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Abstract

Round-Optimal Secure Multiparty Computation from Minimal Assumptions

by

Akshayaram Srinivasan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Sanjam Garg, Chair

Secure Multiparty Computation (MPC) allows a set of parties, each having its own private
data, to compute a function of their joint data such that the parties only learn the output
of this function and everything else about their data is hidden. MPC is a fundamental
cryptographic abstraction that captures many other natural cryptographic primitives as
special cases. It also has a wide range of practical applications such as conducting secure
electronic auctions, delegating sensitive computation to untrusted cloud service providers,
secure computation on genomic data and training machine learning models on private data.

A long-standing open problem in this area is to construct MPC protocols that have
optimal (two-round) round complexity under the weakest possible cryptographic hardness
assumptions.

We completely resolve this problem by showing lower bounds and matching upper bounds
on the hardness assumptions required for constructing round-optimal MPC. Specifically, we
obtain the following results.

• Black-Box Separation. We show that there exists no construction of two-round
semi-honest MPC protocol for general functions that makes black-box use of a two-
round oblivious transfer. As a corollary, a similar separation holds when starting with
any 2-party functionality other than oblivious transfer.

• Non-Black-Box Construction. We show that the above negative result can be by-
passed by making non-black-box use of a two-round oblivious transfer. Specifically,
starting from a semi-honest (resp. malicious) secure two-round oblivious transfer pro-
tocol, we construct a two-round MPC protocol against semi-honest (resp. malicious)
adversaries.

Since any two-round MPC protocol for general functionalities implies a two-round oblivious
transfer as a special case, the above two results show that non-black-box use of oblivious
transfer is necessary and sufficient to construct round-optimal MPC protocols.
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Mohammad Hajiabadi, Dakshita Khurana, Ryan Lehmkuhl, Mohammad Mahmoody, Pasin
Manurangsi, Daniel Masny, Peihan Miao, Eric Miles, Pratyush Mishra, Pratyay Mukherjee,
Rafail Ostrovsky, Omkant Pandey, C. Pandu Rangan, Sunoo Park, Raluca Ada Popa, Silas
Richelson, Amit Sahai, Yifan Song, Prashant Nalini Vasudevan, Mark Zhandry, Wenting
Zheng, and Chenzhi Zhu.

The theory group in Berkeley has served as my academic home for the last five years. I
have been fortunate to have many wonderful academic and non-academic conversations with
the faculty and the students.

Lastly, this dissertation would not have been possible without the love and affection of
my Amma and Appa. They are the reason I am here and I owe everything to them.



1

Chapter 1

Introduction

Cryptography has been traditionally viewed as a mechanism that enables secure communi-
cation between a set of parties. Early research in cryptography has led to the development
of novel primitives such as encryption and digital signatures that have allowed parties to
communicate data without compromising both the confidentiality and the integrity of the
data. However, a drawback of these primitives is that they can only act on data at rest. This
roughly means that once we encrypt or digitally sign some data, we can no longer perform
any computation on the data and the data becomes immutable. Today, with the advent of
cloud computing, it is not sufficient to only have data at rest, and in fact, we need the ability
to compute on data while maintaining the confidentiality and the integrity. This is what is
enabled by Secure Multiparty Computation.

Secure multiparty computation (MPC) allows a set of parties to compute a function
on their private inputs such that the parties only learn the output of the function and
everything else about their inputs is hidden. This notion was introduced in the seminal works
of Yao [Yao82; Yao86] and Goldreich, Micali and Wigderson [GMW87] and has served as a
cornerstone of modern cryptography. Over the last thirty years, this field as seen tremendous
progress in the theoretic constructions of secure protocols as well as constructing concretely
efficient protocols for practical purposes. Moreover, tools and techniques developed in this
area have helped resolve several long standing open problems in other areas of cryptography
and complexity theory. In spite of this phenomenal progress, several fundamental questions
in this area remain open and in this thesis, we resolve one such foundational question.

The round-complexity of MPC. The works of Yao [Yao86] and Goldreich, Micali and
Wigderson [GMW87] showed that any efficiently computable multiparty functionality can
also be computed securely. After these seminal feasibility results, most of the work in this
area have focused on constructing efficient protocols for securely computing general func-
tions. By efficient protocols, we refer to those protocols that have a “small” overhead in
the resources needed for achieving security when compared to the insecure protocol for the
same task. In this thesis, we will consider one of the most important efficiency determining
parameters called as round-complexity. Round complexity of a protocol roughly corresponds
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to the number of back-and-forth interactions between the parties. This is a major efficiency
bottleneck if the protocols are run over high-latency networks such as between parties who
are geographically far apart. Starting from the seminal work of Beaver, Micali and Rog-
away [BMR90], a major line of inquiry in this area is to construct secure protocols that have
optimal round-complexity.

Prior Work. A folklore result that was formally proven in the work of Halevi, Lindell and
Pinkas [HLP11] is that there are certain functions that require at least two-rounds of inter-
action to be computed securely. The first two-round multiparty computation protocol for
general functions was given by Garg et al. [Gar+14] based on the assumption that indistin-
guishability obfuscation [Bar+01; Gar+13a] exists. Later, Gordon et al. [GLS15] improved
the assumptions to witness encryption [Gar+13b]. Mukherjee and Wichs [MW16] gave a
two-round protocol based on the learning-with-errors assumption (see also [PS16; BP16]).
Boyle et al. [BGI16; BGI17] constructed protocols for a constant number of parties under the
Decisional Diffie-Hellman assumption. Garg and Srinivasan gave a two-round MPC protocol
based on standard assumptions on bilinear maps [GS17]. We note that all the above pos-
itive results either rely on heavy cryptographic machinery or on structured interactability
assumptions. On the other hand, the only necessary assumption for constructing round-
optimal MPC protocols is the existence of a two-round oblivious transfer [Rab81; EGL85].1

This brings us to the main question addressed in this thesis:

What is the necessary and sufficient cryptographic assumption for constructing two-round
secure computation protocols for general functions?

1.1 Our Results

In this thesis, we give a complete answer to the above mentioned problem. Specifically,
in the first part of this thesis (see Chapter 2), we show that black-box access to a two-
round oblivious transfer is insufficient for constructing a two-round MPC protocol for general
functions. In the second part (see Chapter 3), we show that this impossibility result can
be bypassed using non-black-box access to a two-round oblivious transfer protocol. Thus,
non-black access to a two-round oblivious transfer protocol is necessary and sufficient for
constructing round-optimal MPC protocol for general functions. We now give more details
of our main results.

1An oblivious transfer is a secure protocol for computing the following two-party functionality. One of
the parties, called as the receiver has a bit b ∈ {0, 1} and the other party, called as the sender has two strings
m0,m1 ∈ {0, 1}∗. At the end of the protocol, we require the receiver to learn mb and the sender does not
receive any outputs.
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1.1.1 Black-Box Separation

Before we give a detailed account of our impossibility result, let us first give a brief overview
of round-preserving black-box reductions (RPBB reductions for short) from an n-party func-
tionality f to a p-party functionality g in the semi-honest setting.2 The notion of RPBB
reduction can have two distinct flavors. Strict RPBB reduction corresponds to the notion
known in the MPC literature as a “(non-interactive) construction of f in the g-hybrid model”,
namely a protocol that securely realizes f using parallel invocations of an oracle computing
g (possibly with different sets of parties) and no further interaction. Free RPBB reduc-
tion is a relaxed notion that refers to a k-round protocol for f that makes a black-box use
of any k-round protocol for g and additional communication over point-to-point channels.3

In this thesis, we assume k = 2 by default. The latter notion more closely resembles the
complexity-theoretic notion of a “black-box reduction” (with the round preserving property
on top). Note that a strict RPBB reduction implies a free RPBB reduction for any k (and
a free RPBB separation implies a strict RPBB separation). This follows from a parallel
composition theorem for MPC in the semi-honest model (see, e.g., [Can00; Gol04]).

To illustrate the distinction between the two notions, note that in a free RPBB reduction,
party A can, for example, generate two different “first messages” of the g protocol and send
both of them to party B, which in turn decides (say, based on its input) to only respond to
one of these two messages. In a strict RPBB there is no notion of “first message” and the
parties can only feed their inputs into the g functionality and obtain the output. Similarly,
in a free RPBB reduction parties can transfer messages and randomness of the g protocol to
other parties.4

Our first and main result in this part rules out free RPBB reductions of general MPC to
OT. That is, general 2-round MPC protocols cannot be based on a 2-round OT protocol in a
black-box way. In fact, we show that even 3-party computation of fairly simple functionality
called (2, 3)−MULTPlus cannot be realized via black-box use of a 2-round OT protocol. In
this functionality, there are three parties, Alice, Bob and Carol. Alice and Bob have inputs
a ∈ {0, 1} and b ∈ {0, 1} respectively and Carol does not have any inputs. At the end of the
protocol, we want all the three parties to learn a · b.

Theorem 1.1.1 (Main Negative Result) (2, 3) − MULTPlus cannot be securely realized
by a 2-round protocol making a black-box use of 2-round OT protocol.

This must be contrasted with the result of Yao [Yao86] who showed that securely comput-
ing a two-party functionality black-box reduces in a round-preserving way to the computation

2We deal with semi-honest adversaries as this makes the negative results stronger.
3We consider private channels for our black-box separation as this makes the negative results stronger.
4This “transferability” feature is commonly used in applications of commitments and signatures. In the

context of OT-based MPC, it can be used to realize “security with identifiable abort” given black-box access
to an OT protocol [IOZ14], which is impossible given only access to an OT oracle [IOS12]. Other examples for
the distinction between the two types of reductions arise in the contexts of complete functionalities [LOZ18]
and OT-combiners [Har+05].
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of a 2-round OT protocol.

Theorem 1.1.2 (Black-box 2-round 2PC from OT [Yao86]) Every 2-party function-
ality g admits an MPC protocol that only makes parallel calls to an OT oracle and a black-box
use of a PRG.

The (2, 3)−MULTPlus functionality is a special case of an external-output 3-party func-
tionality. Formally, let g(x, y) be a 2-party functionality. The external version of g, is the
3-party functionality fg that takes x from Alice, y from Bob and delivers g(x, y) to Alice
and Bob, and to Carol who holds no input.5 Two-round protocols for such functionalities
turn out to have interesting properties. Specifically, at the core of our main impossibility
result (Theorem 1.1.1) lies the following constructive theorem for external functionalities.
(See Theorem 2.3.2 for a more detailed version.)

Theorem 1.1.3 (Conversion Theorem) Let g(x, y) be a 2-party functionality and let fg
be its 3-party external version. Suppose fg can be securely realized in 2 rounds (over private
channels) by making a black-box use of a 2-round OT protocol. Then, fg can be securely
realized over random inputs (and private channels) given only an access to a random oracle.
Moreover, in the resulting protocol Carol sends no message, which implies a 2-party protocol
for g over random inputs given only a random oracle.

Haitner et al. [HOZ13] showed that any 2-party functionality that can be securely realized
in the random oracle model over random inputs is “trivial” in the sense that it admits
a 2-party protocol over random inputs with security against computationally unbounded
adversaries. For functionalities whose input domain size is polynomially bounded, security
over random inputs implies security on worst-case inputs. (See Proposition 2.2.2.) For such
functionalities, we get the following characterization which strengthens Theorem 1.1.1. (See
Corollary 2.3.4 for more details.)

Corollary 1.1.4 Let g be a 2-party symmetric boolean functionality whose domain size is
polynomial in the security parameter. Then the external-output 3-party functionality fg can
be securely realized by a 2-round protocol (over private channels) that makes a black-box use
of 2-round OT if and only if g is trivial in the sense that it can be realized with perfect
security in the plain model.

A notable example for a non-trivial 2-party functionality is the AND functionality [CK91;
Kus89].

Corollary 1.1.4 is tight in terms of round complexity. With one additional round (namely,
a total of 3 rounds), fg can be black-box reduced to 2-round OT. (Specifically, one can

5In fact, for all of our purposes, an even weaker version suffices. In this relaxed version, all parties are
allowed to learn the output (for purposes of privacy), but only Carol is required to learn it (for purposes of
correctness). Since this leads to a cumbersome definition, we stick to the simpler version described above.
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use Theorem 1.1.2 to pass the value of f(x, y) to Alice and Bob in two rounds, and then
exploit the additional round to send this value to Carol.) The 2-party completeness of OT
(Theorem 1.1.2) also implies that Corollary 1.1.4 holds when the OT functionality is replaced
by an arbitrary 2-party functionality h(x, y). Overall, we get a separation between all 2-party
functionalities and all external-output functionalities fg whose underlying g is non-trivial.

1.1.2 Non-Black-Box Construction

In second part of the thesis (Chapter 3), we show that black-box impossibility can be by-
passed using a non-black-box access to a 2-round oblivious transfer. In a bit more detail,
we give a compiler that takes an arbitrary round MPC protocol (which can in particular be
realized using a two-round oblivious transfer) and then compile it to a two-round protocol
for the same function. We call such a compiler as a round-collapsing compiler. Our main
theorem is:

Theorem 1.1.5 (Main Positive Result) Let X ∈ {semi-honest in plain model, malicious
in common random/reference sting model}. Assuming the existence of a two-round X -OT
protocol, there exists a compiler that transforms any polynomial round, X -MPC protocol into
a two-round, X -MPC protocol. The resultant two-round protocol makes non-black-box use of
the two-round oblivious transfer.

Previously, such compilers [Gar+14; GLS15; GS17] were only known under compara-
tively stronger computational assumptions such as indistinguishability obfuscation [Bar+01;
Gar+13a], witness encryption [Gar+13b], or using bilinear maps [BF01; Jou00]. Addi-
tionally, two-round MPC protocols assuming the learning-with-errors assumptions were
known [MW16; PS16; BP16] in the CRS model satisfying semi-malicious security.6 We
now discuss instantiations of the above compiler with known protocols (with larger round
complexity) that yield two-round MPC protocols in various settings under minimal assump-
tions.

Semi-Honest Case. Plugging in the semi-honest secure MPC protocol by Goldreich, Mi-
cali, and Wigderson [GMW87], we get the following result:

Corollary 1.1.6 Assuming the existence of semi-honest, two-round oblivious transfer in
the plain model, there exists a semi-honest, two-round multiparty computation protocol in
the plain model.

6Semi-malicious security is a strengthening of the semi-honest security wherein the adversary is allowed to
choose its random tape arbitrarily. Ashrov et al. [Ash+12] showed that any protocol satisfying semi-malicious
security could be upgraded to one with malicious security additionally using Non-Interactive Zero-Knowledge
proofs (NIZKs).
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Previously, two-round plain model semi-honest MPC protocols were only known assuming
indistinguishability obfuscation [Bar+01; Gar+13a], or witness encryption [Gar+13b] or bi-
linear maps [GS17]. Thus, using two-round plain model OT [BM89; NP01; AIR01; HK12]
based on standard number theoretic assumptions such as CDH or DDH or QR or N th resid-
uocity or based on lattice assumptions such as LWE or LPN, this work yields the first
two-round semi-honest MPC protocol for polynomial number of parties in the plain model
under the same assumptions.

Malicious Case. Plugging in the maliciously secure MPC protocol by Kilian [Kil88] or by
Ishai, Prabhakaran and Sahai [IPS08] based on any oblivious transfer, we get the following
corollary:

Corollary 1.1.7 Assuming the existence of UC secure, two-round oblivious transfer against
static, malicious adversaries, there exists a UC secure, two-round multiparty computation
protocol against static, malicious adversaries.

Previously, all known two-round maliciously secure MPC protocols required additional use
of non-interactive zero-knowledge proofs. As a special case, using a CDH based two-round
OT protocol (e.g., [Döt+20]), this work yields the first two-round malicious MPC protocol
in the common random string model under the CDH assumption.

Concurrent Work. In a concurrent work and independent work, Benhamouda and Lin
[BL18] also construct two-round secure multiparty computation from two-round oblivious
transfer. Their construction against semi-honest adversaries is proven under the minimal
assumption that two-round, semi-honest oblivious transfer exists. However, their construc-
tion against malicious adversaries additionally requires the existence of non-interactive zero-
knowledge proofs. In another concurrent and independent work, Boyle et al. [Boy+18] obtain
a construction of two-round multiparty computation based on DDH in the public key infras-
tructure.

1.2 Subsequent Work

The techniques introduced in our work have led to a number of follow-ups and we give a
short account of them. Garg et al. [GMS18] gave a construction of a two-round multiparty
computation protocol where the number of oblivious transfers executed in the protocol is
independent of the circuit size of the function to be securely computed. Since computing
oblivious transfers constitutes the bulk of the computational cost, the above work obtained
substantial savings. In another work, Garg et al. [GIS18] gave a construction of a two-round
multiparty computation protocol that makes black-box use of a DDH-hard or a QR-hard
group assuming a strong form of public key infrastructure. Black-box constructions typically
tend to be much more efficient than their non-black-box counterparts.
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In another work, Cohen et al. [CGZ20], gave a complete characterization of the two-
round MPC protocol with minimal number of broadcasts. The positive results in their
paper builds on the construction from Theorem 1.1.5. Building on our work, Benhamouda
et al. [Ben+18] gave a construction of a two-round MPC protocol that is secure against
an adaptive adversary.7 Bartusek et al. [Bar+20] used our protocol to construct a two-
round secure multiparty computation where the first message can be reused across multiple
computations. The works of Badrinarayanan et al. [Bad+18] and Choudari et al. [Cho+19]
used our protocols as a building block to construct round-optimal protocols in the plain
model.

Our round-collapsing compilers have found applications in resolving long standing open
problems in the area of information-theoretic secure multiparty computation in the honest
majority setting (i.e.,the number of corruptions is less than n/2 where the n is the number of
parties). Specifically, the works of [Ana+18; ABT18; GIS18] gave constructions of two-round
MPC protocol for general functions in the honest majority setting assuming BB access to
a pseudorandom generator. If we restrict the function to be computed to be in logspace,
then the work of Applebaum et al. [ABT18] gave a construction that is perfectly secure in
the semi-honest setting and for the malicious case, the concurrent works of Applebaum et
al. [ABT19] and Ananth et al. [Ana+19] gave statistically secure protocols.

1.3 Open Problems

We now give some problems that are left open from our thesis.

Open Problem 1.3.1 What is the minimal black-box complete primitive for constructing
two-round MPC?

The works of Boyle et al. [Boy+18] and [GIS18] showed that a simple 4-party functionality
is sufficient for constructing black-box two-round MPC protocol and the main question here
is that is this primitive necessary?

Open Problem 1.3.2 Can the communication complexity of the two-round MPC protocols
based on oblivious transfer be improved?

The communication cost of the protocol from Theorem 1.1.5 is a polynomial in the circuit
size of the function to be computed whereas the two-round protocols based on Learning with
errors [MW16; PS16; BP16] have a communication cost that is independent of the circuit
size. Is such a polynomial blow-up in the communication cost necessary if the protocol is
based on oblivious transfer?

7An adaptive adversary is given the power to corrupt the parties during the course of the protocol
execution. All our protocols are secure in the static corruption setting where the corrupted parties are
decided before the start of the protocol execution.
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Open Problem 1.3.3 Can two-round MPC protocols be constructed in the CRS model
based on black-box access to a group where DDH is hard?

The work of Garg et al. [GIS18] gave such a construction based on a strong setup assump-
tion. The question here is that can this setup be relaxed, say to assumption the existence
of a common reference string?

Open Problem 1.3.4 Is there a construction of three-round MPC protocols that make
black-box use of a two-round oblivious transfer?

Theorem 1.1.1 rules out two-round MPC protocols making black-box use of two-round
oblivious transfer but does not rule out three-round protocols.

1.4 Bibliographic Notes

The black-box separation result is based on a joint work with Benny Applebaum, Zvika Brak-
erski, Sanjam Garg and Yuval Ishai that appeared in ITCS 2020 [App+20]. The non-black-
box construction is based on a joint work with Sanjam Garg that appeared in EUROCRYPT
2018 [GS18].
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Chapter 2

Black-Box Separation

In this chapter, we give our main black-box separation result. We start with an informal
overview of the separation result in Section 2.1 and give some background on black-box
separations in Section 2.2. We give the proof of the main result in Section 2.3 and finally give
a corollary to separate Homomorphic Secret Sharing [BGI16] from 2-round OT in Section 2.4.

