPUs has grown exponentially since the onset of machine learning workloads.
However, the cost of an efficient GPU remains very high. For a machine without a GPU, one
solution is to send the GPU workload to a dedicated cluster of GPU-enabled instances for
processing. However, without the proper knowledge, this method turns out to be very inefficient
due to improper load balancing and instance tuning. We propose PyPlover, a serverless GPU
framework that allows the user to send kernels and inputs to a serverless provider
without needing to worry about set-up costs and load balancing.

1

1 Introduction

Serverless computing is a cloud-computing execution model that enables users to deploy applications in
the form of a function, without the necessity of a server. The main advantage of the service is that it
enables fine-grained control of pricing by allowing the user to pay for the actual amount of resources
they use for the task, rather than using pre-purchased units of capacity. Another advantage is that the
user does not have to worry about configuring the server, making it easy to deploy and scale up. The
framework is also beneficial for the cloud service provider by allowing it to maximize utilization using
load balancing, thanks to fine-grained resource allocation. Due to these advantages, Cloud providers
(e.g., AWS Lambda, Google Cloud Functions) and open source projects (e.g., OpenLambda [4]) have
developed an infrastructure for serverless computing, and many applications are built on top of these
services (e.g., PyWren[3]) as a way to utilize these low-cost and scalable compute resources.

Currently, these publicly available services only provide CPU access. With the rise of Deep Learning
applications, the necessity for large-scale computations utilizing other types of accelerators such as
GPUs have emerged. Considering the advantages of serverless computing, it is natural to extend this
framework for these applications.
One implementation of this idea is to attach a GPU to the already existing Lambda container [1]. While
the container based service has an advantage in that the user can easily deploy applications that can be
run on the local machine, the main shortcoming of this approach is the overhead due to software
dependencies being packed into the container. This makes execution time bigger and makes it hard to
deploy it large-scale. Also, the container based approach requires a whole GPU to be assigned to an
application, limiting the fine-grained control and multi-process access. Moreover, in most modern GPU
workloads, CPU usage is limited to data loading, memory allocation, and invoking the GPU, leaving
most of the time idle. In these workloads, providing options to use GPUs without CPU allocation can
reduce the price for the user and can improve machine utilization for the provider. Cloud providers are
also not constrained to supporting a diverse range of customers for our design. Rather, they are given the
freedom to design and deploy the GPU server however they want.

In this project, we propose a new serverless framework that allows users to execute their GPU
applications in the cloud. The user can request execution of their application in the form of kernels.

To summarize, our contributions are as follows:

• Designed generic function signature that can accomodate most existing GPU applications
• Implemented server and client programs for the serverless GPU framework
• Ported vector addition operation and a Convolutional Neural Network to be run in our

framework and measured the performance

2

2 Background and Motivation

2.1 Serverless

Serverless has become somewhat of a buzzword among the systems community when discussing
running large workloads at scale. The most popular serverless frameworks as of right now include AWS
Lambda and Google Cloud Functions. Serverless providers hide much of the gritty set-up of dedicated
instances behind a veil, allowing the user to directly send requests to provider without having to worry
much about setting up an instance for running these requests. In addition, having users share a single
serverless provider allows a greater usage of the resource hidden behind the provider. Sharing hardware
behind a single serverless provider enables greater resource usage since all aspects of the hardware can
be used on demand as user requests come in.

Figure 1: Graph of how traditional servers allocate resources versus how serverless allocates resources. Serverless architecture allows for much

more fine-grained allocation

Another benefit of serverless benefits both the client and the provider: by having requests done in more
fine-grained chunks, the provider is able to more exactly match the demand given by its users. This
concept is illustrated in Figure 1. When the resource usage falls below the demand line, this gives its
users low quality of service. When the resource usage goes above the demand line, this means that the
provider is wasting resources by allocating too much for the current task. Hence, the solution to this
problem would be to allocate resources in smaller chunks to more exactly match the demand line. This is
exactly what serverless providers do when they divide the resources that they own into containerized
instances and automatically load balance requests between them.

