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Abstract

Robotic Fabric Manipulation with Deep Imitation Learning and Reinforcement Learning in
Simulation

by

Ryan Hoque

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

While work on robotic manipulation of rigid objects has come a long way, the manipulation
of deformable objects remains an open problem in robotics. Highly deformable structures
such as rope, fabric and bags are very tricky to model and reason about due to their infinite-
dimensional state space and complex dynamics. Meanwhile, techniques for deep learning,
reinforcement learning, depth sensing, and simulation continue to advance and o↵er powerful
tools for representing these complex objects. We study the problem of fabric manipulation,
which has applications in the home (laundry, dressing assistance, bed-making, etc.) as well
as industry (surgical gauze handling, textile and upholstery manufacturing, carbon fiber
molding, etc.).

First, we study the problem of fabric smoothing, i.e. finding the sequence of pick-and-place
actions that maximize coverage of the underlying plane. We train a policy on RGB and
depth (RGBD) image observations with imitation learning of an algorithmic supervisor that
has access to fabric state in simulation. To evaluate our approach, we transfer the policy to
a physical da Vinci Research Kit (dVRK) surgical robot and achieve 95% final coverage on
simple starting configurations and 83% final coverage on highly crumpled starting states.

Next, we generalize the problem from smoothing to goal-conditioned fabric manipulation,
in which we wish to learn a policy to manipulate toward some arbitrary goal image. To do
this, we propose a technique we call VisuoSpatial Foresight (VSF), which decouples learning
a visual dynamics model on simulated RGBD data from planning over that model. In
our experiments we demonstrate that a single learned policy can both rival the imitation
learning agent on the smoothing task and manipulate toward images of singly folded and
doubly folded fabric configurations without any task demonstrations at training or test time.
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Chapter 1

Introduction

As the ongoing COVID-19 pandemic spread around the world, endangering the lives of our
loved ones and overwhelming many of our institutions, it exposed a need for automation.
From our supply chain to our hospitals, automation can step in where it’s far too dangerous
for humans. Unfortunately, while great progress has been made in robotics and machine
learning research, many open problems remain to be solved before we can safely deploy re-
liable and intelligent robots in the real world. One such problem is manipulation of highly
deformable structures such as fabric, which, for example, could be helpful in making hos-
pital beds [50] and caring for seniors in nursing homes [19]. Fabric manipulation also has
applications in sewing [48], ironing [29], laundry folding [36, 30, 68, 52], manufacturing
upholstery [60], handling surgical gauze [57], and more.

In Chapter 3, we consider learning a policy for the task of fabric smoothing : sequentially
maximizing coverage of fabric in highly crumpled initial configurations. Fabric smoothing is
both a starting point for further fabric manipulation and an interesting problem in its own
right, as it standardizes the setup of fabric for subsequent tasks like folding. This chapter
covers [49], work done by myself, Daniel Seita, Adi Ganapathi, Professor Goldberg and
others. The paper contributes an open source fabric simulator, a smoothing policy learned
via imitation of an algorithmic supervisor, and experimental validation on a physical robotic
system with comparison of color and depth modalities.

In Chapter 4, we generalize the problem to goal-conditioned fabric manipulation: sequen-
tially manipulating fabric toward some goal image. This chapter is based on [22], work done
by myself, Daniel Seita, Ashwin Balakrishna and Professor Goldberg scheduled to appear at
Robotics: Science and Systems (RSS) 2020. This paper presents “VisuoSpatial Foresight”
(VSF), a model-based reinforcement learning algorithm for planning over visual dynamics
from simulated RGBD data. Results indicate that a single learned policy can reach a variety
of goal images such as smooth, folded, and doubly folded without any task demonstrations.

We conclude the report with a brief summary of where we are now in robotic fabric
manipulation and where to go from here.
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Chapter 2

Related Work

2.1 Fabric Manipulation

Manipulating fabric and other deformable objects is a long-standing challenge in robotics
research. Smoothing helps standardize the configuration of the fabric, enabling reliable
completion of subsequent tasks such as folding fabric [7, 47]. A popular approach in prior
work is to first hang fabric in the air and allow gravity to “vertically smooth” it [41, 27,
28, 13], which has led to results such as Maitin-Shepard et al. [34], which reported a 100%
success rate in single-towel folding. In contrast, the approach we present is targeted towards
larger fabrics like blankets [50] and for single-armed robots which may have a limited range
of motion, making such “vertically smoothing” infeasible. Similar work on fabric smoothing
and folding, such as by Balaguer et al. [3] and Jia et al. [24, 25] assume the robot is initialized
with the fabric already grasped, whereas we require the robot to begin manipulating without
touching the fabric. Other work on fabric smoothing, including Willimon et al. [65] and Sun
et al. [54, 55], address a similar problem setting as we do, but the initial fabric configurations
are much closer to fully smoothed than those we consider. For the smoothing task, we
consider three di↵erent tiers of initial state complexity, the hardest of which covers less than
half of the plane and has 1-2 corners occluded.

While captivating demonstrations of laundry folding in commercial robots and research
[36, 34] may initially lead us to believe that we have all but solved fabric manipulation,
these policies come with strong assumptions and are highly engineered for that specific use
case. Accurate state estimation for deformable objects remains intractable. Thus, we seek
to learn robust, intelligent policies that can reason about the fabric state despite uncertainty
and generalize to related manipulation tasks, especially in Chapter 4.

2.2 Learning from Fabric Simulation

There has been recent interest in learning sequential fabric manipulation policies with fab-
ric simulators, in which we can take advantage of access to the underlying fabric state
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and generate large training datasets e�ciently. Examples of fabric simulators include those
from ARCSim [39], MuJoCo [59], PyBullet [10], Blender [9], and the simulator we built in
[49]. Matas et al. [35] simulate fabric in PyBullet and train a policy with the Deep Determin-
istic Policy Gradient (DDPG) algorithm [31]. They focus on the folding task and assume an
initially smooth configuration. In independent work conducted concurrently with [49] (the
focus of Chapter 3), Wu et al. [66] and Jangir et al. [23] also learn fabric smoothing from
simulation using Model-Free Reinforcement Learning (MFRL) with Soft Actor-Critic [21]
and DDPG with demonstrations [62] respectively.

While these algorithms achieve impressive results, they are designed or trained for spe-
cific fabric manipulation tasks (such as folding or smoothing), and do not reuse learned
structure to generalize to a wide range of tasks. This motivates learning fabric dynamics to
enable more general purpose fabric manipulation strategies, which we consider in [22] (the
focus of Chapter 4). Another option is learning the visual structure (as opposed to dynam-
ical structure) of the fabric by finding correspondences between pairs of observations. In
subsequent work in our lab, Ganapathi et al. [18] explores this approach using dense object
descriptors [17] in simulation and achieves similarly promising results on real smoothing and
folding tasks.

