
Interactive Program Distillation

Andrew Head

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-48
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-48.html

May 15, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Interactive Program Distillation

by

Andrew Head

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Björn Hartmann, Co-chair
Professor Marti A. Hearst, Co-chair

Professor Koushik Sen
Assistant Professor Joshua Blumenstock

Spring 2020



Interactive Program Distillation

Copyright 2020

by

Andrew Head



1
Abstract

Interactive Program Distillation

by

Andrew Head

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Björn Hartmann, Co-chair

Professor Marti A. Hearst, Co-chair

From snippets to tutorials, programmers rely on sample programs to learn
and get work done. The process of creating sample programs, however, can be
demanding, limiting the dissemination of programming knowledge. To enhance
this process, we introduce the concept of program distillation, methods for its
implementation, and usability studies verifying its power. Program distillation is
the tool-assisted transformation of existing programs into simpler ones, where key
ideas are emphasized, and cruft has been removed.

Three interactive tools are introduced for distilling code snippets, notebooks,
and tutorials. Each tool contributes novel interactions grounded in proven pro-
gram analysis techniques. CodeScoop helps programmers extract snippets from
existing code through interactive program slicing and simplification. Code gather-
ing tools let a programmer extract subsets of cells from a computational notebook
that reproduce key results. And Torii provides a live programming experience for
creating output-rich multi-step tutorials. Studies with users reveal that these tools
satisfy important needs, support efficient sample program creation, and provide a
level of expressiveness not yet available in today’s standard tools.



i

To Anna, whose distilled knowledge would fill many
dissertations, each of them worth reading.



ii

Table of Contents
Table of Contents ii

List of Figures vi

List of Tables viii

Preface ix

Acknowledgments xi

1 Introduction 1
Purpose and thesis statement . . . . . . . . . . . . . . . . . . . . . . . . 2
An overview of this dissertation . . . . . . . . . . . . . . . . . . . . . . . 2

Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 3
Research methodology . . . . . . . . . . . . . . . . . . . . . . . . . 4

Statement of prior publication . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background: The design of sample programs 6
Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
How do programmers read programs? . . . . . . . . . . . . . . . . . . . . 7

Reading order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Building mental models of programs . . . . . . . . . . . . . . . . . 9
Program design choices and their impact on readability . . . . . . . 9

How are sample programs used? . . . . . . . . . . . . . . . . . . . . . . . 11
Why programmers use sample programs . . . . . . . . . . . . . . . 11
The process of finding and using samples . . . . . . . . . . . . . . . 12

What makes a sample program effective? . . . . . . . . . . . . . . . . . . 14
Code snippet design . . . . . . . . . . . . . . . . . . . . . . . . . . 14



iii
Tutorial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

How do authors distill sample programs? . . . . . . . . . . . . . . . . . . 17
The quality of sample programs today . . . . . . . . . . . . . . . . 18

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related work 21
Tools for authoring sample programs . . . . . . . . . . . . . . . . . . . . 21

Automated generation of sample programs . . . . . . . . . . . . . . 21
Literate programming . . . . . . . . . . . . . . . . . . . . . . . . . 31
Multi-stage sample authoring . . . . . . . . . . . . . . . . . . . . . 40

Other tools that could support program distillation . . . . . . . . . . . . 43
Efficient code selection . . . . . . . . . . . . . . . . . . . . . . . . . 44
Cleaning programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Linked edits to programs, documentation, and outputs . . . . . . . 47
Automated program explanation . . . . . . . . . . . . . . . . . . . . 50

A design space for program distillation tools . . . . . . . . . . . . . . . . 51
This dissertation in the design space . . . . . . . . . . . . . . . . . 54

4 Snippet distillation: Mixed-initiative code selection and simplification 57
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Formative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Design motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A demo of CodeScoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Prologue: An unexpectedly useful programming pattern . . . . . . . 64
First steps: Initial text selections . . . . . . . . . . . . . . . . . . . 64
Mixed-initiative dialogue: Completing the example . . . . . . . . . 65

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Code extraction with the “Flag-Suggest-Resolve” workflow . . . . . 69
Detecting errors and relevant code . . . . . . . . . . . . . . . . . . . 69
Suggesting fixes and code additions . . . . . . . . . . . . . . . . . . 71
Applying fixes to the scoop . . . . . . . . . . . . . . . . . . . . . . . 72



iv
Generating an example program from the “scoop” data structure . . 72
Implementation specifics and limitations . . . . . . . . . . . . . . . 73

In-lab usability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Limitations and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Notebook distillation: Cleaning messy computational notebooks 84
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Design motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A demo of code gathering tools . . . . . . . . . . . . . . . . . . . . . . . 88

Prologue: A proliferation of cells . . . . . . . . . . . . . . . . . . . . 88
Finding the code that produces a result . . . . . . . . . . . . . . . . 88
Removing old and distracting analysis code . . . . . . . . . . . . . . 89
Reviewing versions of a result and the code that produced them . . 90
Cleaning finished analysis code . . . . . . . . . . . . . . . . . . . . 91
Exporting analysis code to a standalone script . . . . . . . . . . . . 91

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Collecting and slicing an execution log . . . . . . . . . . . . . . . . 93

In-lab usability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Limitations and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Tutorial distillation: Flexible sequencing of snippets 102
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Formative study I: Interviews with tutorial authors . . . . . . . . . . . . 105

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Formative study II: Content analysis of two-hundred tutorials . . . . . . 109
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



v
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A demo of Torii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Propagating edits from snippets to source programs . . . . . . . . . 113
Propagating edits from code to outputs . . . . . . . . . . . . . . . . 113
Splitting, reordering, and copying code . . . . . . . . . . . . . . . . 114
Reviewing a simulated reader’s code . . . . . . . . . . . . . . . . . . 115
Making localized changes to the code . . . . . . . . . . . . . . . . . 116
Distributing augmented tutorials . . . . . . . . . . . . . . . . . . . 117

In-lab usability study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Limitations and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 Conclusions 126
Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Claim I. Four interactive functions . . . . . . . . . . . . . . . . . . 127
Claim II. Implementation with proven program analysis techniques 128
Claim III. Effective and flexible user experience . . . . . . . . . . . 129

Remaining challenges and future directions . . . . . . . . . . . . . . . . . 130
Mixed-initiative program synthesis . . . . . . . . . . . . . . . . . . 130
Authoring tools for explorable tutorials . . . . . . . . . . . . . . . . 131
Natural language generation . . . . . . . . . . . . . . . . . . . . . . 132
The distillation of scientific discourse and beyond . . . . . . . . . . 132

Closing remarks: Humans, compilers, and creativity . . . . . . . . . . . . 134

Bibliography 135



vi

List of Figures
0.1 A snippet from the TEX program . . . . . . . . . . . . . . . . . . . . . ix

1.1 An intricate, hand-crafted programming tutorial . . . . . . . . . . . . . 1
1.2 Interactive program distillation tools . . . . . . . . . . . . . . . . . . . 3

2.1 Four stages of program reading . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Classic techniques for presenting programs . . . . . . . . . . . . . . . . 22
3.2 A workflow for extracting sample programs from existing programs . . 24
3.3 An automatically-generated sample program . . . . . . . . . . . . . . . 25
3.4 A flow diagram of a sample usage of a mobile app . . . . . . . . . . . . 29
3.5 A section of a WEB program and the document generated from it . . . . 33
3.6 A schematic of a computational notebook . . . . . . . . . . . . . . . . 35
3.7 Types of messes in computational notebooks . . . . . . . . . . . . . . . 36
3.8 A guided tour of a program . . . . . . . . . . . . . . . . . . . . . . . . 39
3.9 Interactive assistance for repairing sample programs . . . . . . . . . . . 47
3.10 Linked edits of source code clones . . . . . . . . . . . . . . . . . . . . . 48
3.11 A design space of distillation tools, explored . . . . . . . . . . . . . . . 55

4.1 Extracting example code from existing code with CodeScoop . . . . . . 57
4.2 Tool recommendations for improving example extraction . . . . . . . . 62
4.3 A workflow for iterative correction of incorrect example code . . . . . . 70
4.4 Suggesting fixes and code that complete a “scoop” . . . . . . . . . . . . 71
4.5 Difficulty of making authoring choices with CodeScoop. . . . . . . . . . 76
4.6 A comparison of two participants’ authoring choices . . . . . . . . . . . 78
4.7 Choices about resolving undefined variables . . . . . . . . . . . . . . . 80

5.1 How code gathering tools extract slices from notebooks . . . . . . . . . 84
5.2 Finding relevant code with code gathering tools . . . . . . . . . . . . . 89
5.3 Cleaning a notebook with code gathering tools . . . . . . . . . . . . . . 90
5.4 Comparing versions of a result with code gathering tools . . . . . . . . 91
5.5 Implementation of code gathering . . . . . . . . . . . . . . . . . . . . . 92
5.6 Usefulness of features of code gathering tools . . . . . . . . . . . . . . . 97

6.1 An overview of Torii’s approach to snippet execution . . . . . . . . . . 102



vii
6.2 Dependencies between artifacts in a tutorial authoring environment . . 107
6.3 Counts of snippets in tutorials, grouped by the tutorial’s purpose . . . 110
6.4 Writing tutorials with Torii . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Tutorials participants created with Torii . . . . . . . . . . . . . . . . . 122
6.6 Usefulness of features of Torii. . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 How program dependencies and linked edits support distillation . . . . 129
7.2 Generation of context-relevant explanations of sample programs . . . . 133



viii

List of Tables
3.1 A comparison of tools for automated sample program generation . . . . 23
3.2 A comparison of tools for literate programming . . . . . . . . . . . . . 32
3.3 A comparison of tools for authoring multi-stage samples . . . . . . . . 40

6.1 How often tutorials contained fragments, duplicated code, and outputs 111



ix

Preface
A carefully presented program

description

snippet name

references to 
other snippets

code

snippet number

§835 TEX82 PART 38: BREAKING PARAGRAPHS INTO LINES 417

835. The first part of the following code is part of TEX’s inner
loop, so we don’t want to waste any time. The current active node,
namely node r, contains the line number that will be considered
next. At the end of the list we have arranged the data structure so
that r = last active and line number (last active ) > old l .

h If a line number class has ended, create new active nodes
for the best feasible breaks in that class; then
return if r = last active , otherwise compute the new
line width 835 i ⌘

begin l line number (r);
if l > old l then

begin { now we are no longer in the inner loop }
if (minimum demerits < awful bad ) ^

((old l 6= easy line ) _ (r = last active )) then
hCreate new active nodes for the best feasible breaks just

found 836 i;
if r = last active then return;
hCompute the new line width 850 i;
end;

end

This code is used in section 829.

836. It is not necessary to create new active nodes having minimal demerits
greater than minimum demerits + abs (adj demerits ), since such
active nodes will never be chosen in the final paragraph breaks.
This observation allows us to omit a substantial number of feasible
breakpoints from further consideration.

hCreate new active nodes for the best feasible breaks just
found 836 i ⌘

begin if no break yet then
hCompute the values of break width 837 i;
h Insert a delta node to prepare for breaks at cur p 843 i;
if abs (adj demerits ) � awful bad �minimum demerits then

minimum demerits  awful bad � 1
else minimum demerits  

minimum demerits + abs (adj demerits );
for fit class  very loose fit to tight fit do

begin if minimal demerits [fit class ]  minimum demerits
then

h Insert a new active node from best place [fit class ] to
cur p 845 i;

minimal demerits [fit class ] awful bad ;
end;

minimum demerits  awful bad ;
h Insert a delta node to prepare for the next active node 844 i;
end

This code is used in section 835.

Figure 0.1: A snippet of the TEX program (Knuth 1986)

One of the most beautifully-presented programs is, incidentally, the very same
program that was used to typeset this dissertation.

This program is Donald E. Knuth’s typesetting system, TEX. The entire source
code for TEX can be read in the book, TEX: The Program (Knuth 1986). In this
book, the program is introduced as a sequence of short snippets of code. Each
snippet is accompanied by prose explanations of what the code does. Beneath
each snippet are cross-references to related snippets. An index at the end of the
book lists each snippet by a descriptive name (Figure 0.1).

To present TEX in this way, Knuth needed new tools. While creating TEX,
Knuth (1984) invented the WEBmeta-language for authoring programs that could be
typeset into books. An author would write a program as a sequence of snippets with
explanations. WEB offered authors flexibility in how they split code into snippets.



x
For instance, any snippet could run code defined in another snippet. And snippets
could be listed in any order the author believed was best for helping the reader
understand the program. In a program so ordered, Knuth believed:

The complex whole can be understood by understanding each simplepart and by understanding the simple relationships between neigh-boring parts. Large software programs are inherently complex, andthere is no “royal road” to instant comprehension of their subtle fea-tures. But if you read a well-written WEB program one section at atime, starting with [the first snippet], you will find that its ideas arenot di�cult to assimilate.
Knuth’s tools, then, provided authors with flexibility to express programs as

simple parts and relationships between those parts, and helped authors turn these
programs into both machine-executable code and beautiful documents.

At the heart of Knuth’s vision is the belief that tools can help authors present
programs in ways that fundamentally change the reading experience. This belief
is not unique to Knuth. Rather, it is shared among innumerable researchers, tool
builders, and programmers, who have redesigned the medium of the computer
program, with inventions from comments to computational notebooks.

This dissertation is founded on that same belief. It begins with the question,
how could a tool help an author present a program that already exists?



xi

Acknowledgments
To Björn Hartmann and Marti Hearst, I offer my heartfelt gratitude. I cannot
fathom how many hours of your time you both have invested in this research and
my own development as a researcher. It is from you two that I have learned to pick
problems, write carefully, create figures, design slides, draft grants, give feedback,
and talk to others about research. I am thankful to have you as my advisors.

To my committee members, I am grateful you took the time to help me learn
to be a better researcher. Joshua Blumenstock, thank you for teaching me how
to conduct an analytic project, take on problems of societal importance, and craft
thoughtful arguments about quantitative research. Koushik Sen, thank you for
exposing me to the exciting work of data-driven program analysis for synthesizing
programs and texts about them.

To my mentors at Microsoft Research and Google, you have taught me so much
about what it means to be an effective researcher and a considerate mentor. If a
researcher could have an ounce of Rob DeLine’s care in articulating fun conceptual
solutions to interesting problems, Steven Drucker’s infectious vision for interactive
systems, Emerson Murphy-Hill’s dedication to inventing fascinating methods, and
Caitlin Sadowski’s ability to select problems of simultaneous practical and theo-
retical value, they would be a superhuman researcher with talents unrivaled. I am
thankful you took a chance on me.

Thank you to my academic siblings at Berkeley and beyond: Valkyrie Savage,
Peggy Chi, Amy Pavel, Philippe Laban, Jeremy Warner, Eldon Schoop, James
Smith, David Mellis, Richard Lin, Bala Kumaravel, Ilya Rostovtsev, Michelle
Nguyen, Jingyi Li, Forrest Huang, Mitchell Karchemsky, Xiangmin Fan, Wen-
can Luo, Xiang Xiao, Teng Han, Phuong Pham, Lanfei Shi, Fred Hohman, and
Victoria Hollis: I am grateful to have had you as peers in research and friends.
I try and hopefully sometimes succeed in channeling your grace, thoughtfulness,
tenacity, and verve into my research and life.

Thank you to those who believed in this work by contributing to it. Matthew
Waliman, Nathan Khuu, Jason Jiang, Jocelyn Sun, R. J. Pimentel, Nidhi Kaku-
lawaram, Luming Chen, and Kunal Chaudhary: I am blessed that you chose to
contribute to this work, impressed that you chose to put up with me as I was learn-



xii
ing how to be a decent mentor, and happy we got to explore new ideas together.

Thank you to my academic micro-mentors at other institution: Dominik Moritz,
Sarah Chasins, Philip Guo, Titus Barik, and Cesar Torres. You may not know it,
but the advice you gave me and ideas you have planted in my mind continue to
resonate with me and weave their way in no small way into the research I choose
to do, and how I go about it.

Thank you also to my academic family from the Allen Institute for Artificial
Intelligence, Kyle Lo, Sam Skjonsberg, and Dan Weld. You have been tolerant
of the time I have spent devoted on this dissertation when we have had new and
exciting ideas to explore. You have also taught me how to craft a research project
that is simultaneously interesting, stable, and captivating. I am so excited to keep
working with you in the next years on ideas that had their humble beginnings in
this dissertation but which have now outgrown their domain of programming and
now extend into the realms of scientific discourse.

Thank you to my friends who have supported me in writing this dissertation.
To my good college friend Cyrus Ramavarapu, thank you for reading the earliest
drafts of this thesis before anyone else, and helping me rethink the framing of the
dissertation in so many places of consequence. Katie Stasaski and Nate Weinman,
this dissertation would have been much more difficult to write had it not been for
your regular constant words of encouragement, humorous chat messages, probing
questions, and revitalizing weekend tea parties.

Elena Glassman and Gustavo Soares, thank you for being here to breathe life
into my research with encouragement and excitement during a formative time in
my Ph.D. I didn’t know it at the time, but I needed you both. Elena, I aspire to
think as big as you, as ceaselessly. Gustavo, I didn’t know mortals could create
such beautiful algorithms until I saw you create one in the spring of 2017.

Thank you to Jingtao Wang, my first mentor in human-computer interaction at
the University of Pittsburgh. Jingtao, there is no question I wouldn’t be here today
if you had not replied to my email asking if you had room for an undergraduate
researcher in your group to study serious video games. If you had not had faith in
my potential as a researcher, I would not be at UC Berkeley, and I would not be
writing this dissertation. You told me many years ago that I should do with my
life what I would do even if I had all the time and money in the world. I think
you’d be happy to know that I am. I try every day to make you proud.

Finally, thank you to my wife, Anna. You celebrated with me when good news
came. You helped me figure out how to take care of myself during the busiest times
of this dissertation. You laughed at my jokes, most of which really did not deserve
anyone’s attention. You offered feedback on ideas, talks, and paper drafts in the



xiii
late hours of the night. And you joined me in discussions of human-computer
interaction and programming languages over breakfasts and dinners. Thank you
for enjoying the cozy little niche of research in this dissertation with me, and for
building an exciting life with me outside of it.



1

Chapter 1. Introduction

outputs show the assembled 
program running

· · ·

snippets build cumulatively on 
other snippets

Figure 1.1: An intricate, hand-crafted programming tutorial. To create this tutorial, an author must havecreated many versions of the same source program, created outputs for each version, and carefully styledthe snippets. The pictured tutorial is “Let’s make a Mario game” by Kamermans.

Humans are capable of producing marvelous instructions for one another. For
example, take the programming tutorial shown in Figure 1.1. The tutorial

teaches a reader how to create the popular Super Mario side-scrolling game by
writing about 500 lines of code using the Processing language. The code is split
into bite-sized snippets each about 20 lines long. Each snippet is carefully styled,
including just enough context to tell the programmer where to place the new
code, and cutaways (i.e., “[...]”) to hide code previously added. After every few
snippets, the reader can test out the program in each of 22 different interactive
versions of the Mario game at various stages of construction.

While this tutorial is impressive, what’s more impressive is the effort that must
have gone into preparing its code. Tutorials like this are created by authors trans-
forming existing programs into snippets and accompanying outputs. Producing
these snippets and outputs involves selecting code from large and tangled pro-
grams, simplifying the code to make it more readable, supplementing it with text



Chapter 1. Introduction 2
and outputs, and sequencing it into a series of snippets. The above tutorial con-
tains 41 snippets and 22 outputs. One can imagine it took quite some time to
extract these snippets, clean their code, and produce outputs using them.

Program distillation is the transformation of existing programs into sample
programs like tutorials and code snippets. It is the process by which tutorials
like the one above are brought into existence. The purpose of distillation is to
bring out the key ideas in a program, while eliminating cruft. All around the
world, hobbyists, technical writers, professional developers, and teachers invest
considerable effort in distilling programs for others to read and reuse.

Purpose and thesis statement

While programmers benefit from mature tools for many activities like debugging
and reviewing code, authors distill programs with a mish-mash of general-purpose
tools. Like debugging, distillation entails a common set of subtasks and pain
points that authors encounter when performing those tasks. Also like debugging,
a well-designed tool can alleviate these pain points, permitting authors to offload
cognitive load to their tools and instead focus on higher-level design goals.

The purpose of this dissertation is to answer the question, How can tools help
authors distill existing programs into sample programs? My thesis is that

Authors can transform existing programs into sample programsmoree�ciently and flexibly when aided by interactive tools for selecting,simplifying, supplementing, and sequencing code.

An overview of this dissertation

This dissertation introduces distillation tools, a class of programming tools de-
signed to help authors transform existing programs into sample programs (Fig-
ure 1.2). It comprises the following chapters:

Chapter 2 begins with a review of background knowledge on the topic of
program distillation. The chapter offers guidelines for how to present sample pro-
grams effectively, grounded in empirical studies of programmers. It also introduces
the key tasks of program distillation, consisting of selecting code, simplifying it,
supplementing it with other code and assets, and sequencing it.



Chapter 1. Introduction 3

Interactions
Select, Simplify, 

Supplement, Sequence

Author

Program

Program Analysis

DISTILLATION 
TOOLS Distilled Program

Snippet

Notebook

Tutorial

Figure 1.2: Interactive program distillation tools. With distillation tools, authors have interactive a�or-dances for e�ciently selecting code, simplifying code, supplementing the code with outputs and expla-nations, and sequencing it into a series of snippets.

Chapter 3 reviews the related work. It first surveys how prior tools have
helped authors create and present sample programs. It then considers other tools
and techniques from the fields of human-computer interaction, software engineer-
ing, and program analysis, that may serve as useful components of future distilla-
tion tools. A morphological design space of distillation tools is introduced.

Chapters 4–6 constitute the novel research contributions of this dissertation.
Together, they represent an initial exploration of a larger design space of distillation
tools. In isolation, each chapter introduces a new tool for distilling a specific class
of programming artifact—a snippet, a notebook, or a tutorial. The contributions
of each chapter are summarized in the next subsection.

Chapter 7 concludes this dissertation, summarizes findings, and sets an agenda
for future work in program distillation.

Summary of contributions
The primary contributions of this dissertation are the design, engineering, and
evaluation of three novel interactive systems. These systems support:

Mixed-initiative extraction of concise, executable snippets from existing code via in-
cremental program slicing and simplification of source programs. A controlled lab
study showed that programmers could extract snippets more efficiently with this
system than with a comparison tool (Chapter 4).



Chapter 1. Introduction 4
Rapid cleaning of messy computational notebooks via the selection of variables or
outputs and program slicing of an execution history. A qualitative usability study
showed that analysts found the system useful for cleaning notebooks and writ-
ing analysis code, and discovered new ways to use them, like generating personal
documentation and lightweight versioning (Chapter 5).

Construction of flexibly-organized programming tutorials via live, linked editing of
source programs, snippets, and outputs. The system provides authors flexibility in
how they split code into snippets and how they order those snippets. A usability
study showed that authors could use the system to write simple tutorials with
flexibility not present in standard code editing tools (Chapter 6).

Additionally, this dissertation contributes two formative studies of tutorial au-
thoring in Chapter 6. These studies reveal that authors face a unique challenge of
keeping collections of related programming artifacts consistent with each other as
they write and revise tutorials.

Research methodology
The primary contributions of this dissertation are artifacts. Artifacts are one of
the more common types of contributions within the discipline of human-computer
interaction. The purpose of research involving artifacts is to reveal design possi-
bilities, yield generalizable insights, and capture an understanding of the design
problem in the artifacts (Wobbrock and Kientz 2016).

Interactive systems like those in this dissertation are often evaluated holistically
based on a variety of factors such as importance, generality, and impact on solution
viscosity (i.e., users’ difficulty accomplishing tasks) (Olsen Jr. 2007). Each of
these three criteria are discussed throughout this dissertation. The importance of
the systems comes from their reach: the systems could one day support millions
of authors in producing sample programs, and millions more readers who would
read those samples. The generality of the tools is demonstrated through their
implementation in existing code editors.

The ability of the tools to reduce solution viscosity is evaluated through in-
lab usability studies with users. Qualitative usability studies were preferred to
controlled studies, given their effectiveness in yielding insight about user expecta-
tions, strategies, and preferences. That said, small-scale controlled studies were
employed to evaluate two of the tools (Chapters 4 and 6).

The systems were designed iteratively with input from users. Initial ideas for
the systems came from formative studies of authors and programs they created.
For each system, there are dozens of sketches, paper prototypes, and interactive



Chapter 1. Introduction 5
prototypes that were created and discarded as a more nuanced understanding of
user needs, capabilities, and technological limitations was attained.

Statement of prior publication

Chapters 4, 5, and 6 have previously appeared as conference papers in the proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (Head
et al. 2018; Head et al. 2019; Head et al. 2020).

All of my co-authors on these articles have provided their consent for the articles
to be reproduced in this dissertation. Much of this dissertation, therefore, repre-
sents the gracious contributions of my co-authors. Elena L. Glassman drafted the
introduction and figures of what is now the chapter on snippet extraction (Chap-
ter 4). She worked with me tirelessly to scope the project and articulate a vision
of how mixed initiative tools could help with snippet creation.

The idea for notebook distillation (Chapter 5) arose in my very first conversa-
tions with Rob DeLine and Steven M. Drucker. As I now know, the idea germinated
in Rob and Steven’s minds years before we met. After our formative research, it
was clear this idea would be impactful, and a perfect union of our interests. Rob
wrote the initial version of the program dependence analysis code that evolved into
the code gathering tools’ backend. Rob, Steven, and Titus Barik piloted and ran
the usability study for notebook distillation at Microsoft Research.

When designing Torii (Chapter 6), Marti A. Hearst helped design the protocol
for the content analysis of tutorials. Nidhi Kakulawaram and Luming Chen pi-
loted this protocol, and contributed to its refinement. Jason Jiang undertook the
painstaking work of serving as the second analyst for all 200 tutorials, in just three
weeks. Then, James Smith conducted nearly all of the usability study sessions,
surfacing key stories from each one.

The guiding advice of my mentors Björn Hartmann and Marti A. Hearst can be
found throughout each chapter within this dissertation, for aspects big and small,
from project motivations to system names, figure design, and word choice.



6

Chapter 2. Background
The design of sample programs
Designing a sample program is an activity involving hundreds of small decisions.
Among other things, an author must decide what code to share, and how to rewrite
it so that it can be easily read, understood, and reused.

The purpose of this chapter is to provide an empirically-grounded understand-
ing of what we know about how sample programs should be presented, and how
they are authored today. This chapter briefly surveys what is known about how
programmers read programs, how they make use of sample programs specifically,
and how authors write sample programs. The chapter culminates in a summary
section, consisting of guidelines for effective sample program design, and a set of
author needs for future tools to support.

To begin, this chapter defines the terms used in the rest of this dissertation,
such as author, reader, and sample program. These terms have a nuanced meaning
in this dissertation, and are therefore defined precisely below.

Terms

The purpose of this dissertation is to help programmers create sample programs.
Sample programs (abbreviated “samples”) are programs that are written to be
reference material for other programmers.

Because they are designed to serve as reference material for other programmers,
samples are distinct from other types of programs a programmer might write.
Unlike prototype programs, which are often messy and thrown away, samples are
meant to be read by others and may have a long lifetime. Unlike production
programs, which are built to be maintainable and robust, samples are often written
to be simple, short, and readable at the expense of robustness.

Those who produce samples are authors, and those who read them are read-
ers. Readers have three reasons to read samples: to learn, to gain design inspira-
tion, and to reuse code.



Chapter 2. Background: The design of sample programs 7

program

comments
identifiers

...

gaze

beacons

plans

program 
knowledge

for   in 0..N: 
  sum += list[ ]

SUM

SORT
...

structures

1

2

3

4 mental model

prior 
knowledge

Figure 2.1: Four stages of program reading. As programmers read programs (1), they find beacons (2).These beacons help them recall plans, or programming patterns they already know (3). A mental modelof the program is built by integrating knowledge about the program with prior knowledge (4).

Two types of samples are considered in this dissertation. Code snippets
(abbreviated “snippets”) are short code listings about a dozen lines long, and rarely
longer than one hundred lines long. Tutorials are documents consisting of a
sequence of snippets, interspersed with prose explanations of the snippets. The
tools described in this dissertation help authors create both snippets and tutorials.

Authors use code editors to create samples. Chapter 5 focuses on the dis-
tillation of samples within a specific type of code editor called a computational
notebook. A computational notebook (abbreviated “notebook”) is a code ed-
itor consisting of a sequence of code cells. Authors write code in these cells and
execute each of them one at a time. The outputs from running the code in a cell
get embedded in the notebook next to the code that produced it.

How do programmers read programs?

Any one program can be written in innumerable ways. How can an author write a
sample program so that it can be easily read? How should the code be organized?
What names should the variables be given? Should it include comments? This
section reviews research about how programmers read programs and discusses im-
plications for the design of readable programs. A visual summary of the process
of reading programs is shown in Figure 2.1.



Chapter 2. Background: The design of sample programs 8
Reading order
Programmers do not read programs linearly. Busjahn et al. (2015) conducted
an eye-tracking study where they asked programmers to read programs and an-
swer comprehension questions about them. The programmers’ gaze patterns were
compared to two idealized orderings: one where statements were ordered by line
number, and another where they were ordered by control flow, i.e., the order in
which the program would execute them. It was observed that reading order was
better predicted by control flow than by linear order.

Reading order varies from one programmer to another. Busjahn et al. (2015)
found that student programmers read code in a more linear order than professional
programmers. In another eye-tracking study, Uwano et al. (2006) observed student
programmers as they inspected programs for bugs. While many of the program-
mers began inspecting the code by scanning it in its entirety, scanning patterns
varied. Some participants scanned the program more quickly than others. At least
one participant scanned the entire program twice.

Two general approaches for reading programs have been identified in the pro-
gram comprehension literature: systematic and as-needed. Littman et al. (1987)
identified these two approaches when observing programmers as they modified a
program. When reading systematically, a programmer would execute the program
in their mind and seek an understanding of causal relationships between disparate
parts of the program. In contrast, when reading as-needed, the programmer would
read as little of the program as possible, locating just the parts they needed to un-
derstand in order to modify the program. Those who read the program as-needed
were less successful at modifying the program. Littman et al. saw no relationship
between a programmer’s experience and their approach to reading.

As they read a program, it is theorized that programmers rely on the program’s
surface features to develop and confirm hypotheses about what the program does.
Brooks (1983) named the features that programmers use to recognize known struc-
tures and operations beacons. One example of a beacon is a section of code that
swaps two elements of an array within a loop, which could indicate that a sort
operation is being performed. In Brooks’ theory, comments, identifier names, in-
dentation, and external documentation can all serve as indicators that provide
beacons to help programmers recognize known structures and operations.

When modifying a program, a programmer will read some parts of the pro-
gram to orient themselves, and other parts to modify the program. Koenemann
and Robertson (1991) observed programmers as they modified a program. They
imposed a unique constraint, telling participants they could only access one piece of
information at a time, i.e., one snippet, output, or piece of documentation. Koen-



Chapter 2. Background: The design of sample programs 9
emann and Robertson found that programmers accessed outputs and high-level
program descriptions early in the programming task because of their strategic rel-
evance to the task. These resources helped the programmer understand the goals
and organization of the program. Later, programmers focused almost exclusively
on the code snippets they were modifying and descriptions of those snippets, which
were of direct relevance to their modification task.

Building mental models of programs
As programmers read programs, they build up mental models of what the program
does and how it does it. The design of the program can influence whether those
models are correct, and how efficiently they are built. It is believed that pro-
grammers look for plans in programs, that is, program fragments that represent
stereotypic programming action sequences. For instance, one plan might be the
computation of a running total in a loop (Soloway and Ehrlich 1984).

Soloway and Ehrlich (1984) found that a programmer’s ability to recognize
plans in a program depends on how well a program follows rules of discourse. One
rule of discourse is that a variable should be named by its role within a plan.
Another rule is that if code is included in a program, it should be executed. When
these rules of discourse are violated, for instance by assigning unexpected names to
variables, Soloway and Ehrlich found that programmers had difficulty recognizing
plans and performing simple code completion tasks.

The result of a close reading of a program is a nuanced and multi-faceted mental
model. Wiedenbeck et al. (1993) found that programmers who carefully studied
a program understood its hierarchical structure, developed a mapping between
the program’s goals and its code, recognized common programming patterns, con-
nected the program with their prior knowledge, and grounded their understanding
of the program in textual details. Pennington (1987) found that the strength of
a programmer’s mental models depended on the time spent studying a program.
Programmers developed procedural models of a program’s control flow first, be-
fore functional models of its goal hierarchy. Functional models of the program were
strengthened when the programmers were asked to modify the program.

Program design choices and their impact on readability
Does the structure of a program affect its readability? How about the style of
identifier names? In a recent online survey, Tashtoush et al. (2013) found that
programmers expect that many features of a program to influence its readability.
The literature provides evidence showing that many of these features do indeed



Chapter 2. Background: The design of sample programs 10
impact programmers’ ability to understand, debug, and modify a program. Here,
we briefly summarize findings from the literature.

Module structure. Kinicki and Ramsey1 evaluated the impact of module structure
on program comprehension. Code was divided into modules, either according to
function, randomly, or not at all. Comprehension of programs was best when code
was split into modules according to their function. Boehm-Davis et al. (1992)
asked programmers to modify programs organized in one of three ways: in-line
code, functional decomposition, or object-oriented. For student programmers in
the study, the programs organized by functional decomposition were the fastest
to modify, and the easiest to find information in. No effects were observed for
professional programmers in the study.

Statement order. Letovsky and Soloway (1986) observed programmers as they mod-
ified programs containing delocalized plans, or programming plans that were scat-
tered across different parts of the program. Programmers had trouble modifying
programs with delocalized plans, particularly if they read the program according
to an as-needed approach rather than a systematic approach. Dunsmore et al.
(2000) found that programmers were less likely to be able to find bugs that are
caused by interactions across scattered lines of code. This implies that authors
should take care to group related statements of code close together.

Whitespace. Norcio (1982) asked student programmers to fill in the blanks in pro-
grams with selected lines removed. Programs varied based on whether they were
indented and whether comments all appeared at the top or instead interspersed
with the text. Both indentation and interspersed documentation had a positive
effect on a programmer’s ability to fill in the blanks. Miara et al. (1983) asked
student programmers to answer comprehension questions about a program for-
matted with differing numbers of spaces per indent. Students answered questions
most accurately when the program was formatted with four spaces per indent,
rather than 0, 2, or 6 spaces. Oman and Cook (1990) conducted four studies of
how the format of a program affects a programmer’s ability to modify and answer
questions about the program. Many features of programs were changed at once,
including separating control structures by blank lines, chunking related clauses,
and highlighting section headings. The design of the studies made it impossible
to determine the effect of each type of change. That said, all four studies showed
that the proposed changes led to improvements in task performance or efficiency.

Identifier names. Lawrie et al. (2006) conducted an online study wherein program-
mers were asked to write descriptions of programs that varied based on the brevity

1 As described by Shneiderman and Mayer (1979).



Chapter 2. Background: The design of sample programs 11
of identifiers. Programs included identifiers that were either full words, abbrevia-
tions, or single letters. Programmers’ descriptions were most accurate when thee
program contained full-word identifiers. Binkley et al. (2013) conducted a series
of five experiments on identifier style, concluding that identifiers presented using
camel-case (i.e., getNextPath) rather than underscores (i.e., get_next_path) led
to better comprehension, particularly for beginner programmers.

Comments. Many studies have measured the impact of comments on program com-
prehension. Nielebock et al. (2019, Table 1) provide a recent review. The studies
in the review suggest that comments can help beginner programmers answer ques-
tions about code, and complete programming tasks. Nielebock et al. conducted
an online study of their own where hundreds of programmers, mostly profession-
als, performed short programming tasks on small programs, with and without
comments. The presence of comments did not impact programmers’ success or
efficiency in completing the tasks. This suggests that while comments may aid
comprehension, it depends on the comment, the reader, and the task.

Colors. When important elements of a program are given a font or background
color, programmers can better answer questions about the program (Rambally
1986), optimize the program (Tapp and Kazman 1994), and complete specialized
tasks like locating code within preprocessor directives (Feigenspan et al. 2013).
One common form of coloring in code editors is syntax highlighting, where tokens
are colored based on their role in the program grammar. Hannebauer et al. (2018)
provide a recent review of research on the impact of syntax highlighting on program
comprehension, noting that prior research has yielded contradicting results. Their
own study did not show any effect of syntax highlighting on student programmers’
completion of programming tasks. Altogether, the above research suggests that
coloring helps programmers read and locate code, even if syntax highlighting does
not consistently impact the programming experience.

How are sample programs used?

To design an effective sample program, it is useful to understand why a reader uses
samples, and how programmers find and use them.

Why programmers use sample programs
Readers use sample programs to learn, to gain design inspiration for their own
programs, and to find code to reuse in their programs.



Chapter 2. Background: The design of sample programs 12
Learning. In a field study of programmers learning on-the-job, Sacks (1994) re-
ported that programmers “learn more and do more work by copying and following
examples and by working their way through exercises than by any other single
activity.” When learning new programming languages and tools, programmers
would follow along with tutorial materials, complete the exercises, and then use
the samples to guide their own practice. In more recent studies, when program-
mers have been tasked with learning about a new technology or tool, they often
start by searching for tutorials (Brandt et al. 2009), or finding samples that they
can use to scaffold the creation of their own programs (Sillito and Begel 2013).
Even in industry, tutorials like “Codelabs” at Google make up an important part
of the on-boarding materials (Johnson and Senges 2010).

Design. Samples help programmers refine the design of their programs. Burkhardt
and Detienne (1995) conducted an in-lab study where programmers were asked
to design a new software system. Throughout the study, programmers looked at
existing designs to clarify their goals, revise their solutions, and find constraints
for the design problem they had not considered before. Wu et al. (2019) ana-
lyzed how programmers reused code from Stack Overflow, a popular programming
question-and-answer site. Sometimes, programmers consulted samples as reference
implementations, without copying any code from the sample. The act of creating
samples may help a programmer design programs as well. In their textbook on
program design, Felleisen et al. (2018) advocate that programmers create samples
as they design a program to develop a specification of its behavior. Beck (2001)
claims that writing tests for a program that has not yet been written can help a
programmer scope their implementation and simplify their designs.

Reuse. Programmers reuse code from samples as building blocks for their own
programs (Sacks 1994; Brandt et al. 2009). They consult samples to validate the
correctness of the syntax used in their own programs (Neal 1989; Sacks 1994).
Evidence of the reuse of samples is pervasive in public repositories of source code.
Baltes and Diehl (2019) conducted several studies of how code is cloned from
samples on Stack Overflow into public source code repositories. They found that,
depending on the repositories considered, between 3.3% and 11.9% of repositories
contained clones of code from Stack Overflow.

The process of finding and using samples
An effective sample program is one that can be found, understood, copied, mod-
ified, and debugged. This subsection describes how programmers find and use
samples, from search to integration.



Chapter 2. Background: The design of sample programs 13
Step 1. Search. When a programmer needs a sample, they will often search for one
using a general-purpose web search engine (Brandt et al. 2009) or a search engine
that indexes their organization’s code (Sadowski et al. 2015). Programmers search
for samples for many types of tools and technologies, like third-party libraries and
services, build systems, and front end development tools (Xia et al. 2017). For some
search engines, searches for samples account for as much as 20% of programming-
related queries (Hoffmann et al. 2007).

After submitting their query, the programmer might open many pages from the
search results before inspecting any one of them (Brandt et al. 2009). The question
then is which sample to use. The programmer assesses whether to use a sample
based on the page’s cosmetics, like whether the code has syntax highlighting, or
whether the page contains ads (Brandt et al. 2009). They may also consider the
author’s credentials, the availability of working code demos, the match between
the programming language of the sample and programmer’s own code, and the
“digestibility” of the information (Dorn and Guzdial 2010). Surface features of
a sample may be deceiving. For instance, when asked to make a head-to-head
choice between samples, programmers may choose those that have detailed, well-
written explanations, even if the code is fundamentally flawed (i.e., contains critical
security vulnerabilities) (Linden et al. 2020).

Step 2. Copy. Once a programmer has found a promising sample, they copy it
into their own program. What is most interesting about this step isn’t that code
is copied, but what isn’t happening as the programmer copies it. Specifically,
programmers often won’t read the code carefully, or the surrounding text. Instead,
they will instantly start trying to modify it (Brandt et al. 2009). Explanations
around the sample program may be ignored (Anderson et al. 1984; Brandt et al.
2009). Flaws in the code get copied along with the code (for one example, see
Pirolli and Recker 1994). This tendency to avoid looking carefully at the contents
of code to be reused has been called comprehension avoidance in the setting of a
programmer reusing their own code (Lange and Moher 1989), and the term feels
apt for this setting as well. While not every programmer will ignore the code and
text for every sample they copy, this behavior has been observed often enough that
it should be considered a major usage pattern.

