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Abstract

Discrete and Complex Algorithms for Curves

by

Lynn Chua

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alessandro Chiesa, Co-chair

Professor Bernd Sturmfels, Co-chair

This dissertation consists of two parts. The first part pertains to the Schottky problem,
which asks to characterize Jacobians of curves amongst abelian varieties. This has a complete
solution only in the first non-trivial case where the genus is four, and the solution is described
in terms of the Riemann theta function. We first present a Julia package for numerical
evaluations of the Riemann theta function. We then describe numerical approaches to the
Schottky problem in genus four and five. We present a solution to a variant of the Schottky
problem in genus five, for Jacobians with a vanishing theta null. Finally, we describe solutions
to the tropical Schottky problem, and relate the tropical and classical solutions to the Schottky
problem in genus four.

The second part of this dissertation relates to cryptography. We first study cycles of pairing-
friendly elliptic curves, for an application in pairing-based cryptography. We next study the
concrete security of the Learning With Errors problem in lattice-based cryptography, when
sampling the secret from a non-uniform, small distribution.
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Chapter 1

Overview

In this dissertation, we present a collection of results which lie in the interface of computer
science and mathematics. In the first part, we describe numerical algorithms for the Schottky
problem, which asks to characterize Jacobians of curves amongst abelian varieties. We study
both the classical Schottky problem, which relates to complex Riemann surfaces, and the
tropical Schottky problem, which relates to tropical geometry. In the second part, we present
a work on constructing elliptic curves for an application in cryptography, and another work on
studying the concrete security parameters in lattice-based cryptography. The term “discrete”
in the title of this dissertation refers to our study of curves over finite fields for cryptography,
and fields of valuation in tropical geometry. The term “complex” in the title refers to our
study of curves over the field of complex numbers in the classical Schottky problem.

1.1 Numerical algorithms for the Schottky problem

Riemann theta function

The Riemann theta function is the holomorphic function

θ : Cg ×Hg → C , θ(z, τ) =
∑
n∈Zg

exp
(
πintτn+ 2πintz

)
(1.1.1)

where Hg is the Siegel upper-half space, which consists of all complex symmetric g×g matrices
with positive definite imaginary part (see [94] for more details). In [3], we present a new
package Theta.jl for numerical evaluations of theta functions, programmed in Julia. Our
package is specialized for multiple evaluations of theta functions for the same Riemann matrix
τ ∈ Hg and different z, for small genus g. Our implementation is based on the algorithm
from [52], which we extend to support computations of theta functions with characteristics
and derivatives of arbitrary order. This is described in Chapter 2.
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Classical Schottky problem

Given an algebraic curve C of genus g, we can associate with it an abelian variety which
we call the Jacobian of the curve. The Schottky problem asks to characterize Jacobians of
genus g curves amongst all abelian varieties of dimension g. If the curve C is defined over the
complex numbers, then its Jacobian is a complex lattice of dimension g, defined by a matrix
which we call the Riemann matrix. More generally, complex abelian varieties of dimension g
are parametrized by the Siegel upper-half space Hg, which consists of all complex symmetric
g × g matrices with positive definite imaginary part. We refer the interested reader to the
survey [70] and the textbook [26] for more details.

The Schottky locus is the subset of matrices in Hg that represent Jacobians. For g = 1, 2, 3,
essentially all abelian varieties of dimension g are Jacobians of genus g curves. For g ≥ 4, the
inclusion is proper. The case where g = 4 was completely solved by Schottky and Igusa [75],
who constructed a polynomial of degree 16 in theta constants defining the Schottky locus.
However, the Schottky problem for g ≥ 5 is still open, with only partial solutions [1, 59].

In joint work with Kummer and Sturmfels, we construct algorithms for the Schottky
problem in genus four [43]. In [3], we describe numerical approaches for studying the Schottky
problem in genus five. In particular, we use our package Theta.jl to compute the equations
in [1, 59] which give a weak solution to the Schottky problem in genus five. These equations
consist of products of many theta constants, which are theta functions evaluated at z = 0.
These algorithms are described in Chapter 3.

We also present a solution to a variant of the weak Schottky problem in genus five, for
Jacobians with a vanishing theta null [4]. This is described in Chapter 4.

Tropical Schottky problem

Curves, their Jacobians, and the Schottky locus have natural counterparts in the combinatorial
setting of tropical geometry. For an introduction to tropical geometry, we refer to the textbook
[86]. A tropical curve is a connected metric graph, and a tropical Jacobian is defined by a
real symmetric and positive definite matrix. We describe the process of going from a curve
to its tropical Jacobian and back, in joint work with Bolognese and Brandt [27].

In [43], we study the tropical Schottky locus in genus four, implementing algorithms for
solving the tropical Schottky problem. We construct algorithms for recovering a tropical
curve from its tropical Jacobian. We also relate the classical and tropical solutions to the
genus four Schottky problem, by tropicalizing the modular form that defines the classical
Schottky locus, and showing that the resulting tropical modular forms contain the tropical
Schottky locus. This work is described in Chapter 5.

1.2 Elliptic curve cryptography

Many cryptography schemes today are constructed based on the hardness of the discrete
logarithm problem, which is usually instantiated using elliptic curves. Together with Chiesa
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and Weidner [41], we study cycles of pairing-friendly elliptic curves. These are lists of elliptic
curves defined over finite fields, such that the number of points on one curve equals the
size of the field of definition of the next, in a cyclic way. Cycles are used in [21] to achieve
recursive composition of zkSNARKs (Zero-Knowledge Succinct Non-Interactive Arguments
of Knowledge). A zkSNARK is a cryptographic scheme that allows one party (the prover) to
convince another party (the verifier) that the prover knows a certain secret, via a short proof
that is cheap to verify and reveals no information about the secret.

Efficient zkSNARK constructions are obtained via pairing-friendly elliptic curves, and
the cycle condition enables their recursive composition, while avoiding expensive modular
arithmetic across fields of different characteristics. In [41], we initiate a systematic study of
pairing-friendly cycles. We characterize all possibilities for cycles from the known families of
pairing-friendly elliptic curves, while ruling out cycles under various assumptions. This is
described in Chapter 6.

1.3 Lattice-based cryptography

Lattice-based cryptography is one of the leading candidates for post-quantum cryptography,
i.e. cryptography which is resistant to attacks by quantum computers. In particular, many
lattice-based cryptography schemes are based on the hardness of the Learning With Errors
(LWE) problem [100].

Together with Chen, Lauter and Song from Microsoft Research, we conduct a systematic
experimental study of the concrete security of LWE with small secret [38]. Our main
motivation is to investigate the security parameters in the setting of homomorphic encryption.
Homomorphic encryption allows computations on encrypted data, and its security is based on
the LWE problem. For practical implementations of homomorphic encryption schemes, it is
important to understand the concrete security levels of LWE. While there are various known
security estimates, there is still a significant gap between our theoretical understanding of
the performance of lattice reduction algorithms and their practical performance. We discuss
this work in Chapter 7.
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Chapter 2

Riemann theta function

In this chapter, we introduce the Riemann theta function, and describe numerical algorithms
for approximating it. We also present a new package Theta.jl for numerical computations
of theta functions, programmed in Julia [25]. The material in this section is from the paper
“Computing Theta Functions with Julia” authored with Daniele Agostini, and has been
submitted for publication [3].

2.1 Definitions

The Riemann theta function is the holomorphic function

θ : Cg ×Hg → C , θ(z, τ) =
∑
n∈Zg

e

(
1

2
ntτn+ ntz

)
(2.1.1)

where e(x) = e2πix and Hg is the Siegel upper-half space, which consists of all complex
symmetric g × g matrices with positive definite imaginary part. We define theta functions
with characteristics as follows. A characteristic is an element m ∈ (Z/2Z)2g, which we

represent as a vector m =

[
ε
δ

]
where ε, δ ∈ {0, 1}g. The Riemann theta function with

characteristic m is defined as

θ[m](z, τ) = θ

[
ε
δ

]
(z, τ) =

∑
n∈Zg

e

(
1

2

(
n+

ε

2

)t
τ
(
n+

ε

2

)
+
(
n+

ε

2

)t(
z +

δ

2

))
(2.1.2)

and it is a holomorphic function θ[m] : Cg ×Hg → C. The Riemann theta function in (2.1.1)
is a special case of (2.1.2), where the characteristic is the all-zero vector. The sign of a
characteristic m is defined as e(m) = (−1)ε

tδ, and we call a characteristic even or odd if the
sign is 1 or −1 respectively. As a function of z, θ[m](z, τ) is even (respectively odd) if and
only if the characteristic m is even (respectively odd). There are 2g−1(2g + 1) even theta
characteristics and 2g−1(2g − 1) odd theta characteristics.
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The theta constants are the functions on Hg obtained by evaluating the theta functions
with characteristics at z = 0,

θ[m](τ) = θ[m](0, τ) . (2.1.3)

Theta constants corresponding to odd characteristics vanish identically.
The theta function satisfies a heat equation [26, Proposition 8.5.5],

∂2θ[m]

∂zj∂zk
= (1 + δjk) · 2πi

∂θ[m]

∂τjk
, (2.1.4)

where δjk is 1 if j = k and 0 otherwise.
Moreover, theta functions have some remarkable symmetries. First of all, they are quasi-

periodic with respect to the lattice Zg⊕ τZg defined by τ [26, Remark 8.5.3]. For all a, b ∈ Zg
and z ∈ Cg, the following functional equation holds.

θ

[
ε
δ

]
(z + τa+ b, τ) = e

(
εtb− δta− 1

2
atτa− zta

)
θ

[
ε
δ

]
(z, τ) . (2.1.5)

Theta functions also transform naturally under symplectic transformations. The group
Γg = Sp(2g,Z) of integral symplectic transformations acts on Hg as follows. For γ ∈ Γg and
τ ∈ Hg,

γ =

(
A B
C D

)
, γ · τ = (Aτ +B)(Cτ +D)−1 . (2.1.6)

This extends to an action on Cg ×Hg by

γ · (z, τ) = ((Cτ +D)−tz, γ · τ) , (2.1.7)

and there is a corresponding action on the set of characteristics (Z/2Z)2g by

γ ·
[
ε
δ

]
=

(
D −C
−B A

)[
ε
δ

]
+

[
diag(CDt)
diag(ABt)

]
. (2.1.8)

We now state the Theta Transformation Formula [26, Section 8.6]:

θ[γ ·m](γ · (z, τ)) = φ(γ,m, z, τ) ·
√

det(Cτ +D) · θ[m](z, τ) (2.1.9)

where φ(γ,m, z, τ) ∈ C∗ is an explicit function of the parameters with the same sign ambiguity
as
√

det(Cτ +D).

2.2 Numerically approximating theta functions

We describe in this section algorithms for computing theta functions, by generalizing the
algorithm from [52] for theta functions with characteristics and derivatives of arbitrary order.
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Notation

We standardize here the notation for the whole section. We separate z ∈ Cg and τ ∈ Hg into
real and imaginary parts, by writing z = x+ iy, τ = X + iY , where x, y ∈ Rg and X, Y are
real symmetric g × g matrices. Let Y = T tT be the Cholesky decomposition of Y , where
T is upper-triangular. For any real vector V ∈ Rg, we use [V ] to denote the vector whose
entries are the entries of V rounded to the closest integers, and we denote [[V ]] = V − [V ].

We also denote v(n) =
√
πT (n+ [[Y −1y]]) and we define the lattice Λ = {v(n) |n ∈ Zg},

letting ρ be the length of the shortest nonzero vector in Λ. We denote by Γ(z, x) =∫∞
x
tz−1e−tdt the incomplete Gamma function.

Pointwise and uniform approximations

In [52], Deconinck et al. derive a pointwise approximation of the theta function, which
approximates (2.1.1) by a finite sum with a specified error, given inputs z, τ .

Theorem 2.2.1 ([52, Theorem 2]). Fix z ∈ Cg, τ ∈ Hg and ε > 0. Let R be the greater
of (
√

2g + ρ)/2 and the real positive solution of R in ε = g2g−1Γ(g/2, (R − ρ/2)2)/ρg. The
Riemann theta function θ(z, τ) is approximated by

eπy
tY −1y

∑
n∈SR

e

(
1

2

(
n− [Y −1y]

)t
X
(
n− [Y −1y]

)
+
(
n− [Y −1y]

)t
x

)
e−‖v(n)‖2 , (2.2.1)

with an absolute error ε on the sum, where

SR = {n ∈ Zg | ‖v(n)‖ < R} . (2.2.2)

Note that the ellipsoid SR in (2.2.2) depends on the input z. If we are evaluating the theta
function at multiple inputs z for the same matrix τ , it would be more efficient to compute
a bigger ellipsoid such that the approximation works for every z, instead of computing a
different ellipsoid for each z. Although this increases the number of terms in the sum in
(2.2.1), we would only need to compute the ellipsoid once, which is often preferable as the
computation of the ellipsoid is usually expensive. This is the idea behind the following
uniform approximation of the theta function.

Theorem 2.2.2 ([52, Theorem 3]). Fix τ ∈ Hg and ε > 0. Let R be defined as in Theo-
rem 2.2.1. For any z ∈ Cg, the Riemann theta function θ(z, τ) is approximated by (2.2.1)
with an absolute error ε on the sum, but with the set SR replaced by UR, where

UR = {n ∈ Zg |π(n− c)tY (n− c) < R2 , |cj| < 1/2 , ∀j = 1, . . . , g} . (2.2.3)

The set UR in (2.2.3) can be thought of as a deformed ellipsoid, which is the union of
all ellipsoids SR from (2.2.2), as z ∈ Cg varies. By taking this union, we get a uniform
approximation of the theta function for all inputs z.
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Theta functions with characteristics

We extend Theorem 2.2.2 for computing theta functions with characteristics.

Theorem 2.2.3. Fix τ ∈ Hg and ε > 0. Let R be defined as in Theorem 2.2.1. For any

input z ∈ Cg and characteristic

[
ε
δ

]
∈ {0, 1}2g, the Riemann theta function with characteristic

θ

[
ε
δ

]
(z, τ) is approximated by

eπy
tY −1y

∑
n∈CR

e

(
1

2
(n− η)tX (n− η) + (n− η)t

(
x+

δ

2

))
e−‖v(n+ ε

2
)‖2 , (2.2.4)

with an absolute error ε on the sum, where η = [Y −1y]− ε
2

and

CR = {n ∈ Zg |π(n− c)tY (n− c) < R2 , |cj| < 1 ,∀j = 1, . . . , g} . (2.2.5)

Proof. From (2.1.2), we can compute theta functions with characteristics in a similar way as
the usual theta function, by translating z to z + δ

2
, and translating the lattice points in the

sum from n to n + ε
2
. Note that this only changes the real part of z, while the imaginary

part stays the same. Hence the pointwise approximation in Theorem 2.2.1 holds for theta
functions with characteristics, if we replace (2.2.1) by the formula in (2.2.4), where we take
the sum over

SR,ε =

{
n ∈ Zg

∣∣∣∣ ∥∥∥v (n+
ε

2

)∥∥∥ < R

}
. (2.2.6)

To obtain a uniform approximation for any z ∈ Cg and any characteristic, we take the union
of the ellipsoids SR,ε from (2.2.6) as z and ε vary. Since v(n+ ε

2
) =
√
πT (n+ [[Y −1y]] + ε

2
),

and the entries of [[Y −1y]] + ε
2

have absolute value at most 1, it follows that the deformed
ellipsoid CR from (2.2.5) is the union of the ellipsoids SR,ε.

Note that in (2.2.5), we use a larger deformed ellipsoid whose center wanders about a
cube with side length twice as large as in (2.2.3), in order to get a uniform approximation for
arbitrary characteristics.

Derivatives of theta functions

We denote the N -th order derivative of the theta function along the vectors k(1), . . . , k(N) as

D
(
k(1), . . . , k(N)

)
θ(z, τ) =

g∑
i1,...,iN=1

k
(1)
i1
· · · k(N)

iN

∂Nθ(z, τ)

∂zi1 · · · ∂ziN
. (2.2.7)

In [52], formulae are given for the pointwise and uniform approximations of the first and
second derivatives of the theta function. We generalize these to arbitrary order derivatives
here. First we will need the following lemma.
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Lemma 2.2.4 ([52, Lemma 2]). Let Λ be a g-dimensional affine lattice in Rg, and let
p ∈ Z be positive. Let ρ be the length of the shortest nonzero vector in Λ, and let R >
ρ
2

+ 1
2

√
g + 2p+

√
g2 + 8p. Then

∑
y∈Λ,‖y‖≥R

‖y‖pe−‖y‖2 ≤ g

2

(
2

ρ

)g
Γ

(
g + j

2
,
(
R− ρ

2

)2
)
. (2.2.8)

Pointwise approximation

We first give a formula for a pointwise approximation of the theta function, with derivatives
of arbitrary order.

Theorem 2.2.5. Fix τ ∈ Hg and ε > 0. Let R be the greater of 1
2

√
g + 2N +

√
g2 + 8N + ρ

2

and the real positive solution of R in

ε = (2π)N
g

2

(
2

ρ

)g
‖k(1)‖ · · · ‖k(N)‖

[
N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j‖Y −1y‖N−jΓ

(
g + j

2
,
(
R− ρ

2

)2
)]

.

Let SR be defined as in (2.2.2). The N-th derivative D(k(1), . . . , k(N))θ(z, τ) of the theta
function is approximated by

eπy
tY −1y(2πi)N

∑
n∈SR

(
k(1) · (n− [Y −1y])

)
· · ·
(
k(N) · (n− [Y −1y])

)
× e

(
1

2
(n− [Y −1y])tX(n− [Y −1y]) + (n− [Y −1y])tx

)
e−‖v(n)‖2 ,

(2.2.9)

with an absolute error ε on the product of (2πi)N with the sum. By v ·w we denote the usual
scalar product of vectors.

Proof. Firstly, from [52] we can change the index of summation in

D(k(1), . . . , k(N))θ(z, τ) = (2πi)N
∑
n∈Zg

(k(1) · n) · · · (k(N) · n)e

(
1

2
ntτn+ ntz

)
to get the expression in (2.2.9), but with the set SR replaced by Zg. Thus the error in the
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approximation is

ε =

∣∣∣∣(2πi)N ∑
n∈Zg\SR

(
k(1) · (n− [Y −1y])

)
· · ·
(
k(N) · (n− [Y −1y])

)
× e

(
1

2
(n− [Y −1y])tX(n− [Y −1y]) + (n− [Y −1y])tx

)
e−‖v(n)‖2

∣∣∣∣
≤ (2π)N‖k(1)‖ · · · ‖k(N)‖

∑
n∈Zg\SR

∥∥n− [Y −1y]
∥∥Ne−‖v(n)‖2

= (2π)N‖k(1)‖ · · · ‖k(N)‖
∑

n∈Zg\SR

∥∥∥∥ 1√
π
T−1v(n)− Y −1y

∥∥∥∥Ne−‖v(n)‖2

≤ (2π)N‖k(1)‖ · · · ‖k(N)‖
∑

n∈Zg\SR

(
1√
π
‖T−1‖ · ‖v(n)‖+ ‖Y −1y‖

)N
e−‖v(n)‖2

= (2π)N‖k(1)‖ · · · ‖k(N)‖
∑

n∈Zg\SR

N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j‖v(n)‖j‖Y −1y‖N−je−‖v(n)‖2

= (2π)N‖k(1)‖ · · · ‖k(N)‖
N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j‖Y −1y‖N−j

∑
n∈Zg\SR

‖v(n)‖je−‖v(n)‖2

where we use the Cauchy-Schwarz and triangle inequalities. We then apply Lemma 2.2.4 to
get the bound

ε ≤ (2π)N‖k(1)‖ · · · ‖k(N)‖
N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j‖Y −1y‖N−j g

2

(
2

ρ

)g
Γ

(
g + j

2
,
(
R− ρ

2

)2
)
,

≤ (2π)N
g

2

(
2

ρ

)g
‖k(1)‖ · · · ‖k(N)‖

N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j‖Y −1y‖N−jΓ

(
g + j

2
,
(
R− ρ

2

)2
)
.

Uniform approximation

We now give a formula for a uniform approximation of derivatives of the theta function.
First, we remark that by the quasi-periodicity of the theta function from (2.1.5), it suffices
to consider inputs z of the form z = a+ τb, for a, b ∈ [0, 1)g, which is what we do here.

Theorem 2.2.6. Fix τ ∈ Hg, ε > 0. Let k(1), . . . , k(N) be unit vectors, and let R be the

greater of 1
2

√
g + 2N +

√
g2 + 8N + ρ

2
and the real positive solution of R in

ε = (2π)N
g

2

(
2

ρ

)g N∑
j=0

(
N

j

)
1

πj/2
‖T−1‖j√gN−jΓ

(
g + j

2
,
(
R− ρ

2

)2
)
. (2.2.10)
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For inputs z of the form z = a+τb, for a, b ∈ [0, 1)g, the N -th derivative D(k(1), . . . , k(N))θ(z, τ)
of the theta function is approximated by (2.2.9) but with the set SR replaced by UR from
(2.2.3), with an absolute error ε on the product of (2πi)N with the sum.

Proof. For inputs z of the form z = a+ τb, we can write z as z = a+ (X + iY )b = (a+Xb) +
iY b = x + iy. Then ‖Y −1y‖ = ‖b‖ ≤ √g. Substituting this and ‖k(1)‖ = · · · = ‖k(N)‖ = 1
into the expression for ε in Theorem 2.2.5, the result follows.

Derivatives of theta functions with characteristics

We generalize Theorem 2.2.6 for derivatives of theta functions with characteristics. This
follows from exactly the same argument as in Theorem 2.2.3, by computing the sum over a
larger ellipsoid.

Theorem 2.2.7. Fix τ ∈ Hg, ε > 0. Let k(1), . . . , k(N) be unit vectors, and let R be defined

as in Theorem 2.2.6. For z of the form z = a + τb, for a, b ∈ [0, 1)g, and

[
ε
δ

]
∈ {0, 1}2g,

the N-th derivative D(k(1), . . . , k(N))θ

[
ε
δ

]
(z, τ) of the theta function with characteristic is

approximated by

eπy
tY −1y(2πi)N

∑
n∈CR

(
k(1) · (n− η)

)
· · ·
(
k(N) · (n− η)

)
× e

(
1

2
(n− η)tX (n− η) + (n− η)t

(
x+

δ

2

))
e−‖v(n+ ε

2
)‖2 ,

(2.2.11)

with an absolute error ε on the product of (2πi)N with the sum, where η = [Y −1y]− ε
2

and
CR is as defined in (2.2.5).

2.3 Computing theta functions in Julia

In this section, we introduce our Julia package Theta.jl for numerical computations of
theta functions. Our package is specialized for multiple evaluations of theta functions for
the same Riemann matrix τ ∈ Hg and different z, for small values of the genus g. The main
application that we had in mind when designing our package was for numerical approaches
to the Schottky problem in genus five, which we describe in more detail in Chapter 3.

Interface

Our Julia package Theta.jl is available at the following website, which has instructions and
a link to more detailed documentation.

https://github.com/chualynn/Theta.jl

https://github.com/chualynn/Theta.jl
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We describe the basic interface of the package here. To use Theta.jl, we recommend
installing Julia in version 1.1 or above. The package can be installed and used with the
following commands in Julia.

julia> import Pkg

julia> Pkg.add("Theta")

julia> using Theta

Starting with a matrix τ ∈ Hg, we first construct a RiemannMatrix from it. This is a
type in Theta.jl which contains information needed to compute the theta function with
input τ . This includes the ellipsoids used for computing the theta function and its derivatives,
as well as the Siegel-transformed matrix. To construct a RiemannMatrix, we give as input τ ,
a boolean flag siegel which specifies if we want to perform a Siegel transformation on τ ,
a floating point number ε which specifies the error in computing the theta functions, and
an integer nderivs which specifies the highest order of the derivative for which we want to
compute the theta function.

As an example, we start with a genus 5 curve defined by

x6y2−4x4y2−2x3y3−2x4y+2x3y+4x2y2 +3xy3 +y4 +4x2y+2xy2 +x2−4xy−2y2−2x+1 .

We pick this curve as it has a vanishing theta null; we refer to Example 4.4.9 for more details
and further computations on this curve. We compute the Riemann matrix τ of the curve
using the package [35] in Sage [103], and we type it as an input in Julia. 0.40243 + 0.68413i −0.18138 + 0.21894i 0.24323− 0.13416i 0.00403 + 0.05085i −0.31818 + 0.14383i

−0.18137 + 0.21894i 0.27914 + 1.01836i −0.09799 + 0.46222i −0.06566 + 0.60959i −0.14647 + 0.37006i
0.24323− 0.13416i −0.09799 + 0.46222i 0.16663 + 0.68136i −0.28606 + 0.02038i 0.18558− 0.15061i
0.00403 + 0.05085i −0.06566 + 0.60959i −0.28606 + 0.02038i 0.04136 + 1.40560i 0.19025 + 0.82885i
−0.31818 + 0.14384i −0.14647 + 0.37006i 0.18558− 0.15061i 0.19025 + 0.82885i 0.74873 + 1.01168i


We then construct a RiemannMatrix in Theta.jl, where we specify in the input the

options to compute a Siegel transformation, an error of 10−12, and to compute derivatives up
to the fourth order.

julia> R = RiemannMatrix(τ, siegel=true, ε=1.0e-12, nderivs=4);

We pick some input z and compute the theta function θ(z, τ) as follows.

julia> z = [1.041+0.996im; 1.254+0.669im; 0.591+0.509im; -0.301+0.599im;

0.388+0.051im];

julia> theta(z, R)

-854877.6514446283 + 2.3935081163150463e6im

We can compute first derivatives of theta functions by specifying the direction using the
optional argument derivs. For instance, to compute ∂θ

∂z1
(z, τ), we use
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julia> theta(z, R, derivs=[[1,0,0,0,0]])

2.6212151525759254e7 + 9.28714502306052e6im

We specify higher order derivatives by adding more elements in the input to derivs, where
each element specifies the direction of the derivative. For instance, to compute ∂3θ

∂z3∂z4
(z, τ),

we use

julia> theta(z, R, derivs=[[0,0,1,0,0], [0,0,0,1,0]])

1.0478325534969474e8 - 3.369999441122761e8im

We can compute theta functions with characteristics using the optional argument char.

julia> theta(z, R, char=[[0,1,1,0,0],[1,0,1,1,0]])

1.8859811381826473e6 - 1.6046614411453768e6im

We can also compute derivatives of theta functions with characteristics.

julia> theta(z, R, derivs=[[1,0,0,0,0]], char=[[0,1,0,0,1],[1,1,0,0,1]])

-2.448093122926732e7 + 3.582557740667034e7im

Algorithms

We describe here some details of the algorithms and the design choices that we made in our
implementation.

Choice of ellipsoid

The main application of our package is for computing theta functions at the same Riemann
matrix τ , and for multiple choices of inputs z, characteristics and derivatives. As such, in
our implementation we use the algorithm for uniform approximations of theta functions
described in Theorem 2.2.7, which allows us to compute derivatives of theta functions with
characteristics, for inputs z of the form z = a+ τb, for a, b ∈ [0, 1)g.

In Theorem 2.2.7, we approximate the theta function by taking the sum over a deformed
ellipsoid CR from (2.2.5). For a fixed τ ∈ Hg and error ε > 0, the ellipsoid CR depends
only on the order N of the derivative. Hence for each order of the derivative for which we
are interested in computing the theta function, we compute an ellipsoid CR. Then we can
compute theta functions with any input z = a + τb, any characteristic, and N -th order
derivatives along N unit vectors.

While CR is larger than the ellipsoids for the other less general approximations in
Section 2.2, we make this design choice as it is expensive to compute the ellipsoid relative to
computing more terms in the sum in (2.2.11). Hence if we are computing multiple values of
the theta function for a fixed matrix τ , it is faster to compute a bigger ellipsoid and use the
same ellipsoid for every computation, rather than repeatedly computing a slightly smaller
ellipsoid for each computation.
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Lattice reductions

In [52], the authors approximate the length ρ of the shortest vector of the lattice generated by
T using the LLL algorithm by Lenstra, Lenstra and Lovász [85]. This is a reasonable choice
if g is large, since computing the shortest vector is in general NP-hard under randomized
reductions [5] and is impractical for large dimensions. On the other hand, the LLL algorithm
gives a polynomial time approximation, but with an error that grows exponentially with the
dimension. In our implementation, since we focus on lattices with small dimensions g = 5,
we compute the shortest vector exactly using the enumeration algorithm in [106], which is
fast for small dimensions. Moreover, by computing ρ exactly, we obtain a smaller ellipsoid
(2.2.5) than if we use an overestimation of ρ from the LLL algorithm.

If we are interested in computing the theta function for a fixed τ at many values of z,
it may be more efficient if we transform τ such that the ellipsoids in (2.2.3) or (2.2.5) are
less eccentric, so that they contain fewer lattice points. This can be done via symplectic
transformations, which modify the theta function according to the Theta Transformation
Formula (2.1.9). For this purpose, we use Siegel’s algorithm [109], which iteratively finds a
new matrix where the corresponding ellipsoid has a smaller eccentricity. Siegel’s algorithm
is implemented in [52]. A variant is described in [60], and we implement the latter in our
package, where we use the algorithm for Hermite-Korkine-Zolotareff (HKZ) reduction in [122]
as a subroutine. In Theta.jl, we compute the Siegel transformation once for each Riemann
matrix, and work with the Siegel-transformed matrix for all computations. This helps us to
achieve a lower amortized running time for computing many values of the theta function on
a fixed Riemann matrix.

Comparisons with other packages

We compare Theta.jl with the other packages for computing theta functions that we are
aware of, namely algcurves [52] in Maple, the MATLAB package in [60] and abelfunctions

[114] in Sage.

Functionality

The main advantage of Theta.jl in terms of functionality is that we support computations of
theta functions with characteristics, as well as their derivatives, which to our knowledge is not
implemented in other packages. Moreover, we make optimizations described in Section 2.3 for
faster computations in applications where we do many computations with a fixed Riemann
matrix of low genus.

Performance

We compare the performance of Theta.jl with the Sage package abelfunctions [114],
by comparing the average time taken to compute the genus 5 FGSM relations by Farkas,
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Grushevsky and Salvati Manni [59] (see Section 3.3), as well as to compute the Hessian
matrix of Chapter 4.