2.3 Visual Foresight

In Chapter 4 we consider learning a visual dynamics model and planning over it in a model-
predictive control (MPC) framework. MPC is a popular approach for leveraging learned
dynamics for robotics control that has shown success in learning robust closed-loop policies
even with substantial dynamical uncertainty [56, 4, 15, 53]. However, many of these prior
works require knowledge or estimation of underlying system state, which can often be in-
feasible or inaccurate. Finn et al. [16] and Ebert et al. [14] introduce visual foresight and
demonstrate that MPC can be successfully combined with a learned visual dynamics model
to accomplish a variety of robotic tasks, including deformable object manipulation such as
folding pants, by planning over models trained on raw visual input of real fabric. However,
the trajectories shown are limited to a single pick and pull, while we focus on longer horizon
sequential tasks, aided by a pick-and-pull action space better suited for fabric manipulation.
Furthermore, while prior work on visual foresight learns general purpose policies which can
manipulate a variety of di↵erent objects, the tasks performed have a wide range of valid goal
images, such as covering a utensil with a towel or moving a pant leg upwards. In contrast,
we focus on achieving precise goal configurations via multi-step interaction with the fabric.
Prior work on visual foresight [16, 14, 11] also generally collects data for training visual
dynamics models in the real world, which is impractical and unsafe for robots such as the
dVRK surgical robot we use due to the sheer volume of data required for the technique
(on the order of 100,000 to 1 million actions, often requiring weeks of physical interaction
data [11]). One recent exception is the work of Nair et al. [38] which trains in simulation
for matching Tetris blocks. Prior work also uses RGB color images for training, while we
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find that combining RGB images and depth maps in video prediction enables more e↵ective
planning for achieving a variety of smoothed and folded fabric configurations. The use of
depth in this work is motivated by how depth cameras are available at ever decreasing cost
as well as increasing resolution and frame rate.
In subsequent work, Yan et al. [67] and Lippi et al. [32] also train goal-conditioned fabric
manipulation policies, but they learn dynamics and plan in latent space rather than image
space. They demonstrate that learning a latent space can help with sample complexity and
task performance, and they show generalization to planar rope manipulation and a simulated
block-stacking task respectively. However, the fabric manipulation experiments are limited
to smoothing in the former and folding in the latter.
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Chapter 3

Learning Fabric Smoothing from an
Algorithmic Supervisor

3.1 Introduction

This chapter is based on [49], in which we wish to learn a policy to smooth fabric from
highly crumpled initial configurations with a single robot arm. To do this, we build a
fabric simulator and collect smoothing episodes performed by a corner-pulling algorithmic
demonstrator with access to the ground-truth mesh of the fabric. Such a technique could not
be performed on real data as we would not have access to the same privileged information.
We proceed to train a policy with DAgger [45] on this data and evaluate the learned policy
against various baselines in simulation. Finally, we transfer the policy to a physical da Vinci
Research Kit (dVRK) surgical robot by leveraging domain randomization [58] and compare
performance among policies trained on RGB, depth, and RGBD modalities. See Figure 3.1
for an overview of the project.

3.2 Problem Statement

Given a deformable fabric and a flat fabric plane, each with the same rectangular dimensions,
we consider the task of manipulating the fabric from some start state to one that maximally
covers the fabric plane. We define an episode as one instance of the fabric smoothing task.

Concretely, let ⇠t be the full state of the fabric at time t with (x, y, z) positions of all
points in the mesh. Let ot 2 O be the image observation of the fabric at time t, where
O = RH⇥W⇥c represents the space of images with H ⇥W pixels and c channels, where c = 1
for depth images, 3 for color images, and 4 for combined color and depth (RGBD) images.
Let A be the space of actions the robot may take (see Section 3.3). The task performance is
measured with coverage C(⇠t), or the percentage of the fabric plane covered by ⇠t.

We frame this as imitation learning [1], where a supervisor provides data in the form of
paired observations and actions D = {(ot, at)}Nt=1. From D, the robot’s goal is to learn a
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Figure 3.1: Learned smoothing policies executed in simulation and with a physical dVRK
surgical robot, where pick-and-pull actions are indicated with the overlaid arrows. Policies
are learned in simulation using DAgger [45] with an algorithmic supervisor that has full state
information, using structured domain randomization with color and/or depth images. The
4-action smoothing episode in simulation (top) increases coverage from 43% to 95%. The
7-action episode on the physical da Vinci robot (bottom) increases coverage from 49% to
92%.

policy ⇡ : O ! A that maps an observation to an action, which it then executes sequentially
until achieving su�cient coverage, pulling the fabric out of bounds, or reaching some limit
on the number of iterations.

3.3 Fabric Simulator

We implement a Finite Element Method (FEM) [6] fabric simulator and interface with an
OpenAI gym environment design [8]. The simulator is open source and available on the
project website. Alternative fabric simulators exist, such as from Blender [9], which is
a popular open-source computer graphics software toolkit. Since 2017, Blender has had
significant improvements in physics and realism of fabrics, but did not have allow for massive
data collection and low-level interaction with the simulated fabric until more recent work [18].
MuJoCo 2.0 provides another fabric simulator, but did not support OpenAI-gym style fabric
manipulation environments until concurrent work [66]. ARCSim [39] is a third option that
provides highly accurate fabric physics, but it was too computationally expensive for us to
generate su�cient training data at a reasonable rate.
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Figure 3.2: FEM fabric simulation. Left: a wireframe rendering, showing the 25 ⇥ 25 grid of
points and the spring-mass constraints. Right: the corresponding image with the white fabric
plane, rendered using Blender and overlaid with coordinates. The coverage is 73%, measured as
the percentage of the fabric plane covered.

Inspired by course material from UC Berkeley’s CS 184/284A: Computer Graphics class,
the fabric (Figure 3.2) is represented as a grid of 25 ⇥ 25 point masses, connected by three
types of springs [44]:

• Structural : between a point mass and the point masses to its left and above it.

• Shear : between a point mass and the point masses to its diagonal upper left and
diagonal upper right.

• Flexion: between a point mass and the point masses two away to its left and two above
it.

Each point mass is acted upon by both an external gravitational force which is calculated
using Newton’s Second Law F = m · a and a spring correction force

Fs = ks · (kqa � qbk2 � `), (3.1)

for each of the springs representing the constraints above, where ks is a spring constant (a
hyperparameter we tune for realistic simulation), qa 2 R3 and qb 2 R3 are positions of any
two point masses connected by a spring, and ` is the default spring length (which we also
tune). We update the point mass positions using Verlet integration [63]. Verlet integration
computes a point mass’s new position at time t+ �t, denoted with pt+�t , as:

pt+�t = pt + vt�t + at�
2
t
, (3.2)
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where pt 2 R3 is the position, vt 2 R3 is the velocity, at 2 R3 is the acceleration from all
forces, and �t 2 R is a timestep. Verlet integration approximates vt�t = pt � pt��t where
pt��t is the position at the last time step, resulting in

pt+�t = 2pt � pt��t + at�
2
t
. (3.3)

The simulator adds damping to simulate loss of energy due to friction and scales down vt,
leading to the final update:

pt+�t = pt + (1� d)(pt � pt��t) + at�
2
t

(3.4)

where d 2 [0, 1] is a damping term that we tuned to 0.02 based on visual inspection of the
simulator.

We apply a constraint from [44] by correcting point mass positions so that spring lengths
are at most 10% greater than ` at any time. We also implement fabric self-collisions as
suggested in [5] by adding a force to encourage separation between two points if they are too
close.

The simulator provides access to the full fabric state ⇠t, which contains the exact (x, y, z)
positions of all 25⇥25 points. However it does not provide corresponding image observations
ot, which are necessary for transfer to physical robots. To obtain image observations of a
given fabric state, we create a triangular mesh from ⇠t and render it using Blender 2.79.

Actions

We define an action at 2 A at time t as a 4D vector

at = hxt, yt,�xt,�yti (3.5)

which includes the pick point (xt, yt) represented as the coordinate over the fabric plane to
grasp as well as with the pull vector (�xt,�yt) relative to the pick point. The simulator
implements actions by grasping the top layer of the fabric at the pick point. If there is no
fabric at (xt, yt), the grasp misses the fabric. After grasping, the simulator lifts the fabric at
the pick point, drags it towards the point (x+�xt, y+�yt) in the fabric plane, and releases,
allowing the fabric to settle.

Starting State Distributions

The performance of a smoothing policy depends heavily on the distribution of starting fabric
states, which we vary more widely than prior work. We categorize episodes as belonging to
one of three custom di�culty tiers. For each tier, we randomize the starting state of each
episode. We report average coverage over 2000 simulations for each tier as well as how to
generate each tier:
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Figure 3.3: Initial fabric configurations drawn from the distributions specified in Section 3.3, with
tiers grouped by columns. The first two rows show representative simulated color (RGB) and depth
(D) images, respectively, while the last two rows show examples of real images from a mounted
Zivid One Plus camera (after smoothing and de-noising), which we then pass as input to a neural
network policy. Domain randomization is not applied on the simulated images shown here.