2.2 PyWren

PyWren [3] is a system developed by exposing a Python map primitive on top of AWS Lambda. By
doing this, it allows the user to easily run embarrassingly parallel functions using AWS Lambda, making
distributed computing very easy. However, PyWren is a very general framework in that it does not target
any specific kind of workload. Hence, due to this generality, its performance across all workloads is

3

suboptimal. We build on top of the PyWren framework by specifying that we are targeting GPU
workloads, therefore optimizing our code specifically for these kinds of workloads. By removing the
generality constraint of PyWren, we are effectively focusing specifically on GPUs, which allow us to
strip away some of the restrictions that PyWren put on the inputs. But by restricting the inputs only to
GPU workloads, we introduce more constraints that will be discussed in a later section

2.3 Motivation

Based on current serverless designs, PyPlover would enable a user to run GPU workloads on a machine
without any GPUs attached by sending requests to a serverless provider. This provider would
automatically load balance these requests to the appropriate containers and return the result of the GPU
execution once it is finished. Figure 1 illustrates the resource allocation benefits of using serverless vs.
serverful approaches. Rather than allocating resources in larger chunks, as with serverful, serverless
chooses to separate these resources into smaller chunks and allocate them per user demand.

Figure 2: Illustration of traditional methods of processing GPU workloads on a non-GPU machine versus the PyPlover method of dealing with this

issue. The current method allocates a whole instance, whereas PyPlover abstracts small containers behind a serverless provider

Figure 2 illustrates the traditional way of running a GPU workload vs. our proposed method of running a
GPU workload. Currently, a user would allocate some GPU-enabled instances on a remote server, such
as AWS EC2, and would need to send multiple instances of data such as the GPU workload, the kernel
functions, web servers, database clients, and anything else needed to get a server running. Much of this
sent data is extraneous with the serverless approach. Once the workload has finished running, the chosen
instance to run will return the result. However, this approach introduces some problems with regards to
scaling, resource usage, and set-up costs. First off, the user is responsible for the set-up and management
of these instances. This means that the user needs to be knowledgeable in methods to setting up an EC2
instance that is able to run GPU workloads efficiently and needs to be able to load balance requests to
the cluster of instances correctly. These requirements are not something that the average user wanting to
run a GPU workload possesses. Failing to meet these requirements will result in suboptimal
performance on this cluster of dedicated instances. In particular, failing to load balance the requests
between instances correctly will result in greatly reduced performance and under-utilization of total
resources due to all of the requests being overloaded onto a single instance. In our design, this set-up and
load balancing is abstracted away from the user. Therefore, the user does not need to possess knowledge

4

in EC2 instance set-up and cluster management. All these benefits are also in addition to the finer-
grained resource allocation discussed in the previous section.

3 Related Work

GPU attached to CPU Lambda. Prior work has been done on attaching a GPU to the conventional
Lambda framework [1]. Our approach differs from this in that we completely decouple the GPU from
the CPU, allowing the user to send GPU-only requests through the serverless provider. The GPU
attached to Lambda approach poses a few downsides. By doing this, the provider is essentially doing the
same thing as the traditional serverful approach, just on a smaller scale. By decoupling the GPU from
the CPU, the provider is able to rent out CPU usage as well in addition to the GPU if the user is not
using the CPU. However, if the user wants to use the CPU along with the GPU, with other approach, it
is not possible.

Using CUDA Without Environment Setup. Prior work has been done on remote GPU acceleration of
GPU-enabled workloads, similar to our project but without the serverless approach.
To the user, nothing changes. The user is still able to make calls to CUDA through a CUDA driver.
However, on the backend of the CUDA driver, it is actually sending CUDA requests over the network .
One downside of this approach is the lack of fault tolerance. Through serverless, there is no need to
worry about this issue since the request would just time out and the user can resubmit it. The authors
called this special CUDA driver rCUDA [2].

GPU Virtualization Across Virtual Machines. Nvidia vGPU [7] is one of the more recent offerings on
GPU virtualization. On a conventional device, such as a PC, a GPU does all the rendering and capture.
With virtualization, before vGPU, a CPU would perform those tasks. However, the performance and
efficiency of the task would be rather poor. With the introduction of vGPU, a single GPU in a datacenter
could be split across multiple virtual machines, with each virtual machine having their own virtual
interface into the physical GPU. Currently, only Nvidia’s higher end GPUs, such as the Nvidia Tesla
accelerator line, support vGPU.

Higher Level Interfaces for GPUs. It is currently still a challenge to use GPUs in distributed
applications. The low-level interface of GPUs offers flexibility when designing a distributed application
that relies on GPUs but also requires deep knowledge of how a GPU works and introduces layers of
complexity when programming the application. In addition, for most processes involving GPUs, the
hardware component that needs GPU access would have to go through the CPU in order to get GPU
access. GPUnet [8] provides higher-level abstractions for GPUs and cuts out the need to go through the
CPU in NIC-GPU interactions. By subverting the CPU in NIC-GPU interactions, GPUnet is able to
optimize the performance of these interactions by avoiding costly CPU memory accesses. Instead, the
NIC is able to directly communicate with the GPU through an interface provided by GPUnet.