Step 3. Modify as needed. After programmers copy code from a sample, they modify
it until it fits into their own program and runs correctly. The process of modify-
ing a program involves repeated editing, execution, and debugging. Rosson and
Carroll (1996) have described the process as “debugging into existence”: rather
than carefully planning how to integrate the copied code into their program, the
programmer allows their tools to guide them to a working program by pointing out
one error at a time. By the time code from a sample has been integrated, it will



Chapter 2. Background: The design of sample programs 14
have been modified in many ways. Perhaps the cosmetics of the code have been
changed, or the functionality of the code might have been altered (Wu et al. 2019).
Zhang et al. (2019) estimate that 88% of clones from Stack Overflow into GitHub
projects required 23 or more modifications, for the purposes of fixing compilation
errors, refactoring, and customizing logic.

Implications of empirical research about sample program usage

One implication of the studies above is that to make a sample program effective,
an author needs to think about more than readability. First, the appearance
of the sample matters, because a reader might not use a sample if it does not
appear attractive and well-explained. Second, the sample should be easy to modify,
because the reader will often want to integrate it into their own code. Third, the
sample should be robust, because the reader may not read the program and the
accompanying explanations thoroughly.

These studies describe how programmers reuse samples, and not how they
learn from samples. What can an author do to help readers learn from samples?
Anderson et al. (1984, pp. 90–93) provide a vivid account of a programmer learning
recursion from a textbook. An incident is described where a programmer used a
sample as a template for doing an exercise. By modifying the sample, the learner
acquired new procedural knowledge that they then were able to apply almost
immediately and efficiently to solve a subsequent problem. In other words, the
programmer learned from the sample by using it to solve problems. The implication
of Anderson et al.’s observations is that authors can help readers learn from samples
by providing opportunities to use them to solve problems.

What makes a sample program e�ective?

Prior research on sample programs has yielded explicit guidelines on how they
should be designed. These guidelines are reviewed here.

Code snippet design
To learn what makes snippets effective or not, researchers have asked program-
mers to describe their experiences using samples in interviews (Nykaza et al. 2002;
Robillard and Deline 2011), surveys (Robillard and Deline 2011; Buse and Weimer
2012), and diary studies (Sillito and Begel 2013). They have also analyzed the con-
tent of high-quality snippets (Buse and Weimer 2012; Nasehi et al. 2012). These



Chapter 2. Background: The design of sample programs 15
studies have revealed five traits of effective snippets. Some of the traits conflict
with each other, suggesting that readers require different types of samples for dif-
ferent purposes.

Conciseness. Two content analyses of high-quality snippets showed that they are
often concise. Buse andWeimer (2012) found that samples in the Java SDK were 11
lines long on average, with a median length of 5 lines. Nasehi et al. (2012) observed
that samples in accepted and highly-voted answers on Stack Overflow were often
shorter than the samples in other unaccepted or less-highly-voted answers. In both
content analyses, unnecessary code was replaced with with placeholder methods
like “processVariable(var),” comments like “// compare objects,” and ellipses
like “int glyphIndex = ....” When conducting a needs assessment for SDK
documentation, Nykaza et al. (2002) learned that programmers often desired short
samples containing 10 lines of code or less.

Simplicity. In interviews and surveys with professional programmers, Robillard and
Deline (2011) report that programmers sometimes found long samples hard to
understand, because the samples became “tangled” with code that accomplished
multiple disparate goals. Buse and Weimer (2012) surveyed students in a software
engineering course, asking them to describe what factors were important in good
samples. Among other factors, respondents reported that samples should show
“the most basic version of the problem,” and include simple and understandable
variable names. Another way to achieve simplicity is to split up the code into
small chunks. In their content analysis of Stack Overflow answers, Nasehi et al.
(2012) observed that accepted and highly-voted answers often show the code split
into multiple chunks, where each chunk is explained separately.

Non-triviality. A sample should not be so simple as to do nothing useful at all. It
must show how to do something useful. In their needs assessment, Nykaza et al.
(2002) found that programmers wanted both simple and advanced samples. In
interviews and diary studies, Sillito and Begel (2013) learned that programmers
consult blog posts and Stack Overflow to learn how to use their tools in ways
that are not covered in official programming documentation. These sources helped
programmers understand “ways to use it you may not have thought of” and led
to “a-ha moments.” Robillard and Deline (2011) suggested that the ideal size of a
sample is a single programming pattern, rather than a single API call.

Completeness. When learning on their own, programmers write programs by mak-
ing use of “vanilla examples” that they can be sure will work (Sillito and Begel
2013). In their needs assessment, Nykaza et al. (2002) heard from programmers
that they want robust samples that can be used as is, or modified and incorporated
into larger applications (Nykaza et al. 2002).



Chapter 2. Background: The design of sample programs 16
Adherence to best practices. Robillard and Deline (2011) report that their infor-
mants perceived samples to be not only demonstrations of how to do something, but
as recommendations about how best to do something. Some informants believed
that samples were the best type of documentation for describing best practices. In-
formants would choose which samples to use based on whether the samples seemed
sufficiently authoritative, credible, and recent to demonstrate best practices. In
their content analysis of Stack Overflow answers, Nasehi et al. (2012) found that
accepted and highly-voted answers often explicitly described the limitations of the
code, such as performance issues and security risks.

Tutorial design
Programming tutorials are, fundamentally, just one specific type of tutorial. Re-
searchers have studied how to design effective tutorials for decades, and that re-
search applies to programming tutorials as well. van der Meij et al. (2009) reviewed
decades of research on tutorial design as of 2009. The review surfaced several key
findings backed by empirical research. First, instructions can be made more effec-
tive if they follow the minimalist instruction paradigm, a paradigm described at
length in Carroll’s (1990) book The Nurnberg Funnel. In this paradigm, instruc-
tions help readers accomplish their own tasks, leverage their existing problem-
solving strategies, and recover from errors. Second, instructions should provide
both procedural information about what actions need to be performed, as well as
declarative information which includes supportive information about the general
workings of a program and tips and tricks. Third, if an author wants to encourage
readers to try out features, this is best accomplished by providing exercises instead
of simply asking readers to experiment with the software “on-their-own.”

Further research in the programming domain has led to recommendations for
pedagogy and teaching problem-solving process in programming tutorials:

Pedagogical best practices. Kim and Ko (2017) introduced 24 dimensions for evalu-
ating the pedagogical effectiveness of a programming tutorial. Dimensions included
whether the tutorial helps learners select appropriate learning material, provides
targeted feedback, aids transfer learning, and helps learners seek answers to their
questions beyond the tutorial. Kim and Ko selected these dimensions based on re-
search in the learning sciences. Perhaps authors should consider these dimensions
when brainstorming how to improve the learning experience of their tutorials.

Teaching problem-solving process. Linn and Clancy (1992) described case studies
as a type of instructional material that helps beginner programmers learn expert-
level program-solving process. Case studies comprise a programming problem, a



Chapter 2. Background: The design of sample programs 17
description of the process used by an expert to solve the problem, an expert’s
code, study questions, and test questions. One of the key motivations behind case
studies is to help learners build multiple representations of solutions like an ex-
pert often has. A case study thus includes and links together pseudocode, sample
programs, illustrations, verbal descriptions, implementations, testing information,
and debugging information. Linn and Clancy found that when learners were pro-
vided code with expert commentary like that from the proposed case studies, they
learned significantly more about program design.

How do authors distill sample programs?

Recently, research has offered insight into how authors today create sample pro-
grams from existing programs. Studies have included interviews with authors
(Dagenais and Robillard 2010; Ford et al. 2016; MacLeod et al. 2017; Mysore and
Guo 2017), surveys of authors (Parnin et al. 2013), observations of programmers
creating sample programs (Ginosar et al. 2013; Ying and Robillard 2014), and con-
tent analyses of sample programs (Tiarks and Maalej 2014). These studies indicate
that authoring sample programs involves four tasks.

Selecting. Coming up with ideas for samples can be difficult, as authors realize they
need to come up with samples that are realistic and not too contrived (Dagenais
and Robillard 2010). Parnin et al. (2013) found that programming bloggers often
blogged about their own coding experience. Once a blogger had an idea for a
sample, they would need to find, extract, and format code. Bloggers did this
manually. Bloggers often prepared posts several days after their initial experience,
which affected their ability to recall and recreate their experience.

Simplifying. Once an author selects code from an existing program, they simplify it
to make it readable and reusable. As noted by a blogger in Parnin et al.’s (2013)’s
survey, existing programs include unnecessary dependencies and customized busi-
ness logic that need to be removed. Ford et al. (2016) interviewed programmers
about barriers they faced to contributing questions and answers on Stack Overflow.
Informants reported that their programs sometimes contained company secrets,
and were too specific, long, or detailed to understand. The process of stripping
their program of proprietary information and unnecessary code was enough of a
burden to be a barrier to contributing to Stack Overflow. Ying and Robillard
(2014) found that when programmers were asked to create three-line summaries
of programs, some common operations for formatting the code included renaming
identifiers, hiding code, and introducing indentation.



Chapter 2. Background: The design of sample programs 18
Supplementing. Authors supplement samples by improving the quality of the code,
explaining the code, and producing visual aids. Tiarks and Maalej (2014) ana-
lyzed hundreds of tutorials, finding that typically, tutorials contain thousands of
words, as well as images. Mysore and Guo (2017) interviewed teaching staff for a
programming course, finding that the staff produced rich tutorials that contained
PowerPoint slides, video clips, and commands. The PowerPoint slides included
screenshots showing expected visual outputs. The staff also produced skeleton
starter code, helper scripts, and validation scripts. Creating these supplemental
materials could be time-consuming, and it could be difficult to keep all of these
materials updated and in sync.

Sequencing. To present a sample effectively, authors might wish to sequence it,
showing multiple versions of that program as it gets built up from nothing. Com-
mon ways to sequence a program are recording a screencast as one writes the
program, creating multiple “stages” or versions of the same program, or splitting
it into snippets. When an author sequences a program, they implicitly create mul-
tiple versions of it. MacLeod et al. (2017) interviewed creators of programming
screencasts, finding that they often prepared for a screencast by developing an out-
line, and sometimes debugged their programs live during the screencast. Ginosar
et al. (2013) found that when programmers create samples with multiple stages,
they often made changes that they wished to propagate to the other stages, like
fixing a bug or improving the program’s presentation.

Each of the studies above focused on a specific type of author, producing a
specific type of sample. Much remains to be understood about how samples are
authored and how tools can support authors. Therefore, Chapter 4 contributes
an observation study of how programmers select and simplify their code to make
samples, and Chapter 6 contributes an interview study revealing how accomplished
tutorial authors supplement and sequence their programs.

The quality of sample programs today
There is much evidence that, on the whole, programmers succeed in using the
samples at their disposal. As evidenced by the studies described in this chapter,
programmers regularly use samples to learn, to design, and to implement programs
of their own. Most questions on Stack Overflow receive answers that are upvoted
and accepted by the asker (Mamykina et al. 2011). Some tutorials personalize
content, provide targeted and immediate feedback, and help programmers transfer
what they learned beyond the current tutorial (Kim and Ko 2017).

That said, studies have also shown that many samples do not meet expecta-
tions. Programming tutorials found on the web often do not provide feedback,



Chapter 2. Background: The design of sample programs 19
support personalization, or support transfer learning in ways that could be helpful
to readers (Kim and Ko 2017, Table 1). In a content analysis of programming text-
books, Lin and Wu (2007) found that samples used in textbooks were often dry
and too trivial to provide meaningful instruction about how to solve programming
problems. Sometimes, snippets found online cannot be compiled or parsed (Yang
et al. 2016), contain violations of the libraries used, (Zhang et al. 2018), and are
considered to have inadequate organization, unhelpful naming, unexplained ratio-
nale, and clutter (Treude and Robillard 2017). Samples are sometimes missing for
popular public APIs (Parnin et al. 2012).

The tools in this dissertation are designed to help programmers produce clean,
complete, well-formatted sample programs from their existing programs. It is
hoped that by automating the clerical work in the tasks of selecting, simplifying,
supplementing, and sequencing code, the tools can let authors focus on creating
programs that are more readable, usable, and meaningful.

Summary

The above reviews of the literature can be distilled into a set of guidelines for how
sample programs might best be presented:

1. Reduce program fragmentation. A programmer may find it difficult to debug
programs when the code relevant to the bug is scattered across different parts
of the program. Help readers understand and debug the sample program by
keeping related statements close together.

2. Use familiar programming idioms. A reader’s ability to understand a program
may depend on their ability to see programming plans that they already
know. Help the reader recall plans by using familiar program structures and
variable names, and by providing clues in the comments.

3. Support reader needs. Readers consult samples to learn, to improve their
program’s design, and to reuse code. Readers desire sample programs that
show non-trivial programming patterns, “vanilla” use cases, and best prac-
tices. Sample programs cannot provide a perfect solution to all of these
needs at once. Authors should know which needs they hope to satisfy, while
acknowledging their sample may be used in many ways.

4. Polish the presentation. Readers will assess whether a sample is relevant based
on extrinsic features like syntax highlighting, author credentials, and the
explanations accompanying it.



Chapter 2. Background: The design of sample programs 20
5. Simplify the code. Readers desire sample programs to be simple. Common

approaches for simplifying the code include keeping it concise, replacing code
with placeholders, and showing the code step-by-step.

6. Keep the code complete. Sample programs will be copied wholesale into a
reader’s own program, bugs and all. Readers desire sample programs that
they can use as starting points for their own programs, and which they can
modify and incorporate into their existing code. Sample programs would
ideally, therefore, be complete, bug-free, and easy to modify.

The guidelines above resemble those shared within programming communities
today, like The SSCCE (Thompson 2020), the Stack Overflow guidelines for min-
imal, reproducible examples (Stack Overflow Help Center 2020), and the Mozilla
Developer Network code example guidelines (MDN contributors 2020). This chap-
ter has provided empirical evidence supporting each guideline.

The tools in this dissertation support authors in reducing fragmentation (Guide-
line 1, Chapter 5), making code simple (Guideline 5, Chapters 4 and 6), and keeping
code complete (Guideline 6, Chapters 4 and 5). They do so by providing authors
with new and improved ways to select, simplify, supplement, and sequence their
existing programs. Authors may find inspiration in the above guidelines. Tool
builders looking to support the process of program distillation may wish to help
authors with the four tasks of selecting, simplifying, supplementing, and sequenc-
ing code, while heeding the guidelines for program presentation above.



21

Chapter 3. Related work
Tools and techniques for authoring sample programs
For as long as there have been programs to share, programmers have needed ef-
fective ways to present those programs. Some of the first media for explaining
programs were permanent pen and code comments (Figure 3.1). More recently,
tool builders have invested considerable effort in developing code editors and pro-
gram analysis techniques to help programmers present their code to others.

This chapter reviews these tools. First, it reviews what is known about the
design and usability of tools for authoring sample programs (page 21). Second,
it surveys a broader set of interaction and program analysis techniques that may
one day make useful additions to distillation tools (page 43). Finally, it concludes
with a proposal of a design space of distillation tools (page 51). This design space
maps out promising design opportunities for future tool designers.

Tools for authoring sample programs

This section reviews tools that support the authoring of sample programs. Three
types of tools are reviewed: automated sample generation (page 21), literate pro-
gramming (page 31), and multi-stage sample authoring (page 40). Each subsection
ends with a discussion of how the tools relate to those proposed in this dissertation.

Automated generation of sample programs
What if sample programs could be generated automatically, without any author
effort? Such techniques could not only save authors the time it takes to produce
illustrative samples, they could also maintain the samples as their dependencies
change. This question has led to a rich line of research which crosses software
engineering and human-computer interaction.

This subsection describes three ways that automated tools can support the
generation of sample programs. First, they can extract sample programs from



Chapter 3. Related work 22

(a) A deck of punched cards, marked withpen to indicate which cards belong towhich procedures (Reinhold 2006).
(b) An example program from one of the first program-ming textbooks (Booth and Booth 1956). Each line ap-pears with a description of what that line does.

(c) A Fortran program from one of the first manuals for the language (Backus et al. 1956).Statements marked with “C” are descriptive comments.

Figure 3.1: Classic techniques for presenting programs. Even in the earliest days of programming,programmers found ways to make their programsmore readable for themselves and others, frommarkingup their decks of punched cards to carefully typesetting samples.

existing programs. Second, they can synthesize sample programs de novo. Third,
they can collect interesting sample data from a running program. These tools could
support the distillation tasks of selecting and simplifying code, and supplementing
it with sample data. A comparison of the tools is shown in Table 3.1.

Extracting samples from existing programs

One way to generate sample programs is by extracting them from existing pro-
grams. The main idea behind this approach is that for many of the samples an
author might create, there already exists a program that can be simplified into that
sample. The role of a tool for sample program extraction is to detect important
programming patterns in existing programs, extract code from those programs,
and format it into a readable and reusable sample.

The tools that researchers have developed for extracting samples all use approx-



Chapter 3. Related work 23

Buse and Weimer

eXoaDocs

CEG

Prospector

OverCode

CodeHint

MUSE

Codex

SpyREST

ma
ny

pr
og
ra
ms

✓
✓
✓
✓

✓
✓

✓

on
e p

ro
gr
am

✓

co
ns
tra
int
s

✓
✓

✓

dy
na
mi
c a

na
lys
is

✓
✓

✓

sy
mb

oli
c e
xe
cu
tio
n

✓

pr
og
ra
m
clu

ste
rin
g

✓
✓
✓
✓

✓
int
er
ac
tiv
ity

✓

✓
✓

sa
mp

le
da
ta

✓

✓

re
na
me

va
ria
ble

s

✓

✓

me
rg
e b

loc
ks

✓

ins
er
t p
lac
eh
old

er
s

✓
sa
mp

le
co
de

✓
✓
✓
✓

✓
✓

✓

re
mo

ve
co
de

✓
✓

✓
sli
ce

✓

✓

pr
og
ra
m
sy
nt
he
sis

✓
✓

✓
int
eg
ra
tio
n w

ith
do
cs

✓

✓
✓

ex
ec
ut
ab
le

✓

✓
✓

Input Output EditsAnalysis

Table 3.1: A comparison of tools for automated sample program generation. These tools generatesample programs, and sample data for programs to operate on. Some tools select code (see “slice”column). Others automatically simplify extracted programs to make them more readable and reusable(see “Simplifications” column family). Yet other tools supplement documentation for a program withsample data (see “sample data” column).

imately the same process. First, the tool scans a collection of existing programs.
When it finds an interesting pattern in a program, it extracts the fragment of the
program containing the pattern. Then, the tool picks representative fragments to
create samples from. To pick representative fragments, the tool clusters the frag-
ments, ranks them according to some measurement of readability or reusability,
and picks the top-ranked fragments. The chosen fragments are simplified with
automated program transformations, and then shown to the user.

Let’s consider an example. eXoaDocs (Kim et al. 2010) was one of the first pub-
lished systems for sample program extraction. Given the name of a method from
an API, eXoaDocs could generate a usage sample for that method. It generated
samples by querying the Koders code search engine for uses of the API method.
For each use that was found, the tool extracted a “slice”1 of code leading up to that
method use. It clustered the slices using a set of automatically-computed semantic
features. Samples were chosen by ranking slices according to their conciseness and
correctness and then showing the user the top-ranked slices (Figure 3.2). Apart
from the slice operation, the sample program was not further simplified.

1 See the definition of slicing in the subsection on efficient program selection (page 44).



Chapter 3. Related work 24

Figure 3.2: A workflow for extracting sample programs from existing programs. This figure for eXoaD-ocs (© 2009 IEEE, Kim et al. 2009) shows how it generates samples by mining programs from a repos-itory, selecting relevant code from the programs (i.e., “summarizing”), clustering them, and returningrepresentative samples from those clusters.

Many other sample program extraction tools have been developed. These tools
can generate several types of samples, and use several techniques for selecting code
from existing programs and simplifying samples.

What types of samples can be extracted? Tools can generate samples that are either
concrete or abstract. Concrete samples are copies of real, existing programs that
may have been lightly modified (Kim et al. 2010; Montandon et al. 2013; Moreno
et al. 2015). Abstract samples are samples that are generated from scratch to
represent an entire cluster of program fragments (Buse and Weimer 2012; Fast
et al. 2014; Allamanis and Sutton 2014; Glassman et al. 2015).2

Some tools produce samples that can be compiled and executed, and others
do not. In general, it is difficult to extract executable samples if the existing
program is sufficiently complex. The tool might not know whether it managed
to extract all of the code necessary for the sample to run. Some of the tools use
slicers to extract code (see Kim et al. 2010; Montandon et al. 2013; Moreno et
al. 2015). These slicers may only be able to extract code from a single method,
and sometimes miss program dependencies that can’t be inferred from the code.
That said, some tools do generate executable samples. For example, OverCode
(Glassman et al. 2015) constructs canonical solutions to programming problems
by clustering student submissions. It keeps samples executable by not removing
any code from the student submissions that it turns into samples.

Automated code selection. Tools can extract code for sample programs by slicing
existing programs. For instance, tools for generating API usage samples extract
slices containing a usage of an API member, along with a set of statements that the
usage depends on (Kim et al. 2010; Montandon et al. 2013; Moreno et al. 2015).
If a tool generates abstract samples, it can use a statistical approach to determine

2 These definitions are based on Moreno et al.’s (2015) definitions. In this chapter, the terms
refer to samples of all types, and not just API usage samples.



Chapter 3. Related work 25

FileReader f ; //initialized previously
BufferedReader br = new BufferedReader(f) ;
while(br .ready() ) {

String line = br .readLine() ;
//do something with line

}
br .close() ;

Figure 3.3: An automatically-generated sample program. This sample was generated using Buse andWeimer’s (2012) tool. While the sample is based on an existing program, several parts of that programhave been simplified. Statements have been replaced with placeholders (‘//do something with line”).The variables have been automatically renamed. Code listing reused with permission (© 2012 IEEE, Buseand Weimer 2012).

what statements should appear in the sample, including only the statements that
appear in a large number of existing programs (Buse and Weimer 2012).

Automated sample simplification. To simplify a program, a tool can either apply
automated transformations, or return what it infers to be the simplest fragments
extracted from existing programs. Buse and Weimer’s (2012) tool provides what
may be the most advanced automated transformations for simplifying programs.
Given a cluster of program fragments, the tool constructs abstract samples by
selecting statements that are shared across the program fragments. If this yields a
sample program with two adjacent control blocks with the same guard (e.g., two
if statements with the same condition), those blocks are merged. Uses of variables
that are not of the type for which a sample was requested get replaced with generic
placeholders like “//do something with line.” (Figure 3.3).

Tools that create abstract samples can assign idiomatic names to variables by
observing which names are the most common within the cluster the sample is being
created from (Buse and Weimer 2012; Glassman et al. 2015). Variable names can
also be generated according to simple typographical rules, such as abbreviating
the name of a variable type (Buse and Weimer 2012).

If a tool generates concrete samples, its primary mechanism for simplifying
the programs is to show the users the simplest fragments from each cluster. For
instance, MUSE (Moreno et al. 2015) incorporates three types of information about
a sample when ranking samples to show to a user. First, the sample’s popularity,
measured by the number of times that the code for that sample appears more
or less duplicated in existing programs. Second, its readability, estimated using
an automated metric of source code readability (Buse and Weimer 2010) well-
known within the software engineering research community. Third, its reusability,
measured in a way that penalizes samples that make use of unusual data types.



Chapter 3. Related work 26
How usable are the extracted samples? For many of these tools, studies have af-
firmed that when programmers have access to samples generated by the tools,
they complete programming tasks more efficiently (Kim et al. 2010; Moreno et al.
2015; Glassman et al. 2015). Two studies in particular indicate how the tools
compare to each other and to the work of human authors.

Buse and Weimer compared the samples their tool generated with those gen-
erated by eXoaDocs, and those written by human authors in the Java documenta-
tion. Using an automated program readability assessment tool they had published
previously (Buse and Weimer 2010), their samples were scored as more readable
than human-written samples and those from eXoaDocs. When asked to judge the
quality of samples in head-to-head comparisons, students in a software engineer-
ing course judged Buse and Weimer’s samples to be as good or better than those
by human authors 60% of the time, and strictly better than those from eXoaD-
ocs 75% of the time. However, graduate student respondents seemed to have a
reduced preference for the tool-generated samples when compared to undergrad-
uate students. These results indicate that generated samples may under certain
circumstances approach the quality of human-generated samples.

Moreno et al. (2015) conducted three studies of samples produced by MUSE.
One study showed that the ranks MUSE assigned to samples correlated with 9
developers’ ratings of the usefulness of those samples. In a second study, 119 de-
velopers rated the usefulness of the generated samples and provided qualitative
feedback on them. 82% of samples were rated as either “very useful” or “useful.”
The most frequent reason for negative scores was the unnecessary complexity of
the samples. For instance, 38 of the 44 lines in one sample were seen as irrelevant,
though were included because the program slicer saw them as relevant. Respon-
dents also wanted to see the result of running the code, and to view alternative
usage scenarios for a method. This feedback indicates how future innovation in
sample generation tools may yield better samples for readers.

Synthesizing sample programs

Are existing programs necessary for generating sample programs? Or can sample
programs be generated from nothing but a specification?

The task of generating programs that satisfy a user intent is called program
synthesis (Gulwani et al. 2017). Given a small set of constraints specified by a
user, a synthesizer produces a program that matches those constraints by efficiently
searching a large space of potential programs in an underlying language. Sample
program generation could be considered a special case of program synthesis, where
the output is meant to be read and reused by a programmer.



Chapter 3. Related work 27
Rissland and Soloway (1980) introduced one of the first tools for sample gen-

eration by synthesis. They called their approach constrained example generation
(CEG). Their goal was to generate LISP data structures for exercises in an in-
telligent tutoring system. The tutoring system requested lists with specifications
like, “Give an example of a list of 0’s and 1’s, which is longer than 2, and which
has at least one element deeper than depth 1.” The tool then searched through a
space of possible LISP lists, repeatedly modifying a set of simple lists by adding
elements to them, and increasing the depth of elements. The system returned the
first generated list that matched the specification.

Synthesizing samples in general-purpose programming languages. Several tools sup-
port the synthesis of samples in general-purpose, imperative programming lan-
guages. Prospector (Mandelin et al. 2005), for instance, synthesizes Java snippets.
A user specifies a data type that they want a synthesized snippet to produce, and
the types of objects they currently have in their program that can be used as
inputs. To synthesize a snippet, Prospector first constructs a graph, where each
node is a data type, and each edge is an operation (e.g., a method) that maps from
types it can take as input to the types it produces upon execution. Snippets are
synthesized by finding a path through the graph, or a sequence of operations, that
connect the input type to the output type.

CodeHint (Galenson et al. 2014) provides additional flexibility for how users
specify the sample they want. A user invokes CodeHint when they are writing a
program of their own and want a snippet that produces a specific value. The user
can provide a specification for a snippet in the form of a desired output, dynamic
type constraints, program sketches, or some combination of all of these. CodeHint
inspects the variables in the running program’s memory to infer what expressions
can be used to transform the variables into the desired output. It iteratively
constructs candidate programs by composing these expressions. Each candidate
program is tested against the specification by executing it, and the program state
is rolled back whenever a tested programs causes undesired side effects.

The use of existing programs in synthesis. Technically, neither Prospector nor Code-
Hint needs to refer to existing programs to generate samples. That said, both of
these tools benefit from rules learned from existing programs. Prospector learns
how to cast some API types to other types from existing samples, and Code-
Hint learns whether it can use specific static constants as an arguments to specific
methods. These enhancements serve as reminders that a tool may be able to better
produce programs by taking note of what a typical program looks like.

Synthesizing readable programs. While studies have shown that the systems above
generate samples that are useful to programmers (Mandelin et al. 2005; Galenson



Chapter 3. Related work 28
et al. 2014), there have not yet been studies comparing the quality of the gener-
ated samples to those produced by human authors. Synthesizing understandable,
modifiable programs is a challenge for program synthesis and its companion dis-
cipline in human-computer interaction, programming by demonstration (Cypher
1993). The challenge of making synthesized programs easy to understand has been
recognized within the programming by demonstration community for some time
(Myers et al. 2000; Lau 2009).

Program synthesizers are thus sometimes built with readability in mind, espe-
cially when users are expected to modify the synthesized program (Mayer et al.
2015; Chasins et al. 2018; Hempel et al. 2019; Drosos et al. 2020). To synthesize
a readable program, a synthesizer might prioritize candidate programs that are
short and consist of common programming idioms (Gulwani et al. 2017, p. 54).
One notable example is the CoScripter system (Leshed et al. 2008), which gen-
erates programs from demonstrations in pseudo-natural language text, which can
later be modified by end users. For these tools, empirical studies of readability
like those summarized in Chapter 2 may be necessary to confirm which design
decisions for synthesizers lead to more readable programs.

Collecting sample data from running programs

Programs are often documented with sample data, or inputs the program can be
invoked with, paired with the output the program produces when run on those
inputs. Readers benefit from sample data as they can use the sample inputs to
test out the program when they are using it for the first time, and view the outputs
to understand what exactly the program does.

Tools can help authors generate sample data by recording the inputs submit-
ted to a program and outputs produced by the program as it runs, and then
packaging this information into documentation. SpyREST (Sohan et al. 2015),
Meta (Fast and Bernstein 2016), Vesta (Krämer et al. 2016), and DynamiDoc
(Sulír and Porubän 2017) all generate sample data in this way, for REST API end-
points, Python functions, JavaScript functions, and Java functions, respectively.
SpyREST, for instance, generates sample data for REST APIs by intercepting
client requests to APIs, and then logging the request body, the name of the end-
point, the version of the API, and the response that the API returned. This data
is then cleaned up, formatted, and inserted into documentation.

These tools could potentially help authors produce more, and better, sample
data. As Krämer et al. (2016) note, a programmer executes their program on
sample inputs as they write it, but cannot be bothered to stop programming to
document these inputs. As a result, sample data is often lost. The above tools



Chapter 3. Related work 29

Figure 3.4: A sample usage of a mobile app, captured from author demonstration and rendered as
a mixed-media flow diagram. Video is captured as an author uses the app. A recording of the video issegmented, and annotated with transitions linking button presses to screen changes, using data collectedfrom an instrumented version of the app. This figure first appeared in Doppio: Tracking UI Flows and Code
Changes for App Development (Chi et al. 2018), published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

ensure they are retained. And indeed, during an in-lab study, programmers who
used Vesta had more complete and accurate documentation at the end of the study
than those who did not. Furthermore, if tools collect sample data as the programs
are deployed to real users, as is the case for SpyREST and Meta, they can collect
sample data from these real users, rather than from the author. Such data could
represent real world use cases better than an author’s sample data.

To make sample data more readable, tools can transform it. SpyREST sim-
plifies sample data, truncating API responses that it deems to be too long. Both
SpyREST and Vesta generate test code that can be used either by readers to try
out the program, or by authors to test their code. DynamiDoc generates string
descriptions of function behaviors like “When ch = 'A', the method returned
'\u0041'.” And both DynamiDoc and Meta, when many sample inputs and out-
puts have been logged, prioritize which ones to show to readers based on which
inputs the program was invoked with most frequently.

If a program is interactive, tools can capture and document user experiences.
Doppio (Chi et al. 2018), for example, creates mixed-media diagrams of Android
app usage (Figure 3.4). The diagrams consist of embedded video clips of each
screen, in order, that an author opened as they used an app. Arrows link one
screen to another, pointing from a button that was clicked on one screen to the

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 3. Related work 30
other screen that was opened as a result. As the designers of this tool found in
in-lab studies, rich sample usages like these can help readers understand programs
(Chi et al. 2018). That said, generating such rich representations of usages requires
sophisticated program instrumentation. Doppio records video as the author uses
the app, and logs which functions were invoked and when, so that it knows how
to segment screen recordings and link them in the flow diagram.

Tools for collecting sample data can serve yet another purpose in program
distillation: they can help authors simplify sample programs. As will be discussed
in Chapter 4, tools can collect the values that variables take on as a program
executes. They can then give authors the choice to replace a reference to a variable
with its value. This lets an author eliminate the code used to produce the value,
and thus shorten the sample program.

The role of authors in sample program generation

A few exceptions aside, the tools described in this subsection do not allow an
author to influence the design of the sample program. Tools that generate sample
data from runtime instrumentation (Sohan et al. 2015; Fast and Bernstein 2016;
Krämer et al. 2016; Sulír and Porubän 2017) require authors to use the program,
and tools for generating sample programs by synthesis (Mandelin et al. 2005)
accept a specification of program behavior from users. However, generally, these
tools do not allow an author to express how they wish the program to appear.

Three tools from this subsection deserve mention for the agency they afford
authors in influencing the generated sample. CoScripter synthesizes programs as
executable pseudo-natural language instructions and lets authors directly edit these
instructions (Little et al. 2007). CodeHint lets authors write only the parts of the
program they care to specify, and leave the rest to the synthesizer to generate
(Galenson et al. 2014), an approach known as program synthesis by sketching
(Solar-Lezama 2008). Doppio generates flow diagrams showing how one might use
an app, taking an author demonstration as input (Chi et al. 2018). These tools
combine the power of automated program analysis and synthesis with author input
that specifies what the sample should do and how it should appear.

Limitations of sample program generation tools

The tools in this subsection have three limitations. First, extracted samples are
often either incomplete or larger than they need to be, due to imprecision in
program slicers. Second, the tools do not permit authors to influence the design of
the samples, as noted above. These first two limitations are addressed in Chapter 4,



Chapter 3. Related work 31
which introduces an interactive tool that lets authors work together with a slicer
to extract complete, concise snippets. This tool also lets authors provide input
into how they would like to simplify the sample.

The third limitation is that these tools have not yet been shown to be capable of
generating larger samples like programming tutorials. In Chapter 6, an interactive
tool is presented that can help authors create tutorials, and author needs are
identified that future automated tools may be able to assist with.

Literate programming
In 1984, Donald Knuth proposed literate programming as a new approach to writ-
ing code. In this vision, instead of programs, authors write about computational
ideas and the implementation of those ideas. Instead of simply commenting their
source code, a programmer splits their program into brief code snippets, and in-
terleaves these snippets with explanations about what the snippets do, and how
they fit together into a complete program. The output of literate programming is
a document that describes an algorithm, studded with code that shows how each
piece of the algorithm is implemented (Knuth 1984).

Those familiar with the specifics of literate programming will note that the term
is used liberally in this subsection, compared to what Knuth might have considered
a literate programming tool. The common thread connecting all of these tools is
the belief that programs should be written and distributed in a medium where
code is accompanied by explanations. A comparison of the tools discussed in this
subsection is shown in Table 3.2.

The beginning: WEB and related tools

In his seminal article on literate programming, Knuth (1984) presented a tool called
WEB. A programmer would write a program in a WEB file, which would comprise
many sections, each containing commentary about the program, and optionally,
a program snippet. WEB’s two processors transformed the file into more useful
representations. The TANGLE processor combined program snippets into a complete,
machine-executable program. The WEAVE processor formatted the WEB file into a
nicely typeset document, complete with cross-references between the definitions of
program snippets and where they were used (Figure 3.5).

Most unique to WEB was the ability to order code flexibly, in a way that was
not possible with a typical compiler. Snippets could be shown in practically any
order an author might wish, because they were defined in terms of other snippets,



Chapter 3. Related work 32

JTourBus

WEB

Jupyter notebook

Tempe

Codepourri

Observable

Streamlit

chat.codes

"w
eb
"

✓
sc
rip
t

✓

✓

int
er
ac
tiv
e d

as
hb
oa
rd

♦

✓

✓

ex
ec
ut
e c
od
e

✓

✓
✓
✓

✓
ric
h t
ex
t

✓
✓

✓
✓
✓
✓
✓

co
de

✓
✓
✓
✓
✓
✓
✓
✓

cr
os
s r
efe

re
nc
es

✓

✓

sh
ow

/ h
ide

sn
ipp

et
s

✓
✓

✓

✓

✓

gu
ide

d t
ou
r

✓

✓

✓

dis
cu
ss
ion

♦

✓

re
ac
tiv
e

♦

✓

✓

✓

ca
ch
e p

ar
tia
l r
es
ult
s

✓

mo
no
lit
hic

pr
og
ra
m

✓

ce
ll-
by
-c
ell

✓

pr
oje

ct

✓

✓

re
vis
ion

his
to
ry

✓

no
te
bo
ok

✓

✓

✓

ou
tp
ut

✓

✓

✓

✓

Program Format Contents Reader UXExecution

Table 3.2: A comparison of tools for literate programming. Tools for literate programming help authors
supplement programs with rich text and outputs. They also support authors in sequencing code in newways, i.e., as webs of snippets (Knuth 1984). The diamond sign (�) indicates that a tool provides thefunctionality only with community-provided extensions.

and TANGLE figured out how to assemble working programs from snippets based on
references between them. Two segments of the same function, then, could appear
on two different pages. A program could be presented using a bottom-up approach
(i.e., showing the algorithmic details first), a top-down approach (i.e., leading in
with the program structure), or some combination of the two approaches.3

Literate programming attracted great interest within the computer science com-
munity for some time. Knuth published literate programs in the Programming
Pearls column of the Communications of the ACM, and there was even a literate
programming column in the Communications (Van Wyk 1990). Childs (1992) es-
timated there were at least 1,000 users of literate programming tools at one point.
A series of other literate programming tools, among them CWEB (Thimbleby 1986)
for C, and Noweb (Ramsey 1994) for any language, were developed.

Knuth claimed that WEB programs could be written as quickly as those in other
languages, and that WEB programs were not only better documented, but also easier
to understand and debug. Though just how usable were WEB-like tools?

One early criticism of literate programming was that it was inadequate for ev-
eryday engineering work, where simple systems built quickly from reliable existing

3 The reader is encouraged to look at an even more complex WEB program in the preface.



Chapter 3. Related work 33

@ This program has no input, because 

we want to keep it rather simple.  

The result of the program will be to 

produce a list of the first thousand 

prime numbers, and this list will 

appear on the |output| file. 

... 

@<Program to print...@>= 

program print_primes(output); 

const @!m=1000; 

@<Other constants of the program@>@; 

var @<Variables of the program@>@; 

begin @<Print the first |m| prime 

    numbers@>; 

end.

2. This program has no input, because we want to 
keep it rather simple. The result of the program will 
be to produce a list of the first thousand prime 
numbers, and this list will appear on the output file. 

... 
 
⟨Program to print the first thousand prime 
        numbers 2 ⟩ ≡ 
program print primes(output); 
  const m = 1000; 
    ⟨ Other constants of the program 5 ⟩ 
  var ⟨ Variables of the program 4 ⟩ 
    begin ⟨ Print the first m prime numbers 3 ⟩ 
    end. 
 
This code is used in section 1.

WEB code generated document

Figure 3.5: A section of a WEB program and the document generated from it. When writing a WEB pro-gram, authors write code as sections, each containing a Pascal code snippet and a prose description ofthe snippet. Snippets are built from snippets defined in other sections. Cross-references between eachsnippet’s definition and uses are automatically inserted into the generated document. The excerpts inthis figure are reused from (Knuth, Literate Programming, The Computer Journal, 1984, Volume 27, Issue2, pages 97–111) with permission from Oxford University Press.

programs were better than well-explained, meticulously-designed novel systems.
In such contexts, WEB programs were “a sort of industrial-strength Faberge egg”
(Bentley et al. 1986).4 It was also implied that the needs for literate programming
were specialized enough that any practitioner of literate programming had written
their own WEB-like tool (Van Wyk 1990).

Observations of the tools in use provide some evidence of their usability. Ram-
sey and Marceau (1991) described their own use of WEB in developing a 33,000-line
software system on a team of seven. Among their takeaways were that the tool
should preserve the formatting of the original code (a feature introduced in both
CWEB and Noweb) and support the inclusion of diagrams and pictures. The team
found themselves in need of generating tables of contents with many levels of hierar-
chy, given the size of the code. They also wished that the team’s own familiar tools
could be used for formatting text (in their case LATEX rather than TEX). These
suggestions aside, the team felt that the juxtaposition of design documentation
with code eased the effort of maintaining the code, and that the documentation
for this system was used more often than that for other systems the team had
built, because it was so close to the source code.