• Tier 1, 78.3 ± 6.9% Coverage (High): Starting from a flat fabric, we make two
short, random pulls to slightly perturb the fabric. All fabric corners remain visible.

• Tier 2, 57.6 ± 6.1% Coverage (Medium): We orient the fabric vertically and let
the fabric drop from midair on one side of the fabric plane. We perform one random
grasp and pull across the plane and then do a second grasp and pull to cover one of
the two fabric corners furthest from its target.

• Tier 3, 41.1 ± 3.4% Coverage (Low): Starting from a flat fabric, we grip at a
random pick point, pull high in the air, drag in a random direction, and then drop,
usually resulting in one or two corners hidden.

Figure 3.3 shows examples of color and depth images of fabric initial states in simulation
and real physical settings for all three tiers of di�culty.
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3.4 Imitation Learning

Algorithmic Supervisor

A clear advantage of using a fabric simulator for training data is access to the ground truth
state of the fabric ⇠t. Meticulously collecting this state information from real world exam-
ples by hand would be not only impractical but also inaccurate. Moreover, an algorithmic
supervisor can generate demonstrations much more e�ciently and cheaply than a human.

We call the fabric smoothing algorithm we use the oracle policy. Using its state informa-
tion, it repeatedly finds the fabric corner furthest from its target position (its corresponding
position in a fully smooth configuration) and pulls until it reaches the target. If the corner
is occluded, the policy picks the top layer of the fabric. While this doesn’t always do exactly
what we want, we find that the policy performs very well on all di�culty tiers. Defining
episode termination as reaching 92% coverage, we obtain the following results with the oracle
policy when averaging over 2000 simulations:

• Tier 1: Final Coverage 95.7% +/- 2.1%, Number of Actions 1.8 +/- 0.8.

• Tier 2: Final Coverage 94.5% +/- 5.4%, Number of Actions 4.0 +/- 2.0.

• Tier 3: Final Coverage 95.1% +/- 2.3%, Number of Actions 4.6 +/- 1.1.

Imitation Learning with DAgger

We use the oracle policy to generate supervisor data. For each tier, we generate 2000
episodes from the supervisor and aggregate it o✏ine into a dataset D = {(oi, ai)}Ni=1, where
N is the sum of the number of actions across all episodes. We train a fabric smoothing policy
⇡✓ : O ! A on this data. As is standard in the imitation learning literature, we first train in
a Behavior Cloning (BC) phase that minimizes the Euclidean distance between our policy’s
output and the supervisor’s labels {ai}. Since BC has been shown to generalize poorly
outside the data distribution [42], we proceed with a second phase of Dataset Aggregation
(DAgger) [45], which requests the supervisor to label the states the robot encounters when
running its learned policy. Again, since we are using an algorithmic supervisor, we can
e�ciently query the oracle online during this phase.

Since we are training on image data, we use a convolutional neural network for our policy.
The network consumes images with dimensions (100⇥100⇥c), where the number of channels
is c = 1 for D, c = 3 for RGB, or c = 4 for RGBD images. The network architecture and
number of parameters are as follows:

policy/convnet/c1 864 params (3, 3, 3, 32)
policy/convnet/c2 9216 params (3, 3, 32, 32)
policy/convnet/c3 9216 params (3, 3, 32, 32)
policy/convnet/c4 9216 params (3, 3, 32, 32)
policy/fcnet/fc1 3276800 params (12800, 256)
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Table 3.1: Hyperparameters for the main DAgger experiments.

Hyperparameter Value
Parallel environments 10
Steps per env, between gradient updates 20
Gradient updates after parallel steps 240
Minibatch size 128
Supervisor (o✏ine) episodes 2000
Policy learning rate 1e-4
Policy L2 regularization parameter 1e-5
Behavior Cloning epochs 500
DAgger steps after Behavior Cloning 50000

policy/fcnet/fc2 65536 params (256, 256)
policy/fcnet/fc3 65536 params (256, 256)
policy/fcnet/fc4 1024 params (256, 4)
Total model parameters: 3.44 million

The imitation learning code uses OpenAI baselines [12] to make use of its parallel en-
vironment support. We run the fabric simulator in ten parallel environments to speed up
training, and we pool together the samples in a shared dataset that includes both DAgger
episodes and the o✏ine BC data. See Table 3.1 for various training hyperparameters. After
dataset aggregation our final dataset has approximately 110,000 (oi, ai) transitions.

We use domain randomization [58] during training to facilitate sim-to-real transfer. For
RGB images, we randomize the fabric color by selecting RGB values uniformly at random
across intervals that include shades of blue, purple, pink, red, and gray. For RGB images,
we also randomize the brightness with gamma corrections [43] and vary the shading of the
fabric plane. For depth (D) images, we make the images slightly darker to more closely match
real depth images. For both RGB and D, we randomize the camera pose with independent
Gaussian distributions for each of the position and orientation components. See Figure 3.4
for example images.

3.5 Simulated Experiments

We evaluate our learned policy in simulation by comparing final coverage against the follow-
ing four baselines, all of which have access to ground truth state ⇠t:

1. Random: As a näıve baseline, we test a random policy that uniformly selects random
pick points and pull directions.

2. Highest: This policy grasps the point p in the mesh ⇠t with the largest z coordinate.
To compute the pull vector, we obtain the target coordinates by considering where
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Figure 3.4: Simulated RGB domain-randomized images with starting states drawn from the dis-
tributions specified in Section 3.3. All images are of dimension 100 ⇥ 100 ⇥ 3. Top row: Tier 1.
Middle row: Tier 2. Bottom row: Tier 3. Domain randomization is applied on the fabric color, the
shading of the white background plane, the camera pose, and the overall image brightness, and we
apply uniform random noise to each pixel.

p’s coordinates would be if the fabric were perfectly smooth. The pull vector is then
the delta between p’s current position and the target. Seita et al. [50] showed that
this policy can achieve reasonably high coverage, particularly when the highest point
corresponds to a corner fold on the uppermost layer of the fabric.

3. Wrinkle: Sun et al. [54] propose a smoothing algorithm that iteratively identifies the
largest wrinkle and then attempts to smooth it by applying a force parallel to the
fabric plane and perpendicular to the wrinkle. We implement this method by finding
the point in the fabric of largest local height variance. Then, we find the neighboring
point with the next largest height variance, treat the vector between the two points as
the wrinkle, and pull perpendicular to it.

4. Oracle: As in Section 3.4, we repeatedly pull the corner farthest from its target position.
This is the policy we use for the algorithmic supervisor.

We report final coverage and number of actions for our learned policy as well as each
of these analytic baselines in Table 3.2. Episodes end when at least one of the following
conditions is met: (1) the fabric is su�ciently smooth (which we define to be 92% coverage),
(2) the fabric is more than 25% out of bounds relative to the size of the fabric plane, or
(3) we have already taken 15 actions. Note that the numbers for the oracle policy are the
same as in Section 3.4 and that they are an upper bound on policy performance. The learned
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Table 3.2: Results from the four baseline policies described in Section 3.5 and the imitation learning
(IL) policy. We report final coverage and the number of actions per episode. All baselines statistics
are from 2000 episodes of each tier, and learned policy statistics are from 200 episodes of each tier.

