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Abstract

Learning and Analyzing Representations for Meta-Learning and Control

by

Kate Rakelly

Doctor of Philosophy in Electrical Engineering

University of California, Berkeley

Assistant Professor Sergey Levine, Chair

While artificial learning agents have demonstrated impressive capabilities, these successes
are typically realized in narrowly defined problems and require large amounts of labeled
data. Our agents struggle to leverage what they already know to generalize to new inputs
and acquire new skills quickly, abilities quite natural to humans. To learn and leverage the
structure present in the world, we study data-driven abstractions of states and tasks. We
begin with unsupervised state representation learning, in which the goal is to learn a com-
pact state representation that discards irrelevant information but preserves the information
needed to learn the optimal policy. Surprisingly, we find that several commonly used ob-
jectives are not guaranteed to produce su�cient representations, and demonstrate that our
theoretical findings are are reflected empirically in simple visual RL domains.

Next, we turn to learning abstractions of tasks, a problem typically studied as meta-learning.
Meta-learning is an approach to endow artificial agents with this capability that leverages a
set of related training tasks to learn an adaptation mechanism that can be used to acquire new
skills from little supervision. We adopt an inference perspective that casts meta-learning as
learning probabilistic task representations, framing the problem of learning to learn as learn-
ing to infer hidden task variables from experience. Leveraging this viewpoint, we propose
meta-learning algorithms for diverse applications: image segmentation, state-based robotic
control, and robotic control from sensory observations. We find that an inference approach
to these problems constitutes an e�cient and practical choice, while also revealing deeper
connections between meta-learning and other concepts in statistical learning.
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1
I N T R O D U C T I O N

To operate fully autonomously in the world, artificial agents must be able to handle
the continuous variations in their environment and in the tasks they must perform. For
example, a general-purpose household robot must contend with thousands of different
objects in ever-changing configurations, as well as varying tasks to complete. Humans
possess the ability to quickly adapt to unforeseen circumstances by generalizing existing
concepts when appropriate and acquiring new concepts from few examples. How can
we endow artificial agents with these same abilities?

The standard machine learning approach of recent years to solve any particular task
is to collect a large amount of labeled data and train a randomly initialized deep net-
work end-to-end. While important inductive biases exist in the network architecture,
this approach largely forgoes built-in knowledge in favor of data driven learning. This
approach has been widely and wildly successful for applications ranging from scene
understanding (Krizhevsky et al., 2012; Donahue et al., 2015; Shelhamer et al., 2016a) to
machine translation (Hassan et al., 2018), playing video games (Vinyals et al., 2019), and
object grasping with robotic arms (Kalashnikov et al., 2018a), to name a few. However,
from the perspective of natural intelligence, and from the desire for data efficiency, it
makes little sense to start “tabula rasa” for each new skill an agent learns. Most of the
tasks we wish an agent to perform share overlapping structure, whether it’s a concept
of objects, robustness to lighting conditions, or control of a robot’s limbs. Learning and
representing this shared structure would allow agents to quickly acquire new skills by
leveraging previous knowledge.

Structure exists across percepts, in the environment dynamics, and in the reward func-
tions for different tasks. Abstractions capture this important structure while discarding
irrelevant information. For example, consider a robot cooking in the kitchen. Abstrac-
tions of observations might ignore irrelevant information such as the lighting of the
room, the color of the wall, or the noise in the robot’s sensors. This problem can be tack-
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led as latent state estimation – from the history of observations, the agent estimates its
current state.

We begin our study of learned abstractions with unsupervised latent state estimation.
These methods learn to estimate relevant information without any supervisory signals.
An appealing and popular way to achieve this is by maximizing mutual information
between variables (Watter et al., 2015; Pathak et al., 2017; Oord et al., 2018). While prior
work has largely focused on how the mutual information can be estimated in high di-
mensions, we seek instead to understand which objectives are sufficient for learning
and representing the optimal policy. In Chapter 2, we analyze three objectives proposed
in prior work and find that in fact two are not guaranteed to yield sufficient represen-
tations. Further, we find that the sufficiency of a representation can indeed affect the
performance of the learned policy in image-based deep RL.

The similarity in underlying states between different percepts is not the only structure
we can leverage. There is also structure in agent behavior. For example, cooking tasks
like stirring, crushing, and chopping involve manipulating the robot’s end effector to
use a tool in a repetitive motion. We would like to capture this structure, so that the
agent can leverage it to learn new skills more quickly. This problem is often viewed as
the problem of meta-learning, or learning to learn.

Meta-learning approaches optimize for effective transfer to enable the fast learning
of new concepts (Schmidhuber, 1987; Bengio et al., 1990; Thrun and Pratt, 1998). In the
context of modern deep learning approaches, meta-learning algorithms typically assume
a meta-training phase in which the algorithm has access to a set of related tasks, which are
used to learn an adaptation mechanism for quickly learning new tasks. The adaptation
mechanism may be learned from data during the course of meta-training, or defined
beforehand. Meta-training directly optimizes for the performance of the adapted model
across the set of meta-training tasks with shared structure. Meta-learning algorithms are
often viewed as learning a learning algorithm (Wang and Hebert, 2016; Duan et al., 2016;
Santoro et al., 2016; Ravi and Larochelle, 2017), or more recently as learning a weight
initialization for adaptation via gradient descent (Finn et al., 2017a; Finn and Levine,
2017). Notably, these algorithms have little in common with the state representation
learning methods discussed above.

In this thesis, we argue that meta-learning and state representation learning are in-
stantiations of a more general principle for learning abstractions. State representation
learning algorithms learn abstractions of the current state of the agent, meta-learning al-
gorithms learn abstractions of what the agent should do. Drawing on this connection, we
advocate a representation learning approach to meta-learning. We frame meta-learning
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as learning to infer representations of tasks, by performing probabilistic inference over
hidden task variables. Our perspective is related to hierarchical Bayesian approaches
to meta-learning, which have proven useful for few-shot learning (Tenenbaum, 1999;
Lawrence and Platt, 2004; Fei-Fei et al., 2006; Daumé III, 2009; B. Lake et al., 2011; Ed-
wards and Storkey, 2016). We demonstrate that this perspective leads to efficient and
elegant algorithms for diverse applications including image segmentation and robotic
control from images. In fact, we will show in Chapter 5 that the exact same algorithm
can perform both state estimation and meta-learning; the same latent state can capture
where the agent is and what the agent should do.

The main contributions of this thesis are the following:
• In Chapter 2, we focus on the state representation learning problem and evaluate

the sufficiency for control of representations resulting from several popular mutual
information-based learning objectives.

• In Chapter 3 we introduce and formalize the meta-learning framework for super-
vised learning and reinforcement learning.

• In Chapter 4, we propose a task-inference based meta-learning algorithm for guid-
ing segmentation from point-wise annotations. This work was presented at ICLR
2018, Workshop Track.

• In Chapter 5, we explore the idea of meta-RL as probabilistic inference and develop
two meta-RL algorithms. The first, PEARL, performs off-policy model-free meta-RL
by inferring a belief over a latent task variable via variational inference. This work
was published at the International Conference of Machine Learning (ICML) 2019.
The second, MELD, re-purposes latent state models to perform joint state and task
inference. This work was published in the Conference on Robot Learning (CoRL)
2020.

• Finally, in Chapter 6, we conclude with future directions for learning data-driven
abstractions that capture meaningful structure.
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2
W H AT M U T U A L I N F O R M AT I O N - B A S E D R E P R E S E N TAT I O N
L E A R N I N G O B J E C T I V E S A R E S U F F I C I E N T F O R C O N T R O L ?

While deep reinforcement learning (RL) algorithms are capable of learning policies from
high-dimensional observations, such as images (Mnih et al., 2013; A. Lee et al., 2019;
Kalashnikov et al., 2018b), in practice policy learning faces a bottleneck in acquiring
useful representations of the observation space (Shelhamer et al., 2016b). State represen-
tation learning approaches aim to remedy this issue by learning structured and compact
representations on which to perform RL. While a wide range of representation learning
objectives have been proposed (Lesort et al., 2018), a particularly appealing class of meth-
ods that is amenable to rigorous analysis is based on maximizing mutual information
(MI) between variables. In the unsupervised learning setting, this is often realized as
the InfoMax principle (Linsker, 1988; Bell and Sejnowski, 1995), which maximizes the
mutual information between the input and its latent representation subject to domain-
specific constraints. This approach has been widely applied in unsupervised learning
in the domains of image, audio, and natural language understanding (Oord et al., 2018;
Hjelm et al., 2018; Ravanelli and Bengio, 2019). In RL, the variables of interest for MI max-
imization are sequential states, actions, and rewards (see Figure 1). As we will discuss,
several popular methods for representation learning in RL involve mutual information
maximization with different combinations of these variables (Anand et al., 2019; Oord
et al., 2018; Pathak et al., 2017; Shelhamer et al., 2016b).

A useful representation should retain the factors of variation that are necessary to
learn and represent the optimal policy or the optimal value function, and discard irrel-
evant and redundant information. While much prior work has focused on the problem
of how to optimize various mutual information objectives in high dimensions (J. Song
and Ermon, 2019; Belghazi et al., 2018; Oord et al., 2018; Hjelm et al., 2018), we focus
instead on whether the representations that maximize these objectives are actually the-
oretically sufficient for learning and representing the optimal policy or value function.
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We find that some commonly used objectives are insufficient given relatively mild and
common assumptions on the structure of the MDP, and identify other objectives which
are sufficient. We show these results theoretically and illustrate the analysis empirically
in didactic examples in which MI can be computed exactly. Our results provide some
guidance to the deep RL practitioner on when and why objectives may be expected to
work well or fail, and also provide a framework to analyze newly proposed representa-
tion learning objectives based on MI. To investigate how our theoretical results pertain
to deep RL, we compare the performance of RL agents in a simulated game trained with
state representations learned by maximizing the MI objective given visual inputs. The
experimental results corroborate our theoretical findings, and demonstrate that the suf-
ficiency of a representation can have a substantial impact on the performance of an RL
agent that uses that representation.

2.1 related work

In this chapter, we analyze several widely used mutual information objectives for control.
In this section we first review MI-based unsupervised learning, then the application
of these techniques to the RL setting. Finally, we discuss alternative perspectives on
representation learning in RL.

Mutual information-based unsupervised learning. Mutual information-based meth-
ods are particularly appealing for representation learning as they admit both rigorous
analysis and intuitive interpretation. Tracing its roots to the InfoMax principle (Linsker,
1988; Bell and Sejnowski, 1995), a common technique is to maximize the MI between
the input and its latent representation subject to domain-specific constraints (Becker and
Hinton, 1992). This technique has been applied to learn representations for natural lan-
guage (Devlin et al., 2019), video (Sun et al., 2019), and images (Bachman et al., 2019;
Hjelm et al., 2018). A major challenge to using MI maximization methods in practice
is the difficulty of estimating MI from samples (McAllester and Statos, 2018) and with
high-dimensional inputs (J. Song and Ermon, 2019). Much recent work has focused on
improving MI estimation via variational methods (J. Song and Ermon, 2019; Poole et
al., 2019; Oord et al., 2018; Belghazi et al., 2018). In this work we are concerned with
analyzing the MI objectives, and not the estimation method. In our experiments with im-
age observations, we make use of noise contrastive estimation methods (Gutmann and
Hyvärinen, 2010), though other choices could also suffice.

Mutual information objectives in RL. Reinforcement learning adds aspects of tem-
poral structure and control to the standard unsupervised learning problem discussed

5



above (see Figure 1). This structure can be leveraged by maximizing MI between sequen-
tial states, actions, or combinations thereof. Some works omit the action, maximizing the
MI between current and future states (Anand et al., 2019; Oord et al., 2018; Stooke et al.,
2020). Much prior work learns latent forward dynamics models (Watter et al., 2015; Karl
et al., 2016; M. Zhang et al., 2018; Hafner et al., 2019; A. Lee et al., 2019), related to the
forward information objective we introduce in Section 2.3. Multi-step inverse models,
closely related to the inverse information objective (Section 2.3), have been used to learn
control-centric representations (Yu et al., 2019b; Gregor et al., 2016). Single-step inverse
models have been deployed as regularization of forward models (A. Zhang et al., 2018;
Agrawal et al., 2016) and as an auxiliary loss for policy gradient RL Shelhamer et al.,
2016b; Pathak et al., 2017. The MI objectives that we study have also been used as re-
ward bonuses to improve exploration, without impacting the representation, in the form
of empowerment (Klyubin et al., 2008; Klyubin et al., 2005; Mohamed and Rezende, 2015;
Leibfried et al., 2019) and information-theoretic curiosity (Still and Precup, 2012).

Representation learning for reinforcement learning. In RL, the problem of finding
a compact state space has been studied as state aggregation or abstraction (Bean et al.,
1987; L. Li et al., 2006). Abstraction schemes include bisimulation (Givan et al., 2003),
homomorphism (Ravindran and Barto, 2003), utile distinction (McCallum, 1996), and
policy irrelevance (Jong and Stone, 2005). While efficient algorithms exist for MDPs with
known transition models for some abstraction schemes such as bisimulation (Ferns et al.,
2006; Givan et al., 2003), in general obtaining error-free abstractions is highly impractical
for most problems of interest. For approximate abstractions prior work has bounded the
sub-optimality of the policy (Bertsekas, Castanon, et al., 1988; Dean and Givan, 1997;
Abel et al., 2016) as well as the sample efficiency (Lattimore and Szepesvari, 2019; Van
Roy and Dong, 2019; Du et al., 2019), with some results extending to the deep learning
setting (Gelada et al., 2019; Nachum et al., 2018). In this chapter, we focus on whether a
representation can be used to learn the optimal policy, and not the tractability of learn-
ing. Alternatively, priors based on the structure of the physical world can be used to
guide representation learning (Jonschkowski and Brock, 2015). In deep RL, many auxil-
iary objectives distinct from the objectives that we study have been proposed, including
meta-learning general value functions (Veeriah et al., 2019), predicting multiple value
functions (Bellemare et al., 2019; Fedus et al., 2019; Jaderberg et al., 2016) and predict-
ing domain-specific measurements (Mirowski, 2019; Dosovitskiy and Koltun, 2016). We
restrict our analysis to objectives that can be expressed as MI-maximization.
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2.2 representation learning for rl

The goal of representation learning for RL is to learn a compact representation of the
state space that discards irrelevant and redundant information. In this section we formal-
ize each part of this statement, starting with defining the RL problem and representation
learning in the context of RL. We then propose and define the metric of sufficiency to
evaluate the usefulness of a representation.

2.2.1 Preliminaries

We begin with brief preliminaries of reinforcement learning and mutual information.

reinforcement learning . A Markov decision process (MDP) is defined by the
tuple (S,A,T, r), where S is the set of states, A the set of actions, T : S×A× S → [0, 1]
the state transition distribution, and r : S× A× S → R the reward function. We will
use capital letters to refer to random variables and lower case letters to refer to val-
ues of those variables (e.g., S is the random variable for the state and s is a specific
state). Throughout our analysis we will often be interested in multiple reward func-
tions, and denote a set of reward functions as R. The objective of RL is to find a
policy that maximizes the sum of discounted returns R̄ for a given reward function r,
and we denote this optimal policy as π∗r = arg maxπ Eπ[

∑
t γ

tr(St,At)] for discount fac-
tor γ. We also define the optimal Q-function as Q∗r(st, at) = Eπ∗[

∑∞
t=1 γ

tr(St,At)|st, at].
The optimal Q-function satisfies the recursive Bellman equation, Q∗r(st, at) = r(st, at) +
γEp(st+1|st,at) arg maxat+1

Q∗r(st+1, at+1). The optimal policy and the optimal Q-function
are related according to π∗(s) = arg maxa Q

∗(s, a).

mutual information. In information theory, the mutual information (MI) between
two random variables, X and Y, is defined as (Cover, 1999):

I(X; Y) = Ep(x,y) log
p(x,y)
p(x)p(y)

= H(X)−H(X|Y). (1)

The first definition indicates that MI can be understood as a relative entropy (or KL-
divergence), while the second underscores the intuitive notion that MI measures the
reduction in the uncertainty of one random variable from observing the value of the
other.
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Figure 1: State representation
learning: estimate rep-
resentation Z from
original state S.

representation learning for rl . The goal of
representation learning for RL is to find a compact rep-
resentation of the state space that discards details in the
state irrelevant for representing the policy or value func-
tion, while preserving task-relevant information (see
Figure 1). While state aggregation methods typically de-
fine deterministic rules to group states in the represen-
tation (Bean et al., 1987; L. Li et al., 2006), MI-based
representation learning methods used for deep RL treat
the representation as a random variable (Nachum et al.,
2018; Oord et al., 2018; Pathak et al., 2017). Accordingly,
we formalize a representation as a stochastic mapping between original state space and
representation space.

Definition 1. A stochastic representation φZ(s) is a mapping from states s ∈ S to a
probability distribution p(Z|S = s) over elements of a new representation space z ∈ Z.

In this work we consider learning state representations from data by maximizing an
objective J. Given J, we define the set of representations that maximize this objective as
ΦJ = {φZ} s.t. φZ ∈ arg max J(φ). Unlike problem formulations for partially observed
settings (Watter et al., 2015; Hafner et al., 2019; A. Lee et al., 2019), we assume that S is a
Markovian state; therefore the representation for a given state is conditionally indepen-
dent of the past states, a common assumption in the state aggregation literature (Bean
et al., 1987; L. Li et al., 2006). See Figure 1 for a depiction of the graphical model.

2.2.2 Sufficient Representations for RL

We now turn to the problem of evaluating stochastic representations for RL. Intuitively,
we expect a useful state representation to be capable of representing the optimal policy
in the original state space.

Definition 2. A representation φZ is π∗-sufficient with respect to a set of reward functions
R if ∀r ∈ R, φZ(s1) = φZ(s2) =⇒ π∗r(A|s1) = π∗r(A|s2).
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When a stochastic representation φZ produces the same distribution over the represen-
tation space for two different states s1 and s2 we say it aliases these states. Unfortunately,
as already proven in Theorem 4 of L. Li et al. (2006) for the more restrictive case of deter-
ministic representations, being able to represent the optimal policy does not guarantee
that it can be learned via RL in the representation space. Accordingly, we define a stricter
notion of sufficiency that does guarantee the convergence of Q-learning to the optimal
policy in the original state space (refer to Theorem 4 of L. Li et al. (2006) for the proof
of this).

Definition 3. A representation φZ is Q∗-sufficient with respect to a set of reward functions
R if ∀r ∈ R, φZ(s1) = φZ(s2) =⇒ ∀a,Q∗r(a, s1) = Q∗r(a, s2).

Note that Q∗-sufficiency implies π∗-sufficiency since the optimal policy and the op-
timal Q-function are directly related via π∗r(s) = arg maxa Q

∗
r(s,a) (Sutton and Barto,

2018); however the converse is not true. We emphasize that while Q∗-sufficiency guar-
antees convergence, it does not guarantee tractability, which has been explored in prior
work (Lattimore and Szepesvari, 2019; Du et al., 2019).

We will further say that an objective J is sufficient with respect to some set of reward
functions R if all the representations that maximize that objective ΦJ are sufficient with
respect to every element of R according to the definition above. Surprisingly, we will
demonstrate that not all commonly used objectives satisfy this basic qualification even
when R contains a single known reward function.