5

Reducing Accelerator Communication Overhead. In applications that use accelerators, speed-up is
commonly achieved in two ways: context switching and fast-path communication. Context switching
allows the accelerator to dedicate fewer resources toward an application underutilizing it and focus more
on applications that have higher resource consumption toward that accelerator. Fast-path communication
allows accelerators to subvert the operating system when accessing specific resources. However, by
subverting the operating system, the accelerator is restricting itself by removing context switching,
which is only supported when the accelerator accesses resources through the operating system. M3X [9]
retains fast-path communication while also enabling the use of context switching in an accelerator.

Figure 3: PyPlover Design. SRK uploads objects to the object store and sends data to OpenLambda. OpenLambda runs our server code to process

the kernels and sends the result back to SRK, which returns it back to the user

4 PyPlover Overview

PyPlover enables users to run GPU workloads cheaper and more efficiently than if they were to run the
same workload on a cluster of dedicated GPU-enabled EC2 clusters. To the best of our knowledge, there
does not exist any major serverless provider that allows GPU workloads. Prior work has explored
attaching GPUs to the current serverless instance framework [1]. Our work is different from this in that
we our design does not have an attached CPU for each GPU core. On the one hand, this allows us to
decouple GPU processes from CPU processes but also decreases the amount of flexibility we give to
users when they run their kernel functions on the GPU. Another similar work [2] has explored remote
GPU acceleration, using CUDA without any explicit environment set-up, which is extremely important

6

for our project since it enables users to directly run CUDA code without setting up any environment on
the serverless provider’s end. Overall, our approach builds upon these two papers and overcomes several
challenges that make it difficult to provide serverless GPU support.

Figure 4: PyPlover Kernel Execution. A kernel chain in our system must process data in a chain (i.e output of previous kernel is input of next

kernel)

4.1 Design

The overarching design for PyPlover starts by having a user upload a set of GPU kernel functions that
follow a predefined function signature and execution structure. The user then uploads an input in JSON
format, which the serverless provider stores. The specified input can then be run by specifying a ‘run’
command to the server through an additional HTTP response. When told to run the input, the serverless
provider responds by allocating a container such that the load balance specifications are met and directly
running the uploaded GPU functions. The output of these GPU functions are then returned to the user
through HTTP. We have separated these tasks into server tasks and client tasks. Figure 3 illustrates our
design.

Server. On the server side we use OpenLambda [4], a project that can simulate a serverless provider by
automatically load balancing requests to containers that it allocates. OpenLambda pulls the objects (the
function that it runs and the shared objects containing the CUDA functions) from a predefined object
store. It runs the function and the corresponding kernels provided to OpenLambda. After execution, the
server code returns the corresponding output back to the user.

Client. The client side of PyPlover utilizes the Serverless Research Kit (SRK) [5], a project still under
development, to abstract away the complexity of uploading objects to an object store and passing

7

function invoke requests to the server side. Since this was already under development, we decided to use
this project to reduce the complexity of implementing it ourselves.

4.2 Challenges and Contributions

We identified three main challenges to implementing serverless GPUs: (1) Identifying a general function
signature that is able to encompass all kernel functions and all kernel inputs. (2) Determining the
execution model for a set of kernels on the server side. (3) Setting the amount of flexibility to give to the
user.

4.2.1 General Function Signature

One of the challenges we encountered while designing our framework was identifying a general

function signature that is able to encompass all kernel functions and kernel inputs. As of the current
CUDA version, the most complex aspect of GPU functions remains to be tuning the dimensions of the
CUDA kernel to be optimal for the user’s purposes. Therefore, we ensured that the user was able to
specify the dimensions of each CUDA kernel he defines. The general structure we ended up using for
the inputs to the CUDA kernel is discussed in Section 5.

4.2.2 Execution Model

On the server side of PyPlover, the order in which we execute the kernels and the restrictions we set on
execution strategy was a challenge to determine. Contemporary functions that call CUDA kernels are
able to perform a variety of different execution strategies. A large part of our project was determining an
execution model that is able to encompass a majority of these execution strategies for CUDA kernels.
Section 4 discusses the model PyPlover uses.