For our experiments, we sample matrices in the Siegel upper-half space as follows. First
we sample 5× 5 matrices MX ,MY such that the entries are random floating point numbers
between −1 and 1, using the random number generators in Julia and NumPy. Then we
sample τ ∈ H5 as τ = 1

2
(MX +M t

X) +M t
YMY i. This is implemented in Theta.jl for general

dimensions g, in the function random siegel(g).
In each experiment, we sample 1000 random matrices using the routine described above,

and do our computations on each matrix using Theta.jl and abelfunctions, with a standard
laptop. We list in the table below the average time and standard deviation using Theta.jl

and abelfunctions, for computing the FGSM relations in genus 5, and the genus 5 Hessian
matrix.

Experiment Package Average time (s) Standard deviation (s)
FGSM Theta.jl 2.5 0.6

abelfunctions 114.2 290.5
Hessian Theta.jl 0.7 0.2

abelfunctions 20.3 58.0

One major reason for the faster runtime on Theta.jl is the use of the Siegel transformation
on the Riemann matrix, which is not implemented in abelfunctions. This also leads to the
higher standard deviation in the computation for the latter.

2.4 Conclusion

In this chapter, we described the Riemann theta function and algorithms for numerically
approximating it. We also introduced our Julia package Theta.jl for numerical computations
of theta functions. In the next two chapters, we discuss the classical Schottky problem, whose
solutions are described in terms of theta functions. We will see applications of Theta.jl in
numerical solutions to the Schottky problem, at the end of Chapter 4.
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Chapter 3

Classical Schottky problem

In this chapter, we introduce the classical Schottky problem, and we describe numerical
approaches for solving it in genus four and five. The material in this chapter is from the paper
“Computing Theta Functions with Julia” authored with Daniele Agostini, which has been
submitted for publication [3], and the paper “Schottky Algorithms: Classical meets Tropical”
authored with Mario Kummer and Bernd Sturmfels, which is published in Mathematics of
Computation [43].

3.1 Introduction

The Schottky problem [70] concerns the characterization of Jacobians of genus g curves Jg
among all abelian varieties of dimension g. An abelian variety is a projective variety that has
the structure of an algebraic group, and it is a fundamental object in algebraic geometry. Let
Hg be the Siegel upper-half space, which is the set of complex symmetric g × g matrices with
positive definite imaginary part. For every τ ∈ Hg, we define a principally polarized abelian
variety (ppav) as the quotient Aτ = Cg/Λτ , where Λτ = Zg ⊕ τZg is a sublattice of Cg. The
polarization on Aτ is given by the theta divisor

Θτ = {z ∈ Aτ | θ(z, τ) = 0} . (3.1.1)

This is well-defined on Aτ because of the quasi-periodicity of the theta function in (2.1.5).
Every such abelian variety is a group via the usual addition on Cg. At the same time, the
theta functions with characteristics can be used to give an embedding of Aτ inside P3g−1, so
that Aτ is a projective variety as well.

Two ppavs Aτ and Aτ ′ are isomorphic if and only if the corresponding Riemann matrices
are related via the action (2.1.6) of the symplectic group Γg = Sp(2g,Z). Hence, the quotient
Ag = Hg/ Sp(2g,Z) is the moduli space of principally polarized abelian varieties of dimension g.
This is a quasi-projective variety of dimension

dimAg = dimHg =
g(g + 1)

2
. (3.1.2)
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The theta constants θ[m](0, τ) give homogeneous coordinates on a finite cover of Ag. First
we consider the following subgroups of Γg:

Γg(4) = {γ ∈ Γg | γ ≡ Id mod 4} , (3.1.3)

Γg(4, 8) =

{(
A B
C D

)
∈ Γg(4) | diag(AtB) ≡ diag(CtB) ≡ 0 mod 8

}
. (3.1.4)

The group Γg(4, 8) is normal of finite index in Γg, so the corresponding quotient Ag(4, 8) =
Hg/Γg(4, 8) is a finite Galois cover of Ag. Moreover, the Theta Transformation Formula
(2.1.9) shows that for every γ ∈ Γg(4, 8) and characteristic m ∈ (Z/2Z)g we have

θ[m](0, γ · τ) =
√

det(Cτ +D) · θ[m](0, τ) . (3.1.5)

Thus the even theta constants define a map to projective space,

Ag(4, 8) −→ P2g−1(2g+1)−1 , [τ ] 7→ [θ[m](0, τ)]m even (3.1.6)

which is actually an embedding, and realizes Ag(4, 8) as an irreducible quasi-projective variety.
By definition, polynomials in the homogeneous coordinates of P2g−1(2g+1)−1 correspond to
polynomials in the theta constants.

Historically, abelian varieties arose from Jacobians of Riemann surfaces. For a Riemann
surface C of genus g, we define its Jacobian as the quotient

J(C) = H0(C, ωC)∨/H1(C,Z) , (3.1.7)

where the lattice H1(C,Z) is embedded in H0(C, ωC)∨ via the integration pairing

H0(C, ωC)×H1(C,Z) −→ C , (ω, α) 7→
∫
α

ω . (3.1.8)

The Jacobian is a principally polarized abelian variety, and the corresponding Riemann
matrix τ ∈ Ag can be obtained by computing bases of H0(C, ωC) and H1(C,Z), as well as
the integration pairing. This is implemented numerically in the packages abelfunctions

[114] and [35] in Sage, and algcurves [52] in Maple. In this setting, the action of Γg on the
Riemann matrices corresponds to a change of basis for H0(C, ωC) or H1(C,Z).

The Jacobian construction defines the Torelli map from the moduli space Mg of genus g
Riemann surfaces to the moduli space Ag of dimension g ppavs:

J : Mg −→ Ag , [C] 7→ [J(C)] . (3.1.9)

The image of this map is precisely the set of Jacobian varieties and its closure Jg in Ag is
the Schottky locus. The Schottky problem asks for a characterization of Jg inside Ag. It is
one of the most celebrated questions in algebraic geometry, dating from the 19th century; we
refer to [70] for a recent overview.
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There are many possible interpretations and solutions to the Schottky problem. Here we
focus on the most classical one, which asks for equations in the theta constants θ[m](0, τ)
that vanish exactly on the Schottky locus. In terms of the projective embedding of (3.1.6),
this means determining the ideal generated by Jg(4, 8) inside P2g−1(2g+1)−1, where we denote
by Jg(4, 8) the pullback of the Schottky locus along the finite cover Ag(4, 8)→ Ag.

In this form, the Schottky problem is completely solved only in genus 4, with an explicit
equation given by Schottky [107] and Igusa [75]. We discuss this further in Section 3.2.

The weak Schottky problem asks for explicit equations that characterize Jacobians up to
extra irreducible components. A solution to this problem was given in genus 5 by Accola [1],
and in a recent breakthrough, by Farkas, Grushevsky and Salvati Manni in all genera [59].
We describe these in Section 3.3.

3.2 Classical Schottky problem in genus four

In this section, we describe numerical solutions to the classical Schottky problem in genus
four. We utilize the software abelfunctions [42] to test whether the Schottky–Igusa modular
form [75] vanishes. In the affirmative case, we use a numerical version of Kempf’s method
[81] to compute a canonical embedding into P3.

We recall from Section 2.1 that the sign of a characteristic m =

[
ε
δ

]
is defined as

e(m) = (−1)ε
tδ, and we call a characteristic even or odd if the sign is 1 or −1 respectively. A

triple of characteristics {m1,m2,m3} ⊂ (Z/2Z)8 is called azygetic if

e(m1)e(m2)e(m3)e(m1 +m2 +m3) = −1 . (3.2.1)

Suppose that this holds. Then we choose a rank 3 subgroup N of (Z/2Z)8 such that all
elements of (m1+N)∪ (m2+N)∪ (m3+N) are even. We consider the following three products
of eight theta constants each:

πi =
∏

m∈mi+N

θ[m](τ, 0) for i = 1, 2, 3 . (3.2.2)

Theorem 3.2.1 (Igusa [75]). The function H4 → C that takes a symmetric 4×4-matrix τ to

π2
1 + π2

2 + π2
3 − 2π1π2 − 2π1π3 − 2π2π3 (3.2.3)

is independent of the choices above. It vanishes if and only if τ lies in the closure of the
Schottky locus J4.

We refer to the expression (3.2.3) as the Schottky–Igusa modular form. This is a polynomial
of degree 16 in the theta constants θ[m](τ, 0). Of course, the formula is unique only modulo
the ideal that defines the embedding of the moduli space A4 in the P15 of theta constants.
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Our implementation uses the polynomial that is given by the following specific choices:

m1 =


1 1
0 0
1 1
0 0

, m2 =


0 1
0 0
0 0
1 0

, m3 =


0 1
0 0
1 1
1 1

, n1 =


0 1
0 1
0 1
1 0

, n2 =


0 0
0 0
1 0
1 1

, n3 =


0 1
0 0
1 1
0 1

.
The vectors n1, n2, n3 generate the subgroup N in (Z/2Z)8. One checks that the triple
{m1,m2,m3} is azygetic and that the three cosets mi +N consist of even elements only. The
computations to be described next were done with the Sage library abelfunctions [42].

The algorithm in [51] finds the Riemann matrix τ ∈ Jg of a plane curve in C2. It is
implemented in abelfunctions. We first check that (3.2.3) does indeed vanish for such τ .

Example 3.2.2. The plane curve y5 + x3 − 1 = 0 has genus four. Using abelfunctions,
we compute its Riemann matrix τ :

0.16913 + 1.41714i −0.81736− 0.25138i −0.05626− 0.44830i 0.24724 + 0.36327i
−0.81736− 0.25138i −0.31319 + 0.67096i −0.02813− 0.57155i 0.34132 + 0.40334i
−0.05626− 0.44830i −0.02813− 0.57155i 0.32393 + 1.44947i −0.96494− 0.63753i

0.24724 + 0.36327i 0.34132 + 0.40334i −0.96494− 0.63753i 0.62362 + 0.73694i

.
Evaluating the 16 theta constants θ[m](τ, 0) numerically with abelfunctions, we find that

π2
1 + π2

2 + π2
3 = −5.13472888270289 + 6.13887870578982i,

2(π1π2 + π1π3 + π2π3) = −5.13472882638710 + 6.13887931435788i.

We trust that (3.2.3) is zero, and conclude that τ lies in the Schottky locus J4, as expected.

Suppose now that we are given a matrix τ that depends on one or two parameters, so it
traces out a curve or surface in H4. Then we can use our numerical method to determine the
Schottky locus inside that curve or surface. Here is an illustration for a surface in H4.

Example 3.2.3. The following one-parameter family of genus 4 curves is found in [73, §2]:

y6 = x(x+ 1)(x− t).

This is both a Shimura curve and a Teichmüller curve; we refer to [73] for the definitions.
Its Riemann matrix is ρ(t) = Z−1

2 Z1 where Z1, Z2 are given in [73, Prop. 6]. Consider the
following two-parameter family in H4:

τ(s, t) = s · diag(2, 3, 5, 7) + ρ(t). (3.2.4)

We are interested in the restriction of the Schottky locus J4 to the (s, t)-plane. For our
experiment, we assume that the two parameters satisfy s ∈ [−0.5, 0.5] and λ−1(t) ∈ [ i, i + 1],
where λ is the function in [73, Prop. 6]. Using abelfunctions, we computed the absolute
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value of the modular form (3.2.3) at 6400 equally spaced rational points in the square
[−0.5, 0.5] × [i, i + 1]. That graph is shown in Figure 3.2.4. For s different from zero, the
smallest absolute value of (3.2.3) is 4.3 × 10−3. For s = 0, all absolute values are below
2.9 × 10−8. Based on this numerical evidence, we conclude that the Schottky locus of our
family is the line s = 0.

Figure 3.1: Absolute value of the Schottky–Igusa modular form on the 2-parameter fam-
ily (3.2.4).

We now come to the Schottky Recovery Problem. Our input is a matrix τ in J4. Our
task is to compute a curve whose Riemann matrix equals τ . We use the following result
from Kempf’s paper [81]. The theta divisor in the Jacobian C4/(Z4 + Z4τ) is the zero locus
Θ−1(0) of the Riemann theta function Θ(z) := θ[0](τ, z). For generic τ this divisor is singular
at precisely two points. These represent 3-to-1 maps from the curve to P1. We compute a
vector z∗ ∈ C4 that is a singular point of Θ−1(0) by solving the system of five equations

Θ(z) =
∂Θ

∂z1

(z) =
∂Θ

∂z2

(z) =
∂Θ

∂z3

(z) =
∂Θ

∂z4

(z) = 0. (3.2.5)

The Taylor series of the Riemann theta function Θ at the singular point z∗ has the form

Θ(z∗ + x) = f2(x) + f3(x) + f4(x) + higher order terms, (3.2.6)

where fs is a homogeneous polynomial of degree s in x = (x1, x2, x3, x4).
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Proposition 3.2.4 (Kempf [81]). The canonical curve with Riemann matrix τ is the degree
6 curve in P3 that is defined by the quadratic equation f2 = 0 and the cubic equation f3 = 0.

Thus our algorithm for the Schottky Recovery Problem consists of solving the five equations
(3.2.5) for z∗ ∈ C4, followed by extracting the polynomials f2 and f3 in the Taylor series
(3.2.6). Both of these steps can be done numerically using the software abelfunctions [42].

Example 3.2.5. Let τ ∈ J4 be the Riemann matrix of the genus 4 curve

C = {x3y3 + x3 + y3 = 1} .

We obtain τ numerically using abelfunctions. We want to recover C from τ . To be precise,
given only τ , we want to find defining equations f2 = f3 = 0 in P3 of the canonical embedding
of C. For that we use evaluations of Θ(z) and its derivatives in abelfunctions, combined
with a numerical optimization routine in SciPy [119]. We solve the equations (3.2.5) starting
from random points z = u+ τv where u, v ∈ R4 with entries between 0 and 1. After several
tries, the local method in SciPy converges to the following solution of our equations:

z∗ =
(
0.55517 + 0.69801i, 0.53678 + 0.26881i,−0.50000− 0.58958i, 0.55517 + 0.69801i

)
.

Using (3.2.6), we computed the quadric f2, which is nonsingular, as well as the cubic f3:

f2(x) = (−3.044822827 + 21.980542613i) · x2
1 + (−237.95207224 + 252.54744634i) · x1x2

+(−222.35552015 + 139.95612952i) · x1x3 + (−200.66932133− 16.596272620i) · x1x4

+(−191.16241727− 85.22650070i) · x2
2 + (−429.11449060 + 167.32094535i) · x2x3

+(−237.952072 + 252.54744632i) · x2x4 + (−206.75896934 + 27.364814282i) · x2
3

+(222.35552013 + 139.95612953i) · x3x4 + (−3.0448227745 + 21.980542601i) · x2
4

f3(x) = (441.375966486 + 61.14097461986i) · x3
1 + (2785.727151434 + 2303.609067429i) · x2

1x2

+ · · · · · · + (441.3759668263 + 61.14097402189i) · x3
4.

As a proof of concept we also computed the 120 tritangent planes numerically directly from τ .
These planes are indexed by the 120 odd theta characteristics m. In analogy to the computation
in [114, Section 5.2] of the 28 bitangents for g = 3, their defining equations are

∂θ[m](τ, z)

∂z1

∣∣∣∣
z=0

·x1 +
∂θ[m](τ, z)

∂z2

∣∣∣∣
z=0

·x2 +
∂θ[m](τ, z)

∂z3

∣∣∣∣
z=0

·x3 +
∂θ[m](τ, z)

∂z4

∣∣∣∣
z=0

·x4 = 0.

We verified numerically that each such plane meets {f2 = f3 = 0} in three double points.

Remark 3.2.6. On our website (5.1.1), we offer a program in Sage whose input is a
symmetric 4×4-matrix τ ∈ H4, given numerically. The code decides whether τ lies in J4 and,
in the affirmative case, it computes the canonical curve {f2 = f3 = 0} and its 120 tritangent
planes.
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3.3 Classical Schottky problem in genus five

For genus five and above, the classical Schottky problem is open. In this section, we describe
two weak solutions to the Schottky problem in genus five, from [1] and [59]. We also describe
numerical implementations of these solutions using our package Theta.jl from Section 2.3.

Farkas, Grushevsky and Salvati Manni’s solution

In a recent preprint [59], H. Farkas, Grushevsky and Salvati Manni give a solution to the
weak Schottky problem in arbitrary genus. To state their result, consider for every g ≥ 4 and
every ε ∈ (Z/2Z)g−4 the following three monomials of degree 8 in theta constants (here we
denote characteristics as row vectors for notational simplicity):

RR1
34,ε = θ [ E 0 0 0 ε

0 0 0 0 0 ] θ [ E 0 0 0 ε
1 1 1 1 1 ] θ [ E 0 1 1 ε

0 1 0 0 0 ] θ [ E 0 1 1 ε
1 0 1 1 1 ]

θ [ 1+E 1 0 0 ε
0 0 0 1 0 ] θ [ 1+E 1 0 0 ε

1 1 1 0 1 ] θ [ 1+E 1 1 1 ε
0 1 0 1 0 ] θ [ 1+E 1 1 1 ε

1 0 1 0 1 ]

RR2
34,ε = θ [ 1+E 0 1 0 ε

0 0 0 0 0 ] θ [ 1+E 0 1 0 ε
1 1 1 1 1 ] θ [ 1+E 0 0 1 ε

0 1 0 0 0 ] θ [ 1+E 0 0 1 ε
1 0 1 1 1 ]

θ [ E 1 1 0 ε
0 0 0 1 0 ] θ [ E 1 1 0 ε

1 1 1 0 1 ] θ [ E 1 0 1 ε
0 1 0 1 0 ] θ [ E 1 0 1 ε

1 0 1 0 1 ]

RR3
34,ε = θ [ E 0 0 0 ε

0 0 1 1 0 ] θ [ E 0 0 0 ε
1 1 0 0 1 ] θ [ E 0 1 1 ε

0 1 1 1 0 ] θ [ E 0 1 1 ε
1 0 0 0 1 ]

θ [ 1+E 1 0 0 ε
0 0 1 0 0 ] θ [ 1+E 1 0 0 ε

1 1 0 1 1 ] θ [ 1+E 1 1 1 ε
0 1 1 0 0 ] θ [ 1+E 1 1 1 ε

1 0 0 1 1 ]

(3.3.1)

where for ε = (ε1, . . . , εg−4), we denote E = ε1 + · · · + εg−4 ∈ Z/2Z. Given three maps
a, b, c : (Z/2Z)g−4 → {±1}, define

sa,b,c34 =
∑

ε∈(Z/2Z)g−4

aε

√
RR1

34,ε + bε

√
RR2

34,ε + cε

√
RR3

34,ε . (3.3.2)

We take the product

S34 =
∏
a,b,c

a0,0,...,0=1

sa,b,c34 (3.3.3)

to get a polynomial in the theta constants of degree 4 · 23·2g−4−1 = 23·2g−4+1. For any
3 ≤ j < k ≤ g, let RR1

jk,ε, RR
2
jk,ε, RR

3
jk,ε, s

a,b,c
jk , Sjk be obtained from RR1

34,ε, RR
2
34,ε, RR

3
34,ε,

sa,b,c34 , S34 by swapping the columns 3, j and 4, k in all the characteristics.

Theorem 3.3.1 ([59, Main Theorem]). The equations {Sjk}3≤j<k≤g cut out a locus in Ag(4, 8)
that contains the Schottky locus as an irreducible component.

Observe that there are
(
g−2

2

)
= (g−2)(g−3)

2
equations Sjk, which is exactly the same number

as the codimension of Jg inside Ag.

Remark 3.3.2. In the genus 5 case, we have three equations S34, S35 and S45. We know
from a result by Donagi [54] that these equations define extra components in addition to the
Schottky locus, namely the intermediate Jacobian locus coming from cubic threefolds.



CHAPTER 3. CLASSICAL SCHOTTKY PROBLEM 23

Numerical computations

For numerical computations, instead of checking that the product in (3.3.3) vanishes, we
directly evaluate the expressions in (3.3.2) to reduce the numerical error. To determine if a
matrix τ ∈ Hg is in the vanishing locus of Sjk, we compute the smallest absolute value of the
expressions in (3.3.2) and check if it is smaller than some numerical tolerance. This procedure
gives a real number for each Sjk, and to determine if τ is in the locus defined by all the Sjk’s,
we take the maximum of these numbers and check if it is smaller than a numerical tolerance.

We implement this for genus 5 in the function fgsm() in our package Theta.jl from
Section 2.3. Using the same example matrix τ from Section 2.3, the function fgsm(τ) gives
us the output 7.850462293418876e-16. This is expected since τ is the Jacobian of a genus 5
curve.

Accola’s equations in genus 5

A solution to the weak Schottky problem in genus 5 was given already by Accola [1] in 1983,
in the form of eight equations in the theta constants whose zero locus contains the Schottky
locus as an irreducible component. To describe these equations, we first introduce some
definitions.

Definition 3.3.3 (Azygetic basis). An azygetic basis of (Z/2Z)2g is an ordered set of distinct
elements (v1, . . . , v2g+1) such that

1. The vi generate (Z/2Z)2g.

2.
∑2g+1

i=1 vi = 0.

3. e(vi, vj) = −1 for all i 6= j, where e(v, v′) = (−1)ε
tδ′−ε′tδ for v =

(
ε
δ

)
, v′ =

(
ε′

δ′

)
.

Example 3.3.4. Mumford [94, Section 9] gives the following example of an azygetic basis.

v1 =

[
1 0 0 · · · 0
1 0 0 · · · 0

]
, v2 =

[
0 1 0 · · · 0
1 1 0 · · · 0

]
, . . . , vg =

[
0 0 0 · · · 1
1 1 1 · · · 1

]
,

vg+1 =

[
1 0 0 · · · 0
0 0 0 · · · 0

]
, vg+2 =

[
0 1 0 · · · 0
1 0 0 · · · 0

]
, . . . , v2g =

[
0 0 0 · · · 1
1 1 1 · · · 0

]
M =

2g∑
i=1

vi =

[
0 0 0 · · · 0
1 1 1 · · · 1

]
.

(3.3.4)

The characteristics v1, . . . , vg are odd whereas vg+1, . . . , v2g and M are even (refer to the
start of Section 3.2 for definitions). Any other azygetic basis can be obtained from this one
via the action of the symplectic group Sp(2g,Z/2Z) on (Z/2Z)2g, acting as the subgroup of
GL(2g,Z/2Z) with the symplectic form e(·, ·).



CHAPTER 3. CLASSICAL SCHOTTKY PROBLEM 24

Definition 3.3.5 (Hyperelliptic fundamental system). A hyperelliptic fundamental system
in genus 5 is a set of eleven characteristics {m1, . . . ,m11} ⊂ (Z/2Z)10 such that

1. The mi are all even.

2. The set is azygetic, i.e. e(mi +mj +mk) = −1 for all pairwise distinct i, j, k.

3. The sum of an even number of the mi is not zero.

Example 3.3.6. Let (v1, . . . , v10,M) be the azygetic basis from Example 3.3.4. Then

v6, . . . , v10, v1 +M, . . . , v4 +M,α, α +M , (3.3.5)

where α =
∑4

i=1 vi, is a hyperelliptic fundamental system. We can write this explicitly as[
1 0 0 0 0
0 0 0 0 0

]
,

[
0 1 0 0 0
1 0 0 0 0

]
,

[
0 0 1 0 0
1 1 0 0 0

]
,

[
0 0 0 1 0
1 1 1 0 0

]
,[

0 0 0 0 1
1 1 1 1 0

]
,

[
1 0 0 0 0
0 1 1 1 1

]
,

[
0 1 0 0 0
0 0 1 1 1

]
,

[
0 0 1 0 0
0 0 0 1 1

]
,[

0 0 0 1 0
0 0 0 0 1

]
,

[
1 1 1 1 0
0 1 0 1 0

]
,

[
1 1 1 1 0
1 0 1 0 1

]
.

(3.3.6)

Given a hyperelliptic fundamental system m1, . . . ,m11, we denote by n =
∑11

i=1mi the
sum and we also denote ai = n+mi. Now consider the subgroup

G1234
8 = 〈a5 + a6 + a7 + a8, a5 + a6 + a9 + a10, a5 + a7 + a9 + a11〉 ⊂ (Z/2Z)2g . (3.3.7)

This has 8 elements and e(mi + s) = 1 for all s ∈ G1234
8 , i = 1, 2, 3, 4. Define

ri(τ) =
∏

s∈G1234
8

θ[mi + s](0, τ) , for i = 1, 2, 3, 4 . (3.3.8)

These are monomials of degree 8 in the theta constants, with product

SR1234 =
∏

a,b,c=±1

(
√
r1 +a

√
r2 +b

√
r3 +c

√
r4) =

(∑
i

r2
i − 2

∑
i<j

rirj

)2

−64r1r2r3r4 . (3.3.9)

This is a polynomial of degree 4 in the ri’s, hence of degree 32 in the theta constants.
Moreover, for any k = 5, . . . , 11, we can define the group G123k

8 by swapping k with 4 in the
definition of G1234

8 . This changes the monomials ri in (3.3.8), to give us new polynomials
SR123k.

Theorem 3.3.7. [1] The zero locus of the polynomials SR123k, for k = 4, . . . , 11, contains
the Schottky locus J5 as an irreducible component.

Remark 3.3.8. It is not known whether Accola’s equations contain components apart from
the Schottky locus. It would be interesting to study whether the equations vanish on the
Intermediate Jacobian locus.
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Numerical computations

Similarly to the equations in (3.3.3), instead of checking if the product in (3.3.9) vanishes,
we directly evaluate the factors to reduce the numerical error. To determine if a matrix
τ ∈ H5 is in the vanishing locus of (3.3.9), we compute the smallest absolute value of the
eight factors and check if it is smaller than some numerical tolerance. This procedure gives a
real number for each k, and to determine if τ is in the locus defined by all the SR123k, we
take the maximum of these numbers and check if it is smaller than a numerical tolerance.

We implement this in the function accola() in our package Theta.jl from Section 2.3.
Again using the example τ from Section 2.3, the function accola(τ) gives us the output
3.062334813867916e-9, which is expected since τ is in the Schottky locus.

3.4 Conclusion

In this chapter, we discussed the classical Schottky problem in genus four and five. We
describe Igusa’s solution in genus four, which we implement numerically. We also implement
an algorithm to recover a canonical embedding of a genus four curve, given its Riemann
matrix. In genus five, the Schottky problem is open, and we describe two weak solutions
which we implement numerically. In the next chapter, we present a solution to a variant of
the Schottky problem for genus five Jacobians with a vanishing theta null. In Chapter 5, we
will discuss the tropical Schottky problem, which is the analogue of the Schottky problem in
tropical geometry.
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Chapter 4

Schottky problem for genus five
Jacobians with a vanishing theta null

In this chapter, we present a solution to a variant of the weak Schottky problem in genus
five, for Jacobians with a vanishing theta null. The material in this chapter is from the paper
“On the Schottky problem for genus five Jacobians with a vanishing theta null” authored with
Daniele Agostini, which will appear in Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze [4].

4.1 Introduction

We focus on Jacobians with a vanishing theta null, which is an even two-torsion point in the
theta divisor Θ. The abelian varieties with this property have been intensely studied [20, 50,
71, 72, 93] and they form a divisor θnull in Ag. The Schottky problem in this case becomes
that of recognizing Jg ∩ θnull inside θnull.

The first observation is that a vanishing theta null is automatically a singular point of
the theta divisor. Hence, following the Andreotti-Mayer philosophy, one is led to study the
local structure of Θ around the singular point, and the first natural invariant is the rank
of the quadric tangent cone. More precisely, if the divisor is cut out by a theta function,
Θ = {θ = 0}, then the quadric tangent cone QpΘ at p ∈ Θsing is defined by the Hessian
matrix evaluated at p:

QpΘ ∼


∂2θ
∂z12

∂2θ
∂z1∂z2

· · · ∂2θ
∂z1∂zg

∂2θ
∂z1∂z2

∂2θ
∂z22

· · · ∂2θ
∂z2∂zg

...
...

. . .
...

∂2θ
∂z1∂zg

∂2θ
∂z2∂zg

· · · ∂2θ
∂z2g

 . (4.1.1)

The rank of QpΘ is the rank of the Hessian. This leads to a stratification of θnull, first
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introduced by Grushevsky and Salvati Manni [71],

θ0
null ⊆ θ1

null ⊆ · · · ⊆ θg−1
null ⊆ θgnull = θnull (4.1.2)

where θhnull is the locus of abelian varieties with a vanishing theta null, with a quadric tangent
cone of rank at most h. In particular, if a Jacobian has a vanishing theta null, then a result
of Kempf [80] shows that the quadric tangent cone has rank at most three, hence

Jg ∩ θnull ⊆ θ3
null . (4.1.3)

Grushevsky and Salvati Manni proved in [71] that this inclusion is actually an equality in
genus 4, confirming a conjecture of H. Farkas. In the same paper, they ask whether Jg ∩ θnull

is an irreducible component of θ3
null in higher genera, which would imply a solution to the

weak Schottky problem for Jacobians with a vanishing theta null. Our main result is an
affirmative answer to this question in genus 5.

Theorem 4.1.1. In genus five, the locus J5 ∩ θnull is an irreducible component of θ3
null.

This solution to the weak Schottky problem is very much in the classical spirit of finding
explicit equations in the period matrix. Indeed, the condition of having an even two-torsion
point in the theta divisor can be checked by evaluating the theta function at these (finitely
many) points, and then the rank of the Hessian can be computed numerically. We include an
example of this computation in Example 4.4.9.

The strategy of our proof is to bound the dimension of θ3
null, by working over a partial

compactification Ag
1

= Ag ∪ ∂Ag of Ag, following [72]. Via a study of nodal curves with a
theta characteristic, we can describe the intersection (J5 ∩ θnull) ∩ ∂Ag. We can then bound
the dimension θ3

null ∩ ∂Ag via a study of the ramification loci, or Thom-Boardman loci, for
the Gauss map of the theta divisor, leading to the proof of our main theorem. In particular,
the study of these ramification loci fits with classical and recent work on the Gauss map [2,
10, 14, 46, 82], and might give a way to extend our main result in higher dimensions.

4.2 Singularities of theta divisors at points of order

two

For a general ppav (A,Θ) ∈ Ag, the theta divisor is smooth. The locus N0 ⊆ Ag where the
theta divisor is singular is called the Andreotti-Mayer locus, and it is a divisor in Ag [11].
Mumford [93], Beauville [20] and Debarre [50] proved that N0 has two irreducible components
θnull and N ′0. The component θnull is the locus where the theta divisor contains an even
two-torsion point of A, a so-called vanishing theta null, and N ′0 is the residual component.
Theta divisors containing even two-torsion points correspond to period matrices τ such that
θ[m](0, τ) = 0 for some even characteristic m. These points are always singular, since all
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the derivatives ∂θ[m]
∂zi

are odd. Moreover, we can give explicit equations for the lift of θnull in
Ag(4, 8) as

θnull = {τ | θ[m](0, τ) = 0, for some even characteristic m} . (4.2.1)

Thus, on Ag(4, 8) the divisor θnull splits into irreducible components corresponding to the
even characteristics, and these components are all conjugate under the action of Γg.

