
Deep Generative Models: Imitation Learning, Image
Synthesis, and Compression

Jonathan Ho

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-67
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-67.html

May 27, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Deep Generative Models: Imitation Learning, Image Synthesis, and Compression

by

Jonathan Ho

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Dawn Song

Professor Michael DeWeese

Spring 2020

Deep Generative Models: Imitation Learning, Image Synthesis, and Compression

Copyright 2020
by

Jonathan Ho

1

Abstract

Deep Generative Models: Imitation Learning, Image Synthesis, and Compression

by

Jonathan Ho

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Machine learning has its roots in the design of algorithms that extract actionable structure
from real world data. For high dimensional and high entropy data, machine learning techniques
must cope with a fundamental tension arising from the curse of dimensionality: they must be
computationally and statistically efficient despite the sheer size of the exponentially large
spaces where meaningful signal is hidden. This thesis explores and attempts to resolve this
tension in deep generative modeling.

The first part of this thesis addresses imitation learning, the problem of reproducing the
behavior of experts acting in dynamic environments. Supervised learning, to predict expert
actions from states, suffers in statistical efficiency because large amounts of expert data are
required to prevent action prediction errors from compounding over long behaviors. We
propose a resolution in the form of an algorithm that learns a policy by matching the expert’s
state distribution. During learning, our algorithm continually executes the policy in the task
environment and compares its states to the expert’s on a gradually learned reward function.
Allowing our algorithm to interact with the environment during training in this manner allows
it to learn policies that stay on expert states even when expert data is extremely scarce.

The second part of this thesis addresses modeling and compressing natural images using
likelihood-based generative models, which are generative models trained with maximum
likelihood to explicitly represent the probability distribution of data. When these models
are scaled to high entropy datasets, they become computationally inefficient to employ for
downstream tasks like image synthesis and compression. We present progress on these
problems in the form of developments in flow models, a class of likelihood-based generative
models that admit fast sampling and inference. We reduce flow model codelengths to be
competitive with those of other types of likelihood-based generative models. Then, we
develop the first computationally efficient compression algorithms for flow models, making our
improved codelengths realizable in practice with fully parallelizable encoding and decoding.

i

To my parents.

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1

2 Imitation Learning 3
2.1 Introduction . 3
2.2 Background . 4
2.3 Characterizing the induced optimal policy 5
2.4 Practical occupancy measure matching . 8
2.5 Generative adversarial imitation learning . 11
2.6 Experiments . 12
2.7 Discussion . 15
2.8 Recent related work . 15

3 Likelihood-Based Generative Modeling 17
3.1 Introduction . 17
3.2 Improving flow models . 18
3.3 Flow model experiments . 23
3.4 Compression with flows . 28
3.5 Local bits-back coding . 29
3.6 Compression experiments . 39
3.7 Discussion . 40
3.8 Recent related work . 43

4 Conclusion 44

Bibliography 45

iii

List of Figures

2.1 Performance of learned policies. The y-axis is negative cost, scaled so that the
expert achieves 1 and a random policy achieves 0. 14

2.2 Causal entropy regularization λ on Reacher. 14

3.1 Ablation training (light) and validation (dark) curves on unconditional CIFAR10
density estimation. These runs are not fully converged, but the gap in performance
is already visible. 25

3.2 CIFAR10 Samples. Flow++ captures local dependencies well and generates good
samples at the quality level of PixelCNN, but with the advantage of efficient
sampling. 26

3.3 32x32 ImageNet Samples. Flow++ samples match those of PixelCNN in diversity
on this dataset, which is much larger than CIFAR10. 26

3.4 64x64 ImageNet Samples. The diversity of samples from Flow++ matches the
diversity of samples from PixelRNN with multi-scale ordering. 27

3.5 5-bit 64x64 CelebA Flow++ samples, without low-temperature sampling. 27
3.6 Effects of precision and noise parameters δ and σ on coding random subsets of

CIFAR10 (top), ImageNet 32x32 (middle), and ImageNet 64x64 (bottom) 41

iv

List of Tables

3.1 Flow++ unconditional image modeling results (in bits per dimension) 24
3.2 CIFAR10 ablation results after 400 epochs of training. Models not converged for

the purposes of ablation study. 24
3.3 Local bits-back codelengths (in bits per dimension) 39
3.4 Encoding time per datapoint (in seconds) . 42
3.5 Decoding time per datapoint (in seconds) . 42

v

Acknowledgments

The work here would not have been possible without the generous mentorship of Professor
Pieter Abbeel, who guided me from the beginning in my undergraduate years, and Professor
Stefano Ermon, who guided me early on in graduate school. I am indebted to the innumerable
colleagues whom I have been fortunate to meet at Berkeley, Stanford, OpenAI, and Google;
these exceptional researchers have repeatedly inspired me with beautiful ideas and helped me
pursue them to ends that I could have never imagined before starting in graduate school. I
am eternally grateful for friends who have stayed with me from all these institutions going
back as early as high school; their companionship has made all these days worth experiencing.
Most importantly, I thank my family for their unconditional love and support. This thesis is
for you.

1

Chapter 1

Introduction

This thesis covers the interplay between ideas in deep generative models and other domains
involving machine learning, in particular imitation learning and compression. A common
theme is the curse of dimensionality, how it manifests in these domains, and how it can
be resolved by careful algorithm design. These domains consist of problems of learning,
reproducing, and exploiting learned properties of raw data distributions using deep learning
techniques, which through their inductive biases are currently some of the most promising
for coping with high dimensional and high entropy data in a wide variety of modalities.

Chapter 2 addresses imitation learning. The particular setting we consider is the following:
given a dataset of expert trajectories of the form ((s1, a1), . . . , (sT , aT)), where st are states
and at are actions in some environment, to produce a policy π(a|s) that reproduces the same
behavior upon execution in that environment; no interaction with the expert or access to a
reinforcement signal is allowed in this setting. One approach is to recover the expert’s cost
function with inverse reinforcement learning, then extract a policy from that cost function
with reinforcement learning. This approach is indirect and can be slow. Another is behavioral
cloning, which is to learn π(a|s) by supervised learning, but this suffers from compounding
error when trajectories are long.

Our contribution is to propose a general framework for directly extracting a policy from
data as if it were obtained by reinforcement learning following inverse reinforcement learning.
We instantiate this with our algorithm, generative adversarial imitation learning, which is a
model-free imitation learning algorithm that is able to imitate complex behaviors in high
dimensional continuous control environments using very little expert data. Its design draws
an analogy between imitation learning and generative adversarial networks; it was published
in NeurIPS 2016 [36] based on earlier ideas from ICML 2016 [37].

Chapter 3 addresses likelihood-based generative modeling in the form of a new flow model
architecture and a matching lossless compression algorithm. A flow model is a parameterized
smooth transformation fθ between data x and latents z = fθ(x). A standard normal
prior p(z) = N (z;0, I) induces through fθ a distribution on data given by − log pθ(x) =
− log p(fθ(x))− log |detJθ(x)|, where Jθ is the Jacobian of fθ. One criterion for a useful flow
model architecture is that this expression is tractable to evaluate and differentiate with respect

CHAPTER 1. INTRODUCTION 2

to θ, enabling efficient training by maximum likelihood. Another criterion is that the inverse
x = f−1

θ (z) is easy to evaluate, which enables samples to be generated efficiently. A notable
group of architectures that satisfies both criteria is the RealNVP family of models, which have
seen recent successes in image and audio synthesis [20, 21, 52, 80]. Inspired by these successes,
we propose Flow++, an improved flow model architecture in this family. We also improve
the training procedure of flow models in general by introducing variational dequantization, a
mechanism to fit continuous density models to discrete data using variational inference.

We then present our computationally efficient compression algorithm, local bits-back
coding, which attains codelengths that match Flow++’s negative log probabilities. This
means that we produce a lossless code that describes data x using approximately − log pθ(x)δ
bits, where δ is a small discretization volume of the data space. Backed by Flow++ and other
RealNVP-type flows, our encoders and decoders run in linear time and space in a parallelizable
fashion over data dimensions. We also show how to increase δ to a large discretization volume
for discrete data via a compression interpretation of variational dequantization, and by
doing so, we achieve state of the art lossless codelengths on the CIFAR10 and downsampled
ImageNet datasets.

Our compression work confronts the fact that naively applying existing codes like Huffman
coding [45] requires computing the model likelihood for all possible values of the data,
expending computational resources that scale exponentially with the data dimension. This
inefficiency stems from the lack of assumptions about the generative model’s structure,
so coding algorithms must be tailored to specific types of generative models to achieve
computational efficiency. While there is already a rich literature of tailored coding algorithms
for autoregressive models and variational autoencoders built from conditional distributions
already tractable for coding [88, 23, 35, 26, 102], prior to our work there were no such
algorithms for general types of flow models [67]. Our contributions, published in ICML
2019 [38] and NeurIPS 2019 [40], are exactly these tailor-made efficient coding algorithms for
flow models.

3

Chapter 2

Imitation Learning

2.1 Introduction
This chapter addresses a specific setting of imitation learning—the problem of learning to
perform a task from expert demonstrations—in which the learner is given only samples of
trajectories from the expert, is not allowed to query the expert for more data while training,
and is not provided a reinforcement signal of any kind. Two standard approaches suitable
for this imitation learning setting are behavioral cloning [79], which learns a policy as a
supervised learning problem over state-action pairs from expert trajectories, and inverse
reinforcement learning [91, 71], which finds a cost function under which the expert is uniquely
optimal.

Behavioral cloning, while appealingly simple, only tends to succeed with large amounts
of data, due to compounding error caused by covariate shift [89, 90]. Inverse reinforcement
learning (IRL), on the other hand, learns a cost function that prioritizes entire trajectories
over others, so compounding error, a problem for methods that fit single-timestep decisions,
is not an issue. Accordingly, IRL has succeeded in a wide range of problems, from predicting
behaviors of taxi drivers [112] to planning footsteps for quadruped robots [83].

Unfortunately, many IRL algorithms are extremely expensive to run, requiring reinforce-
ment learning in an inner loop. Scaling IRL methods to large environments has thus been
the focus of much recent work [25, 60]. Fundamentally, however, IRL learns a cost function,
which explains expert behavior but does not directly tell the learner how to act. Given
that the learner’s true goal often is to take actions imitating the expert—indeed, many IRL
algorithms are evaluated on the quality of the optimal actions of the costs they learn—why,
then, must we learn a cost function, if doing so possibly incurs significant computational
expense yet fails to directly yield actions?

We desire an algorithm that tells us explicitly how to act by directly learning a policy. To
develop such an algorithm, we begin in Section 2.3, where we characterize the policy given
by running reinforcement learning on a cost function learned by maximum causal entropy
IRL [112, 113]. Our characterization introduces a framework for directly learning policies

CHAPTER 2. IMITATION LEARNING 4

from data, bypassing any intermediate IRL step.
Then, we instantiate our framework in Sections 2.4 and 2.5 with a new model-free imitation

learning algorithm. We show that our resulting algorithm is intimately connected to generative
adversarial networks [31], a technique from the deep learning community that has led to recent
successes in modeling distributions of natural images: our algorithm harnesses generative
adversarial training to fit distributions of states and actions defining expert behavior. We
test our algorithm in Section 2.6, where we find that it outperforms competing methods by a
wide margin in training policies for complex, high-dimensional physics-based control tasks
over various amounts of expert data.

2.2 Background

2.2.1 Preliminaries

R will denote the extended real numbers R ∪ {∞}. Section 2.3 will work with finite state
and action spaces S and A, but our algorithms and experiments later in the paper will run
in high-dimensional continuous environments. Π is the set of all stationary stochastic policies
that take actions in A given states in S; successor states are drawn from the dynamics
model P (s′|s, a). We work in the γ-discounted infinite horizon setting, and we will use
an expectation with respect a policy π ∈ Π to denote an expectation with respect to the
trajectory it generates: Eπ[c(s, a)] := E [

∑∞
t=0 γ

tc(st, at)], where s0 ∼ p0, at ∼ π(·|st), and
st+1 ∼ P (·|st, at) for t ≥ 0. We will use Êτ to denote an empirical expectation with respect
to trajectory samples τ , and we will always use πE to refer to the expert policy.

2.2.2 Inverse reinforcement learning

Suppose we are given an expert policy πE that we wish to rationalize with IRL. For the
remainder of this paper, we will adopt and assume the existence of solutions of maximum
causal entropy IRL [112, 113], which fits a cost function from a family of functions C with
the optimization problem

maximize
c∈C

(
min
π∈Π
−H(π) + Eπ[c(s, a)]

)
− EπE [c(s, a)] (2.1)

where H(π) := Eπ[− log π(a|s)] is the γ-discounted causal entropy [8] of the policy π. In
practice, πE will only be provided as a set of trajectories sampled by executing πE in the
environment, so the expected cost of πE in Eq. (2.1) is estimated using these samples.
Maximum causal entropy IRL looks for a cost function c ∈ C that assigns low cost to the
expert policy and high cost to other policies, thereby allowing the expert policy to be found
via a certain reinforcement learning procedure:

RL(c) = arg min
π∈Π

−H(π) + Eπ[c(s, a)] (2.2)

CHAPTER 2. IMITATION LEARNING 5

which maps a cost function to high-entropy policies that minimize the expected cumulative
cost.

2.3 Characterizing the induced optimal policy
To begin our search for an imitation learning algorithm that both bypasses an intermediate
IRL step and is suitable for large environments, we will study policies found by reinforcement
learning on costs learned by IRL on the largest possible set of cost functions C in Eq. (2.1):
all functions RS×A = {c : S ×A → R}. Using expressive cost function classes, like Gaussian
processes [61] and neural networks [25], is crucial to properly explain complex expert behavior
without meticulously hand-crafted features. Here, we investigate the best IRL can do with
respect to expressiveness by examining its capabilities with C = RS×A.

Of course, with such a large C, IRL can easily overfit when provided a finite dataset.
Therefore, we will incorporate a (closed, proper) convex cost function regularizer ψ : RS×A →
R into our study. Note that convexity is a not particularly restrictive requirement: ψ
must be convex as a function defined on all of RS×A, not as a function defined on a small
parameter space; indeed, the cost regularizers of Finn et al. [25], effective for a range of
robotic manipulation tasks, satisfy this requirement. Interestingly, ψ will play a central role
in our discussion and will not serve as a nuisance in our analysis.

