
Rapid ASIC Design for Digital Signal Processors

Steven Bailey

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-32
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-32.html

May 1, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Rapid ASIC Design for Digital Signal Processors

by

Steven Bailey

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolić, Chair
Professor Elad Alon

Professor Aaron Parsons

Fall 2018



Rapid ASIC Design for Digital Signal Processors

Copyright 2018
by

Steven Bailey



1

Abstract

Rapid ASIC Design for Digital Signal Processors

by

Steven Bailey

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Application-specific integrated circuit (ASIC) signal processors are necessary to achieve
the high performance and low power requirements of modern applications, but long develop-
ment times are one hurdle contributing to their declining adoption. A significant percentage
of their development time goes into the design and verification of the architecture, with
the remainder consumed by back-end ASIC flow work and chip testing. Agile hardware
principles, borrowed from a similar successful software approach and previously applied to
general-purpose processors, offer a promising solution to continuing the development of signal
processing systems on a chip (SoCs).

This work presents a digital signal processing SoC design framework that, when coupled
with agile design principles, supports rapid prototyping and designing of ASICs for signal
processing applications. First, applications and existing ASIC solutions are explored and an-
alyzed in Chapter 2 to glean useful properties and trends. From this, Chapter 3 proposes a
model for a generic signal processing SoC is developed. Next, a new Chisel generator design
framework is presented in Chapter 4. Chisel is a hardware construction language written
as a DSL in Scala, allowing for high-level and functional programming use when design-
ing hardware. This framework couples a general-purpose processor with a signal processing
accelerator, and much of the library code for connectivity, memory mapping, and program-
ming is made available. This framework, when coupled with an agile design process, supports
rapid development of ASICs. The accelerator performs streaming signal processing to offload
high-throughput computational kernels from the CPU. As processing elements for the de-
sired application are produced, processing moves from the CPU to the accelerator. Low-rate
processing tasks are computed on the CPU, meaning tape-out occurs on time and produces
a working chip able to perform the entire application.

The methodology and proposed agile design process were validated on two separate chips
in Chapters 5 and 6, spanning two applications and two process nodes. The ASIC spectrom-
eter (Splash2), for which the RTL was designed in eight weeks by one person, demonstrates
the power of Chisel to rapidly construct processing element generators. These generators
were then improved and the parameters adjusted as physical design and timeline constraints



2

imposed new restrictions. The radar receive processor design fleshed out the generator frame-
work details. A significantly larger design, this chip required about 300 engineering-weeks
of work over 9 months, equivalent to a team of 8 engineers working full time. About 30%
of that time was spent designing the framework and reusable processing elements. This rep-
resents a 56% reduction in development time compared to the estimated 14.4 months from
standard practices (excluding time for framework design, fabrication, and testing). Both ef-
forts produced working chips competitive against state-of-the-art custom ASICs in terms of
performance, power, and capabilities.



i

Contents

Contents i

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Signal Processing Models . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 RTL Design Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Signal Processing Applications and Models 19
2.1 Astronomical and Atmospheric Spectroscopy . . . . . . . . . . . . . . . . . . 19

2.1.1 Algorithms and Instruments . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Radio Baseband Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 An OFDM Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Digital Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 Other Processing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Radar Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 A Common Signal Processing Algorithm Model . . . . . . . . . . . . . . . . 30

3 Digital Signal Processing SoC Model 32
3.1 Existing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Centralized Digital Signal Processors . . . . . . . . . . . . . . . . . . 32
3.1.2 Distributed Digital Signal Processors . . . . . . . . . . . . . . . . . . 34
3.1.3 Hardened Digital Signal Processors . . . . . . . . . . . . . . . . . . . 35
3.1.4 Summary and Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



ii

3.3 General-Purpose Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Signal Processing Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Debug and Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 A DSP SoC Generator 42
4.1 Generator Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 General-Purpose Processor Generator . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Signal Processing Accelerator Generator . . . . . . . . . . . . . . . . . . . . 45
4.4 Verifying the Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 A Digital Spectrometer Design 50
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Spectrometer Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Polyphase Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Sideband Separation, Power, and Accumulation . . . . . . . . . . . . 56
5.2.4 ASIC Design and Verification . . . . . . . . . . . . . . . . . . . . . . 58

5.3 ASIC Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Serial Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Digital Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Chip Details and Testing Results . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Agile Principles Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Example: A Signal Analysis SoC 72
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 SoC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2.1 General-Purpose Processor . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2.2 Digital Signal Processing Accelerator . . . . . . . . . . . . . . . . . . 74
6.2.3 Processing Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.4 Bit Manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.5 Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.6 Decimating Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.7 Polyphase Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.8 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 IP Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 ADC and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.2 Clock Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.3 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.4 Memories and IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Verification and Design-For-Test . . . . . . . . . . . . . . . . . . . . . . . . . 86



iii

6.4.1 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4.2 System Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.3 DfT Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 Testing Results and Measurements . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Signal Analysis Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6.1 Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Agile Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusion 104
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 106



iv

List of Figures

1.1 ASICs are much lower power than CPUs but require significantly more develop-
ment time for a particular application [1]. . . . . . . . . . . . . . . . . . . . . . 2

1.2 A comparison of waterfall and agile software development paradigms shows the
differences in development cycles and project completion timeframes. Waterfall
development uses a top-down approach and frequently takes over a year. Agile
development uses a smaller, iterative approach with sufficient results completed
in less than a year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A comparison of traditional, open-loop design flow with our agile, iterative de-
sign flow. Changing specifications and issues during the process trigger generator
improvement work. Design generators are also portable across designs, so these
iterative enhancements persist. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Traditional DSP hardware design produces an instance tailored to the specific
application and technology. It is not easily reusable across applications and tech-
nologies [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Simple synchronous data flow model showing actors as nodes connected through
FIFOs as edges. Production and consumption rates are fixed and shown on the
figure. Fixed rates support static scheduling. . . . . . . . . . . . . . . . . . . . . 9

1.6 Flynn’s taxonomy of computer architectures. . . . . . . . . . . . . . . . . . . . . 10
1.7 Stanford’s Imagine stream processor. Bandwidths assume a core clock of 180 MHz

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 VLSI circuit design flow [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 The Sun emits blackbody radiation, which is intermittently absorbed by particles
in the corona and in Earth’s atmosphere [5]. . . . . . . . . . . . . . . . . . . . . 20

2.2 A full satellite terahertz receiver design for the compact adaptable microwave
limb sounder (CAMLS) project [6]. . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The receiver block diagram for the CAMLS instrument, a modification of a pre-
vious design [7]. Analog and digital blocks amenable to ASIC implementation are
in the dotted box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 A simplified block diagram of a typical OFDM modem. . . . . . . . . . . . . . . 23
2.5 LTE turbo encoding and decoding block diagrams. . . . . . . . . . . . . . . . . 24
2.6 LDPC parity check matrix and message-passing decoder diagram. . . . . . . . . 25



v

2.7 LTE turbo encoding and decoding block diagrams. . . . . . . . . . . . . . . . . 27
2.8 A radar system transmits electromagnetic pulses and measures return time to

detect objects and determine their distances [8]. . . . . . . . . . . . . . . . . . . 29
2.9 Typical radar receiver block diagram, here showing multiple receive channels with

each one processed similarly [9]. Computation after coherent integration is slow
enough to be done in software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 Some examples of a common signal processing algorithm model, with a generic
one on top and two specific applications below. . . . . . . . . . . . . . . . . . . 31

3.1 The Texas Instruments TMS320C5545 DSP SoC block diagram [10]. . . . . . . . 33
3.2 The Ceva Teaklite-4 architecture, showing the physically separate program and

data memories (Harvard architecture) [11]. . . . . . . . . . . . . . . . . . . . . . 34
3.3 The Kalray MPPA-256 Bostan Processor Architecture, showing hierarchical many-

core clustering [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Image compression architectural datapath block diagram for a capsule endocscopy

ASIC [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Spectrometer architectural block diagram, showing the digital processing path

after the ADC inputs [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 A digital signal SoC model. The general-purpose processor and local co-processors

talk to the digital signal processing accelerator through a periphery manager and
memory-mapped IO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 General-purpose processor architecture. Grayed out boxes show possible extensions. 39
3.8 Signal processing accelerator architecture. . . . . . . . . . . . . . . . . . . . . . 41

4.1 The rocket-chip generator can produce various topologies using hierarchical gen-
erators [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Signal processing accelerator generator features, with user input parameters in
green, generated parameters and automated checks in blue, and auto-generated
designs in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Creating a signal processing chain amounts to specifying a sequence of process-
ing elements (blocks), configurations for each processing element using Config-
Builders, and a handful of other parameters. . . . . . . . . . . . . . . . . . . . . 47

4.4 Verification framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Generic spectrometer receiver. The analog front-end performs RF to baseband
conversion, optional sideband (IQ) separation, filtering, and amplification. The
digital baseband backend performs additionally filtering, transformation to the
frequency domain, calibration, magnitude calculation, and accumulation. . . . . 51

5.2 Spectrometer generator. Parameters are shown in green. Separate I and Q inputs
arrive from two ADCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 PFB coefficient calculation hardware and waveform. Both adjust for different
parameter values, such as the bitwidths, number of taps, and number of channels. 53



vi

5.4 Parameterized polyphase filter. Coefficient values are addressed by the global
synchronization signal. Delays are mapped to SRAMs when long. These delays
dual as pipeline registers, and one more pipeline register is added to the output. 53

5.5 The FFT generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 Calibration, power, and accumulation signal path block diagram. Calibration fixes

mismatch between front-end receivers and ADCs. . . . . . . . . . . . . . . . . . 57
5.7 Generator flow diagram, showing verification paths on the right and the imple-

mentation path on the left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Verification of the spectrometer at different stages of the design process. . . . . 59
5.9 PFB verification. Note the better isolation of the two tones after the filter. . . . 59
5.10 PFB and FFT verification. Quantized coefficients were applied to the MATLAB

PFB, and the input signal was quantized, but all other operations were floating
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.11 FPGA verification allowed for full design simulation. This figure shows the spec-
trometer response from a sawtooth input simulated on the FPGA. . . . . . . . . 60

5.12 Implementation system block diagram with selected parameters. . . . . . . . . . 61
5.13 SerDes block diagram, including digital back-ends for monitoring and spectrom-

eter pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.14 Block diagram of the BBPLL with pseudo-random fractional dithering. . . . . . 64
5.15 System clocking diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.16 Chip die photo, with large components annotated. Note the distributed serial links

and memory-dominated floorplan. The size was 4.2 mm2. Annotated dimensions
are in µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.17 Time-series snapshot and spectrum power from the PRBS TVG. Both match
cycle-accurate, bit-level simulation results, proving functionality. . . . . . . . . . 66

5.18 Power of the digital supply at 1 V at various digital clock frequencies. . . . . . . 67
5.19 Example full system measured spectra at 1 GHz sampling frequency. Signal and

system noise is reduced by accumulating many spectra. . . . . . . . . . . . . . . 68
5.20 Measured spectra at 1 Gs/s with a 166 MHz input signal, accumulated over 16384

spectra (134 ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Block diagram of the SoC architecture. . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Detailed diagram of the processing elements in the DSP accelerator. Red boxes

indicate memory-mapped IO SCRs. Green overlays show generator parameters.
Blue text gives fixed-point data type parameters chosen. CQ = complex fixed-
point number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Bit manipulator, showing how the output is directly connected to the input, but
datatype conversion is implicit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Tuner coefficient LUT diagram for the Fixed configuration. This architecture sim-
plifies the hardware by hard-coding coefficients and requiring a single multiplier
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



vii

6.5 Example tuner block diagram. Note the implicit conversion from real to complex.
Pipeline registers are all placed at the output. Direct synthesis tools to retime as
needed for improved performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Simplified decimating filter block diagram, with delay and summation logic ob-
fuscated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.7 The polyphase filter looks almost identical to the decimating filter, but the
polyphase filter lanes are kept distinct, while the decimating filter treats all lanes
as one continuous input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.8 Fast Fourier transform block diagram. The ratio of biplex to direct FFT butter-
flies scales automatically with the specified number of points and lanes. Twiddle
factors and intermediate bitwidths are calculated automatically for any design size. 81

6.9 Clock looping to override default clock connections. The asynchronous FIFOs
convert between the slow external clock domain and the fast on-chip clock domain. 85

6.10 Visualizing the PFB filter response in Plot.ly. . . . . . . . . . . . . . . . . . . . 90
6.11 System simulations included a noisy sine wave input to the ADC to check for

end-to-end functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.12 Chip layout, die photo, and summary. . . . . . . . . . . . . . . . . . . . . . . . 93
6.13 Both processors function under similar operating condition ranges. The general-

purpose processor consumes more power because of the 8 MB main memory. . . 95
6.14 Typical ADC power consumption is less than 50 mW at 0.9V. Calibration of the

ADC reduces noise and spurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.15 Spectrometer signal processing example. Snapshots captured in the SAMs. (1) A

real-valued signal is sampled through the calibrated ADC, producing a symmetric
spectrum. (2) Four tuner LO frequencies are mixed with the input, producing
four frequency-shifted spectra. (3) These spectra are low-pass filtered and down-
converted by 8, resulting in four separate frequency bands. (4) The bands are
Fourier transformed, accumulated, and combined on the CPU. This figure shows
100 accumulated spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.16 Using the vector and DMA accelerators speeds up spectral accumulation by over
10x. This plot includes the overhead of sweeping the tuner frequency to monitor
four frequency bands, so each spectrum is 512 channels. . . . . . . . . . . . . . . 97

6.17 Measured spectrogram of a 4 us pulse at 876 MHz. . . . . . . . . . . . . . . . . . 98
6.18 Tape-in metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.19 Radar processor design flow. Top: Initial customer specifications. Middle: Agile

design evolution, Bottom-Left: Example tuner design showing parameterization
in green and the verification suite. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.20 Early proposed tape-in schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.21 The incremental addition of features in the framework and design defined a tape-

in schedule, which quickly broke down. . . . . . . . . . . . . . . . . . . . . . . . 103



viii

List of Tables

1.1 Agile software development led to more projects finishing on time, where “finish-
ing” means delivering a product that satisfies the customer [16]. . . . . . . . . . 3

2.1 A comparison of properties in the 802.11ac WiFi and LTE standards. . . . . . . 22

5.1 Properties of recently published digital spectrometer backends suggest a single
parameterized generator covering the gamut of possible design choices would avoid
repeated design efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 PFB Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 FFT Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Comparison of state-of-the-art ASIC spectrometers. . . . . . . . . . . . . . . . . 70

6.1 Breakdown of operations in the signal-analysis processor. Each operation is per-
formed once per cycle. C represents a complex number, R represents a real num-
ber, and square braces show the number of bits for that operand. I assume C×R
is 2 multiplies, C×C is 3 multiplies and 5 adds, and C+C is 2 adds. . . . . . . . 94

6.2 Comparison of state-of-the-art ASIC spectrometers . . . . . . . . . . . . . . . . 97



ix

Acknowledgments

The PhD journey is not a solitary sojourn; rather, it requires one person to work with
countless others, both past and present, to push the bubble of knowledge outward one iota
in one direction. I would like to acknowledge the shoulders on which I stood and the arms
that held mine during this adventure. Thanks to those mentioned here, and thanks to those
not mentioned who also participated in my efforts. I could not have it done it without y’all.

Thanks to my undergraduate advisor, Professor Mircea Stan, and UVA Professor Ben
Calhoun, for pressuring me to apply for PhD programs. And thanks to fellow UVA student
Kevin Linger; our competitive views on exams and thorough exploration of SRAMs in our
class project forced me to expand my knowledge. Kyle Powers, I hope when you took over
my resilient adder project that you learned from my mistakes and improved upon the simple
ideas of that project.

My first few years of graduate school were replete with classmates who all formed a tight-
knit group of dedicated learners. Garen Der-Khachadourian, thanks for being my project
partner and friend, helping me to feel comfortable in a new state and new school. Ben
Keller, you still astound me with your efficiency; I learned a lot from you while we shared
classes and projects. Pi-Feng Chiu, thanks for pushing me to attend core blast, and for
sharing the learning of CAD tools during the Raven projects with me. Rachel Hochman,
you helped me keep my interest in space alive, and I enjoyed our pre-radio lab Chipotle
runs. Angie Wang, in you I finally found a more perfect perfectionist than myself. Nathan
Narevsky, you’re doing great. And thanks to all the other students in my year, including
Jackie Leverett, Yongjun Li, Amanda Pratt, Bonjern Yang, Ozzy LaCaille, and any others
I’ve forgotten.

Most of my learning came from mentoring by students and postdocs above my year.
Brian Zimmer, you embody the ideal that all students hope to achieve. Thanks for your
patience, teachings, and exemplary attitude. Yunsup Lee, hopefully one day I can keep up
with your typing speed. Jaehwa Kwak, thanks for being the lighthearted one who taught
me that work is not without play. Ruzica Jevtic and Miki Blagojevic, how you both put up
with my inexperience I’ll never know. Martin Cochet, you were the nicest project partner
ever. And to my other instructors, Michael Zimmer, Yue Lu, Lingkai Kong, and those I have
forgotten, it is because of you I’ve learned so much.

Other project and tape-out partners where invaluable in completing my program in a
timely manner. These include John Wright, Jaeduk Han, Amy Whitcombe, Eric Chang,
Zhonkgai Wang, Nandish Mehta, Colin Schmidt, Adam Izraelevitz, Edward Wang, Chick
Markley, Keertana Settaluri, Woorham Bae, Albert Magyar, Alon Amid, Richard Lin, Howie
Mao, and Paul Rigge.

The Berkeley Wireless Research Center provided the tools and support I needed to get
through this program. So thanks to the students, staff, and faculty of the BWRC, espe-
cially James Dunn and Brian Richards. And thanks to various BWRC collaborators, both
inside and outside Berkeley, including Calvin Cheng, Aaron Parsons, Hong Chen, Rick Raf-
fanti, Robert Jarnot, Paul Stek, JPL, STMicroelectronics, Cadence Design Systems, and



x

Northrop Grumman Corporation. My projects were funded in part by the DARPA PER-
FECT project (HR00111320007) and Berkeley’s ASPIRE program, NASA’s Earth Science
Technology Office’s Instrument Incubator Program as part of the Compact, Adaptable Mi-
crowave Limb Sounder project, grant number NNX12AK39G; the DARPA CRAFT program
(HR001116C0052); and the Intel iSTC on Agile Design (ADEPT).

Finally, thanks to my parents, Sandy and Tim, who continue to support me in all I choose
to do.



1

Chapter 1

Introduction

1.1 Motivation

Signal processing system designers trade off algorithmic hardware design metrics like per-
formance, area, and power for development time. The first choice is between off-the-shelf
(CPUs or DSP-based processors), reconfigurable (FPGAs), or custom (ASICs) hardware
[17]. Writing software for existing CPUs saves time and money, but such applications will
never approach the low power, high performance, and small volume of specialized hardware
often needed for embedded signal processing applications. And though FPGAs provide a con-
venient middle ground, high-end signal processing applications require high-end, application-
specific integrated circuits (ASICs) to meet cutting edge specifications. However, designing
custom chips imposes a burden on both the budget and the timeline of a project. Typically
quoted non-recurring engineering (NRE) costs are in the tens of millions of dollars stemming
from the complexity of design, verification, validation, and programming that takes many
engineer-years and prototypes before calling the design finished. Figure 1.1 shows the tradeoff
between development time and power consumed by a particular design from DARPA [1].

Figure 1.1 also shows a rough breakdown of where the development time goes and why
it takes so long to produce custom hardware. First, the design itself consumes develop-
ment time. There is no standard design framework above Verilog RTL that is universally
accepted, so academic researchers and commercial design teams often develop their own in
Python [18], Perl [19], SystemVerilog [20], C++ [21], and Simulink [22]. at different abstrac-
tion levels (RTL, HLS). And though attempts have been made, few frameworks outside of
hardened IP couple RTL design with physical design, so even RTL reuse requires new phys-
ical design development. This is somewhat evident by Intel’s tick-tock methodology [23],
whereby moving to a new technology is equated in time with redesigning and optimizing
the architecture. Second, verification suffers a similar lack of consistency, and it arguably
consumes more work hours, sometimes as high as 70% [24]. In signal processing, a typical
flow connects Verilog designs to MATLAB (or sometimes Python) golden models using Sys-
temVerilog direct programming interface (DPI) function calls to a C program, which runs



CHAPTER 1. INTRODUCTION 2

Figure 1.1: ASICs are much lower power than CPUs but require significantly more develop-
ment time for a particular application [1].

MATLAB library routines [25]. However, this translation complicates the process and can
lead to errors. Third, physical design flows take significant time to both set up and run. Even
minimal design changes necessitate rerunning a full synthesis and place-and-route run, so
much of CAD tool runtime is spent redoing the same optimizations [26]. Finally, fabrication
and testing present time costs that, as bugs are found, require repeated fabrication and test-
ing. Including sufficient design-for-test (DfT) structures and backup measures can reduce
the time to find bugs and yield issues introduced by physical design and fabrication [27].
Entire tools exist solely to estimate the effort, cost, time-to-market, etc. of custom hardware
projects [28].

One effort to tackle the latency of hardware design focuses on agile development, a phrase
borrowed from software. The original agile manifesto came out in 2001 [29]. It promoted four
values, which are copied below:



CHAPTER 1. INTRODUCTION 3

Figure 1.2: A comparison of waterfall and agile software development paradigms shows the
differences in development cycles and project completion timeframes. Waterfall development
uses a top-down approach and frequently takes over a year. Agile development uses a smaller,
iterative approach with sufficient results completed in less than a year.

Table 1.1: Agile software development led to more projects finishing on time, where “finish-
ing” means delivering a product that satisfies the customer [16].

Approach On Time Late Canceled
Waterfall 10% 52% 38%
Agile 76% 20% 4%



CHAPTER 1. INTRODUCTION 4

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

These principles were in contrast to the traditional software development model, termed
waterfall development. Waterfall development took a top-down approach, nearly completing
each step in the flow before moving on to the next. This caused long project cycles, delays
in product release, and sometimes even project cancellations. Agile development recognized
the need for communication and adaptation, and projects following agile principles tended
to finish on time much more frequently than those following the traditional waterfall style
[16]. Figure 1.2 compares waterfall and agile software development styles, and Table 1.1
compares project success rates for each. It’s important to emphasize that not all project
completions are equal. Just because a project is declared finished and on time does not
mean it meets all project goals, perform all the initially desired features, or contain complete
documentation. Rather, features were incrementally added over time, adjusting to changing
customer specifications. When the project deadline hit, a sufficient version was declared
complete. But the agile argument declares this superior to a significantly delayed or canceled
product, as, indeed, delay is expensive [30].

A form of agile development has been deployed in processor system design efforts. Com-
panies have more recently used agile hardware development to varying degrees of success
[31, 32]. This success hinges on adoption and agreement by the design team members on the
details of agile development and how it applies to their work. Software and hardware are
inherently different, as hardware product timeframes are heavily quantized on the order of
about a year, and quick updates are all but impossible. So agile hardware design must still
avoid show-stopping bugs and ensure sufficient verification coverage the first time around.
Academics have attempted to solidify a modified form of the software manifesto into a set
of principles more relevant to hardware development. These agile hardware development
principles include (from [33]):

1. Functional (albeit incomplete) prototypes over fully featured models.

2. Collaborative, flexible teams over rigid silos.

3. Improving tools and generators over improving the instance.

4. Responding to change over following a plan.

Successful use of these principles has yielded complex SoC systems built within a limited
timeframe by small teams of designers [33]. These 11 chips built over 5 years by a total of
about 20 students and staff tested a new dynamic voltage and frequency scaling paradigm and
CMOS silicon photonics designs in multiple technology nodes using and reusing a RISC-V



CHAPTER 1. INTRODUCTION 5

Specification
Design

Implementation
Verification
Prototype
Validation
Tape-out

Time

Traditional Hardware
Design Flow

Implementation 
(Genus and Innovus)

Validation (Incisive)

Verification
(VWB)

Changing Specs, 
Added Features

Iterative, Agile Hardware
Design Flow

Verilog

IP-XACT

C

Trigger
Generator

Improvement

Chisel 
Design 

Generator

+
Improving

the GeneratorSpecification
Design

Implementation
Verification
Prototype
Validation
Tape-out

Specification
Design

Implementation

Figure 1.3: A comparison of traditional, open-loop design flow with our agile, iterative design
flow. Changing specifications and issues during the process trigger generator improvement
work. Design generators are also portable across designs, so these iterative enhancements
persist.

central processor. Some of these team members have since gone on to apply their rapid design
skills to the corporate world [34]. Figure 1.3 shows the traditional waterfall development style
compared to an iterative, agile hardware design process used by the students. It’s clear that
such a flow responds to change more easily, and that solved issues become embedded in the
design generator and propagate to future designs. Moving forward, agile hardware design,
when applied correctly, is an effective tool for rapidly producing RISC-V processor chips.