Tier Method Coverage Actions
1 Random 25.0 ± 14.6 2.43 ± 2.2
1 Highest 66.2 ± 25.1 8.21 ± 3.2
1 Wrinkle 91.3 ± 7.1 5.40 ± 3.7
1 Oracle 95.7 ± 2.1 1.76 ± 0.8
1 IL 94.3 ± 2.3 3.3 ± 3.1
2 Random 22.3 ± 12.7 3.00 ± 2.5
2 Highest 57.3 ± 13.0 9.97 ± 0.3
2 Wrinkle 87.0 ± 10.8 7.64 ± 2.8
2 Oracle 94.5 ± 5.4 4.01 ± 2.0
2 IL 92.8 ± 7.0 5.7 ± 4.0
3 Random 20.6 ± 12.3 3.78 ± 2.8
3 Highest 36.3 ± 16.3 7.89 ± 3.2
3 Wrinkle 73.6 ± 19.0 8.94 ± 2.0
3 Oracle 95.1 ± 2.3 4.63 ± 1.1
3 IL 88.6 ± 11.5 10.1 ± 3.9

policy is trained and evaluated on RGBD domain-randomized images; we postpone modality
comparison to Section 3.6.

As we can see in Table 3.2, our learned policy performs nearly as well as the oracle and
outperforms all other baselines on all three tiers of di�culty. We conclude that imitation
learning from an algorithmic supervisor is su�cient for strong policy performance on fabric
smoothing in simulation. See Figure 3.5 for an example of a successful episode at test time.

3.6 Physical Experiments

The da Vinci Research Kit (dVRK) [26] is a cable-driven surgical robot with imprecision as
reviewed in prior work [33, 51]. We use a single arm with an end e↵ector that can be opened
to 75 or a gripper width of 10mm. We set a fabric plane at a height and location that allows
the end e↵ector to reach all points on it. To prevent potential damage to the grippers, the
fabric plane is foam rubber, which allows us to liberally set the gripper height to be lower
and avoids a source of height error present in [35]. For the fabric, we cut a 5” ⇥ 5” piece
from a Zwipes 735 Microfiber Towel Cleaning Cloth with a blue color within the distribution
of domain randomized fabric colors. We mount a Zivid One Plus RGBD camera 0.9 meters
above the workspace to obtain color and depth images.
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Figure 3.5: Example simulated episode of our learned policy, from left to right, drawn from a Tier
3 starting state with 38.4% coverage. For visualization purposes, we show matching color and depth
images from an episode without domain randomization. Overlaid circles and arrows represent the
action taken on the given observation. The policy tends to pull at corners, as it was trained on
a corner-pulling supervisor. The policy takes five actions before getting to 95.5% coverage, which
exceeds our 92% threshold.

Physical Experiment Protocol

We manually create starting fabric states similar to those in simulation for all tiers. Given
a starting fabric, we randomly run one of the RGB, D, and RGBD policies for one episode
for at most 10 steps. Then, to make comparisons fair, before each of the other policies we
“reset” the fabric to be close to its starting state. To facilitate this process, we save all real
images encountered and use them as a guide to creating the initial fabric configurations.

During preliminary trials, the dVRK gripper would sometimes miss the fabric by 1-2
mm, which is within the robot’s calibration error. To counter this, we measure structural
similarity [64] of the image before and after an action to check if the robot has moved the
fabric. If it did not, the next action is adjusted to be closer to the center of the fabric plane,
and the process repeats until the robot touches the fabric.

Results

We run 20 episodes for each combination of input modality (RGB, D, or RGBD) and tiers,
resulting in 180 total episodes as presented in Table 3.3. We report starting coverage, ending
coverage, maximum coverage across the episode after the initial state, and the number of
actions. The maximum coverage allows for a more nuanced understanding of performance,
as policies can sometimes take strong initial actions that achieve high coverage (e.g. above
80%) but su↵er from a single counter-productive action at the end that substantially lowers
coverage.
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Figure 3.6: An example episode taken by a learned policy trained on RGBD images from Tier 3
starting states. The top row shows screen captures from the camera view used to record videos.
The middle and bottom row show the processed RGB and D images that are passed to the neural
network policy. The leftmost images show the starting state of the fabric, set to be highly wrinkled
with at least the bottom left fabric corner hidden. The policy takes the seven actions shown here,
with pick points and pull vectors indicated by the overlaid black arrows in the top row. Despite the
highly wrinkled starting and hidden fabric corners, the policy is able to smooth fabric from 40.1%
to 92.2% coverage.

Results suggest that despite not being trained on real images, the learned policies can
smooth physical fabric. All policies improve on the starting coverage across all tiers. Final
coverage averaged across all tiers is 86.3%, 69.0%, and 89.8% for RGB, D, and RGBD policies,
respectively, with net coverage gains of 25.2%, 7.8%, and 33.4% over starting coverage. In
addition, the RGB and RGBD policies deployed on Tier 1 starting states each achieve the
92% coverage threshold 20 out of 20 times. While RGB has higher final coverage on Tier 1
starting states, the RGBD policies has stronger performance on the more di�cult starting
states without taking considerably more actions.

Qualitatively, the RGB and RGBD policies are e↵ective at “fine-tuning” by taking several
short pulls to trigger at least 92% coverage. Figure 3.6 shows an episode taken by the RGBD
policy on Tier 3 starting states. It is able to smooth the highly wrinkled fabric despite several
corners hidden underneath fabric layers. The depth-only policies do not perform as well, but
this is in large part because the depth policy sometimes takes counterproductive actions
after several reasonable actions. This may be in part due to uneven texture on the fabric we
use, which is di�cult to replicate in simulated depth images.
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Table 3.3: Physical experiments. We run 20 episodes for each of the tier 1 (T1), tier 2 (T2), and
tier 3 (T3) fabric conditions, with RGB, D, and RGBD policies, for a total of 20 ⇥ 3 ⇥ 3 = 180
episodes. We report: (1) starting coverage, (2) final coverage, with the highest values in each tier
in bold, (3) maximum coverage at any point after the start state, and (4) the number of actions per
episode. Results suggest that RGBD is the best policy with harder starting fabric configurations.

(1) Start (2) Final (3) Max (4) Actions
T1 RGB 78.4 +/- 4 96.2 +/- 2 96.2 +/- 2 1.8 +/- 1
T1 D 77.9 +/- 4 78.8 +/- 24 90.0 +/- 10 5.5 +/- 4
T1 RGBD 72.5 +/- 4 95.0 +/- 2 95.0 +/- 2 2.1 +/- 1
T2 RGB 58.5 +/- 6 87.7 +/- 13 92.7 +/- 4 6.3 +/- 3
T2 D 58.7 +/- 5 64.9 +/- 20 85.7 +/- 8 8.3 +/- 3
T2 RGBD 55.0 +/- 5 91.3 +/- 8 92.7 +/- 6 6.8 +/- 3
T3 RGB 46.2 +/- 4 75.0 +/- 18 79.9 +/- 14 8.7 +/- 2
T3 D 47.0 +/- 3 63.2 +/- 9 74.7 +/- 10 10.0 +/- 0
T3 RGBD 41.7 +/- 2 83.0 +/- 10 85.8 +/- 6 8.8 +/- 2

Figure 3.7: A poor action from a policy trained on only depth images. Given the situation shown
in the left image, the policy picks a point near the center of the fabric. The resulting pick, followed
by the pull to the lower left, causes a major decrease in coverage and makes it hard for the robot
to recover.

Failure Cases

The policies are sometimes susceptible to performing highly counter-productive actions. In
particular, the depth-only policies can fail by pulling near the center of the fabric for fabrics
that are already nearly smooth, as shown in Figure 3.7. This results in poor coverage and
may lead to cascading errors where one poor action can lead fabric to reach states outside
the training distribution.