4 Knuth himself noted that WEB might only be for “the subset of computer scientists who like to
write and to explain what they are doing” (1984).



Chapter 3. Related work 34
Two studies of the use of literate programming in the classroom provided fur-

ther evidence of the tools’ uses and usefulness. Childs et al. (1995) taught WEB
to an introductory programming course of honors students, reporting that these
students, compared to those taking prior offerings of the course, performed better
in a later data structures course. Shum and Cook (1994) conducted an experiment
where students in a junior computer science programming course completed as-
signments using either a literate programming tool or a comparison tool, Turbo C.
Students using the literate programming tool wrote significantly more documen-
tation, even though they wrote essentially the same number of lines of code. They
also wrote comments about algorithm design and examples of what the code did,
while no such comments were written by students in the control condition. This
latter study suggests that, in line with Knuth’s goals, literate programming tools
may lead programmers to write better explanations of their programs.

The tools just described reveal enthusiasm in the computer science commu-
nity for tools that enable careful program presentation. While the WEB family of
tools does not seem to be used widely today, the idea of writing code alongside
documentation lives on in many tools, among them computational notebooks.

Computational notebooks

In recent years, computational notebooks have become a popular type of program
editor. A notebook represents an interactive computing session, rather than a
monolithic program. In a notebook, a programmer writes snippets of code inside
cells, and can submit each of these cells one at a time to be executed by an
interpreter. The interpreter returns outputs, which are embedded in the notebook
next to the code that produced it. Programmers can order cells however they see
fit. They can add rich text descriptions between cells to record their own notes,
interpretations of results, and documentation (Figure 3.6). Because notebooks are
focused on supporting interactive computing, the creators of Jupyter notebook
have called them environments for literate computing (Perez and Granger 2015).

Notebooks today have millions of users. They have been created for languages
including Python (Jupyter), JavaScript (Observable), and R (Knitr). Notebook-
like tools have even been developed for command-line programming environments
(Schulte et al. 2012). While these tools are designed to support the explanation
of programs, recent studies have shown that sometimes users face considerable
challenges using notebooks to present their code.

Messes in computational notebooks. Even though notebooks provide features for
explaining code, users of notebooks often find it challenging to prepare the program
in their notebook for an audience. This is because their code was written for their



Chapter 3. Related work 35

Figure 3.6: A schematic of a computational notebook. This is a Jupyter notebook, containing inter-spersed cells with text descriptions, code for data analysis, and outputs of running the code. This figureis reused from Rule’s dissertation Design and Use of Computational Notebooks (Rule 2018), publishedunder the Creative Commons Attribution 4.0 International License.

own exploration, and now they must repurpose it for explanation (Rule et al.
2018c). Programmers have called their notebooks “messy” (Kery et al. 2018; Rule
et al. 2018c), containing “ugly code” and “dirty tricks” in need of “cleaning” and
“polishing” (Rule et al. 2018c).

Messes in computational notebooks can be attributed in part to the lackluster
code quality that appears to be intrinsic to exploratory programming. Program-
mers regularly prioritize the efficient discovery of solutions over writing high-quality
code (Kery and Myers 2017). They clutter their programs by saving old versions
of their code in comments (Yoon and Myers 2012; Kery et al. 2017). In notebooks
in particular, poor code quality takes on a spatial dimension. Messes accrue and
disappear in an iterative process of expansion and reduction of code: programmers
write code in many small cells to try out different approaches to solve a prob-
lem, view output from their code, and debug their code; and then combine and
eliminate cells as their analyses reach completion (Kery et al. 2018).

Eventually, messes start getting in a programmer’s way. It becomes difficult
to understand analyses split across many cells of a notebook, and long notebooks

https://creativecommons.org/licenses/by/4.0/


Chapter 3. Related work 36

[1]

[7]

[3]

[6]Disorder

Code is not listed in the order it 
was first executed.

Dispersion

Disappearance

Code and results accumulate, 
making the notebook difficult to 

read and navigate.

[2]
Code that computes visible results 

was overwritten / deleted.

Figure 3.7: Types of messes in computational notebooks. These messes make it di�cult for a program-mer, and other readers of the notebook, to find results of interest and the code that produced them.

become time-consuming to navigate (Kery et al. 2018). Important results acciden-
tally get overwritten or deleted (Rule et al. 2018c). While programmers often wish
to share their findings with others (Kandel et al. 2012; Kery et al. 2018; Rule et al.
2018c), they are often reluctant to do so until they have cleaned their code (Rule
et al. 2018c; Rule et al. 2018a) (Figure 3.7).

To manage these messes, programmers have adopted diverse strategies to clean
their code. Many delete cells they no longer need, consolidate smaller cells into
larger cells, and delete full analyses that did not turn out helpful. Long notebooks
are abandoned for “fresh” ones with only a subset of successful parts from the long
ones. Analysts organize code as they build it, some coding from top to bottom,
some adding cells where they extend old analyses, some placing functions at the
top, and some placing them at the bottom (Kery et al. 2018). They add tables of
contents, assign numbers to sections, limit the size of cells, and split long notebooks
into shorter ones (Rule et al. 2018c).

Because of the challenges and tedium of managing messes, programmers have
clearly indicated that they need better tools to support the management of messes.
In prior studies, programmers have asked for tools that let them collect scripts
that can reproduce specific results, compare outcomes from different versions of
an analysis, recover copies of notebooks that produce a version of a result (Kery
et al. 2018), and recall the history of how data was created, used, and modified
(Rule et al. 2018a). Answering this call, recent tools have provided capabilities for
programmers to save and navigate versions of code and results (Kery and Myers
2018; Rule et al. 2018a; Kery et al. 2019) and to collect “recipes” of notebook code



Chapter 3. Related work 37
that reproduce selected results using program slicing (Kery and Myers 2018).

Making notebooks clean by design. Could notebooks be redesigned so they don’t
get messy? Tool builders have designed several extensions to the notebook to
help programmers manage messes. One extension allows authors to hide messes
by collapsing snippets and outputs they do not wish to see. This feature has
been prototyped in research tools (DeLine et al. 2015; Rule et al. 2018a) and
incorporated into widely-used notebooks (Jupyter, Observable). Taking this idea
to an extreme, a tool could hide all code by default, and only show readers the code
the author explicitly asks to be shown. This is the approach taken by Streamlit,
an authoring tool for notebook-like data apps. Authors write programs as scripts,
from which Streamlit generates a dashboard of the program’s results and control
widgets for exploring those results. If the author wishes for the reader to see any
block of code, they must wrap that code in a special function.

A notebook can also prevent messes by stopping the author from accumulating
old code and results. One way to do this is to run cells reactively. Observable, for
instance, infers dependencies between cells. A dependency is found whenever one
cell uses a variable defined in another cell. When an author executes a cell, the cells
that depend on it are executed afterwards, ensuring that all outputs will reflect the
most recently executed version of each cell. A notebook can also update outputs
live. Tempe, a notebook for analyzing streaming data (DeLine et al. 2015), listens
for edits to cells. As soon as an author finishes editing a line, Tempe re-executes
the edited line, and all other lines that depend on it.

Which model of execution is better: executing one cell at a time, or updating
outputs reactively and live? To answer this question, DeLine and Fisher (2015)
conducted a controlled experiment in which data-experienced professional pro-
grammers used two versions of Tempe. One version consisted of a read-eval-print
loop (REPL) interface to an interpreter like the RStudio console. This version
provided an append-only history; unlike Jupyter notebook, participants could not
arrange, edit, or delete cells. The other version was a live, reactive notebook where
a user’s edits triggered re-execution of the code and updated the results.

DeLine and Fisher found that when programmers used these two versions of
the tool for exploratory data analysis, the histories left by both tools contained
the same number of results that participants marked as “insightful.” Those created
with the live tool had less errors. Participants preferred the live version according
to 11 dimensions of usability, except when it came to ease of learning and ease of
use. Participants, it was noted, may have had more prior experience with REPLs.
Participants appreciated the responsiveness of the live tool and its ability to keep
the script content clean. That said, the REPL had the advantage of preserving a
complete log of the code executed and the results produced.



Chapter 3. Related work 38
DeLine and Fisher’s study shows that the execution model of a notebook can

affect a programmer’s perception of the cleanliness of their code and their own
programming effectiveness. Of course, the design space of notebooks is much
broader than the two designs tested by DeLine and Fisher. How much of the
benefit of live computation comes from re-executing a cell after a user’s edits, and
how much comes from reactive computation? Should programmers be allowed to
rearrange cells, and if so, should the movement of cells be constrained by the tool
so that uses of variables always appear after their definitions?

Authoring tools for guided program tours

Could a programmer create a document with interspersed code and explanations
by annotating programs that already existed, instead of writing the program from
scratch in with a computational notebook or in a WEB file? One such format is the
program tour. Tours guide a reader to see one location in a program after another,
with explanations of the code at each of those locations. Tours can quickly show
a reader points of interest in even massive programs.

Creating a tour. To create a tour, an author needs to create steps, associate code
with those steps, and explain each step. A tool can let authors do this directly, by
selecting and annotating code within a code editor or browser (Suzuki 2015; Oney
et al. 2018). Other tools require authors to annotate the source program by, for
instance, adding special comments to indicate what code should show in the step,
and when in the sequence of steps that code should be visited. For other tools,
authors create an entirely new metadata file, listing the explanations for step, and
providing a selector that will be used to detect the code to be highlighted in that
step (Google 2020[a]) (see, for example, Figure 3.8).

Usability. Studies of program tours have yet to provide evidence of their effective-
ness in helping readers navigate and understand code. A study of the JTourBus
system showed that readers could finish comprehension tasks more quickly, though
not more accurately, when using the tool (Oezbek and Prechelt 2007). That said,
tours have been developed and used in the training materials at software develop-
ment companies like Google (Johnson and Senges 2010).

Crowdsourcing tours. Could tours of programs be crowdsourced? Gordon and Guo
(2015) describe the iterative design of Codepourri, a tool for creating tutorials of
small programs from line-by-line explanations crowdsourced from learners. Learn-
ers were routed to lines and asked to describe what the code was doing at that
line. An expert panel found that 65% of the explanations of lines were correct,
and 20% were of exceptional quality. The generated tutorials as a whole were of



Chapter 3. Related work 39

<step title="State type" src="doc/codewalk/urlpoll.go:/State/,/}/"> 
The State type represents the state of a URL.

A

B

C

D

Figure 3.8: A guided tour of a program. This Codewalk provides a guided tour of a sample program (A).Throughout the tour, sections of code are highlighted (B) along with prose explanations of that code (C).Codewalks are written as XML specifications, where each step is specified as a selector determining whatcode should be highlighted, and a prose explanation (D). This figure is a modification of the Codewalk
Google 2020(b) from the Go language documentation. The documentation is licensed under under theCreative Commons Attribution 3.0 International License and the code is licensed under a BSD license.

comparable quality to the ones the experts had written themselves. Gordon and
Guo proposed two methods for incorporating learner feedback in filtering explana-
tions to just those that were the most helpful. While the system was only tested
on short programs, this study suggests that it might be possible to create tours of
some programs without the input of its original author.

Limitations of literate programming tools

This dissertation addresses two limitations of literate programming tools. The first
limitation is the messiness of computational notebooks. To complement recent
research systems that help programmers forage for code (Kery and Myers 2018;
Rule et al. 2018a; Kery et al. 2019) and extract “recipes” of code that produced
results in notebooks (Kery and Myers 2018), Chapter 5 contributes the design of
a distillation tool for cleaning messy notebooks.

The second limitation is that contemporary notebooks (Jupyter, Observable,
DeLine et al. 2015) do not offer flexibility to organize code in ways frequently seen
in programming tutorials. For instance, an author cannot split up the lines of a
function into multiple cells. Chapter 6 introduces a new type of notebook that

https://creativecommons.org/licenses/by/3.0/


Chapter 3. Related work 40

Improv

Torta

Ginosar et al.

JTutor

Storyteller

Waves

lab
el
ve
rsi
on
s

✓

✓

✓

re
al-
tim

e r
ec
or
din

g

✓

✓
pr
ov
ide

all
ve
rs
ion

s
✓

ad
d c

om
me

nt
ar
y

✓
✓

✓
✓

na
rra

te

✓

sc
re
en
ca
st

✓

✓

mu
lti-
sta

ge
sa
mp

le

✓

✓

liv
e d

em
o

✓

sc
ro
lly
te
llin

g

✓

sy
nc
ed

co
mm

en
ta
ry

✓

fo
rm
at
diff

s

✓
✓
✓

✓

cr
os
s-
ve
rs
ion

ed
itin

g

✓
✓

co
nt
inu

ou
s r
ec
or
din

g

✓

✓

re
tro
ac
tiv
e e

dit
ing

✓
✓
✓
✓
✓
✓

tu
to
ria
l

✓

✓

sc
ru
b o

ve
r h
ist
or
y

✓
✓

Tool SupportAuthor Input Output

Table 3.3: A comparison of tools for authoring multi-stage samples. These tools support authors inshowing how a sample program is built up step-by-step, either as a sequence of discrete stages, or asa continuous recording of program evolution. They di�er in terms of the type of support they provide tohelp authors sequence their program into stages (see “Tool Support” column family).

provides the flexibility of a WEB-based tool, the rich text editing capabilities of a
typical notebook, and the live computation of Observable.

Multi-stage sample authoring
Sometimes, authors want to show how a complex program is built over the course
of many small additions and changes. The tools in this subsection help authors
record, edit, and present the evolution of a program as multi-stage samples. The
tools help authors create tutorials, screencasts, and live demos, each of which show
code as it evolves over multiple stages.

One key distinction among the tools is whether they show the evolution of code
as discrete stages or continuously. Some tools cross this boundary, recording the
continuous evolution of a program, and then presenting it as a series of discrete
stages. A comparison of the tools discussed is shown in Table 3.3. Below, the four
main features of multi-stage sample authoring tools are described.

Step 1. Record program evolution. First, the authoring tool records how the program
evolves. Perhaps the most non-intrusive way to do this is to listen to edit events
from a programmer’s code editor (Mahoney 2018; Oney et al. 2018), or file save
events from the operating system (Mysore and Guo 2017). The tool can require
authors to manually tag a version of the code when it has reached a stable stage
(Kojouharov et al. 2004; Ginosar et al. 2013; Chen and Guo 2019). Tools can also



Chapter 3. Related work 41
require the author to supply versions of the sample program themselves, with one
for each stage to be shown to the reader (Pombo 2020).

Step 2. Revise histories. After an author has created several discrete stages, or
recorded the program evolution for some time, they may wish to revise this history.
Authors have myriad reasons for wanting to do so. For instance, they may want to
rewrite a line of code in the first stage it appears in order to fix a bug, or because
they have thought of a pedagogically better way of writing it (Ginosar et al. 2013).
Tools can help authors propagate an edit to the code backwards in time from the
stage they are currently editing (Ginosar et al. 2013; Mahoney 2018). They can
also support authors in reordering stages (Kojouharov et al. 2004).

Step 3. Annotate program. If a program is going to be shown without narration or
a surrounding text tutorial, an author may want to annotate parts of the program
with explanations at its various stages. Storyteller (Mahoney 2018) replays the
evolution of a program as a silent screencast. The authoring interface lets authors
add comments that will appear in a side bar at a precise edit event. The chat.codes
tool (Oney et al. 2018) provides another authoring paradigm, where an author
writes explanations of their edits in a chat as they are editing the program. Authors
can insert links to selections of code at that moment in history into the chat message
by directly selecting the code. Improv (Chen and Guo 2019) lets authors create
slides for a live demo consisting of selected program snippets, explanations, and a
terminal window where the code can be executed.

Step 4. Present stages. With the knowledge of how a program evolved, the tool can
then generate a tutorial, screencast, or some other artifact, optimized for readabil-
ity and navigability. The output format varies by tool. Storyteller (Mahoney 2018)
creates screencasts. Ginosar et al.’s (2013) tool creates a multi-stage sample where
each stage can be viewed by dragging a slider. Torta (Mysore and Guo 2017) gen-
erates mixed-media tutorials with embedded, cropped screencasts and listings of
file changes. JTutor (Kojouharov et al. 2004) creates tutorials that can be replayed
within the Eclipse code editor. Improv (Chen and Guo 2019) produces slides for
a live demo, linked to programmer’s editor where they can edit the code live.

These tools also highlight how code changes from one stage to the next. Many
style the code to indicate what has changed since the previous stage (Ginosar
et al. 2013; Mysore and Guo 2017; Mahoney 2018). One approach used in web-
based tutorials today (Pombo 2019; Wattenberger 2019) is “scrollytelling,” where
a program changes on one side of the screen as a reader scrolls through prose on
the other side of the screen. The code pans, zooms, and highlights to focus the
reader’s attention on how the code is changing at each stage.



Chapter 3. Related work 42
Two tools generate mixed-media tutorials with segmented screencasts. Torta

(Mysore and Guo 2017) segments screencasts following transitions from one GUI
window to the next, and following command executions and text file edits. Code-
Motion (Khandwala and Guo 2018) transforms existing screencasts into mixed-
media tutorials, extracting frame-to-frame program differences from the screencast
using computer vision, and then splitting these edits into “intervals” corresponding
to changes made to a particular part of a file. Segmented screencasts are inter-
spersed with the version of the code after each one, potentially making it easier
for the reader to find segments of interest in the screencast.

Author experience. Studies have shown that these authoring tools both satisfy im-
portant needs, and may be further improved. Ginosar et al. (2013) observed in a
study of their tool that seven authors could create multi-stage samples with the
tool. Nearly every author needed to make edits to earlier stages, and did so suc-
cessfully with the tool. Some authors would have appreciated alternative ways to
edit code in multiple stages. The tool did not at the time provide the ability to
make changes across stages by directly editing the code, and could not propagate
edits forward in history, only backward. That said, participants found the tool
useful, and appreciated the ability to switch between stages easily.

Do authors prefer creating textual tutorials or screencasts? It depends on the
author and the design of the tool. In one study, authors using Torta (Mysore and
Guo 2017) all preferred the mixed-media tutorials they created with Torta over
the ones they created in Google Docs. They found that Torta allowed them to
switch contexts less, encouraged them to explain the code more informally than
they would in text, and automated much of the busy work of copying and pasting
code and screenshots into the tutorial. In Oney et al.’s (2018) study of chat.codes,
authors seemed to prefer recording screencasts instead of using chat.codes’ text-
based interface if they felt comfortable speaking and programming at the same
time. Otherwise, they preferred to produce tutorials with chat.codes.

Reader experience. Readers see benefit in the unique sorts of multi-stage samples
produced by these tools. Students who had seen videos created using Storyteller
(Mahoney 2018) reported that they valued the ability to see the evolution of a pro-
gram rather than just the final, finished code. They also noted that the viewing
interface, which showed both a screencast of the code being built and a simultane-
ous listing of comments in a side bar, could be somewhat overwhelming. In a study
of tutorials generated by Torta (Mysore and Guo 2017), readers preferred those
tutorials produced with Torta over those written by the same authors in Google
Docs, noting that they were better-structured and more information-dense. In
an elicitation study and a participatory design workshop with readers, Khandwala
and Guo (2018) reveal even more interaction possibilities for presenting multi-stage



Chapter 3. Related work 43
samples, like enabling inline code annotation within screencasts, and incorporating
tables of contents and cross-video links.

Is it possible to multi-stage an existing program?

Perhaps sample programs could one day be transformed into multi-stage samples
automatically, rather than requiring user labels or recordings of program editing
sessions. In line with this vision, Sanchez et al. (2016) introduced algorithms that
could split a code sample into stages, with each stage introducing new methods,
and hide complex code blocks by folding the code contained therein. Along with
these algorithms, Sanchez et al. provided an interactive browser for the multi-
stage sample, and described a technique for inspecting code in the browser called
“Multistaging to Understand.”5 When reading samples with the Multistaging to
Understand inspection technique, 12 programmers from Upwork answered com-
prehension questions about code more accurately than when reading samples with
a comparison inspection technique. Tools like these may one day be able to help
authors split programs for which no programming history exists into multi-stage
samples. In Chapter 6, we explore how a tool might be able to help a programmer
take apart an existing program into a series of stages.

Limitations of multi-stage sample authoring tools

One challenge authors of tutorials face is keeping a variety of programming artifacts
consistent with each other (Mysore and Guo 2017). In the process of creating a
tutorial like the one from the beginning of Chapter 1, an author will create dozens
of snippets and outputs, each of which represents a different stage in a multi-stage
sample. The tools in the subsection above do not yet support authors in keeping
the snippets and outputs that they derived from the multi-stage sample consistent
with each other. In Chapter 6, a new type of notebook is designed for authoring
multi-stage output-rich programming tutorials. This notebook propagates updates
between all snippets and outputs in the tutorial.

Other tools that could support program distillation

When designing distillation tools, one can draw inspiration from a broad liter-
ature in human-computer interaction and software engineering. Algorithms and

5 Sanchez et al. (2016) define distillation as the “decomposition of a code example into chunks.”
This is related to, but distinct from, the definition used in this dissertation.



Chapter 3. Related work 44
interaction techniques from this literature could help authors select, simplify, sup-
plement, and sequence their programs. This section reviews tools that help authors
efficiently select code from source programs, clean messy programs, perform linked
edits on programs and their outputs, and generate explanations.

E�cient code selection
For tasks ranging from debugging to copying and pasting code, programmers need
more efficient mechanisms for selecting code from programs. Researchers have
proposed both automated and interactive tools for extracting relevant lines of code
from potentially large and complex programs.

Program slicing. One of the most widely-studied algorithms for efficient code selec-
tion is program slicing. Given a statement in a program, a slice is the subset of
other statements required for that statement to run correctly. To slice a program,
dependencies6 between statements are detected. A graph is built, where the nodes
are statements, and the edges are dependencies. Then, a slice can be found for
any statement by finding all other statements reachable from it in the graph, and
removing the rest. Weiser initially introduced the idea of program slicing not as
an algorithm, but as a description of what he thought programmers did when they
debugged programs (Weiser 1979).

Many algorithms have since been devised to slice programs automatically (Silva
2012). One challenge to using slicers in practice, particularly for simplifying code,
is that slices are often quite large, as computations become tangled with each
other. It’s not unusual for slices to be 10%, 20%, or sometimes even 50% of a
program’s total size (Binkley and Harman 2004). As such, several slicing tech-
niques like dynamic slicing (Agrawal and Horgan 1990) and pruning (Zhang et al.
2006) have been devised to improve precision. Even if slicers are more precise with
these modifications, they are hard to implement. Detecting dependencies between
statements becomes difficult once you start considering, for instance, procedure
calls (Horwitz et al. 1990) and concurrency (Jayaraman et al. 2005). As such,
production-grade, user-facing program slicers are only available for a handful of
programming languages, in a handful of code editors, such as Frama-C (Cuoq et al.
2012) and CodeSurfer (Anderson and Teitelbaum 2001).

6 In this dissertation, the word dependency is used to describe when one line of code depends
on another, following the convention of other papers about interactive programming tools
(e.g., Ko and Myers 2009; Holmes and Walker 2012; DeLine and Fisher 2015). The term
dependence, without a y, is often used instead in the program analysis literature. The data
structure containing all dependencies in a program is called by the name originally given to it
by Ottenstein and Ottenstein (1984), the program dependence graph.



Chapter 3. Related work 45
If the last 40 years of slicing history tell us anything, it is that we probably

will not be seeing high-precision, production-grade, user-facing slicers for most
languages anytime soon. It is more likely that developers will create slicers that
are easy-to-implement, fast, and sometimes low-precision. This is the premise of
Chapter 4, which assumes an imperfect slicer, and an author who can help resolve
ambiguities when extracting a slice.

Other algorithmic selection techniques. Delta debugging (Zeller and Hildebrandt
2002) turns the problem of simplifying a program into a binary search problem.
Given an input file that causes a program to crash, delta debugging will subdivide
that file into lines, finding the subset of lines that cause the error by removing
initially very large, and eventually very fine, subsets of lines. Another technique
for selecting code of interest in a program is to analyze the program’s call graph.
Given a program’s main function, all functions that are not transitively called by
that function presumably aren’t necessary and can be removed (Tip et al. 1999).

Machine learning can be applied in the service of algorithmic code selection. For
instance, recent work has shown that reinforcement learning can be used to train
an agent that removes bloat from code by rewarding the agent when it produces
minimal programs (Heo et al. 2018). If an agent is allowed to remove any arbitrary
element from a program, it needs a comprehensive test set to run against the
reduced program to check that it has not inadvertently introduced bugs.

Interactive aids for finding code. When a programmer is debugging a program, one
question they may have is, What are the lines of code that are responsible for this
output I’m seeing? Many tools have been designed to answer this question, in
different programming environments, for different types of outputs. For instance,
a tool can highlight lines of code as a program executes them (Brandt et al. 2010b;
Burg et al. 2013; Oney and Myers 2009). It can filter the code for a program to
only the lines that were run in a recent execution (Burg et al. 2015; Gross et al.
2010; Hibschman and Zhang 2015; Hibschman and Zhang 2016). It can also help a
programmer trace through code backward from static outputs like console output
and error logs (Ko and Myers 2009). The effects of these tools on a programmer’s
efficiency can be pronounced. In one study of the Java Whyline, Ko and Myers
(2009) found that programmers using the tools for debugging were successful in
their task about three times as often and were about twice as fast.

Sometimes, programmers want to copy methods or classes that are tangled into
a complex software system. Interactive tools can help programmers ensure they
are copying a complete subset of the code. Gilligan (Holmes and Walker 2012), for
instance, helps programmers review structural dependencies for code they plan to
copy. The tool presents lists of dependencies to the programmer. The programmer



Chapter 3. Related work 46
reviews the dependencies one by one, choosing which to copy, ignore, or replace
with custom code. Chapter 4 introduces another tool that, like Gilligan, supports
mixed-initiative, incremental code extraction.

Cleaning programs
Programmers clean their code to make it more readable, reliable, and maintainable.
Researchers have proposed tools to help with these goals.

Refactoring. Refactoring is the process of applying behavior-preserving transfor-
mations to one’s code to improve its readability and maintainability. Routine
refactorings include renaming variables and extracting code into functions (Fowler
2018). Tools for automated code refactoring are available in many popular pro-
gramming IDEs (Murphy-Hill and Black 2008). Typically, a programmer interacts
with refactoring tools via menus, wizards, and “quick fix” suggestions (see for in-
stance those listed in the Eclipse user guide (Eclipse Foundation 2020)) anchored
in the code next to entities that can be refactored.

Recently, researchers have explored how the user interface for refactoring tools
can be redesigned to make refactoring functionality more discoverable, understand-
able, and flexible. Solutions have included the synthesis of refactoring rules from
user demonstrations (Miltner et al. 2019), fine-grained code selection with in-situ
refactoring menus (Hempel et al. 2018), enhanced visibility and control in refac-
toring previews (Barik et al. 2016), new visual languages for specifying program
transformations (Boshernitsan et al. 2007), and refactoring by dragging and drop-
ping program elements (Lee et al. 2013). Empirical studies of many of these tools
(Barik et al. 2016; Boshernitsan et al. 2007; Hempel et al. 2018; Lee et al. 2013)
show that they are usable and improve the experience of refactoring.

Simplifying programs. Even if they do not assist with the classical refactoring tasks
described by Fowler (2018), a tool can help an author simplify a program in other
ways. Amorphous slicing is a variant of program slicing that makes semantics-
preserving transformations to slices as it extracts them (Harman et al. 2003). By
this definition, the tool in Chapter 4 can be considered an interactive amorphous
slicer. Researchers in program synthesis have explored how to synthesize simple
programs by steering synthesis in the direction of programs that make use of com-
mon programming patterns (Fraser and Zeller 2011), and those that are estimated
to be readable according to automated readability metrics (Daka et al. 2015). For
decades, source code formatters have been used to improve the appearance of pro-
grams, and today new techniques are still being developed for related tasks like
segmenting programs into meaningful blocks (Wang et al. 2014). Techniques have



Chapter 3. Related work 47

Figure 3.9: Fixing a code snippet with ExampleCheck. When a programmer is using a browser with theExampleCheck extension, they are notified when the sample they are looking at might be unreliable. Inthis case, ExampleCheck proposes a try-catch block that an API call can be surrounded with to make thecode more robust. Figure reused with permission (© 2018 IEEE, Zhang et al. 2018).

been devised for learning equivalent sequences of API methods (Goffi et al. 2014).
All of these techniques may one day become components of interactive tools for
cleaning code as part of the process of distillation.

Program repair. Oftentimes, a programmer’s code contains bugs and vulnerabili-
ties of which the programmer is not aware. Quick fixes in IDEs often point out
and recommend fixes to such errors. Tools for automated program repair detect
bugs, vulnerabilities, and performance issues in software and propose fixes using
heuristics, program synthesis, and machine learning (Le Goues et al. 2019).

Tools have been designed to assist with the repair of sample programs. The
tools discover dependencies a sample needs to run (Horton and Parnin 2018),
fix compilation errors (Terragni et al. 2016), suggest statistically-likely guards,
exceptions handling, and resource management code (Glassman et al. 2018), and
customizations and refactorings (Zhang et al. 2019). Interfaces to these tools help
programmers fix sample programs at the moment when they find a sample on
the web (Zhang et al. 2018; Zhang et al. 2019, see Figure 3.9) and when they
search for samples (Glassman et al. 2018). Techniques for program repair could be
incorporated into distillation tools to help authors create robust samples.

Linked edits to programs, documentation, and outputs
Linked editing enables programmers to make changes to one artifact that will
propagate immediately to other artifacts. Three use cases of linked editing are



Chapter 3. Related work 48

Figure 3.10: Linked edits of source code clones. With Linked Editing, programmers can establish linksbetween copies of the same code. Di�erences between copies are highlighted in yellow. Any code high-lighted in light blue will change in both copies at the same time (1). One copy can be temporarily unlinkedfrom the other, such that changes from one will no longer propagate to the other (2). As a programmerchanges an unlinked clone, the yellow highlights continuously update show how the clones di�er (3).Figure reused with permission (© 2004 IEEE, Toomim et al. 2004).

discussed: keeping code clones consistent, keeping code and documentation con-
sistent, and helping programmers evaluate their code as they write it.

Linked edits to source code clones. Programmers frequently copy their own code
as they program (Lange and Moher 1989; Kim et al. 2004), creating what are
known as code clones. One source of potential inefficiency and bugs is that when
a programmer changes code in one place, they may forget to change the clones of
that code elsewhere in the program. Toomim et al. (2004) introduced an editor-
based interaction, Linked Editing, that supports the automatic propagation of edits
between clones (Figure 3.10). Two blocks can be unlinked temporarily to allow
an author to make changes to one, but not the other. Afterwards, the two can be
linked once again to propagate edits between the parts of the clones that are still
the same. Differences between the clones are highlighted.

Extensions to linked editing have been proposed to support different use cases.
Juxtapose (Hartmann et al. 2008) employs linked editing to support rapid parallel
prototyping of programs and exploration of parameter spaces. CloneBoard (Wit
et al. 2009) provides specialized semantics for how to propagate changes between
instances of clones on each edit action. CnP (Hou et al. 2009) establishes links
between clones on a copy-and-paste interaction, supports refactoring within the
bounds of a clone, and provides nuanced highlighting of differences between clones.
Similarly, the tool introduced in Chapter 6 offers its own specialized linked editing
semantics, linking snippets to the source programs they are taken from and allowing
snippets’ contents to diverge from previous snippets.

Linked edits to code and documentation. Programming documentation is notoriously
out-of-date with the code it describes (Lethbridge et al. 2003; Uddin and Robillard
2015). Research tools have explored how to infer connections between code and



Chapter 3. Related work 49
documentation so that the documentation may be kept up-to-date. These tools
track references from the documentation to code elements like functions and classes
(Subramanian et al. 2014). With such a link established, they can generate patches
for the documentation as the code changes to remove outdated references (Dagenais
and Robillard 2014) or change names of the API members referenced from the
documentation (Lee et al. 2019).

Interactive tools can help programmers establish links in the other direction
from code to documentation. Codetrail (Goldman and Miller 2009) automatically
loads the documentation for selected code elements into a dedicated browser tab.
It also detects when code in the editor is likely copied from an open web page, and
creates bookmarks that will help the programmer later recall the provenance of
that code. HyperSource (Hartmann et al. 2011) annotates lines in a programmer’s
source code with histories of the pages that they were browsing as they edited
those lines. CiteHistory (Fourney and Morris 2013) collects a log of the pages that
a programmer browses as they compose an answer for a Stack Overflow question,
making this history available to the programmer to be included as a list of refer-
ences in their answer. These tools may one be day be able to help authors make
simultaneous changes to programs and their documentation, as well publish links
to helpful resources alongside distilled programs.

Linked edits to code and outputs. The linked editing of code and outputs is a capa-
bility of many live programming environments. Liveness is the ability to modify
a running program (Tanimoto 2013). Tanimoto introduced four levels of liveness
in his paper about the VIVA system (Tanimoto 1990). With first level liveness, a
user’s changes to a program have no effect on computation. At the second level,
a user may submit their code to the system for execution. At the third level, a
programmer’s edits trigger recomputation. Finally, at the fourth level, the sys-
tem continually updates the display to show the time-varying results of processing
input streams. In the literature, it is typically only systems that have third or
fourth-level liveness that are called “live.” At both these levels, changes to code
trigger changes to outputs. Liveness is a part of dozens if not hundreds of program-
ming tools. This includes some notebooks (DeLine et al. 2015, Observable), recent
research prototypes (Zhang and Guo 2017; Kang and Guo 2017), and prototypes
of future general purpose code editors (McDirmid 2013).

A thought-provoking exemplar of live programming is Victor’s (2012) essay
on Learnable Programming. Victor describes an environment designed to help
programmers see and understand the execution of the program. It helps readers
understand the vocabulary of the system by generating easy-to-read explanations
of the program’s execution at the level of individual lines. Brushing and linking
connects code expressions and the visual outputs they produce. A history of com-



Chapter 3. Related work 50
putation is shown by superimposing snapshots of the visual output. The history
can be explored through an interactive timeline with miniature representations of
the program output at each step of execution. While these are just a few of the
capabilities of Victor’s envisioned system, they hint at the rich expressive potential
for tools that support linked editing of programs and their outputs.

Automated program explanation
A program that is difficult to read may be easy enough to explain, if described with
the right words or pictures. This subsection provides a brief overview of techniques
for automatically explaining and visualizing programs.

Generating natural language explanations. Natural language explanations can be
generated for a wide range of software engineering artifacts, including blocks of code
(Sridhara et al. 2011a), class diagrams (Burden and Heldal 2011), Java methods
(Sridhara et al. 2010), unit test cases (Kamimura and Murphy 2013), method
context (McBurney and McMillan 2014), parameters (Sridhara et al. 2011b), and
classes (Moreno et al. 2013). Explanations can be generated through either rule-
based methods (e.g., Sridhara et al. 2010) or machine learning models (e.g., Iyer
et al. 2016). Some of these techniques have shown promising results. Sridhara
et al., for instance, found that generated explanations of statements were judged
to be accurate 92% of the time, adequate 85% of the time, and concise 96% of the
time. Perhaps these techniques will one day be capable of generating explanations
that can accompany distilled programs.

Software visualization. Visual tools have been used to aid in programming instruc-
tion for some time; Stasko et al. (1998) and Sorva (2012, pp. 140–185) present
good reviews. As one recent example, Ou et al. (2015) produced visualizations of
pointer-based data structures in the heap. PythonTutor (Guo 2013) is a program-
ming visualization tool for CS education. The tutor is embeddable within a web
page and supports simultaneous viewing of program source code, program execu-
tion, visual representations of Python objects, and program output. It has been
incorporated into online textbooks about programming, including UC Berkeley’s
introductory computer science textbook, Composing Programs (DeNero 2020).

One interesting class of software visualizations are those that can be shown
within the code. A recent review called these visualizations visual augmentations
(Sulír and Porubän 2017). Such visuals have been proposed to help programmers
check their assumptions, recognize bugs, and understand their program’s execution
(Lieber et al. 2014; Hoffswell et al. 2018). As one example, Theseus (Lieber et al.
2014) annotates the functions in a program with always-on counters that show



Chapter 3. Related work 51
how many times each function has been called. Hoffswell et al. (2018) identified a
design space of within-code visualizations that maps data properties like data type,
temporality, and detail to suitable visual representations. They also recommend
that such visuals are made comparable, salient, and unobtrusive. Augmentations
like these are another instance of the ways that sample programs could be supple-
mented using future distillation tools.

A design space for program distillation tools

How should tools help authors distill programs? A good answer to this question
depends on what an author wishes to accomplish. To map out the space of ca-
pabilities that distillation tools might have, a design space is introduced. Design
spaces, as described in the literature (Zwicky 1967; Jones 1992), help designers
identify a wide range of design alternatives that might not come up during routine
ideation.7 To build a design space, one determines a set of sub-problems a design
must solve, and then identifies solutions to each of those sub-problems. Ideas for
new systems come from combining the solutions to sub-problems in new ways.

Below, a design space for distillation tools is introduced. It begins with a
survey of author goals. Then, solutions are described for each of the sub-problems
of selecting, simplifying, supplementing, and sequencing code. Each sub-problem
is considered one at a time, with a written description of design alternatives and
a summary diagram. This design space is not meant to be exhaustive, but rather
to consolidate many of the alternatives raised in the above discussion of related
work. A diagram of the entire design space can be seen in Figure 3.11.

Goals. The usefulness of a distillation tool depends on how well it satisfies an
author’s goals. So, what is it the author wants to distill, and how do they wish to
do so? Do authors want to produce a snippet, a tutorial, or some other type of
program? Should the program be executable, readable, or robust? The author’s
experience goals matter as well (Cooper et al. 2007, p. 92), such as how quickly
they wish to be finished, and whether they see distillation as an opportunity for
creative expression, or instead as a practical task to be completed.

7 The creation of design spaces is common in human-computer interaction research. See for
example Card et al. 1991, Fitzmaurice et al. 1995, and Hartmann et al. 2008.



Chapter 3. Related work 52

GOALS

Output Snippet Notebook Tutorial Sample
project Screencast Live

demo

executable readable robustminimal copyable ...Program qualities

1 min 10 min 1 hour
Time spent

1 10 100 1,000
Length (lines)

Tool basics. When a programmer decides to distill a program, would they like to
do so within their usual code editor, a notebook, or some other dedicated environ-
ment? Each of these programming environments might already provide utilities for
cleaning and formatting code. And what does interaction with the tool generally
look like? Allen (1999) introduced four levels of mixed-initiative interaction among
intelligent agents, which provide templates for the role that a distillation can take
on when assisting an author:

unsolicited reporting: notify the author of critical information as it arises.
subdialogue initiation: start subdialogues to clarify or correct.
fixed subtask initiative: take initiative to solve predefined tasks.
negotiated mixed initiative: negotiate to determine initiative.

Is the authoring tool entirely autonomous, or does it engage in an on-going
dialogue with the author according to one of these patterns?

TOOL
BASICS

code editor notebook dedicated editor non-interactiveProgramming environment

Autonomous Unsolicited
reporting

Subdialogue
initiation

Fixed subtask
initiative

Negotiated
mixed initiative

Authoring role

Selection. If the author needs to extract code from an existing program, how can
the tool help them do so? An author might need to help the tool figure out what
code is relevant, perhaps by selecting statements or outputs, or by interacting with
the running program. The tool can then help the author extract code by slicing
it, either creating a slice automatically or helping an author interactively expand
the slice. The most sophisticated selection tools will help authors find code across
many files written in many languages.



Chapter 3. Related work 53

SELECT

Select
statements

Select
outputs

Interact with
running program NoneAuthor selections

Slice Interactive
slice expansion NoneSlicing assistance

One file,
one language

Multiple
files

Interpreter
history

Multiple
languages

Library
code

External
servicesSlicing domain

Simplification. If a programmer wants to make their program minimal and robust,
how can the tool help? Authors might wish to remove complex statements, classes,
or interfaces to external services. A tool could help authors simplify code by re-
naming identifiers, and replacing unwanted code with synthesized equivalent code,
function and class stubs, or placeholders that a reader must replace. A distilla-
tion tool may not be able to decide on its own how best to simplify the code. In
that case, the tool can ask the author to choose among options input with in-situ
menus or design galleries (Marks et al. 1997). If there is an overabundance of ways
the program might be simplified, the tool may need to rank the alternatives and
recommend a small yet compelling set of them.

SIMPLIFY

Statements Classes Entire
programs

External
servicesHelp authors replace...

