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Abstract

The Design & Implementation of Modular Smart Dust

by

Patrick William Pannuto

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Science

University of California, Berkeley

Associate Professor Prabal K. Dutta, Chair

Advancements across the computing stack now allow the realization of self-contained, sensing,
computing, and communication devices in less than a cubic millimeter of volume—Smart Dust.
Today’s millimeter-scale systems are often one-offs, however. They are built to prove they
can be built or for one particular application, but they are not yet so numerous and diverse to
satisfy the vision of ubiquitous, ambient intelligence. This work aims to identify and address
challenges in the move from tens to tens of millions of Smart Dust computing systems.

The core contribution of this dissertation is bringing modularity to the millimeter-scale
computing class. Much of the rich panoply of conventional systems is driven not by the
diversity of individual chips alone but by the number of different ways in which they can be
synthesized into novel designs. Composition-oriented design of systems is enabled in part by
the interconnect technologies that lie between components. This dissertation identifies the
limitations of extant interconnect technologies for the millimeter-scale computing class and
then designs, implements, and evaluates a new interconnect bus and interconnect protocol
that enables composable Smart Dust systems. As a final contribution, this dissertation shows
how this same interconnect can be leveraged to support key operations for bringup and
deployment of Smart Dust systems, in particular programming and debugging.

Updates and errata to this dissertation can be found at: patpannuto.com/dissertation

https://patpannuto.com/dissertation
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To all the Dreamers and Builders:

Go make something cool.
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Chapter 1

Introduction

This dissertation is about modular design and systems considerations for the constrained
computing platforms known as Smart Dust. The distinguishing features of Smart Dust devices
are that they are both computationally interesting and physically small. Computationally
interesting means a device is in some way intelligent: it senses data about its ambient
environment; it supports arbitrary computation; it offers communication capability. Physically
small for the purposes of this dissertation means a device with a principle node dimension
on the order of a millimeter. Conceived of in the 1990s [1], it took until 2011 to realize the
first fully self-contained device in the cubic millimeter envelope [2]. Today, the question
is no longer how to build any one cubic millimeter computer but rather how to build ten
million of them and how to make them useful. Hence this discussion of modular design. This
dissertation itself is one piece of a much larger whole. The scope of the Michigan Micro Mote
project encompasses several theses [3–7] and dozens of papers and talks [2, 8–17]. These
concepts are the product of an enormous effort by a diverse and talented team.

The core contribution of this dissertation is the systems reasoning for an extensible,
modular design and the corollary architectural insights that enable modular Smart Dust chips
to be deployed ad-hoc. The Smart Dust in Figure 1.1 is set apart by being the first such
devices made entirely of modular, reusable components. Roughly half of the individual chips
are shared across all three designs.

Figure 1.1: Examples of Smart Dust systems. Three millimeter-scale sensing systems
composed using the modularity and system design principles outlined in this dissertation.
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Figure 1.2: Bell’s Law for the birth and death of computer classes. This figure is a
reproduction of the trends identified by Gordon Bell [18, 19]. Summarized, Bell observes
that steady year-over-year technological advancements allow for (1) improved performance at
fixed cost, (2) lower cost for fixed performance, or (3) greater overall capability. Roughly
every decade, however, an amalgamation of advancements come together to allow for (4) a
greater-than-iterative change that result in the creation of a new “class” of computing.

1.1 Classes of Computing

The emergence of Smart Dust is not the first time that a new and different-looking type of
computer has come into the world. In 1975, Ken Olsen and Gordon and Gwen Bell founded
The Computer Museum, a precursor to today’s Computer History Museum [20]. As part of
this process, Gordon Bell began to use the look back as a way to look forward and coined
Bell’s Law for Birth and Death of Computer Classes [18, 19]. Bell’s law, reproduced in
Figure 1.2, groups computational systems into classes based on macroeconomic trends:

A computer class is a set of computers in a particular price range with unique or
similar programming environments ([...]) that support a variety of applications
that communicate with people and/or other systems. (Gordon Bell [18, p. 86])

This grouping into classes shows how progress in underlying technologies manifests in com-
puting devices. In the normal steady-state, extant classes improve iteratively over time.
Approximately every decade, however, the collection of many advancements that allow sys-
tems to ‘do more using less’ allow for the imagining of a new “minimal” class, computing
systems that are an order of magnitude less expensive but are also as or more capable than
their equivalent from the decade before.

This decennial trend is not restricted to economics, however. Figure 1.3 presents a new
corollary to Bell’s law based on physical size. At approximately the same cost, every decade
one can buy a general purpose computing device that is an order of magnitude smaller.
Looking further, while Figure 1.3a looks at the widespread availability of each physical
computing class, Figure 1.3b tries to find the first instances of devices in each class. In each
case, a new widespread physical class is preceded by a first instance in that class around ten
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years earlier. This suggests that there are perhaps two watersheds required to promulgate a
new physical class of computing: the first is the collection of advancements that enable the
first instance of a class, the ‘proof-it-is-possible’; the second is the collection of advancements
required for the new class to be reliable, usable, and economically viable. Today, the Smart
Dust class lies between these two milestones.

(a) Volumetric evolution of classes. (b) Approximate first instances of each class.

Figure 1.3: Corollary to Bell’s Law: Roughly every decade, general-purpose com-
puting grows an order of magnitude smaller. In each case, the new class of computing
is foretold by one or a few instances made a decade earlier, which proves such machines are
possible. This dissertation looks at what is needed to move the millimeter-scale computer
class from possible to prevalent, with an eye towards the even smaller systems to come.

1.2 Smart Dust & COTS Motes

The first major push to develop Smart Dust ran roughly for a decade around the turn of
the century [1]. That project resulted in the miniaturization of many key elements of future
Dust systems including sensor components, micro-actuators, communication frontends, and
microprocessors [21–25]. In parallel to the millimeter-scale push ran a side project looking
into the development of so-called Macro Motes1 [26]. While not the primary focus of the
original Smart Dust project, these motes had perhaps the more significant immediate impact.

Macro motes laid out the basic components of a useful sensing system. Paraphrasing and
slightly updating the original definition: a system must have enough energy to do something
useful for a reasonable amount of time, must have sensors to bridge the digital and physical
world, must have computation capacity to operate intelligently (or at all), and must have
communication faculties able to share its results. By showing that such systems could be
realized at the centimeter-scale, out of readily accessible commercial-off-the-shelf (COTS)
components, the mote computing class was born.

1“Macro” Motes were likely still some of the smallest complete computational sensing systems, but given
the aspirations of the Dust team, all things are relative. Today, we generally call such systems simply “motes.”



CHAPTER 1. INTRODUCTION 4

With the realization of proto-Dust and the first instances of mote-class computing came
the same fundamental call to arms that echoes through this document. Kahn, Katz, and
Pister asked, now that we are capable of building the proof-of-possible for this emergent mote
class of computing, what will be required to go from one to many and to make these many
new mote-computers useful [27, 28]? Hollar coined the term “COTS dust” to describe his
centimeter-scale Macro Motes [26]. Embedded in this name is the revelation that modularity
would not be a challenge for this computing class—it was defined as systems that had all
of the desired functionality of the imagined millimeter-scale systems, but could be realized
immediately via the composition of available compute, sensing, communication, and power
modules. Instead, the need was to “[get] more systems-level researchers interested in this
critical area.”

Today, systems-level research in mote-class computing, i.e. wireless sensor networking
research, is flourishing. As of this writing, the top two subject areas in ACM SIGMOBILE
are “Wireless access networks” and “Mobile networks,” both of which look to solve the
communication, access, and control challenges for portable computational systems. The Inter-
national Conference on Information Processing in Sensor Networks (IPSN) will celebrate its
twentieth anniversary next year, and the Conference on Embedded Networked Sensor Systems
(SenSys) will celebrate its nineteenth year. Key challenges spanning time-synchronization [29],
medium access control [30], low-power design [31], networking [32], and much more have
been addressed and continue be refined. Yet, if we were to try to make millimeter-scale
motes today, we still face the same limitation as the original effort—there is no library of
millimeter-scale modules from which to compose such systems.

1.3 The Case for Modularity

The spectacular success and diversity of today’s centimeter-scale motes, and let us include
much of the “Internet of Things” in this measure, are the evidence of the power of enabling
modular design. On the one hand, there is proof in various successes at the manufacture
of monolithic systems over the years that modular design blocks are not necessary for the
creation of a millimeter-scale system [33]. On the other hand, that fact that such designs
talk in the number of years to make one system rather than the number of unique systems
they can make per year (or month or even day) is the essence of the scale that is missing.
Today, a casual hobbyist can visit a local makerspace and in one afternoon devise, design,
synthesize, test, and deploy a new centimeter-scale device.

This capacity for system-design-time synthesis of complex motes is enabled by the modular
part ecosystem. Consider a radio IC, which encapsulates complex modulation and demodula-
tion operations, precise timing requirements, and sensitive high frequency and analog design
blocks into a stable, re-usable package with a lightweight, high-level interface. A system
integrator can fuse this radio with a microcontroller, camera, and battery on one device
and a microcontroller, screen, and battery on another device to build something new and
quite complex like a virtual window, without requiring rich understanding of the internal



CHAPTER 1. INTRODUCTION 5

workings of any of the constituent pieces. Modular design “increases the range of ‘manageable’
complexity” and “accommodates uncertainty” [34]. Systems do not need to be built from
the ground up every time, and the exact function and operation of a system can be deferred
until system-design-time.

Interconnects and Their Role in Modular Design

Once a system is broken into modular pieces, there must also be something that connects
modules back together into a system. In many cases, this interconnect can come to define a
class of systems. Indeed, the “PC revolution” and the emergence of the PC class at scale is
often defined by the emergence of a wide array of IBM PC compatible clones. To quickly
and economically bring a new machine to market (the IBM PC and later the IBM XT and
IBM PC/AT), IBM designed machines that pieced together generally commercially available
modules. To build a clone then, manufacturers simply had to replicate the interconnect used
to compose commodity hardware pieces.2 The AT interconnect would eventually evolve by
fiat from a pseudo-standard to the sanctioned Industry Standard Architecture (ISA) Bus,
which defined the composition of computers for decades.

Modularity in the System on Chip Era

Despite the success of ISA and its descendants in the design of innumerable computing
systems, today we are seemingly seeing a push back towards integration with the rise of the
System on Chip (SoC) architecture. The integration of multiple modules onto a single die
for fabrication does not, however, mean that the system which happens to be manufactured
into a single physical chip is not modular. SoC designs usually include some form of internal
interconnect network or bus (i.e. ARM’s AMBA) which integrate modular hardware blocks
through a narrow memory bus interface. This memory bus is usually strictly internal to the
SoC, though various peripherals with external I/O capability may hang off this bus. This
design provides encapsulation and strong isolation of the internal modules, but it does so at
the cost of flexibility and composability; it closes off this bus to expansion and integration
beyond the originally envisioned SoC. In Chapter 4, this dissertation will show how we
can extend the system bus metaphor to become a hierarchy of interconnected system buses
between higher-level modules. This allows the preservation of both composability between
fabricated modules and the performance advantage of tight, on-die integration.

2At the time, the real challenge in creating a clone was replicating the Basic Input/Output System (BIOS)
firmware. The original intent for BIOS was to act as a runtime hardware abstraction layer, which meant
that clones had to provide this same interface in order for existing software to run. Accessing hardware
through BIOS proved slow and inefficient compared to directly accessing hardware, however. Through a
combination of performance and compatibility concerns (what is the abstraction layer that sits above the
differing BIOS abstraction layers. . . ), this hardware abstraction moved up into operating systems and their
drivers, relegating BIOS to just the earliest part of the boot process in more modern machines.



CHAPTER 1. INTRODUCTION 6

Figure derived from phone [36] and watch [37] images from iFixit. Figure licensed CC BY-NC-SA. Source available at patpannuto.com/dissertation.

Figure 1.4: Looking inside modern computing devices. Energy storage technologies
are not shrinking at the same rate as computing. As a result, as computing devices get
smaller, a larger proportion of their volume is dedicated to energy storage.

1.4 Energy Constrained Computing

In the halcyon days of early computing systems, the primary focus of system design was
building bigger and better computers that could do more. With the emergence of portable
computers (the suitcase-like precursors to laptops), computing ‘cut the cord.’ Suddenly, it
became possible and reasonable for a computer to no longer be tethered to a wall, and equally
suddenly it became important for these machines to be able to do more with less. The power
draw of a system now determined the lifetime of a system (at this point in history, power
dissipation and resulting thermal management concerns were also on the radar, but not yet a
primary limiting factor for most semiconductor system performance [35]).

Again, there is a corollary available to Bell’s Law. Instead of considering a constant
price in dollars and cents, one can hold constant the energy reserves of a portable machine,
and find that time and its technological improvements allow for more capable machines (i.e.
the steadily improving laptop class). Similarly, one can lower energy rather than lowering
price, and find devices slowly shrinking for about the same capability and the possibility of
sub-class formation (i.e. thinner, lighter laptops and lately the blurry line between these and
tablet computers). Finally, one can lower energy dramatically, and find a new class of device,
with comparatively less compute capability, but new levels of portability and utility (i.e. the
emergence of the smartphone class).

Interestingly, this trend is driven both by the reduction in energy demand of newer
compute technologies as well as the increase in capability of energy storage technologies.
Indeed, battery technology has been improving for centuries, since Alessandro Volta’s first
voltaic pile in 1799. One consequence of this long history, however, is that today the rate of
improvement for energy storage technology is considerably slower than that of computing [38].
As a result of the miniaturization of computing outpacing the miniaturization of energy
storage, it is increasingly becoming the case that the principle dimension of a computing
system is dictated by the energy required to power it, as seen in Figure 1.4.

patpannuto.com/dissertation
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Techniques to Reduce Energy

Smart Dust pushes the limits of today’s capabilities to miniaturize computing. As a result,
these systems no longer adhere to the volume proportionality of current portable computing
systems. The systems in Figure 1.1 are more computer than battery. To operate then, these
systems must use proportionally less energy as well. That is, Smart Dust systems must
develop new energy reduction techniques beyond those used in portable computing today.

Voltage and Frequency Scaling

When a system is active, its power use is dominated by switching power losses. Switching
power draw is proportional to the square of the system voltage and to the system frequency
(i.e. P = C×V 2×f). This relationship drove significant effort into reducing system operating
voltage to, and later below, the threshold voltage of standard CMOS [39]. There is a bound to
the performance gains of voltage scaling, however. As voltage decreases, leakage current grows,
and eventually the gains in switching performance are overcome by this increased leakage [40].
The chips used to compose the Smart Dust systems, as described in this work, reach a core
voltage of 0.6 V, which is near the limit of today’s practical fabrication technologies. While
there is still some headroom, particularly with the advent of lower-threshold low-leakage
transistor technologies, voltage scaling alone is insufficient to reach energy targets.

Somewhat counter-intuitively, low-power systems often aim to increase their operational
frequency (within reason). While increasing frequency increases the instantaneous power
draw of the system, it also allows the system to complete its operation in a shorter window
of time. Ultimately, the goal is to reduce the total energy use—which is the integral of power
over time. The insight here is that in a vacuum, because power is linearly related to frequency,
changing the frequency up or down would have no net change in consumed energy. However,
in real systems there are additional, constant, static overheads. This is the principle that
underlies computational sprinting [41]. Of course, generating very fast clocks is also energy
intensive, which caps the practical benefits of increasing frequency as well. The takeaway
now is that while voltage and frequency scaling both can help, they alone are insufficient to
realize Smart Dust energy budgets.

From Dark Silicon to Pitch Black Silicon

What happens when a system finishes its computational sprint? Systems will shut down
components that are not in active use to save energy. In performance-oriented designs, this
phenomenon where more and more die area is shut down is commonly referred to as “Dark
Silicon” [42]. For these systems, shutting down generally means cutting the clock that feeds
various subsystems or asking components to enter a sleep state to eliminate idle switching
losses. However, these ‘shut down’ component still preserve state and can exhibit static
leakage that proves non-trivial for the energy budget of Smart Dust systems. This is where
the extremely resource constrained Smart Dust class exhibits a new operational paradigm,
which I call pitch black silicon.
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When subsystems are not in use, Smart Dust systems power them off completely. Without
a new support mechanism, this aggressive energy management strategy can sit at odds with
modularity. Components and subsystems must now be freestanding and can no longer rely
on the presence of an always-on, central power management block. For the circuit designer,
this means each module must provide its own custom timing and control signals to manage
cold boot; it also means a new, potentially unique-per-chip, interface to report and control
its power state—how, when, and why does something power on? For the systems designer,
this turns power state into a distributed systems problem—how is one module to know
whether it can safely communicate with another or if it must first power on its target? For
the platform integrator, a series of ad-hoc answers to these questions limits the flexibility
and reusability of components—routing custom power control between modules is no longer
modular design—and impedes abstract, platform-level functionality—how does something
like a brown-out detector quickly reduce system load? Modular design with pitch black silicon
requires that energy and power are managed by the interface that defines module boundaries.