One cause may be that there are several fabric corners that are equally far from their
targets, which creates ambiguity in which corner should be pulled. One approach to mitigate
this issue could be to formulate corner picking with a mixture model to resolve this ambiguity.
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Chapter 4

Goal-Conditioned Fabric
Manipulation with VisuoSpatial
Foresight

4.1 Introduction

This chapter is based on [22], in which we generalize the problem from fabric smoothing
to goal-conditioned fabric manipulation with a single robot arm. To this end, we propose
a Model-Based Reinforcement Learning (MBRL) algorithm called VisuoSpatial Foresight
(VSF) to learn visual fabric dynamics in simulation and reuse the learned structure across
related manipulation tasks like smoothing and folding. We demonstrate that a single policy
can reach a variety of goal images in simulation and transfer the policy to a dVRK surgical
robot. See Figure 4.1 for an overview.

4.2 Problem Statement

We consider learning goal-conditioned fabric manipulation policies that enable planning to
specific fabric configurations given a goal image of the fabric in the desired configuration.
We define the fabric configuration at time t as ⇠t, represented as a mass-spring system with
an N ⇥ N grid of point masses subject to gravity and Hookean spring forces. However,
due to the di�culties of state estimation for highly deformable objects such as fabric we
consider overhead RGBD observations ot 2 R56⇥56⇥4, which consist of three-channel RGB
and single-channel depth images.

We assume tasks have a finite task horizon T and can be achieved with a sequence of
actions from a single robot arm which involve grasping a specific point on the fabric and
pulling it in a particular direction, which holds for common manipulation tasks such as
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Figure 4.1: Using VSF on domain randomized RGBD data, we learn a goal-conditioned
fabric manipulation policy in simulation without any task demonstrations. We evaluate the
same policy on several goal images in simulation (top two rows) and on the physical da Vinci
surgical robot (bottom row). The rows display the RGB portions of subsampled frames from
episodes for folding, double folding, and smoothing, respectively, toward the goal images in
the right column.

folding and smoothing. As in Chapter 3, we consider four-dimensional actions

at = hxt, yt,�xt,�yti. (4.1)

Each action at at time t involves grasping the top layer of the fabric at coordinate (xt, yt)
with respect to an underlying background plane, lifting, translating by (�xt,�yt), and then
releasing and letting the fabric settle. When appropriate, we omit the time subscript t for
brevity.

The objective is to learn a goal-conditioned policy which minimizes some goal conditioned
cost function defined on realized or predicted interaction episodes cg(⌧) with goal g and
episode ⌧ , where the latter in this work consists of one or more images.
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4.3 VisuoSpatial Foresight

Visual Foresight

Visual foresight, also called visual MPC (model-predictive control), is a framework presented
by Finn et al. [16] for vision-based robotic manipulation tasks. It consists of two phases: (1)
learning a visual dynamics model directly from image observations and (2) using the model
to plan a trajectory with low cost according to some planning cost function. In Phase 1, a
deep convolutional neural network is trained on thousands of episodes, where an episode is a
complete trajectory of observations and actions from some starting state to a terminal state.
Usually these episodes consist of mostly random actions and some on-policy actions relevant
to the task(s) under consideration so that the network can train on enough data from the
distribution encountered at test time. The network f✓(·) learns to map current observation
and a sequence of actions to a sequence of predicted observations, i.e.

f✓(ot, at:t+H�1) = (ôt+1:t+H) (4.2)

where ot is the image observation of the underlying state ⇠t at time step t, at is the action
taken on ⇠t at time step t, and H is the “horizon,” a hyperparameter that specifies how
many observations to predict. Thus we get the name visual foresight : the model is in a sense
“predicting the future” by generating “imagined” trajectories predicted to be the result of a
given sequence of actions. Images closer to the end of the imagined trajectory are typically
more blurry due to increased uncertainty.

Phase 2 occurs at test time when we are actually rolling out our policy. We specify some
planning cost function c(⌧) evaluated over H-length trajectories and use our visual dynamics
model to find the optimal action sequence in terms of this cost. Since finding the actual
optimal sequence is intractable, we approximate with random shooting (generating many
random sequences and taking the one with lowest cost) or the cross-entropy method (CEM,
repeatedly alternating between sampling action sequences from some normal distribution and
re-fitting that distribution onto the lowest cost trajectories). Finally, we mitigate inaccuracies
that propagate with time by using model-predictive control (MPC), i.e. executing only the
first action in our approximately optimal sequence and then replanning. Concretely, in Phase
2, at every time step during policy execution we:

1. Generate random action sequences at:t+H�1 by sampling from some N (µ,⌃).

2. Pass each action sequence at:t+H�1 along with our current observation ot to our trained
dynamics model f✓(·) to get a predicted trajectory ⌧ for each action sequence.

3. Evaluate each ⌧ with our cost function c(⌧) to find the 10% or 20% of trajectories with
the lowest cost. (The percentage value here is a CEM hyperparameter.)

4. (CEM) Fit N (µ,⌃) to these “elite” trajectories and redo steps (1)-(3) for some fixed
number of iterations.
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5. (MPC) Execute the first action in µ in our environment to get some resulting ⇠t+1 and
ot+1.

Approach Overview

To learn goal-conditioned policies, we extend the visual foresight framework discussed in the
previous section with simulated depth data to learn a model of fabric dynamics. We then use
this model to plan over an H-step MPC horizon to compute action sequences to optimize a
goal-conditioned cost function. Since depth maps give us an additional “spatial” component
to the dynamics model, we call the resulting algorithm VisuoSpatial Foresight (VSF).

To represent the dynamics of the fabric, we train a deep recurrent convolutional neural
network [20] to predict a sequence of RGBD output frames conditioned on a sequence of
RGBD context frames and a sequence of actions. This visuospatial dynamics model, denoted
as f✓, is trained on thousands of self-supervised simulated episodes of interaction with the
fabric, where an episode consists of a contiguous trajectory of observations and actions. We
use Stochastic Variational Video Prediction [2] for the model architecture.

For planning, we utilize a goal-conditioned planning cost function cg(ôt+1:t+H) with goal
g, which in the proposed work is a target image o(g). The cost is evaluated over the H-length
sequence of predicted images ôt+1:t+H sampled from f✓ conditioned on the current observation
ot and some proposed action sequence ât:t+H�1. One example of a cost function optimized
for smoothing is one minus coverage, where coverage is the percentage of a background plane
covered by a fabric of the same size. While there are a variety of cost functions that can
be used for visual foresight [14], we utilize the Euclidean pixel distance between the final
RGBD images at timestep t and the goal image o(g) across all 4 channels as this works well
in practice for the tasks we consider. Precisely, we define the planning cost as follows:

cg(ôt+1:t+i⇤) = ko(g) � ôt+i⇤k2 (4.3)

where
i⇤ = min{H, T � t} (4.4)

represents the time horizon. As in prior work [16, 14, 11], we utilize the cross entropy
method [46] to plan action sequences to minimize cg(ôt+1:t+H) over a receding H-step horizon
at each time t.

There are four main components of this approach: (1) fabric simulation for policy learning
in a simulator, (2) data collection, (3) learning a visuospatial dynamics model, and (4)
generating plans over this dynamics model. See Figure 4.2 for a summary of the approach.

Fabric Simulator

VSF requires a large amount of training data to predict full-resolution RGBD images. Since
getting real data is cumbersome and imprecise, we use a fabric simulator to generate data
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Figure 4.2: Overview of the approach. The fabric simulator generates domain-randomized RGBD
images. The data is used to train the SV2P visual dynamics model. At test time, given some choice
of planning cost function, we plan with the trained dynamics model to get the goal-conditioned
fabric manipulation policy ⇡. Given some goal image, we take actions to reach that observation.

quickly and e�ciently. We use the open-source fabric simulator from Seita et al. [49] (dis-
cussed in Section 3.3) which was shown to be su�ciently accurate for reasonable fabric
smoothing policies and sim-to-real transfer, and we use the same physics-based hyperpa-
rameters. We briefly recap the most relevant aspects of the simulator with emphasis on the
changes from the original.