Insert
placeholders

Rename
identifiers

Generate
stubs

Synthesize
equivalent codeSimplification techniques

show menus /
design galleries

rank options
and recommend

1 10 100
# simplification options

Supplementation. If an author wants to make their program readable and robust,
the program code might need to be embellished and the program may need to be
explained better. A tool might help an author edit their program by identifying
opportunities to insert guards and exception handling code where relevant. It could
help authors explain programs by inserting realistic sample data and log statements
that will expose the program’s state. Tools could also help authors generate assets
like text explanations, diagrams, and screenshots of running programs. They could
assist authors in creating interactive reading experiences like live program viewers
where the code can be edited and executed, which would be time-consuming for
the author to create without assistance.

SUPPLEMENT

Guards Program
alternatives

Sample
data

Exception
handling

Log
statementsProgram embellishments

Console
output

Charts /
graphsRich text Diagrams Screenshots Screen

recordingsAssets

Live editing ExercisesVisualizations Version browserInteractivity for readers



Chapter 3. Related work 54
Sequencing. If an author is creating a tutorial or a notebook, they will need to
produce sequences of snippets, where each one potentially represents one stage in
constructing a program. A tool can help authors maintain and simultaneously edit
many versions of the same program at once. Editable histories can be created by
asking authors to mark checkpoints in their program’s evolution, or by recording a
detailed edit history as the author writes the program. A tool can help an author
keep source programs, snippets, outputs, and explanations consistent by propa-
gating edits between source programs and snippets, and by updating outputs and
explanations as the code changes. How might a tool know how to regenerate out-
puts as snippets change? Snippets could be executed sequentially, in the order they
appeared in the source program, in an order inferred from dependencies between
snippets, or in some other order the author specifies.

SEQUENCE

Infer from
source program

Infer from
dependencies

Hard-coded
orderSequentialSnippet execution order

Source program Snippets Outputs ExplanationsLinked edits

checkpoints continuous recording
1 10 100

# versions

This dissertation in the design space
This dissertation focuses on exploring a subset of the design space that has not
yet been explored in prior work. With the above vocabulary for describing the
capabilities of distillation tools, the unique designs of each of the tools in this
dissertation can be described with greater clarity as follows. See Figure 3.11 for a
visual representation of the capabilities of each tool within the design space.

Chapter 4. Snippet authoring via mixed-initiative selection and simplification. Code-
Scoop was designed to support efficient selection of code from existing programs
and simplification of that code. Authors interact with the tool through mixed-
initiative interaction for two reasons. First, because program slices may be im-
precise, a mixed-initiative tool is suitable for helping an author declare what code
they wish to keep in the program, and what code may be discarded. Second, some-
times there are multiple choices available to a programmer for how to simplify a
program. For instance, they may remove a line of code, or replace it with any
number of stubs. A mixed-initiative tool can expose these options to the author,
while automating the tedious parts of distillation. CodeScoop in particular ini-
tiates fixed subtasks to automatically select code when there is only one suitable



Chapter 3. Related work 55

TOOL
BASICS

GOALS

SELECT

SIMPLIFY

SUPPLEMENT

SEQUENCE

Output Snippet Notebook Tutorial Sample
project Screencast Live

demo

Select
statements

Select
outputs

Interact with
running program NoneAuthor selections

Slice Interactive
slice expansion NoneSlicing assistance

One file,
one language

Multiple
files

Interpreter
history

Multiple
languages

Library
code

External
servicesSlicing domain

Statements Classes Entire
programs

External
servicesHelp authors replace...

Guards Program
alternatives

Sample
data

Exception
handling

Log
statementsProgram embellishments

Insert
placeholders

Rename
identifiers

Generate
stubs

Synthesize
equivalent codeSimplification techniques

Console
output

Charts /
graphsRich text Diagrams Screenshots Screen

recordingsAssets

Live editing ExercisesVisualizations Version browserInteractivity for readers

Infer from
source program

Infer from
dependencies

Hard-coded
orderSequentialSnippet execution order

Source program Snippets Outputs ExplanationsLinked edits

executable readable robustminimal copyable ...Program qualities

code editor notebook dedicated editor non-interactiveProgramming environment

Autonomous Unsolicited
reporting

Subdialogue
initiation

Fixed subtask
initiative

Negotiated
mixed initiative

Authoring role

checkpoints continuous recording
1 10 100

# versions

show menus /
design galleries

rank options
and recommend

1 10 100
# simplification options

1 min 10 min 1 hour
Time spent

1 10 100 1,000
Length (lines)

ToriiCodeScoop Code gathering tools

Figure 3.11: A design space of distillation tools, explored. Paths through the design space indicate thecapabilities of each of the three tools introduced in this dissertation.



Chapter 3. Related work 56
way to do so, and initiates subdialogues to ask authors for input when the author
will know best whether code should be selected and how to simplify it.

Chapter 5. Notebook cleaning via direct selection of code and outputs. Code gathering
tools were designed to support efficient selection of code from messy notebooks by
helping authors extract ordered, reduced, complete subsets of cells that produce
results of interest. The tools supplement the extracted code by packaging it into
notebooks complete with selected results, and by showing the evolution of the cells
and results in an interactive version browser. Code gathering tools are autonomous,
not mixed-initiative. Their novelty lies in the direct and easy access they give
authors to their programming history. Notably, the tools work by slicing not the
code currently visible in the notebook, but the interpreter history.

Chapter 6. Tutorial authoring via flexible sequencing of snippets. Torii was designed
to support the creation of flexibly-organized step-by-step programming tutorials.
It combines the flexibility of organization present in WEB tools with the direct ma-
nipulation and liveness of computational notebooks. This required a new method
to update outputs based on snippet content. Authors create snippets by selecting
code in a source program. Each snippet, when added to the tutorial, implicitly
creates a new version of the program with that snippet included. Outputs are gen-
erated by assembling the snippets above it in the order they appeared in the source
program. This allows an author to provide syntactically-incomplete snippets, or to
show snippets out of order, while keeping snippets and outputs consistent. Torii is
mixed-initiative by necessity: the tool initiates fixed subtasks to regenerate outputs
whenever the order or contents of snippets change.



57

Chapter 4. Snippet distillation
Mixed-initiative code selection and simplification

“Not that the story need be long, but it will
take a long while to make it short.”

Henry David Thoreau

Source Program Pane Example Pane

Fix the example by adding
suggested code from the
original source program...

1

2a

... or by inserting literals captured
from the program trace.2b

Review additional suggestions of
code that may be missing.

3

Create an example by
selecting lines from a
source program.

Figure 4.1: Extracting example code from existing code with CodeScoop. With CodeScoop, (1) a pro-grammer selects a few lines they want to share from a source program, and CodeScoop helps them buildthem into a complete, compilable example. To help programmers make complete examples, CodeScoopdetects errors and recommends fixes by (2a) pointing to potentially missing code and (2b) suggestingliteral values from the program trace that can take the place of variables. (3) It also recommends codethe programmer may have overlooked, like past variable uses and nearby control structures.



Chapter 4. Mixed-initiative code selection and simplification 58
Motivation

Code examples are a key format for knowledge exchange between programmers.
Examples provide an essential resource to learn about tools, and a starting point
for writing new code (Robillard and Deline 2011; Sacks 1994). Examples can
demonstrate best practices for using particular APIs and confirm programmers’
hypotheses about how things work (Robillard 2009). As a result, HCI and soft-
ware engineering research has focused on how to support the life cycle of working
with examples, e.g., authoring multi-stage code examples (Ginosar et al. 2013;
Kojouharov et al. 2004), searching for examples (Brandt et al. 2010a; Hoffmann
et al. 2007; Stylos and Myers 2006), and integrating examples into one’s own code
(Oney and Brandt 2012; Wightman et al. 2012).

Yet examples are often missing or insufficient for many programming tasks.
Around 14% of how-to questions on popular Q&A platforms may not receive an-
swers (Treude et al. 2011). Even for APIs that appear well-documented in on-
line Q&A platforms, high coverage can take years to achieve and miss important
topics (Parnin et al. 2012). Even if examples are available, they may not be
self-explanatory: many lack important code required to run or understand them
(Treude and Robillard 2017). While programmers can find usage examples in
existing code, like unit tests, looking for examples in code takes time, and borrow-
ing from incomplete examples in documentation can be error-prone (Nasehi and
Maurer 2010).

In this chapter, we aim to improve the state of the art in code example pro-
duction. Good code examples are concise (Nasehi et al. 2012; Nykaza et al. 2002;
Robillard and Deline 2011) and focused (Nasehi et al. 2012; Robillard and Deline
2011). Additionally, executable examples allow programmers to re-run and re-mix
them, i.e., learn from, experiment with, and modify them for their own purposes.

A programmer’s own code project can be a source of good examples. However,
when the programmer attempts to extract an example from one of their projects, it
may be time-consuming to separate out extraneous dependencies and logic that are
unrelated to the concise and focused example they envision (Parnin et al. 2013).
To understand this authoring task better, we ran a formative study in which 12
programmers each authored a code example based on code they had previously
written.

Observations from this formative study led to the design of CodeScoop, a tool
that helps a programmer make scoops–or focused, executable examples—from ex-
isting code. We offer the idea of a scoop as a refinement to program slices. With
program slicers (Tip 1995), programmers point to specific lines of code, and a slicer
extracts a subset of lines required for those lines to run correctly. With a code



Chapter 4. Mixed-initiative code selection and simplification 59
scooper, a programmer and a tool work together in a mixed-initiative dialogue to
extract, simplify and clarify code. A slice is finished when code has been extracted
that computes the same result as the full program. In contrast, a scoop is finished
when the code has the intended behavior, which could be different from the original
program, and is concise and readable.

Sel
ect

Sim
plif

y

Su
ppl

em
ent

Seq
uen

ce

Distillation tasks addressed
in this chapter.

To scoop code, a user selects an initial set of lines
from a source program. The user and tool work together
to iteratively add important code. CodeScoop flags er-
rors, suggests potentially relevant code, and offers fixes
derived from static and dynamic analysis of the source
program (Figure 4.1). In this way, the tool supports the
mixed-initiative selection of code from a source program and simplification of the
sample program. Once created, scoops can be tested like ordinary code, by com-
piling and running them with the editor. Example code produced with CodeScoop
can then be shared in many of the ways already used by programmers: it can be
integrated into tutorials, answers on Q&A sites, or published in a public repository.

We conducted a controlled study to gain insight into how CodeScoop could sup-
port example extraction from existing code, versus comparison tools. Participants
were successful at extracting example code: using CodeScoop, 16 out of 19 par-
ticipants successfully extracted a code example in ten minutes or less (compared
to 11 out of 19 with a standard text editor). Participants created examples by
making a median of 2 selections, replying to a median of 5 suggestions, resolving a
median of 2 errors with CodeScoop’s help, and accepting a median of 12 automatic
corrections.

Compared to text editors, CodeScoop was more enjoyable and less difficult to
use; however, participants found constraints on the ability to make arbitrary direct
edits to be both helpful and restrictive. Compared to program slices, scoops were
often shorter and made program results more visible, though sometimes partici-
pants omitted relevant content that a slice would have included. CodeScoop also
permitted multiple approaches to building a correct code example, which reflects
varying viewpoints about what belongs in a code example. In summary, this chap-
ter contributes a mixed-initiative interaction technique for helping programmers
“scoop” concise, focused, executable code examples from existing code projects; a
proof-of-concept system which illustrates this technique for a subset of the Java
language; and a controlled study that provides insight into how CodeScoop sup-
ports the extraction of examples from existing code.



Chapter 4. Mixed-initiative code selection and simplification 60
Formative study

We conducted a formative study to understand the process that programmers fol-
low when creating executable code examples from their own code, and the obstacles
they encounter along the way.

Method
We observed 12 programmers as they created example code. Participants were
recruited from our professional networks, local MeetUps, and computer science
researchers from a local university (referred to as F1–12 below). Participants
were asked to create an understandable, executable code example from code they
had recently written. The first five participants were asked to produce this code
example as a blog post. We observed that the first five participants sometimes
produced erroneous or untested code. With this observation, we realized that,
without the proper tools, examples might be created that contain errors and do not
run. We asked all remaining participants to only create a minimal, understandable,
executable code example.

Participants authored code examples in a variety of languages, including PHP,
Java, Python, JavaScript, Bash, C, and C#. Code examples demonstrated a va-
riety of tasks, including querying a Salesforce database, and building a Chrome
extension for circumventing news website pay walls. One participant (F12) unex-
pectedly brought code that had been written by someone else that they wished to
simplify; because they followed a similar workflow as other participants, we include
anecdotes from their experience as well.

Results
Authoring examples as iterative selection of code

When we cued the first five participants to produce a blog post that demonstrated
a usage pattern with concise, easy-to-understand example code, all participants
took an “additive” process to authoring example code, copying and pasting code
from an existing project into a new file. Programmers copied and pasted individual
lines (F2, F4, F6) and the contents of entire files (F1, F3) into a new buffer.

Participants who built a code example by moving code from an existing project
faced two major obstacles. First, in some cases, it could be tedious to rebuild
the original code’s project settings, dependencies, and environment for the code



Chapter 4. Mixed-initiative code selection and simplification 61
example. For F6, this involved generating configuration files, setting paths to
libraries, copying import statements, duplicating style files, and modifying the
directory structure. All of these steps had to be completed before any example
code could be tested. The same code could encounter unexpected bugs when run
in a new location. For example, relative file paths resolved to the wrong location
when the code was run in a different directory (F11).

Second, programmers introduced bugs in the process of copying, pasting, and
modifying the code. Sometimes, important fragments of code were missing that
caused the program to crash, like missing variable definitions or return statements
(F2, F4). Programmers introduced bugs through manual edits that, while appear-
ing innocuous, altered the program’s behavior in unexpected ways (F4, F10).

After the first participants faced obstacles when authoring example code addi-
tively, we asked F8–12 to author code examples “subtractively”, by removing code
from a working project until they created a minimal code example. While partic-
ipants no longer needed to configure the runtime environment for a new example,
removing unrelated code and dependencies could still take tens of minutes (F10,
F12). This confirmed for us that, for both approaches, the demonstrated authoring
techniques were costly and tedious.

Modifying programs for reading and reuse

Participants omitted irrelevant implementation details to better highlight the focal
code of an example. To reduce irrelevant detail, participants simplified strings
to “Lorem Ipsum” (F5) and “hello world” strings (F7), and simplified the SQL
queries to include only fields used by the final example code (F8). Return types of
methods were changed from complex types to simpler types like lists (F8). Literal
values were inserted to provide concise and reasonable default parameters (F8,
F12). Participants commented out the names of argument parameters that would
distract from those that the user should set, while leaving them present in the code
to prevent compiler errors (F4), and annotated suggested values for arguments (F2,
F4).

We observed that authors sometimes added code back in to make the example
more usable. By adding code, authors could increase the visibility of execution,
demonstrate best practices, and provide variations on examples. To make the code
example’s internal computations more visible, participant F7 replaced a return
statement with a print statement to make the code’s success obvious to someone
who executed it, and F12 left in dozens of lines dedicated to printing out updates
to a machine learning model during training. F11 added explicit if statements to
check whether method return values were null pointers and empty lists, to make



Chapter 4. Mixed-initiative code selection and simplification 62
Authors made examples by... Tools should help authors...

Copying the original code and 
pasting into example editor

• Create examples from text 
selections 

• Add lines from original code at 
any time

Replacing variables with 
meaningful literal values

• Review and insert literal values 
that preserve program behavior

Tweaking comments and code 
format for readability

• Directly edit code to add 
comments, group lines, and add 
print statements

Making examples could be 
time-consuming because... Better tools could...

Authors left out code

• Suggest lines of code that the 
current example needs to run 

• Add missing code automatically 
when it's the only sensible fix

Authors introduced errors via 
transcription or edits

• Constrain manual code edits 
• Enable early and frequent testing

It took time to remove 
irrelevant code

• Start from a blank file 
• Omit code except for explicit code 

selections and necessary fixes

Figure 4.2: Tool recommendations for improving example extraction. From a twelve-participant forma-tive study, we found that making code examples from existing code can be tedious and error-prone. Toolscould help programmers extract examples by constraining manual edits, and by proposing fixes basedon the source program.

clear to readers that the API calls might return empty values. F4 produced three
versions of one code example, each of which utilized different test data and showed
progressively more advanced usage of an audio API.

These observations and our review of the literature on code examples led to
design recommendations for improving the user experience of extracting code ex-
amples from existing code (Figure 4.2).

Design motivations

We designed CodeScoop as a tool to help authors extract examples from existing
code. This section outlines key aspects of CodeScoop’s design that follow from our
formative study.



Chapter 4. Mixed-initiative code selection and simplification 63
Anchor interaction in the code example itself. In the formative study, participants
split attention and interaction between a code editor and the text buffer in which
they wrote example code. Our tool was built to enable authors to focus primarily
on the code example. Errors and suggestions are overlaid directly on the example
code.

Ground resolutions in the original code. Still, authors need to refer to the original
code to recall the context in which the selected snippets were initially run. When
they do, it should be effortless to recall that context. CodeScoop’s suggestions,
when referring to specific code lines or structures, call out the suggested code’s
context in the source program by highlighting and scrolling the source program’s
editor.

Prioritize resolutions to core logic first. Reasoning about code can be cognitively
demanding. For this reason, CodeScoop prioritizes one type of error—resolving
missing variable definitions—before others. Resolving definitions leads authors
through the program logic before interrupting them to fix one-off errors like missing
imports and declarations.

Find the right time to suggest optional inclusions. Some lines of code, while not nec-
essary for compilation, may be necessary to correctly demonstrate a usage pattern.
CodeScoop suggests three types of “extensions” based on an author’s recent selec-
tions: (i) control structures (if and try-catch blocks, and loops) when an author
selects code outside of a block after having selected code within that block; (ii) pre-
vious uses of a variable after the author has added both a use and a definition of
a variable; (iii) exceptions to throw when the author adds an error-prone function
call.

A demo of CodeScoop

The CodeScoop user interface aims to improve the example authoring process
with two unique affordances. First, it helps authors replace lines of code that
could contain distracting complexity with meaningful literal values. Second, it
infers and recommends code inclusions that could enhance an example’s adherence
to the author’s intent, like missing control structures and variable modifications.
Here, we illustrate the user experience of CodeScoop with an example walkthrough.
We refer the reader to the video figure and artifact1 accompanying this chapter to
see the full “scooping” process.

1 See the project web page at https://codescoop.berkeley.edu

https://codescoop.berkeley.edu


Chapter 4. Mixed-initiative code selection and simplification 64
Prologue: An unexpectedly useful programming pattern
Lou is a programmer working on a web application. She needs to write code to
query records from a database using an archaic, poorly-documented API. After
reading source code, inspecting the runtime state of the database objects, and
overcoming numerous compiler errors, she develops the code that she needs. The
code is non-trivial, involving a query to a database, iteration over query results,
and catching connection exceptions. After taking so long to figure out how to
write the code, Lou wants to make the task easier for others by writing a short
executable example that others can read and run.

First steps: Initial text selections
Instead of creating an executable code example from scratch, Lou uses CodeScoop.
From her code editor, she selects lines from her program that must be in the code
example, which retrieve the data from the database cursor and save it to a data
structure. She right-clicks on the selected code and chooses “Extract example”
from a drop-down menu.

The editor splits into two panes. The left pane shows the unchanged source
program , and the right pane shows the work-in-progress code example (see Fig-
ure 4.1). At first, the code example only contains the text selections wrapped in
the main function of a class that can eventually be compiled and executed. The
example is currently far from complete:



Chapter 4. Mixed-initiative code selection and simplification 65

Mixed-initiative dialogue: Completing the example
The CodeScoop editor starts a mixed-initiative dialogue with Lou to interactively
make the new code example both concise and executable using the complete source
program code and execution trace. The execution trace is captured from the most
recent execution of the application.

Defining variables by addingmissing code. CodeScoop detects all undefined variables
in the current example. Via highlighting, it indicates variables that need to be
defined by highlighting the offending variable uses in red.

Lou hovers over the undefined titles variable and clicks on the “Define” button
that appears below it. CodeScoop displays a menu composed of multiple methods
for defining this variable (for examples, see Figure 4.1.2a and Figure 4.1.2c).

In this case, the best option is to just add the line of code that defined titles in
the original program. Lou hovers over the line number for the suggested definition
(“Line 25”). CodeScoop highlights line 25 in the source program editor. If the line
is currently out of view, the source program editor scrolls until the definition is
within view.



Chapter 4. Mixed-initiative code selection and simplification 66

Lou inspects the original code, verifies that she wants to include this definition,
and clicks to include the line. CodeScoop saves Lou’s choice, and immediately
updates the example with the line that provides the missing definition.

Defining variables by replacing themwith literal values. The second option for defining
an undefined variable is to insert a literal value from the source program’s execution
trace. Lou hovers over the options for defining COLUMN_INDEX_TITLE: a sub-menu
lists values the variable took on when the source program last ran. Here, it’s just
one number—1—the column index for the title field. Lou chooses this option, as
it is more concise.

Checking for omissions by reviewing previous variable uses. Even if all of the variables
in a program are defined, this doesn’t mean that the program is correct—it might
be missing important modifications on already-initialized objects. To make sure
Lou isn’t leaving out anything important, CodeScoop points out all previous uses
of variables between a variable use and the definition Lou has included.

In this case, Lou has added a line that uses the database cursor (String title
= cursor.getString(...)) and a line that defines the cursor (Cursor cursor =
...). CodeScoop discovers all previous uses of cursor, and highlights them all for
Lou’s review. Lou scans over the highlighted lines. . .



Chapter 4. Mixed-initiative code selection and simplification 67

She realizes that her code example is missing two important lines that mod-
ify the state of cursor: cursor.execute(QUERY) and cursor.fetchone(). She
clicks on the line numbers in the left gutter for these two lines, and the lines are
immediately added to the example.

Including important control logic and skipping the rest. When Lou adds code both
inside and outside of an if block, CodeScoop asks her if she wants to include the
if structure.

The if statement checks for a non-zero number of lines, but Lou thinks this
check is too verbose, so she rejects it. CodeScoop also highlights a try-catch that
handles an important exception. Lou accepts this, as she wants to show how to
handle the exception in the example.

Defining complex data types with “stubs.” Few people who reference Lou’s example
code will have access to her database’s data, but they will still want a runnable
example that shows how to make the call to the database and process the results.
Lou decides to “stub out” the database. CodeScoop lets her resolve the database
object by either including the line with the instantiation, or by inserting a stub
for the database object. Lou chooses to replace the database instantiation with a



Chapter 4. Mixed-initiative code selection and simplification 68
stub. CodeScoop generates a new class that returns exactly the same values in the
same call sequence as those from the program’s execution, making it possible for
anyone to run the code example without access to her database.

In this case, the stub looks too complex for Lou. She undoes the stub insertion,
and chooses to define the database by including a line of code instead.

CodeScoop fixes trivial bugs automatically. Sometimes there is only one way to fix
up a problem with the example code: for instance, a class has not been defined and
there is only one relevant import statement in the original code, or a variable is
missing a definition but the line has no literal values from the execution trace. In
circumstances like these, CodeScoop makes the corrections automatically for Lou
so she can concentrate on more cognitively demanding decisions.

Verifying intended behavior by running the code. When the code looks complete, Lou
presses the “Run” button (see the right panel of the editor in Figure 4.1). Code-
Scoop compiles and runs the program, displaying the output in a bottom panel:

In this way, Lou verifies that all decisions up to this point have preserved the
intended behavior.

Writing annotations to improve readability. At this point, the code is complete, com-
pilable, and executable. CodeScoop “unlocks” the example, now allowing Lou to



Chapter 4. Mixed-initiative code selection and simplification 69
make direct edits on it. Lou adds comments next to all variables and literals where
a future user will likely have to provide their own data. Lou also adds some empty
lines to call out which lines belong together conceptually. After she verifies again
that the code compiles and runs, she copies and pastes the thirty-line executable
example into an email and sends it to her coworker.

Implementation

Code extraction with the “Flag-Suggest-Resolve” workflow
The “scooping” process begins with a user providing a handful of text selections
of what belongs in an example. From this, CodeScoop starts building the scoop.
Internally, a scoop is represented as a set of pointers to lines that have been included
from the source program, and a set of choices the user has made about what to
include in the code or not.

At a high level, CodeScoop interacts with a user by following a Flag-Suggest-
Resolve workflow (Figure 4.3). It flags errors and opportunities to include code
when it detects important changes to the scoop. Then, it suggests resolutions by
presenting them in a dialogue to the user. Finally, it resolves any problems by
applying fixes to the scoop.

To flag errors, suggest resolutions, and apply resolutions, CodeScoop is built
from a set of modules that analyze the program source and its execution trace
(Figure 4.4). These modules are described below.

Detecting errors and relevant code
CodeScoop figures out when to prompt a user by running a suite of “detectors” on
the scoop after every decision a user makes. Such detectors detect several events:

Missing definitions of variables and types. CodeScoop runs dataflow analysis to lo-
cate the character offsets of all definitions and uses of all variables in the source
program, using the SimpleDefUseAnalysis program from the Soot (Vallée-Rai et
al. 1999) system. Whenever the scoop updates with a new text selection, Code-
Scoop makes a list of the variables used in the scoop. It then scans all text
selections in the scoop for definitions of each variable. If multiple variables are
missing definitions, it highlights all undefined variables as a batch.



Chapter 4. Mixed-initiative code selection and simplification 70

Figure 4.3: Iterative correction of incorrect example code. The CodeScoop system flags opportunitiesto complete and expand the code, suggests lists of valid resolutions for completing the code, and resolvescompletions by modifying an abstract example model called the scoop.

CodeScoop also runs an ANTLR-generated (Parr and Quong 1995) parse tree
walker to find all uses of types in the source program. When the user adds a text
selection that uses a type (e.g., an object declaration), CodeScoop scans the scoop
for import statements and internal classes that define the type, and flags an error
if no definition has been found.

Potentially relevant control structures. An ANTLR parser is run on the source pro-
gram to find all control structures. When a user adds a text selection both inside
and outside of a control structure without including that control structure, Code-
Scoop asks if the user wants to include that control structure in the scoop.

Missing previous uses of a variable. When a user adds a variable use and its defini-
tion, CodeScoop collects all past uses of the variable that occur between the use
and definition, and which are not yet in scoop. These previous uses are presented
to the user all at once.

Missing exceptions for a function call. Using Soot as a parser, we locate all function
calls in the source program. For each call, we use the Java Reflections API2
to find all exceptions the method can throw. An ANTLR parser is run on the
source program to find try-catch blocks and the exceptions they catch. When
a line is added to the scoop with an exception-prone function, CodeScoop checks
to see whether (a) the scoop already throws the exception or a superclass of the
exception or (b) the scoop includes a try-catch block surrounding the function

2 https://docs.oracle.com/javase/tutorial/reflect/index.html

https://docs.oracle.com/javase/tutorial/reflect/index.html


Chapter 4. Mixed-initiative code selection and simplification 71

Source 
Program

Example 
"Scoop"
public class… { 
    … main {

    } 
}Source Trace

Define

Object Traces

Line Var Value

61 title Stardust

61 author Gaiman

62 publisher Avon

62 year 1999

Primitive
Value Traces

Obj Member Value

nextBook title Stardust

nextBook author Gaiman

db cursor() cursor

cursor query()

Substitute

Error Fixes

Missing 
definition

Missing type
Add import statement

Add inner class

Add definition

Sub in primitive value

Synthesize object stub

Add logic?

Add uses?

Throw 
exceptions?

Add enclosing logic

Add previous use(s)

Add exceptions thrown

The user interacts with CodeScoop to complete the example.  The user picks fixes 
for errors and accepts or rejects optional inclusions.

Optional Inclusions

CodeScoop analyzes the source program and 
its execution trace to detect when example 
code is incomplete, and to suggest fixes.

Figure 4.4: Suggesting fixes and code that complete a “scoop.” Given a set of text selections, Code-Scoop detects what’s missing from an example. Whenever it detects an error with multiple resolutions, itprompts the user with a dialogue. A collection of static and dynamic analysis modules enable CodeScoopto detect missing definitions and types, propose fixes to errors, and to suggest optional code that mightbelong in a scoop.

call that catches that exception. If neither of these is true, CodeScoop reports that
this exception must be caught or thrown.

Suggesting fixes and code additions
Whenever a user chooses an error to fix, CodeScoop runs “resolvers” to make a list
of potential fixes. Fixes can come from either the source program’s code, or its
execution trace (Figure 4.4). If the resolvers only find one potential fix, CodeScoop
applies the fix automatically.

Suggesting code that defines a variable. CodeScoop scans through all definitions of
a variable within the same scope as the variable that is missing a definition. It
recommends the line numbers of all such definitions.

Suggesting literal values for undefined variables. When CodeScoop launches, it ex-
ecutes the source program in a debugger virtual machine, using the Java Debug
Interface. As it steps through the code, it builds a table that maps a file name,
variable name, and line number to a list of values each variable holds on each line
of each file. When a variable is undefined in the scoop, CodeScoop looks for literal
values this variable took on this line, and proposes all such values. This feature
works for numbers, booleans, characters, and strings.

Fixing missing types with imports and internal classes. We use the Java Reflections
API to determine the package of all of the types used in the source program. When
recommending an import statement for the type, CodeScoop scans the imports
from the source program for one that matches the fully-qualified name of the type,



Chapter 4. Mixed-initiative code selection and simplification 72
recommending all imports that could have provided the type. It also recommends
the full text of any internal classes that define the type, as found through an
ANTLR parse tree traversal.

Throwing exceptions for exception-prone function calls. CodeScoop searches for an
import statement that defines either the exception or one of its superclasses. When
a relevant type is found in the import statements, CodeScoop recommends that this
exception type is thrown from the main method. If a user accepts the suggestion,
the exception type is added to the throws clause of the main method.

Suggesting stubs for undefined object variables. CodeScoop extends the idea of re-
placing variable names with literal values to complex data types, by generating
“stubs” with identical runtime behavior to object variables. While this feature is
currently experimental, we propose it as one possible solution. To create stubs, an
additional debugger virtual machine is launched. CodeScoop tracks every prop-
erty access and every method call on every object defined in the source program,
and logs all values these properties and methods returned. These variables and
method calls can return other objects, which get tracked as well. CodeScoop gen-
erates stubs as classes that replicate the recorded behavior given the same order
of property accesses and method calls.

Applying fixes to the scoop
After the user makes their choice, the system enters the resolve state, converting
any fixes to transformations that can be applied to the scoop. All transformations
are added to a command stack, so users can reverse any fix.

Generating an example program from the “scoop” data structure
Generating the example text from a list of selections and user choices involves
instantiating a hierarchical string template. First, the text for all text selections,
stored as numerical “ranges” that indicate the character offset of the text selections
in the source program, is retrieved from the source program. These texts are joined
in a temporary buffer, in the order that they appeared in the original code. The
position of each of these selections is “marked” in the example text editor. These
markers will keep track of the selection’s offset in the example text as it is built
up, and will be used later for highlighting errors and inserting literal values.

Next, the snippets are wrapped in the main function of a class called Extracted-
Example. Object stubs are generated from inner classes and added above the main



Chapter 4. Mixed-initiative code selection and simplification 73
function. All inner classes and local methods that the user included are added
as static members of the class below the main function. Finally, the generated
example code is automatically indented.

Once all selections and stubs have been added, literal values are inserted into
the example, in the positions tracked by the “markers” of individual text selections.
If the program is in the flag state, it then highlights errors for a user to choose
from. If in the suggest state, it highlights the chosen error and displays a menu
for previewing and accepting resolutions.

Implementation specifics and limitations
CodeScoop was implemented as a plugin for the GitHub Atom code editor. It
currently supports example extraction from Java programs. The plugin was written
in 4,200 lines of CoffeeScript, and 1,400 lines of Java code. While IntelliJ and
Eclipse have many more features for Java development, we chose Atom because
it is easy to modify for prototyping novel editor interactions. Now that we have
developed the interaction paradigm, it could be reimplemented in other IDEs.
Supporting a new language requires a parser, a def-use analyzer, variable tracing,
and reflection for methods and classes. Such tools are readily available for other
statically typed languages like C#. For dynamic languages like Python, additional
analysis will have to be implemented (e.g., using Chen et al.’s (2014) bytecode
analysis approach) to perform def-use analysis for dynamic properties.

Currently, dataflow analysis is only enabled for Java 1.4 code. The other anal-
yses can run on Java 1.6 code and later. These limitations are specific to the
libraries we chose, and not fundamental limitations for example extraction tools.

In-lab usability study

Method
We designed a study to gain insight into how CodeScoop or similar tools can sup-
port example extraction from existing code. We were interested in four questions:

RQ1. Can programmers extract examples with the intended behavior using Code-
Scoop? CodeScoop incorporates a new pattern of interaction for extracting
example code from existing code. Is it usable? Did it yield working exam-
ples?



Chapter 4. Mixed-initiative code selection and simplification 74
RQ2. How does CodeScoop compare to a standard code editor for extracting ex-
ample code? In the formative study, we observed that many participants just
opened an empty text editor when creating example code. Compared to this
baseline, what do programmers report are the advantages and disadvantages
of a tool like CodeScoop?

RQ3. Could scooping decisions be automated or do they fundamentally require
explicit user choice? When CodeScoop suggests code to include or literals to
insert, do all programmers make the same choice? If programmers sometimes
agree, maybe CodeScoop should make such decisions automatically.

RQ4. Do “scoops” o�er value over program slices? There is a rich literature
on program slicing techniques that, given a line in source code, extract the
subset of the program that affects it (Tip 1995). Do “scoops” offer advantages
over such slices? Or do they give work to humans that could be done by an
algorithm?

To answer these questions, the study comprised four stages:

Example extraction tasks. Participants created one example with CodeScoop and
another with a standard text editor (GitHub Atom). The text editor included
syntax highlighting, a button to compile and run the code, and a command to
wrap a participant’s initial selection in a class and main declaration. The editor
did not have any error-checking or code-fixing functionality. While this made it
more representative of the text editors used by participants in the formative study,
we note that for some participants, a development environment with error-checking
and code fixes may have provided a more natural and suitable baseline.

For each example extraction task, participants were shown one of three fabri-
cated “Stack Overflow questions,” describing something a programmer might want
to do with Java. Participants were asked to make an example that answered this
question. Specifically, the three tasks were to:

Task 1 : Fetch a row from a database

Task 2 : Scrape text from HTML elements of a certain type

Task 3 : Send an email over SMTP

Participants were also given a program from which they should extract an
example that answered the question. Task 1 could be answered with an example
extracted from a program 94 lines long; Tasks 2 and 3 could be answered with an
example extracted from different sections of a program 135 lines long.



Chapter 4. Mixed-initiative code selection and simplification 75
Participants were given 5 minutes to familiarize themselves with code, and

10 minutes to extract an example. After each task, participants reported how
satisfied they were with the example they made, how difficult they found example
extraction with that tool, and how useful they thought the example would be for
other programmers. They also rated the usefulness of each type of suggestion
CodeScoop made.

Annotation interview. After a participant made their scoop with CodeScoop, we
asked them to describe what code clean-ups and annotations they would make
before they would feel comfortable posting it as an answer to Stack Overflow.

Follow-up questionnaire. After the two extraction tasks, participants completed a
questionnaire that asked them to compare their experience with CodeScoop and
the text editor.

Slice comparison. Finally, participants were asked to compare the scoop they made
with CodeScoop to a slice that could have been extracted by a program slicing tool.
We asked them which one would be more useful to someone looking for an answer
on Stack Overflow and why.

Participants. We posted a study announcement to the social media page of the
UC Berkeley Computer Science department. We enrolled 19 participants, 7 of
whom were female, and 16 of whom were undergraduate students. Participants
had a median of 3 years of programming experience, and 2 years of experience
programming with Java (all had at least some experience). The order of tools and
questions was counterbalanced to reduce any confounds due to ordering effects.
Each question was answered roughly the same number of times with each tool
(between 5 and 8 times, for each tool-question pair).

Results
Successfully extracting examples with CodeScoop

Out of 19 participants, 16 (84%) finished creating an executable example in under
ten minutes when using CodeScoop. Only 3 participants did not finish creating
an example in the time allotted; of these, 2 were close but encountered bugs that
prevented them from finishing.

Many participants reported it was not difficult to consider CodeScoop’s sug-
gestions (Figure 4.5). Difficulty varied based on the type of suggestion. Deciding
whether to throw an exception was not difficult—if the exception wasn’t handled,



Chapter 4. Mixed-initiative code selection and simplification 76

Including a previous use of a variable
Replacing a variable with a literal value

Including a control structure
Throwing an exception for a line

# Participants
0 10 20

4

1

19
10

12
11

5
6
6

1
1

Very difficult Somewhat difficult Not difficult No basis to answer

How difficult was it for you to decide whether to accept 
these suggestions when you were making an example?

Figure 4.5: Not all choices in code extraction are easy. While some of CodeScoop’s suggestions weren’tdi�cult to consider (throwing exceptions for exception-prone lines of code), others required somethought (e.g., considering whether to include a previous use of a variable).

the code just wouldn’t compile (P13). It was trickier to make decisions about
whether to include other uses of a variable, control structures, or literal values.
Deciding whether to replace variable uses with values could be challenging as it
required a programmer to think critically about what code really belonged (P11).
Including a value could go against coding best practices of naming all the values
used in the code (P13).

Scoops included a median of 1 manually-selected line (σ = 5.3) after the first
selection. CodeScoop made a median of 12 automatic corrections on an author’s
behalf (σ = 4.6). Most of these were import statements (median = 8, σ = 3.3),
though CodeScoop also fixed undefined variables by adding code (median = 3,
σ = 3.2). CodeScoop automatically added one missing declaration for three par-
ticipants, and inserted literal values for five participants completing task 1.

Comparing CodeScoop to a standard text editor

When asked to compare a text editor to CodeScoop, one participant aptly described
the trade-offs:

“[With the text editor,] I had more freedom, but it came with a lot of pain”
— P14

Participants finished extracting examples more often when they used Code-
Scoop than with the text editor: with the text editor, 8 of 19 participants (42%)
did not finish, compared to 3 of 19 (16%) for CodeScoop (though the effect is not
statistically significant using Fisher’s exact test).



Chapter 4. Mixed-initiative code selection and simplification 77
The median time to extract an example with CodeScoop was 5.8 minutes

(σ = 1.96), and 9.5 minutes with the baseline text editor (σ = 1.52), including
participants who were cut off at the 10-minute time limit. Overall, participants
finished extracting examples more quickly with CodeScoop than with the baseline
(W = 76.5, p < 0.001, Wilcoxon signed rank test). Participants who success-
fully extracted an example in both conditions spent an average of 2.8 minutes less
(σ = 2.64) with CodeScoop than with the text editor.

On a 7-point Likert scale, extracting an example was easier with CodeScoop
than with the baseline text editor (∆ (median difference) = 3, W = 2, p < 0.01,
Wilcoxon signed rank test). It was also more enjoyable (∆ = 3, W = 4, p < 0.01).
Participants were more satisfied with the example they made (∆ = 2, W = 8,
p < 0.01), and reported the scoop would be more useful to someone learning to
use the API (∆ = 2, W = 3, p < 0.01). All but one participant would prefer to
use CodeScoop for creating code examples in the future.

When asked to describe the advantages of the text editor over CodeScoop, 15
out of 19 participants pointed out that CodeScoop was missing the ability to make
direct additions, edits, and deletions to the scoop. We do note that it would be
trivial to enable direct edits for adding comments and white space.

Many participants encountered what P14 described as “pain” using a text ed-
itor. They forgot to handle or throw exceptions (P13, P15), import classes (P4,
P5, P13, P14, P15, P16), and declare or define variables (P12, P13, P14, P16).
They introduced errors when they moved or wrote code, like adding or removing
curly braces (P12, P14, P15), or defining strings with single quotes (P12). These
errors did not occur with CodeScoop: the tool handles these operations automat-
ically. While an IDE without knowledge of a source program could help fix many
of these errors, programmers may have to decide between many irrelevant options
for resolving errors.

We observed one potential hazard of example extraction with CodeScoop: go-
ing on “auto-pilot” (P11), or accepting corrections without critically considering
them. One participant told us, “I didn’t really need to comprehend what was
going on at each step–I just clicked “accept” for suggestions, with the idea that
once [CodeScoop] was done, I’ll manually tweak it if I need to” (P8). While re-
ducing unnecessary program comprehension is desirable, it should not be too easy
for programmers to rush through decisions that could introduce errors into their
example code. This is a general tension with many tools that make corrections on
a programmer’s behalf.

Among the finished examples, those created with CodeScoop were shorter than
those created with the text editor for task 2 (median = 22.5 vs. 34.5 lines) and
task 3 (36 vs. 44 lines). Examples were about the same length for task 1 (21 vs. 20



Chapter 4. Mixed-initiative code selection and simplification 78

String QUERY = "SELECT id...";
Database database = new Database(...);
Cursor cursor = database.cursor();
try {

cursor.execute(QUERY);
if (cursor.rowCount() > 0) {

int rowCount = cursor.rowCount();
cursor.fetchone();

}
} catch (ConnectionException exception) {
}

(a) Scoop 1: Contains try-catch block, andchecks rowCount.

int COLUMN_INDEX_ID = 0;
int COLUMN_INDEX_TITLE = 1;
int COLUMN_INDEX_YEAR = 2;
int COLUMN_INDEX_NUM_PAGES = 3;
Database database = new Database(...);
Cursor cursor = database.cursor();
cursor.execute("SELECT id...");
cursor.fetchone();
int id = cursor.getInt(COLUMN_INDEX_ID);
String title = cursor.getString(COLUMN_INDEX_TITLE);
int year = cursor.getInt(COLUMN_INDEX_YEAR);
int num_pages = cursor.getInt(COLUMN_INDEX_NUM_PAGES);
Book book = new Book(id, title, year, num_pages);
System.out.println(title);

(b) Scoop 2: Wraps row in Book, defines column variables.

Figure4.6: There’smore thanoneway to scoop code. Participants didn’t always agree on what belongedin an example. Here are two solutions to fetching a row from a database, created by two participantsworking with CodeScoop.

lines). None of these differences are statistically significant.

CodeScoop allows di�erent views of a “correct” example

CodeScoop enabled participants to choose what belonged in an example. Partici-
pants made contrasting decisions about what to include, based on differing opinions
about what made a usable, readable example (see Figure 4.6 for one case).

One case where authoring decisions diverged was in the choice of whether to
substitute variables with literals. For some, including literals removed unnecessary
logic from the example code (P3, P11, P12, P14). For others, variable names
conveyed important semantics (P1, P5), or hid otherwise private information like
passwords (P2).

For almost all variables, whenever more than two participants had a choice to
replace a variable with a literal, at least one person chose to define the variable
with the original code, and at least one chose to replace it with a literal value; there
was almost never complete agreement (Figure 4.7). For this study, it seems there
is no “silver bullet” algorithm that could replicate every participant’s extraction
choices.

When CodeScoop asked a participant if they wanted to throw an exception
for a line, they always accepted the suggestion. For other choices, participants’
decisions were mixed: in task 1, participants rejected control structures a median
of 3.5 times, and accepted them a median of 1 time. There was no single control
structure all participants either accepted or rejected.



Chapter 4. Mixed-initiative code selection and simplification 79
Comparing scoops to program slices

Of the twelve3 participants who compared their code to the slices, 9 preferred
the scoop they made, and 3 preferred the slice. Participants often found that the
scoops were more concise than the slices. After a first look, one participant laughed
and told us that the slice “already looked gross” (P11). A lot of the slice’s content
didn’t appear relevant:

“I feel like [in the slice] there’s a lot of code that isn’t required to get the useof the library, and it goes through it. . . creates the whole HTML message, itpulls everything from Craigslist, it’s all this unnecessary stu�. . . ”
— P2

Scoops also exposed results from the example that slices sometimes missed.
Several participants pointed out that their scoop collected results in a list or dis-
played a result with a println statement (P4, P7, P16), while the slice did not.

Sometimes, the slice was more concise than the scoop. One participant second-
guessed their choices when they saw a slice leave out code that they included
(P17). Another participant suggested the slice was more concise because some of
their initial selections in CodeScoop were difficult to reverse (P16).

Slices sometimes contained code that participants decided they wanted in their
scoop after seeing the slice. For task 1, 3 participants preferred the more realistic
API use case in the slice (P5, P17, P18). P5 appreciated seeing other relevant
API calls for iterating over a database. P17 and P18 realized a reader may want
more context than that provided by an example that fetched only “one row” from
a database.

Slices could seem more trustworthy than scoops. One participant qualified
their preference for the scoop with, “If mine works, then. . . I’m not sure it does,
but if it did. . . ” (P13). Others questioned whether inserting literals would break
the program’s behavior (P9), and believed the slice would handle edge cases their
scoop would not (P1). We note however that two of these participants (P1, P13)
had encountered bugs in the tool that prevented them from running and compiling
their code; another had not exposed any program results (e.g., through a println)
(P9).

Scoops were shorter than slices for task 1 (median = 21 vs. 37 lines) and
task 3 (36 vs. 101 lines), and about the same length for task 2 (22.5 vs. 22 lines).
Scoops varied from slices in several ways. For task 1, almost all participants

3 For this comparison, we exclude 7 of 19 participants because for one task, the slice we created
was incorrect. We retain the participants’ qualitative data but do not report their preference.



Chapter 4. Mixed-initiative code selection and simplification 80

Variable
Add 
Code

Insert 
Literal

Add 
Code

Insert 
LiteralVariable

Task 1

COLUMN_INDEX_ID

COLUMN_INDEX_NUM_PAGES

COLUMN_INDEX_TITLE

COLUMN_INDEX_YEAR

num_pages

QUERY

arg0

priceInt

query

arg1

destination

messageHtml

password

sslFactoryClass

username

18

18

18

18

18

18

15

15

15

15

65

5

5

5

6

12

12

12

6

5

5 17

3 4 8 19

3 4

3 4 8 16 19

16

7 9

2 10

2 101 13 14

14

11

1

1

1

1

2 10 14 11 13

2 13 11 14

2 10 1411 13

2 13 11 14 Task 3

Task 2

Figure 4.7: Choices about resolving undefined variables are, well. . .variable. When deciding whetherdefine variables with additional code or a literal value, some participants replaced them with literals,and some defined it by adding lines from the original code. Each numbered box in the diagram aboverepresents a participant resolving a variable with either code or a literal value, where decisions wereoften split. Algorithms will require a nuanced understanding of author preference and code semantics inorder to replicate these di�erences.

removed loop code in order to fetch only one, not many, rows from the database;
most participants saved the queried row in a Book object, and replaced variable
names for column indexes with literals. For task 2, most participants saved the
scraped data to a list. For task 3, all but one participant eliminated dozens of lines
initializing an email’s text by using literal substitutions, or by simply leaving out
code that built the message.

Suggestions for improving usability

Participants wanted to format finished code by adding white space to group lines
of code by their functionality (P1, P2, P11, P13, P14, P16), and write comments
to make code more clear and easier to adapt (P1, P2, P4, P11, P13). Of course,
not all participants wanted to comment the code (P6).

Formatting the code as an executable main function of a new class was not
always seen as necessary. Some participants wanted to create the code as a function
that explicitly listed any data dependencies as inputs to the function (P9). One
participant questioned why they would need to write compilable code, telling us
“they’re not going to be copied and pasted” (P8), and another suggested they would
remove import statements and the class declaration when posting the example



Chapter 4. Mixed-initiative code selection and simplification 81
(P12), which would cause the example to no longer compile.

Conclusions
Can programmers extract examples with the intended behavior using CodeScoop? Yes.
16 of 19 programmers successfully extracted example code from existing code in
under ten minutes. In each of these cases, the code compiled, ran, and had the
behavior authors intended.

How does CodeScoop compare to a standard text editor for extracting example code?
Compared to a text editor baseline, CodeScoop’s main advantage was its ease
of use, providing fixes and suggestions from the original code that participants
otherwise had to fix manually. The major feature CodeScoop lacked was direct
additions and edits to code.

What code-fixing decisions could CodeScoop make automatically? When extracting
code, programmers often responded to CodeScoop’s suggestions in different ways.
This variation suggests that different contexts and authors prescribe different solu-
tions. Further work is needed to know which solutions are best (if any) for readers
of examples.

Do “scoops” o�er value over “program slices”? Yes, though with some caveats. Scoops
could be more concise than slices. However, when programmers saw alternative
suggestions like slices, this caused them to notice other code they wanted to include
in the example.

Limitations and extensions

In the study, participants had only cursory familiarity of the source program. In
the intended use case, users will extract examples from their own code, and not
code that has been given to them. It could be that participants find CodeScoop
easier to use when extracting from their own code. Still, for large code bases,
programmers may be just as unfamiliar with the code they work with from day to
day, as it could have been written by other programmers or long ago.

The source programs in the study were short: 95 and 135 lines, with all code
in one method. We chose these programs because they worked well with the
CodeScoop prototype, did not require long comprehension time, and were based
on real programs from our own projects. While these programs allowed us to gain
insight on how CodeScoop supported example extraction, it’s not clear if larger



Chapter 4. Mixed-initiative code selection and simplification 82
or more complex code will require additional interaction design. There are two
hurdles for scooping from larger programs: extending def-use analysis to cover
multiple scopes, and coming up with appropriate interaction techniques that can
span multiple files while allowing an author to maintain context. Possible solutions
may include def-use analysis with interprocedural dataflow (e.g., WALA); and
“bubbles”-based code navigation paradigms (Bragdon et al. 2010).

From designing CodeScoop, we gained a deeper understanding of what an ex-
ample extraction tool can and should support. This could provide a path to future
work.

Supporting more example extraction choices. Besides throwing exceptions for error-
prone function calls, there were few choices about code extraction that participants
made the same way. Decisions about code simplification involved trade-offs that
balanced comprehensibility, coding best practices, real-world use cases, and con-
ciseness. At the same time, there was more than one way to achieve such goals
as an author: for example, authors could add semantic meaning with a thoughtful
variable name or a descriptive comment. Our study shows that these trade-offs
play out in different ways for different programmers. While CodeScoop can satisfy
some distinct ways of resolving code, what other decision points does it not yet
support? We expect one such class of decision points is structural: participants
told us they wanted to pull code into parameterized methods, or insert literals as
new variables defined at the top of the scoop.

Revealing potentially relevant code from the source program. One participant de-
scribed going on “auto-pilot” when they interacted with CodeScoop. After com-
paring their scoop to a program slice, several participants decided there was other
code they wanted to include in their scoop. Are revelations about missing code
inherent to code extraction? Or can these revelations be avoided with interaction
techniques that help programmers discover code they might be missing?

Enabling direct edits while guaranteeing correctness. Almost every participant in the
study wrote that one advantage of extracting examples with the text editor is
directly editing the example code. This is no surprise—textual edits is a key
affordance of all code editors. However, the critique raises an important question:
What direct additions and edits should example extraction tools support?

From the study, we believe programmers should at least be able to delete ar-
bitrary lines, add comments, and format whitespace. For some of these edits, it’s
not clear what the right interaction technique is. Does deleting a line delete the
line’s dependents? The technology required to support such interactions quickly
becomes complex, and we believe there is a rich space of design and engineering



Chapter 4. Mixed-initiative code selection and simplification 83
challenges waiting to be explored to enable such mixed-initiative example extrac-
tion techniques.



84

Chapter 5. Notebook distillation
Cleaning messy computational notebooks

“But the beginning of things, of a world especially, is necessarily vague,
tangled, chaotic, and exceedingly disturbing. How few of us ever emerge
from such beginning! How many souls perish in its tumult!”

Kate Chopin

• • •

messy 
notebook

execution tim
e [4]

[27]

[11]

[2]

ordered, minimal, 
complete slices

execution 
log

slice

map

Figure 5.1: Code gathering tools help analysts manage programming messes in computational note-
books. The tools map selected results (e.g., outputs, charts, tables) in a notebook to the ordered, mini-mal subsets or “slices” of code that produced them. With these slices, the tools help analysts clean theirnotebooks, browse versions of results, and discover provenance of results.



Chapter 5. Cleaning messy computational notebooks 85
Motivation

Data analysts often engage in “exploratory programming” as they write and refine
code to understand unfamiliar data, test hypotheses, and build models (Kery and
Myers 2017). For this activity, they frequently use computational notebooks, which
supplement the rapid iteration of an interpreted programming language with the
ability to edit code in place, and see computational results interleaved with the
code. A notebook’s flexibility is also a downside, leading to messy code: in recent
studies, analysts have called their code “ad hoc,” “experimental,” and “throw-away”
(Kandel et al. 2012), and described their notebooks as “messy” (Kery et al. 2018;
Rule et al. 2018c), containing “ugly code” and “dirty tricks” in need of “cleaning”
and “polishing” (Rule et al. 2018c).

In essence, a notebook’s user interface is a collection of code editors, called
“cells.” At any time, the user can submit code from any cell to a hidden interpreter
session. This design leads to three types of messes common to notebooks: disorder,
where the interpreter runs code in a different order than it is presented in the
cells; deletion, where the user deletes or overwrites the contents of a cell, but the
interpreter retains the effect of the cell’s code; and dispersal, where the code that
generates a result is spread across many distant cells. For the millions of users of
notebooks (Kelley and Granger 2017), such messes are quite common: for instance,
nearly half of public notebooks on GitHub include cells that were executed in a
different order than they are listed (Rule 2018). Messes make it difficult for an
analyst to navigate and understand their code, and to recall how results (e.g.,
charts, tables) were produced. Messes also make analysts reluctant to share their
analyses with stakeholders and collaborators (Kery et al. 2018; Rule et al. 2018c).

In this chapter, we aim to improve the state of the art in tools for managing
messes in notebooks. We introduce a suite of interactive tools, code gathering tools,
as an extension to computational notebooks. The tools afford analysts the ability
to find, clean, and compare versions of code in messy notebooks. They build on
a static program analysis technique called program slicing (Weiser 1981), which
answers queries about the dependencies among a program’s variables. With code
gathering tools, an analyst first selects a set of analysis results, which can be any
cell output (e.g., charts, tables, console output) or variable definition (e.g., data
tables, models). Then the tool searches the execution log—an ordered history of
all cells executed—to find an ordered, minimal subset or “slice” of code needed to
compute the selected results (Figure 5.1).

This chapter makes two contributions. The first contribution is the design and
implementation of code gathering tools. Specifically, the tools highlight dependen-
cies used to compute results, to help analysts find code they wish to understand,



Chapter 5. Cleaning messy computational notebooks 86
reuse, and rewrite in cluttered notebooks. They provide ordered, minimal code
slices that can serve as succinct summaries of analysis activity or starting points
for branching analyses. Additionally, they archive past versions of results and allow
analysts to explore these versions, and the code slices that produced them.

Sel
ect

Sim
plif

y

Sup
ple

me
nt

Seq
uen

ce

Distillation tasks addressed
in this chapter.

The tools therefore support two of the distillation
tasks identified in Chapter 2: selecting code from messy
notebooks, and supplementing the extracted code with
selected results and histories of how the results evolved
over time. Code gathering tools are implemented as an
extension to Jupyter, a popular notebook with millions
of users (Kelley and Granger 2017). The extension is available for use as a design
artifact and as a practical tool for exploratory data analysis in notebooks.

The most important idea behind the interaction design of code gathering tools
is post-hoc mess management—that tools should allow analysts to easily find,
clean, and compare versions of code in notebooks, regardless of whether they have
followed a disciplined strategy to organize and version their code. Past tools for
cleaning code often require effort: annotating cells with dependency information
(Jupyter Contrib Team 2020), folding and unfolding cells (Rule et al. 2018a), and
marking and tagging lightweight versions of snippets (Kery et al. 2017). With code
gathering tools, history is stored silently, and tailored slices of code are recalled
on-demand with two or fewer clicks.

Our second contribution is a qualitative usability study providing insight into
the uses and usability of code gathering tools for managing messes in notebooks. 12
professional data analysts used the tools in an in-lab study to clean notebooks and
perform exploratory data analysis. We found that affordances for gathering code to
a notebook were both valued and versatile, enabling analysts to clean notebooks for
multiple audiences, generate personal reference material, and perform lightweight
branching. We also refined our understanding of the meaning of “cleaning,” and
how code gathering tools support an important yet still incomplete set of tasks
analysts consider to be part of code cleaning. This study confirmed that analysts
desire tools that help them manage exploratory messes, and that code gathering
tools provide a useful means to manage these messes.1

1 See the project web page, https://microsoft.github.io/gather/, for installation instruc-
tions for the extension, and study materials.

https://microsoft.github.io/gather/


Chapter 5. Cleaning messy computational notebooks 87
Design motivations

We conducted formative interviews with eight data analysts and builders of tools
for data analysis at a large, data-driven software company. During the interviews,
we proposed several extensions to the notebook interaction model. Analysts ex-
pressed the most enthusiasm for tools to help them clean their results, and explore
past variants of their code. These conversations and a review of the related liter-
ature yielded several key ideas that guided our design of notebook cleaning tools.
We refer to the analysts as D1–8 below.

Post-hocmanagement ofmesses. Analysts have diverse personal preferences of whether
and how to organize and manage versions of code. The analysts we spoke to each
had their own workarounds, like keeping cells ordered so they always reproduce
the visible results (D7, D8), copying useful snippets to external files (D4), and
assigning dataset variables new names every time they transform them to avoid
overwriting the original data (D6). Some code organization strategies conflict with
others: some analysts clean their notebooks as they write it, while others preserve
a record of everything they have tried (Kery et al. 2018)—though you cannot do
both in current notebooks. One analyst noted that you don’t always know if you
are creating versions of code until you already have (D7). We decided code gather-
ing tools should assist analysts regardless of whether they think to organize their
code, and whether they prefer to overwrite or save copies of old code. The tools
silently collect history, and provide access to the code that produced any visible
result.

Portability of gathered code. Analysts reuse a notebook’s code in that notebook,
other notebooks, and scripts (Kery et al. 2018). The analysts we spoke to wanted
tools to help them reuse code in new notebooks (D7), to apply old notebooks’
analyses to new data (D8), and to export code to other files (D4, D5). We designed
our tools to make it equally easy to gather code to new notebooks, cells, and lines
of text.

Query code via direct selection of analysis results. Prior research shows that pro-
grammers frequently look to program output when searching for code to reuse
(Ragavan et al. 2016). In notebooks, visual results break up walls of monospace
text, providing beacons. We anticipated that selections of results would provide
the most direct method for accessing relevant history.



Chapter 5. Cleaning messy computational notebooks 88
A demo of code gathering tools

To convey the experience of using the code gathering tools in Jupyter Notebook,
we describe a short scenario. Consider an analyst, Dana, who is performing ex-
ploratory data analysis to understand variation and determiners of quality of a
popular consumer good—chocolate. This section shows how code gathering tools
could help her find, clean, and compare versions of code during data analysis.

Prologue: A proliferation of cells
Dana starts her analysis by loading a dataset, importing dependencies, and filtering
and transforming the data. She writes code to display tables so she can preview the
data. To better understand key features of the data, she builds a model to predict
chocolate quality from the other features. Through experimentation, she tailors the
model parameters to learn more about the features. Throughout the analysis, she
makes messes, overwriting old code, deleting code that appears irrelevant, running
cells out-of-order, and accumulating dozens of cells full of code and results. Dana
starts to have trouble finding what she needs in the notebook.

Finding the code that produces a result
After several hours building and testing models, Dana is satisfied with a version of
the model, but then realizes there may be a problem with the model. One of the
numeric fields contains erroneous values. Although Dana wrote code to fix these
values, she cannot remember if she ran this code on the dataset that was used to
trained the model.

Because she has installed code gathering tools, Dana sees all variable definitions
(data frames, models, etc.) highlighted in blue and all visual outputs (console out-
put, tables, figures, etc.) outlined in blue. She clicks on the results of classification
(a variable named predictions) and then all lines that were used to compute the
variable’s value are highlighted in light purple (Figure 5.2). Dana scrolls through
the sprawling notebook to browse the highlighted lines, skipping over long sections
of irrelevant code and results. She finds the code that transforms the percent-
age data, namely, a cell defining the function normalizeIt and the cell after it.
Because these lines are highlighted, Dana knows that she cleaned the column of
unclean values before classification.



Chapter 5. Cleaning messy computational notebooks 89

Figure 5.2: Finding relevant code with code gathering tools. With code gathering tools, an analyst canclick on any result, and the notebook highlights in light purple just those lines that were used to computethe result or variable. The highlights appear throughout the notebook (which is condensed in the figure).Black arrows have been added in the figure to indicate the data dependencies that cause each line to beincluded in the highlighted set.

Removing old and distracting analysis code
Dana now has a notebook with a model that she likes—and much more code she
no longer needs (Figure 5.3.1). Now that Dana knows what her data looks like and
has a working set of data filtering, data transformation, and model training code,
the code to visualize the data and debug the APIs will just get in the way. Dana
decides to clean her notebook to a state where it only has the useful model-building
code.

To clean the notebook, Dana clicks on a few results she wants to still be com-
puted in the cleaned notebook, namely, the classification results in the predictions
variable and a histogram showing the range of chocolate qualities used to build the
classifier (Figure 5.3.2). Dana gets a sense of the size of the final cleaned notebook
by looking at which lines in the notebook are highlighted as she selects each result.
Then, Dana clicks the “Gather to Notebook” button (Figure 5.3.3), which opens
a new notebook with the definition of predictions, the bar chart of chocolate
quality, and the other code needed to produce these two results. The new, cleaned
notebook has 16 cells, instead of the 47 in her original notebook. It contains the
bar chart and omits 28 other visual results in the original. This reduces the overall
size of the notebook from 13,044 to 1,248 vertical pixels in her browser, which is



Chapter 5. Cleaning messy computational notebooks 90

32

4

1

Figure 5.3: Cleaning a notebook with code gathering tools. Over the course of a long analysis, a note-book will become cluttered and inconsistent (1). With code gathering tools, an analyst can select results(e.g., charts, tables, variable definitions, and any other code output) (2) and click “Gather to Notebook”(3) to obtain a minimal, complete, ordered slice that replicates the selected results (4).

much easier to scroll through when editing the code (Figure 5.3.4). This cleaned
notebook is guaranteed to replicate the results, as the tool reorders cells and resur-
rects deleted cells as necessary to produce the selected results. Dana verifies that
running this notebook start-to-finish indeed replicates the chosen predictions and
bar chart.

Reviewing versions of a result and the ordered, minimal code slices that pro-duced them
To build a better predictor, Dana has been experimenting with different parameters
to a decision tree classifier, like its maximum allowable depth and the minimum
samples per branch. Dana remembers that she had previously created a simple,
shallow decision tree with promising performance, but has not yet found a model
with better performance.

With code gathering tools, Dana can summon all past versions of her classifier’s
results and compare the code she used to produce these results. To do this, she
clicks on a result—namely, a confusion matrix which visualizes the accuracy of the
decision tree for each class—and then on the “Gather to Revisions” button. This
brings up a version browser (Figure 5.4). Here, Dana sees all the versions of the
result, arranged from left to right, starting with the current version and ending
with the oldest version. Each version includes the relative time the result was
computed, the code slice that produced that version and the result itself.

Scrolling horizontally to access older versions, Dana finds several examples of
decision trees with comparatively good accuracy. Differences from the current
version of the code are shown with bold text and a colored background. Dana
finds the model she is looking for—a shallow tree with good performance. The



Chapter 5. Cleaning messy computational notebooks 91

Opens a notebook with a 
minimal slice that 
replicates this version.

Past version of a result.

The code that produced 
the prior version.

The current version's 
code is highlighted in 
grey italics. 
Differences in the past 
version are bolded.

Figure 5.4: Comparing versions of a result with code gathering tools. When an analysts executes a cellmultiple times, code gathering tools archive each version of the cell. When the analyst chooses the cell’soutput—say, the confusion matrix shown above—and clicks “Gather to Revisions,” a version browserappears that lets them see all versions of that output, compare the code slices that produced each version,and load any of these slices into a new notebook, where the version’s results can be replicated.

code that produced this version can be copied as cells or text to the clipboard, or
opened as a new notebook that replicates that version; Dana opens a notebook
with this version so she can refer back to it later.

Cleaning finished analysis code
Dana finished her data analysis and wants to share the results with an analyst
on her team who can check her results and suggest improvements. However, the
notebook is once again cluttered with code that would distract her colleague. While
Dana wants to save her long and verbose notebook for her personal use later, she
also wants a clean and succinct version of the notebook for her colleague. She
chooses the prediction results of her model, clicks “Gather to Notebook,” and saves
the generated notebook to a folder shared with her colleague.

Exporting analysis code to a standalone script
After refining her analysis with her colleague, Dana wants to export a script that
can be packaged with an article she is writing, so that others can replicate her
results in their preferred Python environments. To do this, Dana selects the code
that produces the results she wants her script to replicate, clicks “Gather to Clip-
board,” and then pastes the gathered code into a blank text file. This script
replicates the results Dana produced in her notebook.



Chapter 5. Cleaning messy computational notebooks 92
Implementation

[101]

1
...

101

102
103

1

2

3

• • •

101

• • •
Result versions

Sliced cells

Selected 
result

[ ]

[ ]

[ ]

Cleaned, ordered, 
minimal notebook

Split log at selection1

User selects 
result

[102]

Concatenate2 Slice3 Combine4 Display5

Figure 5.5: Implementation of code gathering. When an analyst wants to gather the code that produceda result, the code gathering backend splits the log of executed cells at the last cell where the analystclicked a result, and discards the other cells (1), concatenates the text from the remaining cells into aprogram (2), slices the program using the analyst’s selections as a slicing criterion (3), combines thesliced cells with the selected results if they are code outputs (4), and displays these cells in a notebookor a version browser (5).
A computational notebook uses an underlying language interpreter. At any

time, an analyst can submit any cell’s code to the interpreter, in any order. The
results that the interpreter produces and that the notebook displays depend on
the order in which the analyst submits cell code. Hence, in the notebook context,
a notebook’s “program” is not the content of the notebook’s cells, but the content
of the cells that the analyst runs, in the order in which the analyst runs them. We
call this the execution log.

We define code gathering as the application of program slicing to an execution
log to collect ordered, minimal subsets of code that produced a given result. Pro-
gram slicing is a static analysis technique wherein, given a target statement (called
the slicing criterion), program slicing computes the subset of program statements
(called the slice) that affect the value of the variables at the target statement
(Weiser 1981). In the notebook context, the variables/outputs that an analyst
selects are the slicing criteria, and the gathered code is the slice. We implemented
code gathering as a Jupyter Notebook extension with roughly 5,000 lines of Type-
Script code. Our implementation supports notebooks written in Python 3. The
details in this section could serve as a conceptual template for tool builders seeking
to support code gathering for notebooks in other Python-like languages like Julia
and R.



Chapter 5. Cleaning messy computational notebooks 93
Collecting and slicing an execution log
To find the code that produces a result, the tools first need a complete and ordered
record of the code executed in the notebook. We build such a record, the “execution
log,” by saving a summary of each cell as it is executed. A cell summary contains
two parts: first, the cell’s code, which will be joined with the code of other cells
into a temporary program used to find code dependencies; second, the cell’s results,
which can be used as slicing criteria, and shown in a version browser as the output
of running that cell.

The code for some cells, if included in the execution log, will cause errors
during program slicing. Namely, if the code contains syntax errors, the temporary
program used during dependency analysis will fail to parse; if it raises runtime
errors, a slice containing that cell might raise the same error. Therefore, cells with
syntax errors and runtime errors are omitted from the log. Ignoring cells with
parse errors is consistent with Jupyter’s semantics: if an executed cell contains
any parse errors, all of its code is ignored by the interpreter. Ignoring cells with
run-time errors is inconsistent with Jupyter’s semantics, in that the interpreter
will run the statements up to the point where the error occurs. This limitation
does not cause problems in practice, since analysts typically correct such errors
and re-run the cells.

Next, we slice the execution log to produce code slices that replicate results.
When an analyst selects results in a notebook, they specify slicing criteria. When
they select a variable definition, they add the statement containing the variable
definition as a slicing criterion. When they select a cell’s output, they add all
statements from that cell.

To slice the execution log, there must first be a “program” to slice. We build
such a program by filtering the log to exclude the cells that were executed after
the cells containing slicing criteria: these cells won’t be included in the slice, and
would unnecessarily slow down the slicing algorithm. Then, the program is built
by joining the text of the remaining cells, in the order they were executed (Fig-
ure 5.5.1–2). This program may include the code of a single cell more than once,
e.g., if the cell was executed twice to compute the chosen result.

Finally, we slice the program (Figure 5.5.3). We implemented a standard pro-
gram slicing workflow—parsing the program with a Jison-generated parser; search-
ing the parse tree for variable uses, definitions, and control blocks; computing con-
trol dependencies (e.g., dependencies from statements to surrounding if-conditions
and for-loops) and data dependencies (e.g., dependencies from statements using a
variable to statements that define or modify that variable); and slicing by tracing
back from the slicing criteria to all the statements they depend on. When com-



Chapter 5. Cleaning messy computational notebooks 94
puting data dependencies, we determine if methods modify their arguments by
looking up this information in a custom, extensible configuration file containing
data dependencies for functions from common data analysis libraries (e.g., pandas,
matplotlib).

Our current implementation supports interactive computation times by split-
ting slicing into small, reusable parts: when a cell is executed, its code is imme-
diately parsed, and its variable definitions and uses detected. With these precom-
puted pieces of analysis, gathering takes place at interactive speeds, as the most
costly analyses have been performed before the analyst gathers any code.

In-lab usability study

Method
We designed a two-hour, in-lab usability study to understand the support that
code gathering tools can provide to data analysts as they write code in computa-
tional notebooks. We were fairly confident of the ability of code gathering tools
to eliminate clerical work—like the removal of irrelevant code, or recovery of dead
code—given the design of the tool and evidence from several prior pilot studies.
Therefore, the questions we sought to answer focused on the match between the
control analysts desired over messy notebooks, and the support code gathering
tools currently provide. We therefore designed our study to answer these research
questions:

RQ1. What does it mean to “clean”? When we ask analysts to clean a notebook,
what do they do? Could code gathering tools support the work they are
doing?

RQ2. How do analysts use code gathering tools during exploratory data analysis?
In our design of the tools, we hypothesized that analysts would use the tools
for highlighting code, gathering to notebooks, and version browsing to find,
clean, and compare versions of code. Do they?

Participants. We invited 200 randomly selected data analysts at a large, data-
driven software company. The invitation stated the requirement of experience
with Jupyter notebooks and Python. We recruited 12 participants altogether (aged
25–40 years, median age = 29.5 years, 3 female). Participants reported the fol-
lowing median years of experience on an ordinal scale: 6–10 years programming;
3–5 years programming in Python; and 1–2 years using Jupyter Notebooks. Five



Chapter 5. Cleaning messy computational notebooks 95
participants reported using Jupyter Notebooks daily; three, weekly; one, monthly;
and three, less than monthly. We compensated participants with a US$50 Amazon
gift card. In the section below, we refer to the 12 analysts from the study with the
pseudonyms P1–12.

Tasks. To start, each participant signed a consent form and filled out a background
questionnaire. The session then consisted of two cleaning tasks and an exploratory
data analysis task. For the two cleaning tasks, we gave participants two existing
notebooks from the UCSD Jupyter Notebook archive (Rule et al. 2018b), one
about Titanic passengers, and one about the World Happiness Index. We chose
these notebooks because they are in Python, execute without errors, use popular
analysis and visualization libraries, involve non-technical domains, and are long
enough to be worthy of cleaning. We counterbalanced use of the two notebooks
between subjects.

For the first cleaning task, we asked the participant to scan the notebook for
an interesting result and to clean the notebook with the goal of sharing that result
with a colleague (10 minutes). After a brief tutorial about code gathering, we
then asked the participant to repeat the cleaning task on a different notebook, this
time using the code gathering features (10 minutes). Finally, for the exploratory
task, we gave participants a dataset about Hollywood movies and asked them to
create their own movie rankings, ready for sharing (up to 30 minutes). We chose
this dataset as we thought it would be understandable and interesting to analysts
from a wide variety of backgrounds. During all tasks, participants could use a web
browser to search the web for programming reference material. After each of the
three tasks, the participant filled out a questionnaire: the first about how they
currently clean notebooks; the second about the usefulness of code gathering tools
for notebook cleaning; and the third about the usefulness of code gathering tools
for data exploration. Throughout the tasks, we encouraged participants to think
aloud, and we transcribed their remarks.

Each participant used an eight-core, 64-bit PC with 32 GB of RAM, running
Windows 10, with two side-by-side monitors with 1920 × 1200 pixels. One mon-
itor displayed Jupyter Notebooks; the other displayed our tutorial and a browser
opened to a search engine.

Results
The meaning of “cleaning”

Before giving analysts the tutorial about code gathering tools, we first asked them
to describe their cleaning practice and to clean a notebook in their usual way. This



Chapter 5. Cleaning messy computational notebooks 96
allowed us to understand their own interpretation of “cleaning” before biasing them
with our tool’s capabilities. Many analysts explained “cleaning” in a way that is
compatible with code gathering, namely keeping a desired subset of results while
discarding the rest (P8, P10–12). Indeed, one analyst’s description of cleaning is
surprisingly close to the code gathering algorithm: “So I picked a plot that looked
interesting and that’s maybe something I would want to share with someone and
then, if you think of a dependency tree of cells, sort of walked backwards, removed
everything that wasn’t necessary” (P10).

In their everyday work, some analysts clean by deleting unwanted cells, but
most copy/paste desired cells to a fresh notebook. (One analysts who cleans by
deletion initially found the non-destructive nature of code gathering to be unintu-
itive, but adjusted after practice (P4).) Many described the process as error-prone
and frequently re-execute the cleaned notebook to check that nothing is broken.

Every analyst reported that choosing a subset of cells is part of the cleaning
process. However, for several analysts, “cleaning” includes additional activities.
Several analysts reported that cleaning involves a shift in audience from oneself
to other stakeholders, like peers and managers (P1, P5–7, P11). Hence, clean-
ing involves adding documentation (comments or markdown) (P1, P5, P7, P10,
P11) and polishing visualizations (e.g., adding titles and legends) (P1, P6). Some
analysts reported that cleanup includes improving both notebook quality (e.g.,
merging related cells (P11) and eliminating unwanted outputs (P3, P6)) and code
quality (e.g., eliminating (P3, P6) or refactoring (P3, P4, P12) repeated code).
Finally, for some, cleaning involves integrating the code into a team engineering
process—for example, by checking the code into a repository or turning it into a
reusable script (P7).

How analysts use code gathering tools to support exploratory data analysis

After both the second notebook cleaning task and the exploratory analysis task, we
asked analysts to provide subjective assessments of code gathering, broken down
into seven features (Figure 5.6). Gathering code to a new notebook was the clear
favorite, with nearly every analyst rating it as “very useful” for both tasks. The
dependency highlights were also popular. Many analysts did not find opportunities
to try the version browser during the two tasks, likely due to the short duration
of the lab session. Similarly, many analysts did not experience the recovery of
deleted code, either because no relevant code was deleted or because the user
interface recovers deleted code silently.

Valued and versatile feature of gathering code to new notebooks. Nine analysts gath-
ered code to a new notebook at least once during the exploratory task. Analysts



Chapter 5. Cleaning messy computational notebooks 97

Gather code to new notebook
Highlight lines code depends on

Paste gathered code as cells
Reorder gathered code as cells

Paste gathered code as text
Review versions in revision browser
Recover deleted / overwritten cells

0 3 6 9 12

7 
5 
2 
4 

1 

1 
3 

1 
3 

1 

1 
3 

4 
5 

6 
3 

4 
3 
3 

2 
3 

7 
12 

Task 1: Cleaning Notebooks Task 2: Exploratory Data Analysis

Very useful
Somewhat useful
Not useful
No basis to answer

0 3 6 9 12

5 
5 
4 
5 
1 

1 

4 

5 
2 
1 

3 
4 

3 
1 

3 
7 

1 

3 
3 

1 
6 

3 
3 

10 

# participants # participants

How useful was this 
feature to this task?

Figure 5.6: Analysts found code gathering tools most useful for gathering code to new notebooks,when they cleaned notebooks, and when they performed exploratory analysis. Analysts also appreciateddependency highlights, especially when they were cleaning code.

gathered code to a notebook a median of 1.5 times (σ = 3.7) during this task,
with one analyst even gathering notebooks 12 times (P3). Analysts most often
gathered code to a notebook for its intended purpose of cleaning up their code as
a “finishing move” after exploration (P6). Analysts clearly valued this aspect of
the tool, calling it “amazing” and “beautiful” (P10), that they “loved it” (P5), it
“hits the nail on the head” (P9), and will save them “a lot of time” (P11).

Analysts saw additional value in gathering code to notebooks beyond our orig-
inal design intentions. During the exploratory task, one analyst used gathering to
a new notebook as a lightweight branching scheme. As he explored alternatives,
he would gather his preferred alternative to a new notebook to create a clean slate
for further exploration (P3). Another analyst used gathering as a way to generate
reference material. She created data visualizations, then gathered them to new
notebooks, so she could quickly refer back to the visualizations as she carried on
exploring in her original notebook (P4). Finally, one analyst used gathering to
support cleaning for multiple audiences. At the end of the exploratory task, he
gathered many visualizations to one notebook and documented them for his peer
data analysts; he then gathered his movie ranking result to a different notebook
intended for those who only want to know the final answer (P2).

Analysts were eager to incorporate gathering into their data analysis workflows:
seven of twelve analysts asked us when we would release the tool. One analyst
envisioned gathering becoming part of code-cleaning parlance: “once this is public,
people will send you bloated notebooks. I’ll say, nope, you should gather that”
(P10).

Use of dependency highlighting. During the exploratory task, 8 analysts clicked on
at least one variable definition, and 9 clicked on at least one output area. Ad-
ditionally, during the cleaning tasks, as these tasks involved reading unfamiliar
notebooks, a few analysts used the dependency highlights as a way to understand
the unfamiliar code.



Chapter 5. Cleaning messy computational notebooks 98
Use and disuse of the version browser. Two analysts opened the version browser at
least once (P2, P3). Both copied the cells to the clipboard from a version in the
version browser at least once; one analyst in fact copied cells for versions four times
during their session (P2). The other analyst opened a version in a new notebook.
This analyst wanted to compare versions of a cell that sorted data based on two
different dimensions, and used the version browser to recover code from a prior
version without overwriting the current cells, which they wished to preserve (P3).

Some analysts who did not use the version browser believed that they might
eventually use it in their own work (P6, P8, P9). One analyst noted Jupyter Note-
book’s implementation of “undo” is not sufficient for them, and the version browser
could provide some of the backtracking functionality they want (P6). Another re-
ported that the version browser could be useful in their current work, where they
have iteratively developed an algorithm and are managing three notebooks con-
taining different versions of analyses (P9). However, two analysts believed they
wouldn’t use the version browser, as its view of versions is too restrictive. The
version browser collects versions ending with multiple executions of the same cell,
yet these analysts preferred to modify and re-run old analyses in new cells (P10,
P11).

Downsides and gaps. A few analysts mentioned that repeatedly gathering code to
a new notebook creates a different kind of mess, namely clutter across notebooks,
rather than clutter within a notebook. For example, gathering multiple times
typically causes initialization code (e.g., loading the dataset) to be duplicated in
each generated notebook (P3, P4, P6). In effect, a notebook and the notebooks
gathered from it form a parent/child relationship that the user interface does not
currently recognize. Analysts suggested several improvements. First, gathering
to a new notebook should create a provisional notebook, rather than being saved
by default, and its name should be related to the original notebook’s name. One
analyst suggested linked editing across this family of notebooks as a way to deal
with duplicated code. For example, renaming a variable in one family member
could automatically rename it in all members (P12).

Two analysts believed that comments, when close to the code, should be gath-
ered alongside the code they comment on (P3, P10). One of these analysts noted
that including irrelevant comments would not be problematic, as “it’s easy to re-
move some extraneous text” (P10).

Validating the design motivations

Analysts’ feedback offered evidence of the role that our design motivations played
in the usefulness of the tools:



Chapter 5. Cleaning messy computational notebooks 99
Post-hoc management of messes. Analysts valued the ability to manage messes
without up-front effort to organize and version code. This was a benefit of gathering
to new notebooks, as analysts appreciated simple affordances to clean up their
messy analysis code (P1, P2, P6, P8, P9). For one analyst, the tool encouraged
them, for better or worse, to “not to care. . . too much about data cleaning or
structure at this moment. I say it was nice in a way, that I can just kind of go on
with what I want to do” (P12). For some analysts, this was the downside of the
version browser, which required them to run new versions of code in the same cell
(P10, P11).

