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Abstract 

Arterial Traffic Flow Prediction: A Deep Learning Approach with Embedded Signal Phasing 
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Accurate and reliable prediction of traffic measurements plays a crucial role in the development 
of modern intelligent transportation systems. Due to more complex road geometries and the 
presence of signal control, arterial traffic prediction is a level above freeway traffic prediction. 
Many existing studies on arterial traffic prediction only consider temporal measurements of flow 
and occupancy from loop sensors and neglect the rich spatial relationships between upstream and 
downstream detectors. As a result, they often suffer large prediction errors, especially for long 
horizons. We fill this gap by enhancing a deep learning approach, Diffusion Convolutional 
Recurrent Neural Network, with spatial information generated from signal timing plans at targeted 
intersections. Traffic at signalized intersections is modeled as a diffusion process with a transition 
matrix constructed from the green times of the signal phase timing plan. We apply this novel 
method to predict traffic flow from loop sensor measurements and signal timing plans at an arterial 
intersection in Arcadia, CA. We demonstrate that our proposed method yields superior forecasts; 
for a prediction horizon of 30 minutes, we cut the MAPE down to 16% for morning peaks, 10% 
for off peaks, and even 8% for afternoon peaks. In addition, we exemplify the robustness of our 
model through a number of experiments with various settings in detector coverage, detector type, 
and data quality. 
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ABSTRACT

Accurate and reliable prediction of traffic measurements plays a crucial role in the development of
modern intelligent transportation systems. Due to more complex road geometries and the presence of
signal control, arterial traffic prediction is a level above freeway traffic prediction. Many existing
studies on arterial traffic prediction only consider temporal measurements of flow and occupancy
from loop sensors and neglect the rich spatial relationships between upstream and downstream
detectors. As a result, they often suffer large prediction errors, especially for long horizons. We fill
this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network,
with spatial information generated from signal timing plans at targeted intersections. Traffic at
signalized intersections is modeled as a diffusion process with a transition matrix constructed from
the green times of the signal phase timing plan. We apply this novel method to predict traffic flow
from loop sensor measurements and signal timing plans at an arterial intersection in Arcadia, CA.
We demonstrate that our proposed method yields superior forecasts; for a prediction horizon of
30 minutes, we cut the MAPE down to 16% for morning peaks, 10% for off peaks, and even 8%
for afternoon peaks. In addition, we exemplify the robustness of our model through a number of
experiments with various settings in detector coverage, detector type, and data quality.

Keywords Traffic prediction · Arterial intersections · Signal phase timing data · DCRNN

1 Introduction

The problem of efficient transportation has typically been a hardware and civil engineering problem, as companies
have developed faster and cleaner cars, built carefully-designed freeways, and architected roads in cities. With the
rise of intelligent transportation systems (ITS), the problem has shifted focus to the fields of mathematics, statistics,
and computer science. As governments install more sensors in road networks and collect ever-increasing amounts of
data, research has begun to concentrate on designing improved prediction and control techniques. Traffic flow and
speed prediction has numerous applications, such as freeway metering, travel time prediction, intelligent intersection
signal control, and traffic simulation software. With accurate traffic flow forecasts, cities can better plan logistics and
allocation of resources for construction, road development, and safety. Predictions can also be leveraged to optimize
signal control at intersections, saving commuters valuable time and reducing consumption of gas and electricity.

Historically, there have been a wide variety of models in use for traffic flow prediction. Although they are often
grouped into parametric and nonparametric categories, or classified as statistics or machine learning, most models
are closely-related and have overlapping properties [24]. Statistical methods have been applied heavily to traffic flow
prediction. Ahmed and Cook used the Box-Jenkins method to fit an ARIMA model to freeway occupancy in 1979 [1].
Since then, many other techniques in the ARMA family have been applied to predict both freeway and arterial data
[22, 45, 46, 47]. Kalman filters [36] and exponential smoothing [44] have been actively explored for decades. Typically,
they rely on strong priors and assumptions about the data distributions; as a result, traffic experts usually must carefully



select and structure the models. Because of this, parametric methods present a trade-off between easy interpretation and
practicality [40].

Although they used to have poor performance in traffic flow prediction, nonparametric methods have enjoyed a surge
in popularity as hardware has been upgraded and more powerful algorithms have been developed. They are typically
more flexible and accurate than comparable parametric models. Nearest neighbors regression lies in the realm of
nonparametric learning and begins to cross over into the machine learning category [6, 54, 12]. Other nonparametric
methods are also prevalent in the literature: principal component analysis [10], decision trees [2], support vector
machines [16, 4], linear dynamical systems [3], and fuzzy rule-based systems [13, 25].

Even these machine learning methods have been overshadowed by the rise of neural networks, of which there are
countless architectures to choose from. Deep learning has gained much traction in recent years as data has become
more readily available and computer power has exponentiated. Simple feed-forward neural networks have evolved into
convolutional neural networks, long short-term memory, and graph convolutions. State-of-the-art algorithms utilize
strategies such as meta-learning and distillation [49, 37], residual connections [56], attention [50], and adversarial
training [57, 58]. Deep architectures open the door for a new generation of nonparametric models that are constantly
improving prediction accuracy.

Overall, most prediction methods are very proficient at forecasting freeway data. Freeways are a mostly-closed system,
with leakages only from on-ramps and off-ramps. Traffic often flows smoothly from one sensor to the next with few
interruptions, and even congestion is predictable. Thus, freeway traffic data is typically smooth and clean. In contrast,
arterial traffic is much noisier and more difficult to predict. At intersections, traffic signals and stop signs introduce
exogenous factors that affect the speed and movement of cars. Moreover, elements such as pedestrians, bikes, parking,
and driveways further complicate traffic patterns. While there is a lot of existing literature that focuses on freeway
traffic prediction, less work explores the same topic for arterial traffic.

One strategy that has proved useful in overall traffic flow prediction is the graph convolution, which applies to the
setting of predicting a label for a graph, given a set of graphs with their associated labels [5]. In the most general case,
the graphs are directed and weighted, and the labels can be associated with any part of the graph, including the nodes,
edges, and the graphs themselves. The spatial information from graph convolutions is significant in arterial traffic
flow prediction because the detector graph is much more complicated than that of freeways. Graph convolutions have
spatial structure built into the architecture, so they naturally account for the spatial relationships between detectors
when predicting traffic flow.

Another consideration is the inclusion of different types of data as input for prediction. Most models treat the data as
a time series, thus relying only on historical values of the data to forecast future values. Sometimes, extra features
such as date, time, day of week, and exogenous events are included [3]. We employ signal phase timing data from the
traffic signals at our study site. Previously, signal phase timing data has been combined with detailed traffic knowledge
to develop a system of equations to predict traffic flow [41]. However, the model only applied to very short-term
predictions, as it was intended for real-time signal control.

In this study, we focus on the Diffusion Convolutional Recurrent Neural Network (DCRNN) [28], which implements
a graph convolution as a diffusion process on a network of traffic detectors with a diffusion convolution operation.
The diffusion convolution is integrated with a seq2seq architecture of Gated Recurrent Units to predict future traffic
flow. We apply DCRNN to predict arterial traffic flow for detectors with full coverage. In order to adapt DCRNN to
arterial traffic, we use novel signal phase timing data to construct the weighted transition matrix of the graph. Instead of
modeling transition probabilities with road distances, which are not suitable for intersections, we calculate the phase
green time fraction from the planned green time and cycle length. We demonstrate that using signal phase timing
information reduces prediction error, especially for long horizon predictions. Moreover, we find through many ablation
studies that the model does indeed learn the relationships between the detectors in the network.1

The rest of this thesis is organized as follows. In section 2, we summarize current literature on traffic flow prediction,
especially in deep learning. In section 3, we present the model we use and our strategy to append signal phase timing
data. In section 4, we introduce the study site and dataset used in this report. In section 5, we analyze our arterial traffic
flow forecasts and evaluate their effectiveness through many ablation studies. In section 6, we draw conclusions based
on our analysis.

1Code available at https://github.com/victorchan314/arterial_traffic_flow_predictor
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2 Related Work

2.1 ARMA Models

As mentioned in the introduction, numerous statistical methods for traffic flow prediction have been investigated.
However, we focus on models in the ARMA family, which have seen much success in general time series prediction.
Although not the first, Ahmed and Cook applied an ARIMA(0, 1, 3) model to forecast freeway occupancy and flow in
1979 [1]. Hamed, Al-Masaeid, and Said extended the model to predict arterial flow [22]. Williams and Hoel showed
that a weekly seasonal difference could make freeway flow stationary, thus cementing the theoretical justification for
fitting ARMA models to traffic data [46]. The field has been further expanded by the application of exogenous data to
standard ARIMA models [45, 47].

2.2 Deep Learning

Recurrent Neural Networks Because traffic data is a time series, it makes sense to apply recurrent neural networks
(RNN) to the prediction problem to learn temporal patterns. Due to the vanishing gradient problem, Ma et al. applied
the Long Short-Term Memory (LSTM) architecture to demonstrate that larger window sizes are important [33]. Tian
and Pan take advantage of the recurrent connections of LSTM to allow variable-length inputs [42]. Fu, Zhang, and
Li achieved higher prediction accuracy using GRU and LSTM compared to ARIMA models [17]. Zhao et al. use an
origin-destination correlation matrix, which captures the correlation between different observation points in the detector
network, as input to LSTM [60]. The above methods all deal with freeway data; in contrast, Mackenzie, Roddick, and
Zito use a sparse distributed representation of data with binary vectors and show that it is comparable to LSTM for
arterial flow prediction [34].

Recurrent Convolutional Neural Networks In order to use the spatial information encoded within the data, RNN
methods simply include data from multiple sensors and rely on RNN to extract that information, which is not very
effective. To directly access spatial information, models evolved to synthesize RNNs with convolutional neural networks
(CNN). Yu et al. splits an image of a road network into 10-meter pixels with the value set to the average speed of the
links in that pixel; the output of a 2D convolution is fed into an LSTM to learn temporal relationships [53]. Du et al.

extends this further by merging the CNN and RNN features and feeding them into a dense layer for a final prediction
[14]. Yao et al. take a different approach by using start and end flow values for two channels of the grid [50]. The
output is modulated with a learned Flow Gate Mechanism before being fed into an LSTM. In addition, an attention
mechanism is used to derive the periodic trends in the data; these features are merged with the LSTM outputs in a dense
layer to produce the final forecasts.

Graph Convolutions While CNNs consider spatial relationships in a more proper way, they still bear an inevitable
mismatch with traffic data. Road networks are inherently graphs and not grids—they are not accurately represented as
images. To this end, we turn to the graph convolution, which is perfect for learning traffic data. The graph structure is
explicitly baked into the architecture of Graph Convolutional Networks (GCN) instead of being implicitly included
with the data or imprecisely approximated with images.

Atwood and Towsley defined the Diffusion Convolutional Neural Network, which uses the power series of the degree-
normalized transition matrix to model a diffusion process; DCNN outputs high-quality results for citation graph datasets
[5]. Ruiz, Gama, and Ribeiro designed the Gated Graph Convolutional Recurrent Neural Network (GGCRNN), which
stores banks of linear transforms modulated by filter taps in order to keep the number of parameters independent of the
size of the graph [39]. In addition, gating reminiscent of the forget gate in LSTMs updates the hidden state from the
previous hidden state and the input. Chen et al. use attention twice: once to aggregate all hops of the graph convolution
into a hierarchical representation for each node, and another time to pool the node representations into an embedding
matrix to be used for classification [8].

Graph convolutions have been applied to freeway data as well. Li et al. adapted the DCNN with a seq2seq GRU
architecture to create the DCRNN [28]. Yu, Yin, and Zhu use a first order Chebyshev polynomial approximation of the
filters for efficiency [51]. This allows them to sandwich a spatial graph convolution bottleneck between two blocks
that apply a convolution and a Gated Linear Unit for temporal features. Zhao et al. use a graph convolution to extract
features of road networks that are fed into a GRU for highway speed predictions [59]. Wu et al. add an adaptive layer to
the forward and backward processes in the DCRNN [48]. They then apply the WaveNet dilated convolution with gating
to learn temporal relationships. Yu, Yin, and Zhu pool traffic features with the maximum weight matching algorithm
and compress the temporal dimension with dilated skip connections [52]. The embeddings are expanded back out in a
U-Net fashion and fed into downstream architectures. Chen et al. combine graph convolutions, GRUs, skip connections,
gates, and hop-links to forecast freeway flow [7]. Two recent works incorporate attention into GCNs. Guo et al. stack
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a temporal attention mechanism, a spatial graph convolution, and a temporal standard convolution into a block [21].
They then accept recent, daily-periodic, and weekly-periodic data points as inputs to forecast freeway flow. In contrast,
Fang et al. concatenate traffic data along the time axis before applying multiple tensor convolutions, a localized graph
convolution, and a global spatial correlation [15]. Fewer works take advantage of GCNs to forecast arterial data. Cui
et al. use the graph convolution with an adjacency matrix of nodes in a k-hop neighborhood to extract features of
the graph before feeding them into an LSTM [11]. The forget gate of the LSTM is also a graph convolution so as to
retain the important structure of the hidden state. Guo et al. optimize the Laplace matrix in Graph Convolution Gated
Recurrent Unit cells and show that the learned matrices have high correlation with physical proximity [20].

Other Deep Learning Methods It is worth noting that there are also many other deep learning methods that have
shown promise in traffic flow prediction, even though they do not always leverage the graph convolution. In 2005,
Vlahogianni, Karlaftis, and Golias trained a multilayer perceptron (MLP) with a genetic algorithm for step size,
momentum, and hidden units to predict arterial flow in Athens [43]. Kumar, Parida, and Katiyar show decent results
with just a vanilla MLP and vehicle classification, speed, day of week, and time of day features in addition to flow
[26]. Fusco et al. compare implicit models, such as a SARIMA model with points conditioned by a Bayes Network
(SARIMA-BN), to explicit traffic models constructed by simulators [18]. Lv et al. train a reconstruction loss with a
KL divergence term in a stacked autoencoder to predict freeway flow [30]. Polson and Sokolov encourage sparseness
with a LASSO penalty on a vector autoregression model, with ridge regression and dropout regularization [38]. Zhang,
Zheng, and Qi feed the output of three ResNets, each accepting an input of different seasonality to learn periodic trends,
into a linear layer to measure crowd inflow and outflow for pedestrians and taxicabs [56]. Ma et al. encode average
speed of cars into images where the width and height represent time and space [32]. They then use a standard CNN to
predict speed with high accuracy. CapsNet extends this work by utilizing capsules in the CNN to overcome complex
link geometries and low resolutions [31]. The output of the CapsNet is fed into a Nested LSTM to capture long-term
spatio-temporal patterns. In order to reap the benefits from multiple models, Zhan et al. use a consensus ensemble
system with ARMAX, Partial Least Squares, support vector regression, kernel ridge regression, and Gaussian process
regression to prune outlier predictions [55]. They illustrate that the different models all bring unique advantages to the
table when predicting arterial flow.

The most recent works have incorporated elements of deep reinforcement learning and unsupervised learning into
arterial traffic flow prediction. Yao et al. train MetaST on datasets from many different cities in order to learn the
overall distribution of arterial volume [49]. Each city is divided into grid squares that are associated with a global
cluster through attention. An ST-Mem block maps the cluster to a feature vector that is concatenated to the output of
an ST-Net. In order to predict flow for a new city, the parameters for the ST-Net and ST-Mem are initialized from the
global models before being finetuned with city data. Pan et al. take a different approach with meta-learning; they use
a seq2seq architecture, where the encoder and decoders are composed of the same components: an RNN to extract
features of flow and speed data, node and edge meta-knowledge learners (NMK and EMK learners) to convert graph
characteristics to feature vectors, a Meta Graph Attention Network (Meta-GAT) to learn relationships between different
elements of the graph, and a Meta-GRU that generates weights from the NMK learner to discover temporal correlations
[37]. They show that nodes that are closer in the network also have high correlation in the embeddings in the NMK
learner. He, Chow, and Zhang turn to a seq2seq architecture with LSTMs that feed into attention layers [23]. The
output of these layers is included in the LSTM gates to learn important long-term features. In order to deal with blurry
features that causes graph convolutional networks to learn only the general trend and not peaks and valleys, Zhang
et al. devise two models to take advantage of the "mode collapse" problem of the Generative Adversarial Network
(GAN) [57, 58]. GCGAN uses a seq2seq architecture for both the generator and discriminator, combining LSTMs
with bi-directional random walk with restart GCNs to reproduce and classify traffic network matrices. TrafficGAN
constructs a generator with a CNN to learn spatial features, LSTM for temporal features, and another CNN to generate
new traffic network matrices. They use a deformable convolution kernel to learn the shape of the filters, determined by
relationships between nodes of the graph.

Newer deep learning methods can combine GCNs with deep unsupervised learning to learn feature representations
of traffic. These methods provide flexible and expressive models that, if designed and trained properly, can easily
outperform parametric and statistical methods. The additional parameters of these models also provide a way to
incorporate extra data, such as signal phase timing information. There is still much to be explored and much room for
improvement, especially with arterial traffic prediction.