As explained in Section 4.1, the rank of the quadric tangent cone at the vanishing theta
null leads to a stratification

θ0
null ⊆ θ1

null ⊆ · · · ⊆ θg−1
null ⊆ θgnull = θnull (4.2.2)

where θhnull is the locus of ppav whose theta divisor contain an even two-torsion point with a
quadric tangent cone of rank at most h. In Ag(4, 8), the locus θhnull is given by the equations

θhnull =

{
τ ∈ Ag(4, 8) | ∃m even: θ[m](0, τ) = 0, rk

(
∂2θ[m]

∂zi∂zj
(0, τ)

)
≤ h

}
=

{
τ ∈ Ag(4, 8) | ∃m even: θ[m](0, τ) = 0, rk

(
(1 + δij)

∂θ[m]

∂τij
(0, τ)

)
≤ h

} (4.2.3)

where the second equality comes from the heat equation (2.1.4). One should be slightly careful
with this description because, as noted by Grushevsky and Salvati Manni, the condition{

rk
(

(1 + δij)
∂θ[m]
∂τij

(0, τ)
)
≤ h

}
is not well-defined on Ag(4, 8); it is well-defined only together

with the condition {θ[m](0, τ) = 0}. An alternative set of equations that fixes this problem
is given in [71].

If C is a smooth curve of genus g, a vanishing theta null on the Jacobian J(C) corresponds
to an even theta characteristic κ such that h0(C, κ) ≥ 2. As explained in Section 4.1,

Jg ∩ θnull ⊆ θ3
null . (4.2.4)

In [71], it was proved that this is an equality in genus four, and it was asked whether Jg ∩θnull

is an irreducible component of θ3
null in higher genus. In the rest of this paper, we will discuss

this problem and present a proof for genus five.

4.3 Partial compactification and Gauss maps

Our strategy is to bound the dimension of the irreducible component of θ3
null which contains

Jg ∩ θnull. To do so, we will use a partial compactification of Ag.

Partial compactification of Ag
The idea is to follow the strategy of [72], by studying the boundary of θ3

null inside the partial

compactification A1

g = Ag ∪ ∂Ag of Ag. This was introduced by [74] and then studied by
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Mumford [93]. The boundary divisor ∂Ag parametrizes rank one degenerations of ppavs,
which we briefly describe here, referring to [93] for more details. Let (B,Ξ) ∈ Ag−1 be a ppav
and let G be an algebraic group, which is an extension of B by C∗:

0 −→ C∗ −→ G −→ B −→ 0 . (4.3.1)

Then we can look at G as a C∗-bundle on B, which can be completed naturally to a P1-bundle,
together with two sections B0, B∞. These sections can be glued together via translation by
a point b ∈ B, and the resulting variety G is a limit of abelian varieties. It also carries a
divisor D ⊆ G, which is a limit of theta divisors. Thus, the boundary divisor is a fibration
p : ∂Ag → Ag−1, with fiber B/Aut(B,Ξ) over (B,Ξ) ∈ Ag−1, and the general fiber is B/〈±1〉,
the Kummer variety of B. Analytically, points on the boundary can be seen as limits of g× g
period matrices τ = τ(t) such that the imaginary part of τgg goes to +∞ as t→ 0, and all
the other coordinates converge. Hence, the limit has the form

τ =

(
τ ′ z′

z′t i∞

)
(4.3.2)

where τ ′ is the period matrix of (B,Ξ) ∈ Ag−1 and z′ represents the translation point b ∈ B.
Hence we see that, at least around a point (B,Ξ) ∈ Ag−1, we have a surjective map

Xg−1 → ∂Ag−1 (4.3.3)

that over (B,Ξ) corresponds to B → B/Aut(B).
The boundary of the theta null divisor in the partial compactification was computed by

Mumford [93].

Theorem 4.3.1 (Mumford). Let θnull be the closure of the theta null divisor in A1

g. Then

θnull ∩ ∂Ag−1 =

 ⋃
(B,Ξ)

2B(Ξ)

 ∪ p−1(θnull,g−1) (4.3.4)

where 2B(Ξ) = {2x |x ∈ Ξ} is the image of the divisor under the multiplication map.

More precisely, by
⋃

2B(Ξ) we mean the image of the universal double theta divisor
under the map Xg−1 → ∂Ag−1. We denote this component by Xg and sometimes we will not
distinguish whether we take it in Xg−1 or in ∂Ag−1. We can write

Xg = {(2z′, τ ′) | θ′ (z′, τ ′) = 0} (4.3.5)

where now θ′ is the Riemann theta function in genus g − 1. The intersections of the strata
θhnull with Xg were determined by Grushevsky and Salvati Manni [72].
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Theorem 4.3.2 (Grushevsky, Salvati Manni). Denote again by θhnull the closure in A1

g of the
corresponding stratum in Ag. Define the matrix

Dγ(z′, τ ′) :=



∂2θ′

∂z′1
2

∂2θ′

∂z′1∂z
′
2
· · · ∂θ′

∂z′1∂z
′
g−1

∂θ′

∂z′1
∂2θ′

∂z′1∂z
′
2

∂2θ′

∂z′2
2 · · · ∂θ′

∂z′2∂z
′
g−1

∂θ′

∂z′2
...

...
. . .

...
...

∂2θ′

∂z′1∂z
′
g−1

∂2θ′

∂z′2∂z
′
g−1

· · · ∂θ′

∂z′2g−1

∂θ′

∂z′g−1

∂θ′

∂z′1

∂θ′

∂z′2
· · · ∂θ′

∂z′g−1
0


(4.3.6)

evaluated at (z′, τ ′). Then

θhnull ∩Xg = {(2z′, τ ′) | θ′ (z′, τ ′) = 0, rkDγ (z′, τ ′) ≤ h} . (4.3.7)

Thom-Boardman loci of the Gauss map

The last result is best understood in terms of the Gauss map for the theta divisor. If
(B,Ξ) ∈ Ag−1 is a ppav, then the Gauss map is the rational map

γ : Ξ 99K P(T0B) (4.3.8)

that associates to each smooth point p ∈ Ξ the tangent space TpΞ, seen as a subspace of T0B
via translation by p. The base locus of the map is precisely the singular locus of Ξ, and if
Ξ = {θ′(z′, τ ′) = 0}, then the Gauss map can be written explicitly as

γ =

[
∂θ′

∂z′1
, . . . ,

∂θ′

∂zg−1

]
. (4.3.9)

The Gauss map is related to Theorem 4.3.2 by the following result, whose proof is the
same as [72, Lemma 2]; see also [49, 102].

Lemma 4.3.3. Let (B,Ξ) ∈ Ag−1 be a ppav, with the theta divisor given as Ξ = {θ′(z′, τ ′) =
0}. If z′ ∈ Ξ is a smooth point, then

rkDγ(z′, τ ′) ≤ h if and only if rk dγz′ ≤ h− 2 (4.3.10)

where dγz′ is the differential of the Gauss map at z′. If instead z′ ∈ Ξ is a singular point,

rkDγ(z′, τ ′) ≤ h if and only if rkQz′Ξ ≤ h (4.3.11)

where Qz′Ξ is the quadric tangent cone to Ξ at z′.
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For a map f : X → Y between two smooth connected varieties, the (closed) Thom-
Boardman loci are defined as

Σi(f) := {p ∈ X | dim ker dfp ≥ i} , (4.3.12)

Σi(f) := ΣdimX−i(f) = {p ∈ X | rk dfp ≤ i} . (4.3.13)

Hence we can interpret Lemma 4.3.3 as saying that for a theta divisor Ξτ ′ = {θ′(z′, τ ′) = 0},
the locus of smooth points where rkDγ(z′, τ ′) ≤ h coincides with the Thom-Boardman locus
Σh−2(γτ ′) of the Gauss map γτ ′ : Ξsmτ ′ → Pg−2. Moreover, Lemma 4.3.3 suggests also that the
Thom-Boardman loci can be naturally extended to a closed subset of Ξ by

Σh−2(γτ ′) = Σh−2(γτ ′) ∪ {z′ ∈ Ξsing | rkQz′Ξτ ′ ≤ h} . (4.3.14)

Thus Theorem 4.3.2 can be rephrased as saying that

θhnull ∩Xg =
⋃

(B,Ξ)∈Ag−1

2B(Σh−2(γΞ)) , (4.3.15)

where the set on the right can be viewed as the universal second multiple of the Thom-
Boardman locus inside the universal family Xg−1 → Ag−1. Observe that this is well-defined
in Xg−1 because of the multiplication by two.

4.4 Jacobians with a vanishing theta null in genus five

Now we turn to the proof of our main theorem. To begin with, we observe that Jg ∩ θnull is
the image under the Torelli map of the locus of curves with a vanishing theta null. It was
proved by Teixidor [115] that this is an irreducible divisor in Mg, and since the Torelli map
is injective, we see that Jg ∩ θnull is irreducible of dimension 3g− 4. What we need to prove is
that the irreducible component Zg of θ3

null which contains Jg ∩ θnull has the same dimension.
Equivalently, we can compute the codimension inside the divisor θnull, and we expect that

codimθnull(Zg) ≥ codimθnull(Jg ∩ θnull) =
g(g + 1)

2
− 1− (3g− 4) =

1

2
(g− 2)(g− 3) . (4.4.1)

We can bound the codimension of Zg by considering its intersection with Xg. More precisely,
we proceed in two steps.

1. Prove that Jg∩θnull intersects Xg at a smooth point of θnull. Then Zg also intersects Xg at
a smooth point of θnull, and it is a standard fact that codimθnull Zg ≥ codimXg(Zg ∩Xg).

2. Show that codimXg(θ
3
null∩Xg) ≥ 1

2
(g−2)(g−3). Then codimXg(Zg∩Xg) ≥ 1

2
(g−2)(g−3),

and from the previous step we have codimθnull Zg ≥ 1
2
(g − 2)(g − 3) as well.

We proceed to carry out these steps in genus five.
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Limits of Jacobians in the partial compactification

Here we consider points in the intersection Jg ∩ ∂Ag coming from nodal curves. Let C be a
smooth and irreducible curve of genus g − 1 ≥ 4 with two distinct marked points p, q ∈ C,
and let C be the nodal curve obtained by identifying these two points. This is a stable curve
of arithmetic genus g and the map ν : C → C is the normalization.

The group Pic0(C) fits naturally into an exact sequence [12]

0 −→ C∗ −→ Pic0(C)
ν∗−→ J(C) −→ 0 (4.4.2)

where J(C) = Pic0(C) is the Jacobian of C. This says that a bundle L on C is equivalent to
a bundle L on C, together with an identification of the two fibers L(p), L(q), which is given
by an element in C∗. Hence we see that Pic0(C) is a rank one extension of the ppav J(C),
as in (4.3.1). Moreover, in this situation we also have a natural element in J(C) given by
O(p− q). According to the description of Section 4.3, this gives us an element in Jg ∩ ∂Ag.

Now we consider nodal curves with a vanishing theta null, following Cornalba’s construction
[47, Example 3.2, Example 6.2].

Lemma 4.4.1. Let L be a line bundle on C such that 2L ∼ KC + p+ q. Then L descends
to a line bundle L on C such that 2L ∼ KC and h0(C,L) = h0(C,L).

Proof. We sketch the proof here, referring to [47] for more details. First we observe that
degL = g − 1, and the Riemann-Roch theorem shows that h0(C,L− p− q) = h0(C,L)− 1,
so the linear system of L does not separate the two points p, q. Moreover, this shows that
there is a section σ0 ∈ H0(C,L) that does not vanish at either p or q; in fact σ0 does not
vanish at both points. Indeed, suppose that σ0(q) = 0 and σ0(p) 6= 0. Then σ2

0 is a section of
2L(−q) ∼ KC + p− q that does not vanish at p, which cannot happen because p is a base
point of KC + p− q, since C has positive genus.

Hence, we can identify the two fibers of L(p), L(q) by identifying σ0(p) with σ0(q). This
induces a line bundle L on C such that 2L ∼ KC , and the sections H0(C,L) correspond to
sections σ ∈ H0(C,L) such that σ(p) = σ(q). Moreover, we know that H0(C,L) does not
separate p, q, which means precisely that H0(C,L) = H0(C,L).

According to [47], this gives a theta characteristic on C, and if h0(C,L) = 2, we get that
h0(C,L) = 2, so this is an even and effective theta characteristic on C. This actually gives
an element in (Jg ∩ θnull) ∩Xg as follows.

Lemma 4.4.2. Let L be a line bundle on C such that 2L ∼ KC + p+ q and h0(C,L) = 2.
Then (J(C),O(p− q)) gives a point in (Jg ∩ θnull) ∩Xg.

Proof. According to the description of Section 4.3, we need to show that O(p−q) ∈ 2·Θ, where
Θ ⊆ J(C) is a symmetric theta divisor. Recall that all the symmetric theta divisors on J(C)
are of the form Wg−2(C)− κ, where Wg−2(C) = {M ∈ Picg−2(C) |h0(C,M) > 0}, and κ is a
theta characteristic, hence 2 ·Θ = 2 ·Wg−2(C)−KC . Then we observe that L(−q) ∈ Wg−2(C)
and moreover 2L(−q) ∼ KC + p− q, so p− q ∼ 2L(−q)−KC ∈ 2 ·Wg−2(C)−KC .
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Via this construction, we obtain many points in (Jg∩θnull)∩Xg and we can give conditions
for these to be smooth points of θnull. This is done in the next two lemmas.

Lemma 4.4.3. Let (B,Ξ) ∈ Ag−1 be such that Aut(B,Ξ) = {±1} and let b ∈ 2B(Ξ) be a
point such that

1. b is not a two-torsion point.

2. The set 2−1
B (b) ∩ Ξ consists precisely of one point b′.

3. The point b′ has multiplicity at most two in Ξ.

Then (B,Ξ) and b give a smooth point of Xg which is also a smooth point of θnull.

Proof. First observe that Xg is a component of the intersection of the two divisors θnull and
∂Ag, so a smooth point in Xg is smooth in both θnull and ∂Ag. Hence it is enough to prove
smoothness in Xg.

To do so, we look at the point (b, (B,Ξ)) in the universal abelian variety Xg−1; this gives
a point in ∂Ag via the map Xg−1 → ∂Ag of (4.3.3). Since we are assuming that (B,Ξ) has
no extra automorphisms and that b is not a two-torsion point, we see that the map is a local
isomorphism around (b, (B,Ξ)), hence we can work in Xg−1 instead of in ∂Ag. Moreover, the
fact that (B,Ξ) has no extra automorphisms also tells us that the map Xg(4, 8)→ Xg is a
local isomorphism around (b, (B,Ξ)). So we can work directly inside Xg(4, 8), where we can
look at Xg =

⋃
(B,Ξ) 2B(Ξ) as the image of the universal theta divisor Ξg−1 =

⋃
(B,Ξ) Ξ under

the global multiplication-by-two map 2: Xg−1(4, 8)→ Xg−1(4, 8).
Now, our second assumption on b shows that the fiber of this map over (b, (B,Ξ)) consists

of a single point (b′, (B,Ξ)). We also know that the differential of the multiplication-by-2 map
is just the usual scalar multiplication by 2, so it is an isomorphism. Hence, the tangent space
to Xg at (b, (B,Ξ)) is isomorphic to the tangent space to the universal theta divisor Ξg−1 at
(b′, (B,Ξ)). In local coordinates (z′, τ ′), the universal theta divisor is given by {θ(z′, τ ′) = 0},
and the heat equation shows that a point (z′, τ ′) is singular if and only if z′ is a singular point
of Ξτ ′ of multiplicity at least 3, which in our case is ruled out by the third assumption.

Lemma 4.4.4. Let C be a smooth curve of genus g − 1 ≥ 4 with only trivial automorphisms
and let D ∈ Cg−3 be an effective divisor such that

1. h0(C,D) = 1.

2. KC − 2D ∼ p+ q with p, q two distinct points on C.

3. h0(C, η +D) = 0 for each η ∈ Pic0(C)[2] \ {OC}.

Then J(C) together with the point O(p− q) give a point in (Jg ∩ θnull)∩Xg which is a smooth
point of θnull.
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Proof. First we observe that deg(KC − 2D) = 2(g− 1)− 2− 2(g− 3) = 2, and since the curve
is not hyperelliptic, this implies h0(C,KC − 2D) ≤ 1, so the points p, q in (2) are uniquely
determined.

We then apply Lemma 4.4.3. Since the automorphism group of C is trivial, Torelli’s theo-
rem implies that J(C) has no extra automorphisms. Moreover, if κ is any theta characteristic
on C, we can fix the symmetric theta divisor given by Wg−2(C)−κ, and twice the theta divisor
is 2Wg−2(C)−KC . Then O(p− q) ∈ 2Wg−2(C)−KC , since if we set L = O(D+ p+ q), then
2L ∼ KC +p+ q because of assumption (2). Reasoning as in the proof of Lemma 4.4.1, we get
that h0(C,L) = h0(C,D) + 1 = 2, and also h0(C,L(−p)) = h0(C,L(−q)) = h0(C,L)− 1 = 1.
Hence p− q ∼ 2L(−q)−KC , with L(−q) ∈ Wg−2(C).

Now we check the three conditions of Lemma 4.4.3. We see that O(p− q) cannot be a
two-torsion point, because otherwise 2p ∼ 2q, but p, q are distinct and C is not hyperelliptic.
For the second condition, since p− q ∼ 2L(−q)−KC , we see that

2−1
J(C)(p− q) ∩ (Wg−2(C)− κ) ∼= {L(−q) + η | η ∈ J(C)[2], h0(L+ η − q) > 0} . (4.4.3)

For any η ∈ Pic0(C)[2], we see that 2(L + η) ∼ 2L ∼ KC + p + q, hence from the proof of
Lemma 4.4.1, h0(C,L + η − q) = h0(C,L + η) − 1 = h0(C,L + η − p − q) = h0(C,D + η).
Thus assumption (3) implies that the intersection (4.4.3) consists of the unique point L(−q).

For the last condition, we need to check that L(−q) has multiplicity at most two in the
theta divisor Wg−2(C). But Riemann’s singularity theorem shows that multL(−q) Wg−2(C) =
h0(C,L− q) = h0(C,L), and h0(C,L) = 1 by assumption (1).

We now specialize this discussion to g = 5.

Proposition 4.4.5. J5 ∩ θnull and X5 intersect at a smooth point of θnull.

Proof. We follow Lemma 4.4.4. Let C be a general curve of genus 4, with only trivial
automorphisms. We consider the locus

Z = {D ∈ C2 |h0(C,KC − 2D) > 0} (4.4.4)

and we show that a general element in Z satisfies the three conditions of Lemma 4.4.4. First,
we compute the dimension of Z. The condition h0(C,KC − 2D) > 0 is equivalent to the
fact that the evaluation map evD : H0(C,KC)→ H0(C,KC ⊗O2D) is not injective, or not
an isomorphism, since h0(C,KC) = h0(C,KC ⊗ O2D) = 4. The evaluation map globalizes
to a map of rank four bundles ev : H0(C,KC) ⊗ OC2 → E on C2, where the fiber of E at
D ∈ C2 is precisely H0(C,KC ⊗O2D). Thus, Z is precisely the degeneracy locus of the global
evaluation map. In particular, if we can show that Z 6= ∅ and Z 6= C2, it will follow that Z
is a divisor in C2. To prove this, let x ∈ C be a general point, then h0(C,KC − 2x) = 2, so
after removing the eventual base locus B, we get a map ϕ : C → P1. If y is a point where ϕ
is ramified, we see that D = x+ y ∈ Z; if instead y′ is a point outside of B where ϕ is not
ramified, then D′ = x+ y′ /∈ Z.
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Now we check the conditions in Lemma 4.4.4. If D ∈ Z, then h0(C,D) = 1, otherwise
the curve would be hyperelliptic. For the second condition, suppose that KC − 2D ∼ 2p for
some p ∈ C. Then KC ∼ 2D + 2p, so OC(D + p) is a theta characteristic on C. There are
only finitely many effective theta characteristics κ and since C is general, they all satisfy
h0(C, κ) = 1. Hence there are only finitely many such D, and since dimZ = 1, a general D
in any component of Z will give KC − 2D ∼ p+ q for two distinct points p, q ∈ C.

For the third condition, if we look at C2 in Pic2(C) via the Abel-Jacobi map, we see
that D ∈ Z satisfies the third condition precisely when D /∈

⋃
η(C2 + η), as η varies in

J(C)[2] \ {OC}. Suppose by contradiction that Z ⊆
⋃
η(C2 + η) and let Z ′ ⊆ Z be an

irreducible component. Then there must be an η ∈ J(C)[2] \ {OC} such that Z ′ ⊆ C2 + η, so
that Z ′ ⊆ C2 ∩ (C2 + η). In particular dim(C2 ∩ (C2 + η)) ≥ 1, and we will now prove that
this cannot happen. To do so, observe that if dim(C2∩ (C2 + η)) ≥ 1, then the difference map

φ2 : C2 × C2 −→ Pic0(C) , (D,E) 7→ D − E (4.4.5)

has a positive-dimensional fiber at η, and by [13, Exercise V.D-4] this is possible only if
η ∼= O(x − y) for two distinct points x, y ∈ C, or if η ∼= M1 −M2

∼= 2M1 − KC , where
M1 is one g1

3 on C and M2 = KC −M1 is the other. The first possibility cannot happen
because then 2x ∼ 2y, and C is not hyperelliptic. For the second possibility, observe that
if 2M1 −KC is two-torsion, then 4M1 ∼ 2KC . Since C is not hyperelliptic, we know from
Noether’s theorem that it is projectively normal in the canonical embedding C ⊆ P3, hence
4M1 ∼ 2KC if and only if for every divisor H ∈ |M1|, the divisor 4H is cut out by a quadric
in P3. Using Macaulay2 [69], we can easily find a curve where this does not happen, for
example the curve C = {X0X3 −X1X2 = X3

0 +X2
0X1 +X3

1 +X3
2 +X3

3 = 0} and the divisor
H = C ∩ {X2 = X3 = 0}.

Thom-Boardman loci for the Gauss map in dimension 4

Now we need to bound the codimension of θ3
null ∩Xg inside Xg, and by (4.3.15), we can do it

by studying the Thom-Boardman loci in one dimension less.

Lemma 4.4.6. Suppose that

codimAg−1{(B,Ξ) | dim Σ1(γΞ) ≥ i} ≥ i+
(g − 2)(g − 5)

2
, for i = 0, . . . , g−2 . (4.4.6)

Then

codimXg(θ
3
null ∩Xg) ≥

1

2
(g − 2)(g − 3) . (4.4.7)

Proof. We know from (4.3.15) that θ3
null ∩Xg =

⋃
(B,Ξ) 2B(Σ1(γΞ)), and we can bound the

dimension of this by bounding the dimension of the fibers and of the image along the
projection p : θ3

null ∩Xg → Ag−1. More precisely we have

dim θ3
null ∩Xg ≤ max

i=0,...,g−2

(
i+ dim{(B,Ξ) ∈ Ag−1 | dim 2B(Σ1(γΞ)) ≥ i}

)
. (4.4.8)
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Since the multiplication 2B : B → B is a finite map, we can replace dim 2B(Σ1(γΞ)) ≥ i by
dim Σ1(γΞ) ≥ i, and if we rephrase the previous inequality in terms of the codimension, we
get exactly what we want.

Remark 4.4.7. When g > 5, Lemma 4.4.6 requires that the set

{(B,Ξ) ∈ Ag−1 | dim Σ1(γΞ) ≥ 0} = {(B,Ξ) ∈ Ag−1 |Σ1(γΞ) 6= ∅} (4.4.9)

is a proper subset of Ag−1. However, this cannot happen; indeed, if (B,Ξ) ∈ Ag−1 is a
general ppav, then Ξ contains 2g−1(2g − 1) odd two-torsion points, corresponding to the odd
characteristics. If Ξ is cut out by a theta function Ξ = {θ′(z′, τ ′) = 0} and z′ is an odd
two-torsion point, then one can see that rkDγ(z′, τ ′) ≤ 2, so z′ ∈ Σ1(γΞ).

However, when g = 5 the hypotheses of Lemma 4.4.6 are satisfied.

Proposition 4.4.8. It holds that

codimX5(θ
3
null ∩X5) ≥ 3 . (4.4.10)

Proof. According to Lemma 4.4.6, we need to prove that

codimA4{(B,Ξ) | dim Σ1(γΞ) ≥ i} ≥ i , for i = 0, 1, 2, 3 . (4.4.11)

• For i = 0, this is immediate, though as observed in Remark 4.4.7, it is crucial that
g = 5.

• For i = 1, we need to show that for a general (B,Ξ) ∈ A4, the Thom-Boardman locus
Σ1(γΞ) is finite dimensional. This is proved by Adams, McCrory, Shifrin and Varley in
[2], where they show that the locus consists exactly of the odd two-torsion points of
Remark 4.4.7.

For the cases where i > 1, we start with a general observation. Assume that the Gauss
map γΞ : Ξsm → P3 has finite fibers, then dim Σ1(γΞ) ≤ 1. Indeed, let Z ⊆ Σ1(γΞ) be an
irreducible component of positive dimension. By construction, the differential of the induced
map γΞ|Z : Z → P3 has rank at most one at a general point of Z, so dim γΞ(Z) ≤ 1 by generic
smoothness. Since the map has finite fibers, it follows that dimZ ≤ 1. Hence if i > 1, we
can have dim Σ1(γΞ) ≥ i if and only if the locus {z′ ∈ Ξsing | rankQz′Ξ ≤ 3} has dimension
at least i.

• For i = 2, let (B,Ξ) ∈ A4 be such that Ξ is smooth. Then the Gauss map γΞ : Ξ→ P3 is
finite and the singular locus is empty, so the previous observation implies dim Σ1(γΞ) ≤
1. This proves that the locus {(B,Ξ) | dim Σ1(γΞ) ≥ 2} is contained in the divisor
N0,4 = {(B,Ξ) |Ξsing 6= ∅}. This divisor has two irreducible components, which are
exactly the theta null divisor θnull,4 and the Jacobian locus J4 [20]. Now, let (B,Ξ) be
the Jacobian of a hyperelliptic curve of genus 4. Then (B,Ξ) ∈ θnull,4 ∩ J4 [20], and
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since it is a Jacobian, we know that the Gauss map γΞ : Ξsm → P3 has finite fibers
[10]. Moreover, the singular locus of Ξ has dimension 1, so the previous observation
gives dim Σ(γΞ) ≤ 1. This proves that the locus {(B,Ξ) | dim Σ1(γΞ) ≥ 2} does not
contain the intersection θnull,4 ∩ J4; in particular, it does not coincide with any of the
two components, so it has codimension at least two.

• For i = 3, let (B,Ξ) ∈ A4 be such that Ξ is irreducible. Then dim Σ1(γΞ) ≥ 3 if and
only if Σ1(γΞ) = Ξ, but this is impossible because the Gauss map is dominant, so its
differential at a general point is an isomorphism. Hence, the locus {(B,Ξ) | dim Σ1(γΞ) ≥
3} is contained in the locus of decomposable abelian varieties, which has codimension 3.

Proof of main theorem

We can finally prove our main theorem, and we rewrite the argument here for clarity.

Proof of Theorem 4.1.1. We want to show that J5 ∩ θnull is an irreducible component of θ3
null.

As remarked before, we know that J5 ∩ θnull is irreducible of dimension 11, thus if Z5 ⊆ θ3
null

is the irreducible component containing J5 ∩ θnull, we need to show that dimZ5 ≤ 11, or
equivalently, codimθnull Zg ≥ 3. We consider the intersection with X5 inside the partial

compactification A5
1
; we know from Proposition 4.4.5 that Z5 and X5 intersect in a smooth

point of θnull, hence codimθnull Z5 ≥ codimX5(Z5 ∩ X5). It is enough to prove that this is
at least 3, or more generally, that codimX5(θ

3
null ∩X5) ≥ 3. This is precisely the bound of

Proposition 4.4.8.

Example 4.4.9. As we have observed in Section 4.1, this solution to the Schottky problem is
effective, since the condition of having a vanishing theta null with a quadric cone of rank at
most three can be checked explicitly. We present here an explicit example, where we use the
Julia package for theta functions presented in Section 2. We use the same curve and period
matrix τ ∈ H5 from Section 2.3, given by 0.40243 + 0.68413i −0.18138 + 0.21894i 0.24323− 0.13416i 0.00403 + 0.05085i −0.31818 + 0.14383i

−0.18137 + 0.21894i 0.27914 + 1.01836i −0.09799 + 0.46222i −0.06566 + 0.60959i −0.14647 + 0.37006i
0.24323− 0.13416i −0.09799 + 0.46222i 0.16663 + 0.68136i −0.28606 + 0.02038i 0.18558− 0.15061i
0.00403 + 0.05085i −0.06566 + 0.60959i −0.28606 + 0.02038i 0.04136 + 1.40560i 0.19025 + 0.82885i
−0.31818 + 0.14384i −0.14647 + 0.37006i 0.18558− 0.15061i 0.19025 + 0.82885i 0.74873 + 1.01168i


We can computationally check that the theta constant with even characteristic

m =

[
1 0 0 1 0
1 0 1 1 0

]
(4.4.12)

vanishes at τ . Moreover, we can compute the corresponding Hessian matrix
−2.79665 + 5.29764i −9.57825− 9.04671i 7.36305 + 2.28697i 7.58338 + 5.34729i 6.15667− 1.90199i
−9.57825− 9.04671i 18.9738 + 8.34582i −23.1027− 3.10545i −9.31944− 0.822821i 0.524289− 3.64991i
7.36305 + 2.28697i −23.1027− 3.10545i 16.8441− 1.15986i 13.9363− 4.56541i −3.32248 + 4.10698i
7.58338 + 5.34729i −9.31944− 0.822821i 13.9363− 4.56541i 2.89309 + 1.21773i 3.86617− 0.546202i
6.15667− 1.90199i 0.524289− 3.64991i −3.32248 + 4.10698i 3.86617− 0.546202i −12.9726− 1.928i


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The Hessian has the following eigenvalues:

47.946229109152995 + 9.491932144035298i

−15.491689246713147 + 3.3401255907497958i

−9.512858919129267− 1.0587349322052013i

−2.7271385943272036× 10−15 − 1.1117459994936022i× 10−14

−5.698014266322794× 10−15 + 6.342925068807627i× 10−15

so it is natural to expect that τ ∈ θ3
null. Indeed, τ is the Jacobian of the genus five curve C

obtained as the normalization of the singular plane octic

{x6y2−4x4y2−2x3y3−2x4y+2x3y+4x2y2+3xy3+y4+4x2y+2xy2+x2−4xy−2y2−2x+1 = 0} .

Using Macaulay2, we can write the equations of C in the canonical embedding and check that
it is contained in a quadric of rank 3, so it has a vanishing theta null. To compute τ from C,
we use the package [35] in Sage [103].

4.5 Conclusion

In this chapter, we presented a solution to a variant of the weak Schottky problem in genus
five, for Jacobians with a vanishing theta null. In the next chapter, we will discuss the tropical
Schottky problem, which is the analogue of the Schottky problem in tropical geometry.
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Chapter 5

Tropical Schottky problem

In this chapter, we describe the tropical Schottky problem, which is the analogue of the
Schottky problem in the combinatorial setting of tropical geometry. The material in this
chapter is from the paper “From Curves to Tropical Jacobians and Back” authored with
Barbara Bolognese and Madeline Brandt, which is published in Combinatorial Algebraic
Geometry [27], and the paper “Schottky Algorithms: Classical meets Tropical” authored with
Mario Kummer and Bernd Sturmfels, which is published in Mathematics of Computation [43].

5.1 Introduction

The Schottky problem also exists in tropical geometry [91]. The tropical Siegel space Htrop
g

is the cone of positive definite g × g-matrices, endowed with the fan structure given by the
second Voronoi decomposition. The tropical Schottky locus J trop

g is the subfan indexed by
cographic matroids [32, Theorem 5.2.4]. A detailed analysis for g ≤ 5 is found in [37, Theorem
6.4]. It is known, e.g. by [32, §6.3], that the inclusion J trop

g ⊂ Htrop
g correctly tropicalizes the

complex-analytic inclusion Jg ⊂ Hg. However, it has been an open problem (suggested in
[101, §9]) to find a direct link between the equations that govern these two inclusions.

We here solve this problem, and develop computational tools for the tropical Schottky
problem. We distinguish between the Schottky Decision Problem and the Schottky Recovery
Problem. For the former, the input is a matrix τ in Htrop

g , possibly depending on parameters,
and we must decide whether τ lies in J trop

g . For the latter, τ already passed that test, and
we compute a curve whose Jacobian is given by τ .

Our main results in Section 5.2 are Algorithms 5.3.3 and 5.3.5. Based on the work in [56,
57, 118, 120], these furnish a computational solution to the tropical Schottky problem. Key
ingredients are cographic matroids and the f-vectors of Voronoi polytopes.

Section 5.4 links the classical and tropical Schottky scenarios. Theorem 5.4.2 expresses
the edge lengths of a metric graph in terms of tropical theta constants, and Theorem 5.4.9
explains what happens to the Schottky–Igusa modular form in the tropical limit. We found
it especially gratifying to discover how the cographic locus is encoded in the classical theory.
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The software we describe in this paper is made available at the supplementary website

http://eecs.berkeley.edu/~chualynn/schottky (5.1.1)

5.2 Tropical Jacobians

Curves, their Jacobians, and the Schottky locus have natural counterparts in the combinatorial
setting of tropical geometry. We review the basics from [27, 32, 37, 91]. The role of a curve
is played by a connected metric graph Γ = (V,E, l, w). This has vertex set V , edge set E, a
length function l : E → R>0, and a weight function w : V → Z≥0. The genus of Γ is

g = |E| − |V |+ 1 +
∑
v∈V

w(v). (5.2.1)

The moduli space Mtrop
g comprises all metric graphs of genus g. This is a stacky fan of

dimension 3g − 3. See [37, Figure 4] for a colorful illustration. The tropical Torelli map
Mtrop

g → Htrop
g takes Γ to its (symmetric and positive semidefinite) Riemann matrix QΓ.

Fix a basis for the integral homology H1(Γ,Z) ' Zg. Beside the usual cycles in Γ, this
group has w(v) generators for the virtual cycles at each vertex v. Let B denote the g × |E|
matrix whose columns record the coefficients of each edge in the basis vectors. Let D be the
|E| × |E| diagonal matrix whose entries are the edge lengths. The Riemann matrix of Γ is

QΓ = B ·D ·Bt. (5.2.2)

One way to choose a basis is to fix an orientation and a spanning tree of Γ. Each edge not
in that tree then determines a cycle with ±1-coefficients. Changing the basis of H1(Γ,Z)
corresponds to the action of GLg(Z) on QΓ by conjugation.

Example 5.2.1. Consider the complete graph on 4 vertices in Figure 5.1.

2
e1

13e2 3
e6

7

e3

11
e4

5
e5

Figure 5.1: The metric graph and edge orientation used in Example 5.2.1.

We indicate in the figure an arbitrary choice of the edge orientations, and we choose the
spanning tree consisting of the edges T = {e2, e3, e4}. This corresponds to the cycle basis

http://eecs.berkeley.edu/~chualynn/schottky
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ω1 = e1 + e3 + e2, ω2 = −e3 + e5 + e4, and ω3 = −e2 − e4 + e6. Next, we compute the matrix
B as

B =

 1 1 0 1 0 0
0 −1 1 0 1 0
−1 0 −1 0 0 1

 . (5.2.3)

Let D be the 6× 6 diagonal matrix with entries 13, 7, 11, 2, 5, 3 along the diagonal. The period
matrix is then

QΓ = BDBT =

 22 −7 −13
−7 23 −11
−13 −11 27

 . (5.2.4)

The matrix QΓ has rank g−
∑

v∈V w(v). We defined Htrop
g with positive definite matrices.

Those have rank g. For that reason, we now restrict to graphs with zero weights, i.e. w ≡ 0.
The tropical Schottky locus J trop

g is the set of all matrices (5.2.2), where Γ = (V,E, l) runs
over graphs of genus g, and B runs over their cycle bases. This set is known as the cographic
locus in Htrop

g , because the g × |E| matrix B is a representation of the cographic matroid of Γ.
The Schottky Decision Problem asks for a test of membership in J trop

g . To be precise,
given a positive definite matrix Q, does there exist a metric graph Γ such that Q = QΓ?

To address this question, we need the polyhedral fan structures on J trop
g and Htrop

g . Let
G = (V,E) be the graph underlying Γ, with E = {e1, e2, . . . , em}. Fix a cycle basis as
above. Let b1, b2, . . . , bm be the column vectors of the g ×m-matrix B. Formula (5.2.2) is
equivalent to

QΓ = l(e1)b1b
t
1 + l(e2)b2b

t
2 + · · ·+ l(em)bmb

t
m. (5.2.5)

The cone of all Riemann matrices for the graph G, allowing the edge lengths to vary, is

σG,B = R>0

{
b1b

t
1, b2b

t
2, . . . , bmb

t
m

}
. (5.2.6)

This is a relatively open rational convex polyhedral cone, spanned by matrices of rank 1. The
collection of all cones σG,B is a polyhedral fan whose support is the Schottky locus J trop

g .
This fan is a subfan of the second Voronoi decomposition of the cone Htrop

g of positive
definite matrices. The latter fan is defined as follows. Fix a Riemann matrix Q ∈ Htrop

g and
consider its quadratic form Zg → R, x 7→ xtQx. The values of this quadratic form define a
regular polyhedral subdivision of Rg with vertices at Zg. This is denoted Del(Q) and known
as the Delaunay subdivision of Q.

Example 5.2.2. Consider the matrix

[
1 0
0 0

]
. The function lQ : Z2 → Z2 × R is given by

(x, y) 7→ (x, y, x2). If we now take the convex hull of the points in the image of lQ, we obtain
the picture in Figure 5.2 on the left, together with the Delaunay subdivision on the right.
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Figure 5.2: The weight function induced by the quadratic form in Example 5.2.2 on the left,
and the corresponding Delaunay subdivision on the right.

Figure 5.3: Delaunay decompositions of R2 (solid lines) and their associated Voronoi decom-
positions (dotted lines).

Dual to Del(Q) is the Voronoi decomposition of Rg. This is illustrated in Figure 5.3 for
g = 2. The cells of the Voronoi decomposition of Q are the lattice translates of the Voronoi
polytope {

p ∈ Rg : 2ptQx ≤ xtQx for all x ∈ Zg
}
. (5.2.7)

This is the set of points in Rg for which the origin is the closest lattice point, in the norm
given by Q. If Q is generic then the Delaunay subdivision is a triangulation and the Voronoi
polytope (5.2.7) is simple. It is dual to the link of the origin in the simplicial complex Del(Q).

The structures above represent principally polarized abelian varieties in tropical geometry.
A tropical abelian variety is the torus Rg/Zg together with a quadratic form Q ∈ Htrop

g .
The tropical theta divisor is given by the codimension one cells in the induced Voronoi
decomposition of Rg/Zg.

It is possible to give a more manageable description of the tropical theta divisor in virtue
of Theorem 5.2.3, as we are about to explain. Let Γ = (G,w, l) be a weighted metric graph,
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and let p0 ∈ Γ be a fixed basepoint. Let ω1, . . . , ωg be a basis of H1(G,Z). For any point p
in Γ, let c(p) =

∑
i aiei describe any path from p0 to p. Then, take the inner product of c(p)

with each element of the cycle basis to obtain a point of Rg/Λ, which does not depend on the
choice of path from p0 to p. By the identification with Rg/Zg induced by the choice of cycle
basis, this defines a point µ(p) of the tropical Jacobian. We may extend this map linearly so
that it is defined on all divisors on Γ. By a divisor on Γ, we mean a finite formal integer
linear combination of points in Γ. Then the map µ is called the tropical Abel-Jacobi map [91].

Given a divisor D =
∑

i aipi, where ai ∈ Z and pi ∈ Γ, define the degree of D as
∑

i ai.
We say that D is effective if ai ≥ 0 for all i. Let Wg−1 be the image of degree g − 1 effective
divisors under the tropical Abel-Jacobi map.

Theorem 5.2.3 (Corollary 8.6, [91]). The set Wg−1 is the tropical theta divisor up to
translation.

Example 5.2.4 (Example 5.2.1, Continued). Delaunay subdivisions also arise in many other
branches of mathematics, for example in lattice packing or covering problems. In this context,
Sikirić wrote a GAP [66] software package polyhedral [56]. Using this package, we compute
that the Delaunay subdivision of the quadratic form in Equation 5.2.4 is given by six tetrahedra
in the unit cube, all of which share the great diagonal as an edge. We also compute using
polyhedral the Voronoi decomposition dual to this Delaunay subdivision, which gives a tiling
of R3 by permutohedra as illustrated in Figure 5.4. This is the tropical theta divisor, with
f -vector (6, 12, 7). In Figure 5.5, we illustrate the correspondence described by Theorem 5.2.3
between W2 and the tropical theta divisor.

Figure 5.4: The left figure shows the Delaunay subdivision by tetrahedra and a dual permu-
tohedron in grey. The right figure illustrates a tiling of R3 by permutohedra. The polytopes
were computed using the polyhedral package of GAP [56] and the figures were created using
polymake [67].
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Figure 5.5: Each vertex of the permutohedron corresponds to a divisor supported on the
vertices of Γ. The square faces correspond to divisors supported on the interiors of edges
of Γ which do not meet in a vertex. Each hexagonal face corresponds to divisors which are
supported on edges of Γ which are adjacent to a fixed vertex. Then, the edges correspond
to keeping one point of the divisor fixed, and moving the other point along an edge of Γ.
The grey curve depicted above represents the embedding of Γ into its Jacobian under the
Abel-Jacobi map, which, under the identifications, is again K4.

5.3 Tropical Schottky problem

We now fix an arbitrary Delaunay subdivision D of Rg. Its secondary cone is defined as

σD =
{
Q ∈ Htrop

g | Del(Q) = D
}
. (5.3.1)

This is a relatively open convex polyhedral cone. It consists of positive definite matrices Q
whose Voronoi polytopes (5.2.7) have the same normal fan. The group GLg(Z) acts on the set
of secondary cones. In his classical reduction theory for quadratic forms, Voronoi [120] proved
that the cones σD form a polyhedral fan, now known as the second Voronoi decomposition of
Htrop
g , and that there are only finitely many secondary cones σD up to the action of GLg(Z).

The following summarizes characteristic features for matrices in the Schottky locus J trop
g .
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Proposition 5.3.1. Fix a graph G with metric D, homology basis B, and Riemann matrix
Q = BDBt. The Voronoi polytope (5.2.7) is affinely isomorphic to the zonotope

∑m
i=1[−bi, bi].

The secondary cone σDel(Q) is spanned by the rank one matrices bib
t
i: it equals σG,B in (5.2.6).

Proof. This can be extracted from Vallentin’s thesis [118]. The affine isomorphism is given
by the invertible matrix Q, as explained in item iii) of [118, §3.3.1]. The Voronoi polytope
being the zonotope

∑m
i=1[−bi, bi] follows from the discussion on cographic lattices in [118,

§3.5]. The result for the secondary cone is derived from [118, §2.6]. See [118, §4] for many
examples.

We now fix g = 4. Vallentin [118, §4.4.6] lists all 52 combinatorial types of Delaunay
subdivisions of Z4. His table contains the f-vectors of all 52 Voronoi polytopes. Precisely
16 of these types are cographic, and these comprise the Schottky locus J trop

4 . These are
described in rows 3 to 18 of the table in [118, §4.4.6]. We reproduce the relevant data in
Table 5.1. The following key lemma is found by inspecting Vallentin’s list of f-vectors.

Lemma 5.3.2. The f-vectors of the 16 Voronoi polytopes representing the Schottky locus
J trop

4 are distinct from the f-vectors of the other 36 Voronoi polytopes, corresponding to
Htrop

4 \J trop
4 .

This lemma gives rise to the following method for the tropical Schottky decision problem.

Algorithm 5.3.3 (Tropical Schottky Decision). Input: Q ∈ Htrop
4 . Output: Yes, if Q ∈ J trop

4 .
1. Compute the Voronoi polytope in (5.2.7) for the quadratic form Q.
2. Determine the f-vector (f0, f1, f2, f3) of this 4-dimensional polytope.
3. Check whether this f-vector appears in our Table 5.1. Output “Yes” if this holds.

Graph G Riemann matrix QΓ f0 f1 f2 f3 Dimension of σD(
3 1 −1 0
1 4 1 1
−1 1 4 −1
0 1 −1 3

)
96 198 130 28 9(

4 2 −2 −1
2 4 −1 −2
−2 −1 4 2
−1 −2 2 4

)
102 216 144 30 9(

2 0 −1 0
0 3 1 1
−1 1 4 −1
0 1 −1 3

)
72 150 102 24 8(

3 2 1 −1
2 4 2 −1
1 2 4 1
−1 −1 1 3

)
78 168 116 26 8(

3 1 −1 −1
1 3 1 1
−1 1 3 2
−1 1 2 3

)
60 134 98 24 7(

2 0 −1 −1
0 2 −1 −1
−1 −1 4 3
−1 −1 3 4

)
54 116 84 22 7
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(
2 0 −1 0
0 2 0 −1
−1 0 3 1
0 −1 1 3

)
54 114 80 20 7(

3 1 −1 0
1 3 1 0
−1 1 3 0
0 0 0 1

)
48 96 64 16 7(

2 0 −1 −1
0 2 1 1
−1 1 3 2
−1 1 2 3

)
46 108 84 22 6(

2 −1 −1 −1
−1 3 2 2
−1 2 3 2
−1 2 2 3

)
42 94 72 20 6(

2 1 1 0
1 3 2 0
1 2 3 0
0 0 0 1

)
36 74 52 14 6(

2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

)
36 72 48 12 6(

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
30 70 60 20 5(

2 1 1 0
1 2 1 0
1 1 2 0
0 0 0 1

)
28 62 48 14 5(

2 1 0 0
1 2 0 0
0 0 1 0
0 0 0 1

)
24 48 34 10 5

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
16 32 24 8 4

Table 5.1: The tropical Schottky locus for g = 4

We implemented Algorithm 5.3.3 using existing software for polyhedral geometry, namely
the GAP package polyhedral due to Dutour Sikirić [56, 57], as well as Joswig’s polymake

[67].
The first column of Table 5.1 shows all relevant graphs G of genus 4. The second column

gives a representative Riemann matrix. Here all edges have length 1 and a cycle basis
B was chosen. Using (5.2.6), we also precomputed the secondary cones σG,B for the 16
representatives.

Example 5.3.4. Using the GAP package polyhedral [56] we compute the Voronoi polytope
of

Q =

14 −9 11 0
−9 11 −2 1
11 −2 21 11
0 1 11 14

 .

Its f -vector is (62, 142, 104, 24). This does not appear in Table 5.1. Hence Q is not in J trop
4 .
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We now address the Schottky Recovery Problem. The input is a matrix Q ∈ J trop
4 . From

Algorithm 5.3.3 we know the f-vector of the Voronoi polytope. Using Table 5.1, this uniquely
identifies the graph G. Note that our graphs G are dual to those in [118, §4.4.4]. From our
precomputed list, we also know the secondary cone σG,B for some choice of basis B.

Algorithm 5.3.5 (Tropical Schottky Recovery). Input: Q ∈ J trop
4 .

Output: A metric graph Γ whose Riemann matrix QΓ equals Q.
1. Identify the underlying graph G from Table 5.1. Retrieve the basis B and the cone σG,B.
2. Let D = Del(Q) and compute the secondary cone σD as in (5.3.1).
3. The cones σD and σG,B are related by a linear transformation X ∈ GL4(Z). Compute X.
4. The matrix X tQX lies in σG,B. Compute `1, . . . , `m such that X tQX =

∑m
i=1 `ibib

t
i.

5. Output the graph G with length `i for its i-th edge, corresponding to the column bi of B.

We implemented this algorithm as follows. Step 2 can be done using polyhedral [56].
This code computes the secondary cone σD containing a given positive definite matrix Q.
The matrix X ∈ GL4(Z) in Step 3 is also found by polyhedral, but with external calls to
the package isom due to Plesken and Souvignier [98]. We refer to [57, §4] for details. For
Step 4 we note that the rank 1 matrices b1b

t
1, . . . , bmb

t
m are linearly independent [118, §4.4.4].

Indeed, the two 9-dimensional secondary cones σG,B at the top of Table 5.1 are simplicial, and
so are their faces. Hence the multipliers `1, . . . , `m found in Step 4 are unique and positive.
These `i must agree with the desired edge lengths l(ei), by the formula for Q = QΓ in (5.2.5).

Example 5.3.6. Consider the Schottky Recovery Problem for the matrix

Q =

17 5 3 5
5 19 7 11
3 7 23 16
5 11 16 29

 . (5.3.2)

Using polyhedral, we find that the f-vector of its Voronoi polytope is (96, 198, 130, 28). This
matches the first row in Table 5.1. Hence Q ∈ J trop

4 , and G is the triangular prism. Using
polyhedral and isom, we find a matrix that maps Q into our preprocessed secondary cone:

X =

 0 0 0 1
1 0 0 0
0 1 1 0
−1 −1 0 0

 ∈ GL4(Z) gives Q′ = X tQX =

26 9 −9 0
9 20 7 −2
−9 7 23 3
0 −2 3 17

 ∈ σG,B.

This Q′ is the Riemann matrix of the metric graph in Figure 5.6, with basis cycles e2 + e6− e3,
−e1−e4 +e7 +e2, −e1−e5 +e8 +e3, and e4 +e9−e5. These are the rows of the 4×9-matrix B.
In Step 4 of Algorithm 5.3.5 we compute D = diag(`1, . . . , `9) = diag(7, 9, 9, 2, 3, 8, 2, 4, 12).
In Step 5 we output the metric graph in Figure 5.6. Its Riemann matrix equals Q = BDBt.

Example 3.2.3 explored the classical Schottky locus in a two-parameter family of Riemann
matrices. In the tropical setting, it is natural to intersect Htrop

g with an affine-linear space L
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Figure 5.6: Metric graph with edge lengths in red. Its Riemann matrix matches (5.3.2).

of symmetric matrices. The intersection Htrop
g ∩L is a spectrahedron. By the Schottky locus of

a spectrahedron we mean J trop
g ∩L. This is an infinite periodic polyhedral complex inside the

spectrahedron. For quartic spectrahedra [95], when g = 4, this locus has codimension one.

Example 5.3.7 (The Schottky locus of a quartic spectrahedron). We consider the matrix

Q =

 1589− 2922s+ 960t 789− 1322s −820 + 660s− 1350t −820 + 3260s+ 2550t
789− 1322s 1589− 2922s− 960t −820 + 3260s− 2550t −820 + 660s+ 1350t

−820 + 660s− 1350t −820 + 3260s− 2550t 1665 + 450s+ 3120t −25− 2930s
−820 + 3260s+ 2550t −820 + 660s+ 1350t −25− 2930s 1665 + 450s− 3120t

.
Here s and t are parameters. This defines a plane L in the space of symmetric 4 × 4-
matrices. The left diagram in Figure 5.7 shows the hyperbolic curve {det(Q) = 0}. The
spectrahedron Htrop

g ∩ L is bounded by its inner oval. The right diagram shows the second
Voronoi decomposition. The Schottky locus J trop

g ∩ L is a proper subgraph of its edge graph.
It is shown in red. Note that the graph has infinitely many edges and regions.

Remark 5.3.8. We described some computations in GAP and in polymake that realize
Algorithms 5.3.3 and 5.3.5. The code for these implementations is made available on our
website (5.1.1).

5.4 Tropical meets classical

In this section we present a second solution to the tropical Schottky problem. It is new and
different from the one in Section 5.2, as it works for every genus, and it links directly to the
classical solution in Section 3.2.

Let Q ∈ Htrop
g be a positive definite matrix for arbitrary g. Mikhalkin and Zharkov [91,

§5.2] define the following analogue to the Riemann theta function in the max-plus algebra:

Θ(Q, x) := max
λ∈Zg
{λtQx− 1

2
λtQλ}. (5.4.1)



CHAPTER 5. TROPICAL SCHOTTKY PROBLEM 49

Figure 5.7: A quartic spectrahedron (left) and its second Voronoi decomposition (right).
The Schottky locus of that spectrahedron consists of those edges that are highlighted in red.

This tropical theta function describes the asymptotic behavior of the classical Riemann theta
function with Riemann matrix t ·τ when t goes to infinity, as long as there are no cancellations.
This is made precise in Proposition 5.4.6. Here, the real matrix Q is the imaginary part of τ .

Analogously, for u ∈ Zg, we define the tropical theta constant with characteristic u to be

Θu(Q) := 2 ·Θ(Q,
u

2
)− 1

4
utQu. (5.4.2)

In the classical case, characteristics are vectors m = (m′,m′′) in Z2g. But, only u = m′

contributes to the aforementioned asymptotics. Note that Θu(Q) depends only on u modulo 2.

Definition 5.4.1. For any v ∈ Zg consider the following signed sum of tropical theta
constants:

ϑv(Q) :=
∑

u∈(Z/2Z)g

(−1)u
tv ·Θu(Q). (5.4.3)

The theta matroid M(Q) is the binary matroid represented by the collection of vectors{
v ∈ (Z/2Z)g : ϑv(Q) 6= 0

}
. (5.4.4)

The tropical theta constants and the theta matroid are invariant under basis changes S ∈
GLg(Z). We have ϑu(Q) = ϑS−1u(S

tQS) for all u ∈ Zg, and therefore M(Q) = M(StQS).
Here is the promised new approach to the Schottky problem. If Q lies in the tropical

Schottky locus then M(Q) is the desired cographic matroid and (5.4.3) furnishes edge lengths.

Theorem 5.4.2. If Q ∈ J trop
g then the matroid M(Q) is cographic. In that graph, we

assign the length 23−g · ϑv(Q) to the edge labeled v. The resulting metric graph has Riemann
matrix Q.
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This says, in particular, that ϑv(Q) is non-negative when Q comes from a metric graph.

Proof. Since Q ∈ J trop
g , there exists a unimodular matrix B = (b1, . . . , bm) ∈ {−1, 0,+1}g×m

and a diagonal matrix D = diag(`1, . . . , `m) such that Q = BDBt =
∑m

i=1 `ibib
t
i. We claim

Θu(Q) = − 1

4
·
∑

btiu is odd

`i for all u ∈ Zg. (5.4.5)

Here the `i are positive real numbers. First, we note that

Θu(Q) = max
λ∈Zg

{
−(λ+

u

2
)tQ(λ+

u

2
)
}
≤

m∑
i=1

−`i · min
λ∈Zg

{(
bti · (λ+

u

2
)
)2
}
.

If btiu is even, then bti · (λ + u
2
) = 0 for some λ ∈ Zg. Otherwise, the absolute value of

bti · (λ + u
2
) is at least 1/2. This shows that Θu(Q) ≤ −1

4
·
∑

btiu is odd `i. To derive the

reverse inequality, let I =
{
i : ui is odd

}
⊂ {1, . . . , g}. By a result of Ghouila-Houri [68] on

unimodular matrices, we can find w ∈ Zg with wi = ±1 if i ∈ I and wi = 0 otherwise, such
that bti ·w ∈ {0,±1} for all 1 ≤ i ≤ m. The vector λ0 = 1

2
(w− u) lies in Zg. One checks that

−(λ0 +
u

2
)tQ(λ0 +

u

2
) =

m∑
i=1

−`i · (bti · (λ0 +
u

2
))2 = −1

4

m∑
i=1

`i · (bti · w)2 = −1

4
·
∑

btiu is odd

`i.

Therefore, we also have Θu(Q) ≥ −1
4
·
∑

btiu is odd `i. This establishes the assertion in (5.4.5).

We next claim that, under the same hypotheses as above, the function in (5.4.3) satisfies

ϑv(Q) = 2g−3
∑

bi≡vmod 2

`i for all v ∈ Zg. (5.4.6)

Indeed, substituting the right hand side of (5.4.5) for Θu(Q) into (5.4.3), we find that

ϑv(Q) = −1

4
·
∑

u∈(Z/2Z)g

∑
btiu is odd

(−1)u
tv · `i = −1

4
·
m∑
i=1

`i · (|Ei| − |Oi|),

where Ei = {u ∈ (Z/2Z)g : btiu odd, utv even} and Oi = {u ∈ (Z/2Z)g : btiu odd, utv odd}. If
bi ≡ vmod 2 then Ei = ∅ and |Oi| = 2g−1. Otherwise, |Ei| = |Oi| = 2g−2. This proves (5.4.6).

Since Q ∈ J trop
g , this matrix comes from a graph G. We may assume that G has no

2-valent vertices. This ensures that any pair is independent in the cographic matroid of G.
The column bi of the matrix B records the coefficients of the i-th edge in a cycle basis of

the graph G. The residue class of bi modulo 2 is unique. For v ∈ Zg with bi ≡ vmod 2, the
sum in (5.4.6) has only term `i, and we have `i = 23−gϑv(Q). If v ∈ Zg is not congruent to bi
for any i then ϑv(Q) = 0. This proves that the theta matroid M(Q) equals the cographic
matroid of G, and the edge lengths `i are recovered from Q by the rule in Theorem 5.4.2.
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By Theorem 5.4.2, the non-negativity of ϑv(Q) is a necessary condition for Q to be in
J trop
g .

Example 5.4.3. For the matrix Q in Example 5.3.4, we find ϑ0001(Q) = −1
2
. Hence

Q 6∈ J trop
4 .

This necessary (but not sufficient) condition translates into the following algorithm:

Algorithm 5.4.4 (Tropical Schottky Recovery). Input: Q ∈ J trop
g .

Output: A metric graph Γ whose Riemann matrix QΓ equals Q.
1. Compute the theta matroid M(Q). It is cographic and determines a unique graph G.
2. Compute all edge lengths using the formula `i = 23−gϑv(Q). Set D = diag(`1, . . . , `m).
3. Output the metric graph (G,D).
4. (Optional) As in Algorithm 5.3.5, find a basis B such that BDBt = Q.

Example 5.4.5. Let Q be the matrix in Example 5.3.6. For each u ∈ (Z/2Z)4, we list the
theta constant Θu(Q), the weight 2−1ϑu(Q) and the label of the corresponding edge in Figure
5.3.6:

u 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

−Θu
29
4

23
4 5 19

4
13
2 7 31

4
17
4 9 17

2
33
4

13
2

43
4

41
4

21
2

2−1ϑu 9 7 9 8 2 0 4 12 0 0 0 0 2 0 3
Edge e2 e1 e3 e6 e7 − e8 e9 − − − − e4 − e5

We now explain the connection between the classical and tropical theta functions. In
particular, we will show how the process of tropicalization relates Theorems 3.2.1 and 5.4.2.

In order to tropicalize the Schottky–Igusa modular form, we must study the order of
growth of the theta constants when the entries of the Riemann matrix grow. This information
is captured by the tropical theta constants. The following proposition makes that precise.

Proposition 5.4.6. Fix Q ∈ Htrop
g , and let P (t) be any real symmetric g × g-matrix that

depends on a parameter t ∈ R. For every m ∈ (Z/2Z)2g there is a constant C ∈ R such that

0 ≤ | θ[m](P (t) + t · iQ, 0) |
| exp(t · π ·Θm′(Q)) |

≤ C for all t ≥ 0. (5.4.7)

Moreover, we can choose P (t) such that the ratio above does not approach zero for t→∞.

Here θ[m](τ, 0) is the classical theta constant from (2.1.3), and Θm′(Q) is the tropical
theta constant defined in (5.4.2). We use the notation m = (m′,m′′) for vectors in Z2g, where
m′,m′′ ∈ Z2g.

Proof. Consider the lattice points λ where the maximum in (5.4.1) for x = m′/2 is attained.
The corresponding summands in (2.1.2) with λ = n have the same asymptotic behavior as
exp(t · πΘm′(Q)) for t→∞. The sum over the remaining exponentials tends to zero since it
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can be bounded by a sum of finitely many Gaussian integrals with variance going to zero for
t→∞. We can choose the real symmetric matrix P (t) in such a way that no cancellation of
highest order terms happens. Then the expression in (5.4.7) is bounded away from zero.

Remark 5.4.7. On the Siegel upper-half space Hg we have an action by the symplectic group
Sp2g(Z). Two matrices from the same orbit under this action correspond to the same abelian
variety. However their tropicalizations may vary drastically. Consider for example the case

g = 1:

(
0 −1
1 k

)
∈ Sp2(Z) sends τ = i to a complex number with imaginary part 1

1+k2
.

We now assume that g = 4. For any subset M ⊂ (Z/2Z)8 we write M ′ = {m′ : m ∈M}
and similarly for M ′′. The following lemma concerns the possible choices for Theorem 3.2.1.

Lemma 5.4.8. For any azygetic triple {m1,m2,m3} and any matching subgroup N ⊂
(Z/2Z)8,

(1) there exist indices 1 ≤ i < j ≤ 3 such that (mi +N)′ = (mj +N)′, and

(2) if dimN ′ = 3 and (m1 +N)′ = (m2 +N)′ 6= (m3 +N)′, then m′1,m
′
2 ∈ N ′.

Proof. This purely combinatorial statement can be proved by exhaustive computation.

For instance, consider the specific choice of m1,m2,m3, N made prior to Example 3.2.2.
This has dimN ′ = 2, and Lemma 5.4.8 (1) holds with i = 2, j = 3. If we exchange the first
four coordinates with the last four coordinates, then dimN ′ = 3, m′1,m

′
3 ∈ N ′ and m′2 6∈ N ′.

Recall from Theorem 3.2.1 that a matrix τ ∈ H4 is in the Schottky locus if and only if
π2

1 + π2
2 + π2

3 − 2(π1π2 + π1π3 + π2π3) vanishes. The tropicalization of this expression equals

max
i,j=1,2,3

(πtrop
i + πtrop

j ), (5.4.8)

where πtrop
i =

∑
m∈mi+N Θm′(Q) is the tropicalization of the product (3.2.2), with Q = im(τ).

The tropical Schottky–Igusa modular form (5.4.8) defines a piecewise-linear convex function
Htrop

4 → R. Its breakpoint locus is the set of Riemann matrices Q for which the maximum
in (5.4.8) is attained twice. That set depends on our choice of m1,m2,m3, N . That choice
is called admissible if N ⊂ (Z/2Z)8 has rank three, the triple {m1,m2,m3} ⊂ (Z/2Z)8 is
azygetic, all elements of mi +N are even, and the group N ′ ⊂ (Z/2Z)4 also has rank three.
We define the tropical Igusa locus in Htrop

g to be the intersection, over all admissible choices
m1,m2,m3, N , of the breakpoint loci of the tropical modular forms (5.4.8).

Theorem 5.4.9. A matrix Q ∈ Htrop
4 lies in the tropical Igusa locus if and only if ϑv(Q) ≥ 0

for all v ∈ Z4. That locus contains the tropical Schottky locus J trop
4 , but they are not equal.

Proof. We are interested in how the maximum in (5.4.8) is attained. By Lemma 5.4.8 (1),
after relabeling, πtrop

1 = πtrop
2 . The maximum is attained twice if and only if πtrop

1 ≥ πtrop
3 .
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The condition in Lemma 5.4.8 (2) then holds, and substituting the definition of πtrop
i , this is

equivalent to ∑
u∈N ′

Θu(Q) ≥
∑
u6∈N ′

Θu(Q). (5.4.9)

Let v be the non-zero vector in (Z/2Z)4 that is orthogonal to N ′. Then (5.4.9) is equivalent
to

ϑv(Q) =
∑

u∈(Z/2Z)4

(−1)u
tvΘu(Q) ≥ 0.

This proves the first assertion, if we knew that every v arises from some admissible choice.
We saw in Theorem 5.4.2 that ϑv(Q) ≥ 0 for all v whenever Q ∈ J trop

4 . Hence the tropical
Schottky locus J trop

4 is contained in the tropical Igusa locus. The two loci are not equal
because the latter contains the zonotopal locus of Htrop

4 . This consists of matrices Q = BDBt

where B represents any unimodular matroid, not necessarily cographic. By [118, §4.4.4],
the second Voronoi decomposition of Htrop

4 has a non-cographic 9-dimensional cone in its
zonotopal locus. It is unique modulo GL4(Z). We verified that all 16 tropical modular forms
ϑv are non-negative on that cone. This establishes the last assertion in Theorem 5.4.9.

To finish the proof, we still need that every v ∈ (Z/2Z)4\{0} is orthogonal to N ′ for some
admissible choice m1,m2,m3, N . By permuting coordinates, it suffices to show this for

v ∈ {(1, 0, 0, 0)t, (1, 1, 0, 0)t, (1, 1, 1, 0)t, (1, 1, 1, 1)t}.

For v = (1, 0, 0, 0)t we take

m1 =

0 1
0 0
0 0
0 1

, m2 =

1 1
1 0
1 1
0 1

, m3 =

0 1
0 0
1 0
1 0

, n1 =

0 1
1 0
0 1
0 1

, n2 =

0 1
0 0
1 0
1 1

, n3 =

0 0
0 1
1 0
0 0

.
For v = (1, 1, 0, 0)t we take

m1 =

0 1
0 0
0 0
0 1

, m2 =

1 1
1 0
1 1
0 0

, m3 =

1 0
0 0
0 0
0 1

, n1 =

1 1
1 1
0 1
1 0

, n2 =

0 0
0 1
1 0
0 0

, n3 =

0 0
0 1
0 0
1 1

.
For v = (1, 1, 1, 0)t we take

m1 =

1 0
0 0
0 0
1 0

, m2 =

0 1
0 1
0 1
1 0

, m3 =

0 0
0 0
0 0
1 0

, n1 =

0 0
0 0
0 0
1 1

, n2 =

1 0
0 0
1 0
1 1

, n3 =

1 0
1 0
0 0
0 0

.
For v = (1, 1, 1, 1)t we take

m1 =

1 0
0 1
0 1
0 0

, m2 =

0 1
0 1
1 0
1 0

, m3 =

0 1
0 0
0 1
0 1

, n1 =

1 0
1 1
0 0
0 1

, n2 =

1 0
0 1
0 1
1 0

, n3 =

1 1
0 1
1 1
0 0

.
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This completes the proof of Theorem 5.4.9.

We have shown that the tropicalization of the classical Schottky locus satisfies the
constraints coming from the tropical Schottky–Igusa modular forms in (5.4.8). However,
these constraints are not yet tight. The tropical Igusa locus, as we have defined it, is strictly
larger than the tropical Schottky locus. It would be desirable to close this gap, at least for
g = 4. One approach might be a more inclusive definition of which choices are “admissible”.

Question 5.4.10. Can the tropical Schottky locus J trop
4 be cut out by additional tropical

modular forms, notably those obtained in (5.4.8) by allowing choices m1,m2,m3, N with
dimN ′ ≤ 2?

The next question concerns arbitrary genus g. We ask whether just computing the theta
matroid M(Q) solves the Tropical Schottky Decision problem. Note that we did not address
this subtle issue in Algorithm 5.4.4 because we had assumed that the input Q lies in J trop

g .

Question 5.4.11. Let Q be a positive definite g × g matrix such that the matroid M(Q) is
cographic with positive weights. Does this imply that Q is in the tropical Schottky locus?

If the answer is affirmative then we can use Tutte’s classical algorithm [117] as a subroutine
for Schottky Decision. That algorithm can decide whether the matroid M(Q) is cographic.
We close with a question that pertains to classical Schottky Reconstruction as in Section 3.2.

Question 5.4.12. How to generalize the results in [48] from g = 3 to g = 4? Is there a nice
tritangent matrix, written explicitly in theta constants, for canonical curves of genus four?

5.5 Conclusion

In this chapter, we discussed the tropical Schottky problem, and presented algorithms for
solving it in genus four. We also relate the classical and tropical solutions to the genus four
Schottky problem. This chapter concludes the first part of this thesis. In the next part, we
discuss two works relating to cryptography.
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Part II

Elliptic curve and lattice-based
cryptography
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Chapter 6

On cycles of pairing-friendly elliptic
curves

This part of the thesis relates to cryptography. In this chapter, we study cycles of pairing-
friendly elliptic curves, for an application in pairing-based cryptography. The material in
this chapter is from the paper “On Cycles of Pairing-Friendly Elliptic Curves” authored with
Alessandro Chiesa and Matthew Weidner, and published in the SIAM Journal on Applied
Algebra and Geometry [41].

6.1 Introduction

A cycle of elliptic curves is a list of elliptic curves defined over finite fields in which the
number of points on one curve equals the size of the field of definition of the next, cyclically.

Definition 6.1.1. An m-cycle of elliptic curves is a list of m distinct elliptic curves E1/Fq1,. . .,
Em/Fqm, where q1, . . . , qm are prime, such that the numbers of points on these curves satisfy

#E1(Fq1) = q2 , . . . ,#Ei(Fqi) = qi+1 , . . . ,#Em(Fqm) = q1 . (6.1.1)

This notion was introduced in [111] with the name of aliquot cycles. The case of 2-cycles
of ordinary curves, also called amicable pairs, was introduced in the context of primality
proving by [89, 90] under the equivalent notion of dual elliptic primes.

Silverman and Stange [111] showed that cycles of arbitrary lengths exist, and gave
conjectural estimates, for any elliptic curve E/Q, of the number of prime pairs (q1, q2) such
that reducing E modulo q1 and q2 gives an amicable pair. Cycles of elliptic curves were
further studied in [15, 76, 96, 97], and some of these works refined and proved on average the
conjectured estimates, showing that amicable pairs are asymptotically common.

In [21] the notion of cycles of elliptic curves was extended for applications to pairing-based
cryptography.
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Definition 6.1.2. A pairing-friendly m-cycle of elliptic curves is an m-cycle such that every
elliptic curve in the cycle is ordinary and has a small embedding degree.

Pairing-friendly cycles were used in [21] to achieve recursive composition of zkSNARKs
(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge). A zkSNARK is a
cryptographic scheme that allows one party (the prover) to convince another party (the
verifier) that the prover knows a certain secret, via a short proof that is cheap to verify
and reveals no information about the secret. Efficient zkSNARK constructions are obtained
via pairing-friendly elliptic curves, and the cycle condition in Eq. (6.1.1) enables their
recursive composition, while avoiding expensive modular arithmetic across fields of different
characteristics. (See [21] for details.)

Practitioners are interested in recursive composition of zkSNARKs, because it can be
used to boost the scalability of distributed ledger technologies [33]. For example, there are
commercial efforts in this space whose core technology is recursive composition [45], and
such technology thus rests on properties of cycles of pairing-friendly elliptic curves.

This motivates the question: what types of pairing-friendly cycles exist? A pairing-friendly
2-cycle can be obtained from pairing-friendly prime-order curves of embedding degrees 4 and 6
[79, 21]. Beyond this, there are no other known constructions, and very little is known about
pairing-friendly cycles. Indeed, requiring a small embedding degree as in Definition 6.1.2 is a
strong restriction and techniques used in previous work to study aliquot cycles do not seem
to apply to pairing-friendly cycles.

This is unfortunate because the aforementioned MNT cycle is not ideal for applications:
its unequal embedding degrees make one curve less secure than the other and, moreover, the
fact that both embedding degrees are so small implies that using the cycle at high security
levels is inefficient. It would be desirable, e.g., to have a 2-cycle with embedding degrees
(12, 12) or (20, 20) and, more generally, to understand this mathematical object better.

Overview of results

The stark difference in the current understanding of pairing-friendly cycles when compared
to aliquot cycles, as well as applications to pairing-friendly cryptography in the real world,
motivates a systematic study of pairing-friendly cycles. In this paper we initiate such a study,
and our main results are the following.

1. Prior to this work, the only construction of pairing-friendly cycles was a 2-cycle from
a family of curves called MNT curves, named after Miyaji, Nakabayashi, and Takano
[92]. A natural question to ask is: can one construct other cycles consisting of MNT
curves? In this work, we construct a new pairing-friendly cycle of length 4 using MNT
curves. We also characterize all the possibilities for cycles consisting of MNT curves,
showing that any MNT cycle must have length 2 or 4, and that the curves must have
embedding degrees alternating between 4 and 6. See Section 6.4 for details.
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2. We then study arbitrary pairing-friendly 2-cycles (not derived from a particular family).
We prove that 2-cycles of elliptic curves with embedding degrees (5, 10), (8, 8), or
(12, 12) do not exist. The technique that we use relies on the fact that the cyclotomic
polynomials of these embedding degrees have degree 4. In particular, we do not know
how to extend this result to any other embedding degrees (k1, k2). See Section 6.5 for
details.

3. We move to study pairing-friendly cycles of arbitrary length. One strategy to construct
cycles could be to pick a parametrized family of elliptic curves and try to construct
cycles consisting of curves from the same family (like for MNT curves). What must the
parameters of the family satisfy for such constructions to be possible? We prove that if
the curves have the same discriminant for complex multiplication D > 3, then we cannot
construct cycles of length greater than 2 (Section 6.6). This implies that to construct
elliptic curve cycles, we must use curves from families of varying discriminants.

4. So far we discussed cycles consisting of elliptic curves of prime order. What if we relax
the definition of cycles to allow composite (non-prime) order elliptic curves in which
the number of points on one curve is a multiple of (but not necessarily equal to) the
size of the field of definition of the next? We prove that composite-order cycles cannot
exist (see Section 6.7). This is a strong restriction as it implies that we must construct
cycles using pairing-friendly elliptic curves of prime order. Unfortunately, there are
very few constructions of families of such curves in the literature, regardless of cycles.

5. Lastly, we study the other known families of pairing-friendly elliptic curves of prime
order (apart from MNT curves): the Freeman curves [61] and the Barreto–Naehrig
curves [19]. We prove that cycles within each of these families do not exist (Section 6.8).
This means that, if one wants to obtain cycles from curve families, one must consider
combinations of current families (or study future constructions of prime-order elliptic
curves).

Overall, cycles of pairing-friendly elliptic curves seem much harder to understand, and to
construct, than cycles of arbitrary elliptic curves. While our results have for the most
part established limitations of pairing-friendly cycles, our outlook is optimistic. Our work
demonstrates that studying pairing-friendly cycles is tractable and, moreover, points the way
to concrete research questions that could lead to more tools for studying these cycles. We
thus conclude the introduction with a selection of open problems.

Open problems

1. Do there exist cycles consisting of elliptic curves with the same embedding degree? The
varying embedding degrees in current constructions of cycles is inconvenient because,
in practice, curves in the cycle have different security levels.
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2. Can we construct cycles of embedding degrees greater than 6? All known pairing-
friendly cycles involve embedding degrees at most 6, which means that it is inefficient to
use such cycles at high security levels (e.g., 128 bits of security). It would be desirable
to construct, or rule out, cycles of higher embedding degrees (say, 20).

3. In particular, can we construct 2-cycles of higher embedding degrees? Our technique
for ruling out pairs with embedding degrees (5, 10), (8, 8), or (12, 12) sheds some light
on other pairs (k1, k2) for which Φk1(x) = Φk2(−x), but it does not seem to extend to
the case deg Φk1(x) > 4. We believe that it would be especially interesting to study
pairs with embedding degrees (16, 16), which have cyclotomic polynomial x8 + 1.

4. Do there exist cycles consisting of elliptic curves with the same discriminant and the
same embedding degrees? Our work demonstrates that sharing the same discriminant is
already quite limiting, and it would be interesting to understand how this requirement
interacts with that of sharing the same embedding degree.

5. Are there cycles from combinations of MNT, Freeman, and Barreto–Naehrig curves?
Our preliminary investigations via Gröbner bases suggest small cycles are unlikely, but
the question remains open for arbitrary-length cycles.

6.2 Preliminaries

Elliptic curves and pairings

Let E be an elliptic curve over a finite field Fq, where q is a prime. We denote this by E/Fq,
and we denote by E(Fq) the group of points of E over Fq, with order n = #E(Fq). The trace
of E/Fq is t = q + 1− n. By Hasse’s theorem [110, Theorem V.1.1], t satisfies |t| ≤ 2

√
q. We

say that E is supersingular if gcd(q, t) 6= 1, otherwise E is ordinary.
The endomorphism ring End(E) of E consists of morphisms from E to itself that are

also group homomorphisms on its points. If E is supersingular, then End(E) is an order in a
quaternion algebra. If E is ordinary, then End(E) is an order in an imaginary quadratic field
Q(
√
−D), for some positive squarefree integer D. We call D the discriminant, and we say

that E has complex multiplication in Q(
√
−D).1

Let r ≥ 2 be an integer relatively prime to q. We denote the r-torsion points of E by
E[r], and we denote the group of r-th roots of unity in the algebraic closure of Fq by µr. The
Weil pairing is a bilinear non-degenerate map

er : E[r]× E[r]→ µr . (6.2.1)

The embedding degree with respect to r is the smallest integer k such that r divides qk− 1.
In the case of prime-order curves, if r = n we simply say that E has embedding degree k.

1Some works use the convention that D is negative. Throughout this work we take D to be positive.
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The Weil pairing was first used in cryptography to reduce the discrete logarithm problem
on E[r] to a discrete logarithm problem in µr, which is contained in F∗

qk
[87, 63]. Subsequently,

starting with the work of [28, 77], the Weil pairing was used to achieve numerous cryptographic
capabilities. For security, it is necessary to choose the embedding degree k such that the
discrete logarithm problem in F∗

qk
is computationally infeasible. On the other hand, the

embedding degree cannot be too large, or the computation of the Weil pairing (which grows
linearly in k) would not be efficient enough for cryptographic applications.

We say that an elliptic curve E/Fq is pairing-friendly if E(Fq) has a large prime-order
subgroup, and if the embedding degree is small (see [62] for a more precise definition).
A random elliptic curve has a large embedding degree and thus is not pairing-friendly.
Constructing pairing-friendly curves with specified parameters is a difficult problem with
strong practical motivations that has been extensively studied. It was shown in [87] that
supersingular elliptic curves can have embedding degree at most 6, and if the characteristic
of q is not 2 or 3, the embedding degree is at most 3. As we are interested in large values of q
and higher values of k for applications in cryptography, we focus on ordinary elliptic curves.

The known methods to construct ordinary pairing-friendly curves proceed by first finding
parameters q, r, t, k such that there exists an elliptic curve E/Fq with trace t, a prime-order
subgroup of size r, and embedding degree k. The complex multiplication method is then used
to find the equation of the curve. This works if the CM equation 4q− t2 = Dy2 has a solution
with y ∈ Z and small positive discriminant D ∈ Z. Indeed, state-of-the-art algorithms run in
time O(D polylogD) and are only feasible for D of size up to 1016 [113].

It is useful to view the condition on the embedding degree via cyclotomic polynomials.
Let Φm be the m-th cyclotomic polynomial (the minimal polynomial over the rationals of an
irreducible m-th root of unity). It is known that (see for example [121])

xm − 1 =
∏
d|m

Φd(x) . (6.2.2)

Lemma 6.2.1. Let E/Fq have prime order n. Then E has embedding degree k if and only if
k is minimal such that n divides Φk(q).

Proof. The condition that k is the embedding degree implies that k is minimal such that
qk ≡ 1 (mod n). Using basic results on cyclotomic polynomials (see [121, Lemma 2.9]), this
is equivalent to the condition that n|Φk(q).

This can be converted into a result relating n to the trace t.

Lemma 6.2.2 ([18]). The elliptic curve E/Fq has embedding degree k if and only if n|Φk(t−1)
and n - Φi(t− 1) for all 0 < i < k.

To construct ordinary pairing-friendly elliptic curves, one need only consider embedding
degrees k ≥ 3, because of the following lemma.

Lemma 6.2.3. Let E/Fq be an elliptic curve of prime order with embedding degree k = 2.
Then E is supersingular.
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Proof. By Lemma 6.2.1, the condition that k = 2 implies that q + 1 − t | q + 1, since
Φ2(x) = x + 1. Thus we can write q + 1 − t = d(q + 1) for some integer d ≥ 1. From the
Hasse bound, we have |t| = (d− 1)(q + 1) ≤ 2

√
q. Thus we have the inequality

(d− 1)q − 2
√
q + d− 1 ≤ 0 . (6.2.3)

This has a solution if the discriminant 4− 4(d− 1)2 is nonnegative, which simplifies to d ≤ 2.
If d = 1, then t = 0 and E is supersingular. If d = 2, then t = −q − 1. Using the Hasse
bound, we have q + 1 ≤ 2

√
q, or (

√
q− 1)2 ≤ 0, which has only the trivial solution q = 1.

Families of pairing-friendly elliptic curves

We consider families of pairing-friendly elliptic curves with a fixed embedding degree, whose
parameters are defined by polynomials. These are useful for generating curves for applications,
where curves of arbitrary size are desired. Each family is parametrized by polynomials
(qk(x), nk(x), tk(x)), representing the field of definition, number of rational points, and
trace respectively, where k is the embedding degree. These have to satisfy that nk(x) =
qk(x) + 1 − tk(x), nk(x) divides Φk(tk(x) − 1), and there must be infinitely many integer
solutions (x, y) to the CM equation 4qk(x)−tk(x)2 = Dy2, for some small positive discriminant
D ∈ Z.

Miyaji, Nakabayashi, and Takano [92] characterized all families of ordinary prime-order
elliptic curves with embedding degrees k = 3, 4, 6. For these embedding degrees, the cyclotomic
polynomial is quadratic, and the CM equation can be transformed into a generalized Pell
equation. These families are parametrized by the polynomials in Table 6.1. We refer to
elliptic curves belonging to the MNT families in Table 6.1 as MNT curves.

Table 6.1: MNT curves.

k qk(x) nk(x) tk(x)
3 12x2 − 1 12x2 − 6x+ 1 6x− 1
4 x2 + x+ 1 x2 + 2x+ 2, x2 + 1 −x, x+ 1
6 4x2 + 1 4x2 + 2x+ 1 −2x+ 1

For other embedding degrees, there is no analogous characterization of all elliptic curves
with a given embedding degree. Moreover, there is currently no method to construct families
of prime-order elliptic curves of arbitrary embedding degrees. (If we allow for composite
orders, there are algorithms to construct elliptic curves of arbitrary embedding degrees [44,
55].) There are two other constructions of prime-order families, stated below.
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Freeman [61] has constructed a family of prime-order elliptic curves with k = 10, which is
parametrized by the following polynomials:

q10(x) = 25x4 + 25x3 + 25x2 + 10x+ 3 , (6.2.4a)

n10(x) = 25x4 + 25x3 + 15x2 + 5x+ 1 , (6.2.4b)

t10(x) = 10x2 + 5x+ 3 . (6.2.4c)

Barreto and Naehrig [19] have another construction with k = 12, parametrized by

q12(x) = 36x4 + 36x3 + 24x2 + 6x+ 1 , (6.2.5a)

n12(x) = 36x4 + 36x3 + 18x2 + 6x+ 1 , (6.2.5b)

t12(x) = 6x2 + 1 . (6.2.5c)

Other constructions of pairing-friendly elliptic curves have composite orders. These include
the families of Brezing and Weng [34] and of Barreto, Lynn, and Scott [18].

6.3 Cycles of pairing-friendly elliptic curves

In this paper we study cycles of pairing-friendly elliptic curves. This notion was introduced
in [21] for applications in cryptography. We re-state Definition 6.1.1 below.

Definition 6.3.1. An m-cycle of elliptic curves is a list of m distinct elliptic curves E1/Fq1,. . .,
Em/Fqm, where q1, . . . , qm are prime, such that the numbers of points on these curves satisfy

#E1(Fq1) = q2 , . . . ,#Ei(Fqi) = qi+1 , . . . ,#Em(Fqm) = q1 . (6.3.1)

Cryptographic applications require curves in the cycle to have small embedding degree.

Definition 6.3.2. A (k1, . . . , km)-cycle is an m-cycle of distinct ordinary elliptic curves
E1/Fq1, . . ., Em/Fqm such that Ei/Fqi has embedding degree ki, for each i = 1, . . . ,m. A
(k1, . . . , km)-cycle is pairing-friendly if all the ki’s are small (recall Definition 6.1.2).

An m-cycle is a special case of a (k1, . . . , km)-cycle where the ki’s are arbitrary positive
integers (or possibly infinity). If we require that q1, . . . , qm are distinct primes, Definition 6.3.1
is equivalent to the notion of aliquot cycles for elliptic curves E/Q by Silverman and Stange
[111]. An aliquot m-cycle for E/Q is a sequence of distinct primes (q1, . . . , qm) such that E
has good reduction at each prime and, if we denote the reduction of E at qi by Ẽqi , then

#Ẽq1(Fq1) = q2 , . . . ,#Ẽqi(Fqi) = qi+1 , . . . ,#Ẽqm(Fqm) = q1 . (6.3.2)

Given an aliquot m-cycle, we can construct an m-cycle of elliptic curves by setting
Ei := Ẽqi for each i. Conversely, given an m-cycle where q1, . . . , qm are distinct, we can
construct a curve E/Q by computing its coefficients via the Chinese Remainder Theorem in
such a way that E’s reduction at each qi is Ei. It is known that cycles of arbitrary lengths
exist, based just on the Hasse bound and the fact that every trace in the Hasse bound is
realized by an elliptic curve [53].
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Proposition 6.3.3 ([111, Theorem 5.1]). For every m ≥ 1 there exists an elliptic curve E/Q
with an aliquot m-cycle.

However, the foregoing result does not take into account the embedding degrees of the
curves. In particular, it is not known if pairing-friendly cycles of arbitrary lengths exist.

The focus of this paper is the study of pairing-friendly cycles of elliptic curves. This is
a significantly more restrictive notion than the aliquot cycles introduced in [111], since a
random elliptic curve would not have a small embedding degree. Moreover, there are only few
known families of prime-order elliptic curves with small embedding degrees (see Section 6.2
for a list of all such families). Even without the condition that the curves form a cycle, it is
already a difficult problem to construct pairing-friendly elliptic curves of prime order.

We list below a few observations that we will use in this paper. First, the lemma below
implies that to construct cycles of elliptic curves for applications (where the size of the finite
fields tend to be large), we need only consider ordinary elliptic curves.

Lemma 6.3.4. Let E1/Fq1,. . ., Em/Fqm be an m-cycle of elliptic curves, where q1, . . . , qm ≥ 5
are prime. Then all the curves must be ordinary elliptic curves.

Proof. It is known that for any elliptic curve E/Fq with q ≥ 5 prime, E is supersingular if and
only if #E(Fq) = q + 1, see for example [110, Exercise 5.10]. Suppose Ei/Fqi is supersingular
for some i, then #E(Fqi) = qi + 1 = qi+1. But since qi is prime, qi + 1 is even, hence this
cannot hold.

Next, we present a necessary condition for m elliptic curves to form an m-cycle. This
condition is not sufficient as every trace in the Hasse interval can be realized by an elliptic
curve [53], hence this condition is not a strong restriction on the curves in the cycle.

Lemma 6.3.5. Let E1/Fq1,. . ., Em/Fqm be an m-cycle of elliptic curves, with traces t1, . . . , tm
respectively. Then the sum of their traces satisfies

t1 + · · ·+ tm = m. (6.3.3)

Proof. Let ni = #Ei(Fqi), for each i = 1, . . . ,m. Since the curves form a cycle, we have the
constraints n1 = q2, . . ., ni = qi+1, . . ., nm = q1. If we sum up these m equations, we get
n1 + · · ·+nm = q1 + · · ·+qm. Using the fact that ni = qi+1− ti, we get t1 + · · ·+ tm = m.

6.4 MNT cycles

We consider pairing-friendly cycles consisting of MNT curves (see Table 6.1), which are the
ordinary prime-order elliptic curves of embedding degrees 3, 4, 6. For brevity, we use the term
MNT cycles for cycles where every curve is an MNT curve. In [79, 21], MNT curves were
used to give the first construction of pairing-friendly 2-cycles. In this section, we construct
MNT 4-cycles, and characterize the possible MNT cycles.
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Proposition 6.4.1. All MNT cycles have lengths 2 or 4, and they are either (6, 4)-cycles or
(6, 4, 6, 4)-cycles.

The proof of this result proceeds in a few steps. First in Lemma 6.4.2 we show that no
curve in an MNT cycle can have embedding degree 3. Then in Lemmas 6.4.4 and 6.4.5 we
show that no two consecutive curves in an MNT cycle can both have embedding degree 4 or
6. Finally we consider MNT cycles with alternating embedding degrees 4 and 6, and we show
that these can only have lengths 2 or 4.

Lemma 6.4.2. Let E1/Fqk1 (x1), . . . , Em/Fqkm (xm) be an MNT cycle, with x1, . . . , xm ∈ Z and
embedding degrees k1, . . . , km ∈ {3, 4, 6}. Then none of the embedding degrees can be 3.

To show Lemma 6.4.2, we make use of the following result.

Lemma 6.4.3 ([121, Proposition 2.10]). Let q be a prime such that q - k. Then q divides
Φk(a) for some a ∈ Z if and only if q ≡ 1 (mod k).

Proof of Lemma 6.4.2. By Lemma 6.2.1, the condition that Ei/Fqki (xi) has embedding degree
ki implies that nki(xi) |Φki(qki(xi)). Since nki(xi) = qki+1

(xi+1), Lemma 6.4.3 implies

qki+1
(xi+1) ≡ 1 (mod ki) . (6.4.1)

Suppose that kj = 3 for some j. From Table 6.1,

q3(xj) = 12x2
j − 1 ≡ 1 (mod kj−1) . (6.4.2)

However, this is not possible since 12x2
j − 1 ≡ −1 (mod 3, 4, 6).

We show that for any MNT cycle, no two consecutive curves can both have embedding
degree 4 or 6.

Lemma 6.4.4. Let E1/Fqk1 (x1), . . . , Em/Fqkm (xm) be an MNT cycle, with x1, . . . , xm ∈ Z.
Then no two consecutive curves can both have embedding degree 4.

Proof. Suppose to the contrary that ki = ki+1 = 4 for some i. Then n4(xi) = q4(xi+1). From
Table 6.1, q4(xi+1) = x2

i+1 + xi+1 + 1, and there are two possibilities for n4(xi).
Suppose n4(xi) = x2

i + 2xi + 2. Then x2
i + 2xi + 2 = x2

i+1 + xi+1 + 1, which implies

(xi + 1)2 = xi+1(xi+1 + 1) . (6.4.3)

This is a contradiction if xi 6= −1, since the product of two consecutive nonzero integers is
not a square.2 But if xi = −1, then n4(xi) = 1 would not be prime.

Suppose n4(xi) = x2
i + 1. Then x2

i + 1 = x2
i+1 + xi+1 + 1, which implies

x2
i = xi+1(xi+1 + 1) . (6.4.4)

This is a contradiction by the same argument as above.
2Suppose that for some nonzero x, y ∈ Z, x(x+ 1) = y2. If x > 0, then x2 < y2 < (x+ 1)2, which has no

integer solutions for x, y. If x < 0, then x2 > y2 > (x+ 1)2, which also has no integer solutions for x, y.
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Lemma 6.4.5. Let E1/Fqk1 (x1), . . . , Em/Fqkm (xm) be an MNT cycle with x1, . . . , xm ∈ Z.
Then no two consecutive curves can both have embedding degree 6.