Portability of gathered code. Analysts reused gathered code by opening fresh note-
books, pasting cells, and pasting plaintext. In the exploratory task, nine analysts
gathered code to notebooks, and five gathered code to the clipboard, to paste as
either cells or plaintext. By pasting plaintext into one cell, analysis code looked
“a lot cleaner” (P3), and several analysts wanted an easier way to gather code
to scripts. Others preferred pasting code as distinct cells (P5, P7). One analyst
simply liked having the choice (P10).

Querying code via direct selection of analysis results. Analysts appreciated the di-
rectness with which they could gather code: “It was very easy to just click, click,
click on something and then grab the code that produced” a result (P10). The
directness allowed analysts to clean their code by asking, “what do I need?” rather
than “what do I not need?” (P3).

Conclusions
Our qualitative usability study with 12 professional data scientists confirmed that
cleaning computational notebooks is primarily about removing unwanted anal-
ysis code and results. The cleaning task can also involve secondary steps like
improving code quality, writing documentation, polishing results for a new audi-
ence, or creating scripts. Participants find the primary cleaning task to be clerical
and error-prone. They therefore responded positively to the code gathering tools,
which automatically produce the minimal code necessary to replicate a chosen set
of analysis results, using a novel application of program slicing. Analysts primarily
used code gathering as a “finishing move” to share work, but also found unantici-
pated uses like generating reference material, creating lightweight branches in their
code, and creating summaries for multiple audiences.



Chapter 5. Cleaning messy computational notebooks 100
Limitations and extensions

Our study has two limits to external validity, which are common in lab-based
usability evaluations: first, the participants did not do their own work, on their own
data, in their own time frame. We created realistic tasks by choosing notebooks
and datasets from the UCSD Notebook Archive, itself mined from GitHub. Ideally,
participants would use their own data and analyses. However, several informants
in our formative interviews said their data was too sensitive for us to observe, so
we did not pursue this option. The second limitation is the study’s short duration,
which we believe accounts for the low use of the version browser feature. As P6
commented, “the other features will be more valued for notebooks that have been
used for a long time/long project.”

To help analysts manage messes in their code, we offer tool builders the follow-
ing suggestions:

Support a broad set of notebook cleaning tasks. While slicing and ordering code is a
key step in cleaning notebooks, analysts still need support for many other cleaning
tasks. This includes refactoring code (e.g., eliminating duplicates and extracting
methods), restructuring notebooks (e.g., merging cells), polishing visualizations,
and providing additional documentation to explain the code and results. Many of
these tasks still lack tool support in computational notebooks.

Design versioning tools to support many ways of organizing code. In our study, and in
Rule’s (2018) study of Janus, analysts used cell version histories less than expected.
Is this because of issues in tool design, or because of the studies’ length? Evidence
from our study lends credence to both claims. Some analysts in our study told
us they would not use the “Gather to Revisions” feature, as they wrote versions
of code in a way that our system could not detect, i.e., duplicating and changing
a cell’s content elsewhere in the notebook. For future tools, two cells’ “sameness”
should not be determined by a cell’s placement, but perhaps by using heuristics
such as text similarity. Furthermore, several participants reported they didn’t have
enough time to create versions during the study, suggesting the need for longer
programming sessions, and perhaps long-term deployments, in future studies.

Code gathering with history and compositionality. The code gathering tools’ execu-
tion log lasts only for a single programming session, which limits the scope of the
Revisions button and resurrecting code from deleted or overwritten cells. Future
tools should use a persistent execution log. Several participants wanted to create
a cleaned notebook in a series of steps, that is, for a gathering step to “patch”
notebooks gathered in a previous step. Future tools could use algorithms from
revision control systems to support this flexibility.



Chapter 5. Cleaning messy computational notebooks 101
Reuse code gathering tools in other programming environments. Code gathering can
be useful in other tools, such as read-eval-print loops for interpreted languages like
R, Python, Scala, and others. These interpreted languages are another popular
category of tools for data analysts.



102

Chapter 6. Tutorial distillation
Flexible sequencing of snippets

“Great things are not done by impulse, but by a
series of small things brought together.”

Vincent Van Gogh

presented 
linearly

1

2

3

4

presented 
flexibly

3a

3b

1

2

4

executed 
linearly

reference 
implementation

init	game

add	sprite

position	sprite

add	background

listen	to	keys
move	sprite

listen	to	keys
move	sprite

add	background

init	game

add	sprite
position	sprite

init	game

add	background

add	sprite

position	sprite

listen	to	keys
move	sprite

Figure 6.1: Interactive tools for creating tutorials typically support linear presentation of code, though
authors often present code with repetitions and fragments. We propose a tool called Torii that enablesthe creation of tutorials with flexible presentation of code snippets while keeping code and outputs con-sistent. The tool (shown within dotted lines above), preserves links from snippets to a reference imple-mentation to preserve consistency, and to determine how outputs should be generated from snippets.



Chapter 6. Flexible sequencing of snippets 103
Motivation

In 1984, Donald Knuth proposed literate programming as a new approach to writ-
ing code. In this vision, instead of programs, authors write about computational
ideas and the implementation of those ideas. Instead of simply commenting their
source code, a programmer splits their program into brief code snippets, and in-
terleaves these snippets with explanations about what the snippets do, and how
they fit together into a complete program. The output of literate programming is
a document that describes an algorithm, studded with code that shows how each
piece of the algorithm is implemented (Knuth 1984).

Today, the vision of literate programming has become manifest in the form of
tutorials that programmers write for one another. Bloggers (Parnin et al. 2013),
open source developers (Dagenais and Robillard 2010), and technical writers all
create and share tutorials on the web. Sites like Ray Wenderlich host thousands of
tutorials written by hundreds of authors. Companies like Apple produce hundreds
of tutorials to help programmers use their development tools (Tiarks and Maalej
2014). These tutorials go beyond textual presentation to include visuals (screen-
shots, videos), and interactive components (running programs, embedded demos
that update with new output as a reader edits a code snippet).

While literate programming has become the pervasive paradigm for tutorials
about programming, the tools that authors use to produce these documents have
not seen a similar renaissance. Instead, tutorial authors typically use text editors
for the prose and code portions, and standalone tools for running code and pro-
ducing images and videos. One notable exception is the interactive computational
notebook, which has become popular for many programming tasks, including au-
thoring tutorials in domains like data analysis.

However, there are many programming tasks for which the notebook paradigm
is insufficient. These include user interface development, web server implementa-
tion, game development, and visualization creation. For this kind of programming,
code may not be readily presented in an order that can be interpreted or compiled.
Rather, it is best explained as an incremental refinement to a base program. For
this kind of program, tutorial authors continue to depend on general purpose text
editors rather than computational notebooks.

To advance the state of the art in tutorial authoring tools, this chapter first
describes the special challenges of the programming tutorial authoring process and
then presents and assesses a prototype tool with novel features for enabling flexible
presentation of code, and keeping snippets consistent with outputs.

To understand the key needs for tutorial authoring, we conducted two different



Chapter 6. Flexible sequencing of snippets 104
qualitative studies. One was an in-depth interview study with 12 accomplished
tutorial authors, which found that, compared to other online content creators,
tutorial authors faced a unique challenge of keeping collections of related program-
ming artifacts consistent with each other as they wrote and revised a tutorial. In
essence, writing a tutorial often entailed creating several artifacts in parallel—a
source program, the snippets derived from that source program, prose explana-
tions of the snippets, and outputs generated from the source program. Authors
were sometimes dissatisfied with their tools and processes for keeping these arti-
facts consistent. A secondary issue was the desire for more support for producing
“assets”: outputs generated by running code snippets, diagrams, screenshots, and
demos.

To verify that the problems identified were representative of popular tutorials,
we report on a content analysis of 200 widely-referenced web-based programming
tutorials. A majority included code fragments that showed only a portion of a
source file (83%). Many included assets such as screenshots, diagrams, videos, and
embedded demos of running the code (80%). Most tutorials also included resources
that would need to be kept consistent with each other should the tutorial be further
changed, such as duplicated code (59%) and outputs generated from running the
source program (67%).

Sel
ect

Sim
plif

y

Sup
ple

me
nt

Seq
uen

ce

Distillation tasks addressed
in this chapter.

To understand how tools can help authors write tu-
torials, we designed, implemented, and assessed a pro-
totype tool called Torii.1 This tool helps authors keep
their source programs, snippets, and generated outputs
consistent with one another, and allows the author to
organize and present code in the order they see fit (Fig-
ure 6.1). This includes showing the same code in multiple locations, from different
points of view, explaining code snippets out of their original source code order, and
showing code snippets that are syntactically invalid in isolation, but valid when
combined with other code in the tutorial. In other words, Torii helps authors sup-
plement the code in a tutorial with outputs, while providing support for flexible
sequencing of the code. We assessed this tool in an in-lab study with 12 partici-
pants, finding positive usability outcomes for many of the proposed features, and
directions for improvement for others.

1 Torii (tOR-ee-ee) n . 1 A gate marking passage from the mundane to the spiritual. 2 An ab-
breviation of the word “tutorial.” 3 A tool, described in this chapter, that propagates changes
between source programs, snippets, and outputs in a tutorial workspace.



Chapter 6. Flexible sequencing of snippets 105
Formative study I: Interviews with tutorial authors

Building on past content analyses (Kim and Ko 2017; Nasehi et al. 2012; Tiarks
and Maalej 2014) and qualitative studies of the authoring process (Mysore and Guo
2017; Parnin et al. 2013), we conducted two studies to expand our understanding
of tutorial authoring. In our first study, we interviewed 12 authors to develop a
rich, qualitative understanding of how programming tutorials are constructed.

Method
Participants. We contacted recently active authors from a sample of online pro-
gramming blogs. Of the approximately 50 authors we emailed, 12 opted to partici-
pate (referred to as A1−12 below). Recruited authors had considerable experience.
Each had written from a few to over one-hundred tutorials. Authors lived in at
least four different countries, and consisted of both amateurs and paid professional
technical writers.

Interviews. Interviews were semi-structured and lasted between 30 minutes and
an hour long, with one interview scheduled for an additional one-hour follow-
up. Authors were asked to describe how they wrote tutorials, the challenges they
faced, and how they thought tools to could help them write tutorials better. Audio
was recorded for all interviews, and anonymized transcripts were made for each
interview.

Analysis. One researcher analyzed the interview data, following a qualitative ap-
proach described in Weiss’ seminal guide to conducting interview studies (Weiss
1995). Throughout the analysis process, themes were refined, hypotheses devel-
oped, and relevant passages excerpted.

Results
Overview

Authoring a tutorial is an effort-intensive process that involves picking ideas to
write about, building prototypes, testing out the code, writing excellent prose,
and disseminating the work. Interviewees described, in each of these stages, the
challenges they faced: finding topics that are sufficiently unique to write about
(A3, A6), finding high-quality copy-editors (A5, A8), and producing content on
a regular cadence (A8, A10). In reporting these results, we highlight only the



Chapter 6. Flexible sequencing of snippets 106
authoring challenges unique to programming tutorials, with an emphasis on the
production and presentation of code.

Keeping source code, snippets, and outputs consistent

As an author writes a tutorial, they are in essence developing and maintaining four
types of resources in parallel:

A source program or a set of source programs that they are trying to describe
to a reader, or teach a reader to build.

Snippets of code taken from these programs from a specific point of time in
the development of those programs. The snippets are embedded in the tutorial as
focused and often short views of the source programs.

Prose explanations of snippets and how they fit together into a program, and of
algorithms, concepts, and anecdotes germane to the tutorial’s narrative. Diagrams
may augment the prose.

Outputs produced by running selections of code from the source program. These
include console logs, user interface screenshots, and embedded, running demos
(e.g., web pages embedded in iframes, interactive visualizations).

While these resources are distinct artifacts in the author’s workspace, many
of them are different views of the exact same code (Figure 6.2). Snippets often
represent a partial view of a source program at one point in its development.
Outputs are generated from running a version of the source program, some of the
code for which may appear in the snippets. Meanwhile, snippets themselves may
appear more than once in a tutorial, or part of the code of one snippet may appear
in another.

These relationships are not recorded by the tools authors used to make tutorials.
One of the most common annoyances authors described was simply keeping all of
these resources in sync. Because the contents of these resources are so closely
related to each other, interviewees reported needing to perform several tedious
and error-prone tasks to keep their programs, snippets, and outputs consistent
with each other:

Starting with a reference implementation. Some interviewees built a complete refer-
ence implementation before adding code to a tutorial. Three professional authors
for the same online tutorial portal (A9, A11, A12) were required to produce a
“starter project” and a “final project,” and have this code checked off before they
began to write a tutorial. Another tutorial author started writing complete im-



Chapter 6. Flexible sequencing of snippets 107
tutorialsource program

languages 
and APIs

snippet

output

snippet

A

B
C

D

Figure 6.2: When writing a tutorial, authors clone and transform code in ways that are not tracked by
conventional development tools. Source programs depend on languages and APIs, and may need to beupdated when these change (A). Snippets are copied from the source program into snippets (B), and thesame code may appear in multiple snippets (C). Outputs are generated by assembling and executing thesnippets (D).

plementations after an experience where they found they had painted themselves
into a corner and needed to change their approach mid-tutorial (A8).

Propagating code changes. When an author changes a snippet or a source pro-
gram, they must make sure that the change is reflected in all other versions of the
source program and all other snippets. Interviewees reported needing to propa-
gate changes like these for both larger tutorials and for books (A2, A5, A9, A11).
These code changes could be triggered by forces outside of the author’s control,
like changes to the APIs and frameworks used by the tutorial’s code (A5).

Play-testing the tutorial. If an author plans to publish a completed source program
for a reader’s reference, they need to make sure that the reader, after assembling
all of the snippets in the tutorial, will end up with the same code as the published
source program. One author followed along with their own tutorials, checking to
see that they finished with the same code as the reference program they wanted
to post (A12).

Regenerating program outputs. When an author changes the code in a snippet, they
must change the outputs that depend on that snippet, which may be numerous.
In one author’s case, these outputs were screenshots of a running interface (A6).

Authors adopted strategies to overcome this brittleness in the tutorial author-
ing workspace. They architected code to minimize dependencies (A4), backed the
source program with a version repository so changes could be readily propagated
across versions of the source program (A1, A5, A9, A11, A12), and embedded
version-controlled snippets in the tutorial (A1). No interviewees had workarounds



Chapter 6. Flexible sequencing of snippets 108
to easily update snippets or outputs when changes were made to the source pro-
gram.

Presenting code and outputs

Authors wanted their tutorials to be engaging, easy-to-read, and informative. All
authors were deeply concerned with readers’ expectations and the experience they
would have reading the tutorial. They designed, and revised, tutorials to ensure
they could hold a reader’s attention, and that the target reader could successfully
follow the tutorial. This concern for the reader’s experience manifested in common
design choices for presenting code, outputs, and other visuals.

Keeping code minimal. Authors were aware that the code snippets in a tutorial
could be one of the most cognitively demanding parts of the tutorial for readers
to engage with. Most authors were minimalists when it came to code, showing no
more code than was necessary (A2, A3), simplifying code until it became easy to
explain (A11), and keeping snippets short. Authors scoped snippets to small, self-
contained units of functionality (e.g., individual functions) (A4, A11) and, if code
was sufficiently complex, introduced code just one line at a time (A1). Authors
highlighted important spans of code by styling the code (A2, A10), or adding
numeric labels to the comments that they referred to from the prose (A11).

“Breaking up the text.” Authors sought to keep text brief and clear. “Walls of text”
were to be avoided and split up. One interviewee, for instance, told us he tried
not to write tutorials longer than 500 words (A1). Code, quotes, and screenshots
served dual purposes of both conveying important information, and breaking up
the text (A1, A2, A6).

Integration of videos, diagrams, and memes. With only text and code, a tutorial
might be dry, or inefficient at explaining key concepts. Authors incorporated sev-
eral types of “assets” into tutorials to make them more engaging and to more
effectively convey key concepts. They injected humor and encouragement into
their tutorials by adding topical memes and icons (A2, A4). Authors sometimes
felt it was more appropriate or effective to convey ideas with videos (A5, A12)
or diagrams (A8, A11) than with text and code alone. Screenshots could be in-
troduced to help readers check their work (A11). However, assets like videos and
diagrams could take quite a bit of effort to design and produce (A8, A11).

A desire for interactive outputs. Only one author included interactive affordances in
her tutorials, wherein readers could tinker with code in interactive editors and see
program outputs change live (A6). Several authors wanted to include interactivity



Chapter 6. Flexible sequencing of snippets 109
in their tutorials (A8, A11, A12), believing it could help readers better understand
the code.

Formative study II: Content analysis of two-hundred tutorials

To verify that the pain points identified in the interviews were representative,
we performed a content analysis on a representative set of web-based program-
ming tutorials. This content analysis provides context for tool design, revealing
the prevalence of “flexible” code organization and generated outputs in tutorials.
Compared to an automated analysis, a content analysis let us detect the presence
of code fragments, duplicated code, and generated outputs, which are tricky to
identify without human inspection.

Method
Selection. To identify a diverse sample of popular (and therefore presumably high-
quality) tutorials, we searched Stack Overflow answers for external links with the
anchor text “this tutorial.” This yielded over 20k candidate links to tutorials. We
filtered these links to those that appeared in an answer with one or more up-votes,
and with two-hundred or more referring domains, as determined using a backlink
service. We randomly sampled the remaining tutorials until we had a set of 200
tutorials, omitting those which on inspection lacked prose or contained fewer than
two related code snippets.

Analysis. Two authors independently analyzed and labeled the tutorials with 23
variables, including the number of code snippets, presence of fragmented code
snippets, and presence of generated outputs.2 This analysis resulted in substantial
agreement for all variables on the first pass (Krippendorff (2013) α = 0.75− 0.98).
The authors reviewed their labels for errors with reference to each other’s labels
(attaining α = 0.93 − 1.0), and settled all remaining disagreements together.

Results
Overview. Tutorials ranged from extremely brief—four tutorials with only two
snippets—to extremely long—five tutorials with more than 100 snippets. The me-
dian tutorial contained 11 snippets, though tutorials varied widely in their number

2 A complete listing and codebook appears in the auxiliary material distributed with the pub-
lished conference paper (Head et al. 2020).



Chapter 6. Flexible sequencing of snippets 110

Fix a problem

Learn concepts

Improve a system

Manage environment

Implement behavior

Learn language, library, tool

0 20 40 60 80 100
# snippets

Purpose of tutorial

Figure 6.3: The typical tutorial contains 11 snippets—though this number varies depending on the
tutorial’s purpose. Tutorials about learning a language, tool, or library had far more snippets than thoseabout implementing a behavior. The box plots above show the distributions of snippet counts for eachtype of tutorial; blue dots are outliers.

of snippets (σ = 18.9), with a long right tail (Figure 6.3). A summary of the
analysis results is shown in Table 6.1.

Each tutorial was assigned one of six primary learning goals. The most common
goals were to learn about a language, library, or tool (43%), and to implement
a behavior (40%). Far less common were tutorials focusing on helping readers
manage their development environment (11%), improve an existing system (4%),
learn abstract programming concepts (2%), or fix a programming problem (2%).

Fragmented code snippets. 83% of tutorials included at least one fragment, which
we defined as a piece of code the reader should place in a file, but which was not
intended to stand on its own. Often, fragments would not be able to be compiled or
interpreted until a reader integrated it with additional code. Sometimes fragments
were the result of authors hiding code that was shown in an earlier snippet.

Code duplication. In most tutorials (59%), code from one snippet was reused in
another snippet. In many cases, the repeated code served as context to show
where new code was being added, or other code was being updated. Other times,
a fragment of code was pulled from an earlier snippet to show on its own. In 48%
of tutorials, code from one snippet was changed, partially or wholesale, in a later
snippet.

Generated outputs. Most tutorials contained outputs generated by running some of
the tutorial’s code (67%). The two most common types of generated outputs were
console logs (33%) and images (e.g., screenshots of running applications, 32%).



Chapter 6. Flexible sequencing of snippets 111

Purpose of tutorial All tutorials
Learn language, 

library, tool
Implement 
behavior

# Tutorials 200 85 79

Fragments 83% 84% 91%

Duplicated Code 59% 64% 62%

Rewritten Code 48% 56% 44%

Any Generated Output 67% 61% 77%

Console Output 33% 38% 20%

Images of Output 32% 24% 46%

Videos of Output 6% 2% 11%

Text File Output 4% 2% 4%

Linked Demo 15% 16% 19%

Editable Demo Code 5% 8% 3%

Other Visuals 55% 49% 62%

Table 6.1: Programming tutorials often contain code fragments, duplicated code, and generated out-
puts. Shown are percentages of tutorials with code fragments, duplicated code, and eight other charac-teristics. Percentages are shown for two major categories of tutorials—learning a language, library, ortool; and implementing a behavior—and for the dataset as a whole.

Tutorials occasionally contained live demos of running code within the page itself,
or at an easily accessible link (15%). In rare cases, code for these demos could
even be edited and re-run (5%). Other types of generated outputs included videos
(e.g., screencasts of running the code, 6%) and text files generated by running the
source program (4%).

Other assets. Most (55%) of tutorials contained non-output visuals, like diagrams
(24%), user interface screenshots (21%), or other images (e.g., logos, ads, 33%).

Style. 10% of tutorials applied special styling to notable code in at least one snip-
pet, and 7% applied special styling to indicate what changed in a snippet versus
an earlier snippet. 44% added placeholders (Buse and Weimer 2012) to snippets
to show where readers should supply their own code or fill in code in a later step.
13% contained snippets with “cuts,” or explicit markers (e.g., “...”) to indicate
that code from an earlier snippet was hidden. 5% included numerical or textual
labels in the code (e.g., “// 1,” “// 2”) referenced from the tutorial’s prose.



Chapter 6. Flexible sequencing of snippets 112

Edits to code automatically 
propagate across all snippets and 
the source program.

Embedded rich text editors 
for writing prose.

Outputs update live by assembling 
the tutorial's snippets in source 
order and executing them.

Figure 6.4: Writing tutorials with Torii. Torii helps authors write tutorials by keeping source programs,snippets, and outputs consistent with each other, while still letting authors organize the code in thetutorial flexibly. An edit to code anywhere in the tutorial workspace automatically triggers an update toclones of that code in the source program and snippets, and to all outputs generated from that code.

A demo of Torii

Informed by our formative research, we designed Torii as a prototype tool to help
authors create programming tutorials. The design was motivated by two goals:

1. Consistency. Help authors keep source programs, snippets, and generated
outputs consistent with each other.

2. Flexibility. Provide authors freedom to present code—that is, to split,
order, and repeat it—as they see fit.

To provide a consistent and flexible authoring workspace, at the beginning of
tutorial creation, Torii takes as input a reference implementation of the source
program. Authors create code snippets as partial, editable views of the reference
implementation. Outputs are generated by assembling snippets in the order they
appear in the reference implementation. Our interviews found that many authors
have such a reference implementation available when they start writing a tutorial.

To demonstrate the experience of authoring tutorials with Torii, we describe
how a hypothetical author, Rhia, writes a tutorial about the basics of object-
oriented programming in Python.3 Rhia wishes to present code with a level of
flexibility she cannot achieve with other literate programming interfaces like note-
books. For example, Rhia wants to split classes into short snippets that can be
3 The code for the tutorial in this scenario is adapted from the “Classes” chapter of A Begin-

ner’s Python Tutorial (Wikibooks contributors 2019), published under the Creative Commons
Attribution-ShareAlike 3.0 license

https://creativecommons.org/licenses/by-sa/3.0/us/
https://creativecommons.org/licenses/by-sa/3.0/us/


Chapter 6. Flexible sequencing of snippets 113
explained in isolation, but which would not compile if executed separately. In
the scenario below, descriptions of Torii’s key affordances are interspersed with
screenshots and implementation details for each affordance.4

Propagating edits from snippets to source programs
Rhia invokes a command to launch Torii in her integrated development environ-
ment. This brings up a pane containing a WYSIWYG tutorial editor (Figure 6.4).
To add the first snippet to her blank tutorial, Rhia selects a few lines of code in
the source program’s code editor, and then clicks the “Add Snippet” button in
the tutorial editor. Torii wraps the selected code in an embedded code editor and
places it as a “snippet” in the tutorial editor. The snippet is directly editable and
linked to the source program: any change to the snippet propagates immediately
to the source program, and vice versa.

90 90

Implementation. Torii maintains a map between each snippet and the location (i.e.,
line numbers) it was copied from in the source program. When an author edits
code, Torii detects where the edited code appears in other snippets and the source
program, and translates the edit action into edit commands to be dispatched to
each snippet and source program editor.

Propagating edits from code to outputs
Once Rhia inserts several snippets and descriptions of those snippets, she adds
an output to demonstrate what the program is doing. Rhia inserts a snippet
containing a print statement, and clicks the “Add Console Output” button that
appears directly below the snippet. Torii generates an output by running the
snippets above it, and inserts it into the tutorial.

4 See also the demo video distributed with the published conference paper (Head et al. 2020).



Chapter 6. Flexible sequencing of snippets 114

The output is linked to the code in the workspace. As Rhia tinkers with
the source program or the snippets in the tutorial above it—e.g., to change the
initialization parameters of an object, or to change a method body—the output
updates automatically to reflect the changed code.

Splitting, reordering, and copying code
Rhia splits and organizes the source program into snippets in just the way she
wants. Torii lets her split it into syntactically-incomplete snippets if she pleases.
It also lets her hide snippets that contain boilerplate (e.g., import statements)
necessary for generating an output, but which might be distracting to a reader.
As long as all necessary code appears in a snippet above an output, Torii figures
out how to assemble the snippets to generate and update the outputs.

In this case, Rhia takes advantage of the flexibility Torii provides to show
the usage of a class before its declaration, and to show individual methods and
properties of a class outside of the class declaration. Rhia also repeats the same
code twice in two snippets, showing the same line once in the context of a method
definition, and then again on its own with a detailed explanation. Torii correctly
infers that the duplicated line should only be run once when generating the outputs.

· · ·

· · ·

out-of-order declarations split structures



Chapter 6. Flexible sequencing of snippets 115
Implementation. Because Torii remembers snippets’ locations in a source program,
it can infer how to “stack” snippets correctly into executable programs. For each
output in a tutorial, Torii assembles a program snapshot : an executable program
comprised of all snippets—in order and deduplicated—that appeared above the
output element in the tutorial.

To build a snapshot, Torii takes all snippets that appear above the output (in-
cluding hidden snippets), orders them by their location in the source program, and
removes duplicated lines. To generate an output from the snapshot, the snapshot
is written to temporary files, and executed using a configurable code runtime—in
this case, the Python 3 command. The output of the runtime is piped into the
output element in the tutorial:

generated output

tutorial ordersource order

snippet 1

snippet 2
snippet 3

snapshot

snippet 2

snippet 1

snippet 3

execute

snippet 1

snippet 2

snippet 3

Reviewing a simulated reader’s code
Rhia can click on the “Program Snapshot” tab in any snippet to see what Torii
would execute to produce an output at that point in the tutorial. Most practically,
this snapshot provides Rhia a view of the code the reader will have at this point
in the tutorial, if they assemble the snippets in the order they appeared in Rhia’s
reference implementation.



Chapter 6. Flexible sequencing of snippets 116

Making localized changes to the code
Rhia adds a step to the tutorial that requires readers to change a method signature
from an earlier snippet. Torii helps her do this by letting her make an edited copy
of the snippet. All snippets below the copy will have the changes, and all snippets
and outputs above will be left untouched. To make this edited copy, Rhia adds a
snippet containing the method a second time. She then turns off synchronization
between this snippet and prior snippets by clicking on the “Sync edits” toggle
button, which can be found in the snapshot preview for the snippet.

before edits

after edits

Implementation. When Rhia disables edit synchronization for a snippet, Torii cre-
ates a fork of the snippet with the same code and breaks the fork’s link to prior



Chapter 6. Flexible sequencing of snippets 117
snippets. When generating outputs, Torii builds a program snapshot to include
only the last version of the snippet that appears above the output. The current
design of localized changes was chosen to resemble the linked editing interaction
technique (Toomim et al. 2004), which was designed to support simultaneous edits
of partial code clones.

Distributing augmented tutorials
Once Rhia finishes the tutorial, she uses Torii to save it as an augmented Markdown
document. The document includes all richly-formatted text, snippets, and outputs
she created in Torii. In addition, Torii exports snapshots after each snippet, placing
them behind expandable headers, which readers can toggle open to check their
work.

In-lab usability study

We designed an in-lab usability study to provide an initial assessment of Torii as
a tutorial authoring tool. Can authors use a tool like Torii to create and update
programming tutorials? Do they leverage its unique execution model to create
tutorials that wouldn’t be possible in existing tools like notebooks? This study
yielded insight to guide the design of future versions of this tool and other authoring
tools.



Chapter 6. Flexible sequencing of snippets 118
Method
Recruiting. We invited local tutorial authors to participate in a 1.5-hour lab study.
To reach these authors, we sent invitations to one Facebook page, one Slack chan-
nel, and one email list, each reaching a different group of local computer science
and programming educators. Candidates were screened for experience writing at
least one programming tutorial, and for comfort with the Python programming lan-
guage. Authors were recruited from among local educators with tutorial-authoring
experience, rather than remote experts, to allow for a controlled study appropriate
for assessing a prototype.

Participants. 12 authors were recruited. We refer to these participants as P1–P12
below. All participants had previously written a programming tutorial, and all had
experience creating other instructional materials (e.g., programming lectures, lab
guides). Several participants had considerable experience—one wrote a textbook
(P12), one wrote tutorials for open source libraries they maintained (P4), and
another created on-boarding materials in industry (P8). Among participants were
six undergraduate students, three graduate students, one professor, one software
developer, and one data scientist. All participants had at least 1 year of Python
programming experience, and the median participant had 3–5 years of experience.

Procedure. The study consisted of training, two tutorial maintenance tasks (with
three subtasks each), and an open-ended tutorial authoring task. At the study’s
conclusion, participants were compensated with $30 gift cards.

Training. To learn how to use Torii, participants followed along with a guided tool
walkthrough. The walkthrough guided participants in embellishing and editing
an existing tutorial. By following along, a participant used all of Torii’s features,
except for features for saving the tutorial. The tutorial that participants edited
was based on the Tic-Tac-Toe tutorial from Automate the Boring Stuff with Python
(Sweigart 2020).

Because code execution in Torii worked differently than in most programming
environments, participants were encouraged to ask questions and check their un-
derstanding with the experimenters. This phase of the study took 15–40 minutes,
depending on each participant’s pace, and how long they believed they needed to
understand the tool.

Maintenance tasks. Then, participants completed two tutorial maintenance tasks.
One task was completed with Torii. The other was completed with a compari-
son tool: VSCode, augmented with a plugin for editing and rendering Markdown
files (Markdown Preview Enhanced). In the comparison condition, participants



Chapter 6. Flexible sequencing of snippets 119
had access to Markdown syntax highlighting, live rendering of the Markdown tu-
torial, and a built-in terminal for running code.

Each maintenance task comprised three subtasks:

(a) Linked edit : Change a literal value, and update the text and outputs to reflect
the new value.

(b) Localized edit : Make a change to a function argument that is localized to one
part of the tutorial.

(c) Revert edit : Revert the localized edit made in subtask b in another snippet,
later in the tutorial.

Subtask a represented routine edits authors make to keep tutorials consistent,
a need uncovered in the interviews. Subtasks b and c were designed to measure
performance with Torii’s specific features for localized changes.

Before a task, participants were given up to five minutes to review the tutorial
and the source program it was based on. For the next ten minutes, they completed
as many subtasks as they could, in order. For each task, they were assigned one
of two different tutorials. Both tutorials were based on chapters in DigitalOcean’s
How to Code in Python 3 guide (Tagliaferri 2020). They contained about the same
number of lines of code, with approximately the same code complexity. The order
of tutorials and tasks was counterbalanced between participants.

Authoring task. In the remaining time (15–30 minutes, depending on participant),
participants completed an open-ended authoring task. This task let us observe how
authors would use Torii’s affordances for flexible code organization when creating
a tutorial from scratch with a source program. Participants were asked to create
a tutorial explaining the basics of object-oriented programming in Python. They
were given a source program demonstrating basic object-oriented programming
operations, derived from the “Classes” chapter of the A Beginner’s Python Tutorial
Wikibook (Wikibooks contributors 2019). Participants were encouraged to keep
the tutorial’s prose simple so they could spend more time with the tool’s affordances
for organizing code. Modifications to the source program were permitted.

Questionnaires. Participants filled out four questionnaires: one following each main-
tenance task (both conditions), one more after the last maintenance task, and one
after the open-ended authoring task.5 Study sessions concluded with brief oral

5 Due to technical difficulties, a handful of questionnaires and timing data are missing. The first
three questionnaires and maintenance task times for two participants (P1, P2) and the final
questionnaire for one participant (P11) are omitted from analysis.



Chapter 6. Flexible sequencing of snippets 120
question and answer periods in which we asked participants to reflect on their
experience using Torii.

Results
Maintenance and creation of tutorials

Maintenance tasks. With Torii, participants completed most tasks—10 of 10 fin-
ished subtask a, 9 finished subtask b, and 3 finished subtask c. Participants
achieved similar completion rates with the control interface: 10 of 10 finished
subtask a, 5 finished subtask b, and 7 finished subtask c.

Low completion rates for subtask c can be interpreted as an opportunity to
improve Torii’s design. Most (6 of 7) participants who failed to complete subtask
c shared a misconception: that to revert a localized change, they only needed to
copy a snippet once more from the source program with the original code. The
prototype of Torii required an additional step of “unsyncing” the copied code,
though in retrospect we believe this design is neither intuitive nor ideal.

Participants reported completing subtask a and subtask c more quickly with
Torii, and subtask b more quickly with the comparison interface. With Torii,
subtask a was finished in a median of 45 seconds (σ = 32s) rather than 88 seconds
(σ = 86s), and subtask c in a median of 57 seconds (σ = 33s) rather than 67
seconds (σ = 46s).

Subtask b appeared to take quite a bit more time with Torii than the compar-
ison tool. Using Torii, participants reported completion in a median of 3 minutes
and 47 seconds (σ = 2m 2s) rather than 2 minutes and 20 seconds (σ = 54s).
This timing difference would suggest that the localized edit functionality is per-
haps unintuitive, and that this affordance of the system could benefit from further
design.

These differences in task times between conditions are, we note, not statistically
significant with a Wilcoxon two-tailed signed-rank test. This is likely due to small
sample size (n = 10 after omission of missing data). The trends above are offered
as signals of which tasks may be easy for authors to perform when first using
Torii, and as preliminary indicators of relative task difficulty that merit further
investigation.

Participants’ tool preference aligned with trends in task times. Authors felt
they would be more effective using a tool like Torii for tasks like subtask a (9 of
10) and subtask c (8 of 10). Fewer believed they would be more effective using
the tool for tasks like subtask b (5 of 10), This suggests the value of further design



Chapter 6. Flexible sequencing of snippets 121
iterations to improve the localized edits feature.

Authoring task. All participants (11 of 11) created tutorials with Torii within 15–30
minutes. Tutorials contained a median of six snippets (σ = 1.6) and three outputs
(σ = 1.3). 10 of 11 produced the outputs authors expected; only 1 contained
exceptions, which the author noticed but did not care to fix.

Usage of Torii’s authoring a�ordances

Authors created tutorials leveraging Torii’s affordances for flexible code organiza-
tion. Several tutorials contained snippets that would be syntactically incomplete
within a conventional notebook, but could be included without issue in Torii (3 of
11: P5, P9, P12). In all cases, incomplete snippets were class or method declara-
tions without their bodies. Authors presented the declarations in isolation, later
adding snippets with method or class bodies before generating any outputs.

A majority of authors leveraged Torii’s ability to include the same code in
multiple snippets. Using this feature, authors scaffolded the presentation of a
class declaration, showing it multiple times, each time adding new properties or
methods (6 of 11: P1, P2, P5, P9, P11, P12). A handful of authors implemented
an even more intricate version of scaffolding, interleaving code that built up the
class declaration with driver code that constructed and tested progressively more
complex instances of the class (4 of 11: P1, P2, P9, P11).

One author presented code in reverse order from how the interpreter would need
to execute it, showing a usage of a class before its declaration (P11). A sample of
tutorials demonstrating these usage patterns is shown in Figure 6.5.

Desired a�ordances for future tools

Participants reported which of Torii’s features were useful for the authoring task
on a three-point scale: “very useful,” “somewhat useful,” “not useful,” or “not ap-
plicable” (Figure 6.6).

Linked edits between the source program and snippets were described as “de-
lightful” (P8). All but one participant found linked edits at least somewhat useful.
During the maintenance tasks, all authors (10 of 10) strongly agreed that they
found it easy to plan out and make linked edits.

All participants (11 of 11) found the generation of embedded outputs to be
very useful, and nearly all (9 of 11) found the companion feature of live updates



Chapter 6. Flexible sequencing of snippets 122

B CA

Figure 6.5: Authors created tutorials using Torii’s a�ordances for flexible code organization. Readersare encouraged to zoom in on the tutorials above, each of which was produced by a di�erent study par-ticipant. These tutorials show how authors included syntactically invalid snippets (A, excerpt); sca�oldedthe declaration of a class while repeating code across snippets (B); and interleaved code for declaringand testing a class (C).

to outputs very useful. According to one author, live updates provided them with
confidence that the code above the output was correct (P7).

Snapshots and localized edits were the least useful features. One reason they
were not useful is that some participants felt they did not entirely understand how
snapshots—that is, the ordered assemblies of snippets used to generate outputs—
were created, even after successfully authoring a tutorial with Torii (P2). Localized
edits were used only once for their intended purpose of evolving code shown in
earlier snippets, perhaps due to the simplicity of the tutorial authoring task or
length of the study. That said, many authors (6 of 11) appropriated localized edits
to disable print statements from previous snippets to make outputs cleaner. Some
of these authors wanted a more lightweight version of localized edits that would let
them add print statements for just one snippet, and automatically remove them
from later snippets.

Authors envisioned several ways that future tools could improve the authoring
experience. Tools could help participants overlay prose explanations on top of a
selection of code in a snippet (P4, also requested by A1 in the interview study).
Authors wanted stronger visual scent to indicate when snippets were unsynced
from the source program (P3, P8). One author wondered if tools like Torii could



Chapter 6. Flexible sequencing of snippets 123

Linked edits
Embedded outputs

Live updates to outputs
Snapshot preview

Localized edits
Rich text editors

0 3 6 9 12

1 
1 
2 

1 

1 
2 

1 

1 
4 
5 

2 

2 

8 
4 

3 
9 

11 
8 

# participants

Very useful Somewhat useful Not useful N/A

Figure 6.6: Authors found Torii’s a�ordances for linked editing, generating embedded outputs, and
updating outputs very useful when creating tutorials. Snapshots and localized edits were less useful,and may require additional design e�ort in order to provide value to authors.

help them propagate edits from code to the prose explaining it (P7). Another
author wished to embed visualizations of an object from the program’s state at a
specific step of program execution (P4).

Conclusions
From our formative interviews, we found that authors face a unique authoring
challenge of keeping source programs, snippets, and outputs consistent as they
write tutorials. Our content analysis of tutorials showed that a majority of tutorials
contain repeated code and generated outputs, which the tutorial’s author would
need to keep consistent as they write and maintain the tutorial. Many tutorials also
contained code fragments and rewritten code, indicating that tools for authoring
tutorials should provide authors with considerable flexibility in how they organize
a tutorial’s code as snippets.

Our in-lab usability study showed that authors can readily adopt tools like Torii
to write simple tutorials with a flexibility not present in other tools. Linked edits,
output generation, and live updates to outputs were valued features for the author-
ing task. Authors preferred Torii to a comparison tool for tasks such as making
linked edits to code. Other features, like making localized edits, could benefit from
further design iteration to better support authors’ use cases and mental models.



Chapter 6. Flexible sequencing of snippets 124
Limitations and extensions

The external validity of the formative studies is limited by our sample choice. The
interviewed authors had considerable experience and wrote tutorials of ambitious
scope. The content analysis focused on tutorials that were widely-referenced. It
is not clear the extent to which the authoring challenges observed generalize to
all authors, and all tutorials. Further research with a broader sample of authors
and tutorials may surface additional authoring challenges that this chapter has
overlooked.

One limitation of the in-lab usability study, common to lab studies, is that
authors were not allowed to use Torii to write their own tutorials, with their own
source material. We sought to mitigate this risk by asking participants to edit
and reproduce real existing tutorials. Still, a holistic understanding of the tool’s
usability will depend on studies with longer tasks, and source programs of myriad
types and languages.