2.3 mutual information for representation learning in rl

In our study, we consider several MI objectives proposed in the literature.

forward information : A commonly sought characteristic of a state representa-
tion is to ensure it retains maximum predictive power over future state representations.
This property is satisfied by representations maximizing the following MI objective,

Jfwd = I(Zt+k;Zt,At) = H(Zt+k)−H(Zt+k|Zt,At). (2)

We suggestively name this objective “forward information” due to the second term,
which is the entropy of the forward dynamics distribution. This objective is related to
that proposed in Nachum et al. (2018), where they consider a sequence of actions.
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state-only transition information : Several popular methods (Oord et al.,
2018; Anand et al., 2019; Stooke et al., 2020) optimize a similar objective, but do not
include the action:

Jstate = I(Zt+k;Zt) = H(Zt+k)−H(Zt+k|Zt). (3)

As we will show, the exclusion of the action can have a profound effect on the character-
istics of the resulting representations.

inverse information : Another commonly sought characteristic of state represen-
tations is to retain maximum predictive power of the action distribution that could have
generated an observed transition from st to st+1. Such representations can be learned by
maximizing the following information theoretic objective:

Jinv = I(At;Zt+k|Zt) = H(At|Zt)−H(At|Zt,Zt+k) (4)

We suggestively name this objective “inverse information” due to the second term, which
is the entropy of the inverse dynamics. A wide range of prior work learns representations
by optimizing closely related objectives (Gregor et al., 2016; Shelhamer et al., 2016b;
Agrawal et al., 2016; Pathak et al., 2017; Yu et al., 2019b; A. Zhang et al., 2018). Intuitively,
inverse models allow the representation to capture only the elements of the state that are
necessary to predict the action, allowing the discard of potentially irrelevant information.

s

2.4 sufficiency analysis

In this section we analyze the sufficiency for control of representations obtained by max-
imizing each objective presented in Section 2.3. To focus on the representation learning
problem, we decouple it from RL by assuming access to a dataset of transitions col-
lected with a policy that reaches all states with some probability, which can then be
used to learn the desired representation. We also assume that distributions, such as the
dynamics or inverse dynamics, can be modeled with arbitrary accuracy, and that the
maximizing set of representations for a given objective can be computed. While these
assumptions might be relaxed in any practical RL algorithm, and exploration plays a
confounding role, studying these objectives under such simplifying assumptions allows
us to compare them in terms of sufficiency on an equal playing field, isolating the role
of representation learning from other confounding components of a complete RL algo-
rithm.
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2.4.1 Forward Information

In this section we show that a representation that maximizes Jfwd is sufficient for optimal
control under any reward function. This result aligns with intuition that a representation
that captures forward dynamics can represent everything predictable in the state space,
and can thus be used to learn the optimal policy for any task. Note that this strength
can also be a weakness if there are many predictable elements that are irrelevant for
downstream tasks, since the representation retains more information than is needed for
the task.

Proposition 1. Jfwd is sufficient for all reward functions.

Proof. (Sketch) We first show that if Zt,At are maximally informative of Zt+k, they are also
maximally informative of the return R̄t. Due to the Markov structure, Ep(Zt|St=s)p(R̄t|Zt,At) =
p(R̄t|St = s,At). In other words, given φZ, additionally knowing S doesn’t change our
belief about the future return. The Q-value is the expectation of the return, so Z has
as much information about the Q-value as S does. The full proof can be found in Ap-
pendix A.1.

2.4.2 State-only Transition Information

While Jstate is closely related to Jfwd, we now show that it is not sufficient.

Proposition 2. Jstate is not sufficient for all reward functions.

Proof. Consider the counter-example in Figure 2. Suppose that the two actions a0 and a1
are equally likely under the policy distribution. Each state gives no information about
which of the two possible next states is more likely; this depends on the action. Therefore,
a representation maximizing Jstate is free to alias states with the same next-state distri-
bution, such as s0 and s3. An alternative view is that such a representation can maximize
Jstate = H(Zt+k) −H(Zt+k|Zt) by reducing both terms in equal amounts - aliasing s0
and s3 decreases the marginal entropy as well as the entropy of predicting the next state
starting from s1 or s2. However, this aliased representation is not capable of representing
the optimal policy which must distinguish s0 and s3 in order to choose the correct action
to reach s2, which yields reward.
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Figure 2: (left) A representation that aliases the states s0 and s3 into a single state maximizes
Jstate but is not sufficient to represent the optimal policy which must choose differ-
ent actions in s0 and s3 to reach s2 which yields reward. (right) Values of Jstate and
Jfwd for a few representative state representations, ordered by increasing I(Z;S). The
representation that aliases s0 and s3 (plotted with a diamond) maximizes Jstate, but
the policy learned with this representation may not be optimal (as shown here). The
original state representation (plotted with a star) is sufficient.

2.4.3 Inverse Information

Here we show that representations that maximize Jinv are not sufficient for control in
all MDPs. Intuitively, one way that the representation can be insufficient is by retaining
only controllable state elements, while the reward function depends on state elements
outside the agent’s control. We then show that additionally representing the immediate
reward is not enough to resolve this issue.

Proposition 3. Jinv is not sufficient for all reward functions. Additionally, adding I(Rt;Zt)
to the objective does not make it sufficient.

Proof. Consider the MDP illustrated in Figure 3, and the representation that aliases the
states s0 and s1. The same actions taken from these states lead to different next states
which may have different rewards (a0 leads to the reward from s0 while a1 leads to the
reward from s1). However, this representation maximizes Jinv because given each pair of
states, the action is identifiable. Interestingly, this problem cannot be remedied by simply
requiring that the representation also be capable of predicting immediate rewards. The
same counterexample holds since we assumed s0 and s1 have the same reward.
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Figure 3: (left) In this MDP, a representation that aliases the states s0 and s1 into a single state
maximizes Jinv, yet is not sufficient to represent the optimal policy, which must distin-
guish between s0 and s1 in order to take a different action (towards the high-reward
states outlined in green). (right) Values of Jinv and Jfwd for a few selected state rep-
resentations, ordered by increasing I(Z;S). The representation that aliases s0 and s1
(plotted with a diamond) maximizes Jinv, but is not sufficient to learn the optimal
policy. Note that this counterexample holds also for Jinv + I(R;Z).

2.5 experiments

In this section, we present experiments studying MI-based representation learning with
image observations, to analyze whether the conclusions of our theoretical analysis hold
in practice. Our goal is not to show that any particular method is necessarily better or
worse, but rather to illustrate that the sufficiency arguments that we presented translate
into quantifiable performance differences in the deep RL setting.

2.5.1 Experimental Setup

To separate representation learning from RL, we first optimize each representation learn-
ing objective on a dataset of offline data consisting of 50k transitions collected from a
uniform random policy. We then freeze the weights of the state encoder learned in the
first phase and train RL agents with the representation as state input. To clearly illus-
trate the characteristics of each objective, we use the simple pygame (Shinners, 2011)
video game catcher, in which the agent controls a paddle that it can move back and forth
to catch fruit that falls from the top of the screen (see Figure 4). A positive reward is
given when the fruit is caught and a negative reward when the fruit is not caught. The
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episode terminates after one piece of fruit falls. We optimize Jfwd and Jstate with noise
contrastive estimation (Gutmann and Hyvärinen, 2010), and Jinv by training an inverse
model via maximum likelihood. For the RL algorithm, we use the Soft Actor-Critic algo-
rithm Haarnoja et al., 2018, modified slightly for the discrete action distribution. Please
see Appendix A.2 for full experimental details.

2.5.2 Computational Results

Figure 4: (left) Original catcher game in which
the agent (grey paddle) moves left
or right to catch fruit (yellow square)
that falls from the top of the screen.
(right) Variation catcher-grip in which
the agent is instantiated as a gripper,
and must open the gripper to catch
fruit.

In principle, we expect that a representa-
tion learned with Jinv may not sufficient to
solve the catcher game. Because the agent
does not control the fruit, a representation
maximizing Jinv might discard that infor-
mation, thereby making it impossible to
represent the optimal policy. We observe
in Figure 5 (top left) that indeed repre-
sentations trained to maximize Jinv result
in RL agents that converge slower and to
a lower asymptotic expected return. Fur-
ther, attempting to learn a decoder from
the learned representation to the position
of the falling fruit incurs a high error (Fig-
ure 5, bottom left), indicating that the fruit
is not precisely captured by the represen-
tation. We argue that this type of problem
setting is not contrived, and is representa-
tive of many situations in realistic tasks. Consider, for instance, an autonomous vehicle
that is stopped at a stoplight. Because the agent does not control the color of the stop-
light, it may not be captured in the representation learned by Jinv and the resulting RL
policy may choose to run the light.

In the second experiment, we consider a failure mode of Jstate. We augment the paddle
with a gripper that the agent controls and must be open in order to properly catch
the fruit. Since the change in the gripper is completely controlled by a single action,
the current state contains no information about the state of the gripper in the future.
Therefore, a representation maximizing Jstate might alias states where the gripper is
open with states where the gripper is closed. In our experiment, we see that the error
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in predicting the state of the gripper from the representation learned via Jstate is chance
(Figure 5, bottom right). This degrades the performance of an RL agent trained with
this state representation since the best the agent can do is move under the fruit and
randomly open or close the gripper (Figure 5, top right). In the driving example, suppose
turning on the headlights incurs positive reward if it’s raining but negative reward if it’s
sunny. The representation could fail to distinguish the state of the headlights, making it
impossible to learn when to properly use the headlights.
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Figure 5: (top) Policy performance using learned representations as state inputs to RL, for the
catcher and catcher-grip environments. (bottom) Error in predicting the positions of
ground truth state elements from each learned representation. Representations maxi-
mizing Jinv need not represent the fruit, while representations maximizing Jstate need
not represent the gripper, leading these representations to perform poorly in catcher and
catcher-grip respectively.

Jfwd produces useful representations in all cases, and is equally or more effective
than learning representations purely from the RL objective alone (as in Figure 5). We
experiment with more visual complexity by adding background distractors; these results
are presented in Appendix A.2.2. We find that in this setting representations learned with
Jfwd to yield even larger gains over learning representations end-to-end via RL. We also
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analyze the learned representations by evaluating how well they predict the optimal Q∗

in Appendix A.2.1.

2.6 discussion

In this chapter, we aimed to analyze mutual information representation learning ob-
jectives for control from a theoretical perspective. In contrast to much prior work that
studies how these objectives can be effectively optimized given high-dimensional obser-
vations, we analyze which objectives are guaranteed to yield representations that are
actually sufficient for learning the optimal policy. Surprisingly, we show that two com-
mon objectives yield representations that are theoretically insufficient, and provide a
proof of sufficiency for a third. We validate our theoretical results with an empirical
investigation on a simple video game environment, and show that the insufficiency of
these objectives can degrade the performance of deep RL agents.

We view this investigation as a step forward in understanding the theoretical char-
acteristics of representation learning techniques commonly used in deep RL. We see
many exciting avenues for future work. First, identifying more restrictive MDP classes
in which insufficient objectives are in fact sufficient, and relating these to realistic appli-
cations. Second, investigating if sample complexity bounds can be established in the case
of a sufficient objective. Third, extending our analysis to the partially observed setting,
which is more reflective of practical applications. We see these directions as fruitful in
providing a deeper understanding of the learning dynamics of deep RL, and potentially
yielding novel algorithms for provably accelerating RL with representation learning.
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3
M E TA - L E A R N I N G P R O B L E M S TAT E M E N T

In this chapter we define and formalize the meta-learning problem. Broadly defined, a
meta-learning agent is an agent whose performance at a task improves not only with
experience, but also with the number of tasks being learned (Thrun and Pratt, 1998). A
task T can be any decision-making problem, from predicting the category of an object in
an image to controlling an autonomous vehicle. In the next section, we formalize meta-
learning for supervised learning problems, while in Section 3.2 we apply meta-learning
to reinforcement learning.

3.1 supervised meta-learning

Let X represent the space of data points, Y the space of labels, D = {(x,y)n} the available
data, and φ the parameters of the model. A task is distinguished by a data distribution
p(x), an (unknown) distribution mapping data points to labels p(y|x), and a loss func-
tion L(φ,D). Formally then, a task T is defined as the tuple τ = (L(θ,D),p(x),p(y|x)).
We assume that tasks are drawn from a distribution p(T), and that all tasks in the distri-
bution share input spaces but may have different output spaces. For example, the task
distribution may be all possible semantic segmentations of objects in natural images. The
input space is the space of natural images, and the output space is the space of possible
pixel-wise labels for any number of objects or concepts. Note that this differs from con-
ventional few-shot learning settings described in prior work (Vinyals et al., 2016; Finn
et al., 2017a) which assume a fixed “shot" (how many training examples per class) and
“way” (the number of classes to be distinguished). We argue that all few-shot learners
should be able to handle varying shot and way, since in realistic applications it is rare
that tasks would all have the same shot and way; for example, one might want to add a
new class to an existing classifier.

Modern meta-learning methods work by casting the meta-learning problem into a
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supervised learning problem, in which tasks (each one itself a supervised learning prob-
lem) take the place of data points. To see this, consider a standard discriminative ma-
chine learning method that trains a model qφ(y|x) on training data Dtrain = {(xtr,ytr)n}.
In meta-learning, we have access to a set of meta-training tasks sampled from the task
distribution p(τ). For each task i, we split the data available into Dtrain

i and Dtest
i . A dis-

criminative meta-learning method would then learn the function, qφ(y|Dtrain
i , x), where

(x,y) ∼ Dtest
i . The resulting function qφ can thus adapt the model to a new task given a

small amount of labeled data.
While this framing illuminates the connection to standard supervised learning, it ob-

scures how Dtrain
i is used for adaptation. Instead, we will write the meta-learning opti-

mization problem as consisting of two loops: an inner adaptation loop that summarizes
Dtrain

i into an adaptation procedure zi that adapts the model, and an outer meta-training
loop that maximizes the performance of the adapted model with respect to the parame-
ters φ of the inner loop across the set of meta-training tasks.

φ∗ = max
φ

N∑

i=0

L(zi,Dtest
i ) where zi = fφ(D

train
i ) (5)

While the meta-training objective is typically optimized with gradient descent, many
options are possible for the design of the adaptation procedure – the only requirement
for our purposes is that it must be differentiable. The many designs that have been
proposed for a myriad of applications can be broadly classified into two categories of
approaches. Context-based methods summarize Dtrain

i into a latent vector zi, and then
condition the predictive model on zi, often by feeding it as an input. Within the category
of context-based methods, we can distinguish between black-box approaches that em-
ploy a recurrent network (Ravi and Larochelle, 2017) or other memory mechanism (San-
toro et al., 2016), and those that make additional assumptions such as learning a met-
ric space (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018). Gradient-based meth-
ods (Finn et al., 2017a) interpret fφ as several steps of gradient descent on the model
parameters that adapts them to the task (in this case zi can be interpreted as the adapted
model parameters for task i, with pre-adapted parameters φ).

Gradient-based methods enjoy the benefit of consistency, meaning that as the amount
of data used for adaptation increases, the meta-learner will converge on the same solu-
tion as if the task had been learned from scratch. However, particularly for small amounts
of data, context-based methods are often faster, easier to optimize, and achieve higher
accuracy (Rakelly et al., 2019; Ren et al., 2020). The best approach often depends on the
application. For applications such as structured output prediction considered in Chap-
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ter 4, very large convolutional networks that have millions of parameters are required,
making a gradient-based approach extremely slow. Additionally, due to memory con-
straints, these models are typically trained with very small batch sizes, which when
combined with gradient-based meta-learning can result in thrashing between parameter
settings rather than converging to a solution. In Chapter 4, we propose a context-based
meta-learning method for meta-learning few-shot image segmentation.

3.2 meta-reinforcement learning (meta-rl)

In this section we specialize the meta-learning setup to the case of reinforcement learn-
ing and point out differences from the supervised learning problems we have studied so
far. In meta-reinforcement learning (meta-RL), each task is a Markov Decision Process
(MDP). An MDP consists of a set of states S, a set of actions A, an initial state distribu-
tion p(s1), a state transition distribution p(st+1|st, at), a discount factor γ, and a reward
function r(st, at). We assume the transition and reward functions are unknown, but can
be sampled by taking actions in the environment. The goal of RL is to learn a policy
πθ(at|st) that selects actions that maximize the sum of discounted rewards.

While a review of RL algorithms is beyond the scope of this work, one characteristic
of RL algorithms that will be important in later chapters is the type of data required
for learning. RL algorithms can be categorized into those that learn from data collected
by the current policy (“on-policy”), and those that can learn from data collected by a
different policy (“off-policy”) (Sutton et al., 1998). Off-policy algorithms are substantially
more data efficient, as they can re-use previously collected data for training. Since deep
RL is data-intensive, often requiring millions of billions of environment interactions to
learn a good policy, we will be interested in leveraging off-policy learning wherever
possible to reduce the burden of interaction.

In the meta-RL setting, we assume a distribution over tasks p(T). This problem defini-
tion encompasses task distributions with varying transition functions (e.g., robots with
different dynamics) and varying reward functions (e.g., navigating to different locations).
We formalize the adaptation procedure fφ as a function of experience (s1:t, r1:t, a1:t−1) that
summarizes task-relevant information into the variable zt. The policy is conditioned on
this variable as πθ(at|st, zt) to adapt to the task. By training the adaptation mechanism
fφ and the policy πθ end-to-end to maximize returns of the adapted policy, meta-RL
algorithms can learn policies that effectively modulate and adapt their behavior with
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small amounts of experience in new tasks. We formalize this meta-RL objective as:

θ∗ , φ∗ = max
θ,φ

E
T∼p(T)

E
at∼πθ(·|st,zt)

st+1∼pT(·|st,at)
rt∼rT(·|st,at)

[
T∑

t=1

γtrt

]

where zt = fφ(s1:t, r1:t, a1:t−1). (6)

Similar to the supervised learning setting, prior meta-RL methods differ in how the
adaptation procedure fφ is represented: as a recurrent update (Duan et al., 2016; Wang
and Hebert, 2016), or as a gradient step (Finn et al., 2017a)). Additionally, meta-RL algo-
rithms also differ in how often the adaptation procedure occurs (e.g., at every timestep (Duan
et al., 2016; Zintgraf et al., 2019) or once per episode (as in the PEARL algorithm pro-
posed in Chapter 5 as well as Humplik et al. (2019)), and in how the optimization is per-
formed (e.g., on-policy (Duan et al., 2016), off-policy as in both algorithms proposed in
Chapter 5). A significant difference between the meta-RL and supervised meta-learning
settings is that in meta-RL the agent must collect its own adaptation data. Thus adap-
tation to a new task presents the same exploration-exploitation problem inherent to RL.
During the meta-training phase, the agent must learn both exploration strategies and
how to make use of the collected data to learn the task.

In Chapter 5, we tackle combining meta-RL with off-policy learning to produce the
sample efficient meta-RL algorithm PEARL. To do so, we must contend with the ex-
ploration problem, since in the off-policy setting, the data seen during meta-training is
systematically different from the data collected when adapting to a new task. As we
will see, framing meta-RL as probabilistic inference of task variables affords an elegant
solution to this exploration problem.

3.3 partially observed meta-rl

Robots operating in the real world do not have access to the underlying state st, and
must instead select actions using high-dimensional and often incomplete observations
from cameras and other sensors. Such a system can be described as a partially observed
Markov decision process (POMDP), where observations xt are a noisy or incomplete
function of the unknown underlying state st, and the policy is conditioned on a history
of observations as π(at|x1:t). In the meta-RL setting, each T from a distribution of tasks
p(T) is now a POMDP as described above, with initial state distribution pT(s1), dynamics
function pT(st+1|st, at), observation function pT(xt|st), and reward function rT(rt|st, at).
The partially observed meta-RL objective is very similar to Equation 12 (additions are
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marked in blue):

θ∗ , φ∗ = max
θ,φ

E
T∼p(T)

E
xt∼pT(·|st)

at∼πθ(·|x1:t,zt)
st+1∼pT(·|st,at)
rt∼rT(·|st,at)

[
T∑

t=1

γtrt

]

where zt = fφ(x1:t, r1:t, a1:t−1). (7)

Black-box recurrent meta-RL algorithms can handle such state partial observability by
design (the function f and the policy π are both the same recurrent network). However
these approaches have a number of drawbacks: they provide no explicit representation
learning to handle image inputs, they do not represent uncertainty in either task or state
estimation, and it has proven difficult to use such models in conjunction with off-policy
learning (see Chapter 5).