3 Method

Most conventional traffic prediction methods only exploit temporal information to predict future information. When
time series data is involved, the layout of sensors is typically ignored in order to generate predictions. Oftentimes,

4



methods rely on the underlying architecture to detect any spatial relations that could be useful for prediction. However,
spatial information is not directly built into the architecture.

Recently, a new method, DCRNN [28], has been proposed to directly integrate spatial information, such as sensor
layouts, into the architecture. In particular, it models freeway traffic between sensors as a diffusion process, with
upstream sensors sending cars to downstream sensors. The parameters for the transition matrix rely on physical
properties of the road network, such as road distances between sensors, unlike other graph convolutions that use binary
weights or learn the weights; thus, we are able to insert our signal phase timing data into the model. This spatio-temporal
property of DCRNN has also been utilized in other applications and fields: travel time estimation [27], ride-hailing
demand [19], air quality forecasting [29], and distributed fleet control in reinforcement learning [35].

Different from the aforementioned studies, we apply DCRNN to arterial traffic prediction. We are one of the first studies
to so; moreover, we are the first to use signal phase timing data with deep learning for arterial traffic prediction. We
establish that it is possible to model traffic at adjacent arterial intersections as diffusion processes if the architecture
is correctly constructed with the right parameter settings. A more detailed description of our model architecture is
provided in the following subsections.

3.1 DCRNN

DCRNN relies on the title diffusion process to incorporate spatial information into the architecture. This is represented
with a transition matrix between the network of sensors which, when multiplied with the state vector at time t, outputs
the data point for time t + 1. The transition matrix defines a diffusion convolution operation that replaces matrix
multiplications in a seq2seq RNN to comprise the DCRNN.

Let us define D as the number of detectors in our network and F as the number of features from each detector (flow,
occupancy, etc.). Let us also define H as the prediction horizon, the number of time steps that we predict into the future,
and W as the window size, the number of time steps we use to predict. Then each data point is an X 2 RD⇥F , and our
goal is to learn a model that uses input (X(t�W+1)

, . . . , X
(t)) to predict (X(t+1)

, . . . , X
(t+H)).

We represent our system as a weighted directed graph G = {V,E,W }, where the detectors are the vertices and the
arterial roads are the edges. In our graph, |V | = D, and the transition matrix W 2 RN⇥N is a weighted adjacency
matrix, with entry Wi,j representing the likelihood of transitioning from node i to node j. These weights do not have to
be probabilities and do not need to be normalized; they must simply be some function that is larger for nodes j that
are more likely destinations of cars in node i. We define DO = diag(W1) and DI = diag(W>1), where 1 2 RN is
the all-ones vector and the diag function takes in a vector and constructs a square matrix with the entries of the vector
along its main diagonal. Thus, DO,DI 2 RN⇥N are the normalization matrices for the forward and reverse diffusion
processes, since traffic flow is affected by both upstream and downstream detectors.

These diffusion processes are represented as random walks on G with a restart probability ↵ 2 [0, 1]. Then the stationary
distribution P of the forward diffusion process is

P =
1X

k=0

↵(1� ↵)k(D�1
O

W )k (1)

The DCRNN model uses a truncated K-step diffusion process with learned weights for each step. The diffusion process,
which we denote by F✓, is parameterized by ✓ 2 RK⇥2 and acts on an input X 2 RD⇥F to produce an output Y 2 RD.

F✓(X;G, f) =
K�1X

k=0

✓
✓k,0(D

�1
O

W )k + ✓k,1(D
�1
I

W>)k
◆
X:,f for f 2 {1, . . . , F} (2)

To incorporate diffusion convolutions into a model of the network, we use a Gated Recurrent Unit (GRU) [9], but
with matrix multiplications replaced by the diffusion convolution. This constitutes the Diffusion Convolutional Gated

Recurrent Unit (DCGRU). Multiple DCGRUs are then stacked together in a seq2seq architecture, which finalizes the
structure of DCRNN (Figure 1). In our paper, we use two cells in the encoder and two cells in the decoder. We feed in
a sequence of W inputs X 2 RD⇥F , and the next H outputs (with earlier outputs recursively fed into the DCRNN
to generate later outputs) are the predictions. The network is trained with backpropagation from loss incurred by our
labeled data points. The authors also use scheduled sampling during training to switch between using ground truth
labeled outputs and predictions from the DCRNN to generate later predictions.

Through the diffusion convolution and transition matrix, spatial information is baked into the architecture and not
learned, allowing the model to only learn parameters for the relationships between the spatial and temporal information.
Because of this embedded architecture, we need to train the model with a new transition matrix if detectors are added to
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Figure 1: The seq2seq architecture of DCRNN. The encoder and decoder are both composed of multiple DCGRU cells.

or removed from the network. In order to adapt DCRNN for use with arteries, we modify several components, including
the transition matrix (detailed below).

3.2 Intersections

Layout and Properties Arterial intersections are composed of a series of inbound approaches and outbound ap-

proaches (typically four for both). Each inbound direction has a predefined set of allowed movements such as Through,
Left Turn, and Right Turn. These movements connect inbound approaches to outbound approaches and dictate the flow
of traffic in the intersection. A phase, defined for a set of movements, is a period of time during which the traffic lights
are green. At every point in time, a combination of phases (usually two) are active; they are carefully chosen so that no
two protected directions intersect. These phases are active for a number of seconds before they are made inactive, and
another set of phases is made active. In between, the traffic lights involved in the first phase turn yellow and red during
a window of time that is included in the phase length. In order to maintain an organized and easily understandable road
network, the pattern of phases repeats. See Figure 3 for examples of signal phase cycles. The total time it takes for one
cycle of phases is known as the cycle length.

Signal Phase Timing Each set of phases in the signal phase cycle at the intersection is active for a controllable
amount of time. One set of phases and phase lengths is known as a plan. Because plans may be set to vary between
intersections, time, and date, they are recorded for each intersection and time period. Signal phase timing data explains
the different plans at an intersection; it includes intersection ID, plan, start time, end time, cycle length, and the length
of each individual phase. Note that a group of intersections in the same region typically cycle through the same preset
list of phases, with the only difference being the amount of time spent in each phase.

Across intersections, these differences between phases may be major, with some smaller intersections omitting phases
that might be utilized at larger intersections. For example, a less busy intersection might not allow protected left turns
and instead would allow unprotected turns during the Through phase. Within a single intersection, phase times vary
across plans. Morning and afternoon rush hours, known as peak hours, may call for plans that allow more time for
Through directions compared to off peak and evening hours. Weekend plans usually simulate off peak plans.

In order to take advantage of the full state of the intersection, we incorporate signal phase timing data into our model.
This data represents the amount of time allotted to each inbound approach to send cars to each outbound approach. With
signal phase timing data, we are able to model the state of an intersection at any given point in time. When combined
with traffic flow data, we have a full view into intersection state, including but not limited to everyday traffic patterns,
seasonal traffic patterns, and even one-time exogenous events such as accidents.

3.3 Transition Matrix

The weights for the transition matrix in [28] are based off of the road network distances between sensors. These
distances are appropriate parameterizations for the diffusion model, as longer distances are correlated with slower
diffusion rates. However, for an arterial intersection, road distance becomes inappropriate. Intersection roads are closely
clustered and never more than several hundred feet across, rendering any variation in distance insignificant.

Instead, we use phase green time fraction, defined as the fraction of a cycle during which cars are allowed to travel from
the inbound sensor to the outbound sensor. The phase green time fraction is calculated for each unique combination of
intersection and plan. We use the fraction of time and not the actual number of seconds in order to normalize between
busy intersections with longer cycles and smaller intersections with shorter cycles. In addition, because DCRNN
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Window Size
Method 15 min 30 min 1 hr 2 hr

Unnormalized, 3.93% 7.17% 9.61% 3.4% 6.49% 8.9% 3.23% 6.29% 9.07% 3.11% 6.13% 9.02%
Floored 3.93% 7.14% 9.56% 3.39% 6.42% 8.87% 3.26% 6.39% 9.26% 3.07% 6.05% 8.92%

Normalized, 3.93% 7.13% 9.57% 3.39% 6.43% 8.86% 3.24% 6.36% 9.27% 3.11% 6.15% 9.1%
Floored 3.91% 7.13% 9.55% 3.39% 6.45% 8.94% 3.25% 6.34% 9.2% 3.1% 6.14% 9.07%

Exponential, 3.93% 7.1% 9.51% 3.39% 6.43% 8.85% 3.24% 6.32% 9.13% 3.09% 6.09% 8.97%
Floored 3.92% 7.09% 9.45% 3.4% 6.44% 8.91% 3.24% 6.3% 9.11% 3.13% 6.12% 8.98%

Unnormalized, 3.92% 7.14% 9.54% 3.38% 6.44% 8.92% 3.23% 6.33% 9.07% 3.1% 6.19% 9.11%
Unfloored 3.93% 7.17% 9.62% 3.41% 6.49% 8.97% 3.22% 6.3% 9.12% 3.12% 6.18% 9.16%

5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m
Horizon

Table 1: MAPE for predictions on afternoon peak data with different transition matrix designs for DCRNN. Each
experiment was run twice.

assumes a static transition matrix, we use the planned green time for the signal phase timing plan and not the actual
green time.

Let P represent the set of phases active at a set of intersections of interest. For a phase p 2 P , we let pin denote
the inbound direction and pout denote the set of outbound directions of the phase. Let d(i) denote the ith detector
in our dataset of D detectors, d(i)

dir
denote the direction of detector i, Id(i) denote the intersection of detector i, and

adj(d(i), d(j)) be a boolean denoting whether detector j is directly downstream from detector i, i.e. there is a direct path
from detector i to detector j. Let Lg(I, p) denote the green time of phase p of intersection I , and Lyr(I, p) denote the
yellow/all-red time of the same context. We assume that the intersection is not one-way, so that at any given moment,
two synchronized phases are active; thus, the total cycle length L(I) for intersection I is equal to half of the sum of the
lengths of all phases for dual-ring signal control.

L(I) =
1

2

X

p2P

Lg(I, p) + Lyr(I, p) (3)

We compute the weights of the transition matrix as follows:

Wi,j =

8
><

>:

1 if Id(i) = Id(j)P
p2P adj(d(i),d(j)) d

(i)
dir=pin d

(j)
dir2pout

(Lg(Id(i) , p) + Lyr(Id(i) , p))

1
2

P
p2P

Lg(Id(i) , p) + Lyr(Id(i) , p)
o.w.

(4)

Because we use phase green time fraction instead of road distances, we do not transform the weights with the Gaussian
kernel as in [28]. Instead, we leave the probabilities as the weights for the graph. We experimented with several
different variations and transformations for the transition matrices. The first alteration we tested was row-normalizing
the transition matrix so that the weights would represent probabilities (Eqn 5). Although this wouldn’t make a difference
for the forward diffusion process, it would change the backward process. In addition, we experimented with applying a
Gaussian kernel to an exponential transform of the weights to simulate road distances (Eqn 6); we used ↵ = 6 and
� = 100. In tandem with both of these, we zeroed out values in the matrix less than a threshold (Eqn 7), as was done in
[28]. The prediction errors are available in Table 1. Of the three variants evaluated, none of them caused significant
improvements in prediction error, although the thresholded matrix overall had relatively consistently low error. Thus,
we use thresholding in our model as well with " = 0.1 as the limit.

W 0 = diag(W (1))�1W (5)

W 0
ij
= exp(� (�exp(↵(1�Wij)))2

Var(W )
) (6)

W 0
ij
=

⇢
Wij if Wij � "

0 o.w.
(7)

In our transition matrices, we incorporated signal phase timing information for Through, Left Turn, and Right Turn
directions. However, for both the upstream and downstream directions, we did not include U-Turns in our model.
Overall, U-Turns contribute little flow to the data, especially during congested peak hours. In order to avoid this noise
and not have to incorporate additional sensors in the opposite direction in our network, we ignored U-Turns.
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3.4 Flow Prediction

Detector Types In traffic analysis, there are several measures of interest: flow, occupancy, and speed. Flow indicates
the number of vehicles that pass a detector over a specified period of time. Occupancy is defined as the fraction of time
in that interval during which a car is detected on the sensor. Speed is defined as the average speed of vehicles in that
interval.

In our study, we use two types of detectors: advance detectors, placed in lanes about 100-200 feet before the intersection,
and stopbar detectors, located just before the intersections. Both types of detectors measure all three metrics, but speed
is less reliable than flow and occupancy. Advance detectors provide very reliable measurements for both flow and
occupancy, while stopbar detectors are reliable for occupancy but noisier for flow. These differences stem from the
design and location of the detectors; advance detectors are well-suited to detect cars moving towards the intersection,
while stopbar detectors are perfect for sensing cars that have stopped at the intersection.

Flow Prediction We use flow data in our model because most of the detectors in our network are advance detectors.
In some cases, we include occupancy measurements during training in order to determine whether occupancy provides
any benefit for flow prediction, but we disregard occupancy predictions, as the results are not as accurate as those of
flow. Predicting flow instead of speed does not introduce any major changes to the methodology.

3.5 Baselines

In this study, we use four different baselines: Constant Mean, Seasonal Naive, ARIMAX, and Gated Recurrent Unit
(GRU). The naive baselines are included to provide an upper bound on prediction error. With the remaining baselines,
we cover both statistical methods and machine learning methods.

3.5.1 Naive Baselines

The naive baselines handle each time series independently between detectors. With Constant Mean, the average value of
the training data is taken for each detector, aggregated across time, and used as the constant prediction for that detector
for all offsets and time stamps. With Seasonal Naive (sometimes referred to as Historical Average), we take the mean
for each combination of detector and time stamp. Predictions are set to the mean value corresponding to the particular
detector and time stamp.

3.5.2 ARIMAX

ARIMAX falls into the camp of statistical methods. In general, autoregressive moving average (ARMA) models predict
future values of time series from previous values. The autoregressive part AR(p) uses an affine combination of the last
p data points to predict. The moving-average part MA(q) uses an affine combination of the last q error terms to predict.
The standard ARMA(p, q) model combines both the AR and MA terms.

Xt = c+ ✏t +
pX

i=1

'iXt�i +
qX

i=1

✓i✏t�i (8)

We included an integrated I(d) term, which applies the ARMA model to the first order difference of our data to
enforce stationarity. Finally, we incorporated exogenous X(b) data corresponding to the Fourier terms for a specific
seasonality. To tune the parameters (p, d, q, b), we analyzed the correlation and autocorrelation of the data to determine
a set of potential parameter values. We then fit ARIMAX models to each set of parameters and compared the Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and prediction error on a validation set. All three
metrics resulted in a final order of (2, 1, 0, 1). We experimented with a Seasonal S(P,D,Q, s) term, but did not see any
improvements over ARIMAX. In addition, we ran all of our experiments with an additional online version of ARIMAX,
but there were no significant differences between the two methods; we omit online ARIMAX for clarity.

3.5.3 GRU

Our GRU architecture follows the architecture used in [28]. In fact, the architecture is the DCRNN model, but using
standard matrix multiplications instead of diffusion convolutions. We assume weights of the correct dimensions: Wr,
Ur, and br for the reset gate r, Wu, Uu, and bu for the update gate u, and Wc, Uc, and bc for the candidate activation.
At time t, we denote the input by X

(t), the candidate activation by C
(t), and the hidden state by H

(t). Finally, we
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Figure 2: Detector layout at the study site in Arcadia. The intersections we examine in this study are 5083 and 6081.

denote the sigmoid function by �. Thus, we have the following equations for the GRU cells.

r
(t) = �(WrX

(t) + UrH
(t�1) + br)

u
(t) = �(WuX

(t) + UuH
(t�1) + bu)

C
(t) = tanh (WcX

(t) + Uc(r
(t) �H

(t�1)) + bc)

H
(t) = u

(t) �H
(t�1) + (1� u

(t))� C
(t)

(9)

These GRU cells are combined in a seq2seq architecture to form the final GRU model. Like with DCRNN, we use two
cells in the encoder and two cells in the decoder. Thus, the only difference between DCRNN and GRU is the diffusion
convolution with the incorporation of signal phase timing data.

4 Study Site and Dataset

4.1 Study Site

The data used in this report is part of a larger dataset collected for the I-210 Connected Corridors Project. The project
dataset includes traffic flow data from stopbar and advance detectors, maps of the cities and sensor layouts, and the
corresponding signal timing sheets. We surveyed detectors along Huntington Dr. between Santa Clara St. and Gateway
Dr. in the city of Arcadia (Figure 2).

In particular, we focus on detectors 508302 and 508306. These detectors were selected because they are heavily covered
by both advance and stopbar detectors in both the upstream and downstream directions. The upstream lanes are covered
in the Through direction by detectors 608101 and 608105, in the Right Turn direction by detector 608107, and in
the Left Turn direction by detector 608104. The downstream lanes are covered in the Through direction by detectors
508201 and 508205, in the Right Turn direction by detectors 507202 and 507206, and in the Left Turn direction by
detectors 509101 and 509105. Theses last two sets of advance detectors for the downstream turn directions are several
blocks down; while there are some leakages that prevent the system from being fully closed, they are only at minor
intersections with stop signs. We call this ideal situation the Full Information scenario. See Figure 3 for the signal phase
cycle and Table 2 for the signal timing plans.
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Figure 3: The signal phases for the upstream (6081) and downstream (5083) intersections at our study site.