Proof. Suppose to the contrary that ki = ki+1 = 6 for some i. Then n6(xi) = q6(xi+1). From
Table 6.1, q6(xi+1) = 4x2

i+1 + 1, and n6(xi) = 4x2
i + 2xi + 1. Thus 4x2

i + 2xi + 1 = 4x2
i+1 + 1,

which implies
2xi(2xi + 1) = (2xi+1)2 . (6.4.5)

This is a contradiction if xi+1 6= 0, since the product of two consecutive nonzero integers is
not a square. But if xi+1 = 0, then q6(xi+1) = 1 would not be prime.

We now consider MNT cycles consisting of elliptic curves with alternating embedding
degrees 4 and 6.

Lemma 6.4.6. Let Ei/Fq4(xi), Ei+1/Fq6(xi+1) be consecutive curves in an MNT cycle. Then
2|xi+1| = |xi| or 2|xi+1| = |xi + 1|.

Proof. We have the condition n4(xi) = q6(xi+1). By Table 6.1, q6(xi+1) = 4x2
i+1 + 1, and

there are two possibilities for n4(xi). If n4(xi) = x2
i + 2xi + 2, then x2

i + 2xi + 2 = 4x2
i+1 + 1,

which we simplify to (xi + 1)2 = (2xi+1)2. Thus 2|xi+1| = |xi + 1|. If instead n4(xi) = x2
i + 1,

then x2
i + 1 = 4x2

i+1 + 1, which we simplify to x2
i = (2xi+1)2. Thus 2|xi+1| = |xi|.

Lemma 6.4.7. Let Ei/Fq6(xi), Ei+1/Fq4(xi+1) be consecutive curves in an MNT cycle. Then
xi+1 = 2xi.

Proof. We have the condition n6(xi) = q4(xi+1). By Table 6.1, this gives 4x2
i + 2xi + 1 =

x2
i+1 + xi+1 + 1, or 2xi(2xi + 1) = xi+1(xi+1 + 1). This implies xi+1 = 2xi.

We now show Proposition 6.4.1 that all MNT cycles are (6, 4)-cycles or (6, 4, 6, 4)-cycles.

Proof of Proposition 6.4.1. By Lemma 6.4.2, Lemma 6.4.4 and Lemma 6.4.5, all MNT cycles
consist of curves with embedding degrees alternating between 4 and 6, and have even
lengths. Let E1/Fq6(x1), E2/Fq4(x2), . . . , E2m/Fq4(x2m) be an MNT cycle. We first observe
that Lemma 6.4.6 and Lemma 6.4.7 imply that |x1| = |x3| = · · · = |x2m−1|. Thus q6(x1) =
q6(x3) = · · · = q6(x2m−1). As there are only two possibilities for n6(x1), n6(x3), . . . , n6(x2m−1),
for the curves to be distinct we must have m ≤ 4, and if m = 4 then we must have x3 = −x1.
Let x := x1. Then Lemma 6.4.7 implies x2 = 2x. By Lemma 6.4.6, either x3 = x, in which
case we have a (6, 4)-cycle, or x3 = −x. For the latter case, Lemma 6.4.7 implies that
x4 = −2x, which gives us a (6, 4, 6, 4)-cycle.

By substituting the possible parameter values for x into the polynomials in Table 6.1, we
obtain the parametrizations of the possible families of MNT (6, 4)-cycles in Table 6.2 and
(6, 4, 6, 4)-cycles in Table 6.3. These cycles can be constructed by substituting integer values
of x and checking if all the n(x)’s and q(x)’s are prime.
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Table 6.2: MNT (6, 4)-cycles.

E1 E2

k 6 4
q(x) 4x2 + 1 4x2 + 2x+ 1
n(x) 4x2 + 2x+ 1 4x2 + 1
t(x) −2x+ 1 2x+ 1

Table 6.3: MNT (6, 4, 6, 4)-cycles.

E1 E2 E3 E4

k 6 4 6 4
q(x) 4x2 + 1 4x2 + 2x+ 1 4x2 + 1 4x2 − 2x+ 1
n(x) 4x2 + 2x+ 1 4x2 + 1 4x2 − 2x+ 1 4x2 + 1
t(x) −2x+ 1 2x+ 1 2x+ 1 −2x+ 1

The MNT (6, 4, 6, 4)-cycles in Table 6.3 are unions of two MNT (6, 4)-cycles. Indeed, the
pairs (E1, E2) and (E3, E4) each form (6, 4)-cycles. Furthermore, E1, E3 are defined over the
same finite field. Interestingly, these are the only possible MNT 4-cycles, and no longer cycles
consisting of distinct elliptic curves can be obtained by taking unions of MNT 2-cycles.

Example 6.4.8. We give an example of an MNT (6, 4)-cycle, using the parametrization in
Table 6.2. If x = 1, we check that 4x2 + 1 = 5 and 4x2 − 2x+ 1 = 3 are prime. We compute
each of the two curves in the cycle using the CM method and Sage [103].

E1/F5 : y2 = x3 + 4x+ 2 , (6.4.6a)

E2/F3 : y2 = x3 + 2x2 + 1 . (6.4.6b)

We list all the points of these curves in Table 6.4.

Example 6.4.9. We give an example of an MNT (6, 4, 6, 4)-cycle, using the parametrization
in Table 6.3. If x = 3, we check that 4x2 + 1 = 37, 4x2 + 2x+ 1 = 43 and 4x2 − 2x+ 1 = 31
are all prime. We compute the curves using Sage [103].

E1/F37 : y2 = x3 + 24x+ 16 , (6.4.7a)

E2/F43 : y2 = x3 + 36x+ 5 , (6.4.7b)

E3/F37 : y2 = x3 + 22x+ 27 , (6.4.7c)

E4/F31 : y2 = x3 + 26x+ 21 . (6.4.7d)

We list all the points of these curves in Table 6.5.
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Table 6.4: Example of an MNT (6, 4)-cycle.

E1 E2

y2 = x3 + 4x+ 2 y2 = x3 + 2x2 + 1
(q, n, t, k,D) (5, 3, 3, 6, 11) (3, 5,−1, 4, 11)

points
(excluding point

at infinity)

(3,1)
(3,4)

(0,1)
(0,2)
(1,1)
(1,2)

Table 6.5: Example of an MNT (6, 4, 6, 4)-cycle.

E1 E2 E3 E4

y2 = x3 + 24x+ 16 y2 = x3 + 36x+ 5 y2 = x3 + 22x+ 27 y2 = x3 + 26x+ 21
(q, n, t, k,D) (37, 43,−5, 6, 123) (43, 37, 7, 4, 123) (37, 31, 7, 6, 11) (31, 37,−5, 4, 11)

points
(excluding

point at
infinity)

(0,4)
(0,33)
(1,2)
(1,35)
(3,2)
(3,35)
(4,18)
(4,19)
(7,3)
(7,34)
(9,6)
(9,31)
(12,16)
(12,21)
(13,3)
(13,34)
(14,5)
(14,32)
(17,3)
(17,34)
(18,8)

(18,29)
(23,9)
(23,28)
(26,7)
(26,30)
(27,16)
(27,21)
(28,12)
(28,25)
(31,10)
(31,27)
(32,17)
(32,20)
(33,2)
(33,35)
(34,18)
(34,19)
(35,16)
(35,21)
(36,18)
(36,19)

(3,21)
(3,22)
(4,16)
(4,27)
(5,3)
(5,40)
(7,16)
(7,27)
(8,17)
(8,26)
(12,12)
(12,31)
(13,2)
(13,41)
(18,11)
(18,32)
(19,18)
(19,25)

(23,10)
(23,33)
(29,5)
(29,38)
(30,7)
(30,36)
(31,9)
(31,34)
(32,16)
(32,27)
(33,8)
(33,35)
(38,1)
(38,42)
(41,21)
(41,22)
(42,21)
(42,22)

(0,8)
(0,29)
(3,3)
(3,34)
(5,15)
(5,22)
(8,7)
(8,30)
(10,10)
(10,27)
(11,3)
(11,34)
(12,13)
(12,24)
(23,3)

(23,34)
(25,12)
(25,25)
(27,18)
(27,19)
(28,5)
(28,32)
(30,14)
(30,23)
(31,7)
(31,30)
(35,7)
(35,30)
(36,2)
(36,35)

(2,9)
(2,22)
(3,8)
(3,23)
(5,11)
(5,20)
(7,9)
(7,22)
(8,11)
(8,20)
(10,14)
(10,17)
(13,13)
(13,18)
(15,2)
(15,29)
(16,10)
(16,21)

(18,11)
(18,20)
(20,4)
(20,27)
(21,1)
(21,30)
(22,9)
(22,22)
(23,13)
(23,18)
(26,13)
(26,18)
(27,15)
(27,16)
(28,3)
(28,28)
(30,5)
(30,26)

6.5 Two-cycles of specific embedding degrees

In this section we prove the following result.

Proposition 6.5.1. There are no (5, 10)-, (8, 8)-, or (12, 12)-cycles.

The pairs (5, 10), (8, 8), (12, 12) are precisely the pairs (k1, k2) whose cyclotomic polyno-
mials satisfy Φk1(x) = Φk2(−x) and deg Φk1(x) = 4. To prove Proposition 6.5.1, we first use
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these conditions to reduce from the problem of classifying (k1, k2)-cycles to that of finding
integral points on a few quartic curves, with finitely many exceptions, in Lemma 6.5.3. We
then classify all integral points on these quartic curves and the finitely many exceptions using
computational tools, yielding no actual (k1, k2)-cycles. Note that in the case of 2-cycles, when
we require nontrivial embedding degrees, the two curves cannot have equal field sizes.3

We first prove the following more general result, which we hope will also have applications
to other kinds of 2-cycles.

Lemma 6.5.2. Let (k1, k2) satisfy Φk1(x) = Φk2(−x). Let E1/Fq1 , E2/Fq2 be a (k1, k2)-cycle
with q1 > q2, and let c = q1 − q2. Then q1q2 | Φk1(c). Additionally, for some integer d whose
prime divisors are all congruent to 1 (mod k1), there is an integer y such that

y2 = c2d2 + 4dΦk1(c) . (6.5.1)

Proof. By Lemma 6.2.1, the condition that E1/Fq1 has embedding degree k1 implies that
q2 | Φk1(q1). Then q2 | Φk1(q1 − q2) as well. Similarly, q1 | Φk2(q2 − q1) = Φk1(q1 − q2). It
follows that q1q2 | Φk1(q1− q2) = Φk1(c) as q1 and q2 are distinct primes. Then dq1q2 = Φk1(c)
for some integer d. Using q1 = q2 + c, we can rewrite this as

dq2
2 + cdq2 − Φk1(c) = 0 . (6.5.2)

For this quadratic equation in q2 to have an integral solution, the discriminant

c2d2 + 4dΦk1(c) (6.5.3)

must be a perfect square, so that there is a y satisfying Eq. (6.5.1). Also, for any prime
p | d, the above relation dq1q2 = Φk1(c) implies that p | Φk1(c). Hence p ≡ 1 (mod k1) by
Lemma 6.4.3.

Lemma 6.5.3. In the situation of Lemma 6.5.2, additionally let deg Φk1(x) = 4. Equivalently,
let (k1, k2) ∈ {(5, 10), (8, 8), (10, 5), (12, 12)}. Then c ≤ 82 or 1 ≤ d ≤ 16.

Proof. Let c ≥ 83. Then Φk1(c) > 0, so the relation dq1q2 = Φk1(c) implies d ≥ 1. Next,
because E2/Fq2 has q1 points, the Hasse bound implies |q1 − (q2 + 1)| ≤ 2

√
q2. Substituting

c = q1− q2 and rearranging shows q2 ≥ (c− 1)2/4. The same holds for q1 since q1 > q2. Then
dq1q2 = Φk1(c) implies

d < 16
Φk1(c)

(c− 1)4
. (6.5.4)

For each k1 ∈ {5, 8, 10, 12}, we find that for c ≥ 83, the right-hand side is at most 17. Thus
either c ≤ 82 or 1 ≤ d ≤ 16.

3Even when allowed, curves E/Fq with q = ]E(Fq), known as anomalous, are undesirable because discrete
logarithms can be computed in polynomial time via the SSSA attack [108, 112, 104].
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For each (k1, k2) listed in Lemma 6.5.3, using the fact q1, q2 | Φk1(c) from Lemma 6.5.2,
one can see that the case c ≤ 82 yields only finitely many (k1, k2)-cycles. Also, for each
1 ≤ d ≤ 16 whose prime divisors are congruent to 1 (mod k1), one can show that Eq. (6.5.1)
defines a plane curve of genus 1 in the coordinates (c, y). Siegel’s Theorem [84, Theorem
8.2.4] implies that such a curve has only finitely many integral points, hence there are only
finitely many (k1, k2)-cycles.

We now use computational tools to show that there are in fact no (k1, k2)-cycles.

Proof of Proposition 6.5.1. Using the fact q1, q2 | Φk1(c) from Lemma 6.5.2, it is easy to
enumerate all (k1, k2)-cycles which have c ≤ 82, for (k1, k2) ∈ {(5, 10), (8, 8), (10, 5), (12, 12)}.
Doing so using Sage [103] reveals no such examples.

We now consider the case d ≤ 16. Restricting to values of d whose prime factors are all
congruent to 1 (mod k1), we are left with the cases shown in Table 6.6.

Table 6.6: Cases ((k1, k2), d) satisfying Lemma 6.5.3 when c ≥ 83.

(k1, k2) d
(5, 10) 11
(10, 5) 13
(12, 12) 13

In the case (k1, k2) = (12, 12), d = 13, we can enumerate the integral points of Eq. (6.5.1)
using Magma’s IntegralQuarticPoints function [29]. Doing so gives no examples with
c ≥ 83.

When (k1, k2) = (5, 10) or (10, 5) and d = 11, Sage [103] finds that Eq. (6.5.1) has no
solutions over the ring of integers modulo 16, hence it has no integral solutions. Thus these
cases also give no examples.

When deg Φk1(x) > 4, the bound on d in Eq. (6.5.4) no longer converges to a finite value
as c → ∞, so we cannot reduce to finding integral points on a finite number of curves as
above. It would be interesting to find more general arguments which work for higher-degree
cyclotomic polynomials, such as the case of (16, 16)-cycles, where Φk1(x) = Φk2(x) = x8 + 1.

6.6 Cycles with the same discriminant

In this section we show that if we construct cycles from elliptic curves of the same discriminant
D, then the length of the cycle must be small. This implies that to construct elliptic curves
from polynomial families, we cannot use families with a fixed discriminant. The results in
this section are independent of the embedding degrees of the elliptic curves.

We first show that any 2-cycle of ordinary elliptic curves consists of curves with the same
discriminant.
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Proposition 6.6.1. Let E1/Fq1 , E2/Fq2 be a 2-cycle of ordinary elliptic curves. Then they
both have the same discriminant for complex multiplication.

Proof. Let ti be the trace of Ei for each i. Then q2 = q1 + 1− t1 and q1 = q2 + 1− t2. This
implies t1 + t2 = 2, and

4q2 − t22 = 4(q1 + 1− t1)− (2− t1)2 = 4q1 − t21 .

The discriminant of Ei is the squarefree part of 4qi − t2i , so the two curves have the same
discriminant.

The converse is also true if D > 3, as shown in [111, Corollary 6.2] and [15, Theorem 3.4].
We present an adapted version of the proof below.

Proposition 6.6.2. Let D > 3 be a squarefree integer such that −D ≡ 0, 1 (mod 4). Suppose
that we have an m-cycle of ordinary elliptic curves E1/Fq1 , . . . , Em/Fqm such that each elliptic
curve has discriminant D and q1, . . . , qm are distinct primes. Then m ≤ 2.

Proof. For each i = 1, . . . ,m, let yi ∈ Z be such that the CM equation 4qi − t2i = Dy2
i is

satisfied. Firstly, we note that if we fix qi and D, the solution (ti, yi) to the CM equation is
unique up to sign. This follows from the fact that, under our assumptions on D, the units
in the ring of integers of Q(

√
−D) are ±1, hence if two elements have the same norm, then

they differ by a multiple of ±1.
Now let Ei/Fqi , Ei+1/Fqi+1

be two consecutive curves in the cycle. Since

4qi+1 − (ti − 2)2 = 4(qi+1 − 1 + ti)− t2i = 4qi − t2i = Dy2
i , (6.6.1)

thus ti − 2 = ±ti+1, and yi = ±yi+1, by the uniqueness of the solution to the CM equation.
Suppose that m ≥ 3. Without loss of generality, assume that q2 is the smallest prime in

the cycle. Then q2 < q1, q3. From the previous paragraph we also have t1 − 2 = ±t2. We
consider the two cases separately.

If t1 − 2 = t2, then q2 = q1 − 1 − t2. So we have the inequalities q1 = q2 + 1 + t2 > q2,
and q3 = q2 + 1− t2 > q2. Hence 1 > t2 > −1 so t2 = 0. But this implies that q1 = q3, which
contradicts the assumption that the qi’s are distinct.

If t1 − 2 = −t2, then q2 = q1 − 1 + t2, so q1 = q2 + 1− t2 = q3. This again contradicts the
assumption that the qi’s are distinct.

For the case where D = 3, we cite the following result from [15].

Proposition 6.6.3 ([15, Theorem 3.4]). Suppose that we have an m-cycle of ordinary elliptic
curves E1/Fq1 , . . . , Em/Fqm such that each elliptic curve has discriminant D and q1, . . . , qm
are distinct primes. If m ≥ 3, then m = 6 and D = 3.
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The results in this section show that to construct m-cycles of elliptic curves with a fixed
discriminant D, either m ≤ 2 or m = 6 and D = 3. This places a strong restriction on
possible cycles, and implies that we cannot construct long cycles from a single family of
elliptic curves with a fixed discriminant. For example, the Barreto–Naehrig curves [19] all
have discriminant D = 3.

We also note that the results in this section do not depend on the embedding degrees of
the elliptic curves. It remains an open question to understand how restricting the embedding
degrees places further restrictions on the possible cycles.

6.7 Cycles with cofactors

Allowing for non-prime orders gives greater flexibility in constructing elliptic curves, while still
having relevance to cryptographic applications. While there are few embedding degrees that
can be achieved by current constructions of prime-order curves, there are methods that achieve
arbitrary embedding degrees for composite-order curves [44, 55]. While composite-order
curves tend to be less preferable than prime-order curves in applications, they can still be
practical and sometimes even preferable.4

Nevertheless, we show in this section that allowing for non-prime orders does not give us
greater flexibility in constructing cycles. Our arguments in this section rely only on the Hasse
bound and the constraints on the orders of the elliptic curves posed by the cycle condition.

Definition 6.7.1. An m-cycle of elliptic curves with cofactors consists of m distinct elliptic
curves E1/Fq1,. . ., Em/Fqm such that for positive integer cofactors h1, . . . , hm,

#E1(Fq1) = h1q2 , . . . ,#Ei(Fqi) = hiqi+1 , . . . ,#Em(Fqm) = hmq1 . (6.7.1)

If all the cofactors are 1, then Definition 6.7.1 reduces to Definition 6.1.1. We show that,
for any m > 1, we cannot have m-cycles of elliptic curves with any nontrivial cofactor (and
large orders). We deduce this by considering only the Hasse bound on the orders of the
curves.

Proposition 6.7.2. For all m > 1, there exists no m-cycle of elliptic curves having at least
one nontrivial cofactor (greater than 1), if q1, . . . , qm > 12m2.

Proof. We first prove this for the simpler case where m = 2. Suppose that we have a 2-cycle
of elliptic curves E1/Fq1 , E2/Fq2 with cofactors such that #E1(Fq1) = h1q2, #E2(Fq2) = h2q1.
The Hasse bound for E1 implies

q1 + 1− 2
√
q1 ≤ h1q2 ≤ q1 + 1 + 2

√
q1 . (6.7.2)

4 For example, Barreto–Lynn-Scott curves [18] are composite-order curves that, thanks to their high
embedding degrees, enable efficient implementations at high-security levels. As another example, Edwards
curves [58, 22, 24] are composite-order curves that, thanks to their complete formulas for addition, enable
efficient implementations that resist various side channels (e.g., [23]).
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We can express this as (
√
q1 − 1)2 ≤ h1q2 ≤ (

√
q1 + 1)2. Applying the same argument to E2,

we get the following two inequalities

√
q1 − 1 ≤

√
h1q2 ≤

√
q1 + 1 , (6.7.3)

√
q2 − 1 ≤

√
h2q1 ≤

√
q2 + 1 . (6.7.4)

We can then bound q2 as follows√
h1q2 ≤

1√
h2

(
√
q2 + 1) + 1 . (6.7.5)

If h1 > 1 or h2 > 1, this implies that

√
q2 ≤

√
h2 + 1√
h1h2 − 1

≤ 1 +
2√

h1h2 − 1
< 3 . (6.7.6)

The same argument applies for bounding q1. Hence for any 2-cycle with nontrivial cofactors,
the elliptic curves must have small orders.

We now extend the argument above to m-cycles with cofactors, for all m > 2. Suppose we
have an m-cycle with cofactors #E1(Fq1) = h1q2 ,#E2(Fq2) = h2q3 , . . . ,#Em(Fqm) = hmq1.
Applying the same argument as before, we have the inequalities√

hmq1 ≤
√
qm + 1 (6.7.7a)

≤ 1√
hm−1

(
√
qm−1 + 1) + 1

≤ 1√
hm−1hm−2

(
√
qm−2 + 1) +

(
1 +

1√
hm−1

)
...

≤ 1√
hm−1 · · ·h1

(
√
q1 + 1) +

(
1 +

1√
hm−1

+ · · ·+ 1√
hm−1 · · ·h2

)
. (6.7.7b)

We simplify this to

√
q1

(
1− 1√

hm · · ·h1

)
≤ 1√

hm
+

1√
hmhm−1

+ · · ·+ 1√
hm · · ·h1

. (6.7.8)

If at least one of h1, . . . , hm is greater than 1, then we can bound q1 as follows.

√
q1 ≤

m

1− 1√
hm···h1

≤ m

1− 1√
2

= (2 +
√

2)m. (6.7.9)

The above argument applies for q2, . . . , qm, hence qi ≤ (2 +
√

2)2m2 < 12m2 for each i. For
cryptographic applications, we would require the elliptic curves to be defined over much
larger fields than the size of the cycle, contrary to this bound.
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6.8 Other cycles on parametrized families

We have shown in Section 6.7 that it is not possible to construct cycles of elliptic curves with
nontrivial cofactors (and large orders relative to cycle length). Hence cycles of elliptic curves
must be assembled from prime-order elliptic curves. At present the only known families
of pairing-friendly prime-order elliptic curves are the MNT curves for k = 3, 4, 6, Freeman
curves for k = 10 [61], and Barreto–Naehrig curves for k = 12 [19]. Now we prove that we
cannot construct cycles from just Freeman curves or from just Barreto–Naehrig curves.

Proposition 6.8.1. There do not exist cycles consisting only of Freeman curves.

Proof. Lemma 6.3.5 poses a restriction on the sum of the traces in a cycle. The trace of the
Freeman curves is parametrized by t(x) = 10x2 + 5x + 3 (see Eq. (6.2.4)). We note that
t(x) > 1 for all x ∈ R, since the discriminant of t(x) − 1 is −55. Hence the condition in
Lemma 6.3.5 cannot be satisfied for cycles consisting only of Freeman curves.

Proposition 6.8.2. There do not exist cycles consisting only of Barreto–Naehrig curves.

Proof. We again use Lemma 6.3.5. The trace of the Barreto–Naehrig curves is parametrized
by t(x) = 6x2 + 1 (see Eq. (6.2.5)), hence if we have a family of elliptic curves consisting only
of Barreto–Naehrig curves, then each trace has to be 1. So x = 0 and q(x) = n(x) = 1 for
every curve in the cycle, which is impossible since q(x) and n(x) have to be prime.

We remark that the proof of Lemma 6.4.2 also shows that there do not exist cycles
consisting of just Barreto–Naehrig curves and MNT curves of embedding degree 3.

For combinations of MNT, Freeman, and Barreto–Naehrig curves, we did a preliminary
investigation using Gröbner bases to find solutions to the following system of polynomial
equations in m variables x1, . . . , xm, where k1, . . . , km ∈ {3, 4, 6, 10, 12}.

nk1(x1) = qk2(x2) , nk2(x2) = qk3(x3), . . . , nkm(xm) = qk1(x1) . (6.8.1)

For m ≤ 4 we found that the ideals generated by these polynomials have dimension 0 apart
from the MNT cycles in Proposition 6.4.1, implying that we cannot construct other families of
cycles of length up to 4. We leave it as an open problem to construct cycles from combinations
of these families, or to show that they do not exist.

6.9 Conclusion

In this chapter, we studied cycles of pairing-friendly elliptic curves, for an application in
pairing-based cryptography. In the next chapter, we will study the concrete security of
lattice-based cryptography, based on the hardness of the Learning With Errors problem.
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Chapter 7

On the concrete security of LWE with
small secret

In this chapter, we study the concrete security of the Learning With Errors (LWE) problem in
lattice-based cryptography, when sampling the secret from a non-uniform, small distribution.
The material in this chapter is from the paper “On the Concrete Security of LWE with
Small Secret” authored with Hao Chen, Kristin Lauter and Yongsoo Song, which has been
submitted for publication [38]. This project was done during a summer internship at Microsoft
Research, Redmond, in 2019.

7.1 Introduction

Lattice-based cryptography was proposed more than 20 years ago, and is currently used as
the basis for Homomorphic Encryption schemes world-wide. Cryptosystems based on the
hardness of lattice problems are also under consideration for standardization in the ongoing
NIST PQC Post-Quantum Cryptography competition. Both applications rely specifically
on the hardness of the Learning with Errors (LWE) problem [99]. Homomorphic encryption
allows computations on encrypted data, with security parameters for practical applications
specified in HES, the Homomorphic Encryption Standard [7]. For practical implementations
of homomorphic encryption schemes, it is important to understand the concrete security
levels of LWE. While there are various security estimates in the literature [6, 64], there is
still a significant gap between our theoretical understanding of the performance of lattice
reduction algorithms and their practical performance.

Most Homomorphic Encryption deployments use small secrets as an optimization, so it
is important to understand the concrete security of LWE when sampling the secret from a
non-uniform, small distribution. Although there are numerous heuristics used to estimate the
running time and quality of lattice reduction algorithms such as BKZ2.0 [40], more work is
needed to validate and test these heuristics in practice to provide concrete security parameter
recommendations, especially in the case of small secret.
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In this work, we introduce a new approach which uses concrete attacks on the LWE
problem as a way to study the performance and quality of BKZ2.0 directly. We generate
random LWE instances using secrets sampled from binary, ternary or discrete Gaussian
distributions. We convert each LWE instance into a uSVP instance and run the BKZ2.0
algorithm to find an approximation to the shortest vector. When the attack is successful, we
can deduce a bound on the Hermite factor achieved for the given blocksize. We find that
the security levels for certain values of the modulus q and dimension n are smaller than
predicted by the online LWE Estimator, due to unexpectedly high success probabilities for
small blocksizes 30, 35, 40 and 45 on these uSVP lattices. We also ran our experiments on
generated instances of the TU Darmstadt LWE challenges and observed significantly lower
running times for successful attacks on those instances generated with the binary distribution
for the secret vector. We observe that sampling the secret from the discrete Gaussian error
distribution yields greater security than the binary or ternary distributions for the same set
of parameters.

We conduct a systematic experimental study of the success probability of the BKZ2.0
algorithm on uSVP lattices. Our main motivation is to investigate the concrete security of
the Learning with Errors (LWE) problem [99], specifically in the setting of homomorphic
encryption [7].

For efficiency reasons, it is common in homomorphic encryption to sample the secret
from special distributions, such that it has small entries [30]. For example, two common
distributions are the binary or ternary distributions [31, 88], where the entries in the secret
are in {0, 1} or {0,±1} respectively. We also consider secrets sampled from the same small
discrete gaussian distribution as the errors. In fact, the Homomorphic Encryption Standard [7]
specifies tables of secure parameters for three possible distributions for the secret vector:
uniform, ternary, and error distributions. When the secret has a small norm, we can embed
such instances of LWE into instances of the unique Shortest Vector Problem (uSVP) [8, 16,
17]. To recover the shortest vector, we can then run lattice reduction algorithms, such as the
BKZ2.0 algorithm [40] which is currently known to be the most effective.

In this work, we study experimentally the concrete Hermite factor of the BKZ2.0 algorithm
on uSVP lattices. We construct instances of LWE in small dimensions, where the secrets
are sampled from the binary, ternary and discrete gaussian distributions. We convert each
instance into a uSVP instance, and run the BKZ2.0 algorithm to recover the shortest vector.
We then compute the Hermite factor of the lattice and compare it with estimates from the
literature. Our work demonstrates that the Hermite factor achieved by BKZ2.0 on uSVP
lattices may be significantly smaller than the estimates for random lattices used in practice.
Furthermore, the trend as we increase the lattice dimension is noticeably downward.

Our approach is similar to the approach taken in earlier work [83] for estimating the
approximation factor for the LLL algorithm. Laine and Lauter found that the approximation
factor for LLL is significantly better than expected in small dimensions, but it was not
clear how that would extend to other lattice reduction algorithms such as BKZ. The attacks
presented in [83] also cover the case of secrets sampled from the uniform distribution, but
the attacks are only successful for very large moduli.
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We also generated instances of the TU Darmstadt LWE challenges [36] with binary, ternary
and discrete gaussian secrets, and we run our same attack on these instances. Although
our experiments only cover blocksizes 30, 35, 40 and 45, these blocksizes are already large
enough to attack all the solved LWE challenges in the online tables, for secrets sampled from
the binary and ternary secret distributions. We observe that the discrete gaussian secret
distribution yields greater security than the binary or ternary distributions for the same set
of parameters, as the attack rarely succeeds. Furthermore, our attacks run in a matter of
minutes (under an hour) for blocksizes 30, 35, 40 and in a matter of hours for blocksize 45,
for the range of parameters where the actual challenges have been solved.

7.2 Preliminaries

Let b1, . . . ,bd ∈ Rd be d linearly independent vectors, and let B = (b1, . . . ,bd) ∈ Rd×d be
the matrix whose columns are formed by them. The lattice generated by B is

L(B) =
{
Bx : x ∈ Zd

}
. (7.2.1)

The Shortest Vector Problem (SVP) asks to find the shortest nonzero vector in the lattice,
whose norm is the first minimum:

λ1(L(B)) = min
v∈L(B) ,v 6=0

||v|| , (7.2.2)

where we use || · || to denote the `2-norm. Similarly, the second minimum of the lattice is

λ2(L(B)) = min
v1,v2∈L(B)

{
max{||v1||, ||v2||} : v1,v2 linearly independent

}
. (7.2.3)

The unique Shortest Vector Problem (uSVP) with gap γ is a variant of the SVP where
λ2 ≥ γ ·λ1, for some γ ≥ 1. While random lattices do not satisfy this condition, in Section 7.3
we describe a procedure for embedding an instance of LWE with small secrets to an instance
of uSVP.