2.1 Overview of the Separation Result

In this section, we give a high-level overview of our techniques in proving the main result
(Theorem 1.1.1). To keep the exposition simple, we restrict ourselves to proving the impos-
sibility result for securely computing external-AND.

External-AND Functionality. Let us denote the three parties by (P1, P2, P3). The pri-
vate input of P1 is a bit x, the private input of P2 is a bit y, and P3 does not have any private
input. The functionality f× outputs x · y to all the parties. That is, f×(x, y,⊥) = x · y.

Main Idea. To prove the impossibility result, we define a set of oracles such that 2-
round oblivious transfer exists with respect to these oracles, but there exists no 2-round,
semi-honest protocol for securely computing f×. This is sufficient to rule out a black-box
transformation from 2-round oblivious transfer to 2-round, 3-party semi-honest protocols
for general functionalities. Below, we describe these oracles (throughout this overview, λ
denotes the security parameter):

• OT1 is a random length tripling function that takes in the receiver’s choice bit b ∈ {0, 1}
and its random tape r ∈ {0, 1}λ and outputs the receiver’s message otm1.

• OT2 is a random length tripling function that takes in the receiver’s message otm1, the
sender’s inputs m0,m1 ∈ {0, 1}, its random tape s ∈ {0, 1}λ and outputs the sender’s
message otm2.
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• OT3 is a function that takes the transcript (otm1, otm2) along with (b, r) as input
and outputs mb if there exists unique (m0,m1, s) for which OT1(b, r) = otm1 and
OT2(otm1,m0,m1, s) = otm2. Otherwise, it outputs ⊥.

As observed by [Har+05], the oracles (OT1,OT2,OT3) naturally give rise to a 2-round
oblivious transfer protocol. Specifically, letting b, r denote the input/randomness of the
receiver, and letting (m0,m1), s denote the input/randomness of the sender, the protocol
proceeds as follows: The receiver sends otm1 = OT1(b, r) to the sender, who responds with
otm2 = OT2(otm1,m0,m1, s), allowing the receiver to output the value OT3(otm1, otm2, b, r).

In this work, we prove that the existence of a 2-round protocol for external-AND with
respect to the oracles (OT1,OT2,OT3) implies a two-party protocol for computing g(x, y) =
x · y in the random oracle model. (Note that we start with a three-party protocol for
an external functionality, and show a two-party protocol for a related functionality.) The
existence of such two-party protocol is known to be impossible [CK91; Kus89; HOZ13;
MMP14] and therefore the original protocol can also not exist. This proves Theorem 1.1.3
discussed above, and implies Theorem 1.1.1 as a corollary.

Outline. The above result is proven using a sequence of transformations depicted in Fig-
ure 2.1.

Step-1: Publicly Decodable Transcript. Let Π be a 2-round protocol for securely com-
puting f× w.r.t. (OT1,OT2,OT3). We first show that this implies a 2-round, 2-party protocol
Π for computing the two-party functionality g = g(x, y) = x · y, which has an additional
special property – the output is publicly decodable from the transcript. More formally, there
exists a deterministic algorithm Dec that computes the output of the functionality given the
transcript of the two-party protocol. In particular, if there exists a protocol Π that computes
g with publicly decodable transcript, then Dec on input T (which is the transcript of the
protocol Π) outputs g(x, y). In terms of security, Π is required to have the standard security
properties of a two-party (semi-honest) protocol, i.e., the corrupted party does not learn any
information about the other party’s input except the output.

To transform a 2-round protocol for f× into a 2-round protocol Π for g with publicly
decodable transcript, we use a standard player emulation technique. Concretely, we ask
P1 to choose a uniform random tape for P3 and use this random tape to compute all the
messages of P3. Additionally, P1 and P2 forwards all its outgoing messages that are sent
to each other as well the messages sent to P3 in the original protocol. P1 finally sends this
random tape in the second round.

This protocol satisfies public decodability since given the transcript of the protocol (which
includes the entire view of P3 in the original protocol), one can run the output computing
algorithm of P3 to learn g(x, y). Further, the security follows directly from the security of
the original protocol when (P1, P3) and (P2, P3) are corrupted.1

1It is easy to see that the security of the transformed protocol requires security against collusion of P1, P3



CHAPTER 2. BLACK-BOX SEPARATION 11

2-round, 3-party protocol Π for f×

2-round, 2-party protocol Π for g with PDT

2-round protocol Π1 for g with PDT and no OT3 queries in generating the first message

2-round protocol Π2 for g with PDT and no OT3 queries in generating both the messages

Multi-round protocol Π∗ for g with PDT in RO model

Multi-round, information-theoretic protocol for g

Step 1

Step 2

Step 3

Step 4

[HOZ13; MMP14]

Figure 2.1: Key Steps in the Proof. PDT denotes publicly decodable transcript, g(x, y) =
x · y and f×(x, y,⊥) = g(x, y).

Remaining Steps – Removing OT3 Queries. In the remainder of the proof, we show
that use of the oracle OT3 can be removed. More specifically, we show how to convert any
two-round two-party secure computation protocol Π with access to (OT1,OT2,OT3) and
publicly decodable transcript into a two-party protocol that computes the same functionality,
but with a few differences. The oracles OT3 will no longer be used in the new protocol, but
this will come at a cost, both in round-complexity and in security:

• The round complexity of the protocol will grow by a polynomial factor (essentially
upper bounded by the query complexity of Dec).

• The correctness and security guarantees will only be with respect to random inputs
(we call this “security over random inputs” ). One instructive way to think about
security over random inputs is to think of a protocol between parties that have no

since P1 has the entire view of P3. We also require security against (P2, P3) collusion since P1 forwards all
its messages sent to P3 in the second-round of the protocol.
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input, and at the beginning of the execution they sample a random input using their
local random tape (or shared randomness) and proceed to execute the protocol. Note
that this makes simulation easier since we no longer need to worry about consistency
with an adversarially chosen (or sampled) input.

In other words, the new protocol Π∗ only makes queries to (OT1,OT2) which are es-
sentially random oracles. Therefore, Π∗ securely computes g in the random oracle model.
However, it follows from [HOZ13; MMP14] that such a protocol can be used to securely com-
pute g in the information-theoretic setting and this is known to be impossible for the AND
functionality [CK91; Kus89] (even with security over random inputs as described above).

The remainder of the overview describes this transformation. We transform Π to Π∗

through a sequence of steps. We first transform Π to Π1 in which the first message function
of the protocol does not make any OT3 queries (Step 2 below). Then, we transform Π1 to
Π2 such that the first and second message functions of the protocol do not make any OT3

queries (Step 3 below). Finally, we transform Π2 to Π∗ such that the decoder Dec does not
make any OT3 queries (Step 4 below). It is the final step that incurs the blow-up in the
round complexity. Additional details follow.

Step-2: Π ⇒ Π1. The first message function of Π has access to (OT1,OT2,OT3) oracles
and may make multiple queries to all of them. In order to perform this transformation, we
devise a mechanism to emulate the OT3 oracle without making actual queries to it. Recall
that any query to the OT3 oracle contains ((otm1, otm2), (b, r)) and it outputs mb if and only
if there exists (m0,m1, s) for which OT1(b, r) = otm1 and OT2(otm1,m0,m1, s) = otm2. The
first step of the OT3 oracle is easy to emulate; we can query OT1 on (b, r) and check if the
output is otm1. To emulate the second step, we maintain a list of all the queries/responses
made by the first message function to OT2. If we find an entry (otm1,m0,m1, s, otm2) in
this list, we output mb; else, we output ⊥. Note that since OT2 is length tripling, it is
injective with overwhelming probability. Thus, if we find such an entry then our emulation
is correct. On the other hand, if we don’t find such an entry, we output ⊥ and it can be
easily shown that the original oracle also outputs ⊥ except with negligible probability. Thus,
our emulation is statistically close to the real oracle.

Step-3: Π1 ⇒ Π2. It might be tempting to conclude that a similar strategy as before
should work even for OT3 queries made in the second round. That is, maintain the list
of queries to the OT2 oracle and when the second message function makes an OT3 query,
check if there is entry in this list with the response equal to otm2. If such an entry is found,
output the corresponding mb; else, output ⊥. This strategy fails because in the second
round it is possible that the relevant OT2 query was made by the other party and therefore
it is not possible for each party to only consider the list of OT2 queries made locally. Note,
however, that only one simultanous round of communication has been made by the parties
so far. Therefore, it must be the case that the party that made the OT2 query also made
the respective OT1 query.
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To take care of such queries, that we call “correlated queries”, we modify the first round
of Π1 as follows. The parties will prepare an additional list L that contains all correlated
queries that are “likely” to be asked by the other party. (No OT3 calls will be made while
preparing this list.)

The parties will now send this list L along with the first round message of Π1. Now,
when the second message function of a party in Π1 attempts to make an OT3 query on
(otm1, otm2, (b, r)), we first check if otm1 is valid (by querying OT1) and then answer this
query as follows. If otm2 is a result of a local query then find the response using the list of
local queries/responses. If otm2 is a correlated query, use the list L sent by the other party
to answer. If we don’t find any entry in the local list or the correlated list, we output ⊥. We
show that with overwhelming probability, the real oracle also outputs ⊥ in this case. We
also prove that sending this additional list of “likely” correlated queries does not harm the
security of Π2.

To conclude, we describe how the list L is generated, say by P1. Note that the list needs
to be generated at a point where P1 already decided on its first Π1 message; now it just needs
to come up with L. To this end, P1 executes many copies of Π1 executions of P2, each time
with fresh randomness and random input. Then the list L contains the responses to the list
of all correlated OT2 queries, i.e., the valid queries made to OT3 by “virtual” P2 such that
both OT1 and OT2 have been generated by P1. This will allow to preserve correctness on
an average input, and does not violate privacy since given the first Π1 messages, anyone can
sample such executions.

Step-4: Π2 ⇒ Π∗. At the end of step-3, we have a protocol where the first and the second
message functions do not make any queries to the OT3 oracle. However, for the parties to
learn the output, they must run the decoder Dec on the transcript, and this decoder might
make queries to OT3. Recall that Dec is a deterministic decoding function whose input is
the transcript of the interaction. Further recall that Π∗ will be a protocol that does not use
OT3 but will have many communication rounds.

In Π∗, the parties will first execute the two rounds of Π2 to obtain a transcript. Then
one of the parties (say P1) starts executing the decoder, where for each OT3 query that the
decoder needs to make, if P2 has made the relevant OT2 query, then it will “help out” P1 by
sending the decoded value. This will proceed for as many rounds as the number of queries
that Dec needs to make, but eventually it will allow P1 to complete the execution of Dec
locally and compute the output of the functionality. We will then need to show that privacy
is not harmed in this process. Details follow.

Let us go back to the point where both parties finished executing the two rounds of Π2

now wish to engage in joint decoding. One of the parties, say P1, starts running the decoder
on the transcript, and along the way maintain the list of OT1,OT2 made by Dec in this
process. When the decoder attempts to make an OT3 query on input ((otm1, otm2), (b, r)),
P1 checks if otm1 is valid (by making a query to OT1). It then checks if there is an entry
(otm1,m0,m1, s, otm2) in the list of OT2 queries made by the decoder and in the case such
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an entry is found, it answers with mb. If such an entry is not found, P1 checks its local list
of queries/responses made to OT2 during the generation of the first two messages. If it finds
an entry (otm1,m0,m1, s, otm2) in that list, it answers with mb. If this list does not contain
a relevant entry, there are 3 possibilities.

1. otm2 is not in the image of OT2 oracle in which case P1 has to output ⊥.

2. otm2 is in the image of OT2 oracle and P2 has made this query.

3. otm2 is in the image of OT2 oracle and P2 has not made this query.

The probability that case-3 happens can be shown to be negligible for similar reasons to
ones discussed above: if neither party made the relevant OT2 query then the value otm2 is
almost surely invalid. Thus, P1 must decide whether it is in case-1 or case-2 and if it is in
case-2, it must give the corresponding mb. To accomplish this, P1 sends a message to P2

with (b, otm2) and asks P2 to see if there is an entry of the form (otm1,m0,m1, s, otm2) in
its local list of queries to OT2 oracle. If yes, P2 responds with mb; else, it responds with
⊥. P1 just gives P2’s message as the corresponding response to that query. This blows up
the number of rounds of the protocol Π∗ proportional to the number of queries made by the
decoder.

Observe that Π∗ does not make any queries to the OT3 oracle. At the end, P1 learns
the output g(x, y) and it can send this as the last round message to P2. Thus, Π∗ also has
publicly decodable transcript. The correctness of this transformation directly follows since
we prove that case-3 happens with negligible probability and if OT2 is injective (which occurs
with overwhelming probability), it follows that if an entry is found in either of the lists of
the two parties or on the local list of the decoder, the response given by the emulation is
correct.

To see why this transformation is secure, notice that the query ((otm1, otm2), (b, r)) is
made by the Dec by just looking at the transcript. Hence, there is no harm in P1 sending
(b, otm2) to the other party. Similarly, if P2 has indeed made a query to OT2 such that the
response obtained is otm2, it should follow from the security of Π2 that the P2’s privacy
is not affected if it sends mb to P1. Indeed, this information is efficiently learnable given
the transcript and an access to the OT3 oracle. However, there is a subtle issue with this
argument which we elaborate next.

Problem of Intersecting Queries. A subtle issue arises when we try to formally reduce
the security of Π∗ to the security of Π2. To illustrate this, let us assume the case where P2

is corrupted. To get a reduction to the security of Π2, we must give an algorithm that takes
the view of P2 in Π2 and efficiently generates the view of P2 in Π∗. In particular, it must
generate the additional messages in Π∗ given only the view of P2 in Π2. This algorithm is
allowed to make OT3 queries as we are trying to give a reduction to the security of Π2. For
the sake of illustration, assume that the Dec makes a single OT3 query. A natural approach
for this algorithm is to take the transcript available in the view of P2 and start running the
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decoder on the transcript. When the decoder makes an OT3 query, the algorithm uses the
real OT3 oracle to respond to this query. However, notice that the algorithm must generate
the messages that correspond to answering this OT3 query in Π∗. Recall that in Π∗, P1 first
checks in its local list whether there an entry of the form (otm1,m0,m1, s, otm2), and only
if such an entry is not found, P1 sends the message (b, otm2) to P2. Thus, to generate the
transcript of Π∗, the algorithm must somehow decide whether P1 would find this entry in its
local list or not. However, the algorithm is only given the view of P2 and does not have any
information about the queries that P1 has made to OT2.

We see that the problem arises when there is an OT2 query that potentially was made by
both parties. To handle this issue, we resort to the notion of intersection queries taken from
the key-agreement impossibility result [IR89; BM09]. These works show that it is possible,
in polynomial time, to recover a superset of all oracle queries made by both parties (with
all but small probability). Given this algorithm, we modify the transformation as follows.
The parties will first run the two rounds of communication of Π2. Then they will run the
intersection query finder to recover the intersection query superset. We assume for the
purpose of this outline this process is deterministic. Now, upon each potential OT3 query of
the decoder, P1 will look for the preimage query not only in its query history, but also in the
superset of intersection queries, and send a message to P2 only if the preimage is not found
in either of these lists. In particular this means that if the preimage is in the intersection
query superset, then we are guaranteed that P1 will not send a message.

The above modified protocol can be efficiently simulated, since the simulator can also
run the intersection query finder and recover the same superset as the parties. Now, if OT3

gives a valid answer, the simulator looks for a preimage in the intersection query superset.
If it finds one, then it concludes that P1 will not send any message to P2. If not, then it
knows that (except with small probability) exactly one of the parties made the preimage
query, and it furthermore knows the internal state of one of the parties, so it knows whether
this party made the preimage query. This allows the simulator to always deduce which is
the party that made the preimage query and simulate appropriately.

2.2 Preliminaries

Notation. We use λ to denote the security parameter. A function µ(·) : N → R+ is said
to be negligible if for any positive integer c, there exists λ0, such that for all λ ≥ λ0, we have
µ(λ) < λ−c. We will use negl(·) to denote an unspecified negligible function and poly(·) to
denote an unspecified polynomial function. For a string x ∈ {0, 1}n and an index i ∈ [n],
let xi denote the symbol at the i-th coordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T |
denote the projection of x to the coordinates indexed by T . For a function f : Xn → Y n, we
use fi to denote the function defined as f(·)i i.e., i-th coordinate of the output, and define
fT analogously.

For a probabilistic algorithm A, we denote by A(x; r) the output of A on input x with
the content of the random tape being r. When r is omitted, A(x) denotes a probability
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distribution. For a finite set S, we denote by x ← S the process of sampling x uniformly
from the set S. We will use PPT as an abbreviation for Probabilistic Polynomial Time.

2.2.1 Secure Multiparty Computation

Below we define (δ, ε, S)-secure multiparty computation protocols in the presence of oracles
with security against semi-honest adversaries. The parameter δ lower-bounds the correctness
probability (i.e., the probability that the output is correct), the parameter ε upper-bounds
the privacy error, and S upper-bounds the number of oracle queries that a distinguisher is
allowed to make. All three parameters are functions of the security parameter λ. The default
communication model that we consider in this work assumes that every pair of parties is
connected by a private point-to-point channel. This makes negative results stronger. By
default, we allow distinguishers as well as honest parties to be unbounded algorithms with
a restriction only on the number of oracle queries made. This only strengthens our lower-
bounds.

Definition 2.2.1 Let O be a set of oracles, {Xλ}, {Yλ} be sequences of finite sets and f =
{fλ : Xn

λ → Y n
λ } be an n-party functionality. Let ΠO be a multiparty protocol computing

f by making poly(λ) queries to O. We say that ΠO is efficiently computable if it can
be implemented by oracle-aided Turing machines that run in time poly(λ). We denote the
view of party Pi (that includes the input, randomness and message transcript, including the
answers of the oracles) in the execution of the protocol ΠO(1λ, x1, . . . , xn) (with the input
of Pi being equal to xi) by viewPi(1

λ, x1, . . . , xn) and denote the transcript of the protocol by
T[Π(1λ, x1, . . . , xn)]. For any ε(λ), δ(λ) : N → [0, 1] and S(λ) : N → N, we say that the
protocol ΠO (δ, ε, S)-securely computes f in the presence of O = {Oλ} if:

• Correctness. For every ~x = (x1, . . . , xn) ∈ Xn
λ and for every i ∈ [n], the probabil-

ity that party Pi at the end of protocol ΠO(1λ, x1, . . . , xn) outputs the i-th output of
fλ(x1, . . . , xn) is at least δ(λ).

• Security. For every set T ⊆ [n] and every pair of inputs ~x = (x1, . . . , xn), ~x′ =
(x′1, . . . , x

′
n) for which f(~x) = f(~x′) and ~xT = ~x′T , and every non-uniform distinguisher

D making at most S(λ) queries to the oracle O,

|Pr[DO({viewPi(1
λ, ~x)}i∈T ) = 1]− Pr[DO({viewPi(1

λ, ~x′)}i∈T ) = 1]| ≤ ε(λ).

We further consider a relaxation of the above to the case where the inputs are selected uni-
formly from the domain Xn

λ . In this case, the correctness and privacy should hold over a
random choice of (x1, . . . , xn) ← Xn

λ and we say that the protocol securely-computes f over
random inputs. Specifically, for every set T ⊆ [n] and for every non-uniform distinguisher
D making at most S(λ) queries to the oracle O, we require

|Pr[DO(~x, ~x′, {viewPi(1
λ, ~x)}i∈T ) = 1]− Pr[DO(~x, ~x′, {viewPi(1

λ, ~x′)}i∈T ) = 1]| ≤ ε(λ)
(2.2.1)
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where ~x ← Xn
λ , and ~x′ is sampled uniformly from Xn

λ conditioned on (~xT = ~x′T and f(~x) =
f(~x′)).

The latter notion of random-input security relaxes standard security analogously to the
standard relaxation of semantic security of a cipher to security for random plaintext messages.
Here too, it is not hard to show that the two notions are equivalent up to a loss which is
polynomial in the domain size.