8

5 Client

5.1 Input Structure

Figure 5: State and buffer structures. All kernel functions that our system run take in a state object

The input structure design was one of the largest challenges in this project. To the best of our
knowledge, there have not been studies on a generic data structure that can be used as the sole input to a
CUDA kernel. Therefore, we had to design one based on the requirements that needed to be met. This
input structure was designed with the structure of the kernel execution discussed in 5.2 in mind. The
buf_t struct is the generic buffer object that our kernels consume. It consists of a pointer to a byte array
allocated on the GPU (since byte arrays can be casted to anything in C) and the size of the byte array,
sometimes needed to copy and iterate through the byte array. The wrapper around the buf_t struct,
state_t, consists of four buffers: input, constant, tmp, and out.

• Input: Populated per kernel chain invocation with the input of the kernel chain
• Tmp: utilized by the user for any temporary data storage that needs to happen between kernel

function calls
• Constant: holds any static data that is populated with the strategy discussed in 5.1.3
• Out: holds the final output of the kernel chain and is returned to the user

9

5.2 Kernel Structure

Figure 6: Function signature for each kernel function. We had each kernel function take in as input a state object and the dimensions for the

kernel.

Figure 7: The functions that are contained in the internal execution of the server code. Load static is not included since it is written as a python

function in the python script run on the server end.

Figure 8: The execution pipeline of the PyPlover server code.

The kernel takes in a single object, a state that is populated with the required fields. Here, we gave the
user an enormous amount of flexibility. We gave the user the freedom to serialize and deserialize the
data however he wants. All the data in our state object is represented in byte arrays. The user is free to
do whatever he wants with this byte data. As a result, this leads to PyPlover being able to support nearly
any kernel input as long as the user is able to serialize it into byte data. The contents of the kernel can
consist of anything as long as it does not return program control back to the CPU, since this destroys the
idea of decoupling a GPU from a corresponding CPU.

10

5.3 SRK

The serverless research kit [5] is a core part of our project. It abstracts away the user input part of
PyPlover, allowing us to mainly focus on the innovations, such as the code that the server runs and the
design decisions, such as the input and kernel structures. SRK is able to take in objects from the user and
upload them to some object store that OpenLambda can pull from. In this case, we just chose to use our
local filesystem as the object store. In addition, SRK is responsible for taking in input from the user and
forwarding it to OpenLambda through an HTTP post request. SRK retrieves the result from
OpenLambda by waiting for a corresponding HTTP response through the same port.

6 Server

6.1 Internal Execution Structure

The internal execution structure of PyPlover consists of four main functions: (1) init. (2) init_func. (3)
load_static. (4) run. Init, init_func, and load_static pass inputs to each other in a systematic way, and
their inputs are forwarded to run, which runs the specified kernel chain. Figure 5 illustrates the way in
which these four functions are linked.

6.1.1 Init Implementation

The most important task of the init function is to load in the user defined shared object containing the
CUDA kernels and parse the object for the given function names. To do this, init uses dlopen to open the
shared object and retrieve a pointer to the object handler, and it uses dlsym to parse the object for the
given function name to retrieve the symbol corresponding to that given function name. Init returns a list
of pointers to the retrieved symbols in the user defined shared object.

6.1.2 Init_func Implementation

The init_func function is responsible for allocating memory on the GPU for the tmp and out buffers in
the state object that the kernel functions operate on. The init_func function makes use of the cudaMalloc
CUDA function to allocate memory on the GPU. But for this to work, init_func must take in as input the
sizes of the tmp and out buffers that the user plans to allocate. This function returns a state object
containing the allocated tmp and out buffers.

6.1.3 Load_static Implementation

The load_static function is responsible for loading in any static data that does not vary between function
invocations. One example of this data would be weights in a deep neural network. Uniquely, this

11

function is only called a single time upon kernel function creation, when the container with the kernel
function is created. This function initially creates the state object, upon which it allocates space on the
GPU for the static data and uses cudaMemset to copy the static data to the GPU. By separating static
data from input data, a portion of time and resources is saved, since only a fraction of the total data the
kernels take in as input needs to be copied over to the GPU. Load_static returns the state object
containing the allocated constant buffer.