Huntington Dr & Santa Anita Ave (ID: 5083)
Plan Activation Cycle Phase 1&5 Phase 2&6 Phase 3&7 Phase 4&8

Name Time (sec) G (sec) Y+R (sec) G (sec) Y+R (sec) G (sec) Y+R (sec) G (sec) Y+R (sec)

E
0:00-6:00 & 110 20 3 27 5 20 3 27 521:00-24:00

P1
9:00-15:30 & 120 15 3 39 5 14 3 36 519:00-21:00

P2 6:00-9:00 120 11 3 46 5 11 3 36 5
P3 15:30-19:00 120 15 3 41 5 12 3 36 5

Huntington Dr & First Ave (ID: 6081)
Plan Activation Cycle Phase 1&5 Phase 2&6 Phase 3&7 Phase 4&8

Name Time (sec) G (sec) Y+R (sec) G (sec) Y+R (sec) G (sec) Y+R (sec) G (sec) Y+R (sec)

E
0:00-6:00 & 90 20 3 28 4 NA NA 31 421:00-24:00

P1
9:00-15:30 & 120 10 3 74 4 NA NA 25 419:00-21:00

P2 6:00-9:00 120 10 3 74 4 NA NA 25 4
P3 15:30-19:00 120 10 3 74 4 NA NA 25 4

Table 2: Signal timing plans at the two intersections in Arcadia. "G", "Y", and "R" stand for "Green Time", "Yellow
Time", and "All-Red Time", respectively. The green times provided in the table are the maximum ones from the
controller settings.

4.2 Dataset

The dataset includes data from 1/1/2017 to 12/31/2017 aggregated into 5 minute intervals. Both advance and stopbar
detectors measure volume and occupancy, from which we can calculate flow and occupancy percentage (we use the
term occupancy to refer to occupancy percentage). Visualizations of the data from an advance detector (Figure 4)
confirm that the measurements are highly cyclical. Note that flow measurements are the cleanest, while occupancy
measurements are slightly noisier. Furthermore, data for the morning and afternoon peaks are more consistent and have
larger magnitude changes than off peak data. We also visualize flow and occupancy for a stopbar detector (Figure 5)
and illustrate the relative noisiness of the flow measurements compared to those of the advance detector. Notably, the
stopbar detector sees much higher occupancy values compared to the advance detector, located further upstream from
the intersection. Using flow and occupancy, we plot the flow-occupancy graphs for the data (Figure 6) and note that
they exhibit the trapezoidal shape that is typical of traffic fundamental diagrams. The morning peak reaches congestion
and queue spillback far more often than the other two periods. Each period has its own set of signal phase timing plans,
which explains the varying parameters.

Detector health and signal phase timings are collected at a granularity of one day. The signals at these intersections use
four different plans: P1, P2, P3, and E, which correspond respectively to off peak, morning peak, afternoon peak, and
nighttime (Table 2). As expected, data from P2 and P3 have larger magnitude than data from P1 and E and exhibit very
obvious cyclical patterns. The P2 and P3 plans are only active on weekdays, so we train and predict only on weekday
data for the morning and afternoon peaks.

Preprocessing The sensor data was combined with the detector health data to filter out spurious data. Because the
DCRNN requires data for all of the detectors at each timestamp, we kept data only from days where all 12 detectors in
our system were healthy. However, detector 508201 provided data for only one day out of the entire year; as a result,
we ignored the detector at the expense of introducing another impurity in our closed system. Otherwise, the detectors
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Figure 4: Flow and occupancy measured in the month of August by detector 508302.

Figure 5: Flow and occupancy measured in the month of August by detector 608107. Compared to detector 508302, the
flow measurements are much noisier, although the occupancy measurements are similar.
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Figure 6: Fundamental diagrams for our two detectors of interest: 508302 and 508306.

were fairly healthy, with only a few outages throughout the year. Luckily, only a few days were filtered out in this way,
so not much data was dropped.

5 Analysis

For our experiments, we reused most of the original DCRNN code2, with some adaptations to test variations of the
algorithm. The hyperparameters used in the original paper produced positive results for us. We train for 100 epochs with
batch size 64, decay the learning rate by 0.1 from an initial 0.1 every 10 epochs, and use scheduled sampling with an
inverse sigmoid decay function to slowly introduce predicted data as labels. We focus on the Mean Absolute Percentage
Error (MAPE) in order to have a normalized metric of prediction performance, although we include Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for reference. The experiments
were run in parallel, so we do not have hard numbers for training times, but for the shorter plans, training models ranged
from about thirty minutes for window size 15m to an hour for window size 2hr.

Experiments were conducted separately on three of the traffic signal timing plans: P1, P2, and P3. The difference in
traffic flow between the three periods of the day is significant, so we trained separate models for each plan instead
of learning one model for the entire dataset. However, data from the nighttime plan E is far more sparse and noisy;
moreover, because nighttime periods exhibit little congestion, it is less useful to predict for them than for the daytime,
so we did not run experiments on plan E.

All experiments predict with a horizon of six, which is equivalent to half an hour. We test four different window sizes:
fifteen minutes (15m), half an hour (30m), one hour (1hr), and two hours (2hr), corresponding to three, six, twelve, and
24 data points. Because the lengths of some periods during the plans were short, for example only three hours or 36
points for the morning peak, we included a start buffer of the previous plan’s data at the beginning of each period of
each plan in order to have access to more data points. The length of the start buffer was equal to the window size that
we were training. For example, for data from plan P2 with a 1hr window size, we included the hour of data from plan E
from 5:00 to 6:00. This way, the number of data points for each of the different window sizes would remain the same.
We set values less than the threshold of " = 0.1 in the transition matrices to 0.

In order to test situations in which full data is not available, we ran experiments with augmented data. We explored two
types of scenarios: missing detectors and unhealthy detector data. In the former case, we simulate a situation in which
we do not have full information by creating a new transition matrix with a subset of detectors and predicting using data
from only that subset of detectors. In the latter case, we use the same transition matrix as the full information case, but
zero out part of the data to simulate a situation in which the number of detectors is fixed, but some of the detectors
do not provide good data during training. These ablations illustrate a more realistic situation; cities may not have the
resources to cover all streets with detectors, and even then, real-world detectors may occasionally fail, as exemplified by
our data.

2Code available at https://github.com/victorchan314/DCRNN

12



Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 521.04 2725 10481 485.99 2831 9832 379.28 2444 8958 347.63 2199 8348
RMSE 22.83 52.2 102.38 22.05 53.22 99.16 19.48 49.44 94.65 18.64 46.89 91.37
MAE 16.33 34.37 64.03 15.13 33.97 60.54 13.9 31.75 57.18 13.4 30.67 55.83

MAPE 5.38% 11.33% 17.44% 5.14% 11.23% 16.81% 5.06% 10.52% 16.26% 4.58% 9.63% 15.67%

Constant
Mean

MSE 68980 65071 59296 68980 65071 59296 68980 65071 59296 68980 65071 59296
RMSE 262.64 255.09 243.51 262.64 255.09 243.51 262.64 255.09 243.51 262.64 255.09 243.51
MAE 238.82 230.16 213.45 238.82 230.16 213.45 238.82 230.16 213.45 238.82 230.16 213.45

MAPE 137.6% 123.2% 105.0% 137.6% 123.2% 105.0% 137.6% 123.2% 105.0% 137.6% 123.2% 105.0%

Seasonal
Naive

MSE 69022 65112 59355 69022 65112 59355 69022 65112 59355 69022 65112 59355
RMSE 262.72 255.17 243.63 262.72 255.17 243.63 262.72 255.17 243.63 262.72 255.17 243.63
MAE 238.77 230.1 213.44 238.77 230.1 213.44 238.77 230.1 213.44 238.77 230.1 213.44

MAPE 137.5% 123.2% 105.1% 137.5% 123.2% 105.1% 137.5% 123.2% 105.1% 137.5% 123.2% 105.1%

ARIMAX

MSE 1006 6915 25247 1006 6915 25247 1006 6915 25247 1006 6915 25247
RMSE 31.72 83.16 158.89 31.72 83.16 158.89 31.72 83.16 158.89 31.72 83.16 158.89
MAE 23.93 63.59 122.44 23.93 63.59 122.44 23.93 63.59 122.44 23.93 63.59 122.44

MAPE 7.3% 17.81% 28.63% 7.3% 17.81% 28.63% 7.3% 17.81% 28.63% 7.3% 17.81% 28.63%

GRU

MSE 578.2 2846 9373 466.49 2809 9668 385.91 2412 8968 348.2 2355 9414
RMSE 24.05 53.35 96.82 21.6 53.0 98.33 19.64 49.11 94.7 18.66 48.53 97.03
MAE 17.34 36.63 63.92 15.42 36.07 64.96 14.34 33.43 61.49 13.41 33.05 64.42

MAPE 5.39% 11.1% 17.46% 4.97% 10.94% 17.63% 4.56% 10.15% 16.96% 4.37% 9.98% 17.5%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 3: Test prediction errors for the morning peak with full information and flow only.

Figure 7: Test predictions of DCRNN on flow measured in the month of December by detector 508306. The model was
trained with a window size of 1hr and a horizon of 6 data points, or half an hour. The top graph shows predictions across
time for horizons of 5 minutes, 15 minutes, and 30 minutes. The bottom graph shows predictions for all 6 horizons at
various points in the time series. For neatness sake, we limit the predictions depicted in the bottom graph to every 4
time steps.

5.1 DCRNN with Full Information

The DCRNN was our model of choice because we had access to full information with which we could populate a
transition matrix. From the signal phase timing data, we knew the distances between all pairs of detectors in the network.
We hypothesized that with a closed and fully-observed system, we would achieve higher accuracy compared to other
flow prediction methods.
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Figure 8: Test predictions of DCRNN, GRU, and ARIMAX on flow measured in the month of December by detector
508306. The model was trained with a window size of 1hr and a horizon of 6 data points, or half an hour. Here we show
the predictions with a horizon of 6, where DCRNN improves the most compared to the other methods.

Morning Peak The results for the morning peak are available in Table 3. We note several trends in DCRNN results.
Prediction error increases drastically as we predict flow at longer horizons. Unsurprisingly, data points further from
input data points have higher entropy. Moreover, in general, error decreases as window size increases. However, in some
situations, error increases when we use a 2hr window. This seems to be a common pattern across other experiments
as well. There is enough variation in the training procedure that performance saturates once window size reaches 1hr.
Because using longer windows requires longer time to train the model, a practical implementation of DCRNN could
use a shorter window and still achieve near-optimal performance. For this location, 1hr is the plateau for window size.

We compare DCRNN results to that of ARIMAX and GRU. ARIMAX has decent performance on the data. However,
for the longer-horizon 15m and 30m predictions, DCRNN performs much better than ARIMAX. The difference is less
pronounced between DCRNN and GRU. In fact, GRU performance is very close to DCRNN performance, achieving
lower error in several cases, even though the difference is within the bounds of random variation. Notably, the gap
narrows for 15m predictions, and for 30m predictions, DCRNN achieves lower error.

The difference between DCRNN and the other models becomes clear when we predict for longer horizons. DCRNN is
able to learn long-term temporal characteristics of the system for prediction more effectively than GRU, the next-best
model, can. As a result, DCRNN consistently outperforms GRU for long horizon predictions, even when GRU achieves
lower error for the 5m and 15m predictions. Moreover, while GRU error plateaus at the 1hr window size, DCRNN
error continues to drop when we use a 2hr window size, indicating that with more training data, we would see even
better predictions from DCRNN. Because traffic during the morning peak is very irregular and complicated, the model
requires more examples to learn the rich patterns present in the data.

The comparison between DCRNN predictions and the ground truth is shown in Figure 7. All three horizons result in
predictions that are very close to the ground truth, although the half-hour predictions are clearly less accurate. We note
a consistent issue across both of the graphs, which we dub the overshooting problem. This is more clearly depicted in
the bottom graph, in which we plot at regular time steps the sequence of predictions for the next six time steps.

When the ground truth data maintains its cyclical course, the predictions follow very closely. Even when the model
exhibits sawtooth edges, the predictions match the ground truth. However, for irregular changes in shape, the model’s
predictions at each time step continue along the previous trajectory and diverge from the ground truth. For example, on
12/11, traffic grinds to a halt in the middle of the morning peak, likely due to an exogenous event such as an accident.
However, the model’s predictions overshoot this drop and continue upwards in the direction that traffic flow would
usually travel. After seeing the atypically low measurements, the model tries to correct by predicting a very sudden
sharp downward trajectory. At this point, the output of DCRNN is actually negative, overshooting the flattening out of
flow, so we clip the value to zero when predicting. While DCRNN is able to learn the cyclical patterns, it struggles to
adapt to outliers and rare exogenous events.

In Figure 8, we see the comparison between DCRNN and its two closest baselines for half-hour predictions. ARIMAX
exhibits the cyclical shape of the ground truth data, but lags behind by several time steps, and thus is unable to predict
the future accurately. GRU is similar to DCRNN, except that it tends to not follow the ground truth pattern as closely as
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does DCRNN. Especially during the congested morning periods, DCRNN reaches the same amplitude that the ground
truth reaches, but GRU peaks too soon and turns downwards before the ground truth flow subsides. Even during winter
vacation, from Christmas (12/25) to New Year’s Eve (12/31), when traffic flow has quieted down, DCRNN adapts to the
smaller peaks more quickly than GRU does.

Other Times In both the afternoon peak (Table 5) and off peak (Table 4) results, we recognize many of the same
trends present in the morning peak experiments. Longer windows consistently produce lower prediction errors, but not
past 1hr. For the off peak plan, we see the same pattern as with the morning peak. DCRNN outperforms all of the other
models except for with a 2hr window, where GRU achieves lower error for 5m and 15m horizon predictions. However,
for the afternoon peak plan, DCRNN outperforms every other model. Thus, the results substantiate the hypothesis that a
major advantage of DCRNN is its ability to learn the pattern of traffic flow for long horizon predictions. The ARIMAX
and GRU models are able to memorize the gist of the data trends, but fail to understand finer details of the data.

One notable difference between these two periods and the morning peak is the drastically lower prediction error, often
dipping below four percent, even for the baselines. The magnitude of data from outside the morning peak is much lower,
and therefore the peaks are not as pronounced. Because there is less up-and-down variation in the data, the trends are
easier for the models to learn and predict. Moreover, there is less contrast between different days of the week. Traffic
during the afternoon peak is simpler than during the morning peak, so even with a limited amount of data, DCRNN
enjoys the full benefits of the signal phase timing plans.

For the afternoon peak, DCRNN still has a clear improvement over GRU, especially for the 30m predictions. However,
for the off peak plan, although DCRNN consistently achieves lower error than GRU, the decrease is far smaller. We
believe that this is due to the fact that signal timing plans have the most substantial effect on traffic flow when there
is congestion but not queue spillback. During these peak hours, cars are fully subject to the signal phases. Thus, the
transition matrix representing the diffusion process comes into play. During the off peak hours, there is little congestion,
and therefore little benefit from modeling the intersection.

Flow and Occupancy In theory, if we provide additional sensor information to the model, it should perform at least
as well as before. At the very least, the model could zero out all of the weights that are multiplied with the additional
data, which would simply result in a model with the original data. Thus, if we append occupancy data to the flow data
to predict future traffic flow, the error should not be greater.

This expectation is realized in the results for the off peak and afternoon peak periods (Tables 6 and 8), where the results
are very similar when occupancy is included in the input data. There is no significant improvement in the error, but the
results are also not worse. However, when we include occupancy for the morning peak (Table 7), the error increases by
a not insignificant amount.

For the morning peak, the MAPE for 30m predictions increases by one percent, and GRU also regresses by two
percent. Notably, we still see the same trend as before, where DCRNN always outperforms the other baselines for 30m
predictions, but is occasionally outperformed by GRU for 5m and 15m predictions. However, DCRNN and GRU both
suffer when occupancy is added as an extra feature. We do not fully understand why this phenomenon occurs; however,
our hypothesis is that occupancy data from the detectors is noisy enough that it affects the long-term relationships that
the models learn.

5.2 DCRNN with Incomplete Information

We chose a very specific group of detectors for our experiment because they represented a system that was very close to
being fully-observed for both upstream and downstream lanes. However, it may not be practical for cities to install
sensors for every lane on every road to define a closed system. Even in our network, detectors 508302 and 508306 are
the only two detectors with this type of coverage, and the system is still not fully closed. Therefore, we reran all of the
experiments while omitting either the upstream or downstream sensors. The results are available in Tables 9, 10, and 11.

No Upstream When upstream detectors are omitted, the results are fairly similar to those of the full network. The
differences are not significant and could be attributed to random variation. This occurs for all plans, both when we
include occupancy and when we only use flow. There are two data points that have much worse performance: for
the morning peak, window size 2hr, and prediction horizon 15m, for both flow only and flow and occupancy. This is
likely just a random spurious data point. Otherwise, omitting upstream detectors does not make a major difference in
prediction error. However, we note that performance for the no upstream case exhibits the saturating behavior that we
saw with GRU. With more data, it is likely that the full information case would surpass the case of omission.
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No Downstream Surprisingly, performance on the morning peak consistently improves by a slight amount when
downstream detectors are omitted. This pattern does not appear for the off or afternoon peaks.