Proposition 2.2.2 (From random-input to standard security) Let ΠO be a protocol
that (1− α, ε, S)-securely computes f over random inputs. Let N be the size of the domain
of f . Then the protocol ΠO is also a (1−Nα,N2ε, S)-secure protocol for f (over worst-case
inputs).

Proof If correctness fails over some (worst-case) input ~x = (x1, . . . , xn) ∈ Xn
λ with proba-

bility larger than Nα, then it fails over a random input with probability at least α. Similarly,
if a distinguisher D breaks security with advantage N2ε over some (worst-case) inputs ~x, ~x′

for which f(~x) = f(~x′) and ~xT = ~x′T , then the there exists a distinguisher D′ (with similar
complexity) that works over random inputs with advantage at least ε. (Specifically, the
distinguisher D′ applies D when the inputs are ~x, ~x′, and otherwise outputs the constant 1.)

Remark 2.2.3 (Simulation-based security) Our security definitions use indistinguisha-
bility between inputs rather than a simulator. However, these definitions (both for standard
and for random-input security) imply a standard simulation based definition with respect
to a simulator that makes polynomially-many queries to the oracle (but is computationally
unbounded). Indeed, the simulator can sample ~x′ from the uniform distribution on Xn

λ con-
ditioned on (~xT = ~x′T , f(~x) = f(~x′)) and run the honest execution of the protocol with the
input ~x′. We note that allowing computationally unbounded simulators can only make neg-
ative results stronger. However, we will mainly be interested in functions and distributions
for which the above inverse-sampling can be done efficiently. In such cases, computationally
unbounded simulation implies the standard notion of efficient simulation.

Remark 2.2.4 (Notation) When it is clear from the context, we use δ, ε,and S to denote
δ(λ), ε(λ), and S(λ).

2.2.2 Black-Box Reductions and Separations

We recall the notion of black-box constructions and separations [RTV04]. We refrain from
restating the involved definitional framework that underlies these notions, and we just recall
that a cryptographic primitive is characterized by its correctness and security properties.
The security property is defined as a computational task that is attempted by an adversary,
where a construction of the primitive is deemed secure if no adversary of a certain class
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(usually polynomial time machines) can succeed in this task. We refer to success in the task
as “breaking security” of the construction.

We define the notion of fully black-box reductions below. We note that one can consider
different flavors of black-box separations, but for this thesis it is sufficient to consider the
most basic notion. For the purpose of the definition we assume that the syntax of a crypto-
graphic primitive (and of an adversary) contains only a single algorithm. This does not limit
generality (in all cases that are relevant to this work) since we can always replace algorithms
(A1, . . . , Ak) with a single algorithm A s.t. A(i, x) = Ai(x).

Definition 2.2.5 A primitive Q reduces to primitive P in a fully black-box manner, if there
exist polynomial time oracle machines R,B s.t. for every construction p of the primitive P
it holds that q = Rp is a construction of the primitive Q with the following properties.

• If p has correctness then so does q.

• For all A, if A breaks the security of q, then BA,p breaks the security of p.

We say that R,B is a fully black-box reduction from Q to P .

Definition 2.2.6 Let P be a cryptographic primitive and let O be some oracle. A computa-
tionally unbounded oracle machine M is O-query-bounded if MO makes at most a polynomial
number of queries to its oracle during its execution. We say that p = CO is a construction
of P in the presence of O if p has correctness and security against any O-query-bounded
adversary.

The definition extends to the setting where O is a distribution over oracles. In such a
case the construction p = CO should be interpreted as a randomized construction, whose first
step is to sample the specific oracle from the distribution O, and then to apply C. Likewise,
an O-query-bounded adversary is also a randomized entity where in the first step the oracle
is sampled and then the machine makes queries as needed.

The following proposition as an immediate consequence of the definition.

Proposition 2.2.7 Let Q,P be cryptographic primitives such that Q reduces to P in a
fully black-box manner and let O be an oracle or a distribution over oracles. If there is a
construction of P in the presence of O then there is a construction of Q in the presence of
O.

Proof Let R,B be the fully black-box reduction (see Definition 2.2.5) and let C be such
that p = CO is a construction of P in the presence of O. Define D as RC , i.e. q = DO = RCO .
From the properties of the reduction, q has correctness. Assume towards contradiction that
there exists O-query-bounded A such that AO breaks the security of q. From the properties
of the reduction BAO would break the security of p = CO. However, BAO,CO is O-query-
bounded in contradiction to the unconditional security of p against such adversaries.
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2.3 Main Separation Result

In this section, we state and prove our main result.

3-party Functionality. Let {Xλ}λ, {Yλ}λ, and {Zλ}λ be a sequence of finite sets. Let
P1, P2, and P3 to be the three parties. The private input of P1 is a string x ∈ Xλ and
the private input of P2 is a string y ∈ Yλ. P3 does not have any private inputs. For
any gλ : Xλ × Yλ → Zλ, define a 3-party functionality fgλ that outputs gλ(x, y) to all the
parties. In other words, fgλ(x, y,⊥) = gλ(x, y). We sometimes identify g with the two-party
symmetric functionality that takes x from P1, takes y from P2 and delivers the output g(x, y)
to both parties. For ease of notation, we will drop the subscript λ when denoting f and g.

Lemma 2.3.1 There exists a set of oracles O such that:

• There exists a 2-round, (1−negl(λ), negl(λ), λω(1))-secure efficiently-computable protocol
for computing any two-party functionality h : Xλ × Yλ → Zλ in the presence of O.

• For any g : Xλ×Yλ → Zλ, if there exists a 2-round, (1−negl(λ), negl(λ), λω(1))-protocol
that securely computes fg over private channels in the presence of O, then for every
polynomial α, there exists a multi-round, (1 − 1/α(λ), 1/α(λ), λω(1))-secure protocol
that computes fg on random inputs over private channels in the random oracle model.
Moreover, in this protocol, party P3 does not send any messages and hence, we get a
two-party protocol.

The proof of Lemma 2.3.1 is postponed to the next subsection. We continue by exploring
the implications of the lemma. The conversion theorem from Chapter 1 (Theorem 1.1.3),
can now be formally derived.

Theorem 2.3.2 (Conversion Theorem, Theorem 1.1.3, restated) Let g(x, y) be a 2-
party functionality. The external version of g is the 3-party functionality fg that takes x
from Alice, y from Bob and delivers g(x, y) to Alice and Bob, and to Carol who holds no
input.

Suppose there is a fully-black-box reduction from 2-round secure computation of fg to 2-
round OT over private channels. Then, for every polynomial α, the functionality fg can be
(1 − 1/α(λ), 1/α(λ), λω(1))-securely computed over random inputs given only an access to a
random oracle over private channels. Moreover, in the resulting protocol Carol sends no mes-
sage and so it yields a two-party protocol for (1 − 1/α(λ), 1/α(λ), λω(1))-securely computing
g with over random inputs given only an access to a random oracle.

Proof We apply Proposition 2.2.7 where the primitive P is set to be 2-round OT and the
primitive Q is set to be 2-round secure computation of fg. By the first part of Lemma 2.3.1,
there is a construction of P in the presence of O. Therefore by the proposition, there is also
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a construction of 2-round secure computation of fg in the presence of O. We now apply the
second part of Lemma 2.3.1, and derive the theorem.

To simplify the following statements, let us say that a functionality f can be weakly-
realized at the presence of oracle O over worst-case inputs (resp., random inputs) if for every
polynomial α(·) there exists a protocol that (1− 1/α(λ), 1/α(λ), λω(1))-securely computes f
over private channels on worst-case inputs (resp., random inputs) given an access to the oracle
O. (That is, it achieves privacy and correctness errors of 1/α(λ) against super-polynomial
adversaries.)

The following proposition follows immediately from the transference theorem of Haitner
et al. [HOZ13, Theorem 1.1].

Proposition 2.3.3 (RO removal) If a 2-party functionality g can be weakly-realized over
random inputs given an access to a random oracle, then it can also be weakly-realized over
random inputs in the plain model.

Let us restrict our attention to 2-party (symmetric) Boolean functionalities g whose
domain is polynomially bounded in the security parameter. By Proposition 2.2.2, if g can
be weakly-realized over random inputs then it can be weakly-realized over worst-case inputs.
We use this to show that fg has a 2-round black-box reduction to a 2-round OT if and
only if g is trivial. Here we call a 2-party functionality trivial if it can be weakly-realized
over worst-case inputs in the plain model. More precisely, it is trivial if it admits a 2-
party information-theoretic semi-honest protocol over worst-case inputs with privacy and
correctness errors of 1/α(λ) for an arbitrary, predefined, polynomial α.

Corollary 2.3.4 (Corollary 1.1.4 restated) Let fg be an external-output version of a
Boolean 2-party functionality g, whose domain is polynomially-bounded. Then fg can be
securely realized by a 2-round private-channel protocol that makes a black-box use of 2-round
OT if and only if g is trivial. Specifically, the two-party AND functionality that takes in
x, y ∈ {0, 1} and outputs x ·y is non-trivial and therefore it cannot be computed by a 2-round
protocol that makes a black-box use of 2-round OT.

Proof Suppose that fg can be securely-computed by a 2-round private-channel protocol
that makes a black-box use of 2-round OT. Then, by Proposition 2.3.3 and Theorem 2.3.2, the
functionality g can be weakly-realized in the plain model with information-theoretic security
over random inputs. Since the domain of g is polynomially-bounded, Proposition 2.2.2
further implies that fg can be weakly-realized in the plain model with information-theoretic
security over worst-case inputs and therefore it is trivial.

For the other direction, the classical impossibility result of Chor and Kushilevitz [CK91]
shows that a 2-party Boolean function g is trivial if and only if it can be written as g(x, y) =
g1(x)⊕ g2(y). For such a trivial g, the function fg admits a 2-round perfect protocol in the
plain model; In the first round, P1 sends a random pad r to P2, and in the second round P1

(resp. P2) sends to the other two parties the value g1(x)⊕ r (resp., g2(y)⊕ r). Consequently,
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fg can be securely-computed by a 2-round private-channel protocol that makes a black-box
use of 2-round OT. Finally, the non-triviality of AND follows from [BGW88; CK91].

2.3.1 Proof of Lemma 2.3.1

We start by describing the oracles.

Oracles O. O is a triple (OT1,OT2,OT3) = {(OTn
1 ,OTn

2 ,OTn
3 )}n∈N with the following

syntax (We will use OT1 to denote {OTn
1}n∈N and so on).

• OTn
1 is a random length tripling function that takes in the receiver’s choice bit b ∈ {0, 1}

and its random tape r ∈ {0, 1}n and outputs the receiver’s message otm1.

• OTn
2 is a random length tripling function that takes in the receiver’s message otm1, the

sender’s inputs m0,m1 ∈ {0, 1}, its random tape s ∈ {0, 1}n and outputs the sender’s
message otm2.

• OTn
3 is a function that takes the transcript (otm1, otm2) along with (b, r) as input

and outputs mb if there exists a unique (m0,m1, s) for which OT1(b, r) = otm1 and
OT2(otm1,m0,m1, s) = otm2. Otherwise, it outputs ⊥.

Notation. The response obtained when (b, r) ∈ {0, 1} × {0, 1}∗ (resp. (otm1,m0,m1, s) ∈
{0, 1}∗×{0, 1}×{0, 1}×{0, 1}∗) is queried to OT1 (resp. OT2) is given by OT

|r|
1 (b, r) (resp.

OT
|s|
2 (otm1,m0,m1, s) if |otm1| = 3|s|+ 3; else ⊥.).

We now recall some basic properties of these oracles.

Fact 2.3.5 With probability at least 1− 2−n, the oracles OTn
1 and OTn

2 are injective.

Fact 2.3.6 Let Q = {(xi, yi)}i∈[q] denote a set of query/response pairs where xi ∈ {0, 1}n
and yi ∈ {0, 1}3n for every i ∈ [q]. Let HQ denote the random variable that represents a
random oracle H : {0, 1}n → {0, 1}3n conditioned on being consistent with Q, i.e., H(xi) = yi
for every i ∈ [q]. Then, for any y ∈ {0, 1}3n, y 6= yi for all i ∈ [q], the probability that y is
in the image of HQ is at most 2−2n.

As already mentioned, the oracles O naturally give rise to a two-round oblivious transfer
protocol [Har+05], and, by Yao’s completeness result (Theorem 1.1.2), to a general two-
round protocol for two-party functionalities.

Proposition 2.3.7 ([Har+05; Yao86]) An efficiently computable 2-round oblivious trans-
fer protocol with negligible security and correctness errors exists in the presence of O. Con-
sequently, any two party functionality h : Xλ × Yλ → Zλ can be efficiently computed by a
2-round, (1− negl(λ), negl(λ), λω(1))-secure protocol in the presence of O.
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The following lemma (whose proof is postponed to the next subsection) will complete
the proof of Lemma 2.3.1.

Lemma 2.3.8 Suppose there exists a 2-round, (1 − negl(λ), negl(λ), λω(1))-protocol Π that
securely computes fg over private-channels in the presence of O. Then, for every polynomial
α, there exists a multi-round, (1−1/α(λ), 1/α(λ), λω(1))-secure protocol Π∗ that computes fg
on random inputs over private-channels in the random oracle model. Furthermore, P3 sends
no messages in this protocol and hence, we get a two-party protocol for computing g.

2.3.2 Proof of Lemma 2.3.8

Following the outline sketched in Section 2.1, we gradually transform (in each of the following
subsections) the protocol in the hypothesis of Lemma 2.3.8 to the protocol in the implication.

2.3.2.1 Publicly-Decodable Protocol

We switch terminology and move from three-party protocols in which the third party is
silent (as in Lemma 2.3.8) to the, more convenient terminology of two-party protocols with
publicly-decodable transcripts.

Definition 2.3.9 A two-party protocol is publicly decodable if at the final step P1 and P2

compute their output by applying a deterministic algorithm Dec on the transcript.

In general any protocol can be transformed into a publicly decodable protocol at the expense
of adding an additional message (in which P1 sends its output). In the following lemma,
we show that a three-party protocol for fg can be transformed into a two-party publicly-
decodable protocol for g without any overhead in the round complexity.

Lemma 2.3.10 Suppose there exists a 2-round, (δ, ε, S)-secure protocol Π for fg in the pres-
ence of oracle O that makes poly(λ) queries to O. Then there exists a publicly-decodable
(δ, ε,Ω(S))-secure protocol Π for computing g in two rounds in the presence of O making
poly(λ) oracle queries.

Proof The transformation is via standard player emulation technique.We now describe Π.

1. In round-1, party P1 will choose an uniform random tape r3 for P3 and emulate P3 using
this random tape. P1 generates the first round messages msg1

3→2,msg1
3→1 sent by P3

in Π to P2, P1 respectively using r3. P1 also generates its first round messages msg1
1→2

and msg1
1→3 to be sent to P2 and P3 respectively in Π. It sends (msg1

1→2,msg1
3→2) to

P2 in the first round of Π. P2 generates (msg1
2→1,msg1

2→3) which are the first round
messages to be sent to P1 and P3 respectively in Π and sends them to P1.
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2. In round-2, P1 generates msg2
1→2 and msg2

1→3 using its private input, its randomness and
the messages it received so far. It also uses r3 and the messages intended to P3 to gener-
ate P3’s round-2 message msg2

3→2 to P2 in Π. It sends (r3,msg1
1→3,msg2

1→3,msg2
1→2,msg2

3→2)
to P2. Similarly, in round-2, P2 sends (msg2

2→1,msg2
2→3) to P1.

Finally, P1 and P2 compute the decoding algorithm Dec executing the output computing
algorithm of P3 using r3,msg1

1→3,msg2
1→3,msg1

2→3,msg2
2→3 as input to output g(x, y).

For every subset T ⊆ [3], let Sim
O
T be the simulator for Π when the subset T gets

corrupted. We set SimO1 = Sim
O
{1,3}, SimO2 = Sim

O
{2,3} and the security and correctness

properties follow directly from the guarantees of Π.

Next steps. By Lemma 2.3.10, the hypothesis of Lemma 2.3.8 implies a 2-round (δ, ε, S)-
secure publicly-decodable protocol Π for g in the presence of oracle O that makes poly(λ)
queries to O where δ = 1− negl(λ), ε = negl(λ) and S = λω(1)). For a polynomial ρ(λ), our
goal is to construct a new a multi-round, (δ−O(1/ρ(λ)), ε−O(1/ρ(λ)), S−poly(ρ, λ))-secure
two-party protocol Π∗ that computes g over random inputs. This will be done via a sequence
of transformations. In the first transformation, we remove all the queries made to the OT3

oracle in generating the first round message of the protocol. In the second transformation,
we remove all the OT3 oracle queries during the generation of the second round message of
the protocol. In the final transformation, we remove the OT3 oracle queries made by Dec.

2.3.2.2 Transformation-1: Π⇒ Π1

We now transform Π to Π1 such that no OT3 queries are made during the generation of the
first round message in Π1. We parameterize Π1 with an arbitrary polynomial ρ (which will
determine the correctness and the security error) and denote by Π1[ρ] the parameterized
version. We now give the description of Π1 below.

Transformation Π⇒ Π1:

• Parameters: Let q = q(λ) be the number of oracle queries that each party makes in
the first and the second rounds of Π. Let ρ = ρ(λ) be an arbitrary polynomial and set
p = 1

(q+1)·ρ .

• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes
oracle queries to OTλ′

2 on every point in the domain. Party P creates a list LP2 with
the queries/responses to the OT2 oracle respectively.

• Round-1: In round-1 of Π1, party P starts executing the first round message func-
tion of Π (on their private input and randomness) and appends the list LP2 with
the queries/responses made to the OT2 oracle in the generation of the first round
message. Whenever the first message function of Π makes an OT3 oracle query on
(otm1, otm2, (b, r)), the P generates the response to this query as follows:
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– It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If not, it
outputs ⊥ as the response to the OT3 query.

– If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list
LP2 as it contains all the responses to every point in the domain of OT2.

– Otherwise, P checks if there is an entry ((otm1,m0,m1, s), otm2) in the list LP2 .
If such an entry is not found, it outputs ⊥ as the response to the corresponding
OT3 query. Else, it outputs mb.

• Round-2 and Decoder: Remain as in Π.

Claim 2.3.11 Let ρ be an arbitrary polynomial. Then, Π1[ρ] is a publicly-decodable protocol
that computes g in 2-rounds with (δ − 1/ρ(λ), ε + 1/ρ(λ), S)-security in the presence of
(OT1,OT2,OT3) making poly(λ) oracle queries.

Proof We now argue that the party’s emulation of OT3 oracle in the first round is 1/ρ(λ)-
close to the real oracle. Notice that if OT1(b, r) 6= otm1 or if |r| ≤ log(1/p), then the
emulation is perfect. We now show that if r > log(1/p), the emulation is 1/ρ(λ)-close to
the real oracle. To see this, observe that for any query such that otm2 is found in the list
L2
P , the emulation of the oracle is perfect as long as OT2 is injective and this happens with

probability at least 1 − p (Fact 2.3.5). If such a response is not found then the probability
(over the choice of the random oracle OT2) that a string otm2 is in the image of this oracle
is at most p (Fact 2.3.6). Thus, in this case, both the real oracle and party’s emulation will
output ⊥ except with probability p and hence, by a standard union bound, party’s emulation
of OT3 oracle is (q + 1)p = 1/ρ(λ)-close to the real oracle.

To argue security, notice that with all but (q + 1)p probability over random choice of
OT2, party’s emulation of the OT3 oracle in Π1 is identical to the real oracle and hence, for
every inputs x, y and every fixing of the randomness of the parties, the view of each party
in Π1 will be (q+ 1)p-close to their view in Π (where the probability is taken over the choice
of OT2). The security follows directly from the security of Π.

2.3.2.3 Transformation-2: Π1 ⇒ Π2

We now transform Π1 to Π2 such that in protocol Π2, the parties do not make any OT3

oracle queries when generating the second round message. As mentioned in Section 2.1, in
this transformation each party P finds a list, LP , of “likely” correlated queries that are made
by the other party P with sufficiently large probability when the inputs of P are chosen at
random. We give the description of this transformation below.