Let us define an IRL primitive procedure, which finds a cost function such that the expert
performs better than all other policies, with the cost regularized by ψ:

IRLψ(πE) = arg max
c∈RS×A

−ψ(c) +

(
min
π∈Π
−H(π) + Eπ[c(s, a)]

)
− EπE [c(s, a)] (2.3)

Let c̃ ∈ IRLψ(πE). We are interested in a policy given by RL(c̃)—this is the policy given by
running reinforcement learning on the output of IRL. To characterize RL(c̃), let us first define
for a policy π ∈ Π its occupancy measure ρπ : S ×A → R as ρπ(s, a) = π(a|s)

∑∞
t=0 γ

tP (st =
s|π). The occupancy measure can be interpreted as the unnormalized distribution of state-
action pairs that an agent encounters when navigating the environment with the policy π,
and it allows us to write Eπ[c(s, a)] =

∑
s,a ρπ(s, a)c(s, a) for any cost function c. We will also

need the concept of a convex conjugate: for a function f : RS×A → R, its convex conjugate
f ∗ : RS×A → R is given by f ∗(x) = supy∈RS×A x

Ty − f(y).
Now, we are prepared to characterize RL(c̃), the policy learned by RL on the cost recovered

by IRL:

Proposition 2.3.1. RL ◦ IRLψ(πE) = arg minπ∈Π−H(π) + ψ∗(ρπ − ρπE) (2.4)

The proof of Proposition 2.3.1, deferred to the end of this section, relies on the observation
that the optimal cost function and policy form a saddle point of a certain function. IRL finds
one coordinate of this saddle point, and running RL on the output of IRL reveals the other
coordinate.

CHAPTER 2. IMITATION LEARNING 6

Proposition 2.3.1 tells us that ψ-regularized inverse reinforcement learning, implicitly, seeks
a policy whose occupancy measure is close to the expert’s, as measured by ψ∗. Enticingly, this
suggests that various settings of ψ lead to various imitation learning algorithms that directly
solve the optimization problem given by Proposition 2.3.1. We explore such algorithms in
Sections 2.4 and 2.5, where we show that certain settings of ψ lead to both existing algorithms
and a novel one.

The special case when ψ is a constant function is particularly illuminating, so we state
and show it first using concepts from convex optimization.

Proposition 2.3.2. Suppose ρπE > 0. If ψ is a constant function, c̃ ∈ IRLψ(πE), and
π̃ ∈ RL(c̃), then ρπ̃ = ρπE .

In other words, if there were no cost regularization at all, the recovered policy will exactly
match the expert’s occupancy measure. (The condition ρπE > 0, inherited from Ziebart
et al. [113], simplifies our discussion and in fact guarantees the existence of c̃ ∈ IRLψ(πE).
Elsewhere in the paper, as mentioned in Section 2.2, we assume the IRL problem has a
solution.)

To show Proposition 2.3.2, we need the basic result that the set of valid occupancy
measures D := {ρπ : π ∈ Π} can be written as a feasible set of affine constraints [81]: if p0(s)
is the distribution of starting states and P (s′|s, a) is the dynamics model, then

D =

{
ρ : ρ ≥ 0 and

∑
a

ρ(s, a) = p0(s) + γ
∑
s′,a

P (s|s′, a)ρ(s′, a) ∀ s ∈ S

}

Furthermore, there is a one-to-one correspondence between Π and D:

Lemma 2.3.1 (Theorem 2 of Syed et al. [98]). If ρ ∈ D, then ρ is the occupancy measure
for πρ(a|s) := ρ(s, a)/

∑
a′ ρ(s, a′), and πρ is the only policy whose occupancy measure is ρ.

We are therefore justified in writing πρ to denote the unique policy for an occupancy
measure ρ. We also need a lemma that lets us speak about causal entropies of occupancy
measures:

Lemma 2.3.2. Let H̄(ρ) = −
∑

s,a ρ(s, a) log(ρ(s, a)/
∑

a′ ρ(s, a
′)). Then, H̄ is strictly

concave, and for all π ∈ Π and ρ ∈ D, we have H(π) = H̄(ρπ) and H̄(ρ) = H(πρ).

The proof of this lemma is in [36]. Lemma 2.3.1 and Lemma 2.3.2 together allow us to
freely switch between policies and occupancy measures when considering functions involving
causal entropy and expected costs, as in the following lemma:

Lemma 2.3.3. If L(π, c) = −H(π) + Eπ[c(s, a)] and L̄(ρ, c) = −H̄(ρ) +
∑

s,a ρ(s, a)c(s, a),
then, for all cost functions c, L(π, c) = L̄(ρπ, c) for all policies π ∈ Π, and L̄(ρ, c) = L(πρ, c)
for all occupancy measures ρ ∈ D.

Now, we are ready to verify Proposition 2.3.2.

CHAPTER 2. IMITATION LEARNING 7

Proof of Proposition 2.3.2. Define L̄(ρ, c) = −H̄(ρ) +
∑

s,a c(s, a)(ρ(s, a)− ρE(s, a)). Given
that ψ is a constant function, we have the following, due to Lemma 2.3.3:

c̃ ∈ IRLψ(πE) = arg max
c∈RS×A

min
π∈Π
−H(π) + Eπ[c(s, a)]− EπE [c(s, a)] + const. (2.5)

= arg max
c∈RS×A

min
ρ∈D
−H̄(ρ) +

∑
s,a

ρ(s, a)c(s, a)−
∑
s,a

ρE(s, a)c(s, a) (2.6)

= arg max
c∈RS×A

min
ρ∈D

L̄(ρ, c). (2.7)

This is the dual of the optimization problem

minimize
ρ∈D

−H̄(ρ) subject to ρ(s, a) = ρE(s, a) ∀ s ∈ S, a ∈ A (2.8)

with Lagrangian L̄, for which the costs c(s, a) serve as dual variables for equality constraints.
Thus, c̃ is a dual optimum for (2.8). In addition, strong duality holds for (2.8): D is compact
and convex, −H̄ is convex, and, since ρE > 0, there exists a feasible point in the relative
interior of the domain D. Moreover, Lemma 2.3.2 guarantees that −H̄ is in fact strictly
convex, so the primal optimum can be uniquely recovered from the dual optimum [9, Section
5.5.5] via ρ̃ = arg minρ∈D L̄(ρ, c̃) = arg minρ∈D−H̄(ρ) +

∑
s,a c̃(s, a)ρ(s, a) = ρE, where the

first equality indicates that ρ̃ is the unique minimizer of L̄(·, c̃), and the third follows from
the constraints in the primal problem (2.8). But if π̃ ∈ RL(c̃), then Lemma 2.3.3 implies
ρπ̃ = ρ̃ = ρE.

Finally, we return to the more general Proposition 2.3.1.

Proof of Proposition 2.3.1. Let c̃ ∈ IRLψ(πE), π̃ ∈ RL(c̃) = RL ◦ IRLψ(πE), and

πA ∈ arg min
π
−H(π) + ψ∗(ρπ − ρπE) (2.9)

= arg min
π

sup
c∈C
−H(π)− ψ(c) +

∑
s,a

(ρπ(s, a)− ρπE(s, a))c(s, a) (2.10)

We wish to show that πA = π̃. To do this, let ρA be the occupancy measure of πA, let ρ̃ be
the occupancy measure of π̃, and define L̄ : D × C → R by

L̄(ρ, c) = −H̄(ρ)− ψ(c) +
∑
s,a

ρ(s, a)c(s, a)−
∑
s,a

ρπE(s, a)c(s, a). (2.11)

The following relationships then hold, due to Lemma 2.3.1:

ρA ∈ arg min
ρ∈D

sup
c∈C

L̄(ρ, c), (2.12)

c̃ ∈ arg max
c∈C

min
ρ∈D

L̄(ρ, c), (2.13)

ρ̃ ∈ arg min
ρ∈D

L̄(ρ, c̃). (2.14)

CHAPTER 2. IMITATION LEARNING 8

(Recall that we can write Eq. (2.13) because we assumed the existence of a solution to the
IRL problem Eq. (2.1).) Now D is compact and convex and C is convex; furthermore, due
to convexity of −H̄ and ψ, we also have that L̄(·, c) is convex for all c, and that L̄(ρ, ·) is
concave for all ρ, and hence:

min
ρ∈D

sup
c∈C

L̄(ρ, c) = max
c∈C

min
ρ∈D

L̄(ρ, c) (2.15)

Consequently, from Eqs. (2.12) and (2.13), (ρA, c̃) is a saddle point of L̄. In particular,

ρA ∈ arg min
ρ∈D

L̄(ρ, c̃). (2.16)

Because L̄(·, c) is strictly convex for all c (Lemma 2.3.2), Eqs. (2.14) and (2.16) imply ρA = ρ̃.
Since policies corresponding to occupancy measures are unique (Lemma 2.3.1), πA = π̃.

Let us summarize our conclusions. First, IRL is a dual of an occupancy measure matching
problem, and the recovered cost function is the dual optimum. Classic IRL algorithms that
solve reinforcement learning repeatedly in an inner loop, such as the algorithm of Ziebart
et al. [112] that runs a variant of value iteration in an inner loop, can be interpreted as a form
of dual ascent, in which one repeatedly solves the primal problem (reinforcement learning)
with fixed dual values (costs). Dual ascent is effective if solving the unconstrained primal is
efficient, but in the case of IRL, it amounts to reinforcement learning! Second, the induced
optimal policy is the primal optimum. The induced optimal policy is obtained by running RL
after IRL, which is exactly the act of recovering the primal optimum from the dual optimum;
that is, optimizing the Lagrangian with the dual variables fixed at the dual optimum values.
Strong duality implies that this induced optimal policy is indeed the primal optimum, and
therefore matches occupancy measures with the expert. IRL is traditionally defined as the
act of finding a cost function such that the expert policy is uniquely optimal, but we can
alternatively view IRL as a procedure that tries to induce a policy that matches the expert’s
occupancy measure.

2.4 Practical occupancy measure matching
We saw in Proposition 2.3.2 that if ψ is constant, the resulting primal problem (2.8) simply
matches occupancy measures with expert at all states and actions. Such an algorithm is not
practically useful. In reality, the expert trajectory distribution will be provided only as a
finite set of samples, so in large environments, most of the expert’s occupancy measure values
will be small, and exact occupancy measure matching will force the learned policy to rarely
visit these unseen state-action pairs simply due to lack of data. Furthermore, in the cases in
which we would like to use function approximation to learn parameterized policies πθ, the
resulting optimization problem of finding an appropriate θ would have an intractably large
number of constraints when the environment is large: as many constraints as points in S ×A.

CHAPTER 2. IMITATION LEARNING 9

Keeping in mind that we wish to eventually develop an imitation learning algorithm
suitable for large environments, we would like to relax Eq. (2.8) into the following form,
motivated by Proposition 2.3.1:

minimize
π

dψ(ρπ, ρE)−H(π) (2.17)

by modifying the IRL regularizer ψ so that dψ(ρπ, ρE) := ψ∗(ρπ − ρE) smoothly penalizes
violations in difference between the occupancy measures.

2.4.1 Entropy-regularized apprenticeship learning

It turns out that with certain settings of ψ, Eq. (2.17) takes on the form of regularized variants
of existing apprenticeship learning algorithms, which indeed do scale to large environments
with parameterized policies [37]. For a class of cost functions C ⊂ RS×A, an apprenticeship
learning algorithm finds a policy that performs better than the expert across C, by optimizing
the objective

minimize
π

max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)] (2.18)

Classic apprenticeship learning algorithms restrict C to convex sets given by linear combina-
tions of basis functions f1, . . . , fd, which give rise a feature vector

f(s, a) = [f1(s, a), . . . , fd(s, a)]

for each state-action pair. Abbeel and Ng [1] and Syed et al. [98] use, respectively,

Clinear = {
∑

iwifi : ‖w‖2 ≤ 1} and Cconvex = {
∑

iwifi :
∑

iwi = 1, wi ≥ 0 ∀i} . (2.19)

Clinear leads to feature expectation matching [1], which minimizes `2 distance between ex-
pected feature vectors: maxc∈Clinear Eπ[c(s, a)] − EπE [c(s, a)] = ‖Eπ[f(s, a)] − EπE [f(s, a)]‖2.
Meanwhile, Cconvex leads to MWAL [97] and LPAL [98], which minimize worst-case ex-
cess cost among the individual basis functions, as maxc∈Cconvex Eπ[c(s, a)] − EπE [c(s, a)] =
maxi∈{1,...,d} Eπ[fi(s, a)]− EπE [fi(s, a)].

We now show how Eq. (2.18) is a special case of Eq. (2.17) with a certain setting of ψ.
With the indicator function δC : RS×A → R, defined by δC(c) = 0 if c ∈ C and +∞ otherwise,
we can write the apprenticeship learning objective (2.18) as

max
c∈C

Eπ[c(s, a)]−EπE [c(s, a)] = max
c∈RS×A

−δC(c) +
∑
s,a

(ρπ(s, a)−ρπE(s, a))c(s, a) = δ∗C(ρπ−ρπE)

Therefore, we see that entropy-regularized apprenticeship learning

minimize
π

−H(π) + max
c∈C

Eπ[c(s, a)]− EπE [c(s, a)] (2.20)

is equivalent to performing RL following IRL with cost regularizer ψ = δC, which forces
the implicit IRL procedure to recover a cost function lying in C. Note that we can scale
the policy’s entropy regularization strength in Eq. (2.20) by scaling C by a constant α as
{αc : c ∈ C}, recovering the original apprenticeship objective (2.18) by taking α→∞.

CHAPTER 2. IMITATION LEARNING 10

2.4.2 Cons of apprenticeship learning

It is known that apprenticeship learning algorithms generally do not recover expert-like
policies if C is too restrictive [98, Section 1]—which is often the case for the linear subspaces
used by feature expectation matching, MWAL, and LPAL, unless the basis functions f1, . . . , fd
are very carefully designed. Intuitively, unless the true expert cost function (assuming it
exists) lies in C, there is no guarantee that if π performs better than πE on all of C, then π
equals πE. With the aforementioned insight based on Proposition 2.3.1 that apprenticeship
learning is equivalent to RL following IRL, we can understand exactly why apprenticeship
learning may fail to imitate: it forces πE to be encoded as an element of C. If C does not
include a cost function that explains expert behavior well, then attempting to recover a policy
from such an encoding will not succeed.

2.4.3 Pros of apprenticeship learning

While restrictive cost classes C may not lead to exact imitation, apprenticeship learning with
such C can scale to large state and action spaces with policy function approximation. Ho
et al. [37] rely on the following policy gradient formula for the apprenticeship objective (2.18)
for a parameterized policy πθ:

∇θ max
c∈C

Eπθ [c(s, a)]− EπE [c(s, a)] = ∇θEπθ [c
∗(s, a)] = Eπθ [∇θ log πθ(a|s)Qc∗(s, a)]

where c∗= arg max
c∈C

Eπθ [c(s, a)]− EπE [c(s, a)], Qc∗(s̄, ā) = Eπθ [c
∗(s̄, ā) | s0 = s̄, a0 = ā]

(2.21)

Observing that Eq. (2.21) is the policy gradient for a reinforcement learning objective with
cost c∗, Ho et al. propose an algorithm that alternates between two steps:

1. Sample trajectories of the current policy πθi by simulating in the environment, and fit
a cost function c∗i , as defined in Eq. (2.21). For the cost classes Clinear and Cconvex (2.19),
this cost fitting amounts to evaluating simple analytical expressions [37].