This phenomenon is likely caused by the fact that while the upstream detectors cover all of the lanes that cars can enter
from, all three downstream directions have some sort of imperfection. The Through direction has only one out of two
sensors healthy, while both the Left Turn and Right Turn sensors are several blocks down, with multiple intersections
with stop signs in between. Because this violates the diffusion assumptions of the transition matrix, it is not as fitting of
a model as we would like it to be. As a result, if we merely omit the data, DCRNN achieves lower error because the
transition matrix holds for the remaining detectors.

5.3 Unhealthy Detectors

In real-life applications, detectors may not always be operational, and will fail with some probability. The invalid data
from these detectors can usually be easily detected; numbers are often far too low or far too high to be legitimate data.
For our study, we simulate unhealthy detectors by zeroing out some portion of the data. We experimented with two
types of unhealthy detector data scenarios: unhealthy detectors, in which some subset of detectors are zeroed out for
the entire training period, and unhealthy days, in which data for all detectors is zeroed out on a randomly-selected
proportion of days. We divide the unhealthy detectors scenario into two further categories for detector directions and
detector types.

For all scenarios, we tested the augmented data in two different ways. First, we used the trained models from the full
information scenario to predict with the augmented data to determine their robustness to unreliable data. Second, we
trained a new model with the unhealthy data to determine the impact of spurious data on prediction quality.

Unhealthy Detector Directions There are two directions for the sensors of interest: Upstream and Downstream. For
each direction, we explore augmenting data for three groups of interest: all detectors, Through detectors, and Turn
detectors. These results are available in Tables 12, 13, and 14.

In general, prediction accuracy is lower and variance is higher when unhealthy detectors are present. Although there
are many cases in which the unhealthy scenario performs similarly to the full information scenario, overall, the full
information case achieves low error most consistently. When using the full information models for the morning peak,
error blows up when we zero out all of the detectors in either direction. Notably, error does not increase as significantly
when only Upstream Turn (stopbar detectors have noisier flow measurements) or Downstream Through (there is only
one detector in this group) detector measurements are augmented. The results from retraining DCRNN on augmented
data are similar to the full information case, albeit slightly worse overall, especially with shorter window sizes and
longer prediction horizons. There are several individual cases where MAPE jumps to over 30%. The consistent
presence of multiple outliers suggests that unhealthy data negatively affects predictions. Unsurprisingly, retraining
on the augmented data far outperforms predicting on augmented data with the full information models, although it is
still unable to close the gap. Clearly, the full information models have learned to rely on data from both upstream and
downstream detectors for the most accurate predictions.

We see the same patterns for the afternoon peak. Zeroing out more detectors results in less accuracy. However, zeroing
out the single detector in the Downstream Through direction or zeroing out the stopbar detectors in the Upstream
Turn direction causes much less increase in error compared to the other scenarios. The unhealthy directions scenario
performs consistently worse than the full information scenario, but retraining on the augmented data reduces the impact.
The off peak period also exhibits the same trends, but they are less pronounced because the data has less variance and is
easier to predict.

Unhealthy Detector Types In our network, we have advance and stopbar detectors. Advance detectors produce
reliable measurements for both flow and occupancy; on the other hand, while stopbar detectors produce reliable
occupancy measurements, their flow measurements are noisier. We explored augmenting the data from different types
of sensors. Results are available in Tables 15, 16, and 17.

Zeroing out stopbar detector data causes a noticeable increase in prediction error for longer horizon predictions, although
the difference is not significant for shorter horizons. Retraining on the augmented data brings the errors closer together,
but does not close the gap. Even though the flow information from stopbar detectors is relatively noisy, it is still
important in incorporating data from the Upstream Turn directions. However, most of the detectors in the network
are advance detectors. Understandably, zeroing out this data causes a very significant escalation in prediction error.
Surprisingly, short horizon predictions are not affected when the models are retrained. This suggests that while flow
information from detectors 508302 and 508306 (our detectors of interest) is sufficient for one-step predictions, flow
information from the other detectors is crucial for long horizon predictions.
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When we include occupancy data, the error from unhealthy detectors increases slightly, but not by an unreasonable
amount. Because stopbar detectors produce reliable occupancy data, zeroing out stopbar detector data causes a larger
increase in prediction error compared to when only flow is considered. Overall, retraining outperforms predicting on
the augmented data with the full information models.

These trends are present for all three plans, but they are the most pronounced for the morning peak. The two trends
present for all of the scenarios are that unhealthy data causes prediction accuracy and consistency to diminish, and that
retraining models provides some mitigation of that decline.

Unhealthy Proportion of Days Our final scenario investigates setting the detector data to zero on a certain proportion
of days. Our data on detector health only stores information at a granularity of one day, so we decided to zero out
days of data instead of specific data points. We analyzed four percentages of data to augment: 5%, 10%, 25%, and
50%; the results for this experiment are available in Tables 18, 19, and 20. Because of the length of time required to
run experiments, we only tested one random seed for each scenario; thus, small and inconsistent improvements or
deterioration in prediction accuracy are noted as possibly due to random variation.

The outcomes of this scenario are not very surprising. Using the full information matrix to predict on the augmented
data performs worse, with MAPE surging as a larger portion of the data is augmented. With all plans, having 5%
unhealthy data raises MAPE by 5%, and having 10% unhealthy data increments MAPE by another 5%. Having 25%
and 50% unhealthy data significantly curtails performance for all prediction horizons. After retraining, the errors are
still higher than when there is no unhealthy data, although the accuracy is much closer. In some cases, even with
50% unhealthy data, DCRNN matches the original scenario. Still, the results exhibit very high variation, even if some
isolated cases achieve good performance. The 10% retrain scenario for the morning peak results in very similar results
to the original scenario; however, because the 5% retrain scenario has a significant decline in accuracy, we believe that
the similarity stems from randomness. In addition, the 5% and 10% retrain scenarios for the afternoon peak do not
manifest effects of the augmented data. We believe this is caused by the less pronounced variation in the daily peaks of
afternoon traffic.

We can conclude from these results that data quality is of utmost importance to our model. While having more
training data is necessary to boost performance, the data must be carefully preprocessed to filter out bad data and avoid
detrimental effects. Unlike in the previous unhealthy detectors scenarios, where the model is robust even with some
unhealthy detectors, here the quality of the data itself is degraded. This highlights the distinction between accounting for
several misbehaving detectors and handling low-quality data. While the model is able to absorb some of the impact and
produce decent results in some cases, it produces much more accurate and consistent results when no data is corrupt.

Of note are the retrained predictions for a window size of 2hr with both the morning and off peak periods. In some
cases, the MAPE decreases significantly compared to the other window sizes. While we do not know why this occurs,
we hypothesize that although 50% of the data has been zeroed out, having 24 data points in the window allows DCRNN
to better learn relationships between data points. This way, it can distinguish between scenarios where data is corrupt
for an entire day and where data is simply low for a small period of time.

5.3.1 Other Experiments

We also tested several DCRNN setup variations to investigate whether these alterations would generate more accurate
predictions. First, we trained a different DCRNN for each day of the week, as [10] discovered significant changes in the
traffic profile between each day of the week. Second, we explored single-horizon predictions. Instead of predicting all
six horizons at once, we trained six different models, each of which predicted one of the six horizons.

Neither of these experiments improved upon the original model. Splitting by days of the week resulted in similar
performance. Training models for single-horizon predictions actually performed slightly worse than the normal model,
especially for long horizon predictions. Having all of the labels to guide the model during training allows it to learn the
full relationship between each point in time instead of just jumping ahead to a specific horizon without the intermediate
context. The original DCRNN model has the structure and expressiveness to represent traffic in our system without
these extra modifications.

6 Conclusion

Arterial traffic prediction is far more challenging compared to freeway traffic prediction. Spatial information plays a
much more salient role and must be effectively applied to optimize prediction accuracy. In this study, we explored using
signal phase timing data to generate a weighted adjacency matrix based on traffic signal green times. Combined with
our graph convolutional model of choice, the DCRNN, we show that the signal phase timing data enhances arterial flow
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predictions, especially long horizon forecasts. We achieve MAPE as low as 16% for a prediction horizon of 30 minutes
for morning peak congestion. For afternoon peak and off peak data, we achieve MAPE lower than 8% and 10% for the
same horizon. Signal phase timing data defines the relationships between detectors in the network and allows the model
to learn long-term temporal relationships for long horizon predictions.

In addition, we tested numerous variations of the measurements and the detector network to investigate the effects of
detector coverage, detector type, and data quality on prediction performance. One surprising discovery is that detector
coverage is overshadowed by detector proximity and precise measurements; as a result, we saw no significant decrease
in performance even after omitting stopbar detectors and detectors several blocks away.

In our ablations with augmented data, prediction error skyrocketed when we simulated unhealthy data for even just
one or two detectors. However, after we retrained on the augmented data, errors dipped back down to the levels in the
full information scenarios. This reveals that when presented with more information, our model makes good use of it
to generate excellent predictions, but it is also robust to faulty detectors when training. However, at least some of the
detectors must be relatively reliable, or else accuracy will take a heavy hit. If entire days of data are zeroed out, errors
soar, even when only 5% of days are augmented. Although the data can include some anomalies, it must at the very
least be relatively consistent throughout the entire dataset.

As expected, omitting advance detectors rendered the model ineffective for long horizons. Simulated unhealthy stopbar
detectors had less of an impact, although the difference was slightly larger when occupancy measurements were
included. Short horizon predictions were not particularly affected by these changes, even with all advance detectors
zeroed out, indicating that the graph structure of the network is most useful for long horizon predictions.

In the future, we can study extensions and variations of this work. We can train deeper and more expressive models
to better learn complex patterns. The area of deep unsupervised learning is burgeoning, and because traffic network
matrices are polynomial with respect to the number of detectors and the size of the graph, it would be very useful to
find a compressed feature representation for the entire network state. This would be particularly beneficial for the signal
phase timing data. DCRNN applies a static transition matrix, so we used planned green times; however, traffic plans
are dynamic and reactive to traffic conditions, so the actual green times are different for each point in time. With a
latent embedding, we could encode the signal phases for each data point instead of aggregating them into a single static
matrix. Some newer graph convolutional architectures, such as Graph WaveNet [48], allow adaptive filters, so they can
be applied to the problem as well.

Another prospective direction is to include even more varied types of information, such as pedestrian activity at
intersections. In addition, DCRNN allows prediction of all detectors at once. We could examine flow forecasts for
an entire network of sensors, even one that isn’t a closed system. Flow predictions can also be applied to signal
control applications to determine the effect of forecasts on travel time and queue length on urban roads. Arterial
traffic predictions have many applications, so we must leverage all the data and technology in our toolbox to tackle the
challenge.
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A Additional Results

Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 289.71 974.75 1842 235.67 920.15 1851 206.54 794.93 1774 246.19 802.61 1721
RMSE 17.02 31.22 42.92 15.35 30.33 43.03 14.37 28.19 42.13 15.69 28.33 41.49
MAE 13.33 23.52 31.32 11.9 22.51 31.21 11.22 21.48 30.79 12.22 21.68 30.6

MAPE 4.18% 7.58% 10.53% 3.72% 7.26% 10.48% 3.54% 7.01% 10.44% 3.86% 6.94% 10.02%

Constant
Mean

MSE 9605 8875 8437 9605 8875 8437 9605 8875 8437 9605 8875 8437
RMSE 98.01 94.21 91.86 98.01 94.21 91.86 98.01 94.21 91.86 98.01 94.21 91.86
MAE 73.73 72.44 71.93 73.73 72.44 71.93 73.73 72.44 71.93 73.73 72.44 71.93

MAPE 26.93% 26.85% 27.23% 26.93% 26.85% 27.23% 26.93% 26.85% 27.23% 26.93% 26.85% 27.23%

Seasonal
Naive

MSE 9633 8897 8459 9633 8897 8459 9633 8897 8459 9633 8897 8459
RMSE 98.15 94.33 91.97 98.15 94.33 91.97 98.15 94.33 91.97 98.15 94.33 91.97
MAE 73.88 72.53 72.06 73.88 72.53 72.06 73.88 72.53 72.06 73.88 72.53 72.06

MAPE 26.97% 26.87% 27.27% 26.97% 26.87% 27.27% 26.97% 26.87% 27.27% 26.97% 26.87% 27.27%

ARIMAX

MSE 358.68 1483 3337 358.68 1483 3337 358.68 1483 3337 348.53 1443 3310
RMSE 18.94 38.52 57.77 18.94 38.52 57.77 18.94 38.52 57.77 18.67 37.99 57.54
MAE 14.48 28.37 41.78 14.48 28.37 41.78 14.48 28.37 41.78 14.33 28.07 41.69

MAPE 4.51% 8.83% 13.31% 4.51% 8.83% 13.31% 4.51% 8.83% 13.31% 4.47% 8.73% 13.28%

GRU

MSE 310.7 1055 2107 247.61 948.38 2039 220.41 879.1 2018 197.81 825.01 2008
RMSE 17.63 32.48 45.9 15.74 30.8 45.17 14.85 29.65 44.92 14.06 28.72 44.81
MAE 13.66 24.69 34.07 12.16 23.29 33.39 11.52 22.47 33.2 10.92 21.71 32.82

MAPE 4.29% 7.77% 10.84% 3.82% 7.33% 10.66% 3.62% 7.07% 10.59% 3.44% 6.89% 10.52%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 4: Test prediction errors for off peak with full information and flow only.

Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 330.6 942.6 1591 268.6 857.35 1448 227.86 757.32 1346 216.88 733.63 1401
RMSE 18.18 30.7 39.89 16.39 29.28 38.06 15.1 27.52 36.69 14.73 27.09 37.44
MAE 14.51 24.27 30.94 13.02 23.17 29.51 11.98 21.78 28.41 11.75 21.41 28.94

MAPE 4.01% 6.69% 8.44% 3.62% 6.37% 8.09% 3.3% 6.0% 7.82% 3.26% 5.94% 8.0%

Constant
Mean

MSE 4985 4955 4953 4985 4955 4953 4985 4955 4953 4985 4955 4953
RMSE 70.61 70.39 70.38 70.61 70.39 70.38 70.61 70.39 70.38 70.61 70.39 70.38
MAE 50.95 51.27 51.65 50.95 51.27 51.65 50.95 51.27 51.65 50.95 51.27 51.65

MAPE 16.15% 16.32% 16.56% 16.15% 16.32% 16.56% 16.15% 16.32% 16.56% 16.15% 16.32% 16.56%

Seasonal
Naive

MSE 5000 4973 4975 5000 4973 4975 5000 4973 4975 5000 4973 4975
RMSE 70.72 70.53 70.53 70.72 70.53 70.53 70.72 70.53 70.53 70.72 70.53 70.53
MAE 51.12 51.43 51.78 51.12 51.43 51.78 51.12 51.43 51.78 51.12 51.43 51.78

MAPE 16.19% 16.36% 16.6% 16.19% 16.36% 16.6% 16.19% 16.36% 16.6% 16.19% 16.36% 16.6%

ARIMAX

MSE 375.2 1248 2587 375.2 1248 2587 375.2 1248 2587 375.2 1248 2587
RMSE 19.37 35.34 50.86 19.37 35.34 50.86 19.37 35.34 50.86 19.37 35.34 50.86
MAE 15.34 28.01 40.17 15.34 28.01 40.17 15.34 28.01 40.17 15.34 28.01 40.17

MAPE 4.22% 7.76% 11.27% 4.22% 7.76% 11.27% 4.22% 7.76% 11.27% 4.22% 7.76% 11.27%

GRU

MSE 371.43 1205 2415 299.3 1163 2456 262.24 1090 2434 235.82 994.51 2338
RMSE 19.27 34.72 49.15 17.3 34.11 49.57 16.19 33.02 49.34 15.36 31.54 48.36
MAE 15.27 27.63 38.66 13.8 27.21 39.04 12.89 26.3 38.95 12.27 25.08 38.16

MAPE 4.21% 7.7% 10.89% 3.8% 7.51% 10.98% 3.55% 7.25% 10.89% 3.37% 6.92% 10.7%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 5: Test prediction errors for the afternoon peak with full information and flow only.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 306.62 1045 1997 242.99 889.57 1897 229.61 833.3 1736 221.86 773.11 1651
RMSE 17.51 32.33 44.7 15.59 29.83 43.56 15.15 28.87 41.67 14.89 27.8 40.64
MAE 13.46 24.13 32.5 12.04 22.53 31.73 11.65 21.93 31.29 11.43 21.27 30.68

MAPE 4.24% 7.69% 10.55% 3.79% 7.2% 10.34% 3.68% 7.05% 10.22% 3.62% 6.89% 10.01%

Constant
Mean

MSE 9605 8875 8437 9605 8875 8437 9605 8875 8437 9605 8875 8437
RMSE 98.01 94.21 91.86 98.01 94.21 91.86 98.01 94.21 91.86 98.01 94.21 91.86
MAE 73.73 72.44 71.93 73.73 72.44 71.93 73.73 72.44 71.93 73.73 72.44 71.93

MAPE 26.93% 26.85% 27.23% 26.93% 26.85% 27.23% 26.93% 26.85% 27.23% 26.93% 26.85% 27.23%

Seasonal
Naive

MSE 9633 8897 8459 9633 8897 8459 9633 8897 8459 9633 8897 8459
RMSE 98.15 94.33 91.97 98.15 94.33 91.97 98.15 94.33 91.97 98.15 94.33 91.97
MAE 73.88 72.53 72.06 73.88 72.53 72.06 73.88 72.53 72.06 73.88 72.53 72.06

MAPE 26.97% 26.87% 27.27% 26.97% 26.87% 27.27% 26.97% 26.87% 27.27% 26.97% 26.87% 27.27%

ARIMAX

MSE 358.68 1483 3337 358.68 1483 3337 358.68 1483 3337 348.53 1443 3310
RMSE 18.94 38.52 57.77 18.94 38.52 57.77 18.94 38.52 57.77 18.67 37.99 57.54
MAE 14.48 28.37 41.78 14.48 28.37 41.78 14.48 28.37 41.78 14.33 28.07 41.69

MAPE 4.51% 8.83% 13.31% 4.51% 8.83% 13.31% 4.51% 8.83% 13.31% 4.47% 8.73% 13.28%

GRU

MSE 307.84 1060 2189 250.86 979.25 2120 222.67 905.88 1998 204.48 873.2 2019
RMSE 17.55 32.56 46.79 15.84 31.29 46.05 14.92 30.1 44.71 14.3 29.55 44.94
MAE 13.65 24.85 34.65 12.21 23.67 33.96 11.59 22.81 33.38 11.1 22.29 33.44

MAPE 4.28% 7.85% 11.05% 3.83% 7.44% 10.83% 3.6% 7.22% 10.9% 3.45% 7.06% 10.89%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 6: Test prediction errors for off peak with full information and both flow and occupancy.

Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 588.97 3033 9908 501.47 3287 10631 496.57 2993 9865 691.94 3737 10755
RMSE 24.27 55.08 99.54 22.39 57.33 103.11 22.28 54.71 99.33 26.3 61.14 103.71
MAE 17.49 37.15 62.26 15.93 38.34 65.62 15.84 36.07 61.84 17.97 37.56 61.93

MAPE 5.57% 11.4% 17.58% 5.24% 11.48% 17.5% 5.03% 10.75% 16.81% 5.88% 11.93% 16.92%

Constant
Mean

MSE 68980 65071 59296 68980 65071 59296 68980 65071 59296 68980 65071 59296
RMSE 262.64 255.09 243.51 262.64 255.09 243.51 262.64 255.09 243.51 262.64 255.09 243.51
MAE 238.82 230.16 213.45 238.82 230.16 213.45 238.82 230.16 213.45 238.82 230.16 213.45

MAPE 137.6% 123.2% 105.0% 137.6% 123.2% 105.0% 137.6% 123.2% 105.0% 137.6% 123.2% 105.0%

Seasonal
Naive

MSE 69022 65112 59355 69022 65112 59355 69022 65112 59355 69022 65112 59355
RMSE 262.72 255.17 243.63 262.72 255.17 243.63 262.72 255.17 243.63 262.72 255.17 243.63
MAE 238.77 230.1 213.44 238.77 230.1 213.44 238.77 230.1 213.44 238.77 230.1 213.44

MAPE 137.5% 123.2% 105.1% 137.5% 123.2% 105.1% 137.5% 123.2% 105.1% 137.5% 123.2% 105.1%

ARIMAX

MSE 1006 6915 25247 1006 6915 25247 1006 6915 25247 1006 6915 25247
RMSE 31.72 83.16 158.89 31.72 83.16 158.89 31.72 83.16 158.89 31.72 83.16 158.89
MAE 23.93 63.59 122.44 23.93 63.59 122.44 23.93 63.59 122.44 23.93 63.59 122.44

MAPE 7.3% 17.81% 28.63% 7.3% 17.81% 28.63% 7.3% 17.81% 28.63% 7.3% 17.81% 28.63%

GRU

MSE 594.37 2915 9875 468.2 2845 9783 397.06 2519 9613 348.15 2374 9125
RMSE 24.38 53.99 99.38 21.64 53.34 98.91 19.93 50.19 98.05 18.66 48.73 95.53
MAE 17.5 36.91 66.41 15.58 36.77 65.51 14.47 34.42 65.34 13.41 33.41 63.22

MAPE 5.61% 11.84% 19.5% 5.08% 11.39% 18.75% 4.78% 10.8% 18.49% 4.59% 10.93% 19.23%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 7: Test prediction errors for the morning peak with full information and both flow and occupancy.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

DCRNN

MSE 357.93 1062 1722 306.42 915.98 1599 283.82 891.11 1542 264.05 786.63 1412
RMSE 18.92 32.6 41.51 17.5 30.27 39.99 16.85 29.85 39.27 16.25 28.05 37.58
MAE 15.0 25.81 32.31 13.92 23.97 31.0 13.28 23.43 30.42 12.91 22.11 28.98

MAPE 4.16% 7.09% 8.84% 3.83% 6.62% 8.52% 3.66% 6.41% 8.24% 3.57% 6.12% 7.99%

Constant
Mean

MSE 4985 4955 4953 4985 4955 4953 4985 4955 4953 4985 4955 4953
RMSE 70.61 70.39 70.38 70.61 70.39 70.38 70.61 70.39 70.38 70.61 70.39 70.38
MAE 50.95 51.27 51.65 50.95 51.27 51.65 50.95 51.27 51.65 50.95 51.27 51.65

MAPE 16.15% 16.32% 16.56% 16.15% 16.32% 16.56% 16.15% 16.32% 16.56% 16.15% 16.32% 16.56%

Seasonal
Naive

MSE 5000 4973 4975 5000 4973 4975 5000 4973 4975 5000 4973 4975
RMSE 70.72 70.53 70.53 70.72 70.53 70.53 70.72 70.53 70.53 70.72 70.53 70.53
MAE 51.12 51.43 51.78 51.12 51.43 51.78 51.12 51.43 51.78 51.12 51.43 51.78

MAPE 16.19% 16.36% 16.6% 16.19% 16.36% 16.6% 16.19% 16.36% 16.6% 16.19% 16.36% 16.6%

ARIMAX

MSE 375.2 1248 2587 375.2 1248 2587 375.2 1248 2587 375.2 1248 2587
RMSE 19.37 35.34 50.86 19.37 35.34 50.86 19.37 35.34 50.86 19.37 35.34 50.86
MAE 15.34 28.01 40.17 15.34 28.01 40.17 15.34 28.01 40.17 15.34 28.01 40.17

MAPE 4.22% 7.76% 11.27% 4.22% 7.76% 11.27% 4.22% 7.76% 11.27% 4.22% 7.76% 11.27%

GRU

MSE 372.78 1197 2335 296.94 1144 2367 260.78 1033 2151 236.86 979.0 2223
RMSE 19.31 34.61 48.33 17.23 33.82 48.66 16.15 32.15 46.39 15.39 31.29 47.16
MAE 15.31 27.59 38.28 13.77 26.97 38.27 12.85 25.62 36.69 12.28 25.0 37.55

MAPE 4.24% 7.72% 10.83% 3.8% 7.48% 10.76% 3.54% 7.09% 10.35% 3.38% 6.96% 10.64%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 8: Test prediction errors for the afternoon peak with full information and both flow and occupancy.

Window Size
Method Metric 15 min 30 min 1 hr 2 hr

Full
Information,
Flow only

MSE 289.71 974.75 1842 235.67 920.15 1851 206.54 794.93 1774 246.19 802.61 1721
RMSE 17.02 31.22 42.92 15.35 30.33 43.03 14.37 28.19 42.13 15.69 28.33 41.49
MAE 13.33 23.52 31.32 11.9 22.51 31.21 11.22 21.48 30.79 12.22 21.68 30.6

MAPE 4.18% 7.58% 10.53% 3.72% 7.26% 10.48% 3.54% 7.01% 10.44% 3.86% 6.94% 10.02%

No
Upstream,
Flow only

MSE 309.56 1024 1926 241.06 884.79 1756 221.46 842.33 1777 214.58 854.02 1878
RMSE 17.59 32.01 43.9 15.53 29.75 41.91 14.88 29.02 42.16 14.65 29.22 43.34
MAE 13.72 24.19 31.83 12.06 22.41 30.6 11.57 22.03 31.12 11.34 22.07 31.41

MAPE 4.29% 7.75% 10.59% 3.77% 7.14% 10.09% 3.63% 7.13% 10.42% 3.5% 6.99% 10.39%

No
Downstream,

Flow only

MSE 284.41 946.74 1797 227.36 864.49 1805 208.05 838.81 1852 191.78 736.98 1647
RMSE 16.86 30.77 42.39 15.08 29.4 42.49 14.42 28.96 43.05 13.85 27.15 40.59
MAE 13.26 23.55 31.31 11.77 22.24 31.06 11.24 21.66 31.05 10.84 20.75 30.13

MAPE 4.2% 7.62% 10.51% 3.71% 7.17% 10.45% 3.53% 6.99% 10.48% 3.39% 6.63% 9.75%
Full

Information,
Flow and

Occupancy

MSE 306.62 1045 1997 242.99 889.57 1897 229.61 833.3 1736 221.86 773.11 1651
RMSE 17.51 32.33 44.7 15.59 29.83 43.56 15.15 28.87 41.67 14.89 27.8 40.64
MAE 13.46 24.13 32.5 12.04 22.53 31.73 11.65 21.93 31.29 11.43 21.27 30.68

MAPE 4.24% 7.69% 10.55% 3.79% 7.2% 10.34% 3.68% 7.05% 10.22% 3.62% 6.89% 10.01%
No

Upstream,
Flow and

Occupancy

MSE 323.32 1040 1937 253.22 890.87 1783 227.95 855.36 1796 220.8 806.94 1720
RMSE 17.98 32.26 44.02 15.91 29.85 42.23 15.1 29.25 42.38 14.86 28.41 41.48
MAE 13.95 24.65 32.94 12.26 22.75 31.37 11.66 22.18 31.21 11.48 21.84 31.28

MAPE 4.37% 7.85% 10.69% 3.84% 7.23% 10.14% 3.66% 7.05% 10.08% 3.58% 7.05% 10.13%
No

Downstream,
Flow and

Occupancy

MSE 312.92 1044 1964 254.8 904.88 1779 253.5 889.25 1816 220.19 767.11 1613
RMSE 17.69 32.33 44.33 15.96 30.08 42.19 15.92 29.82 42.63 14.84 27.7 40.17
MAE 13.66 24.7 33.19 12.13 22.86 31.65 12.0 22.68 31.89 11.32 21.44 30.59

MAPE 4.29% 7.97% 11.05% 3.83% 7.37% 10.45% 3.76% 7.28% 10.84% 3.57% 6.89% 10.14%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 9: Comparison of DCRNN test prediction errors between the full information, no upstream, and no downstream
scenarios for off peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

Full
Information,
Flow only

MSE 521.04 2725 10481 485.99 2831 9832 379.28 2444 8958 347.63 2199 8348
RMSE 22.83 52.2 102.38 22.05 53.22 99.16 19.48 49.44 94.65 18.64 46.89 91.37
MAE 16.33 34.37 64.03 15.13 33.97 60.54 13.9 31.75 57.18 13.4 30.67 55.83

MAPE 5.38% 11.33% 17.44% 5.14% 11.23% 16.81% 5.06% 10.52% 16.26% 4.58% 9.63% 15.67%

No
Upstream,
Flow only

MSE 528.3 2676 9098 448.39 2752 9166 404.72 2373 8701 3423 6142 11257
RMSE 22.98 51.74 95.39 21.18 52.47 95.74 20.12 48.71 93.28 58.51 78.37 106.1
MAE 16.51 34.06 58.25 14.97 33.84 57.78 14.56 31.89 56.86 30.44 45.9 64.4

MAPE 5.36% 10.86% 15.91% 4.89% 10.67% 16.11% 4.82% 9.93% 15.75% 9.44% 14.06% 17.83%

No
Downstream,

Flow only

MSE 536.21 2741 9198 417.91 2586 9003 364.03 2300 8249 327.75 2240 8617
RMSE 23.16 52.36 95.91 20.44 50.86 94.89 19.08 47.97 90.83 18.1 47.33 92.83
MAE 16.78 35.33 60.44 14.59 33.47 59.57 13.78 31.79 56.23 13.03 30.91 56.78

MAPE 5.45% 11.45% 16.77% 5.12% 10.83% 16.55% 4.65% 10.14% 15.59% 4.37% 9.7% 15.37%
Full

Information,
Flow and

Occupancy

MSE 588.97 3033 9908 501.47 3287 10631 496.57 2993 9865 691.94 3737 10755
RMSE 24.27 55.08 99.54 22.39 57.33 103.11 22.28 54.71 99.33 26.3 61.14 103.71
MAE 17.49 37.15 62.26 15.93 38.34 65.62 15.84 36.07 61.84 17.97 37.56 61.93

MAPE 5.57% 11.4% 17.58% 5.24% 11.48% 17.5% 5.03% 10.75% 16.81% 5.88% 11.93% 16.92%
No

Upstream,
Flow and

Occupancy

MSE 552.72 3143 9989 490.13 2927 9910 564.89 3220 10459 7252 8144 13422
RMSE 23.51 56.06 99.95 22.14 54.11 99.55 23.77 56.75 102.27 85.16 90.25 115.85
MAE 16.86 36.95 62.11 15.67 36.18 62.31 16.72 36.78 62.7 42.71 50.98 70.04

MAPE 5.36% 11.49% 17.94% 5.05% 10.95% 17.09% 5.3% 11.09% 16.76% 14.87% 17.81% 22.39%
No

Downstream,
Flow and

Occupancy

MSE 599.94 3365 10526 546.82 3545 12051 488.61 3153 10473 498.32 2809 10180
RMSE 24.49 58.01 102.6 23.38 59.55 109.78 22.1 56.15 102.34 22.32 53.01 100.9
MAE 17.24 37.11 61.77 16.33 37.65 66.2 15.78 35.12 60.81 15.81 34.14 61.54

MAPE 5.72% 11.46% 17.18% 5.05% 11.06% 17.2% 5.06% 10.7% 16.17% 5.32% 10.67% 16.55%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 10: Comparison of DCRNN test prediction errors between the full information, no upstream, and no downstream
scenarios for the morning peak.