Transformation Π1 ⇒ Π2:

• Parameters: Let ρ = ρ(λ) be an arbitrary polynomial. Let q1 = q1(λ) be the number
of oracle queries that each party makes in the first and the second rounds of Π1. We
define t = q1λρ and set p = 1

tq1ρ
.
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• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes
oracle queries to OTλ′

2 on every point in the domain. Party P creates a list LP2 with
the queries/responses to the OT2 oracle.

• Round-1: P1 (resp., P2) has input x (resp., y) and random tape R1 (resp., R2) for the
protocol Π1[ρ]. (Additional random bits will be sampled on the fly.) The first round
message from party P ∈ {P1,P2} to the other party P is generated as follows:

1. P runs the first round message function of Π1[ρ], and whenever she accesses the
oracle OT2, she appends the query/response pair to the list LP2 . Let π1

1,P→P denote

the first-round message (of Π1) that is generated in this process. Here, we view
the preprocessing part of Π1 as part of the first message function.

2. Next, P initializes an empty list LP and runs t “auxiliary” executions of the other
party P in Π1 as follows.

3. In every execution i, P samples a random input and a random tape for P and
computes its first message. This part of the computation may call the oracles
OT1 and OT2, and P maintains the corresponding list `i2 of query/response pairs
to the oracle OT2. Next, P calls the second-message function of P in Π1 (on
the same input/random tape) and feeds π1

1,P→P as the first message of P in the

emulated protocol. During this computation, calls to the oracle OT2 are recorded
in the list `i2 as before. In addition, any OT3-query (otm1, otm2, (b, r)) is emulated
as follows:

– Make an OT1 oracle call on (b, r) and checks if the response is otm1. If not,
output ⊥ as the response to the OT3 query.

– If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the
list LP2 as it contains all the responses to every point in the domain of OT2.

– Otherwise, check if there is an entry ((otm1,m0,m1, s), otm2) in the list, `i2, of
queries/responses to the OT2 oracle made by the emulated P in that specific
execution. If yes, output mb.

– Else, in list LP2 , check if there is an entry ((otm1,m0,m1, s), otm2). If yes,
output mb and add ((otm1, otm2, (b, r)),mb) to the list LP . Otherwise, output
⊥.

4. P sends π1
1,P→P and the list LP to the other party.

• Round-2: The second round message from party P ∈ {P1,P2} to P is generated as
follows:

1. P starts executing the second message function of Π1[ρ] with the first round
message from P set to π1

1,P→P and extends the list LP2 with those queries made

by the second message function. Now, it emulates the access to the oracle OT3

on a query (otm1, otm2, (b, r)) as follows:
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a) It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If
not, it outputs ⊥ as the response to the OT3 query.

b) If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the
list LP2 as it contains all the responses to every point in the domain of OT2.

c) Else, it checks if there is an entry ((otm1,m0,m1, s), otm2) in the list LP2 . If
such an entry is found, it outputs mb.

d) Else, it uses the list LP obtained from the other party and checks if there is
an entry ((otm1, otm2, (b, r)),mb). If yes, it outputs mb. Else, it outputs ⊥.

• Decoding: Both parties take the transcript, remove the lists (L1, L2) sent by the
parties, and apply the decoder Dec of Π.

Remark 2.3.12 It is instructive to note that if the input space is large (say larger than n)

then the list LP may completely miss a query that happens with high probability on a specific
input of P . For this reason, the transformation achieves correctness (and security) only with
respect to random inputs.

Claim 2.3.13 Let ρ be an arbitrary polynomial. Then Π2[ρ] is a 2-round publicly-decodable
protocol computing g on random inputs with (δ −O(1/ρ(λ)), ε+O(1/ρ(λ)), S − poly(λ, ρ))-
security in the presence of (OT1,OT2,OT3) making poly(λ, ρ) oracle queries.

Proof Let G (for good) denote the event in which Π2’s emulation of the OT3 oracle to
the second message of function of Π1 is identical to the real oracle. To prove correctness, it
suffices to show that G happens except with O(1/ρ(λ)) where the probability is taken over
the inputs (x, y), the random tapes, and the oracles.

As before, if OT1(b, r) 6= otm1 or if |r| ≤ log(1/p), the emulation is perfect. From now on
we therefore consider only OT3 queries whose r part is longer than log(1/p). Let I denote
the event that the oracles OT1 and OT2 are injective, which happens with probability at
least 1 − p by Fact 2.3.5. Under I, every query (otm1, otm2, (b, r)) for which otm2 is found
in the list of queries/responses to the OT2 oracle or in the list L sent by the other party, is
being emulated perfectly.

It suffices to deal with the case that the response is not found in any of the lists available
to P , and so the emulation outputs ⊥ (in Step 1d). Let G1 (resp., G2) denote the event
in which every such ⊥-query, made by P1 (resp., P2), is also evaluated to ⊥ by the oracle
OT3. We show that G1 fails to happens with probability at most q1(p + 1/(ρq1) + e−λ). (A
symmetric argument applies to G2 as well.)

For every query (otm1, otm2, (b, r)) for which P1 reaches to Step 1d, we distinguish be-
tween two cases. If otm2 was not a response obtained by one of the queries made by one of
the parties in Π1, then the probability (over the choice of the oracles) that the OT3 oracle
does not output ⊥ is at most p (by Fact 2.3.6). Otherwise, we have the following event (?):
The OT3-query (otm1, otm2, (b, r)) was issued by P1 on a string otm2 that was obtained by P2

and the response to this query does not appear in the list LP2 that P2 sent in the first round
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of Π2. Call such a query (otm1, otm2, (b, r)) “light” if it is issued by the second-message
function of P1 in Π1[ρ] with probability at most 1/(q1ρ), and “heavy” otherwise. Here the
probability is measured with respect to a random execution of P1 over random inputs where
the first-round incoming message, π1

1,P2→P1
, is fixed to its value in the “main” execution.

(The latter is a random variable which is induced by the inputs, y and R2 of P2.) For every
fixing of π1

1,P→P the following holds: If the query is light, then the probability of the event

(?) is at most 1/(q1ρ) (by definition). On the other hand, the probability that the response
to a heavy query does not appear in the list LP2 that was sampled by P2 (and was sent in
Π2) is at most (1 − 1/(q1ρ))q1ρλ ≤ e−λ. Overall, for any given query the event (?) happens
with probability at most 1/(q1ρ) + e−λ. Applying union-bound over all q1 queries, we get
that G1 happens except with probability q1(p+ 1/(q1ρ) + e−λ). Overall, we get that

Pr[G] ≥ Pr[G1 ∧G2 ∧ I] ≥ 1−
(
p+ 2q1(p+ 1/(q1ρ) + e−λ)

)
≥ 1−O(1/ρ).

We now argue security. Notice that the only difference in the transcripts between the
protocols Π1 and Π2 is in this additional lists (LP1 , LP2). We show that there exists an
efficient, poly(λ)-query, algorithm A that, given the transcript of Π1 and an oracle access to
(OT1,OT2,OT3), can generate a pair of lists that are identical to the lists (LP1 , LP2) sent in
the protocol except with probability O(1/ρ(λ)) (over the choice of the oracles). Formally,
for any fixed inputs x, y and randomness R1, R2 of the parties in the original protocol Π1,
with probability of 1 − O(1/ρ(λ)) over the choice of the oracles O = (OT1,OT2,OT3), it
holds that

A(T1) = (LP1 , LP2),

where T1 is the transcript of Π1 and (LP1 , LP2) are the lists sent in Π2 where in both execu-
tions x, y and R1 and R2 are being used and the randomness is induced only by the choice
of (OT1,OT2,OT3).

Before describing A, we claim that its existence implies security over randomly chosen
inputs. For concreteness, we focus on security against P1. (The argument for P2 is similar).

Let viewΠ1

P1
(x, y) (resp., viewΠ2

P1
(x, y)) denote the view of P1 when the protocol Π1 (resp.,

Π2) is invoked over inputs (x, y) and oracles O. Consider the mapping A′ that, given v1

(presumably viewΠ1

P1
(x, y)), recovers the lists (LP1 , LP2) by applying A on the transcript part

of v1, and outputs v1 extended with the lists (LP1 , LP2). Let x and y0 be random inputs in
Xλ and Yλ, and let y1 be a random sibling of y0, i.e., y1 is uniformly distributed among all
strings y ∈ Yλ for which f(x, y) = f(x, y0). Note that the marginal distribution of (x, y1) is
also uniform over Xλ × Yλ. Next observe that for every b ∈ {0, 1}, the random variables

(x, y0, y1,A′(viewΠ1

P1
(x, yb)),O) and (x, y0, y1, viewΠ2

P1
(x, yb),O) (2.3.1)

are identically distributed whenever (1) the output ofA is the same as the lists (LP1 , LP2) sent
by the parties on the real transcript; and (2) the transcript T1 together with the oracles satisfy
the event G (defined above). By union bound, both events happen except with probability
O(1/ρ(λ)) over a random choice of the inputs and the oracles. Hence, for every b ∈ {0, 1},
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the random variables in (2.3.1) are O(1/ρ(λ))-close in statistical distance. That is, even
unbounded adversaries that can make unbounded number of queries to the oracles O cannot
distinguish between (x, y0, y1,A′(viewΠ1

P1
(x, yb))) and (x, y0, y1, viewΠ2

P1
(x, yb)) with advantage

better than O(1/ρ(λ)). Together with the privacy of Π1 (over worst-case inputs), this im-

plies that (x, y0, y1, viewΠ2

P1
(x, y0)) cannot be distinguished from (x, y0, y1, viewΠ2

P1
(x, y1)) with

advantage better than ε+O(1/ρ(λ)) by (S−poly(λ))-query distinguishers. Indeed, a distin-
guisherDO(x, y0, y1, v

2) that violates the above gives rise to a distinguisherD′O(x, y0, y1, v
1) :=

DO(x, y0, y1,A′(v1)) that violates the security of Π1.
We move on to describe the algorithm A. Roughly speaking, the algorithm A generates

the list LP just like in protocol Π2, except that calls to OT3 will not be emulated, and
instead will be answered directly by querying the oracle OT3. Specifically, A extracts from
the transcript the first round message, π1

1,P→P , sent by a party P ∈ {P1, P2} in Π1, and

executes t = q1λρ independent executions of the other party P with uniformly chosen input
and randomness. It then executes the second message function of P in the protocol Π1 with
respect to the incoming message π1

1,P→P . During these executions A delivers OT3-queries to

the OT3 oracle. For every such valid query made to the OT3 oracle (i.e., the response is not
⊥) whose r part has length greater than λ′ and for which otm2 is not a response obtained
from OT2 in this execution, it will add ((otm1, otm2, b, r),mb) to the list LP of party P where
mb is the response from OT3.

We analyze A. Fix the inputs x, y the randomness R1, R2 of the parties in the main
execution (of Π1) and the randomness that is being used in the auxiliary executions. Let us
assume that the oracles are injective. In this case, the simulation deviates from the real inter-
action only if the simulator (resp. the real execution) adds an entry ((otm1, otm2, (b, r)),mb)
to the list LP although this entry is not being added in the real execution (resp. the simu-
lation). This happens only if the corresponding OT3-query does not evaluate to ⊥ (by the
oracle OT3) although its otm2-part is not found in the OT2-lists of both parties that were
generated by the first round functions during the corresponding random execution of Π1. By
Fact 2.3.6, this event happens with probability at most p per OT3 query. Applying a union
bound over all queries (in all emulations of both parties) and on the event that the oracles
fail to be injective, we conclude that, except with probability p + 2ptq1 < O(1/ρ), all the
entries in the lists generated by A are identical to the entries in the lists generated in the
protocol.

2.3.2.4 Transformation-3: Π2 ⇒ Π∗

We now transform Π2 into Π∗ that computes g in O(n) rounds in the presence of oracles
(OT1,OT2) without making OT3 queries. We will make use of the following “dependency
learner” E that was defined by Barak and Mahmoody [BM09].

Lemma 2.3.14 ([BM09]) Let O be a set of random oracles. Let ΠO be an interactive pro-
tocol between P1 and P2 in which they might use private randomness (but no inputs otherwise)
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and they each ask at most m queries to O. Then, there is a deterministic eavesdropping al-
gorithm E (whose algorithm might depend on P1 and P2) who gets as input a parameter
ε ∈ (0, 1) and the transcript T of a random execution of the protocol ΠO (with the views
of P1 and P2 being random variables viewP1 and viewP2), asks at most poly(m/ε) queries to
the random oracles O, such that the probability that P1 and P2 have an “intersection query”
outside of the queries asked by Eve to any oracle O ∈ O is at most ε. That is,

∀O ∈ O, Pr[QO(viewP1) ∩QO(viewP2) 6⊆ QO(viewE)] ≤ ε,

where QO(viewP ) denotes the (random variable) that consists of all the oracle queries that
were asked by P .

We give the description of Π∗ below.

Transformation Π2 ⇒ Π∗:

• Parameters: Let q2 = q2(ρ) be the number of oracle queries that each party makes in
the first and the second rounds of Π2 and let n = n(λ) be the number of oracle queries
made by the decoder. Let ρ = ρ(λ) be an arbitrary polynomial and set p = 1

(q2+n2)ρ
.

Let ε′ = 1/(2nρ).

• Preprocessing Phase: For every λ′ ≤ log(1/p), each party P ∈ {P1, P2} makes
oracle queries to OTλ′

2 on every point in the domain. Party P creates a list LP2 with
the queries/responses to the OT2 oracle.

• Executing Π2: Each party P ∈ {P1, P2} in Π∗ executes the first and the second round
messages of Π2[ρ] while updating the list LP2 with the queries/responses to the OT2

oracle. Let T denote the resulting transcript for the first two rounds.

• Calling the dependency learner E: P1 invokes the dependency learner E for the
protocol Π2 (which is promised by Lemma 2.3.14) over the transcript T with proximity
parameter ε′. Let LE2 be the list of OT2 queries made by E to the OT2 oracle.

• Executing the decoder Dec2: Next, P1 invokes the Π2-decoder Dec2 over the tran-
script T. (Recall that the decoder is deterministic.) For every OT1,OT2 queries made
by Dec2, P1 maintains a list of the queries/responses obtained. For every OT3 query
on (otm1, otm2, (b, r)) made by Dec2, P1 gives the response as follows:

1. It makes an OT1 oracle call on (b, r) and checks if the response is otm1. If not, it
outputs ⊥ as the response to the OT3 query.

2. If |r| ≤ log(1/p), this query can be answered by an exhaustive search on the list
LP2 as it contains all the responses to every point in the domain of OT2.

3. Else, P1 checks if there is an entry ((otm1,m0,m1, s), otm2) in the list of queries/responses
to the OT2 oracle made by Dec2. If such an entry is found, it outputs mb.
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4. Else, P1 checks if there is an entry ((otm1,m0,m1, s), otm2) in the LP1
2 or LE2 list.

If yes, it gives mb as the response.

5. Else, P1 sends (otm1, otm2, (b, r)) to P2. The other party P2 sends mb if an
(otm1, (m0,m1, s), otm2) entry appears in its LP2

2 list, and otherwise sends ⊥.
P1 responds to decoder’s query with this message.

• At the end of the execution, the decoder Dec2 outputs a value z (supposedly g(x, y))
and P1 sends it as the last round message. Both parties output z.

We show that the protocol Π∗ is a (δ − O(1/ρ(λ)), ε− O(1/ρ(λ)), S − poly(ρ, λ))-secure
protocol that computes g over random inputs, thus proving Lemma 2.3.8.

The following claim shows that the emulation of the decoder is typically consistent with
OT3, and therefore establishes the correctness of Π∗.

Claim 2.3.15 (Correctness) For every fixing of the inputs and local private tapes, except
with probability O(1/nρ(λ)) over the choice of the oracles, all the OT3 queries of Dec2 are
answered consistently with the answers of the real OT3 oracle. Consequently, for uniformly
chosen inputs (x, y) the output of both parties Dec∗ equals to g(x, y) with probability at least
δ −O(1/ρ(λ)).

Proof We begin by proving the first part. As before, if OT1(b, r) 6= otm1 or if |r| ≤
log(1/p), then the emulation is perfect. We now show that, except with probabilityO(1/nρ(λ)),
the emulated answers to all the queries for which r > log(1/p) are consistent with the an-
swers of the real oracle. Let us first assume that the oracles OT1,OT2 are injective which,
by Fact 2.3.5, happens except with probability p. Observe that when the output of the
emulation is not ⊥, it is consistent with the OT1,OT2 queries and, therefore, by injectivity,
must be also consistent with OT3. Hence, the emulation may disagree with the real oracle
only when the emulated output is ⊥. Let us therefore consider a query (otm1, otm2, (b, r))
for which the emulation returns ⊥. Recall that this happens only if otm2 does not appear
in any of the L2 lists of P1, P2, E and the decoder. Therefore, by Fact 2.3.6, the response
from the actual OT3 oracle will also be ⊥ except with probability p over the choice of OT2.
Overall, by a union bound, the emulation agrees with the oracle on all queries except with
probability p+ np ≤ O(1/nρ(λ)).

To prove the “consequently” part, observe that the only difference between Π2 and Π∗

is how the OT3 queries of Dec2 are answered. Hence, conditioned on the event that the
emulation is perfect, the output of Π∗ on (x, y) is equal to the output of Π2 over (x, y), and
so the claim follows from the average-case correctness of Π2 (as proved in Claim 2.3.13).

We now show the privacy.

Claim 2.3.16 (Privacy) For every non-uniform distinguishers D1, D2 making at most S−
poly(λ) queries to the oracles O′ = (OT1,OT2) it holds that:

|Pr[DO
′

1 ((y, y′), viewP1(x, y)) = 1]− Pr[DO
′

1 ((y, y′), viewP1(x, y
′)) = 1]| ≤ ε+O(1/ρ(λ))
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|Pr[DO
′

2 ((x, x′), viewP2(x, y)) = 1]− Pr[DO
′

2 ((x, x′), viewP2(x
′, y)) = 1]| ≤ ε+O(1/ρ(λ)),

where (x, y) ← Xλ × Yλ, y′ ∈ Yλ is chosen uniformly from the set {y′ : g(x, y′) = g(x, y)},
x′ ∈ Xλ is chosen uniformly from the set {x′ : g(x′, y) = g(x, y)}, and viewPi(x, y) denotes
the view of Pi in the execution of Π∗ on inputs (x, y).

2.3.2.5 Proof of Claim 2.3.16

For i ∈ [n], we define a hybrid protocol Π∗i which differs from Π∗ only in the way that the
OT3-queries of the decoder are being answered. Specifically, the first i queries are answered
exactly as in Π∗, and in the last n− i queries we modify Step 5 and instead of sending the
query (otm1, otm2, (b, r)) to P2, we send it to the OT3 oracle (and deliver the response to the
decoder).

Notice that Π∗n is identical to Π∗. We also show that Π∗0 inherits its security from Π2. In

the following, let viewi
P (x, y) be the view of P in an execution of Π∗i (x, y) and let viewΠ2

P (x, y)
be the view of P in an execution of Π2(x, y).

Claim 2.3.17 There exist efficient transformations A1,A2 that make no calls to the O =
(OT1,OT2,OT3)-oracles such that for any x, y, for any choice of the random tapes for the
parties, and for i ∈ {1, 2} the random variables

(Ai(viewΠ2

Pi
(x, y)),O) and (view0

Pi
(x, y),O)

are O(1/nρ(λ))-close (over the choice of the oracles).

Note that the above means that indistinguishability holds even with respect to an unbounded
distinguisher that makes unbounded number of queries to the oracles O.
Proof Let us fix the inputs x, y and the random tapes of the parties, and conditioned on
the event I that the oracle OT2 is injective on inputs whose s part has length greater than
log(1/p). By Fact 2.3.5, this event happens except with probability p < O(1/nρ(λ)).