Designing better tools for tutorial authoring

In the formative and in-lab studies, authors recommended affordances they would
like to see in future tutorial authoring tools. These include anchoring prose expla-
nations to selections in code snippets, linking prose to code, and allowing readers
to edit and execute snippets within the tutorial.

One challenge problem for tools with Torii’s execution model is providing intu-
itive functionality for making localized edits. We see two promising directions for
future designs. First, authors may find it easier to select snippets from versioned
source programs, rather than versioning individual snippets. Second, Torii’s cur-
rent implementation could be improved by making affordances for syncing edits
more visible, and providing suitable defaults for how snippets and source programs
are initially synced.

Interaction design beyond programming tutorials

Ideas from Torii’s design may transfer to adjacent domains.

Torii-like tools could help software developers link code to documentation in
new ways. One participant in the lab study wanted tools like Torii in their contin-
uous integration pipeline to check that their examples in their project’s documen-
tation still functioned after the code or external dependencies changed (P4). By
leveraging novel techniques for mining and generating documentation (e.g., Srid-



Chapter 6. Flexible sequencing of snippets 125
hara et al. 2010; Subramanian et al. 2014), tools like Torii may also be able to
support linked editing of code and prose.

Authors of tutorials in other domains might benefit from tools like Torii. One
feature that could be particularly useful is Torii’s automatic updates to a tuto-
rial’s visuals. Authors of tutorials about image manipulation, 3D modeling, and
operating system configuration all create tutorials as user interface instructions
interleaved with “outputs” (e.g., images, models, screenshots). Future tools could
update such outputs automatically as authors edit instructions by selectively re-
playing interaction logs aligned to tutorial instructions.



126

Chapter 7. Conclusions
“A good story cannot be devised; it has to be distilled.”

Raymond Chandler

This chapter begins by reviewing the lessons learned in the previous chapters
in the context of the thesis and three claims about program distillation. Then, the
dissertation concludes with a discussion of the future of program distillation tools.
Opportunities are identified for future research in human-computer interaction,
software engineering, and program analysis to reinvent the experience of producing
and reading sample programs.

Summary of findings

My thesis is that authors can transform existing programs into sample programs
more efficiently and flexibly when aided by interactive tools for selecting, simplify-
ing, supplementing, and sequencing code. Chapters 4–6 support this thesis. They
provide evidence supporting three claims in particular:

C1. Interactive tools can provide functionality to help authors select, simplify,
supplement, and sequence code.

C2. The tools can be implemented with proven program analysis techniques.

C3. The tools support effective and flexible program distillation.

The evidence supporting each of these claims is reviewed in the subsections below.



Chapter 7. Conclusions 127
Claim I. Interactive tools can provide functionality to help authors select, sim-plify, supplement, and sequence code.
The tools in this dissertation help authors select, simplify, supplement, and se-
quence code in new ways. Chapter 3 introduced a design space of distillation
tools. Let us examine the capabilities of each tool, considering what regions of the
design space have now been explored (Figure 3.11). The results of usability studies
for each tool will be examined in the subsection for Claim 3.

CodeScoop: Snippet authoring via mixed-initiative selection and simplification. Code-
Scoop helps authors make executable, minimal snippets up to a few dozen lines
in length. The author’s code editor is augmented with an intelligent agent that
helps the author select and simplify code. The agent takes initiative to repair code
automatically whenever it can. It also initiates subdialogues with the author in
the face of ambiguity, i.e., when it’s not clear what code to include or the best way
to simplify a statement. Selection takes place through interactive expansion of a
program slice. The program is simplified by replacing variables with values and
test stubs mined from the program execution.

Code gathering tools: Notebook cleaning via direct selection of code and outputs.
Code gathering tools help authors extract snippets and sequences of cells from
messy computational notebooks. To select code, an author picks variables or out-
puts of interest. The tools then slice an invisible interpreter history in order to
find the ordered, reduced, complete subsets of cells that produced those variables
or outputs. The returned cells are sequenced in the order in which they were orig-
inally run. Code gathering tools supplement the distilled programs in two ways.
First, if an author selected outputs, the tools generate a notebook which includes
those outputs next to the cells that produced them. Second, the tools can generate
version histories that show how the gathered cells evolved over time.

Torii: Tutorial authoring via flexible sequencing of snippets. Torii helps authors trans-
form existing programs into tutorials that comprise many code snippets and out-
puts. Torii consists of a dedicated WYSIWYG tutorial editor, linked to a conven-
tional code editor that contains a source program. The tool helps authors supple-
ment their tutorials with outputs while permitting them to sequence the snippets
flexibly. The tool takes initiative in keeping the source program, snippets, and out-
puts consistent in two ways. First, it propagates edits between source programs
and snippets. Second, it updates outputs live by inferring how the snippets are
supposed to be combined and executing them as they change. The most unique
aspect of Torii as a distillation tool is that it implicitly creates a new version of
the sample program with each snippet that the author adds to a tutorial.



Chapter 7. Conclusions 128
Claim II. The tools are implemented with proven program analysis techniques.
The tools are indeed implemented with proven program analysis techniques. The
novel interactions for these tools are supported by extensions to the well-known
techniques of program slicing (Tip et al. 1999) and linked editing (Toomim et al.
2004). The techniques are extended in four ways (Figure 7.1):

Extension 1. Incremental slicing. Slicers help programmers extract code from a pro-
gram by searching for transitive dependencies of a selected line. A typical slicer
may not be sure whether one line depends on another. It may also find depen-
dencies from a line to other lines that are not strictly necessary in an extracted
snippet (Figure 7.1a). In CodeScoop, a slicer asks an author for input when, in one
of these situations, it’s not clear whether a line is needed or not. It asks authors
for input at a time when it believes the author has recently looked at the code
containing the ambiguous dependencies (Figure 7.1b).

Extension 2. Pruning the dependence graph. CodeScoop helps authors reduce com-
plexity in a snippet by replacing variables with values, and complex objects with
stubs (Figure 7.1b). When a user chooses to replace a variable with a value, the
tool marks the variable’s node in the dependence graph with a flag, indicating to
the slicer that it no longer needs to resolve dependencies for that variable.

Extension 3. Slicing an interpreter history. Notebooks, at least as they appear to
users, cannot be sliced. Many of the cells necessary to trace the origins of an output
might have been deleted, or they might be listed out of order. Code gathering tools
fix this issue, letting authors view dependencies and slice notebooks by analyzing
the history of cells submitted to the interpreter. This lets the slicer recover deleted
cells and put cells back in the order they were run. Outputs can be selected as a
slicing criterion if dependencies are added between the output and the lines in the
cell that produced it (Figure 7.1c).

Extension 4. Linking outputs to snippets through program snapshots. The linked edit-
ing paradigm in typical notebooks does not support Torii’s model of tutorial au-
thoring. Live notebooks usually require code in a cell to be complete and to be
written in a way that dependencies between cells can be inferred from the code.
Torii relaxes this constraint. It does this by adding a dependency from an output
not to a cell that produced it, but to a snapshot of a program, composed of all
snippets that appear before the output in the tutorial stacked in the order they
appeared in a source program (Figure 7.1d).



Chapter 7. Conclusions 129

data = load_data() 
cleaned = data.clean() 

if len(data) > 0: 
  plot(data)

if len(data) > 0:

data = load_data()

cleaned = data.clean()

plot(data)

?

(a) A dependence graph for a short program. Itcontains unambiguous dependencies, ambigu-
ous ones, and some control dependencies that
may not be strictly necessary.

Do you need 
this if 
statement? Is this 

data.clean() 
necesssary?

Want to replace 
data with a stub?

(b) CodeScoop helps authors select and simplifycode by asking whether to include ambiguousdependencies at opportune times, and replacingparts of the program with stubs.

(c) Code gathering tools help authors select or-
dered, complete slices for outputs and state-ments in notebooks. To do so, they recover andreorder statements using the interpreter’s logs.

2

3

1

2

3

1

1

2

3

(d) Torii links edits made to source programs,snippets, and outputs. Outputs depend on or-dered subsets of snippets. Edits propagate be-tween source programs and snippets.

Figure 7.1: A review of how program dependencies and linked edits support program distillation.

Claim III. The tools support e�ective and flexible program distillation.
Our first-use studies with each of the tools revealed that authors could easily adopt
them. The tools also helped authors distill programs more efficiently and flexibly.
The results from each study can be summarized as follows:

Snippet distillation. In a controlled experiment, programmers finished extracting
examples more quickly with CodeScoop than with a text editor baseline. Code-
Scoop’s main advantage was its ease of use, providing fixes and suggestions from
the original code that participants otherwise had to fix manually. Participants
often responded to the options CodeScoop provided in different ways, suggesting
that different contexts and authors prescribe different solutions.



Chapter 7. Conclusions 130
Notebook distillation. In a qualitative usability study, participants responded posi-
tively to the code gathering tools, which automatically produce the minimal code
necessary to replicate a chosen set of analysis results. During exploratory data
analysis, participants primarily used code gathering as a “finishing move” to share
work, but also found unanticipated uses like generating reference material, creating
lightweight branches in their code, and creating summaries for multiple audiences.

Tutorial distillation. In a usability study, tutorial authors used Torii to write sim-
ple tutorials with a flexibility they would not have in other live computational
notebooks. For instance, authors split code into snippets that were syntactically
incomplete, displayed the same code in multiple snippets, and presented code in
the reverse order it needed to run. Authors completed two of three tutorial main-
tenance tasks more quickly with Torii than with a comparison tool; however, these
differences were not statistically significant. Authors preferred Torii to a compar-
ison tool for tasks like making linked edits to code.

Remaining challenges and future directions

As evidenced by the white space in the design space figure (Figure 3.11), there
remains much to be explored in the design of distillation tools. This section gives
structure to that open space. Four research agendas are proposed to advance
the creation and understanding of sample programs. These research agendas are
mixed-initiative program synthesis, explorable explanations, natural language gen-
eration, and the distillation of scientific discourse.

Future directions for the individual tools introduced in this dissertation can be
found on pages 81 (Chapter 4), 100 (Chapter 5), and 124 (Chapter 6).

Mixed-initiative program synthesis
The tools in this dissertation help authors simplify code by letting them replace
primitive variables with values and object variables with stubs. Could distillation
tools help authors with more ambitious simplifications, like replacing entire sets of
statements at once with readable, idiomatic equivalent statements?

Simplification of a sample program could be posed as a task of mixed-initiative
synthesis by sketching (Solar-Lezama 2008). To simplify a program, an author
would first mark up sets of statements in a sample program they want the synthe-
sizer to rewrite. This would generate a program sketch, consisting of the sample
program minus the selected statements. A synthesizer could be given that sketch,



Chapter 7. Conclusions 131
along with the sample program as a reference implementation, as a specification
for synthesis. Such a synthesizer might be built using recent techniques for synthe-
sizing imperative code (e.g., Galenson et al. 2014; Feng et al. 2017). The question
is, how could such synthesizers be tailored to support real-time synthesis and gen-
eration of program alternatives in the context of distillation? And how can authors
express constraints for how they wish the rewritten code to appear?

Compatible with the goals of program distillation, program synthesizers have
been built to generate programs that are both readable and modifiable by end
users (Little et al. 2007; Mayer et al. 2015; Chasins et al. 2018; Drosos et al. 2020).
These synthesizers are typically one-shot: the synthesizer produces a program, and
any further modifications are performed by the programmer alone. The vision here
is that instead of one-shot synthesis, a programmer produces a program through
iterative, mixed-initiative, piecemeal synthesis until they have refined the program
into just the one they wish to read and share with others.

Authoring tools for explorable tutorials
The authors we interviewed in Chapter 6 wanted to let readers tinker with the
code in the snippets of their tutorials and observe how their changes impacted the
program’s behavior. To borrow a term from Victor (2011) and his essay on new
media for active reading, authors wanted their tutorials to be explorable.

What would it mean to design effective explorable programming tutorials? The
design space of explorable programming tutorials is broad. A tutorial could let
readers directly edit code and view its output. It could let readers tinker with
the output if the output is interactive, like a user interface or visualization. The
tutorial could even provide interactive visualizations of program execution like
PythonTutor (Guo 2013). Which of these and other capabilities do authors want
their tutorials to have, and which ones would actually help readers? Would read-
ers notice them? Would they use them? Would interactivity help readers learn
from, design with, or reuse the sample program? While such questions have been
explored recently for interactive articles on the web (Conlen et al. 2019), little is
known about how to make explorable programming tutorials effective.

What might a toolkit for authoring explorable programming tutorials look like?
One key technical obstacle that tools could help with is figuring out how to execute
code in a tutorial as a reader tinkers with it. This is a challenging problem for three
reasons. First, the order in which code is displayed in a tutorial does not always
match the order in which it needs to be run (see Chapter 6). Second, a program
may take more time to compile or execute than a reader wishes to wait. Third, a
program may be written in a language that cannot be executed in the browser. To



Chapter 7. Conclusions 132
create explorable tutorials, authors will need systems that support the execution
of code despite these limitations. One solution to all of these problems is a tool
that discovers interesting changes that a reader might want to make to a program
automatically, before the tutorial is deployed. The tool could save the program’s
behavior after making each of these changes, serialize the behavior, and upload
it along with the tutorial. This would allow readers to explore an interesting, if
constrained, set of program variants with immediate feedback.

Natural language generation
Usable tools have been developed to support linked editing of code clones, and code
and outputs (Chapter 3, page 47). Could distillation tools help authors explain
sample programs by supporting linked editing of code and text?

This would require advances in algorithm design and interaction design. Algo-
rithms like Baker (Subramanian et al. 2014) and FreshDoc (Lee et al. 2019) already
reliably detect links between code elements like API methods and classes and doc-
umentation that refers to them. Techniques could be developed to detect links
between sentences in programming documentation and the program statements or
methods they refer to. Assuming accurate links have been found between code
and texts, interactions for linked editing might take multiple forms. For instance,
linters could continuously scan explanations of a sample program and highlight
text that has gone out of sync with the code. Changes to a variable name in the
code could trigger updates to references to that variable name in the text. Each
of these ideas requires iterative design to assess whether they work for authors,
especially if links between code and text are sometimes inaccurate.

Recently, techniques have been developed for generating natural language ex-
planations of programs (e.g., Sridhara et al. 2010; Iyer et al. 2016) (see also Fig-
ure 7.2). In the spirit of distillation, how could these techniques be extended to
let authors shape the generated explanations? Could the techniques allow authors
to provide input to fine-tune the vocabulary used in explanations and express the
level of detail that should be included in explanations?

The distillation of scientific discourse and beyond
Could tools one day aid the distillation of other types of documents, like research
manuscripts? For instance, perhaps this dissertation could be distilled into two blog
posts for two distinct audiences. One blog post could describe the role of program
slicing in distillation tools. Another one could summarize empirical findings about
how authors create programming tutorials.



Chapter 7. Conclusions 133

Figure 7.2: How can tools help authors generate context-relevant explanations of sample programs?Pictured is an explanation of a CSS selector in a tutorial, generated by the Tutorons (Head et al. 2015)system. It includes a usage sample and a prose explanation of the function of the code. Could a systemlike Tutorons allow authors to influence the vocabulary or level of detail of generated explanations?

To distill in a new domain, interactions for selecting, simplifying, supplement-
ing, and sequencing code must be ported and refined. Let us consider the task
of distilling a paper containing mathematics. Like programs, such papers define
symbols and use these symbols to define other symbols. A distillation tool could
help an author extract a mathematical line of reasoning from a paper. The author
would select an equation of interest, and the tool would slice the paper on the
variable used. If it’s ambiguous whether an equation really requires a symbol, the
distillation tool can ask the author for input. Equations could be simplified by
renaming symbols to canonical names. The distilled paper could be supplemented
with prose and figures that refer to the symbols. The result would be a complete,
if stilted, overview of the sections of a paper relevant to an equation of interest.

Scientific discourse is singled out as a potential domain for distillation because
scientists already distill their knowledge into blog posts, presentations, and grants,
and because readers read papers strategically and piecemeal when searching for
information of interest (Bazerman 1985). Research continues to reveal new ways
of extracting semantic understanding (e.g., Beltagy et al. 2019) and structured
knowledge (e.g., Siegel et al. 2018) from research papers. That said, perhaps tools
could help authors distill yet other documents that lack formal representations,
like the book Moby Dick or a massive dataset like the U.S. census data. Design
opportunities for distillation tools can be revealed by studying authors as they
distill their own works into derivative forms for new audiences.



Chapter 7. Conclusions 134
Closing remarks: Humans, compilers, and creativity

The vision of this dissertation is that programmers can more effectively create
sample programs if they do so in dialogue with their tools. For each of the tools
introduced, authors indicate patterns they want to share in their code, and their
tools help them select code of interest, and simplify, supplement, and sequence it
so that it can be most readable and reusable.

The tools were designed to amplify the human voice in the process of trans-
forming programs meant to be read by human audiences. One is reminded of the
words of Tony Hoare (1973) in his essay Hints on Programming Language Design:

“It is of course possible for a compiler or service program to expandthe abbreviations, fill in the defaults, and make explicit the assump-tions. But in practice, experience shows that it is very unlikely thatthe output of a computer will ever be more readable than its input,except in such trivial but important aspects as improved indentation.”
The role of distillation tools is to capture human input so that sample pro-

grams can be infused with meaning that cannot otherwise be derived from the
source program itself. This dissertation shows that when given an opportunity to
exercise their voice, authors make use of it. In the future, tools like these will help
authors disseminate their knowledge more efficiently and flexibly, in the domains
of programming and beyond.



135

Bibliography
Agrawal, Hiralal and Joseph R. Horgan. “Dynamic Program Slicing.” Proceedings
of the Conference on Programming Language Design and Implementation. ACM,
1990, pp. 246–256 (cited on page 44).

Allamanis, Miltiadis and Charles Sutton. “Mining Idioms from Source Code.” Pro-
ceedings of the International Symposium on Foundations of Software Engineering.
2014, pp. 472–483 (cited on page 24).

Allen, James F. “Mixed-initiative interaction.” IEEE Intelligent Systems and their
Applications 14.5 (1999), pp. 14–16 (cited on page 52).

Anderson, John R., Robert Farrell, and Ron Sauers. “Learning to program in
LISP.” Cognitive Science 8.2 (1984), pp. 87–129 (cited on pages 13, 14).

Anderson, Paul and Tim Teitelbaum. “Software Inspection using CodeSurfer.”
Workshop on Inspection in Software Engineering. 2001, pp. 4–11 (cited on page 44).

Backus, J. W., R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes,
L. B. Mitchell, R. A. Nelson, R. Nutt, D. Sayre, P. B. Sheridan, H. Stern, and I.
Ziller. Fortran: Automatic Coding System for the IBM 704 EDPM. 1956 (cited on
page 22).

Baltes, Sebastian and Stephan Diehl. “Usage and attribution of Stack Overflow
code snippets in GitHub projects.” Empirical Software Engineering 24 (2019),
pp. 1259–1295 (cited on page 12).

Barik, Titus, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill. “From
Quick Fixes to Slow Fixes: Reimagining Static Analysis Resolutions to Enable De-
sign Space Exploration.” Proceedings of the International Conference on Software
Maintenance and Evolution. IEEE, 2016, pp. 211–221 (cited on page 46).

Bazerman, Charles. “Physicists Reading Physics: Schema-Laden Purposes and
Purpose-Laden Schema.” Written Communication 2.1 (1985), pp. 3–23 (cited on
page 133).



Chapter 7. Conclusions 136
Beck, Kent. “Aim, fire.” IEEE Software 18.5 (2001), pp. 87–89 (cited on page 12).

Beltagy, Iz, Kyle Lo, and Arman Cohan. “SciBERT: A Pretrained Language Model
for Scientific Text.” Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2019, pp. 3615–
3620 (cited on page 133).

Bentley, Jon, Don Knuth, and Doug McIlroy. “Programming pearls: A literate pro-
gram.” Communications of the ACM 29.6 (1986), pp. 471–483 (cited on page 33).

Binkley, Dave, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher Mor-
rell, and Bonita Sharif. “The impact of identifier style on effort and comprehension.”
Empirical Software Engineering 18 (2013), pp. 219–276 (cited on page 11).

Binkley, David and Mark Harman. “A Survey of Empirical Results on Program
Slicing.” Advances in Computers 62 (2004). Ed. by Marvin V. Zelkowitz, pp. 105–
178 (cited on page 44).

Boehm-Davis, Deborah A., Robert W. Holt, and Alan C. Schultz. “The role of pro-
gram structure in software maintenance.” International Journal of Man-Machine
Studies 36.1 (1992), pp. 21–63 (cited on page 10).

Booth, Andrew D. and Kathleen H. V. Booth. Automatic digital calculators. 3rd ed.
Butterworths, 1956 (cited on page 22).

Boshernitsan, Marat, Susan L. Graham, and Marti A. Hearst. “Aligning Develop-
ment Tools with the Way Programmers Think About Code Changes.” Proceedings
of the CHI Conference on Human Factors in Computing Systems. ACM, 2007,
pp. 567–576 (cited on page 46).

Bragdon, Andrew, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola Jr. “Code Bubbles: A Working Set-based Interface for Code Understand-
ing and Maintenance.” Proceedings of the CHI Conference on Human Factors in
Computing Systems. ACM, 2010, pp. 2503–2512 (cited on page 82).

Brandt, Joel, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. “Example-
Centric Programming: Integrating Web Search into the Development Environ-
ment.” Proceedings of the CHI Conference on Human Factors in Computing Sys-
tems. ACM, 2010, pp. 513–522 (cited on page 58).

Brandt, Joel, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klem-
mer. “Two Studies of Opportunistic Programming: Interleaving Web Foraging,



Chapter 7. Conclusions 137
Learning, and Writing Code.” Proceedings of the CHI Conference on Human Fac-
tors in Computing Systems. ACM, 2009, pp. 1589–1598 (cited on pages 12, 13).

Brandt, Joel, Vignan Pattamatta, William Choi, Ben Hsieh, and Scott R. Klem-
mer. Rehearse: Helping Programmers Adapt Examples by Visualizing Execution and
Highlighting Related Code. Tech. rep. Stanford University, 2010 (cited on page 45).

Brooks, Ruven. “Towards a theory of the comprehension of computer programs.”
International Journal of Man-Machine Studies 18.6 (1983), pp. 543–554 (cited on
page 8).

Burden, Håkan and Rogardt Heldal. “Natural Language Generation from Class Di-
agrams.” Proceedings of the International Workshop on Model-Driven Engineering,
Verification and Validation. Article 8. ACM, 2011 (cited on page 50).

Burg, Brian, Richard Bailey, Amy J. Ko, and Michael D. Ernst. “Interactive
Record/Replay for Web Application Debugging.” Proceedings of the Symposium
on User Interface Software and Technology. ACM, 2013, pp. 473–483 (cited on
page 45).

Burg, Brian, Amy J. Ko, and Michael D. Ernst. “Explaining Visual Changes in
Web Interfaces.” Proceedings of the Symposium on User Interface Software and
Technology. ACM, 2015, pp. 259–269 (cited on page 45).

Burkhardt, Jean-Marie and Françoise Detienne. “An empirical study of software
reuse by experts in object-oriented design.” Proceedings of the International Con-
ference on Human-Computer Interaction. Springer, 1995, pp. 133–138 (cited on
page 12).

Buse, Raymond P.L. and Westley Weimer. “Synthesizing API Usage Examples.”
Proceedings of the International Conference on Software Engineering. IEEE, 2012,
pp. 782–792 (cited on pages 14, 15, 24–26, 111).

Buse, Raymond P.L. and Westley R. Weimer. “Learning a Metric for Code Read-
ability.” IEEE Transactions on Software Engineering 36.4 (2010), pp. 546–558
(cited on pages 25, 26).

Busjahn, Teresa, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. “Eye Movements in Code
Reading: Relaxing the Linear Order.” Proceedings of the International Conference
on Program Comprehension. IEEE, 2015, pp. 255–265 (cited on page 8).



Chapter 7. Conclusions 138
Card, Stuart K., Jock D. Mackinlay, and George G. Robertson. “A Morphologi-
cal Analysis of the Design Space of Input Devices.” Transactions on Information
Systems 9.2 (1991), pp. 99–122 (cited on page 51).

Carroll, John M. The Nurnberg Funnel: Designing Minimalist Instruction for Prac-
tical Computer Skill. The MIT Press, 1990 (cited on page 16).

Chasins, Sarah E., Maria Mueller, and Rastislav Bodik. “Rousillon: Scraping Dis-
tributed Hierarchical Web Data.” Proceedings of the Symposium on User Interface
Software and Technology. ACM, 2018, pp. 963–975 (cited on pages 28, 131).

Chen, Charles H. and Philip J. Guo. “Improv: Teaching Programming at Scale via
Live Coding.” Proceedings of the Conference on Learning at Scale. Article 9. ACM,
2019 (cited on pages 40, 41).

Chen, Zhifei, Lin Chen, Yuming Zhou, Zhaogui Xu, William C. Chu, and Baowen
Xu. “Dynamic Slicing of Python Programs.” Proceedings of the International Com-
puters, Software and Applications Conference. IEEE, 2014, pp. 219–228 (cited on
page 73).

Chi, Pei-Yu (Peggy), Sen-Po Hu, and Yang Li. “Doppio: Tracking UI Flows and
Code Changes for App Development.” Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems. Paper 455. ACM, 2018 (cited on pages 29,
30).

Childs, Bart. “Literate Programming, A Practioner’s View.” TUGboat 13.3 (1992)
(cited on page 32).

Childs, Bart, Deborah Dunn, and William Lively. “Teaching CS/1 Courses in a
Literate Manner.” TUGboat 16.3 (1995), p. 8 (cited on page 34).

Conlen, Matthew, Alex Kale, and Jeffrey Heer. “Capture & Analysis of Active
Reading Behaviors for Interactive Articles on the Web.” Proceedings of the Euro-
graphics Conference on Visualization. John Wiley & Sons, Ltd., 2019, pp. 687–698
(cited on page 131).

Cooper, Alan, Robert Reimann, and David Cronin. About Face 3: The Essentials
of Interaction Design. Wiley Publishing, Inc., 2007 (cited on page 51).

Cuoq, Pascal, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. “Frama-C: A Software Analysis Perspective.” Pro-
ceedings of the International Conference on Software Engineering and Formal
Methods. Springer, 2012, pp. 233–247 (cited on page 44).



Chapter 7. Conclusions 139
Cypher, Allen, ed. Watch What I Do: Programming by Demonstration. The MIT
Press, 1993 (cited on page 28).

Dagenais, Barthélémy and Martin P. Robillard. “Creating and Evolving Developer
Documentation: Understanding the Decisions of Open Source Contributors.” Pro-
ceedings of the International Symposium on Foundations of Software Engineering.
ACM, 2010, pp. 127–136 (cited on pages 17, 103).

Dagenais, Barthélémy and Martin P. Robillard. “Using Traceability Links to Rec-
ommend Adaptive Changes for Documentation Evolution.” IEEE Transactions on
Software Engineering 40.11 (2014), pp. 1126–1146 (cited on page 49).

Daka, Ermira, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
“Modeling Readability to Improve Unit Tests.” Proceedings of the Joint Meeting on
Foundations of Software Engineering. ACM, 2015, pp. 107–118 (cited on page 46).

DeLine, Robert and Danyel Fisher. “Supporting Exploratory Data Analysis with
Live Programming.” Proceedings of the Symposium on Visual Languages and Human-
Centric Computing. IEEE, 2015, pp. 111–119 (cited on pages 37, 38, 44).

DeLine, Robert, Danyel Fisher, Badrish Chandramouli, Jonathan Goldstein, Michael
Barnett, James Terwilliger, and John Wernsing. “Tempe: Live Scripting for Live
Data.” Proceedings of the Symposium on Visual Languages and Human-Centric
Computing. IEEE, 2015, pp. 137–141 (cited on pages 37, 39, 49).

DeNero, John. Composing Programs. https://composingprograms.com/. Last ac-
cessed May 5, 2020 (cited on page 50).

Dorn, Brian and Mark Guzdial. “Learning on the Job: Characterizing the Program-
ming Knowledge and Learning Strategies of Web Designers.” Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, 2010, pp. 703–
712 (cited on page 13).

Drosos, Ian, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani.
“Wrex: A Unifed Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists.” Proceedings of the CHI Conference on Human Factors
in Computing Systems. Paper 315. ACM, 2020 (cited on pages 28, 131).

Dunsmore, Alastair, Marc Roper, and Murray Wood. “Object-Oriented Inspec-
tion in the Face of Delocalisation.” Proceedings of the International Conference on
Software Engineering. ACM, 2000, pp. 467–476 (cited on page 10).

https://composingprograms.com/


Chapter 7. Conclusions 140
Eclipse Foundation. Quick Fix and Quick Assist. https://help.eclipse.org/2020-
03/topic/org.eclipse.jdt.doc.user/concepts/concept-quickfix-assist.htm?cp=1_

2_5. Last accessed May 6, 2020 (cited on page 46).

Fast, Ethan and Michael S. Bernstein. “Meta: Enabling Programming Languages to
Learn from the Crowd.” Proceedings of the Symposium on User Interface Software
and Technology. ACM, 2016, pp. 259–270 (cited on pages 28, 30).

Fast, Ethan, Daniel Steffee, Lucy Wang, Joel Brandt, and Michael S. Bernstein.
“Emergent, Crowd-scale Programming Practice in the IDE.” Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, 2014, pp. 2491–
2500 (cited on page 24).

Feigenspan, Janet, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. “Do
background colors improve program comprehension in the #ifdef hell?” Empir-
ical Software Engineering 18 (2013), pp. 699–745 (cited on page 11).

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. How to Design Programs: an Introduction to Programming and Computing.
2nd ed. The MIT Press, 2018 (cited on page 12).

Feng, Yu, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps.
“Component-Based Synthesis for Complex APIs.” Proceedings of SIGPLAN Sym-
posium on Principles of Programming Languages. ACM, 2017, pp. 599–612 (cited
on page 131).

Fitzmaurice, George W., Hiroshi Ishii, and William Buxton. “Bricks: Laying the
Foundations for Graspable User Interfaces.” Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM, 1995, pp. 442–449 (cited on page 51).

Ford, Denae, Justin Smith, Philip J. Guo, and Chris Parnin. “Paradise Unplugged:
Identifying Barriers for Female Participation on Stack Overflow.” Proceedings of
the International Symposium on Foundations of Software Engineering. ACM, 2016,
pp. 846–857 (cited on page 17).

Fourney, Adam and Meredith Ringel Morris. “Enhancing Technical Q&A Forums
with CiteHistory.” Proceedings of the International Conference on Weblogs and
Social Media. The AAAI Press, 2013 (cited on page 49).

Fowler, Martin. Refactoring: Improving the Design of Existing Code. 2nd ed. Addison-
Wesley Professional, 2018 (cited on page 46).

https://help.eclipse.org/2020-03/topic/org.eclipse.jdt.doc.user/concepts/concept-quickfix-assist.htm?cp=1_2_5
https://help.eclipse.org/2020-03/topic/org.eclipse.jdt.doc.user/concepts/concept-quickfix-assist.htm?cp=1_2_5
https://help.eclipse.org/2020-03/topic/org.eclipse.jdt.doc.user/concepts/concept-quickfix-assist.htm?cp=1_2_5


Chapter 7. Conclusions 141
Fraser, Gordon and Andreas Zeller. “Exploiting Common Object Usage in Test
Case Generation.” Proceedings of the International Conference on Software Test-
ing, Verification and Validation. IEEE, 2011, pp. 80–89 (cited on page 46).

Galenson, Joel, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. “CodeHint: Dynamic and Interactive Synthesis of Code Snippets.” Proceedings
of the International Conference on Software Engineering. ACM, 2014, pp. 653–663
(cited on pages 27, 30, 131).

Ginosar, Shiry, Luis Fernando De Pombo, Maneesh Agrawala, and Björn Hart-
mann. “Authoring Multi-Stage Code Examples with Editable Code Histories.”
Proceedings of the Symposium on User Interface Software and Technology. ACM,
2013, pp. 485–494 (cited on pages 17, 18, 40–42, 58).

Glassman, Elena L., Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert
C. Miller. “OverCode: Visualizing Variation in Student Solutions to Program-
ming Problems at Scale.” ACM Transactions on Computer-Human Interaction
22.2 (2015), 7:1–7:35 (cited on pages 24–26).

Glassman, Elena L., Tianyi Zhang, Björn Hartmann, and Miryung Kim. “Visualiz-
ing API Usage Examples at Scale.” Proceedings of the CHI Conference on Human
Factors in Computing Systems. Paper 580. ACM, 2018 (cited on page 47).

Goffi, Alberto, Alessandra Gorla, Andrea Mattavelli, Mauro Pezzè, and Paolo
Tonella. “Search-Based Synthesis of Equivalent Method Sequences.” Proceedings
of the International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 366–376 (cited on page 47).

Goldman, Max and Robert C. Miller. “Codetrail: Connecting source code and web
resources.” Journal of Visual Languages and Computing 20 (2009), pp. 223–235
(cited on page 49).

Google. Codewalk: How to write a Codewalk. https://golang.org/doc/codewalk/
codewalk/. Last accessed May 6, 2020 (cited on page 38).

Google. Codewalk: Share Memory By Communicating. https://golang.org/doc/
codewalk/sharemem/. Last accessed May 6, 2020 (cited on page 39).

Gordon, Mitchell and Philip J. Guo. “Codepourri: Creating Visual Coding Tu-
torials Using a Volunteer Crowd of Learners.” Proceedings of the Symposium on
Visual Languages and Human-Centric Computing. IEEE, 2015, pp. 13–21 (cited
on pages 38, 39).

https://golang.org/doc/codewalk/codewalk/
https://golang.org/doc/codewalk/codewalk/
https://golang.org/doc/codewalk/sharemem/
https://golang.org/doc/codewalk/sharemem/


Chapter 7. Conclusions 142
Gross, Paul A., Micah S. Herstand, Jordana W. Hodges, and Caitlin L. Kelleher. “A
Code Reuse Interface for Non-Programmer Middle School Students.” Proceedings of
the International Conference on Intelligent User Interfaces. ACM, 2010, pp. 219–
228 (cited on page 45).

Gulwani, Sumit, Oleksandr Polozov, and Rishabh Singh. “Program synthesis.”
Foundations and Trends in Programming Languages 4.1-2 (2017), pp. 1–119 (cited
on pages 26, 28).

Guo, Philip J. “Online Python Tutor: Embeddable Web-Based Program Visual-
ization for CS Education.” Proceedings of the Technical Symposium on Computer
Science Education. ACM, 2013, pp. 579–584 (cited on pages 50, 131).

Hannebauer, Christoph, Marc Hesenius, and Volker Gruhn. “Does syntax high-
lighting help programming novices?” Empirical Software Engineering 23 (2018),
pp. 2795–2828 (cited on page 11).

Harman, Mark, David Binkley, and Sebastian Danicic. “Amorphous program slic-
ing.” The Journal of Systems and Software 68.1 (2003), pp. 45–64 (cited on page 46).

Hartmann, Björn, Mark Dhillon, and Matthew K. Chan. “HyperSource: Bridging
the Gap Between Source and Code-Related Web Sites.” Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM, 2011, pp. 2207–2210
(cited on page 49).

Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
“Design as Exploration: Creating Interface Alternatives through Parallel Authoring
and Runtime Tuning.” Proceedings of the Symposium on User Interface Software
and Technology. ACM, 2008, pp. 91–100 (cited on pages 48, 51).

Head, Andrew, Codanda Appachu, Marti A. Hearst, and Björn Hartmann. “Tu-
torons: Generating Context-Relevant, On-Demand Explanations and Demonstra-
tions of Online Code.” Proceedings of the Symposium on Visual Languages and
Human-Centric Computing. IEEE, 2015, pp. 3–12 (cited on page 133).

Head, Andrew, Elena L. Glassman, Björn Hartmann, and Marti A. Hearst. “Inter-
active Extraction of Examples from Existing Code.” Proceedings of the CHI Con-
ference on Human Factors in Computing Systems. Paper 85. ACM, 2018 (cited on
page 5).

Head, Andrew, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
“Managing Messes in Computational Notebooks.” Proceedings of the CHI Confer-
ence on Human Factors in Computing Systems. Paper 270. ACM, 2019 (cited on
page 5).



Chapter 7. Conclusions 143
Head, Andrew, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann.
“Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source Code,
Snippets, and Outputs.” Proceedings of the CHI Conference on Human Factors in
Computing Systems. To appear. ACM, 2020 (cited on pages 5, 109, 113).

Hempel, Brian, Justin Lubin, and Ravi Chugh. “Sketch-n-Sketch: Output-Directed
Programming for SVG.” Proceedings of the Symposium on User Interface Software
and Technology. ACM, 2019, pp. 281–292 (cited on page 28).

Hempel, Brian, Justin Lubin, Grace Lu, and Ravi Chugh. “Deuce: A Lightweight
User Interface for Structured Editing.” Proceedings of the International Conference
on Software Engineering. ACM, 2018, pp. 654–664 (cited on page 46).

Heo, Kihong, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. “Effective Pro-
gram Debloating via Reinforcement Learning.” Proceedings of the SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2018, pp. 380–394 (cited
on page 45).

Hibschman, Joshua and Haoqi Zhang. “Telescope: Fine-Tuned Discovery of Inter-
active Web UI Feature Implementation.” Proceedings of the Symposium on User
Interface Software and Technology. ACM, 2016, pp. 233–245 (cited on page 45).

Hibschman, Joshua and Haoqi Zhang. “Unravel: Rapid Web Application Reverse
Engineering via Interaction Recording, Source Tracing, and Library Detection.”
Proceedings of the Symposium on User Interface Software and Technology. ACM,
2015, pp. 270–279 (cited on page 45).

Hoare, C. A. R. Hints on Programming Language Design. Tech. rep. Stanford
University, 1973 (cited on page 134).

Hoffmann, Raphael, James Fogarty, and Daniel S. Weld. “Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for Programmers.” Pro-
ceedings of the Symposium on User Interface Software and Technology. ACM, 2007,
pp. 13–22 (cited on pages 13, 58).

Hoffswell, Jane, Arvind Satyanarayan, and Jeffrey Heer. “Augmenting Code with
In Situ Visualizations to Aid Program Understanding.” Proceedings of the CHI
Conference on Human Factors in Computing Systems. Paper 532. ACM, 2018
(cited on pages 50, 51).

Holmes, Reid and Robert J. Walker. “Systematizing Pragmatic Software Reuse.”
ACM Transactions on Software Engineering and Methodology 21.4 (2012) (cited
on pages 44, 45).



Chapter 7. Conclusions 144
Horton, Eric and Chris Parnin. “Gistable: Evaluating the Executability of Python
Code Snippets on GitHub.” Proceedings of the International Conference on Soft-
ware Maintenance and Evolution. IEEE, 2018, pp. 217–227 (cited on page 47).

Horwitz, Susan, Thomas Reps, and David Binkley. “Interprocedural Slicing Using
Dependence Graphs.” ACM Transactions on Programming Languages and Systems
12.1 (1990), pp. 26–60 (cited on page 44).

Hou, Daqing, Patricia Jablonski, and Ferosh Jacob. “CnP: Towards an Environ-
ment for the Proactive Management of Copy-and-Paste Programming.” Proceedings
of the International Conference on Program Comprehension. IEEE, 2009, pp. 238–
242 (cited on page 48).

Iyer, Srinivasan, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. “Summa-
rizing Source Code using a Neural Attention Model.” Proceedings of the Annual
Meeting of the Association for Computational Linguistics. Association for Compu-
tational Linguistics, 2016, pp. 2073–2083 (cited on pages 50, 132).

Java Debug Interface. https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/
index.html. Last accessed May 6, 2020 (cited on page 71).

Jayaraman, Ganeshan, Venkatesh Prasad Ranganath, and John Hatcliff. “Kaveri:
Delivering the Indus Java Program Slicer to Eclipse.” Proceedings of the Interna-
tional Conference on Fundamental Approaches to Software Engineering. Springer,
2005, pp. 269–272 (cited on page 44).

Jison. http://jison.org. Last accessed May 6, 2020 (cited on page 93).

Johnson, Maggie and Max Senges. “Learning to be a programmer in a complex
organization.” Journal of Workplace Learning 22.3 (2010), pp. 180–194 (cited on
pages 12, 38).

Jones, John Chris. Design Methods. 2nd ed. John Wiley & Sons, Ltd., 1992 (cited
on page 51).

Jupyter. https://jupyter.org/. Last accessed May 6, 2020 (cited on pages 34, 37,
39, 86).