Agile hardware development was previously applied to general purpose ASICs, but to
date no efforts are known that successfully apply these principles to signal processing ASIC
development. Though tools exist that support rapid development of signal processing ASICs.
For example, Xilinx’s System Generator for DSP [35] offers a graphical design interface,
but it targets FPGA platforms, so results are often optimized for FPGA resources and
not immediately suitable for ASIC implementation. MathWorks offers HDL Coder, which



CHAPTER 1. INTRODUCTION 6

generates RTL from MATLAB and/or Simulink models [36]. But without easy access to gate-
level manipulations of algorithms, a user can easily write suboptimal designs that explode
in size or suffer in hardware performance. Previous work has attempted to map designs
from FPGA design environments to IC-suitable Verilog, which speeds up the design and
verification process at the algorithmic level, but not at the ASIC level [37, 38]. It’s common
practice instead to design for ASICs and map to FPGAs for verification, as this ensures
the hardware is optimized for custom circuits and not targeted to fit in the LUTs and
BRAMs efficient for an FPGA. The DSP designs are typically accelerators tightly coupled
with general-purpose processors [39] or dataflow models mapped directly into hardware [40].
Accelerators are more flexible but less performant and require more programming overhead.

In summary, ASIC signal processors are necessary to achieve the high performance and
low power requirements of modern applications, but their long development time hinders
their progress and ubiquity. A significant percentage of their development time goes into the
design and verification of the architecture, with the remainder consumed by back-end ASIC
flow work. Agile hardware principles, borrowed from a similar successful software approach
and previously applied to general-purpose processors, offer a promising solution to signal
processing SoCs. But such a solution has yet to be viably demonstrated on real systems
running real applications.

1.2 Background

Traditional signal processing ASIC design, shown in Figure 1.4, follows a waterfall devel-
opment model: the algorithm is designed, then this algorithm is mapped to an RTL imple-
mentation, and finally the RTL is synthesized and placed-and-routed to create a chip [2].
MATLAB or Python numerical libraries are used to explore algorithmic considerations, typi-
cally in floating-point precision. The translation to fixed-point introduces quantization errors,
so the algorithm is adjusted to accommodate the added noise. Once a suitable fixed-point
RTL implementation is ready, physical design begins. Issues with constraints like timing,
area, and congestion further necessitate algorithm and RTL modifications. And eventually,
once the chip is ready, the final product looks quite different from the initial concept. Also,
the finished design works well for this application and technology, but porting the design to
a new process or application generally requires starting the process over.

The rest of this section explores these pieces and previous attempts at improving pro-
ductivity in the design of digital signal processing hardware.



CHAPTER 1. INTRODUCTION 7

Algorithm Design 
(MATLAB)

Specs 
met?

Simplified Traditional Digital Signal 
Processing Hardware Design Flow

RTL Design 
(Verilog)

Physical Design 
(ASIC CAD Tools)

Tape-out

Specs 
met?

Specs 
met?

yes

yes

yes

no

no

no

Figure 1.4: Traditional DSP hardware design produces an instance tailored to the specific
application and technology. It is not easily reusable across applications and technologies [2].



CHAPTER 1. INTRODUCTION 8

1.2.1 Signal Processing Models

Specific applications are discussed in Chapter 2, but this section provides an overview of
generic signal processing models. Algorithms are often designed in MATLAB or Python (es-
pecially with the NumPy and SciPy libraries) since they provide both a simple programming
interface and pre-designed library components for signal processing. An algorithm defines
which computational kernels are performed on which data, e.g. performing digital down con-
version (DDC) requires mixing a signal with an LO to down convert it, then applying a
low-pass filter to remove aliases. One algorithmic modeling technique represents these ker-
nels as nodes in a flow graph, with edges representing data moving between kernels. Software
models consider how the computation moves through the data, or how the data move through
the computations. For example, DDC could be executed sequentially, with mixing and fil-
tering performed one after another on each datum, or in parallel, with mixing and filtering
performed simultaneously on a parallel set of data. The software model should be influenced
by the hardware model. A general-purpose processor can handle either sequential or stream
processing, though it will not take advantage of the data locality and consistent kernel se-
quencing of stream processing. Other hardware models specialize in stream processing, and
will perform a DDC much more efficiently. Algorithms are often used as golden models for
correctness verification, software models should efficiently “glue” algorithms and hardware,
and hardware models should take advantage of commonly occurring algorithmic paradigms
to optimally process signals. This section explores computational, software, and hardware
models.

Computational Models

Signal processing computes on large, or sometimes infinite, data sets. However, the control
flow for signal processing is often simple. These realizations permit a modeling approach
that is focused on how data moves through computational kernels, rather than one that
determines which computations to perform on the data. Kahn process networks do this
by representing streams of data as edges in a directed graph, and computation as nodes.
The most common subsets of these data flow graphs are synchronous data flow (SDF) and
asynchronous data flow (ADF) [41].

Figure 1.5 shows an example of a simple SDF system. In synchronous data flow, nodes,
sometimes called actors, transform input data tokens in some way to produce output tokens.
Tokens are typically sets of data. To account for rate mismatches between consumption
and production, FIFO buffers are often employed between actors. The data flow graph is
synchronous because each actor consumes a fixed number of tokens and produces a fixed
number of tokens each time it fires. This feature allows for static scheduling, so compilers
can ensure FIFO depths are minimal and throughput is guaranteed without concerns for
excessive backpressure. In asynchronous data flow, rates of production and consumption are
not fixed, meaning they vary with data or time. Static scheduling is no longer possible, so
runtime scheduling is required. This leads to much more complex control flows.



CHAPTER 1. INTRODUCTION 9

Actor
2

Actor 
3

Actor
1

2 1

1

1

2

3

Figure 1.5: Simple synchronous data flow model showing actors as nodes connected through
FIFOs as edges. Production and consumption rates are fixed and shown on the figure. Fixed
rates support static scheduling.

More formally, a Kahn process network (KPN) is an example of a distributed or concur-
rent computational model. Operations happen in parallel as data moves through them. But a
KPN cannot express complex control flow succinctly. Sequential models are one alternative,
though they are less suited for signal processing. In sequential models, operations typically
move through the data, where data-dependent control flow is easier to handle. One operation
happens at a time, and data may or may not be accessed randomly. Examples of sequential
models include finite state machines and Turing machines. Computational models are useful
for describing algorithms in meaningful ways, but translating these models into something
capable of being computed by a modern computer is nontrivial.

Hardware Models

The choice of hardware influences which software model is needed, thus we begin by explor-
ing how to map from computational models to gates. A custom hardware mapping requires
an extensive, low-level design effort but limits the amount of software needed. Reusing an ex-
isting, flexible hardware solution is also possible but requires a more complex software layer.
Flynn’s taxonomy condenses hardware models into dimensions of instruction concurrency
and data concurrency. Extra dimensions, such as the memory architecture (centralized or
distributed) and thread support add richness to the original taxonomy, allowing it to usefully
model a wider array of architectures. Figure 1.6 shows the set of architectures in Flynn’s tax-
onomy. Single instruction single data (SISD) performs a single instruction on a single piece



CHAPTER 1. INTRODUCTION 10

Instruction Pool

D
at

a 
Po

ol

PE

SISD Instruction Pool

D
at

a 
Po

ol

PE

MISD

PE

Instruction Pool

D
at

a 
Po

ol

SIMD

PE

PE

Instruction Pool

D
at

a 
Po

ol

MIMD

PE

PE

PE

PE

Figure 1.6: Flynn’s taxonomy of computer architectures.



CHAPTER 1. INTRODUCTION 11

of data in every time step. Typical minimal processor cores are SISD architectures. Multiple
instruction single data (MISD) performs a multiple instructions on a single piece of data in
every time step. While rarely used, MISD supports applications requiring fault tolerance.
Single instruction multiple data (SIMD) performs a single instructions on multiple data
pieces in every time step. Examples of SIMD processors are vector machines and GPUs.
Multiple instruction multiple data (MIMD) performs a different instruction on each data
piece for each processing element (PE) in every time step. MIMD processors offer the most
performance for targeted applications (modern supercomputers use MIMD architectures).

Centralized memory-based hardware operates on data stored in random access memory.
Sequential computational models and sequential or vector software models map closely to
memory-based hardware. Data are often stored in various locations in memory, so random
access is needed to gather data before performing an operation on it. Thus data movement
and indexing become significant computational overheads in memory-based hardware de-
signs. However, complex control flow is feasible, so algorithms with heavy data dependence
require memory-based hardware to execute. Signal processing in memory-based hardware is
done either through ALUs performing multiply accumulate (MAC) operations, LUT-based
arithmetic, or any other processing element [42].

Some general-purpose processors offload specific computational kernels to accelerators
designed to quickly compute those kernels. A SIMD or vector co-processor is an example
of an accelerator. Previous work showed that accelerating thirteen motifs would sufficiently
cover the space of computational needs [39]. This approach is much more flexible, allowing a
processor to compute a wider array of applications efficiently. In reality, the only accelerators
modern processors contain are some kind of parallel computational accelerator (such as a
GPGPU) and/or very specialized accelerators (such as an LDPC decoder or MPEG decoder).
This is done because programming applications to target generalized accelerators requires
expert knowledge, and tuning that application for a specific accelerator instance is difficult
to automate [43]. Also, many applications are memory or IO bound instead of compute
bound, so building memory access accelerators instead of compute accelerators may be more
productive [39].

Data-heavy workloads and high-throughput requirements push architectures further to-
ward specialization. Stream processors provide flexible signal processing kernel capabilities
while optimizing memory for streaming data [3], as seen in Figure 1.7. At a high level,
stream processors place ALU clusters or vector operation accelerations in series (a type of
MIMD architecture), allowing data to flow from one to the next without the overhead of
memory reads and writes in between. Such an architecture performs signal processing al-
gorithms efficiently, but maximizing throughput and minimizing power requires a custom
ASIC. Many application-specific processors exist to support common applications, but they
lack flexibility.

Signal flow graphs (SFGs) are useful representations for how data moves through compu-
tational kernels. While these graphs map more directly to custom hardware, they can also be
translated to SIMD or accelerator-based architectures. In this case, the same kernel (node on
the graph) is computed in parallel on different data sets. Languages like Cuda and OpenCL



CHAPTER 1. INTRODUCTION 12

Figure 1.7: Stanford’s Imagine stream processor. Bandwidths assume a core clock of 180
MHz [3].

support mapping of C code to SIMD architectures. But performance becomes limited when
control flows diverge, such as when half the parallel graphs do not need to compute the
current kernel. Whole Function Vectorization (WFV) is one automated approach to solving
this through an automated compiler [44].

Mapping from a signal flow graph computational model to custom hardware is a multi-
step process with iterative development and feedback, as illustrated in Figure 1.8. General
purpose processors already contain reasonable hardware architectures, so this mapping as-
sumes custom hardware is desired. Also, SFGs typically assume distributed memory and
embed concurrency into the graph structure, so optimizing the hardware may require ad-
justing the SFG. First, the precision requirements of an SFG must be explored to determine
appropriate data types and word lengths. Next, the SFG is mapped to a hardware archi-
tecture, ideally with reusable blocks. This step involves converting graph nodes into HDL
models and graph edges into HDL interconnect. It requires verification that the hardware
matches the algorithm. It also requires the exploration of timing, with concurrency within a
node affecting algorithmic latency and throughput. Finally, the hardware model is ready for
further mapping to an FPGA or ASIC. The rest of this section explores alternate hardware
implementations which require a software layer to convert between the computational model
SFG to the hardware model.



CHAPTER 1. INTRODUCTION 13

Signal 
Flow 

Graph

Circuit 
Layout

Algorithmic study
Software simulations to 
determine wordlength 

requirements

Architecture synthesis
Processor latency, 

truncation, wordlengths and 
internal word growth

Architecture 
retiming and 
optimization

Realisable 
circuit 

architecture

HDL 
synthesizable 

code

Synthesis into 
EDIF netlists

Floorplan place and route

Simulations of HDL 
model to confirm 

accuracy of design

Reiterate to achieve
efficient area/time

Figure 1.8: VLSI circuit design flow [4].



CHAPTER 1. INTRODUCTION 14

Software Models

Software models for signal processing algorithms typically fall into a few modes of concur-
rency, namely sequential execution, vector processing, and stream processing. Sequential
execution performs one computation at a time, stepping through data and kernels one after
another. Listing 1.1 shows pseudocode for sequential execution of an operation that adds
two 100-element arrays, then squares the result. Ordering the operations as data-first or
kernel-first takes the same amount of time because each operation is performed sequentially.
However, the order may affect the maximum memory requirement.

Listing 1.1: Sequential software model

for (int i = 0; i < 100; i++)

sum[i] = a[i] + b[i]

sqr[i] = sum[i] * sum[i]

Parallel processing is usually a single-instruction multiple-data (SIMD) paradigm which
performs the same operation in parallel on multiple data. A SIMD version of the previous
code might look like Listing 1.2, where a 25-element vector operation is assumed available.
Typical SIMD architectures fix the vector length and require vector-scalar operations to be
expanded into vector-vector operations. Typical vector architectures provide variable vector
lengths per iteration and support both vector-vector and vector-scalar operations [45].

Listing 1.2: Vectorized software model

for (int i = 0; i < 4; i++)

start = i*25

end = (i+1)*25

vector_add(sum[start:end], a[start:end], b[start:end])

vector_mul(sqr[start:end], sum[start:end], sum[start:end])

Finally, stream processing streams data through kernels, where allocation, synchroniza-
tion, and communication between processing units is not handled by a CPU explicitly. This
is equivalent to having multiple accelerators that support chaining. Processing units are ini-
tialized and data are gathered in the first step. Execution involves invoking kernels onto
data sets. And at the end, results are returned, typically by “scattering” back to memory
locations. Listing 1.3 shows pseudocode for a stream processing algorithm.

Listing 1.3: Streaming software model

kernel0 = kernel.init(add)

kernel1 = kernel.init(mul)

stream0 = gather(a)

stream1 = gather(b)

sum = kernel0.invoke(stream0, stream1)

sqr = kernel1.invoke(sum, sum)



CHAPTER 1. INTRODUCTION 15

1.2.2 RTL Design Frameworks

Translating algorithms and hardware models into synthesizable designs requires choosing
an implementation language and paradigm. This section discusses the large number of pro-
gramming and modeling languages available, and it explores the pros and cons of each. The
discussed projects and languages accelerate the writing of synthesizable hardware by map-
ping higher-level constructs into lower-level RTL. Some of the ideas compiled here were first
presented in [46].

High-level synthesis tools abstract away low-level implementation details from the algo-
rithm to hardware translation process. HLS code is written in extensions to C, MATLAB,
and SystemVerilog (see SystemC, ANSI-C/C++, Bluespec SystemVerilog [20]). For exam-
ple, Xilinx Vivado allows designers to use C, C++, or SystemC to describe algorithms that
are then compiled into RTL [47]. Bluespec uses guarded atomic actions, where actors fire
atomically once some guard condition is met, which may or may not be the same as the
SDF guard (input tokens are ready and output space is available). HLS is especially useful
for designing blocks that require complex memory access scheduling, deep pipelining, and
more generally, sequential logic. However, many DSP datapaths exhibit high degrees of par-
allelism that are best described structurally, necessitating that the SystemC code be carefully
structured. Functionally correct algorithms often produce inefficient or even unsynthesizable
code. Finally, hardware generation from recursive functions is generally not allowed, except
through template metaprogramming.

MathWorks Simulink can save about 30% in design time [48] when systems are built from
pre-existing IP by allowing users to pass intent to early stages of design and verification in
a model-based design framework. It supports systems validation/verification with floating-
point simulations and uses application-representative test vectors to optimize fixed-point
bitwidths. The Simulink environment supports the ”Chip-in-a-Day” methodology [49] but
only accelerates a single instance’s design for a single hardware platform, rather than acceler-
ating generator design targeting multiple platforms. It lacks transparent, programmatic and
easily extensible abstractions, requiring significant manual work to support multiple targets
(FPGA/ASIC) and multiple data types. Unlike Simulink, HDL coder is platform-agnostic,
meaning pre-existing IP and library designs map to a variety of FPGAs and custom ASIC
designs. However, without difficult low-level manipulations, signal processing RTL is often
insufficiently optimized [46].

High-level models and abstractions of data processing can simplify ASIC design efforts,
but they present a large disconnect between the design and implementation of an algorithm.
Generators support reuse of ideas and designer methodologies rather than IP instances,
which often fail to meet the specific requirements of a new system. They also bridge the gap
between algorithm design and RTL implementation better. Generator-based methodologies
include simple constructs like genvar and parameters in Verilog, though this is insufficient to
capture high-level designer intent. Perl and python scripts wrapped around Verilog (or even
inside SystemVerilog, such as Stanford’s Genesis2 [19]) are a cumbersome albeit common
approach to extending parameterization and generation of RTL. Because Genesis2 relies on



CHAPTER 1. INTRODUCTION 16

two decoupled languages, there is a higher likelihood of generating difficult-to-debug syntax
errors. Spiral is a generator specifically targeting DSP hardware [50]. Although powerful,
Spiral is designed for static function generation and is not well suited for dynamic or re-
configurable architectures. New domain-specific languages (DSLs), such as Berkeley’s Chisel
[51] and Stanford’s Magma [52], enable powerful processor generators but come with a steep
learning curve [15]. But even IP generators are only as (re)useful as their interoperabil-
ity. Efforts to standardize interfaces and IP metadata have produced AMBA protocols like
AXI, APB, and AHB, and design XML files like IP-XACT [53, 54]. Existing commercial
tools support automated verification of designs using these standards through the universal
verification methodology (UVM).

Hardware construction/generation languages like Bluespec (closed-source) and Chisel
(open-source) enable systems modeling, generator construction, and test environment cre-
ation all within a single, but powerful, underlying language with both functional program-
ming and object-oriented constructs [20, 51]. They support (1) custom-defined types for
high-level number abstractions, (2) stronger type-checking to catch errors at compile-time,
(3) type polymorphism and operator overloading for hardware template parameterization,
(4) recursive functions for hardware generation, and (5) functional constructs like map and
reduce that help to concisely express highly structured data paths (more so than SystemC).
Bluespec and Chisel are both architecturally transparent, exposing fine-grain implementa-
tion details for optimization that are typically hidden by HLS tools and allowing for more
optimization opportunities.

1.2.3 System Design

Any digital design must interface with the real world eventually. These interfaces are typ-
ically analog designs, with common examples being PLLs for clock generation; high-speed
serial links for communication; analog-to-digital converters (ADCs) and digital-to-analog
converters (DACs) for data domain conversion; low-dropout (LDO), switched capacitor, and
boost/buck regulators for power supply generation; and antennas, amplifiers, and mixers for
radio signal processing. Most analog designs are hand created and customized heavily for
each application, but recent work in producing analog generators shows that alternative, au-
tomated design approaches are possible [55]. The digital generators presented in this thesis
should be considered in a system context which includes analog generators, as exemplified
in some later chapters.

Building and verifying digital integrated circuits is a difficult task, but no design is
complete without test structures to prove functionality post fabrication. Good DfT requires

1. large coverage as quickly as possible

2. limited intrusion into the design

3. limited area, power, and performance overhead



CHAPTER 1. INTRODUCTION 17

4. useful feedback when tests fail

Typical test methods are structural, meaning they only care about the logic gates imple-
mented and not the function of the circuit. The most common approach is through scan
chains, which combine all or a subset of registers in the design into long chains when scan is
enabled. Data may be shifted in and out, or propagated through combinational logic through
toggling of the scan clock, resulting in extensive controllability and observability with lim-
ited overhead. Automatic test pattern generation (ATPG) seeks to create good input and
output test vectors, where good may mean high coverage, fast runtime, localized error iso-
lation, or a combination of these. This largely solves verification of the instance, where the
fabricated design is tested for equivalence to the placed-and-routed model (which, hopefully,
was verified to match the RTL logic).

Validation is the process of proving that the design meets the needs of the customer.
Functional tests should be solved through validation routines, which depend on the design’s
intent. Providing functional test points in the system is one solution. These may be pattern
generators to drive known data into the logic, or logic analyzers to monitor and snapshot data
at key design boundaries. Having direct outside access to these test points is ideal, as any
intervening logic could also be a source of error. Thus many designs implement debug modes
and ports. On-chip validation support is necessary because involved validation routines often
take too long to simulate.

1.3 Thesis Outline

This thesis solves the issue of slow signal processing ASIC design by creating a set of tools
and methodologies that support agile development principles. It then applies those tools in
the creation of several signal processing ASICs.

Chapter 2 explores signal processing applications and models. Before launching into a
discussion on ASIC generators and creating a solution to designing custom hardware for dig-
ital signal processing, it’s important to enumerate common applications to ensure a suitable
landscape is covered. This chapter researches spectrometers, radio baseband processors, and
radar transceivers.

Chapter 3 introduces a hardware model for signal processing accelerators. The model
combines ideas of synchronous dataflow and accelerator-based processors to produce a hy-
brid SoC with specialized subcomponents. Standardized interfaces simplify composition and
verification, and design-for-test structures support rapid development and debugging.

Chapter 4 shows a new generator that couples the algorithm and hardware models into
a usable framework. Using Chisel, Scala, and commercial CAD tools, the generator boasts
an array of automated checks and features such as address mapping, datatype checking,
and DfT insertion. Included in this chapter are some open-source signal processing actor
generators, which are used in subsequent chapters to implement real designs.

Chapters 5 and 6 demonstrate the generator in action with examples of real ASIC designs
created from it. The first example is a spectrometer as an exploration of several of the



CHAPTER 1. INTRODUCTION 18

processing element generators. The second example is a radar receiver. Though, given the
system’s flexibility, it can act as a general-purpose signal analysis SoC.

Chapter 7 concludes this thesis by summarizing the key contributions and mapping out
future areas of research to explore.



19

Chapter 2

Signal Processing Applications and
Models

One of key contributions of this thesis is a set of generators that produce SoCs targeting
signal processing. These types of generators can support applications in a variety of domains.
In particular, we target applications with strict performance goals that require specialized
signal processing hardware. Many of these signal processing frameworks share a common
set of computational kernels, but require a different parameterization of these kernels for
each application. In this chapter, we present three different domains with signal processing
applications that can benefit from parameterized custom hardware generators.

2.1 Astronomical and Atmospheric Spectroscopy

Space-based measurements are necessary for observations outside of atmospheric windows,
since the Earth’s atmosphere blocks certain frequency bands of light, as seen in figure 2.1. SoC
spectrometer implementations provide a low-power, tightly-integrated, rad-hard solution to
space-based, balloon-borne applications.

2.1.1 Algorithms and Instruments

Astronomical spectroscopy measures existing emissions, so no transmitters or actuators are
needed. The simplest spectroscopy just requires taking the fast Fourier transform (FFT) of
measured data, but often more processing is needed. For example, antennas operating in the
THz bands look for molecular emissions, then mix the results down to baseband. Because of
the high-frequency nature of these signals, this mixing is done with discrete analog compo-
nents. But baseband processing can be done digitally by a CPU, FPGA, or ASIC. Measured
signals contain a very low signal-to-noise ratio (SNR), so, to compensate, spectrometers ac-
cumulate spectral measurements for many seconds. To avoid gaps in measurements and the
latency of sweeping frequency bands, a wide-bandwidth system is preferred. And appropriate



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 20

Figure 2.1: The Sun emits blackbody radiation, which is intermittently absorbed by particles
in the corona and in Earth’s atmosphere [5].

spectral resolution of wide bandwidth signals requires a large FFT. Also, spectral leakage is
a sampling phenomenon where power in one spectral bin leaks into neighboring bins. A rect-
angular spectral window can significantly reduce this leakage, but the windowing is typically
done with a sinc function in the time domain using polyphase filters (parallel finite impulse
response, or FIR, filters) [56]. Finally, mixing high-frequency signals down to baseband folds
the upper and lower sidebands on either side of the center frequency on top of each other. To
prevent this, sideband separating systems measure both I and Q quadrature signals, which
may be treated mathematically as one complex-valued signal. These signals are processed
either together as one complex signal or separately as two real-valued signals with a merge
occurring in post-processing.

Instruments targeting terahertz emission spectra measurements must be low power and
low weight since they typically fly on weather balloons or satellites. Thus, for digital pro-
cessing, FPGA and ASIC implementations are preferred, with cost and development time
preventing all designs from using ASICs. Figure 2.2 shows an example full system digram
of a new satellite terahertz receiver, and Figure 2.3 gives more detail on the digital spec-
trometer design. The polyphase filter bank (PFB) combines a polyphase filter with an FFT.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 21

Figure 2.2: A full satellite terahertz receiver design for the compact adaptable microwave
limb sounder (CAMLS) project [6].

The nodes labeled C1-C4 are complex multiplies with calibrated coefficients, typically in a
lookup table (LUT), used to fix mismatch in the analog front-end components. Also needed
are power and integration elements. Except for the calibration coefficients, the rest of the
digital processing components have essentially no runtime programming requirements, so no
live control is needed. This datapath is expected to run continuously, and latency is not
constrained because the instrument is only measuring. Thus long pipeline depths can be
used to improve throughput as needed.