The protocol Π∗0(x, y) is identical to Π2(x, y) with two minor modifications. Starting
with P1, the only difference is that in Π2 when P1 runs the decoder Dec2 all the OT3 queries
are answered by the OT3 oracle, whereas in Π∗0 the OT3 queries that reach to Steps 1–4 are
answered locally. (This means that, syntactically, the view of P1 in Π2 contains the answers
to all these queries whereas the view in Π∗0 does not contain the corresponding responses.)
Observe that, under I, the answers obtained in both cases are the same. Therefore the
transformation A1 that takes viewΠ2

P1
(x, y) and removes the responses to the OT3 queries

that reach Steps 1–4, satisfies the claim with statistical deviation of p.
We move on to P2. In Π∗0, party P2 gets the output z from P1 at the end, whereas in Π2,

party P2 invokes the decoder Dec2 locally on the transcript. This means that, syntactically,
the view of P2 in Π2 contains the answers to all the decoder’s queries whereas the view
in Π∗0 does not contain the corresponding responses but contains the message z. Consider

the transformation A2 that takes viewΠ2

P2
(x, y), computes the output z′ that is induced by



CHAPTER 2. BLACK-BOX SEPARATION 32

the view, appends z to viewΠ2

P1
(x, y) and removes all the responses to the queries made by

Dec2. Again, whenever I happens, the simulated outcome z′ is equal to the actual message
z sent in Π2. Therefore, by Fact 2.3.5, A2 satisfies the claim with statistical deviation of
p < O(1/nρ(λ)).

We show that privacy is approximately preserved when moving between neighboring
hybrids.

Claim 2.3.18 For every i ∈ [n] and every ε′ > 0, there exist two algorithms A1 and A2 that
make at most poly(λ, 1/δ′, 1/ε′) queries to O = (OT1,OT2,OT3) such that, for uniformly
chosen (x, y)← Xλ × Yλ, the random variables

(y,A1(viewi−1
P1

(x, y)),O) and (y, viewi
P1

(x, y),O)

are O(1/nρ(λ))-close (in statistical distance) and

(x,A2(viewi−1
P2

(x, y)),O) and (x, viewi
P2

(x, y),O)

are O(1/nρ(λ))-close.

Proof We start with the description of A1. On input viewi−1
P1

, the algorithm A1 emulates
the execution of P1 in Π∗i up to the generation of the i-th OT3 query (otm1, otm2, (b, r)) of
the decoder. At this point, it checks whether one of the conditions (1–4) holds. If this is the
case, then it outputs viewi−1

P1
as is. Otherwise, if the emulation reaches Step 5, the algorithm

does the following:

• It queries the OT3 oracle on (otm1, otm2, (b, r)) and gets a response a.

• It adds (otm1, otm2, (b, r)) as the message from P1 to P2 to the transcript Ti−1 (ex-
tracted from viewi−1

P1
) and it also adds the response obtained from OT3 oracle as the

incoming message sent from P2 to P1 in Ti−1. Let T∗i−1 be the augmented transcript.

Analysis of A1. Fact 2.3.5 implies that OT1 and OT2 are injective on inputs of length
≥ log(1/p) with probability at least 1 − p. We condition on this event and prove that the
tuple (y,A1(viewi−1

P1
),O) is p-close to the tuple (y, viewi

P1
,O). Notice that the only difference

between A1(viewi−1
P1

) and viewi
P1

is in answering the i-th oracle query of the decoder and
the corresponding messages exchanged. We show that the response of the i-th query to
the decoder and the messages exchanged while answering this query are identical in the
two distributions except with probability p. Let the i-th oracle query of the decoder be
(otm1, otm2, (b, r)). Observe that the only case where A1(viewi−1

P1
) differs from viewi

P1
is when

otm2 is in the image of OT2 oracle, but it is not in the list of queries made by either parties,
E or Dec2. However, by Fact 2.3.6, the probability that this event happens (over the choice
of the oracles) is at most p. Overall, the deviation is 2p ≤ O(1/nρ(λ)).
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Description of A2. We now give the description of A2. Given an input viewi−1
P2

, the algo-
rithm A2 parses the view into the input y and random tape r, the transcript T corresponding
to the first two rounds of Π∗i−1, the transcript Ti−1 of the remaining rounds of Π∗i−1, and the
last message z (presumably the output) sent by P1. The algorithm A2 outputs (y, r,Ti, z)
where Ti is generated as follows.

1. A2 runs E on T and let LE2 be the list of OT2 queries made by E . In addition, A2 starts
running (the deterministic) Dec2 on the transcript T. The first i− 1 queries that Dec2

makes to the oracle OT3 are being answered directly by using the OT3 oracle. Given
the i-th OT3 query, (otm1, otm2, (b, r)), of the decoder Dec2, the algorithm A2 proceeds
as follows.

2. If one of the following conditions hold, set Ti = Ti−1:

a) The evaluation of the OT1 oracle on (b, r) is not equal to otm1.

b) |r| ≤ log(1/p).

c) There is an entry ((otm1,m0,m1, s), otm2) in the list of queries/responses to the
OT2 oracle made by Dec2.

d) There is an entry ((otm1,m0,m1, s), otm2) in the LE2 list.

3. Otherwise, if there is an entry ((otm1,m0,m1, s), otm2) in the LP2
2 list, then A2 appends

(otm1, otm2, (b, r)) as message from P1 to P2 and mb as the response from P2 to P1 to
the transcript Ti−1 to obtain Ti.

4. Otherwise (if such an entry is not found in either lists), A2 queries the OT3 ora-
cle on (otm1, otm2, (b, r)) and obtains the response. If the response was ⊥, it adds
(otm1, otm2, (b, r)) as message from P1 to P2 and ⊥ as the response from P2 to P1 to
the transcript Ti−1 to obtain T∗i−1. Otherwise, it sets Ti = Ti−1.

Analysis of A2. Consider the random experiment in which the inputs x and y are chosen
at random, as well as the random tapes of both parties and the oracles O. Let us condition
on the following events: (1) The oracles OT1 and OT2 are injective on inputs of length
≥ log(1/p); and (2) The emulation of the decoder up to step i by A2 is consistent with its
emulation by P1 in Π∗i−1. By Fact 2.3.5 and Claim 2.3.15 both events happen except with
probability p+O(1/nρ(λ)) ≤ O(1/nρ(λ)). Let us condition on these events and prove that
the tuple (x,A2(viewi−1

P1
),O) is (ε′ + p)-close to the tuple (x, viewi

P1
,O).

Observe that, under these events, the i-th OT3 query of the decoder, (otm1, otm2, (b, r)),
is identical in both the simulation (performed by A2) and the real protocol Π∗i−1. Hence,
deviation may happen only if either (A) the simulation appends the query to the transcript
but the real execution does not; or (B) the real-execution appends the query to the transcript
but the simulation does not.

We start with Case (A). The simulation appends the query only in Steps 3 and 4. In
the latter case (Step 4), the real execution also appends the query. Hence, Case (A) may
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happen only in Step 3, which means that the query is an intersecting query (it appears both
in LP1

2 and LP2
2 ) but it was not detected by E (does not appear in LE2 ). By Lemma 2.3.14,

this event happens with probability at most ε′.
Finally, observe that Case (B) may happen only if the simulation reaches to Step 4 and

the query is not evaluated to ⊥. This means that otm2 is in the image of OT2 oracle, but it
is not in the list of queries made by any of the parties, which, by Fact 2.3.6, happens with
probability at most p (over the choice of the oracles).

We can now complete the proof of Claim 2.3.16. First, by iteratively composing Claim 2.3.18
and applying Claim 2.3.17, there exists an algorithm A1 (resp. A2) that makes at most
npoly(λ) = poly(λ) queries to the oracles O such that for every b ∈ {1, 2}, the random
variables

(x, y,Ab(viewΠ2

Pb
(x, y)),O) and (x, y, viewPb(x, y),O)

are O(1/ρ(λ))-close where (x, y) are uniformly distributed and view stands for the view
under Π∗. (The above notation is somewhat redundant since for b = 1 the random variable
x appears as part of P1’s view and for b = 2 the random variable y appears as part of P2’s
view.)

Next, consider a distinguisher D that attacks the privacy of P1 in Π∗ with respect to
random inputs. (The case of P2 is symmetric.) That is, D makes at most S ′ queries to O′
and

|Pr[DO
′
((y, y′), viewP1(x, y)) = 1]− Pr[DO

′
((y, y′), viewP1(x, y

′)) = 1]| > ∆,

where (x, y)← Xλ×Yλ, and y′ ∈ Yλ is chosen uniformly from the set {y′ : g(x, y′) = g(x, y)}.
It follows that the adversary D′OT1,OT2,OT3(y, y′, v) that computes v′ = AOT1,OT2,OT3

1 (v) and
then outputs DOT1,OT2(y, y′, v′) satisfies

|Pr[D′O((y, y′), viewΠ2

P1
(x, y)) = 1]− Pr[D′O((y, y′), viewΠ2

P1
(x, y′)) = 1]| > ∆−O(1/ρ(λ)).

(Here we use the fact that the marginal distribution of (x, y′) is also uniform over Xλ× Yλ.)
Since D′ makes at most S ′+poly(λ) queries to O, Claim 2.3.13 implies that for some constant
c, whenever S ′ < S−λc the distinguishing advantage ∆ is at most ε+O(1/ρ(λ)). Claim 2.3.16
follows.

2.4 Separating Non-Compact HSS from 2-Round OT

In this section, we present a simple corollary of our main separation to a natural variant
of homomoprhic secret sharing (HSS). Concretely, we show a black-box separation between
a weak 2-party flavor of “non-compact HSS” and 2-round oblivious transfer. Non-compact
(2-party) HSS is similar to the notion of 2-input HSS from [Boy+18] in that it allows a local
computation of a function g(x, y) on independently generated shares of x and y. However,
instead of the usual requirement that the output shares be additive or compact, here we
require that they reveal no additional information except the output.
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Definition 2.4.1 (Non-compact HSS) A 2-party non-compact homomorphic secret shar-
ing (non-compact HSS) for a function g : {0, 1}λ × {0, 1}λ → {0, 1}λ is a triple of PPT
algorithms (Share,Eval,Dec) with the following syntax.

• Share(x) takes an input x ∈ {0, 1}λ and outputs two shares (x1, x2).

• Eval(j, (xj, yj)) takes in j ∈ {1, 2} and the j-th shares of the inputs and outputs zj (an
output share).

• Dec(z1, z2) is a deterministic algorithm that takes output shares z1, z2 and outputs a
string z.

We say that (Share,Eval,Dec) is a (δ, ε)-non-compact HSS for computing g if it satisfies the
following two properties:

• Correctness. For any x, y ∈ {0, 1}λ, we require

Pr[Dec(z1, z2) = f(x, y)] ≥ δ(λ)

where (x1, x2)← Share(x), (y1, y2)← Share(y) and zj ← Eval(j, (xj, yj)) for j ∈ {1, 2}.

• Security. There exist PPT Sim1, Sim2, and Sim such that for every input x, y ∈ {0, 1}λ
and every efficient nonuniform distinguishers D1, D2, and D the following holds:

|Pr[D1(x, (r1, s1), y1, z2)]− Pr[D1(Sim1(x, f(x, y)))]| ≤ ε(λ)

|Pr[D2((y, (r2, s2), x2, z1))]− Pr[D2(Sim1(y, f(x, y)))]| ≤ ε(λ)

and
|Pr[D(z1, z2)]− Pr[D(Sim1(f(x, y)))]| ≤ ε(λ)

where (x1, x2)← Share(x; r1), (y1, y2)← Share(y; r2) and zj ← Eval(j, (xj, yj); sj).

When the error parameters ε, δ are omitted, they are understood to be negligible.

Previous definitions of HSS [BGI16; Boy+18] require that each input share hide the input,
and make no security requirements involving the output shares. However, we note that the
default syntactic requirement for HSS schemes as defined in [BGI16; Boy+18] is that the
output decoder computes addition over a finite Abelian group. This type of additive HSS
implies our notion of non-compact HSS by masking the two output shares with a random
group element. Thus, the following separation result applies also to additive HSS. Finally,
note that the above definition does not explicitly require that each input share hide the
input. However, for nontrivial functions g this is implied by the above requirements, and in
any case not requiring this makes the negative result stronger.

Towards separating non-compact HSS from 2-round OT, we use the following simple
transformation of HSS to a 2-round protocol with publicly decodable transcript.
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Claim 2.4.2 For any δ, ε > 0, (δ, ε)-non-compact HSS for computing g in the can be used as
a black box to construct a protocol (Π,Dec) for computing g in 2 rounds with (δ, ε)-publicly
decodable transcript.

Proof We start with the description of Π. In the first round, the party P ∈ {P1, P2}
runs Share on its input and sends the other party’s share. The parties then run Eval on the
shares to obtain z1 and z2 respectively. In the second round, the parties exchange z1 and z2.
We define Dec to extract (z1, z2) and run the decoder for HSS to learn g(x, y). The security
properties directly follow from the properties of non-compact HSS.

Using the black-box separation of Corollary 2.3.4, we get the following corollary.

Corollary 2.4.3 There is no black-box construction of non-compact 2-party HSS for g(x1, x2) =
x1 ∧ x2 from 2-round OT.

In contrast, a non-black-box construction of non-compact 2-party HSS from 2-round OT
easily follows from the positive result for the 2-round client-server model from [GIS18] via
a simple syntactic translation. Indeed, consider such a protocol for a function g(x, y) with
2 input clients, two servers, and a single output client. The interaction in such a protocol
consists of a message from each input client to each server, followed by a message from each
server to the output client. Assume without loss of generality that the two input clients run
the same algorithm. Then Share(x) outputs the pair of messages sent by a client on input x,
Eval(j, (x1, x2)) the message sent by server j upon receiving messages (xj, yj) from the client,
and Dec(z1, z2) returns the output of the output client upon receiving messages z1, z2.
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Chapter 3

Non-Black-Box Construction

In this chapter, we give a non-black-box construction of two-round secure multiparty com-
putation from two-round oblivious transfer. In Section 3.1, we give a brief overview of the
universal composability framework. In Section 3.2, we define the main building blocks used
in our construction. In Section 3.3, we define conforming protocols which is an intermediate
primitive that is used in our construction of two-round protocols. In Section 3.4, we give a
construction of two-round MPC protocol in the plain model against semi-honest adversaries
and in Section 3.5, we give a two-round MPC protocol in the Common Random/Reference
String model with security against malicious adversaries.

3.1 Universal Composability Framework

Below we briefly review UC security. For full details see [Can01]. A large part of this section
has been taken verbatim from [CLP10]. A reader familiar with the notion of UC security
can safely skip this section.

3.1.1 The basic model of execution

Following [GMR88; Gol04], a protocol is represented as an interactive Turing machine (ITM),
which represents the program to be run within each participant. Specifically, an ITM has
three tapes that can be written to by other ITMs: the input and subroutine output tapes
model the inputs from and the outputs to other programs running within the same “entity”
(say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also
has an identity tape that cannot be written to by the ITM itself. The identity tape contains
the program of the ITM (in some standard encoding) plus additional identifying information
specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances
of ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an
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ITI is an ITM along with an identifer that distinguishes it from other ITIs in the same
system. The identifier consists of two parts: A session-identifier (SID) which identifies which
protocol instance the ITM belongs to, and a party identifier (PID) that distinguishes among
the parties in a protocol instance. Typically the PID is also used to associate ITIs with
“parties”, or clusters, that represent some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s
tapes in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of
the ITI in the system.

With one exception (discussed within) we assume that all ITMs are probabilistic poly-
nomial time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point
during its run, the overall number of steps taken by M is at most nc, where n is the overall
number of bits written on the input tape of M in this run. (In fact, in order to guarantee
that the overall protocol execution process is bounded by a polynomial, we define n as the
total number of bits written to the input tape of M , minus the overall number of bits written
by M to input tapes of other ITMs.; see [Can01].)

3.1.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three
steps, as follows. First, the process of executing a protocol in an adversarial environment
is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have
access to an “ideal functionality,” which is essentially an incorruptible “trusted party” that
is programmed to capture the desired functionality of the task at hand. A protocol is said
to securely realize an ideal functionality if the process of running the protocol amounts to
“emulating” the ideal process for that ideal functionality. Below we overview the model of
protocol execution (called the real-life model), the ideal process, and the notion of protocol
emulation.

The model for protocol execution. The model of computation consists of the parties
running an instance of a protocol Π, an adversary A that controls the communication among
the parties, and an environment Z that controls the inputs to the parties and sees their
outputs. We assume that all parties have a security parameter λ ∈ N. (We remark that
this is done merely for convenience and is not essential for the model to make sense). The
execution consists of a sequence of activations, where in each activation a single participant
(either Z, A, or some other ITM) is activated, and may write on a tape of at most one other
participant, subject to the rules below. Once the activation of a participant is complete (i.e.,
once it enters a special waiting state), the participant whose tape was written on is activated
next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input.
In the context of UC security, the environment can from now on invoke (namely, provide
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input to) only ITMs that consist of a single instance of protocol Π. That is, all the ITMs
invoked by the environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communi-
cation tapes of all parties. It may either deliver a message to some party by writing this
message on the party’s incoming communication tape or report information to Z by writing
this information on the subroutine output tape of Z. For simplicity of exposition, in the rest
of this paper we assume authenticated communication; that is, the adversary may deliver
only messages that were actually sent. (This is however not essential as shown in [Can04;
Bar+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given
by the environment or due to a message delivered by the adversary, it follows its code and
possibly writes a local output on the subroutine output tape of the environment, or an
outgoing message on the adversary’s incoming communication tape.

In this work, we consider the setting of static corruptions. In the static corruption setting,
the set of corrupted parties is determined at the start of the protocol execution and does not
change during the execution.

The protocol execution ends when the environment halts. The output of the protocol
execution is the output of the environment. Without loss of generality, we assume that this
output consists of only a single bit.

Let EXECπ,A,Z(λ, z, r) denote the output of the environment Z when interacting with par-
ties running protocol Π on security parameter λ, input z and random input r = rZ , rA, r1, r2, . . .
as described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(λ, z) random
variable describing EXECπ,A,Z(λ, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote
the ensemble {EXECπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing
the protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient
in the ideal protocol is the ideal functionality that captures the desired functionality, or the
specification, of that task. The ideal functionality is modeled as another ITM (representing
a “trusted party”) that interacts with the parties and the adversary. More specifically, in
the ideal protocol for functionality F all parties simply hand their inputs to an ITI running
F . (We will simply call this ITI F . The SID of F is the same as the SID of the ITIs running
the ideal protocol. (the PID of F is null.)) In addition, F can interact with the adversary
according to its code. Whenever F outputs a value to a party, the party immediately copies
this value to its own output tape. We call the parties in the ideal protocol dummy parties.
Let Π(F) denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol
φ if for any adversary A there exists an adversary S such that no environment Z, on any
input, can tell with non-negligible probability whether it is interacting with A and parties
running Π, or it is interacting with S and parties running φ. This means that, from the
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point of view of the environment, running protocol Π is ‘just as good’ as interacting with
φ. We say that Π securely realizes an ideal functionality F if it emulates the ideal protocol
Π(F). More precise definitions follow. A distribution ensemble is called binary if it consists
of distributions over {0, 1}.

Definition 3.1.1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adver-
sary A there exists an adversary S such that for any environment Z that obeys the rules of
interaction for UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

Definition 3.1.2 Let F be an ideal functionality and let Π be a protocol. We say that Π
UC-realizes F if Π UC-emulates the ideal process Π(F).

3.1.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the
standard model of execution, the parties also have access to (multiple copies of ) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying prim-
itives, or alternatively make trust assumptions on the underlying network. They are also
instrumental in stating the universal composition theorem. Specifically, in an F -hybrid pro-
tocol (i.e., in a hybrid protocol with access to an ideal functionality F), the parties may give
inputs to and receive outputs from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the
input tape of that copy. Similarly, each copy of F writes the output values to the subroutine
output tape of the corresponding party. It is stressed that the adversary does not see the
interaction between the copies of F and the honest parties.

The copies of F are differentiated using their sub-session IDs (see UC with joint state
[CR03]). All inputs to each copy and all outputs from each copy carry the corresponding
sub-session ID. The model does not specify how the sub-session IDs are generated, nor
does it specify how parties “agree” on the sub-session ID of a certain protocol copy that
is to be run by them. These tasks are left to the protocol. This convention seems to
simplify formulating ideal functionalities, and designing protocols that securely realize them,
by freeing the functionality from the need to choose the sub-session IDs and guarantee their
uniqueness. In addition, it seems to reflect common practice of protocol design in existing
networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid
protocols in the natural way.