The fabric is represented as a mass-spring system with a 25⇥25 grid of point masses [44].
Each point mass has springs connecting it to its neighbors. Verlet integration [63] is used to
update point mass positions by approximating velocity as the di↵erence in position between
discrete time steps. The simulator implements self-collision by adding a repulsive force to
points that are too close [5] and applies damping to simulate friction. As in [49], the simulator
is wrapped in an OpenAI Gym environment [8], with actions as four-dimensional vectors as
described in Section 3.3. For the pick point, x 2 [�1, 1] and y 2 [�1, 1]. The only change in
the action space from Seita et al. [49] is that we truncate �x and �y to be within [�0.4, 0.4],
rather than [�1, 1] as earlier. Restricting the action space may make it easier to learn visual
dynamics models since larger deltas drastically alter the shape of the fabric.

We use the open-source software Blender to render (top-down) image observations ot

of the fabric. We make a couple changes for the observations relative to [49]. First, we
reduce the size of observations to 56⇥ 56 from 100⇥ 100, to make training visual dynamics
models more computationally tractable. Second, to enable transfer of policies trained in
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simulation to the real-world, we adjust the domain randomization [58] techniques so that
color, brightness, and positional hyperparameters are fixed per episode to ensure that the
video prediction model learns to only focus on predicting changes in the fabric configuration
rather than changes due to domain randomization.

Data Generation

We collect 7,115 episodes of length 15 each for a total of 106,725 (ot, at,ot+1) transitions
for training the visuospatial dynamics model. The episode starting states are sampled from
three tiers of di�culty with equal probability. These tiers are the same as those in [49] and
di↵er in initial coverage, or the amount that a fabric covers the underlying plane. All data
was generated from a random policy: execute a randomly sampled action, but resample if
the grasp point (x, y) is not within the bounding box of the 2D projection of the fabric, and
take the additive inverse of �x and/or �y if (x+�x, y+�y) is out of bounds (o↵ the plane
by more than 25% of its width, causing episode termination).

VisuoSpatial Dynamics Model

Due to the inherent stochasticity in fabric dynamics, we utilize an implementation of Stochas-
tic Variational Video Prediction (SV2P) model from Babaeizadeh et al. [2], a state-of-the-art
model for action-conditioned video prediction. Here, the video prediction model f✓ is de-
signed as a latent variable model, enabling the resulting posterior distribution to capture
di↵erent modes in the distribution of predicted frames. Specifically, [2] trains a generative
model which predicts a sequence of n output frames conditioned on a context vector of m
frames and a sequence of actions starting from the most recent context frame. Since the
stochasticity in video prediction is often a consequence of latent events not directly observ-
able in the context frames as noted in [2], predictions are conditioned on a vector of latent
variables zt+m:t+m+n�1, each sampled from a fixed prior distribution p(z). This gives rise to
the following generative model.

p✓(ôt+m:t+m+n�1|ât+m�1:t+m+n�2,ot:t+m�1) =

p(zt+m)
t+m+n�1Y

t0=t+m

p✓(ôt0 |ôt:t0�1, zt0 , ât0�1).
(4.5)

Here ot:t+m�1 are image observations from time t to t+m� 1, ât+m�1:t+m+n�2 is a candidate
action sequence at timestep t+m�1, and ôt+m:t+m+n�1 is the sequence of predicted images.
Since the generative model is trained in a recurrent fashion, it can be used to sample an
H-length sequence of predicted images ôt+m:t+m+H�1 for any m > 0, H > 0 conditioned on
a current sequence of image observations ot:t+m�1 and an H-length sequence of proposed
actions taken from ot+m�1, given by ât+m�1:t+m+H�2.

During training, we set the number of context frames m = 3 and number of output frames
n = 7, i.e. the SV2P model learns to predict 7 frames of an episode from the preceding 3
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Table 4.1: Cross Entropy Method (CEM) hyperparameters for VSF. The variance reported here
is the diagonal of the covariance matrix.

Hyperparameter Value
Number of Iterations 10
Population Size 2000
Number of Elites 400 (20%)
↵ 0.1
Planning Horizon 5
Initial Mean µ (0, 0, 0, 0)
Initial Variance ⌃ (Smoothing) (0.25, 0.25, 0.04, 0.04)
Initial Variance ⌃ (Folding) (0.67, 0.67, 0.24, 0.24)

frames. We train on domain-randomized RGBD data, where we randomize fabric color (in
a range centered around blue), shading of the plane, image brightness, and camera pose.
At test time, we utilize only one context frame m = 1 and a planning horizon of n = 5
output frames. This yields the model p✓(ôt+1:t+5|ât:t+4,ot). See Babaeizadeh et al. [2] for
more details on the model architecture and training procedure. For this work, we utilize the
SV2P implementation provided in [61].

VisuoSpatial Foresight

We combine the RGBD dynamics model of the previous section and planning with the Cross-
Entropy Method (CEM) [46] into the VSF framework. As described in the Visual Foresight
section, CEM repeatedly samples action sequences from a multivariate Gaussian distribution,
uses the learned dynamics model to predict output frames for each action sequence, finds the
“elite” sequences with the lowest cost according to our cost function, and refits a Gaussian
distribution to these elite sequences. For our pixel distance cost function, we remove the 7
pixels on each side of the image to get rid of the impact of the dark border, i.e. we turn
our 56x56 frame into a 42x42 frame. See Table 4.1 for tuned CEM hyperparameters. We
use slightly di↵erent settings of CEM variance for smoothing and folding, as we found that
di↵erent values yield better performance for each task. To mitigate compounding model
error we leverage Model-Predictive Control (MPC), which takes only the first action in the
action sequence given by CEM and then replans.

4.4 Simulated Experiments

VisuoSpatial Dynamics Prediction Quality

One advantage of VSF (and visual foresight more generally) is that we can inspect the model
to see if its predictions are accurate, as the model provides some visual interpretability.
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Figure 4.3: Three pairs of a sequence of four simulated image observations in ground truth com-
pared against a sequence of the corresponding predictions from the visuospatial dynamics model.
Here we show the RGB portion of the observations. Each episode is a test example and has ran-
domized camera angle, fabric color, brightness, and shading. Prediction quality varies and generally
gets blurrier across time, but is su�cient for planning.

Figure 4.3 shows three examples of predicted image sequences within an episode compared
to ground truth images from the actual episode. All episodes are from test time episodes
of a random policy, meaning that these ground truth images did not appear in the training
data for the visuospatial dynamics model.

The predictions are reasonably robust to domain randomization, as the model is able
to produce fabrics of roughly the appropriate color and can appropriately align the angle
of the light gray background plane. For a more quantitative measure of prediction quality,
we calculate the average Structural SIMilarity (SSIM) index [64] over corresponding image
pairs in 200 predicted sequences against 200 ground truth sequences to be 0.701. A higher
SSIM 2 [-1,1] corresponds to higher image similarity.
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Figure 4.4: A simulated episode executed by the VSF policy on a Tier 3 starting state, given a
smooth goal image (shown in the far right). The first row shows RGB images and the second shows
the corresponding depth maps. In this example, the policy is able to successfully cross the coverage
threshold of 92% after executing 7 actions. Actions are visualized with the overlaid arrows.

Fabric Smoothing Simulations

We first experiment on the smoothing task: maximizing fabric coverage, which we measure
as the percentage of an underlying plane covered by the fabric. The plane is the same size of a
fabric that is fully smooth. We evaluate smoothing on the three tiers of di�culty as reviewed
in Section 4.3. Each episode lasts for a maximum of t = 15 time steps. Following [49],
episodes can terminate earlier if a threshold of 92% coverage is triggered, or if any fabric
point falls su�ciently outside of the fabric plane.