1.5 Thesis Statement

With the introduction of a clockless, “shoot-through” ring topology, it is possible to design
an interconnect that both encompasses the modular design principles that enable system-
design-time composition and respects the resource constraints of millimeter-scale “Smart Dust”
systems; the creation of such an interconnect will accelerate the development of a diversity of
Smart Dust systems and accelerate the actualization of the millimeter-scale computing class.

1.6 Contributions of this Dissertation

This dissertation presents modular design principles, and the development of a new intercon-
nect to support them, for the Smart Dust computing class.

The foundation of this dissertation is MBus. MBus is part of the larger Michigan Micro
Mote (M3) initiative, which aims to build an array of novel micro-scale motes—Smart Dust—
and works to develop all of the constituent technologies required to realize these devices.
Within this larger whole, the development of MBus was a collaboration with Yoonmyung
Lee, Ye-Sheng Kuo, ZhiYoong Foo, Benjamin Kempke, Ronald Dreslinski, David Blaauw,
and Prabal Dutta. Various pieces of MBus described in this document have been published
at CICC’14 [43], ISCA’15 [44], and Micro Top Picks ’16 [45].3 In addition, some of the initial
exploration that drove the need for MBus was published as a demo at IPSN’12 [50]. Ideas and
results from these publications are woven through the entirety of this document, primarily
Chapter 2, Chapter 3, and Chapter 5 and to a lesser extent Chapter 4. In contrast to the
prior refereed proceedings, this dissertation is able to take a holistic view of the entire design.

3There are several additional publications related to MBus, and moreso the systems built on top of it,
whose content are not included in this dissertation (non-exhaustively [46–49]).
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Chapter 2 lays out the case for a new bus. It looks at an expanded history and comparison
of embedded interconnects, including the addition of newer designs such as I3C (MIPI),
to understand the root causes of overheads and incompatibilities for Smart Dust. It then
synthesizes the needs from circuits to systems to lay out the set of criteria for an interconnect
for resource constrained systems. These criteria then serve as the foundation for the rest of
the design and evaluation.

Chapter 3 describes the design of MBus. The design is broken into three major elements.
The first design point is the physical interconnect, in which a new “shoot-through” ring
topology is presented as the best balance of I/O overhead, system active power, and scalability.
The second design point is the logical operation of the interconnect, which looks at how to safely
and efficiently share the physical wires and also introduces a new, low-overhead interjection
technique to handle message framing, acknowledgment, and bus errors robustly and with
very low overhead. The final design point is new to interconnects and a unique requirement
of Smart Dust systems. Here, MBus adds faculties for transparent, complete system power
management. The interconnect is able to provide the illusion of always-on components, while
eliminating nearly all dynamic and static leakage power losses by completing powering off
unused components and managing their cold-boot in parallel to message arrival.

Chapter 4 describes the design of MPQ, the protocol that runs atop MBus and defines the
interface between modules. Before laying out the protocol design, this chapter looks at the
tradeoffs between standardization and capability afforded from interconnects across a broader
landscape of computing than previously discussed. With this background, it makes the case
for a standardized model of memory and registers across all connected devices, and further a
standard means of controlling data transfers. The result is a novel and powerful namespaced
MMIO abstraction. This interaction model will ultimately serve as the foundation for the
federated operation highlighted in Chapter 5 as well as the system-level programming and
debugging techniques laid out in Chapter 6.

Chapter 5 makes it all work on real hardware. It begins by mapping the concepts from
Chapter 3 and Chapter 4 onto concrete hardware designs. This section covers some of the key
subtleties and implementation details. Then it evaluates the performance of the interconnect,
both in principle and in practice. This includes theoretical analysis of the performance of the
protocol and measured performance on two real-world Smart Dust systems: a temperature
sensor and an imager.

Finally, Chapter 6 zooms out from individual devices and looks at the Smart Dust
ecosystem as a whole. It describes the design of M-ulator, a new hybrid simulation and
in-circuit emulation tool designed to aid the initial bringup and debugging of Smart Dust
systems. It also looks at questions of programming and debugging Smart Dust once physical
access is no longer an option. Here, the platform design from Chapter 4 shines, as a minimalist
injection frontend is able to support rich, complex operations such as in situ programming
and restricted debugging.
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Chapter 2

The Case for a New Bus

This chapter begins with an in-depth look at existing interconnects. The goal is to understand
common design points and what aspects do and do not work well for the Smart Dust computing
class. Ultimately, this survey concludes that no existing design can meet all of the needs of
Smart Dust. This summary is then combined with experience from building a number of
pre-modular Smart Dust systems to draft a list of requirements for the interconnect for this
emerging computing class. This chapter makes no design decisions, rather it seeks to lay out
the constraint space that will inform the architecture of modular, millimeter-scale computing.

2.1 Related Work

Before building a new bus, it is important to first show why existing, widely adopted bus
protocols like I2C, CAN, SPI, and I2S are not viable system interconnects for modular,
resource-constrained systems. The problems stem from their energy use, protocol overhead,
pin count, and system design requirements.

I2C, 1-Wire, CAN, and Other Open-Collector Buses

Many interconnects use an open-collector or open-drain design (e.g. I2C [51], SMBUS [52],
and CAN [53]). This circuit construct turns each bus line into a wired-AND; one or many
devices can drive a 0 on the bus, but if nothing actively drives low, then pull-up resistors pull
each line high. The advantages of this approach are decentralized arbitration and multi-tiered
priority. The pull-up resistors, however, are not energy efficient and result in designs that
have up to three orders of magnitude worse energy per bit than MBus.

To illustrate, consider an idealized I2C configuration running at 1.2 V (a typical I/O
voltage for Smart Dust) that tries to optimize for energy consumption. I2C typically requires
the pull-up resistor be sized to accommodate 400 pF of total bus capacitance, but that can be
relaxed to, say, 50 pF for micro-scale systems; fast mode I2C has a 400 kHz clock and must
reach 80% VDD in 300 ns, but again relax that (eliminate setup and hold time) to the full
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Figure 2.1: Waveforms of I2C and variants. A comparison of traditional I2C and some
of the proposed variations. Shaded areas are power-expensive protocol elements.

half-cycle (1.25 µs). This relaxed I2C bus requires a pull-up resistor no greater than 15.5 kΩ.
To generate the bus clock, this resistor is shorted to ground for a half period, dumping the
charge in the bus wires, pads, and FET gates (23 pJ) and dissipating power in the resistor
(116 pJ). The clock line then floats for a half cycle and the resistor pulls it high (35 pJ). Thus,
generating the clock alone draws 69.6 µW. Eliminating the switching power—the 23 pJ/bit
charging and discharging of the wire, pad, and gate capacitance—requires complex adiabatic
clocks, outside the scope of many practical designs [54, 55]. MBus finds its energy gains by
eliminating the 151 pJ/bit lost to the pull-up resistor.

I2C Variations

One conceivable idea for reducing the impact of the pull-up might be to “unbalance” the
clock as shown in Figure 2.1. This would allow the designer to nearly double the size of the
pull-up resistor (halving the power draw) while maintaining the same bus clock period and
minimizing the impact of the SCL line on energy usage. Unfortunately, this concept does not
reduce the energy consumed by the pull-up while pulling up, nor does it reduce the energy
consumed by the data line when transmitting 0’s. Unbalanced clocks would also require local
timing modifications, costly in energy and complexity, ruling out this possibility.

Lee et al. reduce I2C power draw by designing an “I2C-like” bus that replaces the pull-up
resistor with logic that actively pulls the bus high and a low-energy “bus keeper” circuit that
preserves the last value [17] (similar to I2C Ultra Fast-mode [51]). While this eliminates the
pull-up, it does so at the cost of requiring a local clock running 5× faster than the bus clock,
the energy inefficiency seen in Figure 2.1. There is not a clear path to designing an I2C or
I2C-like bus without either a pull-up or a fast-running internal clock. While the internal clock
is not as energy-intensive—Lee’s system is able to reduce bus energy to 88 pJ/bit (4 times
that of MBus)—, Lee’s design also requires hand-tuned, process-specific ratioed logic; this
requires manual tuning of every chip and runs counter to the goals of a general-purpose bus.
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Furthermore, while Lee’s I2C variant is designed with commercial interoperability in mind,
in practice actual interoperation requires an FPGA to translate between I2C and the “I2C-like”
bus [50]. MBus eschews the “partial compatibility” that I2C-like buses provide and uses
the clean break to reconsider the primitives provided by the system interface, allowing the
addition of features such as power oblivious communication, broadcast messages, and efficient
transaction-level acknowledgments.

SPI, I2S, Microwire, and Other Single-Ended Buses

As single-ended buses, SPI and its derivatives do not suffer from the power challenges faced
by open-collectors and have little to no protocol overhead. SPI, however, requires a unique
chip-select line for every slave device. In a modular system with a variable (and unknown until
system design time) number of components, it is difficult to choose the “right” number of chip
select lines a priori—too few impede modularity and too many violate the area constraints of
Smart Dust systems. Additionally, SPI requires a single master that coordinates and controls
access to all slave devices, and it requires all communication between slave devices to go
through the master node. This more than doubles the communication cost for slave-to-slave
transmissions: every message is sent twice plus the energy of running the central controller.
A further subtle, yet critical, implication of a single-master design is that all communication
is master-initiated. For a sensor to signal a microcontroller (i.e. an interrupt), it requires an
additional I/O line, a resource that is unavailable to Smart Dust systems.

Alternative configurations such as daisy-chained SPI can eliminate the chip-select overhead
but do not solve the multi-master/interrupt issue and require the addition of a protocol layer
to establish message validity. As a system-wide shift register, a daisy-chain configuration adds
overhead proportional to both the number of devices and the size of the buffer in each device.
SPI and its derivatives are fundamentally incompatible with size-constrained microsystems.

The Improved Inter Integrated Circuit (I3C)

Some of the limitations of I2C and SPI are also affecting the emerging mobile (smartphone)
and wearable computing classes. The MIPI Alliance is a trade association that aims “to design
and promote hardware and software interfaces that simplify the integration of components
built into a device [56].” In 2014, recognizing the limitations of I2C and SPI, MIPI formed a
working group to develop a new interconnect technology. In 2018, the result was the Improved
Inter Integrated Circuit (I3C) [57].

The I3C design has many similarities to Lee I2C. In particular, it also introduces the idea
of both a bus keeper and explicit push-pull logic. However, I3C includes extra provisions that
attempt to better ensure backwards compatibility with I2C. The I3C insight is to assign a
fairly capable “Main Master” device that has full knowledge of all attached devices as well
as the ability to dynamically detach the pull-ups. At idle and in early arbitration, the bus
always uses the pull-up resistors in the traditional I2C manner. However, during addressing
if the Main Master establishes that no legacy I2C devices are involved, it can detach the
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pull-ups and switch to active drivers. While this (and some additional details in the I3C
specification) does resolve the interoperability challenges, it still requires I3C member devices
to include local high-speed clocks, just like Lee I2C. Indeed, the I3C specification suggests
that it achieves an approximately 10× reduction in energy per bit over traditional I2C, with
a best case around 100 pJ/bit, which is very similar to Lee I2C’s 88 pJ/bit. If, however, a bus
were to eliminate the need for local oscillators on each node, the active power can be reduced
another full order of magnitude, a necessary energy savings for Smart Dust class devices.

Another interesting aspect of I3C is the partial support for power-conscious nodes and
systems. The specification includes some considerations for behavior when system or node
power states change, however “system power management” is explicitly listed as not in scope
for I3C. Instead, the bus adds support for “Hot-Join”, where nodes may dynamically leave
or join the bus (including the master, which must delegate another master before powering
off or possibly leave the bus inoperable until it powers back on). While this design allows
nodes to power themselves off and on, it does not provide any in-band mechanism to remotely
power on another node, which means that systems must provide additional I/O signaling if it
is expected that one node be able to request that another node power on. In the extreme,
full any-to-any power requests would require a complete parallel interconnect network solely
for system power management. To support full flexibility in power management policies, it
is necessary for system power management to be supported in something that connects all
nodes, which means either that the system interconnect must support power management or
its connectivity must be duplicated.

The other major change from I2C is the addition of dynamic addressing. As I3C retains
the 7-bit address space from I2C, it resolves the potential address conflict problem by requiring
that nodes use dynamic address assignment. While this is useful for systems where conflicts
occur, the requirement to always use dynamic addressing introduces needless overhead in
systems where pre-assigned addresses would not have conflicted. This overhead is particularly
troublesome in conjunction with the Hot Join mechanism, as the specification requires that
dynamic address assignment occur at every start-up event (and that full reassignment occur
whenever the master node starts up).1 In Smart Dust systems, whole nodes power off and on
frequently to realize energy goals, which makes such a re-enumeration requirement poorly
suited to these designs.

Bus Designs from Other Disciplines

The original token ring protocol requires passing empty frames so that nodes can grab the
token when they need it. Low-power systems rely on low duty cycles to remain efficient.
Using tokens in place of arbitration either requires occasional empty frames to pass the token,
with an inherent latency/energy tradeoff, or a sacrifice of in-band multi-master capability.

1One positive aspect of this design is that it partially ameliorates one system power management challenge.
By snooping, other nodes on the bus could know when a powered off node powers on. This is of limited use,
however, as other nodes still have no way to request that a node powers on, simply the ability to observe that
it has happened.
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The Domestic Digital Bus (D2B) [58] is a ring topology, like MBus. D2B links are
high-power fiber optics, targeting automobiles. D2B requires a separate electrical network to
facilitate wakeup of the optical frontends and uses a centralized master that must know the
complete topology in advance [59]. D2B is not easily adaptable to the micro-scale domain.

Some of the new network-on-chip (NoC) protocols that have been developed, such as
Nehalem’s QuickPath [60], include power-aware features like MBus. These buses seek to
move large amounts of data often via wide parallel buses, within a siloed system rather than
compose independently designed, modular components.

Recently, work in energy-efficient, short-reach data links has led to energy performance
as low as 0.54 pJ/bit [61]. These designs target high-performance computing applications,
however, utilizing complex transmit and receive circuitry with high-speed clocks [62] and add
requirements such as a common substrate with carefully carved channels [61]. This limitation
is not well suited to a platform bus, which aims to support a wider diversity of packages and
physical interconnection technologies.

Power Savings Create Communication Problems

Smart Dust systems need to aggressively conserve power. Devices that are left on or in
standby allow communication to occur on-demand. Ultra-low power systems, however, realize
their power goals in part through aggressive duty-cycling. A power-gated node must be
awakened before it can communicate, presenting interoperability (how to wake a node) and
run-time (when to wake a node) challenges.

Lee et al. identify this wakeup issue and modify their protocol to include a wakeup signal:
an I2C start bit followed shortly by a stop bit. This requires the sender to know the receiver’s
power state in advance or to unconditionally send the wakeup sequence before every message.
Due to implementation choices, the minimum time between the start and stop bits of the
wakeup sequence and the time until the chip is awake after the stop bit is received varies
from chip to chip, which requires hand-tuning and conservative estimates. This design also
requires each chip to implement a power-on circuit capable of self-starting.

In contrast, MBus takes over the power management of nodes, freeing designers from
the burden of building complex self-start circuits. MBus guarantees delivery of messages,
independent of the power state when a message is sent, eliminating requirements for distributed
power state management.

The Opportunities of Clean Slate Design

One lesson from the Lee I2C and I3C designs is that working from an existing standard can
place limitations on design that are not required by the underlying system. For that reason,
the next section takes a constructivist approach. It looks from the perspective of both a
circuit designer and system designer at what properties an interconnect might provide to
support Smart Dust systems. In the end, mapping those requirements back to these buses
will find that no current design meets all the needs of Smart Dust.
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I2C SPI UART Lee-I2C I3C MBus
Driven by Physical Limits
Synthesizable Yes Yes Yes No Yes Yes
I/O Pads (n nodes) 2/4† 3 + n 2 × n 2/4† 2/4† 4
Global Unique Addresses 128 — — 128 — 224

Multi-Master (Interrupt) Yes No No Yes Yes Yes
Standby Power Low Low Low Low Low Low
Active Power High Low Low Moderate Moderate Low

Driven by Protocol
Data-Independent Yes Yes Yes Yes Yes Yes
Robust Bus Reset No Yes No No No Yes
Dynamic Address Option No — — No Yes Yes
Hardware ACKs Yes No No Yes Yes Yes
Broadcast Messages Option Option No No Yes Yes
Power Aware No No No No No Yes
Bits Overhead (n bytes) 10 + n 2‡ (2-3)§ ×n 10 + n 10 + n 19, 43*

† When wirebonding, a shared bus requires two pads/chip (or a much larger shared pad)
‡ Asserting and de-asserting the chip-select line
§ Depending on the stop condition; assumes 8-bit frames and no parity
* Depends on whether short (more common) or long addressing is in use

Table 2.1: Feature comparison matrix. Population-independent area, ultra-low power
operation, synthesizability, an area-free global namespace, and interrupt support are funda-
mental requirements for a general purpose Smart Dust interconnect. Standby power is on
the order of 100’s of pW and active power ranges from 10’s of µW to 10’s of nW.