6.1.4 Run Implementation

The run function is responsible for running the kernel functions, given the state object and the pointers
to the kernel functions to run. Run starts by allocating space for the input buffer on the GPU using
cudaMalloc and copying the input data over to the GPU with cudaMemset. After the kernel chain
returns, run fetches the contents of the out buffer containing the output of the kernel chain and returns it
to the user.

6.2 Kernel Execution Structure

The structure in which the kernel runs holds some limitations, but, in general, it is very flexible about
which types of kernel execution strategies that it can support. Kernel chains in PyPlover are restricted to
run in a chain, in which one kernel is chained after the other without any CPU runtime between the
kernels. This structure prevents the user from performing any CPU operations on the temporary data
between kernels, but also optimizes runtime of the kernels by not allowing for any overhead of memory
changes between CPU and GPU. We feel that this tradeoff is necessary for an optimal runtime of a
kernel chain on the GPU and to prevent any unexpected memory changes due to faulty CPU code
running between kernels. In addition, this structure also supports the method of entirely decoupling a
GPU from a CPU. Figure 4 illustrates the structure that a kernel chain must take.

7 Evaluation

At the beginning of our project, we defined our metrics of success as:

1. A total runtime on our system, of some kernel, that is comparable to the runtime on a regular
GPU-enabled instance

2. A total resource consumption, of some kernel, that is comparable, if not better, than the resource
consumption on a regular GPU-enabled instance

We were only able to evaluate metric 1 thoroughly through two different kernels. Metric 2 is
unmeasured and is considered future work.

12

7.1 vecAdd Kernel Results

Figure 9: Results for the first vecAdd experiment. This experiment simply took two vectors and parallelized their addition using CUDA.

The first kernel we tested our system on was the vecAdd kernel. This kernel is very simple and was
essentially a test to see if our system worked correctly from end-to-end. The static data in this function is
a vector consisting of n=1000000 elements. The input data in this function is a vector consisting of
n=1000000 elements. For this test, we had the input vector equal the constant data for simplicity. The
system was run locally on a machine with two Nvidia K20C GPUs and a single Intel Core i7-4765T
CPU.

The results from this first experiment were interesting. We noticed that the overhead for this kernel was
absolutely massive. Originally, we were under the impression that this overhead was the warm start, in
which case the system could be considered infeasible due to the massive overhead involved. However,
after looking into SRK further, we realized that SRK was shutting down the OpenLambda connection
each time that the experiment finished. Therefore, this overhead is always the cold start overhead, which
include the massive time to start up a container and perform all the start-up procedures. In addition,
since the overhead is still quite large compared to the actual time needed to run the kernels, we decided
to perform the same timing experiment on a more complex kernel chain, leading up to the CNN kernel
example.

7.2 CNN Kernel Chain Results

Figure 10: Results for the CNN Kernel Chain Experiment. The local timing is greater than the hot start-up timing since local timing also includes

some overheads that a hot start-up ignores.

13

Layer Configuration

1 Convolutional layer with 6 filters with size (5,5), stride 1, no padding

2 Convolutional layer with 1 filter with size (4,4), stride 4, no padding

3 Fully connected layer with input size 6*6*6 and output size 10

Table 1: Architectural details of CNN. This CNN takes in an input from the MNIST dataset and returns a one-hot vector with the calculated label

for the input.

The next experiment we performed was to take an already implemented CNN on CUDA and run the
kernel chain specified in the code through our system. The experiment was performed on the same
machine as the vecAdd experiment. This CNN takes input from the MNIST dataset and predicts a label
for this input.

The architectural details of CNN implementation that we use is shown in detail in Table 1. We modify
the original code to be run with state and buffer structure shown in Figure 5. In detail, we first declare
each layer of the CNN as a function kernel to be run. When initializing kernels, the weight of each layer
is loaded to the 'constant' buffer in function state. At runtime, the input image is copied to 'input' buffer
and the layer kernels are run sequentially, writing output (activation) matrix in 'tmp' buffer to be read by
the next layer's kernel invocation. When all the kernels finish running, the output activation are written
in 'out' buffer of the state, and returns to the user.

Building on top of our previous experiment, we determined that we needed to keep track of the timing
for the cold, warm, and hot starts of our system. The overhead differs drastically between the different
starts, mostly due to the setup of the container in which the kernel function runs. For a cold start, the
container has to be allocated from scratch and set-up, which takes a significant amount of time. For a
warm start, the container is only paused, which allows a much faster start-up. For a hot start, the
container is already running on some previous input and can immediately take the next input, leading to
an almost negligible overhead.