The universal composition operation. We define the universal composition operation
and state the universal composition theorem. Let ρ be an F -hybrid protocol, and let Π be
a protocol that securely realizes F . The composed protocol ρΠ is constructed by modifying
the code of each ITM in ρ so that the first message sent to each copy of F is replaced with
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an invocation of a new copy of Π with fresh random input, with the same SID (different
invocations of F are given different sub-session IDs), and with the contents of that message
as input. Each subsequent message to that copy of F is replaced with an activation of the
corresponding copy of Π, with the contents of that message given to Π as new input. Each
output value generated by a copy of Π is treated as a message received from the corresponding
copy of F . The copy of Π will start sending and receiving messages as specified in its code.
Notice that if Π is a G-hybrid protocol (i.e., ρ uses ideal evaluation calls to some functionality
G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general
form, the composition theorem basically says that if Π is a protocol that UC-realizes F
then, for any F -hybrid protocol ρ, we have that an execution of the composed protocol ρΠ

“emulates” an execution of protocol ρ. That is, for any adversary A there exists a simulator
S such that no environment machine Z can tell with non-negligible probability whether it
is interacting with A and protocol ρΠ or with S and protocol ρ, in a UC interaction. As a
corollary, we get that if protocol ρ UC-realizes F , then so does protocol ρΠ. 1

Theorem 3.1.3 (Universal Composition [Can01].) Let F be an ideal functionality. Let
ρ be a F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-
emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some func-
tionality G, then so does ρΠ.

3.1.4 The Common Reference/Random String Functionality

In the common reference string (CRS) model [CF01; Can+02], all parties in the system
obtain from a trusted party a reference string, which is sampled according to a pre-specified
distribution D. The reference string is referred to as the CRS. In the UC framework, this
is modeled by an ideal functionality FDCRS that samples a string ρ from a pre-specified
distribution D and sets ρ as the CRS. FDCRS is described in Figure 3.1.

When the distribution D in FDCRS is sent to be the uniform distribution (on a string
of appropriate length) then we obtain the common random string functionality denoted as
FCRS.

3.1.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time
(possibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is pa-

1 The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely
protocols that do not share subroutines with any other protocol in the system.
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Functionality FD
CRS

FD
CRS runs with parties P1, . . . Pn and is parameterized by a sampling algorithm D.

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r), where r
denotes uniform random coins, and send (crs, sid, ρ) to the adversary.

2. On receiving (crs, sid) from the adversary, send (crs, sid, ρ) to every uncorrupted
party.

Figure 3.1: The Common Reference String Functionality.

rameterized with a function f and is described in Figure 3.2. In this paper we will only be
concerned with the static corruption model.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with parties P =
{P1, . . . Pn} (of which some may be corrupted) and an adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P , Pi, xi) to
the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ← f(x1, . . . , xn). For
every Pi that is corrupted, send adversary S the message (output, sid,P , Pi, yi).

3. On receiving (generateOutput, sid,P) from S, the ideal functionality outputs
(output, sid,P , Pi, yi) to Pi for every uncorrupted Pi. If S sends (abort, sid,P), the
ideal functionality outputs (output, sid,P , Pi,⊥) to Pi for every uncorrupted Pi. (And
ignores the message if inputs from all parties in P have not been received.)

Figure 3.2: General Functionality.

3.2 Building Blocks

In this section, we will describe the main building blocks used in our construction of multi-
party computation.
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3.2.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao86] (see Applebaum et
al. [AIK04; AIK05], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed
proof and further discussion). A garbling scheme for circuits is a tuple of PPT algorithms
(Garb,Eval). Garb is the circuit garbling procedure and Eval is the corresponding evaluation
procedure. More formally:

• (C̃, {labw,b}w∈inp,b∈{0,1})← Garb
(
1λ, C

)
: Garb takes as input a security parameter 1λ, a

circuit C, and outputs a garbled circuit C̃ along with labels labw,b where w ∈ inp (inp
is the set of input wires of C) and b ∈ {0, 1}. Each label labw,b is assumed to be in
{0, 1}λ.

• y ← Eval
(
C̃, {labw,xw}w∈inp

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈inp (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}|inp|
we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw}w∈inp

)]
= 1

where (C̃, {labw,b}w∈inp,b∈{0,1})← Garb
(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator Sim such that for any
circuit C and input x ∈ {0, 1}|inp|, we have that:

• (
C̃, {labw,xw}w∈inp

)
≈c Sim

(
1|C|, 1|x|, C(x)

)
where (C̃, {labw,b}w∈inp,b∈{0,1}) ← Garb

(
1λ, C

)
and ≈c denotes that the two distribu-

tions are computationally indistinguishable.

• Authenticity of Input labels. For any PPT adversary A, the probability that the
following game outputs 1 is negligible.

C̃, {labw}w∈inp ← Sim
(
1|C|, 1|x|, C(x)

)
{lab′w}w∈inp ← A(C̃, {labw}w∈inp)

y = Eval(C̃, {lab′w}w∈inp)
({labw}w∈inp 6= {lab′w}w∈inp)

∧
(y 6= ⊥)

Remark 3.2.1 We can add authenticity of input labels property generically to any garbled
circuit construction by digitally signing every input label and including the verification key
as part of the garbled circuit C̃.
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3.2.2 Oblivious Transfer

In this thesis, we consider a 2-round, 1-out-of-2 oblivious transfer protocol (OT), similar
to [BM89; NP01; AIR01; HK12] where one party, the sender, has input composed of two
strings (s0, s1) and the input of the second party, the receiver, is a bit β. The receiver should
learn sβ and nothing regarding s1−β while the sender should gain no information about β.

Semi-Honest Two-Round Oblivious Transfer. A two-round semi-honest OT protocol
〈S,R〉 is defined by three probabilistic algorithms (OT1,OT2,OT3) as follows. The receiver
runs the algorithm OT1 which takes the security parameter 1λ, and the receiver’s input
β ∈ {0, 1} as input and outputs ots1 and ω.2 The receiver then sends ots1 to the sender,
who obtains ots2 by evaluating OT2(ots1, (s0, s1)), where s0, s1 ∈ {0, 1}λ are the sender’s
input messages. The sender then sends ots2 to the receiver who obtains sβ by evaluating
OT3(ots2, (β, ω)).

- Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0 and
s1 of the sender we require that, if (otm1, ω)← OT1(1λ, β), otm2 ← OT2(otm1, (s0, s1)),
then OT3(otm2, (β, ω)) = sβ with overwhelming probability.

- Receiver’s security. We require that{
otm1 : (otm1, ω)← OT1(1λ, 0)

} c
≈
{

otm1 : (otm1, ω)← OT1(1λ, 1)
}
.

- Sender’s security. We require that for any choice of β ∈ {0, 1}, and any strings
K0, K1, L0, L1 ∈ {0, 1}λ with Kβ = Lβ, we have that{

β, ω′,OT2(1λ, otm1, K0, K1)
} c
≈
{
β, ω′,OT2(1λ, otm1, L0, L1)

}
where ω′ ← {0, 1}∗ and (otm1, ω) := OT1(1λ, β;ω′).

Constructions of semi-honest two-round OT are known in the plain model under assump-
tions such as CDH [BM89], DDH [AIR01; NP01] and quadratic/N th residuosity [HK12].

Maliciously Secure Two-Round Oblivious Transfer. We consider the stronger notion
of oblivious transfer in the common random/reference string model. In terms of syntax, we
supplement the syntax of semi-honest oblivious transfer with an algorithm KOT that takes
the security parameter 1λ as input and outputs the common random/reference string σ.
Also, the three algorithms OT1,OT2 and OT3 additionally take σ as input. Correctness and
receiver’s security properties in the malicious case are the same as the semi-honest case.
However, we strengthen the sender’s security as described below.

2We note that ω in the output of OT1 need not contain all the random coins used by OT1. This fact will
be useful in the stronger equivocal security notion of oblivious transfer.
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- Correctness. For every choice bit β ∈ {0, 1} of the receiver and input messages s0

and s1 of the sender we require that, if σ ← KOT(1λ), (otm1, ω)← OT1(σ, β), otm2 ←
OT2(σ, otm1, (s0, s1)), then OT3(σ, otm2, (β, ω)) = sβ with overwhelming probability.

- Receiver’s security. We require that{
(σ, otm1) : σ ← KOT(1λ), (otm1, ω)← OT1(σ, 0)

} c
≈{

(σ, otm1) : σ ← KOT(1λ), (otm1, ω)← OT1(σ, 1)
}

- Sender’s security. We require the existence of PPT algorithm Ext = (Ext1,Ext2)
such that for any choice of K0, K1 ∈ {0, 1}λ and PPT adversary A we have that∣∣Pr[INDREAL

A (1λ, K0, K1) = 1]− Pr[INDIDEAL
A (1λ, K0, K1) = 1]

∣∣ ≤ 1

2
+ negl(λ).

Experiment INDREAL
A (1λ, K0, K1):

σ ← KOT(1λ)
otm1 ← A(σ)

otm2 ← OT1(σ, otm1, (K0, K1))
Output A(otm2)

Experiment INDIDEAL
A (1λ, K0, K1):

(σ, τ)← Ext1(1λ)
otm1 ← A(σ)
β := Ext2(τ, otm1)
L0 := Kβ and L1 := Kβ

otm2 ← OT2(σ, otm1, (L0, L1))
Output A(otm2)

Constructions of maliciously secure two-round OT are known in the common random string
model under assumptions such as DDH, quadratic residuosity, and LWE [PVW08].

Equivocal Receiver’s Security. We also consider a strengthened notion of malicious
receiver’s security where we require the existence of a PPT simulator SimEq such that the
for any β ∈ {0, 1}:{

(σ, (otm1, ωβ)) : (σ, otm1, ω0, ω1)← SimEq(1
λ)
} c
≈
{

(σ,OT1(σ, β)) : σ ← KOT(1λ)
}
.

Using standard techniques in the literature (e.g., [Can+02]) it is possible to add equivocal
receiver’s security to any OT protocol. We give a construction in below for completeness.

Lemma 3.2.2 Assuming two-round maliciously secure OT protocol, there exists a two-round
maliciously secure OT protocol with equivocal receiver’s security.

Proof Given a two-round maliciously secure OT protocol (K ′OT,OT′1,OT′2,OT′3) we give a
two-round maliciously secure OT protocol (KOT,OT1,OT2,OT3) that additionally achieves
the equivocal receiver’s security. We also use a pseudorandom generator g : {0, 1}λ →
{0, 1}3λ. Our construction is as follows:
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• KOT(1λ): Output σ := (σ′, r) where σ′ ← K ′OT(1λ) and r ← {0, 1}3λ.

• OT1(σ = (σ′, r), β):

1. Sample x← {0, 1}λ. If β = 0 then set y := g(x) and y := r ⊕ g(x) otherwise.

2. For each i ∈ [λ], prepare (otm0
1,i, ω

0
i )← OT′1(σ′, xi).

3. For each i ∈ [λ], prepare (otm1
1,i, ω

1
i )← OT′1(σ′, xi).

4. Output otm1 := (y, {otm0
1,i, otm1

1,i}i∈[λ]) and ω :=
(
β, {ω0

i }i∈[λ]

)
if β = 0 and

ω :=
(
β, {ω1

i }i∈[λ]

)
otherwise.

• OT2(σ = (σ′, r), otm1 = (y, {otm0
1,i, otm1

1,i}i∈[λ]), (s0, s1)): Let Cy,s be a circuit with
y ∈ {0, 1}3λ and s hardwired in it which on input x ∈ {0, 1}λ outputs s if y = g(x)
and ⊥ otherwise. OT2 proceeds as follows:

1. Obtain (C̃0, {lab0
i,b}i∈[λ],b∈{0,1})← Garb(1λ, Cy,s0).

2. Obtain (C̃1, {lab1
i,b}i∈[λ],b∈{0,1})← Garb(1λ, Cr⊕y,s1).

3. For each i ∈ [λ], obtain otm0
2,i ← OT′2(σ′, otm0

1,i, (lab0
i,0, lab0

i,1)).

4. For each i ∈ [λ], obtain otm1
2,i ← OT′2(σ′, otm1

1,i, (lab1
i,0, lab1

i,1)).

5. Output otm2 := (C̃0, C̃1, {otm0
2,i, otm1

2,i}i∈[λ]).

• OT3

(
σ = (σ′, r), otm2 = (C̃0, C̃1, {otm0

2,i, otm1
2,i}i∈[λ]), ω =

(
β,
{
ωβi

}
i∈[λ]

))
: Compute

1. For each i ∈ [λ], recover labi := OT′3(σ′, otmβ
2,i, ω

β
i ).

2. Output Eval(C̃β, {labi}i∈[λ]).

The correctness of the above described OT protocol follows directly from the correctness
of the underlying cryptographic primitives. We now prove sender security and equivocal
receiver’s security.

Sender’s Security. The sender’s security of (KOT,OT1,OT2,OT3) follows from the sender’s
security of (K ′OT,OT′1,OT′2,OT′3) and the simulation security of the garbling scheme. We
start by describing the construction of Ext = (Ext1,Ext2) using the extractor Ext′ = (Ext′1,Ext,′2 )
for (K ′OT,OT′1,OT′2,OT′3).

• Ext1(1λ) executes (σ′, τ)← Ext′1(1λ) and r ← {0, 1}3λ and outputs σ := (σ′, r) and τ .

• Ext2

(
τ, otm1 =

(
y,
{

otm0
1,i, otm1

1,i

}
i∈[λ]

))
proceeds as follows: For each i ∈ [λ], obtain

x0,i := Ext′2(τ, otm1,i). If g(x0) = y then output 0 and 1 otherwise.



CHAPTER 3. NON-BLACK-BOX CONSTRUCTION 47

Now we argue that using this extractor Ext = (Ext1,Ext2), for any PPT adversary A, the
distributions INDREAL

A (1λ, K0, K1) and INDIDEAL
A (1λ, K0, K1) are computationally indistin-

guishable. We argue this via the following sequence of hybrids.

• H0: This hybrid is the same as INDREAL
A (1λ, K0, K1).

• H1: In this hybrid we change how the σ′ in σ = (σ′, r) is generated. Specifically, we use
the extractor Ext′1 above to generate it. Additionally, we use Ext′2 to recover a value of
x0 and x1 that the receiver provides in {otm0

1,i}i∈[λ] and {otm1
1,i}i∈[λ], respectively.

Indistinguishability betweenH0 andH1 can be reduced directly to the sender’s security
of the underlying OT protocol. Additionally, we claim that for any x0, x1 over the
random choices of r we have that Pr[g(x0) = y ∧ g(x1) = r ⊕ y] ≤ 2−λ which is
negligible. Thus, we set β = 0 if g(x0) = y and 1 otherwise. This is the same as the
value extracted by Ext2 above.

• H2: In this hybrid we change how the values otm1−β
2,i are generated for each i ∈ [λ]. More

specifically, for each i ∈ [λ], we generate otm1−β
2,i ← OT2

(
σ′, otm1−β

1,i , (lab1−β
i,x1−β,i

, lab1−β
i,x1−β,i

)
)

.

Indistinguishability between H1 and H2 can be reduced to the sender’s security of the
underlying OT protocol.

• H3: In this hybrid we change the garbled C̃1−β to the simulate circuit generated via
SimG with the output ⊥ hardwired (i.e. it is generated as SimG(1λ,⊥)).

Indistinguishability between H2 and H3 reduces to the security of the garbling scheme.

Equivocal Receiver’s Security. We start by providing the PPT simulator SimEq(1
λ)

which proceeds as follows:

1. Generate σ′ ← K ′OT(1λ) and r := g(x0)⊕g(x1) where x0, x1 ← {0, 1}λ. Set σ := (σ′, r).

2. Set y := g(x0).

3. For each i ∈ [λ], prepare (otm0
1,i, ω

0
i )← OT′1(σ′, x0,i).

4. For each i ∈ [λ], prepare (otm1
1,i, ω

1
i )← OT′1(σ′, x1,i).

5. Output
(
σ := (σ′, r), otm1 := (y, {otm0

1,i, otm1
1,i}i∈[λ]), ω0 :=

(
β, {ω0

i }i∈[λ]

)
, ω1 :=

(
β, {ω1

i }i∈[λ]

))
.

We are left to argue that for each β, the distribution (σ, otm1, ωβ) is indistinguishable for the
distribution of the honestly generated values. We sketch the argument for the case where
β = 0. The argument for the case where β = 1 is analogous.

• H0: This hybrid corresponds to the real distribution. Namely, we set σ = (σ′, r) ←
KOT(1λ) and (otm1 = (y, {otm0

1,i, otm1
1,i}i∈[λ]), ωβ)← OT1(σ, β).
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• H1: In this hybrid, we change how r in generated. More specifically, we set r as
g(x)⊕ g(x′) where x, x′ ← {0, 1}λ and use the same x in the generation of otm1.

Indistinguishability between hybrids H0 and H1 follows directly from the security of
the pseudorandom generator.

• H2: In this hybrid we change how otm1
1,i values are generated. Specifically, for each

i ∈ [λ], we set (otm1
1,i, ω

1
i ) ← OT′1(σ′, x′i) instead of (otm1

1,i, ω
1
i ) ← OT′1(σ′, xi). Note

that H2 is the same as the distribution generated by SimEq for β = 0 case.

Indistinguishability between hybrids H1 and H2 follows from the receiver’s security of
the underlying OT protocol.

This completes the argument.

3.3 Conforming Protocols

Our result is obtained by transforming larger-round protocols securely computing a function
and satisfying certain syntactic structure into a two-round protocol that securely computes
the same function. We refer to protocols satisfying this syntax as conforming protocols. In
this subsection, we describe this notion and prove that any MPC protocol can be transformed
into a conforming protocol while preserving its correctness and security properties.

3.3.1 Specifications for a Conforming Protocol

Consider an n party deterministic3 MPC protocol Φ between parties P1, . . . , Pn with inputs
x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi.
A conforming protocol Φ is defined by functions pre, post, and computations steps or what
we call actions φ1, · · ·φT . The protocol Φ proceeds in three stages: the pre-processing stage,
the computation stage and the output stage.

• Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi)← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the index i of the
party, its input xi and outputs zi ∈ {0, 1}`/n and vi ∈ {0, 1}` (where ` is a parameter
of the protocol). Finally, Pi retains vi as the secret information and broadcasts zi to
every other party. We require that vi,k = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.

• Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn)⊕ vi.

Next, for each t ∈ {1 · · ·T} parties proceed as follows:
3Randomized protocols can be handled by including the randomness used by a party as part of its input.



CHAPTER 3. NON-BLACK-BOX CONSTRUCTION 49

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as

sti,h = NAND(sti,f , sti,g)

and broadcasts sti,h ⊕ vi,h to every other party.

3. Every party Pj for j 6= i updates stj,h to the bit value received from Pi.

We require that for all t, t′ ∈ [T ] such that t 6= t′, we have that if φt = (·, ·, ·, h) and
φt′ = (·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T ] to be the set of rounds in with
party Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

• Output phase: For each i ∈ [n], party Pi outputs post(sti).

3.3.2 Transformation for Making a Protocol Conforming

We show that any MPC protocol can made conforming by making only some syntactic
changes. Our transformed protocols retains the correctness or security properties of the
original protocol.

Lemma 3.3.1 Any MPC protocol Π can be transformed to a conforming protocol Φ while
inheriting the correctness and the security of the original protocol.

Proof Let Π be any given MPC protocol. Without loss of generality we assume that
in each round of Π, one party broadcasts one bit that is obtained by computing a circuit
on its initial state and the messages it has received so far from other parties. Note that
this restriction can be easily enforced by increasing the round complexity of the protocol
to the communication complexity of the protocol. Let the round complexity (and also
communication complexity) of Π be p. In every round r ∈ [p] of Π, a single bit is sent by
one of the parties by computing a circuit on its internal state. Let the circuit computed in
round r be Cr. Without loss of generality we assume that (i) these exists q such that for
each r ∈ [p], we have that q = |Cr|, (ii) each Cr is composed of just NAND gates with fan-in
two, and (iii) each party sends an equal number of bits in the execution of Π. All three of
these conditions can be met by adding dummy gates and dummy round of interaction.