In Chapter 5, we again leverage the probabilistic inference perspective on meta-learning
to cast meta-RL into the framework of latent state estimation. This insight allows us to
leverage latent state models designed to infer state information from history directly for
meta-RL with only a few modifications. The resulting MELD algorithm uses unsuper-
vised representation learning to aid in interpreting image inputs, represents uncertainty
over both the state and task, and is amenable to off-policy optimization.
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4
G U I D I N G I M A G E S E G M E N TAT I O N V I A M E TA - L E A R N I N G

Many tasks of scientific and practical interest require grouping pixels, such as cellular mi-
croscopy, medical imaging, and graphic design. Furthermore, a single image might need
to be segmented in several ways, for instance to first segment all people, then focus on a
single person, and finally pick out their face. Learning a particular type of segmentation,
or even extending an existing model to a new task like a new semantic class, gener-
ally requires collecting and annotating a large amount of data and (re-)training a large
model for many iterations. Interactive segmentation with a supervisor in-the-loop can
cope with less supervision such as a few clicks on the image, but the concepts indicated
by the annotations cannot be transferred to other images. Faced with endless varieties
of segmentation and countless images, and limited annotator expertise and time, a seg-
mentor should be able to learn from varying amounts of supervision and propagate that
supervision to unlabeled pixels and images. We refer to this problem statement as guided
segmentation. The amount of supervision may vary widely, from a lone annotated pixel,
millions of pixels in a fully annotated image, or even more across a collection of images
as in conventional supervised learning for segmentation. The number of classes to be
segmented may also vary depending on the task, such as when segmenting categories
like cats vs. dogs, or when segmenting instances to group individual people. Guided
segmentation extends few-shot learning to the structured output setting, and the non-
episodic accumulation of supervision as data is progressively annotated. Compared to
interactive segmentation, guided segmentation broadens the scope by integrating super-
vision across images and segmenting unannotated images.

We frame the problem of guided segmentation as a meta-learning problem, where
tasks consist of different concepts to segment. To tackle this problem, we propose an
algorithm that learns to infer a latent task variable from the supervision available, and
conditions the segmentation network on this latent variable in order to segment new
images accordingly (see Figure 6). We perform meta-training by synthesizing few-shot
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Figure 6: A guide g extracts a latent task representation z from an annotated image (red) for
inference by fθ(x̄, z) on a different, unannotated image (blue).

tasks from fully labeled segmentation datasets. Once trained, our model can quickly and
cumulatively incorporate annotations to perform new tasks not seen during training.
Guided networks reconcile static and interactive modes of inference: a guided model is
both able to make predictions on its own, like a fully supervised model, and to incor-
porate expert supervision for defining new tasks or correcting errors, like an interactive
model.

We evaluate our method on a variety of challenging segmentation problems in Section
4.4: interactive image segmentation, semantic segmentation, video object segmentation,
and real-time interactive video segmentation, as shown in 7. We compare guided net-
works with standard supervised learning across the few-shot and many-shot extremes
to identify the boundary between few-shot and many-shot learning for segmentation.
Finally, we demonstrate that in some cases, our model can generalize to guide tasks at a
different level of granularity, such as meta-learning from instance supervision and then
guiding semantic segmentation of categories.

4.1 related work

Guided segmentation extends few-shot learning to structured output models, statisti-
cally dependent data, and variable supervision in amount of annotation (shot) and num-
bers of classes (way). Guided segmentation spans different kinds of segmentation as
special cases determined by the supervision that constitutes a task, such as a collection
of category masks for semantic segmentation, sparse positive and negative pixels in an
image for interactive segmentation, or a partial annotation of an object on the first frame
of a clip for video object segmentation.

Few-shot learning Few-shot learning (Fei-Fei et al., 2006; B. M. Lake et al., 2015)
holds the promise of data efficiency: in the extreme case, one-shot learning requires
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only a single annotation of a new concept. The present wave of methods (Koch et al.,
2015; Santoro et al., 2016; Vinyals et al., 2016; Wang and Hebert, 2016; Bertinetto et al.,
2016; Finn et al., 2017a; Ravi and Larochelle, 2017; Snell et al., 2017) frame it as direct
optimization for the few-shot setting: they synthesize episodes by sampling supports
and queries, define a task loss, and learn a task model for inference of the queries given
the support supervision. While these works address a setting with a fixed, small number
of examples and classes at meta-test time, we explore settings where the number of
annotations and classes is flexible.

Our approach is most closely related to episodically optimized metric learning ap-
proaches. We design a novel, efficient segmentation architecture for metric learning, in-
spired by Siamese networks (Chopra et al., 2005; Hadsell et al., 2006) and few-shot metric
methods (Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017) that learn a distance to
retrieve support annotations for the query. In contrast to existing meta-learning schemes,
we examine how a meta-learned model generalizes across task families with a nested
structure, such as performing semantic segmentation after meta-learning on instance
segmentation tasks.

Segmentation There are many kinds of segmentation, and many current directions
for deep learning techniques (Garcia-Garcia et al., 2017). We take up semantic (Evering-
ham et al., 2010; Liu et al., 2011), interactive (Kass et al., 1988; Boykov and Jolly, 2001),
and semi-supervised video object segmentation (Pont-Tuset et al., 2017) as challenge
problems for our unified view with guidance. See Fig. 7 for summaries of these tasks.

For semantic segmentation Shaban et al. (2017) proposes a one-shot segmentor (OSLSM),
which requires few but densely annotated images, and must independently infer one
annotation and class at a time. Our guided segmentor can segment from sparsely anno-
tated pixels and perform multi-way inference. For video object segmentation one-shot
video object segmentation (OSVOS) by Caelles et al. (2017) achieve high accuracy by fine-
tuning during inference, but this online optimization is too costly in time and fails with
sparse annotations. Our guided segmentor is feed-forward, hence quick, and segments
more accurately from extremely sparse annotations. Y. Chen et al. (2018) impressively
achieve state-of-the-art accuracy and real-time, interactive video object segmentation by
replacing online optimization with offline metric learning and nearest neighbor inference
on a deep, spatiotemporal embedding; however, they focus exclusively on video seg-
mentation. We consider a variety of segmentation tasks, and investigate how guidance
transfers across semantic and instance tasks and how it scales with more annotation. For
interactive segmentation, N. Xu et al. (2016); Maninis et al. (2018) learn state-of-the-art in-
teractive object segmentation, and Maninis et al. (2018) only needs four annotations per
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Figure 7: Guided segmentation groups different kinds of segmentation in one problem statement.

object. However, these purely interactive methods infer each task in isolation and can-
not pool supervision across tasks and images without optimization, while our guided
segmentor quickly propagates supervision non-locally between images.

4.2 guided segmentation

Akin to few-shot learning, we divide the input into an annotated support, which su-
pervises the task to be done, and an unannotated query on which to do the task. The
common setting in which the support contains K distinct classes and S examples of each
is referred to as K-way, S-shot learning (B. M. Lake et al., 2015; Fei-Fei et al., 2006; Vinyals
et al., 2016). For guided segmentation tasks we add a further pixel dimension to this set-
ting, as we must now consider the number of support pixel annotations for each image,
as well as the number of annotated support images. We denote the number of annotated
pixels per image as P, and consider the settings of (S,P)-shot learning for various S and
P. In particular, we focus on sparse annotations where P is small, as these are more prac-
tical to collect, and merely require the annotator to point to the segment(s) of interest.
This type of data collection is more efficient than collecting dense masks by at least an or-
der of magnitude (Bearman et al., 2016). Since segmentation commonly has imbalanced
classes and sparse annotations, we consider mixed-shot and semi-supervised supports
where the shot varies by class and some points are unlabeled. This is in contrast to the
standard few-shot assumption of class-balanced supports.

We define a guided segmentation task as the set of input-output pairs (Ti,Yi) sampled
from a task distribution P, adopting and extending the notation of Garcia and Bruna
(2018). The task inputs are

T =
{
{(x1,L1), . . . (xS,LS)}∪ {x̄1, . . . , x̄Q} ; xs, x̄q ∼ Pl(R

N)
}

Ls =
{
(pj, lj) : j ∈ {1 . . P}, l ∈ {1 . . K}∪ {∅}

}
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where S is the number of annotated support images xs, Q is the number of unannotated
query images x̄q, and Ls are the support annotations. The annotations are sets of point-
label pairs (p, l) with |Ls| = P per image, where every label l is one of the K classes or
unknown (∅). The task outputs, that is the targets for the support-defined segmentation
task on the queries, are

Y = (y1, . . . ,yQ), yq =
{
(pj, lj) : pj ∈ x̄q

}

Our model handles general way K, but for exposition we focus on binary tasks with
K = 2, or L = (+,−). We let Q = 1 throughout as inference of each query is independent
in our model.

4.3 guided networks

Our approach to guided segmentation has two parts: (1) extracting a task representation
from the semi-supervised, structured support and (2) segmenting the query given the
task representation. We define the task representation as z = g(x,+,−), and the query
segmentation guided by that representation as ŷ = f(x̄, z). The design of the task repre-
sentation z and its encoder g is crucial for guided segmentation to handle the hierarchi-
cal structure of images and pixels, the high and variable dimensions of images and their
pixelwise annotations, the semi-supervised nature of support with many unannotated
pixels, and skewed support distributions.

We examine how to best design the guide g and inference f as deep networks. Our
method is one part architecture and one part optimization. For architecture, we define
branched fully convolutional networks, with a guide branch for extracting the task rep-
resentation from the support with a novel late fusion technique (Section 4.3.1), and an
inference branch for segmenting queries given the guidance (Section 4.3.2). For optimiza-
tion, we adapt episodic meta-learning to image-to-image learning for structured output
(Section 4.3.3), and increase the diversity of episodes past existing practice by sampling
within and across segmentation task families like categories and instances.

4.3.1 Guidance: From Support to Latent Task Representation

The task representation z must fuse the visual information from the image with the
annotations in order to determine what should be segmented in the query. As images
with (partial) segmentations, our support is statistically dependent because pixels are
spatially correlated, semi-supervised because the full supervision is arduous to annotate,
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Figure 8: Extracting a task representation or “guidance” from the support. (a) Early fusion simply
concatenates the image and annotations. (b) Our late fusion factorizes into image and
annotation streams, improves accuracy, and updates quickly given new annotations. (c)
Globalizing the task representation propagates appearance non-locally: a single bird is
annotated in this example, but global guidance causes all the similar-looking birds to
be segmented (red) regardless of location.

and high dimensional and class-skewed because scenes are sizable and complicated. For
simplicity, we first consider a binary task with (1,P)-shot support consisting of one image
with an arbitrary number of annotated pixels P, and then extend to multi-way tasks and
general (S,P)-shot support. To begin we decompose the support encoder g(xs,+s,−s)
across receptive fields indexed by i for local task representations zi = g(xsi,+si,−si); this
is the same independence assumption made by existing fully convolutional approaches
to structured output. See Figure 8 for an overview and our novel late global fusion
technique.

Early Fusion (prior work) Stacking the image and annotations channel-wise at the
input makes zsi = gearly(x,+,−) = φS(x⊕+⊕−) with a support feature extractor φS.
This early fusion strategy, employed by N. Xu et al., 2016, gives end-to-end learning
full control of how to fuse. Masking the image by the positive pixels (Shaban et al.,
2017; J. S. Yoon et al., 2017) instead forces invariance to context, potentially speeding
up learning, but precludes learning from the background and disturbs input statistics.
All early fusion techniques suffer from an inherent modeling issue: incompatibility of
the support and query representations. Stacking requires distinct φS,φQ while masking
disturbs the input distribution. Early fusion is slow, since changes in annotations trigger
a full pass through the network, and only one task can be inferred at a time, limiting
existing interactive and few-shot segmentors alike (N. Xu et al., 2016; Maninis et al., 2018;
Shaban et al., 2017).
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Late Fusion (ours) We resolve the learning and inference issues of early fusion by
factorizing features and annotations in the guide architecture as zsi = glate(x,+,−) =
ψ(φ(x̄),m(+),m(−)). We first extract visual features from the image alone by φ(x), map
the annotations into masks in the feature layer coordinates m(+),m(−), and then fuse
both by ψ chosen to be element-wise product. This factorization into visual and anno-
tation branches defines the spatial relationship between image and annotations, improv-
ing learning sample efficiency and inference computation time. Fixing m to interpola-
tion and ψ to multiplication, the task representation can be updated quickly by only
recomputing the masking and not features φ. See Figure 8 (center). We do not model a
distribution over z, although this is a possible extension of our work for regularization
or sampling diverse segmentations.

Our late fusion architecture can now share the feature extractor φ for joint optimiza-
tion through the support and query. Sharing improves learning efficiency with conver-
gence in fewer iterations and task accuracy with 60% relative improvement for video
object segmentation. Late fusion reduces inference time, as only the masking needs to be
recomputed to incorporate new annotations, making it capable of real-time interactive
video segmentation. Optimization-based methods (Caelles et al., 2017) need seconds or
minutes to update.

Locality We are generally interested in segmentation tasks that are determined by
visual characteristics and not absolute location in space or time, i.e. the task is to group
pixels of an object and not pixels in the bottom-left of an image. When the support and
query images differ, there is no known spatial correspondence, and the only mapping
between support and query should be through features. To fit the architecture to this
task structure, we merge the local task representations by mP({zsi : ∀i}) for all positions i.
Choosing global pooling for mP globalizes the task by discarding the spatial dimensions.
The pooling step can be done by averaging, our choice, or other reductions. The effect of
pooling in an image with multiple visually similar objects is shown in Figure 8 (right).

Multi-Shot and Multi-Way The full (S,P)-shot setting requires summarizing the en-
tire support with a variable number of images with varying amounts of pixelwise anno-
tations. Note in this case that the annotations might be divided across the support, for
instance one frame of a video may only have positives while a different frame has only
negatives, so S-shot cannot always be reduced to 1-shot, as done in prior work Shaban
et al., 2017. We form the full task representation zS = mS({z1, . . . , zS}) simply and differ-
entiably by averaging the shot-wise representations zs. While we have considered binary
tasks thus far, we extend guidance to multi-way inference do in our experiments. We
construct a separate guide for each class, averaging across all shots containing annota-
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Figure 9: Optimization for guided segmentation. (a) Synthesizing tasks from densely annotated
segmentation data. (b) One task update: episodic training reduces to supervised learn-
ing.

tions for that class. Note that all the guides share φ for efficiency and differ only in the
masking.

4.3.2 Guiding Inference

Inference in a static segmentation model is simply ŷ = fθ(x̄) for output y, parameters θ,
and input x̄. Guided inference is a function ŷ = f(x̄, z) of the query given the guidance
extracted from the support. We further structure inference by f(φ(x̄), z), where φ is a
fully convolutional encoder from input pixels to visual features.

Multiple forms of conditioning are possible and have been explored for low-dimensional
classification and regression problems by the few-shot learning literature. In preliminary
experiments we consider parameter regression, nearest neighbor and prototype retrieval,
and metric learning on fused features. We select metric learning with feature fusion be-
cause it was simple and robust to optimize. Note that feature fusion is similar to siamese
architectures, but we directly optimize the classification loss rather than a contrastive
loss.

In particular we fuse features by mf = φ(x)⊕ tile(z) which concatenates the guide
with the query features, while tiling z to the spatial dimensions of the query. The fused
query-support feature is then scored by a small convolutional network fθ that can be
interpreted as a learned distance metric for retrieval from support to query. For multi-
way guidance, the fusions of the query and each guide are batched for parallel inference.

29



4.3.3 Episodic Optimization and Task Distributions

We distinguish between optimizing the parameters of the model during training (learn-
ing) and adapting the model during inference (guidance). Thus during training, we wish
to “learn to guide.” In standard supervised learning, the model parameters θ are opti-
mized according to the loss between prediction ŷ = fθ(x) and target y. We reduce the
problem of learning to guide to supervised learning by jointly optimizing the parameters
of the guidance branch g and the segmentation branch f according to the loss between
fθ(x̄, z) and query target y, see Figure 9.

For clarity, we distinguish between tasks, a given support and query for segmentation,
and task distributions that define a kind of segmentation problem. For example, semantic
segmentation is a task distribution while segmenting birds (a semantic class) is a task. We
train a guided network for each task distribution by optimizing episodically on sampled
tasks. The supports and queries that comprise an episode are synthesized from a fully
labeled dataset. We first sample a task, then a subset of images containing that task
which we divide into support and query. During training, the target for the query image
is available, while for testing it is not. We binarize support and query annotations to
encode the task, and spatially sample support annotations for sparsity.

Given inputs and targets, we train the network with the pixelwise cross-entropy loss
between the predicted and target segmentation of the query. See Sections B.1 and B.1.1
for more details on data processing and network optimization respectively.

After learning, the model parameters are fixed, and task inference is determined by
guidance. While we evaluate for varying support size S, as described in 4.3.2, we train
with S = 1 for efficiency while sampling P ∼ Uniform(1, 100). Once learned, our guided
networks can operate at different (S,P) shots to address sparse and dense pixelwise an-
notations with the same model, unlike existing methods that train for particular shot and
way. In our experiments, we train with tasks sampled from a single task distribution, but
co- or cross-supervision of distributions is possible. Intriguingly, we see some transfer
between distributions when evaluating a guided network on a different distribution than
it was trained on in Section 4.4.3.

4.4 results

We evaluate our guided segmentor on a variety of problems that are representative of
segmentation as a whole: interactive segmentation, semantic segmentation, and video
object segmentation. These are conventionally regarded as separate problems, but we
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demonstrate that each can be viewed as an instantiation of guided segmentation. As a
further demonstration of our method, we present results for real-time, interactive video
segmentation from dot annotations. To better understand the characteristics of guidance,
we experiment with cross-task supervision in Section 4.4.2 and guiding with large-scale
supports in Section 4.4.3.

To standardize evaluation we select one metric for all tasks: the intersection-over-union
(IU) of the positives averaged across all tasks and masks. This choice allows us to com-
pare scores across the different kinds of segmentation we consider without skew from
varying numbers of classes or images. Note that this metric is not equivalent to the mean
IU across classes that is commonly reported for semantic segmentation. Please refer to
Section B.1.2 for more detail.

We include fine-tuning and foreground-background segmentation as baselines for all
problems. Fine-tuning simply attempts to optimize the model on the support. Foreground-
background verifies that methods are learning to co-vary their output with the support
supervision and sets an accuracy floor.

The backbone of our networks is VGG-16 (Simonyan and Zisserman, 2015), pre-trained
on ILSVRC Russakovsky et al., 2015, and cast into fully convolutional form (Shelhamer
et al., 2016a). This choice is made for fair comparison with existing works across our chal-
lenge tasks of semantic, interactive, and video object segmentation without confounds
of architecture, pre-training data, and so forth.

4.4.1 Guidance for Interactive, Video Object, and Semantic Segmentation

Interactive Image Segmentation We recover this problem as a special case of guided
segmentation when the support and query images are identical. We evaluate on PASCAL
VOC (Everingham et al., 2010) and compare to deep interactive object selection (DIOS)
(N. Xu et al., 2016), because it is state-of-the-art and shares our focus on learning for
label efficiency and generality. Our approach differs in support encoding: DIOS fuses
early while we fuse late and globally. Our guided segmentor is more accurate with
extreme sparsity and intrinsically faster to update, as DIOS must do a full forward pass.
See Figure 10 (left). From this result we decide on late-global guidance throughout.