Figure 2.3: The receiver block diagram for the CAMLS instrument, a modification of a
previous design [7]. Analog and digital blocks amenable to ASIC implementation are in the
dotted box.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 22

2.2 Radio Baseband Processing

Unlike astronomical spectroscopy, radio baseband processing relies on known signals gener-
ated relatively locally. Latency is a much larger concern, as communication is typically both
ways and the user’s experience is on the line. Digital and analog encoding is used to improve
signal-to-noise ratio and increase data rates amidst noise from the environment and interfer-
ing signals. Since both the transmitted and received signal are controlled by the standard,
forward error correction (FEC) and symbol framing/packetization help improve communi-
cation performance. Heterodyne signal processing with multiple carrier frequencies is done
by modulator demodulators (MODEMs), as described here. Given the variety of standards,
some systems use software-defined radio (SDR) to provide a software-reconfigurable interface
to processing radio signals.

To simplify discussion, this thesis investigates two of the most common radio communi-
cation standards in use today, WiFi and 4G LTE. WiFi here is discussed as IEEE standard
802.11ac and is commonly used in local area wireless networks. 4G LTE (long-term evolution)
is a standard by the 3GPP (3rd Generation Partnership Project), specifically Releases 8 and
9, defining wireless cellular communication networks. We ignore LTE Advanced, a more per-
formant extension to traditional LTE that supports higher bandwidths using multi-carrier
access. Table 2.1 compares the properties of WiFi and LTE standards. Both use versions
of orthogonal frequency-division multiplexing (OFDM) (such as multiple access, OFDMA)
modems. OFDM divides the space of frequencies into sub-bands or channels, with each
user getting one channel. OFDMA assigns multiple subsets of channels to users, providing
frequency diversity to improve SNR.

Table 2.1: A comparison of properties in the 802.11ac WiFi and LTE standards.

Parameter 802.11ac LTE

Bandwidths 20, 40, 80, 80+80 MHz 1.4, 3, 5, 10, 15, 20 MHz

Sample Rates 20, 40, 80 MHz 1.92, 3.84, ..., 30.72 MHz

Useful Symbol Length 3.2 us 67 us

FFT Sizes 64, 128, 256 2n3m5k

Cyclic Prefix 0.8 or 0.4 us 5.21 or 16.67 us

Modulation
BPSK, QPSK, 16-QAM, 64-
QAM, 256-QAM

QPSK, 16-QAM, 64-QAM

Error Correction Convolutional/LDPC
Convolutional/Turbo/Hybrid
ARQ

Synchronization,
Channel Estimation

Preamble, Pilots
Embedded Pilots, Control
Channels



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 23

FEC Mod IFFT CP Filter DAC

FFT Freq. 
Correct

Synch, 
AGC

Packet 
Detect Filter ADC

TX

RX, 
FilterDemodDecode

Noisy 
Channel

Transmitter

Receiver
Figure 2.4: A simplified block diagram of a typical OFDM modem.

2.2.1 An OFDM Modem

Figure 2.4 shows a generic datapath for an OFDM modem, including both transmitter and
receiver architectures. A modem is typically divided into layers, with the media access control
(MAC) layer defining how the data are packetized, and the physical (PHY) layer defining
how the bits are FEC encoded and transmitted/received. The blocks in Figure 2.4 are PHY
layer operations. Older systems separated the two layers, making different versions modularly
composable as needed. Modern systems combine the two layers into a single ASIC or SoC. As
seen, the transmitter path includes significant digital signal processing before conversion to
analog and transmission. The receiver filters the received data, then performs the opposite of
the transmit processing. The rest of this section goes over each processing step mentioned in
Figure 2.4 except the IFFT and FFT, which simply convert between the time and frequency
domains.

2.2.2 Forward Error Correction

Electronic and environmental noise introduce errors in analog signals, limiting the theoretical
capacity of a noisy channel to pass information. Forward error correction adds redundancy to
a data stream so that receivers can detect and correct errors introduced by a noisy channel.
Typically, encoding is much simpler to implement in hardware than decoding. Encoding is
done on raw bits, while decoding uses soft estimates, which require more bits. This section
discusses Turbo and LDPC codes, which are two of the most common capacity-approaching
codes and are used in WiFi and LTE.

Turbo codes are a variation on convolutional codes which perform a finite convolution
of the input data sequence with itself in a sliding fashion [57]. In the 4G standard, parallel
convolutions of the input and scrambled input produce an output sequence with code rate



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 24

(a) An example encoder for an LTE turbo code [57]

(b) Turbo decoder with SISO units. Xi and X ′i are the systematic bits in de-interleaved and inter-
leaved order, respectively. Z1 and Z2 are the encoded bits, and their primed counterparts are in
interleaved order. Each SISO block is considered one half-iteration of the decoding algorithm.

Figure 2.5: LTE turbo encoding and decoding block diagrams.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 25

(a) One parity check matrix for 802.11ac code. The block length is 648 bits, rate is 1/2, and
sub-block size is 27 bits. A non-blank entry represents a cyclically shifted identity matrix.

(b) Factor graph representation of a simple linear block code, with circles representing variable
nodes and squares representing check nodes [58].

Figure 2.6: LDPC parity check matrix and message-passing decoder diagram.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 26

1/3. Figure 2.5 shows an example encoder with 8-state convolutions. The idea is that each
state (set of three outputs) can only map to a limited set of next states, and sequencing
these state transitions (e.g. in a trellis diagram) helps predict correct states amidst errors.
Decoding takes soft input estimates and produces soft output estimates using an algorithm
that assigns probabilities to state sequences. The decoder looks similar to the encoder, with
the same interleaver, though the soft-input soft-output (SISO) processors perform the BCJR
algorithm instead of convolution. Details of the BCJR algorithm are omitted here, but suffice
it to say it can be implemented in hardware with reasonable overhead. A decoder diagram
is seen in Figure 2.5.

Low-density parity check (LDPC) codes map long blocks of data to redundant code words
by multiplying with a low-density parity check matrix, similar to a Hamming code [58]. Most
of the entries in the parity check matrix are zero, and non-zero entries represent cyclically
shifted identity matrices. These two optimizations simplify hardware implementations. En-
coding requires multiplying input words with the parity matrix, an example of which is in
Figure 2.6. Decoding involves iteratively passing soft information between variable and check
nodes (encoded and decoded words) to guess the decoded word until a solution is reached.
Connections between check and variable nodes exist if the parity matrix is nonzero between
them, as seen in Figure 2.6. An estimate of the decoding confidence allow the algorithm
to terminate early if few to no errors are present. Thus decoding takes an indeterminate
number of cycles. Similar to turbo decoding, the operations performed at the check and vari-
able nodes (an offset min-sum algorithm) can be implemented in hardware with reasonable
overhead.

2.2.3 Digital Modulation

Digital modulation techniques encode bits into the phase and/or amplitude of the transmit-
ted signal. Different modulation schemes trade off data rate for signal robustness. Phase-shift
and amplitude-shift keying (PSK and ASK) are common in WiFi and LTE, while frequency-
shift keying (FSK) is only used in low-frequency communication channels. Quadrature am-
plitude modulation (QAM), despite the name, usually incorporates both PSK and ASK.

BPSK encoding simply modulates a sine wave with plus and minus one. Encoding of an N-
QAM signal above N = 2 requires alternately splitting digital bits into I and Q components,
then performing amplitude modulation on each one to achieve a constellation of values.
Later, these values are multiplied by in phase and quadrature phase signals, then added
together. Sometimes pulse shaping is included to smooth out the results. Figure 2.7a shows
a block diagram of an encoder, which outputs a constellation like that shown in Figure 2.7b.
Decoding works much in the opposite way as encoding. Incoming data are digitized, split
into I and Q components, multiplied by 90o-offset sinusoids, then matched filtered. Matched
filtering involves convolving the input with an ideal symbol pulse (i.e. multiplying by an
unscaled, time-reversed signal). The results are thresholded and interleaved to form the
received data. OFDM



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 27

Q Q' I I'Bits

2-to-4
Level

Converter

2-to-4
Level

Converter

IFFT

(a) Example of a digital 16-QAM modulation block diagram scheme.

Q

I

0000

0001

0011

0010

0100

0101

0111

0110

1100

1101

1111

1110

1000

1001

1011

1010

(b) A 16-QAM modulation scheme produces a constellation diagram like the one shown here.

Figure 2.7: LTE turbo encoding and decoding block diagrams.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 28

2.2.4 Other Processing Blocks

The remaining transmitter processing blocks perform filtering and provide a cyclic prefix,
which is the end of a symbol inserted at the beginning. This allows the receiver to perform
circular convolution on the received signal, which is computationally easier, but requires it
to discard the cyclic prefix. The remaining receiver processing blocks perform filtering and
correction for any non-idealities in the signal such as carrier frequency offset (CFO) and
frequency, phase, and gain errors. These errors arise from channel imperfections or, in the
case of CFO, local oscillator mismatch.

Not shown is a sensing receiver datapath, in which input data are spectrally analyzed
without any demodulating or decoding. This allows cognitive radio and spectrum sensing
applications to monitor the spectral state of the environment and act when channels become
available. A sensing datapath contains just filters, a Fourier transform, and often a received
signal strength indicator (RSSI).

2.3 Radar Transceivers

The third application explored here is radar transceivers. Radar is the process of emitting
and detecting electromagnetic waves, measuring how the wave is transformed by an object
to learn properties of that object. Typical applications include the detection and locating of
objects and measuring the motion of moving objects. Ground-based radar finds airplanes,
missiles, rain, and other airborne objects of interest. Radar is also added to manned and
unmanned aerial vehicles to detect other airborne or grounded objects.

Early radar instruments used simple pulsed signals, measuring time-of-flight to measure
distance. Modern radar uses modulated pulses or continuous wave signals between the ultra-
high frequency (UHF) and millimeter wave bands, or 0.3 to 100 GHz [59]. Linear frequency
modulated (LFM) pulses, also known as chirps, and continuous-wave frequency-modulated
(CWFM) signals are the most common in use today. Chirps reduce the ambiguity of measured
distances, and CWFM allows finer time resolutions as the transmitter and receiver can both
operate at the same time. Signals vary in duration, magnitude, and frequency depending on
the desired measurement, and beamforming is used to improve angular resolution.

A typical radar digital receiver is seen in Figure 2.9. Digital down conversion requires
mixing the received signal with a complex sinusoid to reduce the frequency and data rate
of later processing stages. It also includes a low-pass filter for removing the extra higher-
frequency tone generated during mixing. Pulse compression convolves the received data with
a time-reversed version of the transmitted pulse. This calculation is performed either in
the time domain using a finite impulse response (FIR) filter or, more commonly, in the
frequency domain by simple multiplication. Frequency-domain pulse compression requires a
forward FFT first, and an inverse FFT after the pulse compression. Doppler compensation,
sometimes called range cell migration correction (RCMC), shifts frequencies bin-by-bin to
account for Doppler shift. Coherent integration is an accumulator that sums the complex



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 29

Figure 2.8: A radar system transmits electromagnetic pulses and measures return time to
detect objects and determine their distances [8].

Figure 2.9: Typical radar receiver block diagram, here showing multiple receive channels with
each one processed similarly [9]. Computation after coherent integration is slow enough to
be done in software.

frequency-domain results from multiple received signals. Since this reduces the data rate,
further computation is typically done with software.



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 30

2.4 A Common Signal Processing Algorithm Model

The applications mentioned in this chapter represent a range use cases and requirements.
Some require transmitters while others do not. Some prioritize latency, while other prioritize
throughput. Each process data in different ways, but similarities in computational meth-
ods exist. For example, all three applications convert the time-domain data into frequency-
domain data, most often done with an FFT. Also, data tend to flow in one direction. Elements
that need sequences or packets of data can buffer them up internally, but rarely does infor-
mation from some downstream processing affect upstream processing in real time. These
realizations suggest we can design a cohesive model that encompasses many common signal
processing algorithms.

We propose a model that is reminiscent of synchronous dataflow [41]. While data rates
may be data dependent, such as FEC decoders terminating early when SNR is high but taking
longer when SNR is low, data flow is static. Flow proceeds along well defined paths, and real
time feedback is not allowed across processing elements. This simplifies control, and data
rate analysis does not have to contend with loops. Figure 2.10 shows an example datapath for
this model, where PE stands for processing element. Each processing element performs some
computation, such as filtering of the data, converting the data to the frequency domain,
or monitoring. Feedback within a PE is possible, like with FEC encoding and decoding
algorithms. Communication is gated by handshaking, and queues can perform data rate
conversions between blocks talking at different rates. Data path splitting and merging is
allowed. Interface blocks (INT) bridge communication between the signal processing path
and other circuits. These might be converters, such as analog-to-digital (ADC) or digital-to-
analog (DAC), or they could be a memory.

Applying the model to two of the previously mentioned applications produces the results
also shown in Figure 2.10. Many of the details are abstracted, and will be discussed in later
chapters. The point here is to imply that these algorithms have a commonality that can be
generalized into one model. But not all signal processing fits this model. Neural networks
process signals, like audio in 1D or pictures and videos in 2D. However, their memory and
computational footprints are large enough to require a different style of processing. They
fall into a called memory-based processors, which, as opposed to stream-based processors,
operate on values read from and written back to a central memory [60].



CHAPTER 2. SIGNAL PROCESSING APPLICATIONS AND MODELS 31

PEINT PE

PE

PE

PE

PE INT...

(a) A common signal processing algorithm example model.

Polyphase
FilterADC FFT

Polyphase
FilterADC FFT

Calib

Power

Power Accumulator

Accumulator Buffer

Buffer

(b) A sideband separating spectrometer targeting atmospheric measurements in the style of the
common model.

FECMem Modulate DACIFFT CP Filter

Transmit

Receive Acquire

ADC Filter Pkt 
Det. Sync.AGC FFT Demod Decode Mem

ADC Filter FFT RSSI

Receive Sense

(c) The radio transmit processor on top, and multiple receivers on bottom. One monitors and
detects the presence of signals, and the other actual decodes received data into messages.

Figure 2.10: Some examples of a common signal processing algorithm model, with a generic
one on top and two specific applications below.



32

Chapter 3

Digital Signal Processing SoC Model

Designing ASICs that perform the applications mentioned in the last chapter can take sub-
stantial effort and time. But the common model presented in the previous chapter lends itself
to hardware generators. Before diving into generators, translating a generic signal process-
ing algorithm model into something amenable to hardware is necessary. The first section in
this chapter explores commercial and published digital signal processors to illuminate key
design choices and motivate the new model. The rest of the chapter presents an SoC model
for a dedicated signal processor, motivated by balancing support for many applications and
having a simple, usable model.

3.1 Existing Models

3.1.1 Centralized Digital Signal Processors

Texas Instruments produces a line of digital signal processors called TMS320. Looking specifi-
cally at the C5545 and C6671, it’s clear they are trying to cater to a wide set of applications.
The C5545 contains a fixed-point CPU with custom instructions and a deep pipeline to
support DSP [61]. A computation stage performs multiply accumulate (MAC) operations,
which are common in signal processing applications. An independent FFT hardware accel-
erator supports 8-1024 point real- and complex-valued FFTs, but only in powers of 2 [10].
On-chip ROM boots the device, and the rest of the chip consists of periphery communication,
a 10-bit SAR ADC, USB 2.0, clocking, and power management. Four DMAs move data into,
out of, and around the chip memory space. Figure 3.1 shows a block diagram of the C5545
chip architecture. The C6671 CPU contains floating point support, and multicore versions
are available. Internal and external memory controllers move data within and outside the
core. This SoC targets networking applications with its packet and security accelerators [62].
Finally, it contains numerous periphery communication devices, including ethernet, and sup-
port for external DDR3 memory. Programming the TMS320 processors is done through the
TI library-based toolchain in C, C++, and/or assembly.



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 33

Figure 3.1: The Texas Instruments TMS320C5545 DSP SoC block diagram [10].

Ceva offers DSPs as well. Their XC5 core targeting software-defined radio (SDR) enhances
a traditional CPU with common features like VLIW, vector processing units, a custom ISA,
multiple DMAs, and a power scaling unit [63]. Communication is handled through AXI
and APB interfaces, both AMBA specifications. There are no special function accelerators,
which would be nice but are not required for SDR. Another processor, the Teaklite-4 SoC,



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 34

Figure 3.2: The Ceva Teaklite-4 architecture, showing the physically separate program and
data memories (Harvard architecture) [11].

contains an always-on audio processor for applications like Google Home and Amazon Echo
[11]. It uses a Harvard SIMD architecture. The Harvard architecture physically separates
instruction and data storage and communication, as seen in Figure 3.2, allowing for a number
of benefits. These benefits include simultaneous access of instructions and data, as is often
done in microcontrollers, and separate word lengths between them. But again, there are no
special function accelerators, just software IP targeting applications like voice processing and
bluetooth support.

3.1.2 Distributed Digital Signal Processors

Manycore DSP processors typically feature small, custom RISC-like CPUs in a mesh network.
With distributed processing, mapping and scheduling a program onto the SoC becomes
difficult, as poor scheduling can lead to underutilized resources or contention and deadlock
in the data flow. Despite the programming difficulty, attempts have been made. The RC64
architecture features 64 VLIW SIMD cores with a shared memory space and separate radio



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 35

Figure 3.3: The Kalray MPPA-256 Bostan Processor Architecture, showing hierarchical
manycore clustering [12].

baseband processing accelerators, such as FEC [64]. A separate scheduler and DMAs provide
control and data movement, and high-speed links provide fast off-chip communication. The
Kalray Massively Parallel Processing Array (MPPA) hierarchically groups VLIW cores into
16 clusters of 16 cores each [12]. Each core has a FPU and crypto co-processor, and each
cluster shares a 2 MB memory. A system core provides control and scheduling to each
cluster, and a DMA and routers help move instructions and data around the network-on-
chip (NoC). Figure 3.3 shows the architectural diagram and description of this processor. A
third manycore DSP processor comes from XMOS, which targets audio and video processing
[65]. Its 16 cores have custom DSP instructions like MAC and cyclic redundancy check
(CRC). Custom C-extensions support its programming model.

3.1.3 Hardened Digital Signal Processors

The previous sections demonstrated flexible architectures targeting multiple applications.
However, peak performance and efficiency comes from hardware performing only the neces-
sary calculations for the desired application. This requires restricting the set of supported
applications to one. Image and video compression, encoding, decompression, and decoding
are commonly implemented as hard-coded accelerators because of extreme low power or
high throughput requirements. These may be either streaming or memory-based architec-
tures. For example, Gu presents an image compression scheme and ASIC for wireless capsule



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 36

Figure 3.4: Image compression architectural datapath block diagram for a capsule endocscopy
ASIC [13].

endoscopy, which requires low power due to limited battery size [13]. Figure 3.4 gives the
streaming datapath block diagram of this chip, which in a 0.18 µm process consumes just
over 1 mW. Conversely, Tikekar demonstrates a high-efficiency video coding (HEVC) de-
coder using a memory-based architecture with significant optimizations to meet the high
throughput and data size of 4K Ultra HD 30-fps streaming video [66]. Almost half the chip
is consumed by SRAMs used to buffer video frames and computation outputs. The logic
is custom-designed for HEVC decoding, but also included are DMAs for data access and
movement

Signal processors for space applications require both low power and high throughput,
implying that ASICs are ideal. Recent work in producing high-bandwidth, low-power chips
from NASA’s Jet Propulsion Laboratory (JPL) and UCLA use dedicated, hardened digital
signal processing elements [14, 67]. Accumulation improves the SNR and reduces the output
data rate, allowing for simplified off-chip communication protocols like SPI. Figure 3.5 shows
a block diagram of one spectrometer, receiving complex I and Q data before filtering, Fourier
transforming, and accumulating.

3.1.4 Summary and Trends

Digital signal processing chip architectures tend to trade off flexibility for performance.
Distributed and centralized processors without accelerators can support the widest range



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 37

Figure 3.5: Spectrometer architectural block diagram, showing the digital processing path
after the ADC inputs [14].

of DSP applications, but they excel at none. Accelerator-based architectures find a middle
ground with decent performance for applications requiring the accelerators they contain and
flexibility in application coverage. Hardened ASICs only do one application, but they do it
best.

To support agile development of SoCs, an accelerator-based architecture is recommended.
Pieces of the algorithm can be hardened over time, but anything left unoptimized or not
mapped to RTL can be done in software on a CPU. Most DSPs contain FFT hardware,
as frequency-domain analysis and processing is used in many applications. Also, DMAs
are common for moving data around, as seen in all memory-based architectures. Finally,
nearly all DSPs contain efficient, parallel MAC units. So the recommended accelerator-based
architecture should contain at least a DMA, MAC accelerator, and FFT accelerator.

3.2 System Overview

This signal processing SoC model couples a general-purpose processor with a signal process-
ing accelerator. The general-purpose processor provides a convenient programming interface,
and for the sake of agility, it allows the designer to push certain tasks to software. Though the
architecture for this processor is flexible, the model requires that it have at least one core and
access to memory-mapped peripherals. The signal processing accelerator includes any num-
ber of DSP chains communicating with the general-purpose processor through two crossbars,
as shown in Figure 3.6. Specifically, each DSP co-processor attaches to the processor through
two crossbars as memory-mapped peripherals. The first connection is the control interface,
and the second connection is the data interface. On each crossbar, the main processor is the
master and the components of the DSP chain are the slaves. Asynchronous FIFOs separate
the main processor from the DSP co-processor. A JTAG debugger provides direct access to
the signal processing accelerator, supporting test and backup control modes of operation.



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 38

DSP ChainADC

DAC

ADC

LA and PG

DSP Chain

DSP Chain

Control Crossbar

Periphery 
ManagerJTAG

Co-
Proc

Co-
Proc

HOST

Data Crossbar

Crossbar

Core

Mem

AdapterHOST

Streaming Other
General-purpose

processor
Signal processing

accelerator

Standard
Test and 
Debug

Figure 3.6: A digital signal SoC model. The general-purpose processor and local co-processors
talk to the digital signal processing accelerator through a periphery manager and memory-
mapped IO.



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 39

Periphery 
Manager

VectorDMA

Crossbar

Core

Shared 
L2

Adapter

Host

High-
Speed 

IO

Low-
Speed 

IO

Core Core ...

...

Main 
Memory

HostHost

FPU

to Accelerator

Figure 3.7: General-purpose processor architecture. Grayed out boxes show possible exten-
sions.

3.3 General-Purpose Processor

The requirements for the general-purpose processor are flexible. In general, the processor
includes one or more cores communicating through a crossbar to a shared, coherent memory.
The architecture of the cores should be chosen for the desired application, such as lightweight
for low-power spectrometers or complex and diverse for a high-performance radio baseband
processor. A floating-point unit is recommended to support larger dynamic range computa-
tions. Each core may contain local co-processors designed to accelerate or off-load certain
tasks from the cores. One suggested co-processor is a direct memory access (DMA) controller.
Signal processing produces large sets of data, and moving that data efficiently with a DMA
relieves the cores from burdening themselves with data movement. A second suggestion is
a vector or SIMD co-processor to speed up signal processing not handled by the dedicated
signal processing accelerator, such as any remaining MAC operations.

The cores and their co-processors communicate with the signal processing accelerator
through memory transfers. Thus the memory model, whether cache-based or scratchpad-
based, requires static physical addressing and memory-mapped peripherals. The cores move
data from the accelerator to their local memory (cache or scratchpad) for further processing,
or to move data off chip. Moving data requires a communication protocol, such as ARM
Advanced Microcontroller Bus Architecture (AMBA) protocols. Communication off-chip is
possible through a master connection to the general-purpose processor crossbar. An adapter
serializes the data and reduces the data rate to off-chip controllers. Programming is done by
the off-chip host, and slow delivery of data and results is possible through this host interface.

Many extensions to this model are possible though not explored in depth. Instead of slow
communication with a host, high-speed serial links or memory interfaces may be connected to



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 40

the crossbar. Numerous peripherals are seen on processors at the beginning of this chapter,
such as I2C, SPI, UART, USB, PCIe, and Ethernet. These are lumped together in the
model as possible low-speed or high-speed IO ports. Untethered architectures would remove
the need for a host FPGA or processor. Figure 3.7 shows more details of the general-purpose
processor architecture, with unexplored model extensions grayed out.

3.4 Signal Processing Accelerator

The digital signal processor is a set of processing elements (PEs), or actors, which are com-
bined to form a processing chain, as seen in Figure 3.8. Each PE contains a custom DSP
function of arbitrary complexity, for example a power element that squares input complex
data or an FFT element. One streaming input and one streaming output comprise the data
interfaces for each PE, and one more interface supports control. A PE wrapper converts these
interfaces into standardized instances, for example AXI4-Stream for data and TileLink for
control. Control and monitoring is handled through a status and control register (SCR) file.
This SCR file contains registers that are assigned memory addresses and accessible through
the memory-mapped control interface. The motivations behind modeling a DSP processor
this way are covered in Chapter 4.