We are now ready to describe our transformed conforming protocol Φ. The protocol Φ
will have T = pq rounds. We let ` = mn+pq and `′ = pq/n and depending on ` the compiled
protocol Φ is as follows.

• pre(i, xi): Sample ri ← {0, 1}m and si ← ({0, 1}q−1‖0)p/n. (Observe that si is a pq/n bit
random string such that its qth, 2qth · · · locations are set to 0.) Output zi := xi⊕ ri‖0`

′

and vi := 0`/n‖ . . . ‖ri‖si‖ . . . ‖0`/n.
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• We are now ready to describe the actions φ1, · · ·φT . For each r ∈ [p], round r in Π party
is expanded into q actions in Φ — namely, actions {φj}j where j ∈ {(r−1)q+1 · · · rq}.
Let Pi be the party that computes the circuit Cr and broadcast the output bit broadcast
in round r of Π. We now describe the φj for j ∈ {(r − 1)q + 1 · · · rq}. For each j,
we set φj = (i, f, g, h) where f and g are the locations in sti that the jth gate of Cr is
computed on (recall that initially sti is set to zi ⊕ vi). Moreover, we set h to be the
first location in sti among the locations (i− 1)`/n+m+ 1 to i`/n that has previously
not been assigned to an action. (Note that this is `′ locations which is exactly equal
to the number of bits computed and broadcast by Pi.)

Recall from before than on the execution of φj, party Pi sets sti,h := NAND(sti,f , sti,g)
and broadcasts sti,h ⊕ vi,h to all parties.

• post(i, sti): Gather the local state of Pi and the messages sent by the other parties in
Π from sti and output the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π.
Observe that Φ is essentially the same as the protocol Π except that in Φ some additional
bits are sent. Specifically, in addition to the messages that were sent in Π, in Φ parties send
zi in the preprocessing step and q−1 additional bits per every bit sent in Π. Note that these
additional bits sent are not used in the computation of Φ. Thus these bits do not affect the
functionality of Π if dropped. This ensures that Φ inherits the correctness properties of Π.
Next note that each of these bits is masked by a uniform independent bit. This ensures that
Φ achieves the same security properties as the underlying properties of Π.

Finally, note that by construction for all t, t′ ∈ [T ] such that t 6= t′, we have that if
φt = (·, ·, ·, h) and φt′ = (·, ·, ·, h′) then h 6= h′ as required.

3.4 Two-Round MPC: Semi-Honest Case

In this section, we give our construction of two-round multiparty computation protocol in the
semi-honest case with security against static corruptions based on any two-round semi-honest
oblivious transfer protocol in the plain model. This is achieved by designing a compiler that
takes any conforming arbitrary (polynomial) round MPC protocol Φ and squishes it to two
rounds.

3.4.1 Our Compiler

We give our construction of two-round MPC in Figure 3.3 and the circuit that needs to be
garbled (repeatedly) is shown in Figure 3.4. We start by providing intuition behind this
construction.
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3.4.1.1 Intuition

In the first round of our compiled protocol, each party runs the preprocessing phase of the
protocol Φ and obtains zi and vi and broadcasts zi to every other party. In the second
round, each party sends a set of garbled circuits that “non-interactively” implement the
entire computation phase of the protocol Φ. In other words, any party with the set of
garbled circuits sent by every other party, can use them to compute the entire transcript of
the computation phase of the protocol Φ. This allows each party to obtain the output of the
protocol Φ. In the following paragraphs, we give more details on how this is achieved.

To understand the main idea, let us concentrate on a particular round (let us say the
tth round) of the computation phase of the conforming protocol Φ and see how this step
is implemented using garbled circuits. Recall that before starting the computation phase,
each party locally computes sti := (z1‖ . . . ‖zn) ⊕ vi using the first round messages sent by
the other parties. This local state is updated (recall that only one bit location is updated)
at the end of each round based on the bit that is sent in that round. We start with some
notations.

Notations. Let us say that the party Pi∗ is the designated party in round t. Let stti be
the updated local state of party Pi at the beginning of the tth round of the computation
phase. In the tth round, the designated party Pi∗ computes γ := NAND(stti∗,f , stti∗,g), writes
this bit to position h of stti∗ and broadcasts γ⊕ vi∗,h to every other party. Every other party
Pi (where i 6= i∗) updates its local state by writing the received bit at position h in its state
stti.

Implementing the Computation Phase. The tth round of the computation phase is
implemented by the tth garbled circuit in each of these sequences. In a bit more details, the
garbled circuit of party Pi takes as input stti which is the state of the party Pi at the beginning
of the t-th round and outputs or, aids the process of outputting the labels corresponding to
the updated local state at the end of the tth round. These labels are then used to evaluate
the garbled circuit corresponding to the (t + 1)th round of the computation phase and this
process continues. Finally, at the end each party can just compute output function on the
final local state to obtain its output. Next, we describe how the tth sequence of garbled
circuits can be used to complete the tth action of the computation phase.

The tth garbled circuit of party Pi∗ is executed first and is the most natural one as in this
round party Pi∗ is the one that sends a bit to the other parties. Starting with the easy part,
this garbled circuit takes as input stti∗ , updates the local state by writing the bit γ in the
position h of stti∗ and outputs the labels corresponding to its updated state. However, the
main challenge is that this garbled circuit needs to communicate the bit γ ⊕ vi∗,h to other
garbled circuits of the other parties. Specifically, those garbled circuits also need to output
the correct labels corresponding to the their updated local state. Note that only the hth bit
of each of their local state needs to be updated.
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Relying on Oblivious Transfer. In addition to broadcasting the encoded input zi in the
first round, the party Pi sends a set of 4 OT messages (acting as the receiver) for every round
in the computation phase where Pi is the designated party. Thus, if the number of rounds
in the computation phase where Pi is the designated party is ai, then the party Pi sends 4ai
receiver OT messages. Specifically, in our running example from above, Pi∗ will generate 4
first OT messages to help in tth round of Φ. In particular, for each value of α, β ∈ {0, 1}, Pi∗
generates the first OT message with vi∗,h ⊕ NANDvi∗,f ⊕ α, vi∗,g ⊕ β as its choice bit. Every
other party Pi for i 6= i∗ acts as the sender and prepares four OT responses corresponding
to each of the four OT messages using labels corresponding to the h-th input wire (say
(labi,t+1

h,0 , labi,t+1
h,1 )) of its next (i.e., (t + 1)th) garbled circuit. However, these values aren’t

sent to anyone yet! Because sending them all to Pi∗ would lead to complete loss of security.
Specifically, for every choice of vi∗,f , vi∗,g, vi∗,h there exists different choices of α, β such that
vi∗,h⊕NANDvi∗,f ⊕ α, vi∗,g ⊕ β is 0 and 1, respectively. Thus, if all these OT responses were
reveled to Pi∗ then Pi∗ would learn both the input labels labi,t+1

h,0 , labi,t+1
h,1 potentially breaking

the security of garbled circuits. Our key idea here is that party Pi hardcodes these OT
responses in its tth garbled circuit and only one of them is revealed to Pi∗ . We now elaborate
this.

The t-th garbled circuit of party Pi (where i 6= i∗) outputs the set of labels corresponding
to the state bits {stti,k}k∈[`]\{h} (as these bits do not change at the end of the t-th round) and
additionally outputs the sender OT response for α = stti,f and β = stti,g with the messages
being set to the labels corresponding to h-th bit of stti. It follows from the invariant of the
protocol, that the choice bit in this OT1 message is indeed γ ⊕ vi∗,h which is exactly the
bit Pi∗ wants to communicate to the other parties. However, this leaves us with another
problem. The OT responses only allow Pi∗ to learn the labels of the next garbled circuits
and it is unclear how a party j 6= i∗ obtains the labels of the garbled circuits generated by
Pi.

Enabling all Parties to Compute. The party Pi∗ ’s t
th garbled circuit, in addition to

outputting the labels corresponding to the updated state of Pi∗ , outputs the randomness it
used to prepare the first OT message for which all Pi for i 6= i∗ output OT responses; namely,
α = stti∗,f ⊕ vi∗,f , β = stti∗,g ⊕ vi∗,g. It again follows from the invariant of the protocol Φ that

this allows every party Pj with j 6= i∗ to evaluate the recover labi,t+1
h,γ⊕vi∗,h which is indeed the

label corresponding to the correct updated state. Thus, using the randomness output by the
garbled circuit of Pi∗ all other parties can recover the label labi,t+1

h,γ⊕vi∗,h .

We stress that this process of revealing the randomness of the OT leads to complete
loss of security for the particular instance OT. Nevertheless, since the randomness of only
one of the four OT messages of Pi∗ is reveled, overall security is ensured. In particular, our
construction ensures that the learned choice bit is γ ⊕ vi∗,h which is in fact the message
that is broadcasted in the underlying protocol Φ. Thus, it follows from the security of the
protocol Φ that learning this message does not cause any vulnerabilities.
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Let Φ be an n-party conforming semi-honest MPC protocol, (Garb,Eval) be a garbling scheme for circuits
and (OT1,OT2,OT3) be a semi-honest two-round oblivious transfer protocol.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for each α, β ∈ {0, 1},
choose ωt,α,β uniformly from {0, 1}∗ and compute

otm1,t,α,β ← OT1(1λ, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β).

3. Send
(
zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn)⊕ vi.

2. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,

a) Parse φt as (i∗, f, g, h).

b) If i = i∗ then compute (where P is described in Figure 3.4)(
P̃i,t, lab

i,t)← Garb(1λ,P[i, φt, vi, {ωt,α,β}α,β ,⊥, lab
i,t+1

]).

c) If i 6= i∗ then for every α, β ∈ {0, 1}, set otmi
2,t,α,β ← OT2(otm1,t,α,β , lab

i,t+1
h,0 , labi,t+1

h,1 )
and compute(

P̃i,t, lab
i,t)← Garb(1λ,P[i, φt, vi,⊥, {otmi

2,t,α,β}α,β , lab
i,t+1

]).

4. Parse lab
i,1

as {labi,1k,0, lab
i,1
k,1}k∈[`] and send

(
{P̃i,t}t∈[T ],{labi,1k,sti,k}k∈[`]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the following:

1. For each j ∈ [n], let l̃ab
j,1

:= {labj,1k }k∈[`] be the labels received from party Pj at the end
of round 2.

2. for each t from 1 to T do:

a) Parse φt as (i∗, f, g, h).

b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

c) Set sti,h := γ ⊕ vi,h.

d) for each j 6= i∗ do:

i. Compute (otm2, {labj,t+1
k }k∈[`]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(otm2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

3. Compute the output as post(sti).

Figure 3.3: Two-round Semi-Honest MPC.
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P

Input. sti.
Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the secret value vi, the
strings {ωt,α,β}α,β, {otm2,t,α,β}α,β and a set of labels lab = {labk,0, labk,1}k∈[`].

1. if i = i∗ then:

a) Compute sti,h := NAND(sti,f , sti,g), α := sti,f ⊕ vi,f , β := sti,g ⊕ vi,g and γ :=
sti,h ⊕ vi,h.

b) Output ((α, β, γ), ωt,α,β, {labk,sti,k}k∈[`]).

2. else:

a) Output (otm2,t,sti,f ,sti,g , {labk,sti,k}k∈[`]\{h}).

Figure 3.4: The program P.

Theorem 3.4.1 Let Φ be a polynomial round, conforming, n-party semi-honest MPC pro-
tocol computing a function f : ({0, 1}m)n → {0, 1}∗, (Garb,Eval) be a garbling scheme for
circuits, and (OT1,OT2,OT3) be a semi-honest two-round OT protocol. The protocol de-
scribed in Figure 3.3 is a two-round, n-party semi-honest MPC protocol computing f against
static corruptions.

3.4.2 Correctness

In order to prove correctness, it is sufficient to show that the label computed in Step 2.(d).(ii)
of the evaluation procedure corresponds to the bit NAND(sti∗,f , sti∗,g)⊕ vi∗,h. We show this
by induction. Notice that by the assumption on the structure of vi∗ (recall that vi∗ is
such that vi∗,k = 0 for all k ∈ [`]\ {(i∗ − 1)`/n+ 1, . . . , i∗`/n}) we deduce that for every
i 6= i∗, sti,f = sti∗,f ⊕ vi∗,f and sti,g = sti∗,g ⊕ vi∗,g (from induction). Thus, the label
obtained by OT2 corresponds to the bit NAND(vi∗,f⊕sti∗,f ⊕ vi∗,f︸ ︷︷ ︸

α

, vi∗,g⊕sti∗,g ⊕ vi∗,g︸ ︷︷ ︸
β

)⊕vi∗,h =

NAND(sti∗,f , sti∗,g)⊕ vi∗,h and correctness follows.

3.4.3 Simulator

Let A be a semi-honest adversary corrupting a subset of parties and let H ⊆ [n] be the set
of honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed
before the execution of the protocol. Below we provide the description of our simulator.
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Description of the Simulator. We give the description of the ideal world adversary S
that simulates the view of the real world adversary A. S will internally use the semi-honest
simulator SimΦ for Φ, and the simulator SimG for garbling scheme for circuits. Recall that A
is static and hence the set of honest parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted
parties that S receives from Z, S writes that value to A’s input tape. Similarly, the output
of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session
identifier sid that A may start, the simulator does the following:

• Initialization: S uses the inputs of the corrupted parties {xi}i6∈H and output y of the
functionality f to generate a simulated view of the adversary.4 More formally, for each
i ∈ [n]\H, S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing
f and obtains the output y. Next, it executes SimΦ(1λ, {xi}i6∈H , y) to obtain {zi}i∈H ,
the random tapes for the corrupted parties, the transcript of the computation phase
denoted by Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation
phase of Φ, and the value st∗ (which is equal to stTi ⊕ vi for each i ∈ [n]).5 S starts the
real-world adversary A with the inputs {zi}i∈H and random tape generated by SimΦ.

• Round-1 messages from S to A: Next S generates the OT messages on be-
half of honest parties as follows. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1}, generate
otm1,t,α,β ← OT1(1λ,Zt;ωt,α,β) (for uniformly chosen ωt,α,β). For each i ∈ H, S sends
(zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}) to the adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n] \ H, S receives
from the adversary A the value (zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the corrupted
party Pi.

• Round-2 messages from S to A: For each i ∈ H, the simulator S generates the
second round message on behalf of party Pi as follows:

1. For each k ∈ [`] set labi,T+1
k := 0λ.

2. for each t from T down to 1,

a) Parse φt as (i∗, f, g, h).

b) Set α∗ := st∗f , β
∗ := st∗g, and γ∗ := st∗h.

c) If i = i∗ then compute(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1

k }k∈[`]

))
.

4The case where each of the parties get a different output can be reduced to the case where the parties
get the same output by XORing the outputs of the parties using a one-time pad.

5Note that for each i ∈ [n], this value st∗ is going to be the same
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d) If i 6= i∗ then set otmi
2,t,α∗,β∗ ← OT2(otm1,t,α∗,β∗ , labi,t+1

h , labi,t+1
h ) and compute(

P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.

3. Send
(
{P̃i,t}t∈[T ],{labi,1k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n] \ H, S obtains the second
round message from A on behalf of the malicious parties. Subsequent to obtaining
these messages, for each i ∈ H, S sends (generateOutput, sid, {P1 · · ·Pn}) to the ideal
functionality.

3.4.4 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real
world adversary A or an ideal world adversary S. We prove this via an hybrid argument
with T + 1 hybrids.

• HybReal: This hybrid is the same as the real world execution.

Note that this hybrid is the same as hybrid Hybt below with t = 0.

• Hybt (where t ∈ {0, . . . T}): Hybrid Hybt (for t ∈ {1 · · ·T}) is the same as hybrid
Hybt−1 except we change the distribution of the OT messages (both from the first and
the second round of the protocol) and the garbled circuits (from the second round)
that play a role in the execution of the tth round of the protocol Φ; namely, the action
φt = (i∗, f, g, h). We describe the changes more formally below.

We start by executing the protocol Φ on the inputs and the random coins of the honest
and the corrupted parties. This yields a transcript Z ∈ {0, 1}T of the computation
phase. Since the adversary is assumed to be semi-honest, the execution of the protocol
Φ with A will be consistent with Z. Let st∗ = stTi ⊕ vi for each i ∈ [n]. Finally, let
α∗ := st∗f , β

∗ := st∗g and γ∗ := st∗h. For each i ∈ H, let stt+1
i be the updated state of

party Pi at the end of round t. In hybrid Hybt we make the following changes with
respect to hybrid Hybt−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates
messages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S generates otm1,t,α,β as
OT1(1λ,Zt;ωt,α,β) (note that only one of these four values is subsequently used)
rather than OT1(1λ, vi,h ⊕ NAND(vi,f ⊕ α, vi,g ⊕ β);ωt,α,β). Second, it generates
the garbled circuit(

P̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi

∗,t+1

k,stt+1
i,k

}k∈[`]

))
,

where {labi
∗,t+1

k,stt+1
i,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i
∗,t+1.
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– S makes the following two changes in how it generates messages for other honest
parties Pi (i.e., i ∈ H\{i∗}). S does not generate four otmi

2,t,α,β values but just one

of them; namely, S generates otmi
2,t,α∗,β∗ as OT2(otm1,t,α∗,β∗ , labi,t+1

h,Zt
, labi,t+1

h,Zt
) rather

than OT2(otm1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1 ). Second it generates the garbled circuit(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]\{h}

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generated input labels for the garbled circuit

P̃i,t+1.

Indistinguishability between Hybt−1 and Hybt is proved in Lemma 3.4.2.

• HybT+1: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins of
malicious parties and value st∗ are generated. Instead of generating these using honest
party inputs, we generate it via the simulator SimΦ (of the semi-honest secure protocol
Φ). In other words, we execute the simulator SimΦ on input {xi}i∈[n]\H and the output
y obtained from the ideal functionality.

The indistinguishability between hybrids HybT and HybT+1 follows directly from the
semi-honest security of the protocol Φ. Finally note that HybT+1 is same as the ideal
execution (i.e., the simulator described in the previous subsection).

Lemma 3.4.2 Assuming semi-honest security of the two-round OT protocol and the security
of the garbling scheme, for all t ∈ {1 . . . T} hybrids Hybt−1 and Hybt are computationally
indistinguishable.

Proof Using the same notation as before, let φt = (i∗, f, g, h), stt+1
i∗ be the state of Pi∗

at the end of round t, and α∗ := stt+1
i∗,f ⊕ vi∗,f , β

∗ := stt+1
i∗,g ⊕ vi∗,g and γ∗ := stt+1

i∗,h ⊕ vi∗,h.
The indistinguishability between hybrids Hybt−1 and Hybt follows by a sequence of three
sub-hybrids Hybt,1, Hybt,2, and Hybt,3.

• Hybt,1: Hybrid Hybt,1 is same as hybrid Hybt−1 except that S now generates the gar-

bled circuits P̃i,t for each i ∈ H in a simulated manner (rather than generating them
honestly). Specifically, instead of generating each garbled circuit and input labels(
P̃i,t, {labi,tk }k∈[`]

)
honestly, they are generated via the simulator by hard coding the

output of the circuit itself. In a bit more details, parse φt as (i∗, f, g, h).

– If i = i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i,t+1.
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– If i 6= i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]\{h}

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generated input labels for the garbled circuit

P̃i,t+1.

The indistinguishability between hybrids Hybt,1 and Hybt−1 follows by |H| invocations
of security of the garbling scheme.

• Hybt,2: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this
hybrid, we change how S generates the otmi

2,t,α,β on behalf of every honest party Pi
such that i ∈ H \ {i∗} for all choices of α, β ∈ {0, 1}. More specifically, S only
generates one of these four values; namely, otmi

2,t,α∗,β∗ which is now generated as

OT2(otm1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) instead of OT2(otm1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1 ).

Indistinguishability between hybrids Hybt,2 and Hybt,1 follows directly from the sender’s
security of underlying semi-honest oblivious transfer protocol.