Jupyter Contrib Team. Unofficial Jupyter Notebook Extensions. https://jupyter-
contrib-nbextensions.readthedocs.io/en/latest/. Last accessed May 6, 2020 (cited
on page 86).

https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
http://jison.org
https://jupyter.org/


Chapter 7. Conclusions 145
Kamermans, Mike “Pomax”. Let’s make a Mario game. http:/ / processingjs .

nihongoresources.com/test/PjsGameEngine/docs/tutorial/mario.html. Last ac-
cessed May 6, 2020 (cited on page 1).

Kamimura, Manabu and Gail C. Murphy. “Towards Generating Human-Oriented
Summaries of Unit Test Cases.” Proceedings of the International Conference on
Program Comprehension. IEEE, 2013, pp. 215–218 (cited on page 50).

Kandel, Sean, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. “Enter-
prise Data Analysis and Visualization: An Interview Study.” Transactions on Visu-
alization and Computer Graphics 18.12 (2012), pp. 2917–2926 (cited on pages 36,
85).

Kang, Hyeonsu and Philip J. Guo. “Omnicode: A Novice-Oriented Live Program-
ming Environment with Always-On Run-Time Value Visualizations.” Proceedings
of the Symposium on User Interface Software and Technology. ACM, 2017, pp. 737–
745 (cited on page 49).

Kelley, Kyle and Brian Granger. “Jupyter Frontends: From the Classic Jupyter
Notebook to JupyterLab, nteract, and Beyond.” JupyterCon. Video. 2017. https://
www.youtube.com/watch?v=YKmJvHjTGAM (cited on pages 85, 86).

Kery, Mary Beth, Amber Horvath, and Brad Myers. “Variolite: Supporting Ex-
ploratory Programming by Data Scientists.” Proceedings of the CHI Conference
on Human Factors in Computing Systems. ACM, 2017, pp. 1265–1276 (cited on
pages 35, 86).

Kery, Mary Beth, Bonnie E. John, Patrick O’Flaherty, Amber Horvath, and Brad
A. Myers. “Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices.” Proceedings of the CHI Conference on Human Factors in Computing
Systems. Paper 92. ACM, 2019 (cited on pages 36, 39).

Kery, Mary Beth and Brad A. Myers. “Exploring Exploratory Programming.” Pro-
ceedings of the Symposium on Visual Languages and Human-Centric Computing.
IEEE, 2017, pp. 25–29 (cited on pages 35, 85).

Kery, Mary Beth and Brad A. Myers. “Interactions for Untangling Messy History in
a Computational Notebook.” Proceedings of the Symposium on Visual Languages
and Human-Centric Computing. IEEE, 2018, pp. 147–155 (cited on pages 36, 37,
39).

Kery, Mary Beth, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. “The Story in the Notebook: Exploratory Data Science using a Literate

http://processingjs.nihongoresources.com/test/PjsGameEngine/docs/tutorial/mario.html
http://processingjs.nihongoresources.com/test/PjsGameEngine/docs/tutorial/mario.html
https://www.youtube.com/watch?v=YKmJvHjTGAM
https://www.youtube.com/watch?v=YKmJvHjTGAM


Chapter 7. Conclusions 146
Programming Tool.” Proceedings of the CHI Conference on Human Factors in
Computing Systems. Paper 174. ACM, 2018 (cited on pages 35, 36, 85, 87).

Khandwala, Kandarp and Philip J. Guo. “Codemotion: Expanding the Design
Space of Learner Interactions with Computer Programming Tutorial Videos.” Pro-
ceedings of the Conference on Learning at Scale. Article 57. ACM, 2018 (cited on
page 42).

Kim, Ada S. and Amy J. Ko. “A Pedagogical Analysis of Online Coding Tutorials.”
Proceedings of the Technical Symposium on Computer Science Education. ACM,
2017, pp. 321–326 (cited on pages 16, 18, 19, 105).

Kim, Jinhan, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. “Adding Ex-
amples into Java Documents.” Proceedings of the International Conference on Au-
tomated Software Engineering. IEEE, 2009, pp. 540–544 (cited on page 24).

Kim, Jinhan, Sanghoon Lee, Seung-won Hwang, and Sunghun Kim. “Towards an
Intelligent Code Search Engine.” Proceedings of the AAAI Conference on Artificial
Intelligence. The AAAI Press, 2010, pp. 1358–1363 (cited on pages 23, 24, 26).

Kim, Miryung, Lawrence Bergman, Tessa Lau, and David Notkin. “An Ethno-
graphic Study of Copy and Paste Programming Practices in OOPL.” Proceedings
of the International Symposium on Empirical Software Engineering. IEEE, 2004,
pp. 83–92 (cited on page 48).

Knitr. https://yihui.org/knitr/. Last accessed May 6, 2020 (cited on page 34).

Knuth, Donald E. “Literate Programming.” The Computer Journal 27.2 (1984),
pp. 97–111 (cited on pages ix, 31–34, 103).

Knuth, Donald E. TEX: The Program. Addison-Wesley, 1986 (cited on page ix).

Ko, Amy and Brad A. Myers. “Finding Causes of Program Output with the Java
Whyline.” Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM, 2009, pp. 1569–1578 (cited on pages 44, 45).

Koenemann, Jürgen and Scott P. Robertson. “Expert problem solving strategies for
program comprehension.” Proceedings of the CHI Conference on Human Factors
in Computing Systems. ACM, 1991, pp. 125–130 (cited on page 8).

Kojouharov, Chris, Aleksey Solodovnik, and Gleb Naumovich. “JTutor: An Eclipse
Plug-in Suite for Creation and Replay of Code-based Tutorials.” Proceedings of the
Eclipse Technology eXchange Workshop. ACM, 2004, pp. 27–31 (cited on pages 40,
41, 58).

https://yihui.org/knitr/


Chapter 7. Conclusions 147
Krämer, Jan-Peter, Joel Brandt, and Jan Borchers. “Using Runtime Traces to
Improve Documentation and Unit Test Authoring for Dynamic Languages.” Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
2016, pp. 3232–3237 (cited on pages 28, 30).

Krippendorff, Klaus. Content Analysis: An Introduction to Its Methodology. 3rd ed.
SAGE Publications, Inc., 2013 (cited on page 109).

Lange, Beth M. and Thomas G. Moher. “Some strategies of reuse in an object-
oriented programming environment.” Proceedings of the CHI Conference on Human
Factors in Computing Systems. ACM, 1989, pp. 69–73 (cited on pages 13, 48).

Lau, Tessa. “Why Programming by Demonstration Systems Fail: Lessons learned
for Usable AI.” AI Magazine 30.4 (2009), pp. 65–67 (cited on page 28).

Lawrie, Dawn, Christopher Morrell, Henry Feild, and David Binkley. “What’s in
a Name? A Study of Identifiers.” Proceedings of the International Conference on
Program Comprehension. IEEE, 2006, pp. 3–12 (cited on page 10).

Le Goues, Claire, Michael Pradel, and Abhik Roychoudhury. “Automated Program
Repair.” Communications of the ACM 62.12 (2019), pp. 56–65 (cited on page 47).

Lee, Seonah, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. “Automatic
Detection and Update Suggestion for Outdated API Names in Documentation.”
IEEE Transactions on Software Engineering (2019). To appear (cited on pages 49,
132).

Lee, Yun Young, Nicholas Chen, and Ralph E. Johnson. “Drag-and-Drop Refac-
toring: Intuitive and Efficient Program Transformation.” Proceedings of the Inter-
national Conference on Software Engineering. IEEE, 2013, pp. 23–32 (cited on
page 46).

Leshed, Gilly, Eben M. Haber, Tara Matthews, and Tessa Lau. “CoScripter: Au-
tomating & Sharing How-To Knowledge in the Enterprise.” Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM, 2008, pp. 1719–1728
(cited on page 28).

Lethbridge, Timothy C., Janice Singer, and Andrew Forward. “How Software Engi-
neers Use Documentation: The State of the Practice.” IEEE Software 20.6 (2003),
pp. 35–39 (cited on page 48).

Letovsky, Stanley and Elliot Soloway. “Delocalized Plans and Program Compre-
hension.” IEEE Software 3.3 (1986), pp. 41–49 (cited on page 10).



Chapter 7. Conclusions 148
Lieber, Tom, Joel Brandt, and Robert C. Miller. “Addressing Misconceptions
About Code with Always-On Programming Visualizations.” Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM, 2014, pp. 2481–2490
(cited on page 50).

Lin, Janet Mei-Chuen and Cheng-Chih Wu. “Suggestions for content selection and
presentation in high school computer textbooks.” Computers & Education 48.3
(2007), pp. 508–521 (cited on page 19).

Linden, Dirk van der, Emma Williams, Joseph Hallett, and Awais Rashid. “The
impact of surface features on choice of (in)secure answers by Stackoverflow readers.”
IEEE Transactions on Software Engineering (2020). To appear (cited on page 13).

Linn, Marcia C. and Michael J. Clancy. “The case for case studies of program-
ming problems.” Communications of the ACM 35.3 (1992), pp. 121–132 (cited on
pages 16, 17).

Little, Greg, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan. “Koala: Capture, Share, Automate, Personalize Business Processes on
the Web.” Proceedings of the CHI Conference on Human Factors in Computing
Systems. This paper describes an earlier version of the CoScripter tool calledKoala.
ACM, 2007, pp. 943–946 (cited on pages 30, 131).

Littman, David C., Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. “Mental
Models and Software Maintenance.” The Journal of Systems and Software 7.4
(1987), pp. 341–355 (cited on page 8).

MacLeod, Laura, Andreas Bergen, and Margaret-Anne Storey. “Documenting and
sharing software knowledge using screencasts.” Empirical Software Engineering 22
(2017), pp. 1478–1507 (cited on pages 17, 18).

Mahoney, Mark. “Storyteller: a Tool for Creating Worked Examples.” Journal of
Computing Sciences in Colleges 34.1 (2018), pp. 137–144 (cited on pages 40–42).

Mamykina, Lena, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. “Design Lessons from the Fastest Q&A Site in the West.” Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, 2011, pp. 2857–
2866 (cited on page 18).

Mandelin, David, Lin Xu, Rastislav Bodík, and Doug Kimelman. “Jungloid Min-
ing: Helping to Navigate the API Jungle.” Proceedings of the Conference on Pro-
gramming Language Design and Implementation. ACM, 2005, pp. 48–61 (cited on
pages 27, 30).



Chapter 7. Conclusions 149
Markdown Preview Enhanced. https://github.com/shd101wyy/markdown-preview-
enhanced. Last accessed May 6, 2020 (cited on page 118).

Marks, J., B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T.
Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. “Design
Galleries: A General Approach to Setting Parameters for Computer Graphics and
Animation.” Proceedings of the International Conference on Computer Graphics
and Interactive Techniques. ACM, 1997, pp. 389–400 (cited on page 53).

Mayer, Mikaël, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Olek-
sandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. “User Interac-
tion Models for Disambiguation in Programming by Example.” Proceedings of the
Symposium on User Interface Software and Technology. ACM, 2015, pp. 291–301
(cited on pages 28, 131).

McBurney, Paul W. and Collin McMillan. “Automatic Documentation Generation
via Source Code Summarization of Method Context.” Proceedings of the Interna-
tional Conference on Program Comprehension. ACM, 2014, pp. 279–290 (cited on
page 50).

McDirmid, Sean. “Usable Live Programming.” Proceedings of the International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software. 2013, pp. 53–62 (cited on page 49).

MDN contributors. Code example guidelines. https://developer.mozilla.org/en-
US/docs/MDN/Contribute/Guidelines/Code_guidelines. Last accessed May 6, 2020
(cited on page 20).

Miara, Richard J., Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman.
“Program indentation and comprehensibility.” Communications of the ACM 26.11
(1983), pp. 861–867 (cited on page 10).

Miltner, Anders, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gus-
tavo Soares, Ashish Tiwari, and Abhishek Udupa. “On the Fly Synthesis of Edit
Suggestions.” Proceedings of the SIGPLAN Conference on Systems, Programming,
Languages, and Applications: Software for Humanity. Article 143. ACM, 2019,
143:1–143:29 (cited on page 46).

Montandon, João Eduardo, Hudson Borges, Daniel Felix, and Marco Tulio Va-
lente. “Documenting APIs with Examples: Lessons Learned with the APIMiner
Platform.” Proceedings of the Working Conference on Reverse Engineering. IEEE,
2013, pp. 401–408 (cited on page 24).

https://github.com/shd101wyy/markdown-preview-enhanced
https://github.com/shd101wyy/markdown-preview-enhanced
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_guidelines
https://developer.mozilla.org/en-US/docs/MDN/Contribute/Guidelines/Code_guidelines


Chapter 7. Conclusions 150
Moreno, Laura, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K. Vijay-Shanker. “Automatic Generation of Natural Language Summaries
for Java Classes.” Proceedings of the International Conference on Program Com-
prehension. IEEE, 2013, pp. 23–32 (cited on page 50).

Moreno, Laura, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and An-
drian Marcus. “How Can I Use This Method?” Proceedings of the International
Conference on Software Engineering. IEEE, 2015, pp. 880–890 (cited on pages 24–
26).

Murphy-Hill, Emerson and Andrew P. Black. “Refactoring Tools: Fitness for Pur-
pose.” IEEE Software 25.5 (2008) (cited on page 46).

Myers, Brad A., Richard McDaniel, and David Wolber. “Intelligence in Demon-
strational Interfaces.” Communications of the ACM 43.3 (2000), pp. 82–89 (cited
on page 28).

Mysore, Alok and Philip J. Guo. “Torta: Generating Mixed-Media GUI and Command-
Line App Tutorials Using Operating-System-Wide Activity Tracing.” Proceedings
of the Symposium on User Interface Software and Technology. ACM, 2017, pp. 703–
714 (cited on pages 17, 18, 40–43, 105).

Nasehi, Seyed Mehdi and Frank Maurer. “Unit Tests as API Usage Examples.”
Proceedings of the International Conference on Software Maintenance. IEEE, 2010
(cited on page 58).

Nasehi, Seyed Mehdi, Jonathan Sillito, Frank Maurer, and Chris Burns. “What
Makes a Good Code Example? A Study of Programming Q&A in StackOverflow.”
Proceedings of the International Conference on Software Maintenance. IEEE, 2012,
pp. 25–34 (cited on pages 14–16, 58, 105).

Neal, Lisa Rubin. “A System for Example-Based Programming.” Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, 1989, pp. 63–68
(cited on page 12).

Nielebock, Sebastian, Dariusz Krolikowski, Jacob Krüger, Thomas Leich, and Frank
Ortmeier. “Commenting source code: is it worth it for small programming tasks?”
Empirical Software Engineering 24 (2019), pp. 1418–1457 (cited on page 11).

Norcio, A. F. “Indentation, documentation and programmer comprehension.” Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
1982, pp. 118–120 (cited on page 10).



Chapter 7. Conclusions 151
Nykaza, Janet, Rhonda Messinger, Fran Boehme, Cherie L. Norman, Matthew
Mace, and Manuel Gordon. “What Programmers Really Want: Results of a Needs
Assessment for SDK Documentation.” Proceedings of the International Conference
on the Design of Communication. ACM, 2002, pp. 133–141 (cited on pages 14, 15,
58).

Observable. https:/ / observablehq . com/. Last accessed May 6, 2020 (cited on
pages 34, 37, 39, 40, 49).

Oezbek, Christopher and Lutz Prechelt. “JTourBus: Simplifying Program Under-
standing by Documentation that Provides Tours through the Source Code.” Pro-
ceedings of the International Conference on Software Maintenance. IEEE, 2007,
pp. 64–73 (cited on page 38).

Olsen Jr., Dan R. “Evaluating User Interface Systems Research.” Proceedings of the
Symposium on User Interface Software and Technology. ACM, 2007, pp. 251–258
(cited on page 4).

Oman, Paul W. and Curtis R. Cook. “Typographic Style is More than Cosmetic.”
Communications of the ACM 33.5 (1990), pp. 506–520 (cited on page 10).

Oney, Stephen and Joel Brandt. “Codelets: Linking Interactive Documentation
and Example Code in the Editor.” Proceedings of the CHI Conference on Human
Factors in Computing Systems. ACM, 2012, pp. 2697–2706 (cited on page 58).

Oney, Stephen and Brad Myers. “FireCrystal: Understanding Interactive Behaviors
in Dynamic Web Pages.” Proceedings of the Symposium on Visual Languages and
Human-Centric Computing. IEEE, 2009, pp. 105–108 (cited on page 45).

Oney, Steve, Christopher Brooks, and Paul Resnick. “Creating Guided Code Ex-
planations with chat.codes.” Proceedings of the Conference on Computer-Supported
Cooperative Work and Social Computing. Article 39. ACM, 2018 (cited on pages 38,
40–42).

Ottenstein, Karl J. and Linda M. Ottenstein. “The program dependence graph
in a software development environment.” ACM SIGPLAN Notices 19.5 (1984),
pp. 177–184 (cited on page 44).

Ou, Jibin, Martin Vechev, and Otmar Hilliges. “An Interactive System for Data
Structure Development.” Proceedings of the CHI Conference on Human Factors in
Computing Systems. ACM, 2015, pp. 3053–3062 (cited on page 50).

Parnin, Chris, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. Crowd
Documentation: Exploring the Coverage and the Dynamics of API Discussions on

https://observablehq.com/


Chapter 7. Conclusions 152
Stack Overflow. Tech. rep. Georgia Institute of Technology, 2012 (cited on pages 19,
58).

Parnin, Chris, Christoph Treude, and Margaret-Anne Storey. “Blogging Developer
Knowledge: Motivations, Challenges, and Future Directions.” Proceedings of the
International Conference on Program Comprehension. IEEE, 2013, pp. 211–214
(cited on pages 17, 58, 103, 105).

Parr, T. J. and R. W. Quong. “ANTLR: A Predicated-LL(k) Parser Generator.”
Software—Practice and Experience 25.7 (1995), pp. 789–810 (cited on page 70).

Pennington, Nancy. “Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs.” Cognitive Psychology 19.3 (1987), pp. 295–
341 (cited on page 9).

Perez, Fernando and Brian E. Granger. Project Jupyter: Computational Narratives
as the Engine of Collaborative Data Science. Grant proposal. 2015. http://archive.
ipython.org/JupyterGrantNarrative-2015.pdf (cited on page 34).

Pirolli, Peter and Margaret Recker. “Learning Strategies and Transfer in the Do-
main of Programming.” Cognition and Instruction 12.3 (1994), pp. 235–275 (cited
on page 13).

Pombo, Rodrigo. Build Your Own React. Nov. 13, 2019. https://pomb.us/build-
your-own-react/ (cited on page 41).

Pombo, Rodrigo. Gatsby Waves. https://github.com/pomber/gatsby-waves. Last
accessed May 6, 2020 (cited on page 41).

Processing. https://processing.org/. Last accessed May 6, 2020 (cited on page 1).

Ragavan, Sruti Srinivasa, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. “Foraging among an Overabundance of Similar
Variants.” Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM, 2016, pp. 3509–3521 (cited on page 87).

Rambally, Gerard K. “The influence of color on program readability and compre-
hensibility.” Proceedings of the Technical Symposium on Computer Science Educa-
tion. ACM, 1986, pp. 173–181 (cited on page 11).

Ramsey, Norman. “Literate programming simplified.” IEEE Software 11.5 (1994),
pp. 97–105 (cited on page 32).

Ramsey, Norman and Carla Marceau. “Literate Programming on a Team Project.”
Software—Practice and Experience 21.7 (1991), pp. 677–683 (cited on page 33).

http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://pomb.us/build-your-own-react/
https://pomb.us/build-your-own-react/
https://github.com/pomber/gatsby-waves
https://processing.org/


Chapter 7. Conclusions 153
Ray Wenderlich. https://www.raywenderlich.com. Last accessed May 6, 2020 (cited
on page 103).

Reinhold, Arnold. Punched card program deck.agr.jpg. This file is licensed un-
der the Creative Commons Attribution-Share Alike 3.0 Unported license. 2006.
https://en.wikipedia.org/wiki/File:Punched_card_program_deck.agr.jpg (cited
on page 22).

Rissland, Edwina L. and Elliot M. Soloway. “Overview of an Example Generation
System.” Proceedings of the AAAI Conference on Artificial Intelligence. The AAAI
Press, 1980, pp. 256–258 (cited on page 27).

Robillard, Martin P. “What Makes APIs Hard to Learn? Answers from Developers.”
IEEE Software 26.6 (2009), pp. 27–34 (cited on page 58).

Robillard, Martin P. and Robert Deline. “A field study of API learning obstacles.”
Empirical Software Engineering 16 (2011), pp. 703–732 (cited on pages 14–16, 58).

Rosson, Mary Beth and John M. Carroll. “The Reuse of Uses in Smalltalk Program-
ming.” ACM Transactions on Computer-Human Interaction 3.3 (1996), pp. 219–
253 (cited on page 13).

RStudio. https://rstudio.com/. Last accessed May 6, 2020 (cited on page 37).

Rule, Adam. “Design and Use of Computational Notebooks.” PhD thesis. Univer-
sity of California, San Diego, 2018 (cited on pages 35, 85, 100).

Rule, Adam, Ian Drosos, Aurélien Tabard, and James D. Hollan. “Aiding Collab-
orative Reuse of Computational Notebooks with Annotated Cell Folding.” Pro-
ceedings of the Conference on Computer-Supported Cooperative Work and Social
Computing. Article 150. ACM, 2018 (cited on pages 36, 37, 39, 86).

Rule, Adam, Aurélien Tabard, and James D. Hollan. Data from: Exploration and
Explanation in Computational Notebooks. UC San Diego Library Digital Collec-
tions. 2018. https://doi.org/10.6075/J0JW8C39 (cited on page 95).

Rule, Adam, Aurélien Tabard, and James D. Hollan. “Exploration and Explana-
tion in Computational Notebooks.” Proceedings of the CHI Conference on Human
Factors in Computing Systems. Paper 32. ACM, 2018 (cited on pages 35, 36, 85).

Sacks, Marc. On-the-Job Learning in the Software Industry: Corporate Culture and
the Acquisition of Knowledge. Quorum Books, 1994 (cited on pages 12, 58).

https://www.raywenderlich.com
https://en.wikipedia.org/wiki/File:Punched_card_program_deck.agr.jpg
https://rstudio.com/
https://doi.org/10.6075/J0JW8C39


Chapter 7. Conclusions 154
Sadowski, Caitlin, Kathryn T. Stolee, and Sebastian Elbaum. “How Developers
Search for Code: A Case Study.” Proceedings of the Joint Meeting on Foundations
of Software Engineering. ACM, 2015, pp. 191–201 (cited on page 13).

Sanchez, Huascar, JimWhitehead, and Martin Schäf. “Multistaging to Understand:
Distilling the Essence of Java Code Examples.” Proceedings of the International
Conference on Program Comprehension. IEEE, 2016 (cited on page 43).

Schulte, Eric, Dan Davison, Thomas Dye, and Carsten Dominik. “A Multi-Language
Computing Environment for Literate Programming and Reproducible Research.”
Journal of Statistical Software 46.3 (2012), pp. 1–24 (cited on page 34).

Shneiderman, Ben and Richard Mayer. “Syntactic/Semantic Interactions in Pro-
grammer Behavior: A Model and Experimental Results.” International Journal of
Computer and Information Sciences 8.3 (1979), pp. 219–238 (cited on page 10).

Shum, Stephen and Curtis Cook. “Using Literate Programming to Teach Good
Programming Practices.” Proceedings of the Technical Symposium on Computer
Science Education. ACM, 1994, pp. 66–70 (cited on page 34).

Siegel, Noah, Nicholas Lourie, Russell Power, and Waleed Ammar. “Extracting
Scientific Figures with Distantly Supervised Neural Networks.” Proceedings of the
Joint Conference on Digital Libraries. ACM, 2018, pp. 223–232 (cited on page 133).

Sillito, Jonathan and Andrew Begel. “App-Directed Learning: An Exploratory
Study.” Proceedings of the International Workshop on Cooperative and Human
Aspects of Software Engineering. IEEE, 2013, pp. 81–84 (cited on pages 12, 14,
15).

Silva, Josep. “A Vocabulary of Program Slicing-Based Techniques.” ACM Comput-
ing Surveys 44.3 (2012), 12:1–12:41 (cited on page 44).

Sohan, S M, Craig Anslow, and Frank Maurer. “SpyREST: Automated RESTful
API Documentation using an HTTP Proxy Server.” Proceedings of the Interna-
tional Conference on Automated Software Engineering. IEEE, 2015, pp. 271–276
(cited on pages 28, 30).

Solar-Lezama, Armando. “Program Synthesis by Sketching.” PhD thesis. Univer-
sity of California, Berkeley, 2008 (cited on pages 30, 130).

Soloway, Elliot and Kate Ehrlich. “Empirical Studies of Programming Knowledge.”
IEEE Transactions on Software Engineering SE-10.5 (1984), pp. 595–609 (cited on
page 9).



Chapter 7. Conclusions 155
Sorva, Juha. “Visual Program Simulation in Introductory Programming Educa-
tion.” PhD thesis. Aalto University, 2012 (cited on page 50).

Sridhara, Giriprasad, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. “Towards Automatically Generating Summary Comments for Java Meth-
ods.” Proceedings of the International Conference on Automated Software Engi-
neering. ACM, 2010, pp. 43–52 (cited on pages 50, 124, 132).

Sridhara, Giriprasad, Lori Pollock, and K. Vijay-Shanker. “Automatically Detect-
ing and Describing High Level Actions within Methods.” Proceedings of the Inter-
national Conference on Software Engineering. ACM, 2011, pp. 101–110 (cited on
page 50).

Sridhara, Giriprasad, Lori Pollock, and K. Vijay-Shanker. “Generating Parameter
Comments and Integrating with Method Summaries.” Proceedings of the Interna-
tional Conference on Program Comprehension. IEEE, 2011, pp. 71–80 (cited on
page 50).

Stack Overflow. https://stackoverflow.com. Last accessed May 10, 2020 (cited on
page 12).

Stack Overflow Help Center. How to create a Minimal, Reproducible Example.
https://stackoverflow.com/help/minimal- reproducible- example. Last accessed
May 6, 2020 (cited on page 20).

Stasko, John, John Domingue, Marc H. Brown, and Blaine A. Price, eds. Software
Visualization: Programming as a Multimedia Experience. The MIT Press, 1998
(cited on page 50).

Streamlit. https://www.streamlit.io/about. Last accessed May 6, 2020 (cited on
page 37).

Stylos, Jeffrey and Brad A. Myers. “Mica: A Web-Search Tool for Finding API
Components and Examples.” Proceedings of the Symposium on Visual Languages
and Human-Centric Computing. IEEE, 2006, pp. 195–202 (cited on page 58).

Subramanian, Siddharth, Laura Inozemtseva, and Reid Holmes. “Live API Docu-
mentation.” Proceedings of the International Conference on Software Engineering.
ACM, 2014, pp. 643–652 (cited on pages 49, 125, 132).

Sulír, Matúš and Jaroslav Porubän. “Generating Method Documentation Using
Concrete Values from Executions.” Proceedings of the Symposium on Languages,
Applications and Technologies. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017, 3:1–3:13 (cited on pages 28, 30, 50).

https://stackoverflow.com
https://stackoverflow.com/help/minimal-reproducible-example
https://www.streamlit.io/about


Chapter 7. Conclusions 156
Suzuki, Ryo. “Interactive and Collaborative Source Code Annotation.” Proceedings
of the International Conference on Software Engineering. IEEE, 2015, pp. 799–800
(cited on page 38).

Sweigart, Al. Automate the Boring Stuff with Python. https://automatetheboringstuff.
com/. Last accessed May 6, 2020 (cited on page 118).

Tagliaferri, Lisa. How to Code in Python 3. DigitalOcean. https://www.digitalocean.
com/community/tutorial_series/how-to-code-in-python-3. Last accessed May 6,
2020 (cited on page 119).

Tanimoto, Steven L. “A Perspective on the Evolution of Live Programming.” Pro-
ceedings of the International Workshop on Live Programming. IEEE, 2013, pp. 31–
34 (cited on page 49).

Tanimoto, Steven L. “VIVA: A Visual Language for Image Processing.” Journal of
Visual Languages and Computing 1.2 (1990), pp. 127–139 (cited on page 49).

Tapp, Riston and Rick Kazman. “Determining the Usefulness of Colour and Fonts
in a Programming Task.” Proceedings of the Workshop on Program Comprehension.
IEEE, 1994, pp. 154–161 (cited on page 11).

Tashtoush, Yahya, Zeinab Odat, Izzat Alsmadi, and Maryan Yatim. “Impact of
Programming Features on Code Readability.” International Journal of Software
Engineering and Its Applications 7.6 (2013), pp. 441–458 (cited on page 9).

Terragni, Valerio, Yepang Liu, and Shing-Chi Cheung. “CSNIPPEX: Automated
Synthesis of Compilable Code Snippets from Q&A Sites.” Proceedings of the Inter-
national Symposium on Software Testing and Analysis. ACM, 2016, pp. 118–129
(cited on page 47).

Thimbleby, H. “Experiences of ‘Literate Programming’ using cweb (a variant of
Knuth’s WEB).” The Computer Journal 29.3 (1986), pp. 201–211 (cited on page 32).

Thompson, Andrew. The SSCCE. http://www.sscce.org/. Last accessed May 6,
2020 (cited on page 20).

Tiarks, Rebecca and Walid Maalej. “How Does a Typical Tutorial for Mobile De-
velopment Look Like?” Proceedings of the Working Conference on Mining Software
Repositories. ACM, 2014, pp. 272–281 (cited on pages 17, 18, 103, 105).

Tip, Frank. “A Survey of Program Slicing Techniques.” Journal of Programming
Languages 3.3 (1995), pp. 121–189 (cited on pages 58, 74).

https://automatetheboringstuff.com/
https://automatetheboringstuff.com/
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-python-3
https://www.digitalocean.com/community/tutorial_series/how-to-code-in-python-3
http://www.sscce.org/


Chapter 7. Conclusions 157
Tip, Frank, Chris Laffra, Peter F. Sweeney, and David Streeter. “Practical Expe-
rience with an Application Extractor for Java.” Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications. ACM, 1999,
pp. 292–305 (cited on pages 45, 128).

Toomim, Michael, Andrew Begel, and Susan L. Graham. “Managing Duplicated
Code with Linked Editing.” Proceedings of the Symposium on Visual Languages
and Human-Centric Computing. IEEE, 2004, pp. 173–180 (cited on pages 48, 117,
128).

Treude, Christoph, Ohad Barzilay, and Margaret-Anne Storey. “How Do Program-
mers Ask and Answer Questions on the Web?” Proceedings of the International
Conference on Software Engineering. IEEE, 2011, pp. 804–807 (cited on page 58).

Treude, Christoph and Martin P. Robillard. “Understanding Stack Overflow Code
Fragments.” Proceedings of the International Conference on Software Maintenance
and Evolution. IEEE, 2017, pp. 509–513 (cited on pages 19, 58).

Uddin, Gias and Martin P. Robillard. “How API Documentation Fails.” IEEE
Software 32.4 (2015), pp. 68–75 (cited on page 48).

Uwano, Hidetake, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto.
“Analyzing Individual Performance of Source Code Review Using Reviewers’ Eye
Movement.” Proceedings of the Symposium on Eye Tracking Research & Applica-
tions. ACM, 2006, pp. 133–140 (cited on page 8).

Vallée-Rai, Raja, Phong Co, Etienne Gagnon, and Sable Research Group. “Soot –
A Java Bytecode Optimization Framework.” Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative Research. IBM Press, 1999 (cited on
page 69).

van der Meij, Hans, Joyce Karreman, and Michaël Steehouder. “Three Decades
of Research and Professional Practice on Printed Software Tutorials for Novices.”
Technical Communication 56.3 (2009), pp. 265–292 (cited on page 16).

Van Wyk, Christopher J. “Literate programming: An assessment.” Communica-
tions of the ACM 33.3 (1990), pp. 361–363 (cited on pages 32, 33).

Victor, Bret. Explorable Explanations. 2011. http://worrydream.com/ExplorableExplanations/
(cited on page 131).

Victor, Bret. Learnable programming. 2012. http://worrydream.com/LearnableProgramming/
(cited on page 49).

http://worrydream.com/ExplorableExplanations/
http://worrydream.com/LearnableProgramming/


Chapter 7. Conclusions 158
VSCode. https://code.visualstudio.com/. Last accessed May 6, 2020 (cited on
page 118).

WALA. http://wala.sourceforge.net. Last accessed May 6, 2020 (cited on page 82).

Wang, Xiaoran, Lori Pollock, and K. Vijay-Shanker. “Automatic Segmentation of
Method Code into Meaningful Blocks: Design and Evaluation.” Journal of Soft-
ware: Evolution and Process 26.1 (2014), pp. 27–49 (cited on page 46).

Wattenberger, Amelia. Interactive Charts with D3.js. https://wattenberger.com/
blog/d3-interactive-charts. Last accessed June 4, 2019 (cited on page 41).

Weiser, Mark. “Program slicing.” Proceedings of the International Conference on
Software Engineering. IEEE, 1981, pp. 439–449 (cited on pages 85, 92).

Weiser, Mark David. “Program Slices: Formal, Psychological, and Practical Inves-
tigations of an Automatic Program Abstraction Method.” PhD thesis. University
of Michigan, 1979 (cited on page 44).

Weiss, Robert S. Learning from Strangers: The Art and Method of Qualitative
Interview Studies. The Free Press, 1995 (cited on page 105).

Wiedenbeck, Susan, Vikki Fix, and Jean Scholtz. “Characteristics of the mental
representations of novice and expert programmers: an empirical study.” Interna-
tional Journal of Man-Machine Studies 39.5 (1993), pp. 793–812 (cited on page 9).

Wightman, Doug, Zi Ye, Joel Brandt, and Roel Vertegaal. “SnipMatch: Using
Source Code Context to Enhance Snippet Retrieval and Parameterization.” Pro-
ceedings of the Symposium on User Interface Software and Technology. ACM, 2012,
pp. 219–228 (cited on page 58).

Wikibooks contributors. A Beginner’s Python Tutorial/Classes. https://en.wikibooks.
org/w/index.php?title=A_Beginner%27s_Python_Tutorial/Classes. Last accessed
Sept. 14, 2019 (cited on pages 112, 119).

Wit, Michiel de, Andy Zaidman, and Arie van Deursen. “Managing Code Clones
Using Dynamic Change Tracking and Resolution.” Proceedings of the International
Conference on Software Maintenance. IEEE, 2009, pp. 169–178 (cited on page 48).

Wobbrock, Jacob O. and Julie A. Kientz. “Research Contributions in Human-
Computer Interaction.” ACM Interactions 23.3 (2016), pp. 38–44 (cited on page 4).

Wu, Yuhao, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. “How Do Devel-
opers Utilize Source Code from Stack Overflow?” Empirical Software Engineering
24 (2019), pp. 637–673 (cited on pages 12, 14).

https://code.visualstudio.com/
http://wala.sourceforge.net
https://wattenberger.com/blog/d3-interactive-charts
https://wattenberger.com/blog/d3-interactive-charts
https://en.wikibooks.org/w/index.php?title=A_Beginner%27s_Python_Tutorial/Classes
https://en.wikibooks.org/w/index.php?title=A_Beginner%27s_Python_Tutorial/Classes


Chapter 7. Conclusions 159
Xia, Xin, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. “What do developers search for on the web?” Empirical Software
Engineering 22 (2017), pp. 3149–3185 (cited on page 13).

Yang, Di, Aftab Hussain, and Cristina Videira Lopes. “From Query to Usable
Code: An Analysis of Stack Overflow Code Snippets.” Proceedings of the Working
Conference on Mining Software Repositories. ACM, 2016, pp. 391–401 (cited on
page 19).

Ying, Annie T. T. and Martin P. Robillard. “Selection and Presentation Practices
for Code Example Summarization.” Proceedings of the International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 460–471 (cited on page 17).

Yoon, YoungSeok and Brad A. Myers. “An Exploratory Study of Backtracking
Strategies Used by Developers.” Proceedings of the International Workshop on Co-
operative and Human Aspects of Software Engineering. IEEE, 2012, pp. 138–144
(cited on page 35).

Zeller, Andreas and Ralf Hildebrandt. “Simplifying and Isolating Failure-Inducing
Input.” IEEE Transactions on Software Engineering 28.2 (2002), pp. 183–200
(cited on page 45).

Zhang, Tianyi, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. “Are Code Examples on an Online Q&A Forum Reliable? A Study
of API Misuse on Stack Overflow.” Proceedings of the International Conference on
Software Engineering. IEEE, 2018, pp. 886–896 (cited on pages 19, 47).

Zhang, Tianyi, Di Yang, Crista Lopes, and Miryung Kim. “Analyzing and Sup-
porting Adaptation of Online Code Examples.” Proceedings of the International
Conference on Software Engineering. IEEE, 2019, pp. 316–327 (cited on pages 14,
47).

Zhang, Xiangyu, Neelam Gupta, and Rajiv Gupta. “Pruning Dynamic Slices with
Confidence.” Proceedings of the Conference on Programming Language Design and
Implementation. ACM, 2006, pp. 169–180 (cited on page 44).

Zhang, Xiong and Philip J. Guo. “DS.js: Turn Any Webpage into an Example-
Centric Live Programming Environment for Learning Data Science.” Proceedings
of the Symposium on User Interface Software and Technology. ACM, 2017, pp. 691–
702 (cited on page 49).

Zwicky, F. “The Morphological Approach to Discovery, Invention, Research and
Construction.” New Methods of Thought and Procedure: Contributions to the Sym-
posium on Methodologies. Springer, 1967, pp. 273–297 (cited on page 51).


	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Introduction
	Purpose and thesis statement
	An overview of this dissertation
	Summary of contributions
	Research methodology

	Statement of prior publication

	Background: The design of sample programs
	Terms
	How do programmers read programs?
	Reading order
	Building mental models of programs
	Program design choices and their impact on readability

	How are sample programs used?
	Why programmers use sample programs
	The process of finding and using samples

	What makes a sample program effective?
	Code snippet design
	Tutorial design

	How do authors distill sample programs?
	The quality of sample programs today

	Summary

	Related work
	Tools for authoring sample programs
	Automated generation of sample programs
	Literate programming
	Multi-stage sample authoring

	Other tools that could support program distillation
	Efficient code selection
	Cleaning programs
	Linked edits to programs, documentation, and outputs
	Automated program explanation

	A design space for program distillation tools
	This dissertation in the design space


	Snippet distillation: Mixed-initiative code selection and simplification
	Motivation
	Formative study
	Method
	Results

	Design motivations
	A demo of CodeScoop
	Prologue: An unexpectedly useful programming pattern
	First steps: Initial text selections
	Mixed-initiative dialogue: Completing the example

	Implementation
	Code extraction with the ``Flag-Suggest-Resolve'' workflow
	Detecting errors and relevant code
	Suggesting fixes and code additions
	Applying fixes to the scoop
	Generating an example program from the ``scoop'' data structure
	Implementation specifics and limitations

	In-lab usability study
	Method
	Results
	Conclusions

	Limitations and extensions

	Notebook distillation: Cleaning messy computational notebooks
	Motivation
	Design motivations
	A demo of code gathering tools
	Prologue: A proliferation of cells
	Finding the code that produces a result
	Removing old and distracting analysis code
	Reviewing versions of a result and the code that produced them
	Cleaning finished analysis code
	Exporting analysis code to a standalone script

	Implementation
	Collecting and slicing an execution log

	In-lab usability study
	Method
	Results
	Conclusions

	Limitations and extensions

	Tutorial distillation: Flexible sequencing of snippets
	Motivation
	Formative study I: Interviews with tutorial authors
	Method
	Results

	Formative study II: Content analysis of two-hundred tutorials
	Method
	Results

	A demo of Torii
	Propagating edits from snippets to source programs
	Propagating edits from code to outputs
	Splitting, reordering, and copying code
	Reviewing a simulated reader's code
	Making localized changes to the code
	Distributing augmented tutorials

	In-lab usability study
	Method
	Results
	Conclusions

	Limitations and extensions

	Conclusions
	Summary of findings
	Claim I. Four interactive functions
	Claim II. Implementation with proven program analysis techniques
	Claim III. Effective and flexible user experience

	Remaining challenges and future directions
	Mixed-initiative program synthesis
	Authoring tools for explorable tutorials
	Natural language generation
	The distillation of scientific discourse and beyond

	Closing remarks: Humans, compilers, and creativity

	Bibliography