Window Size
Method Metric 15 min 30 min 1 hr 2 hr

Full
Information,
Flow only

MSE 330.6 942.6 1591 268.6 857.35 1448 227.86 757.32 1346 216.88 733.63 1401
RMSE 18.18 30.7 39.89 16.39 29.28 38.06 15.1 27.52 36.69 14.73 27.09 37.44
MAE 14.51 24.27 30.94 13.02 23.17 29.51 11.98 21.78 28.41 11.75 21.41 28.94

MAPE 4.01% 6.69% 8.44% 3.62% 6.37% 8.09% 3.3% 6.0% 7.82% 3.26% 5.94% 8.0%

No
Upstream,
Flow only

MSE 342.33 954.42 1591 273.3 893.16 1529 258.29 850.59 1489 246.59 848.98 1563
RMSE 18.5 30.89 39.9 16.53 29.89 39.11 16.07 29.16 38.6 15.7 29.14 39.55
MAE 14.72 24.45 30.89 13.09 23.39 30.02 12.66 22.8 29.5 12.42 22.73 30.53

MAPE 4.05% 6.72% 8.45% 3.6% 6.45% 8.28% 3.48% 6.31% 8.27% 3.42% 6.32% 8.6%

No
Downstream,

Flow only

MSE 331.03 944.69 1568 266.86 868.3 1511 225.89 757.48 1366 215.65 748.14 1401
RMSE 18.19 30.74 39.61 16.34 29.47 38.88 15.03 27.52 36.97 14.68 27.35 37.44
MAE 14.53 24.43 30.54 13.0 23.38 30.05 11.98 21.87 28.54 11.7 21.55 28.75

MAPE 4.02% 6.76% 8.32% 3.6% 6.43% 8.25% 3.32% 6.06% 7.94% 3.24% 5.93% 7.9%
Full

Information,
Flow and

Occupancy

MSE 357.93 1062 1722 306.42 915.98 1599 283.82 891.11 1542 264.05 786.63 1412
RMSE 18.92 32.6 41.51 17.5 30.27 39.99 16.85 29.85 39.27 16.25 28.05 37.58
MAE 15.0 25.81 32.31 13.92 23.97 31.0 13.28 23.43 30.42 12.91 22.11 28.98

MAPE 4.16% 7.09% 8.84% 3.83% 6.62% 8.52% 3.66% 6.41% 8.24% 3.57% 6.12% 7.99%
No

Upstream,
Flow and

Occupancy

MSE 357.97 1062 1743 287.58 900.53 1638 281.96 886.24 1531 262.49 799.08 1461
RMSE 18.92 32.59 41.75 16.96 30.01 40.47 16.79 29.77 39.14 16.2 28.27 38.23
MAE 15.04 25.88 32.39 13.42 23.6 31.11 13.28 23.02 29.82 12.86 21.94 29.09

MAPE 4.13% 7.09% 8.85% 3.68% 6.45% 8.56% 3.68% 6.33% 8.13% 3.55% 6.02% 7.98%
No

Downstream,
Flow and

Occupancy

MSE 352.88 1048 1727 288.99 913.23 1614 306.4 911.13 1598 322.51 852.29 1510
RMSE 18.79 32.38 41.56 17.0 30.22 40.18 17.5 30.18 39.98 17.96 29.19 38.86
MAE 14.92 25.68 32.13 13.53 23.81 31.01 13.96 23.95 31.12 14.17 23.09 29.94

MAPE 4.13% 7.1% 8.8% 3.74% 6.56% 8.51% 3.87% 6.67% 8.6% 3.96% 6.41% 8.3%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 11: Comparison of DCRNN test prediction errors between the full information, no upstream, and no downstream
scenarios for the afternoon peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 289.71 974.75 1842 235.67 920.15 1851 206.54 794.93 1774 246.19 802.61 1721
RMSE 17.02 31.22 42.92 15.35 30.33 43.03 14.37 28.19 42.13 15.69 28.33 41.49
MAE 13.33 23.52 31.32 11.9 22.51 31.21 11.22 21.48 30.79 12.22 21.68 30.6

MAPE 4.18% 7.58% 10.53% 3.72% 7.26% 10.48% 3.54% 7.01% 10.44% 3.86% 6.94% 10.02%

Upstream

MSE 744.97 2837 5461 514.31 2501 6474 1388 5602 12387 1500 2995 4940
RMSE 27.29 53.27 73.91 22.68 50.02 80.47 37.26 74.85 111.3 38.74 54.73 70.29
MAE 21.23 40.96 57.75 17.59 39.26 62.96 32.31 61.91 82.03 33.07 44.46 55.65

MAPE 6.59% 12.49% 17.58% 5.43% 11.73% 18.67% 9.49% 17.69% 23.16% 9.67% 13.02% 16.08%

Upstream
Through

MSE 391.28 1233 2123 320.71 1331 2529 385.13 1152 2441 547.57 1574 2521
RMSE 19.78 35.13 46.08 17.91 36.49 50.29 19.62 33.95 49.41 23.4 39.68 50.22
MAE 15.75 27.57 35.46 14.02 28.06 38.72 15.4 25.73 37.92 18.74 31.1 38.22

MAPE 5.03% 8.88% 11.56% 4.28% 8.43% 12.17% 4.62% 7.94% 12.52% 5.67% 9.3% 11.72%

Upstream
Turn

(Stopbar)

MSE 306.82 1061 1928 243.98 960.42 1925 215.7 869.86 1896 258.11 828.87 1742
RMSE 17.52 32.58 43.91 15.62 30.99 43.88 14.69 29.49 43.55 16.07 28.79 41.74
MAE 13.7 24.81 32.81 12.12 23.46 32.94 11.48 22.62 32.64 12.54 22.12 31.23

MAPE 4.34% 8.12% 11.14% 3.79% 7.56% 11.01% 3.63% 7.39% 10.94% 3.95% 7.06% 10.29%

Downstream

MSE 474.99 3109 10529 423.49 3365 18696 431.45 3846 18541 470.39 3494 12130
RMSE 21.79 55.77 102.61 20.58 58.02 136.73 20.77 62.02 136.17 21.69 59.11 110.14
MAE 17.16 47.37 91.71 15.74 47.49 121.36 16.42 50.44 117.27 17.2 49.69 94.8

MAPE 5.47% 15.63% 29.92% 4.88% 15.84% 38.11% 5.15% 15.77% 35.5% 5.43% 15.66% 29.17%

Downstream
Through

MSE 303.38 1075 2015 260.22 1064 2095 222.02 1014 2536 276.62 937.26 2100
RMSE 17.42 32.79 44.89 16.13 32.63 45.78 14.9 31.85 50.36 16.63 30.61 45.83
MAE 13.66 24.95 33.71 12.42 23.96 33.17 11.64 23.99 37.31 12.87 23.26 33.5

MAPE 4.28% 8.0% 11.11% 3.82% 7.6% 10.94% 3.62% 7.55% 11.82% 4.02% 7.31% 10.57%

Downstream
Turn

MSE 387.71 2384 7221 323.91 2756 9994 427.2 2959 9748 436.37 2089 6397
RMSE 19.69 48.83 84.98 18.0 52.5 99.97 20.67 54.4 98.73 20.89 45.72 79.99
MAE 15.38 40.31 72.78 14.15 42.63 84.75 16.63 44.93 83.55 16.51 37.01 66.13

MAPE 4.96% 13.57% 24.37% 4.51% 14.0% 26.88% 5.19% 14.0% 25.66% 5.12% 11.58% 20.59%

Upstream,
Retrain

MSE 295.95 971.59 1881 232.96 848.21 1771 207.44 782.5 1719 194.89 794.05 1777
MAE 13.42 23.92 32.18 11.84 22.19 31.04 11.21 21.32 30.48 10.91 21.34 31.06

MAPE 4.23% 7.66% 10.52% 3.73% 7.04% 10.03% 3.54% 6.8% 9.91% 3.42% 6.96% 10.55%
Upstream
Through,
Retrain

MSE 292.14 988.8 1907 237.99 917.54 1861 208.69 789.73 1722 189.3 728.53 1621
RMSE 17.09 31.45 43.68 15.43 30.29 43.14 14.45 28.1 41.5 13.76 26.99 40.27
MAE 13.39 24.01 32.25 12.0 22.93 31.89 11.27 21.4 30.58 10.75 20.66 29.99

MAPE 4.21% 7.75% 10.91% 3.79% 7.5% 10.81% 3.58% 6.87% 9.98% 3.38% 6.67% 9.81%
Upstream

Turn
(Stopbar),

Retrain

MSE 286.79 980.46 1890 231.73 859.58 1789 207.48 806.8 1752 185.91 717.07 1578
RMSE 16.93 31.31 43.48 15.22 29.32 42.3 14.4 28.4 41.87 13.63 26.78 39.74
MAE 13.28 23.72 31.79 11.89 22.29 31.05 11.23 21.52 30.76 10.69 20.47 29.82

MAPE 4.18% 7.72% 10.74% 3.77% 7.29% 10.52% 3.53% 6.98% 10.45% 3.37% 6.57% 9.67%

Downstream,
Retrain

MSE 290.82 979.63 1912 232.63 898.33 1846 202.48 808.79 1834 188.08 757.68 1721
RMSE 17.05 31.3 43.74 15.25 29.97 42.98 14.23 28.44 42.83 13.71 27.53 41.49
MAE 13.35 23.66 31.77 11.84 22.36 31.15 11.13 21.41 30.82 10.65 20.72 30.38

MAPE 4.22% 7.63% 10.6% 3.7% 7.16% 10.39% 3.48% 6.91% 10.39% 3.27% 6.62% 10.23%

Downstream
Through,
Retrain

MSE 280.82 917.02 1789 224.54 807.04 1681 206.19 840.5 1889 189.77 777.99 1782
RMSE 16.76 30.28 42.3 14.98 28.41 41.01 14.36 28.99 43.46 13.78 27.89 42.22
MAE 13.13 23.25 31.31 11.65 21.61 30.13 11.21 21.72 31.34 10.73 20.87 30.45

MAPE 4.16% 7.46% 10.19% 3.68% 6.85% 9.71% 3.52% 7.03% 10.56% 3.31% 6.59% 10.21%

Downstream
Turn,

Retrain

MSE 280.86 896.74 1756 229.39 868.21 1823 200.29 751.79 1657 189.42 785.04 1831
RMSE 16.76 29.95 41.91 15.15 29.47 42.7 14.15 27.42 40.71 13.76 28.02 42.8
MAE 13.12 22.95 30.91 11.78 22.24 31.2 11.05 20.9 30.12 10.77 20.89 30.61

MAPE 4.17% 7.34% 10.01% 3.7% 7.18% 10.5% 3.49% 6.68% 9.79% 3.38% 6.77% 10.34%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 12: Comparison of DCRNN test prediction errors for unhealthy detector direction scenarios for off peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 521.04 2725 10481 485.99 2831 9832 379.28 2444 8958 347.63 2199 8348
RMSE 22.83 52.2 102.38 22.05 53.22 99.16 19.48 49.44 94.65 18.64 46.89 91.37
MAE 16.33 34.37 64.03 15.13 33.97 60.54 13.9 31.75 57.18 13.4 30.67 55.83

MAPE 5.38% 11.33% 17.44% 5.14% 11.23% 16.81% 5.06% 10.52% 16.26% 4.58% 9.63% 15.67%

Upstream

MSE 5615 16843 36355 4320 13891 26010 6061 21124 40582 2265 7528 19387
RMSE 74.93 129.78 190.67 65.73 117.86 161.28 77.86 145.34 201.45 47.6 86.77 139.24
MAE 56.56 102.45 158.61 50.59 93.03 132.27 59.89 116.34 163.18 33.48 66.34 109.61

MAPE 12.2% 22.95% 36.95% 12.13% 24.01% 35.51% 12.46% 23.63% 32.98% 8.05% 15.58% 22.98%

Upstream
Through

MSE 1362 5880 13378 1066 4980 11473 1085 5144 12193 649.05 3018 8988
RMSE 36.91 76.68 115.67 32.66 70.57 107.11 32.95 71.73 110.42 25.48 54.94 94.81
MAE 27.02 57.36 86.74 23.76 51.75 77.53 24.58 52.63 79.09 18.19 38.71 63.35

MAPE 7.2% 14.67% 21.67% 6.57% 14.12% 21.15% 6.53% 13.47% 19.17% 5.59% 11.48% 17.02%

Upstream
Turn

(Stopbar)

MSE 529.34 2814 11399 496.13 3048 11347 373.55 2438 9234 358.46 2203 8561
RMSE 23.01 53.05 106.77 22.27 55.21 106.53 19.33 49.38 96.1 18.93 46.94 92.53
MAE 16.49 35.09 69.42 15.35 36.27 69.82 13.81 31.95 59.88 13.75 31.28 58.05

MAPE 5.58% 11.92% 20.03% 5.29% 12.27% 20.19% 4.94% 10.61% 17.76% 4.91% 10.45% 17.18%

Downstream

MSE 3542 18432 46540 2929 13507 47369 1822 11337 33847 3782 10911 28956
RMSE 59.52 135.77 215.73 54.13 116.22 217.64 42.69 106.48 183.98 61.5 104.46 170.17
MAE 43.39 104.55 182.5 43.13 99.15 188.67 32.18 85.83 156.21 44.51 82.03 143.48

MAPE 11.3% 29.78% 56.92% 14.48% 37.38% 61.55% 8.75% 23.49% 41.59% 9.18% 17.94% 29.75%

Downstream
Through

MSE 620.73 3297 11300 611.02 3301 11084 447.69 2552 8726 647.56 3627 9940
RMSE 24.91 57.42 106.3 24.72 57.46 105.28 21.16 50.53 93.41 25.45 60.23 99.7
MAE 17.96 41.14 75.01 17.97 41.43 75.22 15.29 34.06 62.18 18.9 44.85 72.45

MAPE 5.68% 12.74% 21.59% 5.77% 13.85% 22.4% 5.03% 10.77% 17.54% 5.39% 11.78% 17.91%

Downstream
Turn

MSE 1359 7831 23366 844.31 6222 23255 516.96 4130 14221 1001 5211 13105
RMSE 36.87 88.5 152.86 29.06 78.88 152.5 22.74 64.27 119.25 31.64 72.19 114.48
MAE 27.77 69.25 124.37 23.18 63.4 122.54 17.09 50.06 96.06 23.41 54.95 88.33

MAPE 8.54% 22.87% 44.31% 10.13% 28.2% 46.46% 6.12% 16.5% 30.01% 6.19% 13.62% 20.7%

Upstream,
Retrain

MSE 2336 29131 96774 442.62 11028 82302 460.22 4658 32624 4256 13432 45491
RMSE 48.34 170.68 311.09 21.04 105.02 286.88 21.45 68.25 180.62 65.24 115.9 213.29
MAE 36.57 160.41 288.83 15.06 89.31 249.89 14.79 52.18 149.96 48.13 90.9 174.49

MAPE 9.25% 69.92% 126.23% 5.13% 52.29% 128.9% 4.91% 28.45% 75.02% 10.71% 20.0% 32.11%
Upstream
Through,
Retrain

MSE 1588 6616 14883 440.6 2842 9724 375.97 2760 10308 837.77 5070 13597
RMSE 39.86 81.34 122.0 20.99 53.31 98.61 19.39 52.54 101.53 28.94 71.21 116.61
MAE 29.22 61.21 91.38 14.73 34.28 60.84 13.8 35.13 65.69 21.62 53.76 82.57

MAPE 7.54% 15.42% 20.64% 4.86% 10.93% 17.09% 5.06% 11.62% 19.29% 6.74% 14.94% 19.91%
Upstream

Turn
(Stopbar),

Retrain

MSE 542.48 2816 10108 481.32 2994 10771 387.45 2508 8988 322.38 2240 8544
RMSE 23.29 53.07 100.54 21.94 54.72 103.79 19.68 50.08 94.81 17.95 47.34 92.44
MAE 16.56 35.21 63.75 15.06 34.53 63.0 14.05 33.13 59.19 12.79 30.61 56.52

MAPE 5.42% 11.54% 17.47% 5.19% 11.25% 16.85% 4.97% 10.97% 17.73% 4.37% 9.61% 16.14%

Downstream,
Retrain

MSE 541.23 2721 10504 5167 21385 52159 922.92 10350 18804 356.83 2147 12208
RMSE 23.26 52.17 102.49 71.88 146.24 228.38 30.38 101.74 137.13 18.89 46.34 110.49
MAE 16.54 34.5 63.98 55.76 125.02 204.72 24.75 86.23 106.46 13.58 31.65 82.86

MAPE 5.41% 11.24% 17.11% 12.71% 28.68% 43.97% 10.55% 29.16% 33.27% 4.74% 10.01% 19.85%

Downstream
Through,
Retrain

MSE 525.84 2829 11545 439.05 2736 9493 381.16 2489 9758 450.2 2264 8754
RMSE 22.93 53.19 107.45 20.95 52.31 97.43 19.52 49.9 98.79 21.22 47.59 93.57
MAE 16.41 35.01 65.2 14.74 33.96 61.16 13.84 32.13 60.41 15.21 32.11 59.75

MAPE 5.37% 11.62% 17.65% 5.04% 10.77% 16.78% 4.69% 10.25% 16.32% 5.13% 10.11% 16.31%

Downstream
Turn,

Retrain

MSE 2709 8954 21648 726.99 3665 15353 389.59 2330 8475 707.99 6136 19559
RMSE 52.06 94.63 147.14 26.96 60.54 123.91 19.74 48.28 92.06 26.61 78.33 139.86
MAE 37.72 74.78 121.09 19.74 41.75 79.14 14.05 31.66 59.04 18.83 51.24 82.41

MAPE 8.56% 18.06% 28.77% 6.65% 13.9% 22.34% 4.85% 10.1% 15.67% 6.1% 15.14% 21.87%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 13: Comparison of DCRNN test prediction errors for unhealthy detector direction scenarios for the morning peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 330.6 942.6 1591 268.6 857.35 1448 227.86 757.32 1346 216.88 733.63 1401
RMSE 18.18 30.7 39.89 16.39 29.28 38.06 15.1 27.52 36.69 14.73 27.09 37.44
MAE 14.51 24.27 30.94 13.02 23.17 29.51 11.98 21.78 28.41 11.75 21.41 28.94

MAPE 4.01% 6.69% 8.44% 3.62% 6.37% 8.09% 3.3% 6.0% 7.82% 3.26% 5.94% 8.0%

Upstream

MSE 4539 20118 35750 2806 9880 16441 2013 8750 23077 2935 14699 26095
RMSE 67.37 141.84 189.08 52.97 99.4 128.22 44.87 93.54 151.91 54.18 121.24 161.54
MAE 54.91 125.18 169.81 43.44 84.04 108.55 37.2 80.13 133.45 46.06 108.69 141.42

MAPE 13.23% 30.89% 42.47% 10.53% 20.55% 26.67% 9.29% 20.0% 33.63% 11.33% 27.34% 35.23%

Upstream
Through

MSE 1061 4240 5805 530.28 2551 4917 520.16 2067 4724 505.63 2442 4110
RMSE 32.58 65.12 76.2 23.03 50.51 70.12 22.81 45.47 68.73 22.49 49.42 64.11
MAE 25.86 51.85 60.87 18.39 41.82 58.79 18.26 37.14 56.96 17.98 40.17 53.44

MAPE 6.54% 12.84% 15.34% 4.82% 10.82% 15.47% 4.79% 9.86% 15.42% 4.68% 10.37% 14.55%

Upstream
Turn

(Stopbar)