To see how the general VSF policy performs against existing smoothing techniques, for
each di�culty tier, we execute 200 VSF episodes and compare against the baselines in Chap-
ter 3, including the imitation learning expert. We also compare against DDPG with demon-
strations [62], a state-of-the-art model-free reinforcement learning algorithm. The L2 cost
in VSF is taken with respect to a smooth goal image (see Figure 4.4). Note that VSF does
not explicitly optimize for coverage, and only optimizes the cost function from Equation 4.3,
which measures pixel distance to a target image. To recap, we compare with the following
baselines:

Random Randomly sample pick point and pull direction.

Highest Using ground truth state information, pick the point mass with the maximum
z-coordinate and set pull direction to point to where the point mass would be if the fabric
were perfectly smooth.

Wrinkle As in Sun et al. [55], find the largest wrinkle using ground truth state information
and then pull perpendicular to it at the edge of the fabric to smooth it out.
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Table 4.2: DDPG hyperparameters.

Hyperparameter Value
Parallel environments 20
Steps per env, between gradient updates 10
Gradient updates after parallel steps 240
Minibatch size 128
Discount factor � 0.99
Demonstrator (o✏ine) samples 6697
Actor learning rate 1e-4
Actor L2 regularization parameter 1e-5
Critic learning rate 1e-3
Critic L2 regularization parameter 1e-5
Pre-training epochs 200
DDPG steps after pre-training 110000

Imitation Learning (IL) As in Seita et al. [49], train an imitation learning agent using
DAgger [45] with a simulated “corner-pulling” demonstrator that picks and pulls at the fabric
corner furthest from its target. For a fair comparison, VSF is trained on approximately the
same amount of data (about 110,000 transitions) as the IL agent, although the datasets are
distinct.

Model-Free RL We run DDPG [31] and extend it to use demonstrations and a pre-
training phase as suggested in Vecerik et al. [62]. We also use the Q-filter from Nair et
al. [37]. We train with a similar number of data points as IL and VSF for a reasonable
comparison. We design a reward function for the smoothing task that, at each time step,
provides reward equal to the change in coverage between two consecutive states. Inspired
by OpenAI et al. [40], we also provide a +5 bonus for triggering a coverage success, and �5
penalty for pulling the fabric out of bounds. We use the same CNN architecture as the IL
policy (see Section 3.4), and training hyperparameters are given in Table 4.2.

We report results in Table 4.3, reusing the results from Table 3.2 where appropriate. The
data indicates that VSF significantly outperforms the analytic and model-free reinforcement
learning baselines. Despite being trained solely on random interaction data, VSF performs
similarly to the IL agent, a “smoothing specialist” that rivals the performance of the corner
pulling demonstrator it imitates. See Figure 4.4 for an example Tier 3 VSF episode. VSF,
however, requires quite a few more actions than the DAgger approach, especially on Tier 1,
with 8.3 actions per episode compared to 3.3 per episode. However, we hypothesize that this
leads to VSF being more conservative and reliable. Table 4.3 suggests that VSF has lower
variance in its performance on Tier 2 and Tier 3 settings.
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Table 4.3: Simulated smoothing experimental results for the six policies in Section 4.4. We report
final coverage and number of actions per episode, averaged over 200 simulated episodes per tier for
the learned policies and 2000 per tier for the analytic policies. VSF attains similar final coverage
as the IL agent from [49] and outperforms the other baselines despite not seeing any smoothing
demonstrations.

Tier Method Coverage Actions
1 Random 25.0 ± 14.6 2.4 ± 2.2
1 Highest 66.2 ± 25.1 8.2 ± 3.2
1 Wrinkle 91.3 ± 7.1 5.4 ± 3.7
1 DDPG and Demos 87.1 ± 10.7 8.7 ± 6.1
1 Imitation Learning 94.3 ± 2.3 3.3 ± 3.1
1 VisuoSpatial Foresight 92.5 ± 2.5 8.3 ± 4.7
2 Random 22.3 ± 12.7 3.0 ± 2.5
2 Highest 57.3 ± 13.0 10.0 ± 0.3
2 Wrinkle 87.0 ± 10.8 7.6 ± 2.8
2 DDPG and Demos 82.0 ± 14.7 9.5 ± 5.8
2 Imitation Learning 92.8 ± 7.0 5.7 ± 4.0
2 VisuoSpatial Foresight 90.3 ± 3.8 12.1 ± 3.4
3 Random 20.6 ± 12.3 3.8 ± 2.8
3 Highest 36.3 ± 16.3 7.9 ± 3.2
3 Wrinkle 73.6 ± 19.0 8.9 ± 2.0
3 DDPG and Demos 67.9 ± 15.6 12.9 ± 3.9
3 Imitation Learning 88.6 ± 11.5 10.1 ± 3.9
3 VisuoSpatial Foresight 89.3 ± 5.9 13.1 ± 2.9

Fabric Folding Simulations

Here we demonstrate that VSF is not only able to successfully smooth fabric, but it also
directly generalizes to folding tasks. We use the same video prediction model, trained only
with random interaction data, and we leave all planning parameters the same besides the
initial CEM variance. We change only the goal image to the triangular, folded shape in
Figure 4.5. We also change the initial state to the smooth state (which can be interpreted as
the result of the smoothing policy from the previous subsection). The two sides of the fabric
are shaded di↵erently, and the darker shade in the goal image indicates only the bottom side
of the fabric is visible. Due to the action space bounds (�x and �y are limited to [�0.4, 0.4]),
getting to this goal state directly is not possible in under three actions and requires a precise
sequence of picks.

We visually inspect the final states in each episode and classify them as successes or
failures. See Figure 4.5 for a typical success case, and Table 4.4 for quantitative results.
We compare performance on L2 cost taken on RGB, depth, and RGBD channels. RGBD
loss significantly outperforms the other modes, which correspond to Visual Foresight and
“Spatial Foresight” respectively, suggesting the usefulness of augmenting Visual Foresight
with depth maps.
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Table 4.4: Folding results in simulation. VisuoSpatial Foresight is run with a smooth starting state
and the goal image in Figure 4.5 for 20 episodes where L2 is taken on the depth, RGB, and RGBD
channels. The results suggest that adding depth allows us to significantly outperform RGB-only
Visual Foresight on this task.

Cost Function Successes Failures % Success
L2 Depth 0 20 0%
L2 RGB 10 10 50%
L2 RGBD 18 2 90%

Figure 4.5: Simulated RGB observations of a successful folding episode. The RGB portion of the
goal image is displayed in the bottom right corner. The rest is an 8-step episode (left-to-right, top-
to-bottom) from smooth to approximately folded. There are several areas of the fabric simulator
which have overlapping layers due to the di�culty of accurately modeling fabric-fabric collisions in
simulation, which explain the light blue patches in the figure.

We also attempt to reach a more complex goal image with two overlapping folds for a
total of three layers at the center of the fabric, again with the same VSF policy. Here 5 out
of 10 trials succeed, and 4 of the 5 successes arrange the two folds in the correct ordering.
Folding two opposite corners in the right order may be di�cult to do solely with RGB data,
since the bottom layer of the fabric has a uniform color. The depth maps, in contrast,
provide information about one fold lying on top of another. See Figure 4.6 for an example
of a successful rollout. Failure cases are often characterized by the robot picking at a point
that just misses a fabric corner, but where the SV2P model predicts that the resulting pull
will behave as if the robot had picked at the fabric corner.
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Figure 4.6: An example of a successful double folding episode. The RGB portion of the goal image
is displayed in the bottom row. The rest is an 7-step episode (left-to-right, top-to-bottom) from
smooth to approximately matching the goal image. The two folds are stacked in the correct order.

Table 4.5: Physical smoothing robot experiment results for Imitation Learning (IL) and VisuoSpa-
tial Foresight (VSF). For both methods, we choose the policy snapshot with highest performance
in simulation, and each are applied on all tiers (T1, T2, T3). We report results across 10 episodes
of IL per tier and 5 episodes of VSF per tier. Results suggest that VSF gets final coverage results
comparable to or exceeding that of IL.