2.2 Interconnect Criteria

This section summarizes the requirements for the system interconnect of ultra-constrained
systems. These requirements and guidelines are the product of several generations of experience
in building such devices.2 The requirements are divided into two major classifications. The
first set describe requirements driven from physical-world realities that impose inviolable
limits on the design space. The second set describe the needs of systems and inform direction
within the allowed physical design space. Table 2.1 summarizes these requirements.

2I wish to emphasize again here that this is a summation of a collective experience. I am extraordinarily
grateful to all members of the Michigan Micro Mote team, especially David Blaauw, Prabal Dutta, ZhiYoong
Foo, Benjamin Kempke, Ye-Sheng Kuo, and Yoonmyung Lee whose ideas and insights I sincerely hope to
have represented well here. Additional thanks to the members of the Berkeley Wireless Research Center, the
TerraSwarm Research Center, and the Stanford Internet of Things Project, who provided critical early and
late-stage feedback.
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Physical Constraints

Smart Dust is largely defined by being physically small. This means that there is limited
surface area for the individual modules that make up a system and limited volume for the
whole of a system. As a result, systems have limited energy and are restricted in their physical
design. This section distills these physical realities into constraints on interconnect design.

Low, Fixed Wire Count

With sub-millimeter scale systems, the area cost required to place bonding pads (35–65 µm
wide) on one edge or around the perimeter of a chip limits the ability of the system to scale.
While advancements such as through-silicon vias (TSVs) help, many popular processes do not
support them (e.g. IBM130 or TSMC65). In conventional designs, ICs aiming to maximize
flexibility can simply over-provision GPIO pins to allow for potentially large numbers of
peripherals. Even at just 50 µm2 each, four I/O pins3 are already 1% of the total area on a
1 mm2 chip, however. Indeed, packaging techniques are not minimizing as quickly as other
aspects of design, and the result is an increase on I/O pressure as systems shrink. Due to
this I/O pressure, over provisioning GPIOs is often not a reasonable design choice.

A fixed wire count maximizes adaptivity. If the physical topology of a bus were to vary
based on the number of attached nodes, then the maximum number of devices in a system is
a decision made at chip fabrication-time. Instead, if the wire count is fixed and independent
of the number of attached nodes, then composition can be a design-time consideration.
This relieves the pressure on chip designers to accurately predict the “correct” amount of
extensibility that will be needed and frees system designers to use chips in potentially novel
and unexpected ways.

Address Space

A bus must provide a way of addressing each node in the system. One of the simplest
approaches is to include dedicated hardware for this purpose, such as the chip-select mechanism
in SPI. Such a technique, however, requires sufficient I/O availability to make a unique
connection to each peripheral. Dedicated select pins place a hard limit at fabrication-time on
the number of directly addressable4 nodes. As stated, this is an incompatible property for a
general-purpose bus in I/O-constrained ecosystems.

If hardware-based node selection is not available, then the protocol must include some
addressing scheme. The length of the address presents a tradeoff between the overhead of
addressing and the total number of uniquely addressable nodes. While there are likely to be
only a modest number of nodes in any given system, addresses are fixed at fabrication-time,

3Note here that buses with an electrically connected, shared line (e.g. I2C’s SDA and SCL lines) require
two bonds per chip on all but the ends of the system as two wire bonds cannot land in the same place. In the
context of wirebonding, I2C is better thought of as a 4-wire bus rather than a 2-wire bus.

4While techniques such as daisy-chaining can allow for greater flexibility, they do so at significant runtime
cost, and require additional support from all involved peripherals.
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and thus must be globally unique to maximize composability. Certain I2C devices afford
limited design-time flexibility by exposing one or more I/O pins that designers can tie to set a
few address bits and thus resolve potential conflicts. An interconnect for severely I/O-limited
systems cannot rely on this mechanism, however, and must size its address space accordingly.

Interrupts / Multi-Master

To facilitate a diverse and unpredictable set of devices and system applications, any device
must be able to initiate a transmission to any other device at any time. With a fixed number
of wires, dedicated signaling to a central controller (such as the interrupt lines in SPI) is
not viable. This means the protocol requires either an efficient, non-polling based interrupt
mechanism or a true multi-master design.

Low Standby Power

Resource-constrained systems spend the majority of their time in standby so standby ineffi-
ciencies are magnified. Existing interconnects are well suited to this, so any new bus must
draw less than 100 pW to be competitive.

Low Active Power

Smart dust systems have extremely constrained power budgets. While any absolute power
number will be system-dependent,5 to allow Amdahl-balanced system design, the interconnect
cannot draw significantly more than other components. Realizing this active power constraint
informs additional restrictions.

No Local Time Creating a stable, local time base (that is, powering an oscillator) is
energy-expensive. If a node, such as an analog circuit acting as an event detector, would
otherwise not require an oscillator, adding one simply to support the interconnect can quickly
dominate the energy use of that chip. In an analysis of the Lee I2C variant, the majority of
energy used by the interconnect goes to powering local oscillators on each node. While there
must be a time base somewhere, to supply the bus clock, to realize low active power in the
aggregate it is important to not require a sense of time on each individual node.

Minimize Idle Listening Following state can also be energy expensive. Again a lesson
from Lee I2C, while a bus is necessarily shared among many nodes, point-to-point commu-
nication is the most common use case. Nodes should be able to quickly establish whether
they are involved in a transmission (addressing should be first) and should have minimal

5As a point of reference, one of our most constrained systems is powered by a 0.5 µAh battery and targets
a total system active power budget of < 40 µW (and idle power of 20 nW). In practice, the MBus design
targets a hard upper limit of 20 µW total active power draw for the system interconnect. Generating a
traditional I2C clock signal alone for the given system would require approximately 70 µW.
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overhead in transactions they are not involved in. This principle will guide protocol design,
as non-participant nodes should not need to track every byte of long transactions to establish
when the bus is again idle and available for use.

Synthesizable

To facilitate widespread adoption, designs must be process-agnostic. Concretely, it must be
possible to describe them as a block of “pure” HDL with no process-specific custom macros.
While this is a common property of established interconnects, per-chip overhead is much less
costly in early research prototypes. Indeed, the Lee I2C variant included delay chains that
required characterization to satisfy timing requirements. At scale, process-specific tuning of
custom ratioed logic adds cost, complexity, and risk to every implementation.

Additional Considerations

The physical constraints limit the physical design space for the interconnect. However, there
are still many degrees of freedom within the low-I/O, low-power design space, particularly at
the protocol level. As systems are composed and richer and more complex interactions are
required, higher-level primitives become more important. This section describes properties
that are critical to supporting composable, usable, reliable systems.

Data-Independent Behavior

In order to accurately model and predict bus performance, it is important that its operation
be deterministic. Many protocols use dedicated symbols to communicate special cases (such
as an end-of-message indicator). Supporting such sentinels requires byte stuffing, which in
pathological cases can double the length of a message. This affects the ability to reason about
protocol performance both in energy and time, and in real-time systems can lead to violations
of timing requirements or require artificially high provisioning. Instead, the behavior of a
protocol must not be affected by the data it is transmitting.

Fault Tolerance

Transient faults are inevitable. While robustness against short-term corruption is desirable, it
is critical that recovery from such corruption is possible and it is impossible for the bus to enter
a “locked-up” state due to any transient faults. Furthermore, the recovery mechanism must
respect the previous constraints. The area (wire count) constraint requires that fault recovery
be in some way in-band. However, the data independence constraint disallows the use of any
form of sentinel sequence. Finally, the low active power constraint suggests avoiding solutions
that rely on a local sense of time, which eliminates traditional timeout-based approaches. In
practice, robustly and efficiently supporting fault tolerance proves one of the most difficult
aspects of bus design.
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Efficient Acknowledgments

Many applications require reliable message transport. This feature may be directly supported
by the bus protocol in hardware, or as an optional software feature if it can be made sufficiently
low-overhead.

Broadcast Messaging

In principle, any shared communication medium could implement broadcast messaging.
In practice, few interconnects exploit this capability. Part of the challenge perhaps is that
broadcast support is historically an optional feature to which few designs opt-in, which reduces
the utility of broadcast messaging, which further reduces incentives for future devices to
opt-in; this cycle effectively renders the option moot. The overhead of supporting broadcasts
is exceptionally low, however (simply a second address to match), and the potential benefit in
message reduction is very high. Mandating broadcast support further enables the interconnect
to specify self-management directives, which allows for runtime optimizations.

Power-Aware

Unlike deep sleep, which still loses energy to static leakage, a power-gated circuit loses all
state. Ultra-constrained systems need to cold boot and later shut down sub-circuits without
affecting active areas. Interfaces between power domains must be isolated, tied to a fixed
value by an always-on logic gate, so that floating signals do not confuse active logic. To power
on a power-gated circuit reliably and without introducing glitches, four successive edges, the
wakeup sequence, must be produced:

1. Release Power Gate: Supply power to the circuit that is being activated.

2. Release Clock (If digital logic present): After a clock generator is powered on, it requires
time to stabilize before driving logic.

3. Release Isolation: Outputs of a power-gated block float when off and must be isolated
until they are stable.

4. Release Reset: Once stable, the circuit may leave the reset state and begin interacting
with the rest of the system.

This sequence is fundamental to powering on sub-circuits.
Aggressively low power designs have no clock sources in their lowest-power state and no

means to generate these signals. In current systems, every design requires a custom “wakeup”
circuit to generate these edges, adding cost and complexity. These low-level details should be
hidden from the application developer. The wakeup sequence provides a clean interface to
power on a system and the system interconnect should provide a clean abstraction for sending
messages, i.e. one that ensures receipt independent of the target device type or immediate
power state.
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Interoperability

Not all systems may be severely resource or energy constrained, yet they may still wish to
use chips designed for ultra-low power applications. Any interconnect must bridge the gap
between power-conscious and power-oblivious—no notion of power-gating and no specialized
constructs to support it—devices to avoid fracturing the component ecosystem and to enable
reuse across all device classes.

2.3 Summary

This chapter has identified why existing embedded interconnects are not suited to support
modular design for the millimeter-scale computing class. It then takes a holistic look at the
Smart Dust design space, from physical manufacture through integrarted systems operation, to
lay out the criteria and necessary capabilities of an interconnect that could enable composable
design for this class of systems. The next chapter will take these requirements as a foundation
to drive the design a new interconnect, built for the millimeter-scale computing class.
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Chapter 3

MBus

This chapter describes MBus, the interconnect that enables modular Smart Dust. This
dissertation does not aim to be full specification for MBus. The MBus Specification and a
reference implementation are available at mbus.io. Instead, this chapter explains the design
decisions behind MBus, working from the constraints identified in the previous chapter.

3.1 MBus Physical Design

MBus is an interconnect that enables design-time synthesis of multiple physical chips and
is optimized for minimal area and energy overhead. Every endpoint attached to MBus is
referred to as a node. In the common case, every chip in a system corresponds to an MBus
node. In principle, there is no limit to the number of nodes. The physical bus is made up of
two signals, a bus clock (CLK) and a data line (DATA). These wires are connected in a ring
and carry synchronous data.

MBus Topology: Efficient Rings to Share Wires

To meet the wire count requirement, the bus topology must be independent of the number
of nodes, i.e. adding another node cannot require adding a new wire. As many nodes thus
share the same wires, MBus requires a scheme to avoid conflicts, where different nodes drive
the same line high and low. Some form of token-passing or leader-based protocol would
violate the efficient interrupt requirement, as it would require the leader to poll to find the
interrupter. MBus prevents conflicts by using a ring topology, as shown in Figure 3.1. There
are two signals and thus two rings in MBus: CLK and DATA. In each ring, every connection is
single-ended, which eliminates the possibility for conflicts. To minimize active power, MBus
clocks all bus logic off of the bus clock itself. This obviates the need for a local oscillator on
each node. With no local clock, the rings are “shoot-through”: signals pass through only a
minimal amount of combinational logic from one node to the next, as shown in Figure 3.2.

http://mbus.io
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†Only DATA shown for clarity, the CLK line uses identical selection circuitry.

Figure 3.1: MBus topology. An MBus system consists of a mediator node and one or more
member nodes connected in two “shoot-through” rings. The ring topology adapts to many
system synthesis methods, such as stepped 3D-stacking with wirebonding (a) and TSVs (b).

Circuit Techniques to Minimize Active Power

Regular MBus node are clock-less. Flip-flops in MBus nodes are purely triggered by CLKIN.
Hence, if the bus is idle, regular nodes draw only static leakage power. This is key since the
addition of a simple clock generator to each regular node will quickly dominate total power
consumption. Initially, only a small address detector is clocked by CLKIN which observes the
DATAIN signal to determine if the node is being addressed. If a node is not the addressee, it
directly forwards CLK and DATA. Any internal flip-flops used to store or process incoming data
do not toggle. Simulations show that this design point reduces energy consumption by 23%.

Clock Generation and Bus Mediation

MBus introduces one special node, the mediator. The mediator is responsible for generating
the bus clock and resolving arbitration. Every MBus system must have exactly one mediator,
either attached to a core device (e.g. a microcontroller device) or as a standalone component
(similar to the pull-up resistors in I2C). For ultra-low power designs, MBus power-gates
all but the forwarding drivers (Wire Controller) and a minimalist wakeup frontend (Sleep
Controller). The mediator must therefore be capable of self-starting. In an ultra-low power
design, something must have the capability to self-start; the mediator allows that self-start
requirement to be contained within a single, reusable component. For the other nodes, bus
operations are carefully designed to ensure that clock-less designs can fully participate.
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Figure 3.2: Conceptual frontend. A simplified view of the MBus frontend. The default
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Figure 3.3: Setup and hold time diagram. Conventional positive-edge triggering is shown
on the left while the balanced MBus clocking is shown on the right.

Robust Timing

In a modular system, the loading and driving strength of different CLKOUT and DATAOUT drivers
is unpredictable, which creates uncertainty in the relative arrival time of CLKIN and DATAIN.
This requires the insertion of a large number of hold-time buffers, which would increase
power draw and lower performance. Instead, MBus separates driving and latching edges
to balance setup and hold time margins, as shown in Figure 3.3. DATAIN is sampled on
positive CLKIN edges and DATAOUT is driven on negative CLKIN edges. While this also reduces
maximum performance it ensures that hold time scales with frequency, which can ensure
robust operation via sufficient frequency scaling.
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3.2 MBus Logical Design

There are three logical types of MBus nodes: transmitting, receiving, and forwarding. As
seen in Figure 3.4, during normal operation, a physical node will progress through each of
these logical states. Forwarding is the most common state and is the idle state for MBus
nodes. In this state nodes may be completely power-gated and asleep. The only obligation is
forwarding DATAIN to DATAOUT and CLKIN to CLKOUT. At the start of a new transmission, if a
node matches its address, it promotes itself from forwarding to receiving. A node will receive
data of arbitrary length until an interjection event ends the transaction. Alternatively, after
the first mis-matched address bit a forwarding node transitions to the ignore state for the
rest of the transaction, where it will remain until an interjection event. To begin transmitting,
a node must first arbitrate for the bus. After arbitration is an addressing phase, a data
transmission phase, and then an interjection event which is used to end the transmission.
The rest of the design explains each of these states and their transitions in detail.
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Figure 3.4: High-level behavior of MBus nodes. MBus nodes are normally idle. A
transaction begins when one or more nodes elect to transmit by starting an arbitration phase
(§Arbitration). The winner then transmits a destination address (§Addressing, §Address
Assignment), sends payload data (§Data Transmission), and interjects to end the transaction
(§Message Termination). Black arrows are synchronous, transitions that match MBus CLK

edges, while red arrows are asynchronous. By leveraging the interjection primitive, MBus
transmitters can reliably signal the end of message without requiring an embedded length or
an out-of-band—extra wire—signal. Not shown are arrows from any state to control due to
interjections and from control back to idle.
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Figure 3.5: MBus arbitration. To begin a transaction, one or more nodes pull down
on DATAOUT. This shows node 1 and node 3 requesting the bus at nearly the same time
(node 1 shortly after node 3). Node 1 initially wins arbitration, but node 3 uses the priority
arbitration cycle to claim the bus. The propagation delay of the data line between nodes
is exaggerated to show the shoot-through nature of MBus. Momentary glitches caused by
nodes transitioning from driving to forwarding are resolved before the next rising clock edge.

Arbitration by Mediating Shoot-Through Rings

In the idle state all nodes except the mediator forward CLK and DATA signals around the rings.
The mediator drives both its CLKOUT and DATAOUT high in the idle state, which results in all
bus lines being high during idle due to forwarding. A node requests the bus by breaking the
chain and driving its DATAOUT low. This propagates around the DATA ring until it reaches the
mediator, which is not forwarding. The falling edge on DATAIN triggers the mediator self-start.
The mediator is given significant leeway in its wakeup duration, for reasons outlined in the
next section on power design. During this window, additional nodes may also pull their
DATAOUT low, in which case there will be contention for the bus. Once the mediator pulls CLK
low, the bus is no longer considered idle.1

Arbitration is resolved at the first rising edge of CLK. Any node arbitrating for the bus
samples their DATAIN line. If DATAIN is high, the node has won arbitration, otherwise it has
lost. This arbitration scheme introduces a topologically-dependent priority on MBus nodes.
To afford physically low-priority nodes an opportunity to send low-latency messages, MBus
adds a priority arbitration cycle after arbitration. The priority arbitration scheme is similar,
except it is the arbitration winner that does not forward DATA and nodes pull DATAOUT high to
issue a priority request. Figure 3.5 shows a waveform of arbitration and priority arbitration.

1There is a subtle but important point here that idle ends at time 0 not time 1 in Figure 3.5. A node
may not pull DATAOUT low after time 0. This requirement follows from the balanced timing design discussed in
the previous section, where to be seen reliably by all nodes any change in DATA cannot occur after the falling
edge of CLK.
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01234567
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Prefix FU-ID

Figure 3.6: MBus addressing. MBus addresses are composed of either a full (top) or short
(bottom) prefix, followed by a functional unit ID. The short prefix 0xF is a sentinel that
identifies a full address and 0x0 indicates a broadcast message. This allows up to fourteen
nodes per instance to be address by their short prefix.

Addressing: Prefixes, FU-IDs, and Broadcast Messages

MBus uses an addressing scheme to direct transmissions. It divides addresses into two
components, a prefix and a functional unit ID (FU-ID). A prefix uniquely addresses a
physical MBus interface (one of the actual chips in the system), while FU-IDs are used
for higher-level protocol operations. This shares conceptual similarity to I2C, whose 8-bit
addresses are more accurately a 7-bit address and a 1-bit function (read/write). FU-IDs are
4-bits, however, which allows for a richer and extensible functional interface. MBus reserves
prefix 0 for broadcast messages. On a shared bus, broadcast messages are cheap to implement
in hardware but expensive (linear in system size) to emulate in software, which motivates
hardware broadcast support.

Prefix Assignment and (Optional) Enumeration

To retain the efficiency afforded by short addresses while allowing for a diverse ecosystem of
unique components, MBus has both 4-bit short prefixes and 20-bit full prefixes. Figure 3.6
summarizes the whole MBus addressing scheme.

Every chip design is assigned a unique, 20-bit full prefix. Full prefixes allow nodes to
refer to one another with static addresses at the cost of 16 bits of additional overhead per
message. MBus also uses run-time enumeration to assign 4-bit short prefixes. Enumeration
is a series of broadcast messages containing short prefixes that can be sent by any node
(although in practice most likely by a microcontroller). All unassigned nodes attempt to
reply with an identification message and the arbitration winner is assigned the enumerated
short prefix. A result of this enumeration protocol is that a node’s short prefix encodes its
topological priority. Enumeration is performed once, when the system is first powered. As an
optimization, devices may assign themselves a static short prefix, akin to I2C addressing, so if
there are no conflicts (known at system design time) enumeration may be skipped.

The short prefix 0x0 indicates a broadcast message and 0xF is reserved to indicate full
prefixes, which leaves MBus with 14 usable short prefixes per system. Chips may be addressed
using either short or full addresses interchangeably. It is sometimes advantageous for a
system to have two copies of the same chip (e.g. memory), which requires short prefixes and
enumeration to disambiguate.
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Data Transmission

Data transmission is simple, synchronous, serial signaling. Recall from Section 3.1 that MBus
transmitters drive data on the falling edge of CLK and receivers latch data on the rising edge
of CLK. While standard flops can only be clocked on one edge (rising or falling), only the
internal data FIFO needs to be clocked on the falling edge, thus this does not violate the
synthesizability requirement.

Acknowledgments

At the end of a message, the receiver either ACKs or NAKs the entire message. In MBus, any
node may terminate any message at any time, even a forwarder. The transmitter may end
the message when it is finished, or the receiver may interject mid-message to indicate error,
e.g. buffer overrun. Thus, by not interjecting, a receiver implicitly ACKs every byte. This is
less powerful than I2C ACKs, which can detect a dead receiver after the first byte, but is
more efficient during error-free operation and allows MBus to scale to long (multi-kilobyte)
messages with a fixed, length-independent overhead.

In-line Interjections End Messages, Provide Reliable Reset, and
Enable Responsive Messaging

At any point, the bus may be interrupted by an MBus interjection. In normal MBus operation,
DATA never toggles meaningfully without a CLK edge. This allows the design of a reliable,
independent interjection-detection module as shown in Figure 3.7a, which is essentially a
saturating counter clocked by DATA and reset by CLK. The interjection signal acts as a reset
signal to the Bus Controller, clearing its current state and placing it in control mode. MBus
control is two cycles long and is used to express why the bus was interjected, either an
end-of-message that is ACK’d or NAK’d or to express some type of error. Figure 3.7 shows
the end of an MBus transaction sent from Node 2 to Node 1 that is ACK’d. Notice that the
MBus interjection request mechanism, holding CLK high, results in nodes observing a varying
number of clock edges. MBus requires that messages be byte-aligned to resolve this potential
ambiguity. As a result, a small amount (up to 7 bits) of padding may need to be added to
MBus messages.

MBus interjections are used both for extreme cases, such as rescuing a hung bus or
indicating receiver error, and as a regular end-of-message signal. Any node may generate
an interjection at any time. This allows for unambiguous signaling of control functions that
can resynchronize a bus without requiring out-of-band signals like chip-selects or a reset line.
This further allows a node with a latency-sensitive message to interrupt an active transaction,
enabling responsiveness across a diverse array of workloads not possible with current buses.



CHAPTER 3. MBUS 28

CLKin

CLKin

DATAin

DATAin

Interjection

Remains	HighD Q

RN

D Q

R

Interjection

Reset

D Q

RN

(a) Interjection detector.

CLK In

CLK Out

Data In

Data Out

Data 1 Data 0 Data 1 Data 1 Data 1 Interjection Switch Role Ctl Bit 0 ACK=True Idle . . .

CLK In

CLK Out

Data In

Data Out

Data 1 Data 0 Data 1 Requesuestt Interjection Interjection Switch Role EoM=True Ctl Bit 1 Idle . . .

CLK In

CLK Out

Data In

Data Out

Data 1 Data 0 Data 1 Interjection Switch Role Ctl Bit 0 Ctl Bit 1 Idle . . .

CLK In

CLK Out

Data In

Data Out

Internal Clk

Data 1 Data 0 Data 1 Enter Interjection Interjection Switch Role Ctl Bit 0 Ctl Bit 1 Idle . . .

X X

X X

1

2

3

4

4

4

4

5

6

7

1 (RX)

2 (TX)

3 (FWD)

Med

La
tc
h

B
it
6

La
tc
h

B
it
7

La
tc
h
| R

eq

B
it
8
| I
nt

D
et
ec
t

In
t
R
eq

B
eg
in

In
te
rj
ec
ti
on

In
te
rj
ec
ti
on

A
ss
er
te
d

B
eg
in

C
on
tr
ol

La
tc
h

C
tl

B
it
0

La
tc
h

C
tl

B
it
1

B
eg
in

Id
le

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

End of Data Request Interjection Interjection Control Idle

(b) Interjection timing with successful TX and ACK.

NACK

ACK

TX or RX Error

General Error

1

0

1

1

0

0

Control Bit #1
TX/RX Error?

Control Bit #0
End of Message?

Control Bit #1
NACK or ACK?

Driven by Interjector
Driven (or not) by RX
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1. After the transmitter sends all of its data it requests interjection by not forwarding CLK.

2. The mediator detects that a node has stopped forwarding CLK.

3. The mediator stops toggling CLK and begins toggling DATA – the interjection sequence.

4. After interjection, the mediator begins clocking again. Node 1 discards the extra bits because
they are not byte-aligned.

5. The transmitter signals a complete message by driving Control Bit 0 high.

6. The receiver ACK’s the message by driving Control Bit 1 low.

7. After control, the mediator stops forwarding DATA, driving it high, and returning the bus to idle.

(d) Detail of an interjection and control event.

Figure 3.7: MBus interjection and control. The MBus interjection sequence provides a
reliable in-band reset signal. Any node may request that the mediator interject the bus by
holding CLKOUT high. The mediator detects this and generates an interjection by toggling DATA

while holding CLK high. An interjection is always followed by a two-cycle control sequence
that defines why the interjection occurred.
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Return to Idle

After latching the final Control Bit (time 20 in Figure 3.7b), one final edge (time 22) is
generated to enter idle. It is necessary for the bus to generate this edge to enable member
nodes with no clock the ability to fully participate. If the data line is low at this edge, then it
is considered the start of a new arbitration cycle rather than a return to idle. The mediator
node will pull the clock low again in response and begin a new transaction. With this design,
ultra-low power, clock-less nodes can receive, react to, and respond to messages (albeit with
possibly tight timing constraints).

3.3 MBus Power Design

MBus aims to support very low power operation. As such, it is expected that systems
leveraging MBus may need to support power-gating all or part of the system. This section
looks in detail at some of the nuances of very low power design. It discusses the requirements to
support power-gated systems, how such systems integrate with MBus, and how power-oblivious
chips can seamlessly interact with power-conscious chips, promoting interoperability.

A Brief Background on Power-Gating

In the low-power design space, a simple and important concept is the ability to power-gate,
or selectively disable, portions of a system that are idle. Many designs today already support
clock-gating, which “freezes” idle subsystems and eliminates dynamic losses. However, there
is still a small amount of static leakage present. Smart Dust systems need to reach idle power
on the order of single digit nanowatts, which means that static leakage can be a significant
factor in the lowest power states. Power-gating literally removes power from idle sections of
a chip, which reduces the power draw of idle silicon to effectively zero.2

Several challenges with power-gating include: how to preserve state during idle windows,
how to connect power-gated modules to other powered or power-gated modules, and how
to wake and sleep power-gated modules deterministically. This document does not seek to
address all these issues, rather it demonstrates how MBus can help implementations. For a
more detailed reference power-gated design with MBus, consult the MBus M3 Implementa-
tion Specification.

Recall from Section 2.2 that sleeping and waking power-gated modules requires four
signals. When powering on, these signals require four sequential steps; when powering off,
they require only two sequential steps:

2There is, of course, still non-zero loss in the power-gating mechanism itself.
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Signal Name Function Power-Up Power-Down

POWER ON Controls Power-Gating 1st 2nd
RELEASE CLK Supply Clock to Internal Logic 2nd 2nd
RELEASE ISO Electrically Isolate Module I/O 3rd 1st
RELEASE RST (De)Assert Reset 4th 2nd

Transparent and Efficient Hierarchical Wakeup

The key insight that enables MBus’s power-oblivious properties is that a power-gated node
can use the edges on the CLK line from arbitration as stable, predictable pulses to drive
power-on circuitry. At the start of a transaction, a node is either already powered and actively
participates in arbitration, or it uses the arbitration edges to drive its wakeup sequence. Thus,
a node powers-on in the middle of its state machine, when it has just “lost” arbitration and
is then ready to listen for the incoming address.

To avoid powering on all of the nodes in a system whenever any two nodes communicate,
the MBus design allows for hierarchical wakeup. Conceptually, MBus imagines a small “Bus
Controller” block, which is responsible only for managing MBus operation for a node. This
Bus Controller requires no dedicated clock source and can operate solely off of the MBus
CLK. This is critical as it allows the node to remain low impact when its bus logic is partially
powered due to an active bus transaction (so that it can know when the bus is free) that the
node is otherwise not participating in. The Bus Controller is then responsible for powering
on the next block, which MBus calls the “Layer Controller”, when necessary. In practice,
power-optimized MBus designs will not wake the rest of the node until an address match.
This design allows any node to transmit to any other node at any time while ensuring that the
destination node, and only the destination node, will be powered on to receive the message.

Waking the Bus Controller

To receive an MBus transmission the power-gated node’s Bus Controller must first be activated.
Referring to edges from Figure 3.5, edges 1, 2, 3, and 4 provide the required signals. Mapping
power edges to MBus protocol edges:3

Arbitration → POWER ON

Priority Drive → RELEASE CLK

Priority Latch → RELEASE ISO

Reserved → RELEASE RST

3Historical note: The original MBus design did not include the Reserved cycle (times 4 and 5 in Figure 3.5).
These Reserved edges are not required for power correctness (without them, the Drive Bit 0 edge would
map to RELEASE RST and the node’s Bus Controller would be active by Latch Bit 0 as needed). The first
RTL implementation of MBus had a small error that introduced an extra cycle between regular and priority
arbitration. Upon discovery and discussion, the team decided that preserving one cycle of overhead for future
extensibility was a good tradeoff but did correct the implementation to place the two arbitration cycles next
to one another in time. In this way, the Reserved cycle is available regardless of initial power state.
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In practice, most Bus Controller implementations will not require the RELEASE CLK signal as
the MBus clock is (by definition) sufficient for all bus operations, however it is included in
consideration for designs that may require it. A Bus Controller that is awoken using MBus
edges will find its first rising clock edge to be the Reserved cycle.

Waking the Layer Controller

If the node matches the destination address, it must wake whatever it is attached next up
the chain, namely the Layer Controller. This means the clock-less Bus Controller module
must harvest clock edges from MBus to generate the power control signals to power on the
layer. While there is no gap between address transmission and data, the Bus Controller
can dual-purpose the first few bits of data. Recall that because of the 2-bit transmission
ambiguity, MBus data is strictly byte-oriented. This means that Bus Controller designs can
safely buffer up to one byte of data before they need to hand the data to the rest of the node.
Collecting eight bits of buffered data allows for ample CLK edges to drive wakeup for the rest
of the node.4

Optimizing the Bus Controller

If the node does not match the destination address, its only responsibility is to forward CLK

and DATA signals. However, the node also must track when the transaction completes. This
is another consideration and advantage of the MBus interjection design, which allows Bus
Controllers to gate their clock tree during data transmission. Only the three-flop interjection
detector needs to be clocked to allow a node to rejoin during the Control cycle.

Supporting Intra-Node Wakeups

Partially power-gated nodes will transparently wake up to receive messages, but they may
also wish to voluntarily wake themselves, usually in response to a locally generated event
from, say, a timer or sensor. For instance, a node with an always-on analog circuit (e.g. an
ultra-low power motion detector embedded in an imager, as described in Section 5.3) may
wish to wake the digital logic on the rest of the node to take a picture or send an alert
message. The always-on MBus frontend provides a simple interrupt port that the component
can assert. Upon interrupt request, the frontend will generate a null message, as shown
in Figure 3.8. This null message causes the mediator to generate the clock edges needed
to wake the rest of the node. With this design, a power-conscious node can leverage all
of its power-saving faculties without requiring support from any other system component,
simultaneously maximizing interoperability and efficiency.

4One design point explicitly required by MBus is the acknowledgment of zero-length messages. Depending
on application, a node may not require awakening for a zero-length message. Due to the nature of the MBus
interjection procedure, however, as many as two bits may be received that will be discarded (Figure 3.7). A
Bus Controller design that attempts to minimize wakeups should therefore not begin the wakeup process
until latching the 3rd data bit.
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(a) Power-gated nodes repurpose CLK edges to drive well-timed power-on signals. This waveform
shows the self-wake, where a power-gated node uses a simple pull-down signal on DATA to trigger
the mediator to first prepare the system for higher power operation if needed (see (b)) and then to
to begin generating CLK edge the node can use to wake itself. In a null transaction (shown here) the
power-gated node must resume forwarding† DATA before the arbitration edge so that the mediator
can detect an “error” of no arbitration winner. In response, the mediator will raise a general error,
and return the bus to idle. The null transaction produces enough edges to wake all of the MBus
hierarchical power domains in a manner that is transparent to non-power-aware devices.
†Note that a node cannot simply drive DATA high here, as it is possible that another node may also be arbitrating

for the bus at this time. A node intending a self-wake procedure must be prepared for the case where an actual bus

transaction takes place as well. In the common case, forwarding will cause DATA to go high again, as the mediator

always drives its DATAOUT high during the initial arbitration cycle, and it is the only node not forwarding in the ring.

(b) Some power management unit designs include more efficient low-power modes with limited
dynamic range for idle periods. In addition to clock-free operation, this is a second reason for the
MBus wakeup signal to be a simple signal, as this draws negligible power and the power management
unit can then prepare the system for higher-power operation before allowing the mediator logic to
begin bus events, which will wake more sub-circuits and draw more power.

Figure 3.8: MBus wakeup. Instead of requiring every node to include custom cold-boot
circuitry, MBus provides a mechanism to wake a node in response to a single falling edge.
The design further considers system-wide power management, with affordance for regulator
intervention and update before allowing system components to power on.
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Figure 3.9: Shutdown timing. The shutdown command is not confirmed until time 5
when the transmitter indicates a valid End of Message signal. At time 6, the Bus Controller
acknowledges shutdown, asserts the SHTDWN signal to the Sleep Controller, and isolates the
Layer Controller. At time 7, the Sleep Controller isolates the Bus Controller, and isolating
the Bus Controller by definition power gates the Layer Controller. At time 8, the Sleep
Controller power-gates the Bus Controller, completing shutdown. At time 9 the bus is idle,
and the Sleep Controller is waiting for the next wakeup.

Re-Asserting Power-Gating

MBus edges can also be harvested to drive the control circuitry needed to return both the
layer and the Bus Controller to their lowest power states. Figure 3.9 demonstrates how the
control edges following the End of Message bit may be used to progressively power-gate first
the Layer and then the Bus Controller. Note that Figure 3.9 delays the shutdown procedure
until the transmitter asserts End of Message, which indicates that the shutdown message was
not in error. This shutdown procedure has the advantage that it allows power management to
remain fully decentralized. A node can shut down without any intervention or knowledge of
the mediator node. Furthermore, a node with no local clock or self-timed power management
circuitry can use bus edges to drive its power-off sequence. This is the final piece required to
ensure that the interconnect fully supports the lowest-power components, those with no local
oscillators which power-gate aggressively.

3.4 Summary

This chapter has described the design of MBus, a new interconnect for designed to support
composable deisgn for the millimeter-scale computing class. MBus introduces a novel “shoot-
through” ring topology, which enables energy-efficent, scalable composition. The MBus design
also demonstrates the necessity and value of a “power aware” interconnect when composing
pitch black silicon and shows how offloading power management into the interconnect can
alleviate complex circuits and systems challenges. Thus far, MBus describes only how to
reliably send bits between chips. The next chapter will show how assigning structure and
semantic meaning to bus messages can empower richer and more advanced system synthesis.
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Chapter 4

Building Modular Components

The MBus interface describes how to physically connect chips and how to transmit bits of
data between them. This chapter discusses what those bits of data should look like. It also
argues for the standardization of core building blocks, namely registers and memories, and
both their internal and external interfaces. For chip designers, this standardization provides
scaffolding on which to build new designs, which can accelerate design and reduce risk. For
system designers, this additional standardization of component design allows for predictability
and opens new opportunities for decentralization and automation.

4.1 A Standard Scaffolding

Much like MBus described a standard for composing chips in a system, this section looks at
how to compose the modules that make up chips. In particular, this looks at the glue logic
that holds the basic components of chips together. The goal of this scaffolding is to ease and
accelerate the integration of new circuits (e.g. a faster or more energy efficient capacitive
digital converter [15]) into systems. The key observation is that much of the machinery that
connects interesting frontends to systems is near-identical already. Indeed, many design
houses have their own internal semi-standard core logic block that is reused across designs.
If instead the interface were to provide this scaffolding, it could then impose structure on
otherwise arbitrary decisions (e.g. “which register address turns this chip on and off?”). With
core operations standardized, system-level behavior can be encoded independent of specific
instantiations. This allows for re-use of standard libraries in the software controlling such
systems or the integration of possibly complex chains of events into hardware.

Fundamentals of Components

What makes up a modern chip? From an operational standpoint, nearly every design can be
reduced to some subset of the following:
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i. Configuration data – Small amounts of data that affect behavior (e.g. sampling resolu-
tion); this data can be transient or persistent.

ii. Large-volume data – One or more “memory-like” storage systems; these may be
persistent (e.g. flash or FRAM) or transient (e.g. SRAM) and with other tradeoffs (e.g.
energy or latency), but ultimately can be modeled as readable and writable data in a
linear address space.

iii. Synchronous logic – Anything from a simple state machine to a full-blown microcon-
troller; this is anything with a local clock and a predictable, synchronous interface.

iv. Asynchronous logic – Historically this would be analog sensors, but this is now expanding
to ideas such as analog compute accelerators; this is anything without a local clock that
needs interface logic to connect to a synchronous interface.

v. Event interface – Some mechanism for either triggering the beginning of a hardware
event or being alerted that one has completed.

Learning from the pre-SoC Era

When Hill et al. first described the architecture of motes, which were the resource-constrained
computing class of the turn of the century, the design concerns centered around how to
“provide efficient modularity” on devices that “are concurrency intensive” [63]. At the time,
centimeter-scale modules were similar in capability to millimeter-scale devices today. The
core of mote designs was a microcontroller (MCU) with a central processing unit, some
on-board memory, and a number of I/O interfaces. Across a mixture of general purpose
I/O (GPIO), UART, SPI, and I2C, various peripherals (e.g. radios, sensors, memories) were
attached to the MCU. Generally, none of these peripherals were capable of independent
operation. This meant the MCU had to control each peripheral. In practice, this drove
the concurrency intensive requirement, as operating multiple peripherals at once required
carefully interleaving controls from the single central processor while meeting the timing
requirements of each peripheral.

In contrast, today many peripherals include local processing. Designs now expect higher-
level interfaces from remote modules that encapsulate timing-sensitive operations. As general
purpose processing continues to become cheaper, this trend of pushing responsibilities onto
peripherals has continued. Indeed, many radio “peripheral” ICs include full general-purpose
processors that can be reprogrammed to execute arbitrary application code. However, general
purpose compute is less area and energy efficient that fixed-function controllers.1 Millimeter-
scale systems simply do not have the floorplan area, let alone the surplus energy, to put
arbitrary compute cores on every chip. This does not mean, however, that these devices

1While “resource-constrained” for Smart Dust concerns itself with physically small computing devices, it
is worth observing that this is the same reality that is driving the resurgence in accelerators and domain
specific architectures in macro-scale computing.
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should return to bare, low-level control interfaces. To allow robust, modular integration, it is
important that timing-sensitive operations be encapsulated in modules as much as possible.

Learning from SoCs

While systems on chips (SoCs) do result in a monolithic integrated circuit, internally their
design is still modular. Most SoC designs center around a bus, to which processing, memory,
and peripherals are attached. As these systems are integrated on a single die, their interfaces
do not share the same I/O constraints as an interchip bus like MBus. This allows SoC
interconnects to be wide buses (generally 32-bits in modern designs).

Modern microcontrollers have shown that memory-mapped I/O (MMIO), coupled with
an interrupt mechanism, can act as a singular interface to abstract all of the components of
chips. Under the hood, hardware implementations can attach systems of varying complexity
to this generic ‘address plus data’ interface. For the data-oriented components (i, ii), a direct
mapping to the underlying data stores is often sufficient. For logics (iii, iv), a small interface
state machine can be written. At the software level, then all hardware can now be accessed
through this singular interface.

Internally, there is often more than one actual memory bus, however. While this is in part
for physical scalability (limiting the load on the shared bus lines), there is also an architectural
tradeoff between the complexity and the performance of various memory bus designs. For
this reason, the ARM Advanced Microcontroller Bus Architecture (AMBA) includes both an
AMBA High-performance Bus (AHB) and an Advanced Peripheral Bus (APB) [64]. The AHB
is well-suited to “memory-like” structures (ii). It supports efficient reads and writes of large
volumes of data, at the cost of a more complex interface state machine for components that
attach to the bus. The APB is optimized for simpler “register-like” structures (i). It is easier
to interface with, at the cost of higher protocol overhead and latency for repeated transactions.
The TileLink specification from SiFive similarly allows for a mixture of ‘lightweight’ and
‘heavyweight’ peripherals [65]. The takeaway from SoC interconnects design then is that it is
reasonable to bin components, and the interfaces to attach them, into two tiers of capability
to balance integration complexity and performance.

Learning from x86

Some systems split I/O and memory into isolated address spaces. In x86, interfacing for
simpler peripherals was originally done via port-mapped I/O (PMIO), which is also sometimes
referred to as direct I/O mapping. The x86 instruction set includes two classes of load and
store operations, those that operate on main memory (e.g. LEA) and those that operate on
peripherals (e.g. OUTW). Further, x86 also specifies where in the I/O address space certain
peripherals will be placed. For example, the ‘first serial port’ will be at address 0x3F8.

Isolating peripherals to their own address space easily allows for separate interfaces for
peripherals and memories. Again, this is valuable as it allows for less complex (though
less performant) peripheral interfacing. However, modern hierarchical interconnects such as
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AMBA and TileLink demonstrate that address space separation is not required to achieve
separate interfaces for components of varying complexity and capability.

On the surface, PMIO also provides runtime separation of transactions. In its simplest
form, MMIO would serve its entire address space from a single, physical bus. In that case, a
transaction with a slow peripheral could block the central bus for many cycles, effectively
pausing the whole system. This is similar to the performance bottleneck exhibited by pure
von Neumann machines, when data and instruction accesses conflict with one another. The
Harvard architecture mitigates this contention problem by servicing different regions of
the address space by different physical buses. The same solution is available to the MMIO
interface, which can present software with a unified address space that is internally partitioned
to multiple physical buses. Indeed, the opposite is even possible. PMIO purports two separate
address spaces, but the underlying architecture could route accesses to a single physical bus
if desired. For the hardware designer, PMIO and MMIO are interchangeable.

The unified address space of MMIO does sometimes present challenges, however. One of
the most (in)famous examples is the “PCI Hole” or the “3 GB wall”, catch-all terms coined
around the time that consumer PCs began to exceed 2 GB of RAM. At the time, 32-bit
CPUs were still common, which in principle should have been able to access as much as 4 GB
of RAM. In practice, however, motherboards often laid out peripherals sparsely across the
top 1 GB of the address space. This meant that even though large volume memory modules
were available, systems could not take advantage of them. While techniques such as Physical
Address Extension eventually allowed access to more memory, it is important to consider the
long-term implications of allowing immutable hardware to claim regions of an address space.2

Learning from IDE, ATA, DMA, and PPI

The earliest ATA bus (then-named just IDE) supported only the “PIO 0” transfer mode
(“Programmed I/O”). PIO designs look much like pre-SoC designs, they require the central
CPU to continually manage data transfers. Once set up, however, larger transactions are
highly repetitive events that require comparatively little logic to operate. This insight is the

2As some fun history, sometimes MMIO assumptions can provide opportunity as well. The original IBM
PC used the Intel 8088 CPU, which had 20 address lines and was thus capable of addressing 1 MB of memory.
Of this, the bottom 640 KB (which perhaps ‘ought to be enough for anyone’) was available as traditional
RAM, while the top 384 KB were reserved for graphics, peripherals, and the BIOS. To extend system memory
then, external memory controllers (with sometimes several MB of memory) would claim a small region of
the peripheral address space. This peripheral was actually a paged memory controller, which would allow
processes—which at the time were allowed direct peripheral hardware access—with an understanding of
the memory controller interface the ability to manage vast amounts of additional memory for their own
use through a 64 KB paging window. This approach required no modification to the MS-DOS operating
system, which for a long time did not have a sense of the machine having more than the original 640 KB of
memory. Processes that used several MB of memory simply seemed to perform a large number of peripheral
transactions. In the end, MS-DOS memory segments would include RAM, ROM, Conventional, Reserved,
Expanded, Enhanced Expanded, Extended, and High memory areas, many of which hid in similar limited
windows. For those interested in more details, I recommend Jerry Crow’s SIGICE writeup [66].
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foundation of DMA (Direct Memory Access), which frees the CPU. In traditional computing
paradigms, DMA allows for high performance, as DMA enables parallelism and allows the
CPU to continue other processing. For the resource-constrained ecosystem, however, the
value is again in resource reduction – with DMA, only the DMA controller and memory need
to be powered during a transaction.

Newer SoCs take this concept a step further. Nordic Semiconductor provides the Pro-
grammable Peripheral Interconnect (PPI), Texas Instruments provides MicroDMA (µDMA),
and other vendors are adding similar constructs. One could think of a traditional DMA engine
as a programmable compute unit that handles a “send-byte” operation and then evaluates to
either run the “send-byte” operation again or to run a “notify-complete” operation. These
new designs add a richer, but still limited set of capabilities. Additional actions include
operations such as “assert GPIO pin”. Conceptually, this is further extension of the DMA
principle: pre-programming rules to free the CPU from operation. The design of these
systems, however, is such that only a limited surface area of peripheral capabilities are
exposed by these interconnects. A PPI event can only trigger certain, dedicated PPI tasks.
Other peripheral tasks require CPU intervention and MMIO writes.

Exporting MMIO as the System Interface

In MPQ, the insight is to exploit the generality of memory and MMIO interfaces. The key
design points are that each chip’s DMA controller is itself controlled by (possibly remote)
MMIO operations and that any chip can trigger a DMA transaction between any other chips,
possibly not including itself. In this way, a CPU chip, with its large memory stores, can write
an arbitrarily complicated sequence of pre-programmed events. To chain events, the end of
each DMA transaction is a series of memory writes that configure another DMA controller to
issue a new transaction. Because everything is exposed via MMIO, this design maximizes
generality. Any chip and any peripheral can trigger any operation on any other chip.

Implications on Reliability, Trust, and Security

There is a natural tension between modularity and efficiency. With tightly integrated SoCs,
it is readily accepted that a catastrophic failure (or malicious design) in one of the integrated
peripheral modules could compromise the system. This design-point implies SoC-like trust
among integrated chips. In many ways, this is the norm in embedded designs however.
Malicious peripherals could always “take-down” a system with unending interrupt storms,
denial-of-service on shared interconnect buses like I2C, or simply consuming energy at an
unsustainable rate. One might imagine chips that add various forms of protected memory
regions to help mitigate these risks. Genuine distrust of a tightly integrated peripheral,
however, requires significantly more platform support [67].
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Handling Asynchronous Events

Events (v) require some form of interrupt mechanism. However, even this interrupt mechanism
can be integrated with the memory abstraction. Cores can define memory addresses that
map to events—commonly referred to as interrupt vector tables—which execution will jump
to when an event occurs. Alternatively, a single interrupt execution path may exist, at which
point one or more MMIO addresses can be queried to establish which event occurred.

One to Any and One to Many

While an MMIO abstraction enables generality, it can lose some of the advantages of
standardization first highlighted in this section. Consider an emergency situation for a sensor
node: a brown-out detector is tripping and to prevent power collapse, every node that can
power down must do so. For this reason, the bus itself defines a limited broadcast protocol to
express system events. These are the types of things that are required to support operation
(e.g. address enumeration) as well as what is reasonably generic across all systems (e.g. basic
power management). Then there is the question of how to efficiently export a DMA-optimized
MMIO-like abstraction across chips. These two concerns make up the rest of this chapter:
first, how to build system-level abstractions, and then, how to design a distributed MMIO
interface.

4.2 MBus Broadcast Protocol Design

Section 2.2 observes that for broadcast messages to be effective and reliable for system
designers, every node in the system has to opt-in. For this reason, the broadcast protocol
described here is included as part of the MBus specification. While some messages, such as
enumeration, have to do with the operation of MBus, others, such as power management,
have more to do with system operation.

Recall the addressing in MBus is normally divided into a prefix and a function unit ID
(FU-ID). The prefix 0x0 is used to indicate a broadcast message. For broadcast messages,
the FU-IDs are used as “channel” identifiers. The MBus specification reserves channels 0-7
(MSB 0) for operations that should be standardized across all systems. This standardization
allows both chip designers and system designers to rely on ecosystem-wide operations. As an
example, for energy harvesting systems, when energy reserves are low, the energy management
chip can send a standard “energy critical” message that all chips in all designs are able to
respond to in a meaningful way.

Broadcast Messages (Address 0x0X, 0xf000000X)

MBus defines the broadcast short prefix as 0b0000 and the broadcast full prefix as 0x00000.
Broadcast messages are permitted to be of arbitrary length. Messages longer than 32 bits
may be silently dropped by nodes with small buffers. A node must not interject a broadcast
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message to indicate buffer overflow. Interjections are permitted for broadcast messages greater
than 4 bytes in length.

For broadcast messages, the functional unit ID field is used to define broadcast channels.
Broadcast channel selection is used to differentiate between the different types of broadcast
messages. MBus reserves half of these channels and leaves the rest as implementation-defined.
The MSB of the broadcast channel identifier (address bit 3) shall identify MBus broadcast
operations. If the MSB is 0 it indicates an official MBus broadcast message as specified in
this document and subsequent revisions. Broadcast messages with a channel MSB of 1 are
implementation-defined. It is recommended that nodes leveraging implementation-defined
broadcast channels provide a mechanism to dynamically select broadcast channel to help
mitigate conflicts.

A broadcast message that is not understood must be completely ignored. During ac-
knowledgment, an ignorant node shall forward.

Broadcast Messages and Power-Gating

Some systems may have inter-node dependencies on Layer power state, e.g. activating a
higher power regulator before a high-power component. For this reason, by default nodes
must not change Layer power state upon receipt of a broadcast message, excepting messages
that explicitly change Layer power state.

Some nodes, for example a general purpose processor that is snooping, may want to wake
their Layer for all messages. This is permitted, but nodes with non-standard broadcast power
behavior must clearly document power semantics to be MBus compliant.

Broadcast Channels and Messages

This section breaks down all of the defined MBus broadcast channels and messages. All
undefined channels are reserved and shall not be used. A node receiving a broadcast message
for a reserved channel shall ignore the message. It must not acknowledge a message on a
reserved channel and must forward during the acknowledgment cycle.

All MBus broadcast messages, except those sent on Broadcast Channels 2-7: Reserved,
follow a common template. The messages are 32 bits long. The four most significant bits
identify the message type/command. Some messages do not require all 32 bits. The unused
bits are named insignificant bits. Messages may be truncated, omitting the insignificant bits
on the wire.3

All examples are shown with short addresses for space. There is no distinction between
the use of the short or full broadcast address. Bitfields are presented Address + Data.
Addresses are broken down into the Broadcast Prefix and the Broadcast Channel. Data
is broken down into a Message Type Specifier and the message itself. In the bitfields, 0
and 1 indicate bits that must be set to that value, X indicates bits that depend on the

3With the caveat that all MBus messages must be byte-aligned. Some insignificant bits may still be sent
on the wire as a consequence.
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current message, and Z indicates bits that should be ignored—accept any value, send as 0.
Insignificant Bits are also indicated as Z.

Broadcast Channel 0: Node Discovery and Enumeration Channel 0 is used for
messages related to node discovery and enumeration. Channel 0 messages either require a
response or are a response. Channel 0 response messages should not be sent unless solicited.
The Bus Controller is responsible for handling Channel 0 messages. Channel 0 messages
should not affect Layer power state.

Query Devices

01234567

0000 0000 +

012345678910111213141516171819202122232425262728293031

0000 ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ

The query devices command is a request for all devices to broadcast their static full prefix and
currently assigned short prefix on the bus. Every MBus node must prepare a Query/Enumerate
Response when this message is received.

All nodes are required to support this message and respond.

Query/Enumerate Response

01234567

0000 0000 +

012345678910111213141516171819202122232425262728293031

0001 ZZZZ Full Prefix
Short
Prefix

This message is sent in response to a Query Devices or Invalidate Prefix request. When
responding to Query Devices, every node will be transmitting their address, and nodes should
anticipate losing arbitration several times before they are able to send their response.

The top four bits of the data field identify the message as a Query Response. The next
four bits are ignored. The following 20 bits contain the full prefix of the node. The final
4 bits are the currently assigned short prefix. Nodes that have not been enumerated should
report a short prefix of 0b1111.

This message must be sent in response to Query Devices or Enumerate Node. When
responding to Query Devices, nodes must retry until the message is sent. When responding
to Enumerate Node, nodes must not retry sending if arbitration is lost and must retry
sending if interjected.4

All nodes are required to support this message.

Enumerate Node

01234567

0000 0000 +

012345678910111213141516171819202122232425262728293031

0010
Short
Prefix

ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ

4An interjection should not occur during this message. Such an interjection would be an error.
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This message assigns a short prefix to a device. All nodes that receive this message and do
not have an assigned short prefix must attempt to reply with a Query/Enumerate Response.
Nodes with a short prefix shall ignore the message (broadcast NAK, that is, forward). Nodes
shall perform exactly one attempt to reply to this message. The node that wins arbitration
shall be assigned the short prefix from this message. Nodes that lose arbitration shall remain
unchanged.

Nodes that have an assigned short prefix shall ignore this message.

All nodes are required to support this message and respond if appropriate.

Invalidate Prefix

01234567

0000 0000 +

012345678910111213141516171819202122232425262728293031

0011
Short
Prefix

ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ

This message clears the assignment of a short prefix. The bottom 4 bits specify the node
whose prefix shall be reset. A node shall reset its prefix to Unassigned Short Prefix in the
MBus Specification. If the prefix to clear is set to Unassigned Short Prefix, then all nodes
shall reset their prefixes.

All nodes are required to support this message.

Broadcast Channel 1: Layer Power Channel 1 is used to query and command the
Layer power state of MBus nodes. Power-oblivious nodes may ignore channel 1. Power-aware
nodes whose power model does not align well with these commands may ignore channel 1
messages except All Sleep. All nodes capable of entering a low-power state must enter their
lowest power state in response to an All Sleep message.

A node Layer is implicitly waked when a message is addressed to it, explicitly issuing a
wake command is unnecessary to communicate with a node. Nodes may build finer-grained
power constructs beyond the macro Layer control provided by MBus. For the purposes of
MBus, a node’s “sleep” state should be a minimal power state. Nodes may have different
sleep configurations, e.g. different interrupts that are armed.

All Sleep

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0000 ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ

All nodes receiving this message must immediately enter their lowest possible power state.
The bottom 28 bits of this message are reserved and should be ignored.

All power-aware nodes are required to support this message.
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All Wake

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0001 ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ ZZZZ

All nodes receiving this message must immediately wake up. The bottom 28 bits of this
message are reserved and should be ignored.

Selective Sleep By Short Prefix

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0010 Z X X X X X X X X X X X X X X Z ZZZZ ZZZZ ZZZZ

This message instructs selected nodes to sleep. The 16 bits of data are treated as a bit vector,
mapping short prefixes to bit indicies. That is, the node with short prefix 0b1101 is controlled
by the second bit received (bit 25 in the bit vector above). If a bit is set to 1, the selected
node must enter sleep mode. If a bit is set to 0, the selected node should not change power
state. The bits for prefixes 0b1111 and 0b0000 are ignored.

Selective Wake By Short Prefix

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0011 Z X X X X X X X X X X X X X X Z ZZZZ ZZZZ ZZZZ

This message instructs selected nodes to wake. The 16 bits of data are treated as a bit vector,
mapping short prefixes to bit indicies. That is, the node with short prefix 0b1101 is controlled
by the second bit received (bit 18 in the bit vector above). If a bit is set to 1, the selected
node must wake up. If a bit is set to 0, the selected node should not change power state.
The bits for prefixes 0b1111 and 0b0000 are ignored.

Selective Sleep By Full Prefix

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0100 ZZZZ Full Prefix ZZZZ

This message instructs selected nodes to sleep. Any node whose full prefix matches must
enter sleep.

Selective Wake By Full Prefix

01234567

0000 0001 +

012345678910111213141516171819202122232425262728293031

0101 ZZZZ Full Prefix ZZZZ

This message instructs selected nodes to wake. Any node whose full prefix matches must
wake up.
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Broadcast Channels 2-7: Reserved

4.3 MPQ: Point-to-Point Message Protocol

MBus also defines a common point-to-point messaging protocol: MPQ.5 This protocol provides
the system-wide MMIO abstraction. MPQ defines two classes of data: register data and
memory data. MPQ registers have 8 bit addresses and are 24 bits wide. MPQ memory has
32 bit addresses and stores data that is 32 bits wide. The register address space and memory
address space are separate constructs, that is register address 0x00 need not map to memory
address 0x00000000, although aliasing is permitted.

MPQ Registers (Reg #192–255)

MPQ reserves the top 64 registers for control and configuration. Figure 4.1 gives a visual
summary of these registers. This space configures various MPQ capabilities. Much of the space
is currently reserved for future expansion. Attempts to write configuration for unsupported
features (e.g. configuration of a memory streaming channel on a device with no memory) is
undefined. Attempts to read unsupported features must NAK or return all 0. This section
documents each of the registers. The top two bits of each MPQ register address are 11

followed by six bits that identify the type. All reserved bits should be treated as RZWI. The
MPQ controller stores state about its current operation in the status registers, #240–247.
Each MPQ operation describes what the MPQ controller will Record and when it will trigger
an interrupt. Reg #220: MPQ Record and Interrupt Control controls what events generate
interrupts.

Reserved Registers

All registers not specified here are reserved. Writes to reserved registers should be ignored.
Reads from reserved registers should return all 0.

5For those chips kind enough to mind their P’s and Q’s on MBus.
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Reg #216: Bulk Memory Message Control
01234567

11 110010

01234567891011121314151617181920212223

E
N

C
A
C
T

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V Length Limit-1

Default: 0x800000, 0x000000 if no memory.

This register controls the response of this chip upon the receipt of a Memory Bulk Write
command.

• {R[23]}: Enable (EN).

– Controls whether bulk memory transactions written to this device are enabled. If
EN is 0, a node must not modify the contents of memory in response to a bulk
memory transaction.

– Acknowledgment/Interjection: The behavior of a bulk write when EN is 0

is undefined. Receivers are encouraged to interject and indicate receiver error,
however they may exhibit any behavior, including ACK’ing the transaction and
silently ignoring it.

• {R[22]}: Control Active (CACT).

– If this bit is high, this register’s length field acts as a limit for the maximum
permitted bulk message length. A bulk message is allowed to write until this
message limit is reached. If more data comes, the message must be NAK’d. The
receiver should interject with receiver error as soon as it knows the length limit
has been exceeded.

• {R[15:0]}: Length Limit.

– The maximum permitted length in words of a memory bulk write message to any
address.

Reg #220: MPQ Record and Interrupt Control
01234567

11 011111

01234567891011121314151617181920212223

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V

IN
T

IN
T

IN
T

IN
T

IN
T

IN
T

IN
T

IN
T

Default: 0x0000XX
Note: The default is implementation dependent. Most chips default to all interrupts off (0x000000).

Each time a node completes a MPQ command, it checks the associated command INT bit. If
high, the layer owner is interrupted.
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Reg #224–239: Memory Stream Configuration
01234567

11 10 XX 00

01234567891011121314151617181920212223

Alert Address Write Buffer [15:2]

R
S
V

R
S
V

Default: 0x000000

01234567

11 10 XX 01

01234567891011121314151617181920212223

Alert Register to
Write

Write Buffer [31:16]
Default: 0x000000

01234567

11 10 XX 10

01234567891011121314151617181920212223

E
N

W
R
P

D
B
L
B

R
S
V

R
S
V

R
S
V

R
S
V

R
S
V Buffer Length-1

Default: 0x000000

01234567

11 10 XX 11

01234567891011121314151617181920212223

Reserved Buffer Offset
Default: 0x000000

In MPQ each node has up to four independent, identical memory streaming channels. Each
channel has two configuration registers. The two registers work together to configure each
channel.

• {R01[15:0], R00[15:2], 2’b00}: Write Buffer.

– Pointer to the beginning of a buffer in memory.

• {R00[23:16]}: Alert Address.

– Defines where alerts are sent. If the alert prefix (bits 23:20) are set to the full-prefix
indicator 1111, the alert is suppressed.

– Alerts are sent whenever the end of the buffer is reached. If DBLB is active, an
alert is also sent when the halfway point of the buffer is reached.

– When a memory stream alert occurs, a node sends the following message:
01234567

Alert Address︸ ︷︷ ︸
MBus Address

012345678910111213141516171819202122232425262728293031

Alert Register To
Write

Alerting Stream
Channel E

N

W
R
P

D
B
L
B

O
V
F
L

Reserved︸ ︷︷ ︸
MBus Data

∗ The MBus Address is set to the Alert Address specified by bits 23:16 in
R1110XX00.

∗ The top 8 bits of data are set to the Alert Register to Write specified by
bits 23:16 in R1110XX01.

∗ The next 8 bits are the Alerting Stream Channel, made up of this node’s
short prefix, followed by 01, followed by the channel that generated the alert—
this should be the same address used to write to this stream channel.

∗ The EN bit reports the current state of the EN bit of the alerting channel when
the alert was sent.
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∗ The WRP bit is set if the write that generated this alert reached the end of the
stream buffer.

∗ The DBLB bit is set if the write that generated this alert reached the halfway
point of the stream buffer and double-buffering is active for this stream.

∗ The OVFL bit is set if the write that generated this alert reached the end of the
stream buffer and there was already a pending alert with the WRP bit set or if
the write that generated this alert reached the halfway point of the stream
buffer and double buffering is active for this stream and there was already a
pending alert with the DBLB bit set.

– It is valid for a node to put its own address in the Alert Address field, in which
case, no bus transaction should be generated, but a local alert should still fire.

• {R10[15:0]}: Buffer Length-1.

– Defines the length of the buffer.

• {R10[23]}: Enable (EN).

– Controls whether this channel is enabled. If EN is 0, a node must not modify
memory in response to a memory stream message.6

– Acknowledement/Interjection: The behavior of a stream write when EN is 0

is undefined. Receivers are encouraged to interject and indicate receiver error,
however they may exhibit any behavior, including ACK’ing the transaction and
silently ignoring it.

• {R10[22]}: Wrap (WRP).

– Defines node behavior when the end of the buffer is reached. If WRP is high, the
Write Address Counter should reset to its original value. If WRP is low, the Write
Address Counter value should be unchanged (it should thus be one past the end
of the valid buffer) and EN should be set to 0.

• {R10[21]}: Double Buffer (DBLB).

– Controls double-buffering mode. If double-buffering is active, the node should
generate an alert halfway through the buffer in addition to at the end of the buffer.
This mode is most useful when combined with WRP.

• {R11[15:0]}: Buffer Offset

• Specify an offset into the buffer. Users should be mindful that many systems may not
support unaligned access.

6Implementation Tip: Any undefined MPQ registers are defined to be RZWI, that is a read from an
undefined register will read as all 0’s (and a write ignored). Upon a read, this will return 0 for EN as required.
Nodes that do not implement a memory stream channel do not require any logic to handle any memory
stream messages, simply leave the register undefined.
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Reg #255: Action Register
01234567

11 111111

01234567891011121314151617181920212223

R
S
T

RSV

R
S
T
R

R
S
T
B

R
S
T
S

Reserved

IN
T
O

Reserved
<No Storage>

This register requests that an action be performed. It is an error to request more than one
action in a single request. Actions are processed from MSB to LSB, that is, if more than one
action is requested only the highest priority action is actually taken. A read from this register
shall always return all 0. A write of all 0 to this register shall perform no actions. If any bit
written to this register is non-zero, writing this register must be the last operation in the
transaction. The behavior of anything after a register action request in the same transaction
is undefined.

• {R[23]}: Reset (RST).

– Reset the entire node. The exact result of a reset is implementation-defined,
however this request should be the most aggressive form of reset available.

• {R[19]}: Reset MPQ Registers (RSTR).

– Reset MPQ configuration registers that affect register protocol behavior to their
default value.

– Resets #223–247.

• {R[18]}: Reset Bulk Registers (RSTB).

– Reset MPQ configuration registers that affect memory bulk transfers to their
default value.

– Resets #242.

• {R[17]}: Reset Stream Registers (RSTS).

– Reset MPQ configuration registers that affect memory stream transfers to their
default value.

– Resets #224–239.

• {R[8]}: Interrupt Owner (INTO).

– Asserts the Layer Owner Interrupt.

Register Commands

The MPQ register space is an 8 bit addressable array of 24 bit wide registers. Any undefined
bits are treated as RZWI (Read as Zero, Write Ignored). This section expresses the on-wire
interface to registers.



CHAPTER 4. BUILDING MODULAR COMPONENTS 49

Register Write
01234567

. . . Prefix 0000︸ ︷︷ ︸
MBus Address

012345678910111213141516171819202122232425262728293031

Address Data Address. . .︸ ︷︷ ︸
MBus Data

Bits 0-23 of the MBus data field are written to the register addressed by bits 24-31. The write
occurs immediately, as soon as the layer controller receives the message. Multiple registers
may be written in a single MBus transaction by sending multiple data packets. Each 32 bit
chunk of data is treated as if it were an independent transaction.

Record and interrupt (if enabled) after each register write:

Reg #240:

01234567891011121314151617181920212223

4 MSB of
Prefix 0000 Reserved

Register Address
Written

Overflow: If more data is received after writing the last register (0xff), the destination
address wraps and registers continue to be written, beginning at address 0x00.

Unaligned Access: The behavior of a message ending on a non-word boundary is undefined.

Interjection Semantics: Each command is applied immediately when it is received. A
four-command message would have a 4× 32 = 128 bit data payload. If 63 bits are received
prior to interjection, only the first command was applied. If 64 bits are received, the first two
commands are applied.

Register Read
01234567

. . . Prefix 0001︸ ︷︷ ︸
MBus Address

012345678910111213141516171819202122232425262728293031

Start Address
to Read From

Length-1
MBus Address

to Reply To
Address to Write
on Destination︸ ︷︷ ︸

MBus Data

Bits 24-31 specify the address of the register to be read. Bits 16-23 may be used to request
that multiple registers are sent. This field is a count of the number of values to be sent less
one, that is a value of 0 requests 1 register is read and a value of 255 requests that all 256
registers are sent. Bits 8-15 are the MBus address the reply is sent to. Bits 0-7 specify the
first address field of the Register Write response.

The response message is sent to the MBus address specified in bits 8-15 of the request
and its data field is formatted exactly as the Register Write command: 8 bit address + 24 bit
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data. For reads of more than one register, the address field in the response is incremented
by 1 for each register.

The response always sends the requested length. If a request for register #256 would have
been made, the request wraps and begins from register #0. The destination register address
wraps similarly.

Note: The MBus address to reply to must be copied exactly. The FU ID is not required to
be Register Write. For example, if the FU ID is Memory Stream Write, the effect is dumping
the current register state to memory on the target addresses.

Record command informa-
tion. Generate the whole re-
sponse message. Interrupt (if
enabled) after sending com-
plete response.

Reg #240:

01234567891011121314151617181920212223

4 MSB of
Prefix 0001

MBus Address
Replied To

Address Written on
Destination

Reg #241:

01234567891011121314151617181920212223

Reserved Length-1 Start Address Read
From

Interjection Semantics: If the reply is interjected, the transaction is aborted and is not
retried.

Memory Commands

The MPQ memory space is a 32 bit addressable array of 32 bit words of memory. Any
undefined accesses are treated as RZWI (Read as Zero, Write Ignored). MPQ provides two
types of memory commands: bulk and stream. A bulk memory transaction is a wholly self-
contained event designed for DMA of large blocks of memory. Memory streams pre-configure
the stream information in MPQ registers on the destination node and omit it from subsequent
transactions, relying on the receiver to maintain and increment a destination pointer. Streams
are useful for applications such as continuous sampling, where multiple, short messages are
generated.

Memory Bulk Write

01234567

. . . Prefix 0010︸ ︷︷ ︸
MBus Address

31... 21031... 031...

DMA Start Address ZZ Data Data. . .︸ ︷︷ ︸
MBus Data

The first word received is the address in memory to begin writing to. The bottom two bits of
the address field are reserved and must be transmitted as 0. Subsequent words are treated
as data. The first word of data is written to the specified address. The next word of data is
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written to address+4 (the next word in memory) and so on. There is no limit on the length
of this message.

Record command information.
When the write completes, gen-
erate an interrupt (if enabled).
If an error occurs part way
through, the Reg #250 should
indicate the number of words
actually written.

Reg #240:

01234567891011121314151617181920212223

4 MSB of
Prefix 0010 Start Address Written To [15:2]

R
S
V

R
S
V

Reg #241:

01234567891011121314151617181920212223

Reserved Start Address Written To [31:16]

Reg #242, #243 not written.

Reg #244:

01234567891011121314151617181920212223

Reserved Length Written-1

Implementation Note: These registers may be updated while the command is running, so
long as they have the correct value once it completes. They are a good place to store the
pointer and counter while the command is active instead of instantiating dedicated counter
and address registers.

Unaligned Access: The behavior of a message ending on a non-word boundary is undefined.

Overflow: If more data is received after writing the last address in memory (0xfffffffc),
the destination address wraps and data continues to be written, beginning at address
0x00000000.

Interjection Semantics: Each word of data is written to memory immediately when it is
received. A four-word message would have a (1 + 4)× 32 = 160 bit data payload. If 95 bits
are received prior to interjection, only the first word was written to memory. If 96 bits are
received, the first two words were written to memory.
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Memory Read
01234567

. . . Prefix 0011︸ ︷︷ ︸
MBus Address

31... 24232019... 031... 24232019... 21031... 210
MBus

Rply Adr RSVD Length-1 Read Start Address ZZ
DMA Start Address on

Destination Node
ZZ︸ ︷︷ ︸

MBus Data

The first word indicates the MBus address to reply to and the length of the requested read in
words less one. A length of 0 will reply with 1 word of data. The second word is the address
in memory to read from. The bottom two bits of the address field are reserved and must be
transmitted as 0.

The third word is optional. If the third word is present, it is prepended to the reply
(generating a message with a Memory Bulk Write formatted payload). If the third word is
omitted, data is immediately placed on the bus (generating a message with a Memory Stream
Write formatted payload).

Record command information.
Generate the response and send
it. When the response com-
pletes, trigger an interrupt (if
enabled). If an error occurs
part way through, the Reg
#250 should indicate the num-
ber of words actually written. If
the optional third word is omit-
ted, Reg #251–252 are unde-
fined.

Reg #240:

01234567891011121314151617181920212223

4 MSB of
Prefix 0011 Start Address Read From [15:2]

R
S
V

R
S
V

Reg #241:

01234567891011121314151617181920212223

Reserved Start Address Read From [31:16]

Reg #242:

01234567891011121314151617181920212223

Reserved DMA Address Written To [15:2]

R
S
V

R
S
V

Reg #243:

01234567891011121314151617181920212223

Reserved DMA Address Written To [31:16]

Reg #244:

01234567891011121314151617181920212223

Reserved Length Read-1

Overflow: If the starting address field and subsequent length exceed the memory space,
that is a request for address 0x100000000 would have been made during the response, the
layer controller wraps and continues sending from address 0x00000000.
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Interjection Semantics: If the reply is interjected, the transaction is aborted and is not
retried.

Memory Stream Write

01234567

. . . Prefix 01 XX︸ ︷︷ ︸
MBus Address

31... 0 31...

Data Data. . .︸ ︷︷ ︸
MBus Data

MPQ nodes have up to four streaming memory channels. Each channel is controlled by
configuration registers (Reg #224–239: Memory Stream Configuration). The destination of a
memory stream write is specified by a combination of channel selection—the last two bits of
the FU ID—and the pre-arranged configuration.

The message payload is all data. The destination address is automatically incremented
every time a word is written. There is no limit on the length of this message.

Record command information.
When the write completes, gen-
erate an interrupt (if enabled).
If an error occurs part way
through, the Reg #250 should
indicate the number of words
actually written.

Reg #240:

01234567891011121314151617181920212223

4 MSB of
Prefix 01 XX Start Address Written To [15:2]

R
S
V

R
S
V

Reg #241:

01234567891011121314151617181920212223

Reserved Start Address Written To [31:16]

Reg #242, #243 not written.
Reg #244:

01234567891011121314151617181920212223

Reserved Length Written-1

Unaligned Access: The behavior of a message ending on a non-word boundary is undefined.

Overflow: If more data is received after writing the last address in memory (0xfffffffc),
the destination address wraps and data continues to be written, beginning at address
0x00000000.

Interjection Semantics: Each word of data is written to memory immediately when it is
received. A four-word message would have a (1 + 4)× 32 = 160 bit data payload. If 95 bits
are received prior to interjection, only the first word was written to memory. If 96 bits are
received, the first two words were written to memory.
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Broadcast Snooping

Broadcast Channel 0: Node Discovery and Enumeration and Broadcast Channel 1: Layer

Power are built into the MBus protocol which runs below MPQ. However, it is possible that a
MPQ node may wish to snoop broadcast traffic (in particular, Query/Enumerate Response).

If broadcast snooping is active, whenever a broadcast message is received:

Record command information.
Interrupt (if enabled) after mes-
sage completes.

Reg #240:

01234567891011121314151617181920212223

0000 Broadcast
Channel

Broadcast Message [15:0]

Reg #241:

01234567891011121314151617181920212223

Reserved Broadcast Message [31:16]

Undefined Commands

If command with an unknown FU ID is received, MPQ behavior is completely undefined.

MPQ in Practice

These interface definitions enable general purpose any-to-any MMIO-like transactions. One
of the key capabilities worth emphasizing again is that any third device can initiate such
operations. To illustrate this, the following example7 shows how the MPQ interface would
issue a bulk memory (DMA) operation between two remote nodes:

void mbus_copy_mem_from_remote_to_any_bulk (

uint8_t source_prefix,

uint32_t* source_memory_address,

uint8_t destination_prefix,

uint32_t* destination_memory_address,

uint32_t length_in_words_minus_one

) {

uint32_t payload[3] = {

( ((uint32_t) destination_prefix) << 28 )

| (MPQ_MEM_BULK_WRITE << 24) | (length_in_words_minus_one & 0xFFFFF),

(uint32_t) source_memory_address,

(uint32_t) destination_memory_address,

};

mbus_write_message(((source_prefix << 4 ) | MPQ_MEM_READ), payload, 3);

}

7From https://github.com/lab11/M-ulator/blob/master/platforms/m3/pre v20e/software/libs/mbus.c

https://github.com/lab11/M-ulator/blob/master/platforms/m3/pre_v20e/software/libs/mbus.c
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4.4 Summary

This chapter assigned semantic meaning to interconnect messages. In contrast to traditional
embedded interconnects, which describe only how to read or write arbitrary bits and bytes,
MPQ defines standard register and memory abstractions and how to read and write them.
This extends the reach of system composition and creates a “namespaced MMIO” abstraction.
In this way, composable design concepts can flow freely across chip boundaries, which softens
the previously hard delineation between system and system-on-chip. This chapter completes
the design of the modular interconnect for Smart Dust systems. The next chapter puts these
ideas to test, starting with theoretical analyses and progressing to the implementation of
several real-world millimeter-scale systems.
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MPQ Register Map

#192 Reserved

. . .

hhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhh

#215 Reserved

 T
ie

to
0

#216 Bulk Memory Message Control

#217 Reserved

#218 Reserved

#219 Reserved

#220 MPQ Record and Interrupt Control

#221 Reserved

#222 Reserved

#223 Reserved

#224

#239

Memory Stream Configuration
Registers

#240

#247

Status Registers
Read Only
(summary)



R
et

en
ti

ve

#248

#255

Action Registers



N
on

-R
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ve

Figure 4.1: MPQ register map. MPQ defines a portion of the register space for its
own operation. This standard interface allows portable software libraries and remote DMA
operation.
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Chapter 5

The M3 Implementation

This chapter describes one specific instantiation of MBus and MPQ, as built for the Michigan
Micro Mote (M3) project. This implementation is chosen as a case study since it leverages all
of the power optimization faculties of MBus. It is further an opportunity to understand how
MBus is designed to integrate into both the individual pieces of a system as well as system
operation at large.

5.1 Overview

Figure 5.1 shows the complete Verilog design. For non-power-conscious designs, the blocks in
green and power control signals can be omitted. To support self and system power-gating,
the additional Sleep Controller, Wire Controller, and optional Interrupt Controller are added.
The Layer Controller implements MPQ and serves as the interface to the rest of the node.
While most nodes will likely have a local oscillator, it is possible to interface with the Bus
Controller using only edges harvested from the bus clock.

5.2 RTL Design

The M3 MBus implementation defines two major components: a Bus Controller and a
Layer Controller. The Bus Controller understands the MBus protocol and presents a simple
word-wide interface to higher layers. The generic Layer Controller provides a register file and
a memory interface, sufficient for most devices.

In addition, the M3 MBus implementation requires some support blocks: a Sleep Controller,
a Wire Controller, and an Interrupt Controller. They are hand-optimized (during layout),
always-on components designed for minimal power draw.
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Figure 5.1: MBus implementation. MBus is implemented as a series of composable
Verilog modules. The module coloring represents the three hierarchical power domains: green
modules (Sleep, Wire, and Interrupt Controllers) are always powered on, red modules (Bus
Controller) are powered during MBus transactions, and blue modules (Layer Controller,
Local Clock) are powered only when the node is active. Critically, MBus itself requires no
local oscillator. The generic Layer Controller implements and provides a simple, consistent
register/memory interface for a node. The isolate (ISO) signals ensure that floating signals
from power-gated blocks remain at stable defaults. Systems that do not perform power-gating
omit these isolation gates and all of the green blocks.

Sleep Controller

The job of the Sleep Controller is to wake the Bus Controller when a message on the bus
begins. The Sleep Controller is also responsible for powering down the Bus Controller when
requested, using edges from MBus to do so. For layers capable of waking on events other
than MBus transactions, the Sleep Controller may be extended or need to coordinate with
other Sleep Controllers.



CHAPTER 5. THE M3 IMPLEMENTATION 59

Power Signals

The Sleep Controller uses both edges of the CLK IN signal to generate the power signals.
The rising edge that resolves arbitration is used to release the power-gating. The falling
edge (Priority Drive) is unused and reserved for implementations that require a RELEASE CLK

signal. The next rising edge (Priority Latch) drives RELEASE RST and the falling edge
(Begin Transmission) drives RELEASE ISO. The next rising edge latches the Reserved bit from
the bus, which is currently unused and results in an empty cycle.

MBus Signals

The Sleep Controller samples and passes through the MBus CLK IN signal. The Sleep
Controller uses this line to clock its internal state machine. The Sleep Controller and the
Bus Controller can be safely considered synchronous modules with respect to one another as
they both rely on the MBus CLK IN signal to provide a clock.

Module Signals

The Sleep Controller has only one non-reset input signal: SHTDWN. This signal is asserted by
the Bus Controller to request that it be put to sleep. This signal is sampled synchronously
with the MBus clock. The SHTDWN signal may only be asserted during the falling edge
Drive Control Bit 1.

The Sleep Controller is also responsible for generating a CLR BUSY output signal when it
powers off the Bus Controller. This signal is normally generated by the Bus Controller at the
end of MBus transactions and is used to indicated to the Interrupt Controller that the bus is
no longer busy.

Wire Controller

The Wire Controller is responsible for physically driving the MBus wires. This separation is
necessary to ensure that the data and clock lines are forwarded even when the Bus Controller
is power-gated. The Wire Controller is a very simple module, conceptually it is little more
than a mux that either forwards the values coming in from the bus or values coming from
the Bus Controller.

Changing the Wire Controller muxes requires extreme care to ensure that unintentional
glitches are not introduced. In practice, this means only changing the clock mux signal when
CLK IN is already high. The data mux is more complicated. During Idle, the data line is high,
any glitches while pulling it low (so long as it ultimately is held low) will be significantly
shorter than the mediator wakeup and therefore ignored. During transmission, the state of
the data line is not always known when control transitions are required. MBus ignores the
data line while the clock is low. Any potentially glitch-inducing changes to the data mux
must occur on the falling edge of clock to avoid uncertainty.
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The Wire Controller also facilitates external interrupts as a wakeup source via a glitch
inducer, as discussed in Section 3.3. The goal is to incite a bus arbitration cycle but not
participate in it. Usually, this procedure results in no winner of arbitration, and the bus will
reset. However, the glitch inducer logic must also correctly handle the case where another
node was performing genuine arbitration at the same time, and a real message takes place.

Interrupt Controller

The Interrupt Controller is responsible for directing interrupt events to the appropriate
modules at the appropriate times. The destination of an interrupt event depends on the
current power state of the Bus Controller and Layer Controller.

If the Layer Controller is powered on, the Interrupt Controller blocks the interrupt signal
as the Layer Controller will handle the interrupt and generate any appropriate messages.
If the Layer Controller is powered off, however, the Bus Controller must wake the Layer
Controller. To do this, the Bus Controller must harvest edges from MBus. To generate the
power signals, the Bus Controller must observe a transaction while the INT TO BC signal is
asserted. To generate these edges, the Interrupt Controller must induce a glitch.

A Subtle Detail: Extreme care must be taken when this glitch is induced. In particular
it is important to ensure that MBus is idle so that a real glitch is not created. The simple
approach would be to ask the Bus Controller to simply export a “bus busy” signal, asserted
while a transmission is active. Such a signal is not sufficient, however. If a Bus Controller is
not powered on, it is incapable of asserting busy. If two nodes have interrupts near each other
in time, the first node will induce a glitch unobserved by the second node. If an interrupt
occurs on the second node between end of the mediator wakeup and resultant falling edge of
CLK IN and the rising edge for arbitration, the second node will unintentionally (and worse
unknowingly) win arbitration. As the node does not know that it has won arbitration, it will
never end the transmission and the bus will hang until the mediator’s watchdog expires.

To avert this issue, the Interrupt Controller keeps an internal sense of “bus busy”. The
Interrupt Controller latches the bus as busy whenever CLK IN goes low. The internal busy
signal is then cleared by an explicit signal from the Bus Controller at the end of MBus
transactions. As a special case, the Sleep Controller must clear the busy status when it
powers the bus controller down as the Bus Controller will be powered off at the end of the
transaction and incapable of generating the signal. This clear busy signal is internally treated
as the last step in the power-down sequence.