2. Form a gradient estimate with Eq. (2.21) with c∗i and the sampled trajectories, and
take a trust region policy optimization (TRPO) [94] step to produce πθi+1

.

This algorithm relies crucially on the TRPO policy step, which is a natural gradient step
constrained to ensure that πθi+1

does not stray too far πθi , as measured by KL divergence
between the two policies averaged over the states in the sampled trajectories. This carefully
constructed step scheme ensures that the algorithm does not diverge due to high noise in
estimating the gradient (2.21). We refer the reader to Schulman et al. [94] for more details
on TRPO.

With the TRPO step scheme, Ho et al. were able train large neural network policies for
apprenticeship learning with linear cost function classes (2.19) in environments with hundreds
of observation dimensions. Their use of these linear cost function classes, however, limits

CHAPTER 2. IMITATION LEARNING 11

their approach to settings in which expert behavior is well-described by such classes. We
will draw upon their algorithm to develop an imitation learning method that both scales to
large environments and imitates arbitrarily complex expert behavior. To do so, we first turn
to proposing a new regularizer ψ that wields more expressive power than the regularizers
corresponding to Clinear and Cconvex (2.19).

2.5 Generative adversarial imitation learning
As discussed in Section 2.4, the constant regularizer leads to an imitation learning algorithm
that exactly matches occupancy measures, but is intractable in large environments. The
indicator regularizers for the linear cost function classes (2.19), on the other hand, lead to
algorithms incapable of exactly matching occupancy measures without careful tuning, but are
tractable in large environments. We propose the following new cost regularizer that combines
the best of both worlds, as we will show in the coming sections:

ψGA(c) :=

{
EπE [g(c(s, a))] if c < 0

+∞ otherwise
where g(x) =

{
−x− log(1− ex) if x < 0

+∞ otherwise
(2.22)

This regularizer places low penalty on cost functions c that assign an amount of negative
cost to expert state-action pairs; if c, however, assigns large costs (close to zero, which is the
upper bound for costs feasible for ψGA) to the expert, then ψGA will heavily penalize c. An
interesting property of ψGA is that it is an average over expert data, and therefore can adjust
to arbitrary expert datasets. The indicator regularizers δC, used by the linear apprenticeship
learning algorithms described in Section 2.4, are always fixed, and cannot adapt to data as
ψGA can. Perhaps the most important difference between ψGA and δC, however, is that δC
forces costs to lie in a small subspace spanned by finitely many basis functions, whereas ψGA

allows for any cost function, as long as it is negative everywhere.
Our choice of ψGA is motivated by the following fact, shown in the full paper [36]:

ψ∗GA(ρπ − ρπE) = sup
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))] (2.23)

where the supremum ranges over discriminative classifiers D : S × A → (0, 1). Equa-
tion (2.23) is proportional to the optimal negative log loss of the binary classification
problem of distinguishing between state-action pairs of π and πE. It turns out that
this optimal loss is, up to a constant shift and scaling, the Jensen-Shannon divergence
DJS(ρ̄π, ρ̄πE) := DKL (ρ̄π‖(ρ̄π + ρ̄E)/2) + DKL (ρ̄E‖(ρ̄π + ρ̄E)/2), which is a squared metric
between the normalized occupancy distributions ρ̄π = (1−γ)ρπ and ρ̄πE = (1−γ)ρπE [31, 72].
Treating the causal entropy H as a policy regularizer controlled by λ ≥ 0 and dropping
the 1− γ occupancy measure normalization for clarity, we obtain a new imitation learning
algorithm:

minimize
π

ψ∗GA(ρπ − ρπE)− λH(π) = DJS(ρπ, ρπE)− λH(π), (2.24)

CHAPTER 2. IMITATION LEARNING 12

which finds a policy whose occupancy measure minimizes Jensen-Shannon divergence to the
expert’s. Equation (2.24) minimizes a true metric between occupancy measures, so, unlike
linear apprenticeship learning algorithms, it can imitate expert policies exactly.

2.5.1 Algorithm

Equation (2.24) draws a connection between imitation learning and generative adversarial
networks [31], which train a generative model G by having it confuse a discriminative classifier
D. The job of D is to distinguish between the distribution of data generated by G and
the true data distribution. When D cannot distinguish data generated by G from the true
data, then G has successfully matched the true data. In our setting, the learner’s occupancy
measure ρπ is analogous to the data distribution generated by G, and the expert’s occupancy
measure ρπE is analogous to the true data distribution.

We now present a practical imitation learning algorithm, called generative adversarial
imitation learning or GAIL (Algorithm 2.1), designed to work in large environments. GAIL
solves Eq. (2.24) by finding a saddle point (π,D) of the expression

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))]− λH(π) (2.25)

with both π and D represented using function approximators: GAIL fits a parameterized
policy πθ, with weights θ, and a discriminator network Dw : S × A → (0, 1), with weights
w. GAIL alternates between an Adam [51] gradient step on w to increase Eq. (2.25) with
respect to D, and a TRPO step on θ to decrease Eq. (2.25) with respect to π (we derive
an estimator for the causal entropy gradient ∇θH(πθ) in [36]). The TRPO step serves
the same purpose as it does with the apprenticeship learning algorithm of Ho et al. [37]:
it prevents the policy from changing too much due to noise in the policy gradient. The
discriminator network can be interpreted as a local cost function providing learning signal to
the policy—specifically, taking a policy step that decreases expected cost with respect to the
cost function c(s, a) = logD(s, a) will move toward expert-like regions of state-action space,
as classified by the discriminator.

2.6 Experiments
We evaluated GAIL against baselines on 9 physics-based control tasks, ranging from low-
dimensional control tasks from the classic RL literature—the cartpole [5], acrobot [28], and
mountain car [69]—to difficult high-dimensional tasks such as a 3D humanoid locomotion,
solved only recently by model-free reinforcement learning [95, 94]. All environments, other
than the classic control tasks, were simulated with MuJoCo [101]. See the full paper [36] for
a complete description of all the tasks.

Each task comes with a true cost function, defined in the OpenAI Gym [10]. We first
generated expert behavior for these tasks by running TRPO [94] on these true cost functions
to create expert policies. Then, to evaluate imitation performance with respect to sample

CHAPTER 2. IMITATION LEARNING 13

Algorithm 2.1 Generative adversarial imitation learning
1: Input: Expert trajectories τE ∼ πE, initial policy and discriminator parameters θ0, w0

2: for i = 0, 1, 2, . . . do
3: Sample trajectories τi ∼ πθi
4: Update the discriminator parameters from wi to wi+1 with the gradient

Êτi [∇w log(Dw(s, a))] + ÊτE [∇w log(1−Dw(s, a))] (2.26)

5: Take a policy step from θi to θi+1, using the TRPO rule with cost function
log(Dwi+1

(s, a)). Specifically, take a KL-constrained natural gradient step with

Êτi [∇θ log πθ(a|s)Q(s, a)]− λ∇θH(πθ),

where Q(s̄, ā) = Êτi [log(Dwi+1
(s, a)) | s0 = s̄, a0 = ā]

(2.27)

6: end for

complexity of expert data, we sampled datasets of varying trajectory counts from the expert
policies. The trajectories constituting each dataset each consisted of about 50 state-action
pairs. We tested GAIL against three baselines:

1. Behavioral cloning: a given dataset of state-action pairs is split into 70% training
data and 30% validation data. The policy is trained with supervised learning, using
Adam [51] with minibatches of 128 examples, until validation error stops decreasing.

2. Feature expectation matching (FEM): the algorithm of Ho et al. [37] using the cost
function class Clinear (2.19) of Abbeel and Ng [1]

3. Game-theoretic apprenticeship learning (GTAL): the algorithm of Ho et al. [37] using
the cost function class Cconvex (2.19) of Syed and Schapire [97]

We used all algorithms to train policies of the same neural network architecture for all tasks:
two hidden layers of 100 units each, with tanh nonlinearities in between. The discriminator
networks for GAIL also used the same architecture. All networks were always initialized
randomly at the start of each trial. For each task, we gave FEM, GTAL, and GAIL exactly
the same amount of environment interaction for training. We ran all algorithms 5-7 times
over different random seeds in all environments except Humanoid, due to time restrictions.

Figures 2.1 and 2.2 depict the results (except for Humanoid, shading in these figures
indicate standard deviation over 5-7 reruns), and [36] provides exact performance num-
bers and details of our experiment pipeline, including expert data sampling and algorithm
hyperparameters.

We found that on the classic control tasks (cartpole, acrobot, and mountain car), behavioral
cloning generally suffered in expert data efficiency compared to FEM and GTAL, which for
the most part were able produce policies with near-expert performance with a wide range of

CHAPTER 2. IMITATION LEARNING 14

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Cartpole

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Acrobot

1 4 7 10

0.0

0.2

0.4

0.6

0.8

1.0

Mountain Car

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

HalfCheetah

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

Hopper

4 11 18 25

0.0

0.2

0.4

0.6

0.8

1.0

Walker

4 11 18 25

−1.0

−0.5

0.0

0.5

1.0

Ant

80 160 240

0.0

0.2

0.4

0.6

0.8

1.0

Humanoid

Number of trajectories in dataset

P
e
rf

o
rm

a
n

ce
 (

sc
a
le

d
)

Expert
Random

Behavioral cloning
FEM

GTAL
GAIL (ours)

Figure 2.1: Performance of learned policies. The y-axis is negative cost, scaled so that the
expert achieves 1 and a random policy achieves 0.

dataset sizes, albeit with large variance over different random initializations of the policy. On
these tasks, GAIL consistently produced policies performing better than behavioral cloning,
FEM, and GTAL.

4 11 18

−0.5

0.0

0.5

1.0

Reacher

Number of trajectories in dataset

P
e
rf

o
rm

a
n

ce
 (

sc
a
le

d
)

Expert

Random

Behavioral cloning

GAIL (¸=0)

GAIL (¸=10¡3)

GAIL (¸=10¡2)

Figure 2.2: Causal entropy regular-
ization λ on Reacher.

However, behavioral cloning performed excellently
on the Reacher task, on which it was more sample
efficient than GAIL. We were able to slightly improve
GAIL’s performance on Reacher using causal entropy
regularization—in the 4-trajectory setting, the im-
provement from λ = 0 to λ = 10−3 was statistically
significant over training reruns, according to a one-
sided Wilcoxon rank-sum test with p = .05. We used
no causal entropy regularization for all other tasks.

On the other MuJoCo environments, GAIL almost
always achieved at least 70% of expert performance for
all dataset sizes we tested and reached it exactly with
the larger datasets, with very little variance among
random seeds. The baseline algorithms generally could
not reach expert performance even with the largest
datasets. FEM and GTAL performed poorly for Ant,
producing policies consistently worse than a policy

CHAPTER 2. IMITATION LEARNING 15

that chooses actions uniformly at random. Behavioral cloning was able to reach satisfactory
performance with enough data on HalfCheetah, Hopper, Walker, and Ant, but was unable to
achieve more than 60% for Humanoid, on which GAIL achieved exact expert performance for
all tested dataset sizes.

2.7 Discussion
As we demonstrated, GAIL is generally quite sample efficient in terms of expert data. However,
it is not particularly sample efficient in terms of environment interaction during training.
The number of such samples required to estimate the imitation objective gradient (2.27) was
comparable to the number needed for TRPO to train the expert policies from reinforcement
signals. We believe that we could significantly improve learning speed for GAIL by initializing
policy parameters with behavioral cloning, which requires no environment interaction at all.

Fundamentally, our method is model free, so it will generally need more environment
interaction than model-based methods. Guided cost learning [25], for instance, builds upon
guided policy search [59] and inherits its sample efficiency, but also inherits its requirement
that the model is well-approximated by iteratively fitted time-varying linear dynamics.
Interestingly, both GAIL and guided cost learning alternate between policy optimization
steps and cost fitting (which we called discriminator fitting), even though the two algorithms
are derived completely differently.

Our approach builds upon a vast line of work on IRL [112, 1, 98, 97], and hence, just like
IRL, our approach does not interact with the expert during training. Our method explores
randomly to determine which actions bring a policy’s occupancy measure closer to the
expert’s, whereas methods that do interact with the expert, like DAgger [90], can simply ask
the expert for such actions. Ultimately, we believe that a method that combines well-chosen
environment models with expert interaction will win in terms of sample complexity of both
expert data and environment interaction.

2.8 Recent related work
There have been numerous contributions to imitation learning, inverse reinforcement learning,
and related areas since the publication the work presented in this chapter. For example, Finn
et al. [24] show a connection between generative adversarial networks, inverse reinforcement
learning, and energy-based models. Duan et al. [22] propose one-shot imitation learning,
which meta-learns an algorithm that imitates given one demonstration trajectory. Christiano
et al. [15] show how to learn from trajectory ranking feedback collected from humans online.
Peng et al. [77] learn a variety of locomotion and acrobatic skills in physically simulated
characters using imitation learning and deep reinforcement learning. See Osa et al. [73] for a
broad review of these areas.

CHAPTER 2. IMITATION LEARNING 16

Investigation of directions related to GAIL specifically include the work of Li et al. [62],
who propose InfoGAIL to learn latent variables in trajectory data, and the work of Song
et al. [96], who investigate GAIL in the multi-agent setting. Fu et al. [27] propose the AIRL
algorithm, which learns reward functions from data using a learning procedure similar to
GAIL, and Peng et al. [78] demonstrate that a discriminator information bottleneck improves
the performance of these algorithms.

17

Chapter 3

Likelihood-Based Generative Modeling

3.1 Introduction
We now turn to generative modeling in one of its purest forms in an interaction-free setting.
In this chapter, we devise a computationally efficient lossless compression algorithm for high
dimensional, high entropy data.

To devise a lossless compression algorithm means to devise a uniquely decodable code
whose expected length is as close as possible to the entropy of the data. A general recipe for
this is to first train a likelihood-based generative model by minimizing cross entropy to the
data distribution, and then construct a code that achieves lengths close to the negative log
likelihood of the model. This recipe is justified by classic results in information theory that
ensure that the second step is possible—in other words, optimizing cross entropy optimizes
the performance of some hypothetical compressor compatible with the model. In the following
sections, we address both parts of this recipe with computational efficiency of compression as
the primary goal.

First, in Sections 3.2 to 3.3, we present our advances in flow models, a type of likelihood-
based generative model that is fast for sampling and inference while attaining strong
density estimation performance on high entropy datasets. These properties guarantee
short codelengths for a compressor compatible with the model while ensuring that nat-
ural model operations are computationally efficient. Our new flow model architecture,
Flow++, is powered by an improved training procedure for continuous likelihood models
and a number of architectural extensions of RealNVP-type flow models [20, 21], and it
achieves density estimation performance on images competitive with variational autoen-
coders and early generations of autoregressive models. This is our contribution to a recent
trend of advances in likelihood-based generative models on a wide variety of real world
datasets [107, 108, 93, 76, 13, 66, 14, 39, 49, 111, 20, 21, 52, 80, 38, 106, 48, 53, 54, 64].