Tier (1) Start (2) Final (3) Max (4) Num. Actions
1 IL 74.2 ± 5 92.1 ± 6 92.9 ± 3 4.0 ± 3
1 VSF 78.3 ± 6 93.4 ± 2 93.4 ± 2 8.2 ± 4
2 IL 58.2 ± 3 84.2 ± 18 86.8 ± 15 9.8 ± 5
2 VSF 59.5 ± 3 87.1 ± 9 90.0 ± 5 12.8 ± 3
3 IL 43.3 ± 4 75.2 ± 18 79.1 ± 14 12.5 ± 4
3 VSF 41.4 ± 3 75.6 ± 15 76.9 ± 15 15.0 ± 0

4.5 Physical Experiments

We next deploy the domain-randomized policies on a physical robot. We use the da Vinci
surgical robot [26] and use the same experimental setup as Seita et al. [49], including the
calibration procedure to map pick points (x, y) from actions into positions and orientations
with respect to the robot’s base frame. This is a challenging task due to the robot’s impre-
cision [51] and the fine-grained precision that is necessary to manipulate fabrics. We use a
Zivid One Plus camera for RGBD images, which we mount 0.9 meters above the workspace.
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Figure 4.7: A qualitative comparison of physical smoothing episodes with an IL policy (top row)
and a VSF policy (bottom row). The rows show screen captures taken from the third-person video
view for recording episodes and do not represent the top-down input to the neural networks. To
facilitate comparisons among IL and VSF, we manually make the starting fabric state as similar as
possible. Over the course of several actions, the IL policy sometimes takes actions that are highly
counter-productive, such as the 5th and 11th actions above. In contrast, VSF takes shorter pulls
on average, with representative examples shown above for the 2nd and 5th actions. At the end,
the IL policy gets just 48.8% coverage (far below its usual performance), whereas VSF gets 75.8%.

Experiment Protocol

We test with the RGBD IL and VSF policies as measured in simulation and reported in
Table 4.3. We do not test with the model-free DDPG policy baseline, as DDPG performed
significantly worse than the other two methods in simulation. We reiterate that VSF uses
a video prediction model that is trained on entirely random data, requiring no labeled data
in contrast with IL, which requires a demonstrator with privileged fabric state information
during training.

To match the simulation setup, we limit each episode to a maximum of 15 actions. On
the smoothing task, we perform episodes in which the fabric is initialized in highly rumpled
states which mirror those from the simulated tiers. We run ten episodes per tier for IL and
five episodes per tier for VSF, for a total 45 episodes. Within each tier, we attempt to make
starting fabric states reasonably comparable between IL and VSF episodes (as in Figure 4.7).

Physical Fabric Smoothing

We present quantitative results in Table 4.5. We note that these are new IL trials, so results
are di↵erent from Table 3.3. Results suggest that VSF gets final coverage results comparable
to that of IL, despite not being trained on the corner-pulling demonstration data. However,
it sometimes requires more actions to complete an episode and takes an order of magnitude
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Figure 4.8: Physical folding policy executed in the simulator and on the surgical robot, with actions
determined from real image input only. Despite this, the actions are able to fold in simulation.
The di↵erence in dynamics is apparent from t = 1 to t = 2, where the simulated fabric’s bottom
left corner is overturned from the action, but the corresponding corner on the real fabric is not.

more computation time per action (around 20 seconds versus around 1 second), as CEM
requires thousands of forward passes through a neural network while IL needs only a single
forward pass.

The actions for VSF usually have smaller deltas, which helps to take more precise actions.
This is likely a result of the initialization of the mean and variance used to fit the Gaussians
during CEM, which in our experiments we found to hurt performance if excessively increased.
One qualitative e↵ect of IL taking relatively longer actions is that it may be susceptible to
highly counter-productive actions. The fabric manipulation tasks we consider require high
precision, and a small error in the pick point region coupled with a long pull direction may
cover a corner or substantially decrease coverage. As an example, Figure 4.7 shows a time
lapse of a subset of actions for one episode from IL and VSF. On the fifth action, the IL
policy has a pick point that is slightly north of the ideal spot. The pull direction to the
lower right fabric plane corner is reasonable, but due to the length of the pull and the
slightly suboptimal pick point, the lower right fabric corner gets covered.

Physical Fabric Folding

Finally, we attempt to apply the same VSF policy, but on a fabric folding task, starting
from a smooth state. We conduct four goal-conditioned physical folding episodes, with one
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episode for each of the four possible diagonal folds. We run each episode for 15 time steps.
Qualitatively, the robot tends to move the fabric in the right direction based on the target
corner, but does not get the fabric in a clean two-layer fold. To evaluate the quality of the
policy, we took the actions generated for a real episode on the physical system and ran them
open-loop in the fabric simulator. See Figure 4.8 for a comparison. Since the same actions
are able to fold reasonably well in simulation, we conclude that the di↵erence is due to a
dynamics mismatch between simulated and real environments, compounded with pick point
inaccuracies common in cable-driven robots such as the dVRK [51]. We have taken steps to
address this mismatch and hypothesize that we can improve policy performance, but due to
the current public health concerns we have not yet been able to test these hypotheses on the
physical system. (We hope everyone is staying safe!)
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Chapter 5

Conclusions and Future Work

In this work, we cover two novel learning-based techniques for robotic fabric manipulation
in simulation. The work done for these projects spans everything from building the fabric
simulator from scratch to developing learning algorithms and deploying learned policies on a
physical robotic system. In Chapter 3, we present a procedure for learning a fabric smoothing
policy via deep imitation learning from an algorithmic supervisor that has access to ground
truth state in simulation. In Chapter 4, we generalize our setup to consider goal-conditioned
fabric manipulation, and we learn a model-based reinforcement learning policy for both
smoothing and folding given a single RGBD goal image. In practice, there are tradeo↵s
between the two algorithms. For instance, while VisuoSpatial Foresight gives us generality,
Imitation Learning is much faster at execution time. Depending on the setting, we may
desire a hybrid approach that first standardizes the setup with the fast smoothing policy
before deploying VSF toward a desired configuration.

We are encouraged by the learned policies’ ability to manipulate fabric toward a desired
state despite low room for error due to the sequential nature of the tasks we consider.
We observe the critical role of depth sensing, learning, and simulation in our work, and we
suspect these techniques will be instrumental in future work on fabric manipulation as well as
deformable object manipulation in general, including one-dimensional and three-dimensional
structures such as ropes, cables, and bags. We are excited by several avenues for future work:

1. Augmenting the action space: Since our single-arm, pick-and-place action space lim-
its the space of realizable manipulation, we wish to lift these constraints by training
bilateral policies for dual-armed robots as well as learning 6 degree-of-freedom grasps
instead of a single pick point, which will allow for more subtle motions such as gripping
the fabric edge from both sides at once.

2. Increasing task complexity: Given an augmented action space, we can consider motion
primitives beyond smoothing and folding such as shaking, rolling, lofting, and wrapping
the fabric, which will almost certainly require explicit modeling of dynamical structure
as we do in VSF. We can theoretically compose these primitives to accomplish very
complex fabric manipulation.
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3. Increasing reliability: We hope to boost policy performance with techniques such as
learning additional structure given our access to ground truth state in simulation,
explicitly modeling of contact dynamics between the end e↵ector and the fabric, and
allowing a human in the loop for particularly challenging scenarios.

While robotics research in this area has come a long way and recent work is encourag-
ing [49, 22, 18, 32, 67], deformable object manipulation is still very much an open problem.
Fundamental di�culties in robotic perception, planning, and control lie between present ca-
pabilities and truly intelligent, dexterous manipulation. I hope to continue working on such
exciting problems during my PhD program at UC Berkeley.
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