Video Object Segmentation We evaluate our guided segmentor on the DAVIS 2017
benchmark (Pont-Tuset et al., 2017) of 2–3 second videos. For this problem, the object
indicated by the fully annotated first frame must be segmented across the video. We
then extend the benchmark to sparse annotations to gauge how methods degrade. We
compare to OSVOS (Caelles et al., 2017), a state-of-the-art online optimization method
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Figure 10: (left) Interactive segmentation of objects in images. (right) Guided semantic segmenta-
tion of held-out classes: we are state-of-the-art with only two points and competitive
with full annotations.

that fine-tunes on the annotated frame and then segments the video frame-by-frame.
While Y. Chen et al. (2018) presents impressive results on this task and on real-time
interactive video segmentation without optimization, their scope is limited to video, and
they employ orthogonal improvements that make comparison difficult. We were unable
to reproduce their results in our own experimental framework. See Figure 11 (left) for a
comparison of accuracy, speed, and annotation sparsity.

In the dense regime our method achieves 33.3% accuracy for 80% relative improvement
over OSVOS in the same time envelope. Given (much) more time fine-tuning significantly
improves in accuracy, but takes 10+min/video. Guidance is ∼ 200× faster at 3sec/video.
Our method handles extreme sparsity with little degradation, maintaining 87% of the
dense accuracy with only 5 points for positive and negative. Fine-tuning struggles to
optimize over so few annotations.

Interactive Video Segmentation By dividing guidance and inference, our guided
segmentor can interactively segment video in real time. As an initial evaluation, we sim-
ulate interactions with randomly-sampled dot annotations. We define a benchmark by
fixing the amount of annotation and measuring accuracy as the annotations are given.
The accuracy-annotation tradeoff curve is plotted in Figure 11 (right). Our guided seg-
mentor improves with both dimensions of shot, whether images (S) or pixels (P). Our
guided architecture is feedforward and fast, and faster still to update for changes to the
annotations.

Semantic Segmentation Semantic segmentation is a challenge for learning from little
data due to the high intra-class variance of appearance. For this problem it is crucial
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Figure 11: (left) Accuracy-time evaluation for sparse and dense video object segmentation on
DAVIS’17 val. (right) Real-time interactive video segmentation on simulated dot inter-
actions.

to evaluate on not only held-out inputs, but held-out classes, to be certain the guided
learner has not covertly learned to be an unguided semantic segmentor. To do so we
follow the experimental protocol of Shaban et al. (2017) and score by averaging across
four class-wise splits of PASCAL VOC (Everingham et al., 2010), with has 21 classes
(including background), and compare to OSLSM.

Our approach achieves state-of-the-art sparse results that rival the most accurate dense
results with just two labeled pixels: see Figure 10 (right). OSLSM is incompatible with
missing annotations, as it does early fusion by masking, and so is only defined for {0, 1}
annotations. To evaluate it we map all missing annotations to negative. Foreground-
background is a strong baseline, and we were unable to improve on it with fine-tuning.
The oracle is trained on all classes (nothing is held-out).

4.4.2 Guiding Classes from Instances

We carry out a novel examination of meta-learning with
cross-task supervision. In the language of task distributions,
the distribution of instance tasks for a given semantic cat-
egory are nested in the distribution of tasks for that cate-
gory. We investigate whether meta-training on the sub-tasks
(instances) can address the super-tasks (classes). This tests
whether guidance can capture an enumerative definition of
a semantic class as the union of instances in that category.
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To do so, we meta-train our guided segmentor on inter-
active instance segmentation tasks draw from all classes of
PASCAL VOC (Everingham et al., 2010), and then evaluate the model on semantic seg-
mentation tasks from all categories. We experiment with (S, 1) support from semantic
annotations, where S varies from one image to all the images in the training set, shown
in the plot to the right. We compare to foreground-background as a class-agnostic ac-
curacy floor, and a standard semantic segmentation net trained with semantic labels as
an oracle. Increasing the amount of semantic annotations for guidance steadily increases
accuracy.

4.4.3 Guiding by Few or Many Annotations

Thus far we have considered guidance in a variable but constrained scale of annotations,
ranging from a single pixel in a single image to a few fully annotated images. We meta-
learned our guided networks over episodes with such support sizes, and they perform
accordingly well in this regime. Here we consider a much wider spectrum of support
sizes, with the goal of understanding how guidance compares to standard supervised
learning at both ends of the spectrum. To the best of our knowledge, this is the first
evaluation of how few-shot learning scales to many-shot usage for structured output.

For this experiment we compare guidance and supervised learning on a transfer task
between disjoint semantic categories. We take the classes of PASCAL VOC (Evering-
ham et al., 2010) as source classes, and take the non-intersecting classes of COCO (Lin
et al., 2014) as the target classes. We divide COCO 2017 validation into class-balanced
train/test halves to look at transfer from a practical amount of annotation (thousands in-
stead of more than a hundred thousand images). Our guided segmentor is meta-trained
with semantic tasks sampled from the source classes, then guided with 5,989 densely
annotated semantic masks from the target classes. For fair comparison, the supervised
learner is first trained on the source classes, and then fine-tuned on the same annotated
target data. Both methods share the same ILSVRC pre-training, backbone architecture,
and (approximate) number of parameters. In this many-shot regime, guidance achieves
95% of supervised learning performance. A key point of this result is to shed light on
the spectrum of supervision that spans few-shot and many-shot settings, and encourage
future work to explore bridging the two.
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4.5 discussion

From a computer vision perspective, the problem statement of guided segmentation
unites interactive, few-shot, and video object segmentation in a unified framework for
propagating annotations across image collections. Guided networks reconcile task-driven
and interactive inference by extracting guidance, a latent task representation. The algo-
rithm can learn to segment from a wide range of annotated pixels, from 1 to the millions
of pixels in a fully annotated image, and can segment a variable number of concepts. The
late fusion architecture that we propose to infer the latent task vector enables extremely
fast inference; for example, in a video segmentation scenario, the image features can be
pre-computed, allowing the segmentations to be updated in real time as the user adds
annotations.

From the perspective of meta-learning, our proposed guided segmentor leverages a
task inference approach to extend few-shot learning to the realm of structured output
models. Unlike many few-shot classification algorithms (Vinyals et al., 2016; Finn et al.,
2017a), our segmentor is agnostic to “shot” and “way.” Still, if a new concept is too
different from the concepts seen during meta-training, the guided segmentor can fail
to learn to segment the new concept. Additionally, the performance of the algorithm
saturates with a certain amount of supervision (25 labeled pixels in the video object
segmentation experiment, Figure 11). In these cases, learning via gradient descent would
enable the model to keep improving. While all model parameters could be trained, it
would also be possible to train only the latent task vector. An algorithm that trades off
smoothly between inference and gradient descent is an interesting direction of future
work, for segmentation but also for meta-learning more broadly.

In this chapter we focused on agents that make passive predictions. Next, we turn to
agents that interact with their environment and study the reinforcement learning setting.
We will continue to build on the idea of meta-learning as task inference, extending it to
the probabilistic setting.
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5
E F F I C I E N T M E TA - R L V I A P R O B A B I L I S T I C TA S K I N F E R E N C E

General purpose autonomous robots must be able to perform a wide variety of tasks
and quickly acquire new skills. For example, consider a robot tasked with assembling
electronics in a data center. This robot must be able to insert cables of varying shapes,
sizes, colors, and weights into the correct ports with the appropriate amounts of force.
While the combination of reinforcement learning (RL) with powerful non-linear function
approximators has led to a wide range of advances in sequential decision making prob-
lems, conventional RL methods learn a separate policy per task, each often requiring
millions of interactions with the environment. Learning large repertoires of behaviors
with such methods quickly becomes prohibitive. Fortunately, many of the problems we
would like our autonomous agents to solve share common structure; for example, all
cable insertion tasks involve manipulating the cable with precision into the socket. As
introduced in Chapter 3, meta-learning approaches offer an opportunity to exploit this
structure to learn new tasks more quickly. Given a task distribution, such as the variety
of ways to insert cables described above, meta-RL algorithms leverage a set of training
tasks to meta-learn a mechanism that can quickly learn unseen tasks from the same distri-
bution. Despite promising results in simulation demonstrating that agents can learn new
tasks in a handful of trials (Wang and Hebert, 2016; Duan et al., 2016; Finn et al., 2017a;
Rothfuss et al., 2018), during the meta-training phase these algorithms require massive
amounts of data drawn from a large set of distinct tasks, exacerbating the problem of
sample efficiency that plagues RL algorithms.

While meta-learning can be viewed as learning a learning algorithm (Wang and Hebert,
2016; Duan et al., 2016), or learning parameter values amenable to adaptation via gradi-
ent descent (Finn et al., 2017a; Rothfuss et al., 2018), an alternative perspective frames it
as probabilistic inference of hidden task variables (Rusu et al., 2019; J. Gordon et al., 2019;
Finn et al., 2018). Extending this view to the control setting, this perspective reveals that
meta-RL is a special kind of partially observed MDP in which the hidden variable is the
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task to be performed. Leveraging this insight, in this chapter we propose two meta-RL al-
gorithms based on posterior belief inference given experience consisting of observations
and rewards.

First, we tackle the problem of efficient off-policy meta-RL. In Section 5.2, we pro-
pose an algorithm PEARL that performs adaptation via variational posterior inference
of hidden task variables and explores via posterior sampling. Disentangling task infer-
ence from action minimizes distribution mismatch between meta-train and meta-test,
enabling off-policy meta-training; the policy can be optimized with off-policy data while
the probabilistic encoder is trained with on-policy data. In our experimental evalua-
tion, we demonstrate 20-100x improvement in meta-training sample efficiency over prior
methods on six simulated continuous control meta-learning domains.

While the data efficiency of PEARL is sufficient to perform meta-training on a real
robotic system, challenges remain to apply meta-RL in the real world. Applying these
algorithms to real-world robotic systems requires handling the raw sensory observations
collected by a robot’s on-board sensors. In principle, deep reinforcement learning (RL)
algorithms can directly map sensory inputs to actions. However, this automation comes
at a steep cost in sample efficiency since the agent must learn to interpret observations
from reward supervision alone. Fortunately, unsupervised learning of general-purpose
latent state (or dynamics) models can serve as an additional training signal to help solve
the representation learning problem (Finn et al., 2016; Ghadirzadeh et al., 2017; A. Lee
et al., 2019; M. Zhang et al., 2019). In Section 5.3, we seek to leverage the benefits of
latent state models for representation learning to design the meta-RL algorithm MELD
that can acquire new skills quickly in the real world. Our key insight is that the same
latent dynamics models that greatly improve efficiency in end-to-end single-task RL can
also, with minimal modification, be used for meta-RL by treating the unknown task infor-
mation as part of the latent state estimated from experience. The trained system quickly
learns a new task by inferring the posterior belief over the hidden variable and executing
the conditional meta-learned policy. We find that MELD substantially outperforms prior
work on several vision-based simulated domains, and then demonstrate that MELD can
perform Ethernet cable insertion into ports at novel locations and orientations using a
real WidowX.

5.1 related work

Meta-learning. Our work builds on the meta-learning framework (Schmidhuber, 1987;
Bengio et al., 1990; Thrun and Pratt, 1998) in the context of reinforcement learning.
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Recently, meta-RL methods have been developed for meta-learning dynamics models
(Nagabandi et al., 2019; Sæmundsson et al., 2018; Doshi-Velez and Konidaris, 2016) and
policies (Finn et al., 2017a; Duan et al., 2016; Mishra et al., 2018) that can quickly adapt
to new tasks.

Recurrent (Duan et al., 2016; Wang and Hebert, 2016) and recursive (Mishra et al., 2018)
meta-RL methods adapt to new tasks by aggregating experience into a latent representa-
tion on which the policy is conditioned. These approaches can be categorized into what
we will call context-based meta-RL methods, since a neural network is trained to take expe-
rience as input as a form of task-specific context. Similarly, our approach can also be con-
sidered context-based; however, we represent task contexts with probabilistic latent vari-
ables, enabling reasoning over task uncertainty. In the PEARL algorithm, instead of using
recurrence, we leverage the Markov property in our permutation-invariant encoder to
aggregate experience, enabling fast optimization especially for long-horizon tasks while
mitigating overfitting. While prior work has studied methods that can train recurrent Q-
functions with off-policy Q-learning methods, such methods have often been applied to
much simpler tasks (Heess et al., 2015), and in discrete environments (Hausknecht and
Stone, 2015). Indeed, our own experiments in Section 5.2.3 demonstrate that straightfor-
ward incorporation of recurrent policies with off-policy learning is difficult. Contextual
methods have also been applied to imitation learning by conditioning the policy on a
learned embedding of a demonstration and optimizing with behavior cloning (Duan et
al., 2017; James et al., 2018).

In contrast to context-based methods, gradient-based meta-RL methods learn from ag-
gregated experience using policy gradients (Finn et al., 2017a; Stadie et al., 2018; Roth-
fuss et al., 2018; T. Xu et al., 2018; Houthooft et al., 2018; Mendonca et al., 2019), meta-
learned loss functions (Sung et al., 2017; Houthooft et al., 2018), or hyperparameters (Z.
Xu et al., 2018). These methods focus on on-policy meta-learning. We instead focus on
meta-learning from off-policy data, which is non-trivial to do with methods based on
policy gradients and evolutionary optimization algorithms. Beyond substantial sample
efficiency improvements, we also empirically find that our methods PEARL and MELD
are able to reach higher asymptotic performance, in comparison to methods using policy
gradients.

Outside of RL, meta-learning methods for few-shot supervised learning problems have
explored a wide variety of approaches and architectures (Santoro et al., 2016; Vinyals et
al., 2016; Ravi and Larochelle, 2017; Oreshkin et al., 2018). The permutation-invariant em-
bedding function used in PEARL is inspired by the embedding function of prototypical
networks (Snell et al., 2017). While they use a distance metric in a learned, deterministic
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embedding space to classify new inputs, our embedding is probabilistic and is used to
condition the behavior of an RL agent.

Probabilistic meta-learning. Prior work has applied probabilistic models to meta-
learning in both supervised and RL domains. Hierarchical Bayesian models have been
used to model few-shot learning (Fei-Fei et al., 2003; Tenenbaum, 1999), including ap-
proaches that perform gradient-based adaptation (Grant et al., 2018; J. Yoon et al., 2018).
For supervised learning, Rusu et al. (2019); J. Gordon et al. (2019); Finn et al. (2018) adapt
model predictions using probabilistic latent task variables inferred via amortized approx-
imate inference. We extend this idea to off-policy meta-RL. In the context of multi-task
RL, Hausman et al. (2018) conditions the policy on inferred task variables, but the aim
is to compose tasks via the embedding space, while we focus on rapid adaptation to
new tasks. Similar to PEARL, MAESN (Gupta et al., 2018b) uses structured noise to in-
duce temporally-extended exploration strategies; however in PEARL strategy manifests
as posterior sampling. In prior work in RL, posterior sampling (Strens, 2000; Osband
et al., 2013) maintains a posterior over possible MDPs and enables temporally extended
exploration by acting optimally according to a sampled MDP. PEARL performs a meta-
learned variant of this method: the probabilistic context captures the current uncertainty
over the task; sampling it allows the agent to explore in new tasks in a similarly struc-
tured manner.

Partially observed MDPs. Adaptation at test time in meta-RL can be viewed as a
special case of RL in a POMDP (Kaelbling et al., 1998) by including the task as the
unobserved part of the state. We use a variational approach related to Igl et al. (2018)
to estimate belief over the task. While they focus on solving general POMDPs, in the
PEARL algorithm we leverage the additional structure imposed by the meta-learning
problem to simplify inference, and use posterior sampling for exploration in new tasks.
Other works published after PEARL have also formalized meta-RL as a special kind of
POMDP in which the hidden state is constant throughout a task (Zintgraf et al., 2019;
Humplik et al., 2019; Perez et al., 2020). In MELD, we challenge this idea that meta-
RL algorithms should leverage the convention that tasks remain constant throughout
episodes, demonstrating that meta-RL can be performed by general latent state estima-
tion algorithms. The MELD model estimates a time-varying hidden state that captures
both state and task information, rendering the same algorithm applicable to problems
with both stationary and non-stationary sources of uncertainty.

Latent State Inference in RL. A significant challenge in real-world robotic learning is
contending with the complex, high-dimensional, and noisy observations from the robot’s
sensors. To handle general partial observability, recurrent policies can persist information
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over longer time horizons (Yadaiah and Sowmya, 2006; Heess et al., 2015; Hausknecht
and Stone, 2015), while explicit state estimation approaches maintain a probabilistic be-
lief over the current state of the agent and update it given experience (Kaelbling et al.,
1998; Pineau et al., 2003; Ross et al., 2011; Deisenroth and Peters, 2012; Karkus et al.,
2017; Igl et al., 2018; Gregor and Besse, 2018). In our experiments we focus on learn-
ing from image observations, which presents a state representation learning challenge
that has been studied in detail. End-to-end deep RL algorithms can learn state repre-
sentations implicitly, but currently suffer from poor sample efficiency due to the added
burden of representation learning (Mnih et al., 2013; Levine et al., 2016; Singh et al.,
2020). Pre-trained state estimation systems can predict potentially useful features such
as object locations and pose (Tremblay et al., 2018; Visak Kumar et al., 2019); however,
these approaches require ground truth supervision. On the other hand, unsupervised
learning techniques can improve sample efficiency without access to additional supervi-
sion (Lange et al., 2012; Finn et al., 2016; Schmidt et al., 2016; Ghadirzadeh et al., 2017;
Florence et al., 2019; Yarats et al., 2019; Sax et al., 2019). Latent dynamics models capture
the time-dependence of observations and provide a learned latent space in which RL
can be tractably performed (Watter et al., 2015; Karl et al., 2016; M. Zhang et al., 2019;
Hafner et al., 2019; Gelada et al., 2019; A. Lee et al., 2019). In MELD, we generalize the
learned latent variable to encode not only the state but also the task at hand, enabling
efficient meta-RL from images.

RL and Meta-RL for Robotics. While prior work has obtained good results with ge-
ometric and force control approaches for a wide range of manipulation tasks (Bicchi
and Vijay Kumar, 2000; Pereira et al., 2004; Henrich and Wörn, 2012), including inser-
tion tasks (Kronander et al., 2014; Newman et al., 2001) such as those in our evaluation,
such approaches typically require considerable manual design effort for each task. RL
algorithms offer an automated alternative that has been demonstrated on a variety of
robotic tasks (Kober et al., 2013) including insertion (Gullapalli et al., 1994; Levine et al.,
2016; Zeng et al., 2018; M. A. Lee et al., 2018; Schoettler et al., 2019). Although these
policies learn impressive skills, they typically do not transfer to other tasks and must be
re-trained from scratch for each task.

Meta-learning approaches that enable few-shot adaptation have been studied with
real systems for imitation learning (Finn et al., 2017b; Yu et al., 2018; James et al., 2018;
Bonardi et al., 2019) and goal inference (Xie et al., 2018), but direct meta-RL in the real
world has received comparatively little attention. Adapting to different environment
parameters has been explored in the sim2real setting for table-top hockey (Arndt et al.,
2019) and legged locomotion (X. Song et al., 2020), and in the model-based RL setting
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for millirobot locomotion (Nagabandi et al., 2018). In Section 5.3.3, we demonstrate that
our algorithm MELD can perform meta-RL trained from images in the real world.

5.2 pearl : probabilistic embeddings for actor-critic meta-rl

To achieve both meta-training efficiency and rapid adaptation to new tasks, we propose
an approach that integrates online inference of probabilistic context variables with exist-
ing off-policy RL algorithms. Rapid adaptation requires reasoning about distributions:
when exposed to a new task for the first time, the optimal meta-learned policy must
carry out a stochastic exploration procedure to visit potentially rewarding states, as well
as adapt to the task at hand (Gupta et al., 2018b). During meta-training, we learn a prob-
abilistic encoder that accumulates the necessary statistics from past experience into the
context variables that enable the policy to perform the task. At meta-test time, when
the agent is faced with an unseen task, the context variables can be sampled and held
constant for the duration of an episode, enabling temporally-extended exploration. The
collected trajectories are used to update the posterior over the context variables, achiev-
ing rapid trajectory-level adaptation. In effect, our method adapts by sampling “task
hypotheses,” attempting those tasks, and then evaluating whether the hypotheses were
correct or not. Disentangling task inference from action serves to minimize distribution
mismatch between meta-train and meta-test; the policy can be optimized with off-policy
data while the probabilistic encoder is trained with on-policy data.