8 Future Work

Both of the kernels we tested our system on were relatively simple kernels in terms of runtime. In order
to show that the overhead for SRK/OpenLambda could be negligible even on a cold start, it is important
to test our system on a more complex kernel chain.

14

Adding onto making the overhead for SRK/OpenLambda negligible, it would be beneficial toward our
project to replace this combination with something more efficient. We have taken steps toward
discussing integrating Droplet, another project at RISELab similar to OpenLambda, into PyPlover.

It would also be useful to see how easy it is to attach an existing machine learning framework, such as
TVM [6], to our system. Since TVM auto-generates its CUDA code, we would need to tune this auto-
generation system to generate PyPlover comptatible CUDA code instead.

Another step that this project could progress in is the attachment of PyPlover to a popular neural
network programming framework such as PyTorch. Work is already being done in this direction. We
chose PyTorch over a Tensorflow, a similar framework, since the backend of PyTorch was much easier
to work with. However, PyTorch would reference many of the GPU functions added by the user before
PyPlover reads the symbols from the library provided by the user. In addition, many of the GPU
functions in PyTorch are already pre-written to reference CUDA calls. Currently, we are working on
replacing these CUDA calls with PyPlover function calls.

An additional aspect of the project that we hope to include is the addition of a dataplane. Currently,
PyPlover has minimal capability in storing user data over the long-term. To solve this issue we propose
attaching a key-value storage system, such as Redis, in order to point the system to the correct shared
library that the user uploads.

9 Conclusion

PyPlover is a system we designed to abstract away the set-up of GPU-enabled instances toward the
processing of GPU workloads. By doing this, the client is able to get potentially better resource
utilization than setting up a cluster of dedicated GPU instances himself. In addition, through PyPlover,
scaling GPU workloads becomes trivial and even fault tolerance becomes less of an issue. Although the
results for our system were not necessarily optimal, the most important takeaway of our project is the
design of the general kernel function and the kernel chain structure we implemented on the server side.

10 Acknowledgements

I would like to thank Nathan Pemberton and Jichan Chung for their contributions to this project. In
particular, Nathan helped in retrieving benchmarks for this project in the evaluation section. Jichan was
able to translate the CUDA function calls in the CNN neural network to PyPlover function calls.

15

References

[1] Jaewook Kim, Tae Joon Jun, Daeyoun Kang, Dohyeun Kim, Daeyoung Kim, et al. GPU Enabled
Serverless Computing Framework. https://ieeexplore.ieee.org/abstract/document/8374513/

[2] Jose Duato, Antonia J. Pena, Federico Silla, Rafael Mayo, Enrique S. Quintana-Ortí, et al. rCUDA:
Reducing the number of GPU-based accelerators in high performance clusters.
https://ieeexplore.ieee.org/document/5547126/

[3] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht, et al. Occupy the Cloud:
Distributed Computing for the 99%. https://arxiv.org/abs/1702.04024

[4] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkataramani , Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, et al. Serverless Computation with OpenLambda.
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf

[5] Nathan Pemberton. Serverless Research Kit. https://github.com/serverlessresearch/srk

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy, et al. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. https://arxiv.org/abs/1802.04799

[7] Anne Hecht. What is a Virtual GPU? https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-
gpu/

[8] Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, Emmett
Witchel. GPUnet: Networking Abstractions for GPU Programs.
https://dl.acm.org/doi/pdf/10.1145/2963098

[9] Nils Asmussen, Michael Roitzsch, Herman Hartigg. M3X: Autonomous Accelerators via Context
Enabled Fast-Path Communication. https://www.usenix.org/system/files/atc19-asmussen.pdf

https://ieeexplore.ieee.org/abstract/document/8374513/
https://ieeexplore.ieee.org/document/5547126/
https://arxiv.org/abs/1702.04024
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_hendrickson.pdf
https://github.com/serverlessresearch/srk
https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Moreau%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Jiang%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zheng%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Yan%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Cowan%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Shen%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Shen%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Wang%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Hu%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Ceze%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Guestrin%2C+C
https://arxiv.org/search/cs?searchtype=author&query=Krishnamurthy%2C+A
https://arxiv.org/abs/1802.04799
https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-gpu/
https://blogs.nvidia.com/blog/2018/06/11/what-is-a-virtual-gpu/
https://dl.acm.org/doi/pdf/10.1145/2963098
https://www.usenix.org/system/files/atc19-asmussen.pdf