A collection of PEs connected together comprise a DSP chain. For reasons discussed in
the previous chapter, data flows in one direction only. On both ends of the DSP chain are
special interface (INT) elements. Typical interface elements are ADCs and DACs for analog
conversion and . At one end of the chain is typically an analog-to-digital converter (ADC)
for receive chains or a digital-to-analog converter (DAC) for transmit chains. At the other
end of the chain is often a buffer for data storage and access from the CPU. For receive
chains, the buffer stores streaming data and provides a memory-mapped interface for the
processor or a DMA controller to read. For transmit chains, the buffer stores transmit data
written by the processor or DMA controller, then streams it into the DSP chain. Chains
terminated on both ends with buffers or on both ends by analog interfaces are permitted,
though atypical for applications explored in this thesis. Each chain contains an additional
SCR file unaffiliated with any PE for controlling data flow, such as swapping in data from
test structures.

Multiple chains are supported by growing the number of crossbar slave ports and increas-
ing the address space allotted to the periphery. Though bandwidth between the processor
and accelerator is limited by the memory-mapped IO manager, so more chains may over-
saturate data movement rates. Separate crossbars for data and control were chosen to avoid
exploding crossbar sizes. Clocking is left flexible in this model. Any standard or streaming
interface may be cut with an asynchronous first-in first-out (FIFO) queue, which isolates the
clock domains on either side. However, as numerous PLLs or clock receivers add pins and
area, this option is only minimally explored in later chapters of this thesis. The intended use
model for PEs and chains is to configure them through the control interface, then let them
constantly stream data through as the processor moves data through interface elements. Pre-



CHAPTER 3. DIGITAL SIGNAL PROCESSING SOC MODEL 41

DSP ChainADC

DAC

ADC

LA and PG

DSP Chain

DSP Chain

Control Crossbar Data Crossbar

PE PE INT

... ...

... ...

Status and 
Control

PEun-
pack pack

PE Wrapper

...

to General-Purpose Processor

Figure 3.8: Signal processing accelerator architecture.

and post-processing of datasets is done on the CPU, and results are communicated to the
host.

3.5 Debug and Test

Debugging, test, and control interfaces are also included in the model, as seen in Figure 3.6.
Each DSP chain control and data port acts as a slave device, while the CPU and JTAG
debugger act as master devices on the crossbars (so each crossbar is 2xN). Here, JTAG is
an optional debugging input, meant to bypass the main processor for direct access to the
DSP co-processor. It contains registers for each interface signal, which then pass through
an asynchronous FIFO to enter the DSP accelerator clock domain. Also connected to the
crossbars, but not contained within a DSP chain, are a logic analyzer (LA) and pattern
generator (PG). These blocks incorporate design-for-test (DfT) memories and control that
optionally connect to each PE for unit-level post-silicon testing. Additionally, each PE can
be individually run on a dataset by writing the dataset to the PG, playing it through the
PE, then reading the result from the LA.



42

Chapter 4

A DSP SoC Generator

By modeling a DSP processor in the way presented in Sections 3.2 through 3.5, we are able
to design a suite of tools that support easy design, verification, test, and programming of
any processor prescribing to the model. The design of this framework comes from the agile
methodology’s emphasis on tools and generators. Chosen framework features underscore the
rest of the agile principles, such that small, collaborative design teams can focus on quickly
constructing functional prototypes and easily respond to changing specifications. This DSP
co-processor generator is written in Chisel, a domain-specific language (DSL) embedded in
Scala for constructing hardware.

4.1 Generator Overview

The source code for the SoC generator is open-source and available online at https://

github.com/ucb-art/craft2-chip. The generator was written in Chisel, Berkeley’s hard-
ware construction language. Chisel is a DSL written inside Scala, and the SoC generator
utilizes the Scala Build Tool (SBT) to manage project dependencies and compile the design.
The top-level git repository has submodules containing the required dependencies. The dsp-
framework submodule is a general submodule useful for Chisel-based DSP projects, even
those outside the purview of this SoC generator. Other submodules mostly contain process-
ing elements, such that an SoC only needs to include code for relevant processing elements
rather than having a single library containing all existing processing elements.

Before creating the SoC generator, we created a collection of useful tools usable by many
different projects, called dsp-framework. Inside this repository is the rocket-chip repository as
a submodule. This repo includes its compatible version of Chisel and FIRRTL, as well as the
RISCV toolchain needed to build and test code for the processor. The rocket-dsp-utils repo
contains Chisel designs which depend on the rocket-chip repo, which includes much of this
SoC generator’s glue code. A generalized pattern generator and logic analyzer exist in the
builtin-debuggers repository. The dsptools repo includes DSP-specific low-level utilities for
Chisel, such as support for floating-point and complex data types. The remaining repositories

https://github.com/ucb-art/craft2-chip
https://github.com/ucb-art/craft2-chip


CHAPTER 4. A DSP SOC GENERATOR 43

provide useful infrastructure code for building and testing the SoC generator.

Listing 4.1: Directory structure of the generator

dsp-framework/ - collection of useful dependencies

rocket-chip/ - RISCV processor generator with FIRRTL, Chisel, and Hwacha repos

chisel-testers/, firrtl-interpreter/ - testing repos

testchipip/ - design for test repo, also contains the main memory

dsptools/ - useful DSP code, like DspComplex type

rocket-dsp-utils/ - craft-specific rocket-chip-dependent resources

builtin-debugger/ - logic analyzer and pattern generator

barstools/ - convenient compilation functions

vsim/ - VCS simulation directory

ncsim/ - irun simulation directory

bootrom/ - sources for the first-stage bootloader

src/main/scala/ - scala source files

riscv-dma2/ - the memcopy DMA RoCC accelerator

tests/ - custom C code tests for peripherals

fft/, pfb/, etc. - code for DSP blocks used in the design

This SoC generator reuses the rocket-chip generator, a Chisel-based, parameterized RISCV
processor generator. Reusing this existing code prevented the need for constructing a cus-
tom CPU generator. The bulk of the work done for this thesis was on the signal processing
accelerator, a custom generator complete with design verification checking. That includes
the contents of the rocket-dsp-utils directory, DSP block directories, and simulation and
test directories.

4.2 General-Purpose Processor Generator

The RISCV ISA is an open-source, reduced instruction set architecture developed at Berkeley
for the purposes of creating a flexible, simple, usable, free standardized ISA [68, 69]. The
rocket-chip repository is also a free, parameterized, open-source generator producing designs
that implement the RISCV ISA [15, 70]. The chosen parameterization supports a single tile
(core), communicating through a crossbar to memory, periphery devices, and the host. An
ISA extension called the Rocket Custom Coprocessor interface supports tightly-integrated
accelerators. Two RoCC accelerators previously designed were selected for this generator.
These are the direct memory access (DMA) and Vector (Hwacha) accelerators. The DMA
accelerator offloads structured memory movement from the CPU, and the Vector accelerator
performs SIMD-like computation, useful for many signal processing kernels.

The rocket CPU includes L1 instruction and data caches of programmable size. The
vector accelerator also includes an integrated cache for quick data access. Both communicate
through a crossbar to a shared, coherent L2, which can be backed on-chip by a large main
memory or off-chip by a host processor. In addition to an L2, the memory model supports



CHAPTER 4. A DSP SOC GENERATOR 44

Figure 4.1: The rocket-chip generator can produce various topologies using hierarchical gen-
erators [15].



CHAPTER 4. A DSP SOC GENERATOR 45

memory-mapped peripheral devices, connected as a slave to the crossbar through a periphery
manager. The crossbar and device interfaces use a TileLink protocol. TileLink is an extensible
SoC communication standard with both cached and uncached channels. The rocket-chip
repository contains TileLink crossbars, routers, and arbiters, as well as converters for AXI,
AHB, and APB AMBA protocols. Figure 4.1 shows a block diagram of rocket-chip generator
components.

The version of rocket-chip used requires an external tether to load programs into the
instruction memory and read outputs. A serial interface adapter translates low-bandwidth
serial data to on-chip TileLink transactions. For simulation, a C shim dumps a program
into the processor through the serial adapter, then the bootrom jumps the processor to the
starting address. For testing, a tethered FPGA design communicates with the chip through
a front-end server, allowing a user to run the same programs as used for simulation.

4.3 Signal Processing Accelerator Generator

The presented generator was constructed to simplify design and interconnectivity of custom
DSP co-processors. To support existing verification methodologies, the interfaces in the signal
processing accelerator were chosen to be variations on AXI4, such as regular AXI4 and
AXI4-Stream. Thus the interface between the two processors starts with a TileLink to AXI4
converter, then an AXI4 asynchronous FIFO converts between the core and DSP clock
domains. This allows for independent clocking between the processors. Two AXI4 crossbars
arbitrate data and control plane communication. While the GPP is the main master for each
crossbar, a JTAG to AXI4 interface acts as a backup master for direct access to the signal
processing accelerator during testing. Multiple processing chains are all connected to the
same two crossbars.

The control crossbar connects to each processing element (PE), and the number of output
ports in the crossbar automatically scales with the number of processing elements added.
For each chain, an independent SCR file provides status and control registers for the ADC,
input valid signal, and LA/PG mux control signals. Chains are constructed from an ordered
sequence of processing elements. For each processing element, a connection to the logic
analyzer, a connection to the pattern generator, and a SAM are independent parameter
choices. Parameters for the SAMs, LA, and PG allow the user to specify how deep the
memories are. Addresses for all AXI4 connections are automatically generated. Figure 4.2
shows these higher level features, and Figure 4.3 shows how these features are specified in
Chisel.

Processing elements have programmable input and output data types. These ports are
packed and unpacked using a simple function into AXI4 Stream interfaces. When two pro-
cessing elements are connected, their stream interface bitwidths are checked to ensure they
match. Each processing element comes with an SCR file, and adding registers to it can be
done with the addStatus and addControl functions. Status registers are writable by the
PE, while control registers are read-only by the PE. Both are 64 bits. Processing elements



CHAPTER 4. A DSP SOC GENERATOR 46

0
1

LIn-1

...

0
1

LOut-1

...
AXI4

trig

targetCount

startAddr

AXI4 Control Crossbar

JTAG

SAMPE

MinMout

syncAddr

packetCount

writeCount

addrMap=
0x8000 to 0x8FFF

AXI4
AXI4 Data Crossbar

SRAM

SCR
file

JTAG

SAM

PE

PEPE

...

...

...

ADC

... ...

ADC

status[63:0]

calib0[63:0]

calib1[63:0]

calib2[63:0]
SCR
file

valid

valid

statewaitForSync

SRAM
Controller

 subPackets=4
 bufferDepth=1024

Pattern Generator

Logic Analyzer

 numSamples=4096
 useCombinationalTrigger=true

 numSamples=4096
 useCombinationalTrigger=true

 blocks = Seq(
   new Tuner(), 
   new Filter(), 
   ...
 )

 biggestWidth=1024

 connectPG=false
 addSAM=true

 addSAM=false

 connectLA=true

 connectPG=true

Async 
FIFO

TL to 
AXI4

Async 
FIFO

TL to 
AXI4

GPP GPP

addrMap=
0xB000 to 0xBFFF

addrMap=
0xA000 to 0xAFFF

addrMap=
0x0000 to 
0x0FFF

numOutputPorts=4

numOutputPorts=5

SAM

Figure 4.2: Signal processing accelerator generator features, with user input parameters in
green, generated parameters and automated checks in blue, and auto-generated designs in
red.



CHAPTER 4. A DSP SOC GENERATOR 47

Figure 4.3: Creating a signal processing chain amounts to specifying a sequence of processing
elements (blocks), configurations for each processing element using ConfigBuilders, and a
handful of other parameters.



CHAPTER 4. A DSP SOC GENERATOR 48

are typically parameterized themselves. Specific examples of processing elements and their
parameterizations are given in later chapters.

Signal processing chains may be terminated by an ADC or DAC on one end. Parameter-
ized analog IP generators are possible using the Berkeley BAG framework [55].

4.4 Verifying the Generators

The generator framework includes verification and continuous integration checks for both
the general-purpose processor and signal processing accelerator. Figure 4.4 shows a high-
level map of testing capabilities and checks performed in the generator framework. A RISCV
toolchain and cross compiler provide code for compiling, testing, and interfacing with rocket
processors. The compiler converts C code into RISCV-compatible assembly binaries. A li-
brary of ISA tests exercise individual instructions for full processor pipeline coverage. Interac-
tions between instructions are tested through various benchmarks and pre-written programs,
such as matrix multiply. Benchmarking programs, like dhrystone, characterize the perfor-
mance of the chosen rocket parameterization. RoCC co-processors provide their own test
suites.

Verification of the signal processing accelerator was designed to be independent of the
processor choice. Individual processing elements are verified both through custom Chisel tests
and external UVM tests. The Scala Breeze library provides MATLAB-like signal processing
functions, which may be used to characterize the validity and tolerance of signal processing
hardware functions. Plot.ly provides free, web-based plotting integrated directly into Scala.
The combination of these features allows quick verification of signal processing element
generators in Chisel.

After selecting parameters and generating Verilog, an IP-XACT file facilitates integration
of processing elements with UVM testbenches. IP-XACT is an XML file format providing
metadata about HDL IP files and modules, including interface protocols, address mapping,
and parameterization [54]. Tools such as Cadence Verification Workbench can automatically
generate UVM testbenches to verify proper functionality of interface protocols. Custom
python testbench generators create stimuli and expected results for individual processing
elements to run in a UVM verification framework. Travis continuous integration ensures
Chisel tests pass as changes to processing element and framework repositories are committed.

Testing the chip after tape-out is done the same way as verifying the chip before tape-out.
The general-purpose processor runs the same suite of ISA tests and benchmarks. The signal
processing accelerator plays the same processing element test vectors through the pattern
generator and checks the results, which get stored in the logic analyzer. This methodology
allows for quick bring-up and testing of chip instances.



CHAPTER 4. A DSP SOC GENERATOR 49

Chisel
Design

Generator
FIRRTL

Chisel
Test

Generator

FIRRTL 
Sim. Verilator

Python 
Test 

Generator
IP-XACT

Cadence 
VWB

UVM
Test

Sequencer

reg_map.h C tests

System 
Verilog
Analog
Models

Cadence 
Incisive

Compiled 
Program

Chisel
Compiler

FIRRTL
Compiler

Rocket
Compiler

Verilog

Unit and 
Subsystem Tests System Tests

Travis
CI

Verification CAD Tool

User Input File

Generated File

AXI4/
AXI4-

Stream 
VIP

Figure 4.4: Verification framework.



50

Chapter 5

A Digital Spectrometer Design

5.1 Introduction

Many satellites, including Aqua, Aura, and OCO-2, use digital spectrometer back-ends to
measure Earth’s atmospheric composition. Other spacecraft bound for the moon and beyond
also require spectrum analysis. These digital baseband spectrometers are typically imple-
mented using FPGAs, which provide simplicity, low cost, and known radiation tolerance but
add unnecessary weight and power consumption [71]. Application-specific integrated circuit
(ASIC) implementations bring down the weight and power, but their high cost, complexity,
and long development and production time make it difficult to justify their use in low vol-
ume applications. Previous work has attempted to simplify ASIC design by mapping designs
in FPGA environments to ASIC implementations (see [72, 38]). Other work created single
ASIC implementations at high cost and design effort [14].

Table 5.1 compares a few parameters of published spectrometers. Some perform sideband
separation while others do not. Since signal-to-noise ratios of input data are low, designs focus
on wide bandwidth FFTs and long accumulation depths instead of high ADC resolution.
Thus ADC resolution and sampling rates are not necessarily increasing over time. This
variety of design choices shows the need for parameterized generators.

This chapter applies parts of the previous SoC design methodology to a spectrometer
targeting space-borne systems, leveraging open source code reuse through generator-based

Table 5.1: Properties of recently published digital spectrometer backends suggest a single
parameterized generator covering the gamut of possible design choices would avoid repeated
design efforts.

Source Year Platform Inputs ADC Sampling Rate ADC Resolution FFT Channels

[38] 2009 ASIC 1 1560 Msps 8 bits 4096

[71] 2010 FPGA 2 205 Msps 12 bits 1024

[7] 2013 FPGA 2 1000 Msps 8 bits 2048

[14] 2015 ASIC 2 2200 Msps 7 bits 512



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 51

LO

RF 
Input

Amp

Amp

ADC

ADC

LPF

LPF

Polyphase
Filter

Polyphase
Filter

FFT

FFT

Calibration
Coefficients

^2

^2 ∫

CMAC

∫
Accumulator

Accumulator

Complex
Multiply

Accumulate

Digital Baseband SpectrometerAnalog Frontend

Lower
Sideband

Upper
Sideband

0°
90°

Figure 5.1: Generic spectrometer receiver. The analog front-end performs RF to baseband
conversion, optional sideband (IQ) separation, filtering, and amplification. The digital base-
band backend performs additionally filtering, transformation to the frequency domain, cali-
bration, magnitude calculation, and accumulation.

testing and design, written in Chisel [51]. The methodology supports an array of spectrom-
eter designs and is applicable to a variety of problems. Parameterized hardware generators
and testers let users customize their implementation, quickly explore design spaces, and cut
both cost and time when designing an ASIC. To demonstrate the methodology, an instance
of a spectrometer is designed and evaluated in a 28nm FDSOI process. The signal processing
element generators developed here were a precursor to the SoC generator framework pre-
sented in previous chapters. Some architectural and verification work is consistent between
this chip and later chips, and lessons learned from the process of creating this chip were ap-
plied to the framework of later chips. Also, agile principles were followed during the process
of designing and taping out this chip.

5.2 Spectrometer Generator

A generic spectrometer receiver system is shown in Figure 5.1. The digital portion occurs
after the ADC and can be performed on an FPGA or ASIC, while the analog front-end is typ-
ically done with discrete components. This generator implements the entire digital baseband
signal processing portion. The digital system design comes from CASPER, Collaboration for
Astronomy Signal Processing and Electronics Research, as published in Asilomar by Parsons
et al. [73]. The full system design and recent advances are summarized by Hickish et al. [?].

The spectrometer generator is designed in Chisel (version 2). Chisel was chosen because it
supports flexible, parameterizable generator development, and the agile principles mentioned
earlier suggest that designers improve tools and generators over instances. Also, its open
source and open licensing choices enable these generators to be made publicly available
for design reuse. Version 2 of Chisel includes an internal C++-based tester for fast, cycle-
accurate verification. Chisel also produces low-level Verilog for FPGA and ASIC synthesis



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 52

Accumulator

ControlControl

. . . . . .

Accumulator
. . . . . .

shift
log2(fft_points/parallelism)sync

i_data_in ...
0

p-1

q_data_in ...

FSM

lsb_data_out

usb_data_out

new_spectrum

integration_time

accum_trigger readout_offset

calibration_coeff

calibration_coeff

parallelism

parallelism

1
2

0

p-1

1
2

accum_bitwidth
readout_bits

clock_out

readout_bitwidth

max_integration_bits
accum_bitwidth

readout_bits

log2(accum_bitwdith - readout_bits)

...PFB

...PFB

...

...

...

...

CMA

CMA

...

...

^2

^2Split FFT
fft_points

real_inputs?
pipeline_depth

Split FFT
fft_points

real_inputs?
pipeline_depth

twiddle factors,
 mux control

sync, reset, hold,
readout_offset

adc_bitwdith

adc_bitwdith

pfb_bitwidth

pfb_bitwidth

fft_bitwidth

fft_bitwidth readout_bitwidth

num_taps
coeff_bitwidth

coeff_compression

num_taps
coeff_bitwidth

coeff_compression

Figure 5.2: Spectrometer generator. Parameters are shown in green. Separate I and Q inputs
arrive from two ADCs.

tools.
The hierarchical design uses unpacked versions of the AXI4-Stream interface presented

earlier for easy, flexible datapath construction. Each major block comprises a datapath
unit and a control unit. Separating the datapath from the control allows for datapaths to
share control logic, saving area in multi-datapath systems. A global synchronization signal
is pipelined through the control blocks, acting like the TLAST signal in AXI4-Stream. Opti-
mal pipeline register locations are automatically calculated for the specified pipeline depth.
Figure 5.2 presents a block diagram of the entire digital system generator. The following
subsections describe individual block generator details.

5.2.1 Polyphase Filter

A polyphase finite impulse response (FIR) filter bank (PFB) shapes the signal spectrum
by flattening the response within a spectral bin and suppressing overlap between bins [74].
Hard-coded coefficients come from a product of a Hamming window and a sinc function.
The PFB generator has an option to compress the coefficients, as seen in Figure 5.3. For
a large number of channels and a small coefficient bitwidth, the coefficient storage can be
dramatically reduced by storing just the initial coefficients for each filter in the bank, and
also storing when these coefficients need to change (delta compression). The change is always
either plus one, zero, or minus one. For a 4-tap PFB with 8-bit coefficients and a 8192-
point FFT, a coefficient ROM is reduced from 32 kB to 8 kB using delta compression. If the
ROM is mapped to logic, synthesis tools may further optimize the coefficient calculation. A
transposed polyphase FIR reduces the critical path to one multiplier and one adder at a cost
of larger delay memories. The inputs, coefficients, and outputs are all signed and real-valued.
The generator is parameterized in the properties shown in Table 5.2. Symmetric coefficient
compression assumes the window function is symmetric, so it only stores half the values in



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 53

a ROM. Delta compression reduces the ROM further using the scheme shown in Figure 5.3.

Figure 5.3: PFB coefficient calculation hardware and waveform. Both adjust for different
parameter values, such as the bitwidths, number of taps, and number of channels.

coeffcoeff X X coeff

(n/p)
delay

(n/p)
delay

X

(p copies of each filter)

data_in

... ...
data_out

Figure 5.4: Parameterized polyphase filter. Coefficient values are addressed by the global syn-
chronization signal. Delays are mapped to SRAMs when long. These delays dual as pipeline
registers, and one more pipeline register is added to the output.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 54

Table 5.2: PFB Parameterization

Parameter Supported Range
number of taps ≥ 1
input bitwidth ≥ 1

coefficient bitwidth ≥ 1
coefficient compression “none”, “symmetric”, “delta”

window type “sinc Hamming”
window size (channels, n) 2N where N ≥ 2

parallelization (p) any integer divisor of (channels × taps)
pipeline depth (output) ≥ 0

output bitwidth ≥ 1

5.2.2 Fast Fourier Transform

To reduce hardware overhead, the FFT is decomposed into smaller FFTs. A number of
pipelined FFTs are placed in parallel before a small direct FFT [75]. Such an architecture has
high latency and memory requirements, but permits a large number of channels with fewer
butterflies. The FFT generator supports any power-of-two FFT size and number of parallel
inputs, with twiddle factors and pipeline register locations automatically calculated. Inputs
may be real or complex. More channels improve spectral resolution, and 16384 channels were
chosen to meet timing with the 10 GHz bandwidth and appropriate parallelization while still
improving upon the previous ASIC spectrometer (8192 channels).

Biplex pipelined FFTs have 100% memory utilization, much better than the 50% of a
traditional pipelined FFT [76]. This reduces the number of front-end FFTs required by 2.
When using purely real data, the number of biplex FFTs can be halved again by feeding these
data into both the real and imaginary inputs of the biplex FFTs. The outputs must then
be reordered before or after the direct FFT, and one more complex multiply-add element is
required. So an FFT with 8-way parallelism only needs 8/4 = 2 biplex FFTs. Figure 5.5a
shows an example 8-way parallelized version of the split-radix FFT using real-valued inputs
and reordering before the direct FFT. Figure 5.5b gives a more detailed block diagram of
the FFT generator.

A custom reorder block was designed to reorder the data before entering the direct FFT.
Its design borrows heavily from the biplex FFT design. Delay elements growing by a factor
of 2 each stage are selected or bypassed by muxes. The mux select signals are precomputed
by simulation and stored in a ROM. Figure 5.5b shows block diagrams of the entire reorder
block and the individual delay blocks with muxes.

Other FFT features include bitwidth growth, an option to use single-ported memories,
and an option to use a complex input FFT. The PFB currently has 10-bit outputs, but the
FFT has 16-bit outputs. To reduce the design size, the biplex and direct FFT sub-blocks
feature bitwidth growth. Each butterfly stage grows the data by 1 bit, which allows for smaller



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 55

(a) High-level block diagram of the parameterized FFT generator. The reorder blocks shuffle data
ordering when inputs are purely real.

...

Biplex FFTs

...stage 
1

stage 
log2(n/p)

twiddle

X

FFT Butterfly

twiddle factor gets
same bitwidth as
butterfly inputs

(n/p)/i 
delay

(n/p)/i 
delay

Switch (rate = (n/p)/i)

Biplex FFT Stage (i = 2^(stage number))

for real inputs, PFB outputs go to real 
and imaginary inputs of Biplex FFTs, 
halving their number but requiring the 

reorder block

bitwidths grow 1 bit per stage =>

Reorder (only for real inputs)

x(p/2) for complex inputs, 
x(p/4) for real inputs x(p/4)

...

stage 
0

stage 
log2(n/p)-1

...
(n/p)/4 
delay

(n/p)/2 
delay

i 
delay

Reorder Stage (i = 2^(stage number))

Direct FFT

x(1)

bitwidths grow 1 bit per stage =>

p inputs...

stage 
1

stage 
log2(p)......

p outputs

... ...