We call this algorithm Probabilistic Embeddings for Actor-critic meta-RL (PEARL).
Our method achieves excellent sample efficiency during meta-training, enables fast adap-
tation by accumulating experience online, and performs structured exploration by rea-
soning about uncertainty over tasks. In our experimental evaluation, we demonstrate
state-of-the-art results with 20-100x improvement in meta-training sample efficiency
and substantial increases in asymptotic performance over prior state-of-the-art on six
continuous control meta-learning domains. We examine how PEARL conducts struc-
tured exploration to adapt rapidly to new tasks in a 2-D navigation environment with
sparse rewards. Our open-source implementation of PEARL can be found at https:
//github.com/katerakelly/oyster.

5.2.1 Probabilistic Latent Context

We capture knowledge about how the current task should be performed in a latent prob-
abilistic context variable Z, on which we condition the policy as πθ(a|s, z) in order to
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adapt its behavior to the task. Meta-training consists of leveraging data from a variety
of training tasks to learn to infer the value of Z from a recent history of experience
in the new task, as well as optimizing the policy to solve the task given samples from
the posterior over Z. In this section we describe the structure of the meta-trained infer-
ence mechanism. We address how meta-training can be performed with off-policy RL
algorithms in Section 5.2.2.

Definitions See Chapter 3 for preliminaries on meta-learning and reinforcement
learning. We briefly recap the meta-RL problem statement here. Formally, a task T =
{p(s0),p(st+1|st, at), r(st, at)} consists of an initial state distribution p(s0), transition dis-
tribution p(st+1|st, at), and reward function r(st, at). Given a set of training tasks sampled
from task distribution p(T), the meta-training process learns a policy that adapts to the
task at hand by conditioning on the history of past transitions, which we refer to as
context c. Let cTn = (sn, an, rn, s ′n) be one transition in the task T so that cT1:N comprises
the experience collected so far. At test-time, the policy must adapt to a new task drawn
from p(T).

Modeling and Learning Latent Contexts To enable adaptation, the latent context Z
must encode salient information about the task. Recall that cT1:N comprises experience
collected so far; throughout this section we will often write c for simplicity. We adopt
an amortized variational inference approach (Kingma and Welling, 2014; Rezende et
al., 2014; Alemi et al., 2016) to learn to infer Z. We train an inference network qφ(z|c),
parameterized by φ, that estimates the posterior p(z|c). In a generative approach, this
can be achieved by optimizing qφ(z|c) to reconstruct the MDP by learning a predictive
models of reward and dynamics. Alternatively, qφ(z|c) can be optimized in a model-free
manner to model the state-action value functions or to maximize returns through the
policy over the distribution of tasks. Assuming this objective to be a log-likelihood, the
resulting variational lower bound is:

ET[Ez∼qφ(z|cT)[R(T, z) +βDKL(qφ(z|cT)||p(z))]] (8)

where p(z) is a unit Gaussian prior over Z and R(T, z) could be a variety of objectives,
as discussed above. The KL divergence term can also be interpreted as the result of
a variational approximation to an information bottleneck (Alemi et al., 2016) that con-
strains the mutual information between Z and c. Intuitively, this bottleneck constrains
z to contain only information from the context that is necessary to adapt to the task at
hand, mitigating overfitting to training tasks. The parameters of qφ are optimized dur-
ing meta-training and then fixed; at meta-test time the latent context for a new task is
simply inferred from gathered experience.
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Figure 12: Inference network architecture. The amortized inference network predicts the poste-
rior over the latent context variables qφ(z|c) as a permutation-invariant function of
prior experience.

In designing the architecture of the inference network qφ(z|c), we would like it to
be expressive enough to capture minimal sufficient statistics of task-relevant informa-
tion, without modeling irrelevant dependencies. We note that an encoding of a fully
observed MDP can be permutation-invariant with respect to sampled transitions that
consist of {si, ai, s ′i, ri}. The transition and reward functions (and thus the MDP) can be
reconstructed from an unordered set of such transitions. It follows that a collection of
such transitions is sufficient to train a value function or infer what the task is. With this
observation in mind, we choose a permutation-invariant representation for qφ(z|c1:N),
modeling it as a product of independent factors

qφ(z|c1:N) ∝ ΠN
n=1Ψφ(z|cn) (9)

To keep the method tractable, we use Gaussian factors Ψφ(z|cn) = N(fµφ(cn), f
σ
φ(cn)),

which result in a Gaussian posterior. The function fφ, represented as a neural network
parameterized by φ, predicts the mean µ as well as the variance σ as a function of the
cn, is shown in Figure 12.

Posterior Sampling and Exploration via Latent Contexts Modeling the latent context
as probabilistic allows us to make use of posterior sampling for efficient exploration at
meta-test time. Posterior sampling (Strens, 2000; Osband et al., 2013) for exploration
in RL begins with a prior distribution over MDPs, computes a posterior distribution
conditioned on the experience it has seen so far, and executes the optimal policy for a
sampled MDP for the duration of an episode as an efficient method for exploration. In
particular, acting optimally according to a random MDP allows for temporally extended
exploration, meaning that the agent can act to test hypotheses even when the results of
actions are not immediately informative of the task.

In the single-task deep RL setting, posterior sampling and the benefits of deep ex-
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Figure 13: Meta-training procedure. The inference network qφ uses context data to infer the
posterior over the latent context variable Z, which is passed as an input to the actor
and critic. qφ is optimized with gradients from the critic as well as from an information
bottleneck on Z. De-coupling the data sampling strategies for context (SC) and actor-
critic batches is important for off-policy learning, see ablation in Section 5.2.3.

ploration has been explored by Osband et al. (2016), which maintains an approximate
posterior over value functions via bootstrapping. In contrast, our method PEARL di-
rectly infers a posterior over the latent context Z, which may encode the MDP itself if
optimized for reconstruction, optimal behaviors if optimized for the policy, or the value
function if optimized for a critic. Our meta-training procedure leverages training tasks to
learn a prior over Z that captures the distribution over tasks and also learns to efficiently
use experience to infer new tasks. At meta-test time, we initially sample z’s from the
prior and execute according to each z for an episode, thus exploring in a temporally ex-
tended and diverse manner. We then use the collected experience to update theposterior
and continue exploring coherently in a manner that acts more and more optimally as
our belief narrows, akin to posterior sampling.

5.2.2 Off-Policy Meta-Reinforcement Learning

While our probabilistic context model is straightforward to combine with on-policy pol-
icy gradient methods, a primary goal of our work is to enable efficient off-policy meta-
reinforcement learning, where the number of samples for both meta-training and fast
adaptation is minimal. The efficiency of the meta-training process is largely disregarded
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in prior work, which make use of stable but relatively inefficient on-policy algorithms
(Duan et al., 2016; Finn et al., 2017a; Gupta et al., 2018b; Mishra et al., 2018). How-
ever, designing off-policy meta-RL algorithms is non-trivial partly because modern meta-
learning is predicated on the assumption that the distribution of data used for adaptation
will match across meta-training and meta-test. In RL, this implies that since at meta-test
time on-policy data will be used to adapt, on-policy data should be used during meta-
training as well. Furthermore, meta-RL requires the policy to reason about distributions,
so as to learn effective stochastic exploration strategies. This problem inherently cannot
be solved by off-policy RL methods that minimize temporal-difference error, as they do
not have the ability to directly optimize for distributions of states visited. In contrast,
policy gradient methods have direct control over the actions taken by the policy. Given
these two challenges, a naive combination of meta-learning and value-based RL could
be ineffective. In practice, we were unable to optimize such a method.

As detailed in Section 5.2.1, we address the issue of meta-learning exploration strate-
gies off-policy by modeling the latent context variable as probabilistic, enabling explo-
ration via posterior sampling. We address the distribution shift between off-policy meta-
training data and on-policy test-time adaptation data by noting that the data used to
train the encoder need not be the same as the data used to train the policy. The policy
can treat the context z as part of the state in an off-policy RL loop, while the stochasticity
of the exploration process is provided by the uncertainty in the encoder q(z|c). The actor
and critic are always trained with off-policy data sampled from the entire replay buffer
B. We define a sampler Sc to sample context batches for training the encoder. Allowing
Sc to sample from the entire buffer presents too extreme of a distribution mismatch with
on-policy test data and empirical performance suffers, see Section 5.2.3. However, the
context does not need to be strictly on-policy; we find that an in-between strategy of sam-
pling from a replay buffer of recently collected data retains on-policy performance with
better efficiency. We summarize our training procedure in Figure 13 and Algorithm 3.
Meta-testing is described in Algorithm 4.

Implementation We build our algorithm on top of the soft actor-critic algorithm
(SAC) (Haarnoja et al., 2018), an off-policy actor-critic method based on the maximum
entropy RL objective which augments the traditional sum of discounted returns with the
entropy of the policy. SAC exhibits good sample efficiency and stability. We optimize
the parameters of the inference network q(z|c) jointly with the parameters of the actor
πθ(a|s, z) and critic Qθ(s, a, z), using the reparameterization trick (Kingma and Welling,
2014) to compute gradients for parameters of qφ(z|c) through sampled z’s. We train the
inference network using gradients from the Bellman update for the critic. We found em-
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pirically that training the encoder to recover the state-action value function outperforms
optimizing it to maximize actor returns, or reconstruct states and rewards. The critic loss
can then be written as,

Lcritic = E(s,a,r,s ′)∼B
z∼qφ(z|c)

[Qθ(s, a, z)− (r+ V̄(s ′, z̄))]2 (10)

where V̄ is a target network and z̄ indicates that gradients are not being computed
through it. The actor loss is nearly identical to SAC, with the additional dependence on
z as a policy input.

Lactor=Es∼B,a∼πθ
z∼qφ(z|c)

[
DKL

(
πθ(a|s, z̄)

∥∥∥∥
exp(Qθ(s, a, z̄))

Zθ(s)

)]
(11)

Note that the context used to infer qφ(z|c) is distinct from the data used to construct
the actor and critic losses. As described above, during meta-training we sample context
batches separately from actor-critic batches. Concretely, the context sampler Sc samples
uniformly from the most recently collected batch of data, recollected every 1000 meta-
training optimization steps. The actor and critic are trained with batches of transitions
drawn uniformly from the entire replay buffer.
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Algorithm 1 PEARL Meta-training
Require: Batch of training tasks {Ti}i=1...T from p(T), learning rates α1,α2,α3

1: Initialize replay buffers Bi for each training task
2: while not done do
3: for each Ti do
4: Initialize context ci = {}

5: for k = 1, . . . ,K do
6: Sample z ∼ qφ(z|ci)
7: Gather data from πθ(a|s, z) and add to Bi

8: Update ci = {(sj, aj, s ′j , rj)}j:1...N ∼ Bi

9: end for
10: end for
11: for step in training steps do
12: for each Ti do
13: Sample context ci ∼ Sc(Bi) and RL batch bi ∼ Bi

14: Sample z ∼ qφ(z|ci)
15: Li

actor = Lactor(bi, z)
16: Li

critic = Lcritic(b
i, z)

17: Li
KL = βDKL(q(z|ci)||r(z))

18: end for
19: φ← φ−α1∇φ

∑
i

(
Li
critic +Li

KL

)

20: θπ ← θπ −α2∇θ
∑

iL
i
actor

21: θQ ← θQ −α3∇θ
∑

iL
i
critic

22: end for
23: end while

Algorithm 2 PEARL Meta-testing
Require: test task T ∼ p(T)

1: Initialize context cT = {}

2: for k = 1, . . . ,K do
3: Sample z ∼ qφ(z|cT)
4: Roll out policy πθ(a|s, z) to collect data DT

k = {(sj, aj, s ′j , rj)}j:1...N
5: Accumulate context cT = cT ∪DT

k
6: end for
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5.2.3 Experiments

In our experiments, we assess the performance of our method and analyze its properties.
We first evaluate how our approach compares to prior meta-RL methods, especially in
terms of sample efficiency, on several benchmark meta-RL problems. We then examine
how probabilistic context and posterior sampling enable rapid adaptation via structured
exploration strategies in sparse reward settings. Finally, we evaluate the specific design
choices in our algorithm through ablations.

Sample Efficiency and Performance We evaluate PEARL on six continuous control
environments focused around robotic locomotion, simulated via the MuJoCo simulator
(Todorov et al., 2012). These locomotion task families require adaptation across reward
functions (walking direction for Half-Cheetah-Fwd-Back, Ant-Fwd-Back, Humanoid-Direc-
2D, target velocity for Half-Cheetah-Vel, and goal location for Ant-Goal-2D) or across
dynamics (random system parameters for Walker-2D-Params). These meta-RL bench-
marks were previously introduced by Finn et al. (2017a) and Rothfuss et al. (2018). All
tasks have horizon length 200. We compare to existing policy gradient meta-RL meth-
ods ProMP (Rothfuss et al., 2018) and MAML-TRPO (Finn et al., 2017a) using publicly
available code. We also re-implement the recurrence-based policy gradient RL2 method
(Duan et al., 2016) with PPO (Schulman et al., 2017). The results of each algorithm are
averaged across three random seeds. We attempted to adapt recurrent DDPG (Heess et
al., 2015) to our setting, but were unable to obtain reasonable results with this method.
We hypothesize that this is due to a combination of factors including the distribution
mismatch in the adaptation data discussed in Section 5.2.2 and the difficulty of training
with trajectories rather than decorrelated transitions. This approach does not explicitly
infer a belief over the task as we do, instead leaving the burden of both task inference
and optimal behavior to the RNN. In PEARL, decoupling task inference from the policy
allows us the freedom to choose the encoder data and objective that work best with off-
policy learning. We experiment with recurrent architectures in the context of our own
method in the ablations.

To evaluate on the meta-testing tasks, we perform adaptation at the trajectory level,
where the first trajectory is collected with context variable z sampled from the prior p(z).
Subsequent trajectories are collected with z ∼ q(z|c) where the context is aggregated
over all trajectories collected. To compute final test-time performance, we report the av-
erage returns of trajectories collected after two trajectories have been aggregated into the
context. Notably, we find RL2 performs much better on these benchmarks than previ-
ously reported, possibly due to using PPO for optimization and selecting better hyper-
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parameters. We observe that PEARL significantly outperforms prior meta-RL methods
across all domains in terms of both asymptotic performance and sample efficiency, see
Figure 14. We truncate the x-axis at the number of timesteps required for PEARL to con-
verge; see Appendix A for the full timescale version. We find that PEARL uses 20-100x
fewer samples during meta-training than previous meta-RL approaches while improving
final asymptotic performance by 50-100% in five of the six domains.
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Figure 14: Meta-learning continuous control. Test-task performance vs. samples collected dur-
ing meta-training. Our approach PEARL outperforms previous meta-RL methods both
in terms of asymptotic performance and meta-training sample efficiency across six
benchmark tasks. Dashed lines correspond to the maximum return achieved by each
baseline after 1e8 steps. By leveraging off-policy data during meta-training, PEARL
is 20-100x more sample efficient than the baselines, and achieves consistently better
or equal final performance compared to the best performing prior method in each
environment. See Appendix A for the full timescale version of this plot.
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Figure 15: Sparse 2D navigation. The agent
must navigate to a previously unseen
goal (dark blue, other test goals in
light blue) with reward given only
when inside the goal radius – radius
of 0.2 (illustrated) and 0.8 are tested
here. The agent is trained to navi-
gate to a training set of goals, then
tested on a distinct set of unseen test
goals. By using posterior sampling to
explore efficiently, PEARL is able to
start adapting to the task after col-
lecting on average only 5 trajectories,
outperforming MAESN (Gupta et al.,
2018b).

Posterior Sampling For Exploration In
this section we evaluate whether posterior
sampling in our model enables effective
exploration strategies in sparse reward
MDPs. Intuitively, by sampling from the
prior context distribution p(z), the agent
samples a hypothesis according to the dis-
tribution of training tasks it has seen be-
fore. As the agent acts in the environment,
the context posterior p(z|c) is updated,
allowing it to reason over multiple hy-
potheses to determine the task. We demon-
strate this behavior with a 2-D navigation
task in which a point robot must navigate
to different goal locations on edge of a
semi-circle. We sample 100 random goals
from the distribution for training and 20
for testing. A reward is given only when
the agent is within a certain radius of
the goal. We experiment with radius 0.2
and 0.8. The horizon length is 20 steps.
While our aim is to adapt to new tasks
with sparse rewards, meta-training with
sparse rewards is extremely difficult as it
amounts to solving many sparse reward
tasks from scratch. For simplicity we there-
fore assume access to the dense reward
during meta-training, as done by Gupta et
al. (2018b), but this burden could also be
mitigated with task-agnostic exploration
strategies. In this setting, we compare to
MAESN (Gupta et al., 2018b), a prior method that also models probabilistic task vari-
ables and performs on-policy gradient-based meta-learning. We demonstrate we are able
to adapt to the new sparse goal in fewer trajectories. Even with fewer samples, PEARL
also outperforms MAESN in terms of final performance. In Figure 15 we compare adap-
tation performance on test tasks. In addition to achieving higher returns and adapting
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faster, PEARL is also more efficient during meta-training. Our results were achieved with
100x fewer meta-training timesteps than MAESN.
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Figure 16: Recurrent encoder ablation. We
compare our encoder to a recurrent
network. For the RNN, we sample
context as trajectories rather than
unordered transitions. Sampling the
actor-critic batch as de-correlated
transitions (“RNN de-correlated")
fares much better than sampling
trajectories (“RNN correlated").

Ablations In this section we ablate
the components of our approach. We ex-
amine our choice of permutation-invariant
encoder for the latent context Z by com-
paring it to a conventional choice for en-
coding MDPs, a recurrent network (Duan
et al., 2016; Heess et al., 2015). Note
that while in the benchmark experiments
we considered a recurrent-based baseline
similar to recurrent DDPG (Heess et al.,
2015), here we retain all other features of
our method and ablate only the encoder
structure. We backprop through the RNN
to 100 timesteps. We sample the context
as full trajectories rather than unordered
transitions as in PEARL. We experiment
with two ways of sampling the actor-
critic batch: (1) unordered transitions, as
in PEARL (“RNN de-correlated"), and (2)
sets of trajectories (“RNN correlated"). In
Figure 16, we compare the test task perfor-
mance in Half-Cheetah-Vel as a function of the number of meta-training samples. Replac-
ing our encoder with an RNN results in comparable performance to PEARL, at the cost
of slower optimization. However, sampling trajectories for the actor-critic batch results in
a steep drop in performance. This result demonstrates the importance of de-correlating
the samples used for the RL objective.

Next, we ablate the context sampling strategy used during training. With sampler
Sc, PEARL samples batches of unordered transitions that are (1) restricted to samples
recently collected by the policy, and (2) distinct from the set of transitions collected by
the RL sampler. We consider two other options for Sc:

• sample fully off-policy data from the entire replay buffer, but distinct from the
actor-critic batch (“off-policy")

• use the same off-policy actor-critic batch as the context batch (“off-policy same
batch")

51



0.0 0.2 0.4 0.6 0.8 1.0
PLllLRn VtHpV

−100

−80

−60

−40

−20

0

av
Hr

ag
H 

rH
tu

rn

Half-ChHHtah-VHl
P(ARL (RurV)
P(ARL, Rff-pRlLcy
P(ARL, Rff-pRlLcy VaPH Eatch

Figure 17: Context sampling ablation. To train
the encoder, PEARL samples recently
collected transitions de-correlated
with the actor-critic batches. We com-
pare to sampling context from the
entire history (“off-policy context”),
and using the actor-critic batch as the
context (“off-policy same batch”).