In this work, we use the BKZ2.0 lattice reduction algorithm [40] to solve instances of the
uSVP. Let b∗1, . . . ,b

∗
d denote the Gram-Schmidt orthogonalization of the basis vectors. For

1 ≤ i ≤ d, let πi be the orthogonal projection over (b1, . . . ,bi−1)
⊥. For 1 ≤ j ≤ k ≤ d, let

B[j,k] be the local projected block (πj(bj), . . . , πj(bk)), and let L[j,k] be the lattice spanned
by B[j,k], of dimension k − j + 1.

Definition 7.2.1. A basis b1, . . . ,bd is BKZ-reduced with blocksize β ≥ 2 if it is LLL-reduced,
and for each 1 ≤ j ≤ d, ||b∗j || = λ1(L[j,k]) where k = min(j + β − 1, d).

The BKZ algorithm works by iteratively reducing each local block B[j,k] of size up to β.
Each block is first LLL-reduced, before being enumerated to find a vector that is the shortest
in the projected lattice L[j,k]. The BKZ2.0 algorithm [40] improves on BKZ by modifying the
enumeration routine, incorporating the sound pruning technique by [65].
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The volume of a lattice is Vol(L(B)) = | det(B)|. We use the root Hermite factor to
measure the quality of the BKZ-reduced basis.

Definition 7.2.2. The root Hermite factor δ of a basis {b1, . . . ,bd} is defined by

||b1|| = δd · Vol(L(B))1/d . (7.2.4)

For BKZ with block size β, Chen [39] gives the following estimate for δ which only depends
on β.

δ(β) ≈
(

β

2πe
(πβ)1/β

) 1
2(β−1)

. (7.2.5)

For a large β, we can approximate this by β1/2β.

7.3 Reduction from LWE to uSVP

In this work, we study the uSVP attack on LWE, which is currently the most effective attack
if the LWE secret has small entries [8, 17]. There are two known estimates for the conditions
under which uSVP can be solved by lattice reduction, which are known as the 2008 estimate
[64] and the 2016 estimate [9]. In this section, we describe the reduction from LWE to uSVP,
which proceeds by first reducing LWE to BDD and then reducing BDD to uSVP. We also
describe the 2008 and 2016 estimates, and calculate the optimal parameters for the uSVP
attack under these estimates, as well as the predicted values of the Hermite factor.

The LWE Problem

We first define the search variant of the LWE problem.

Definition 7.3.1. Let n ≥ 1, q ≥ 2 be a prime modulus and let Dσ be a discrete gaussian
distribution over Z with standard deviation σ. Let A ∈ Zm×nq be a matrix with entries
uniformly sampled from Zq, let s ∈ Znq be a secret vector, and let e ∈ Zmq be an error vector
with entries sampled independently from Dσ. Let b = As + e (mod q). The goal of the LWE
problem is to find s, given (A,b).

We consider the following distributions for the secret:

• Binary : Secret has entries sampled uniformly at random from {0, 1}.

• Ternary : Secret has entries sampled uniformly at random from {−0,±1}.

• Gaussian: Secret has entries sampled from the same discrete gaussian distribution as
the error.
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Reduction from LWE to BDD

Assuming that the secret has a small norm, we can transform the LWE problem into the
Bounded Distance Decoding (BDD) problem. Specifically, given a lattice L(B) and a target
vector t, such that the distance of t from L(B) is bounded by a factor of λ1, the BDD
problem asks to find a lattice vector v ∈ L(B) close to t. Consider the lattice generated by

B0 =

(
In 0
A q · Im

)
. (7.3.1)

Since As + e = b (mod q), we can write b = As + e + q · c for some c ∈ Zm. Hence the

lattice contains the vector B0

(
s
c

)
=

(
s

As + qc

)
=

(
s

b− e

)
. Thus if we solve the BDD

problem in the lattice generated by B0, with respect to the target point t =

(
0
b

)
, then we

obtain

(
s
−e

)
, allowing us to recover the secret.

Reduction from BDD to uSVP

We can reduce the BDD problem to an instance of uSVP using Kannan’s embedding technique
[78]. Consider the basis matrix obtained by adding one row and column to (7.3.1):

B1 =

(
B0 t
0 1

)
=

In 0 0
A q · Im b
0 0 1

 . (7.3.2)

The lattice generated by the columns of B1 contains the unique shortest vector

B1

 s
c
−1

 =

B0

(
s
c

)
− t

−1

 =

 s
−e
−1

 . (7.3.3)

Assuming that the gap between λ1 and λ2 in this lattice is sufficiently large, we can solve for
the unique shortest vector using lattice reduction algorithms such as BKZ2.0. We further
optimize this by balancing the lengths of the secret and error vectors, scaling the secret by
some constant factor ω. If the secret is sampled from the same discrete gaussian distribution
as the error, then we set ω = 1. For the binary or ternary secret distributions, consider the
matrix

B =

ω · In 0 0
A q · Im b
0 0 1

 . (7.3.4)

The lattice L(B) generated by (7.3.4) has dimension

d = n+m+ 1 (7.3.5)
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and contains a short vector

B

 s
c
−1

 =

 ω · s
As + qc− b

−1

 =

ω · s−e
−1

 . (7.3.6)

Since this is the shortest vector of this lattice, we approximate the first minimum of the
lattice by its expected norm:

λ1 =
√
ω2 · ||s||2 + ||e||2 + 1 ≈

√
ω2 · h+mσ2 + 1 , (7.3.7)

where σ is the standard deviation of the discrete Gaussian distribution and h is the expected
value of ||s||2. We have h = n

2
for the binary distribution and h = 2

3
n for the ternary

distribution.
We estimate the second minimum λ2 to be the same as the first minimum of a random

lattice with the same dimension using the Gaussian Heuristic. Since the lattice is q-ary, it
also contains vectors of norm q, so we have

λ2 ≈ min

{
q,

√
d

2πe
ωn/dqm/d

}
. (7.3.8)

We can solve the uSVP using lattice reduction algorithms if λ2 is sufficiently larger than
λ1. We choose ω to maximize the ratio λ2

λ1
as follows. First we write

γ =
λ2

λ1

≈
min

{
q,
√

d
2πe
ωn/dqm/d

}
√
ω2h+mσ2

. (7.3.9)

We choose the parameters to optimize the second term in the minimum, since the Gaussian
Heuristic would asymptotically be smaller than q. Differentiating the expression in (7.3.9)
with respect to ω and setting the result to zero, we get

ω2 =
nm

h(d− n)
σ2 ≈ n

h
σ2 . (7.3.10)

This gives us ω =
√

2σ for the binary distribution and ω =
√

3
2
σ for the ternary distribution.

Substituting (7.3.10) into (7.3.7), we get

λ1 ≈
√
dσ . (7.3.11)

This also holds for the case where the secret is sampled from the same discrete gaussian
distribution as the error. Notably, the shortest vector has the same `2-norm regardless of the
secret distribution, whereas the `1-norm differs. Thus we have

γ =
min

{
q,
√

d
2πe
ωn/dqm/d

}
√
dσ

. (7.3.12)
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Remark 7.3.2. Another commonly used secret distribution is the uniform distribution on
Zq, where the entries of the secret are sampled uniformly at random from {0, 1, . . . , q − 1}.
Since the secret does not have a small norm, the uSVP attack would require a much larger q
to succeed. To balance the norms of the secret and error vectors, we would have to choose
the scaling factor to be ω ≈

√
3
q
σ. However, with the factor of q in the denominator of ω, the

Gaussian heuristic would be greater than q, and so we would have λ2 = q from (7.3.8). For
the uSVP attack to be effective, λ2 would have to be much greater than λ1, which means that
q would have to be much larger than in the case of the binary, ternary or gaussian secret
distributions.

There are two known ways for estimating the conditions under which uSVP can be solved
using lattice reduction, which are called the 2008 estimate and the 2016 estimate in the
literature. We study each of these in turn.

2008 estimate

From experiments by Gama and Nguyen [64], they claimed that the shortest vector can be
recovered if

γ =
λ2

λ1

≥ δd , (7.3.13)

where δ is the root Hermite factor of the lattice reduction algorithm, up to a multiplicative
constant.

In what follows, we will compute the estimate of δ based on the heuristic in (7.3.13) for
our setting. We will fix n and q, while choosing the lattice dimension d to maximize γ. First
we write

γ ≈

√
d

2πe
ωn/dqm/d

√
dσ

=
1√
2πe

ωn/dqm/d

σ
≈ 1√

2πe

( q
ω

)−n/d ( q
σ

)
≥ δd . (7.3.14)

We choose d to maximize the ratio in (7.3.14). Specifically, we maximize
(
q
ω

)−n/d
δ−d by

setting

d =

√
n log

(
q
ω

)
log δ

. (7.3.15)

We solve for the largest possible value of δ as a function of n, q, ω, σ. First, we assume
equality in (7.3.14) and take logarithms on both sides:

log

(
q√

2πeσ

)
− n

d
log
( q
ω

)
= d log δ . (7.3.16)

Substituting (7.3.15) and rearranging, we get the 2008 estimate for δ:

log δ2008 =
log2

(
q√

2πeσ

)
4n log

(
q
ω

) . (7.3.17)
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We substitute (7.3.17) into (7.3.15) to obtain

d2008 =
2n log

(
q
ω

)
log
(

q√
2πeσ

) . (7.3.18)

This is the lattice dimension that we will use in our experiments to compute δ2008. We observe
that δ2008 increases with q. For fixed n, β, we experimentally find the smallest q such that the
attack succeeds. Substituting the parameters into (7.3.17), we would then obtain a heuristic
estimate of δ2008, which we will compare with the actual value of δ from (7.2.4).

We remark that (7.3.17) only holds for large q, such that λ2 is given by the Gaussian
Heuristic. If λ2 = q, then we compute δ2008 by using

λ2

λ1

=
q√
dσ

= δd2008 . (7.3.19)

This gives us

log δ2008 =
1

d
log

(
q√
dσ

)
, (7.3.20)

where d is given by (7.3.18).
We also compare δ2008 with the actual value of δ that we expect from the experiments,

using the definition in (7.2.4) and assuming that the shortest vector is successfully recovered,
and that λ2 is equal to the Gaussian Heuristic. We have

δd2008 =
λ2

λ1

=

√
d

2πe
δ−d . (7.3.21)

This gives us the relation between the expected experimental δ and δ2008.

δ =
1

δ2008

(
d

2πe

)1/2d

. (7.3.22)

Hence we expect δ to trend differently from δ2008.

2016 estimate

The 2016 estimate is given in the New Hope key exchange paper [9]. The authors consider
the evolution of the Gram-Schmidt coefficients of the unique shortest vector in the BKZ
tours, assuming that the Geometric Series Assumption [105] holds. This says that the norms
of the Gram-Schmidt vectors after lattice reduction satisfy

||b∗i || ≈ δd−2i+2 · Vol(L(B))1/d . (7.3.23)

The reasoning in [9] is that, if the projection of the unique shortest vector onto the space
spanned by the last β Gram-Schmidt vectors is shorter than b∗d−β+1, then the SVP oracle in
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BKZ would be able to find it when called on the last block of size β. The success condition
is thus given by √

β

d
λ1 ≤ ||b∗d−β+1|| . (7.3.24)

Based on these heuristics, we compute the estimated value of δ in our setting. Substituting
λ1 ≈

√
dσ and (7.3.23), we get√

βσ ≤ δ2β−d · Vol(L(B))1/d = δ2β−dωn/dqm/d . (7.3.25)

If we choose d to optimize this ratio, we obtain (7.3.15) again. Substituting (7.3.15) into
(7.3.25) and taking logarithms, we get a quadratic equation in

√
log δ:

2β log δ − 2

√
n log

( q
ω

)
log δ + log

(
q√
βσ

)
= 0 . (7.3.26)

We solve this equation to get the 2016 estimate for δ:

log δ2016 =
n log

(
q
ω

)
4β2

1−

√√√√
1−

2β log
(

q√
βσ

)
n log

(
q
ω

)


2

, (7.3.27)

If the value inside the squareroot is negative, then we take log δ2016 =
n log( qω )

4β2 . We obtain

the lattice dimension d2016 by substituting (7.3.27) into (7.3.15). For large n, (7.3.27) is
asymptotically

log δ2016 ≈
log2

(
q√
βσ

)
4n log

(
q
ω

) . (7.3.28)

We observe that (7.3.28) is similar to (7.3.17) except for the denominator of q in the numerator.
The experiments in [8, 17] suggest that the 2016 estimate is more consistent with experiments
than the 2008 estimate. In this paper, we will experimentally compare δ2008 and δ2016 with
actual values of δ.

We compare δ2016 with the expected experimental value of δ, using the definition in (7.2.4)
and assuming that the shortest vector is successfully recovered. We have

δ2β−d
2016 =

√
β

d

λ1

Vol(L(B))1/d
=

√
β

d
δd . (7.3.29)

Hence we have the relation

δ = δ
2β/d−1
2016

(
d

β

)1/2d

. (7.3.30)

We observe that δ trends differently from δ2016, similarly to (7.3.22) for the case of δ2008.
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7.4 Experiments

Setup

We perform our experiments using a 2.4 GHz Intel R© Xeon R© E5-2673 v4 processor, with
48 virtual CPUs and 192 GB of RAM. We generate random instances of LWE, and convert
them into instances of uSVP via (7.3.4). We sample the errors from a discrete gaussian
distribution with standard deviation σ = 3.2, using the discrete gaussian sampler in [103],
and we sample secrets uniformly from the binary, ternary and discrete gaussian distributions.
To recover the shortest vector, we use the BKZ2.0 algorithm implemented in fplll [116],
with the bkzautoabort option, and with blocksizes β = 30, 35, 40, 45. The bkzautoabort

option causes the algorithm to terminate when the norms of the Gram-Schmidt vectors stop
changing.

For β = 30, we choose n from 40 to 200 in steps of 10. For β = 35, 40, we choose n from
40 to 150, and for β = 45, we choose n from 40 to 100. We use a smaller range of values of
n for higher β, since the running time of BKZ2.0 grows exponentially with β and so it is
infeasible to run the experiments for high blocksizes with large n. For each set of parameters,
we vary log q to determine the smallest value of log q such that BKZ2.0 succeeds in recovering
the secret. We perform 10 trials per set of parameters, to account for the randomness in
sampling the lattices.

The data are in Tables 7.1 to 7.6, where the rows in boldface contain the data for the
smallest value of log(q) where the attack succeeds. For each set of parameters, we compute the
values of the Hermite factor using the estimates in (7.3.17) and (7.3.27), which we tabulate
as δ2008 and δ2016 respectively. Based on the estimates, we also compute the optimal values
of the lattice dimensions from (7.3.15), which we tabulate as d2008 and d2016. Since these
dimensions are different, we conduct two sets of experiments for each set of parameters,
where one set has lattice dimension d2008 and the other has dimension d2016. We thus divide
Tables 7.1 to 7.6 into two parts, where the left parts indicate the experiments for the 2008
estimate and the right for the 2016 estimate.

For each instance, we compute the actual values of δ using the definition in (7.2.4). We
split the instances into cases where BKZ2.0 succeeds in recovering the secret, and cases
where it fails, and we compute the average value of δ in each scenario. We tabulate these
experimental values of δ under the columns labeled “Average successful δ” and “Average
failed δ”.

In Figures 7.1, 7.2, 7.3, we plot the values of δ against the lattice dimension for the binary,
ternary and gaussian secret distributions respectively, with separate plots for each blocksize.
In each plot, we plot the values of the 2008 and 2016 estimates for δ against the dimension of
the lattice, using blue dots and crosses respectively. For comparison, we plot Chen’s estimate
(7.2.5) which only depends on the blocksize, using a black line. We also plot the average
values of δ for the instances where BKZ2.0 succeeds and fails. The dots and crosses represent
attacks run with the dimensions calculated from the 2008 and 2016 estimates respectively,
and the green and red represent the successful and failed instances respectively. The data for
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Figure 7.1: Plots of δ for binary secrets and β = 30, 35, 40, 45. The dots and crosses represent
attacks run with the dimensions calculated from the 2008 and 2016 estimates respectively.
The blue are estimates of δ, and the green and red are the experimental values of δ for the
success and failure cases respectively. The black line represents Chen’s estimate.
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the successful cases is obtained from the smallest value of log(q) where the attack succeeds,
which are the rows in boldface in the tables, while the data for the failed cases is obtained
from the largest value of log(q) where the attack does not succeed, which are the rows directly
above those in boldface.

Results

The main observation that we make is that the experimental values of δ for successful
instances decrease as the lattice dimension increases, whereas the 2008 and 2016 estimates
show increasing trends which seem to approach Chen’s estimate. The differing trends is
explained by the predicted relations between the successful experimental values and the
estimates in (7.3.22) and (7.3.29).

We also observe that the experimental values of δ for failed instances closely follow the
2008 and 2016 estimates. The values of δ for failed instances are higher than for successful
instances, which is expected since BKZ2.0 finds shorter vectors for the latter. Moreover, the
values of δ for the successful instances decrease as the lattice dimension increases. In the
cases where BKZ2.0 fails to recover the unique shortest vector, it recovers instead a vector
with length close to the Gaussian Heuristic, and so the algorithm behaves like it would on a
random lattice of the same dimension. In these cases, the experimental values of δ closely
follow the 2008 and 2016 estimates. This indicates that the estimates accurately capture the
behavior of BKZ2.0 on random lattices, but not on successful instances of uSVP.
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Figure 7.2: Plots of δ for ternary secrets and β = 30, 35, 40, 45.
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Figure 7.3: Plots of δ for gaussian secrets and β = 30, 35, 40, 45.

100 150 200 250 300 350 400 450 500
d

0.995

1.000

1.005

1.010

1.015

δ

β=30

100 150 200 250 300 350 400
d

0.995

1.000

1.005

1.010

1.015

δ

β=35

100 150 200 250 300 350 400
d

0.995

1.000

1.005

1.010

1.015

δ

β=40

150 175 200 225 250 275 300
d

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

1.0100

1.0125

δ

β=45

2008 estimate
2008 success
2008 fail
2016 estimate
2016 success
2016 fail
Chen estimate

We also observe that the success rates for the 2008 and 2016 estimates are comparable,
although the 2008 estimate generally predicts higher lattice dimensions which lead to longer
running times. The 2008 estimate also generally predicts higher values of δ than the 2016
estimate, for fixed lattice dimensions.

Additionally, for fixed n and β, the values of log q and d required to recover the secret
is significantly higher for the cases where the secret is sampled from the discrete gaussian
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Figure 7.4: Plots of running times in minutes. The dots and crosses represent attacks run
with the dimensions calculated from the 2008 and 2016 estimates respectively. The blue, red,
green and cyan represent blocksizes 30, 35, 40, 45 respectively.
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distribution, as compared to the binary and ternary distributions. The values for the binary
and ternary distributions are comparable, though slightly higher for the ternary distribution.
This indicates that gaussian secrets yield greater security levels, and would be recommended
over binary or ternary secrets in practical applications. For all three secret distributions,
the shortest vector has the same `2-norm, whereas the `1-norm is highest for the gaussian
distribution, followed by the ternary and binary distributions. This indicates a trend of
higher security level with increasing `1-norm, and it would be interesting to study this more
systematically.

Due to the experimental nature of our work, we could only produce data for lattices of
small dimensions, as the running time of BKZ2.0 grows exponentially with the parameters.
We plot the average running times of BKZ2.0 for each set of parameters in Figure 7.4. In the
plots, the dots and crosses represent attacks run with the dimensions calculated from the
2008 and 2016 estimates respectively. The blue, red, green and cyan represent blocksizes 30,
35, 40, 45 respectively.

It is infeasible to run our experiments for β ≥ 50 and n > 100 within reasonable times.
For comparison, with blocksize 50, it takes about 19 hours to run the experiment with
binary secrets for n = 40 and log q = 6, as compared to an hour for blocksize 45 with
the same parameters. It would be desirable to conduct longer experimental studies with
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higher blocksizes and dimensions, to simulate the parameters used in practical cryptosystems.
Nevertheless, our work represents a first step towards a systematic experimental understanding
of the Hermite factor of BKZ2.0 on uSVP lattices, which we hope will motivate further
studies on the topic.

TU Darmstadt LWE Challenge

Using the same experimental setup, we generate instances of the TU Darmstadt LWE
challenges [36]. In the actual challenges, the secrets are sampled from uniform distributions
on Zq; in our experiments we use instead the binary, ternary and gaussian secret distributions.

In the challenges, the discrete Gaussian error distributions have varying standard deviations
σ = αq, where α is a parameter. For each challenge, the parameters n, q, α are fixed. We
generate instances with binary, ternary and Gaussian secrets, and we run the uSVP attack
using the BKZ2.0 algorithm with blocksizes β = 30, 35, 40, 45. Due to resource limitations,
we run only 3 trials for each set of parameters.

The data from our experiments are in Figures 7.5, 7.6, 7.7. In each figure, we plot a grid
for each blocksize, where the columns are indexed by n and the rows by α. Each cell in the
grid is colored based on the number of successful trials, where the colors red, orange, yellow
and green indicate that the number of successful trials is 3, 2, 1 and 0 respectively. Moreover,
the bottom diagonal of each divided cell indicates the 2008 estimate, while the top diagonal
indicates the 2016 estimate.

We observe that there is a much higher success rate in solving the challenges for the binary
and ternary secret distributions, as compared to the gaussian distribution. This indicates
that gaussian secret distributions are more secure for practical applications. Moreover, our
running times for the successful instances are significantly less than the records in the actual
challenges, which use secrets from uniform distributions. Furthermore, we also observe that
we are already able to attack all the solved LWE challenges in the online tables, for secrets
sampled from the binary or ternary secret distributions. This indicates that uniform secrets
offer much higher security than the secret distributions that we consider, and it would be
promising to study the case of uniform secrets in our experimental framework, as a potential
follow-up to this work.

7.5 Conclusion

In this chapter, we introduced the Learning With Errors (LWE) problem in lattice-based
cryptography, and we studied experimentally the concrete security of LWE when sampling
the secret from small distributions. With this chapter, we conclude this thesis, which brings
together a collection of works at the interface of computer science and mathematics.
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Figure 7.5: TU Darmstadt LWE challenges for binary secrets. Each cell is colored based on
the number of successful trials, where the colors red, orange, yellow and green indicate that
the number of successful trials is 3, 2, 1 and 0 respectively. The bottom diagonal of each
divided cell indicates the 2008 estimate, while the top diagonal indicates the 2016 estimate.
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Figure 7.6: TU Darmstadt LWE challenges for ternary secrets
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Figure 7.7: TU Darmstadt LWE challenges for gaussian secrets
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Table 7.1: Binary secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
5 156 0.99952 0 1 - 1.00344 178 1.00255 0 2 - 1.00264
6 128 1.00484 5 1 1.00176 1.00661 114 1.00805 7 2 1.00277 1.00835
7 114 1.01014 10 1 0.99893 - 83 1.01933 10 1 1.00340 -

50
6 160 1.00317 0 2 - 1.00525 157 1.00535 0 2 - 1.00545
7 143 1.00810 7 2 0.99992 1.00826 123 1.01096 8 2 1.00125 1.01118
8 133 1.01126 10 2 0.99722 - 105 1.01821 10 2 0.99952 -

60
7 171 1.00671 0 3 - 1.00689 158 1.00793 0 3 - 1.00808
8 160 1.00937 8 4 0.99819 1.00950 138 1.01258 8 5 0.99903 1.01278
9 152 1.01219 10 4 0.99558 - 125 1.01808 10 4 0.99752 -

70
8 186 1.00803 0 6 - 1.00816 169 1.00974 0 7 - 1.00990
9 177 1.01044 10 8 0.99672 - 155 1.01374 10 12 0.99780 -

80
8 213 1.00702 0 8 - 1.00709 200 1.00798 0 13 - 1.00805
9 203 1.00913 2 10 0.99701 1.00921 184 1.01115 0 12 - 1.01123
10 196 1.0112 10 12 0.99547 - 173 1.01438 10 16 0.99607 -

90
9 228 1.00811 0 27 - 1.00820 212 1.00940 0 23 - 1.00949
10 221 1.00995 4 32 0.99628 1.01001 200 1.01207 6 27 0.99644 1.01224
11 215 1.01183 10 31 0.99452 - 192 1.01485 10 24 0.99525 -

100
10 245 1.00895 0 45 - 1.00903 227 1.01041 0 42 - 1.01053
11 239 1.01064 7 55 0.99515 1.01073 218 1.01277 8 33 0.99579 1.01291
12 234 1.01235 10 54 0.99365 - 211 1.01520 10 35 0.99430 -

110
11 263 1.00967 0 71 - 1.00973 244 1.01122 0 57 - 1.01131
12 258 1.01122 10 86 0.99442 - 237 1.01333 10 69 0.99504 -

120
11 287 1.00886 0 94 - 1.00890 270 1.01001 0 85 - 1.01006
12 281 1.01028 2 106 0.99492 1.01035 262 1.01187 0 75 - 1.01192
13 277 1.01172 10 122 0.99372 - 255 1.01378 10 138 0.99409 -

130
12 304 1.00949 0 78 - 1.00957 287 1.01071 0 112 - 1.01075
13 300 1.01081 2 141 0.99411 1.01085 280 1.01242 2 129 0.99452 1.01247
14 296 1.01214 10 174 0.99297 - 274 1.01413 10 148 0.99324 -

140
13 323 1.01003 0 206 - 1.01007 304 1.01130 0 121 - 1.01138
14 319 1.01126 3 216 0.99360 1.01130 298 1.01286 8 220 0.99385 1.01296
15 315 1.01250 10 258 0.99257 - 294 1.01443 10 122 0.99301 -

150
14 341 1.01051 0 281 - 1.01058 322 1.01180 0 174 - 1.01188
15 338 1.01166 8 315 0.99306 1.01170 317 1.01323 10 244 0.99333 -
16 335 1.01282 10 347 0.99196 - 313 1.01467 10 268 0.99224 -

160
15 360 1.01093 0 253 - 1.01099 341 1.01222 0 334 - 1.01226
16 357 1.01201 10 397 0.99258 - 336 1.01355 10 368 0.99288 -

170
16 379 1.01130 0 531 - 1.01136 359 1.01259 0 546 - 1.01267
17 376 1.01232 10 516 0.99210 - 335 1.01382 10 422 0.99250 -

180
16 402 1.01067 0 609 - 1.01069 383 1.01175 0 484 - 1.01178
17 398 1.01163 2 626 0.99254 1.01170 378 1.01291 2 528 0.99268 1.01298
18 396 1.01260 10 739 0.99167 - 375 1.01406 10 392 0.99179 -

190
17 421 1.01102 0 761 - 1.01103 401 1.01210 0 392 - 1.01217
18 418 1.01193 9 836 0.99217 1.01196 398 1.01319 10 851 0.99231 -
19 415 1.01285 10 937 0.99129 - 394 1.01427 10 881 0.99156 -

200
18 440 1.01133 0 1183 - 1.01135 420 1.01241 0 951 - 1.01247
19 437 1.01220 6 1266 0.99169 1.01225 417 1.01343 10 1077 0.99200 -
20 435 1.01307 10 1450 0.99090 - 414 1.01446 10 1107 0.99114 -

35

40
5 156 0.99952 0 1 - 1.00344 196 1.00210 0 2 - 1.00218
6 128 1.00484 8 2 1.00180 1.00661 114 1.00812 4 3 1.00234 1.00835
7 114 1.01014 10 2 0.99879 - 71 1.02702 10 0 1.00566 -

50
6 160 1.00317 0 3 - 1.00525 161 1.00507 0 3 - 1.00518
7 143 1.00810 9 5 0.99989 1.00826 120 1.01159 10 2 1.00101 -
8 133 1.01126 10 4 0.99730 - 96 1.02173 10 2 0.99982 -

60
7 171 1.00671 0 6 - 1.00689 158 1.00795 0 5 - 1.00808
8 160 1.00937 10 6 0.99829 - 134 1.01332 10 8 0.99996 -

70
7 200 1.00534 0 6 - 1.00585 194 1.00614 0 10 - 1.00622
8 186 1.00803 0 7 - 1.00816 167 1.00994 2 11 0.99917 1.01014
9 177 1.01044 10 9 0.99656 - 151 1.01447 10 10 0.99747 -

80
8 213 1.00702 0 12 - 1.00709 199 1.00799 0 15 - 1.00813
9 203 1.00913 5 13 0.99712 1.00921 181 1.01145 6 16 0.99777 1.01160
10 196 1.01120 10 24 0.99545 - 170 1.01504 10 15 0.99620 -

90
9 228 1.00811 0 29 - 1.00820 211 1.00952 0 26 - 1.00958
10 221 1.00995 5 41 0.99620 1.01001 198 1.01240 10 33 0.99676 -
11 215 1.01183 10 43 0.99468 - 189 1.01544 10 30 0.99545 -

100
10 245 1.00895 0 50 - 1.00903 225 1.01058 0 44 - 1.01072
11 239 1.01064 10 66 0.99526 - 215 1.01312 10 52 0.99580 -



CHAPTER 7. ON THE CONCRETE SECURITY OF LWE WITH SMALL SECRET 91

Table 7.2: Binary secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
10 269 1.00814 0 65 - 1.00823 253 1.00924 0 83 - 1.00931
11 263 1.00967 2 51 0.99557 1.00973 242 1.01142 0 66 - 1.01150
12 258 1.01122 10 95 0.99449 - 234 1.01367 10 59 0.99489 -

120
11 287 1.00886 0 111 - 1.00890 268 1.01012 0 88 - 1.01021
12 281 1.01028 2 113 0.99495 1.01035 259 1.01209 3 99 0.99544 1.01220
13 277 1.01172 10 137 0.99362 - 252 1.01411 10 91 0.99391 -

130
12 304 1.00949 0 155 - 1.00957 285 1.01085 0 156 - 1.01090
13 300 1.01081 7 188 0.99430 1.01085 277 1.01264 7 194 0.99466 1.01274
14 296 1.01214 10 203 0.99309 - 271 1.01445 10 180 0.99358 -

140
13 323 1.01003 0 217 - 1.01007 302 1.01146 0 182 - 1.01153
14 319 1.01126 8 265 0.99361 1.01130 296 1.01309 10 233 0.99396 -
15 315 1.01250 10 289 0.99250 - 291 1.01473 10 132 0.99281 -

150
14 341 1.01051 0 312 - 1.01058 320 1.01196 0 243 - 1.01203
15 338 1.01166 10 350 0.99304 - 315 1.01345 10 305 0.99341 -

40

40
5 156 0.99952 0 3 - 1.00344 216 1.00173 0 6 - 1.00179
6 128 1.00484 6 4 1.00202 1.00661 111 1.00857 6 6 1.00242 1.00881
7 114 1.01014 10 5 0.99919 - 80 1.02062 10 3 1.00158 -

50
6 160 1.00317 0 6 - 1.00525 164 1.00488 0 9 - 1.00499
7 143 1.00810 10 11 0.99999 - 113 1.01297 10 12 1.00202 -

60
6 192 1.00217 0 9 - 1.00435 211 1.00353 0 14 - 1.00360
7 171 1.00671 1 11 1.00017 1.00689 156 1.00811 0 15 - 1.00829
8 160 1.00937 9 14 0.99821 1.00950 128 1.01464 10 14 0.99965 -

70
7 200 1.00534 0 17 - 1.00585 195 1.00609 0 21 - 1.00616
8 186 1.00803 5 29 0.99886 1.00816 164 1.01032 4 23 0.99954 1.01051
9 177 1.01044 10 32 0.99666 - 145 1.01562 10 17 0.99817 -

80
8 213 1.00702 0 38 - 1.00709 198 1.00810 0 32 - 1.00821
9 203 1.00913 9 46 0.99727 1.00921 178 1.01193 8 36 0.99828 1.01200
10 196 1.01120 10 52 0.99552 - 164 1.01601 10 35 0.99651 -

90
9 228 1.00811 0 54 - 1.00820 208 1.00974 0 64 - 1.00986
10 221 1.00995 10 72 0.99628 - 194 1.01290 10 55 0.99703 -

100
9 253 1.00730 0 79 - 1.00738 238 1.00825 0 82 - 1.00835
10 245 1.00895 0 81 - 1.00903 223 1.01085 2 74 0.99722 1.01091
11 239 1.01064 10 105 0.99524 - 212 1.01360 10 74 0.99599 -

110
10 269 1.00814 0 111 - 1.00823 251 1.00939 0 109 - 1.00946
11 263 1.00967 8 117 0.99574 1.00973 239 1.01172 3 119 0.99612 1.01179
12 258 1.01122 10 147 0.99442 - 230 1.01413 10 121 0.99520 -

120
11 287 1.00886 0 185 - 1.00890 266 1.01031 0 125 - 1.01037
12 281 1.01028 8 196 0.99508 1.01035 256 1.01240 7 148 0.99515 1.01249
13 277 1.01172 10 235 0.99374 - 249 1.01454 10 145 0.99409 -

130
12 304 1.00949 0 235 - 1.00957 282 1.01105 0 195 - 1.01113
13 300 1.01081 10 296 0.99428 - 274 1.01295 10 210 0.99467 -

140
12 328 1.00881 0 242 - 1.00885 308 1.00998 0 260 - 1.01004
13 323 1.01003 1 300 0.99479 1.01007 299 1.01167 0 295 - 1.01176
14 319 1.01126 10 372 0.99361 - 292 1.01339 10 391 0.99393 -

150
13 346 1.00936 0 402 - 1.00940 325 1.01063 0 521 - 1.01066
14 341 1.01051 6 424 0.99412 1.01058 317 1.01218 5 348 0.99452 1.01226
15 338 1.01166 10 420 0.99328 - 311 1.01375 10 361 0.99364 -

45

40
5 156 0.99952 0 23 - 1.00344 238 1.00142 0 31 - 1.00148
6 128 1.00484 10 44 1.00187 - 101 1.01033 10 45 1.00366 -

50
6 160 1.00317 0 69 - 1.00525 166 1.00474 0 64 - 1.00487
7 143 1.00810 10 106 0.99988 - 94 1.01874 10 72 1.00434 -

60
6 192 1.00217 0 104 - 1.00435 217 1.00334 0 164 - 1.00340
7 171 1.00671 3 165 1.00038 1.00689 153 1.00846 0 137 - 1.00862
8 160 1.00937 10 166 0.99804 - 118 1.01737 10 132 1.00113 -

70
7 200 1.00534 0 167 - 1.00585 194 1.00611 0 149 - 1.00622
8 186 1.00803 6 228 0.99869 1.00816 160 1.01094 10 222 0.99947 -
9 177 1.01044 10 264 0.99667 - 137 1.01755 10 160 0.99959 -

80
8 213 1.00702 0 284 - 1.00709 196 1.00831 0 320 - 1.00838
9 203 1.00913 10 340 0.99741 - 172 1.01265 10 283 0.99840 -

90
9 228 1.00811 0 418 - 1.00820 205 1.01007 0 384 - 1.01015
10 221 1.00995 10 450 0.99616 - 189 1.01360 10 401 0.99718 -

100
9 253 1.00730 0 411 - 1.00738 236 1.00841 0 512 - 1.00849
10 245 1.00895 4 562 0.99665 1.00903 219 1.01123 0 496 - 1.01132
11 239 1.01064 10 659 0.99520 - 207 1.01426 10 557 0.99624 -
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Table 7.3: Ternary secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
5 173 0.99927 0 1 - 1.00348 203 1.00218 0 2 - 1.00253
6 139 1.00416 2 1 1.00148 1.00667 129 1.00683 5 2 1.00271 1.00775
7 122 1.00949 10 2 0.99893 - 95 1.01570 10 1 1.00126 -

50
6 174 1.00267 0 2 - 1.00528 174 1.00469 0 3 - 1.00528
7 152 1.00758 7 3 0.99991 1.00842 135 1.00967 3 2 1.00077 1.01069
8 141 1.01065 10 3 0.99729 - 115 1.01609 10 2 0.99900 -

60
7 183 1.00608 0 4 - 1.00694 172 1.00714 0 5 - 1.00785
8 169 1.00887 10 6 0.99812 - 149 1.01143 7 6 0.99868 1.01235
9 159 1.01163 10 6 0.99574 - 134 1.01655 10 7 0.99634 -

70
8 197 1.00759 0 7 - 1.00820 181 1.00895 0 9 - 1.00973
9 186 1.00996 10 10 0.99684 - 165 1.01274 10 14 0.99735 -

80
9 212 1.00871 0 16 - 1.00936 195 1.01040 0 27 - 1.01108
10 204 1.01075 10 23 0.99573 - 182 1.01351 10 20 0.99659 -

90
9 239 1.00774 0 30 - 1.00827 224 1.00881 0 33 - 1.00942
10 230 1.00955 4 40 0.99631 1.01012 211 1.01138 0 21 - 1.01203
11 223 1.01141 10 44 0.99468 - 201 1.01408 10 23 0.99554 -

100
10 255 1.00859 0 58 - 1.00913 239 1.00985 0 69 - 1.01040
11 248 1.01026 7 62 0.99530 1.01080 228 1.01215 6 57 0.99580 1.01279
12 242 1.01195 10 69 0.99380 - 220 1.01452 10 50 0.99439 -

110
11 273 1.00932 0 84 - 1.00979 255 1.01069 0 73 - 1.01122
12 266 1.01086 9 94 0.99462 1.01141 246 1.01276 10 92 0.99483 -
13 261 1.01241 10 100 0.99313 - 239 1.01487 10 93 0.99360 -

120
12 290 1.00995 0 116 - 1.01046 272 1.01138 0 102 - 1.01189
13 285 1.01137 9 143 0.99382 1.01187 264 1.01325 10 110 0.99407 -
14 281 1.01280 10 159 0.99252 - 258 1.01514 10 137 0.99295 -

130
13 309 1.01049 0 152 - 1.01093 289 1.01195 0 144 - 1.01250
14 304 1.01181 10 200 0.99319 - 283 1.01365 10 173 0.99366 -

140
13 332 1.00974 0 225 - 1.01019 314 1.01089 0 219 - 1.01139
14 327 1.01096 5 263 0.99376 1.01142 308 1.01243 0 153 - 1.01289
15 323 1.01219 10 286 0.99262 - 302 1.01398 10 181 0.99296 -

150
14 351 1.01023 0 315 - 1.01061 332 1.01141 0 286 - 1.01187
15 346 1.01137 7 354 0.99314 1.01181 326 1.01283 10 354 0.99354 -
16 343 1.01252 10 386 0.99207 - 321 1.01426 10 288 0.99246 -

160
15 369 1.01065 0 372 - 1.01106 350 1.01185 0 353 - 1.01231
16 365 1.01173 10 465 0.99269 - 345 1.01317 10 466 0.99296 -

170
16 388 1.01104 0 584 - 1.01142 369 1.01224 0 455 - 1.01264
17 385 1.01205 10 639 0.99228 - 364 1.01347 10 528 0.99259 -

180
16 411 1.01042 0 758 - 1.01077 393 1.01143 0 675 - 1.01179
17 407 1.01138 2 756 0.99272 1.01175 387 1.01258 0 680 - 1.01300
18 404 1.01234 10 855 0.99179 - 383 1.01373 10 808 0.99218 -

190
17 430 1.01078 0 857 - 1.01110 411 1.01180 0 708 - 1.01216
18 426 1.01169 6 930 0.99225 1.01205 406 1.01287 0 639 - 1.01328
19 423 1.01260 10 986 0.99144 - 402 1.01395 10 866 0.99174 -

200
18 449 1.01110 0 1320 - 1.01141 430 1.01212 0 1290 - 1.01245
19 446 1.01197 6 1498 0.99197 1.01228 425 1.01314 10 1156 0.99209 -
20 443 1.01284 10 1426 0.99106 - 422 1.01416 10 765 0.99116 -

35

40
5 173 0.99927 0 2 - 1.00348 224 1.00179 0 4 - 1.00208
6 139 1.00416 5 2 1.00181 1.00667 131 1.00668 5 3 1.00203 1.00751
7 122 1.00949 10 2 0.99901 - 85 1.01988 10 1 1.00321 -

50
6 174 1.00267 0 3 - 1.00528 180 1.00441 0 4 - 1.00494
7 152 1.00758 5 4 1.00009 1.00842 133 1.00998 6 4 1.00054 1.01101
8 141 1.01065 10 4 0.99736 - 108 1.01816 10 2 0.99953 -

60
7 183 1.00608 0 6 - 1.00694 173 1.00708 0 9 - 1.00776
8 169 1.00887 10 7 0.99831 - 146 1.01192 9 6 0.99935 1.01267

70
8 197 1.00759 0 10 - 1.00820 180 1.00906 0 12 - 1.00983
9 186 1.00996 10 14 0.99688 - 161 1.01328 10 14 0.99752 -

80
8 225 1.00664 0 21 - 1.00717 214 1.00735 0 23 - 1.00793
9 212 1.00871 2 26 0.99750 1.00936 193 1.01062 1 15 0.99757 1.01131
10 204 1.01075 10 29 0.99569 - 179 1.01403 10 25 0.99637 -

90
9 239 1.00774 0 40 - 1.00827 223 1.00888 0 24 - 1.00950
10 230 1.00955 7 53 0.99636 1.01165 208 1.01165 8 31 0.99691 1.01238
11 223 1.01141 10 54 0.99473 - 198 1.01458 10 27 0.99554 -

100
10 255 1.00859 0 65 - 1.00913 237 1.00997 0 51 - 1.01058
11 248 1.01026 10 85 0.99537 - 225 1.01234 10 62 0.99591 -
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Table 7.4: Ternary secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
11 273 1.00932 0 48 - 1.00979 253 1.01085 0 62 - 1.01140
12 266 1.01086 10 95 0.99459 - 243 1.01305 10 82 0.99468 -

120
11 297 1.00854 0 136 - 1.00901 280 1.00964 0 118 - 1.01014
12 290 1.00995 1 142 0.99525 1.01046 269 1.01156 3 120 0.99542 1.01216
13 285 1.01137 10 168 0.99382 - 261 1.01354 10 113 0.99422 -

130
12 315 1.00918 0 172 - 1.00959 296 1.01039 0 147 - 1.01087
13 309 1.01049 4 203 0.99437 1.01093 287 1.01215 4 157 0.99483 1.01268
14 304 1.01181 10 251 0.99313 - 280 1.01393 10 188 0.99371 -

140
13 332 1.00974 0 260 - 1.01019 313 1.01102 0 218 - 1.01147
14 327 1.01096 8 302 0.99383 1.01142 305 1.01263 10 180 0.99404 -
15 323 1.01219 10 306 0.99256 - 299 1.01425 10 233 0.99289 -

150
14 351 1.01023 0 352 - 1.01061 330 1.01155 0 303 - 1.01202
15 346 1.01137 10 417 0.99324 - 324 1.01303 10 365 0.99350 -

40

40
5 173 0.99927 0 4 - 1.00348 246 1.00147 0 12 - 1.00172
6 139 1.00416 8 6 1.00180 1.00667 131 1.00667 6 8 1.00248 1.00751
7 122 1.00949 10 6 0.99880 - 81 1.02205 10 2 1.00269 -

50
6 174 1.00267 0 7 - 1.00528 184 1.00418 0 13 - 1.00472
7 152 1.00758 7 10 0.99982 1.00842 129 1.01063 10 11 1.00082 -
8 141 1.01065 10 11 0.99731 - 94 1.02384 10 6 1.00122 -

60
6 209 1.00179 0 18 - 1.00437 234 1.00310 0 24 - 1.00349
7 183 1.00608 1 12 1.00002 1.00694 172 1.00713 0 16 - 1.00785
8 169 1.00887 10 13 0.99811 - 141 1.01275 10 15 0.99952 -

70
7 213 1.00487 0 28 - 1.00595 212 1.00546 0 34 - 1.00601
8 197 1.00759 1 33 0.99829 1.00820 178 1.00930 2 27 0.99904 1.01006
9 186 1.00996 10 35 0.99666 - 156 1.01412 10 23 0.99772 -

80
8 225 1.00664 0 43 - 1.00717 213 1.00740 0 43 - 1.00800
9 212 1.00871 5 52 0.99735 1.00936 189 1.01097 2 42 0.99838 1.01179
10 204 1.01075 10 56 0.99566 - 174 1.01480 10 50 0.99665 -

90
9 239 1.00774 0 63 - 1.00827 221 1.00903 0 60 - 1.00968
10 230 1.00955 8 86 0.99622 1.01012 205 1.01204 7 66 0.99673 1.01237
11 223 1.01141 10 93 0.99468 - 193 1.01527 10 76 0.99537 -

100
9 265 1.00696 0 95 - 1.00746 253 1.00770 0 84 - 1.00819
10 255 1.00859 1 106 0.99648 1.00913 235 1.01019 0 105 - 1.01076
11 248 1.01026 10 124 0.99540 - 222 1.01284 10 132 0.99573 -

110
11 273 1.00932 0 134 - 1.00979 250 1.01110 0 134 - 1.01168
12 266 1.01086 10 171 0.99461 - 239 1.01344 10 140 0.99529 -

120
11 297 1.00854 0 170 - 1.00901 278 1.00979 0 189 - 1.01029
12 290 1.00995 4 218 0.99502 1.01046 267 1.01185 4 207 0.99541 1.01235
13 285 1.01137 10 233 0.99385 - 258 1.01392 10 185 0.99443 -

130
12 315 1.00918 0 288 - 1.00959 293 1.01056 0 166 - 1.01109
13 309 1.01049 8 304 0.99437 1.01093 284 1.01241 10 205 0.99474 -
14 304 1.01181 10 356 0.99311 - 277 1.01430 10 236 0.99377 -

140
13 332 1.00974 0 369 - 1.01019 310 1.01121 0 376 - 1.01169
14 327 1.01096 10 436 0.99380 - 302 1.01289 10 412 0.99399 -

150
13 356 1.00909 0 479 - 1.00948 336 1.01022 0 363 - 1.01065
14 351 1.01023 1 470 0.99412 1.01061 327 1.01175 0 343 - 1.01224
15 346 1.01137 10 500 0.99323 - 320 1.01329 10 367 0.99379 -

45

40
5 173 0.99927 0 44 - 1.00348 272 1.00121 0 54 - 1.00141
6 139 1.00416 7 53 1.00188 1.00667 129 1.00687 10 57 1.00261 -
7 122 1.00949 10 95 0.99884 - 90 1.01738 10 73 0.99989 -

50
6 174 1.00267 0 89 - 1.00528 188 1.00400 0 105 - 1.00452
7 152 1.00758 10 135 0.99984 - 121 1.01200 10 137 1.00121 -

60
7 183 1.00608 0 180 - 1.00694 170 1.00728 0 139 - 1.00804
8 169 1.00887 10 201 0.99827 - 133 1.01422 10 184 1.00026 -

70
7 213 1.00487 0 217 - 1.00595 213 1.00542 0 241 - 1.00595
8 197 1.00759 3 270 0.99869 1.00820 174 1.00970 7 306 0.99933 1.01053
9 186 1.00996 10 329 0.99674 - 150 1.01544 10 263 0.99816 -

80
8 225 1.00664 0 344 - 1.00717 211 1.00752 0 285 - 1.00815
9 212 1.00871 9 404 0.99749 1.00936 185 1.01150 10 381 0.99828 -
10 204 1.01075 10 444 0.99575 - 168 1.01590 10 328 0.99736 -

90
9 239 1.00774 0 430 - 1.00827 218 1.00927 0 395 - 1.00995
10 230 1.00955 10 542 0.99641 - 200 1.01259 10 416 0.99740 -

100
10 255 1.00859 0 583 - 1.00913 231 1.01049 0 570 - 1.01114
11 248 1.01026 10 739 0.99528 - 217 1.01337 10 714 0.99624 -
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Table 7.5: Gaussian secrets

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

30

40
7 170 1.00677 0 3 - 1.00694 157 1.00799 0 4 - 1.00814
8 150 1.00998 10 3 0.99758 - 126 1.01413 10 4 0.99918 -

50
7 213 1.00487 0 5 - 1.00550 207 1.00571 0 11 - 1.00582
8 187 1.00798 4 7 0.99833 1.00813 171 1.00965 0 7 - 1.00973
9 171 1.01086 10 8 0.99621 - 147 1.01467 10 6 0.99726 -

60
8 225 1.00664 0 10 - 1.00671 213 1.00738 0 16 - 1.00749
9 205 1.00904 5 11 0.99709 1.00912 186 1.01099 7 16 0.99800 1.01109
10 192 1.01148 10 10 0.99506 - 168 1.01492 10 12 0.99561 -

70
9 239 1.00775 0 18 - 1.00781 224 1.00882 0 23 - 1.00889
10 223 1.00983 4 35 0.99609 1.00996 204 1.01185 5 25 0.99659 1.01191
11 212 1.01200 10 31 0.99415 - 189 1.01516 10 22 0.99487 -

80
10 255 1.00859 0 46 - 1.00868 238 1.00985 0 32 - 1.00997
11 242 1.01049 9 52 0.99521 1.01060 222 1.01253 10 42 0.99544 -
12 232 1.01245 10 56 0.99341 - 209 1.01537 10 43 0.99389 -

90
11 272 1.00932 0 69 - 1.00943 255 1.01069 0 64 - 1.01073
12 261 1.01106 10 87 0.99419 - 241 1.01307 10 75 0.99463 -

100
12 290 1.00995 0 107 - 1.01004 272 1.01138 0 133 - 1.01142
13 281 1.01155 10 126 0.99363 - 260 1.01352 10 90 0.99387 -

110
12 319 1.00904 0 138 - 1.00912 303 1.01008 0 116 - 1.01011
13 309 1.01049 1 156 0.99435 1.01053 289 1.01195 0 136 - 1.01205
14 300 1.01196 10 172 0.99298 - 279 1.01388 10 144 0.99346 -

120
13 337 1.00961 0 209 - 1.00965 319 1.01072 0 228 - 1.01077
14 327 1.01096 3 235 0.99367 1.01104 308 1.01243 7 212 0.99396 1.01246
15 320 1.01232 10 253 0.99248 - 298 1.01417 10 211 0.99292 -

130
14 355 1.01011 0 172 - 1.01014 336 1.01126 0 193 - 1.01133
15 346 1.01137 9 327 0.99318 1.01144 326 1.01283 7 292 0.99352 1.01290
16 339 1.01264 10 358 0.99195 - 318 1.01443 10 285 0.99215 -

140
15 373 1.01055 0 423 - 1.01059 354 1.01172 0 390 - 1.01177
16 365 1.01173 9 487 0.99266 1.01181 345 1.01317 10 405 0.99279 -
17 359 1.01292 10 499 0.99151 - 337 1.01465 10 429 0.99184 -

150
15 399 1.00985 0 524 - 1.00991 382 1.01078 0 369 - 1.01082
16 391 1.01095 1 516 0.99319 1.01101 372 1.01212 2 601 0.99333 1.01217
17 385 1.01205 10 560 0.99214 - 364 1.01347 10 430 0.99242 -

160
17 410 1.01130 0 691 - 1.01135 391 1.01247 0 344 - 1.01249
18 404 1.01234 10 860 0.99177 - 383 1.01373 10 401 0.99195 -

170
17 436 1.01063 0 1067 - 1.01066 417 1.01160 0 838 - 1.01166
18 429 1.01161 1 949 0.99232 1.01166 409 1.01277 2 587 0.99220 1.01284
19 423 1.01260 10 1168 0.99134 - 402 1.01395 10 688 0.99158 -

180
18 454 1.01096 0 1256 - 1.01102 435 1.01194 0 1285 - 1.01201
19 448 1.01190 2 1533 0.99184 1.01195 428 1.01305 7 1188 0.99209 1.01310
20 443 1.01284 10 1600 0.99102 - 422 1.01416 10 694 0.99103 -

190
19 473 1.01127 0 1642 - 1.01131 454 1.01225 0 1445 - 1.01228
20 467 1.01216 1 1871 0.99153 - 447 1.01329 10 1023 0.99178 -
21 462 1.01305 10 1853 0.99057 - 441 1.01434 10 1698 0.99098 -

200
20 492 1.01155 0 1969 - 1.01158 472 1.01252 0 1757 - 1.01259
21 487 1.01239 10 2249 0.99123 - 466 1.01351 10 1124 0.99131 -

35

40
6 207 1.00183 0 4 - 1.00403 225 1.00335 0 13 - 1.00341
7 170 1.00677 1 4 0.99939 1.00694 157 1.00802 0 9 - 1.00814
8 150 1.00998 10 5 0.99750 - 121 1.01534 10 3 0.99973 -

50
7 213 1.00487 0 7 - 1.00550 210 1.00556 0 12 - 1.00565
8 187 1.00798 2 8 0.99874 1.00813 169 1.00984 7 13 0.99870 1.00996
9 171 1.01086 10 8 0.99614 - 143 1.01560 10 8 0.99759 -

60
8 225 1.00664 0 13 - 1.00671 214 1.00735 0 22 - 1.00742
9 205 1.00904 6 13 0.99701 1.00912 183 1.01127 6 19 0.99776 1.01146
10 192 1.01148 10 19 0.99512 - 164 1.01567 10 10 0.99641 -

70
9 239 1.00775 0 34 - 1.00781 223 1.00889 0 26 - 1.00897
10 223 1.00983 8 33 0.99611 1.00996 201 1.01216 10 39 0.99682 -
11 212 1.0120 10 36 0.99425 - 185 1.01580 10 20 0.99516 -

80
10 255 1.00859 0 57 - 1.00868 237 1.00998 0 49 - 1.01006
11 242 1.01049 10 69 0.99516 - 219 1.01285 10 50 0.99573 -

90
11 272 1.00932 0 84 - 1.00943 253 1.01085 0 76 - 1.01090
12 261 1.01106 10 97 0.99436 - 238 1.01339 10 80 0.99508 -

100
11 303 1.00839 0 117 - 1.00843 286 1.00941 0 101 - 1.00946
12 290 1.00995 2 133 0.99508 1.01004 269 1.01156 3 112 0.99533 1.01168
13 281 1.01155 10 140 0.99359 - 257 1.01383 10 109 0.99404 -
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Table 7.6: Gaussian secrets (continued)

β n log(q) d2008 δ2008
Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ d2016 δ2016

Number of
successes

Average
time (min)

Average
successful δ

Average
failed δ

35

110
12 319 1.00904 0 104 - 1.00912 301 1.01018 0 147 - 1.01024
13 309 1.01049 5 166 0.99425 1.01053 287 1.01215 10 170 0.99458 -
14 300 1.01196 10 203 0.99302 - 276 1.01417 10 193 0.99346 -

120
13 337 1.00961 0 235 - 1.00965 317 1.01084 0 259 - 1.01091
14 327 1.01096 10 278 0.99372 - 305 1.01263 8 209 0.99389 1.01270
15 320 1.01232 10 321 0.99243 - 295 1.01446 10 139 0.99285 -

130
13 365 1.00887 0 331 - 1.00890 347 1.00979 0 300 - 1.00985
14 355 1.01011 2 341 0.99413 1.01014 334 1.01139 0 286 - 1.01146
15 346 1.01137 10 376 0.99312 - 324 1.01303 10 245 0.99339 -

140
14 382 1.00939 0 438 - 1.00942 363 1.01038 0 468 - 1.01044
15 373 1.01055 2 463 0.99366 1.01059 352 1.01186 0 424 - 1.01190
16 365 1.01173 10 490 0.99274 - 342 1.01337 10 398 0.99292 -

150
15 399 1.00985 0 526 - 1.00991 380 1.01088 0 756 - 1.01093
16 391 1.01095 3 580 0.99309 1.01101 370 1.01226 1 557 0.99331 1.01231
17 385 1.01205 10 698 0.99234 - 361 1.01366 10 487 0.99236 -

40

40
6 207 1.00183 0 9 - 1.00403 233 1.00313 0 20 - 1.00318
7 170 1.00677 3 13 0.99979 1.00694 155 1.00820 0 12 - 1.00835
8 150 1.00998 10 12 0.99755 - 113 1.01773 10 10 0.99967 -

50
7 213 1.00487 0 18 - 1.00550 212 1.00547 0 26 - 1.00555
8 187 1.00798 6 19 0.99849 1.00813 166 1.01020 5 35 0.99884 1.01032
9 171 1.01086 10 20 0.99619 - 136 1.01713 10 19 0.99788 -

60
8 225 1.00664 0 41 - 1.00671 213 1.00740 0 31 - 1.00749
9 205 1.00904 8 45 0.99720 1.00912 180 1.01172 9 39 0.99748 1.01185
10 192 1.01148 10 47 0.99502 - 159 1.01679 10 32 0.99676 -

70
9 239 1.00775 0 65 - 1.00781 221 1.00904 0 73 - 1.00914
10 223 1.00983 10 79 0.99618 - 197 1.01263 10 51 0.99644 -

80
9 273 1.00677 0 86 - 1.00682 261 1.00739 0 75 - 1.00747
10 255 1.00859 1 99 0.99653 1.00868 234 1.01019 0 63 - 1.01032
11 242 1.01049 10 102 0.99520 - 215 1.01330 10 68 0.99588 -

90
10 287 1.00764 0 127 - 1.00769 271 1.00857 0 132 - 1.00863
11 272 1.00932 1 138 0.99573 1.00943 250 1.01110 2 127 0.99623 1.01117
12 261 1.01106 10 169 0.99440 - 234 1.01382 10 129 0.99515 -

100
11 303 1.00839 0 173 - 1.00843 284 1.00954 0 203 - 1.00960
12 290 1.00995 6 194 0.99498 1.01004 267 1.01182 5 166 0.99567 1.01186
13 281 1.01155 10 209 0.99357 - 253 1.01424 10 149 0.99419 -

110
12 319 1.00904 0 251 - 1.00912 299 1.01034 0 285 - 1.01038
13 309 1.01049 10 312 0.99430 - 284 1.01242 10 255 0.99472 -

120
13 337 1.00961 0 346 - 1.00965 315 1.01102 0 344 - 1.01105
14 327 1.01096 10 403 0.99367 - 302 1.01289 10 359 0.99393 -

130
13 365 1.00887 0 409 - 1.00890 345 1.00990 0 345 - 1.00997
14 355 1.01011 1 541 0.99421 1.01014 332 1.01158 0 433 - 1.01160
15 346 1.01137 10 552 0.99310 - 320 1.01329 10 368 0.99350 -

140
14 382 1.00939 0 597 - 1.00942 361 1.01051 0 485 - 1.01056
15 373 1.01055 4 606 0.99376 1.01059 349 1.01205 1 574 0.99384 1.01211
16 365 1.01173 10 656 0.99281 - 339 1.01363 10 537 0.99320 -

150
15 399 1.00985 0 716 - 1.00991 378 1.01102 0 690 - 1.01105
16 391 1.01095 8 842 0.99320 1.01101 367 1.01246 2 717 0.99356 1.01251
17 385 1.01205 10 914 0.99233 - 358 1.01391 10 589 0.99239 -

45

40
6 207 1.00183 0 90 - 1.00403 240 1.00294 0 118 - 1.00300
7 170 1.00677 4 158 1.00007 1.00694 152 1.00856 5 168 0.99977 1.00869
8 150 1.00998 10 149 0.99754 - 90 1.02778 10 42 1.00463 -

50
7 213 1.00487 0 175 - 1.00550 213 1.00544 0 121 - 1.00550
8 187 1.00798 7 236 0.99854 1.00813 161 1.01079 10 248 0.99938 -
9 171 1.01086 10 300 0.99608 - 126 1.01990 10 107 0.99855 -

60
8 225 1.00664 0 280 - 1.00671 211 1.00753 0 331 - 1.00763
9 205 1.00904 10 334 0.99723 - 175 1.01240 10 308 0.99839 -

70
8 262 1.00569 0 367 - 1.00576 259 1.00585 0 521 - 1.00589
9 239 1.00775 1 410 0.99782 1.00781 218 1.00929 0 347 - 1.00939
10 223 1.00983 10 436 0.99620 - 192 1.01327 10 441 0.99748 -

80
10 255 1.00859 0 542 - 1.00868 231 1.01049 0 615 - 1.01059
11 242 1.01049 10 656 0.99518 - 211 1.01391 10 593 0.99559 -

90
10 287 1.00764 0 753 - 1.00769 269 1.00871 0 587 - 1.00876
11 272 1.00932 4 804 0.99595 1.00943 246 1.01143 3 762 0.99634 1.01154
12 261 1.01106 10 908 0.99427 - 229 1.01439 10 870 0.99482 -

100
11 303 1.00839 0 941 - 1.00843 281 1.00973 0 840 - 1.00980
12 290 1.00995 8 1080 0.99509 1.01004 263 1.01216 10 963 0.99534 -
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[56] Mathieu Dutour Sikirić. Polyhedral, a GAP package. 2013. url: http://mathieudutour.
altervista.org/Polyhedral/index.html.
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Vol. 29. DMV Sem. Birkhäuser, Basel, 2000, pp. 43–73.
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