MUX control generated from LUT
and cycle counter

stage 1 stage 2

FFT butterfly
Direct FFT Stages

example for p = 4,
twiddle factors get
same bitwidth as
butterfly inputs

pipeline
this

stage?
(pipeline
registers

not shown)

(b) Detailed diagram of the parameterized streaming Fourier transform generator components.

Figure 5.5: The FFT generator.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 56

memory and complex multiply-add elements. Truncation occurs after every stage once the
maximum bitwidth is reached. The delay blocks are implemented as either dual-port SRAM
memories, single-port SRAM memories, or basic shift registers. A separate FFT IP block
removes the reordering, doubles the number of biplex FFTs, and accepts complex-valued
inputs. Table 5.3 shows parameter options for the FFT generator.

Table 5.3: FFT Parameterization

Parameter Supported Range
number of channels (n) 2N where N ≥ 2

input bitwidth ≥ 1
parallelization (p) any integer divisor of n

pipeline depth ≥ 0
output bitwidth ≥ 1

input type “real”, “complex”

5.2.3 Sideband Separation, Power, and Accumulation

To remove front-end non-idealities and mismatch across the ADCs, frequency-domain cali-
bration is included in the generator. The calibration coefficients must be calculated externally
and stored in an on-chip RAM. A complex multiply-accumulate (CMA) performs the cali-
bration operation. Finger [77] describes how to determine the coefficients. After calibration,
the power of each frequency bin is calculated and accumulated. Results are scrambled, but
not simply bit reversed, so unscrambling is not performed on-chip to reduce hardware com-
plexity. A final bank of SRAMs buffers the accumulated data for readout while a new set of
data is being accumulated. Parameterized control bits decide how many samples to accumu-
late, how many output bits to read, and the speed of the outputs readout. The outputs are
the upper and lower sideband signals (USB and LSB). Finally, a snapshot mode feeds input
data from the ADC directly to the accumulators for testing purposes.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 57

C1	
RAM	

C2	
RAM	

C3	
RAM	

C4	
RAM	

^2	

^2	

SRAM	

SRAM	

SRAM	 LSB	

USB	

from	upper	FFT	

from	lower	FFT	

output	
buffers	

SRAM	

from	ADC		

from	ADC		

Figure 5.6: Calibration, power, and accumulation signal path block diagram. Calibration
fixes mismatch between front-end receivers and ADCs.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 58

Parameters:	
adc_bitwidth	
p2_bitwidth	
3_bitwidth	
accumula6on_bitwdith	
read_out_bitwidth	
parallelism	
pipeline_depth	
p2_taps	
3_size	
minimum_sram_depth	
use_single_port_srams?	

Chisel	
Design	

Generator	

Input	
Test	

Vectors		

Output	
Test	

Vectors		

MATLAB	
Valida6on	

Generated	
Verilog	

Analog	
Designs	

ASIC	
Toolflow	

GDSII	

User	
Input	
Files	

Generated	
Files	

CAD	
Tools	 Key	

FPGA	
Synthesis	+	
Verifica6on	

Bin #
0 500 1000 1500 2000 2500 3000 3500 4000

Am
pl

itu
de

 (a
.u

.)

10 -3

10 -2

10 -1

10 0
Spectrum of input sinusoid with 8192 point FFT

C++	
Verifica6on	

Verilog	
Verifica6on	

Verifica6on	Implementa6on	

Figure 5.7: Generator flow diagram, showing verification paths on the right and the imple-
mentation path on the left.

5.2.4 ASIC Design and Verification

The parameterized generators presented are verified at multiple stages of the ASIC flow, as
seen in Figure 5.7. Each generator has unit tests run in C++ to immediately verify that the
chosen parameters function as intended. These unit tests are written in Scala in the Chisel
testbench framework. Input test vectors are generated in the Scala testbench and written to
a file for reference. Resultant test vectors are also written to a file. These input and output
files are read in to a MATLAB tester, which plots the data and compares the output against
a MATLAB golden reference version of the intended computation. System-level tests are
implemented the same way.

Once the system design is verified, Verilog instances of the units and system are gener-
ated. These Verilog files are mapped to an FPGA for more comprehensive testing. Longer
testbenches are run to verify the system operates correctly over a wide range of input data.
Results are again evaluated in a MATLAB environment.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 59

Figure 5.8: Verification of the spectrometer at different stages of the design process.

A selection of input stimuli and expected output data are selected for ASIC verification.
A Verilog testbench applies the inputs and ensures the outputs are cycle-accurate to the
outputs produced by the C++ and FPGA testbenches. The Verilog files are then combined
with custom analog components and pushed through a standard ASIC flow. Post-synthesis
and post-place-and-route designs are simulated with the same Verilog testbench as before.
Figure 5.8 shows how verification at different stages in the design process reuse the same
MATLAB testing framework. Figures 5.9 to 5.11 show example MATLAB and FPGA veri-
fication waveforms. Early simulation used a smaller design to reduce runtime.

(a) MATLAB FFT of a two-tone input signal. (b) MATLAB FFT of the signal after the PFB.

Figure 5.9: PFB verification. Note the better isolation of the two tones after the filter.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 60

(a) Reference output of an input signal passed
through a MATLAB PFB and FFT.

(b) Generator output of the same signal passed
through a Chisel PFB and FFT.

Figure 5.10: PFB and FFT verification. Quantized coefficients were applied to the MATLAB
PFB, and the input signal was quantized, but all other operations were floating point.

Figure 5.11: FPGA verification allowed for full design simulation. This figure shows the
spectrometer response from a sawtooth input simulated on the FPGA.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 61

4 4

ref_in

HMCAD5831LP9BE

DATAICLK

X Y OCLK

INH

XOR

RX[3:0] RX[7:4]

TX0

TX1
SerDes

8192-
point 
FFT

32x4-bit
(real)

32x8-bit
(real)

4-tap 
PFB

Power + 
64-bit x 4096 
Accumulator

32x16-bit
(complex)

PLL

TVG

/ 64

Scan

Opal Kelly Shuttle LX1 
FPGA Board

Power

Custom   Motherboard

FMC

FMC

FMC

ASIC
Spectrometer

4-bit data + clk

Differential
signals

fast_clk

Figure 5.12: Implementation system block diagram with selected parameters.

5.3 ASIC Implementation

An instance of the generator was fabricated to demonstrate its functionality and effective-
ness. The full system diagram is shown in Figure 5.12. The external ADC is a 3-bit (plus
over/under range bit) 26 GS/s Analog Devices part. Its output data is XORed by a modu-
lating signal, which we generate from a pseudo-random binary sequence (PRBS) calculated
by a linear feedback shift register (LFSR) on chip. The system includes a set of eight high-
speed serial links, designed to capture data from the ADC and deserialize it down to a rate
that the digital back-end can handle. Also included is an all-digital bang-bang PLL for up-
converting the input clock from the ADC, and several high-speed clock receivers for testing.
Digital input controls and some output data are handled through a custom scan chain, while
spectrometer outputs go to discrete pins and are aligned to a programmable, divided output
clock for slow readout and synchronization.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 62

Preamp

Preamp

50 Ω

50 Ω

RXP

RXN

VCM

SR
Latch

SR
Latch

Delay

Retiming
2

Digital
Preamp

CML 
Driver

TXP

TXN

TX

RX (3 variants)

2:16
Deserializer

2:16
Serializer

2

2

2

2

2[0]

[1]

fast_clk / 8

…

16

16

…

x8

16x816

16x8

PRBS
Checker
(BERT)

16

Tunable
Delay

Lane 
Map

16

16

PRBS

Square

Inhibit

LUT Lane
Map

32x4

To
 S

pe
ct

ro
m

et
er

Figure 5.13: SerDes block diagram, including digital back-ends for monitoring and spectrom-
eter pre-processing.

5.3.1 Serial Links

Figure 5.13 shows a block diagram of the on-chip serial link.1 The serial links are eight
10 Gb/s DDR 50-Ω-terminated Current Mode Logic (CML) transceivers. Each transceiver
contains one differential CML driver (TX) and three differential receivers (RX), each a
different architecture. Only one receiver is active at a time. The TX comprises a digital
single-ended-to-differential pre-driver and a differential CML driver pair. The RX comprises
two analog pre-amplifiers, two samplers, two dynamic-to-static latches, retiming latches and
clock tuning circuits. The input to the RX is terminated with two 50 Ω resistors tied to
an external common-mode voltage. The common-mode can be bypassed to high impedance
for DC-coupled applications. The TX and RX each receive reference currents (nominally
500µA and 60µA, respectively) provided by on-chip current mirrors. The RX also receives
an additional offset reference current of nominally 5µA. The TX reference current is supplied
via 4 on-chip PMOS current mirrors which are themselves supplied by an on-chip NMOS
current mirror. The RX currents are supplied directly from on-chip NMOS current mirrors.
A 9-output version of the NMOS current mirror provides an additional output for monitoring
the current off-chip. Each transceiver also has four clock pins: one for each receiver and one
for the transmitter. The receiver has a number of clock, current, and control settings. The
transmitter has far fewer–the only ones of interest being XOR (to invert the polarity of the
output signals), enable (to turn the transmitters on), and swing (to adjust the output current
and voltage).

The data to and from the transceivers are controlled by a digital bit error rate tracker

1The analog receiver was designed by Nandish Mehta. The analog transmitter, BERT, and digital pre-
processor were designed by John Wright.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 63

(BERT) control block and an 8:1 digital serializer/deserializer (SerDes). Receiver data first
enters the SerDes, which deserializes it by a factor of 8. Next it enters the BERT block
for monitoring and the spectrometer back-end for signal processing. Demodulation logic
cancels a transmitted PRBS XOR signal. Finally, bit mapping logic converts the datatype
of incoming words, for example from 4-bit unsigned integers to 4-bit signed integers. Any
4-bit bit mapping may be selected.

5.3.2 Digital Instance

Sideband separation calibration was removed to simplify the instance, so the chip implements
a single sideband spectrometer, as seen in Figure 5.12. A test mode bypasses the input
data and instead sends pseudo-random data from a test vector generator (TVG) into the
spectrometer. These real data then enter the PFB, which has four taps, 8-bit coefficients,
and 8-bit outputs. An 8192-point FFT receives the 8-bit real data, 32 words at a time,
and produces 32 16-bit complex data (16-bit real, 16-bit imaginary) spectral bins each cycle.
Delays in both the PFB and FFT above 64 total bits are implemented as single-port SRAMs.
Bitwidths grow in the FFT one bit per stage until 16-bits are reached, followed by five stages
of truncation. About two pipeline registers per FFT stage reduce the critical path and get
retimed during synthesis. A 64-bit accumulator receives the 16-bit real bin powers, and
accumulates from 1 to 65,520 spectra, programmable in increments of 16. Alternatively, the
accumulator can take a snapshot of the input for testing. The output is fed to an SRAM
buffer, which stores the data for slow readout while the accumulator accumulates the next
set of spectra. Any contiguous 32 bits of the final 64-bit results may be read out, split into
4-bit chunks. The output data rate is a programmable division of the digital on-chip data
rate.

5.3.3 Clocking

An all-digital bang-bang phase-locked loop (BBPLL) provides a synchronized on-chip clock
for the serial links.2 The system level implementation of the BPPLL is illustrated in Fig-
ure 5.14. In the randomization block there has to exist a pseudo-random number generator
that will generate a pseudo-random number between 0 and the frequency divider/multipli-
cation ratio N, which is the integer in the case of an integer-N PLL. This pseudo-random
number defines the position of a DCO frequency control pulse rising edge within the refer-
ence clock period. The pseudo-random generator uses a 16-bit modular linear-feedback shift
register (LFSR), out of which a 9-bit pseudo-random number Z is obtained. Simply calcu-
lating Z mod N yields the pseudo-random number in a necessary range. Modulo operation
actually produces a remainder in Euclidean division, and for its implementation a standard
digital divider is used. Having the output of the digital loop filter (corresponding to the
pulse width in the DCO dithering frequency control signal) and the pseudo-random number

2The BBPLL was designed by Vladimir Milovanović.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 64

BPD	fref	 DLF	 RND	
DCO	

÷N	
fdiv	

fout	

Figure 5.14: Block diagram of the BBPLL with pseudo-random fractional dithering.

in a desired range (corresponding to the pulse phase within the reference cycle), with a help
of two down-counters (operating at the output frequency) and a bit of combinational logic
(operating at the reference frequency) it is possible to create the DCO dithering control
signal. It is also important to highlight that since all of the described PLL subcomponents
are digital in their nature they can be implemented with static CMOS logic gates and thus
completely synthesized, grasping all the benefits of the digital design flow. This includes the
DCO, as it is fully standard-cell based and its structure is tiled, so it can be assembled in
within the digital flow. However, for this design, the DCO was laid out by hand.

To ensure testability and usability, we used a complex clocking scheme with lots of con-
trollability. Figure 5.15 shows a block diagram of the primary clocking system, excluding the
scan chain clocking. The inputs to the clocking system are two pairs of LVDS signals and a
reference clock for the BBPLL. The BBPLL reference clock enters the BBPLL, from which
the BBPLL generated clock is created. The two LVDS clocks and the BBPLL generated clock
feed into the SerDes clock mux. There is no difference between the LVDS receivers, so either

LVDS
RX	

LVDS
RX	

BBPLL	

clock	0	in	

clock	1	in	

ref	in	

÷8	

from	scan	chain	

from	scan	chain	

serial	link	clock	

digital	clock	

Figure 5.15: System clocking diagram.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 65

source could be used as the 5 GHz source. The digital clock mux has the same three input
clocks, but also has an input for the divided SerDes clock. This allows us to synchronize the
digital data with the SerDes data. Asynchronous clock dividers were used. A manual buffer
was inserted on the SerDes clock for constraining the tools. Clock select signals come from
the scan chain. A dedicated pad-level signal allows the user to force the digital clock to the
1 GHz source. This is done because the scan chain runs off the digital clock (see the chapter
on the scan chain). This creates a clock loop, since the digital clock clocks the flip-flop which
holds the digital clock select signal. It is assumed this is okay, as a change in this signal will
take time to propagate to the mux.

5.4 Chip Details and Testing Results

The design was fabricated in a 28nm UTBB-FDSOI process; Figure 5.16 shows a die photo
of the 1.8 mm by 2.3 mm chip, annotated with the floorplan. The chip was designed to work
with several ADCs, and was tested with the 3-bit 26 GS/s ADC. To prevent DC drift, this
ADC features external modulation, the signal for which we provide and cancel from a PRBS
on our chip. A custom daughterboard and motherboard have been developed to test the
complete system.

The test vector generator was used to verify correct operation of the digital instance
independently of the serial links. Figure 5.17 shows measured data from the TVG. The red
line shows captured TVG outputs in bypass mode, meaning the PRBS data are directly

Figure 5.16: Chip die photo, with large components annotated. Note the distributed serial
links and memory-dominated floorplan. The size was 4.2 mm2. Annotated dimensions are in
µm.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 66

-50	

-40	

-30	

-20	

-10	

0	

1E-6	

1E-5	

1E-4	

1E-3	

1E-2	

1E-1	

1E+0	

0	 1000	 2000	 3000	 4000	

Ti
m
e-
Se
rie

s	V
al
ue

	(4
-b
it	
si
gn
ed

	in
te
ge
r)
	

Sp
ec
tr
um

	P
ow

er
	(n

or
m
.)	

Sample	Number	(frequency	bin	or	@me	step)	

Figure 5.17: Time-series snapshot and spectrum power from the PRBS TVG. Both match
cycle-accurate, bit-level simulation results, proving functionality.

buffered in the accumulator and read out to the host. Since the PRBS is replicated 32 times,
one for each parallel input lane, the time-series plot contains groups of 32-sample values. The
frequency response is shown in blue. Both time and frequency TVG outputs were compared
to the expected values from the Verilog testbench for bit-level matching. Figure 5.18 shows
the tradeoff between digital system power and operating frequency. Note that this power
excludes power consumed by the ADC and serial link front-ends. The digital spectrometer
in TVG mode works with zero errors up to 530 MHz, which translates to a 17 GS/s ADC
(8.5 GHz bandwidth).

A built-in data and error monitor supports verification and testing of the serial links.
The receivers function with BER below 10−7 at 5 GHz double data rate (DDR), which
translates to a 20 GS/s ADC (10 GHz bandwidth). The transmitters operate as intended,
and they support automatic data modulation, variable output swings, and independent lane
mapping.

Figure 5.19 show an example of the full system operating at 1 Gs/s. Accumulating samples
reduces the noise floor of the system, allowing signals buried in noise to be exposed. Together,
the system functions up to 1.5 GS/s, limited by noise injected by the digital clock through
the digital supply into programmable clock delay elements for the receivers. This periodic
supply noise translates into phase noise in the serial link clock. When this phase noise causes
the serial links to sample at the wrong time, large spectral spurs are evident in the output
data. Careful tuning of the phase between the ADC and ASIC clocks helps, but at higher



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 67

Figure 5.18: Power of the digital supply at 1 V at various digital clock frequencies.

frequencies, the errors are unavoidable. Figure 5.20 shows example measured spectra of the
system at 1 Gs/s displaying both correct functionality and the sampling phase error. With
the digital clock at 530 MHz, the chip consumes 1.0 W. The ADC consumes 4.2 W regardless
of frequency.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 68

1E-4	

1E-3	

1E-2	

1E-1	

1E+0	

0	 125	 250	 375	 500	

Sp
ec
tr
um

	P
ow

er
	(n

or
m
.)	

Frequency	(MHz)	

1	Spectrum	
800	Spectra	Accumulated	

Figure 5.19: Example full system measured spectra at 1 GHz sampling frequency. Signal and
system noise is reduced by accumulating many spectra.



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 69

(a) Low sampling phase noise.

(b) High sampling phase noise.

Figure 5.20: Measured spectra at 1 Gs/s with a 166 MHz input signal, accumulated over
16384 spectra (134 ms).



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 70

The full system without the sampling phase error is compared with other published digital
ASIC spectrometers in Table 5.4. The presented design benefits from its large bandwidth
and large FFT, despite the power overhead of using an external ADC.

Table 5.4: Comparison of state-of-the-art ASIC spectrometers.

This Work CICC ’15 [14] CICC ’09 [38]
Technology 28nm FDSOI 65nm CMOS 90nm CMOS
Bandwidth 8.5 GHz 1.1 GHz 0.75 GHz
FFT Size 8192 pts 512 pts 8192 pts

Max Accumulation Length 65520 Samples 1024 Samples 16M Samples
Integrated ADC No Yes No
Digital Power 1000 mW 1500 mW
System Power 5200 mW 188 mW

FOM (pts×GHz)/mW 13.4 3.0 4.1

5.5 Agile Principles Applied

During the tape-out of this chip, the principles of agile hardware design were developed to
ensure a functional design produced on time. A small design team (about five designers and
three managers) limited the complexity of the chip, but close collaboration and fast commu-
nication enabled us to rapidly converge on a system that integrates each of our individual
components. The initial spectrometer generator was designed in Chisel over the course of 8
weeks. The set of digital generators mentioned supported last-minute changes when physical
design limited chip capabilities. For example, the original specification asked for sideband
separation and calibration. These features were included in the digital generator, but they
were not verified sufficiently to include in the final design. Also, our reliance on an external
ADC and serial links required extra pins. The chip could not fit the pins of another set of
8 serial links to support another ADC for separate I and Q inputs. Finally, the 8192-point
PFB, FFT, and accumulator consumed significant resources on the chip. Doubling this for
sideband separation would have required a much larger chip, something we weren’t sure we
could tape out in time. Despite these changes in the specification, the digital generators
required just a few parameter changes to create an updated, validated design omitting the
sideband separation and calibration. In conclusion, having a flexible set of generators allowed
us to respond to changing specifications and design revelations, and still tape-out on time.

5.6 Conclusion

This chapter presented a method for generating sideband-separating ASIC spectrometers us-
ing the Chisel hardware construction language, and it discussed an implementation that was



CHAPTER 5. A DIGITAL SPECTROMETER DESIGN 71

fabricated and tested in 28nm UTBB-FDSOI. The results suggest that writing generators to
support an array of design options rather than single instances targeted for specific applica-
tions may lead to less work overall, as they can adjust for specification changes on-the-fly.
Also, chips produced from these generators can still compete with the high performance
and low power of state-of-the-art, hand-tuned designs. Future work will include analog com-
ponent generators, so that high-speed links or ADCs may be automatically generated to
meet desired specifications for inclusion on chip. Finally, radiation hardening is paramount
for hardware targeting deployment in space, so future work is needed to precisely and au-
tomatically characterize the hardness of a design and improve the soft error tolerance as
needed.



72

Chapter 6

Example: A Signal Analysis SoC

6.1 Introduction

The second example design presented in this thesis is a complete signal analysis SoC. The
motivations behind producing this chip were twofold. First, the ideas and framework given in
previous chapters require an implementation to prove the effectiveness with which they can be
used to design complex SoCs. Second, there is a growing need for lightly integrated, low-power
radar signal analysis. The automotive industry uses radar for advanced driver assistance
systems (ADAS) and autonomous driving to detect nearby objects. Also, radar in drones and
airplanes is used for topography and collision detection and avoidance. The specifications and
designs arose in collaboration with Northrop Grumman Corporation (NGC) and Cadence
Design Systems (CDN), and the design framework and paradigm come from the ideas given
in earlier chapters. Although the design initially targeted radar receive processing, the signal
processing chain combined with the general-purpose processor are general enough to support
a variety of signal analysis applications.

This work demonstrates a complex SoC containing a signal processing accelerator and
a general-purpose processor from a set of open-source digital and analog generators [78]
written in Chisel [51] and BAG [55], as presented in previous chapters. The general-purpose
processor is a generated RISC-V core with new ISA accelerators, and the signal processing
accelerator comes from a new generator of streaming signal processing functions. Individual
processing elements borrow their architecture and sometimes their code from the ASIC spec-
trometer presented in the previous chapter. Section 6.2 describes the architecture produced
by the generator. Testing and measurement results are given in Section 6.5. The presented
instance is general enough to apply in a variety of signal processing contexts, and Section 6.6
demonstrates several of these applications. Finally, Section 6.7 walks through the evolution
of this chip, noting how an agile design flow influenced the process and ensured the tape-out
deadline was met.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 73

AXI4 Control Crossbar

Memory-Mapped 
IO Manager

AXI4 Data Crossbar

Scalar 
RF FPU

64-bit RISC-V Core

16KB 
Scalar 

D$

16KB 
Scalar 

I$

         TileLink Crossbar

512KB 
L2$

8MB On-Chip 
Main Memory

Serial 
Adapter

Rocket
CPU

DSP 
Chain

512KB Pattern Generator 
512KB Logic Analyzer

MUXed with each 
            block's IO

DSP Accelerator

SCR SCR SCR SCR

160KB 
SAM

256KB 
SAM

64KB 
SAM

64KB 
SAM

64KB 
SAM

TileLink Interfaces

AXI4 Interfaces

AXI4-
Stream

Interfaces
SCR

Vector 
Runahead 

Unit

Master Sequencer

Hwacha Vector Accelerator

8KB 
Vector I$

Scalar Unit

Mem
Vector 
Lane 0

Mem

Vector 
Lane 1

Mem

Vector 
Lane 2

Mem

Vector 
Lane 3

Mem

32-phase Tuner
136-tap prog FIR
and /8 Decimator

12-tap fixed poly-
phase filter 128-point FFT

TISAR 
ADC

18KB
LUT

to AXI4 Data 
Crossbar

to AXI4 Data 
CrossbarJTAG to AXI4 UART

SRAM-
based
Memory

Memory-
mapped
SCR

Generated
Analog
IP

DM
A 

Ac
ce

le
ra

to
r

DSP clock
domain

core clock
domain

Figure 6.1: Block diagram of the SoC architecture.

6.2 SoC Architecture

Figure 6.1 shows the system architecture. The SoC is divided into a general-purpose processor
and a dedicated signal processing accelerator. Communication between the processor and the
accelerator is handled through a memory-mapped IO manager.

6.2.1 General-Purpose Processor

The chip includes a general-purpose processor that connects a host with the chip, programs
the signal processing accelerator, moves data, and computes what other on-chip accelera-
tors cannot. The 64-bit single-issue in-order RISC-V Rocket CPU includes a single-/double-



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 74

precision (SP/DP) floating-point unit (FPU). Provisions in the RISC-V ISA support exten-
sions to the instruction set, and this chip includes two accelerators using ISA extensions.
A direct memory access (DMA) accelerator extends the ISA through the Rocket Custom
Coprocessor (RoCC) interface and offloads memory movement between the processors from
the CPU, allowing both the general-purpose processor and the signal processing accelerator
to continue computing while data moves around. The 4-lane high-performance Hwacha vec-
tor accelerator implements a decoupled vector-fetch architecture and can perform compute-
intensive parallel workloads not handled by the signal processing accelerator. A new addition
to the Rocket Chip memory hierarchy was the inclusion of on-chip main memory. This limits
the memory size to something that can fit on-chip, but speeds up memory access. The main
memory is split into channels and banks, with a programmable number of channels and
banks per channel. This SRAM array backs the L2 through a TileLink interface. A serial
adapter tethers the CPU to the FPGA host, which writes programs to the on-chip 8 MB
main memory before booting the core. An asynchronous FIFO permits low-speed, off-chip
data from the host to communicate with the high-speed Rocket CPU. A custom clock re-
ceiver supplies the core clock, which clocks the CPU, accelerators, entire memory hierarchy,
and TileLink interconnects.