0.2 0.4 0.6 0.8 1.0
PLllLRn steSs

0

2

4

6

8

10

12

Dv
er

Dg
e 

re
tu

rn

6SDrse 2D nDvLgDtLRn
P(ARL (Rurs)
P(ARL, deterPLnLstLc

Figure 18: Deterministic latent context. We
compare PEARL to a variant with
deterministic latent context on the
sparse reward 2D navigation domain.
Without a mechanism to reason about
uncertainty over tasks, this approach
is unable to explore effectively.

Results are shown in Figure 17. Sam-
pling context off-policy significantly hurts
performance. Using the same batch to
train the actor-critic and encoder in this
case helps, perhaps because the correla-
tion makes learning easier. Overall these
results demonstrate the importance of
careful data sampling in off-policy meta-
RL.

Finally, we examine the importance of
modeling the latent context as probabilis-
tic. As discussed in Section 5.2.1, we hy-
pothesize that a probabilistic context is
particularly important in sparse reward
settings because it allows the agent to
model a distribution over tasks and con-
duct exploration via posterior sampling.
To test this empirically, we train a de-
terministic version of PEARL by reduc-
ing the distribution qφ(z|c) to a point es-
timate, and compare to PEARL on the
sparse 2D navigation domain in Figure 18.
With deterministic latent context, the only
stochasticity comes from the policy and is
thus time-invariant, hindering temporally
extended exploration and preventing the
agent from solving the task.

5.2.4 Discussion

In this section we proposed a novel meta-
RL algorithm, PEARL, which adapts to
new tasks by performing inference over a
latent context variable on which the pol-
icy is conditioned. Our approach is partic-
ularly amenable to using off-policy RL al-
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gorithms for meta-training as it decouples the problems of inferring the task and solving
it, allowing for off-policy meta-training while minimizing mismatch between train and
test context distributions. Modeling the latent context as probabilistic enables posterior
sampling for exploration at test time, resulting in temporally extended exploration be-
haviors that enhance adaptation efficiency. Our approach achieves superior performance
compared to prior meta-RL algorithms while requiring 20-100x fewer samples on a di-
verse set of continuous control meta-RL domains.

Based on these results of meta-learning with simulated robots, we can make a rough
estimate of the training time required on a real robotic system. Assuming the control
frequency is 30Hz and that data collection runs continuously on a single robot, the
baselines would require 1-2 months of interaction for meta-training, while PEARL might
only need 24-48 hours. Motivated by this result, in the next section we turn to how we
can enable real robots to quickly acquire new skills via meta-learning.

5.3 meld : latent state models for meta-rl from images

While the sample efficiency of PEARL is sufficient for running on a real-world robotic
system, in addition to data collection constraints, robots additionally must contend with
the high-dimensional observations from their sensors. In single-task RL, latent state mod-
els improve the efficiency of RL by leveraging unsupervised learning to learn a compact
latent state representation from a history of observations. Our insight is that these same
models can also, with minimal modification, be used for meta-RL by treating the un-
known task information as part of the latent state to be estimated from experience. In
this section we formalize the connection between latent state inference and meta-RL, and
leverage this insight in our proposed algorithm MELD, Meta-RL with Latent Dynamics.
To derive MELD, we cast meta-RL and latent state inference into a single partially ob-
served Markov decision process (POMDP) in which task and state variables are aspects
of a more general per-time step hidden variable. Concretely, we represent the agent’s be-
lief over the hidden variable as the variational posterior in a sequential VAE latent state
model that takes observations and rewards as input, and we condition the agent’s policy
on this belief. During meta-training, the latent state model and policy are trained across
a fixed set of training tasks sampled from the task distribution. The trained system can
then quickly learn a new task from the distribution by inferring the posterior belief over
the hidden variable and executing the conditional meta-learned policy.

We find in simulation that MELD substantially outperforms prior work on several chal-
lenging locomotion and manipulation problems, such as running at varying velocities,
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Episode 1 Episode 2
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Figure 19: At test time our algorithm MELD enables a 5-DoF WidowX robot to insert the ethernet
cable into a novel insertion location and orientation within two episodes of experience,
operating from image observations and a sparse task completion signal when the cable
is correctly inserted. MELD achieves this result by meta-training a latent dynamics
model to capture task and state information, as well a policy that conditions on this
information to explore and identify the correct insertion point.

inserting a peg into varying targets, and putting away mugs of unknown weights to vary-
ing locations on a shelf. We then analyze MELD’s capability to meta-learn temporally-
extended exploration strategies when only a sparse task completion signal is avail-
able. Finally, using a real WidowX robotic arm, we find that after eight hours of meta-
training MELD successfully performs Ethernet cable insertion into ports at novel loca-
tions and orientations (Figure 19). This real-world experiment with the WidowX is to
our knowledge the first demonstration of a meta-RL algorithm trained from images
on a real robotic platform. Our open-source implementation of MELD can be found
at https://github.com/tonyzhaozh/meld.

5.3.1 Preliminaries: Meta-RL and Latent State Models

In this work, we leverage tools from latent state modeling to design an efficient meta-RL
method that can operate in the real world from image observations. In this section, we
review latent state models and meta-RL, developing a formalism that will allow us to
derive our algorithm in Section 5.3.2.

Latent State Models See Chapter 3 for preliminaries on POMDPs. To tackle the
problem of partial observability, and the difficulty of processing high-dimensional obser-
vations such as images, existing approaches (Igl et al., 2018; Gelada et al., 2019; A. Lee
et al., 2019) train latent state models to learn meaningful representations of the incom-
ing observations by explicitly representing the unknown Markovian state as a hidden
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variable st in a graphical model, as shown in Figure 20 (a). The parameters of these
graphical models can be trained by approximately maximizing the log-likelihood of the
observations: logp(x1:T |a1:T−1) = log

∫
p(xT |sT )p(sT |sT−1, aT−1)...p(s1)dz. Given a history

of observations and actions seen so far, the posterior distribution over the hidden vari-
able captures the agent’s belief over the current underlying state, and can be written
as bt = p(st|x1:t, a1:t−1). Then, rather than conditioning the policy on raw observations,
these methods learn a policy π(at|bt) as a function of this belief state.

Meta-Reinforcement Learning See Chapter 3 for the partially observed meta-RL
problem statement. We recap the meta-training objective here.

max
θ,φ

E
T∼p(T)

E
xt∼pT(·|st)

at∼πθ(·|xt,ct)
st+1∼pT(·|st,at)
rt∼rT(·|st,at)

[
T∑

t=1

γtrt

]

where ct = fφ(x1:t, r1:t, a1:t−1). (12)

Meta-RL methods may differ in how the adaptation procedure fφ is represented (e.g.,
as probabilistic inference (Rakelly et al., 2019; Zintgraf et al., 2019), as a recurrent up-
date (Duan et al., 2016; Wang and Hebert, 2016), as a gradient step (Finn et al., 2017a)),
how often the adaptation procedure occurs (e.g., at every timestep (Duan et al., 2016;
Zintgraf et al., 2019) or once per episode (Rakelly et al., 2019; Humplik et al., 2019)),
and also in how the optimization is performed (e.g., on-policy (Duan et al., 2016), off-
policy (Rakelly et al., 2019)). Differences aside, these methods all typically optimize this
objective end-to-end, creating a representation learning bottleneck when learning from
image inputs that are ubiquitous in real-world robotics. In the following section, we
show how the latent state models discussed in this section can be re-purposed for joint
representation and task learning, and how this insight leads to a practical algorithm for
image-based meta-RL.

5.3.2 MELD Algorithm

In this section, we present MELD: an efficient algorithm for meta-RL from images. We
first develop the algorithm and then describe its implementation.

Meta-RL with Latent Dynamics Models To see how task inference in meta-RL can
be cast as latent state inference, consider the graphical models depicted in Figure 20.
Panel (a) illustrates a standard POMDP with underlying latent state zt and observations
xt, and panel (b) depicts standard meta-RL, where the hidden task variable T is assumed
constant throughout the episode. In the meta-RL setting, the policy must then be condi-
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Figure 20: (a): When only partial observations of the underlying state are available, latent dynam-
ics models can glean state information zt from a history of observations. (b): Meta-RL
considers a task distribution where the current task T is an unobserved variable that
controls dynamics and rewards. (c): We interpret T as part of zt, allowing us to lever-
age latent dynamics models for efficient image-based meta-RL.

tioned on both the observation and the task variable in order to adapt to a new task (see
Equation 12). Casting this task variable as part of the latent state, panel (c) illustrates
our graphical model, where the states st now contain both state and task information.
In effect, we cast the task distribution over POMDPs as a POMDP itself, where the state
variables now additionally capture task information. This meld allows us to draw on
the rich literature of latent state models discussed in Section 5.3.1, and use them here
to tackle the problem of meta-RL from sensory observations. Note that the task is not
explicitly handled since it is simply another hidden state variable, providing a seamless
integration of meta-RL with learning from sensory observations.

Concretely, we learn a latent state model over hidden variables by optimizing the
log-likelihood of the evidence (observations and rewards) in the graphical model in
Figure 20c:

max
φ

E
T∼p(T)

E
xt∼pT(·|st) , at∼πθ(·|bt)

st+1∼pT(·|st,at) , rt∼rT(·|st,at)

[
logpφ(x1:T , r1:T |a1:T−1)

]
. (13)

Note that the only change from the latent state model from Section 5.3.1 is the inclusion
of rewards as part of the observed evidence. While this change appears simple, it en-
ables meta-learning by allowing the hidden state to capture task information. Posterior
inference in this model then gives the agent’s belief bt = p(st|x1:t, r1:t, a1:t−1) over latent
state and task variables st. Conditioned on this belief, the policy πθ(at|bt) can learn to
adapt its behavior to the task. Prescribing the adaptation procedure fφ from Equation 12
to be posterior inference in our latent state model, the meta-training objective in MELD
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is:

max
θ

E
T∼p(T)

E
xt∼pT(·|st) , at∼πθ(·|bt)

st+1∼pT(·|st,at) , rt∼rT(·|st,at)

[
T∑

t=1

γtrt

]

(14)

where bt = p(st|x1:t, r1:t, a1:t−1)

By melding state and task inference, MELD inherits the same representation learning
mechanism as latent state models discussed in Section 5.3.1 to enable efficient meta-RL
with images.

Implementing MELD Exactly computing the posterior distribution is intractable, so
we take a variational inference approach (Wainwright and Jordan, 2008) to maximize a
lower bound on the objective in Equation 13. We factorize the variational posterior as
q(s1:T |x1:T , r1:T , a1:T−1) = q(sT |xT , rT , sT−1, aT−1) . . . q(s2|x2, r2, s1, a1)q(s1|x1, r1). With this
factorization, we implement each component as a deep neural network and optimize
the evidence lower bound of the joint objective, where Es1:t∼qφ [logp(x1:T , r1:T |a1:T−1)] !
Lmodel, with Lmodel defined as:

Lmodel(x1:T , r1:T , a1:T−1) = E
s1:T∼qφ

T∑

t=1

logpφ(xt|st) + logpφ(rt|st)

−DKL(qφ(s1|x1, r1)∥p(s1))−
T∑

t=2

DKL(qφ(st|xt, rt, st−1, at−1)∥pφ(st|st−1, at−1)). (15)

The first two terms encourage a rich latent representation st by requiring reconstruc-
tion, while the last term keeps the inference network consistent with latent dynamics.
The first timestep posterior qφ(s1|x1, r1) is modeled separately from the remaining steps,
and p(s1) is chosen to be a fixed unit Gaussian N(0, I). The learned inference networks
qφ(s1|x1, r1) and qφ(st|xt, rt, st−1, at−1), decoder networks pφ(xt|st) and pφ(rt|st), and dy-
namics pφ(zt|zt−1, at−1) are all fully connected networks that output parameters of Gaus-
sian distributions. We follow the architecture of the latent variable model from SLAC (A.
Lee et al., 2019) and provide the remaining implementation details in Appendix D.1.

We use the soft actor-critic (SAC) (Haarnoja et al., 2018) RL algorithm in this work,
due to its high sample efficiency and performance. The actor πθ(at|bt) and the critic
Qψ(bt, at) are conditioned on the posterior belief bt, modeled as fully connected neu-
ral networks, and trained as prescribed by the SAC algorithm. During meta-training,
MELD alternates between collecting data with the current policy, training the model by
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replay 
buffer

Figure 21: MELD meta-training alternates between collecting data with πθ and training the latent
state model pφ, inference networks qφ, actor πθ, and critic Qζ.

optimizing Lmodel, and training the policy with the current model. Meta-training and
meta-testing are described in Algorithm 3 and 4 respectively.

58



Algorithm 3 MELD Meta-training
Require: Training tasks {Ti}i=1...J from p(T) , learning rates η1,η2,η3

1: Initialize model pφ, qφ, actor πθ, critic Qζ
2: Initialize replay buffers Bi for each training task
3: while not done do
4: for each task Ti do ◃ collect data
5: Infer belief b1 = qφ(s1|x1, r1)
6: Step environment with a1 ∼ πθ(a|b1), get x2, r2
7: for t = 2, . . . T − 1 do
8: Infer belief over latent state bt = qφ(zt|xt, rt, zt−1, at−1)
9: Step environment with at ∼ πθ(a|bt), get xt+1, rt+1

10: end for
11: Add data {x1:T , r1:T , a1:T−1} to replay buffer Bi

12: end for
13: for step in train steps do
14: for each task Ti do
15: Sample transitions from task-buffer {x1:T , r1:T , a1:T−1} ∼ Bi

16: Infer beliefs at each time step b1:T = {qφ(st| . . . )}1:T
17: Predict observation and reward reconstructions {x̂t, r̂t}1:T
18: Compute model lossLi

m = Lmodel({xt, x̂t, rt, r̂t, at}1:T )
19: end for
20: φ← φ− η1∇φ

∑
iL

i
m ◃ train model

21: Update θ, ζ with SAC(η2,η3) ◃ train AC
22: end for
23: end while

Algorithm 4 MELD Meta-testing
Require: Test task T ∼ p(T)

1: Infer belief over latent state b1 = qφ(z1|x1, r1)
2: Step environment with a1 ∼ πθ(a|b1), get x2, r2
3: for t = 2, . . . , T − 1 do
4: Infer belief bt = qφ(zt|xt, rt, zt−1, at−1)
5: Step environment with at ∼ πθ(a|bt), get xt+1, rt+1

6: end for
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5.3.3 Experiments

In our experiments, we aim to answer the following: (1) How does MELD compare to
prior meta-RL methods in enabling fast acquisition of new skills at test time in challeng-
ing simulated control problems? (2) Can MELD meta-learn effective exploration when
only sparse task completion rewards are available at meta-test time? (3) Can MELD en-
able real robots to quickly acquire skills via meta-RL from images?

Figure 22: Simulated locomotion and
manipulation meta-RL en-
vironments in the MuJoCo
simulator (Todorov et al.,
2012); goals illustrated for
visualization purposes.

MELD in Simulated Environments In this sec-
tion, we evaluate MELD on the four simulated
image-based continuous control problems in Fig-
ure 22. In (a) Cheetah-vel, each task is a different
target running velocity for the 6-DoF legged robot.
Reward is the difference in robot velocity from the
target. The remainder of the problems use a 7-DOF
Sawyer robotic arm. In (b) Reacher, each task is a
different goal position for the end-effector. In (c)
Peg-insertion, the robot must insert the peg into
the correct box, where each task varies the goal
box as well as locations of all four boxes. In (d)
Shelf-placing, each task varies the weight (dynam-
ics change) and target location (reward change) of a
mug that the robot must move to the shelf. For the
Sawyer environments, the reward function is the
negative distance between the robot end-effector
and the desired end location. For all environments,
we train with 30 meta-training tasks and evaluate on 10 meta-test tasks from the same
distribution that are not seen during training.

We compare MELD to two representative state-of-the-art meta-RL algorithms, the al-
gorithm PEARL (Rakelly et al., 2019) proposed in Section 5.2 and RL2 (Duan et al.,
2016). PEARL models a belief over a probabilistic latent task variable as a function of
un-ordered batches of transitions, and conditions the policy on both the current observa-
tion and this inferred task belief. Unlike MELD, this algorithm assumes an exploration
phase of several trajectories in the new task to gather information before adapting, so to
get its best performance, we evaluate only after this exploration phase. RL2 models the
policy as a recurrent network that directly maps observations, actions, and rewards to
actions. To apply PEARL and RL2 with image observations, we augment them with the
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Figure 23: Rewards on test tasks versus meta-training environment steps, comparing MELD to
prior methods. Black dashed line indicates consistent task success (see Appendix D.2
for definition).

same convolutional encoder architecture used by MELD. Finally, to verify the need for
task inference to solve new tasks, we compare to SLAC (A. Lee et al., 2019), which infers
state information from a sequence of observations but does not perform meta-learning.

In Figure 23 we plot average performance on meta-test tasks over the course of meta-
training, across 3 random seeds. See Appendix D.2 for the the definitions of metrics
used for each task. MELD achieves the highest performance in each environment and is
the only method to fully solve Cheetah-vel, Peg-insertion, and Shelf-placing. The SLAC
baseline fails in this meta-RL setting, as expected, with qualitative behavior of always
executing a single “average” motion, such as reaching toward a mean goal location and
running at a medium speed. PEARL aggregates task information over time in its latent
task variable, but relies on the current observation alone for state information. Its poor
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performance on Cheetah, Reacher, and Shelf reflect the need for state estimation from a
sequence of observations to perform control in these environments. While RL2 is capable
of propagating both state and task information over time, we observe that it overfits
heavily to training tasks and struggles on evaluation tasks.

Temporally-Extended Exploration The previous section assumed a shaped reward
function that is the negative distance between the current robot position and the desired
one at every timestep. In the real world, this type of reward function is typically not
available to the agent, since it requires information that may be difficult or impossible
to obtain. For example, in the Ethernet cable insertion problem, the location of the in-
sertion point is unknown, but the agent might receive a sparse task completion reward
upon making the correct electrical connection. To quickly succeed at a new task given
only this sparse signal at meta-test time, it is critical for MELD to reason over multiple
episodes and acquire temporally-extended strategies during meta-training. Because RL
with sparse rewards is very inefficient, we follow prior work (Gupta et al., 2018b; Rakelly
et al., 2019) and assume access to a shaped reward function during meta-training to help
learn these strategies. We detail our particular approach to making use of shaped re-
wards during meta-training in Appendix D.3, and at meta-test time assume access to
only the sparse reward signal.

Ep
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e 

1
Ep

is
od

e 
2

Figure 24: Button press with reward given only upon pressing correct button. The robot explores
each button until it finds the correct one (top) and returns to that button immediately
in the next episode (bottom). See text for discussion.
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Figure 25: Comparison to approaches from Fig-
ure 23 on the button-pressing envi-
ronment, showing test task perfor-
mance versus meta-training environ-
ment steps.

To evaluate MELD in this setting, we
design a simulated button-pressing envi-
ronment with the Sawyer robot, where the
button to push and the location of the
panel changes with each task. Sparse re-
ward is given only when the correct but-
ton is pushed, while shaped reward (used
only in meta-training) is the negative dis-
tance from the robot’s end-effector to the
insertion point. In Figure 24, we analyze
the qualitative behavior of MELD when
learning a new task at test time. Though
the shaped reward is not used at test time,
we plot the shaped reward reconstruction
mean and variance to gain an insight into
the contents of the learned latent state. In
the first episode, predicted reward error
and variance are high until the robot presses the correct button. MELD’s latent state
model persists the task information to the second episode (predicted reward error and
variance are very low) and the robot navigates immediately to the correct button. In Fig-
ure 25, we compare MELD to the same baselines introduced in the previous section and
find that it is the only method able to press the correct button within two trajectories of
experience. In the next section, we test MELD’s capability to perform such exploration
and exploitation in the real world.