Second, in Sections 3.4 to 3.7, we construct the first practical coding algorithms for flow
models; prior to our work, only intractable algorithms existed for them [67]. We begin with
local bits-back coding, our new coding algorithm for general types of flow models that runs

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 18

in polynomial time and space with respect to the data dimensionality. Then, we show how to
specialize local bits-back coding to Flow++ and other RealNVP-type flows, and in doing so,
we produce compression algorithms that run in linear time and space in a fully parallelizable
fashion for both encoding and decoding, mirroring the fast sampling and inference paths that
distinguish these models from other types of likelihood-based generative models. Finally,
we test our compression algorithms on standard image modeling benchmarks, and we find
that they indeed are computationally efficient on modern hardware and attain codelengths in
close agreement with theoretical predictions.

3.2 Improving flow models
A flow model f is a smooth invertible transformation that maps observed data x to a standard
Gaussian latent variable z = f(x), as in nonlinear independent component analysis [7, 47, 46].
The key idea in recent flow model designs is to form f by composing a number of individual
simple invertible transformations [20, 21, 52, 85, 54, 63]. Explicitly, f is constructed by
composing a series of invertible flows as f(x) = f1 ◦ · · ·◦fL(x), with each fi having a tractable
inverse and a tractable Jacobian determinant. This way, sampling is efficient, as it can be
performed by computing f−1(z) = f−1

L ◦ · · · ◦ f
−1
1 (z) for z ∼ N (0, I), and so is training by

maximum likelihood, since the model density

log p(x) = logN (f(x);0, I) +
L∑
i=1

log

∣∣∣∣det
∂fi
∂fi−1

∣∣∣∣ (3.1)

is easy to compute and differentiate with respect to the parameters of the flows fi.
We now describe three modeling inefficiencies in prior work on flow models: (1) uniform

noise is a suboptimal dequantization choice that hurts both training loss and generalization;
(2) commonly used affine coupling flows are not expressive enough; (3) convolutional layers
in the conditioning networks of coupling layers are not powerful enough. Our proposed
model, Flow++, consists of a set of improved design choices: (1) variational flow-based
dequantization instead of uniform dequantization; (2) logistic mixture CDF coupling flows;
(3) self-attention in the conditioning networks of coupling layers.

3.2.1 Dequantization via variational inference

Many real-world datasets, such as CIFAR10 and ImageNet, are recordings of continuous
signals quantized into discrete representations. Fitting a continuous density model to discrete
data, however, will produce a degenerate solution that places all probability mass on discrete
datapoints [104]. A common solution to this problem is to first convert the discrete data
distribution into a continuous distribution via a process called “dequantization,” and then
model the resulting continuous distribution using the continuous density model [104, 21, 93].

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 19

3.2.1.1 Uniform dequantization

Dequantization is usually performed in prior work by adding uniform noise to the discrete
data over the width of each discrete bin: if each of the D components of the discrete data x
takes on values in {0, 1, 2, . . . , 255}, then the dequantized data is given by y = x + u, where
u is drawn uniformly from [0, 1)D. Theis et al. [99] note that training a continuous density
model pmodel on uniformly dequantized data y can be interpreted as maximizing a lower
bound on the log-likelihood for a certain discrete model Pmodel on the original discrete data x:

Pmodel(x) :=

∫
[0,1)D

pmodel(x + u) du (3.2)

The argument of Theis et al. [99] proceeds as follows. Letting Pdata denote the original
distribution of discrete data and pdata denote the distribution of uniformly dequantized data,
Jensen’s inequality implies that

Ey∼pdata [log pmodel(y)] =
∑
x

Pdata(x)

∫
[0,1)D

log pmodel(x + u) du (3.3)

≤
∑
x

Pdata(x) log

∫
[0,1)D

pmodel(x + u) du (3.4)

= Ex∼Pdata
[logPmodel(x)] (3.5)

Consequently, maximizing the log-likelihood of the continuous model on uniformly dequantized
data cannot lead to the continuous model degenerately collapsing onto the discrete data,
because its objective is bounded above by the log-likelihood of a discrete model.

3.2.1.2 Variational dequantization

While uniform dequantization successfully prevents the continuous density model pmodel from
collapsing to a degenerate mixture of point masses on discrete data, it asks pmodel to assign
uniform density to unit hypercubes x+ [0, 1)D around the data x. It is difficult and unnatural
for smooth function approximators, such as neural network density models, to excel at such
a task. To sidestep this issue, we now introduce a new dequantization technique based on
variational inference.

Again, we are interested in modeling D-dimensional discrete data x ∼ Pdata using a
continuous density model pmodel, and we will do so by maximizing the log-likelihood of its
associated discrete model Pmodel(x) :=

∫
[0,1)D

pmodel(x + u) du. Now, however, we introduce
a dequantization noise distribution q(u|x), with support over u ∈ [0, 1)D. Treating q as an

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 20

approximate posterior, we have the following variational lower bound, which holds for all q:

Ex∼Pdata
[logPmodel(x)] = Ex∼Pdata

[
log

∫
[0,1)D

q(u|x)
pmodel(x + u)

q(u|x)
du

]
(3.6)

≥ Ex∼Pdata

[∫
[0,1)D

q(u|x) log
pmodel(x + u)

q(u|x)
du

]
(3.7)

= Ex∼Pdata
Eu∼q(·|x)

[
log

pmodel(x + u)

q(u|x)

]
(3.8)

We will choose q itself to be a conditional flow-based generative model of the form u = qx(ε),
where ε ∼ p(ε) = N (ε;0, I) is Gaussian noise. In this case, q(u|x) = p(q−1

x (u)) · |∂q−1
x /∂u|,

and thus we obtain the objective

Ex∼Pdata
[logPmodel(x)] ≥ Ex∼Pdata,ε

[
log

pmodel(x + qx(ε))

p(ε) |∂qx/∂ε|−1

]
(3.9)

which we maximize jointly over pmodel and q. When pmodel is also a flow model x = f−1(z)
(as it is throughout this paper), it is straightforward to calculate a stochastic gradient of
this objective using the pathwise derivative estimator, as f(x + qx(ε)) is differentiable with
respect to the parameters of f and q.

Notice that the lower bound for uniform dequantization – Eqs. (3.3) to (3.5) – is a
special case of our variational lower bound – Eqs. (3.6) to (3.8), when the dequantization
distribution q is a uniform distribution that ignores dependence on x. Because the gap
between our objective (3.8) and the true expected log-likelihood Ex∼Pdata

[logPmodel(x)] is
exactly Ex∼Pdata

[DKL (q(u|x) ‖ pmodel(u|x))], using a uniform q forces pmodel to unnaturally
place uniform density over each hypercube x + [0, 1)D to compensate for any potential
looseness in the variational bound introduced by the inexpressive q. Using an expressive
flow-based q, on the other hand, allows pmodel to place density in each hypercube x + [0, 1)D

according to a much more flexible distribution q(u|x). This is a more natural task for pmodel

to perform, improving both training and generalization loss.

3.2.2 Improved coupling layers

Recent progress in the design of flow models has involved carefully constructing flows
to increase their expressiveness while preserving tractability of the inverse and Jacobian
determinant computations. One example is the invertible 1×1 convolution flow, whose inverse
and Jacobian determinant can be calculated and differentiated with standard automatic
differentiation libraries [52]. Another example, which we build upon in our work here, is the
affine coupling layer [21]. It is a parameterized flow y = fθ(x) that first splits the components
of x into two parts x1,x2, and then computes y = (y1,y2), given by

y1 = x1, y2 = x2 · exp(aθ(x1)) + bθ(x1) (3.10)

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 21

Here, aθ and bθ are outputs of a neural network that acts on x1 in a complex, expressive
manner, but the resulting behavior on x2 always remains an elementwise affine transforma-
tion – effectively, aθ and bθ together form a data-parameterized family of invertible affine
transformations. This allows the affine coupling layer to express complex dependencies on
the data while keeping inversion and log-likelihood computation tractable. Using · and exp
to respectively denote elementwise multiplication and exponentiation, the affine coupling
layer is defined by:

x1 = y1, (3.11)
x2 = (y2 − bθ(y1)) · exp(−aθ(y1)), (3.12)

log

∣∣∣∣∂y∂x
∣∣∣∣ = 1>aθ(x1) (3.13)

The splitting operation x 7→ (x1,x2) and merging operation (y1,y2) 7→ y are usually
performed over channels or over space in a checkerboard-like pattern [21].

3.2.2.1 Expressive coupling transformations with continuous mixture CDFs

We found in our experiments that density modeling performance of these coupling layers
could be improved by augmenting the data-parameterized elementwise affine transformations
by more general nonlinear elementwise transformations. For a given scalar component x
of x2, we apply the cumulative distribution function (CDF) for a mixture of K logistics –
parameterized by mixture probabilities, means, and log scales π,µ, s – followed by an inverse
sigmoid and an affine transformation parameterized by a and b:

x 7−→ σ−1 (MixLogCDF(x;π,µ, s)) · exp(a) + b (3.14)

where

MixLogCDF(x;π,µ, s) :=
K∑
i=1

πiσ ((x− µi) · exp(−si)) (3.15)

The transformation parameters π,µ, s, a, b for each component of x2 are produced by a
neural network acting on x1. This neural network must produce these transformation
parameters for each component of x2, hence it produces vectors aθ(x1) and bθ(x1) and tensors
πθ(x1),µθ(x1), sθ(x1) (with last axis dimension K). The coupling transformation is then
given by:

y1 = x1, (3.16)
y2 = σ−1 (MixLogCDF(x2;πθ(x1),µθ(x1), sθ(x1))) · exp(aθ(x1)) + bθ(x1) (3.17)

where the formula for computing y2 operates elementwise.
The inverse sigmoid ensures that the inverse of this coupling transformation always

exists: the range of the logistic mixture CDF is (0, 1), so the domain of its inverse must stay

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 22

within this interval. The CDF itself can be inverted efficiently with bisection, because it is a
monotonically increasing function. Moreover, the Jacobian determinant of this transformation
involves calculating the probability density function of the logistic mixtures, which poses no
computational difficulty.

3.2.2.2 Expressive conditioning architectures with self-attention

In addition to improving the expressiveness of the elementwise transformations on x2, we found
it crucial to improve the expressiveness of the conditioning on x1 – that is, the expressiveness
of the neural network responsible for producing the elementwise transformation parameters
π,µ, s, a,b. Our best results were obtained by stacking convolutions and multi-head self
attention into a gated residual network [68, 13], in a manner resembling the Transformer [109]
with pointwise feedforward layers replaced by 3× 3 convolutional layers. Our architecture is
defined as a stack of blocks. Each block consists of the following two layers connected in a
residual fashion, with layer normalization [2] after each residual connection:

Conv = Input→ Nonlinearity→ Conv3×3 → Nonlinearity→ Gate

Attn = Input→ Conv1×1 → MultiHeadSelfAttention→ Gate

where Gate refers to a 1× 1 convolution that doubles the number of channels, followed by a
gated linear unit [17]. The convolutional layer is identical to the one used by PixelCNN++
[93], and the multi-head self attention mechanism we use is identical to the one in the
Transformer [109]. (We always use 4 heads in our experiments, since we found it to be
effective early on in our experimentation process.)

With these blocks in hand, the network that outputs the elementwise transformation
parameters is simply given by stacking blocks on top of each other, and finishing with a
final convolution that increases the number of channels to the amount needed to specify the
elementwise transformation parameters.

3.2.3 Related Work

Likelihood-based models constitute a large family of deep generative models. One subclass of
such methods, based on variational inference, allows for efficient approximate inference and
sampling, but does not admit exact log likelihood computation [53, 86, 54]. Another subclass,
which we called exact likelihood models in this work, does admit exact log likelihood compu-
tation. These exact likelihood models are typically specified as invertible transformations
that are parameterized by neural networks [19, 58, 104, 20, 29, 107, 93, 13].

There is prior work that aims to improve the sampling speed of deep autoregressive
models. The Multiscale PixelCNN [84] modifies the PixelCNN to be non-fully-expressive
by introducing conditional independence assumptions among pixels in a way that permits
sampling in a logarithmic number of steps, rather than linear. Such a change in the
autoregressive structure allows for faster sampling but also makes some statistical patterns

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 23

impossible to capture, and hence reduces the capacity of the model for density estimation.
WaveRNN [50] improves sampling speed for autoregressive models for audio via sparsity and
other engineering considerations, some of which may apply to flow models as well.

There is also recent work that aims to improve the expressiveness of coupling layers in
flow models. Kingma and Dhariwal [52] demonstrate improved density estimation using
an invertible 1 × 1 convolution flow, and demonstrate that very large flow models can be
trained to produce photorealistic faces. Huang et al. [44] show how to design elementwise
transformations which themselves are neural networks. Müller et al. [70] introduce piecewise
polynomial couplings that are similar in spirit to our mixture of logistics couplings and found
them to be more expressive than affine couplings, but reported little performance gains in
density estimation. We leave a detailed comparison between our coupling layer and these
other types of coupling layers for future work.

3.3 Flow model experiments
Here, we show that Flow++ achieves state-of-the-art density modeling performance among
non-autoregressive models on CIFAR10 and 32x32 and 64x64 ImageNet. We also present
ablation experiments that quantify the improvements proposed in Section 3.2, and we
present example generative samples from Flow++ and compare them against samples from
autoregressive models.

Our experiments employed weight normalization and data-dependent initialization [92].
We used the checkerboard-splitting, channel-splitting, and downsampling flows of Dinh et al.
[21]; we also used before every coupling flow an invertible 1x1 convolution flows of Kingma
and Dhariwal [52], as well as a variant of their “actnorm” flow that normalizes all activations
independently (instead of normalizing per channel). Our CIFAR10 model used 4 coupling
layers with checkerboard splits at 32x32 resolution, 2 coupling layers with channel splits at
16x16 resolution, and 3 coupling layers with checkerboard splits at 16x16 resolution; each
coupling layer used 10 convolution-attention blocks, all with 96 filters. More details on
architectures, as well as details for the other experiments, are in our source code release [38].

3.3.1 Density modeling results

Table 3.1 shows that Flow++ achieved state-of-the-art density modeling results out of all
non-autoregressive models at the time of publication. Moreover, Flow++ is competitive
with autoregressive models: its performance is on par with the first generation of PixelCNN
models [107], and in fact it outperforms Multiscale PixelCNN [84]. Our results are reported
using 16384 importance samples in our CIFAR experiment and 1 sample in our ImageNet
experiments [11]. With 1 sample only, our CIFAR model attains 3.12 bits/dim. Our listed
ImageNet 32x32 and 64x64 results are evaluated on a NVIDIA DGX-1; they are worse by
0.01 bits/dim when evaluated on a NVIDIA Titan X GPU.