• Hybt,3: Skip this hybrid, if i∗ 6∈ H. This hybrid is same as Hybt,2 except that we change
how S generates the Round-1 message on behalf of Pi∗ . Specifically, the simulator S
generates otm1,t,α,β as is done in the Hybt. In a bit more detail, for all α, β ∈ {0, 1}, S
generates otm1,t,α,β as OT1(1λ,Zt;ωt,α,β) rather than OT1(1λ, vi,h⊕NAND(vi,f⊕α, vi,g⊕
β);ωt,α,β).

Indistinguishability between hybrids Hybt,2 and Hybt,3 follows directly by a sequence
of 3 sub-hybrids each one relying on the receiver’s security of underlying semi-honest
oblivious transfer protocol. Observe here that the security reduction crucially relies on
the fact that P̃i,t only contains ωt,α∗,β∗ (i.e., does not have ωt,α,β for α 6= α∗ or β 6= β∗).

Finally, observe that Hybt,3 is the same as hybrid Hybt.

3.5 Two-Round MPC: Malicious Case

In this section, we give our construction of two-round multiparty computation protocol in
the malicious case with security against static corruptions based on any two-round malicious
oblivious transfer protocol with equivocal receiver security (which from Lemma 3.2.2 follows
from any two-round malicious oblivious transfer). This is achieved by designing a compiler
that takes any conforming arbitrary (polynomial) round MPC protocol Φ with malicious
security and squishes it to two rounds.
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3.5.1 Our Compiler

We give our construction of two-round MPC in Figure 3.5 and the circuit that needs to be
garbled (repeatedly) is shown in Figure 3.4 (same as the semi-honest case). Our compiler
is essentially the same as the semi-honest case. In addition to the minor syntactic changes,
the main difference is that we compile malicious secure conforming protocols instead of
semi-honest ones.

Another technical issue arises because the adversary may wait to receiver first round
messages that S sends on the behalf of honest parties before the corrupted parties send out
their first round messages. Recall that by sending the receiver OT messages in the first
round, every party “commits” to all its future messages that it will send in the computation
phase of the protocol. Thus, the ideal world simulator S must somehow commit to the
messages generated on behalf of the honest party before extracting the adversary’s effective
input. To get around this issue, we use the equivocability property of the OT using which
the simulator can equivocate its first round messages after learning the malicious adversary’s
effective input.

Theorem 3.5.1 Let Φ be a polynomial round, n-party malicious MPC protocol computing
a function f : ({0, 1}m)n → {0, 1}∗, (Garb,Eval) be a garbling scheme for circuits, and
(KOT,OT1,OT2,OT3) be a maliciously secure (with equivocal receiver security) two-round
OT protocol. The protocol described in Figure 3.5 is a two-round, n-party malicious MPC
protocol computing f against static corruptions.

We prove this theorem in the rest of the section. As in the semi-honest case, it is useful to
keep in mind that for every i, j ∈ [n] and k ∈ [`], we have that sti,k ⊕ vi,k = stj,k ⊕ vj,k. Let
us denote this shared value by st∗. Also, we denote the transcript of the interaction in the
computation phase by Z ∈ {0, 1}t.

3.5.2 Simulator

Let A be a malicious adversary corrupting a subset of parties and let H ⊆ [n] be the set of
honest/uncorrupted parties. Since we assume that the adversary is static, this set is fixed
before the execution of the protocol. Below we provide the notion of faithful execution and
then describe our simulator.

Faithful Execution. In the first round of our compiled protocol, A provides zi for every
i ∈ [n] \H and otm1,t,α,β for every t ∈ ∪i∈[n]\h and α, β ∈ {0, 1}. These values act as “bind-
ing” commitments to all of the adversary’s future choices. All these committed choices can
be extracted using the extractor Ext2. Let bt,α,β be the value extracted from otm1,t,α,β. Intu-
itively speaking, a faithful execution is an execution that is consistent with these extracted
values.
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Let Φ be an n-party, conforming malicious MPC protocol, (Garb,Eval) be a garbling scheme for circuits
and (KOT,OT1,OT2,OT3) be a malicious two-round oblivious transfer protocol with equivocal receiver
security.

Common Random/Reference String: For each t ∈ T, α, β ∈ {0, 1} sample σt,α,β ← KOT(1λ) and
output {σt,α,β}t∈[T ],α,β∈{0,1} as the common random/reference string.

Round-1: Each party Pi does the following:

1. Compute (zi, vi)← pre(1λ, i, xi).

2. For each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for each α, β ∈ {0, 1}

otm1,t,α,β ← OT1(σt,α,β , vi,h ⊕ NANDvi,f ⊕ α, vi,g ⊕ β;ωt,α,β).

3. Send
(
zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:

1. Set sti := (z1‖ . . . ‖zi−1‖zi‖zi+1‖ . . . ‖zn)⊕ vi.

2. Set lab
i,T+1

:= {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1} labi,T+1
k,b := 0λ.

3. for each t from T down to 1,

a) Parse φt as (i∗, f, g, h).

b) If i = i∗ then compute (where P is described in Figure 3.4)(
P̃i,t, lab

i,t)← Garb(1λ,P[i, φt, vi, {ωt,α,β}α,β ,⊥, lab
i,t+1

]).

c) If i 6= i∗ then for every α, β ∈ {0, 1}, set otmi
2,t,α,β ←

OT2(σt,α,β , otm1,t,α,β , lab
i,t+1
h,0 , labi,t+1

h,1 ) and compute(
P̃i,t, lab

i,t)← Garb(1λ,P[i, φt, vi,⊥, {otmi
2,t,α,β}α,β , lab

i,t+1
]).

4. Send
(
{P̃i,t}t∈[T ],{labi,1k,sti,k}k∈[`]

)
to every other party.

Evaluation: To compute the output of the protocol, each party Pi does the following:

1. For each j ∈ [n], let l̃ab
j,1

:= {labj,1k }k∈[`] be the labels received from party Pj at the end
of round 2.

2. for each t from 1 to T do:

a) Parse φt as (i∗, f, g, h).

b) Compute ((α, β, γ), ω, l̃ab
i∗,t+1

) := Eval(P̃i
∗,t, l̃ab

i∗,t
).

c) Set sti,h := γ ⊕ vi,h.

d) for each j 6= i∗ do:

i. Compute (otm2, {labj,t+1
k }k∈[`]\{h}) := Eval(P̃j,t, l̃ab

j,t
).

ii. Recover labj,t+1
h := OT3(σt,α,β , otm2, ω).

iii. Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

3. Compute the output as post(sti).

Figure 3.5: Two-round Malicious MPC.
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More formally, we define an interactive procedure Faithful(i, {zi}i∈[n], {bt,α,β}t∈Ai,α,β) that
on input i ∈ [n], {zi}i∈[n], {bt,α,β}t∈Ai,α,β∈{0,1} produces protocol Φ message on behalf of party
Pi (acting consistently/faithfully with the extracted values) as follows:

1. Set st∗ := z1‖ . . . ‖zn.

2. For t ∈ {1 · · ·T}

a) Parse φt = (i∗, f, g, h).

b) If i 6= i∗ then it waits for a bit from Pi∗ and sets st∗h to be the received bit once it
is received.

c) Set st∗h := bt,st∗f ,st∗g and output it to all the other parties.

We will later argue that any deviation from the faithful execution by the adversary A on
behalf of the corrupted parties (during the second round of our compiled protocol) will be
detected. Additionally, we prove that such deviations do not hurt the security of the honest
parties.

Description of the Simulator. We give the description of the ideal world adversary S
that simulates the view of the real world adversary A. S will internally use the malicious
simulator SimΦ for Φ, the extractor Ext = (Ext1,Ext2) implied by the sender security of two-
round OT, the simulator SimEq implied by the equivocal receiver’s security and the simulator
SimG for garbling scheme for circuits. Recall that A is static and hence the set of honest
parties H is known before the execution of the protocol.

Simulating the interaction with Z. For every input value for the set of corrupted
parties that S receives from Z, S writes that value to A’s input tape. Similarly, the output
of A is written as the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session
identifier sid that A may start, the simulator does the following:

• Generation of the common random/reference string: S generates the common
random/reference string as follows:

1. For each i ∈ H, t ∈ Ai, α, β ∈ {0, 1} set (σt,α,β, (otm1,t,α,β, ω
0
t,α,β, ω

1
t,α,β)) ←

SimEq(1
λ) (using equivocal simulator).

2. For each i ∈ [n] \ H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β, τt,α,β) ← Ext1(1λ)
(using the extractor of the OT protocol).

3. Output the common random/reference string as {σt,α,β}t,α,β.
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• Initialization: S executes the simulator (against malicious adversary’s) SimΦ(1λ) to
obtain {zi}i∈H . Moreover, S starts the real-world adversary A. We next describe how
S provides its messages to SimΦ and A.

• Round-1 messages from S to A: For each i ∈ H, S sends (zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1})
to the adversary A on behalf of the honest party Pi.

• Round-1 messages from A to S: Corresponding to every i ∈ [n]\H, S receives from
the adversary A the value (zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf of the corrupted party
Pi. Next, for each i ∈ [n]\H, t ∈ Ai, α, β ∈ {0, 1} extract bt,α,β := Ext2(τt,α,β, otm1,t,α,β).

• Completing the execution with the SimΦ: For each i ∈ [n] \ H, S sends zi
to SimΦ on behalf of the corrupted party Pi. This starts the computation phase
of Φ with the simulator SimΦ. S provides computation phase messages to SimΦ by
following a faithful execution. More formally, for every corrupted party Pi where
i ∈ [n] \ H, S generates messages on behalf of Pi for SimΦ using the procedure
Faithful(i, {zi}i∈[n], {bt,α,β}t∈Ai,α,β). At some point during the execution, SimΦ will re-
turn the extracted inputs {xi}i∈[n]\H of the corrupted parties. For each i ∈ [n] \ H,
S sends (input, sid, {P1 · · ·Pn}, Pi, xi) to the ideal functionality implementing f and
obtains the output y which is provided to SimΦ. Finally, at some point the faithful
execution completes.

Let Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation phase of
Φ be output of this execution. And let st∗ be the state value at the end of faithful
execution of one of the corrupted parties (this value is the same for all the parties).
Also, set for each t ∈ ∪i∈HAi and α, β ∈ {0, 1} set ωt,α,β := ωZt

t,α,β.

• Round-2 messages from S to A:

For each i ∈ H, the simulator S generates the second round message on behalf of party
Pi as follows:

1. For each k ∈ [`] set labi,T+1
k := 0λ.

2. for each t from T down to 1,

a) Parse φt as (i∗, f, g, h).

b) Set α∗ := st∗f , β
∗ := st∗g, and γ∗ := st∗h.

c) If i = i∗ then compute(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1

k }k∈[`]

))
.

d) If i 6= i∗ then set otmi
2,t,α∗,β∗ ← OT2(σt,α∗,β∗ , otm1,t,α∗,β∗ , labi,t+1

h , labi,t+1
h ) and

compute(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.
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3. Send
(
{P̃i,t}t∈[T ],{labi,1k }k∈[`]

)
to every other party.

• Round-2 messages from A to S: For every i ∈ [n] \H, S obtains the second round
message from A on behalf of the malicious parties. Subsequent to obtaining these mes-
sages, S executes the garbled circuits provided by A on behalf of the corrupted parties
to see the execution of garbled circuits proceeds consistently with the expected faithful
execution. If the computation succeeds then, S sends (generateOutput, sid, {P1 · · ·Pn})
to the ideal functionality. Otherwise, it sends (abort, sid, {P1 · · ·Pn}).

3.5.3 Proof of Indistinguishability

We now show that no environment Z can distinguish whether it is interacting with a real
world adversary A or an ideal world adversary S. We prove this via an hybrid argument
with T + 3 hybrids.

• HReal: This hybrid is the same as the real world execution.

• H0: In this hybrid we start by changing the distribution of the common random string.
Specifically, the common random string for the corrupted parties is generated as is done
in the simulation. More formally, S generates the common random/reference string as
follows:

1. For each i ∈ [n] \ H,α, β ∈ {0, 1} and t ∈ Ai generate (σt,α,β, τt,α,β) ← Ext1(1λ)
(using the extractor of the OT protocol).

Corresponding to every i ∈ [n]\H, A sends (zi, {otm1,t,α,β}t∈Ai,α,β∈{0,1}) on behalf
of the corrupted party Pi as its first round message. For each i ∈ [n] \ H, t ∈
Ai, α, β ∈ {0, 1} in this hybrid we extract bt,α,β := Ext2(τt,α,β, otm1,t,α,β).

The indistinguishability between hybrids HReal and H0 follow from a reduction to the
sender’s security of the two-round OT protocol.

• Ht (where t ∈ {0, . . . T}): Hybrid Ht (for t ∈ {1 · · ·T}) is the same as hybrid Ht−1

except we change the distribution of the OT messages (both from the first and the
second round of the protocol) and the garbled circuits (from the second round) that
play a role in the execution of the tth round of the protocol Φ; namely, the action
φt = (i∗, f, g, h). We describe the changes more formally below.

For each i ∈ [n] \ H, in this hybrid S (in his head) completes an execution of Φ
using honest party inputs and randomness. In this execution, the messages on be-
half of corrupted parties are generated via faithful execution. Specifically, S sends
{zi}i∈[n]\H to the honest parties on behalf of the corrupted party Pi in this mental
execution of Φ. This starts the computation phase of Φ. In this computation phase,
S generates honest party messages using the inputs and random coins of the hon-
est parties and generates the messages of the each malicious party Pi by executing
Faithful

(
i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β

)
.
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Let Z ∈ {0, 1}T be the transcript, st∗ be the local state of one of the corrupted party
the end of faithful execution and let stt+1

i be the state of honest party i ∈ H at the
end of the t-th round of the computation phase. Finally, let α∗ := st∗f , β

∗ := st∗g and
γ∗ := st∗h. In hybrid Ht we make the following changes with respect to hybrid Ht−1:

– If i∗ 6∈ H then skip these changes. S makes two changes in how it generates mes-
sages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, S computes (σt,α,β, (otm1,t,α,β, ω

0
t,α,β, ω

1
t,α,β))←

SimEq(1
λ) (using equivocal simulator) and sets ωt,α∗,β∗ as ωZt

t,α∗,β∗ rather than

ω
vi,h⊕NANDvi,f⊕α∗,vi,g⊕β∗
t,α∗,β∗ (note that these two values are the same when using the

honest party’s input and randomness). Second, it generates the garbled circuit

(
P̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi

∗,t+1

k,stt+1
i,k

}k∈[`]

))
,

where {labi
∗,t+1

k,stt+1
i,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i
∗,t+1.

– S makes the following two changes in how it generates messages for other honest
parties Pi (i.e., i ∈ H\{i∗}). S does not generate four otmi

2,t,α,β values but just one

of them; namely, S generates otmi
2,t,α∗,β∗ as OT2(σt,α∗,β∗ , otm1,t,α∗,β∗ , labi,t+1

h,Zt
, labi,t+1

h,Zt
)

rather than OT2(σt,α∗,β∗ , otm1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1 ). Second it generates the gar-
bled circuit(

P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]\{h}

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generated input labels for the garbled circuit

P̃i,t+1.

Indistinguishability between Ht−1 and Ht is proved in Lemma 3.5.2.

• HT+1 : In this hybrid, we modify the output phase of the computation to execute the
garbled circuits provided byA on behalf of the corrupted parties and see if the execution
of garbled circuits proceeds consistently with the transcript Z. If the computation
succeeds then for each i ∈ H, we instruct the parties in H to output y (which is the
output obtained by all parties in the execution of Φ); else, we instruct them to output
⊥. This hybrid is computationally close to HT from the authenticity property of the
input labels.

• HT+2: In this hybrid we just change how the transcript Z, {zi}i∈H , random coins
of malicious parties and value st∗ are generated. Instead of generating these using
honest party inputs in execution with a faithful execution of Φ, we generate it via the
simulator SimΦ (of the maliciously secure protocol Φ). In other words, we execute the
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simulator SimΦ where messages on behalf of each corrupted party Pi are generated using
Faithful(i, {zi}i∈[n]\H , {bt,α,β}t∈Ai,α,β). (Note that SimΦ might rewind Faithful. This can
be achieved since Faithful is just a polynomial time interactive procedure that can also
be rewound.).

The indistinguishability between hybrids HT+1 and HT+2 follows directly from the
malicious security of the protocol Φ. Finally note that HT+1 is same as the ideal
execution (i.e., the simulator described in the previous subsection).

Lemma 3.5.2 Assuming malicious, equivocal receiver security of the two-round OT proto-
col and the security of the garbling scheme, for all t ∈ {1 . . . T} hybrids Ht−1 and Ht are
computationally indistinguishable.

Proof Using the same notation as before, let φt = (i∗, f, g, h), stt+1
i be the state of Pi at

the end of round t for each i ∈ H, Z be the transcript and st∗ be the local state of one of the
corrupted party the end of faithful execution, and α∗ := st∗f , β

∗ := st∗g and γ∗ := st∗h. The
indistinguishability between hybrids Ht−1 and Ht follows by a sequence of three sub-hybrids
Ht,1, Ht,2, and Ht,3.

• Ht,1: Hybrid Ht,1 is same as hybrid Ht−1 except that S now generates the garbled

circuits P̃i,t for each i ∈ H in a simulated manner (rather than generating them
honestly). Specifically, instead of generating each garbled circuit and input labels(
P̃i,t, {labi,tk }k∈[`]

)
honestly, they are generated via the simulator by hard coding the

output of the circuit itself. In a bit more details, parse φt as (i∗, f, g, h).

– If i = i∗ then(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
(α∗, β∗, γ∗), ωt,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generates input labels for the garbled circuit

P̃i,t+1.

– If i 6= i∗ then

(
P̃i,t, {labi,tk }k∈[`]

)
← SimG

(
1λ, 1|P|, 1`,

(
otmi

2,t,α∗,β∗ , {labi,t+1

k,stt+1
i,k

}k∈[`]\{h}

))
,

where {labi,t+1

k,stt+1
i,k

}k∈[`] are the honestly generated input labels for the garbled circuit

P̃i,t+1.

The indistinguishability between hybrids Ht,1 and Ht−1 follows by |H| invocations of
security of the garbling scheme.
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• Ht,2: Skip this hybrid if there does not exist i 6= i∗ such that i ∈ H. In this hy-
brid, we change how S generates the otmi

2,t,α,β on behalf of every honest party Pi
such that i ∈ H \ {i∗} for all choices of α, β ∈ {0, 1}. More specifically, S only
generates one of these four values; namely, otmi

2,t,α∗,β∗ which is now generated as

OT2(σt,α∗,β∗ , otm1,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) instead of OT2(σt,α∗,β∗ , otm1,t,α∗,β∗ , labi,t+1
h,0 , labi,t+1

h,1 ).

Indistinguishability between hybrids Ht,2 and Ht,1 follows directly from the sender’s
security of underlying malicious oblivious transfer protocol.

• Ht,3: Skip this hybrid, if i∗ 6∈ H. This hybrid is same as Ht,2 except that we
change how S generates the Round-1 message on behalf of Pi∗ . Specifically, the
simulator S generates otm1,t,α,β as is done in the Ht. In a bit more detail, S com-
putes (σt,α,β, (otm1,t,α,β, ω

0
t,α,β, ω

1
t,α,β))← SimEq(1

λ) (using equivocal simulator) and sets

ωt,α∗,β∗ as ωZt
t,α∗,β∗ rather than ω

vi,h⊕NANDvi,f⊕α∗,vi,g⊕β∗
t,α∗,β∗ (note that these two values are

the same when using the honest party’s input and randomness).

We now argue indistingiuishability between Ht,2 and Ht,3 using the equivocal receiver
security. We interact with the equivocal security challenger four times. For each α, β,

we obtain σt,α,β, otm1,t,α,β and ω
vi,h⊕NANDvi,f⊕α,vi,g⊕β
t,α,β . We use this to generate the first

round message and the second round messages of the protocol. Note that if these values
were generated honestly then the distribution produced is identical to Ht,2. Else, it is
distributed identically to Ht,3. Finally, observe that Ht,3 is the same as hybrid Ht.
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