MELD in the Real World We now evaluate MELD on a real-world 5-DoF WidowX
arm performing Ethernet cable insertion. The task distribution consists of different ports
in a router that also varies in location and orientation (see Figure 26). To instrument these
tasks in the real world, we build an automatic reset mechanism that moves and rotates
the router, as detailed in Appendix D.5. At meta-test time the reward is a sparse signal
given when the robot inserts the cable in the correct port. As in the previous section,
during meta-training we make use of a shaped reward function that is the sum of the
L2-norms of translational and rotational distances between the pose of the object in the
end-effector and a goal pose. The agent’s observations are concatenated images from two
webcams (Figure 27): one fixed view and one first-person view from a wrist-mounted
camera. The policy sends joint velocity controls over a ROS interface to a low-level PID
controller to move the joints of each robot.

63



Figure 26: Ethernet cable insertion problem.
The automatic reset mechanism
changes the position and orienta-
tion of the router across tasks.

Figure 27: 64x128 image observations seen
by WidowX.

We compare MELD to SLAC as described
in Section 5.3.3 as well as a random policy,
and plot the results in Figure 28. After train-
ing across 20 meta-training tasks using a total
of 8 hours (80, 000 samples at 3.3Hz) worth of
data, MELD achieves a success rate of 90% over
three rounds of evaluation in each of the 10
randomly sampled evaluation tasks that were
not seen during training. To our knowledge,
this experiment is the first demonstration of
meta-RL trained entirely in the real world from
image observations. We also conducted exper-
iments with the Sawyer robot, finding that
MELD enables the Sawyer to insert a peg into
the correct hole given a per-timestep reward of
distance to the hole (see Appendix D.6). Due to
lab access restrictions as a result of COVID-19,
we could not evaluate adaptation to new tasks
on this platform. Videos of all experiments can
be found on our project website.1

Figure 28: (left) Training task rewards versus meta-training environment steps. (right) Task suc-
cess (defined as full insertion into correct hole) on held-out tasks after meta-training.

1 https://sites.google.com/view/meld-lsm/home
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5.3.4 Discussion

In this chapter, we leveraged the insight that meta-RL can be cast into the framework
of latent state inference. This allows us to combine the fast skill-acquisition capabilities
of meta-learning with the efficiency of unsupervised latent state models when learning
from raw image observations. Based on this principle, we designed MELD, a practical
algorithm for meta-RL with image observations. MELD outperforms prior methods on
simulated locomotion and manipulation tasks, and is efficient enough to perform meta-
RL directly from images in the real world.

However, neither our approach nor prior meta-learning works have shown convincing
generalization to wider task distributions of qualitatively distinct manipulation tasks. A
significant stumbling block is the difficulty of designing reward functions and instru-
menting distinct tasks in the real world. Instead of relying solely on human-designed
reward functions for learning, agents can also make use of unsupervised skill learn-
ing (Gregor et al., 2016; Eysenbach et al., 2018) to acquire knowledge about their envi-
ronment, and even use these skills as tasks for meta-learning algorithms (Gupta et al.,
2018a). These representations can encode coherent temporally-extended behaviors, such
as reaching for objects, reducing the burden on reward function design to encourage
these behaviors. The need to reset the environment at the start of every episode in RL
also poses major challenges, particularly when there are many distinct tasks to reset.
While there has been some work studying reset-free RL (Eysenbach et al., 2017; Zhu
et al., 2020; Lu et al., 2020), the solution is far from clear and we see this as a promising
direction for future development. Without the need for manual resets and task instru-
mentation, meta-RL algorithms could be applied to a much wider variety of real-world
robotic problems, enabling agents to acquire qualitatively new skills from little experi-
ence.
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6
C O N C L U S I O N

In this thesis, we considered the problem of how artificial agents can learn faster and
with less supervision. We characterized the problem as one of learning appropriate ab-
stractions from data. We began with learning abstractions of states via unsupervised
representation learning (Chapter 2), and proved that several popular state representa-
tion learning objectives are not guaranteed to yield representations sufficient for optimal
control, while a third is sufficient. This criteria of sufficiency is equally relevant to rep-
resentations of tasks. As unsupervised skill-learning algorithms are proposed to reduce
the burden of reward supervision, they should be evaluated in terms of their ability to
preserve information needed to solve new tasks.

In Chapter 3, we turned to the problem of learning representations of tasks. Given a
mechanism to infer task representations, and a meta-learned policy that acts according to
the task representation, the agent can acquire new skills rapidly via inference. Working
first in the supervised learning setting and with deterministic task variables, in Chap-
ter 4 we proposed an algorithm for meta-learned image segmentation of new concepts.
Moving to the reinforcement learning setting, in Chapter 5 we extended this perspec-
tive to probabilistic task variables to enable the agent to reason about uncertainty. We
designed an efficient off-policy algorithm PEARL, and an algorithm MELD for meta-RL
from image observations. These works demonstrate that viewing meta-RL as inference
of probabilistic task abstractions can enable simple and practical solutions to challenges
such as off-policy learning, efficient exploration, and learning from images.

We believe that future work in learning data-driven abstractions might focus on three
key areas: (1) understanding theoretically the properties guaranteed and encouraged
by abstraction-learning objectives, (2) developing more effective methods for multi-task
optimization, and (3) handling varying amounts and type of supervision in new tasks.
For the first, while sufficiency is a basic and necessary criterion, there are many other
criteria desirable in an abstraction, such as minimality, noise-robustness, interpretability,
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composability, etc. Theoretical guarantees regarding such desiderata may greatly help
in guiding research in new objectives for abstraction learning. For the second, recent
evidence seems to suggest that multi-task optimization is a major stumbling block for
performing meta-RL with broader task distributions (Schaul et al., 2019; Yu et al., 2019a;
Yu et al., 2020). In our own experiment in Figure 14, while PEARL achieves a state-of-the-
art result in terms of return on the humanoid domain, we found that qualitatively the
robot fails to actually learn to locomote at all, even when the tasks differ only in which
direction to walk. Perhaps a curriculum approach, or advancements in optimization for
off-policy deep RL, would alleviate these optimization issues, enabling meta-RL agents
to meta-learn qualitatively different behaviors. For the third, meta-learning algorithms
generally work for the amount and type of supervision provided during meta-training.
However, realistic scenarios are not divided cleanly into few-shot (meta-learning) and
many-shot (learning) paradigms. Instead, there exists a spectrum of amounts and types
of supervision that agents must be able to learn from throughout their lifetimes. A unify-
ing framework for few to many-shot learning would provide a principled way for agents
to learn and consolidate knowledge.
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A
A P P E N D I X : W H AT M U T U A L I N F O R M AT I O N - B A S E D
R E P R E S E N TAT I O N L E A R N I N G O B J E C T I V E S A R E S U F F I C I E N T
F O R C O N T R O L ?

This appendix accompanies the work presented in Chapter 2.

a.1 sufficiency of Jfwd : proof of proposition 1

We describe the proofs for the sufficiency results from Section 2.4 here. We begin by
providing a set of lemmas, before proving the sufficiency of Jfwd.

Figure 29: Graphical model for Lemma 1, depicting true states S, states in the representation Z,
actions A, rewards R, and the variable X (which we will interpret as the sum of future
rewards in the proof of Proposition 1).

Lemma 1. Let X be a random variable dependent on St+k, with the conditional indepen-
dence assumptions implied by the graphical model in Figure 29. (In the main proof of Propo-
sition 1, we will let X be the sum of rewards from time t+ k onwards.) If I(Zt+k;Zt,At) =
I(St+k;St,At)∀k, then I(X;Zt,At) = I(X;St,At)∀k.

Proof. For proof by contradiction, assume there is some φZ and some r such that I(X;Zt,At) <
I(X;St,At) and that I(Zt+k;Zt,At) = I(St+k;St,At). Now we know that because Zt →
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St → St+k → Zt+k form a Markov chain, by the data processing inequality (DPI) I(Zt+k;Zt,At) "
I(St+k;Zt,At) " I(St+k;St,At). We will proceed by showing that that I(X;Zt,At) <
I(X;St,At) =⇒ I(St+k;Zt,At) < I(St+k;St,At), which gives the needed contradiction.

Using chain rule, we can expand the following expression in two different ways.

I(X;Zt,St,At) = I(X;Zt|St,At) + I(X;St,At) = 0+ I(X;St,At) (16)

I(X;Zt,St,At) = I(X;St|Zt,At) + I(X;Zt,At) (17)

Note that the first term in Equation 16 is zero by the conditional independence assump-
tions in Figure 29. Equating the expansions, we can see that to satisfy our assumption
that I(X;Zt,At) < I(X;St,At), we must have that I(X;St|Zt,At) > 0.

Now we follow a similar procedure to expand the following expression:

I(St+k;Zt,St,At) = I(St+k;Zt|St,At) + I(St+k;St,At) = 0+ I(St+k;St,At) (18)

I(St+k;Zt,St,At) = I(St+k;St|Zt,At) + I(St+k;Zt,At) (19)

The first term in Equation 18 is zero by the conditional independence assumptions in
Figure 29. Comparing the first term in Equation 19 with the first term in Equation 17,
we see because St → St+k → X form a Markov chain, by the DPI that I(St+k;St|Zt,At) !
I(X;St|Zt,At). Therefore we must have I(St+k;St|Zt,At) > 0. Combining Equations 18
and 19:

I(St+k;St,At) = I(St+k;St|Zt,At) + I(St+k;Zt,At) (20)

Since I(St+k;St|Zt,At) > 0, I(St+k;Zt,At) < I(St+k;St,At), which is exactly the contra-
diction we set out to show.

Lemma 2. If I(Y;Z) = I(Y;X) and Y ⊥ Z|X, then ∃p(Z|X) s.t. ∀x,
p(Y|X = x) =

∫
p(Y|Z)p(Z|X = x)dz.

Proof. First note that the statement is not trivially true. Without any assumption regard-
ing MI, we can write,

p(Y|X = x) =

∫
p(Y,Z|X = x)dz =

∫
p(Y|Z,X = x)p(Z|X = x)dz (21)
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Comparing this with the statement we’d like to prove, we can see that the key idea is
to show that the MI equivalence implies that p(Y|Z,X = x) = p(Y|Z). To begin, consider
I(Y;Z) = I(Y;X). We can re-write this equality using the entropy definition of MI.

H(Y)−H(Y|Z) = H(Y)−H(Y|X) (22)

Note that the H(Y) cancel and substituting the definition of entropy we have:

Ep(Y,Z)[logp(Y|Z)] = Ep(Y,X)[logp(Y|X)] (23)

Note that on the right-hand side, we can use the Tower property to re-write the expecta-
tion as

Ep(Y,X)[logp(Y|X)] = Ep(Z)Ep(Y,X|Z)[logp(Y|X)] = Ep(Y|X)p(X,Z)[logp(Y|X)] (24)

Now we can use the Tower property again to re-write the expectation on both sides.

Ep(X)[Ep(Y,Z|X)[logp(Y|Z)]] = Ep(X)[Ep(Y|X)p(X,Z|X)[logp(Y|X)]]

Ep(X)[Ep(Y|X)p(Z|X)[logp(Y|Z)]] = Ep(X)[Ep(Y|X)p(Z|X)[logp(Y|X)]]

Ep(X)[Ep(Y|X)p(Z|X)[logp(Y|Z)]]− logp(Y|X)] = 0

Ep(X)[Ep(Y|X)[Ep(Z|X)[logp(Y|Z)]− logp(Y|X)]] = 0

(25)

Log probabilities are always " 0, therefore for the sum to equal zero, each term must be
zero.

logp(Y|X) = Ep(Z|X)[logp(Y|Z)] (26)

By Jensen’s inequality,
logp(Y|X) " log Ep(Z|X)[p(Y|Z)] (27)

By the monotonicity of the logarithm:

p(Y|X) " Ep(Z|X)[p(Y|Z)] (28)

If there exists some x and some y such that p(Y = y|X = x) < Ep(Z|X=x)[p(Y = y|Z)], then
there must be some other y ′ for the same x where p(Y = y ′|X = x) > Ep(Z|X=x)[p(Y =
y ′|Z)] because p(Y|X = x) must sum to 1.

p(Y|X) = Ep(Z|X)[p(Y|Z)] =

∫
p(Y|Z)p(Z|X = x)dz =

∫
p(Y,Z|X = x)dz (29)

Where the last equality follows by conditional independence of Y and Z given X.

Given the lemmas stated above, we can then use them to prove the sufficiency of Jfwd.
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Proposition 1. (Sufficiency of Jfwd) Let (S,A,T, r) be an MDP with dynamics p(St+1|St,At).
Let the policy distribution p(A|S) and steady-state state occupancy p(S) have full support on
the action and state alphabets A and S respectively. See Figure 29 for a graphical depiction of
the conditional independence relationships between variables.

For a representation φZ and set of reward functions R, if I(Zt+k;Zt,At) is maximized
∀k > 0, t > 0 then ∀r ∈ R and ∀s1, s2 ∈ S, φZ(s1) = φZ(s2) =⇒ ∀a,Q∗r(a, s1) =
Q∗r(a, s2).

Proof. Note that (Zt+k;Zt,At) is maximized if the representation φZ is taken to be the
identity. In other words maxφ I(Zt+k;Zt,At) = I(St+k;St,At).

Define the random variable R̄t to be the discounted return starting from state st.

R̄t =
H−t∑

k=1

γkRt+k (30)

Plug in R̄t for the random variable X in Lemma 1:

I(Zt+k;Zt,At) = I(St+k;St,At) =⇒ I(R̄t+k;Zt,At) = I(R̄t+k;St,At) (31)

Now let X = [St,At], Y = R̄t, and Z = Zt, and note that by the structure of the graphical
model in Figure 29, Y ⊥ Z|X. Plugging into Lemma 2:

Ep(zt|St=s)p(R̄t|Zt,At) = p(R̄t|St = s,At) (32)

Now the Q-function given a reward function r and a state-action pair (s, a) can be
written as an expectation of this random variable R̄t, given St = s and A = a. (Note that
p(R̄t|St = s,At = a) can be calculated from the dynamics, policy, and reward distribu-
tions.)

Qr(s, a) = Ep(R̄t|St=s,At=a)[R̄t] (33)

Since φZ(s1) = φZ(s2), p(zt|St = s1) = p(zt|St = s2). Therefore by Equation 32,
p(R̄t|St = s1,At) = p(R̄t|St = s2,At). Plugging this result into Equation 33, Qr(a, s1) =
Qr(a, s2). Because this reasoning holds for all Q-functions 1, it also holds for the optimal
Q, therefore Q∗r(a, s1) = Q∗r(a, s2).

1 Note this result is stronger than what we needed: it means that representations that maximize Jfwd are
guaranteed to be able to represent even sub-optimal Q-functions. This makes sense in light of the fact that
the proof holds for all reward functions - the sub-optimal Q under one reward is the optimal Q under
another.
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a.2 experimental details

a.2.0.1 Didactic Experiments

The didactic examples are computed as follows. Given the list of states in the MDP, we
compute the possible representations, restricting our focus to representations that group
states into “blocks.” We do this because there are infinite stochastic representations and
the MI expressions we consider are not convex in the parameters of p(Z|S), making
searching over these representations difficult. Given each state representation, we com-
pute the value of the MI objective as well as the optimal value function using exact value
iteration. In these examples, we assume that the policy distribution is uniform, and that
the environment dynamics are deterministic. Since we consider the infinite horizon set-
ting, we use the steady-state state occupancy in our calculations.

a.2.0.2 Deep RL Experiments

The deep RL experiments with the catcher game are conducted as follows. First, we use
a uniform random policy to collect 50k transitions in the environment. In this simple
environment, the uniform random policy suffices to visit all states (the random agent
is capable of accidentally catching the fruit, for example). Next, each representation
learning objective is maximized on this dataset. For all objectives, the images are pre-
processed in the same manner (resized to 64x64 pixels and normalized) and embedded
with a convolutional network. The convolutional encoder consists of five convolutional
layers with ReLU activations and produces a latent vector with dimension 256. We use
the latent vector to estimate each mutual information objective, as described below.

Inverse information: We interpret the latent embeddings of the images St and St+1

as the parameters of Gaussian distributions p(Z|St) and p(Z|St+1). We obtain a single
sample from each of these two distributions, concatenate them and pass them through a
single linear layer to predict the action. The objective we maximize is the cross-entropy
of the predicted actions with the true actions, as in Agrawal et al. 2016 and Shelhamer
et al. 2016. To prevent recovering the trivial solution of preserving all the information
in the image, we add an information bottleneck to the image embeddings. We tune the
Lagrange multiplier on this bottleneck such that the action prediction loss remains the
same value as when trained without the bottleneck. This approximates the objective
minφ I(Z;S)s.t.Iinv = max Iinv. To use the learned encoder for RL, we embed the image
from the current timestep and take the mean of the predicted distribution as the state
for the RL agent.
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State-only information: We follow the Noise Contrastive Estimation (NCE) approach
presented in CPC (Oord et al. 2018). Denoting Zt and Zt+ 1 as the latent embedding vec-
tors from the convolutional encoders, we use a log-bilinear model as in CPC to compute
the score: f(Zt,Zt+1) = exp(ZT

tWZt+1) for the cross-entropy loss. We also experimented
with an information bottleneck as described above, but found that it wasn’t needed to
obtain insufficient representations. To use the learned encoder for RL, we embed the
image from the current timestep and use this latent vector as the state for the RL agent.

Forward information: We follow the same NCE strategy as for state-only information,
with the difference that we concatenate the action to Zt before computing the contrastive
loss.

We then freeze the state encoder learned via MI-maximization and use the represen-
tation as the state input for RL. The RL agent is trained using the Soft Actor-Critic
algorithm Haarnoja et al., 2018, modified slightly for the discrete action distribution
(the Q-function outputs Q-values for all actions rather than taking action as input, the
policy outputs the action distribution rather than parameters of a distribution, and we
can directly compute the expectation in the critic loss rather than sampling). The policy
and critic networks consist of two hidden linear layers of 200 units each. We use ReLU
activations.

a.2.1 Analysis: predicting Q∗ from the representation

In Section 2.5, we evaluated the learned representations by running a temporal differ-
ence RL algorithm with the representation as the state input. In this section, instead of
using the bootstrap to learn the Q-function, we instead regress the Q-function to the
optimal Q∗. To do this, we first compute the (roughly) optimal Q∗ by running RL with
ground truth game state as input and taking the learned Q as Q∗. Then, we instantiate
a new RL agent and train it with the learned image representation as input, regressing
the Q-function directly onto the values of Q∗. We evaluate the policy derived from this
new Q-function, and plot the results for both the catcher and catcher-grip environments
in Figure 30. We find that similar to the result achieved using the bootstrap, the pol-
icy performs poorly when using representations learned by insufficient objectives (Jinv
in catcher and Jstate in catcher-grip). Interestingly, we find that the error between the
learned Q-values and the Q∗-values is roughly the same for sufficient and insufficient
representations. We hypothesize that this discrepancy between Q-value error and policy
performance is due to the fact that small differences in Q-values on a small set of states
can result in significant behavior differences in the policy.
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Figure 30: Performance of policies obtained from a Q-function trained to predict Q∗, given state
representations learned by each MI objective, in the (left) catcher environment and
(right) catcher-grip environment. Insufficient objectives Jinv and Jstate respectively
perform worse than sufficient objective Jfwd.

a.2.2 Deep RL experiments with background distractors

fruit

agent

Figure 31: Example 64x64 pixel observations
with background distractors.

In this section we repeat the experiments
from Section 2.5 with added visual com-
plexity in the form of background distrac-
tors. We randomly generate images of 10
circles of different colors and replace the
black background of the game with these
images. Examples of the agent’s observa-
tions are shown in Figure 31.