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 24

Table 3.1: Flow++ unconditional image modeling results (in bits per dimension)

Model family Model CIFAR10 ImageNet 32x32 ImageNet 64x64

Non-autoregressive RealNVP [21] 3.49 4.28 –
Glow [52] 3.35 4.09 3.81

IAF-VAE [54] 3.11 – –
Flow++ (ours) 3.08 3.86 3.69

Autoregressive Multiscale PixelCNN [84] – 3.95 3.70
PixelCNN [107] 3.14 – –
PixelRNN [107] 3.00 3.86 3.63

Gated PixelCNN [108] 3.03 3.83 3.57
PixelCNN++ [93] 2.92 – –

Image Transformer [76] 2.90 3.77 –
PixelSNAIL [13] 2.85 3.80 3.52

Table 3.2: CIFAR10 ablation results after 400 epochs of training. Models not converged for
the purposes of ablation study.

Ablation bits/dim parameters

uniform dequantization 3.292 32.3M
affine coupling 3.200 32.0M
no self-attention 3.193 31.4M

Flow++ (not converged for ablation) 3.165 31.4M

3.3.2 Ablations

We ran the following ablations of our model on unconditional CIFAR10 density estimation:
variational dequantization vs. uniform dequantization; logistic mixture coupling vs. affine
coupling; and stacked self-attention vs. convolutions only. As each ablation involves removing
some component of the network, we increased the number of filters in all convolutional layers
(and attention layers, if present) in order to match the total number of parameters with the
full Flow++ model.

In Fig. 3.1 and Table 3.2, we compare the performance of these ablations relative to Flow++
at 400 epochs of training, which was not enough for these models to converge, but far enough
to see their relative performance differences. Switching from our variational dequantization
to the more standard uniform dequantization costs the most: approximately 0.127 bits/dim.
The remaining two ablations both cost approximately 0.03 bits/dim: switching from our
logistic mixture coupling layers to affine coupling layers, and switching from our hybrid

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 25

convolution-and-self-attention architecture to a pure convolutional residual architecture. Note
that these performance differences are present despite all networks having approximately the
same number of parameters: the improved performance of Flow++ comes from improved
inductive biases, not simply from increased parameter count.

0 50 100 150 200 250 300 350 400
epoch

3.1

3.2

3.3

3.4

3.5

3.6

bi
ts

/d
im

full model
ablation: affine coupling
ablation: no attention
ablation: uniform dequantization

Figure 3.1: Ablation training (light) and validation (dark) curves on unconditional CIFAR10
density estimation. These runs are not fully converged, but the gap in performance is already
visible.

The most interesting result is probably the effect of the dequantization scheme on
training and generalization loss. At 400 epochs of training, the full Flow++ model with
variational dequantization has a train-test gap of approximately 0.02 bits/dim, but with
uniform dequantization, the train-test gap is approximately 0.06 bits/dim. This confirms our
claim in Section 3.2.1.2 that training with variational dequantization is a more natural task
for the model than training with uniform dequantization.

3.3.3 Samples

We present the samples from our trained density models of Flow++ on CIFAR10, 32x32
ImageNet, 64x64 ImageNet, and 5-bit CelebA in Figs. 3.2 to 3.5. The Flow++ samples match
the perceptual quality of PixelCNN samples, showing that Flow++ captures both local and
global dependencies as well as PixelCNN and is capable of generating diverse samples on large
datasets. Moreover, sampling is fast: our CIFAR10 model takes approximately 0.32 seconds
to generate a batch of 8 samples in parallel on one NVIDIA 1080 Ti GPU, making it more
than an order of magnitude faster than PixelCNN++ with sampling speed optimizations
[82]. More samples are available in the supplementary [38].

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 26

(a) PixelCNN [107] (b) Flow++

Figure 3.2: CIFAR10 Samples. Flow++ captures local dependencies well and generates good
samples at the quality level of PixelCNN, but with the advantage of efficient sampling.

(a) PixelCNN [107] (b) Flow++

Figure 3.3: 32x32 ImageNet Samples. Flow++ samples match those of PixelCNN in diversity
on this dataset, which is much larger than CIFAR10.

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 27

(a) Multi-Scale PixelRNN [107] (b) Flow++

Figure 3.4: 64x64 ImageNet Samples. The diversity of samples from Flow++ matches the
diversity of samples from PixelRNN with multi-scale ordering.

Figure 3.5: 5-bit 64x64 CelebA Flow++ samples, without low-temperature sampling.

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 28

3.4 Compression with flows
Having described Flow++, our improved RealNVP-type flow model, we now present our con-
struction of its corresponding computationally efficient compression algorithm. In Section 3.5,
we introduce local bits-back coding, our new technique for turning a general, pretrained, off-
the-shelf flow model into an efficient coding algorithm suitable for continuous data discretized
to high precision. Section 3.5.4.1 shows how to implement local bits-back coding without
assumptions on the flow structure, leading to an algorithm that runs in polynomial time and
space with respect to the data dimension.

Going further, Sections 3.5.4.2 to 3.5.4.3 show how to tailor local bits-back coding to
various specific types of flows, culminating in a fully parallelizable algorithm for Flow++ that
runs in linear time and space with respect to the data dimension and is fully parallelizable
for both encoding and decoding. We then show in Section 3.5.5 how to adapt local bits-back
coding to losslessly code data discretized to arbitrarily low precision, and in doing so, we
obtain a compression interpretation of variational dequantization, the method we introduced
in Section 3.2.1.2 to train flow models on discrete data. In Section 3.6, we conclude with
experiments on CIFAR10 and downsampled ImageNet that verify that local bits-back coding
efficiently attains codelengths close to the negative log likelihoods of flow models.

3.4.1 Preliminaries

Here, we remind the reader of basic notions on compression, and we re-introduce flow models
and variational dequantization in notation suitable for our discussion on compression. All
logarithms in the following sections are taken base 2.

3.4.1.1 Lossless compression

We begin by defining lossless compression of d-dimensional discrete data x◦ using a probability
mass function p(x◦) represented by a generative model. It means to construct a uniquely
decodable code C, which is an injective map from data sequences to binary strings, whose
lengths |C(x◦)| are close to − log p(x◦) [16]. The rationale is that if the generative model
is expressive and trained well, its cross entropy will be close to the entropy of the data
distribution. So, if the lengths of C match the model’s negative log probabilities, the expected
length of C will be small, and hence C will be a good compression algorithm. Constructing
such a code is always possible in theory because the Kraft-McMillan inequality [56, 65] ensures
that there always exists some code with lengths |C(x◦)| = d− log p(x◦)e ≈ − log p(x◦).

3.4.1.2 Flow models and variational dequantization

We wish to construct a computationally efficient code specialized to a flow model f , as in
Section 3.2, which is a differentiable bijection between continuous data x ∈ Rd and latents
z = f(x) ∈ Rd [19, 20, 21]. A flow model comes with a density p(z) on the latent space and

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 29

thus has an associated sampling process—x = f−1(z) for z ∼ p(z)—under which it defines a
probability density function via the change-of-variables formula for densities:

− log p(x) = − log p(z)− log |detJ(x)| (3.18)

where J(x) denotes the Jacobian of f at x. Flow models are straightforward to train with
maximum likelihood, as Eq. (3.18) allows unbiased exact log likelihood gradients to be
computed efficiently.

Standard datasets such as CIFAR10 and ImageNet consist of discrete data x◦ ∈ Zd. To
make a flow model suitable for such discrete data, we follow Section 3.2.1.2 and define a
derived discrete model P (x◦) :=

∫
[0,1)d

p(x◦ + u) du to be trained by minimizing a variational
dequantization objective, which is a variational bound on the codelength of P (x◦):

Eu∼q(u|x◦)

[
− log

p(x◦ + u)

q(u|x◦)

]
≥ − log

∫
[0,1)d

p(x◦ + u) du = − logP (x◦) (3.19)

Here, q(u|x◦) proposes dequantization noise u ∈ [0, 1)d that transforms discrete data x◦

into continuous data x◦ + u; it can be fixed to either a uniform distribution [105, 99, 93]
or to another parameterized flow to be trained jointly with f , as we did with Flow++
(Section 3.2.1.2). This variational dequantization objective serves as a theoretical codelength
for flow models trained on discrete data, just like negative log probability mass serves as a
theoretical codelength for discrete generative models [99].

3.5 Local bits-back coding
Our goal is to develop computationally efficient coding algorithms for flows trained on
the variational dequantization objective Eq. (3.19). In Sections 3.5.1 to 3.5.4, we develop
algorithms that use flows to code continuous data discretized to high precision. In Section 3.5.5,
we adapt these algorithms to losslessly code data discretized to low precision, attaining our
desired codelength (3.19) for discrete data.

3.5.1 Coding continuous data using discretization

We first address the problem of developing coding algorithms that attain codelengths given by
negative log densities of flow models, such as Eq. (3.18). Probability density functions do not
directly map to codelength, unlike probability mass functions which enjoy the result of the
Kraft-McMillan inequality. So, following standard procedure [16, section 8.3], we discretize
the data to a high precision k and code this discretized data with a certain probability mass
function derived from the density model. Specifically, we tile Rd with hypercubes of volume
δx := 2−kd; we call each hypercube a bin. For x ∈ Rd, let B(x) be the unique bin that
contains x, and let x̄ be the center of the bin B(x). We call x̄ the discretized version of x.
For a sufficiently smooth probability density function p(x), such as a density coming from

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 30

a neural network flow model, the probability mass function P (x̄) :=
∫
B(x̄)

p(x) dx takes on
the pleasingly simple form P (x̄) ≈ p(x̄)δx when the precision k is large. Now we invoke the
Kraft-McMillan inequality, so the theoretical codelength for x̄ using P is

− logP (x̄) ≈ − log p(x̄)δx (3.20)

bits. This is the compression interpretation of the negative log density: it is a codelength for
data discretized to high precision, when added to the total number of bits of discretization
precision. It is this codelength, Eq. (3.20), that we will try to achieve with an efficient
algorithm for flow models. We defer the problem of coding data discretized to low precision
to Section 3.5.5.

3.5.2 Background on bits-back coding

The main tool we will employ is bits-back coding [110, 35, 26, 41], a coding technique
originally designed for latent variable models (the connection to flow models is presented in
Section 3.5.3 and is new to our work). Bits-back coding codes x using a distribution of the
form p(x) =

∑
z p(x, z), where p(x, z) = p(x|z)p(z) includes a latent variable z; it is relevant

when z ranges over an exponentially large set, which makes it intractable to code with p(x)
even though coding with p(x|z) and p(z) may be tractable individually. Bits-back coding
introduces a new distribution q(z|x) with tractable coding, and the encoder jointly encodes
x along with z ∼ q(z|x) via these steps:

1. Decode z ∼ q(z|x) from an auxiliary source of random bits

2. Encode x using p(x|z)

3. Encode z using p(z)

The first step, which decodes z from random bits, produces a sample z ∼ q(z|x). The
second and third steps transmit z along with x. At decoding time, the decoder recov-
ers (x, z), then recovers the bits the encoder used to sample z using q. So, the encoder
will have transmitted extra information in addition to x—precisely Ez∼q(z|x) [− log q(z|x)]
bits on average. Consequently, the net number of bits transmitted regarding x only will
be Ez∼q(z|x) [log q(z|x)− log p(x, z)], which is redundant compared to the desired length
− log p(x) by an amount equal to the KL divergence DKL (q(z|x) ‖ p(z|x)) from q to the true
posterior.

Bits-back coding also works with continuous z discretized to high precision with negligible
change in codelength [35, 102]. In this case, q(z|x) and p(z) are probability density functions.
Discretizing z to bins z̄ of small volume δz and defining the probability mass functions Q(z̄|x)
and P (z̄) by the method in Section 3.5.1, we see that the bits-back codelength remains

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 31

approximately unchanged:

Ez̄∼Q(z̄|x)

[
− log

p(x|z̄)P (z̄)

Q(z̄|x)

]
≈ Ez̄∼Q(z̄|x)

[
− log

p(x|z̄)p(z̄)δz
q(z̄|x)δz

]
(3.21)

≈ Ez∼q(z|x)

[
− log

p(x|z)p(z)

q(z|x)

]
(3.22)

When bits-back coding is applied to a particular latent variable model, such as a VAE, the
distributions involved may take on a certain meaning: p(z) would be the prior, p(x|z) would
be the decoder network, and q(z|x) would be the encoder network [53, 86, 18, 12, 26, 102, 55].
However, it is important to note that these distributions do not need to correspond explicitly
to parts of the model at hand. Any will do for coding data losslessly, though some choices
result in better codelengths. We exploit this fact in Section 3.5.3, where we apply bits-back
coding to flow models by constructing artificial distributions p(x|z) and q(z|x), which do not
come with a flow model by default.

3.5.3 Local bits-back coding

We now present local bits-back coding, our new high-level principle for using a flow model f
to code data discretized to high precision. Following Section 3.5.1, we discretize continuous
data x into x̄, which is the center of a bin of volume δx. The codelength we desire for x̄ is the
negative log density of f (3.18), plus a constant depending on the discretization precision:

− log p(x̄)δx = − log p(f(x̄))− log |detJ(x̄)| − log δx (3.23)

where J(x̄) is the Jacobian of f at x̄. We will construct two densities p̃(z|x) and p̃(x|z) such
that bits-back coding attains Eq. (3.23). We need a small scalar parameter σ > 0, with which
we define

p̃(z|x) := N (z; f(x), σ2J(x)J(x)>) and p̃(x|z) := N (x; f−1(z), σ2I) (3.24)

To encode x̄, local bits-back coding follows the bits-back coding method for continuous z, as
described in Section 3.5.2:

1. Decode z̄ ∼ P̃ (z̄|x) =
∫
B(z̄)

p̃(z|x) dz ≈ p̃(z̄|x)δz from an auxiliary source of random bits

2. Encode x̄ using P̃ (x̄|z̄) =
∫
B(x̄)

p̃(x|z̄) dz ≈ p̃(x̄|z̄)δx

3. Encode z̄ using P (z̄) =
∫
B(z̄)

p(z) dz ≈ p(z̄)δz

The conditional density p̃(z|x) (3.24) is artificially injected noise, scaled by σ (the flow model
f remains unmodified). It describes how a local linear approximation of f would behave if it
were to act on a small Gaussian around x̄.