6.2.2 Digital Signal Processing Accelerator

The digital signal processing accelerator architecture is a streaming processor with processing
elements communicating through AXI4-Stream interfaces. The Chisel generator contains
memory-mapped IO registers that take commands from either the CPU or a JTAG debug
port. Asynchronous FIFOs buffer data between the core clock, DSP clock, and JTAG clock
domains. Separate AXI4 crossbars access status and control registers (SCRs) and data buffers
(SAMs). For testing, a 512 KB pattern generator and 512 KB logic analyzer allow direct
access to inputs and outputs of individual processing elements (PEs). A chain of PEs receives
data from a BAG-generated 8-bit time-interleaved successive approximation (TISAR) ADC
with lookup table (LUT)-based static calibration, and it also provides a clock to the PEs
and AXI4 crossbars. The UART provides a backup interface into the RISC-V core, and the
JTAG provides a backup interface into the accelerator.

6.2.3 Processing Elements

The selected PEs implement a signal analysis accelerator targeting spectral analysis or radar
receive chain processing. Figure 6.2 shows the parameterization of PEs in green atop the final
implementation diagram. Later sections describe individual elements. The ADC LUT outputs
9 bits for testing, so a custom bit manipulator (BM) PE truncates this to 8 bits. The next two
PEs comprise a digital down-converter (DDC). A 32-entry LUT-based digital tuner mixes the
input signal with a complex sinusoid, and a fully-programmable 136-tap complex FIR filter
shapes the signal and decimates it by 8. A 12-tap fixed-function polyphase filter multiplies
the time-series data by a sinc function to window each FFT bin and reduce frequency-



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 75

ID

in0
in1

in31

...

multiplier
ID

32-entry complex
sinusoid LUT...

Tuner

pipe cnt

4
4

4

LUT type

datatype

[Q0.7]

# lanes

datatype [CQ1.7]

[CQ0.7]

datatype

... ...

# entries
scale

...

...

Filter Decimator

# lanes

coeff 0
ID

coeff 1

coeff 135

...
...

# taps

delay, 
sum, 
and 

decimate
by 8

1
1

1

pipe cnt

...

5
5

5

pipe cntdecimate
[CQ0.10]

datatype [CQ-3.10]

...
Polyphase 

Filter

ID

...

# taps

delay 
and 
sum

1
1

1

pipe cnt

...

1
1

1

[CQ-6.17]

coeffs
datatype

[CQ-6.17]

pipe cnt

...

window

128-point 
windows

12 taps136 taps

x4x32

LUT FFT

x2

ID

Biplex
stage 0

x2

Biplex 
stage 1

32 stages

# points

twiddle

_ dly

dly

switch 
Biplex FFT Stage

butterfly

Direct FFT

pipe cnt*

[CQ0.14]

butterfly

...

datatype
# lanes

out0
out1

out3
out25 1

datatype
# lanes *FFT pipeline registers distributed between stages

BM

datatype
# lanes

...

[Q1.7]

truncates
9-bit 
ADC

output

...

128 
points

datatype
# lanes

Figure 6.2: Detailed diagram of the processing elements in the DSP accelerator. Red boxes
indicate memory-mapped IO SCRs. Green overlays show generator parameters. Blue text
gives fixed-point data type parameters chosen. CQ = complex fixed-point number.

domain spectral leakage. A 128-point radix-2 FFT, comprised of 32-point biplex pipelined
FFTs and a 4-point direct-form FFT, produces the complex spectrum output. The chain
generator supports arbitrary ordering and duplication of PEs, so the chosen arrangement of
PEs represents just one possible DSP accelerator configuration.

6.2.4 Bit Manipulator

The simplest processing element, the bit manipulator directly passes the input data through
to the output. However, given that input and output datatypes are parameterized, automatic
datatype conversion provides the utility of this block. For example, this chip used the bit
manipulator to truncate the 9-bit ADC calibration output into 8 bits, since the MSB was
only useful for testing. Also, as all processing elements support connections to the logic
analyzer, pattern generator, and a SAM, including a bit manipulator without any data-level
modifications allows the designer to place these DfT connections anywhere. The radar chip
includes two bit manipulators right at the beginning of the chain. The first one connects the
9-bit ADC calibration RAM outputs to a SAM and the logic analyzer for direct monitoring
of calibrated ADC data. The second block truncates these 9 bits into 8, as the ADC produces
only 8 real bits. Listing 6.1 shows an example of a bit manipulator definition that truncates
the MSB and provides connections to a SAM and the logic analyzer. Figure 6.3 gives a
block diagram of what the configured bit manipulator looks like, without the external DfT
connections.

Listing 6.1: Bit Manipulator configuration example

def bmConfig() = BitManipulationConfig(lanes = 32)

def bmInput() = FixedPoint(9.W, 0.BP)

def bmOutput() = FixedPoint(8.W, 0.BP)

def bmConnect() = BlockConnectionParameters(connectPG = false, connectLA = true,

addSAM = true)

def bmSAMConfig() = Some(SAMConfig(subpackets = 32, bufferDepth = 128))



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 76

ID

in0
in1

in31
datatype

[Q7.0]

...

BM

datatype
# lanes

...

[Q8.0]

...
Figure 6.3: Bit manipulator, showing how the output is directly connected to the input, but
datatype conversion is implicit.

6.2.5 Tuner

The tuner processing element implements a digital downconversion. The inputs can be either
complex or real. If the inputs are real, they are mapped to the real part of complex values
before being multiplied by the mixer coefficients. The coefficients and outputs are always
complex.

There are loosely two main configuration options for the mixer. The options are called
SimpleFixed or Fixed. In the SimpleFixed scenario, input lanes are multiplied by programmable
phase values defined in the SCRFile. The SCRFile provides one phase value for each lane.
Phase values are always signed and complex.

In the Fixed scenario, the phase values are restricted to being one of 2π
N

phases where N is
defined by the parameter mixerTableSize. The mixerTableSize must be an integer multiple of
the number of lanes. The SCR file allows control of input k, also called FixedTunerMultiplier,
which will specify to use phase 0, 2πk

N
, 2× 2πk

N
, 3× 2πk

N
. This sequence will inherently roll over

and repeat after at most N phases and thus each input lane will always use the same value
once k is chosen. The values of sin and cos may be multiplied by a small constant slightly less
than 1 (e.g. .999) to prevent rounding or truncation from causing bit growth. See Figure 6.4.
Note that some lanes may be able to use any phase while other lanes will be restricted to a
subset of the phases. For example, lane 0 will always use a constant of approximately 1 + 0i.

Listing 6.2 shows sample configuration code, and Figure 6.5 gives the block diagram for
this configuration. Note this example uses mixed data types, so the input is real valued but
the output and coefficients are complex.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 77

Address Real Imaginary
0 cos(0*2π/N) sin(0*2π/N)
1 cos(1*2π/N) sin(1*2π/N)
2 cos(2*2π/N) sin(2*2π/N)

N-1 cos((N-1)*2π/N) sin((N-1)*2π/N)

...

0
1
2

N-1

Lane ID

FixedTunerMultiplier

To Tuner

Mixer Phi Tables

One copy per lane so
lane ID is constant

...

Figure 6.4: Tuner coefficient LUT diagram for the Fixed configuration. This architecture
simplifies the hardware by hard-coding coefficients and requiring a single multiplier input.

Listing 6.2: Tuner configuration example

def tunerConfig() = TunerConfig(pipelineDepth = 4, lanes = 32, phaseGenerator =

"Fixed", mixerTableSize = 32, shrink = 1.0)

def tunerInput() = FixedPoint(8.W, 7.BP)

def tunerMixer() = DspComplex(FixedPoint(9.W, 7.BP), FixedPoint(9.W, 7.BP))

def tunerOutput() = DspComplex(FixedPoint(8.W, 7.BP), FixedPoint(8.W, 7.BP))

def tunerConnect() = BlockConnectEverything

def tunerSAMConfig() = Some(SAMConfig(subpackets = 1, bufferDepth = 4096))



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 78

...

multiplier
ID

32-entry complex
sinusoid LUT...

Tuner

pipe cnt

4

4

4

LUT type

datatype

[Q0.7]

# lanes

datatype [CQ1.7]

[CQ0.7]

datatype

# entries
scale

...

Figure 6.5: Example tuner block diagram. Note the implicit conversion from real to complex.
Pipeline registers are all placed at the output. Direct synthesis tools to retime as needed for
improved performance.

6.2.6 Decimating Filter

The filter implements an FIR filter, with decimation done by dividing down the number of
parallel outputs. The user can choose any number of taps and parallel inputs. Multiplica-
tion is performed first, followed by summation. The number of outputs must be an integer
divisor of the number of inputs. All outputs are calculated, and it is assumed that synthesis
tools will remove unnecessary logic if there are fewer outputs than inputs. Tap coefficients
are programmable through the SCR file, and can be a distinct data type from the input
and output. Pipeline registers and decimation are handled at the output. A highly parallel
implementation will benefit from pipeline registers and retiming within synthesis tools. List-
ing 6.3 shows an example configuration of a decimating filter. The processing delay parameter
lets the user specify an explicit group delay. This value determines the number of pipeline
registers applied to the TLAST and TVALID signals between the input and output in the
AXI4-Stream protocol. Figure 6.6 shows a simplified block diagram of this filter decimator.

Listing 6.3: Decimating Filter configuration example

def firConfig() = FIRConfig(numberOfTaps = 136, lanesIn = 32, lanesOut = 4,

processingDelay = 2, multiplyPipelineDepth = 1, outputPipelineDepth = 5)

def firInput() = DspComplex(FixedPoint(8.W, 7.BP), FixedPoint(8.W, 7.BP))

def firTaps() = DspComplex(FixedPoint(8.W, 10.BP), FixedPoint(8.W, 10.BP))

def firOutput() = DspComplex(FixedPoint(11.W, 10.BP), FixedPoint(11.W, 10.BP))

def firConnect() = BlockConnectEverything

def firSAMConfig() = Some(SAMConfig(subpackets = 1, bufferDepth = 4096))



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 79

[CQ0.7]

datatype

... ...

...

Filter Decimator

# lanes

coeff 0
ID

coeff 1

coeff 135

...
...

# taps

delay, 
sum, 
and 

decimate
by 8

1
1

1

pipe cnt

...

5
5

5

pipe cntdecimate
[CQ0.10]

datatype [CQ-3.10]

136 taps

x32

5

datatype

Figure 6.6: Simplified decimating filter block diagram, with delay and summation logic ob-
fuscated.

6.2.7 Polyphase Filter

The polyphase filterbank (PFB) is implemented as described in the CASPER website [56],
and this architecture is the same as the spectrometer ASIC architecture. In Chisel, the
design is split into parallel lanes. Each parallel lane implements a FIR filter in transposed
form, using Chisel Mems for delays, which may be mapped to SRAMs. Currently, only
constant coefficients are allowed. However, a selection of windowing functions are provided
in Windows.scala. Pipelining is split into registers placed at the output of each multiplier,
and registers placed at the output. The number of taps is an independent parameter, but
each lane has the same number of taps. When specifying a configuration, the tap datatype
can be distinct from the the input and output datatypes, but a conversion function must
be supplied, as seen in Listing 6.4. Similar to the decimating filter, the processing delay
parameter specifies a custom group delay for pipelining the TLAST and TVALID signals.
Figure 6.7 has the block diagram.

Listing 6.4: Polyphase Filter configuration example

def pfbConfig() = PFBConfig(windowFunc = BlackmanHarris.apply, processingDelay =

192, numTaps = 12, outputWindowSize = 128, lanes = 4, multiplyPipelineDepth =

1, outputPipelineDepth = 1)

def pfbInput() = DspComplex(FixedPoint(11.W, 10.BP), FixedPoint(11.W, 10.BP))

def pfbTap = DspComplex(FixedPoint(12.W, 17.BP), FixedPoint(12.W, 17.BP))

def pfbConvert(x: Double) = DspComplex(FixedPoint.fromDouble(x, 12.W, 17.BP),

FixedPoint.fromDouble(0.0, 12.W, 17.BP))

def pfbOutput() = DspComplex(FixedPoint(12.W, 17.BP), FixedPoint(12.W, 17.BP))

def pfbConnect() = BlockConnectEverything

def pfbSAMConfig() = Some(SAMConfig(subpackets = 1, bufferDepth = 4096))



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 80

[CQ0.10]
...

Polyphase 
Filter

ID

...

# taps

delay 
and 
sum

1
1

1

pipe cnt

...

1
1

1

[CQ-6.17]

coeffs
datatype

[CQ-6.17]

pipe cnt

...

window

128-point 
windows

12 taps

x4

LUT

1

datatypedatatype
# lanes

Figure 6.7: The polyphase filter looks almost identical to the decimating filter, but the
polyphase filter lanes are kept distinct, while the decimating filter treats all lanes as one
continuous input.

6.2.8 Fourier Transform

The fast Fourier transform (FFT) is implemented a similar way to the FFT in the spectrom-
eter ASIC. The FFT supports any power of two size of 4 or greater (n ≥ 4). The input rate
may be divided down, resulting in a number of parallel input lanes different from the FFT
size. But the input lanes (p) must be a power of 2, greater than or equal to 2, but less than
or equal to the FFT size. Twiddle factors are hard-coded for you. The transform is split into
pipelined biplex FFTs and a direct form FFT to multiplex the logic for large FFT sizes [75].

When the number of parallel inputs equals the FFT size, a simple, direct form, streaming
FFT is used, as seen in Figure 6.8 with the number of biplex stages being zero. The dotted
line marks an example stage boundary, or place where pipeline registers may be inserted.
The input will never be pipelined, but the output might be pipelined in Chisel based on the
desired pipeline depth. Pipeline registers are automatically inserted in reasonable locations.

When the input is serialized, the FFT may have fewer input lanes than the size of the
FFT. In this case, the inputs are assumed to arrive in time order, time-multiplexed on the
same wires. To accommodate this time multiplexing, the FFT architecture changes. Pipelined
biplex FFTs are inserted before the direct form FFT. These FFTs efficiently reuse hardware
and memories to calculate the FFT at a slower rate but higher latency. Figure 6.8 shows
their architecture, as taken from the JPL technical report. The dly boxes are shift registers of
decreasing delay values, and the boxes with dotted lines in them are 2-input barrel shifters,
periodically crossing or passing the inputs at decreasing rates. An extra shift register on the
stage 0 bottom input aligns the adjacent channels, and extra shift registers at the output
unscramble the data before they arrive at the direct form FFT. The reorder block seen in the
previous chapter was removed for simplicity, so real-valued FFTs must use complex inputs
with zeros as imaginary components. Pipeline registers may be inserted after each butterfly,



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 81

[CQ-6.17]

FFT

x2

ID

Biplex
stage 0

x2

Biplex 
stage 1

32 stages

# points

twiddle

_ dly

dly

switch 
Biplex FFT Stage

butterfly

Direct FFT

pipe cnt*

[CQ0.14]

butterfly

...

datatype

out0
out1

out3
out2

datatype
# lanes *FFT pipeline registers distributed between stages

128 
points

Figure 6.8: Fast Fourier transform block diagram. The ratio of biplex to direct FFT butterflies
scales automatically with the specified number of points and lanes. Twiddle factors and
intermediate bitwidths are calculated automatically for any design size.

but never at the input or output of the biplex portion. The input is assumed pipelined
by previous blocks, and the output of the biplex has shift registers already. A final direct
form FFT sits at the output of the biplex FFTs, finishing the Fourier transform. Pipeline
registers favor the direct form FFT slightly, though the critical path through this circuit is
still through log2(n) butterflies, so one pipeline register per stage (a pipeline depth of log2(n))
is recommended. Bitwidths grow immediately to the estimated output bitwidth assuming
one bit growth per stage. This growth is split between the biplex and direct FFT stages, so
bitwidth growth happens twice. If the output has more or fewer bits than normal growth
would imply, the result is automatically truncated or sign-extended as needed. Listing 6.5
and Figure 6.8 give parameterization code and block diagram examples, respectively.

Listing 6.5: FFT configuration example

def fftConfig() = FFTConfig(n = 128, lanes = 4, pipelineDepth = 7)

def fftInput() = FixedPoint(12.W, 17.BP) // gets complexed automatically

def fftOutput() = FixedPoint(15.W, 14.BP) // gets complexed automatically

def fftConnect() = BlockConnectEverything

def fftSAMConfig() = Some(SAMConfig(subpackets = 1, bufferDepth = 4096))



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 82

6.3 IP Integration

Components outside the purview of the generator framework required special integration to
be fully supported. This section explores these blocks, including architectural and program-
matic considerations required to incorporate outside designs. Though analog IP play a key
role in any signal processing system, this work considers them an external IP that must
be integrated, as the generation of analog designs are not part of the framework. Thus the
ADC and clock receiver are the first IP considered. The UART design comes from Cadence,
and its inclusion was simplified by nature of its standardized interface. Finally, any digital
system is going to include SRAMs from a memory compiler and IO cells, both likely from the
technology vendor. However, connecting these components into the system required external
scripts.

6.3.1 ADC and Calibration

The ADC is integrated as an analog black box.A Chisel black box contains only the interface,
with the expectation that the module itself will be replaced with a model for simulation or
IP for synthesis and place-and-route. The top-level IO includes differential clock and data
inputs, supplies, and references. These are punched through the hierarchy by mixing in a
special trait and manually declaring the connections. Digital configuration pins for the ADC
are manually added to the floating SCR file, as seen in Listing 6.6.

The output of the ADC is are 8 9-bit words, though the data rate requires a 1.2 GHz
clock. To avoid such a high-speed signal processing path, the outputs are deserialized by a
factor of 4 before being calibrated. The deserializer on the output of the ADC was written
in Verilog to account for the intricate clocking. It is integrated as a black box in Chisel, just
like the ADC, and it produces 32 9-bit words at 300 MHz.

Calibration is handled by a runtime-programmable SRAM memory bank, written in
Chisel. It connects the deserialized ADC outputs to the address ports of 32 SRAMs, and
outputs the read port into the signal processing chain. Initial TVALID and TLAST signals
for the AXI4-Stream interface just come from registers in the floating SCR file. Special
modes of the calibration SRAMs support loading of calibration data, storing ADC samples
directly into the memory instead of using them as the address, and reading out of these
SRAMs through the SCR file. To store calibrated ADC data samples directly for testing, a
SAM must be connected after the calibration RAMs. This is done through a bit manipulator
processing element that passes its input to its output without any modifications.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 83

Listing 6.6: Some of the ADC and calibration integration code required

trait ADCTopLevelIO {

val ADCBIAS = Analog(1.W)

val ADCINP = Analog(1.W)

val ADCINM = Analog(1.W)

val ADCCLKP = Input(Bool())

val ADCCLKM = Input(Bool())

val adcclkreset = Input(Bool())

}

trait LazyADC {

def scrbuilder: SCRBuilder

scrbuilder.addControl("OSP", 0.U)

scrbuilder.addControl("OSM", 0.U)

scrbuilder.addControl("ASCLKD", 0.U)

scrbuilder.addControl("EXTSEL_CLK", 0.U)

scrbuilder.addControl("VREF0", 0.U)

scrbuilder.addControl("VREF1", 0.U)

scrbuilder.addControl("VREF2", 0.U)

scrbuilder.addControl("CLKGCAL", 0.U)

scrbuilder.addControl("CLKGBIAS", 0.U)

scrbuilder.addControl("ADC_VALID", 0.U)

scrbuilder.addControl("ADC_SYNC", 0.U)

}

trait LazyCAL {

def scrbuilder: SCRBuilder

scrbuilder.addControl("MODE", 0.U)

scrbuilder.addControl("ADDR", 0.U)

scrbuilder.addControl("WEN", 0.U)

(0 until 32).foreach { i =>

scrbuilder.addControl(s"CALCOEFF$i", 0.U)

scrbuilder.addStatus(s"CALOUT$i")
}

}

trait ADCModule {

def io: DspChainIO with DspChainADCIO

def scrfile: SCRFile

def clock: Clock // module’s implicit clock

def reset: Bool



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 84

val adc = Module(new TISARADC)

attach(io.ADCBIAS, adc.io.ADCBIAS)

attach(io.ADCINP, adc.io.ADCINP)

attach(io.ADCINM, adc.io.ADCINM)

adc.io.ADCCLKM := io.ADCCLKM

adc.io.ADCCLKP := io.ADCCLKP

def wordToByteVec(u: UInt): Vec[UInt] = u.asTypeOf(Vec(8, UInt(8.W)))

def wordToNibbleVec(u: UInt): Vec[UInt] = u.asTypeOf(Vec(16, UInt(4.W)))

def wordToBoolVec(u: UInt): Vec[Bool] = u.asTypeOf(Vec(64, Bool()))

val osp = wordToByteVec(scrfile.control("OSP"))

val osm = wordToByteVec(scrfile.control("OSM"))

val asclkd = wordToNibbleVec(scrfile.control("ASCLKD"))

val extsel_clk = wordToBoolVec(scrfile.control("EXTSEL_CLK"))

val vref0 = scrfile.control("VREF0")

val vref1 = scrfile.control("VREF1")

val vref2 = scrfile.control("VREF2")

val clkgcal = wordToByteVec(scrfile.control("CLKGCAL"))

val clkgbias = scrfile.control("CLKGBIAS")

...

6.3.2 Clock Receiver

A custom analog clock receiver takes a differential LVDS input and produces a single, sharp
clock on chip. Like other IP, it is a black box in Chisel, and ports are punched through
the hierarchy using traits and analog connection commands. Since Chisel has implicit clock
ports everywhere, instantiating the clock receiver inside a module then connecting the clock
produced to that module’s registers and submodules is nontrivial. To simplify this, an extra
hierarchical module is added above the usual top level, and the clock receiver output is looped
around and connected to the implicit clock port, as seen in Figure 6.9. The new hierarchical
top module’s clock pin becomes the clock for the serial interface asynchronous FIFOs.

6.3.3 UART

As with other IP, the UART is included as a black box in Chisel, backed by a Verilog
model for verification and synthesis. The UART is a third-party IP developed by Cadence
and integrated as a slave coming off the MMIO manager. Internally the UART contains
an AXI4 to APB converter, and the UART speaks APB directly. A TileLink to AXI4 and
asynchronous FIFO connect the UART to the processor, and the UART IO get punched to
the top level through mixins.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 85

Figure 6.9: Clock looping to override default clock connections. The asynchronous FIFOs
convert between the slow external clock domain and the fast on-chip clock domain.

6.3.4 Memories and IO

Mapping SRAMs from FIRRTL abstractions to physical memories is handled through a
python script, which calls the memory compiler under the hood. The vlsi mem gen script
contains a dictionary of all the possible memories. When called with desired memories (as a
.conf file emitted by FIRRTL), the script maps these to real memories using simple heuris-
tics. For example, it first tries to match the size perfectly. Large width and depth memories
are split into banks of smaller memories, with the requisite logic to split the transactions.
Memories that were generated previously are not re-generated, and new memories are gen-
erated in parallel, to save time. The memory Verilog models support initialization of the
memory bits to known values to save time. The python script assumes you want random
values, and so the generated .cde files which initialize the memories reflect this.

A python script, create pads.py inserts a pad frame around the top-level Verilog mod-
ule, creating a new top-level. Port names must be manually specified, along with their pad
cell types, in the dictionary at the top. Pad-frame-specific cells are included and handled by
the script. The JTAG TDO output signal is unique in requiring a tristate output, driven by
two binary signals from the JTAG unit where one signal disables the output and the other
determines the data value. Since the digital IO cells support switching between input mode
and output mode using tristate inverters, this is how the JTAG TDO output is handled. As
outputs, the script produces a pad frame Verilog file, a new top-level file that connects the



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 86

pad frame to the previous top-level module, a .io file for consumption by Innovus, and a
single Verilog file containing the behavioral models for only those pad frame cells used.

6.4 Verification and Design-For-Test

Verification of the generators and instances was split into unit level tests and system level
tests. The Rocket CPU comes with its own verification infrastructure, and this is considered
at the system level. Design for test structures in the hardware support simple translation of
design-time verification tests into hardware instance validation tests.