MSE 354.71 1078 1774 285.45 1036 1954 244.56 883.73 1797 230.62 866.45 1789
RMSE 18.83 32.85 42.12 16.9 32.19 44.21 15.64 29.73 42.39 15.19 29.44 42.3
MAE 15.01 26.16 32.85 13.43 25.45 34.8 12.39 23.66 33.41 12.11 23.36 33.29

MAPE 4.12% 7.18% 9.02% 3.7% 6.99% 9.62% 3.43% 6.55% 9.3% 3.38% 6.54% 9.42%

Downstream

MSE 430.26 1666 7320 407.72 5173 18889 681.01 3269 15910 560.6 1488 4863
RMSE 20.74 40.82 85.56 20.19 71.93 137.44 26.1 57.18 126.14 23.68 38.58 69.74
MAE 16.47 33.1 73.11 16.14 63.47 128.69 20.98 47.6 115.73 19.07 30.36 55.89

MAPE 4.51% 9.11% 19.23% 4.43% 16.79% 34.36% 5.61% 12.54% 30.64% 5.47% 8.6% 15.65%

Downstream
Through

MSE 344.4 1059 1868 291.01 973.69 1685 249.95 851.32 1582 238.98 815.3 1724
RMSE 18.56 32.55 43.22 17.06 31.2 41.06 15.81 29.18 39.78 15.46 28.55 41.53
MAE 14.71 25.77 33.69 13.62 24.6 31.8 12.57 23.02 31.01 12.26 22.49 32.28

MAPE 4.07% 7.14% 9.28% 3.76% 6.76% 8.7% 3.49% 6.38% 8.58% 3.39% 6.26% 8.97%

Downstream
Turn

MSE 383.19 1423 3561 353.98 3002 9993 409.67 1645 6181 319.99 1366 4331
RMSE 19.58 37.73 59.68 18.81 54.8 99.97 20.24 40.56 78.63 17.89 36.97 65.81
MAE 15.56 30.27 48.96 15.12 45.89 90.45 16.33 32.76 67.36 14.23 29.73 54.85

MAPE 4.3% 8.36% 13.15% 4.19% 12.16% 24.09% 4.56% 9.0% 18.18% 3.95% 8.22% 15.0%

Upstream,
Retrain

MSE 29136 95673 133861 287.15 1408 4739 537.61 18827 47875 225.93 2678 60463
RMSE 170.69 309.31 365.87 16.95 37.53 68.84 23.19 137.21 218.81 15.03 51.75 245.89
MAE 164.86 298.92 355.11 13.44 29.62 55.56 18.75 128.72 207.14 12.0 41.69 225.68

MAPE 44.31% 79.45% 94.5% 3.7% 7.85% 14.17% 5.22% 35.05% 55.99% 3.31% 12.06% 65.04%
Upstream
Through,
Retrain

MSE 475.18 1940 5264 465.78 4406 22398 235.24 992.25 4051 257.88 1382 7997
RMSE 21.8 44.05 72.56 21.58 66.38 149.66 15.34 31.5 63.65 16.06 37.18 89.43
MAE 17.41 35.13 58.56 17.5 57.04 137.35 12.19 24.95 53.46 12.72 29.23 73.68

MAPE 4.81% 9.79% 16.4% 5.09% 16.87% 39.92% 3.38% 7.01% 15.03% 3.5% 8.06% 19.86%
Upstream

Turn
(Stopbar),

Retrain

MSE 328.65 926.02 1574 264.05 859.23 1477 231.54 749.69 1338 219.64 815.6 1791
RMSE 18.13 30.43 39.68 16.25 29.31 38.44 15.22 27.38 36.58 14.82 28.56 42.32
MAE 14.45 24.17 30.74 12.91 23.21 29.78 12.04 21.59 28.16 11.85 22.61 33.14

MAPE 3.98% 6.68% 8.44% 3.56% 6.37% 8.11% 3.32% 5.93% 7.71% 3.3% 6.35% 9.58%

Downstream,
Retrain

MSE 330.62 997.65 1673 3378 11581 80409 240.24 1031 2783 218.05 1119 5947
RMSE 18.18 31.59 40.91 58.12 107.62 283.57 15.5 32.11 52.76 14.77 33.45 77.12
MAE 14.49 25.04 31.7 50.96 92.7 273.45 12.33 25.02 41.23 11.82 26.44 63.86

MAPE 3.99% 6.89% 8.77% 14.82% 24.17% 73.13% 3.42% 6.69% 11.66% 3.27% 7.05% 16.79%

Downstream
Through,
Retrain

MSE 325.8 915.72 1554 261.42 837.92 1443 231.78 792.92 1421 233.86 909.07 1739
RMSE 18.05 30.26 39.43 16.17 28.95 38.0 15.22 28.16 37.7 15.29 30.15 41.7
MAE 14.39 23.97 30.53 12.86 22.96 29.6 12.11 22.31 29.06 12.19 23.93 32.75

MAPE 3.96% 6.59% 8.34% 3.55% 6.34% 8.12% 3.35% 6.1% 7.94% 3.37% 6.55% 8.87%

Downstream
Turn,

Retrain

MSE 326.89 921.2 1505 266.62 873.39 1488 1980 31277 95184 211.9 760.05 1482
RMSE 18.08 30.35 38.8 16.33 29.55 38.58 44.5 176.85 308.52 14.56 27.57 38.51
MAE 14.42 24.07 30.17 12.95 23.41 29.87 39.4 169.34 298.07 11.66 21.84 29.67

MAPE 3.98% 6.66% 8.26% 3.57% 6.43% 8.15% 10.9% 46.48% 84.85% 3.22% 6.0% 8.2%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 14: Comparison of DCRNN test prediction errors for unhealthy detector direction scenarios for the afternoon
peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None,
Flow only

MSE 289.71 974.75 1842 235.67 920.15 1851 206.54 794.93 1774 246.19 802.61 1721
RMSE 17.02 31.22 42.92 15.35 30.33 43.03 14.37 28.19 42.13 15.69 28.33 41.49
MAE 13.33 23.52 31.32 11.9 22.51 31.21 11.22 21.48 30.79 12.22 21.68 30.6

MAPE 4.18% 7.58% 10.53% 3.72% 7.26% 10.48% 3.54% 7.01% 10.44% 3.86% 6.94% 10.02%

Stopbar,
Flow only

MSE 306.82 1061 1928 243.98 960.42 1925 215.7 869.86 1896 258.11 828.87 1742
RMSE 17.52 32.58 43.91 15.62 30.99 43.88 14.69 29.49 43.55 16.07 28.79 41.74
MAE 13.7 24.81 32.81 12.12 23.46 32.94 11.48 22.62 32.64 12.54 22.12 31.23

MAPE 4.34% 8.12% 11.14% 3.79% 7.56% 11.01% 3.63% 7.39% 10.94% 3.95% 7.06% 10.29%

Advance,
Flow only

MSE 583.11 3987 10643 563.4 3036 9338 1278 5945 13572 2309 4200 7126
RMSE 24.15 63.15 103.17 23.74 55.1 96.64 35.75 77.11 116.5 48.06 64.81 84.42
MAE 19.09 52.66 88.32 18.98 45.23 79.26 28.66 56.24 81.83 34.22 49.7 67.88

MAPE 6.1% 16.64% 27.34% 6.21% 15.14% 26.18% 8.3% 16.56% 25.38% 9.4% 15.14% 22.17%
Stopbar,

Flow only,
Retrain

MSE 286.79 980.46 1890 231.73 859.58 1789 207.48 806.8 1752 185.91 717.07 1578
RMSE 16.93 31.31 43.48 15.22 29.32 42.3 14.4 28.4 41.87 13.63 26.78 39.74
MAE 13.28 23.72 31.79 11.89 22.29 31.05 11.23 21.52 30.76 10.69 20.47 29.82

MAPE 4.18% 7.72% 10.74% 3.77% 7.29% 10.52% 3.53% 6.98% 10.45% 3.37% 6.57% 9.67%
Advance,
Flow only,

Retrain

MSE 298.39 1001 1893 236.82 878.57 1795 209.07 789.14 1729 191.68 771.4 1784
RMSE 17.27 31.64 43.51 15.39 29.64 42.37 14.46 28.09 41.58 13.84 27.77 42.24
MAE 13.52 24.12 32.32 11.97 22.43 31.39 11.26 21.43 30.83 10.83 21.1 31.14

MAPE 4.25% 7.7% 10.74% 3.75% 7.21% 10.44% 3.53% 6.79% 9.92% 3.39% 6.86% 10.5%

None,
Flow and

Occupancy

MSE 306.62 1045 1997 242.99 889.57 1897 229.61 833.3 1736 221.86 773.11 1651
RMSE 17.51 32.33 44.7 15.59 29.83 43.56 15.15 28.87 41.67 14.89 27.8 40.64
MAE 13.46 24.13 32.5 12.04 22.53 31.73 11.65 21.93 31.29 11.43 21.27 30.68

MAPE 4.24% 7.69% 10.55% 3.79% 7.2% 10.34% 3.68% 7.05% 10.22% 3.62% 6.89% 10.01%

Stopbar,
Flow and

Occupancy

MSE 1710 3578 6011 987.81 2406 4176 744.44 2491 5389 1101 3919 10519
RMSE 41.36 59.82 77.54 31.43 49.06 64.63 27.28 49.92 73.41 33.19 62.61 102.57
MAE 27.95 43.21 58.69 22.21 35.65 48.3 19.85 38.9 58.74 24.66 50.98 85.61

MAPE 7.29% 11.98% 16.67% 6.11% 10.18% 14.24% 5.65% 11.64% 17.62% 6.98% 15.18% 24.75%
Stopbar,
Flow and

Occupancy,
Retrain

MSE 312.57 961.24 1822 277.76 949.02 1900 255.0 865.79 1767 305.39 870.26 1643
RMSE 17.68 31.0 42.69 16.67 30.81 43.59 15.97 29.42 42.04 17.48 29.5 40.54
MAE 13.56 23.53 31.54 12.3 22.82 31.59 11.82 21.96 31.02 12.75 22.32 30.51

MAPE 4.26% 7.52% 10.28% 3.84% 7.28% 10.28% 3.68% 6.98% 10.07% 4.06% 7.11% 9.92%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 15: Comparison of DCRNN test prediction errors for unhealthy detector type scenarios for off peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None,
Flow only

MSE 521.04 2725 10481 485.99 2831 9832 379.28 2444 8958 347.63 2199 8348
RMSE 22.83 52.2 102.38 22.05 53.22 99.16 19.48 49.44 94.65 18.64 46.89 91.37
MAE 16.33 34.37 64.03 15.13 33.97 60.54 13.9 31.75 57.18 13.4 30.67 55.83

MAPE 5.38% 11.33% 17.44% 5.14% 11.23% 16.81% 5.06% 10.52% 16.26% 4.58% 9.63% 15.67%

Stopbar,
Flow only

MSE 529.34 2814 11399 496.13 3048 11347 373.55 2438 9234 358.46 2203 8561
RMSE 23.01 53.05 106.77 22.27 55.21 106.53 19.33 49.38 96.1 18.93 46.94 92.53
MAE 16.49 35.09 69.42 15.35 36.27 69.82 13.81 31.95 59.88 13.75 31.28 58.05

MAPE 5.58% 11.92% 20.03% 5.29% 12.27% 20.19% 4.94% 10.61% 17.76% 4.91% 10.45% 17.18%

Advance,
Flow only

MSE 33244 70757 107324 25770 67927 114705 28429 51313 75882 42920 76633 164024
RMSE 182.33 266.0 327.6 160.53 260.63 338.68 168.61 226.53 275.47 207.17 276.83 405.0
MAE 135.2 213.14 274.69 121.08 212.8 285.96 123.59 179.63 232.6 156.81 230.24 348.72

MAPE 25.27% 44.25% 64.44% 25.54% 51.12% 70.16% 22.6% 36.85% 51.65% 28.74% 44.98% 64.92%
Stopbar,

Flow only,
Retrain

MSE 542.48 2816 10108 481.32 2994 10771 387.45 2508 8988 322.38 2240 8544
RMSE 23.29 53.07 100.54 21.94 54.72 103.79 19.68 50.08 94.81 17.95 47.34 92.44
MAE 16.56 35.21 63.75 15.06 34.53 63.0 14.05 33.13 59.19 12.79 30.61 56.52

MAPE 5.42% 11.54% 17.47% 5.19% 11.25% 16.85% 4.97% 10.97% 17.73% 4.37% 9.61% 16.14%
Advance,
Flow only,

Retrain

MSE 555.91 2833 9805 465.54 3051 11714 369.06 2345 8579 351.59 2399 9283
RMSE 23.58 53.23 99.02 21.58 55.24 108.23 19.21 48.44 92.62 18.75 48.98 96.35
MAE 17.2 36.97 64.49 15.07 34.86 63.28 13.69 31.54 56.7 13.42 32.41 60.41

MAPE 5.59% 12.06% 19.42% 5.12% 11.04% 16.54% 4.73% 10.47% 16.38% 4.69% 10.5% 17.25%

None,
Flow and

Occupancy

MSE 588.97 3033 9908 501.47 3287 10631 496.57 2993 9865 691.94 3737 10755
RMSE 24.27 55.08 99.54 22.39 57.33 103.11 22.28 54.71 99.33 26.3 61.14 103.71
MAE 17.49 37.15 62.26 15.93 38.34 65.62 15.84 36.07 61.84 17.97 37.56 61.93

MAPE 5.57% 11.4% 17.58% 5.24% 11.48% 17.5% 5.03% 10.75% 16.81% 5.88% 11.93% 16.92%

Stopbar,
Flow and

Occupancy

MSE 3156 9057 15645 2589 7901 14746 3803 9275 16938 6267 11612 18796
RMSE 56.18 95.17 125.08 50.89 88.89 121.43 61.67 96.31 130.15 79.17 107.76 137.1
MAE 38.73 71.04 95.62 34.35 64.17 91.99 42.19 69.64 98.64 52.93 80.19 106.47

MAPE 8.5% 15.73% 22.83% 7.69% 14.79% 22.0% 8.59% 15.19% 22.36% 11.14% 20.41% 27.7%
Stopbar,
Flow and

Occupancy,
Retrain

MSE 566.74 3272 10459 487.57 2925 9831 470.38 2773 9878 448.67 2936 10106
RMSE 23.81 57.2 102.27 22.08 54.09 99.15 21.69 52.67 99.39 21.18 54.19 100.53
MAE 16.99 38.32 65.11 15.74 36.15 62.62 15.61 33.74 59.79 15.02 35.36 61.98

MAPE 5.38% 11.63% 18.03% 5.07% 10.92% 17.32% 5.03% 10.19% 16.18% 4.92% 10.76% 16.74%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 16: Comparison of DCRNN test prediction errors for unhealthy detector type scenarios for the morning peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None,
Flow only

MSE 330.6 942.6 1591 268.6 857.35 1448 227.86 757.32 1346 216.88 733.63 1401
RMSE 18.18 30.7 39.89 16.39 29.28 38.06 15.1 27.52 36.69 14.73 27.09 37.44
MAE 14.51 24.27 30.94 13.02 23.17 29.51 11.98 21.78 28.41 11.75 21.41 28.94

MAPE 4.01% 6.69% 8.44% 3.62% 6.37% 8.09% 3.3% 6.0% 7.82% 3.26% 5.94% 8.0%

Stopbar,
Flow only

MSE 354.71 1078 1774 285.45 1036 1954 244.56 883.73 1797 230.62 866.45 1789
RMSE 18.83 32.85 42.12 16.9 32.19 44.21 15.64 29.73 42.39 15.19 29.44 42.3
MAE 15.01 26.16 32.85 13.43 25.45 34.8 12.39 23.66 33.41 12.11 23.36 33.29

MAPE 4.12% 7.18% 9.02% 3.7% 6.99% 9.62% 3.43% 6.55% 9.3% 3.38% 6.54% 9.42%

Advance,
Flow only

MSE 27754 61899 86778 15696 44891 75657 9661 37882 66832 14352 41499 85650
RMSE 166.6 248.8 294.58 125.28 211.88 275.06 98.29 194.63 258.52 119.8 203.71 292.66
MAE 155.85 239.8 283.23 115.1 201.39 263.3 89.82 184.17 244.72 111.15 196.36 283.35

MAPE 39.67% 62.93% 74.7% 28.96% 52.08% 68.96% 22.59% 47.54% 63.71% 28.22% 51.72% 75.41%
Stopbar,

Flow only,
Retrain

MSE 328.65 926.02 1574 264.05 859.23 1477 231.54 749.69 1338 219.64 815.6 1791
RMSE 18.13 30.43 39.68 16.25 29.31 38.44 15.22 27.38 36.58 14.82 28.56 42.32
MAE 14.45 24.17 30.74 12.91 23.21 29.78 12.04 21.59 28.16 11.85 22.61 33.14

MAPE 3.98% 6.68% 8.44% 3.56% 6.37% 8.11% 3.32% 5.93% 7.71% 3.3% 6.35% 9.58%
Advance,
Flow only,

Retrain

MSE 19069 26305 27588 267.88 856.87 1439 268.72 890.98 1727 213.97 719.15 1334
RMSE 138.09 162.19 166.1 16.37 29.27 37.94 16.39 29.85 41.56 14.63 26.82 36.54
MAE 126.69 150.22 149.08 13.0 23.2 29.39 12.97 23.53 31.73 11.69 21.13 28.14

MAPE 31.69% 37.95% 37.26% 3.59% 6.35% 8.02% 3.61% 6.55% 8.88% 3.23% 5.8% 7.73%

None,
Flow and

Occupancy

MSE 357.93 1062 1722 306.42 915.98 1599 283.82 891.11 1542 264.05 786.63 1412
RMSE 18.92 32.6 41.51 17.5 30.27 39.99 16.85 29.85 39.27 16.25 28.05 37.58
MAE 15.0 25.81 32.31 13.92 23.97 31.0 13.28 23.43 30.42 12.91 22.11 28.98

MAPE 4.16% 7.09% 8.84% 3.83% 6.62% 8.52% 3.66% 6.41% 8.24% 3.57% 6.12% 7.99%

Stopbar,
Flow and

Occupancy

MSE 3315 10066 14238 1438 2811 6093 3953 10725 16863 4918 8638 16517
RMSE 57.58 100.33 119.33 37.92 53.03 78.06 62.88 103.56 129.86 70.13 92.95 128.52
MAE 46.33 85.36 101.01 29.68 42.39 63.07 53.85 91.11 115.2 56.66 78.82 111.02

MAPE 11.16% 20.8% 24.66% 7.37% 10.73% 15.66% 13.48% 23.06% 29.34% 13.61% 19.32% 27.48%
Stopbar,
Flow and

Occupancy,
Retrain

MSE 500.69 1807 3113 440.16 1588 2471 282.31 864.69 1551 844.78 3094 4247
RMSE 22.38 42.52 55.8 20.98 39.86 49.71 16.8 29.41 39.39 29.07 55.62 65.18
MAE 17.78 34.45 45.02 16.68 31.32 38.66 13.36 23.2 30.37 24.23 47.0 52.5

MAPE 4.71% 9.02% 11.82% 4.67% 8.57% 10.54% 3.71% 6.34% 8.22% 7.24% 13.39% 15.4%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 17: Comparison of DCRNN test prediction errors for unhealthy detector type scenarios for the afternoon peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 289.71 974.75 1842 235.67 920.15 1851 206.54 794.93 1774 246.19 802.61 1721
RMSE 17.02 31.22 42.92 15.35 30.33 43.03 14.37 28.19 42.13 15.69 28.33 41.49
MAE 13.33 23.52 31.32 11.9 22.51 31.21 11.22 21.48 30.79 12.22 21.68 30.6

MAPE 4.18% 7.58% 10.53% 3.72% 7.26% 10.48% 3.54% 7.01% 10.44% 3.86% 6.94% 10.02%

5% days

MSE 6943 7127 7398 6461 7305 8787 6409 6377 6877 6047 6139 6698
RMSE 83.33 84.43 86.02 80.39 85.47 93.74 80.06 79.86 82.93 77.76 78.36 81.85
MAE 30.48 39.73 46.6 28.48 39.11 48.51 27.78 36.8 44.99 28.21 36.75 44.82

MAPE 9.03% 12.22% 14.88% 8.38% 12.04% 15.54% 8.2% 11.36% 14.4% 8.38% 11.3% 14.16%

10% days

MSE 14959 15271 15631 14051 14972 17196 14184 13990 13412 13409 12606 12819
RMSE 122.31 123.58 125.03 118.54 122.36 131.14 119.1 118.28 115.81 115.8 112.28 113.22
MAE 49.47 58.87 65.91 47.0 57.7 68.15 46.61 55.54 62.45 46.4 53.65 61.11

MAPE 13.98% 17.24% 19.91% 13.2% 16.89% 20.68% 13.12% 16.29% 18.96% 13.11% 15.66% 18.3%

25% days

MSE 31827 31006 30053 30044 28184 26486 31136 29014 25176 29817 26819 25062
RMSE 178.4 176.09 173.36 173.33 167.88 162.75 176.45 170.34 158.67 172.68 163.77 158.31
MAE 95.13 103.17 109.2 91.66 98.81 104.97 93.08 100.11 103.27 91.2 95.18 99.78

MAPE 28.28% 31.35% 33.73% 27.15% 29.95% 32.55% 27.58% 30.36% 31.99% 26.93% 28.34% 30.19%

50% days

MSE 64566 61113 55947 63645 59554 53368 63985 57816 51973 64057 58219 52410
RMSE 254.1 247.21 236.53 252.28 244.04 231.02 252.95 240.45 227.98 253.1 241.29 228.93
MAE 178.75 181.78 183.18 177.58 181.45 181.87 178.16 179.3 180.6 177.6 178.31 178.88

MAPE 52.0% 54.0% 55.56% 51.72% 54.02% 55.47% 51.74% 53.09% 54.83% 51.41% 52.24% 53.45%

5% days,
Retrain

MSE 6242 6758 8194 5943 6117 6732 6445 6069 5717 4017 3040 3540
RMSE 79.01 82.21 90.52 77.1 78.21 82.05 80.28 77.91 75.61 63.38 55.14 59.5
MAE 29.31 39.07 47.59 27.55 36.95 44.98 27.75 36.0 42.45 23.5 29.79 37.72

MAPE 8.72% 12.13% 15.32% 8.13% 11.37% 14.52% 8.14% 11.04% 13.58% 6.94% 9.25% 12.27%

10% days,
Retrain

MSE 14947 15238 15802 10550 8836 9042 11719 10403 10596 10851 8917 9569
RMSE 122.26 123.44 125.71 102.72 94.0 95.09 108.26 102.0 102.94 104.17 94.43 97.83
MAE 49.01 57.42 64.23 41.5 47.15 53.88 42.87 49.37 56.96 41.18 46.2 54.7

MAPE 13.86% 16.7% 19.08% 11.65% 13.78% 16.43% 12.02% 14.44% 17.4% 11.49% 13.41% 16.69%

25% days,
Retrain

MSE 32063 31815 31840 32021 31762 31825 32004 31715 31809 11745 8862 9625
RMSE 179.06 178.37 178.44 178.95 178.22 178.4 178.9 178.09 178.35 108.38 94.14 98.11
MAE 94.65 101.45 106.69 93.6 100.64 106.58 93.17 100.1 106.54 57.55 56.29 62.69

MAPE 28.07% 30.49% 32.47% 27.75% 30.25% 32.46% 27.61% 30.08% 32.44% 16.19% 16.43% 18.64%

50% days,
Retrain

MSE 53277 51093 60301 20565 17142 17309 66103 65323 65099 18409 5730 5445
RMSE 230.82 226.04 245.56 143.41 130.93 131.57 257.11 255.59 255.15 135.68 75.7 73.8
MAE 159.03 160.71 179.29 93.69 89.83 94.32 179.01 182.91 186.89 89.18 51.94 54.15

MAPE 44.97% 45.88% 52.46% 25.27% 24.8% 26.68% 51.94% 53.59% 55.28% 24.29% 17.7% 19.78%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 18: Comparison of DCRNN test prediction errors for unhealthy proportion of days scenarios for off peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 521.04 2725 10481 485.99 2831 9832 379.28 2444 8958 347.63 2199 8348
RMSE 22.83 52.2 102.38 22.05 53.22 99.16 19.48 49.44 94.65 18.64 46.89 91.37
MAE 16.33 34.37 64.03 15.13 33.97 60.54 13.9 31.75 57.18 13.4 30.67 55.83

MAPE 5.38% 11.33% 17.44% 5.14% 11.23% 16.81% 5.06% 10.52% 16.26% 4.58% 9.63% 15.67%

5% days

MSE 14641 17375 25541 14372 16907 24847 13496 15684 22663 14128 16236 22534
RMSE 121.0 131.82 159.82 119.89 130.03 157.63 116.17 125.24 150.55 118.86 127.42 150.12
MAE 38.96 57.03 87.83 37.61 57.03 86.58 35.54 52.96 78.53 36.0 52.95 78.05

MAPE 9.96% 15.81% 23.0% 9.68% 16.07% 22.85% 9.27% 14.53% 20.9% 9.31% 14.43% 20.55%

10% days

MSE 28657 32034 40657 28228 31381 40856 26997 29608 37234 27829 30265 36696
RMSE 169.29 178.98 201.64 168.01 177.15 202.13 164.31 172.07 192.96 166.82 173.97 191.56
MAE 60.37 79.62 113.86 59.32 81.96 116.87 56.78 75.1 103.22 57.12 74.12 99.0

MAPE 14.26% 20.38% 29.59% 14.26% 21.9% 30.55% 13.31% 18.72% 25.82% 13.5% 18.37% 24.01%

25% days

MSE 67695 73032 84780 66843 72835 88252 65637 70341 80496 66181 70204 79101
RMSE 260.18 270.24 291.17 258.54 269.88 297.07 256.2 265.22 283.72 257.26 264.96 281.25
MAE 126.0 148.44 188.25 126.49 156.46 198.23 122.26 144.05 177.03 122.37 141.1 168.4

MAPE 30.27% 37.71% 50.39% 31.57% 42.6% 53.68% 28.85% 35.02% 43.84% 28.98% 33.25% 38.9%

50% days

MSE 132730 136562 140309 131101 137287 148521 132997 140446 150422 132719 140942 155808
RMSE 364.32 369.54 374.58 362.08 370.52 385.39 364.69 374.76 387.84 364.31 375.42 394.73
MAE 231.25 248.27 271.39 231.07 255.17 281.95 231.61 255.4 283.8 232.41 257.8 291.35

MAPE 53.01% 55.98% 65.77% 53.98% 61.98% 71.26% 52.89% 57.37% 63.7% 52.72% 56.02% 60.88%

5% days,
Retrain

MSE 518.32 2688 9286 442.7 2847 10106 380.14 2494 8918 14056 16671 24280
RMSE 22.77 51.85 96.37 21.04 53.37 100.53 19.5 49.94 94.44 118.56 129.12 155.82
MAE 16.18 34.26 61.25 14.75 34.27 62.16 13.73 31.83 57.07 35.46 53.75 80.33

MAPE 5.29% 11.08% 17.27% 4.94% 10.98% 16.8% 4.83% 10.48% 16.42% 8.96% 13.91% 19.88%

10% days,
Retrain

MSE 555.11 2834 10625 500.77 2865 9764 376.7 2314 8591 349.52 2267 8622
RMSE 23.56 53.24 103.08 22.38 53.53 98.82 19.41 48.11 92.69 18.7 47.61 92.86
MAE 16.68 35.26 63.64 15.23 33.82 59.98 13.87 31.07 56.37 13.45 31.09 56.46

MAPE 5.37% 11.34% 17.1% 5.1% 11.04% 16.48% 4.88% 10.26% 16.19% 4.75% 10.09% 16.19%

25% days,
Retrain

MSE 65707 67705 78239 450.88 2831 9959 59363 55690 60913 69018 68433 75535
RMSE 256.33 260.2 279.71 21.23 53.21 99.8 243.65 235.99 246.81 262.71 261.6 274.84
MAE 122.79 138.18 167.1 14.83 34.18 61.47 116.9 126.53 147.01 125.27 137.73 161.22

MAPE 28.38% 31.39% 35.65% 4.97% 11.17% 17.1% 26.83% 28.84% 31.71% 29.41% 31.2% 34.28%

50% days,
Retrain

MSE 579.94 2855 10267 135355 146649 163479 135327 146556 163226 135344 146603 163388
RMSE 24.08 53.44 101.33 367.91 382.95 404.33 367.87 382.83 404.01 367.89 382.89 404.21
MAE 17.1 35.83 64.84 232.14 255.43 286.99 231.7 254.66 285.54 231.9 254.26 284.23

MAPE 5.52% 11.54% 17.79% 53.26% 55.86% 59.15% 53.11% 55.62% 58.69% 53.31% 55.62% 58.08%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 19: Comparison of DCRNN test prediction errors for unhealthy proportion of days scenarios for the morning
peak.
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Window Size
Method Metric 15 min 30 min 1 hr 2 hr

None

MSE 330.6 942.6 1591 268.6 857.35 1448 227.86 757.32 1346 216.88 733.63 1401
RMSE 18.18 30.7 39.89 16.39 29.28 38.06 15.1 27.52 36.69 14.73 27.09 37.44
MAE 14.51 24.27 30.94 13.02 23.17 29.51 11.98 21.78 28.41 11.75 21.41 28.94

MAPE 4.01% 6.69% 8.44% 3.62% 6.37% 8.09% 3.3% 6.0% 7.82% 3.26% 5.94% 8.0%

5% days

MSE 6895 6742 7341 5591 5620 7206 7322 7422 7409 6890 6172 6383
RMSE 83.04 82.11 85.69 74.78 74.97 84.89 85.57 86.15 86.08 83.01 78.56 79.9
MAE 30.91 39.84 46.61 27.66 36.89 44.64 29.25 38.21 43.96 28.5 36.12 43.03

MAPE 7.95% 10.42% 12.18% 7.1% 9.64% 11.74% 7.49% 9.97% 11.59% 7.31% 9.48% 11.45%

10% days

MSE 13380 13312 14103 11182 10954 13688 14415 14914 14289 13615 12650 12621
RMSE 115.67 115.38 118.76 105.75 104.67 117.0 120.07 122.12 119.54 116.69 112.48 112.34
MAE 47.58 57.58 66.2 43.2 52.2 62.1 46.75 56.22 61.41 45.59 53.01 59.83

MAPE 12.33% 15.1% 17.44% 11.18% 13.7% 16.42% 12.11% 14.77% 16.31% 11.82% 13.98% 16.0%

25% days

MSE 40387 43465 47163 38586 40193 46635 43582 46923 45932 42768 45927 48388
RMSE 200.97 208.48 217.17 196.44 200.48 215.95 208.77 216.62 214.32 206.8 214.31 219.97
MAE 111.11 128.08 145.92 107.61 118.88 134.22 112.7 124.44 128.64 111.81 123.61 133.31

MAPE 28.48% 33.27% 38.47% 27.56% 30.88% 35.47% 28.87% 32.25% 33.86% 28.67% 32.12% 35.2%

50% days

MSE 77080 80395 86854 82157 89188 97112 83024 85272 83734 81922 92675 106903
RMSE 277.63 283.54 294.71 286.63 298.65 311.63 288.14 292.01 289.37 286.22 304.43 326.96
MAE 201.14 221.11 246.42 207.09 224.32 243.83 206.86 214.98 217.43 206.46 227.05 252.9

MAPE 52.85% 58.37% 65.7% 54.59% 59.68% 65.65% 54.48% 56.93% 58.06% 54.35% 60.21% 67.63%

5% days,
Retrain

MSE 329.1 938.63 1611 267.98 867.17 1511 227.87 774.6 1441 218.8 720.91 1390
RMSE 18.14 30.64 40.14 16.37 29.45 38.87 15.1 27.83 37.97 14.79 26.85 37.29
MAE 14.47 24.28 31.19 13.01 23.32 30.03 12.02 22.02 29.36 11.78 21.19 29.0

MAPE 3.99% 6.71% 8.55% 3.58% 6.38% 8.15% 3.32% 6.05% 8.09% 3.26% 5.83% 8.02%

10% days,
Retrain

MSE 330.14 926.45 1548 266.69 867.45 1489 229.32 759.86 1345 213.52 741.76 1426
RMSE 18.17 30.44 39.35 16.33 29.45 38.6 15.14 27.57 36.68 14.61 27.24 37.77
MAE 14.49 24.11 30.57 12.94 23.3 30.05 12.05 21.67 28.25 11.62 21.41 29.11

MAPE 4.01% 6.63% 8.34% 3.57% 6.42% 8.27% 3.34% 5.94% 7.77% 3.21% 5.94% 8.26%

25% days,
Retrain

MSE 340.46 1019 1887 5891 2499 6055 7822 4595 6916 41430 41781 42608
RMSE 18.45 31.92 43.45 76.76 49.99 77.82 88.44 67.79 83.17 203.55 204.4 206.42
MAE 14.76 25.25 33.06 43.47 36.47 52.56 49.38 43.67 55.82 110.13 117.97 125.95

MAPE 4.14% 7.21% 9.83% 11.14% 10.7% 14.09% 12.62% 11.58% 14.97% 28.34% 31.03% 34.52%

50% days,
Retrain

MSE 78290 78425 78220 58413 39359 35858 8549 6738 5141 29364 17168 26057
RMSE 279.8 280.04 279.68 241.69 198.39 189.36 92.46 82.09 71.7 171.36 131.03 161.42
MAE 201.85 206.45 209.11 173.07 145.33 140.59 61.46 56.75 53.87 120.34 93.63 118.82

MAPE 53.2% 54.68% 55.9% 44.99% 37.38% 36.32% 16.12% 19.44% 15.83% 30.52% 23.9% 30.42%
5m 15m 30m 5m 15m 30m 5m 15m 30m 5m 15m 30m

Horizon
Table 20: Comparison of DCRNN test prediction errors for unhealthy proportion of days scenarios for the afternoon
peak.
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