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 32

To justify local bits-back coding, we simply calculate its expected codelength. First, our
choices of p̃(z|x) and p̃(x|z) (3.24) satisfy the following equation:

Ez∼p̃(z|x) [log p̃(z|x)− log p̃(x|z)] = − log |detJ(x)|+O(σ2) (3.25)

Next, just like standard bits-back coding (3.22), local bits-back coding attains an expected
codelength close to Ez∼p̃(z|x̄)L(x̄, z), where

L(x, z) := log p̃(z|x)δz − log p̃(x|z)δx − log p(z)δz (3.26)

Equations (3.24) to (3.26) imply that the expected codelength matches our desired codelength
(3.23), up to first order in σ:

EzL(x, z) = − log p(x)δx +O(σ2) (3.27)

Note that local bits-back coding exactly achieves the desired codelength for flows (3.23), up
to first order in σ. This is in stark contrast to bits-back coding with latent variable models
like VAEs, for which the bits-back codelength is the negative evidence lower bound, which is
redundant by an amount equal to the KL divergence from the approximate posterior to the
true posterior [53].

Equation (3.27) may be derived in a more complete manner via the following argument
(sufficient conditions are that the prior log density and the inverse of the flow have bounded
derivatives of all orders). Let y = f(x) and let J be the Jacobian of f at x. If we write
z = y + σJε for ε ∼ N (0, I), the local bits-back codelength satisfies:

EzL(x, z) + log δx = EεL(x,y + σJε) + log δx (3.28)
= Eε logN (y + σJε;y, σ2JJ>)︸ ︷︷ ︸

(a)

−Eε logN (x; f−1(y + σJε), σ2I)︸ ︷︷ ︸
(b)

−Eε log p(y + σJε)︸ ︷︷ ︸
(c)

We proceed by calculating each term. The first term (a) is the negative differential entropy
of a Gaussian with covariance matrix σ2JJ>:

Eε logN (σJε;0, σ2JJ>) = −d
2

log(2πeσ2)− log |detJ| (3.29)

We calculate the second term (b) by taking a Taylor expansion of f−1 around y. Let f−1
i

denote the ith coordinate of f−1. The inverse function theorem yields

f−1
i (y + σJε) = f−1

i (y) +∇f−1
i (y)>(σJε) +

1

2
(σJε)>∇2f−1

i (y)(σJε) +O(σ3) (3.30)

= xi + σεi +
σ2

2
ε>Miε +O(σ3) (3.31)

where Mi := J>∇2f−1
i (y)J. Write vε := [ε>M1ε · · · ε>Mdε]>, so that the previous

equation can be written in vector form as f−1(y + σJε) = x + σε + σ2

2
vε +O(σ3). With this

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 33

in hand, term (b) reduces to:

−Eε logN (x; f−1(y + σJε), σ2I) (3.32)

= −Eε logN
(
x;x + σε +

σ2

2
vε +O(σ3), σ2I

)
(3.33)

= Eε

[
d

2
log(2πσ2) +

log e

2σ2

(
‖σε‖2 + σ3ε>vε +O(σ4)

)]
(3.34)

=
d

2
log(2πeσ2) +

σ log e

2
Eε

[
ε>vε

]
+O(σ2) (3.35)

Because the coordinates of ε are independent and have zero third moment, we have

Eε

[
ε>vε

]
= Eε

[∑
i

εiε
>Miε

]
= Eε

[∑
i,j,k

(Mi)jkεiεjεk

]
=
∑
i,j,k

(Mi)jkEε [εiεjεk] = 0 (3.36)

which implies that

−Eε logN (x; f−1(y + σJε), σ2I) =
d

2
log(2πeσ2) +O(σ2) (3.37)

The final term (c) is given by

−Eε log p(y + σJε) = −Eε

[
log p(y) +∇ log p(y)>(σJε) +O(σ2)

]
(3.38)

= − log p(y)− (∇ log p(y)>σJ)Eεε +O(σ2) (3.39)
= − log p(y) +O(σ2) (3.40)

Altogether, summing Eqs. (3.29), (3.37) and (3.40) yields the total codelength

EzL(x, z) = − log p(y)− log |detJ| − log δx +O(σ2) (3.41)

which, to first order, does not depend on σ, and matches Eq. (3.23).
Local bits-back coding always codes x̄ losslessly, no matter the setting of σ, δx, and δz.

However, σ must be small for the O(σ2) inaccuracy in Eq. (3.27) to be negligible. But for σ
to be small, the discretization volumes δz and δx must be small too, otherwise the discretized
Gaussians p̃(z̄|x)δz and p̃(x̄|z)δx will be poor approximations of the original Gaussians p̃(z|x)
and p̃(x|z). So, because δx must be small, the data x must be discretized to high precision.
And, because δz must be small, a relatively large number of auxiliary bits must be available
to decode z̄ ∼ p̃(z̄|x)δz. We will resolve the high precision requirement for the data with
another application of bits-back coding in Section 3.5.5, and we will explore the impact of
varying σ, δx, and δz on real-world data in experiments in Section 3.6.

3.5.4 Concrete local bits-back coding algorithms

We have shown that local bits-back coding attains the desired codelength (3.23) for data
discretized to high precision. Now, we instantiate local bits-back coding with concrete
algorithms.

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 34

3.5.4.1 Black box flows

Algorithm 3.1 is the most straightforward implementation of local bits-back coding. It
directly implements the steps in Section 3.5.3 by invoking an external procedure, such as
automatic differentiation, to explicitly compute the Jacobian of the flow. It therefore makes
no assumptions on the structure of the flow, and hence we call it the black box algorithm.

Algorithm 3.1 Local bits-back coding: for black box flows
Require: flow f , discretization volumes δx, δz, noise level σ
1: procedure Encode(x̄)
2: J← Jf (x̄) . Compute the Jacobian of f at x̄
3: Decode z̄ ∼ N (f(x̄), σ2JJ>) δz . By converting to an AR model (Section 3.5.4.1)
4: Encode x̄ using N (f−1(z̄), σ2I) δx
5: Encode z̄ using p(z̄) δz
6: end procedure

7: procedure Decode()
8: Decode z̄ ∼ p(z̄) δz
9: Decode x̄ ∼ N (f−1(z̄), σ2I) δx

10: J← Jf (x̄) . Compute the Jacobian of f at x̄
11: Encode z̄ using N (f(x̄), σ2JJ>) δz . By converting to an AR model (Section 3.5.4.1)
12: return x̄
13: end procedure

Coding with p̃(x|z) (3.24) is efficient because its coordinates are independent [102]. The
same applies to the prior p(z) if its coordinates are independent or if another efficient coding
algorithm already exists for it (see Section 3.5.4.3). Coding efficiently with p̃(z|x) relies
on the fact that any multivariate Gaussian can be converted into a linear autoregressive
model, which can be coded efficiently, one coordinate at a time, using arithmetic coding or
asymmetric numeral systems. To see how, suppose y = Jε, where ε ∼ N (0, I) and J is a
full-rank matrix (such as a Jacobian of a flow model). Let L be the Cholesky decomposition
of JJ>. Since LL> = JJ>, the distribution of Lε is equal to the distribution of Jε = y, and
so solutions ỹ to the linear system L−1ỹ = ε have the same distribution as y. Because L
is triangular, L−1 is easily computable and also triangular, and thus ỹ can be determined
with back substitution: ỹi = (εi −

∑
j<i(L

−1)ij ỹj)/(L
−1)ii, where i increases from 1 to d. In

other words, p(ỹi|ỹ<i) := N (ỹi;−Lii
∑

j<i(L
−1)ij ỹj, L

2
ii) is a linear autoregressive model that

represents the same distribution as y = Jε.
If nothing is known about the structure of the Jacobian of the flow, Algorithm 3.1 requires

O(d2) space to store the Jacobian and O(d3) time to compute the Cholesky decomposition.
This is certainly an improvement on the exponential space and time required by naive
algorithms (Section 3.4), but it is still not efficient enough for high-dimensional data in practice.
To make our coding algorithms more efficient, we need to make additional assumptions on the

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 35

flow. If the Jacobian is always block diagonal, say with fixed block size c× c, then the steps in
Algorithm 3.1 can be modified to process each block separately in parallel, thereby reducing
the required space and time to O(cd) and O(c2d), respectively. This makes Algorithm 3.1
efficient for flows that operate as elementwise transformations or as convolutions, such as
activation normalization flows and invertible 1× 1 convolution flows [52].

3.5.4.2 Autoregressive flows

An autoregressive flow z = f(x) is a sequence of one-dimensional flows zi = fi(xi;x<i) for each
coordinate i ∈ {1, . . . , d} [74, 54]. Algorithm 3.2 shows how to code with an autoregressive
flow in linear time and space. It never explicitly calculates and stores the Jacobian of the
flow, unlike Algorithm 3.1. Rather, it invokes one-dimensional local bits-back coding on one
coordinate of the data at a time, thus exploiting the structure of the autoregressive flow in
an essential way.

Algorithm 3.2 Local bits-back coding: for autoregressive flows
Require: autoregressive flow f , discretization volumes δx, δz, noise level σ
1: procedure Encode(x̄) . Neural net operations parallelizable over i
2: for i = d, . . . , 1 do . Iteration ordering not mandatory, but convenient for ANS
3: Decode z̄i ∼ N (fi(x̄i; x̄<i), (σf

′
i(x̄i; x̄<i))

2) δ
1/d
z

4: Encode x̄i using N (f−1
i (z̄i; x̄<i), σ

2) δ
1/d
x

5: end for
6: Encode z̄ using p(z̄) δz
7: end procedure

8: procedure Decode()
9: Decode z̄ ∼ p(z̄) δz

10: for i = 1, . . . , d do . Order should be the opposite of encoding when using ANS
11: Decode x̄i ∼ N (f−1

i (z̄i; x̄<i), σ
2) δ

1/d
x

12: Encode z̄i using N (fi(x̄i; x̄<i), (σf
′
i(x̄i; x̄<i))

2) δ
1/d
z

13: end for
14: return x̄
15: end procedure

A key difference between Algorithm 3.1 and Algorithm 3.2 is that the former needs to run
the forward and inverse directions of the entire flow and compute and factorize a Jacobian,
whereas the latter only needs to do so for each one-dimensional flow on each coordinate
of the data. Consequently, Algorithm 3.2 runs O(d) time and space, excluding resource
requirements of the flow itself. The encoding procedure of Algorithm 3.2 resembles log
likelihood computation for autoregressive flows, so the model evaluations it requires are
completely parallelizable over data dimensions. The decoding procedure resembles sampling,

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 36

so it requires d model evaluations in serial. These tradeoffs are entirely analogous to those of
coding with discrete autoregressive models.

Autoregressive flows with further special structure lead to even more efficient imple-
mentations of Algorithm 3.2. As an example, let us focus on a NICE/RealNVP coupling
layer [20, 21]. This type of flow computes z by splitting the coordinates of the input x into
two halves, x≤d/2, and x>d/2. The first half is passed through unchanged as z≤d/2 = x≤d/2,
and the second half is passed through an elementwise transformation z>d/2 = f(x>d/2;x≤d/2)
which is conditioned on the first half. Specializing Algorithm 3.2 to this kind of flow produces
Algorithm 3.3, which has both encoding and decoding parallelized over coordinates, resem-
bling how the forward and inverse directions for inference and sampling can be parallelized
for these flows [20, 21].

Algorithm 3.3 Local bits-back coding: for coupling layers
Require: coupling layer f , discretization volumes δx, δz, noise level σ
1: f given by z≤d/2 = x≤d/2, z>d/2 = f(x>d/2;x≤d/2), where f(· ;x≤d/2) operates elementwise
2: procedure Encode(x̄)
3: for i = d, . . . , d/2 + 1 do . Neural net operations parallelizable over i
4: Decode z̄i ∼ N (fi(x̄i; x̄≤d/2), (σf ′i(x̄i; x̄≤d/2))2) δ

1/d
z

5: Encode x̄i using N (f−1
i (z̄i; x̄≤d/2), σ2) δ

1/d
x

6: end for
7: for i = d/2, . . . , 1 do
8: z̄i ← x̄i
9: end for

10: Encode z̄ using p(z̄) δz
11: end procedure

12: procedure Decode()
13: Decode z̄ ∼ p(z̄) δz
14: for i = 1, . . . , d/2 do
15: x̄i ← z̄i
16: end for
17: for i = d/2 + 1, . . . , d do . Neural net operations parallelizable over i
18: Decode x̄i ∼ N (f−1

i (z̄i; x̄≤d/2), σ2) δ
1/d
x

19: Encode z̄i using N (fi(x̄i; x̄≤d/2), (σf ′i(x̄i; x̄≤d/2))2) δ
1/d
z

20: end for
21: return x̄
22: end procedure

Algorithms 3.2 and 3.3 are not the only known efficient coding algorithms for autoregressive
flows. For example, if f is an autoregressive flow whose prior p(z) =

∏
i pi(zi) is independent

over coordinates, then f can be rewritten as a continuous autoregressive model p(xi|x<i) =

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 37

pi(f(xi;x<i))|f ′(xi;x<i)|, which can be discretized and coded one coordinate at a time using
arithmetic coding or asymmetric numeral systems. The advantage of Algorithms 3.2 and 3.3,
as we will see next, is that they apply to more complex priors that prevent the distribution
over x from naturally factorizing as an autoregressive model.

3.5.4.3 Compositions of flows

Flows like NICE, RealNVP, Glow, and Flow++ [20, 21, 52, 38] are composed of many
intermediate flows: they have the form f(x) = fK ◦ · · · ◦ f1(x), where each of the K layers
fi is one of the types of flows discussed above. These models derive their expressiveness
from applying simple flows many times, resulting in a expressive composite flow. The
expressiveness of the composite flow suggests that coding will be difficult, but we can exploit
the compositional structure to code efficiently. Since the composite flow f = fK ◦ · · · ◦ f1

can be interpreted as a single flow z1 = f1(x) with a flow prior fK ◦ · · · ◦ f2(z1), all we
have to do is code the first layer f1 using the appropriate local bits-back coding algorithm,
and when coding its output z1, we recursively invoke local bits-back coding for the prior
fK ◦ · · · ◦ f2 [55]. A straightforward inductive argument shows that this leads to the
correct codelength. If coding any z1 with fK ◦ · · · ◦ f2 achieves the expected codelength
− log pfK◦···◦f2(z1)δz + O(σ2), then the expected codelength for f1, using fK ◦ · · · ◦ f2 as a
prior, is − log pfK◦···◦f2(f1(x))− log |detJf1(x)| − log δx + O(σ2). Continuing the same into
fK ◦ · · · ◦ f2, we conclude that the resulting expected codelength

− log p(zK)−
K∑
i=1

log |detJfi(zi−1)| − log δx +O(σ2), (3.42)

where z0 := x, is what we expect from coding with the whole composite flow f . This
codelength is averaged over noise injected into each layer zi, but we find that this is not an
issue in practice. Our experiments in Section 3.6 show that it is easy to make σ small enough
to be negligible for neural network flow models, which are generally resistant to activation
noise.