6.4.1 Unit Tests

At the unit level, two verification paradigms are adopted. The first involved writing Chisel
tests for the processing element generators. Since the processing elements all contain the
same interfaces (AXI4-Stream data inputs and outputs, and an AXI4 control interface),
boilerplate functions simplify transaction definitions for verification. For example, SCR file
registers are all 64-bit unsigned integers accessed through the AXI4 interface. But some
processing elements, such as the FIR filter, have programmable coefficients residing in the
SCR file but converted to an alternate datatype internally. Manually converting a number
like -3.72 from a double to the arbitrarily defined datatype of the filter coefficients, then
to a 64-bit unsigned integer, would be a hassle. Thus custom functions pokeAs and peekAs

provide the capability of writing and reading values represented by some arbitrary datatype
(such as a DspComplex with underlying FixedPoint) to and from interfaces using an unsigned
integer datatype (such as the AXI4 data signals). Another function added is the ability to
read and write memory-mapped SCR file registers using their name reference rather than
their physical address. This allows testbenches to scale correctly when new registers are
added to processing element SCR files. This was coupled with generalized AXI interface
driver functions to create axiWrite and axiRead, and further combined with pokeAs and
peekAs to create axiWriteAs and axiReadAs, as seen in Listing 6.7 for the FIR filter.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 87

Listing 6.7: Example AXI interface function definition and usage

// write a value formatted as type T to an address through the AXI4 interface

def axiWriteAs[T<:Data](addr: BigInt, value: Double, typ: T): Unit = {

// AXI write address and data channels

poke(axi.aw.valid, 1)

poke(axi.aw.bits.addr, addr)

poke(axi.aw.bits.len, 0)

poke(axi.aw.bits.size, log2Ceil(axiDataBytes))

poke(axi.w.valid, 1)

dspPokeAs(axi.w.bits.data, value, typ)

poke(axi.w.bits.strb, 0xFF)

poke(axi.w.bits.last, 1)

var waited = 0

var a_written = false

var d_written = false

while (!a_written || !d_written) {

if (!a_written) { a_written = aw_ready }

if (!d_written) { d_written = w_ready }

require(waited < maxWait, "Timeout waiting for AXI AW or W to be ready")

step(1)

if (a_written) { poke(axi.aw.valid, 0) }

if (d_written) { poke(axi.w.valid, 0); poke(axi.w.bits.last, 0) }

waited += 1

}

// AXI write response channel

waited = 0

do {

require(waited < maxWait, "Timeout waiting for AXI B to be valid")

step(1)

waited += 1

} while (!b_ready);

poke(axi.b.ready, 1)

step(1)

poke(axi.b.ready, 0)

}

// write all the FIR filter coefficients to its SCR file registers

coeffs.zipWithIndex.foreach { case(x, i) =>

axiWriteAs(addrmap(s"Coefficient_$i"), x, fgk.genCoeff) }



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 88

To simplify verification of the streaming interface, AXI4-Stream inputs and outputs in-
terface with software buffers. An input sequence is defined and subsequently played through
the streaming input interface using the playStream function. To support AXI4 status and
control interactions with the processing element without considering their latency overhead,
the input stream can be paused with the pauseStream function, which invalidates input data
and does not increment the read pointer of the input buffer. When output data are valid,
they are added to the output buffer. Conversion between processing element IO datatypes
and AXI4-Stream unsigned bits is automatically handled through software packing and un-
packing, similar to pokeAs and peekAs but on an entire stream of data. These are the
packInputStream and unpackOutputStream functions. Listing 6.8 gives examples of these
functions for the tuner testbench.

Listing 6.8: Example definition and usage of some convenient processing element testing
functions for the AXI4-Stream interface

// define input datasets here

val in = Seq.tabulate(test_length)(_=>

Seq.tabulate(sync_period)(_=>

Seq.tabulate(gk.lanesIn)(_=>

Random.nextDouble*2-1 )))

def streamIn = in.map(packInputStream(_, gk.genIn))

// configure tuner

reset(5)

pauseStream

if (config.phaseGenerator == "Fixed") {

axiWrite(addrmap("FixedTunerMultiplier"), 2)

} else {

mult.zipWithIndex.foreach { case(x, i) =>

axiWriteAs(addrmap(s"mult$i"), x, genMult.getOrElse(gk.genOut[T])) }

}

// play stream and get output

playStream

step(test_length*sync_period)

val output = unpackOutputStream(gk.genOut, gk.lanesOut)

Easy programming through the AXI4 control interface and communication with the
AXI4-Stream data interfaces still requires useful tests and golden models to properly verify
a processing element. Some processing elements, such as the filters and FFT, leverage a
Scala numerical processing library called Breeze [79]. This obviates interfacing with MAT-
LAB or other common signal processing algorithm design frameworks. Listing 6.9 shows
how the FFT is verified by generating tones in each bin and comparing the results with a
Breeze Fourier transform reference. The compareOutputComplex function takes a tolerance



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 89

value (third argument) since hardware is fixed point and the reference is floating point.
And, though comparing against a reference is convenient, visualizing the data is sometimes
required. Plot.ly is a free, web-based data plotting service with Scala integration libraries.
This was used to visualize the PFB filter response, for example, as seen in Figure 6.10.

Listing 6.9: Example of using the Breeze fourierTr() function as a golden reference against
which the hardware is compared

import breeze.math.{Complex}

import breeze.signal.{fourierTr}

import breeze.linalg._

...

// bin-by-bin testing

val m = 16 // at most 16 bins

(0 until min(fftSize, m)).foreach{ bin =>

val b = if (fftSize > m) round(fftSize/m*bin) else bin // frequency

val tester = setupTester(c, verbose)

// generate and test tone in this frequency bin

val tone = getTone(fftSize, b.toDouble/fftSize)

val testResult = testSignal(tester, tone)

// run Breeze to get reference output, then compare

val expectedResult = fourierTr(DenseVector(tone.toArray)).toArray

compareOutputComplex(testResult, expectedResult, 1e-15)

teardownTester(tester)

}

Verification inside Chisel is convenient, but typically the testbenches are written by the
PE designers. Separating the two helps prevent designers from simply creating designs that
match their testbenches or testbenches that match their designs. Additionally, given their
standardized interfaces, the processing elements are useful outside this chip or even this
framework. Metadata languages, such as IP-Xact, allow outside designers and verifiers to
understand what the PE is doing and easily write their own unit tests. For this chip, Chisel
generates IP-Xact files for each PE, then NGC used the IP-Xact to help verify the design.
NGC used the IP-Xact and Cadence Verification Workbench (VWB) to generate a UVM
testbench, then used python scripts to read the IP-Xact parameters section and automatically
generate appropriate test vectors. Details on this approach are omitted as they are outside
the scope of my work, but suffice it to say their independent testing revealed design bugs
not exposed by the Chisel unit tests. For example, the Chisel unit tests vary parameters to
ensure functionality is maintained across designs. However, to decouple functionality issues
from numerical error, bitwidths and datasets are chosen so as not to saturate operations or
test noise limits. The NGC tests took the chosen parameterization and exercised these test
cases, discovering bugs hidden in the design that would limit performance.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 90

Figure 6.10: Visualizing the PFB filter response in Plot.ly.

6.4.2 System Tests

System-level testing of the general-purpose processor and signal analysis accelerator relied
on running compiled C programs. The RISC-V compiler for Rocket systems lives in the
rocket-chip repository as a submodule. Building the toolchain produces cross compilers
capable of compiling custom C code for both Verilog simulation and hardware testing. To
simplify testing, Chisel produces a C header file which maps the names of all the SCR
file registers to their addresses in define statements. This header file includes other helper
functions, like functions for reading and writing these memory-mapped registers and SAM
functions. Some of these features are shown in Listing 6.10, which contains a snippet of the
generated chain API header file.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 91

Listing 6.10: Generated C header snippet showing the mapping between registers and their
addresses and functions to access these registers

#define craft_radar_bm2_Wrapback 0x6800L

#define craft_radar_bm2_uuid 0x6808L

#define craft_radar_tuner_Wrapback 0x7000L

#define craft_radar_tuner_Data_Set_End_Clear 0x7008L

#define craft_radar_tuner_FixedTunerMultiplier 0x7010L

#define craft_radar_tuner_Data_Set_End_Status 0x7020L

#define craft_radar_tuner_uuid 0x7018L

#define craft_radar_fir_Coefficient_46 0x7980L

#define craft_radar_fir_Coefficient_52 0x79b0L

#define craft_radar_fir_Wrapback 0x7800L

#define craft_radar_fir_Coefficient_67 0x7a28L

...

static inline void write_reg(unsigned long addr, unsigned long data) {

volatile unsigned long *ptr = (volatile unsigned long *) addr;

*ptr = data;

}

static inline unsigned long read_reg(unsigned long addr) {

volatile unsigned long *ptr = (volatile unsigned long *) addr;

return *ptr;

}

Running programs requires first compiling the Verilog design and testbench in a sim-
ulator. The simulation side of the serial interface, written in C, connects the hardware to
testbench software that writes programs into the chip. This enables any compiled program to
be run in simulation. Design and testbench modifications allow integrated IP to be simulated
in conjunction with the processor. First, all IP requires a Verilog or SystemVerilog model
to simulate properly. The ADC has a custom SystemVerilog model, the clock receiver has
a simple differential-to-single-ended Verilog model, the UART design is Verilog already, the
memory compiler generates Verilog models for simulation, and the IO cells have their own
Verilog models as well. Second, certain IP, like the ADC, use real-valued analog pins. To
support SystemVerilog simulation with real-valued signals, a custom Chisel annotation was
added to add the real keyword to these analog pins. A noisy sine wave was driven into the
top-level ADC inputs to simulate a real signal, as seen in Figure 6.11.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 92

Figure 6.11: System simulations included a noisy sine wave input to the ADC to check for
end-to-end functionality.

6.4.3 DfT Considerations

Testing the hardware is aided by coupling the design with design-for-test (DfT) structures.
A JTAG debug module provides access to the signal processing accelerator as a backup to
the CPU. A pattern generator and logic analyzer connect to each PE’s IO and perform the
same unit-level verification on the chip after fabrication. The python testvector generators
also generate C code, playing inputs through the pattern generator and recording outputs in
the logic analyzer. These programs are then compiled and run on the chip after fabrication.
System-level tests are already compiled C programs that can run on the hardware as easily
as the simulator. Thus no additionally system-level DfT structures are required.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 93

Efficiency

0.56 V - 0.98 V
Max Frequency

Total SRAM Size
0.56 V - 0.98 V

Signal-Analysis Processor

417 MHz
Power 349 mW @ 0.75V, 410 MHz
Max Throughput
(Mspectra/s)

410 MHz
210 mW @ 0.75 V, 417 MHz

14 Mbits

13 @ 417 MHz

Area

Voltage
71 Mbits

0.46 (vector) 0.004 (scalar) 
@ 410 MHz

Annotated Layout Die Photo
Technology 16nm FinFET
Die Area 5mm x 5mm (25mm2)

General-Purpose Processor

19.2 TOPS/W (0.56V, 192MHz) 
(1 op = 8-bit add ~ 17-bit mul)

23.4 GFLOPS/W (0.56V, 191MHz)
(DGEMM on vector accelerator)

1.1 mm2 (gates) 
9.2 mm2 (SRAM)

1.5 mm2 (gates)
 0.8mm2 (SRAM)

Figure 6.12: Chip layout, die photo, and summary.

6.5 Testing Results and Measurements

The chip is implemented in TSMC’s 16nm FinFET technology and signed off at 300 MHz for
both the core and DSP clock domains at 0.72 V and 125oC. Figure 6.12 shows the 5 mm by 5
mm annotated layout, die photo, and chip summary. The 8 MB main memory, Hwacha vector
accelerator, and various other memories comprise most of the area. Also visible is the 136-tap
fully programmable FIR filter, composed of many complex multipliers and adders. By using
the Hwacha vector accelerator, at these conditions the general-purpose processor achieves
23.4 GFLOPS/W running double-precision matrix multiply on 256×256 matrices. For the
general-purpose processor, throughput is measured by moving FFT output data from the
SAM to the CPU memory and accumulating spectra using either the vector co-processor
or the scalar ALU and DMA. Throughput is measured for the signal-analysis processor at
the maximum operating frequency (see Figure 6.16 for more on spectral rates). Efficiency
for the signal-analysis processor accounts for all PEs, and one operation is anything from
a real 8-bit add to a 17-bit multiply, with complex adds and multiplies broken into their
real operations. The signal-analysis processor achieves 19.2 TOPS/W, with a breakdown of



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 94

Table 6.1: Breakdown of operations in the signal-analysis processor. Each operation is per-
formed once per cycle. C represents a complex number, R represents a real number, and
square braces show the number of bits for that operand. I assume C×R is 2 multiplies, C×C
is 3 multiplies and 5 adds, and C+C is 2 adds.

Block Operation Bitwidth Count Description
Tuner C×R 8 32 Input times value in ROM
Filter C×C 8 32×136 / 8 Input times 136 coefficients
Filter C+C 11 32×135 / 8 Adder trees
PFB C×C 12 4×12 Input times 12 coefficients
PFB C+C 12 4×11 Adder trees

FFT (Biplex) C×C 17 10 Butterfly multiplier
FFT (Biplex) C+C 17 20 Butterfly adders
FFT (Direct) C×C 16 4 Butterfly multiplier
FFT (Direct) C+C 16 8 Butterfly adders

operations shown in Table 6.1. It is assumed that decimation by eight in the filter reduces
the number of operations by eight, since decimation is performed by disconnecting outputs
and letting synthesis optimize away unnecessary operations. Also, the direct FFT operations
are 19 bits but the output is truncated to 16 bits, so this is counted as a 16 bit operation.

Figure 6.13 shows the shmoo and power plots for two processors. A shmoo plot indicates
under which operating conditions, typically frequency and voltage, the processor functions
correctly. Both function down to 0.56 V (the nominal supply is 0.8 V) and up to 410 MHz.
A success on the shmoo plot requires the general-purpose processor to pass all ISA unit
tests and the signal-analysis accelerator to pass all PE unit tests. Annotated on the shmoo
plots are the corner values, i.e. the minimum voltage at the maximum frequency and the
maximum frequency at the minimum supply voltage. The chip consumes less than 1 W total
for all modes.

Figure 6.14 shows the power and a typical calibration result for the 8 slice time-interleaved
SAR ADC, which features a fractional radix to produce 8 real output bits from 9 total bits.
The ADC reaches a max of 6.6 ENOB per slice and 6.4 ENOB total at 6 GS/s under a 0.9V
supply. Analog supplies are independent from digital supplies.

6.6 Signal Analysis Applications

In this section we present two applications running on the SoC. Using the pattern gener-
ator to produce arbitrary waveforms and replace the ADC as the input source hastened
the development and debugging of writing these programs by decoupling program errors
from ADC miscalibration, input noise, or instrument errors. The applications utilize many
SoC features, including the complete signal processing chain, DMA, vector accelerator, and
general-purpose processor. We compare the results with similar, fixed-function processors.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 95

0.56V, 191 MHz

0.75V, 410 MHz

General-Purpose Processor Shmoo General-Purpose Processor Total Power

Signal-Analysis Processor Shmoo Signal-Analysis Processor Total Power

0.56V, 192 MHz

0.75V, 417 MHz

Figure 6.13: Both processors function under similar operating condition ranges. The general-
purpose processor consumes more power because of the 8 MB main memory.

6.6.1 Spectrometry

Atmospheric spectrometers monitor molecule emissions to determine the composition of
gases. Given the low SNR of these emissions, spectrometers with a wide bandwidth and long
accumulation time are desired. A 512-pt FFT is formed by sweeping the tuner frequency to
allow the signal processor to analyze up to four frequency bands with a 128-pt FFT engine
(the filter decimates the data rate by eight, but half the bands are symmetric because the
input is real-valued). Figure 6.15 shows the signal processing path of a spectrometer input
dataset. The low-pass filter, with constrained equiripple coefficients designed in MATLAB,
passes the lower eighth of the spectrum to avoid aliasing when down converting. Its stopband
is at 40 dB below the passband, resulting in visible aliasing above the noise floor in the
combined spectrum. For each band, the tuner is set and the FFT outputs are stored in



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 96

ADC Total Power ADC Calibration

Figure 6.14: Typical ADC power consumption is less than 50 mW at 0.9V. Calibration of
the ADC reduces noise and spurs.

Tuner FIR Filter
Decimator

Polyphase
Filter FFTADC

6 GS/s

DMA+Vector
CPU

(1) (2) (3) (4)

^2 Σ

Figure 6.15: Spectrometer signal processing example. Snapshots captured in the SAMs. (1) A
real-valued signal is sampled through the calibrated ADC, producing a symmetric spectrum.
(2) Four tuner LO frequencies are mixed with the input, producing four frequency-shifted
spectra. (3) These spectra are low-pass filtered and down-converted by 8, resulting in four
separate frequency bands. (4) The bands are Fourier transformed, accumulated, and com-
bined on the CPU. This figure shows 100 accumulated spectra.

the SAM before being moved into the general-purpose processor’s memory by the DMA.
The power is calculated and accumulated using the vector accelerator. The use of these
accelerators boosts the data processing rate for this application by over 10x, as seen in
Figure 6.16. While not designed specifically for spectrometry, this work is competitive with
other published ASIC spectrometers, as seen in Table 6.2.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 97

Table 6.2: Comparison of state-of-the-art ASIC spectrometers

CICC’09 [38] CICC’15 [14] CICC’18 [80] This Work
Technology 90nm CMOS 65nm CMOS 28nm FDSOI 16nm FinFET
Bandwidth 0.75 GHz 1.1 GHz 8.5 GHz 3.0 GHz
FFT Size 8192 pts 512 pts 8192 pts 128 - 512 pts

Integrated ADC No Yes No Yes
Power 1500 mW∗ 188 mW 5200 mW 586 mW

ADC Output 8 bits 7 bits 3 bits 8 bits
Can post-process No No No Yes

On-chip Accum. Depth 16M Spectra 1024 Spectra 65520 Spectra Infinite
∗excludes ADC power

6.6.2 Radar

Unlike atmospheric spectrometry, radar operates on fixed or variable short pulses or frequency-
modulated continuous wave (FMCW) signals. These higher SNR signals require less accu-
mulation, but processing speed limits the detectable range resolution. Figure 6.17 shows
an example measured spectrogram of 4 µs fixed-frequency pulses, repeating every 8 µs. The

10.85x

Figure 6.16: Using the vector and DMA accelerators speeds up spectral accumulation by
over 10x. This plot includes the overhead of sweeping the tuner frequency to monitor four
frequency bands, so each spectrum is 512 channels.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 98

Figure 6.17: Measured spectrogram of a 4 us pulse at 876 MHz.

tuner is set to view frequency bands containing the expected signal, and the FFT outputs
a spectrum every 171 ns when the ADC operates at 6 GS/s. For unmodulated pulsed signals
as in Figure 6.17, the minimum pulse repetition frequency (PRF) this SoC can resolve is 2.9
MHz (pulses per second), leading to a minimum range resolution of

c

2 × PRF
= 51.7 m. (6.1)

It is possible to increase resolution by implementing pulse compression. The vector accel-
erator has sufficient throughput to convolve the received signal with the expected signal, and
the FFT may be reused to perform an IFFT to recover the compressed signal. At 6 GS/s and
by using a single frequency band with a 750 MHz wide linear frequency-modulated (LFM)
chirp, this system has a minimum range resolution of 0.2 m.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 99

6.7 Agile Design Process

This section explores agile prototyping of the radar receive chain by building it up piece-by-
piece and how to respond to changing specifications.

Previous agile chip design flows considered a tape-in product to be a GDS (a Graphic
Database System, which is the final submission that a foundry uses to create the chip).

“We first push a trivial prototype with a minimal working feature set all the way
through the toolflow to a point where it could be taped out for fabrication....
The agile hardware methodology will always have an available tape-out candidate
with some subset of features for any tape-out deadline, whereas the conventional
waterfall approach is in danger of grossly overshooting any tape-out deadline
because of issues at any stage of the process.”

(Lee 2016 [33])

For this chip, the RTL design and physical design teams were separated, so we redefined
what a tape-in meant for the RTL design team. At Berkeley, the Chisel design passed all
Chisel unit tests before NGC began their verification and physical design. When new features
were added, such as more processing elements, IP, or GPP accelerators, the design was again
verified then pushed through the physical design flow. Thus for us, a tape-in represented an
RTL release that was ready for physical design and tape-out. Figure 6.18a visually shows this
tape-in boundary. Any feedback from NGC while they verified on their side or ran physical
design triggered an improvement in the generator and a new tape-in release. And as the
handoff and feedback procedure matured, so too did the frequency of tapein releases, as seen
in Figure 6.18b. This convergence suggests a coupling of process flows is possible, allowing for
a near continuous evolution of design improvements, verification improvements, and physical
design improvements, all living in the same generator framework, as seen in Figure 1.2.

Initial specifications included a 10 GHz ADC with deserialized output data feeding into
the DSP chain. The chain consists of multiple programmable tuners, filters, and decimators
followed by a polyphase filter and FFT. Spectral bins are tagged when surpassing a threshold
in the receive signal strength indicator (RSSI). Results are buffered in a SAM for readout.
Figure 6.19 shows more complete initial specifications, omitting control interfaces and the
rest of the system for simplicity.

Already obvious from the specification is the need for tuner and filter generators, since
each copy will have different data types, parallelization, and coefficients. The input tuner
accepts real data but outputs complex data, and later tuners all operate on complex data.
Bitwidth growth is desired during each filtering PE and the FFT. So instead of designing
unique tuners, we designed one parameterized tuner generator which works in any context.
Also note uncertainty in the specifications. Some details did not solidify until well into the
design process. This required us to be flexible in our implementation. The next paragraphs
highlight the process of designing and verifying an example PE and present a discussion into
the flexible system construction methodology.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 100

Generator 
Design

Chisel 
Verification

VWB 
Verification

Physical 
Design

Tape-In Release

TIME

Trigger Generator 
Improvement

Trigger Generator 
Improvement

(a) Tape-ins represent verified RTL releases ready for physical design.

(b) The frequency of tape-in releases increased as the handoff procedure matured.

Figure 6.18: Tape-in metrics.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 101

Tuner Filter/
Decimator FFT SAMTuner Filter/

Decimator
Polyphase 

Filter RSSI

LUT-based LO
1.2-3.6 GHz

41 taps
fixed coefficients

decimate by 4

ADC

CORDIC-based LO
2.3 MHz resolution

23 taps
half-band fixed coefficients

decimate by 2

12 taps
Hamming window
fixed coefficients 128 points

32x8-bit real 32x8-bit complex 8x10-bit complex 8x10-bit complex 4x12-bit complex 4x14-bit complex 4x16-bit complex

variable integration length
variable threshold

4x16-bit complex
plus 1 tag bit

Initial Specifications

Tape-in Process

FFT
FFTPoly SAM

SAM

LA

PG

FFTPoly SAM

SAM

Tape-in 0 Tape-in 1 Tape-in 2
LA

PG

RSSI SAM

SAM

FFTPolyFDTuneADC

SAMSAMSAMSAM

Tape-in 3

LA

PG

FFT SAM

SAM

PolyFDTuneBMADC

SAMSAMSAM

Tape-in 4 (final)

128 points

4x12-bit 4x15-bit4x11-bit32x8-bit32x8-bit32x9-bit

12 taps
Hamming window
fixed coefficients

136 taps
prog. coefficients

decimate by 8
LUT-based LO
prog. LO freq

bit manipulator
change data type

Final Specifications
Tuner Design

...

...
Complex Sinusoid LUT

SCR File
 typeIn 
 UInt
 SInt
 FixedPoint
 DspReal
 DspComplex

 LIn 

 typeOut 
 DspComplex

 LOut=LIn 

 LUTSize
 scaleFactor

 addControl("multiplier") Verification Suite

Parameters:
1) Complex and Real Inputs
2) 3 Input Lane Values
3) 3 Input Format Values
4) 3 Output Format Values
5) typeSine = typeIn, 
    typeSine = typeOut

 typeSine 
 DspComplex

Data:
1) Random
2) Pure Tone below Nyquist
3) Noisy Tone

Figure 6.19: Radar processor design flow. Top: Initial customer specifications. Middle: Agile
design evolution, Bottom-Left: Example tuner design showing parameterization in green and
the verification suite.

Designing a tuner generator, along with its verification generator, required collaboration
between team members. First the tuner parameter set was determined. It needed to accept
real or complex inputs of any bitwidth, produce complex outputs of any bitwidth, and contain
either a programmable LUT or CORDIC from which to get the local oscillator signal. Next a
verification suite was outlined and implemented as part of a test-driven development design
style. Randomly generated test vectors and parameter values ensure the tuner operates across
a wide usage range. Finally, the tuner was built to meet these specifications and pass these
tests. However, to demonstrate functionality in a limited time, only the LUT-based tuner
was implemented. Continuous integration on Github meant any design change had to pass
the test suite before being accepted.