We plot the results for both the catcher
and catcher-grip games with distractors in
Figure 32. As in Section 2.5, we show both
the result of performing RL with the frozen representation as input (top), as well as
the error of decoding true state elements from the representation (bottom). In both en-
vironments, end-to-end RL from images performs poorly, demonstrating the need for
representation learning to aid in solving the task. As predicted by the theory, the rep-
resentation learned by Jinv fails in both games, and the representation learned by Jstate
fails in the catcher-grip game. We find that the difference in performance between suffi-
cient and insufficient objectives is even more pronounced in this setting than in the plain
background setting.
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Figure 32: (top) Policy performance using learned representations as state inputs to RL, for the
catcher and catcher-grip environments with background distractors. (bottom) Error in
predicting the positions of ground truth state elements from each learned representa-
tion. Representations maximizing Jinv need not represent the fruit, while representa-
tions maximizing Jstate need not represent the gripper, leading these representations
to perform poorly in catcher and catcher-grip respectively.
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B
A P P E N D I X : G U I D E D S E G M E N TAT I O N V I A M E TA - L E A R N I N G

This appendix accompanies the work presented in Chapter 4.

b.1 data preparation

Semantic Segmentation and Interactive Segmentation on PASCAL We use PASCAL
VOC 2012 (Everingham et al., 2010) with the additional annotations of SBDD (Hariharan
et al., 2011). We define the training set to be the union of the VOC and SBDD training sets,
and take the validation set to be the union of VOC and SBDD validation sets, excluding
the images in VOC val that overlap with SBDD train. We sparsify the dense masks with
random sampling, which we found resulted in performance about equal to the more
complex sampling strategies of N. Xu et al. (2016). Thus for a given P, we sample P
points randomly from each of the objects to be segmented, as well as the background.
Labels for classes or instances that are not part of the task are relabeled to background.
The process of sampling a task and sparsifying and remapping the ground truth labels
is illustrated in Fig. 9.

For few-shot semantic segmentation, we follow the experimental protocol of Shaban et
al. (2017). We test few-shot performance on held-out classes by dividing the 20 classes of
PASCAL into 4 sets of 5 classes. Images that contain both held-out and training classes
are placed in the held-out set. We subsample splits with more images to ensure that
each split contains the same number of images. For each split, we meta-train a guided
segmentor with binary tasks sampled from the 15 training classes. We then compute the
average performance across 1000 binary tasks sampled from the 5 held-out classes, and
average across all four splits.

Video Object Segmentation on DAVIS 2017 We use the DAVIS 2017 benchmark
(Pont-Tuset et al., 2017) of 2-3s video clips. We meta-train on the training videos and re-
port average performance on the validation videos. During training, we synthesize tasks
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by sampling any two frames from the same video and treating one as the support and
the other as the query. During testing, the support consists of all labeled frames, while
the remaining frames comprise the query. For the video object segmentation benchmark,
the first frame is densely labeled. For interactive video segmentation, varying numbers
of frames are labeled with varying numbers of pixelwise labels.

b.1.1 Architecture and Optimization

The backbone of our guided networks as well as our baseline networks is VGG-16 (Si-
monyan and Zisserman, 2015), pre-trained on ILSVRC Russakovsky et al., 2015, and
cast into fully convolutional form (Shelhamer et al., 2016a). We largely follow the op-
timization procedure for FCNs detailed in (Shelhamer et al., 2016a): we optimize our
guided nets by SGD with a learning rate of 1e−5, batch size 1, high momentum 0.99,
and weight decay of 5e−4. The interpolation weights in the decoder are fixed to bilinear
and not learned. Note that we normalize the loss by the number of pixels in each image
in order to simplify learning rate selection across different datasets with varying image
dimensions.

b.1.2 Metric

Intersection-over-union (IU) is a standard metric for segmentation, but different families
of segmentation tasks choose different forms of the metric. We report the IU of positives
averaged across all tasks and masks, defined as

∑
i tpi∑

i tpi+fpi+fni
where i ranges over ground

truth segment masks. This choice makes performance comparable across tasks, because
it is independent of the number of classes. We choose not to include negatives in the
metric because it adds no information, given the binary nature of the scoring, even for
multi-class predictions and ground truth since these are handled as a set of binary tasks
by the metric. Note that this metric is not directly comparable to the mean IU across
classes typically reported for semantic segmentation benchmarks. As a point of compar-
ison, the 0.62 mean IU achieved by FCN-32s on the PASCAL segmentation benchmark
corresponds to 0.45 positive IU.
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C
A P P E N D I X : E F F I C I E N T O F F - P O L I C Y M E TA - R L V I A
P R O B A B I L I S T I C C O N T E X T VA R I A B L E S

This appendix accompanies the work presented in Chapter 5, Section 5.2.

c.1 experimental details

Here we provide further details for the MuJoCo continuous control domains in Sec-
tion 5.2.3. The agents used in these domains are visualized in Figure 33. The horizon in
all tasks is 200 steps.

• Half-Cheetah-Dir: move forward and backward (2 tasks)
• Half-Cheetah-Vel: achieve a target velocity running forward (100 train tasks, 30 test

tasks)
• Humanoid-Dir-2D: run in a target direction on 2D grid (100 train tasks, 30 test

tasks)
• Ant-Fwd-Back: move forward and backward (2 tasks)
• Ant-Goal-2D: navigate to a target goal location on 2D grid (100 train tasks, 30 test

tasks)
• Walker-2D-Params: agent is initialized with some system dynamics parameters ran-

domized and must move forward (40 train tasks, 10 test tasks)
For these domains, the on-policy baseline approaches require many more samples to
learn the benchmark tasks. Here in Figure 34 we plot the same data as in Figure 14 for
the full number of time steps used by the baselines.
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Half Cheetah Humanoid Ant Walker

Figure 33: Continuous control tasks: left-to-right: the half-cheetah, humanoid, ant, and walker
robots used in our evaluation.
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Figure 34: Meta-learning continuous control. Test task performance vs. samples collected during
meta-training. While in the main paper we truncate the x-axis to better illustrate the
performance of PEARL, here we plot PEARL against the on-policy methods run for
the full number of time steps (1e8). Note that the x-axis is in log scale. PEARL is 20-100
times more sample efficient.
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D
A P P E N D I X : L AT E N T S TAT E M O D E L S F O R M E TA - R L F R O M
I M A G E S

This appendix accompanies the work presented in Chapter 5, Section 5.3.

d.1 meld implementation details

Here, we expand on Section 5.3.2 to provide further implementation details of our algo-
rithm MELD. Also, see our open-source code: https://github.com/tonyzhaozh/meld.

As discussed in Section 5.3.2, the latent state model is comprised of latent dynamics
distributions, posterior inference distributions, and generative distributions of observa-
tions and rewards. While most timesteps are processed by the same time-invariant dy-
namics model p(st|st−1, at−1) and posterior inference network qφ(st|st−1, xt, rt, at−1), we
use separate distributions to model the first time step of a trial: p(s1|s0) and qφ(s1|s0, x1, r1).
Note that in Sections 5.3.3 and 5.3.3, we assume trials contain 2 episodes, while in Sec-
tion 5.3.3 trials contain 1 episode. Following SLAC, we implement two layers of latent
variables (please refer to the SLAC paper (A. Lee et al., 2019), for more details). The net-
work qφ(st|st−1, xt, rt, at−1) encodes image observations and the network p(xt|st) decodes
them for the reconstruction loss. Both of these networks include the same convolutional
architecture (the decoder simply the transpose of the encoder) that consists of five con-
volutional layers. The layers have 32, 64, 128, 256, and 256 filters and the corresponding
filter sizes are 5, 3, 3, 3, 4. For environments in which the robot observes two images
(such as scene and wrist camera), we concatenate the images and apply rectangular fil-
ters. All other model networks are fully connected and consist of 2 hidden layers of 32
units each. We use ReLU activations after each layer.

As discussed, we train the actor and critic using the SAC RL algorithm (Haarnoja et al.,
2018) with the belief state as input. The SAC algorithm maximizes discounted returns as
well as policy entropy via policy iteration. The critic (Q-function) is trained to minimize
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the soft Bellman error, which takes the entropy of the policy into account in the backup.
We instantiate the actor and critic as fully connected networks with 2 hidden layers of
256 units each. We follow the implementation of SAC, including the use of 2 Q-networks
and the tanh actor output activation (please see the SAC paper (Haarnoja et al., 2018) for
more details).

Meta-training alternates between collecting data with the current model and policy,
and training the model and actor-critic. Gradients from the actor-critic optimization do
not flow into the latent state model. Before beginning this alternating scheme, we first
train the latent state model on 60 trajectories of data collected with a random policy.
Relevant hyper-parameters for meta-training can be found in Table 1.

Table 1: Meta-training hyper-parameters

Parameter Value
num. training tasks 30

num. eval tasks 10

actor, critic learning rates 3e-4
model learning rate 1e-4
size of per-task replay buffers Bi 1e5
num. tasks collect data 20

num. rollouts per task 1

num. train steps per epoch 640

num. tasks sample for update 20

model batch size 512

actor, critic batch size 512

d.2 simulation experiment details and ablation study

In this section we provide further details on the simulated experiments in Section 5.3.3.
We also perform an ablation study of several design decisions in the MELD algorithm.
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d.2.1 Success Metrics

We define a success metric for each environment that correlates with qualitatively solv-
ing the task: Cheetah-vel: within .2m/s of target velocity, Reacher: within 10cm of goal,
Peg: complete insertion with 5cm variation possible inside the site, Shelf: mug within
5cm of goal. We use these success metrics because task reward is often misleading when
averaged across a distribution of tasks; in peg-insertion, for example, the numerical dif-
ference between always inserting the peg correctly versus never inserting it can be as
low as 0.1, since the distance between the center of the goal distribution and each goal
is quite small and accuracy is required. In Figure 23, we plot this success threshold as a
dashed black line.

d.2.2 Environment Details

In the Cheetah-vel environment, we control the robot by commanding the torques on the
robot’s 6 joints. The reward function consists of the difference between the target velocity
vtarget and the current velocity vx of the cheetah’s center of mass, as well a small control
cost on the torques sent to the joints:

rcheetal-vel = −|vx − vtarget|+ 0.01||at||2. (34)

The episode length is 50 time steps, and the observation consists of a single 64x64 pixel
image from a tracking camera (as shown in Fig. 35a).

In all three Sawyer environments, we control the robot by commanding joint delta-
positions for all 7 joints. The reward function indicates the difference between the current
end-effector pose xee and a goal pose xgoal, as follows:

rsawyer-envs = −(d2 + log(d+ 1e-5)), where d = ||xee − xgoal||2. (35)

This reward function encourages precision near the goal, which is particularly important
for the peg insertion task. We impose a maximum episode length of 40 time steps for
these environments. The observations for all three of these environments consist of two
images concatenated to form a 64x128 image: one from a fixed scene camera, and one
from a wrist-mounted first-person view camera. These image observations for each en-
vironment are shown in Fig. 35b-d. The simulation time step and control frequency for
each of these simulated environments is listed in Table 2.
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Table 2: Simulation Environments

Environment Sim. time step Control freq.
Cheetah-vel 0.01 10Hz
Reacher 0.0025 4Hz
Peg-insert 0.0025 4Hz
Shelf-placing 0.0025 4Hz

Figure 35: 64x64 and 64x128 image observations, seen as input by MELD for (a) Cheetah-vel, (b)
Reacher, (c) Peg-insertion, and (d) Shelf-placing.
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d.2.3 Ablation Study

In this section we ablate several hyper-parameters of the algorithm to understand which
components affect its performance. First, we examine the effect of the number of meta-
training tasks on MELD’s performance on test tasks. In Figure 36 (left) we plot the
performance on test tasks for different numbers of train tasks on the Reacher problem.
We find that while generalization fails completely with only a single meta-training task,
there are diminishing returns for increasing the number of training tasks beyond 20. This
result demonstrates promising generalization, since a relatively low number of training
tasks is actually needed in order to be able to solve the held-out test tasks. This result
also has a practical benefit in that it precludes the need for instrumenting a large task
distribution for meta-training in the real world, which can be cumbersome.

Although the reference implementation of SAC calls for each data collection step to be
interleaved with a training step, this process of stopping after each environment step in
order to perform training is not possible in the real world. Instead, in MELD, we collect
batches of data that consist of full episodes, and we interleave these collection phases
with training phases that consist of many gradient steps. Here, we examine the affect of
this choice on the performance of the algorithm in simulation. From the results shown
in Figure 36 (middle), we see that MELD is not too sensitive to scaling between this
type of batched off-policy training and the original SAC-style on-policy training, which
is essential for training in the real world.

In Figure 36 (right), we examine the effect of the dimension of the latent variable st.
These experiments show that a larger latent dimension performs better; we use dimen-
sion 256 in all our experiments.
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Figure 36: (left) Number of meta-training tasks Generalization to evaluation tasks requires train-
ing across set of tasks, but increasing beyond 20 tasks does not improve. (middle) Data
/ gradients ratio MELD is not very sensitive to scaling the batch size of data collected,
along with the amount of actor-critic training, at each iteration. (right) Latent variable
dimension Latent state dimension affects task performance, larger is better.

d.3 sparse reward method and experiment details

As described in Section 5.3.3, when reward is given only upon completion of the task,
efficient exploration is required to identify a new task within a few trials. The agent can
acquire these exploration strategies during meta-training by learning strategies tailored
to the task distribution. For example, in the button-pressing problem presented in Sec-
tion 5.3.3, a learned exploration strategy might try pushing each button in succession,
but would not try to e.g., pick up the control panel.

While in principle these behaviors can be acquired by MELD as described in Sec-
tion 5.3.2, in practice performing RL with sparse rewards at meta-training time presents
a significant exploration challenge. In effect, to learn useful exploration strategies for
meta-test time, the agent must first explore effectively during meta-training. Because RL
with sparse rewards is very inefficient, we follow prior work (Gupta et al., 2018b; Rakelly
et al., 2019) and assume access to a shaped reward function during meta-training to help
learn these strategies. This setup corresponds to a setting where meta-training is per-
formed in a laboratory with access to instrumentation to calculate the shaped reward,
while meta-testing occurs outside the lab where only sparse rewards are available.

To make use of the shaped reward during meta-training time, we follow a two-stage
procedure. First, we perform meta-training using the shaped reward as prescribed in
Section 5.3.2. We then add data collected by this agent to the replay buffer of a second
agent, which is trained with a small modification made to the model training loss from
Equation 15. Here, the latent state model takes the sparse reward signal as input (to

101



match our desired meta-testing setup), but we still use the shaped reward for the re-
construction target. We denote the shaped reward as r̃ and the sparse reward as r, and
highlight the difference from Equation 15 in blue.

Lmodel(x1:T , r1:T , r̃1:T , a1:T−1) = E
s1:T∼qφ

T∑

t=1

logpφ(xt|st) + logpφ(r̃t|st)

−DKL(qφ(s1|x1, r1)∥p(s1))−
T∑

t=2

DKL(qφ(st|xt, rt, st−1, at−1)∥pφ(st|st−1, at−1)). (36)

Additionally, we use the shaped reward to train the critic, since this is also not required
at meta-test time.

Note that MELD does not simply learn to copy the trajectories from the shaped-reward
training that were used to warmstart the sparse-reward training. The former (“expert”)
trajectories move from the starting position directly to the correct button, since the
shaped reward contains information to almost immediately identify the correct task.
The MELD trajectories that result from receiving only sparse rewards as input, however,
demonstrate systematic exploration of visiting different buttons in order to determine
the correct one (see Figure 24). Finally, note that we use this same approach for the
real-world WidowX experiments in Section 5.3.3.

d.4 importance of performing inference at every timestep

In this section, we discuss the benefit of the time-varying nature of MELD’s latent belief.
We emphasize that this design decision is useful in the standard meta-RL setting, as well
as in other realistic settings of the underlying task itself changing within an episode.

d.4.1 Fast Adaptation

We first present a didactic image-based 2D navigation problem to illustrate how MELD
can learn extended exploration strategies to adapt to a new task, similar to the results
shown in Figure 24. Here, the task distribution consists of goals located along a semi-
circle around the start state. The agent receives inputs in the form of 64x64 image obser-
vations and rewards that are non-zero only upon reaching the correct goal. We use the
same approach to using shaped reward for meta-training as described in Appendix D.3.
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Figure 37: Image-based 2D navigation with re-
ward given after finding the right
goal: (Left) trajectory traces of meta-
learned exploration finding goal in
Episode-1 (red) and going directly
there in Episode-2 (blue). (Right)
higher rewards in episode-2 show
preservation of information across
episodes.

As shown in Figure 37a, the agent learns
an efficient exploration strategy of travers-
ing the semi-circle goal region until the
goal is found. By updating the poste-
rior belief at each step, MELD is able
to find the goal within 10 − 20 steps, in-
stead of multiple episodes as required by
methods that explore via posterior sam-
pling (Rakelly et al., 2019; Gupta et al.,
2018b) that hold the task variable constant
across each episode. Furthermore, note
that once the goal is found, MELD can nav-
igate directly to it (Figure 37b) in the next
episode.

This experiment demonstrates that even in standard meta-RL setting where the under-
lying task remains constant throughout an episode, updating task information at each
timestep can enable faster adaptation. We argue that this behavior has safety benefits in
the real world, since the agent need not complete full episodes of potentially hazardous
exploration before incorporating task information.

d.4.2 Adapting to Task Changes within Episodes

Figure 38: MELD tracking changing velocity tar-
gets for Cheetah-vel.

The experiments in the main paper as
well as the section above consider the stan-
dard meta-RL paradigm, where the agent
adapts to one test task at a time. How-
ever, many realistic scenarios consist of a
sequence of tasks. For example, consider a
robot moving a mug filled with liquid; if
some of the liquid spills, the robot must
adapt to the new dynamics of the lighter
mug to finish the job. Because MELD up-
dates the belief over the hidden variables
at each time step, it can be directly applied
to this setting without modification. We evaluate MELD in the Cheetah-vel environment
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on a sequence of 3 different target velocities within a single episode and observe in
Figure 38 that MELD adapts to track each velocity within a few time steps.

d.5 task reset mechanism for widowx experiments

Since meta-training requires training across a distribution of tasks, we build an automatic
task reset mechanism for the real-world experiments with the WidowX robot perform-
ing ethernet cable insertion. This mechanism controls the translational and rotational
displacement of the network switch. The network switch(A) is mounted to a 3D printed
housing(B) with gear attached. We control the rotation of the housing through motor 1.
This setup is then mounted on top of a linear rail(C) and motor 2 controls its translational
displacement through a timing pulley. In our experiments, the training task distribution
consisted of 20 different tasks, where each task was randomly assigned from a rotational
range of 16 degrees and a translational range of 2cm.

Figure 39: Automatic task reset mechanism The network switch is rotated and translated by a
series of motors in order to generate different tasks for meta-learning. This allows our
meta-learning process to be entirely automated, without needing human intervention
to reset either the robot or the task at the beginning of each rollout.

d.6 sawyer multi-task peg insertion

In this experiment, we demonstrate that MELD can reason jointly about state and task
information to perform real-world peg insertion with a 7-DoF Sawyer robot (Figure 40,
left). On the Sawyer robot, we learn precise peg insertion where the task distribution con-
sists of three tasks, each corresponding to a different target box. Note that the goal is not
provided to the agent, but must be inferred from its history of observations and rewards.
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Figure 40: (left) Performing precise peg inser-
tion in the real world with a 7-DoF
Sawyer robot. (right) 64x128 image
observations seen as input by the
Sawyer.

The reward function is the sum of the
L2-norms of translational and rotational
distances between the pose of the object
in the end-effector and a goal pose. The
agent’s observations are concatenated im-
ages from two webcams (Figure 40, right):
one fixed view and one first-person view
from a wrist-mounted camera. The robot
succeeds on all three tasks after training
on 4 hours of data (60, 000 samples at 4Hz),
as shown in Figure 41. Videos of the exper-
iment may be found on the project web-
site.

Figure 41: Rewards on train tasks during meta-training for Sawyer peg insertion.
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