We call this the compositional algorithm. Its significance is that, provided that coding
with each intermediate flow is efficient, coding with the composite flow is efficient too, despite
the complexity of the composite flow as a function class. The composite flow’s Jacobian never
needs to be calculated or factorized, leading to dramatic speedups over using Algorithm 3.1
on the composite flow as a black box (Section 3.6). In particular, coding with RealNVP-type
models needs just O(d) time and space and is fully parallelizable over data dimensions.

3.5.5 Dequantization for coding unrestricted-precision data

We have shown how to code data discretized to high precision, achieving codelengths close to
− log p(x̄)δx. In practice, however, data is usually discretized to low precision; for example,
images from CIFAR10 and ImageNet consist of integers in {0, 1, . . . , 255}. Coding this kind

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 38

of data directly would force us to code at a precision − log δx much higher than 1, which
would be a waste of bits.

To resolve this issue, we propose to use this extra precision within another bits-back
coding scheme to arrive at a good lossless codelength for data at its original precision. Let us
focus on the setting of coding integer-valued data x◦ ∈ Zd up to bins of volume 1. Recall
from Section 3.4.1 that flow models are trained on such data by minimizing a dequantization
objective (3.19), which we reproduce here:

Eu∼q(u|x◦) [log q(u|x◦)− log p(x◦ + u)] (3.43)

Above, q(u|x◦) is a dequantizer, which adds noise u ∈ [0, 1)d to turn x◦ into continuous data
x◦ + u [105, 99, 93, 38].

We assume that the dequantizer is itself provided as a flow model, specified by u =
qx◦(ε) ∈ [0, 1)d for ε ∼ p(ε), as in [38]. In Algorithm 3.4, we propose a bits-back coding
scheme in which ū ∼ q(ū|x◦)δx is decoded from auxiliary bits using local bits-back coding,
and x◦ + u is encoded using the original flow p(x◦ + ū)δx, also using local bits-back coding.

Algorithm 3.4 Local bits-back coding with variational dequantization
Require: flow density p, dequantization flow conditional density q, discretization volume δx
1: procedure Encode(x◦) . x◦ is discrete data
2: Decode ū ∼ q(ū|x◦) δx via local bits-back coding
3: x̄← x◦ + ū . Dequantize
4: Encode x̄ using p(x̄) δx via local bits-back coding
5: end procedure

6: procedure Decode()
7: Decode x̄ ∼ p(x̄) δx via local bits-back coding
8: x◦ ← bx̄c . Quantize
9: ū← x̄− x◦

10: Encode ū using q(ū|x◦) δx via local bits-back coding
11: return x◦

12: end procedure

The decoder, upon receiving x◦ + ū, recovers the original x◦ and ū by rounding. So, the
net codelength for Algorithm 3.4 is given by subtracting the bits needed to decode ū from
the bits needed to encode x◦ + ū:

log q(ū|x◦)δx − log p(x◦ + ū)δx +O(σ2) = log q(ū|x◦)− log p(x◦ + ū) +O(σ2) (3.44)

This codelength closely matches the dequantization objective (3.43) on average, and it is
reasonable for the low-precision discrete data x◦ because, as we stated in Section 3.4.1, it
is a variational bound on the codelength of a certain discrete generative model for x◦, and

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 39

modern flow models are explicitly trained to minimize this bound [105, 99, 38]. Since the
resulting code is lossless for x◦, Algorithm 3.4 provides a new compression interpretation of
dequantization: it converts a code suitable for high precision data into a code suitable for
low precision data, just as the dequantization objective (3.43) converts a model suitable for
continuous data into a model suitable for discrete data [99].

3.6 Compression experiments
We designed experiments to investigate the following: (1) how well local bits-back codelengths
match the theoretical codelengths of modern flow models on high-dimensional data, (2) the
effects of the precision and noise parameters δ and σ on codelengths (Section 3.5.3), and
(3) the computational efficiency of local bits-back coding for use in practice. We focused on
Flow++ [38], a recently proposed RealNVP-type flow with a flow-based dequantizer. We
used all concepts presented in this chapter: Algorithm 3.1 for elementwise and convolution
flows [52], Algorithm 3.2 for coupling layers, the compositional method of Section 3.5.4.3,
and Algorithm 3.4 for dequantization. We used asymmetric numeral systems (ANS) [23],
following the BB-ANS [102] and Bit-Swap [55] algorithms for VAEs (though the ideas behind
our algorithms do not depend on ANS). We expect our implementation to easily extend to
other models, like flows for video [57] and audio [80], though we leave that for future work.

3.6.1 Codelengths

Table 3.3 lists our codelengths on the test sets of CIFAR10, 32x32 ImageNet, and 64x64
ImageNet. The listed theoretical codelengths are the average negative log likelihoods of our
model reimplementations, without importance sampling for the variational dequantization
bound, and we find that our coding algorithm attains very similar lengths. To the best of our
knowledge, these results are state-of-the-art for lossless compression with fully parallelizable
compression and decompression when auxiliary bits are available for bits-back coding.

Table 3.3: Local bits-back codelengths (in bits per dimension)

Compression algorithm CIFAR10 ImageNet 32x32 ImageNet 64x64

Theoretical 3.116 3.871 3.701
Local bits-back (ours) 3.118 3.875 3.703

3.6.2 Effects of precision and noise

Recall from Section 3.5.3 that the noise level σ should be small to attain accurate codelengths.
This means that the discretization volumes δx and δz should be small as well to make

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 40

discretization effects negligible, at the expense of a larger requirement of auxiliary bits,
which are not counted into bits-back codelengths [35]. Above, we fixed δx = δz = 2−32 and
σ = 2−14, but here, we study the impact of varying δ = δx = δz and σ: on each dataset, we
compressed 20 random datapoints in sequence, then calculated the local bits-back codelength
and the auxiliary bits requirement; we did this for 5 random seeds and averaged the results.
See Fig. 3.6 for the results, and see the published paper [40] for more detailed results with
standard deviation bars.

We indeed find that as δ and σ decrease, the codelength becomes more accurate, and we
find a sharp transition in performance when δ is too large relative to σ, indicating that coarse
discretization destroys noise with small scale. Also, as expected, we find that the auxiliary
bits requirement grows as δ shrinks. If auxiliary bits are not available, they must be counted
into the codelength for the first datapoint, which can make our method impractical when
coding few datapoints or when no pre-transmitted random bits are present [102, 55]. The
cost can be made negligible by coding long sequences, such as entire test sets or audio or
video with large numbers of frames [80, 57].

3.6.3 Computational efficiency

We used OpenMP-based CPU code for compression with parallel ANS streams [30], with
neural net operations running on a GPU. See Table 3.4 for encoding timings and Table 3.5
for decoding timings, all averaged over 5 runs, on 16 CPU cores and 1 Titan X GPU. We
computed total CPU and GPU time for the black box algorithm (Algorithm 3.1) and the
compositional algorithm (Section 3.5.4.3) on single datapoints, and we also timed the latter
with batches of datapoints, made possible by its low memory requirements (this was not
possible with the black box algorithm, which already needs batching to compute the Jacobian
for one datapoint).

We found that encoding and decoding times were nearly identical. Furthermore, we found
that the total CPU and GPU time for the compositional algorithm was only slightly slower
than running a pass of the flow model without coding, whereas the black box algorithm
was significantly slower due to Jacobian computation. This confirms that our Jacobian-free
coding techniques are crucial for practical use.

3.7 Discussion
We have built upon bits-back coding [110, 35, 88, 26, 23, 102, 55] to enable flow models to
perform lossless compression, which is already possible with VAEs and autoregressive models
with certain tradeoffs. VAEs and flow models (RealNVP-type models specifically) currently
attain similar theoretical codelengths on image datasets [38, 64] and have similarly fast coding
algorithms, but VAEs are more difficult to train due to posterior collapse [12], which implies
worse net codelengths unless carefully tuned by the practitioner. Compared with the most
recent instantiation of bits-back coding for hierarchical VAEs [55], our algorithm and models

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 41

6 8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1=
d

17.04 61.73 207.76 406.05 526.35 572.98
5.18 16.02 59.37 205.54 405.63 525.91
4.62 4.25 15.39 59.03 205.91 406.05
4.56 3.72 3.73 15.25 59.04 205.97
4.54 3.66 3.23 3.69 15.32 59.08
4.53 3.64 3.16 3.18 3.70 15.33
4.53 3.63 3.15 3.12 3.18 3.69
4.53 3.62 3.14 3.11 3.12 3.18
4.52 3.62 3.14 3.10 3.10 3.12
4.53 3.62 3.14 3.10 3.10 3.10
4.52 3.63 3.14 3.10 3.10 3.10
4.53 3.62 3.14 3.10 3.10 3.10
4.52 3.62 3.14 3.10 3.10 3.10

Net codelength (bits/dim) (model NLL: 3.10)

6 8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1=
d

12.61 11.37 10.56 10.26 10.13 10.09
15.93 14.64 13.37 12.61 12.30 12.16
19.85 17.94 16.59 15.35 14.55 14.24
23.85 21.87 19.92 18.58 17.33 16.57
27.85 25.86 23.88 21.93 20.60 19.35
31.84 29.84 27.84 25.87 23.93 22.61
35.83 33.85 31.86 29.86 27.86 25.92
39.83 37.85 35.85 33.83 31.86 29.87
43.84 41.85 39.85 37.85 35.84 33.84
47.83 45.85 43.85 41.86 39.86 37.85
51.83 49.84 47.85 45.84 43.84 41.85
55.85 53.83 51.83 49.83 47.84 45.85
59.81 57.84 55.85 53.84 51.84 49.84

Auxiliary bits required (bits/dim)

6 8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1=
d

33.71 116.62 333.07 540.74 609.35 633.96
11.70 33.52 116.81 332.63 540.07 609.04
7.23 11.10 33.83 116.95 332.49 540.40
5.52 6.52 11.12 33.88 117.12 332.92
4.89 4.89 6.43 11.15 33.88 117.03
4.65 4.29 4.78 6.45 11.19 33.88
4.57 4.07 4.17 4.75 6.43 11.23
4.54 4.00 3.95 4.15 4.77 6.44
4.53 3.97 3.87 3.93 4.15 4.76
4.52 3.97 3.85 3.85 3.93 4.17
4.52 3.96 3.84 3.83 3.85 3.92
4.51 3.96 3.84 3.83 3.83 3.85
4.51 3.96 3.84 3.82 3.82 3.83

Net codelength (bits/dim) (model NLL: 3.82)

6 8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1=
d

13.45 11.36 10.59 10.26 10.13 10.09
16.79 15.43 13.39 12.60 12.27 12.15
19.77 18.73 17.44 15.37 14.58 14.24
23.17 21.77 20.74 19.46 17.36 16.59
27.66 25.11 23.78 22.76 21.42 19.39
31.82 29.63 26.96 25.80 24.74 23.45
35.94 33.87 31.63 29.03 27.79 26.77
39.99 37.96 35.85 33.58 30.98 29.78
43.99 41.97 39.93 37.84 35.63 33.07
47.97 45.98 43.97 41.95 39.83 37.54
51.98 49.98 47.98 45.96 43.95 41.91
55.99 53.98 52.00 49.97 47.98 45.95
60.00 58.00 55.98 53.99 51.98 49.98

Auxiliary bits required (bits/dim)

8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1
=
d

74.06 228.75 408.32 485.63 517.90
20.32 73.65 228.47 408.41 485.48
5.72 20.14 73.60 228.71 409.07
4.16 5.57 20.10 73.64 228.84
3.85 4.03 5.56 20.13 73.62
3.79 3.72 4.02 5.56 20.11
3.78 3.66 3.70 4.02 5.56
3.77 3.64 3.64 3.70 4.01
3.77 3.64 3.63 3.64 3.71
3.77 3.64 3.63 3.63 3.64
3.77 3.64 3.63 3.63 3.63
3.77 3.64 3.63 3.63 3.63
3.77 3.64 3.63 3.63 3.63

Net codelength (bits/dim) (model NLL: 3.62)

8 10 12 14 16
¡log¾

8
10

12
14

16
18

20
22

24
26

28
30

32
¡
lo
g
±
1
=
d

11.16 10.42 10.15 10.08 10.06
14.72 13.17 12.43 12.16 12.08
18.01 16.72 15.16 14.43 14.16
22.01 20.03 18.71 17.16 16.42
26.02 24.01 22.01 20.74 19.16
30.01 28.01 26.01 24.02 22.71
34.00 32.00 30.01 28.01 26.02
38.00 36.00 34.00 32.01 30.02
42.01 40.00 38.00 36.00 34.01
46.01 44.00 42.01 40.00 38.00
50.01 48.01 46.00 44.00 42.00
54.00 52.00 50.00 48.01 46.01
58.00 56.00 54.00 52.00 50.00

Auxiliary bits required (bits/dim)

Figure 3.6: Effects of precision and noise parameters δ and σ on coding random subsets of
CIFAR10 (top), ImageNet 32x32 (middle), and ImageNet 64x64 (bottom)

attain better net codelengths at the expense of a large number of auxiliary bits: on 32x32
ImageNet, we attain a net codelength of 3.88 bits/dim at the expense of approximately 40
bits/dim of auxiliary bits (depending on hyperparameter settings), but the VAEs can attain
a net codelength of 4.48 bits/dim with only approximately 2.5 bits/dim of auxiliary bits [55].
As discussed in Section 3.6, auxiliary bits pose a problem when coding a few datapoints at a

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 42

Table 3.4: Encoding time per datapoint (in seconds)

Algorithm Batch size CIFAR10 ImageNet 32x32 ImageNet 64x64

Black box (Algorithm 3.1) 1 64.37± 1.05 534.74± 5.91 1349.65± 2.30

Compositional (Section 3.5.4.3) 1 0.77± 0.01 0.93± 0.02 0.69± 0.02
64 0.09± 0.00 0.17± 0.00 0.18± 0.00

Neural net only, without coding 1 0.50± 0.03 0.76± 0.00 0.44± 0.00
64 0.04± 0.00 0.13± 0.00 0.05± 0.00

Table 3.5: Decoding time per datapoint (in seconds)

Compression algorithm Batch size CIFAR10 ImageNet 32x32 ImageNet 64x64

Black box (Algorithm 3.1) 1 65.90± 0.10 564.42± 15.26 1351.04± 3.31

Compositional (Section 3.5.4.3) 1 0.78± 0.02 0.92± 0.00 0.71± 0.03
64 0.09± 0.00 0.17± 0.00 0.18± 0.00

Neural net only, without coding 1 0.50± 0.03 0.76± 0.00 0.44± 0.00
64 0.04± 0.00 0.13± 0.00 0.05± 0.00

time, but not when coding long sequences like entire test sets or long videos. It would be
interesting to examine the compression performance of models which are VAE-flow hybrids,
of which dequantized flows are a special case (Section 3.5.5).

Meanwhile, autoregressive models currently attain the best codelengths (2.80 bits/dim
on CIFAR10 and 3.44 bits/dim on ImageNet 64x64 [14]), but decoding, just like sampling,
is extremely slow due to serial model evaluations. Both our compositional algorithm for
RealNVP-type flows and algorithms for VAEs built from independent distributions are
parallelizable over data dimensions and use a single model pass for both encoding and
decoding.

Concurrent work [34] proposes Eq. (3.24) and its analysis in Section 3.5.3 to connect flows
with VAEs to design new types of generative models, while by contrast, we take a pretrained,
off-the-shelf flow model and employ Eq. (3.24) as artificial noise for compression. While
the local bits-back coding concept and the black-box Algorithm 3.1 work for any flow, our
fast linear time coding algorithms are specialized to autoregressive flows and the RealNVP
family; it would be interesting to find fast coding algorithms for other types of flows [32, 6],
investigate non-image modalities [57, 80], and explore connections with other literature on
compression with neural networks [3, 4, 33, 100, 87].

CHAPTER 3. LIKELIHOOD-BASED GENERATIVE MODELING 43

3.8 Recent related work
A survey by Papamakarios et al. [75] summarizes much of recent research in areas involving
flow model architectures. Recent related work in data compression includes a paper of
Townsend et al. [103], who show that fully convolutional VAEs trained on small images
are able to compress large images without retraining. Hoogeboom et al. [43, 42] present
related work in the intersection of data compression and flow models in the form of improved
dequantizers, generalizations of variational dequantization, and integer discrete flows, which
they show are amenable to computationally efficient compression without bits-back coding.

44

Chapter 4

Conclusion

The methods we have introduced are our attempts to resolve statistical and computational
inefficiencies raised by the curse of dimensionality in machine learning. Our attempt to
improve the statistical efficiency of imitation learning in the low expert data regime led to our
algorithm, generative adversarial imitation learning, which synthesizes the training procedure
of generative adversarial networks with the frameworks of apprenticeship learning, inverse
reinforcement learning, and imitation learning. Our attempt to improve the computational
efficiency of compression in the high entropy data regime led to our new flow model architecture
and matching coding algorithm, local bits-back coding, and together they form a fast,
parallelizable image compression system that may serve as a template for future practical
compression systems based on deep generative models.

These are only beginnings of contributions to the longstanding endeavor of building
intelligent, practically useful agents that maximally exploit past information to act for
future benefit in a wide variety of problem domains. Resource limits, both statistical and
computational, are fundamental to the existence of these agents because real agents are
subsystems of the world—time passes and energy is consumed by each step of data acquisition
and computation. We hope that our work may serve as inspiration for future research that
confronts these limits in new settings.

45

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning, 2004.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016.

[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image
compression. arXiv preprint arXiv:1611.01704, 2016.

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston.
Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018.

[5] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive ele-
ments that can solve difficult learning control problems. Systems, Man and Cybernetics,
IEEE Transactions on, SMC-13(5):834–846, 1983.

[6] Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Invertible residual
networks. arXiv preprint arXiv:1811.00995, 2018.

[7] Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

[8] Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy
inverse reinforcement learning. In 53rd IEEE Conference on Decision and Control,
pages 4911–4916. IEEE, 2014.

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[10] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540,
2016.

[11] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-
coders. arXiv preprint arXiv:1509.00519, 2015.

[12] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John
Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. In
International Conference on Learning Representations, 2017.

[13] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. PixelSNAIL: An
improved autoregressive generative model. In International Conference on Machine
Learning, pages 863–871, 2018.

BIBLIOGRAPHY 46

[14] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[15] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In Advances in Neural
Information Processing Systems, pages 4299–4307, 2017.

[16] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley &
Sons, 2012.

[17] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In International Conference on Machine Learning,
pages 933–941, 2017.

[18] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The helmholtz
machine. Neural computation, 7(5):889–904, 1995.

[19] Gustavo Deco and Wilfried Brauer. Higher order statistical decorrelation without
information loss. In Advances in Neural Information Processing Systems, pages 247–254,
1995.

[20] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516, 2014.

[21] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real
NVP. arXiv preprint arXiv:1605.08803, 2016.

[22] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In
Advances in Neural Information Processing Systems, pages 1087–1098, 2017.

[23] Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of Huffman
coding with compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540,
2013.

[24] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection
between generative adversarial networks, inverse reinforcement learning, and energy-
based models. arXiv preprint arXiv:1611.03852, 2016.

[25] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse
optimal control via policy optimization. In International Conference on Machine
Learning, pages 49–58, 2016.

[26] Brendan J. Frey and Geoffrey E. Hinton. Efficient stochastic source coding and an
application to a Bayesian network source model. The Computer Journal, 40(2_and_3):
157–165, 1997.

[27] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial
inverse reinforcement learning. In International Conference on Learning Representations,
2018.

[28] Alborz Geramifard, Christoph Dann, Robert H Klein, William Dabney, and Jonathan P
How. Rlpy: A value-function-based reinforcement learning framework for education
and research. JMLR, 2015.

[29] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked
autoencoder for distribution estimation. In International Conference on Machine

BIBLIOGRAPHY 47

Learning, pages 881–889, 2015.
[30] Fabian Giesen. Interleaved entropy coders. arXiv preprint arXiv:1402.3392, 2014.
[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

[32] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David
Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible generative
models. arXiv preprint arXiv:1810.01367, 2018.

[33] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan
Wierstra. Towards conceptual compression. In Advances In Neural Information
Processing Systems, pages 3549–3557, 2016.

[34] Alexey A Gritsenko, Jasper Snoek, and Tim Salimans. On the relationship between
normalising flows and variational-and denoising autoencoders. ICLR Deep Generative
Models for Highly Structured Data Workshop, 2019.

[35] Geoffrey E Hinton and Drew Van Camp. Keeping neural networks simple by minimizing
the description length of the weights. In Proceedings of the Sixth Annual Conference
on Computational Learning Theory, pages 5–13, 1993.

[36] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances
in Neural Information Processing Systems, pages 4565–4573, 2016.

[37] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with
policy optimization. In International Conference on Machine Learning, pages 2760–2769,
2016.

[38] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++:
Improving flow-based generative models with variational dequantization and architecture
design. In International Conference on Machine Learning, 2019.

[39] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention
in multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

[40] Jonathan Ho, Evan Lohn, and Pieter Abbeel. Compression with flows via local bits-back
coding. In Advances in Neural Information Processing Systems, pages 3874–3883, 2019.

[41] Antti Honkela and Harri Valpola. Variational learning and bits-back coding: an
information-theoretic view to Bayesian learning. IEEE Transactions on Neural Networks,
15(4):800–810, 2004.

[42] Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Integer discrete
flows and lossless compression. In Advances in Neural Information Processing Systems,
pages 12134–12144, 2019.

[43] Emiel Hoogeboom, Taco S Cohen, and Jakub M Tomczak. Learning discrete distribu-
tions by dequantization. arXiv preprint arXiv:2001.11235, 2020.

[44] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural
autoregressive flows. In International Conference on Machine Learning, pages 2083–2092,
2018.

[45] David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

BIBLIOGRAPHY 48

[46] Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis:
Existence and uniqueness results. Neural Networks, 12(3):429–439, 1999.

[47] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis,
volume 46. John Wiley & Sons, 2004.

[48] Nal Kalchbrenner, Lasse Espheholt, Karen Simonyan, Aaron van den Oord, Alex Graves,
and Koray Kavukcuoglu. Neural machine translation in linear time. arXiv preprint
arXiv:1610.00527, 2016.

[49] Nal Kalchbrenner, Aäron Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. In International Conference on
Machine Learning, pages 1771–1779, 2017.

[50] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande,
Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman, and Koray
Kavukcuoglu. Efficient neural audio synthesis. arXiv preprint arXiv:1802.08435, 2018.

[51] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[52] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1
convolutions. In Advances in Neural Information Processing Systems, pages 10215–
10224, 2018.

[53] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[54] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In Advances
in Neural Information Processing Systems, pages 4743–4751, 2016.

[55] Friso H Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding
for lossless compression with hierarchical latent variables. In International Conference
on Machine Learning, 2019.

[56] Leon Gordon Kraft. A device for quantizing, grouping, and coding amplitude-modulated
pulses. PhD thesis, Massachusetts Institute of Technology, 1949.

[57] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine,
Laurent Dinh, and Durk Kingma. VideoFlow: A flow-based generative model for video.
arXiv preprint arXiv:1903.01434, 2019.

[58] Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pages 29–37, 2011.

[59] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy
search under unknown dynamics. In Advances in Neural Information Processing Systems,
pages 1071–1079, 2014.

[60] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control with locally
optimal examples. In International Conference on Machine Learning, pages 41–48,
2012.

[61] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement
learning with gaussian processes. In Advances in Neural Information Processing Systems,

BIBLIOGRAPHY 49

pages 19–27, 2011.
[62] Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL: Interpretable imitation

learning from visual demonstrations. In Advances in Neural Information Processing
Systems, pages 3812–3822, 2017.

[63] Christos Louizos and Max Welling. Multiplicative normalizing flows for variational
Bayesian neural networks. In International Conference on Machine Learning, pages
2218–2227, 2017.

[64] Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep
hierarchy of latent variables for generative modeling. In Advances in Neural Information
Processing Systems, pages 6548–6558, 2019.

[65] Brockway McMillan. Two inequalities implied by unique decipherability. IRE Transac-
tions on Information Theory, 2(4):115–116, 1956.

[66] Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel
networks and multidimensional upscaling. In International Conference on Learning
Representations, 2019.

[67] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. Practical full resolution learned lossless image compression. arXiv preprint
arXiv:1811.12817, 2018.

[68] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural
attentive meta-learner. In International Conference on Learning Representations, 2018.

[69] Andrew William Moore. Efficient memory-based learning for robot control. Technical
report, University of Cambridge, Computer Laboratory, 1990.

[70] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
Neural importance sampling. arXiv preprint arXiv:1808.03856, 2018.

[71] Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, 2000.

[72] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. On surrogate loss
functions and f-divergences. The Annals of Statistics, pages 876–904, 2009.

[73] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel,
and Jan Peters. An algorithmic perspective on imitation learning. Foundations and
Trends in Robotics, 7(1-2):1–179, 2018.

[74] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. In Advances in Neural Information Processing Systems, pages
2338–2347, 2017.

[75] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
arXiv preprint arXiv:1912.02762, 2019.

[76] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander
Ku, and Dustin Tran. Image transformer. In International Conference on Machine
Learning, pages 4055–4064, 2018.

[77] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. DeepMimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM

BIBLIOGRAPHY 50

Transactions on Graphics (TOG), 37(4):1–14, 2018.
[78] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine.

Variational discriminator bottleneck: Improving imitation learning, inverse RL, and
GANs by constraining information flow. In International Conference on Learning
Representations, 2019.

[79] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

[80] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. WaveGlow: A flow-based generative
network for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3617–3621. IEEE, 2019.

[81] Martin L Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[82] Prajit Ramachandran, Tom Le Paine, Pooya Khorrami, Mohammad Babaeizadeh, Shiyu
Chang, Yang Zhang, Mark A Hasegawa-Johnson, Roy H Campbell, and Thomas S
Huang. Fast generation for convolutional autoregressive models. arXiv preprint
arXiv:1704.06001, 2017.

[83] Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search: Functional
gradient techniques for imitation learning. Autonomous Robots, 27(1):25–53, 2009.

[84] Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu
Wang, Yutian Chen, Dan Belov, and Nando Freitas. Parallel multiscale autoregressive
density estimation. In International Conference on Machine Learning, pages 2912–2921,
2017.

[85] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International Conference on Machine Learning, pages 1530–1538, 2015.

[86] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and approximate inference in deep generative models. In International
Conference on Machine Learning, pages 1278–1286, 2014.

[87] Oren Rippel and Lubomir Bourdev. Real-time adaptive image compression. In Inter-
national Conference on Machine Learning, pages 2922–2930. JMLR. org, 2017.

[88] Jorma J Rissanen. Generalized Kraft inequality and arithmetic coding. IBM Journal
of research and development, 20(3):198–203, 1976.

[89] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
AISTATS, pages 661–668, 2010.

[90] Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In AISTATS, pages 627–635,
2011.

[91] Stuart Russell. Learning agents for uncertain environments. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory, pages 101–103. ACM,
1998.

[92] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems, pages 901–909, 2016.

BIBLIOGRAPHY 51

[93] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. PixelCNN++:
Improving the PixelCNN with discretized logistic mixture likelihood and other modifi-
cations. In International Conference on Learning Representations, 2017.

[94] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[95] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[96] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative
adversarial imitation learning. In Advances in Neural Information Processing Systems,
pages 7461–7472, 2018.

[97] Umar Syed and Robert E. Schapire. A game-theoretic approach to apprenticeship
learning. In Advances in Neural Information Processing Systems, pages 1449–1456,
2007.

[98] Umar Syed, Michael Bowling, and Robert E. Schapire. Apprenticeship learning using
linear programming. In International Conference on Machine Learning, pages 1032–
1039, 2008.

[99] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. In International Conference on Learning Representations, pages
1–10, 2016.

[100] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image
compression with compressive autoencoders. In International Conference on Learning
Representations, 2017.

[101] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 5026–5033. IEEE, 2012.

[102] James Townsend, Thomas Bird, and David Barber. Practical lossless compression
with latent variables using bits back coding. In International Conference on Learning
Representations, 2019.

[103] James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: lossless
image compression with hierarchical latent variable models. In International Conference
on Learning Representations, 2020.

[104] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural
autoregressive density-estimator. In Advances in Neural Information Processing Systems,
pages 2175–2183, 2013.

[105] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle.
Neural autoregressive distribution estimation. The Journal of Machine Learning
Research, 17(1):7184–7220, 2016.

[106] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

BIBLIOGRAPHY 52

[107] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. International Conference on Machine Learning, 2016.

[108] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves,
and Koray Kavukcuoglu. Conditional image generation with PixelCNN decoders. arXiv
preprint arXiv:1606.05328, 2016.

[109] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008, 2017.

[110] Christopher S Wallace and David M Boulton. An information measure for classification.
The Computer Journal, 11(2):185–194, 1968.

[111] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video
models. arXiv preprint arXiv:1906.02634, 2019.

[112] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum
entropy inverse reinforcement learning. In AAAI, AAAI’08, 2008.

[113] Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Modeling interaction via
the principle of maximum causal entropy. In International Conference on Machine
Learning, pages 1255–1262, 2010.

	Contents
	List of Figures
	List of Tables
	Introduction
	Imitation Learning
	Introduction
	Background
	Characterizing the induced optimal policy
	Practical occupancy measure matching
	Generative adversarial imitation learning
	Experiments
	Discussion
	Recent related work

	Likelihood-Based Generative Modeling
	Introduction
	Improving flow models
	Flow model experiments
	Compression with flows
	Local bits-back coding
	Compression experiments
	Discussion
	Recent related work

	Conclusion
	Bibliography