The tape-in process, seen in Figure 6.19, shows how the design evolved over time and
drifted away from the initial specifications. To simplify verification and the design itself, the
tuner and filter stages were combined into one set. Changing the filter design to 136 taps
with programmable coefficients resulted in a massive physical design, yet implementation
was feasible. The originally-planned RSSI block required too many SRAM instances to fit
in the prescribed floorplan, so it was omitted in the final design. Deleting only three lines
of code resulted in a new DSP chain without the RSSI block, which was implemented in
software instead. Memory-mapped addresses were recalculated, crossbars adjusted their size,
and connections to the PG and LA were deleted, all automatically. Extra SAM blocks were
added as a back-up measure, and a new PE, a bit manipulator, was added to convert the
ADC output data type into the tuner’s input data type. The result was a verified and
validated radar system that, despite being substantially different from the initial design, met



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 102

Figure 6.20: Early proposed tape-in schedule.

the requirements.
In all, the timeline for this project spanned roughly 9 months from inception to tape-

out. Initial attempts at a Gantt chart (Figure 6.20) to schedule the sequences and contents
of tape-ins (Figure 6.21) quickly broke down. Unforeseen programming and design hurdles
required modifications to the schedule to still tape out in time. Given a hard deadline, the
easiest way to deal with schedule hiccups is to squeeze less time into later steps, leaving
more time for current steps. But this is unsustainable. The rigid plan approach was quickly
abandoned for a flexible approach, where highest priority features were implemented first.
In all, the tape-out occurred on time, taking a total of about 12000 engineering hours spread
across three companies. That’s equivalent to 300 weeks, or 9 months of 8 engineers working
full time. This represents a 38% improvement over the DARPA estimated timeline for a chip
to be taped out (14.4 months for a 10 person team) [1].

6.8 Conclusion

This chapter demonstrates an ASIC, designed by using parameterized digital and analog
generators, that achieves a peak efficiency of over 19 TOPS/W and 23 GFLOPS/W in 16 nm
CMOS. The implemented RISC-V signal analysis SoC, generated from Chisel and BAG
frameworks, performs spectrometry and radar signal processing with performance compa-
rable to the state of the art. On-chip DfT facilitates quick bring-up and validation of the
design instance. Generators used in this work are open source and may be easily adjusted
and reused for a variety of applications [78]. The process of designing the chip highlights
how proper application of agile hardware development principles contributes to the success
of a project, in this case a streaming DSP processor.



CHAPTER 6. EXAMPLE: A SIGNAL ANALYSIS SOC 103

Figure 6.21: The incremental addition of features in the framework and design defined a
tape-in schedule, which quickly broke down.



104

Chapter 7

Conclusion

This work presents a digital signal processing SoC framework that, when coupled with agile
design principles, supports rapid prototyping and designing of ASICs for signal processing
applications. The methodology and proposed agile design process were validated on two
separate chips, spanning two applications and two process nodes. A 56% reduction in devel-
opment time is achieved when using the generator framework over similar implementations
designed from scratch.

7.1 Summary of Contributions

Strict performance, power, and form factor constraints require the use of ASICs, but their
complexity makes them slow to design. The development time is split between logical design,
verification, validation, and physical design. Agile hardware design, stemming from a similar,
successful software design technique, has seen growing adoption in the development of CPUs.
The biggest contribution of this thesis is an exploration and evaluation of these agile hardware
design principles to signal processing ASIC development.

Specifically, this work makes the following contributions. Chapter 4 presents an extensible
generator framework that supports custom parameterization and design of processing ele-
ments, customizable sequencing of PEs for target applications, and a verification framework.
A set of processing element generators, including a polyphase filter generator, a scalable fast
Fourier transform generator, a vector accumulator generator, a finite impulse response filter
generator, and a programmable digital mixer generator are made open source and presented
in Chapters 5 and 6. Validation of the generator framework is done through the design, fab-
rication, and testing of two signal processing ASICs in Chapters 5 and 6. Chapter 5 describes
the digital ASIC spectrometer design and chip with high bandwidth and low power for NASA,
targeting atmospheric measurements from satellites or weather balloons. Chapter 6 describes
the signal analysis SoC design and chip with an integrated ADC for Northrop Grumman
Corporation, targeting radar receive analysis. Finally, these last two chapters highlight the
application of agile hardware methodology principles which, when coupled with the generator



CHAPTER 7. CONCLUSION 105

framework, reduces the effort and design time of signal processing SoCs.

7.2 Future Work

During the course of this research many first-of-a-kind attempts were made. This was the
first design where agile generator-based design was metricized. Still, many tradeoffs were
made, and there are opportunities for further research.

• The complexity of the framework restricts its widespread adoption and usage. Chisel
and Scala obfuscate certain levels of parameter passing and port punching that make
tracing the source of errors difficult. Simplifying the code may reduce functionality and
efficacy, but if it permits use, then the effort is worthwhile.

• While the verification framework provides sufficient coverage for many applications,
tighter integration between standardized platforms (like UVM) and the standardized
interfaces (like AXI) could be done in Chisel itself, rather than relying on third-party
tools. Also, an analysis of coverage would clarify how much remains.

• A second significant reduction in design time could be realized through coupling RTL
design generators with backend synthesis and place-and-route flows. For example, em-
bedding timing and placement constraints in the generator would allow for generator-
based ASIC tool flows that scale automatically with the design. This effort is already
underway at Berkeley with the Hammer project.

• Methodologies are inherently hard to metricize, given that they embody a diverse set of
constraints including abstract and subjective ones. Nonetheless, a more rigid approach
to characterizing the benefits and pitfalls of applying agile design principles to hardware
is desirable.

Signal processing spans nearly every domain of science and engineering, and the need
for low-power, high-throughput processing systems will never disappear. Continued work in
reducing the effort it takes for new algorithms to be realized in ASIC platforms will help
streamline certain aspects of scientific progress.



106

Bibliography

[1] L. Salmon, “A perspective on facilitated access to custom ic design in leading-edge cmos
technology,” in DAC workshop 6: design automation for HPC, clouds, and server-class
SoCs, 2015.

[2] W. R. Davis, “Digital signal processing architecture: Esl design methodologies.” http:

//www4.ncsu.edu/~wdavis/doc/ece747spr06_2_1up.pdf, 2006.

[3] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens, “Programmable stream processors,” Computer, vol. 36, pp. 54–62, Aug 2003.

[4] R. Woods, J. McAllister, G. Lightbody, and Y. Yi, FPGA-based Implementation of
Signal Processing Systems. Wiley Publishing, 2nd ed., 2017.

[5] R. Rohde, “Solar radiation spectrum.” https://commons.wikimedia.org/wiki/File:

Solar_Spectrum.png, 2007.

[6] N. Livesey, P. Stek, G. Chattopadhyay, R. Jarnot, J. Kocz, R. Stachnik, W. Deal, and
D. Werthimer, “The compact adaptable microwave limb sounder (camls), an esto instru-
ment incubator program (iip) 2013 project iip-13-0046,” October 2014. Presentation.

[7] R. Finger, P. Mena, N. Reyes, R. Rodriguez, and L. Bronfman, “A calibrated digi-
tal sideband separating spectrometer for radio astronomy applications,” PASP 2013,
vol. 125, no. 925, pp. 263–269, 2013.

[8] J. Lesurf, “Ranging radar: Pulsed radar.” https://www.st-andrews.ac.uk/~www_pa/

Scots_Guide/RadCom/part15/page1.html.

[9] L. Pang, X. Li, and Y. d. Luo, “A structured asic based implementation platform for dig-
ital radar receiver,” in 2014 12th International Conference on Signal Processing (ICSP),
pp. 2003–2006, Oct 2014.

[10] Texas Instruments, “Tms320c5545 fixed-point digital signal processor.” http://www.

ti.com/lit/ds/symlink/tms320c5545.pdf.

[11] Ceva, “Ceva-teaklite-4 a multifunctional dsp architecture for high-performance, low-
power audio/voice/sensing and wireless communication applications.” https://www.

ceva-dsp.com/wp-content/uploads/2017/02/CEVA-TeakLite-4-DSP-Family.pdf.

http://www4.ncsu.edu/~wdavis/doc/ece747spr06_2_1up.pdf
http://www4.ncsu.edu/~wdavis/doc/ece747spr06_2_1up.pdf
https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
https://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part15/page1.html
https://www.st-andrews.ac.uk/~www_pa/Scots_Guide/RadCom/part15/page1.html
http://www.ti.com/lit/ds/symlink/tms320c5545.pdf
http://www.ti.com/lit/ds/symlink/tms320c5545.pdf
https://www.ceva-dsp.com/wp-content/uploads/2017/02/CEVA-TeakLite-4-DSP-Family.pdf
https://www.ceva-dsp.com/wp-content/uploads/2017/02/CEVA-TeakLite-4-DSP-Family.pdf


BIBLIOGRAPHY 107

[12] B. D. de Dinechin, “Kalray mppa: Massively parallel processor array: Revisiting dsp
acceleration with the kalray mppa manycore processor,” in 2015 IEEE Hot Chips 27
Symposium (HCS), pp. 1–27, Aug 2015.

[13] Y. Gu, H. Jiang, X. Xie, G. Li, and Z. Wang, “An image compression algorithm for
wireless endoscopy and its asic implementation,” in 2016 IEEE Biomedical Circuits and
Systems Conference (BioCAS), pp. 103–106, Oct 2016.

[14] F. Hsiao, A. Tang, Y. Kim, B. Drouin, G. Chattopadhyay, and M. C. F. Chang, “A
2.2GS/s 188mW spectrometer processor in 65nm CMOS for supporting low-power THz
planetary instruments,” in CICC 2015, pp. 1–3, Sept 2015.

[15] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The rocket chip gen-
erator,” Tech. Rep. UCB/EECS-2016-17, EECS Department, University of California,
Berkeley, April 2016.

[16] A. Fox and D. Patterson, Engineering Software as a Service: An Agile Approach Using
Cloud Computing. Strawberry Canyon LLC, 2013.

[17] J. Dorsch, “Cpu, gpu, or fpga?.” https://semiengineering.com/cpu-gpu-or-fpga/,
June 2016.

[18] E. Logaras and A. Weitzer, “Using python tools to assist mixed-signal asic design and
verification methodologies,” in 2017 Austrochip Workshop on Microelectronics (Aus-
trochip), pp. 41–46, Oct 2017.

[19] O. Shacham, S. Galal, S. Sankaranarayanan, M. Wachs, J. Brunhaver, A. Vassiliev,
M. Horowitz, A. Danowitz, W. Qadeer, and S. Richardson, “Avoiding game over: Bring-
ing design to the next level,” in DAC Design Automation Conference 2012, pp. 623–629,
June 2012.

[20] D. L. Rosenband and Arvind, “Hardware synthesis from guarded atomic actions with
performance specifications,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 784–791, November 2005.

[21] Mentor Graphics, “Catapult HLS.”

[22] “Matlab simulink.” https://www.mathworks.com/products/simulink.html.

[23] “Intel tick-tock model.” https://www.intel.com/content/www/us/en/

silicon-innovations/intel-tick-tock-model-general.html.

https://semiengineering.com/cpu-gpu-or-fpga/
https://www.mathworks.com/products/simulink.html
https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
https://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html


BIBLIOGRAPHY 108

[24] N. K. Doshi, S. Suryawanshi, and G. N. Kumar, “Development of generic verification en-
vironment based on uvm with case study on hmc controller,” in 2016 IEEE International
Conference on Recent Trends in Electronics, Information Communication Technology
(RTEICT), pp. 550–553, May 2016.

[25] S. Jain, P. Govani, K. B. Poddar, A. K. Lal, and R. M. Parmar, “Functional verification
of dsp based on-board vlsi designs,” in 2016 International Conference on VLSI Systems,
Architectures, Technology and Applications (VLSI-SATA), pp. 1–4, Jan 2016.

[26] J. Lipman, “Current chip design flow is flawed.” https://www.eetimes.com/document.
asp?doc_id=1275808, April 2003.

[27] D. Lowenstein and M. Woerner, “Test techniques to combat tighter design margins,” in
2017 IEEE AUTOTESTCON, pp. 1–5, Sept 2017.

[28] Galorath, “Seer.” http://galorath.com/products/hardware/

cost-estimating-software-hardware-projects.

[29] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for agile software
development.” http://agilemanifesto.org/, 2001.

[30] E. Graves, “Cost of delay.” https://www.playbookhq.co/blog/

cost-delay-critical-project-metric-calculate/, Jan 2017.

[31] N. Johnson and B. Morris, “Agile soc.” http://agilesoc.com/, 2011.

[32] B. Fitzgerald and G. Hartnett, “A study of the use of agile methods within intel,” in
Business Agility and Information Technology Diffusion (R. L. Baskerville, L. Mathi-
assen, J. Pries-Heje, and J. I. DeGross, eds.), (Boston, MA), pp. 187–202, Springer US,
2005.

[33] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak, R. Jevtic,
S. Bailey, M. Blagojevic, P. F. Chiu, R. Avizienis, B. Richards, J. Bachrach, D. Pat-
terson, E. Alon, B. Nikolic, and K. Asanovic, “An agile approach to building risc-v
microprocessors,” IEEE Micro, vol. 36, pp. 8–20, Mar 2016.

[34] SiFive. https://www.sifive.com/.

[35] Xilinx. https://www.xilinx.com/products/design-tools/vivado/integration/

sysgen.html.

[36] MathWorks, “Hdl coder.” https://www.mathworks.com/products/hdl-coder.html.

https://www.eetimes.com/document.asp?doc_id=1275808
https://www.eetimes.com/document.asp?doc_id=1275808
http://galorath.com/products/hardware/cost-estimating-software-hardware-projects
http://galorath.com/products/hardware/cost-estimating-software-hardware-projects
http://agilemanifesto.org/
https://www.playbookhq.co/blog/cost-delay-critical-project-metric-calculate/
https://www.playbookhq.co/blog/cost-delay-critical-project-metric-calculate/
http://agilesoc.com/
https://www.sifive.com/
https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html
https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.html
https://www.mathworks.com/products/hdl-coder.html


BIBLIOGRAPHY 109

[37] D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic, and R. W. Brodersen, “Asic de-
sign and verification in an fpga environment,” in 2007 IEEE Custom Integrated Circuits
Conference, pp. 737–740, Sept 2007.

[38] B. Richards, N. Nicolici, H. Chen, K. Chao, R. Abiad, D. Werthimer, and B. Nikolic, “A
1.5GS/s 4096-point digital spectrum analyzer for space-borne applications,” in CICC
2009, pp. 499–502, Sept 2009.

[39] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape of
parallel computing research: A view from berkeley,” Tech. Rep. UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006.

[40] L. Li, T. Fanni, T. Viitanen, R. Xie, F. Palumbo, L. Raffo, H. Huttunen, J. Takala, and
S. Bhattacharyya, “Low power design methodology for signal processing systems using
lightweight dataflow techniques,” in DASIP, pp. 82–89, Oct 2016.

[41] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE,
vol. 75, pp. 1235–1245, Sept 1987.

[42] P. K. Meher, “Memory-based hardware for resource-constraint digital signal processing
systems,” in 2007 6th International Conference on Information, Communications Signal
Processing, pp. 1–4, Dec 2007.

[43] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and A. Fox, “Sejits: Getting poductivity and performance with selective embedded jit
specialization,” in PMEA, 2009.

[44] R. Karrenberg and S. Hack, “Whole-function vectorization,” in Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’11, (Washington, DC, USA), pp. 141–150, IEEE Computer Society, 2011.

[45] Y. Lee, C. Schmidt, A. Ou, A. Waterman, and K. Asanovi, “The hwacha vector-fetch ar-
chitecture manual, version 3.8.1,” Tech. Rep. UCB/EECS-2015-262, EECS Department,
University of California, Berkeley, Dec 2015.

[46] A. Wang, P. Rigge, A. Izraelevitz, C. Markley, J. Bachrach, and B. Nikolić, “Aced: A
hardware library for generating dsp systems,” in DAC, June 2018.

[47] “UltraFast High-Level Productivity Design Methodology Guide,” Oct. 2017.

[48] A. Gai, “Model-Based Design with MATLAB, Simulink, and Altera DSP Builder,” 2006.

[49] W. R. Davis, N. Zhang, K. Camera, F. Chen, D. Markovic, N. Chan, B. Nikolic, and
R. W. Brodersen, “A design environment for high throughput, low power dedicated
signal processing systems,” in Proceedings of the IEEE 2001 Custom Integrated Circuits
Conference (Cat. No.01CH37169), pp. 545–548, 2001.



BIBLIOGRAPHY 110

[50] P. Milder, F. Franchetti, J. C. Hoe, and M. Pschel, “Computer Generation of Hardware
for Linear Digital Signal Processing Transforms,” ACM Trans. Des. Autom. Electron.
Syst., vol. 17, pp. 15:1–15:33, Apr. 2012.

[51] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic, “Chisel: Constructing hardware in a scala embedded language,” in
DAC Design Automation Conference 2012, pp. 1212–1221, June 2012.

[52] L. Truong and P. Hanrahan, “Magma.” https://github.com/phanrahan/magma.

[53] ARM, “Amba axi and ace protocol specification,” tech. rep., ARM, 2018.

[54] S. Consortium, “Ip-xact working group,” tech. rep., Accellera Systems Initiative, 2013.

[55] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. Nikolić, and E. Alon, “Bag2:
A process-portable framework for generator-based ams circuit design,” in CICC, Apr.
2018.

[56] J. Chennamangalam, “The polyphase filter bank technique.” https://casper.

berkeley.edu/wiki/The_Polyphase_Filter_Bank_Technique, August 2011.

[57] Y. Sun, J. R. Cavallaro, Y. Zhu, and M. Goel, “Configurable and Scalable Turbo De-
coder for 4G Wireless Receivers,” in Fourth Edition Wireless Networks: Applications
and Innovations (S. Adibi, A. Mobasher, and T. Tofigh, eds.), ch. 27, pp. 622–643, IGI
Global, 2010.

[58] M. Weiner and B. Nikolic, “A high-throughput, flexible ldpc decoder for multi-gb/s
wireless personal area networks,” Master’s thesis, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2010.

[59] M. Parker, “Radar basics,” EE Times, May 2011.

[60] X. B. Mao, Z. G. Ma, F. Yu, and Q. J. Xing, “A continuous-flow memory-based ar-
chitecture for real-valued fft,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 64, pp. 1352–1356, Nov 2017.

[61] Texas Instruments, “Tms320c55x dsp v3.x cpu reference guide (rev. e).” http://www.

ti.com/lit/ug/swpu073e/swpu073e.pdf.

[62] Texas Instruments, “Tms320c6671 fixed and floating-point digital signal processor
datasheet (rev. e).” http://www.ti.com/lit/ds/symlink/tms320c6671.pdf.

[63] Ceva, “Ceva-xc5 / ceva-xc323: Enabling low power communications in machine to
machine multi-mode endpoints.” https://www.ceva-dsp.com/wp-content/uploads/

2017/02/CEVA-XC5-Presentation.pdf.

https://github.com/phanrahan/magma
https://casper.berkeley.edu/wiki/The_Polyphase_Filter_Bank_Technique
https://casper.berkeley.edu/wiki/The_Polyphase_Filter_Bank_Technique
http://www.ti.com/lit/ug/swpu073e/swpu073e.pdf
http://www.ti.com/lit/ug/swpu073e/swpu073e.pdf
http://www.ti.com/lit/ds/symlink/tms320c6671.pdf
https://www.ceva-dsp.com/wp-content/uploads/2017/02/CEVA-XC5-Presentation.pdf
https://www.ceva-dsp.com/wp-content/uploads/2017/02/CEVA-XC5-Presentation.pdf


BIBLIOGRAPHY 111

[64] R. Ginosar, P. Aviely, T. Israeli, and H. Meirov, “Rc64: High performance rad-hard
manycore,” in 2016 IEEE Aerospace Conference, pp. 1–9, March 2016.

[65] XMOS, “Xmos xcore architecture.” http://www.xmos.com/published/

xcore-architecture-flyer.

[66] M. Tikekar, C. T. Huang, C. Juvekar, V. Sze, and A. P. Chandrakasan, “A 249-mpixel/s
hevc video-decoder chip for 4k ultra-hd applications,” IEEE Journal of Solid-State Cir-
cuits, vol. 49, pp. 61–72, Jan 2014.

[67] Y. Zhang, Y. Kim, A. Tang, J. Kawamura, T. Reck, and M. C. F. Chang, “A 2.6gs/s
spectrometer system in 65nm cmos for spaceborne telescopic sensing,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2018.

[68] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v instruction set
manual, volume i: User-level isa, version 2.1,” Tech. Rep. UCB/EECS-2016-118, EECS
Department, University of California, Berkeley, May 2016.

[69] https://riscv.org/.

[70] https://github.com/freechipsproject/rocket-chip.

[71] L. Dong, M. Wang, and S. Shi, “A new digital spectrometer for low frequency solar
radio observation based on FPGA,” in ICSPS 2010, vol. 1, pp. V1–119–V1–126, July
2010.

[72] D. Markovic, C. Chang, B. Richards, H. So, B. Nikolic, and R. W. Brodersen, “ASIC
design and verification in an FPGA environment,” in CICC 2007, pp. 737–740, Sept
2007.

[73] A. Parsons, D. Backer, C. Chang, D. Chapman, H. Chen, P. Crescini, C. de Jesus,
C. Dick, P. Droz, D. MacMahon, K. Meder, J. Mock, V. Nagpal, B. Nikolic, A. Parsa,
B. Richards, A. Siemion, J. Wawrzynek, D. Werthimer, and M. Wright, “Petaop/sec-
ond fpga signal processing for seti and radio astronomy,” in 2006 Fortieth Asilomar
Conference on Signals, Systems and Computers, pp. 2031–2035, Oct 2006.

[74] J. Chennamangalam, “The polyphase filter bank technique.” https://casper.

berkeley.edu/wiki/images/2/24/Casper_memo_pfb.pdf, August 2011.

[75] A. Parsons, “The symmetric group in data permutation, with applications to high-
bandwidth pipelined fft architectures,” IEEE Signal Processing Letters, vol. 16, pp. 477–
480, June 2009.

[76] R. Emerson, “Biplex pipelined FFT,” The Deep Space Network Progress Report 42-34,
pp. 54–59, August 1976.

http://www.xmos.com/published/xcore-architecture-flyer
http://www.xmos.com/published/xcore-architecture-flyer
https://riscv.org/
https://github.com/freechipsproject/rocket-chip
https://casper.berkeley.edu/wiki/images/2/24/Casper_memo_pfb.pdf
https://casper.berkeley.edu/wiki/images/2/24/Casper_memo_pfb.pdf


BIBLIOGRAPHY 112

[77] R. Finger, P. Mena, N. Reyes, R. Rodriguez, and L. Bronfman, “A calibrated digi-
tal sideband separating spectrometer for radio astronomy applications,” PASP 2013,
vol. 125, no. 925, pp. 263–269, 2013.

[78] https://github.com/ucb-art/craft2-chip.

[79] D. H. et al., “Breeze.” https://github.com/scalanlp/breeze, 2009.

[80] S. Bailey, J. Wright, N. Mehta, R. Hochman, R. Jarnot, V. Milovanović, D. Werthimer,
and B. Nikolić, “A 28nm fdsoi 8192-point digital asic spectrometer from a chisel gener-
ator,” in CICC, Apr. 2018.

https://github.com/ucb-art/craft2-chip
https://github.com/scalanlp/breeze

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Signal Processing Models
	RTL Design Frameworks
	System Design

	Thesis Outline

	Signal Processing Applications and Models
	Astronomical and Atmospheric Spectroscopy
	Algorithms and Instruments

	Radio Baseband Processing
	An OFDM Modem
	Forward Error Correction
	Digital Modulation
	Other Processing Blocks

	Radar Transceivers
	A Common Signal Processing Algorithm Model

	Digital Signal Processing SoC Model
	Existing Models
	Centralized Digital Signal Processors
	Distributed Digital Signal Processors
	Hardened Digital Signal Processors
	Summary and Trends

	System Overview
	General-Purpose Processor
	Signal Processing Accelerator
	Debug and Test

	A DSP SoC Generator
	Generator Overview
	General-Purpose Processor Generator
	Signal Processing Accelerator Generator
	Verifying the Generators

	A Digital Spectrometer Design
	Introduction
	Spectrometer Generator
	Polyphase Filter
	Fast Fourier Transform
	Sideband Separation, Power, and Accumulation
	ASIC Design and Verification

	ASIC Implementation
	Serial Links
	Digital Instance
	Clocking

	Chip Details and Testing Results
	Agile Principles Applied
	Conclusion

	Example: A Signal Analysis SoC
	Introduction
	SoC Architecture
	General-Purpose Processor
	Digital Signal Processing Accelerator
	Processing Elements
	Bit Manipulator
	Tuner
	Decimating Filter
	Polyphase Filter
	Fourier Transform

	IP Integration
	ADC and Calibration
	Clock Receiver
	UART
	Memories and IO

	Verification and Design-For-Test
	Unit Tests
	System Tests
	DfT Considerations

	Testing Results and Measurements
	Signal Analysis Applications
	Spectrometry
	Radar

	Agile Design Process
	Conclusion

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography

