
A Languge-Based Approach to Smart Contract Engineering

John Kolb

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-220
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-220.html

December 18, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Language-Based Approach to Smart Contract Engineering

by

John Kolb

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David E. Culler, Co-chair
Professor Randy H. Katz, Co-chair

Professor Christine Parlour

Fall 2020

A Language-Based Approach to Smart Contract Engineering

Copyright 2020
by

John Kolb

1

Abstract

A Language-Based Approach to Smart Contract Engineering

by

John Kolb

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Co-chair

Professor Randy H. Katz, Co-chair

Blockchain-based smart contracts have emerged as a popular means of enforcing agreements
among a collection of parties without a prior assumption of trust. However, it has proven
difficult to write correct contracts that are robust when operating in the adversarial environ-
ment of public blockchains. This thesis evaluates the ability of a domain-specific contract
programming language to support the expression and systematic testing of practical smart
contracts. We present the design, implementation, and evaluation of Quartz , a contract
language based on the state machine model of execution.

The design and evaluation of Quartz is grounded in a suite of case study smart contracts.
These are intended to span a wide range of application scenarios and design patterns en-
countered in practice by contract developers. The language’s implementation is organized
around the translation of a contract to two targets: a formal specification expressed in TLA+

and an implementation expressed in Solidity. Through its support for model checking con-
tract specifications, Quartz enables the discovery of implementation flaws identical to those
that have compromised real-world smart contracts. Moreover, its generated Solidity code
imposes at most minor execution overhead compared to equivalent handwritten code. Fi-
nally, we discuss Quartz ’s future potential to validate contracts against economic notions
of correctness, which are often central concerns in contract design yet are not addressed by
current verification techniques.

i

To my family.

ii

Contents

Contents ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Blockchains and Smart Contracts . 2

The Emergence of Blockchains . 2
Generalizing Blockchain’s Applications with Smart Contracts 3

1.2 Thesis Question . 5
1.3 Approach and Prototype System . 5

Contract Development Workflow . 5
Writing Contracts as Finite State Machines 6
Analyzing Contracts with Model Checking 7

1.4 Thesis Road Map . 7

2 Background 9
2.1 Blockchain as a Distributed Ledger . 9

Adding Ledger Entries . 11
2.2 Smart Contracts and Ethereum . 12

Contract Execution . 12
Programming Smart Contracts . 14

Example: Blockchain-Hosted Auction 15
Contract Vulnerabilities . 16

2.3 Software Testing and Verification . 20
Explicit Testing . 20
Model Checking . 20

2.4 Protocol Design and Validation . 22
State Machines . 23

2.5 Summary . 23
2.6 Revisiting the Thesis Question . 24

iii

3 Case Studies 25
3.1 Selecting Case Studies . 25

Case Study List . 26
3.2 Common Themes . 31
3.3 Insights on Language Design . 33
3.4 Summary . 35

4 System and Language Overview 36
4.1 System Architecture . 36

System Implementation . 38
4.2 Contracts as State Machines . 38

Language Structures . 38
Language Syntax . 39

4.3 Example Contracts . 42
Auction . 43
Multi-Signature Wallet . 46

4.4 Results: Contract Size . 48
4.5 Related Work: State Machine-Based Development and Testing 50
4.6 Related Work: Contract Programming Languages 52
4.7 Summary . 55

5 Language Formalisms 56
5.1 State Machine Structure . 56

Static Contract Validation . 58
5.2 Operational Semantics . 58

Transition Authorization . 58
Transition Execution . 61
Expressions . 63

5.3 Type System . 64
5.4 Summary . 66

6 Translation to TLA+ and Validation 68
6.1 Why Model Checking and TLA+? . 68
6.2 Specification Generation . 69

Data Types . 69
Transitions . 69
Authorization . 70
Modeling the Environment . 70

6.3 Bounding the Search Space . 71
6.4 Example . 71
6.5 Model Checking Results . 72

Model Checking an Auction Implementation 72

iv

Model Checking ERC-1540 . 76
6.6 Related Work: Contract Analysis . 77

Tools for Manual Proof Construction . 78
Automated Tools . 78

6.7 Summary . 79

7 Translation to Solidity 80
7.1 Data Types . 80

Analyzing Token Flows . 82
7.2 State Transition Logic . 82
7.3 Authorization . 83

Auxiliary Contract State . 84
Maintaining Authorization State . 84

7.4 Example . 85
7.5 Execution Overhead . 89
7.6 Summary . 90

8 Incentive-Based Analysis 91
8.1 Incentive-Aware Contract Verification . 91
8.2 Preliminary Results . 92

Pruning Immediately Unfavorable User Actions 93
Pruning Unfavorable Execution Paths . 96

8.3 Fixing Economic Flaws . 98
8.4 Future Work . 99
8.5 Summary . 100

9 Conclusion 101
9.1 Results . 101
9.2 Lessons Learned . 102
9.3 Future Directions . 103
9.4 Final Remarks . 104

Bibliography 106

v

List of Figures

1.1 Quartz Architecture . 5

2.1 A Simple Blockchain . 10
2.2 Part of an Auction Contract Written in Solidity 16
2.3 Part of an Improved Auction Contract . 18
2.4 A Safe Token Refund Implementation . 19

4.1 Quartz Architecture . 37
4.2 EBNF Definition of Quartz ’s DSL (Continued Below) 41
4.2 EBNF Definition of Quartz ’s DSL . 42
4.3 A State Machine for an Auction Contract . 43
4.4 An Auction Contract Written in Quartz . 45
4.5 Multi-Signature Wallet State Machine . 46
4.6 Quartz Multi-Signature Wallet . 47

6.1 PlusCal Code for an Auction Contract . 73
6.2 Part of a State Machine for ERC-1540 . 76

7.1 Structure of a Quartz -Generated Solidity Function 83
7.1 Generated Solidity Code for a Multi-Signature Wallet 88
7.2 Gas costs when executing equivalent generated and handwritten Solidity code . 90

8.1 A Simple Two-Player Game – State Machine Representation 93
8.2 A Simple Two-Player Game – Quartz Implementation 94
8.3 A Simple Breadth-First Search with Utility-Based Pruning 96
8.4 An Alternative Version of the Two-Player Guessing Game 97
8.5 A Depth-First Graph Traversal to Compute Node Utilities 98

vi

List of Tables

3.1 Contract Case Studies . 27
3.2 Themes in Smart Contract Design Exhibited by Each Case Study 33

4.1 Lines of Code to Express Case Studies . 48

5.1 Types in the Quartz DSL . 64

7.1 Mapping Between Quartz and Solidity Types 81

vii

Acknowledgments

This thesis, and my journey as a graduate student more broadly, would not have been possible
without the help and support of many others. First and foremost, I am very grateful to my
advisors, Randy Katz and David Culler. Randy was a steady and supportive presence
throughout my PhD process. His guidance and consistent encouragement, especially when
I was struggling, were invaluable. I would often leave my meetings with Randy feeling
reinvigorated and ready to press on with my work. When Randy was promoted to Vice
Chancellor, David graciously and generously agreed to take on a role as my coadvisor. I can’t
overstate how much I learned from David about what it means to be a scientist and a scholar:
forming ideas and questions precisely, developing a proper experimental methodology to
answer these questions, and situating one’s work within the larger research landscape. David
can also convey more about a nuanced technical topic in a single sentence than most people
can get across in a paragraph, and seeing this has pushed me to try to be more precise and
direct in my own thinking and writing. Finally, both Randy and David have been extremely
supportive of my interests in teaching. When I wanted to teach a summer course, they
advocated on my behalf to make this happen, and I can’t thank them enough for helping
me pursue a goal that is very important to me.

Several other faculty members at Berkeley have also supported me along the way. Koushik
Sen and Brett Green both served on my qualifying exam committee and gave me valuable
feedback and insights as I was in the early stages of my dissertation research. Christine
Parlour kindly agreed to serve on my thesis committee on short notice, which I greatly
appreciate. Dan Garcia has been extremely supportive of my teaching interests, and I have
learned a lot from him about how to lead a class and how to support students in their
learning. Zach Pardos collaborated with me on a project on educational analytics and was
always supportive as I was learning my way around a new area of research. Finally, I want
to thank John Kubiatowicz for helping me get my start at Berkeley and encouraging me as
I was still figuring things out in my first year.

I have benefited from the company and assistance of many talented and generous col-
leagues as a graduate student. In the SDB/BETS research group, I can fondly recall
many conversations with Moustafa AbdelBaky, Michael Andersen, Kaifei Chen, Gabe Fierro,
Hyung-Sin Kim, Sam Kumar, and Kalyanaraman Shankari. Whether we were talking about
technical matters within computer science, navigating graduate school, the craft of research,
or current events, I always learned something new or saw a new perspective that helped im-
prove my own thinking. I also enjoyed working with Nitesh Mor, Ben Zhang, Eric Allman,
and Ken Lutz in Berkeley’s Swarm Lab, where I started in my first year. They immedi-
ately welcomed me and included me in a lot of fun discussions around systems design and
implementation. Finally, Mike Gardner and I collaborated on a research project applying
parallel computing techniques to geological data sets, and I learned a lot from him about
both engineering and geology and about how to stay positive as a graduate student and
researcher.

viii

Two major groups have supported my dissertation research. First, collaborators on an
SRC-funded grant at Intel helped me identify real-world applications for smart contracts and
gave me an initial use case to work from. Through my conversations and presentations with
Mark Wilkinson, Mani Janakiram, Gustavo Lujan Moreno, and many others, I was able to
build my skills in conveying the fundamental ideas behind blockchains and my work. Second,
the Haas Blockchain Initiative, with support from Ripple, has also helped to support my
work, both through funding and in offering a network on campus with whom I have been
able to share ideas. In particular, I’d like to thank Karin Bauer for organizing group events
and making sure I always had what I needed from Haas and Ripple.

The staff in Berkeley’s EECS department have always been professional, helpful, and
friendly on the numerous occasions where I have needed their assistance. Shirley Salanio
and Jean Nguyen quickly answered any questions I had about department policies or en-
suring that I was satisfying my degree requirements. Cindy Connors, Thomas Silva, and
Michael-David Sasson helped immensely with my teaching efforts, whether I needed help
with enrollment, moving my lectures to a new room, or accessing old teaching evaluations.
Kattt Atchley, Shane Knapp, Jon Kuroda, and Boban Zarkovich helped me with anything I
needed in the Rise Lab and always put a lot of work into making our retreats fun and pro-
ductive. Finally, Albert Goto has not only helped me with all sorts of work-related issues like
travel reimbursements and acquiring research equipment, but has also been a tremendous
supporter and friend.

Most importantly, I would like to thank my friends and family, who have supported and
encouraged me during the entire PhD journey, no matter what difficulties I encountered. I
am very thankful that I could always rely on them to listen to me, offer advice, and help me
maintain perspective. You all inspire me to keep pushing to be the best person I can be.

1

Chapter 1

Introduction

Contracts and agreements play a crucial role in our society. These assume a wide variety
of forms such as the issue of a loan or a security, an agreement to complete payment for
a good or service adhering to certain requirements, or simply the use of a mutually valued
currency as a means of exchange. Historically, arrangements like these are backed by human
institutions. A network of governments, banks, and other financial institutions facilitate the
exchange and track ownership of financial assets. When the parties to a contract are in
disagreement, they may pursue a judicial process to render an impartial interpretation of
the contract’s terms and their application to the situation at hand.

Blockchains have emerged as a new type of computer system that supports the specifi-
cation and enforcement of the kinds of multi-party agreements described above. Under this
vision, human institutions, which can present issues of overhead, corruption, prejudice, or
susceptibility to manipulation, are replaced with autonomous computer software. Funda-
mentally, a blockchain serves as a reliable, tamper-resistant, and globally accessible ledger
that is operated by an open network of participants, none of whom can unilaterally mod-
ify the ledger’s contents or deviate from the agreed upon procedure for adding new ledger
entries. Its most natural use is to implement a virtual currency: transfers of currency from
one party to another are recorded as ledger entries, meaning anyone may use the ledger’s
contents to establish their ownership of virtual funds.

The first blockchains were solely concerned with currency, but newer blockchain systems
have emerged that support a rich set of applications through the primitive of a smart contract.
Where traditional contracts articulate a set of terms and contingencies in natural language,
smart contracts express these conditions as the logic of a computer program. The program
tracks any data relevant to the execution of the agreement and defines a set of operations that
end users may invoke to modify this data. A contract’s definition is recorded in an entry on
the ledger when it is initially created. When a user invokes one of the contract’s operations,
it is executed exactly as defined and similarly recorded as a ledger entry. Anyone is then
free to inspect these ledger entries to determine the contract’s current status or to audit
its history. Thus, a contract defines the parameters of an agreement while the underlying
blockchain secures its proceedings.

CHAPTER 1. INTRODUCTION 2

Smart contracts have attracted a great deal of interest, but their use in real, mission-
critical applications remains challenging. The logic for contract operations is executed ex-
actly as written and cannot be changed once the contract is initialized on the ledger. This
can lead to unanticipated scenarios where an unnoticed flaw in the contract’s intended logic
is exploited to circumvent its intended terms. When this occurs, the parties who suffer losses
as a result have little recourse — a blockchain offers no means of reverting prior actions,
even when they are clearly in violation of a contract’s intended purpose.

In this chapter, we begin by summarizing the concepts of blockchains and smart contracts
before discussing the challenges in building correct contracts. We present the central thesis
question and then introduce our methodology behind a language and workflows for testing
and deploying practical, robust smart contracts in the context of Quartz , our prototype
language and accompanying software. Finally, we present a road map for the rest of the
thesis.

1.1 Blockchains and Smart Contracts

Here, we summarize the main concepts around blockchains and smart contracts. This sets
up a discussion of the challenges in writing correct smart contracts, which motivates the
research agenda and approach behind this thesis, each presented in subsequent sections.

The Emergence of Blockchains

A blockchain is best viewed as a relatively new element in a long-studied domain of computer
science known as distributed computing. In a distributed system, multiple independent com-
puters work together to accomplish a shared goal. These systems have become increasingly
important as the demand for computing has exploded, fed by applications like analysis of
scientific data and the operation of Internet-hosted services that must accommodate mil-
lions or even billions of users and their associated data. By enlisting multiple computers, a
distributed system can store more data, perform more computations, and service more end
users than a single machine acting alone.

Distributed systems offer larger scale, but they also involve greater complexity. When
more computers are integrated into a system, the likelihood increases that one or more of
them will experience a failure. In severe cases, the larger system may fail as well, disrupt-
ing its users and forcing human operators to manually intervene. As a result, there has
been a long line of work in computer science focused on making distributed systems more
resilient by developing techniques that allow them to continue operating, without any need
for intervention, in the face of component failures.

One particular concern for a distributed system is in achieving consensus, meaning there is
agreement about the system’s state among its members, and in continuing to reach agreement
about changes to system state even as failures occur. Consensus is required to definitively
resolve issues such as the responsibilities delegated to each computer in the system, the

CHAPTER 1. INTRODUCTION 3

contents of data stored on behalf of end users, or even which computers belong to the system.
Several different methods have been devised to enable the members in a distributed system
to establish consensus, each specifying a sequence of steps to follow whenever a change is
made to the system’s state. These methods can be characterized by the types of failures they
are able to accommodate. The simpler methods can tolerate situations like one or several
members losing their ability to communicate with the rest of the system. The most advanced
of the traditional methods for achieving consensus tolerate “Byzantine” faults in which one
member reports false information to others.

Blockchains are a class of distributed system in which members work together to maintain
a global ledger, i.e., an ordered sequence of transactions, each corresponding to an entry in
the ledger. They are distinguished by a mechanism for reaching consensus (specifically, an
agreement on the order and contents of every ledger entry) that makes two main improve-
ments to prior systems. First, even the traditional systems that can tolerate Byzantine faults
assume there is a fixed set of members participating in the system, each uniquely identified
and generally given an equal share of influence in reaching consensus. Blockchains, on the
other hand, allow anyone in the world to run the software required to participate, and these
participants may freely join or leave at will.

Second, where traditional distributed systems require some majority of their participants
to faithfully execute the steps necessary to achieve consensus, presumably out of a vested
interest in the system’s success, blockchains instead assume that each participant acts only in
its own interest. Blockchains are engineered to create incentive structures where it is always
most profitable to follow the proper process for consensus. This is accomplished by rewarding
members for participating in this process with sums of virtual currency, whose possession
is tracked in the blockchain’s ledger. This currency may also be explicitly transferred from
one party to another by recording the transfer as an entry in the ledger. These transfers
are accompanied by transaction fees, paid by the initiating party, that are distributed as
rewards to the participants in the consensus process, creating the incentive described earlier.

Generalizing Blockchain’s Applications with Smart Contracts

The first blockchains focused entirely on implementing virtual currencies, as described above.
However, a blockchain’s core ability to provide a globally maintained, secure ledger gener-
alizes far beyond this use case. Ledger entries can record the creation of and subsequent
modifications to arbitrary collections of data. In this way, blockchains do not act merely as
an accounting system for virtual currency but as a general-purpose platform for data storage
offering a powerful set of features: everyone in the system agrees on the same history of
transactions, no user can tamper with this history once it is established, and anyone with
an Internet connection is free to add new entries to this history.

Smart contracts are the mechanism through which programmers use a blockchain as a
data storage system in support of their applications. A contract is a piece of software whose
code is recorded on the blockchain as a new ledger entry when it is first deployed. This
code defines a collection of data items and a set of transformations to this data, each also

CHAPTER 1. INTRODUCTION 4

recorded as a ledger entry, that may be invoked by any blockchain user. Contracts contain
custom-written code and can therefore represent arbitrary data, such as ownership of virtual
tokens, the proceedings of a game, ownership of real-world assets, and so on.

It is important to note that smart contracts operate in the same regime as the underlying
blockchain’s consensus process. That is, anyone with access to the blockchain may attempt
to invoke one of the contract’s defined transformations. Additionally, there is no expectation
of trust among a contract’s users who, like the entities working to operate the blockchain,
assume that each participant works to maximize his or her own interests. It is the contract’s
code that specifies the rules of engagement, which are expected to ensure that the contract’s
data is properly recorded and modified only in the proper ways. When a user invokes a
transformation, the blockchain’s consensus protocol ensures that the relevant contract code
is executed exactly as it is written.

As a result of this situation, correctness of a contract’s code is a major concern for its
creator and its users. If there is a loophole or vulnerability in the contract’s definition, then
anyone is free to exploit it by invoking transactions against the contract to be added to
the global ledger. As far as the blockchain’s consensus mechanism is concerned, this is a
routine invocation of contract code, which must be executed to the letter. Additionally, as
the ledger is openly available by nature, it is relatively straightforward for malicious users to
comb it for vulnerable contract definitions, and smart contract code cannot be modified once
it is recorded on the ledger. Although this is by design, to protect users from surreptitious
changes, it means that a contract cannot be fixed if it is ill formed. The programmers who
write smart contracts must therefore attempt to write error-free code that anticipates any
possible series of events.

By far the dominant platform for smart contracts today is Ethereum, a publicly avail-
able blockchain run by a global network of participants. Ethereum has served as a valuable
proving ground for the smart contract idea, but it has also revealed the difficulty in offering
the right set of tools to contract developers. Ethereum-hosted contracts are predominantly
written in the Solidity programming language, which was intentionally designed to resemble
traditional programming languages. Contracts have a different set of concerns than tradi-
tional software, as they are publicly visible and are expected to enforce rules in the face of
potentially malicious users, as described above. Moreover, code executes differently on a
blockchain than it does in a traditional environment. However, Solidity’s design can encour-
age contract programmers to think in the same terms they do when writing other software,
causing them to introduce bugs they will be unable to fix after deployment. This situation,
combined with the high stakes when writing a contract as described above, has led to multi-
ple cases in which Ethereum contracts have been exploited by malicious users, allowing the
theft or destruction of virtual assets valued at millions of dollars.

CHAPTER 1. INTRODUCTION 5

1.2 Thesis Question

Blockchains and smart contracts offer a unique set of capabilities, but it requires significant
domain knowledge and meticulous software development practices to leverage these capabil-
ities without risk. This creates a barrier to more widespread adoption and use of contracts
and naturally motivates work to facilitate contract development. This thesis confronts this
challenge by investigating the efficacy of a language-focused approach to smart contract en-
gineering: Can we construct a language that helps authors implement smart contracts and
systematically test them for correctness before they are deployed for use?

1.3 Approach and Prototype System

To answer this question, we propose a development methodology for smart contracts. This
involves a simplified programming language for defining a contract and the conversion of this
definition into a formal specification suitable for verification as well as an implementation
suitable for production use. To evaluate our approach, we implement the language and its
translators as a complete prototype system, Quartz .

Contract Development Workflow

Contract
Definition
(DSL)

Formal
Specification

Generator

Model
Checker

Implementation
Generator

Distributed
Ledger

TLA+ Spec. Solidity Code

Execution
Trace

1

2 5

3 6

4

Contract Author

Figure 1.1: Quartz Architecture

0

0 0

0

CHAPTER 1. INTRODUCTION 6

Our proposed workflow for contract engineering is shown in Figure 1.1. Arguably the most
important element of the approach, and the Quartz prototype, is its simplified programming
language designed specifically for smart contracts. A developer uses this language to formally
define her contract as a finite state machine, described in more detail below. Additionally, the
developer states the properties she expects her contract to adhere to throughout its lifetime
on the blockchain. This initial description is then converted to two target forms. The first is
a specification that formally defines the contract’s logic and the rules for its execution on the
underlying blockchain. This specification is required to apply model checking, a technique
in which we can search through possible behaviors of the contract to identify occasions
where it violates the properties stipulated by its author. The second target is a complete
implementation of the contract suitable for deployment to a blockchain.

Writing Contracts as Finite State Machines

A Quartz contract definition adheres to a widely used structure for describing and analyzing
computer programs known as a finite state machine. Under this organization, a contract is
in one of a fixed number of explicitly listed possible states, including a designated starting
state. Each state possesses a set of transitions that may be invoked to move the contract
from one state to another. A contract is still associated with a set of data values, as described
earlier, and a state transition may involve a set of modifications to these values. Each state
transition is effected as a contract transformation — it is invoked by an end user and recorded
on the underlying blockchain. However, a Quartz contract naturally imposes structure to
these transformations, in that only state transitions originating at the contract’s current
state are permitted.

This ability to restrict when certain operations can be performed is important for contract
development. It allows a contract to enforce different modes of operation in which different
sets of actions are available to its users. For example, this can be used to make certain
data values immutable at different points in the contract’s lifecycle. Quartz ’s language
offers two additional means of constraining when state transitions are permitted. First, a
contract can require that its data values satisfy certain preconditions before a transition is
permitted. Second, a Quartz contract can declare which users must approve of a transition
before it may proceed. A contract author might stipulate that only a particular user may
trigger a transition, one or all members of a group of users must approve of a transition, or
any combination thereof. Quartz emphasizes these kinds of restrictions in the design of its
contract definition language because they often play a crucial role in enforcing the desired
terms of real applications. By supporting easy expression of transition restrictions in its
language, Quartz relieves the contract author of the error-prone task of implementing such
restrictions manually, as she would have to do in a language like Solidity.

CHAPTER 1. INTRODUCTION 7

Analyzing Contracts with Model Checking

State machines not only offer a helpful structure for defining smart contracts, they also
facilitate the analysis of their potential behavior once deployed to a blockchain. Under this
model, the life of a smart contract is constructed from a sequence of state transitions. Quartz
uses an approach called model checking to search through possible transition sequences in
order to identify situations where a contract fails. More concretely, a user writes down a
collection of properties that she expects the contract to adhere to throughout its life on the
blockchain. Quartz uses model checking to identify any sequence of transitions, starting with
the contract’s initial creation, that lead to a violation of one or more of these properties.
If such a sequence is found, it is presented to the end user. This is more valuable than a
simple indication that the contract is flawed, as it indicates precisely how a failure could
occur in practice. Model checking is also a valuable approach because it explores all possible
sequences of events, even those the author did not imagine and account for when designing
her contract, helping to reveal “unknown unknowns” that are often the source of bugs.

While model checking is powerful and flexible, in that it can check whatever properties
the user defines, it can be difficult to apply because it requires a formal specification as
input. That is, the way a contract executes on the blockchain must be precisely defined
before the contract can be analyzed for correctness. Therefore, Quartz must generate such a
specification from a contract’s state machine-based definition. This involves two challenges.
The first is translating the structure of the state machine itself from the relatively simple
initial description to the more detailed and precise form expected by a model checker. The
second is specifying how the state machine executes on the blockchain — where any user
may attempt to invoke any transition at any time. Thus, while Quartz requires the user to
write down the properties to check, she does not have to complete the more difficult task
of formally specifying her state machine or the blockchain’s inner workings. The Quartz
prototype system uses the TLC model checker, which is specifically designed to analyze
specifications written in the TLA+ language for correctness.

1.4 Thesis Road Map

A description language centered around a state machine abstraction allows developers to
express their contracts concisely, to thoroughly test them and surface meaningful flaws,
and to benefit from seamless implementation generation without significantly sacrificing
execution efficiency.

In Chapter 2, we go into more detail on blockchains, smart contracts, relevant approaches
for software testing and verification, and prior work on protocol validation using state ma-
chines as the primary abstraction. We then revisit and refine our central thesis question of
language support for contract engineering.

Chapter 3 presents a collection of case study smart contract applications drawn from
standardization efforts, contracts featured in the relevant literature, and real failure cases

CHAPTER 1. INTRODUCTION 8

on the Ethereum blockchain. This set of use cases serves two purposes. First, it informs
the design of Quartz ’s contract description language. Second, it serves as the basis for our
evaluation, as it offers a set of benchmarks reflecting realistic scenarios that are most likely
to be relevant to contract developers.

Chapter 4 presents Quartz , a language and associated tools that form a complete imple-
mentation of our approach and its focus on state machines and model checking. We describe
the language’s structures and semantics and offer two illustrative examples: an auction and
a multi-signature wallet. We then evaluate the extent to which Quartz facilitates the concise
expression of contracts by comparing the relative sizes of four different contract represen-
tations: a contract written by hand in Quartz , an equivalent contract written by hand in
Solidity, a Solidity contract generated from Quartz code, and a TLA+ specification of the
contract generated from Quartz code.

Chapter 5 covers formal definitions of the Quartz programming language. These precisely
describe the execution behavior of a contract state machine and therefore specify the seman-
tics that must be preserved under the two respective translations to a formal specification
and to an implementation.

Chapter 6 covers the translation of a contract to a formal specification, particularly
Quartz ’s translation from a state machine-based DSL to TLA+. This includes how Quartz
data types and primitives are represented in TLA+ and how the blockchain’s execution
semantics are formally specified. We also present results from model checking contracts
drawn from our set of case studies to illustrate how Quartz is able to surface flaws that can
be exploited to compromise contract integrity.

Chapter 7 discusses the translation of Quartz state machines to Solidity, the de facto
standard implementation language for smart contracts. This translation path involves sim-
ilar issues of preserving the original state machine’s behavior, but the Solidity translation
process is significantly more complex when it comes to expressing and enforcing state tran-
sition authorization restrictions. We finish this chapter by quantifying the overhead of using
Quartz , rather than writing Solidity directly, in terms of the execution efficiency of generated
contracts.

Chapter 8 offers an initial exploration of an important area of future work: accounting
for user incentives when analyzing potential contract behaviors. In particular, we provide
a simple set of definitions and propose an augmentation to the normal model checking
process that can help contract developers more precisely determine whether or not certain
sequences of events are economically feasible. We finish this chapter with preliminary results
to demonstrate the potential value of this approach.

Finally, Chapter 9 concludes the thesis by summarizing its ideas and results, describes
recent changes in the blockchain world, and offers potential areas of future work.

9

Chapter 2

Background

This chapter begins by introducing blockchains and describing their operation. It introduces
smart contracts, the main primitive used to construct applications on top of blockchains, and
describes some of the difficulties around smart contract implementation. Next, we discuss
approaches to software validation, including traditional testing approaches as well as formal
proofs of correctness. We then discuss finite state machines as a useful model for robust
software design, particularly for protocol development. Finally, we summarize these ideas
and revisit our central question of language-centered contract engineering.

2.1 Blockchain as a Distributed Ledger

A blockchain is a peer-to-peer network of software agents participating in a shared protocol.
The fundamental capability offered by this protocol is the maintenance of a global ledger
— an append-only log for storing data. A new item can only be added at the end of the
ledger, and no previous items can be modified. Members of the network exchange messages
to propose new entries for inclusion in the ledger and to keep their local replicas synchronized
with one another. New entries are not added to the ledger immediately. Instead, they are
batched together into blocks which are periodically appended to the ledger as a unit. On the
Bitcoin blockchain, for example, a new block is added roughly every 10 minutes. Thus, the
ledger is formed from a sequence of blocks, each containing an ordered list of entries.

Cryptography plays an important role in blockchains. Each ledger entry must be signed
by its creator’s private key, preventing forgery or future repudiation. Additionally, as shown
in Figure 2.1, each block comprising the ledger includes a header with several fields, including
its position within the global sequence and a timestamp. A block’s header also includes a
cryptographic hash of the contents of its predecessor within the sequence. A cryptographic
hash of block i is included in block i+ 1, a hash of the contents of block i+ 1 (including its
hash of block i) is included in block i+ 2, and so on, meaning the contents of each block are
reflected via a chain of hashes found within all following blocks in the sequence. This is what
gives the blocks a definitive order and makes their contents immutable — any modification

CHAPTER 2. BACKGROUND 10

to a preceding block would break the hash chain. Hence, the sequence forms a blockchain,
inspired by prior work in cryptography on linked timestamping of documents [10,45,46].

Block 2

Block Header
Block Number

Timestamp
Hash of Prev. Block

Transactions

Block 0
Genesis Block

Block Header
Block Number

Timestamp

Transactions

0x000000000 …

Block 1

Block Header
Block Number

Timestamp
Hash of Prev. Block

Transactions

Block i

Block Header
Block Number

Timestamp
Hash of Prev. Block

Transactions

Figure 2.1: A Simple Blockchain

Much of the enthusiasm surrounding blockchains is due to their decentralized nature.
No single entity runs a blockchain or controls its operation. Instead, correct operation of
a blockchain is assured through cryptography and carefully designed incentive structures.
Each member of the network is assumed to be self-interested and acting to maximize its
own gains. This is in contrast to many other distributed systems, where participants are
extended some measure of trust to adhere to the system’s protocol. Instead, blockchain users
trust the design and security of the system itself, which hinges on its underlying consensus
algorithm.

Many blockchain protocols have been devised to maintain consensus among the net-
work’s participants in this decentralized regime. All have one fundamental purpose: to
reach network-wide agreement on which block to next append to the ledger, enforcing a
globally recognized ordering of all ledger entries. Each participant maintains a full and in-
dependent copy of the blockchain and stays synchronized with the rest of the network by
updating its copy as each new block is agreed upon. We discuss only proof-of-work as a
well-known example here; there are many other, more thorough discussions of blockchain
consensus for the interested reader [20,60].

The proof-of-work algorithm was introduced with the launch of the Bitcoin blockchain
[70]. Its primary innovation is that it requires network members to commit computational
resources to their participation in the protocol. A participant’s degree of influence over
the blockchain’s operation is then tied to the computing power under her control. The
blockchain’s security rests on the assumption that no single party controls a majority of the
computational resources incorporated into its network.

This design gives proof-of-work consensus resilience to Sybil attacks — a technique in
which a single adversary masquerades as many synthetic users of a system in order to gain
control of that system.1 Many distributed systems restrict participation to a fixed set of
authenticated parties to avoid this issue. Using proof of work, however, user identities are

1One could imagine using this strategy to hijack a system that updates its state based on a simple
majority vote, for example.

r--------..
r--------1
r--------,

r

r--------..
r--------7
1~~~ ... <:.<:.<:.~~ ..

·---------'
[m

r--------..
r--------1
1~~~~~~~~~ ..

·-------- ' - r-------- ..
r--------1
:.:.<:.<:.~~~~ ...

·-------- '
r m [

CHAPTER 2. BACKGROUND 11

made freely available. Members may join and leave the blockchain’s network at will. This
is possible because an entity that controls multiple user identities must then choose how to
apportion their pool of computing resources among those identities. Their influence over
the blockchain when acting under multiple identities is no different than if they were acting
under a single identity.

Adding Ledger Entries

An end user interacts with a blockchain by submitting a request to add a new entry to
the ledger. The process of fulfilling this request is known as a transaction. A user does
not need to be a member of the blockchain’s underlying network, i.e., a participant in its
consensus protocol, to initiate a transaction. Instead, she may submit her request to one
of these participants, typically via an RPC protocol, who then propagates it to the rest of
the network. The transaction is completed once the associated ledger entry is successfully
integrated into a new block. Transaction latency is therefore determined by the rate at
which new blocks are appended to the chain and is typically on the order of several seconds
to several minutes.

In most blockchains, a user must include a transaction fee alongside each of her requests
to the system. This is used both to incentivize network members to process the transaction
and to discourage users from overwhelming the blockchain with spurious requests. When
a member proposes a new block that is successfully appended to the chain according to
the network’s consensus protocol, they are compensated with the fees for all transactions
contained in that block.

Blockchain users compete on an open market to have their transactions fulfilled, and
network members work to maximize their proceeds by prioritizing transactions with higher
associated fees. This has two results. First, a transaction may take longer to complete if
its creator pays a smaller fee. Second, the fee required to have a transaction fulfilled within
some expected time bound will fluctuate with the current demand on the blockchain.

This naturally raises the question of the currency to use for these system fees. Bitcoin
introduced an eponymous virtual currency to serve as the means of exchange for transaction
fees. In fact, the Bitcoin blockchain’s central purpose is to track the balance of this currency
associated with each user identity (public key) in the system. Ledger entries record a transfer
of Bitcoins from one party to another, and users submit transactions to the system to effect
such a transfer — meaning both the Bitcoins transferred and the Bitcoins used to pay the
transactions fee are deducted from her balance. The immutability and integrity of these
transfers is enforced through the cryptographic elements of the system’s consensus protocol
and structure of its ledger, making Bitcoins a cryptocurrency. While there has been intense
investment and speculation around Bitcoins as a financial asset, their innate value stems
from a single source: they are the only currency that can be used as payment for adding a
new entry to Bitcoin’s blockchain.

CHAPTER 2. BACKGROUND 12

2.2 Smart Contracts and Ethereum

Although the concept of a blockchain first emerged in the context of Bitcoin and cryptocur-
rency, securing the exchange of digital tokens is just one application of a blockchain’s ledger.
In this setting, ledger entries are interpreted only as records of currency transfers. However,
the ledger can be used more generally to record changes to application-specific state. Here,
ledger entries record the execution of fully programmable logic. The process of adding a new
entry to the ledger becomes a transaction in the more traditional sense of the term — an
invocation of an atomic sequence of modifications to shared state, visible to all blockchain
users.

Ethereum [19, 98] was the first blockchain to implement this more general scheme. Its
organizing abstraction is the smart contract [90], an object that is stored and maintained on
the blockchain’s ledger. Like in traditional object-oriented programming, a smart contract
consists of both state (similar to fields) and logic to transform this state (similar to meth-
ods). A user creates a smart contract by submitting a transaction to add a special entry
to the ledger. This ledger entry contains the contract’s code, which specifies all possible
transformations to its state, and records the initialization of the contract. This is analogous
to executing an object’s constructor. Any user may then submit a transaction to invoke one
of the contract’s pre-defined transformations. The current state of a smart contract is the
cumulative result of sequential execution of these transactions, as ordered by Ethereum’s
ledger. Participants in an Ethereum blockchain maintain two data structures: a record of
all prior blocks and the current state of all known contracts on the ledger, represented as a
key/value store.

Smart contracts must confront the same set of challenges as the consensus algorithm of
the underlying blockchain. They each implement a protocol concerning the creation and
maintenance of shared state and are open to interaction with an arbitrary pool of self-
interested users. These users do not trust each other, but rather trust the blockchain to
effect the contract’s transformations exactly as written and as ordered by Ethereum’s ledger.
Therefore, these users also expect the contract’s code to properly implement and enforce the
expected protocol in the blockchain’s open and incentive-driven environment.

Contract Execution

The logic for smart contract transformations is expressed as bytecode that targets the
Ethereum Virtual Machine (EVM), a stack-based runtime designed specifically for dis-
tributed execution on blockchains. Each member of the network maintains a local EVM
implementation in order to execute the transactions contained in new blocks as they are
created and to update the local replica of contract state. The EVM offers access only to in-
formation stored in the ledger itself, and its instructions all have deterministic results. This
ensures that all participants in a blockchain independently converge to an identical state
when they execute the same sequence of transactions. This approach is computationally
inefficient, as each transaction is replayed on every node in the network, but it is precisely

CHAPTER 2. BACKGROUND 13

what makes the blockchain decentralized. No single authority can stipulate the outcome of
a transaction.

Ethereum transactions, like Bitcoin’s, are associated with a fee denominated in a cryp-
tocurrency, Ether, and serve to incentivize transaction processing while also creating a cost
for using the blockchain. The fee for an Ethereum transaction is a function of the com-
putational costs of the associated contract transformation. The EVM features a metered
execution model in which each instruction is associated with a gas cost. When a blockchain
user initiates a transaction, she specifies an Ether-per-gas multiplier that determines how
much she will be charged for the transaction’s execution. The same market forces explained
above in the context of Bitcoin fees are at play here — practical transaction fees are dictated
by the level of demand on the network, and higher fees induce faster service. Additionally,
Ethereum enforces an upper limit on the amount of gas consumed by a single transaction.
Transactions are aborted if they exceed this limit. This guarantees that the execution of
any contract logic terminates, even if this logic contains an infinite loop, and that network
members continue to make forward progress when processing new blocks.

Ethereum is therefore much like Bitcoin in that it includes a native cryptocurrency and
it tracks balances and exchanges of this currency with its ledger. Ethereum offers user
accounts (referred to as external accounts) that are bound to a unique public/private key
pair and associated with a balance of Ether. However, an Ethereum user account is in fact
a smart contract in its simplest form: it includes a single field, a balance of Ether, and a
single transformation in which it accepts a deposit of Ether. That is, an external account
is a special-case, degenerate smart contract. All other smart contracts implicitly contain
these attributes and may extend this model with additional fields or transformations. The
sole fundamental difference between the two is that only external accounts may initiate a
new transaction on the blockchain. Smart contract code is executed only in the course of
processing a transaction requested by an end user, never independently.

A transaction on the Ethereum blockchain may include transfer of Ether from one entity
to another, invocation of smart contract logic, or both. The transfer of Ether and the
execution of contract code are unified under a single execution mechanism. A request to
perform a transaction is represented as a message composed of the following elements:

• A destination, specified as a public key

• An optional value of Ether

• An optional byte string payload

• A signature produced using the sender’s private key

The EVM adheres to a standard ABI in which the transaction’s payload is used to stipulate
which contract transformation to execute as well as any arguments to use for the transfor-
mation. A contract is free to define a fallback function that is executed if the payload is
empty or cannot be successfully resolved to any of the contract’s declared transformations.

When a blockchain node processes a transaction, it performs the following steps:

CHAPTER 2. BACKGROUND 14

1. Verify the transaction’s signature.

2. Look up the entity associated with the destination public key. If no such entity is
found, abort.

3. Parse the transaction’s payload, if present, which indicates which transformation to
invoke as well as the values for any parameters expected by the transformation.

4. If the payload is empty or refers to a non-existent transformation, execute the target
contract’s fallback function.

• For external accounts, the fallback function is the contract’s only (implicitly de-
fined) transformation and simply accepts any Ether included with the transaction.

• Other smart contracts may define their own, customized fallback functions to
execute in this situation.

5. Otherwise, execute the transformation with the specified parameters.

One contract may invoke a transformation defined in an external contract in the course
of its execution. Such an invocation is known as an internal transaction. It still requires the
construction of a message with destination, value, and payload elements but is not recorded
explicitly on Ethereum’s ledger. This situation shares many similarities with a function call
in traditional runtimes. The flow of control transfers to the target contract, continues in the
environment of the callee (i.e., with access to its fields), and returns to the caller contract.
The callee has no means of distinguishing between manual invocation of its code by an end
user versus invocation by another smart contract. That is, it cannot discern if it is the root
or an internal node of the call graph.

Continuing this analogy, each (external) transaction corresponds to a call graph. By
design, the root of this graph always corresponds to manual invocation of a smart contract
by an end user, identified by their external account, that is recorded on the ledger. All
additional elements in the graph represent internal transactions initiated by smart contract
code. Cycles in this graph represent a particularly important case: a reentrant invocation.
Here, the assumption of atomicity no longer holds. Say a contract has two transformations
f and g and that f is a predecessor of g on the call graph. Then, g will execute against the
contract when it is in an intermediate state — it reflects only a partial execution of f .

Programming Smart Contracts

While contracts are ultimately represented and executed as EVM bytecode, most Ethereum
contracts are implemented in higher-level, contract-specific programming languages. A num-
ber of languages that compile to EVM bytecode have been proposed or developed [33,37,52].
Solidity [36] is the most mature and best-supported language. It has therefore become the
de facto standard implementation language for Ethereum contracts. Solidity is a statically-
typed and imperative language that strives to offer syntax and features familiar to most

CHAPTER 2. BACKGROUND 15

programmers such as conditionals, loops, functions, and exceptions. It is augmented with
blockchain-specific keywords and constructs that allow access to information like the num-
ber and timestamp of the current block and the public key of the contract or account that
invoked the current transaction.

Solidity contracts are structured similarly to classes in object-oriented programming lan-
guages. They each include a declaration of typed instance variables that persist for the
lifetime of the contract, a constructor to initialize the contract when it is first deployed,
and a set of methods that access and modify these fields when invoked. In Solidity terms,
submitting a transaction to the blockchain means invoking a particular method of a smart
contract. Solidity code may freely call functions defined in external contracts, creating the
internal transactions described above. Thus, while Solidity has the advantage of closely re-
sembling the languages that most programmers are accustomed to from traditional domains,
we will also see that it obscures the inner workings of the blockchain and certain subtleties
in its execution semantics.

Example: Blockchain-Hosted Auction

Imagine that we wish to use Ethereum to record and secure the proceedings of an auction.
Running an auction in this fashion has a number of benefits. The rules of the auction are
declared at the outset on the ledger and cannot be manipulated afterwards. For example, the
seller cannot extend the deadline in an effort to solicit higher bids, nor can bids be ignored
to exclude certain parties from participating in the auction. Because each bid corresponds
to an entry in the ledger, the full proceedings of the auction are preserved on the blockchain
and therefore open for inspection.

If we wanted to replicate the proceedings of a traditional auction, we would simply add
fields to the contract to track the highest bid seen thus far, the party behind this bid, and
the bidding deadline. A Solidity function allows any party to declare a new bid, provided
it exceeds the current winning bid. At this point, we have an auction recorded on the
blockchain in which participants must expend Ether to cover the transaction fees required
to submit bids. The winner is determined by the contract’s logic and recorded on the ledger.
As in a traditional auction, this party settles with the item’s seller afterwards, independent
of the bidding process.

We can extend this design to implement a blockchain-native auction, which handles both
bidding and compensation of the seller. Now, payment from the winning bidder to the seller
is run through the blockchain itself. In principal, this payment may be denominated in any
virtual token that is tracked on Ethereum’s ledger. For simplicity, we consider the case where
the same currency, Ether, is used to pay transaction fees and to compensate the auction’s
seller. To prevent a participant from later reneging on her bid, we force her to commit to
possible future payment by depositing the sum of her bid to be held by the auction contract
in escrow. If her bid is later surpassed, she is free to recover her deposit.

Figure 2.2 shows an excerpt of Solidity source code to implement part of the auction
contract described above. Its fields highestBid and highestBidder respectively keep track

CHAPTER 2. BACKGROUND 16

of the highest bid seen thus far and its sender. The bid function specifies the procedure
that is executed upon submission of a new bid. Line 6 demonstrates two important Solidity
features. The require keyword throws an exception if a certain condition is not satisfied,
in this case rejecting the transaction if the new bid does not exceed the highest bid seen
thus far in the auction. msg.value expresses the balance of Ether furnished by the bidder
(represented by msg.sender) and associated with the transaction. On line 8, Solidity’s
transfer keyword is used to deduct Ether from the acution’s balance and credit it to the
former highest bidder. While the transfer operation appears simple, it involves a potential
interaction with untrusted code defined by the recipient, a security concern that we will
discuss next. Finally, the code updates the contract’s internal state to reflect receipt of the
new bid.

1 contract Auction {

2 address payable public highestBidder;

3 uint256 public highestBid;

4
...

5 function bid() public payable {

6 require(msg.value > highestBid);

7 if (highestBid > 0) {

8 highestBidder.transfer(highestBid);

9 }

10 highestBid = msg.value;

11 highestBidder = msg.sender;

12 }

13
...

14 }

Figure 2.2: Part of an Auction Contract Written in Solidity

Contract Vulnerabilities

Solidity’s syntax and basic execution semantics are, by design, similar to those of traditional
imperative programming languages, but writing a correct and secure smart contract can be
challenging. Ethereum’s contract execution model introduces subtleties in Solidity’s behav-
ior, many of which have no analogues in other domains. Contract developers rely on their
prior experiences and intuitions regarding the execution of imperative code, and Solidity’s
efforts to present familiar syntax can obscure the underlying blockchain’s true execution se-
mantics. Writing a correct and secure smart contract is particularly important given that its

CHAPTER 2. BACKGROUND 17

bytecode representation is immutable once added to the ledger. A contract author cannot
patch the implementation to address bugs that are found after deployment.

We will focus this discussion on two Solidity programming pitfalls that stem from interac-
tions between contracts and serve as illustrative examples. Broader discussions of Ethereum
contract security are readily available in the literature [7, 65, 84]. As explained above, a
transaction targeting a Solidity contract corresponds to invocation of one of its functions.
While a contract author may assume a Solidity function without any explicit calls to external
contract functions executes cleanly from start to finish (i.e., is atomic), transfers of control
to external code can occur in subtle ways that are difficult to restrict and can compromise
the contract’s operation. As others have pointed out [50,84], Solidity contracts are therefore
best viewed as objects with mutable state that must be carefully safeguarded against issues
of concurrent execution and interaction with malicious code.

As an example, consider line 8 of the auction contract in Figure 2.2, which uses Solidity’s
transfer keyword to transfer Ether to the address (public key) designated by the contract’s
highestBidder field. Recall that a transfer of Ether from one address to another is carried
out as its own (in this case, internal) transaction. A message is emitted with highestBidder

as its destination, highestBid as its value, and an empty payload. This means the destina-
tion’s fallback function is executed in response. If the destination is an external user account,
it simply accepts the deposit of Ether, and control returns to the auction contract. However,
if the destination is a smart contract, the fallback function may contain custom logic. By at-
tempting to repay the newly supplanted bidder, the auction has invokved arbitrary external
code outside of its control.

A malicious callee contract can then derail execution of the parent transaction by inducing
a failure, such as throwing an exception, which reverts any changes to contract state made
thus far. In this way, the target of a transfer operation can block the sender from making
any forward progress. For example, in the auction contract of Figure 2.2, a malicious bidder
can trigger an exception on line 8, preventing any progress past this point in the code and
effectively seizing control of the auction by preventing any new bidder from replacing her as
the acknowledged highest bidder, an update that would normally occur on lines 10 and 11.

The Solidity development community has established an idiom to address this in which
funds are only returned through a specific withdrawal function [34]. A contract user invokes
this function to retrieve their funds, e.g., if they are no longer the winner of an auction.
Now, if the payee throws an exception to disrupt this transaction, they are only working
against their own self-interest as they will be unable to recover their Ether held in escrow.

However, there is a downside to using transfer to exchange Ether. It delegates only
a small amount of gas to the destination contract, preventing the recipient from doing any
useful work in its fallback function. One could easily imagine situations where a contract may
want to take some response to a deposit of Ether. In an auction, for example, a bidder may
run their participation through a smart contract that automatically submits a new bid when
its previous bid is exceeded, implementing an automated bidding strategy. Solidity offers an
alternative call primitive that transfers Ether and allows the callee to freely consume gas
(up to the blockchain’s per-transaction limit).

CHAPTER 2. BACKGROUND 18

An excerpt from an improved Solidity implementation of a blockchain-native auction is
shown in Figure 2.3. It features two changes to the previous version. First, the bid function
no longer refunds the previous winning bidder. Instead, the contract records the fact that it
owes Ether to this entity in a new contract field. A separate withdraw function is invoked
by participants in the auction to reclaim their deposits.

1 contract Auction {

2 address public highestBidder;

3 uint256 public highestBid;

4 mapping(address => uint256) pendingWithdrawals;

5
...

6 function bid() public payable {

7 require(msg.value > highestBid);

8 if (highestBid > 0) {

9 pendingWithdrawals[highestBidder] += highestBid;

10 }

11 highestBid = msg.value;

12 highestBidder = msg.sender;

13 }

14

15 function withdraw () public {

16 if (pendingWithdrawals[msg.sender] > 0) {

17 msg.sender.call.value(pendingWithdrawals[msg.sender])();

18 pendingWithdrawals[msg.sender] = 0;

19 }

20 }

21
...

22 }

Figure 2.3: Part of an Improved Auction Contract

The improved contract of Figure 2.3 is still not secure. When a Solidity contract invokes
external code, control may eventually return to that contract in a reentrant function call,
as described above. The second function’s code then executes while the contract is in an
intermediate state reflecting partial completion of the previously invoked function. In the
case of our auction implementation, a malicious contract is able to steal funds from the
auction through the following steps:

1. The attacker submits a legitimate bid to the auction contract.

CHAPTER 2. BACKGROUND 19

2. When the attacker’s bid is supplanted by a new and higher bid, the auction contract
records its debt to the attacker in the pendingWithdrawals field.

3. The attacker sends a transaction invoking the auction contract’s withdraw function. Be-
cause of the attacker’s previous bid, the conditional check on line 16 of Figure 2.3 passes.

4. The auction contract initiates a call targeting the attacker’s contract, invoking its fall-
back function.

5. The attack contract is credited with new Ether from the call. It then uses its fallback
function to invoke, and reenter, the auction contract’s withdraw function.

6. In withdraw, pendingWithdrawals does not reflect the completion of the call from step
4. The conditional on line 16 passes again, and another call to the attacker occurs.

7. The attacker repeats this process, receiving more Ether each time a call occurs, and
continuing the attack until the balance of the auction contract is exhausted.

There are two ways to prevent this attack. One is to again use transfer to send funds.
This prevents the recipient contract from executing malicious code in its fallback function,
but also means the fallback function cannot do any useful work in response to the deposit.
In a second approach, widely used among contract developers [34], the withdraw function
updates the user’s balance in the pendingWithdrawals field before initiating the call, as
shown in Figure 2.4. While this fix is straightforward to implement, it is not immediately
obvious, particularly to an inexperienced Solidity developer.

1 function withdraw () public {

2 uint256 amount = pendingWithdrawals[msg.sender];

3 if (amount > 0) {

4 pendingWithdrawals[msg.sender] = 0;

5 msg.sender.call.value(amount)(): // Can also use transfer

6 }

7 }

Figure 2.4: A Safe Token Refund Implementation

This reentrancy bug is essentially the same as the vulnerability behind the now-infamous
attack on TheDAO, a smart contract that accumulated approximately $150 million worth of
Ether. The attacker was able to seize Ether valued at the time at nearly $60 million by
exploiting reentrancy [26], although this caused the market value of Ether, and thus the
value of the attacker’s stolen tokens, to plummet. In response, a majority of the Ethereum
blockchain’s participants agreed to a controversial update to rewrite transaction history to
revert the attack [51].

CHAPTER 2. BACKGROUND 20

2.3 Software Testing and Verification

Given the mission critical nature of smart contracts and the subtleties in their execution
described above, there have been many efforts to develop tools to systematically test or
analyze smart contracts in order to lend confidence to their correctness before they are
deployed in production. These tools draw on a rich history of work in software testing and
verification. While they share common goals, the approaches described below vary widely
in the expected degree of user (contract author) intervention and in the amount and form
of information the user must furnish upfront before the relevant technique can be applied.

Explicit Testing

Handwritten unit and integration tests are a cornerstone of modern software engineering and
are strongly encouraged in the smart contract development community. A number of contract
development environments and frameworks offer tools to facilitate such testing [25, 30, 75].
Typically, these frameworks allow a developer to provision a local mock blockchain as a
test environment, deploy contracts to this test environment, run a reproducible sequence of
transactions against these contracts, and validate the results at each point in this sequence.
For example, Truffle [95] — arguably the most popular contract development platform —
allows the developer to script the deployment of a set of contracts to the local environment
and to define unit tests that exercise these contracts. Truffle test suites are written in
Solidity, JavaScript, or a combination of the two.

Explicit testing does, however, have its limitations. These are no different for smart con-
tracts than for traditional software. First, a developer must manually write each test case.
This means she must write a sizeable body of code that is often larger than the contract’s
actual implementation to thoroughly exercise the various aspects of a smart contract’s be-
havior. This is a particular challenge when the contract author wishes to test behavior when
a contract interacts with potentially malicious external contracts, as in the attack scenarios
described above. Secondly, handwritten tests cannot identify the “unknown unknowns” in
potential contract behaviors, i.e., contract failures that occur in scenarios that the developer
does not imagine and therefore does not guard against in her implementation.

Model Checking

Model checking is a software validation technique that addresses some of the issues in explicit
testing identified above, although it features weaknesses of its own. We only summarize the
approach and its relevance to smart contracts here; interested readers may wish to refer to
surveys in the literature for more information [1,11]. Model checking is fundamentally based
on search. A model checker searches all possible execution traces of a program. The user
submits properties about her program for the model checker to validate. These typically
fall into two categories: safety properties that are expected to hold at all times and for all
possible execution traces and liveness properties that are expected to be satisfied at some

CHAPTER 2. BACKGROUND 21

point in some or all possible execution traces. A model checker explores these traces, checks if
user-specified properties are satisfied at each point, and returns an error if it finds a violation,
e.g., a safety property that is not satisfied. A model checker is able to not only inform the
user of the violation, but also to provide her with a concrete counterexample: the execution
trace in which the violation occurs.

Model checkers are not particularly sophisticated in the search algorithms they use. Most
rely on a traditional breadth-first or depth-first traversal of the search space of possible
program execution traces. However, such a search space can be extremely large even for a
seemingly simple computer program. For example, if the search arrives at a point in the
program where a 32-bit integer variable is assigned a user-specified value, there are roughly
four billion possibilities to explore. Sequences of operations with multiple possible outcomes
further compound this expansion factor. This “state space explosion” problem is arguably
the main challenge in the practical application of model checking. A naive attempt at model
checking a program may take many hours to terminate or may exhaust the memory resources
of the host machine as the data structures representing the space explored thus far and the
search frontier become intractably large.

There are two main ways in which model checkers remedy this. First, they may offer
the user the ability to impose bounds on the search space that is explored. Often, these
bounds are restrictions on the domain of possible values for certain data types. For example,
integers may be allowed to assume values from -100 to 100. The tightness of these bounds
represents a tradeoff: a search of a more restricted domain will require less time and less
memory, but it may not find an important failure case that would be revealed with a wider
search. Users often follow a workflow in which they first model check their program using a
tightly bounded domain to ensure fast completion and quick identification of any problems,
and then repeat the process, widening the search space as long as no problems are found.
While bounded model checking is widely used and practical, it is important to note that it
does not carry the same weight as a formal proof of correctness. When this approach fails
to identify any violations of user-specified properties, it is not an absolute guarantee that
these properties hold. Instead, it is only an indication that they hold for all program states
explored during the model checker’s search.

Second, a model checker may try to use a coarser but more tractable representation
of the search space. Explicit state model checkers distinguish between every possible state
of a program, i.e., all possible combinations of values assigned to the variables currently
in scope. This is the most precise but least efficient representation. Alternatively, model
checkers may use predicate abstraction. A set of predicates on program state, such as an
inequality on an integer variable, are used to organize the search space. Each node in the
search graph now represents an equivalence class of program states that all satisfy the same
combination of predicates rather than an individual program state. While this reduces the
size of the search space, it introduces a number of challenges. It is not obvious how to select
predicates to use alongside the user-provided properties, and once a violation is found, it
is no longer straightforward to construct an execution trace that induces the violation as a
concrete counterexample.

CHAPTER 2. BACKGROUND 22

The main advantage of model checking over traditional testing is that it does not re-
quire the user to identify and specify the potential failure scenarios. Instead, the model
checker explores scenarios automatically, meaning it is capable of finding failure cases that
a developer would not have imagined and tested for herself. This has proven particularly
valuable when designing and validating concurrent software in which the actions of multiple
interacting processes or threads may be interleaved arbitrarily by the underlying execution
environment.

However, the use of a model checker can still be a labor-intensive process. This is because
any model checker requires a representation of the program to validate that it can reason
about mechanically and formally. Model checkers that directly accept an implementation of
the program often impose limitations or can only reason about a restricted class of properties.
For example, the Blast [48] model checker will accept a C program as long as it uses only an
approved subset of the language’s features. Seahorn [44] can reason about LLVM bytecode,
but only in terms of low-level properties such as memory safety. More flexible model checkers
such as Spin [53] and TLA+ [63] instead require a formal specification of the program’s
structure and behavior that is separate from its implementation. These specifications are
written in specialized languages that tend to focus more on mathematical precision and
convenience rather than similarity to the features of common implementation languages.
Thus, a software developer may have to learn a new language and translate their existing
implementation to this language in order to make effective use of a fully-featured model
checker.

2.4 Protocol Design and Validation

One domain in which software design and validation has been particularly well developed is
the engineering of protocols to govern interactions between multiple computational agents,
such as CPUs in a multiprocessor system or nodes in a distributed, networked system. Such
a protocol establishes the structure and rules for communication among these agents and
allows each agent to form conclusions regarding the collective state of the system based on
the communications it has exchanged thus far. Protocols also allow users and designers
to reason precisely about a system’s behavior, for example to establish safety and liveness
properties.

These protocols can be challenging to design. They must be exhaustive in the sense
that they address all potential failure cases and all possible sequences of events. A well-
designed protocol never induces a situation in which the current state of the system isn’t
covered by the protocol’s rules. As a result, there is significant motivation both to construct
clear protocol representations to make them easier to reason about and to systematically
vet protocols before they are used in production. Here, we can see many similarities to
smart contracts on a blockchain, which one can view as a type of protocol definition where
communication corresponds to invocation of contract transformations and the system’s state
is the values of the contract’s fields.

CHAPTER 2. BACKGROUND 23

State Machines

State machines have emerged as a common way to represent, specify, and analyze protocols
in distributed systems including cornerstones of modern computing such as TCP [54] and
two-phase commit. A state machine is a model of computation in which the system is in
one of a fixed number of possible states. The system undergoes a transition to move from
one state to another. All possible transitions are explicitly enumerated as part of a state
machine’s definition, each specifying a start and end state. Each transition may also include
a guard : a predicate on the machine’s current status and any information about the event
that triggered the transition. A transition is enabled when the machine is in its specified
starting state and the transition’s guard, if present, is satisfied. The status of the machine
may simply be its current state, or it may include the values of auxiliary fields that persist for
the lifetime of the machine and are modified during the execution of transitions. Machines
that include such fields are called extended finite state machines.

In the case of a protocol, transitions are triggered by the receipt of a message. The
message recipient will then execute a state transition based on the type and contents of that
message. This formulation simplifies both the representation and analysis of distributed
protocols. Rather than reading a body of code with message parsing and branching logic
to determine the appropriate response to each potential message, engineers can instead use
a state machine, possibly represented pictorially, to record and communicate a protocol’s
design. Reasoning about the behavior of the protocol becomes a matter of enumerating
possible transition sequences and tracing the state machine’s actions taken in response.
Model checking is therefore a natural technique to apply in this setting, as it provides an
automated means of enumerating these transition sequences and thus validating a protocol.

2.5 Summary

A blockchain represents a new kind of distributed system that emphasizes open access and
participation as well as collective governance and operation rather than control by a central
institution or set of known entities. Smart contracts are the standard abstraction through
which users leverage a blockchain’s capabilities to support some larger application. They
allow a developer to define a collection of data and a set of transformations on this data. Both
this initial definition and any transformations are recorded and secured by the blockchain
and its network of participants.

The features that characterize blockchains — openness, decentralization, immutability,
and rigid adherence to protocol (in terms of both consensus and contract execution) — lend
smart contracts both strengths and weaknesses. Anyone is free to interact with a contract,
no one may exert unilateral control over the contract’s operation, contract history cannot
be repudiated, and a contract cannot be manipulated outside of the means offered by its
definition. Conversely, anyone may inspect a contract for flaws in its logic, no one (including
contract authors) may play a supervisory role and step in if a contract’s proceedings go

CHAPTER 2. BACKGROUND 24

awry, a contract definition cannot be fixed after deployment, and even flawed contract code
is respected as the last word in a contract’s operation. Additionally, we have seen how
subtleties in contract execution semantics can lead to unanticipated behavior.

2.6 Revisiting the Thesis Question

With this background in place, we refine our formulation of the thesis question originally
posed in Chapter 1. Our approach leverages state machines as the organizing abstraction for
programming smart contracts. Additionally, we are interested in identifying contract flaws
that may stem not only from incorrect logic but also from subtleties in blockchain-based
execution such as the exception handling and reentrancy cases described above. Finally, as
Ethereum-based blockchains feature an innate notion of execution cost, quantified as gas,
we are also interested in the gas overhead incurred by writing and reasoning about contracts
as state machines rather than in terms of native code. A more precise formulation of the
thesis question is: Can a programming model based on state machines enable the expression
of practical smart contracts, surface flaws related to both contract logic and subtleties in
execution on the blockchain, and support the generation of working implementations that
feature minimal overhead in terms of execution gas costs?

The remainder of the thesis presents our approach and progress in addressing this ques-
tion. This begins in the next chapter, where we present a collection of case study applica-
tions, which play two important roles in this work. First, they represent a survey of contract
design patterns and the features that contract developers commonly seek to implement,
which informs the design of our contract description language. Second, they also serve as
a set of benchmarks against which we can evaluate our solution in terms of expressiveness,
conciseness, and overhead.

25

Chapter 3

Case Studies

The task of implementing a language-focused workflow for contract engineering immediately
raises two questions. First, what features and primitives should be emphasized in the design
of a contract description language? Second, under which conditions and situations do we
evaluate this workflow? Answering the first question requires identifying a set of recurring
design patterns and challenges in the smart contract domain. We approach this task by
gleaning a set of recurring design patterns and themes from a set of well-chosen case study
contracts. Then, we can reuse these case studies as evaluation benchmarks.

In this chapter, we discuss our methodology for choosing these case study smart contracts.
We then present the set of case studies we have assembled. For each, we summarize the
problem and some of the challenges in creating a smart contract to address it. Next, we
extract and present a set of themes that frequently appear in smart contract design and
show the themes raised by each case study contract. These themes then inform the design
of the Quartz contract description language.

The evaluations presented in subsequent chapters are all grounded in this body of case
study contracts. Chapter 4 offers statistics on the relative sizes of the different representa-
tions (Quartz code, Solidity code, and TLA+ specification) of each case study. Chapter 6
discusses experiences in validating contracts for two sample applications. Finally, the case
studies presented in this chapter are used as a benchmark suite for the measurement of ex-
ecution overhead of Quartz -generated contracts against handwritten Solidity equivalents in
Chapter 7.

3.1 Selecting Case Studies

The main goal in selecting a body of case study contracts is that it serves as a properly repre-
sentative sample. The selected contracts must span a sufficiently diverse array of application
domains, and each application should be something that the smart contract community is
likely to care about, ideally stemming from a proven deployment. We have therefore drawn
all case studies from external sources, rather than positing our own. These sources are:

CHAPTER 3. CASE STUDIES 26

• Contract programming documentation and tutorials : These present example contracts
to showcase the most fundamental or interesting features of various contract program-
ming languages, or they highlight pitfalls where these languages have subtleties.

• Related papers on contract verification: Like Quartz , other smart contract research ef-
forts justify and evaluate their work through benchmarks. We measure Quartz against
some of the same benchmarks to serve as a basis for comparison.

• Contracts involved in high-profile security breaches : There have been occasions where
even experienced contract developers failed to identify security holes. We need to
demonstrate that Quartz can flag these kinds of vulnerabilities through its validation
process.

• Contract standardization efforts : Ethereum, in particular, has been working to stan-
dardize contracts for certain applications its community has deemed important, such
as virtual tokens and financial instruments, through its ERC process. We have selected
a subset of these standards to include as case studies.

Case Study List

Table 3.1 lists the case studies we chose for further study, with a brief description and, when
available, references to the original source for each. We also offer a brief summary of each
case study contract below. Later, in table 3.2, we list the key design patterns encountered
in each use case as evidence that this sample of case studies is sufficiently broad.

Auction Auctions, more precisely English auctions with open participation, serve as a
very common example use case in tutorials and introductions to smart contract programming
[38, 60]. A blockchain-adjudicated auction runs differently than a traditional auction. Each
participant who submits a bid to the auction’s backing smart contract must provide an
immediate deposit covering their bid denominated in a virtual currency. This currency may
or may not be the same currency used to pay transaction fees (in Ethereum, gas costs). For
our purposes and without loss of generality, we consider the case where the same virtual
currency (Ether) plays both roles. If this participant is later supplanted as the winner, she
must be able to recover her deposit, either receiving a refund from the contract or proactively
initiating a recovery transaction against the smart contract.

Auction contracts often include a deadline that is declared at the outset and enforced by
its code, leaving it immune to manipulation by the auction’s selling party or any participants.
Bids are only accepted before this deadline, and the auction’s winner is determined by the
contract once the deadline has passed. At this point, the seller is free to claim the auction’s
proceeds.

CHAPTER 3. CASE STUDIES 27

Name Description
Auction [38] Simple auction with open participation and open bids

Crowdfunding [79, 87] Crowdfunding campaign with deadline and token refund logic
Logistics Shipment tracking contract

SimpleMultiSig Two-participant multi-signature wallet
StaticMultiSig [77, 78] Multi-signature wallet with fixed set of signers
DynamicMultiSig [77, 78] Multi-signature wallet with dynamic set of signers

ERC-20 [77, 97] Ethereum standard token implementation
ERC-721 [31, 76,77] Ethereum standard non-fungible token implementation

ERC-1202-Simple [99] Ethereum standard voting implementation
ERC-1202-Weighted [99] Voting implementation with voter-specific weights

ERC-1540 [47, 57] Ethereum standard asset management implementation
ERC-1630 [16, 49] Ethereum standard time-based fund distribution implemen-

tation
ERC-1850 [15] Ethereum standard token loan implementation
ERC-780 [94] Ethereum standard metadata registry

RockPaperScissors [27] Simple rock-paper-scissors game implementation
DAO [88] Decentralized autonomous organization

Table 3.1: Contract Case Studies

Crowdfunding Crowdfunding campaigns have served as another popular example con-
tract application, particularly as a benchmark in related academic work on alternative con-
tract programming languages [87] and verification tools [79]. A crowdfunding contract is
initialized by the campaign’s beneficiary, who wishes to solicit funding from the general
public (or at least the users of a particular blockchain) for the development of some spe-
cific product or service that they will later release. The beneficiary sets a target amount
for total funding and a deadline that marks the end of the campaign. If the target is met
by the deadline, enforced by the contract, then the beneficiary may claim the campaign’s
proceeds. Otherwise, all donors are free to reclaim their staked funds from the contract and
the beneficiary receives nothing.

Logistics This represents a scenario in which two companies wish to jointly store and
manage business records on a blockchain. The blockchain then serves as the authoritative
source for these records, rather than a database system maintained by, and therefore subject
to manipulation by, either company individually. In this work, we consider a specific case in
which a smart contract represents a high-value asset sold by one company to the other. The
contract tracks the item’s shipment, delivery, and quality certification dates and adjudicates
any warranty claims made by the buyer related to the item. This was motivated by our
discussions with supply chain professionals at Intel, who engages in precisely these kinds of

CHAPTER 3. CASE STUDIES 28

business arrangements with suppliers of the equipment for its fabrication facilities.

SimpleMultiSig In the standard wallet concept for virtual currency, a single user controls
a balance of funds and controls any payments made to external parties against this balance.
Multi-signature wallets, in which multiple users jointly control a balance of funds, have been
a popular smart contract application, with several standard implementations available [77].
One of these standard, and widely used, implementations was the victim of a severe security
vulnerability [78].

The simplest multi-signature wallet involves two users, or “signers,” – the contract’s
creator and an additional party declared when the contract is first initialized — who both
must approve of any payment of funds. The contract may freely receive a deposit of virtual
currency, but neither of its signers can unilaterally complete a payment. These signers
trust the contract’s implementation to hold each other accountable for this mutual approval
process.

StaticMultiSig This represents a more advanced version of the previous multi-signature
wallet. This contract allows an arbitrary collection of blockchain users to be designated as
signers. However, signers may only be added to the contract in a designated initialization
phase in which no payments may be issued. Once all signers agree, the contract begins
normal operation, at which point no new signers may be added.

DynamicMultiSig This represents a more advanced version of the static multi-signature
wallet in which new signers may be freely added at any time, rather than during a specific
initialization phase. Payments must still be approved by all signers. If a new signer is added
to the wallet while a payment is pending, i.e. it has approval from a subset of the signers,
then the new signer must also approve of the payment before it can proceed.

ERC-20 This is arguably the most popular contract standard on Ethereum. It defines a
relatively simple contract that represents and administers a virtual currency independent of
Ether, i.e. it cannot be used to cover transaction fees on an Ethereum-based blockchain. The
contract is initialized with a finite supply of tokens. Users may run transactions against the
contract to transfer a sum of tokens they own to a designated recipient. There are countless
ERC-20 instances running on Ethereum-backed blockchains today.

ERC-721 ERC-721 represents an exchange platform for non-fungible virtual tokens, i.e.
virtual assets that are not freely interchangeable but instead represent unique items. The
value of an ERC-721 token instance does not have a market-defined value, instead it has
different values for different principals, much like collectibles in the physical world. ERC-
721 contracts permit users to register ownership of new non-fungible assets and to exchange
those assets for a sum of virtual currency (e.g, an ERC-20 token or Ether). There are in fact
online marketplaces that are backed by an ERC-721 contract, such as opensea.io [76].

CHAPTER 3. CASE STUDIES 29

ERC-1202-Simple ERC-1202 defines a standard voting contract. A fixed set of options
are declared when the contract is initialized, and any user may submit a vote for any of these
options. Much like an auction, a voting contract has a deadline that is set at initialization.
All votes must be submitted before this deadline, after which the contract is programmed to
reject any new votes. In the simplest version of ERC-1202, each user counts equally, namely
for one vote. The option with the highest number of votes is declared the winner after the
deadline has expired.

ERC-1202-Weighted This is an advanced version of the previous ERC-1202 contract in
which each user has a weight ascribed to her. When she votes for an option, her weight is
credited to that option. The option with the highest total assigned weight at the time of the
deadline is declared the winner. Weights could be determined by a variety of factors. Here,
the contract also implements a simple token (making its functionality a rough superset of
that of an ERC-20 contract) that may be freely exchanged. A user’s weight in the voting
process is equal to her holdings of the contract’s integrated token. This allows for a rich set
of capabilities such as delegating some or all of one’s influence to another user, or of ascribing
influence proportional to one’s role in an organization.

ERC-1540 ERC-1540 is a contract that tracks ownership of an asset. The asset’s owner
creates the contract and initially has full control. She may transfer or sell the asset to a new
owner by running a transaction against the contract. Or, she may issue a fixed number of
shares in the asset. The contract then tracks ownership of all shares and facilitates their
exchange. The asset cannot be sold or transferred when its shares are in circulation. If some
individual acquires all outstanding shares, she may declare herself as the new owner and then
is free to transfer or sell the asset or to issue a fresh batch of shares. This is all enforced by
the contract’s code, which tracks the outstanding shares owned by each user, supervises the
exchange of these shares, and only allows a user to declare herself owner if she truly owns
all shares.

ERC-1630 ERC-1630 standardizes what is known as a hashed time-lock contract. The
contract’s creator, say Alice, initializes the contract with a sum of virtual currency to hold in
escrow and that is designated for some specific recipient, Bob. She also provides the output h
of some standard hash function H and a deadline t. If Bob submits a value s to the contract
such that H(s) = h, i.e., the preimage to Alice’s original value, then he is compensated with
the contract’s deposit. Otherwise, if t arrives before Bob has made a successful claim, Alice
is free to withdraw her original deposit. This contract enables what are known as atomic
cross-chain swaps, in which multiple parties participate in a protocol involving contracts
hosted on multiple blockchains to exchange assets similarly hosted on multiple blockchains.
They have therefore been a subject of interest both in industry and academia [49].

CHAPTER 3. CASE STUDIES 30

ERC-1850 This standard builds on ERC-1630 to implement a loan, with an asset main-
tained on an external blockchain used as the borrower’s collateral. This arrangement is called
a cross-chain atomic loan. An ERC-1850 contract goes through a specific lifecycle. First, the
lender deposits the sum of the loan in escrow with the contract and specifies a hash value
h and deadline t. The borrower (out of band) puts their collateral in escrow on a separate
blockchain. Once the lender sees evidence of this, she provides a secret s to the borrower
(also out of band), such that H(s) = h. This allows the borrower to present evidence of
the lender’s approval to the contract, which then releases the loan to the borrower. If the
borrower does not repay the loan to the contract by time t, the contract includes logic for
the lender to run an auction against the borrower’s collateral. Thus, ERC-1850 includes
elements of ERC-1630 and of the auction use case described above.

ERC-780 This is one of the simplest contract standards. An ERC-780 contract simply
acts as a registry for “claims“ — arbitrary pieces of information about a subject submitted
by some issuer. For example, the issuer could assert that the subject has a certain privilege
or that they meet some qualification. One example might be a government attesting that
a certain person is a citizen, or a company attesting that a customer is entitled to some
discount or reward. By hosting these claims on a blockchain, the idea is that they are
authoritative, tamper-resistant, and open for inspection by anyone. The standard itself is
very simple, requiring little more than an index on the issuing identity and subject identity
that maps to a collection of claims involving the two parties. It is, however, very similar to
more advanced use cases such as using a blockchain-backed repository of security permissions
as the backend for an authorization platform [3].

RockPaperScissors Games and puzzles have been popular use cases for smart contracts.
The goal in all of these instances is to execute the game’s logic, and thus enforce the game’s
rules, through a smart contract rather than a trusted mediating party. We chose rock paper
scissors as a prototypical example of this class of smart contracts because it is simple yet
still brings up relevant concerns and because its implementation as a contract was previously
discussed in the literature [27]. Games have to deal with participants each acting in their
own self interest, yet with a very clear incentive model - to reap the benefits of winning
the game while avoiding the penalties of losing, even if that means achieving this result
by circumventing the contract’s intended protocol rather than winning the game outright.
Therefore, a game contract’s code must be engineered to account for this and to ensure that
it is never possible, or at least not rational, for a participant to deviate from the expected
sequence of steps.

One of the main issues in a rock paper scissors implementation is that each player must
submit their choice of move, and be held committed to that move, without revealing it.
Otherwise, the first player to submit their move to the contract would inevitably lose, as
this would be visible to all participants on the blockchain, including the game’s other player,
who would simply submit the winning countermove. Instead, each player submits a hash of

CHAPTER 3. CASE STUDIES 31

their move and a privately chosen nonce. Once both moves are submitted, players reveal their
move and nonce, which are validated against the previously recorded hash. The contract
may include a timeout mechanism so that, if one of the players refuses to reveal her move
before a deadline, the other player is automatically recorded as the winner.

DAO A decentralized autonomous organization (DAO) contract is roughly a combination
of ERC-20 and ERC-1202. It implements a virtual token by tracking ownership and facilitat-
ing exchanges, per usual. A user invests in a DAO by purchasing some of these tokens. The
DAO then executes voting procedures in which its investors decide how to use the DAO’s
holdings. For example, a user may propose that the DAO transfer a portion of its assets to
a crowdfunding campaign contract. Thus, the DAO’s tokens both reflect a stake of its total
assets and give the bearer voting privileges. Typically, a DAO contract weighs each user’s
vote by the amount of tokens she possesses. DAO contracts have been an extremely popu-
lar subject of study, particularly for smart contract development and verification, because
a DAO implementation was a victim of arguably the most severe security vulnerability in
Ethereum’s history.

3.2 Common Themes

While each of these case studies represents a different application scenario and features a
unique set of requirements for design and functionality, there are a number of common themes
that pervade multiple case studies. We identify and codify these themes here in order to
inform the design of the programming interface we offer to contract authors using Quartz .
Each theme represents a recurring design element or concern that is central to the successful
operation of one or more of the contracts belonging to our body of case studies.

Event Ordering Many smart contracts are used as a means of creating and maintaining a
secure log of real-world events. The contract acts as the authoritative source for information
about the timing and relative ordering of these events. Alternatively, a contract may contain
logic to ensure that operations against it are performed in a specific order.

Action Authorization Contracts very often need to restrict who may invoke a certain
operation. There are actually a variety of circumstances in which this is required. A contract
may have a notion of an owner or administrator who is allowed to take actions that other
users cannot, or perhaps a group of such users. A contract may require that multiple parties
independently approve an operation before it executes.

Token or Asset Ownership Contracts of this type act as evidence that a specific entity
owns or has some stake in a physical or, more typically, digital asset. The contract must be
structured carefully so that no malicious user is able to falsely claim they are the owner.

CHAPTER 3. CASE STUDIES 32

Time-Based Logic A contract may need to enforce restrictions not only on who can
invoke a particular operation, but on when it can be invoked. Such a restriction can assume
a variety of forms, such as enforcing a voting or bidding deadline, preventing a user from
invoking operations too frequently, or enforcing a timeout mechanism to prevent a user from
impeding forward progress.

Token or Asset Exchange Some contracts track the current owner of an asset and allow
it to be transferred or sold for cryptocurrency. A common variant of this pattern is to issue
shares in an asset, which may entitle their owners to some kind of dividend payment or to
vote on decisions about the asset. In this case, the contract must track possession of these
shares and allow shareholders to transfer or sell their holdings.

Joint Decision Making Contracts may be used to record and execute some process for
reaching collective agreement among a group of users. This could be a simple requirement
of unanimous consent (similar to one form of authorization described above) or it could be
a more complex voting scheme.

Contingency Triggers Some contracts, like an auction, go through a linear sequence of
steps in their execution. Others encounter branches, or contingencies, that lead to different
outcomes. Examples include a crowdfunding contract, where the funding goal may or may
not be met, or a voting contract where a motion may or may not pass.

Static Participant Set Some contracts place restrictions on the set of users who may
interact with it. Any users outside of the set, who have access to the blockchain hosting
the contract, may still submit a transaction against the contract, but the contract contains
logic to ignore such requests. We say that this set of users is static when it is determined at
initialization time or before any other operations may occur against the contract.

Dynamic Participant Set A contract’s user set is dynamic if it may freely change over
the lifetime of the contract, but remains explicitly enumerated. That is, the contract is still
not open to any user with access to the blockchain network, although such these entities
may still be able to join the collection of privileged users after the contract is initialized.

Explicit Incentives While all smart contracts must account for the fact that they are open
to interaction with self-interested participants, some applications confront this more directly
than others. ERC-1630 and ERC-1850, for example, include mechanisms that penalize users
for failing to take timely action when they are expected to participate in the contract’s
protocol and prevent a single user’s inaction (calculated or otherwise) from blocking forward
progress. Game contracts, such as our rock paper scissors case study, offer a second example,
where a contract must offer a mechanism for the game’s players to commit to a move without
immediately revealing the move.

CHAPTER 3. CASE STUDIES 33

E
v
e
n
t

O
rd

e
ri

n
g

A
ct

io
n

A
u
th

o
ri

za
ti

o
n

T
o
k
e
n

o
r

A
ss

e
t

O
w

n
e
rs

h
ip

T
im

e
-B

a
se

d
L

o
g
ic

T
o
k
e
n

o
r

A
ss

e
t

E
x
ch

a
n
g
e

G
ro

u
p

D
e
ci

si
o
n

M
a
k
in

g

M
u
lt

ip
le

C
o
n
ti

n
g
e
n
ci

e
s

S
ta

ti
c

P
a
rt

ic
ip

a
n
t

S
e
t

D
y
n
a
m

ic
P

a
rt

ic
ip

a
n
t

S
e
t

E
x
p
li
ci

t
In

ce
n
ti

v
e
s

Auction X X X
Crowdfunding X X X X X
Logistics X X X X X

SimpleMultiSig X X X X
StaticMultiSig X X X X
DynamicMultiSig X X X X X

ERC-20 X X
ERC-721 X X

ERC-1202-Simple X X X X X
ERC-1202-Weighted X X X X X

ERC-1540 X X X X X
ERC-1630 X X X X X X X
ERC-1850 X X X X X X X
ERC-780 X

RockPaperScissors X X X X X X
DAO X X X X X X X

Table 3.2: Themes in Smart Contract Design Exhibited by Each Case Study

3.3 Insights on Language Design

The case studies and the contract design themes identified above bring forward a number
of concerns to address in the design of a simplified contract programming language. In
particular, they should inform such a language’s main abstractions, primitives, and type
system. Below, we discuss the most significant of these concerns and how they can be
addressed through language design.

Contract Lifecycles Nearly all of the contracts above go through a sequence of phases in
their operation. Different operations against the contract are permitted in different phases.

CHAPTER 3. CASE STUDIES 34

For example, an auction contract goes through a phase in which it is open to new bids and
a settlement phase in which the seller redeems her proceeds. A contract facilitating the sale
and service of a physical asset, as in our Logistics use case, may go through a sequence of
phases reflecting the item’s status as ordered, shipped, delivered, certified, or under service.
In each phase, users may only manipulate the contract’s state in specific ways, such as
indicating that shipped item has been delivered. A contract language must offer contract
authors a means of clearly enumerating these phases, the operations that are allowed in each
phase, and under what conditions the contract moves from one phase to another.

Finite Virtual Resources Many contracts are used to track ownership, exchange, and
consumption of finite virtual resources. These might be fungible tokens, shares in an asset,
or the privilege of voting in an election. The underlying logic for such contracts tends to
make use of a specific set of language features including unsigned arithmetic, struct data
types to represent resource instances or to represent offers to buy or sell such instances, and
often the ability to send and receive the blockchain’s native currency (in this work, Ether).

Cryptographic Hashing Several of the contracts studied above, such as ERC-1630 and
rock paper scissors, require cryptographic hashing functions. These are used to implement
primitives like a basic commitment scheme or to allow a user to present knowledge of some
secret as a credential to complete an operation such as withdrawing virtual currency. Note,
however, that hashing has also been abused by contract developers in the past, particularly
as a source pseudo-randomness that is ultimately vulnerable to manipulation by blockchain
miners [8]. Therefore, we must attempt to develop a contract language that directly incor-
porates cryptographic hashing as a primitive but discourages inappropriate application of
this primitive.

Time-Based Logic Contracts need to track and record timestamps and time durations
for multiple purposes. First, the contract phases and operations described above are often
subject to time-based constraints. A contract may only be permitted to stay in a particular
phase for a specified time period, such as the bidding period of an auction. Also, a contract
may need to record the time at which certain events occur in order to serve its role as an
authoritative, tamper-resistant source of information. For example, a contract may track
shipment and delivery dates to resolve potential future disputes in a purchase agreement.
Therefore, a contract language should feature timestamps and durations as first-class data
types with associated operations for time comparisons and arithmetic.

Authorization Operations against contracts are frequently only permitted by authorized
users. It is up to the contract’s code to properly enforce these permissions. Additionally,
authorization constraints can come in a variety of forms. The simplest is when an operation
may only be performed by a single, specific party such as the owner of an asset or the seller
in an auction. However, as noted above, contracts often enforce the notion of user groups,

CHAPTER 3. CASE STUDIES 35

e.g., where any individual in a privileged set of users may complete an operation. Or, a
contract operation may require agreement among multiple users, as in a multi-signature
wallet. Here, the contract must track all prior approvals of the operation in question, which
remains pending until it has received approval from a sufficient set of users. Thus, a contract
language should allow programmers to express a wide range of authorization constraints
involving checks against the invoking party’s identity or membership in a group and should
not require the programmer to handle the underlying bookkeeping involved in deferring
operations that require approval from multiple parties.

3.4 Summary

This chapter has presented our methodology for selecting a set of representative and complete
sample of case study contract applications, detailed each element of this sample, and identi-
fied a set of fundamental contract design patterns and concerns. This serves two important
roles, introduced at the beginning of this chapter, that are both borne out in subsequent
chapters. First, there is the issue of designing the contract description language at the heart
of our approach, which we will introduce in Chapter 4 and precisely formalize in Chapter 5.
Design patterns like authorization, time-based logic, and the definition of contract lifecycles
to enforce an ordering of events or address multiple contingencies all figure prominently into
language design.

These case studies also form foundation of our evaluation methodology — each one serves
as a benchmark and, collectively, they cover a range of contract use cases that are of concern
to blockchain developers and users. In Chapter 4, we argue for the expressiveness of Quartz ,
our contract description language, by demonstrating that it can be used to implement ev-
ery case study in our sample. In the same chapter, we argue for Quartz ’s conciseness by
comparing the length of each case study’s Quartz implementation to an equivalent Solidity
implementation and to an equivalent specification written in TLA+. In Chapter 6 we show
the ability to identify flaws in our approach by examining particular case study contracts
and vulnerabilities surface by Quartz in detail. Finally, the last element of our evaluation
comes in Chapter 7, where we measure gas costs of Quartz -generated Solidity against those
of handwritten Solidity for every case study.

36

Chapter 4

System and Language Overview

Thus far, we have motivated a more precise and methodical approach to the design and test-
ing of smart contracts, proposed such an approach with a domain-specific language as the
focal point, and discussed the selection and use of case study applications to inform and to
evaluate this approach. In this chapter, we present Quartz , a prototype system that instan-
tiates our proposed approach, establishes its feasibility, and serves as the subject of several
evaluations. We describe Quartz ’s language design and system architecture, discuss two ex-
ample contracts in terms of both their state machine representations and their descriptions
as Quartz code. We then present the first of our system evaluations, which examines the rel-
ative sizes of alternative contract representations in an effort to judge Quartz ’s conciseness.
Finally, we offer a summary of prior systems that leverage state machines as the primary
programming abstraction and efforts in designing smart contract programming languages.

4.1 System Architecture

Quartz ’s software architecture is shown in Figure 4.1. It features three primary components,
each with additional internal elements. The first component is a shared front end that
implements the steps common to both translation paths. Depending on which translation
the user has requested, either to TLA+ or to Solidity, one of the two target-specific backends
is then invoked and provided with the output of the common front end. More specifically, the
front end involves lexing and parsing a state machine description written in the Quartz DSL,
type checking, and validating state machine structure. This produces an abstract syntax tree
annotated with type information, which serves as an intermediate form and is offered to the
appropriate back end. We present Quartz syntax later on in this chapter and formalize the
DSL’s semantics and typing in Chapter 5.

Quartz ’s TLA+ back end enables contract validation through model checking. It con-
sumes the annotated AST produced by the front end and produces a formal specification
of the user’s original contract, written in TLA+, and an independent configuration file for
model checking which allows the user to specify bounds on the search space. This involves

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 37

Shared Front End
Quartz Source Code

Lexer & Parser

Abstract Syntax Tree

Type Checker

Abstract Syntax Tree

State Machine Validator
• Shadowing Detection
• Reachability Analysis

TLA+ Back End
Abstract Syntax Tree

Aux. Variable Inference
• Authorization Tracking
• Field/Parameter History

AST, Field List

Initial Code Generator
• Field Declarations
• State Transition Logic

PlusCal Implementation

Specification Generator
• Blockchain Execution Flow
• External contract interaction

TLA+ Specification,
Model Checking Config.

Solidity Back End
Abstract Syntax Tree

Token Flow Analysis
• Infer use of payable keyword

Auth. Variable Inference

Annotated AST

AST, Field List

Code Generator
• Field Declarations
• State Transition Logic
• Authorization checks

Solidity Implementation

Figure 4.1: Quartz Architecture

generating PlusCal code implementing the logic of each state transition and then building
a specification that encompasses this logic and captures the blockchain’s execution model.
This backend also infers any auxiliary state that needs to be tracked during model checking
yet is not explicitly declared in the original contract description, such as authorization in-
formation or historical values of contract fields. The TLA+ generation process is described
in more detail in Chapter 6.

Finally, the Solidity back end allows an author to deploy an implementation of her con-
tract to an active Ethereum-based ledger. It shares some similarities with the TLA+ back
end, such as inferring additional authorization state to track and, obviously, recreating state
transition logic in the target language. Solidity requires that any external contract address
that is the recipient of a token send must be explicitly annotated as a safety precaution. The
Solidity backend traverses the abstract syntax tree to identify token flows in the contract’s

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 38

state transitions and thus infers all locations in the generated code where such an annotation
is required. Quartz ’s Solidity tranlation is described in detail in Chapter 7.

System Implementation

We implemented the Quartz core in roughly 2800 lines of Scala code. We used Scala’s parser-
combinator library1 to generate a combined lexer and parser for Quartz contract descriptions.
Type checking and translation operate directly on the abstract syntax trees generated by
the parser. The case studies detailed in Chapter 3 were handwritten in Solidity as a baseline
for the evaluation described in Section 7.5, totalling about 1000 lines. We built reproducible
workloads to exercise these contracts using Python and its Web3 library,2 which consisted
of about 1700 lines in total.

4.2 Contracts as State Machines

Language Structures

A contract definition in Quartz consists of an extended finite-state machine and an optional
set of properties to verify about the machine’s behavior. This structure allows developers to
cleanly express a contract’s different operations, constraints on their use, and the different
phases of contract operation. A state machine consists of three pieces. The first is an optional
sequence of definitions of any Struct types to be used within the contract. The second piece
is a set of fields, each given a unique name and annotated with a type. Quartz supports
simple types such as Int and Uint, parameterized types such as Maps and Sequences, and
Struct types. Quartz also includes types specifically useful for contract development such as
Identity (a unique identifier for a ledger participant) and a Timespan type. A HashValue

type is parameterized by a sequence of types indicating the structure of its preimage. It
only supports equality checks with instances of the same type. This encourages the use
of hashing for purposes like commitment schemes and capability-based access control while
discouraging the use of hashing as a pseudo-random number generator, a practice that has
introduced vulnerabilities in past contracts [8].

The last component of a state machine is a set of state transitions. Each transition
consists of the following elements:

• A unique name, used to invoke the transition

• A source state and destination state

• A set of parameters, each given a name and type

• A guard, written as a predicate over the machine’s fields and the transition’s parameters

1https://github.com/scala/scala-parser-combinators
2https://web3py.readthedocs.io

https://github.com/scala/scala-parser-combinators
https://web3py.readthedocs.io

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 39

• An authorization predicate restricts which parties may trigger a transition

• A body, written as a sequence of statements executed for their side effects

Quartz state machines are event triggered, and a transition is only eligible for execution
if its guard is satisfied. The statements within a transition body are kept simple to facilitate
model checking, with no branching constructs. They may either modify a field or transfer
tokens to an external contract. An authorization predicate determines who may initiate
execution of the associated transition, a particularly important concern for smart contract
applications. Quartz ’s authorization clauses allow contract authors to express rich semantics
that are cumbersome to express using guards alone. They are built from three terms of the
form i, satisfied when Identity i approves the transition, and the forms any(I) and all(I),
where I is of type Sequence[Identity]. These are satisfied when one or all members of
the referenced group approve, respectively. These terms may be arbitrarily combined with
Boolean && and || operators.

The second, optional element of a contract description is a set of invariants regarding
the state machine’s possible execution traces. These are written as predicates over the
state machine’s fields, with some additional primitives. Predicates may refer to transition
parameter values or to an aggregate sum over a Sequence or Mapping type. Additionally,
a predicate can use min or max to refer to the minimum or maximum value that a variable
assumes over the lifetime of the state machine. For example, given a state machine containing
transition t with parameter p, max(t.p) refers to the maximum value of p ever used in an
execution of t. This allows Quartz to check rudimentary temporal properties [73,86].

Language Syntax

Figure 4.2 provides a formal definition of the syntax for Quartz ’s domain-specific language.
Quartz supports the standard arithmetic and Boolean operators, comparisons, and both in

and not in operators to check for membership in an object of Sequence type. Literals of
type Bool, Int, Uint, and Timespan are written as expected, with the possible exception of
a Timespan instance, written as an integer followed by a unit such as minutes or hours.

Quartz transitions begin with a header of the form source -> (Parameters) destina-
tion. This is followed by an optional requires block to express a guard and an optional
authorized block to express an authorization predicate. Finally, the body of the transition
is enclosed within braces and consists of a sequence of simple statements, like assignment to
a field.

The Quartz language contains several contract-specific features. Many distributed ledgers,
most notably Ethereum, have first-class support for virtual currency that may be bound to
contracts and exchanged among them. State machines in Quartz use keywords to check their
balance or disburse tokens to an external contract. If we wish to produce contracts for a
ledger without first-class tokens, we can emulate this functionality by adding an extra field
and the necessary operations to the generated implementations. Transition authorization is

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 40

treated as a first-class primitive in Quartz , unlike in Solidity and other contract languages.
Quartz allows contract authors to express rich authorization constraints such as restricting
an operation to any member of a particular group or requiring approval from all members
of a group before it is executed. Finally, Quartz restricts communication between state ma-
chines. A state machine may send tokens to another state machine, but it cannot invoke
another machine’s transitions directly. This simplifies the expression and verification of con-
tract logic. Note that Quartz makes no assumptions about the behavior of the recipient,
which may or may not be another Quartz state machine, for model checking.

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 41

〈specification〉 ::= contract name ‘{’ 〈structDecl〉* 〈fields〉 〈transition〉* ‘}’ 〈property-spec〉

〈fields〉 ::= data ‘{’ 〈field〉* ‘}’

〈field〉 ::= name ‘:’ 〈type〉

〈structDecl〉 ::= struct structName ‘{’ 〈field〉* ‘}’

〈transition〉 ::= name ‘:’ 〈sourceSt〉 ‘->’ 〈params〉 dest 〈authPred〉 〈guard〉 〈transBody〉

〈sourceSt〉 ::= ε | source

〈params〉 ::= ε | ‘(’ 〈param-list〉 ‘)’

〈paramList〉 ::= 〈param〉 ‘,’ 〈paramList〉 | 〈param〉

〈param〉 ::= name ‘:’ 〈type〉

〈guard〉 ::= ε | requires ‘[’ 〈expr〉 ‘]’

〈authPred〉 ::= ε | authorized ‘[’ 〈authExpr〉 ‘]’

〈transBody〉 ::= ‘{’ 〈stmt〉* ‘}’

〈type〉 ::= Int Uint | Timestamp | Timespan | Bool
| Map ‘[’ 〈type〉 ‘]’
| Sequence ‘[’ 〈type〉 ‘]’
| HashValue ‘[’ 〈typeList〉 ‘]’

〈typeList〉 ::= 〈type〉 ‘,’ 〈typeList〉 | 〈type〉

〈lValue〉 ::= x | 〈mapRef 〉 | 〈structRef 〉

Figure 4.2: EBNF Definition of Quartz ’s DSL (Continued Below)

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 42

〈mapRef 〉 ::= 〈lValue〉 ‘[’ 〈expr〉 ‘]’

〈structRef 〉 ::= 〈lValue〉 ‘.’ 〈expr〉

〈expr〉 ::= balance | sender | now | b | i | u | t | 〈lValue〉
| min ‘(’ 〈expr〉 ‘)’ | max ‘(’ 〈expr〉 ‘)’
| size ‘(’ 〈expr〉 ‘)’ | hash ‘(’ 〈expr〉 ‘)’
| 〈expr〉 〈binOp〉 〈expr〉

〈authExpr〉 ::= x | ‘any’ x | ‘all’ x
| 〈authExpr〉 ‘||’ 〈authExpr〉
| 〈authExpr〉 ‘&&’ 〈authExpr〉

〈stmt〉 ::= 〈lValue〉 ‘=’ 〈expr〉
| send 〈expr〉 ‘to’ 〈expr〉
| sendAndConsume 〈expr〉 ‘to’ 〈expr〉
| append 〈expr〉 ‘to’ 〈expr〉
| clear 〈expr〉
| if ‘(’ 〈expr〉 ‘)’ ‘{’ 〈stmt〉* ‘}’
| if ‘(’ 〈expr〉 ‘)’ ‘{’ 〈stmt〉* ‘}’ else ‘{’ 〈stmt〉* ‘}’

〈propertySpec〉 ::= properties ‘{’ 〈expr〉* ‘}’

b ∈ bool i ∈ Int u ∈ Uint
s ∈ String t ∈ Timespan
x, name, structName, source, dest ∈ 〈identifier〉

Figure 4.2: EBNF Definition of Quartz ’s DSL

4.3 Example Contracts

We will consider two contract use cases here and in future chapters. They serve to motivate
the features of Quartz ’s domain-specific language, demonstrate how these features are used,
and illustrate generation of contract specifications in TLA+, generation of contract imple-
mentations in Solidity, and the contract validation process. The first is the auction contract
defined in Chapter 3, which raises issues around subtleties in a contract’s control flow and
related vulnerabilities that can be caught with Quartz ’s validation. The second, Chapter 3’s
static multi-signature wallet case study, is primarily concerned with enforcing authorization
constraints, which can be expressed concisely in Quartz but involve several tradeoffs in their
translation to Solidity.

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 43

Auction

Init

duration: Timespan
seller = sender
aucDuration = duration

Open

ClosedRedeemed

tokens: Uint,
tokens > 0
deadline = now + aucDuration
highestBidder = sender
highestBid = tokens

tokens: Uint,
tokens > highestBid
now ≤ deadline
send highestBid to highestBidder
highestBid = tokens
highestBidder = sender

now > deadline

sender = seller
send highestBid to seller

Figure 4.3: A State Machine for an Auction Contract

The purpose of our auction contract is to accept a sequence of ascending bids, each
backed by a token deposit, from any potential party for an item put up by a specific seller,
who is responsible for deploying the contract. It is up to the contract’s implementation
code, which is executed exactly as written by the underlying distributed ledger, to properly
enforce the auction’s terms. First, the issuer of the highest bid, regardless of their identity, is
duly recorded as the winner. Bids are accepted up until a publicly declared deadline, which
cannot be adjusted after the start of the auction by any party. Any principal who issued
a losing bid is able to recover their tokens, while the seller may only claim the auction’s
proceeds once it is closed.

Our auction features four phases of operation. Its representation as a state machine is
shown in Figure 4.3. Each transition is annotated with a guard, written above the horizontal
line, and actions shown below the horizontal line. When the contract is deployed, its creator is
recorded as the seller. The contract begins its life in the Init phase, awaiting the first bid. As
soon as a bid arrives, the bid and its sender are recorded, and the contract transitions to the
Open phase. Here, an arbitrary number of subsequent bids may be received and recorded, as
long as each exceeds the previous highest bid. Unlike in the previous phase, the contract now
must also refund the newly-supplanted highest bidder. Finally, once the auction’s deadline

0---~•
t ,__

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 44

has passed, any party may move to close the auction. Only once the Closed phase is reached
can the seller claim their earnings, with a transition into the Redeemed phase.

The equivalent Quartz code is shown in Figure 4.4. It begins with a list of fields anno-
tated with their types before a sequence of transition definitions. The contract’s states are
not explicitly enumerated; rather, they are inferred as the union of all states referenced in
transitions. The requires keyword is used to define a predicate over contract state that
must be satisfied for the transition to fire. Quartz defines several globally available values,
including the transition’s invoking party (sender), the current time (now), the contract’s bal-
ance of tokens (balance), and the tokens sent with the current transition (tokens). Quartz
is not sensitive to whitespace. For example, a transition’s states and guard may be written
on the same line, as in line 29, or separately, as in lines 22 and 23.

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 45

1 contract Auction {

2 data {

3 Seller: Identity

4 HighestBid: Uint

5 HighestBidder: Identity

6 Duration: Timespan

7 Deadline: Timestamp

8 }

9

10 initialize: ->(duration: Timespan) init {

11 Seller = sender

12 Duration = duration

13 HighestBid = 0

14 }

15

16 initialBid: init ->(tokens: Uint) open {

17 Deadline = now + Duration

18 HighestBid = tokens

19 HighestBidder = sender

20 }

21

22 submitBid: open ->(tokens: Uint) open

23 requires [tokens > HighestBid && now <= Deadline] {

24 send HighestBid to HigestBidder

25 HighestBid = tokens

26 HighestBidder = sender

27 }

28

29 close: open -> closed requires [now > Deadline]

30

31 redeem: closed -> redeemed authorized [Seller] {

32 send HighestBid to Seller

33 }

34 }

Figure 4.4: An Auction Contract Written in Quartz

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 46

Multi-Signature Wallet

Our multi-signature wallet features three states. When the contract is deployed, its creator
is added as the first authorized signer who may approve payments. The contract begins its
life in a Config state where new signers may be added by any previously declared signer.
Once all signers agree, the contract enters an Open state where any signer may propose a
payment. If that payment is approved by all signers, funds are sent to the intended recipient.
Finally, all signers may agree to transition to a Closed state, where any remaining funds
may be returned specifically to the contract’s creator, again with the approval of all signers.
In any phase, the contract accepts external deposits from any source.

Config

signers = { sender }
owner = sender

Open

Closed

newSigner : Identity,
sender ∈ signers
signers = signers ∪ {sender}

∀ p ∈ signers, approved(p)

dest : Identity,
amount : Int,
sender ∈ signers,
∀ p ∈ signers, approved(p, dest, amount),
amount > 0
send(dest,amount)

sender ∈ signers,
∀ p ∈ signers, approved(p)

amount : Int,
sender = owner,
∀ p ∈ signers, approved(p, amount),
amount > 0
send(owner,amount)

Figure 4.5: Multi-Signature Wallet State Machine

The logic for this contract is specified as a state machine in Figure 4.5, with notation
identical to that of Figure 4.3. Transitions for deposits to the account are omitted for
brevity. In guards, approved represents a Boolean-valued function that determines if principle
p authorizes execution of the relevant transition with the specified input parameters. The
Quartz definition of this state machine is given in Figure 4.6. Here, the authorized construct

t

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 47

1 contract MultiSig {

2 data {

3 Owner: Identity

4 Signers: Sequence[Identity]

5 }

6

7 initialize: -> config {

8 Owner = sender

9 add sender to Signers

10 }

11

12 addSigner: config ->(newSigner: Identity) config

13 authorized [any Signers] {

14 add newSigner to Signers

15 }

16

17 declareOpen: config -> open

18 authorized [all Signers]

19

20 pay: open ->(recipient: Identity , amount: Int) open

21 authorized [all Signers]

22 requires [amount > 0] {

23 send amount to recipient

24 }

25

26 close: open -> closed authorized [all Signers]

27

28 refund: closed ->(amount: Int) closed

29 authorized [all Signers]

30 requires [amount > 0] {

31 send amount to Owner

32 }

33 }

Figure 4.6: Quartz Multi-Signature Wallet

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 48

is more prominent than in the auction implementation. It is used to defer execution of
a transition until the requisite parties have approved. When using the all primitive, or
when an authorization predicate contains a conjunction of multiple clauses, this requires
maintaining state across transition invocations, namely the parties that have invoked (and
thus approved) the transition in the past. We will see how this figures into TLA+ and
Solidity code generation in the following chapters.

4.4 Results: Contract Size

We use lines of code as a proxy for code complexity and required developer effort. Here,
we are interested in the extent to which Quartz enables concise expression of rich contract
logic, particularly when compared to Solidity, the de facto standard programming language
for smart contracts. We also seek to determine if Quartz introduces overhead by generating
significantly more verbose Solidity code than would be produced by a Solidity programmer.
This is particularly relevant in the blockchain setting, where the size of a contract’s compiled
bytecode directly impacts the gas costs of deploying the contract to the ledger. Finally, we
quantify developer effort saved when using Quartz for model checking by measuring the size
of a contract’s TLA+ representation.

Case Study Quartz Handwritten
Solidity

Generated
Solidity

TLA+

Auction 33 40 53 205
Crowdfunding 31 39 50 193

RockPaperScissors 39 76 75 261
Logistics 20 35 46 172

SimpleMultiSig 12 34 30 137
StaticMultiSig 13 38 44 125
DynamicMultiSig 15 39 50 141

ERC-20 43 49 50 209
ERC-721 48 59 86 227

ERC-1202-Simple 24 50 49 197
ERC-1202-Weighted 42 57 73 261

ERC-1540 114 143 181 464
ERC-1630 22 23 37 161
ERC-1850 110 182 242 588
ERC-780 16 17 24 140

DAO 126 126 150 390

Table 4.1: Lines of Code to Express Case Studies

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 49

Table 4.1 shows the lines of code needed to express all of our case studies in Quartz
and in Solidity. It also shows the lines of Solidity and TLA+ generated from the Quartz
implementation of each contract. Each row in the table corresponds to one of the case
studies presented in Table 3.1. When writing Solidity for each case study, we modified an
existing code base (cited in Table 3.1) whenever possible rather than starting from scratch to
ensure we produced idiomatic Solidity code. We were also careful to remove any comments
or extraneous lines of code, like redundant getter functions that have no Quartz equivalent,
to make the comparison as fair as possible.

When comparing the length of a Quartz contract to its handwritten Solidity equivalent,
the case studies fall into two categories. First, there are the instances where the Quartz rep-
resentation is significantly shorter. This includes Logistics, ERC-1202-Simple, ERC-1850,
RockPaperScissors, and the MultiSig variants. These use cases tend emphasize two de-
sign elements. First, they may involve authorization restrictions on contract operations.
Second, they may involve the enforcement of a contract lifecycle featuring distinct phases
of operation in which different sets of operations are allowed. For example, in a multi-
signature wallet, only authorized parties may enact a payment of funds. In Logistics or
RockPaperScissors, the contract goes through a sequence of phases in which different par-
ties must act to move the contract’s proceedings forward. Quartz ’s DSL was designed for
concise and clear expression of authorization constraints, and the state machine structure
naturally captures the notion of a contract lifecycle, so it follows that Quartz contracts with
these features are more concise.

Quartz ’s conciseness compared to Solidity becomes more marginal for the other case
studies. Benchmarks like Auction, Crowdfunding, ERC-20 are only somewhat shorter when
written in the DSL. Others like the DAO and ERC-780 are roughly the same. This is because
certain elements, such as logical checks, arithmetic operations, and updating contract fields,
are no more concise in Quartz than they are in Solidity. Applications that more heavily em-
phasize these elements lead to similarly sized representations in either Quartz or in Solidity.
A good example of this is a comparison of ERC-1202-Simple against ERC-1202-Weighted.
Both are implementations of a standardized voting scheme, but the latter allows different
entities to be assigned a higher or lower weight to their vote. Once this weighting scheme is
introduced, which involves additional data structures to track weights and additional arith-
metic to enforce them, the advantage of Quartz over Solidity, at least in terms of brevity,
diminishes.

Quartz typically, but not always, generates Solidity code that is more verbose than
the handwritten equivalent. There are cases where the generated code is shorter than the
handwritten code. This is often the case when the handwritten Solidity leverages domain
knowledge to use more verbose but arguably more efficient data structures, particularly to
track authorization, than the general code produced by Quartz .

Finally, significantly more TLA+ code is needed to express each contract than Solidity
or Quartz code. This is mainly because a contract’s TLA+ specification expresses both the
contract’s logic and its execution semantics. In particular, the TLA+ representation of any
contract must describe the main invocation loop in which any user may invoke any of the

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 50

contract’s transitions with arbitrary parameter values. It must also express the potential for
reentrant execution after a send and exception handling. Therefore, even a short contract
generates a relatively lengthy TLA+ specification.

4.5 Related Work: State Machine-Based

Development and Testing

A number of prior works explore the use of state machines as a fundamental programming
abstraction and organizing principle. Quartz is particularly inspired by frameworks that
exploit the natural coupling of state machines with model checking for validation as de-
scribed in Chapter 2. A classical example of this approach is the Teapot [21] platform for
development and validation of cache-coherence protocols in distributed systems. Intended
applications include software such as shared-memory execution platforms and distributed
file systems, where the constituent nodes may elect to store local copies of global state and
need to coordinate how this state is shared and maintained.

Much like in Quartz , a Teapot user writes her protocol as a state machine in a domain-
specific language. This protocol description enumerates all states and, within each state,
how a node should respond to receipt of each possible message type. Also like Quartz ,
Teapot translates the state machine description into two targets: a formal specification
suitable for analysis by the Murphi model checker [29], and an implementation in C. Model
checking allows Teapot to check cache coherence protocols for deadlocks and for violations
of user-specified invariants. Teapot’s programming model is more powerful than Quartz ’s.
It permits constructs like loops and also features continuations. The latter are intended to
simplify implementation of situations where a participant in the protocol expects a specific
sequence of messages and must wait to perform some action until the next element in the
sequence is received.

Teapot only offers built-in support for a particular set of data types that are cleanly
translated to both C and Murphi. If a developer wishes to include a user-defined data type,
e.g., a struct, in her protocol, she must manually specify how the type is represented in
Murphi. This is unlike Quartz , where the user is never expected to write any TLA+ code.
Moreover, while Quartz assumes execution on an Ethereum-based blockchain, Teapot is not
tied to a particular execution environment. This is an advantage in the sense that it makes
Teapot flexible. The user can manually specify which sequences of events (i.e., messages
received) are possible in the protocol’s environment or try to reuse an existing specification.
However, this situation is a disadvantage in that it increases the burden on the developer
by expecting her to write such a specification. For example, the xFS developers reported a
need to explicitly model blocking system calls to the local kernel before they could validate
their protocol using Teapot. Although Quartz is restrictive in its focus on blockchains, it
fully captures the semantics of this environment without the involvement of the user.

P [28] is a second, more recent instance of programming based on state machines coupled

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 51

with validation based on model checking. Its creators describe its target domain as asyn-
chronous, event-driven programming. Example applications include the message handling
for distributed protocols described above and device driver software, which must coordi-
nate interactions between the operating system and peripheral hardware. As in Quartz
and Teapot, P expects developers to write a state machine description in a domain-specific
language. This description is then checked for deadlocks or violations of safety properties
(written explicitly by the user with assert statements) using the Zing model checker [5].

P is similar to Teapot in its advantages and disadvantages relative to Quartz . Its domain-
specific language offers more powerful primitives than Quartz , including a form of procedure
call. A P state machine may also choose to defer an incoming message, placing it on a
persistent queue where it may be popped by a future transition execution. This diverges
from the semantics of Quartz , which features an implicit queue of transition invocations,
formalized in Chapter 5 that may not be freely manipulated.

A P user must specify the semantics of the environment in which her state machine ex-
ecutes by writing an additional “ghost state machine” to interact with the original state
machine. This ghost state machine is responsible for thoroughly exercising the developer’s
implementation by emitting events. P therefore validates the user’s implementation by ex-
ploring traces of repeated interactions in which the ghost state machine emits an event and
the original state machine response. The P compiler elides the ghost state machine from the
C implementation it generates. As with Teapot, this design choice presents an additional
burden on the developer that is not present in Quartz because of its more specific focus on
blockchains.

State machine-based software design has also been applied to smart contracts. One of
the first such efforts is FSolidM [66], a tool for structuring Solidity contracts as finite state
machines. FSolidM offers users a graphical editor for building smart contracts in which they
draw a pictorial representation enumerating all of the machine’s states and transitions. Like
in Quartz , transitions may have guards to restrict their execution. FSolidM also offers a
rudimentary authorization mechanism. A contract author may declare a dynamic list of
contract administrators and restrict execution of certain transitions to members of this list.
This is not as powerful as Quartz ’s authorization logic, which allows arbitrary composition
of authorization restrictions referencing multiple individuals or groups and allows execution
of a transition to be deferred until multiple parties have expressed approval.

FSolidM offers tools to deal with concurrency that are not available in Quartz . First,
FSolidM features an explicit locking mechanism, implemented using a simple boolean flag,
to prevent reentrant execution of transitions. Second, FSolidM offers a form of optimistic
concurrency control in which a contract is augmented with a sequence number field. Any
transaction against the contract must provide the sequence number last seen by the caller
and is rejected if this does not match the current value of the field. In this way, transactions,
i.e., state transitions, may only occur when the state of the contract has not been modified
without the knowledge of the caller. Although neither of these mechanisms are particularly
complex and could be replicated with Quartz code, FSolidM conveniently generates their
implementations on behalf of the contract author.

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 52

FSolidM diverges from Quartz in that it does not actually produce a complete con-
tract implementation from the developer’s state machine description. Rather, it generates
a partially-filled Solidity template that the user must complete by hand. More specifically,
the template contains all of the contract’s functions, corresponding to the state machine’s
transitions, and it contains the fields needed for the authorization and concurrency control
strategies described above. However, the body of each transition, i.e., the actions taken
when the transition fires, must be written directly in Solidity by the user.

VeriSolid [67] extends FSolidM to offer validation, combining contracts as state machines
with model checking validation much like Quartz . The user still builds a state machine
using FSolidM and completes the resulting Solidity template. She can then augment this
Solidity implementation with a set of contract properties written in a DSL. The Solidity
code is converted into a specification for the nuXmv model checker [18], while the properties
are converted to a formal representation in Computational Tree Logic (CTL). Much like in
Quartz , this gives rise to an iterative development model in which a contract author builds
her contract, runs it through the validation process, and refines her implementation based on
problems identified by the model checker. One advantage of VeriSolid over Quartz is its full
support for liveness properties, i.e., asserting that some desirable condition will eventually
occur. However, VeriSolid also imposes restrictions that Quartz does not. First, it does not
model reentrant execution and therefore cannot identify some of the contract vulnerabilities
discussed in Chapter 2. Second, the properties it enables are of a very specific form: they
concern only the order in which code statements are executed. A user may not assert more
flexible variants such as constraints on the values assumed by a contract field, or absence of
an unbounded token withdrawal as they can in Quartz .

4.6 Related Work: Contract Programming Languages

Smart contracts have become a very popular domain for new programming languages, par-
ticularly as shortcomings to Solidity [36] have emerged. Many of these languages therefore
cast themselves as contrasts to Solidity, striving for greater safety, predictability, and robust
operation in the face of potentially adversarial users. There are a variety of approaches to
achieving these properties including contract-specific language primitives, an emphasis on
functional programming, advanced type systems, and language design focused on suitabil-
ity for verification. Like traditional, general-purpose programming languages, any contract
language represents a choice in the tradeoffs between ease of use, safety, expressiveness, and
amenability to verification.

One class of contract programming languages are the simplified, domain-specific lan-
guages that target a specific application domain. One of the early works in this area [40]
offers a tool in which developers express the operations and rules for a contract in a DSL
meant to resemble natural language. For example, the author of a ballot contract may
write “People vote only once and people must not vote after the deadline.” These state-
ments are then translated into a Solidity template that the author completes by hand. On

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 53

one hand, the use of natural language allows users without programming expertise to build
smart contracts, but the generation of only a Solidity template, rather than a complete im-
plementation, offsets this benefit by requiring knowledge of Solidity programming to create
a finished product. Quartz also offers a domain-specific language, but it is meant to resem-
ble a simplified programming language rather than natural language. It therefore requires
some programming expertise, although no expertise in Solidity specifically, and generates a
complete implementation, not a template, from source.

There are other domain-specific languages that, more like Quartz , feature grammars
structured around traditional programming constructs rather than natural language. One
example is Findel [14], a domain-specific language specifically for the implementation of
derivative contracts. It follows on previous work [80] that proposes DSLs for derivatives
before blockchains existed as an enforcement mechanism. These derivatives are bilateral
agreements between an owner and issuer about the exchange of an asset, which may involve
contingencies and time-based constraints. The code for a Findel contract explicitly defines
the structure of an abstract syntax tree, much like the S-expressions familiar to Lisp program-
mers. Nodes in this AST may feature blockchain-specific primitives such as the exchange
of virtual currency or the enforcement of a time-based restriction on an action. A contract
deployed on the Ethereum blockchain acts as a unified marketplace for Findel contracts and
interprets their ASTs. Findel contract transactions and execution therefore proceed through
this Ethereum contract. Findel, like Quartz , therefore assumes no knowledge of Solidity
from the user even when it leverages an Ethereum-based blockchain. However, it is a DSL
that aims to fill a specific niche in the blockchain ecosystem, where Quartz seeks to support
a broad range of application domains.

The second class of contract programming languages set aside the simplicity of domain-
specific languages for the expressiveness of mainstream, general-purpose languages [2,37,83].
Several of these languages [55, 56, 81] adopt a functional paradigm with the rationale that
functional code is more easily analyzed and verified through static analysis tools. For ex-
ample, the Pact and Plutus contract languages feature syntax and primitives very similar to
Lisp and Haskell, respectively. They are instead distinguished by the addition of blockchain-
specific features. Pact, for example, offers a globally persistent tabular data store (main-
tained by the underlying ledger) as a first-class primitive. The Tezos blockchain takes another
approach, offering a high-level programming language [92] that compiles to a low-level stack-
based language [91] designed to be amenable to formal analysis. In all of these cases, it may
arguably be easier to reason about contract behavior when reading source code than it is
for Solidity. However, these languages do not incorporate validation as a first-class element
of their workflows as is the case for Quartz . For example, the Tezos developers advocate
manual use of a theorem prover like Coq to analyze and prove properties of contracts ex-
pressed in their stack-based language but do not provide any tools or features to assist in
this process.

A second line of work has explored the use of sophisticated type systems to ensure contract
safety at compile time. This trend is already underway in mainstream software development
with growing adoption of the Rust programming language [82], which features a compiler

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 54

that is capable of verifying memory safety. The Libra blockchain has introduced the Move
language [17]. A key primitive in Move is the notion of a resource: a virtual asset with
a finite supply enforced by the type system itself. For example, once contract code uses
a reference to an asset instance to transfer that instance to a new owner, that reference
becomes invalid, preventing invalid, duplicate transfers. This functionality makes Move’s
type system more powerful than Rust’s — it is a linear type system rather than an affine
type system. Obsidian [23, 24] also adopts a linear type system, but combines it with state
machines as an organizing programming model, much like Quartz . Both Move and Obsidian
are more expressive than Quartz , and they feature more powerful compile-time checks than
Quartz . However, Move and Obsidian are only capable of ensuring the absence of a fixed
class of contract flaws. They cannot offer the same flexibility as Quartz ’s verification of
contract-specific properties through model checking.

Scilla [87] is a functional contract programming language that also focuses on state ma-
chines. It is a more expressive, but also more complex, language than Quartz with syntax
resembling OCaml and Standard ML. It offers a wide array of features such as lists, options,
maps, dependently-typed byte strings, and pattern matching. A Scilla contract is specified
as a “communicating automaton” — a state machine that fires a transition when it receives
a message and may emit messages to specific external automata. An author writes each
transition and specifies the logic to execute when it fires. To avoid the reentrancy issues that
have plagued Solidity, a Scilla state machine may only emit a message at the conclusion of
a transition, avoiding any transfer of control while the transition is in progress.

Scilla has several strengths that Quartz does not share. It is more expressive than Quartz
as it takes after fully-featured functional programming languages rather than a DSL. Scilla
allows communication, although restricted, between separate contracts. Scilla users can
thus deploy applications built out of multiple, cooperating contracts where Quartz currently
supports only monolithic contracts. Moreover, Scilla detects integer overflows at runtime
and raises an error, protecting contract users against an area of potential vulnerability that
Quartz does not address.

However, Quartz surpasses Scilla in its support for flexible contract verification. Scilla
offers limited verification in the form of static analysis tools. Users can write their own
analysis logic, essentially specifying any bookkeeping and reasoning that occurs over an
AST traversal, but the logic must generalize to any potential contract and therefore is only
suitable for identifying general code patterns that may be problematic rather than contract-
specific properties as in Quartz . For example, the Scilla authors describe static analyzers to
predict gas costs or to identify incorrect accounting when tracking asset ownership (similar
to the linear type systems of Move and Obsidian), but these analyzers cannot reason about
potential execution traces and invariants like a model checker does.

CHAPTER 4. SYSTEM AND LANGUAGE OVERVIEW 55

4.7 Summary

In this chapter, we put our proposed approach into practice through the design and im-
plementation of Quartz . Its domain-specific language is designed specifically to address
the recurring themes in contract applications raised in Chapter 3, while its two translation
paths enable verification through model checking and seamless deployment to Ethereum-
based blockchain systems. We laid out the software components backing these translation
paths and how they fit together to form a larger system. Through multiple examples, we
saw how a contract is framed as a state machine and how this can be expressed in the
Quartz language. Our evaluation of contract sizes, in terms of lines of code, establishes two
conclusions. First, Quartz , and more broadly an approach focused on finite state machines
as the fundamental abstraction, is expressive enough to support the implementation of a
broad range of applications. Second, state machine-based contracts written in Quartz are
no more verbose than their Solidity counterparts, and are often more concise when issues
like authorization arise.

With a working system implementing of our proposed methodology for contract engi-
neering in hand (described more formally in Chapter 5), what remains is to validate the
anticipated benefits as well as the potential costs of using this system. Chapters 6 and 7
address this task. In Chapter 6, we discuss the translation to TLA+ for model checking
in more detail and establish Quartz ’s ability to surface contract vulnerabilities. Next, in
Chapter 7, we discuss translation to Solidity and quantify the cost of using Quartz against
writing Solidity directly in terms of contract execution efficiency.

56

Chapter 5

Language Formalisms

This chapter formally describes the structures and semantics of the Quartz contract descrip-
tion language. We begin with the definition of a Quartz state machine and its components.
A Quartz contract is a written specification of these components, which forms a particular
instance of a state machine. Next, we describe the characteristics of a well-formed state
machine. The Quartz compiler ensures that a contract possesses these characteristics before
it proceeds with code generation. We then present the operational semantics of a Quartz
contract. These are particularly important as they dictate both the search space for model
checking and the implementation of Quartz contracts in Solidity. Finally, we provide the
rules used for Quartz ’s type checking.

5.1 State Machine Structure

A Quartz contract is an addressable, extended finite state-machine formally defined as a
4-tuple 〈Q, q0, T, F 〉 where:

• Q is a set of states

• q0 is the initial state

• T is a set of transitions, defined below

• F is a set of fields, each with a specific name and type

Each state is uniquely identified by a symbolic name. The state machine is always in one
particular state at any point in time, and the machine may undergo a transition, moving
from one state to another, when that transition fires. Note that a state is distinct from the
current status of the machine, which is a product of its current state, the values of its fields,
and so on. This will be defined more formally below.

A transition t ∈ T is defined as a 7-tuple 〈name, src, dst, g, a, P, B〉 where:

• name is the transition’s unique name

CHAPTER 5. LANGUAGE FORMALISMS 57

• src is the transition’s starting state

• dst is the transition’s ending state

• g is a Boolean-valued guard expression over the fields of the state machine and transi-
tion parameters that must be satisfied for the transition to fire

• a is an authorization predicate, defined below, that must also be satisfied for the tran-
sition to fire

• P is a set of transition-specific parameters, each with a name and type

• B is the transition’s body — a sequence of statements executed in order when the
transition fires

A Quartz state machine is event-triggered and addressed by a globally unique identifier,
provisioned by the underlying distributed ledger that hosts the contract. Quartz treats these
addresses as first-class values. They may be assigned to fields or transition parameters, and
certain statements allow a state machine to emit messages with a specific target address.

This allows external, addressable entities (either an end user or another state machine) to
direct messages to the machine to invoke transitions. Messages are of the form m = 〈i, t, V 〉
specifying the identity i of the sender, a transition t to execute, and a (possibly empty) set
V of value assignments for t’s parameters.

The current status S of a state machine is defined as a 7-tuple 〈q, σ, α, M, s, γ, C〉
where:

• q is the machine’s current state

• σ is a mapping from names to values representing the current context. It always includes
the state machine’s fields as well as built-in values sender, balance, and now.

• α is a mapping from transitions and transition parameter values to the set of identities
that have authorized invocation of that transition with that particular set of parameter
assignments.

• M is a queue of transition invocation messages. The machine may only read the head
of the queue or remove the head of the queue. It may not inspect any other queue
elements or the queue’s length.

• s indicates which statement within a transition to execute. The special statement form
> indicates that the machine has not yet started execution of any transition, while ⊥
indicates that a transition has just completed. Thus when executing some transition
with body B = [b1, . . . , bn], s will assume the sequence of values [>, b1, . . . , bn, ⊥].

• γ is an authorization clause that must be evaluated to determine if the invoked tran-
sition may proceed, or � if no such determination is in progress.

CHAPTER 5. LANGUAGE FORMALISMS 58

• C is a stack containing records of in-progress transitions. More specifically, element i
of the stack is the statement to evaluate on resuming the ith ancestor of the currently
executing transition.

A machine’s initial status, before it executes its initial transition, is therefore 〈q0, {f.name 7→
0f.type : f ∈ F}, ∅, ε, >, �, ε〉, where ε denotes an empty sequence and 0T denotes the zero
element of type T .

Static Contract Validation

Before any translation takes place, Quartz performs a variety of checks on a contract specifi-
cation. A well-formed state machine has a unique initial state with no guard or authorization
predicate. Any state used as the source or destination of a transition must be reachable from
the starting state by some sequence of naive transitions (neglecting their guards and autho-
rization). Quartz ensures that each transition is labeled with a unique name and that no
transition parameter shadows the machine’s fields due to a name collision. All guards and
authorization predicates must refer to well-defined fields or transition parameters, and all
assignments within a transition body must have some effect, i.e., no self-assignments are
allowed.

5.2 Operational Semantics

Next, we give a formal presentation of the operational semantics of a Quartz contract. In
all evaluation rules shown below, → indicates small-step evaluation and ⇓ indicates big-step
evaluation. ⇓σ more specifically denotes big-step evaluation with σ as the initial environment.
The ◦ symbol denotes concatenation, e.g., m ◦M signifies the element m prepended to the
sequence M .

Quartz centers around two main forms of evaluation, each tracked by a different element
of a state machine’s status. First, there is evaluation of a transition’s authorization predicate,
tracked by S.α. Second, there is evaluation of the statements within a transition’s body for
their side effects, tracked by S.s. Only one of these two forms of evaluation may be in
progress at a time. When S.α 6= �, meaning an authorization predicate is being evaluated,
we must have S.s = >, and when S.s 6= > we must have S.α = �.

Transition Authorization

When a new message m is dequeued, the machine’s status is updated to indicate that the
message’s sender, i, approves of the transition’s execution. Quartz then begins evaluation of
the relevant transition’s authorization predicate, t.a, as shown below in the UpdateAuth
evaluation rule.

CHAPTER 5. LANGUAGE FORMALISMS 59

S = 〈q, σ, α, m ◦M, >, �, C〉 m = 〈i, t, V 〉
q = t.src σ′ = σ ∪ V

t.g ⇓σ′ true αt,V = α[〈t, V 〉]
S → 〈q, σ′, [〈t, V 〉 7→ αt,V ∪ {i}]α, m ◦M, >, t.a, C〉

(UpdateAuth) (5.1)

Terms in the authorization predicate come in three forms:

• A reference to an identity variable i, meaning i must approve of the transition

• An expression all(I), where I ∈ F is a field of type Sequence[Identity], meaning
all i ∈ I must approve the transition

• An expression any(I), where I ∈ F is again of type Sequence[Identity], meaning
any i ∈ I must approve the transition

These terms are evaluated as shown in the rules below.

S = 〈q, σ, α, m ◦M, >, i, C〉
m = 〈j, t, V 〉 i ∈ α[〈t, V 〉]

S → 〈q, σ, α, m ◦M, >, true, C〉
(AuthSingleTrue) (5.2)

S〈q, σ, α, m ◦M, >, any(I), C〉
m = 〈j, t, V 〉 ∃ i ∈ I : i ∈ α[〈t, V 〉]
S → 〈q, σ, α, m ◦M, >, true, C〉

(AuthAnyTrue) (5.3)

S = 〈q, σ, α, m ◦M, >, all(I), C〉
m = 〈j, t, V 〉 ∀ i ∈ I : i ∈ α[〈t, V 〉]
S → 〈q, σ, α, m ◦M, >, true, C〉

(AuthAllTrue) (5.4)

Each of these rules also has a complement:

S = 〈q, σ, α, m ◦M, >, i, C〉
m = 〈j, t, V 〉 i 6∈ α[〈t, V 〉]

S → 〈q, σ, α, m ◦M, >, false, C〉
(AuthSingleFalse) (5.5)

S〈q, σ, α, m ◦M, >, any(I), C〉
m = 〈j, t, V 〉 ∀ i ∈ I : i 6∈ α[〈t, V 〉]
S → 〈q, σ, α, m ◦M, >, false, C〉

(AuthAnyFalse) (5.6)

S = 〈q, σ, α, m ◦M, >, all(I), C〉
m = 〈j, t, V 〉 ∃ i ∈ I : i 6∈ α[〈t, V 〉]
S → 〈q, σ, α, m ◦M, >, false, C〉

(AuthAllFalse) (5.7)

CHAPTER 5. LANGUAGE FORMALISMS 60

Authorization predicates may also contain logical AND and OR operators applied to the
term forms presented above. Their evaluation is defined by the following rules:

S = 〈q, σ, α, M, >, a1 ∧ a2〉
〈q, σ, α, M, >, a1〉 → 〈q, σ, α, M, >, a′1〉

S → 〈q, σ, α, M, >, a′1 ∧ a2〉
(AuthEvalAnd) (5.8)

S = 〈q, σ, α, M, >, a1 ∨ a2〉
〈q, σ, α, M, >, a1〉 → 〈q, σ, α, M, >, a′1〉

S → 〈q, σ, α, M, >, a′1 ∨ a2〉
(AuthEvalOr) (5.9)

S = 〈q, σ, α, M, >, false ∨ a2〉
S = 〈q, σ, α, M, >, a2〉

(AuthOrFalse) (5.10)

S = 〈q, σ, α, M, >, true ∨ a2〉
S = 〈q, σ, α, M, >, true〉

(AuthOrTrue) (5.11)

S = 〈q, σ, α, M, >, true ∧ a2〉
S → 〈q, σ, α, M, >, a2〉

(AuthAndTrue) (5.12)

S = 〈q, σ, α, M, >, false ∧ a2〉
S → 〈q, σ, α, M, >, false〉

(AuthAndFalse) (5.13)

If t.a ultimately evaluates to true, then evaluation proceeds to the transition’s body. As
shown in AuthSuccess, the current statement in the machine’s status advances from > to
b1, the first element of t.b. If t.a evaluates to false, Quartz discards message m and removes
the transition’s parameter assignments from the current context σ. If the machine’s stack
(explained in more detail below) is empty, it awaits the next incoming message, as shown in
AuthFailure1. Otherwise, the parent transition is resumed, as shown in AuthFailure2.
In either case, the sender’s approval of the transition persists in S.α, meaning it affects future
evaluations of t.a. This is what allows approvals to accumulate over time.

S = 〈q, σ, α, m ◦M, >, true, C〉
m = 〈i, t, V 〉 t.B = [b1, . . . , bn]

S → 〈q, σ, α, m ◦M, b1, �, C〉
(AuthSuccess) (5.14)

S = 〈q, σ, α, m ◦M, >, false, ε〉
m = 〈i, t, V 〉

S → 〈q, σ − V, α, M, >, �, ε〉
(AuthFailure1) (5.15)

S = 〈q, σ, α, m ◦m′ ◦M, >, false, c ◦ C〉
m = 〈i, t, V 〉 m′ = 〈i′, t′, V ′〉

S → 〈q, (σ − V) ∪ V ′, α, m′ ◦M, c, �, C〉
(AuthFailure2) (5.16)

To summarize, these evaluation rules mean that any message invoking a particular tran-
sition is interpreted as an approval of the transition’s execution by the sender. An approval

CHAPTER 5. LANGUAGE FORMALISMS 61

is specific to a set of arguments for the transition. A Quartz state machine tracks previous
approvals by both transitions and parameter assignments in S.α. If the transition’s autho-
rization predicate is not satisfied by the current set of approvals, it is effectively deferred
until this is the case. This scheme also relies on S.α being properly reset once a transition
completes, preventing the transition from being repeated an arbitrary number of times when
approval was only given for one execution.

Transition Execution

A transition’s body consists of a sequence of statements, evaluated in order when the tran-
sition executes. For convenience in the definitions below, define the function next as follows:

next(bi) =

{
bi+1 if i < n

⊥ otherwise
(5.17)

where a transition body consists of the statements [b1, b2, . . . , bn].
We then have the following evaluation rules for Quartz ’s relatively small collection of

statement forms:

S = 〈q, σ, α, M, s, �, C〉
s = x = v x ⇓σ x′ v ⇓σ v′

S → 〈q, [x′ 7→ v′]σ, α, M, next(s), �, C〉
(EvalAssign) (5.18)

S = 〈q, σ, α, M, s, �, C〉 s = append v to x
v ⇓σ v′ x ⇓σ x′ σ[x′] = [x1, . . . , xn]

S → 〈q, [x′ 7→ [x1, . . . , xn, v
′]σ, α, M, next(s), �, C〉

(EvalAppend) (5.19)

S = 〈q, σ, α, M, s, �, C〉
s = clear x x ⇓σ x′

S → 〈q, [x′ 7→ ε]σ, α, M, next(s), �, C〉
(EvalClear) (5.20)

S = 〈q, σ, α, M, s, �, C〉
s = if (x) {s1, . . . , sn} x ⇓σ true

S → 〈q, σ, α, M, s1, �, C〉
(EvalIfTrue) (5.21)

S = 〈q, σ, α, M, s, �, C〉
s = if (x) {s1, . . . , sn} x ⇓σ false

S → 〈q, σ, α, M, next(s), �, C〉
(EvalIfFalse) (5.22)

S = 〈q, σ, α, M, s, �, C〉
s = if (x) {s1, . . . , sn} else {s1, . . . , sn}

x ⇓σ true
S → 〈q, σ, α, M, s1, �, C〉

(EvalIfElseTrue) (5.23)

CHAPTER 5. LANGUAGE FORMALISMS 62

S = 〈q, σ, α, M, s, �, C〉
s = if (x) {s1, . . . , sn} else {s′1, . . . , s′n}

x ⇓σ false
S → 〈q, σ, α, M, s′1, �, C〉

(EvalIfElseFalse) (5.24)

Quartz ’s send primitive has more involved evaluation rules than the other statement
forms. It involves communication with an external contract and manipulation of the state
machine’s stack C. Recall that each element c ∈ C is a pair 〈σ, s〉, where σ is the current
transition’s context, i.e. its name-value bindings, and s is the statement to execute when
control returns to the transition. Note that we don’t need to store the identify of the
transition itself, as the message invoking the transition is retained on the state machine’s
queue until the transition is complete.

The key issue around a send is that it may cause the sending state machine to cede control
to the recipient. Therefore, its evaluation non-deterministically leads to one of three possible
outcomes, depending on the actions of the recipient. The simplest possible evaluation for
send occurs when the receiving contract is credited with the specified amount, takes no
observable action in response, and control immediately resumes within the same transition:

S = 〈q, σ, α, M, s, �, C〉 s = send a to i
a ⇓σ a′ a′ ≤ σ[balance] b = σ[balance]− a′

S → 〈q, [balance 7→ b]σ, α, M, next(s), �, C〉
(SendSuccess) (5.25)

It is also possible that the target throws an exception, reverting execution of the current
transition:

S = 〈q, σ, α, M, s, �, C〉 s = send a to i

S → Error
(SendError) (5.26)

Finally, the recipient may react by sending an arbitrary message to the sender, deferring com-
pletion of the current transition and prompting re-entrant execution of a separate transition
that executes immediately.

S = 〈q, σ, α, m ◦M, s, �, C〉 m = 〈i, t, V 〉
s = send a to j a ⇓σ a′ j ⇓σ j′

a′ ≤ σ[balance] σ′ = [balance 7→ balance− a′]σ
m′ = 〈j′, t′ ∈ T, V ′〉

S → 〈q, (σ′ − V) ∪ V ′, α, m′ ◦m ◦M, >, �, next(s) ◦ C〉
(SendReenter) (5.27)

Note that this last evaluation rule is the only way a state machine’s stack may grow.
When the end of the transition’s body, ⊥, is reached, Quartz consults the state machine’s

stack for a record of an in-progress parent transition, consisting of the next statement c
to execute. If such a record exists as shown in FinishTransition1, control returns to
the parent transition. Otherwise, the state machine moves to the implicit > statement as

CHAPTER 5. LANGUAGE FORMALISMS 63

shown in FinishTransition2. In both cases, the message at the head of the queue M
is finally removed and the current environment σ is stripped of the transition’s parameter
assignments. Prior approvals of the transition’s execution are removed from α to prevent
repeated invocations without new approval.

S = 〈q, σ, α, m ◦m′ ◦M, ⊥, �, c ◦ C〉
m = 〈i, t, V 〉 m′ = 〈i′, t′, V ′〉

S → 〈t.dst, (σ − V) ∪ V ′, [〈t, V 〉 7→ ∅]α, m′ ◦M, c, �, C〉
(FinishTransition1)

(5.28)

S = 〈q, σ, α, m ◦M, ⊥, �, ε〉 m = 〈i, t, V 〉
S → 〈t.dst, σ, [〈t, V 〉 7→ ∅]α, M, >, �, ε〉

(FinishTransition2) (5.29)

Expressions

Quartz supports a typical set of arithmetic and logical expression forms, evaluated in the
expected fashion. For example, Boolean operators follow rules analogous to those given in
Equations 5.8 through 5.13 above. All arithmetic and logical operations follow the stan-
dard order of precedence (in particular, arithmetic operators bind more tightly than logical
operators).

Quartz supports assignment to and reading from values of three different forms:

• A reference to a variable by name, e.g., x

• A reference to an element within a Map, e.g., x[y]

• A reference to a field of a Struct, e.g., x.y

References to these forms are evaluated as expected. For example:

a[b]→ x

a[b][c]→ x[c]
(EvalMapRef) (5.30)

a.b→ x
a.b.c→ x.c

(EvalStructRef) (5.31)

Quartz also allows computation of the size of lists and the Keccak-256 hash of any
expression:

x ⇓ [x1, x2, . . . , xn]

size(x)→ n
(EvalSize) (5.32)

x ⇓ x′

hash(x)→ keccak256(x′)
(EvalHash) (5.33)

CHAPTER 5. LANGUAGE FORMALISMS 64

5.3 Type System

Quartz performs simple type checking to eliminate potential errors in the later stages of the
translation process. Each of the DSL’s types are listed in Table 5.1. Many of these types
are the same as one would expect in a traditional programming language, but a few are
specifically intended for contracts. They are either specific to the distributed ledger setting
(e.g., Identity) or are motivated by recurring concerns in smart contract implementation
such as time-based actions and authorization (e.g., Timestamp, Timespan).

Type Description
Bool Boolean values
Int Integer values
Uint Non-negative integer values

String Character sequences
Identity A unique identifier for a user or external contract
Timestamp An instant in time
Timestamp A duration of time

Sequence[T] An ordered collection of elements of type T

Map[K,V] Associative array with keys of type K and values of type V

Struct A user-defined collection of fields
HashValue[T1, . . . , Tn] A hash of values of types T1 through Tn concatenated together

Table 5.1: Types in the Quartz DSL

In the typing rules given below, Γ indicates the current typing context, i.e. the assumed
types of all variables currently in scope. Γ ` x : T denotes that the expression x has type
T under context Γ. Context construction is simplified by Quartz ’s design — it requires all
fields and transition parameters to be declared with explicit type annotations and does not
allow binding new variables within transition bodies with something like a let form. For
example, say we have a state machine with the set of fields F and set of transitions T . Then
when type checking the body of some transition t ∈ T with the set of parameters P we have:

Γ = {f.name 7→ f.ty : f ∈ F} ∪ {p.name 7→ p.ty : p ∈ P} .

These two sets are guaranteed to be disjoint as Quartz validates that no transition parameters
shadow fields through a name collision.

The Bool, Int, Uint, and String types each have literals of the expected forms, familiar
to any user of a typical programming language. Timespan literals are created from a positive
integer followed by a unit keyword, such as 24 hours or 7 days. The only literals of types
Identity and Timestamp are the sender and now keywords, respectively.

CHAPTER 5. LANGUAGE FORMALISMS 65

A HashValue type is parameterized by a sequence of types — the types of the elements
concatenated together to produce the hash’s preimage.

Γ ` x1 : T1 Γ ` x2 : T2 · · · Γ ` xn : Tn
Γ ` hash(x1, x2, . . . , xn) : HashValue[T1, T2, . . . , Tn]

(T-Hash) (5.34)

A HashValue only supports equality checks with instances of the same type. This encourages
the use of hashing for purposes like commitment schemes and capability-based access control
while discouraging the use of hashing as a pseudo-random number generator, a practice that
has introduced vulnerabilities in past contracts [8].

Maps must be accessed using a proper instance of the key type and produce an instance
of the value type, as expected:

Γ ` m : Map[K, V] Γ ` x : K

Γ ` m[x] : V
(T-Map) (5.35)

A Struct is formally a collection of fields, each with a name and type. Therefore, type
checking a reference to a struct element involves extending the context Γ and then applying
the usual typing rules.

Γ ∪ {f.name 7→ f.ty : f ∈ s} ` x : T

Γ ` s . x : T
(T-Struct) (5.36)

Quartz type checks arithmetic expressions to ensure compatibility of their operands.
Variables of types Int and Uint cannot be freely mixed as they are in other programming
languages. There are two reasons for this. First, Uint variables are most frequently used
to track ownership of virtual tokens or other assets, and, in every use case we surveyed,
their interaction with an Int variable was the result of a programming error rather than
a requirement motivated by the domain. Quartz ’s type system enforces this separation.
More practically, smart contract implementation languages like Solidity also encourage this
distinction, e.g., by requiring an explicit conversion so that the two operands are of the same
type, and adding this constraint to Quartz simplifies the task of correct code generation.

There are, however, many cases where an Int variable needs to interoperate with Int

or Uint literals, e.g., to scale a value by a constant factor. Quartz thus breaks each of
Int and Uint into two subtypes, one for constant literals and another for variables. With
multiplication, for example, we then have the following typing rules.

Γ ` x : IntVar Γ ` y : IntVar

Γ ` x ∗ y : IntVar
(T-Mul1) (5.37)

Γ ` x : IntConst Γ ` y : IntVar

Γ ` x ∗ y : IntVar
(T-Mul2) (5.38)

Γ ` x : UintConst Γ ` y : IntVar

Γ ` x ∗ y : IntVar
(T-Mul3) (5.39)

CHAPTER 5. LANGUAGE FORMALISMS 66

Γ ` x : UintVar Γ ` y : UintVar

Γ ` x ∗ y : UintVar
(T-Mul4) (5.40)

Γ ` x : UintConst Γ ` y : UintVar

Γ ` x ∗ y : UintVar
(T-Mul5) (5.41)

This omits several rules for brevity, such as operations on IntConst and Uintconst which
are typed as expected as well as the analogues of rules 5.38, 5.39, and 5.41 with the types
of x and y swapped. Note that IntVar and UintVar cannot mix and that an expression
involving an IntVar is well typed when the other operand is any integer constant, while
UintVar may only be multiplied by UintConst or UintVar.

Quartz also supports arithmetic on Timestamp and Timespan instances. Timespans may
be added to or subtracted from one another:

Γ ` x : Timespan Γ ` y : Timespan

Γ ` x+ y : Timespan
(T-TimespanAdd) (5.42)

Γ ` x : Timespan Γ ` y : Timespan

Γ ` x− y : Timespan
(T-TimespanAdd) (5.43)

A Timespan may be added to or subtracted from a Timestamp:

Γ ` x : Timestamp Γ ` y : Timespan

Γ ` x+ y : Timestamp
(T-TimestampAdd) (5.44)

Γ ` x : Timestamp Γ ` y : Timespan

Γ ` x− y : Timestamp
(T-TimestampSub) (5.45)

Finally, Timestamps may be scaled by unsigned integers:

Γ ` x : Uint Γ ` y : Timespan

Γ ` x ∗ y : Timespan
(T-ScaleTimespan) (5.46)

Finally, logical expressions involving Boolean operators are predominantly type checked
as expected. Operands for AND and OR must both be of Boolean type, while operands for
comparisons must be compatible, e.g., a Timestamp may only be compared with another
Timestamp. Unordered types, such as Identity and HashValue, may be checked for direct
equality but may not be used in comparisons.

5.4 Summary

This chapter has precisely and formally laid out the structure and execution of a Quartz -
defined state machine. The definitions presented here are central to our approach. Chapter
4 detailed the Quartz language as a means of specifying a contract within a state machine
structure, while the translation paths that will be described in Chapter 6 and Chapter 7
must preserve the original state machine’s semantics in the alternative forms of TLA+ speci-
fication and Solidity implementation, respectively. In both translation paths, subtleties arise

CHAPTER 5. LANGUAGE FORMALISMS 67

in replicating certain Quartz evaluation rules in alternative source languages. For example,
Chapter 6 details the importance of faithfully capturing issues around reentrancy and excep-
tion handling, while Chapter 7 describes challenges around state transition authorization.

68

Chapter 6

Translation to TLA+ and Validation

In this chapter, we describe the elements of our approach concerning contract validation.
Quartz translates a contract state machine definition to a formal specification expressed in
TLA+ [63]. This specification captures both the contract’s logic as well as the semantics
of the execution environment, namely an Ethereum-based distributed ledger. Quartz then
provides this specification to TLC, an explicit-state model checker for TLA+ that enumerates
and searches possible execution traces for violations of user-provided properties, i.e., the
invariants written by the contract author in her description. This approach has the advantage
of being fully automated, with no intervention needed from the user. It does, however, raise
the challenge of bounding the execution search space so that model checking terminates.

6.1 Why Model Checking and TLA+?

We chose bounded model checking as Quartz ’s core verification technique because it does
not require significant intervention from the end user, i.e., the contract author. Although
the author must write the invariants she would like to have verified, Quartz fully automates
the more difficult task of writing a formal specification of the contract’s behavior and its
execution environment. This is the required input for model checking and has historically
served as the largest barrier to its effective use. Model checking also offers the benefit of
providing immediately useful feedback to the user as its output — an execution trace that
produces a violation of one or more of the desired properties. This feedback helps guide
a contract author in making iterative refinements to her state machine to address these
violations.

TLA+ serves as Quartz ’s target specification language and its verification backend. TLA+

and its model checker, TLC, are relatively mature, well-documented, and have been success-
fully applied in developing and testing significant systems [72]. More modern model checkers
have since emerged, but they tend to be inherently tied to the semantics of particular im-
plementation languages such as C [48] or operate at the low level of bytecode [44]. The
flexibility of TLA+’s specification language simplifies Quartz ’s task of generating a formal

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 69

contract specification. This becomes especially important when describing the execution
semantics of Solidity, which have important differences from the semantics of traditional
programming languages. Moreover, there are ongoing efforts to modernize verification in
TLA+, such as symbolic model checking with SMT solvers [61], that Quartz may be able to
use in the future.

6.2 Specification Generation

Quartz ’s specification generator targets PlusCal, an intermediate language built on top of
the original TLA+ specification language. An example body of PlusCal, for an auction
contract, is presented and discussed below in Section 6.4. PlusCal offers several features
that make it a more natural target than TLA+ itself, such as procedures to model state
transitions and conditionals to model transition guards. Translating Quartz data types and
transitions into PlusCal is straightforward, but modeling Quartz ’s authorization semantics
and the blockchain execution environment is more challenging. The PlusCal generated by
Quartz is translated into TLA+ with off-the-shelf tools.

Data Types

Every data type in Quartz maps to a counterpart in PlusCal. Many have direct equivalents
such as Ints and Maps. Quartz defines the domain of the Identity type as a fixed set of
symbolic constants, with a user-configurable size. The translation of a HashValue is more
subtle. Quartz has no need to model hash functions in detail aside from the fact that they
are assumed to be injective, nor does it require that HashValue instances are ordered. The
output of hash(x1, . . . , xn) is simply modeled as a PlusCal tuple 〈x1, . . . , xn〉, preserving
injectivity and enabling equality checks among HashValue instances.

Transitions

Each transition defined in a Quartz contract’s state machine is generated as a PlusCal pro-
cedure, with transition parameters naturally mapping to procedure parameters. An extra
parameter is added to the PlusCal procedure to track the transition’s invoking party. An
auxiliary field is used to track the machine’s current state. The procedure body begins with
three conditional checks: one to ensure that the state machine is currently in the transition’s
designated starting state, a second to ensure that the transition’s guard, if defined, is sat-
isfied, and a third to ensure that the transition’s authorization predicate, if defined, is also
satisfied. Finally, the statements forming the transition body are converted to PlusCal in
the expected way, as PlusCal supports a standard collection of assignment, arithmetic, and
logical operators.

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 70

Authorization

Quartz adds auxiliary fields to a contract’s PlusCal specification to accurately model the
authorization semantics detailed in evaluation rules 5.1 through 5.16 above. Note that an
entity approves of the execution of a transition for a particular set of parameter values. For
example, consider a transition T with input parameters of types t1, . . . , tn that includes a
term of the form all(I) in its authorization predicate. Quartz generates a PlusCal function
(associative array) F of type t1×· · ·× tn×Identity→ Boolean. Then, all(I) is evaluated
in PlusCal, which has native support for quantifiers, as ∀ i ∈ I : F (p1, . . . , pn, i), where pi
is the ith transition argument. any(I) is evaluated as ∃ i ∈ I : F (p1, . . . , pn, i), and a term
of the form i is simply F (p1, . . . , pn, i). Quartz performs a static analysis of authorization
predicates to generate the minimum number of auxiliary fields, only when a transition must
be authorized through multiple approvals.

Modeling the Environment

Once an Ethereum contract is deployed to a blockchain, any of its transformations may
be invoked at any time, by any user. For a Quartz contract, this means any of the state
machine’s transitions may be invoked at any time. The PlusCal model generated by Quartz
is organized around a main invocation loop that simulates this environment. Each time
through the loop, a transition t is non-deterministically selected for execution. Values for its
input parameters v1, . . . , vn are similarly selected from their respective domains, including
an identity i as the invoking party.

The second major challenge in modeling the Ethereum execution environment is cap-
turing the behavior of sending tokens from one contract to another, i.e., the semantics of
evaluation rules 5.25 throuh 5.27. As explained above, there are two primary means of
exchanging tokens between one Ethereum contract and another: using Solidity’s transfer

primitive or using the call primitive. Both yield control to the destination contract. call

is more flexible in that it allows the recipient to execute arbitrary code, but this may include
a reentrant invocation of the sending contract. transfer restricts execution, by limiting
the amount of gas available to the receiver in its execution, but propagates any exceptions
thrown by the receiver back to the sender, which may block forward progress.

In Quartz , the user may specify the use of transfer or call as a configuration param-
eter. The system is capable of modeling either primitive’s behavior. The generated PlusCal
model deducts from the balance field and then makes a non-deterministic choice to model
the recipient’s response. When modeling transfer, the recipient either does nothing, indi-
cating a routine token transfer, or throws an exception. When modeling call, the recipient
either does nothing, meaning any code executed by the recipient had no consequence for
the sender, or it non-deterministically selects some transition t of the sender’s to invoke,
modeling possible re-entrant execution.

The behavior of Ethereum’s exceptions cannot be expressed in PlusCal. Instead, Quartz
generates an initial PlusCal specification, invokes the PlusCal translator to produce TLA+,

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 71

and modifies this code directly. The final TLA+ generated by Quartz for model checking
formalizes unwinding of the stack upon an exception: the contract’s fields are reverted to
their state before the current call chain, and execution jumps to the main invocation loop
to begin a fresh transition.

6.3 Bounding the Search Space

The TLA+ specifications generated by Quartz , as described so far, induce an infinite exe-
cution space. We must apply bounds to this search space to ensure that model checking
terminates. Quartz allows the user to specify these bounds when validating a contract.
Setting constraints on the search process itself, e.g., maximum depth traversed in the state
space, requires an understanding of the internals of model checking. Instead, Quartz exposes
parameters that have direct significance to the user. All parameters convey aspects of the
contract’s execution or the domain of data types:

• Minimum and maximum integer values

• The number of unique entities that may interact with the contract

• The maximum call depth reached during transition execution

• The maximum number of iterations of the main transition invocation loop

The model checker is essentially exploring all possible sequences of state machine transitions.
The first and second parameters above control the branching factor of the search space.
They restrict the number of unique values that are tested when selecting possible transition
parameter values. The second parameter restricts the number of reentrant calls that may
be made against the contract stemming from a single root invocation. Finally, the third
parameter restricts the total length of any sequence that is searched.

A typical workflow when using Quartz is to begin with a well-constrained search space.
Once the system fails to identify violations of the specified invariants in the current space,
these constraints are iteratively loosened to explore increasingly large search spaces. Many
contract vulnerabilities, including the examples discussed below in Section 6.5, are surfaced
even when searching a relatively small space, which means that model checking terminates
and provides feedback to the user quickly. The contract author may then also trade confi-
dence in Quartz ’s validation for longer model checking wait times.

6.4 Example

Figure 6.1 shows portions of the PlusCal specification generated by Quartz for the Auction

case study, with small simplifications for clarity. The original Quartz code is listed above
in Figure 4.4. Figure 6.1a shows a sender and duration parameter chosen nondeterminis-
tically before the state machine’s initial transition is invoked on lines 2–4. Lines 6–20 form

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 72

the main invocation loop. Each iteration through the loop adds a new transition to the
ongoing sequence. The transition itself, its sender, and its parameter values are all chosen
nondeterministically, meaning the model checker explores all possible selections.

Figure 6.1b shows the PlusCal description of the submitBid transition. The conditional
on lines 3–5 verifies that the state machine is in the proper starting state, while lines 6–8 are
a translation of the transition’s guard from the original Quartz description. Finally, lines
10–14 are a translation of the transition’s body.

6.5 Model Checking Results

Here, we describe experiences model checking two contracts using Quartz . For both con-
tracts, Quartz helps to surface non-obvious bugs that could easily be overlooked during
contract development. Below, we report the time required for model checking to find invari-
ant violations. These times were obtained on a workstation with an Intel i7-6700 CPU and
32 GiB of RAM running version 2.13 of the TLC model checker with 8 worker threads.

Model Checking an Auction Implementation

We introduced the Auction case study in detail in Section 4.3. Its state machine appears
in Figure 4.3 and Quartz code appears in Figure 4.4. While it may appear perfectly logical,
the contract as presented above features multiple security vulnerabilities, related to it distri-
bution of repayments back to surpassed bidders and to the seller. These vulnerabilities are
particularly insidious because they emerge from code that appears innocuous. They are good
examples of how Ethereum’s execution semantics differ from those of traditional software
and can trip up contract authors.

To begin, consider the following invariant for the auction:

p1 : Closed⇒ HighestBid ≥ max(submitBid.tokens)

This property takes advantage of a number of Quartz ’s features for writing invariants. It
states that if the auction reaches the Closed state, then the value of HighestBid should be
greater than or equal to the maximum value ever assigned to the tokens parameter for the
submitBid transition.

Recall that Quartz may generate a contract that uses either Ethereum’s transfer con-
struct or the call construct for dispensing currency. The choice is configurable by the user,
and Quartz is fully capable of generating TLA+ to model either. If transfer is used, the
model checker finds a violation of p1. This requires only 2 seconds to complete on our test
system. The model checker presents the violation as an execution trace in the context of
the contract’s TLA+ specification. This corresponds to an execution trace at the level of
abstraction of the original state machine, which we present below and in future examples for
clarity:

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 73

1 begin Main:

2 with sender ∈ IDENTITIES , duration ∈ 0.. MAX_INT do

3 call initialize(sender , duration);

4 end with;

5

6 Loop:

7 either

8 with sender ∈ IDENTITIES , bid ∈ 0.. MAX_INT do

9 call initialBid(sender , bid);

10 end with;

11 or

12 with sender ∈ IDENTITIES , bid ∈ 0.. MAX_INT do

13 call submitBid(sender , bid);

14 or

15
...

16 or

17 with sender ∈ IDENTITIES do

18 call redeem(sender);

19 end with;

20 end either;

(a) Main Invocation Loop

1 procedure submitBid(sender , bid)

2 begin submitBid:

3 if currentState 6= OPEN then

4 return;

5 end if;

6 if bid ≤ HighestBid ∨ currentTime > Deadline then

7 return;

8 end if;

9

10 balance := balance + bid;

11 call send(HighestBidder , HighestBid);

12 HighestBid := bid;

13 HighestBidder := sender;

14 return;

15 end procedure;

(b) submitBid Transition

Figure 6.1: PlusCal Code for an Auction Contract

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 74

1. Identity I1 deploys a new auction contract. The auction enters the Init state.

2. I2 submits an initial bid of 2 tokens and is recorded as the highest bidder. The auction
enters the Open state.

3. I3 submits a new bid of 4 tokens. The auction sends 2 tokens back to I2 as a refund,
since they are no longer the highest bidder.

4. I2 reacts by throwing an exception. This propagates back to the auction contract (due
to the use of transfer) and the current transition is aborted. I3’s bid is lost.

5. No additional bids are submitted before I1 moves to close the auction and I2 is declared
the winner.

Here, I2 is able to hijack the auction and prevent itself from being supplanted as the highest
bidder, rigging the results of the auction.

p1 is also violated if we use call rather than transfer, again because of an issue in
refunding a previous bidder. TLC identified the following scenario leading to a violation in
6 seconds on our test system.

1. Identity I1 deploys a new auction contract. The auction enters the Init state.

2. I2 submits an initial bid of 2 tokens and is recorded as the highest bidder. The auction
enters the Open state.

3. I3 submits a new bid of 3 tokens. The auction sends 2 tokens to I2 as a refund.

4. I2 responds to the receipt of tokens by submitting a new bid of its own, with a value
of 4 tokens, creating a reentrant invocation of the submitBid transition.

5. The auction accepts I2’s bid, sets HighestBidder to I2 and HighestBid to 4.

6. Control returns to the parent transition, which has just completed its send. It updates
HighestBidder to I3 and HighestBid to 3, accounting for I3’s bid but overwriting I2’s
bid.

7. No further bids arrive. The auction reaches the Closed state.

Here, we see that contract re-entrancy, an issue best known for its exploitation by ma-
licious actors, can also lead to undesirable outcomes for well-intentioned actors. One could
easily imagine a developer seeking to create a contract that submits a bid on her behalf in
reaction to having just been displaced as an auction’s winner, possibly to implement some
bidding strategy, yet that would go awry in this implementation.

To address either of these bugs, the contract author could instead store a Quartz Map[Identity,

Uint] tracking pending refunds that is updated when a newly winning bid is submitted. A
previous bidder must invoke a separate transition to ask the contract to send her a refund,

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 75

decoupling this from bidding. This is a well-known design pattern in Solidity [35], although
it is prone to its own re-entrancy issues, which Quartz can also identify through its verifica-
tion. Say we modify submitBid accordingly and add the following transition to allow bidders
to claim refunds once the seller has redeemed their winnings:

refund: redeemed -> redeemed

requires [Balances[sender] > 0] {

send Balances[sender] to sender

Balances[sender] = 0

}

Consider the following new invariant for the auction:

p2 : balance ≥ 0

This states that the contract’s balance cannot go negative, i.e., it cannot dispense more
tokens than it receives. While this is impossible for a contract running on the Ethereum
blockchain, negative contract balances are within the search space defined by Quartz for
model checking because they can usefully indicate a contract’s vulnerability to unbounded
token withdrawals. Indeed, if Quartz is configured to model behavior of token sends using
call, model checking finds a violation in 15 seconds. Again, the model checker’s output
presents an execution trace in terms of the contract’s TLA+ specification which can be
abstracted into the following trace against the contract’s original state machine:

1. Identity I1 deploys a new auction contract.

2. I2 submits an initial bid of 1 token. The auction enters the Open state with balance

= 1.

3. I3 submits a new bid of 4 tokens, hence balance = 5.

4. No subsequent bids are submitted before the deadline, and I1 moves to close the
auction. The auction enters the Closed state.

5. I1 invokes the redeem transition, receiving its winnings. Now, balance = 1 and the
auction enters the Redeemed state.

6. I2 invokes the refund transition and is sent the 1 token recorded in Balances[I2].
Now, balance = 0.

7. In reaction to this receipt of tokens, I2 makes a reentrant invocation of refund. Balances[sender]
has not yet been updated in the parent transition, so the child transition’s guard is
satisfied.

8. Another send of 1 token to I2 is attempted, and balance = -1, violating the invariant.

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 76

This execution trace illustrates the fundamental vulnerability behind the famous compro-
mise of the DAO contract [26]. The usual advice to Solidity developers is to set a temporary
variable to the amount of tokens to send, then subtract from the appropriate contract field
before executing a send referencing the temporary variable. Quartz offers an alternative
sendAndConsume construct that will generate such code.

Model Checking ERC-1540

Quartz is useful not just for identifying subtle consequences of a contract’s execution seman-
tics, but also for identifying more routine logic errors that occur during the development pro-
cess. Unlike our auction contract, which we initially developed as a litmus test for Quartz ’s
ability to surface reentrancy and exception issues, we drafted an initial implementation of
ERC-1540 after Quartz was fairly mature, chose an invariant to verify, and used Quartz to
refine the contract.

ERC-1540 is a proposed Ethereum standard interface for an asset management contract.
Among other capabilities, it allows an owner to sell shares, issue dividends, or transfer control
of the asset, all of which is tracked on the blockchain. Investors issue transactions against
the contract to buy and sell shares. The Quartz implementation of ERC-1540 is considerably
more complex than the auction seen previously. It uses five states and 16 transitions. The
portion of the state machine relevant for the following discussion is shown in Figure 6.2.

Unissuedowner = sender

Issued

numShares: Uint,
numShares > 0
sender = owner

Shares[owner] = numShares
TotalShares = numShares

Shares[sender] = TotalShares

owner = sender

newOwner: Identity
sender = owner

owner = newOwner

Figure 6.2: Part of a State Machine for ERC-1540

When the contract is initialized, its creator is recognized as the asset’s owner. It begins
in the Unissued state, meaning there are no outstanding shares. If this is the case, the
owner is free to transfer possession of the asset to another party, as shown in the transition
at the top of Figure 6.2. The owner may choose to move the asset to the Issued state by
enacting the release of a fixed number of shares. The contract features additional transitions
to exchange shares not shown in the figure. If any single party accumulates all outstanding

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 77

shares, they are allowed to declare themselves as the new owner and convert the asset back
to the Unissued state.

We tested our initial version of the contract by verifying the following invariant.

p3 : sum(Shares) = TotalShares (6.1)

That is, we wanted to verify that all of the asset’s shares are properly conserved as they
change hands.

After generating a TLA+ specification and running it through TLC, we were informed
that many of the contract’s states, Including Issued were not reachable. This was because we
failed to properly initialize the contract’s owner field in the state machine’s initial transition.
We were also able to uncover an error in our arithmetic when transferring shares.

More interestingly, we initially forgot to update the asset’s shares when an entity con-
verts it from Issued to Unissued. Initially, we simply reassigned the owner field to
the transition’s sender as shown in the figure, forgetting to zero out TotalShares and
Shares[Sender]. This enables the following trace, identified by TLC when given a Quartz -
generated contract spec and simplified for brevity:

1. I1 deploys a new ERC-1540 contract and is recorded as the owner.

2. I1 issues 2 shares for the asset, initially owning both of them. The asset enters the
Issued state, and we have TotalShares = 2 and Shares[I1] = 2.

3. I1 converts the asset back Unissued.

4. I1 transfers ownership to I2.

5. I2 decides to issue 3 shares for the asset, all initially assigned to itself. In the tran-
sition body, we set Shares[I2] = 3 and TotalShares = 3. However, we still have
Shares[I1] = 2. Thus, sum(Shares) 6= TotalShares.

The solution is to add two lines to the transition from Issued to Unissued, Shares[sender]
= 0 and TotalShares = 0, to properly reflect the fact that the asset no longer has shares.
Because ERC-1540 is more complex than the auction above, model checking takes longer.
This trace was produced after TLC ran for 4 minutes on our test workstation, while the arith-
metic error in share transfers required 27 minutes to find. Running times of this magnitude
are not atypical for model checking.

6.6 Related Work: Contract Analysis

Given the potentially high stakes of deploying smart contracts in production, it is no sur-
prise that there is considerable interest in developing systematic and reliable methods of
surfacing and patching contract vulnerabilities. There have been several one-off efforts to
verify the properties of a specific contract [13, 71], but a number of more general tools have

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 78

been developed in both industry and academia to facilitate contract verification. Here, we
summarize the research efforts behind these tools.

Tools for Manual Proof Construction

One class of contract analysis tool is meant to assist developers in constructing manual
proofs of correctness. These follow in the tradition of computational proof assistants like
Coq1 or Isabelle2 and often require familiarity with these systems and their use. An early
version of the Scilla language [85] focused on translation from contract source code to a Coq
formalization, which the contract’s author can then use to construct proofs by hand, e.g.
an inductive proof of a safety property over execution traces. Solidity* [12] is a tool that
translates Solidity code into F*, a functional programming language and associated proof
assistant developed by Microsoft. An author runs her contract through Solidity* and then
manually builds proofs relying on the generated F* as a formal description of the contract’s
behavior. With either of these approaches, building a proof can be labor intensive. Moreover,
each proof establishes a single property for a single contract. New proofs are needed when
considering additional properties, the same property in the context of a different contract,
or even the same property after modifying a contract’s implementation.

Automated Tools

A second class of software tools require little intervention on the part of the user, but tend
to be less powerful as a result. Two of the most common techniques are symbolic execution,
usually of a contract’s EVM bytecode [62, 65, 69, 74] and static analysis of the contract’s
AST [93]. These tools offer fully automated analysis, but they are largely restricted to
identifying a fixed collection of generic vulnerabilities. Zeus [58] is a tool to convert a
Solidity contract into LLVM bytecode for model checking. Securify [96] analyzes EVM
bytecode to extract control flow and data flow graphs. It then verifies contract properties
written in a datalog-based DSL, although these properties are intended to be generalized
across many contracts rather than customized to a specific contract as in Quartz .

VerX [79] is a verification tool for Ethereum contracts that uses predicate abstraction
and symbolic execution of EVM bytecode. Like Quartz , it offers automated verification
of contract-specific properties, written in a variant of linear temporal logic. This makes
VerX arguably the most comparable analysis tool to Quartz . However, VerX makes the
assumption that all of the contracts it analyzes are effectively callback free [43], meaning
it cannot model how something like a token send may disrupt a contract, either through
reentrancy or exceptions. Quartz does not have this restriction, meaning it can find violations
to properties p1 and p2 discussed in Section 6.5 that VerX cannot.

1https://coq.inria.fr/
2https://isabelle.in.tum.de/

https://coq.inria.fr/
https://isabelle.in.tum.de/

CHAPTER 6. TRANSLATION TO TLA+ AND VALIDATION 79

6.7 Summary

In this Chapter, we made our proposed strategy of applying model checking to contract state
machines concrete. We presented the details and associated challenges of translating a Quartz
state machine to a TLA+ specification. This translation proceeds without any intervention
on the part of the contract author, sparing her the burden of formalizing logic and execution
semantics that normally serves as an impediment to the use of model checking in practice.
Additionally, we demonstrated the system’s ability to identify contract flaws through two
examples drawn from our set of case study contracts. We saw that Quartz -supported model
checking can identify problems stemming from both logic errors and subtleties in contract
control flow. In the following chapter, we will examine the second translation path, targeting
Solidity.

80

Chapter 7

Translation to Solidity

Quartz features a second translation path, targeting Solidity, to produce contract imple-
mentations suitable for deployment on any Ethereum-based blockchain. We chose Solidity
because it is the de facto standard contract programming language for Ethereum, currently
the most widely used platform for smart contracts. It presents a paradigm for contract de-
velopment that is very similar to object-oriented programming, meaning several constructs
in the Quartz DSL have direct equivalents in Solidity.

Quartz does not target Ethereum Virtual Machine (EVM) bytecode directly for several
reasons. The process of generating high-level Solidity code shares many similarities with
the PlusCal generation described in Chapter 6, allowing Quartz to use similar logic in both
translation paths. Solidity is more human readable than EVM bytecode, which means a
contract author may easily inspect an auto-generated implementation if she chooses to.
Finally, there is an ongoing effort within the Ethereum community to replace the original
EVM with a new virtual machine based on WebAssembly.1 By targeting Solidity, Quartz
remains agnostic to this potential change.

7.1 Data Types

The data types for state machine fields and transition parameters in Quartz each correspond
to a type in Solidity, shown in Table 7.1. Arithmetic and logical operations on these data
types also have direct equivalents in Solidity, as does assignment. Every user-defined struct
in the Quartz source is translated to a similar struct definition in Solidity, with each field
of the struct translated to its analogous type in Solidity. Each of the Quartz contract’s
field definitions are similarly translated, including structs. The generated Solidity contract
is augmented with a number of extra fields that are not explicitly represented in the original
Quartz source code. Most importantly, an enumerated type is generated to represent the
possible states of the contract, and a field of this type is used to track the contract’s current

1https://github.com/ewasm/design

https://github.com/ewasm/design

CHAPTER 7. TRANSLATION TO SOLIDITY 81

state. Finally, additional fields may be needed to track authorization information for state
transitions, described in detail below.

Quartz Type Solidity Type
Int int

Timestamp uint

Timespan uint

Bool bool

Identity address

Sequence Array
Map mapping

Struct struct

HashValue bytes32

Table 7.1: Mapping Between Quartz and Solidity Types

One data type of note is Sequence, translated as a Solidity array. As discussed below,
Sequence types play an important role in transition authorization checks. Recall from Figure
4.2 that Sequence instances support operations like accessing individual elements, appending
a new element to the end, and removing all entries. They also support element membership
checks through the in and not in operators.

There is no Solidity data type that efficiently supports all of these operations. A Solidity
array supports fast random access, appending, and clearing elements. However, checking
for membership requires a potentially inefficient linear traversal of the array. A Solidity
mapping, where the key type is the element type of the original Quartz sequence and the
value type is a placeholder such as bool, makes membership checks very efficient and also
supports easy addition and removal of elements. However, unlike associative data structures
in traditional programming languages, a Solidity mapping does not enable enumeration of
its elements, so there is no way to efficiently traverse the data structure. This has given rise
to design patterns such as the iterable mapping library,2 where a struct combining an array
and mapping represents a data type supporting efficient membership checks and traversal.

This situation involves a number of tradeoffs. The iterable mapping pattern, with both
an array and mapping, trades increased storage for reduced computation, as no loops are
necessary for membership checks. At first glance, gas considerations also make this approach
attractive. Recall that each operation in the execution of a transaction incurs a gas cost
charged to the invoking party. Loops tend to be avoided in Solidity code where possible
because it can be difficult to reason about their prospective gas costs. In the case of a
membership check, the maximum possible gas costs are proportional to the size of the array
in question. An iterable mapping avoids this issue entirely. However, increased storage

2https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol

https://github.com/ethereum/dapp-bin/blob/master/library/iterable_mapping.sol

CHAPTER 7. TRANSLATION TO SOLIDITY 82

also manifests as increased gas costs in two ways. The first, and more obvious, is that
additional bookkeeping operations are required, which incur their own costs. The second
comes from contract creation. A new contract is deployed to the blockchain in a transaction
that initializes all of its fields and charges gas accordingly. More fields mean higher gas costs
for this transaction.

The optimal Solidity representation of a Sequence type therefore depends on how large
the Sequence is likely to become, which tells us how expensive a membership check imple-
mented as a linear traversal is likely to become, and on how frequently membership checks
are likely to occur, which tells us to what extent the higher upfront costs of initializing a
structure like an iterable mapping can be recouped later on through cheaper membership
checks. Obviously, Quartz cannot predict either of these factors from a contract’s state ma-
chine description alone. Instead, it opts to use the simpler array-only representation with
loops for membership checks. As we will show in Section 7.5, this induces reasonable gas
costs under realistic workloads.

Analyzing Token Flows

More recent versions of Solidity require address variables that are the target of a send or
transfer to be explicitly annotated with the payable keyword. One could imagine naively
marking all fields and parameters of type address, as well as array, struct, and mapping
instances with address elements, as payable in the generated Solidity code to circumvent
this requirement. However, this would defeat the purpose of payable as a both a safety
measure and a means of making Solidity code more explicit. Instead, Quartz precisely infers
the occasions in generated code where payable is necessary. This is by a pre-generation AST
traversal to identify all Quartz Identity instances that are targets of a send statement. Each
target, or the array, struct, or mapping that contains the target, is then flagged for payable
annotation during Solidity generation.

7.2 State Transition Logic

The majority of the generated Solidity code is devoted to implementing the state transition
logic specified in the contract’s original Quartz description. Each transition is implemented
as a Solidity function. A high-level template for these functions is shown in Figure 7.1.
Each parameter pi of the original state transition corresponds to a Solidity parameter p̂i
of the appropriate translated data type. The function verifies that the state machine is in
the appropriate starting state and that the transition’s guard, if any, is satisfied. This uses
Solidity’s require keyword, which evaluates a boolean expression and reverts the current
transaction if it is not satisfied.

Next, the Solidity function records approval for the associated state transition by the
caller, i.e., the transition’s invoking party. The transition’s authorization predicate is evalu-
ated, and execution of the transition stops here if the predicate is not satisfied. Authorization

CHAPTER 7. TRANSLATION TO SOLIDITY 83

Transition T = 〈name, src, dest, g, a, P = {p1, . . . , pn} , B = {b1, . . . , bn}〉

function name(p̂1, . . . , p̂n) {

require(current_state == src);
require(g);
Mark sender’s approval of transition with parameters 〈p̂1, . . . , p̂n〉;
if (!a) {

return;

}

b̂1;
...

b̂n;
current_state = dest;

}

Figure 7.1: Structure of a Quartz -Generated Solidity Function

record keeping and verification are described in more detail below. Note that we cannot use
require to check the authorization predicate because we do not want to revert the up-
date to authorization state on the previous line. This corresponds to the evaluation rule
UpdateAuth in Chapter 5, i.e., rule 5.1.

The next portion of the function implementation is only reached if the transition’s guard
and authorization predicate are both satisfied. It consists of Solidity equivalents b̂i for
each statement bi in the original Quartz transition’s body. Assignments to variables are
translated in the expected way while appending to and clearing sequences are accomplished
with Solidity’s push and delete primitives. A Quartz send operation is translated to either a
Solidity transfer or call depending on the user’s preference (recall that the two constructs
take different approaches to transferring gas to the recipient contract). As explained in
Chapter 6, Quartz can model the behavior of either construct.

7.3 Authorization

Recall that each transition in a Quartz contract may contain an authorization predicate
that must be satisfied for the transition to fire. These predicates are written as conjunctions
and disjunctions of terms that come in three possible forms: a stipulation that a specific
Identity i must approve of the transition, a stipulation that any member of a Sequence

of Identity elements must approve, or a stipulation that all members of such a Sequence

must approve of the transition. More than one invocation of the same transition, by different

CHAPTER 7. TRANSLATION TO SOLIDITY 84

parties, may need to occur before the transition fires. Therefore, a generated Solidity contract
must track these prior invocations to evaluate authorization predicates. This raises three
main issues: determining where it is necessary to add state to the Solidity contract to track
prior invocations, determining how to represent this state, and generating code to properly
maintain this state over the lifetime of the contract.

Auxiliary Contract State

Quartz makes an effort to minimize the number of extra fields that are added to a generated
Solidity contract for authorization tracking. It accomplishes this by examining the structure
of each authorization predicate. Predicates composed of just a single term of the forms i
or any(I) as well as disjunctions of these forms can be satisfied with a single invocation.
Therefore, their evaluation does not rely on any persistence of state across multiple transition
invocations. A predicate that contains a term of the form all(I) or a conjunction is only
satisfied after the transition is invoked by multiple parties. In this case, Quartz adds a field
to the Solidity contract for each term in the predicate which records whether or not that
term is satisfied by invocations of the transition so far.

These fields are simplest when a transition has no parameters. For a reference directly
to an identity or an any term, a simple flag is sufficient. For an all term, Quartz emulates
a set data structure (which is not available in Solidity) with a mapping from addresses
to booleans. Parameterized transitions require an additional layer of indirection. Recall
that an entity’s approval of a state transition is specific to a set of value assignments for
the transition’s parameters. Quartz generates Solidity code to concatenate and then hash
parameter values when performing an authorization check. Identity references and any terms
require a mapping from the bytes32 type (the output of Solidity’s built-in hash functions)
to booleans, while all terms require a nested mapping from bytes32 to address to boolean.

Maintaining Authorization State

Each Solidity function that implements a state transition with an authorization predicate
contains logic to update and to check authorization state after the transition’s guard and
before its body. If the transition is parameterized, the parameter values are concatenated
and hashed to enable parameter-specific updates and lookup. If the predicate is complex
enough to require authorization fields, a conditional is generated for each of the predicate’s
terms to determine if the invoking party is relevant to the term and, if so, to update its
corresponding authorization field. This involves a simple equality check for identity terms
and a sequence membership check for any and all terms. Because any and all terms
reference a Quartz sequence of identity elements, the efficiency of these membership checks
depends on our choice of representation for sequence instances, as discussed above.

Next, a single conditional is used to evaluate the transition’s authorization predicate and
to return if it is not satisfied. Otherwise, execution reaches the transition’s body statements
and evaluates them in order. At the conclusion of the Solidity function, after the contract is

CHAPTER 7. TRANSLATION TO SOLIDITY 85

updated to reflect the fact that it is now in the transition’s destination state, authorization
state for this transition and combination of parameter values is cleared. This is to ensure
that any future attempts to execute the same transition with the same parameters (e.g., i the
state machine returns to the transitions’ source state) requires reauthorization to proceed.

Membership checks for Quartz ’s authorization checks (or evaluation of the in and not in

operators) require loops. To simplify both the Solidity generation process and the code that
it produces, these operations are implemented within contract-private functions. Quartz
then only needs to generate calls to these functions within state transition functions and
add implementations of these functions at the end of the contract. Solidity does not offer
parametric polymorphism (like, e.g., Java’s generics), so one membership check function is
generated for each unique element type among the contract’s sequence instances.

7.4 Example

Figure 7.1 shows the complete Solidity code generated from the Quartz state machine de-
picted in Figure 4.6. Fields are declared on lines 9–15. Only lines 9 and 10 correspond to
fields from the original Quartz state machine, while lines 12–15 declare fields used to track
transition authorization. The names of these authorization variables contain the name of the
relevant transition, the name of the variable referenced by the corresponding authorization
term, and a numerical index to avoid field name collisions where an authorization predicate
refers to the same identity or identity sequence in multiple terms.

Lines 17, 23, 31, 40, 54, and 64 declare functions to emulate state transitions speci-
fied in the original Quartz source code. The contract’s constructor is a special case and
corresponds to the state machine’s initial transition. The remaining functions follow the
structure described above: a check that the emulated machine is in the proper starting
state, authorization updates and checks, body statements, and finally the transition to the
destination state. Note the differences in structure between the addSigner function, emu-
lating a state transition with an authorization predicate consisting of a single any term, and
the declareOpen function, which emulates a state transition with an authorization predicate
requiring multiple invocations to be satisfied.

Finally, lines 77, 86, and 96 define internal utility functions that are used to perform mem-
bership checks and authorization checks. They perform linear traversals of array variables,
checking if an element is present in an array or mapping instance. While not particularly
complex, these functions serve to simplify the state transition functions defined above. The
two allApproved functions are used to perform authorization checks for state transition
functions without and with parameters, respectively.

CHAPTER 7. TRANSLATION TO SOLIDITY 86

1 pragma solidity >=0.5.7;

2

3 contract MultiSig {

4 enum State {

5 config ,

6 open ,

7 closed

8 }

9 address payable public Owner;

10 address [] public Signers;

11 State public __currentState;

12 mapping(address => bool) private

__declareOpen_Signers_0Approved;

13 mapping(bytes32 => mapping(address => bool)) private

__pay_Signers_0Approved;

14 mapping(address => bool) private __close_Signers_0Approved;

15 mapping(bytes32 => mapping(address => bool)) private

__refund_Signers_0Approved;

16

17 constructor () public {

18 __currentState = State.config;

19 Owner = msg.sender;

20 Signers.push(msg.sender);

21 }

22

23 function addSigner(address newSigner) public {

24 require(__currentState == State.config);

25 if (! sequenceContains(Signers , msg.sender)) {

26 return;

27 }

28 Signers.push(newSigner);

29 }

30

31 function declareOpen () public {

32 require(__currentState == State.config);

33 require(sequenceContains(Signers , msg.sender));

34 __declareOpen_Signers_0Approved[msg.sender] = true;

35 if (! allApproved(Signers ,

__declareOpen_Signers_0Approved , 0)) {

36 return;

37 }

38 __currentState = State.open;

39 }

CHAPTER 7. TRANSLATION TO SOLIDITY 87

40 function pay(address payable recipient , int amount) public

{

41 require(__currentState == State.open);

42 require(amount > 0);

43 require(sequenceContains(Signers , msg.sender));

44 __pay_Signers_0Approved[keccak256(abi.encodePacked(

recipient , amount))][msg.sender] = true;

45 if (! allApproved(Signers , __pay_Signers_0Approved ,

keccak256(abi.encodePacked(recipient , amount)))) {

46 return;

47 }

48 recipient.transfer(uint(amount));

49 for (uint i = 0; i < Signers.length; i++) {

50 __pay_Signers_0Approved[keccak256(abi.encodePacked(

recipient , amount))][Signers[i]] = false;

51 }

52 }

53

54 function close() public {

55 require(__currentState == State.open);

56 require(sequenceContains(Signers , msg.sender));

57 __close_Signers_0Approved[msg.sender] = true;

58 if (! allApproved(Signers , __close_Signers_0Approved , 0)

) {

59 return;

60 }

61 __currentState = State.closed;

62 }

63

64 function refund(int amount) public {

65 require(__currentState == State.closed);

66 require(amount > 0);

67 require(sequenceContains(Signers , msg.sender));

68 __refund_Signers_0Approved[keccak256(abi.encodePacked(

amount))][msg.sender] = true;

69 if (! allApproved(Signers , __refund_Signers_0Approved ,

keccak256(abi.encodePacked(amount)))) {

70 return;

71 }

72 Owner.transfer(uint(amount));

73 for (uint i = 0; i < Signers.length; i++) {

74 __refund_Signers_0Approved[keccak256(abi.

encodePacked(amount))][Signers[i]] = false;

75 }

76 }

CHAPTER 7. TRANSLATION TO SOLIDITY 88

77 function sequenceContains(address [] storage sequence ,

address element) private view returns (bool) {

78 for (uint i = 0; i < sequence.length; i++) {

79 if (sequence[i] == element) {

80 return true;

81 }

82 }

83 return false;

84 }

85

86 function allApproved(address [] storage approvers , mapping(

address => bool) storage approvals))

87 private view returns (bool) {

88 for (uint i = 0; i < approvers.length; i++) {

89 if (! approvals[approvers[i]]) {

90 return false;

91 }

92 }

93 return true;

94 }

95

96 function allApproved(address [] storage approvers ,mapping(

bytes32 => mapping(address => bool)) storage approvals ,

bytes32 paramHash) private view returns (bool) {

97 for (uint i = 0; i < approvers.length; i++) {

98 if (! approvals[paramHash][approvers[i]]) {

99 return false;

100 }

101 }

102 return true;

103 }

104 }

Figure 7.1: Generated Solidity Code for a Multi-Signature Wallet

CHAPTER 7. TRANSLATION TO SOLIDITY 89

7.5 Execution Overhead

Finally, we measured the execution efficiency of Solidity contracts generated from Quartz
descriptions and those of equivalent handwritten Solidity contracts. The handwritten con-
tracts are the same as those described in Section 4.4, meaning they are adapted from existing
codebases when available and simplified if necessary, e.g., by removing extra getter functions,
to form a fair comparison.

Execution of Ethereum contracts is metered by gas, a cost assigned to each virtual ma-
chine operation, to ensure termination and discourage unnecessarily expensive contract code.
It is therefore natural to measure a contract’s execution efficiency by the gas it consumes.
To accomplish this, we deployed both generated and handwritten versions of all case study
contracts to a small private blockchain backed by nodes hosted on Amazon EC2 virtual
machines. All members of the network ran Geth version 1.8.26 and used Geth’s Clique
proof-of-authority consensus mechanism. This allowed us to configure the network to use a
fixed gasPrice. As a result, the gas cost of a particular workload is deterministic and re-
producible. It does not fluctuate with network load as it would in a proof-of-work Ethereum
network.

We wrote a contract client script for each case study using Python’s Web3 library. Each
script deploys the generated and handwritten versions of Solidity code, invokes an equivalent
sequence of transactions against both versions, and tallies all gas costs. For example, the
script for the Auction case study initializes each contract and submits the same sequence
of bids to both. The results of these measurements are shown in Figure 7.2. Each case
study is represented along the x axis by a pair of bars. The number above each pair is the
ratio of total gas costs for the generated Solidity code to total gas costs for the handwritten
equivalent.

Gas costs for Quartz -generated Solidity contracts are competitive with those of hand-
written contracts. While the overhead is 53% for the simple ERC-1630 contract, for more
substantial contracts it never exceeds 20%. Interestingly, there are some case studies where
the generated contract actually has lower gas costs than the handwritten equivalent. Upon
further investigation, we found that this was usually due to Quartz ’s use of fewer, simpler
data structures in its generated code. This typically gave the generated contract a cheaper
constructor and, for some case studies, cheaper transactions when operating on a smaller
body of state.

The multi-signature wallets are a good example. The handwritten wallets are based on
a design used in production by Parity [78] and OpenZeppelin [77] where approvals by desig-
nated signers are tracked with both a Solidity mapping instance, to emulate a set and thus
enable fast membership checks, and a Solidity array to allow iteration over all signers. This
design avoids loops in the critical path but also requires bookkeeping to manage both the
mapping and array. Quartz takes the simpler approach of using an array of signers and loops
to check if enough signers have approved a transaction. This makes the Quartz wallets’ con-
structors cheaper (there are fewer fields and less bytecode) and makes transactions cheaper
when the total number of signers is small. The advantage of the Quartz wallets decreases

CHAPTER 7. TRANSLATION TO SOLIDITY 90

Auct
ion

Crow
dfu

nd
ing DAO

Dyn
am

icM
ult

iSig

ER
C12

02
Sim

ple

ER
C12

02
Weig

hte
d

ER
C15

40

ER
C16

30

ER
C18

50
ER

C20

ER
C72

1

ER
C78

0
RPS

Sh
ipp

ing

Sim
ple

Mult
iSig

Sta
tic

Mult
iSig

0

1

2

3

4

To
ta

l G
as

1e6

1.20
1.05

1.02

0.86

0.99

1.02

1.15

1.53

1.01

1.09
0.85

1.10
0.91

0.99

0.91
0.82

Gas Costs for Same Workload
Generated
Handwritten

Figure 7.2: Gas costs when executing equivalent generated and handwritten Solidity code

under workloads with more signers.
The disadvantage of the Quartz approach is its use of loops, which means gas costs for

wallet transactions grow with the number of signers. The advantage, however, is that the
code generated by Quartz is flexible, because it must accommodate any valid sequence of
Quartz operations against the group of signers and authorization checks against it, i.e., it
cannot exploit domain knowledge and optimize based on assumptions of how authorized
signers are added or removed over time.

7.6 Summary

This chapter completes the discussion of our approach, covering its second translation path
from contract state machine written in Quartz to Solidity. It establishes two important
results. First, it is feasible to seamlessly generate complete contract implementations from
a simpler state machine description, meaning a contract author can work and reason within
Quartz ’s programming model and still run their contracts on Ethereum-based blockchains.
Second, this chapter quantified the cost of operating at this higher level of abstraction.. We
saw that the gas costs when executing a workload against a Quartz -generated contract was
never more than 1.53× the cost of the same workload run against a handwritten equivalent.

Next, we present a promising direction of future work that extends the current application
of model checking to cover economic notions of contract correctness before concluding.

[:

91

Chapter 8

Incentive-Based Analysis

In this chapter, we present preliminary ideas and results around extending the approach
to contract verification described thus far to include economic elements, which stand to
improve the model checking process by guiding its search. We first motivate these ideas,
provide results for simple contracts intended to serve as minimal working examples, and
finally look ahead to next steps.

8.1 Incentive-Aware Contract Verification

Blockchains bring economic considerations to the fore of software design. Consensus algo-
rithms like proof of work and proof of stake are engineered specifically to ensure that each
participant’s most profitable course of action is to engage honestly with one another, e.g., to
reject invalid blocks and to share knowledge of new blocks with one another. Smart contracts
inherit this perspective. A contract’s users are expected to act strictly in their own interests
to whatever extent the contract’s code permits. This focus on economically informed design
is part of what distinguishes blockchains and contracts from previous distributed systems.

As a result, there is a notion of contract correctness that relies on a consideration of
user incentives rather than a purely mechanical analysis of contract code as this thesis has
presented thus far. Specifically, even when a contract may permit a user to invoke a particular
transformation (or, for a Quartz contract, a state transition), that user may have no incentive
to do so, particularly if the execution of a transaction on the underlying blockchain incurs a
cost for its sender. As a result, certain code paths may be reachable from a purely semantic
perspective, but they are not viable from an economic perspective.

We can account for this perspective when model checking a smart contract. Recall that
we can view model checking as a graph search problem: each node in the graph represents a
particular contract state, while edges correspond to execution steps that move the contract
from one state to another. A path in this graph corresponds to an execution trace. Normally,
Quartz ’s model checking fully traverses this graph, considering all possible actions permitted
by contract code. However, if we were to augment the model checker’s search logic to ignore

CHAPTER 8. INCENTIVE-BASED ANALYSIS 92

cases where a user’s action would be against her own self interest, we can prune the search
space, traversing only a subgraph of economically viable execution traces.

This type of analysis can identify two situations that are important to contract authors
as they check their code for correctness:

1. Desirable execution traces that are never traversed because they correspond to a se-
quence of transactions with at least one instance of a user taking an economically
unfavorable action.

2. Undesirable execution traces (e.g., a user exploits a reentrancy bug) that can be safely
ignored because there is no incentive for users to exploit them.

Under normal model checking, the former case can be seen as a false negative where there is
a problem with the contract that goes overlooked, specifically a case where desired forward
progress is lost because the contract reaches a state where no user has an incentive to invoke
a transaction to advance it any further. The latter case can be seen as a false positive where
model checking identifies a bug that cannot be viably exploited.

The notion of an economically guided search is a natural fit for the blockchain and smart
contract domain, but it is an idea that has also been well explored in prior work. Classical
artificial intelligence offers a number of search algorithms such as A* and greedy breadth-
first search that are guided by heuristics which attempt to predict the potential value of
future actions, often in the context of a game setting. Another well-known approach is
the minimax algorithm, where each participant in a game works backwards from the its end
states to determine which of their actions will guide the game to the most favorable outcome.

8.2 Preliminary Results

As an initial proof of concept, we explored two potential techniques that account for user
incentives when analyzing contract behavior. We performed experiments on minimal working
example contracts defined using Quartz . These example contracts are designed to be as
simple as possible while still inducing situations where an economically informed analysis of
behavior differs from a purely semantic analysis. While they may not resemble fully formed
use cases like the contracts we presented in Chapter 3, they are meant to resemble portions
of larger contracts that may actually arise in practice.

Rather than implementing a new model checker, we chose instead to emulate what an
incentive-based search process would achieve by post-processing the contract execution graph
that is generated by Quartz ’s existing model checking workflow. We configured the TLC
model checker to output its search graph as a DOT file, a common format for representing
graph structures as text. We then built Python scripts to parse these files and to apply the
techniques described below.

CHAPTER8.INCENTIVE-BASEDANALYSIS93

PruningImmediatelyUnfavorableUserActions

ConsidertheQuartzcontractinFigures8.1and8.2,whichrespectivelyrepresentastate
machineandQuartzcodeimplementingatwo-playergame.Whileitissimple,thisgameis
designedtoresemblerealcontractsdeployedontheEthereum[9].Thecontractimplements
aguessinggamewhichgoesthroughthefollowingsequenceofsteps:

1.Thecontract’screator,ortheowner,initializesthecontractwithastakeofvirtual
currency,adesignatedplayer,andahashvalue,producedfromtheconcatenationof
theowner’schosennumberandanonce.Thisformsacommitmentscheme,i.e.,the
ownerhasboundherselftoherchosennumberwithoutrevealingit.

2.Next,theplayersubmitsherownstakeofvirtualcurrencyandaguessattheowner’s
chosenvalue.

3.Finally,theownerrevealsherchosenvalueanddeclarestheoutcomeofthegame.Ifthe
playerguessedtheowner’soriginalvalue,sheisthewinnerandreceivethecontract’s
balanceofcurrencyasareward.Otherwise,theownerwinsandreceivesthesefunds.

Initialized

Player:Identity
hashVal:HashValue[Int,Int]
tokens:Uint
Owner=sender
Balance=tokens
OwnerHash=hashVal

Submitted

OwnerWin

PlayerWin

tokens:Uint,
guess:Uint
sender==Player
tokens==Balance
PlayerGuess=guess
Balance=Balance+tokens

sender==Owner
nonce:Uint
value:Uint
hash(nonce,value)==OwnerHash
value6=PlayerGuess
sendBalancetoOwner

sender==Owner
nonce:Uint
value:Uint
hash(nonce,value)==OwnerHash
value==PlayerGuess
sendBalancetoPlayer

Figure8.1:ASimpleTwo-PlayerGame–StateMachineRepresentation

Theflawinthisdesignisthattheowneristheonlypartywhocanfinishthegameby
revealingheroriginalchoiceofnumber,yetshewouldonlyhaveanincentivetodothis
ifsheknewshewouldbethegame’swinner.Theownercanseetheplayer’sguessand

C==:>

----------- ---C-.......,.......==>)• t

c===:>

CHAPTER 8. INCENTIVE-BASED ANALYSIS 94

1 contract SimpleGame {

2 data {

3 OwnerHash: HashValue[Uint , Uint]

4 PlayerGuess: Uint

5 Owner: Identity

6 Player: Identity

7 Balance: Uint

8 }

9

10 init: ->(tokens: Uint , hVal: HashValue[Uint , Uint], pl: Identity

) initialized {

11 OwnerHash = hVal

12 Owner = sender

13 Player = pl

14 Balance = tokens

15 }

16

17 submitGuess: initialized ->(tokens: Uint , guess: Uint) submitted

18 authorized [Player]

19 requires [tokens == Balance] {

20 PlayerGuess = guess

21 Balance = Balance + tokens

22 }

23

24 revealValueOwnerWin: submitted ->(actualValue: Uint , nonce: Uint

) ownerWin

25 authorized [Owner]

26 requires [hash(actualValue , nonce) == OwnerHash && PlayerGuess

!= actualValue] {

27 send Balance to Owner

28 }

29

30 revealValuePlayerWin: submitted ->(actualValue: Uint) playerWin

31 authorized [Owner]

32 requires [hash(actualValue) == OwnerHash && PlayerGuess ==

actualValue] {

33 send Balance to Player

34 }

35 }

Figure 8.2: A Simple Two-Player Game – Quartz Implementation

CHAPTER 8. INCENTIVE-BASED ANALYSIS 95

therefore will know the game’s outcome ahead of time. If she sees that revealing her choice
can only trigger a loss, she may instead choose to do nothing, leaving the contract stuck in
its submitted state with its balance of virtual currency frozen in place.

Even if the contract’s author tried to use a commitment scheme for the player’s guess
as well as the owner’s original number, one of the two parties must reveal first, inducing an
asymmetry of knowledge where the other party now knows the game’s only possible outcome
and can behave accordingly. This stems from two aspects of smart contract execution. First,
there is no notion of simultaneous action where players choose actions at the same time.
Transactions are initiated by a single party and occur in a specific order. Second, contract
users are never obligated to perform an action. They may simply choose to do nothing,
leaving the contract stuck in its current state.

How might model checking surface this problem? One simple approach is to verify that
all of the machine’s states, as defined in the Quartz contract, are reachable when users avoid
actions they can immediately identify as unfavorable. To emulate this kind of reasoning, we
perform a breadth-first search over the graph produced by TLC for the Quartz code given in
Figure 8.2. To model user incentives, we define a utility function of the form U : S×N → R,
where S is the set of possible contract states and N is a set containing its users. In other
words, we assign each contract state a score specific to each of its users.

As a simple starting point, we can simply say that a state has utility 1 for a player when
they have won the guessing game, -1 for a player when they have lost the guessing game,
and 0 otherwise:

U(s, n) =

1 if s.state = PlayerWin ∧ n = Player

−1 if s.state = OwnerWin ∧ n = Player

1 if s.state = OwnerWin ∧ n = Owner

−1 if s.state = PlayerWin ∧ n = Owner

0 otherwise

(8.1)

The breadth-first search traversal is defined mostly as expected, with the additional ele-
ment of checking for a non-negative change in utility before traversing an edge. Pseudocode
for the traversal is shown in Figure 8.3. It assumes an adjacency-list representation of the
model checker’s execution graph, A, a root node r, and a utility function of the structure
defined above, U . It simply returns the set of nodes seen during the traversal. We imple-
mented this algorithm in Python, along with code to parse graphs produced by the TLC
model checker. When applied to the graph for the two-player game defined in 8.2, we observe
that the traversal never reaches the PlayerWins state, as expected. All edges in the graph
corresponding to instances where the owner would reveal their choice and confirm their own
loss would correspond to a decrease in utility for the owner.

CHAPTER 8. INCENTIVE-BASED ANALYSIS 96

BFS-Incentive(A, r, U)

1 visited = {r}
2 Let Q be a new queue
3 Q .push(r)
4 while Q . length > 0
5 current = Q .pop()
6 sender = current .sender
7 for each neighbor ∈ A[current]
8 if neighbor 6∈ visited ∧ U (neighbor , sender)− U (current , sender) ≥ 0
9 visited = visited ∪ {neighbor}

10 Q .push(neighbor)
11 return visited

Figure 8.3: A Simple Breadth-First Search with Utility-Based Pruning

Pruning Unfavorable Execution Paths

Assuming that contract users only look one step ahead offers a simple starting point but
is not very realistic. There are other cases when a contract’s design may include similar
flaws, where no eligible user has an incentive to advance the contract’s state, but where
that user has to deduce the results of multiple actions in sequence to reach this conclusion.
Here, we can draw inspiration from the minimax algorithm from classical AI to similarly
prune the model checking search space. Rather than pruning only user actions that result
in an immediate decrease to utility, we prune actions that unfavorably constrain potential
outcomes. In other words, we ignore actions where user works against her own interest by
setting the contract on a course where all outcomes are unfavorable.

Consider a modified version of the two-player game initially defined above where instead
of revealing and declaring the game’s outcome in one step, the game contract’s “owner”
reveals her choice of number in a standalone step, and then any user is free to declare the
game’s outcome. This alternative is shown as a state machine in Figure 8.4. This contract
is functionally equivalent to the original game contract, but it represents a variant of the
game that a real contract author may implement in practice. It motivates an approach to
incentive analysis that is robust to these kinds of variations and therefore needs to look more
than one action ahead in its search space pruning decisions.

The flaw in this design is quite similar to that of the previous contract, but only becomes
known when considering sequences of actions. Once the contract is in the Submitted state,
we have the same asymmetry of information as before: the owner already knows the outcome
of the game when the player does not and can therefore choose never to trigger the transition
to the Revealed state. This transition does not induce an immediate decrease in utility for

CHAPTER8.INCENTIVE-BASEDANALYSIS97

Initialized

Player:Identity
hashVal:HashValue[Int,Int]
tokens:Uint
Owner=sender
Balance=tokens
OwnerHash=hashVal

Submitted

Revealed

OwnerWinPlayerWin

tokens:Uint
guess:Uint
sender==Player
tokens==Balance
PlayerGuess=guess
Balance=Balance+tokens

sender==Owner
nonce:Uint
value:Uint
hash(nonce,value)==OwnerHash
OwnerValue=value

OwnerValue==PlayerGuess
sendBalancetoPlayer

OwnerValue6=PlayerGuess
sendBalancetoOwner

Figure8.4:AnAlternativeVersionoftheTwo-PlayerGuessingGame

theowner,butratheritmayconstrainherprospectstobeentirelyunfavorable.Iftheowner
revealsthatheroriginallychosennumbermatchestheplayer’sguess,thenonlytheplayer
wouldbenefitfromthisaction.

Wecanaddressthisbycomputing,foreachnodeinthemodelchecker’sgraph,thesetof
utilityvaluesforterminalstatesthatarereachablefromthatnode.Aterminalstate,inthis
context,isanodewithnooutgoingedges,whichindicatestheendofcontractexecution.
Thiscanbeaccomplishedwithadepth-firsttraversal,definedinFigure8.5.Ittakesas
parametersasetofnodesN,anadjacencylistA,asetofidentitiesI,rootnoderatwhich
tostartthesearch,andautilityfunctionUoftheformU:N×I→R.

Onceagain,weimplementedaprototypeofthisapproachinPython.Wegeneratedan

~c==:>

t

CHAPTER 8. INCENTIVE-BASED ANALYSIS 98

execution graph for a Quartz contract that is equivalent to the state machine shown in Figure
8.4 and then post-processed this graph with the Dfs-Utility algorithm of Figure 8.5. We
were successful in pruning unfavorable paths, but also identified several shortcomings that
motivate future work.

DFS-Utility(N,A, I, r, U)

1 for each n ∈ N
2 n.visited = false
3 for each i ∈ I
4 n.utilities [i] = ∅
5 Visit(r , A, I , U)

Visit(n,A, I, U)

1 n.visited = true
2 if A[n] == ∅
3 for each i ∈ I
4 n.utilities [i] = {U(n, i)}
5 else
6 for each neighbor ∈ A[n]
7 if !neighbor .visited
8 Visit(neighbor , A, I , U)
9 for each i ∈ I

10 n.utilities [i] = n.utilities [i] ∪ neighbor .utilities [i]

Figure 8.5: A Depth-First Graph Traversal to Compute Node Utilities

8.3 Fixing Economic Flaws

We have seen how a failure to account for user incentives in contract design can lead to a
loss of forward progress. How does a contract author address this issue? One of the most
straightforward approaches is to create an explicit incentive for all parties involved to run
a contract to its completion. This can be achieved by asking users to put down an initial
security deposit. For example, in the two-player game discussed above, the contract’s owner
initializes the contract with a deposit of virtual currency (on top of the wager that is paid
out to the game’s winner), and the second player makes a similar deposit when she submits
her guess. The two players may recover their deposits only once the game has reached its
conclusion. If we were to perform an economically informed search of the contract’s execution

CHAPTER 8. INCENTIVE-BASED ANALYSIS 99

graph, we would find that even when a player must take an action that will cause her to lose
the game, the loss of the wager is outweighed by the potential loss of deposit (assuming this
deposit is large enough), meaning this action would not be pruned.

8.4 Future Work

In this section, we discuss ideas for following up this initial exploration of incentive-based
contract analysis with more substantial work that could eventually be incorporated into
Quartz .

Directly Incorporating Incentives into Model Checking To push these ideas further,
we will need to change our approach to Quartz ’s model checking, potentially by altering the
structure of its generated TLA+ graphs to make them more amenable to incentive analysis
or by incorporating some of the pruning logic described above directly into the search logic.
First, we need to address shortcomings surfaced by our Python prototype for pruning unfa-
vorable execution paths. Currently, our approach to model checking produces a search graph
that makes it easy to verify safety properties, which are state-oriented, rather than liveness
properties, which are path-oriented. This creates difficulties when we want to a perform
similarly path-oriented incentive analysis.

One example is the need for more intelligence concerning exceptions. The way in which
we have specified a contract’s behavior around exceptions in Quartz ’s auto-generated TLA+

means that there are paths in the model checking search graph where the contract’s state
machine transitions from state s to state t, an exception is thrown during a transfer of funds
in t’s body, and the contract reverts to s. A naive traversal of the execution graph then
surmises that state s is reachable from state t and that utility calculations should reflect
this, when in reality this is meant to reflect control flow rather than an element of the
contract’s permanent state and transaction history.

Tracking Flows Virtual Currency One clear need is the ability to automatically account
for the movement of cryptocurrency into and out of a contract when tracing its execution.
Payment (or loss) of virtual currency is an explicit incentive (or disincentive) for blockchain
users that is often used to ensure the integrity of a contract’s proceedings. Tracking currency
flows would allow Quartz to reason about a wider range of situations. For example, the
established design pattern in the Solidity community is to construct contracts such that
users must manually invoke a transaction to withdraw any funds they are owed. [35] Strictly
speaking, a recipient of funds could throw an exception to disrupt their own refund, but
this would prevent movement of currency from the contract into their account, which is
presumably counter to their own interests, meaning this scenario could be pruned from the
search space.

Contract authors are also interested in verifying properties concerning currency flows.
For example, a contract is written with the goal of ensuring that currency is conserved,

CHAPTER 8. INCENTIVE-BASED ANALYSIS 100

i.e., all currency that flows into a contract is eventually paid out to users. Model checking
could examine all terminal contract states to ensure there are no residual funds “trapped”
in the contract’s possession. Similarly, a common contract design pattern to ensure forward
progress is to require all parties to place an initial deposit of currency that is held by
the contract and only returned when its proceedings have completed. One could imagine
redesigning the two-player guessing game given above by requiring the contract owner to
place such a deposit on initialization. Quartz could then automatically validate this approach
by checking that the owner always has incentive to reveal her guess, whether by the winner’s
profits or avoiding loss of her deposit.

Interface for Contract Authors While currency flows are an obvious and explicit in-
centive, a contract may involve implicit incentives that are specific to its particular use case.
For example, a vendor in a supply chain contract does not want to see that contract reach
some state indicating they will have to pay a cost assessed out of band (independently of
the blockchain). Incentive analysis will require input from the contract author that defines
these implicit incentives. We alluded to one potential approach above: the contract author
defines a utility function on the contract’s state and users. Integrating this into Quartz
would involve expanding its domain-specific language so that a contract state machine can
be accompanied by such a definition. This would involve its own set of considerations around
language design and the appropriate primitives for this task.

8.5 Summary

Here, we have seen how an approach to contract verification that relies on model checking,
which determines correctness through a purely mechanical treatment of contract logic, can
be naturally extended to incorporate economic reasoning. This lends further credence to
our choice of model checking as the primary verification technique underlying our approach.
Model checking offers automated analysis, the flexibility to verify arbitrary invariants, and
the potential to assess contract behavior within the incentive-focused environment that char-
acterizes blockchains. In the next, and last, chapter, we summarize our results and enumerate
other directions for future work.

101

Chapter 9

Conclusion

In this chapter, we summarize results, list some of the important lessons learned from this
work, propose future directions that address existing shortcomings or new issues raised by
Quartz , and offer concluding remarks on the future potential of our proposed approach as
the blockchain space continues to evolve.

9.1 Results

This thesis offers a methodology for the implementation and systematic testing of smart
contracts, enabling an engineering workflow in which contracts are iteratively improved and
validated before final deployment and consumption by end users. Our approach is organized
around a domain-specific language in which contracts are defined as finite-state machines
and a verification backend leveraging model checking. We have designed this language based
on the insights gleaned from a survey of 16 case study smart contracts. These are assembled
from a variety of sources including standardized contracts, use cases featured in related
work on contract verification, and real contracts on the Ethereum blockchain that were
compromised due to flaws in their implementations. Each of these case studies also serves
as an evaluation benchmark.

We put this methodology into practice through Quartz , a prototype system complete
with a contract description language and translation paths that enable verification through
model checking and generation of a deployment-ready implementation. The construction
of this language and its translators is informed by formal definitions of a state machine’s
structure and execution on a blockchain. Quartz is able to express all 16 contracts included
in our case study set. Additionally, Quartz contracts are reasonably concise. Logic- and
arithmetic-heavy contracts are on par in length to Solidity equivalents, while contracts with
sophisticated authorization logic or specifically defined lifecycles tend to be shorter than
Solidity equivalents. As in many other settings, operating at a higher level of abstraction
can reduce execution efficiency, naturally quantified in the blockchain setting as transaction
gas costs. For our case study settings, we find that a Quartz contract consumes at most about

CHAPTER 9. CONCLUSION 102

1.5× the gas of an equivalent handwritten in Solidity, and that gas costs are competitive
between the two types of contracts overall.

Model checking proves to be an effective means of elucidating contract flaws. We are
able to translate state machine descriptions written in Quartz to TLA+ specifications that
allow verification of invariants in light of both the state machine’s logic and the control-flow
issues inherent in blockchain-based execution. For example, Quartz identifies an occasion
where the proceedings of an auction are compromised due to an unanticipated transfer of
control to an external party, and it identifies a case where a contract fails to properly track
ownership of a finite supply of virtual shares due to a logic error. Finally, our approach offers
interesting prospects for future work in which we can integrate an analysis of user incentives
directly into the model checker’s search logic.

9.2 Lessons Learned

Here, we discuss some of main ideas learned in the course of this work.

Simplifying Implementation and Analysis Using a state machine-based DSL allows
us to confront two challenges at once: giving more structure to contract definitions to sim-
plify their implementation, and constraining the behavior of these contracts compared to
those written in general-purpose languages to facilitate their verification. Under our design,
these two goals reinforce one another. There are a number of other areas where domain
specific languages may be able to play a similar role of streamlining development while also
supporting the construction of ancillary tools for tasks like debugging, formal analysis, and
linting, such as defining machine learning and data processing pipelines.

The Different Roles of Language Translation The translation from Quartz code to a
Solidity implementation is fairly traditional in that it is primarily concerned with equivalence
and efficiency, i.e., that it produces Solidity code that faithfully recreates the semantics of
the original state machine and that is not significantly more verbose or less performant
than handwritten Solidity. The TLA+ translation is slightly different in that it embeds
the functionality of the original state machine into a formal specification that also captures
the blockchain’s execution semantics. Expressing these semantics in TLA+ is feasible but
does have challenges, such as accurately modeling exceptions, which motivates the idea of
eliminating the system’s reliance on TLA+ described below.

The Value of Model Checking A search-based approach to contract verification like
model checking has multiple benefits. First, it is a good fit for validating contract code
against the non-deterministic events that characterize execution on a blockchain - arbitrary
transition ordering, different possible responses by the recipient contract when a transfer of
Ether occurs, etc. Most systems based around alternative techniques for contract verification
do not fully account for this non-determinism, ignoring important issues like reentrancy.

CHAPTER 9. CONCLUSION 103

Second, as described in Chapter 8, the graph produced by the model checker doubles as a
sort of game tree, making it natural to analyze execution paths from an economic standpoint.

9.3 Future Directions

Quartz lays a foundation for authoring and analyzing smart contracts, but there is much
still to be done in this space. Below, we offer a few potential areas where Quartz could be
extended or improved.

More Complete Evaluation Arguably the most prominent gap in the work presented
here is that it does not constitute a full empirical validation of the approach. The same set of
case studies is used as the basis for Quartz ’s design as well as for its evaluation. We still need
to assess how well our approach generalizes to contracts outside of this sample. Additionally,
while our simplified contract description language is intended to be less error-prone and
easier for developers to learn and effectively use, these claims need to be substantiated with
experimental evidence.

There are two potential ways to address these concerns. First, we can perform a user
study in which one pool of subjects are taught Solidity while a second pool are taught
about Quartz . Then, each participant must implement equivalent contracts in her assigned
language. Several measurements could come out of this process such as the total amount
of time required to complete a contract or the number of errors contained in each user’s
final implementation. These measurements would quantify concepts such as ease of use and
developer error rates when working in Solidity versus in Quartz . This experiment could then
be extended to incorporate a validation or testing element in which we compare techniques
from prior work for finding bugs in Solidity contracts to Quartz and its testing methodology
grounded in model checking.

Second, we can offer Quartz to practicing contract developers for use in the field. We
can then study how well Quartz is applied to implementation tasks we did not originally
anticipate through our case studies. From this, we can observe issues like the ease or the
extent of Quartz ’s adoption and any shortcomings in its contract description language. One
particularly important outcome of this work is greater insight into the utility of Quartz ’s
contract validation process. Can contract developers determine a fruitful set of properties to
verify? In other words, how much of an impediment is Quartz ’s expectation that its users
must identify the properties that are likely to surface contract flaws?

Eliminating the Need for TLA+ Currently, a Quartz contract must be translated
to TLA+ for model checking. While this allowed us to more quickly develop an end-to-
end system, it makes the correctness of this system reliant on the accuracy of our TLA+

translation. However, it would be possible to avoid this translation entirely and instead
search potential execution paths by operating directly on the abstract syntax tree parsed
from the original contract. This would be akin to abstract interpretation as it would directly

CHAPTER 9. CONCLUSION 104

implement and evaluate Quartz ’s operational semantics. However, execution would remain
organized around a loop in which any state transition may be invoked by any user, much
like the existing approach based around TLA+, and thus would involve a search space of
potential execution paths as in model checking.

Continuing to Explore Incentive-Based Analysis We presented a preliminary explo-
ration of this idea in Chapter 8. If we were to eliminate Quartz ’s reliance on TLA+ as
described above, it would have the added benefit of allowing us to incorporate incentive-
based reasoning directly into the search process. As described earlier, this kind of reasoning
might exclude paths in which a user must act against her own self-interest to identify issues
with contract liveness.

Proving Correctness of the Implementation Generation By translating Quartz to
Solidity, we avoid committing the system to any particular bytecode representation. This
is important given Ethereum’s expected transition from the EVM bytecode to a restricted
dialect of WebAssembly. Under our current approach, Quartz need only change compilers
to accommodate this change. However, we could also choose to bypass Solidity and generate
EVM bytecode directly. Then, given that we have formally defined semantics for both Quartz
and for EVM bytecode [98], we could prove the correctness of our bytecode generation by
establishing an isomorphism between evaluation of each Quartz construct and the evaluation
of the equivalent body of bytecode generated by our translator.

Targeting Additional Blockchains Ethereum is not the only blockchain that supports
smart contracts. There are several other platforms that seek to serve this need, most notably
Hyperledger Fabric. It would be interesting to build translators that produce contract imple-
mentations suitable for these alternative platforms. We could then make the argument that
a higher-level contract description language like Quartz also offers the benefit of portability
across blockchains.

Enabling Multi-Contract Applications Currently, Quartz is restrictive in that it only
permits the development, analysis, and deployment of individual, monolithic contracts. How-
ever, blockchain applications can be built from the composition of multiple independent
contracts. Therefore, it would be valuable to extend Quartz to support the development
of contract groups, each still defined as a state machine, but analyzed together where we
account for situations in which one state machine is able to invoke another.

9.4 Final Remarks

What are the long-term prospects of blockchain technology and smart contracts? At this
point, it is still too early to say. While the initial hype has arguably diminished, blockchains

CHAPTER 9. CONCLUSION 105

remain an active area of research and development, and the conventional wisdom around their
design and use continues to evolve. Since Quartz was initially conceived, a number of changes
have already begun to occur in the blockchain space. For example, Ethereum is working
towards a new public blockchain implementation [32] that replaces proof of work with proof of
stake and the custom Ethereum virtual machine with a new runtime based on WebAssembly,
which already has well-established compiler toolchains that can accommodate a variety of
high-level source languages like C++ and Rust. Similarly, Hyperledger’s Fabric [6] project
has focused on permissioned blockchains and offers a runtime that supports contracts written
in several traditional programming languages.

There is also growing interest in using a blockchain in a more judicious manner by separat-
ing the execution of contract transactions from the consensus protocol, avoiding an approach
like Ethereum’s in which the two are coupled. Instead, the blockchain stores only crypto-
graphically signed and auditable transaction receipts that record the results of transaction
execution. Several systems have adopted this approach such as Oasis (formerly Ekiden) [22],
Hyperledger Avalon [64], and Algorand [41,68]. This line of inquiry is also pushing the field
towards contracts written in general-purpose, high-level programming languages rather than
contract-specific programming languages like Solidity.

This shift alters the considerations for a system like Quartz but does not eliminate its
value. While traditional languages have far better tooling for compilation, debugging, and
verification than contract languages, they do not replace a more simplified framework based
on state machines as offered by Quartz . However, this would require us to revisit our choice
of target implementation language, as neither Solidity nor EVM bytecode would be obvious
candidates. Instead, we would need to identify a target language that is well supported by
blockchain platforms and amenable to a proof of equivalence with Quartz ’s formal semantics.

Blockchains have generated renewed interest in distributed systems that offer crypto-
graphically auditable and tamper-resistant data storage. However, it is important to dis-
tinguish these capabilities from those of decentralization and strict enforcement of rules on
state updates, as enforced by smart contracts. Systems built on top of cryptographic prim-
itives [4, 42] can achieve auditability and tamper-resistance without relying on fully fledged
blockchains and the scalability issues they currently bring with them. Work is ongoing to
make blockchains more scalable, [39, 59, 89] but the extent to which true decentralization is
required or desirable across a broad array of applications remains to be seen.

What is clear is that smart contracts are crucial to the blockchain vision. This work
is intended neither as an endorsement nor critique of that vision, but rather a step in the
collective effort to weigh the merits and limitations of smart contracts in practice. We have
explored the value of adopting a more constrained programming model to facilitate both
expression and analysis of smart contracts. Quartz ’s use of model checking was inspired by
this technique’s effective application to systems like distributed cache coherence protocols
and device drivers, where correctness is prized and the system may be faced with arbitrary
sequences of events. Our hope is that Quartz may similarly inspire future work as the
blockchain space continues to mature.

106

Bibliography

[1] Abdulla, P. A., Jonsson, B., Nilsson, M., and Saksena, M. A survey of regular
model checking. In CONCUR 2004 - Concurrency Theory (Berlin, Heidelberg, 2004),
P. Gardner and N. Yoshida, Eds., Springer Berlin Heidelberg, pp. 35–48.

[2] Aeternity. The sophia language. https://github.com/aeternity/aesophia/blob/
lima/docs/sophia.md, 2020.

[3] Andersen, M. P., Kolb, J., Chen, K., Fierro, G., Culler, D. E., and Popa,
R. A. Wave: A decentralized authorization system for iot via blockchain smart con-
tracts. Tech. Rep. UCB/EECS-2017-234, EECS Department, University of California,
Berkeley, Dec 2017.

[4] Andersen, M. P., Kumar, S., AbdelBaky, M., Fierro, G., Kolb, J., Kim,
H.-S., Culler, D. E., and Popa, R. A. WAVE: A decentralized authorization
framework with transitive delegation. In 28th USENIX Security Symposium (USENIX
Security 19) (Aug. 2019), pp. 1375–1392.

[5] Andrews, T., Qadeer, S., Rajamani, S. K., Rehof, J., and Xie, Y. Zing: A
model checker for concurrent software. In International Conference on Computer Aided
Verification (2004), Springer, pp. 484–487.

[6] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,
De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Mu-
ralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith, K.,
Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S., and Yel-
lick, J. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference (2018), EuroSys
’18, ACM, pp. 30:1–30:15.

[7] Atzei, N., Bartoletti, M., and Cimoli, T. A survey of attacks on ethereum smart
contracts. In Principles of Security and Trust, vol. 10204 of Lecture Notes in Computer
Science. Springer, 2017, pp. 164–186.

[8] Atzei, N., Bartoletti, M., and Cimoli, T. A survey of attacks on ethereum smart
contracts. In Principles of Security and Trust, vol. 10204 of Lecture Notes in Computer
Science. Springer, 2017, pp. 164–186.

https://github.com/aeternity/aesophia/blob/lima/docs/sophia.md
https://github.com/aeternity/aesophia/blob/lima/docs/sophia.md

BIBLIOGRAPHY 107

[9] Bartoletti, M., and Pompianu, L. An Empirical Analysis of Smart Contracts:
Platforms, Applications, and Design Patterns. In Financial Cryptography and Data
Security (2017), Springer, pp. 494–509.

[10] Bayer, D., Haber, S., and Stornetta, W. S. Improving the efficiency and
reliability of digital time-stamping. In Sequences II. Springer, 1993, pp. 329–334.

[11] Ben-Ari, M. A primer on model checking. ACM Inroads 1, 1 (Mar. 2010), 40–47.

[12] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A.,
Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T.,
Swamy, N., and Zanella-Béguelin, S. Formal Verification of Smart Contracts:
Short Paper. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security (2016), PLAS ’16, ACM, pp. 91–96.

[13] Bigi, G., Bracciali, A., Meacci, G., and Tuosto, E. Validation of decentralised
smart contracts through game theory and formal methods. In Programming Languages
with Applications to Biology and Security. Springer, 2015, pp. 142–161.

[14] Biryukov, A., Khovratovich, D., and Tikhomirov, S. Findel: Secure Derivative
Contracts for Ethereum. In Financial Cryptography and Data Security (2017), Springer,
pp. 453–467.

[15] Black, M., and Cai, T. ERC-1850 hashed time-locked principal contract. https:

//github.com/ethereum/EIPs/pull/1850, 2019.

[16] Black, M., and Liu, T. ERC-1630 hashed time-locked contracts. https://github.
com/ethereum/EIPs/issues/1631, 2018.

[17] Blackshear, S., Cheng, E., Dill, D. L., Gao, V., Maurer, B., Nowacki, T.,
Pott, A., Qadeer, S., Russi, D., Sezer, S., Zakian, T., and Zhou, R. Move:
A Language With Programmable Resources. https://developers.libra.org/docs/

assets/papers/libra-move-a-language-with-programmable-resources.pdf,
2020.

[18] Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., and
Wang, Q. Formal verification of infinite-state BIP models. In International Symposium
on Automated Technology for Verification and Analysis (2015), Springer, pp. 326–343.

[19] Buterin, V. A Next-Generation Smart Contract and Decentralized Application Plat-
form. https://github.com/ethereum/wiki/wiki/White-Paper, 2014.

[20] Cachin, C., and Vukolic, M. Blockchain Consensus Protocols in the Wild. ArXiv
(7 2017).

https://github.com/ethereum/EIPs/pull/1850
https://github.com/ethereum/EIPs/pull/1850
https://github.com/ethereum/EIPs/issues/1631
https://github.com/ethereum/EIPs/issues/1631
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://github.com/ethereum/wiki/wiki/White-Paper

BIBLIOGRAPHY 108

[21] Chandra, S., Richards, B., and Larus, J. R. Teapot: A domain-specific language
for writing cache coherence protocols. IEEE Transactions on Software Engineering 25,
3 (1999), 317–333.

[22] Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels,
A., Miller, A., and Song, D. Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts. In 2019 IEEE European Symposium on
Security and Privacy (EuroS P) (2019), pp. 185–200.

[23] Coblenz, M. Obsidian: A Safer Blockchain Programming Language. In Proceedings of
the 39th International Conference on Software Engineering Companion (2017), ICSE-C
’17, ACM, pp. 97–99.

[24] Coblenz, M. J., Aldrich, J., Sunshine, J., and Myers, B. A. User-Centered
Design of Permissions, Typestate, and Ownership in the Obsidian Blockchain Language.
In HCI for Blockchain: Studying, Designing, Critiquing and Envisioning Distributed
Ledger Technologies Workshop at CHI 2018 (2018), ACM.

[25] DappHub. dapp.tools. http://dapp.tools/, 2020.

[26] del Castillo, M. The DAO Attacked: Code Issue Leads
to $60 Million Ether Theft. https://www.coindesk.com/

dao-attacked-code-issue-leads-60-million-ether-theft, 2016.

[27] Delmolino, K., Arnett, M., Kosba, A., Miller, A., and Shi, E. Step by step
towards creating a safe smart contract: Lessons and insights from a cryptocurrency
lab. In International Conference on Financial Cryptography and Data Security (2016),
Springer, pp. 79–94.

[28] Desai, A., Gupta, V., Jackson, E., Qadeer, S., Rajamani, S., and Zufferey,
D. P: Safe asynchronous event-driven programming. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation (New
York, NY, USA, 2013), PLDI ’13, ACM, pp. 321–332.

[29] Dill, D. L., Drexler, A. J., Hu, A. J., and Yang, C. H. Protocol verification as
a hardware design aid. In IEEE International Conference on Computer Design: VLSI
in Computers and Processors (1992), vol. 92, pp. 522–525.

[30] Embark Labs. Embark. https://framework.embarklabs.io/, 2020.

[31] Entriken, W., Shirley, D., Evans, J., and Sachs, N. ERC-721 non-fungible
token standard. https://eips.ethereum.org/EIPS/eip-721, 2018.

[32] Ethereum Foundation. Ethereum 2.0 (eth2). https://ethereum.org/en/eth2.

[33] Ethereum Foundation. Serpent. https://github.com/ethereum/serpent, 2017.

http://dapp.tools/
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft
https://framework.embarklabs.io/
https://eips.ethereum.org/EIPS/eip-721
https://ethereum.org/en/eth2
https://github.com/ethereum/serpent

BIBLIOGRAPHY 109

[34] Ethereum Foundation. Common Patterns. http://solidity.readthedocs.io/

en/v0.4.24/common-patterns.html, 2018.

[35] Ethereum Foundation. Common patterns – solidity documentation. https://

solidity.readthedocs.io/en/latest/common-patterns.html, 2019.

[36] Ethereum Foundation. Solidity. https://solidity.readthedocs.io/en/

latest/, 2019.

[37] Ethereum Foundation. Vyper. https://github.com/ethereum/vyper, 2019.

[38] Ethereum Foundation. Solidity by example: Simple open auction. https:

//solidity.readthedocs.io/en/v0.6.6/solidity-by-example.html, 2020.

[39] Eyal, I., Gencer, A. E., Sirer, E. G., and Renesse, R. V. Bitcoin-NG: A Scal-
able Blockchain Protocol. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16) (2016), Usenix, pp. 45–59.

[40] Frantz, C. K., and Nowostawski, M. From Institutions to Code: Towards Auto-
mated Generation of Smart Contracts. In 2016 IEEE First International Workshops on
Foundations and Applications of Self* Systems (FAS*W) (9 2016), IEEE, pp. 210–215.

[41] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. Algo-
rand: Scaling Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), SOSP ’17, ACM, pp. 51–68.

[42] Google. Certificate transparency. https://www.certificate-transparency.org/,
2020.

[43] Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky,
N., Sagiv, M., and Zohar, Y. Online detection of effectively callback free objects
with applications to smart contracts. Proc. ACM Program. Lang. 2, POPL (Dec. 2017),
48:1–48:28.

[44] Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. A. The seahorn
verification framework. In Computer Aided Verification (Cham, 2015), D. Kroening and
C. S. Păsăreanu, Eds., Springer International Publishing, pp. 343–361.

[45] Haber, S., and Stornetta, W. S. How to Time-Stamp a Digital Document. In
Conference on the Theory and Application of Cryptography (1990), Springer, pp. 437–
455.

[46] Haber, S., and Stornetta, W. S. Secure Names for Bit-Strings. In Proceedings
of the 4th ACM Conference on Computer and Communications Security (1997), ACM,
pp. 28–35.

http://solidity.readthedocs.io/en/v0.4.24/common-patterns.html
http://solidity.readthedocs.io/en/v0.4.24/common-patterns.html
https://solidity.readthedocs.io/en/latest/common-patterns.html
https://solidity.readthedocs.io/en/latest/common-patterns.html
https://solidity.readthedocs.io/en/latest/
https://solidity.readthedocs.io/en/latest/
https://github.com/ethereum/vyper
https://solidity.readthedocs.io/en/v0.6.6/solidity-by-example.html
https://solidity.readthedocs.io/en/v0.6.6/solidity-by-example.html
https://www.certificate-transparency.org/

BIBLIOGRAPHY 110

[47] Hashfuture Inc. Etherescan: ERC-1540 contract. https://etherscan.io/

address/0x565b7bd8056322f96dac28345245aead44f24ff2#code, 2018.

[48] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G. Software verifica-
tion with BLAST. In Model Checking Software (Berlin, Heidelberg, 2003), T. Ball and
S. K. Rajamani, Eds., Springer Berlin Heidelberg, pp. 235–239.

[49] Herlihy, M. Atomic cross-chain swaps. In Proceedings of the 2018 ACM symposium
on principles of distributed computing (2018), pp. 245–254.

[50] Herlihy, M. Blockchains From a Distributed Computing Perspective. https://cs.

brown.edu/courses/csci2952-a/papers/perspective.pdf, 2018.

[51] Hertig, A. Ethereum’s Two Ethereums Explained. https://www.coindesk.com/

ethereum-classic-explained-blockchain, 2016.

[52] Hirai, Y. Bamboo: A Morphing Smart Contract Language. https://github.com/

pirapira/bamboo, 2018.

[53] Holzmann, G. J. The model checker SPIN. IEEE Transactions on Software Engi-
neering 23, 5 (1997), 279–295.

[54] IETF. Transmission control protocol: DARPA internet program protocol specification.
https://tools.ietf.org/html/rfc793, 1981.

[55] IOHK Foundation. Plutus introduction. https://cardanodocs.com/technical/

plutus/introduction, 2018.

[56] IOHK Foundation. Marlowe: A contract language for the financial world. https:

//testnets.cardano.org/en/marlowe/, 2020.

[57] Jiang, A., Jia, Y., Ren, Y., and Dong, J. ERC-1540 asset token standard.
https://github.com/ethereum/EIPs/pull/1540, 2018.

[58] Kalra, S., Goel, S., Dhawan, M., and Sharma, S. Zeus: Analyzing safety of
smart contracts. In 25th Annual Network and Distributed System Security Symposium,
NDSS (2018), pp. 18–21.

[59] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and
Ford, B. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding. In
2018 IEEE Symposium on Security and Privacy (SP) (2018), pp. 583–598.

[60] Kolb, J., AbdelBaky, M., Katz, R. H., and Culler, D. E. Core concepts,
challenges, and future directions in blockchain: A centralized tutorial. ACM Comput.
Surv. 53, 1 (Feb. 2020).

https://etherscan.io/address/0x565b7bd8056322f96dac28345245aead44f24ff2#code
https://etherscan.io/address/0x565b7bd8056322f96dac28345245aead44f24ff2#code
https://cs.brown.edu/courses/csci2952-a/papers/perspective.pdf
https://cs.brown.edu/courses/csci2952-a/papers/perspective.pdf
https://www.coindesk.com/ethereum-classic-explained-blockchain
https://www.coindesk.com/ethereum-classic-explained-blockchain
https://github.com/pirapira/bamboo
https://github.com/pirapira/bamboo
https://tools.ietf.org/html/rfc793
https://cardanodocs.com/technical/plutus/introduction
https://cardanodocs.com/technical/plutus/introduction
https://testnets.cardano.org/en/marlowe/
https://testnets.cardano.org/en/marlowe/
https://github.com/ethereum/EIPs/pull/1540

BIBLIOGRAPHY 111

[61] Konnov, I., Kukovec, J., and Tran, T.-H. TLA+ model checking made symbolic.
Proc. ACM Program. Lang. 3, OOPSLA (Oct. 2019), 123:1–123:30.

[62] Krupp, J., and Rossow, C. teether: Gnawing at ethereum to automatically exploit
smart contracts. In 27th {USENIX} Security Symposium ({USENIX} Security 18)
(2018), pp. 1317–1333.

[63] Lamport, L. Specifying Systems: the TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

[64] Linux Foundation. Hyperledger avalon. https://www.hyperledger.org/use/

avalon, 2020.

[65] Luu, L., Chu, D. H., Olickel, H., Saxena, P., and Hobor, A. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (2016), CCS ’16, ACM, pp. 254–269.

[66] Mavridou, A., and Laszka, A. Designing secure ethereum smart contracts: A finite
state machine based approach. In International Conference on Financial Cryptography
and Data Security (2018), Springer, pp. 523–540.

[67] Mavridou, A., Laszka, A., Stachtiari, E., and Dubey, A. Verisolid: Correct-
by-design smart contracts for ethereum. In International Conference on Financial Cryp-
tography and Data Security (2019), Springer, pp. 446–465.

[68] Micali, S. Algorand’s smart contract architecture. https://www.algorand.com/

resources/blog/algorand-smart-contract-architecture, 2020.

[69] Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G., Feist,
J., Brunson, T., and Dinaburg, A. Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts. arxiv 2019. arXiv (2019).

[70] Nakamoto, S. Bitcoin: A Peer–to–Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf, 2009.

[71] Nehai, Z., Piriou, P.-Y., and Daumas, F. Model-checking of smart contracts. In
IEEE International Conference on Blockchain (2018), pp. 980–987.

[72] Newcombe, C. Why amazon chose TLA + . In Abstract State Machines, Alloy, B,
TLA, VDM, and Z (Berlin, Heidelberg, 2014), Y. Ait Ameur and K.-D. Schewe, Eds.,
Springer Berlin Heidelberg, pp. 25–39.

[73] Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., and Hobor, A. Finding the
greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual
Computer Security Applications Conference (2018), ACM, pp. 653–663.

https://www.hyperledger.org/use/avalon
https://www.hyperledger.org/use/avalon
https://www.algorand.com/resources/blog/algorand-smart-contract-architecture
https://www.algorand.com/resources/blog/algorand-smart-contract-architecture
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY 112

[74] Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., and Hobor, A. Finding the
greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual
Computer Security Applications Conference (2018), ACM, pp. 653–663.

[75] Nomic Labs. Buidler. https://buidler.dev/, 2020.

[76] OpenSea, Inc. OpenSea. https://opensea.io, 2020.

[77] OpenZeppelin. OpenZeppelin Contracts. https://github.com/OpenZeppelin/

openzeppelin-contracts, 2020.

[78] Palladino, S. The parity wallet hack explained. https://blog.zeppelin.

solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7, 2017.

[79] Permenev, A., Dimitrov, D., Tsankov, P., Drachsler-Cohen, D., and
Vechev, M. Verx: Safety verification of smart contracts. In 2020 IEEE Symposium
on Security and Privacy (2020), p. 17.

[80] Peyton Jones, S., Eber, J.-M., and Seward, J. Composing contracts: An adven-
ture in financial engineering. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (New York, NY, USA, 2000), ICFP ’00, ACM,
pp. 280–292.

[81] Popejoy, S. The pact smart contract language. https://kadena.io/docs/

Kadena-PactWhitepaper.pdf, 12 2017.

[82] Rust Team. The Rust Programming Language. https://www.rust-lang.org/, 2020.

[83] Schrans, F., Eisenbach, S., and Drossopoulou, S. Writing safe smart contracts
in flint. In Conference Companion of the 2nd International Conference on Art, Sci-
ence, and Engineering of Programming (New York, NY, USA, 2018), Programming’18
Companion, Association for Computing Machinery, p. 218–219.

[84] Sergey, I., and Hobor, A. A concurrent perspective on smart contracts. In Financial
Cryptography and Data Security, vol. 10323 of Lecture Notes in Computer Science.
Springer, 4 2017, pp. 478–493.

[85] Sergey, I., Kumar, A., and Hobor, A. Scilla: a Smart Contract Intermediate-
Level LAnguage. ArXiv (Jan. 2018).

[86] Sergey, I., Kumar, A., and Hobor, A. Temporal properties of smart contracts.
In International Symposium on Leveraging Applications of Formal Methods (2018),
Springer, pp. 323–338.

[87] Sergey, I., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., and Hao,
K. C. G. Safer smart contract programming with scilla. Proceedings of the ACM on
Programming Languages 3, OOPSLA (2019), 1–30.

https://buidler.dev/
https://opensea.io
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://kadena.io/docs/Kadena-PactWhitepaper.pdf
https://kadena.io/docs/Kadena-PactWhitepaper.pdf
https://www.rust-lang.org/

BIBLIOGRAPHY 113

[88] slock.it. DAO. https://github.com/slockit/DAO, 2018.

[89] Sompolinsky, Y., and Zohar, A. PHANTOM, GHOSTDAG: Two Scalable
BlockDAG protocols. IACR Cryptology ePrint Archive (2018).

[90] Szabo, N. Formalizing and securing relationships on public networks. First Monday
2, 9 (1997).

[91] Tezos. The michelson language. https://www.michelson-lang.com/, 2019.

[92] Tezos. Ligo. https://ligolang.org/, 2020.

[93] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R.,
Marchenko, E., and Alexandrov, Y. Smartcheck: Static analysis of ethereum
smart contracts. In Proceedings of the 1st International Workshop on Emerging Trends
in Software Engineering for Blockchain (New York, NY, USA, 2018), WETSEB ’18,
Association for Computing Machinery, p. 9–16.

[94] Torstensson, J. ERC-780 ethereum claims registry. https://github.com/

ethereum/EIPs/issues/780, 2017.

[95] Truffle Blockchain Group. Truffle Blockchain Suite. https://www.

trufflesuite.com/, 2020.

[96] Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F., and
Vechev, M. Securify: Practical Security Analysis of Smart Contracts. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018),
CCS ’18, pp. 67–82.

[97] Vogelstellar, F., and Buterin, V. ERC-20 token standard. https://eips.

ethereum.org/EIPS/eip-20, 2015.

[98] Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger. http:
//gavwood.com/paper.pdf, 2014.

[99] Zhou, Z. V., Botello, E., and Xu, Y. ERC-1202 voting standard. https://eips.
ethereum.org/EIPS/eip-1202, 2018.

https://github.com/slockit/DAO
https://www.michelson-lang.com/
https://ligolang.org/
https://github.com/ethereum/EIPs/issues/780
https://github.com/ethereum/EIPs/issues/780
https://www.trufflesuite.com/
https://www.trufflesuite.com/
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://eips.ethereum.org/EIPS/eip-1202
https://eips.ethereum.org/EIPS/eip-1202

	Contents
	List of Figures
	List of Tables
	Introduction
	Blockchains and Smart Contracts
	The Emergence of Blockchains
	Generalizing Blockchain's Applications with Smart Contracts

	Thesis Question
	Approach and Prototype System
	Contract Development Workflow
	Writing Contracts as Finite State Machines
	Analyzing Contracts with Model Checking

	Thesis Road Map

	Background
	Blockchain as a Distributed Ledger
	Adding Ledger Entries

	Smart Contracts and Ethereum
	Contract Execution
	Programming Smart Contracts
	Example: Blockchain-Hosted Auction

	Contract Vulnerabilities

	Software Testing and Verification
	Explicit Testing
	Model Checking

	Protocol Design and Validation
	State Machines

	Summary
	Revisiting the Thesis Question

	Case Studies
	Selecting Case Studies
	Case Study List

	Common Themes
	Insights on Language Design
	Summary

	System and Language Overview
	System Architecture
	System Implementation

	Contracts as State Machines
	Language Structures
	Language Syntax

	Example Contracts
	Auction
	Multi-Signature Wallet

	Results: Contract Size
	Related Work: State Machine-Based Development and Testing
	Related Work: Contract Programming Languages
	Summary

	Language Formalisms
	State Machine Structure
	Static Contract Validation

	Operational Semantics
	Transition Authorization
	Transition Execution
	Expressions

	Type System
	Summary

	Translation to TLA+ and Validation
	Why Model Checking and TLA+?
	Specification Generation
	Data Types
	Transitions
	Authorization
	Modeling the Environment

	Bounding the Search Space
	Example
	Model Checking Results
	Model Checking an Auction Implementation
	Model Checking ERC-1540

	Related Work: Contract Analysis
	Tools for Manual Proof Construction
	Automated Tools

	Summary

	Translation to Solidity
	Data Types
	Analyzing Token Flows

	State Transition Logic
	Authorization
	Auxiliary Contract State
	Maintaining Authorization State

	Example
	Execution Overhead
	Summary

	Incentive-Based Analysis
	Incentive-Aware Contract Verification
	Preliminary Results
	Pruning Immediately Unfavorable User Actions
	Pruning Unfavorable Execution Paths

	Fixing Economic Flaws
	Future Work
	Summary

	Conclusion
	Results
	Lessons Learned
	Future Directions
	Final Remarks

	Bibliography