Bus Controller

The Bus Controller is responsible for handling all possible bus events, including generating
acknowledgments if it is the target of a transaction. The Bus Controller is only obligated to
hold one word of a transaction, devices wishing to receive messages longer than one word in
length must have a local FIFO to store partial messages in their Layer Controller.
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Power Signals

The Bus Controller provides the same power control signals to the Layer Controller that
the Sleep Controller provided to the Bus Controller. For basic layers, the Bus Controller is
responsible for waking and sleeping the Layer Controller.

The Bus Controller should only wake the Layer Controller if there is a message of non-zero
length being transmitted to the layer’s address. In practice this means the Bus Controller
should not begin waking the Layer Controller until it has received the third data bit. Layer
Controllers are not awoken for broadcast messages as all currently defined broadcast messages
can be handled by the Bus Controller alone.

Once the Bus Controller elects to begin waking the Layer Controller, it must wake the
Layer Controller completely. Even if another data bit is never sent (due to an interjection)
after the Bus Controller elects to wake the Layer Controller, there are still the Begin Interrupt,
Control Bit 0, Control Bit 1, and Begin Idle edges to use to wake the Layer Controller (which
means it is sufficient to rely on solely positive edges to drive the wakeup state machine).

The Bus Controller will indicate an erroneous wake-up by asserting RX FAIL signal. The
Layer Controller must acknowledge (RX ACK) the erroneous transmission before the Bus
Controller is capable of receiving another message. This enables the Layer Controller to take
action to put itself back to sleep after a spurious wakeup.

MBus Signals

While the Bus Controller is not directly connected to the external pads for all MBus signals,
it does use all MBus inputs:

input CLK IN Bus Clock In
output CLK OUT Bus Clock Out
input DIN Bus Data In

output DOUT Bus Data Out

Module Signals

input RESET Global system reset
output SHTDWN Request power-gating

input TX ADDR[7:0] Address to transmit
input TX DATA[31:0] Data to transmit
input TX REQ Request to transmit
input TX PRIORITY Is high priority message?

output TX ACK Acknowledge request to transmit
input TX PEND More data pending
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output TX SUCC Transmit successful
output TX FAIL Transmit failed
input TX RESP ACK Acknowledge TX successful / fail

output RX ADDR[31:0] Destination address of RX’d packet
output RX DATA[31:0] Data received
output RX REQ Data is ready
output RX BROADCAST RX’d message was a broadcast message
input RX ACK RX DATA has been saved

output RX PEND More data is coming
output RX FAIL Abort current RX

The Bus Controller provides a single-word interface to MBus to higher level modules.
To ensure that the Bus Controller can send a timely ACK for a received message, modules
are obligated to be able to (eventually) receive a minimum of one word. That is, if the
RX REQ line is raised, the module must eventually receive that word by signaling RX ACK.
If another message is received while RX REQ is still high, the Bus Controller will Interrupt
the bus indicating "01" (∼EoM, TX/RX Error). This serves to (i) save bus bandwidth by
canceling a message that will not be received, and (ii) indicate to the transmitting layer that
there is still a pending message (or message part) in the receiving layer.

If the TX PEND signal is asserted but a TX REQ for a new word is not sent by the time the
first word has been sent, the Bus Controller will Interrupt the bus indicating "01" (∼EoM,
TX/RX Error). The Bus Controller will also assert TX FAIL, at which point the transaction
must be aborted.

The RX PEND signal requires special attention. When the RX REQ signal rises, if RX PEND

is also high, it indicates that there is more data to follow. If a module asserts RX ACK in
response it is obligating itself to receive at least one more word after the current word.1 If a
module cannot receive another word beyond the word it is currently latching, it should ignore
RX REQ. When the next word is received by the Bus Controller, it will detect that RX REQ is
still high and abort the entire transaction, Interrupting to indicate RX Error. In practice this
means a transmitting node may believe it has sent one more word than was actually received.
As the entire transaction is NAK’d however, the only implications are for the software flow
control estimation, which can compensate.

For simple nodes that only support single word transactions, this RX PEND subtlety is
important. Such a node should wire its final acknowledgment output signal something like

TX ACK out = (RX PEND in) ? 1’b0 : internal ack signal;

to ensure it does not attempt receipt of multi-word transactions. The TX PEND signal can
simply be tied low.

1This is logically a continuation of the original contract. In an idle state, a module has received zero
words thus far and is obligated to be able to receive one more. If a module ACKs a word while RX PEND is
high, it is accepting the current word and committing to receive the next pending word.
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Parameters

The Bus Controller requires relatively little configuration. The only available parameter is
the address(es) that this bus instance should respond to:

ADDRESS Address(es) to receive and acknowledge
ADDRESS MASK Which bits of ADDRESS are significant

Generic Layer Controller

The Layer Controller is responsible for communicating with the Bus Controller and facilitating
multi-word transactions. It federates access to the individual components on a MBus member
node. The generic Layer Controller is designed such that unused modules (e.g. memory
access and control) can be synthesized out if they are unused.

Power Signals

The generic Layer Controller can only be woken by the Bus Controller. Layers capable of
generating an interrupt while M3 is in sleep mode (e.g. an alarm) must wire into the glitch
inducer via the Interrupt Controller to wake the layer and the whole M3 system. The generic
Layer Controller does not output any power signals.

There is no explicit shutdown signal from the Layer Controller to the Bus Controller.
Rather, the Layer Controller issues a broadcast message announcing to the bus its intention
to shut down. The Bus Controller will recognize the special broadcast message and shut
down the Layer Controller once it is sent. The actual shutdown does not begin until the Bus
Controller successfully transmits the EoM bit at the end of the transaction.

Module Signals (Bus Side)

All Layer Controllers have a common set of signals to interface with the Bus Controller, as
shown in Figure 5.1. Details of these signals are presented in the Bus Controller section in
the Module Signals description.

Module Signals (Interface Side)

The Layer Controller expects to communicate with two types of hardware: a register file and
a basic memory. One or both of these may be instantiated. They are treated independently
by the Layer Controller.

Register File: The register file is for small, simple configuration, status, or action bits. It
presents an 8 bit address space with 24 bit wide data. Writes are pulse-triggered, with a
unique write control line for each of the registers. Data to read must always be valid, with
no indication that data is being read. Registers may be smaller than 24 bits. Unused bits for
writing should be left disconnected. Unused bits for reading must be tied low.
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output REG WR EN{0..255} Register write enable lines
output REG WR DATA[23:0] Register data
input REG RD DATA{0..255}[23:0] Wires from registers

Memory: The memory interface is for larger amounts of data (images, audio, packets, etc).
Memory is a 32 bit address space with 32 bit data. The memory space does not alias the
register file address space.

The memory interface is a simple two-wire handshake that indicates a request when
signals are valid and an acknowledgment when the data has been latched. Memory must
be fast enough that it can support streaming reads / writes at the line speed of MBus (see
Relative Clock Frequencies for detail).

output MEM ADDR[31:2] Memory address
output MEM IS WRITE Read/Write selection
output MEM REQ Request is ready
input MEM ACK Response is ready

output MEM WR DATA[31:0] Data to write
input MEM RD DATA[31:0] Data that was read

Module Signals (Interrupt Interface)

To generate messages internally, the local node interrupts the Layer Controller. Interrupt
priority is fixed and ranked by the interrupt index. Interrupts are non-interruptible and are
serviced completely before handling the next or new interrupt. If an interrupt and a message
from the bus arrive at the same time, the interrupt takes priority.

Conceptually, a local interrupt “fakes” the receipt of a message from the bus, thus the
data format is the exact same as bus commands. To generate a memory write command
for example, the interrupt payload is a memory read command, because the response to a
memory read request is to generate a memory write. The CMD LEN specifies the length in
words of the payload that is valid. A length of zero indicates that no command should be
executed (the FU ID and CMD fields are ignored) and can be cleared immediately. This is
useful for generating wakeup requests with no immediate command to execute.

input INT VECTOR[N-1:0] Interrupt requests
output INT CLR[N-1:0] Clear interrupts
input INT{N} CMD LEN[1:0] Word length of payload
input INT{N} FU ID[3:0] Command the Layer Controller “receives”
input INT{N} CMD[95:0] Command payload

Module Interdependencies

In addition to the module signals, the following additional requirements must be considered
for the blocks to operate correctly.
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Clock Domains

The Bus Controller and Layer Controller are on separate clock domains. Care must be
taken with the REQ and ACK two-wire handshake to ensure that signals are all double-latched.
Double latches should not be required for the other signals are they are only sampled after
the REQ or ACK line is stable.

The generic Layer Controller does not perform double-latching with any of the signals
attached to the register file or memory. These blocks are expected to run on the same clock
as the Layer Controller. Designs that violate this assumption must make modifications to
ensure signal stability.

Relative Clock Frequencies

Nominally, the Layer Controller would only require activity once every 32 MBus clock cycles.
In practice, however, there is a double-latched, bidirectional handshake between the Bus
Controller and Layer Controller. At a minimum then, the Layer Controller must be at least
1/8 the speed of the bus. This timing constraint further extends to the memory if longer
bus transactions are going to be supported. The generic Layer Controller is a write-through
device, it does not buffer memory requests. Consider the memory latency in cycles M to be
defined as the maximum possible number of cycles between the assertion of MEM REQ before
the MEM ACK response is asserted, then the minimum clock speed of the Layer Controller and
memory is 6+M

32
of the bus speed. There is no upper bound on the layer speed relative to the

bus. Layer Controller clock speeds are generally configurable.

5.3 Evaluation

In many regards the most significant evaluation of this work will be time. Will the availability
of modularity accelerate the introduction of Smart Dust, and will the resulting Smart Dust
actually use the interface principles and designs outlined here? Only time can tell.

It is, however, possible today to evaluate whether MBus achieves its design goals. Towards
that end, this section first considers the efficiency and baseline efficacy of the proposed
implementation. It next looks in depth at MBus, first via an evaluation of the protocol and
then theoretical and empirical energy performance analysis. Then two representative systems
from the Michigan Micro Mote (M3) ecosystem are examined to see how well real-world
systems behave. Finally, there is some consideration of future expansion via scalability and
interoperability of MBus.

Figures of Merit

Table 5.4 shows the cost in area for each of the MBus components (excluding I/O pads) when
synthesized for an industrial 180 nm process, with comparisons to SPI, I2C, and Lee’s I2C
variant. MBus imposes an area cost penalty, but offsets this with its additional features.
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Module Verilog SLOC Gates Flip-Flops Area in 180 nm
Bus Controller 947 1314 207 27,376 µm2

Optional
Sleep Controller 130 25 4 3,150 µm2

Wire Controller 50 7 0 882 µm2

Interrupt Controller 58 21 3 2,646 µm2

Total 1185 1367 214 37,200 µm2§

Other Buses:
SPI Master† 516 1004 229 37,068 µm2

I2C ‡ 720 396 153 19,813 µm2

Lee I2C [17] 897 908 278 33,703 µm2

§ Includes a small amount of additional integration overhead area
† SPI Master from OpenCores [68] synthesized for the same 180 nm process
‡ I2C Master from OpenCores [69] synthesized for the same 180 nm process

Table 5.4: Size of MBus components. Non power-gated designs require only the Bus
Controller. The MBus values are from the temperature sensor chip in Figure 5.5. To support
its additional features and lower power, MBus incurs a modest increase in area.

Protocol Evaluation

Topology

Because MBus is a ring, as the number of nodes increases, so does the propagation delay
around the ring. The MBus specification defines a maximum node-to-node delay of 10 ns,
which is achieved by all of designs to date. Figure 5.2 explores how node count affects the
bus clock and finds that a 14-node MBus system can run at up to 7.1 MHz. As a reference,
I2C clock speed ranges from 100 kHz (Standard) to 5 MHz (Ultra Fast) [51]. Some special-
purpose SPI implementations reach speeds as high as 100 MHz, though most low-power
microcontrollers have an upper limit of 16 MHz for the I/O clock [70, 71].

Overhead

In addition to transmitting data, MBus transactions require arbitration (3 cycles), addressing
(8 or 32 cycles), interjection (5 cycles), and control (3 cycles), an overhead of 19 or 43 cycles
depending on the addressing scheme. Figure 5.3 compares MBus overhead to other common
buses and finds that MBus’s length-independent overhead is more efficient after 9 byte
payloads than length-dependent protocols, without incurring significantly greater overhead
for shorter messages.
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Figure 5.2: Maximum frequency. MBus peak clock frequency is inversely proportional
to the number of nodes. MBus limits node-to-node propagation delay to 10 ns. For the
maximum of 14 short-addressed nodes, MBus could support a 7.1 MHz bus clock.
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Figure 5.3: Bus overhead. MBus message overhead is independent of message length.
MBus short-addressed messages become more efficient than 2-mark UART after 7 bytes and
more efficient than I2C and 1-mark UART after 9 bytes. MBus scales efficiently to messages
such as 28.8 kB images (Section 5.3) or longer.

Power

Simulation

To capture a detailed estimate of the cost of running MBus, the implementation is run through
Synopsis PrimeTime. The model is post-APR and uses standard wire models. To model
I/O load, the simulation uses a conservative pad model, which estimates 2 pF per pad. The
simulation estimates that MBus draws 5.6 pW per chip in idle and consumes 3.5 pJ/bit/chip
while transmitting. From this, the energy estimate of a single MBus message is:

Emessage = [3.5 pJ ∗ ({19 or 43}+ 8 ∗ nbytes)] ∗ nchips
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Energy per bit
Member+Mediator Node sending 27.5 pJ/bit

Member Node receiving 22.7 pJ/bit
Member Node forwarding 17.6 pJ/bit

Average 22.6 pJ/bit

Table 5.5: Measured MBus power draw. As supplies for MBus modules are not broken
out, their power draw cannot be directly measured. Instead, this uses differential system
states, which measures how much total system power draw changes when various MBus
operations are active, to capture an estimate of the power draw for MBus. Forwarding
nodes reduce switching activity by not clocking flops in their receive buffer. The mediator is
integrated as a block in the processor and cannot be isolated.

Measurement

Empirical power measurements are captured on a debug (non-stacked) version of the temper-
ature sensor shown in Figure 5.5 and evaluated in Section 5.3. Although the power draw of
MBus cannot be directly measured in the fabricated chips, it is possible to measure the draw
of each chip in the system in different states. The mediator is integrated as a block on the
processor chip and cannot be disentangled from the rest of that chip’s power draw. To get
stable measurements, the processor is placed in a continuous loop sending invalid commands
to the sensor node, which ignores them. As only the processor can be configured to send
continuous messages, this measurement technique can report only the combined mediator
and transmit energy consumption. The results of these measurements are summarized in
Table 5.5. The simulation number is only the energy consumed by MBus directly. The
approximately 6.5× increase over simulation can mostly likely be attributed to overhead such
as internal memory buses and other integrated components that could not be isolated.

There is not an obvious means to directly or indirectly measure the power draw of MBus
when idle. The total idle power draw of the temperature system is 8 nW, three orders of
magnitude above the expected static leakage of MBus (5.6 pW) and comparable with the idle
system power of the prior state-of-the-art. From this, it is reasonable to conclude that MBus
contributes negligible power to the idle state.

Comparison to I2C

The biggest inefficiency in I2C stems from overprovisioning. Since the total bus capacitance
is unknown, a power-inefficient, smaller value resistor must be chosen to guarantee timing
constraints are met. Instead, one might imagine an “Oracle I2C”, in which the exact bus
capacitance is known and an ideally large resistor is selected. To further improve Oracle I2C
power performance, one can allow the rise time to take the entire half clock period (zero
setup and hold time) and treat 80% VDD as logical 1. This Oracle I2C can then be modeled
using the same simulation parameters as MBus (1.2 V, 2 pF/pad, 0.25 pF/wire). Figure 5.4
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Figure 5.4: Energy comparisons. First, (a) compares the power draw of various bus
configurations as clock frequency and node population increase. It finds that both simulated
and measured MBus outperforms the simulated Oracle I2C, which itself outperforms standard
I2C. Then, (b) examines MBus overhead by computing the energy per bit for each bit of
goodput, actual data bits that amortize protocol overhead. The simulated MBus outperforms
the simulated Oracle I2C for all payload lengths. The measured MBus reveals that MBus
efficiency suffers for short (1–2 byte) messages and that systems should attempt to coalesce
messages if possible. In both figures, the measured values are based on empirical measurements
of the 3-node temperature sensor.

compares the performance of MBus simulation, an extrapolation of measured MBus values,
Oracle I2C simulation, and standard I2C. Both simulated and measured MBus outperform
Oracle I2C for all but the shortest (1− 2 byte) messages.

Microbenchmarks

These microbenchmarks examine two systems from the Michigan Micro Mote library of Smart
Dust systems that are representative of typical embedded workloads. These demonstrate
the importance of multi-master capability, efficient handling of large messages, and power-
conscious design.

Sense and Send

Figure 5.5 shows a temperature sensor. This system is an archetypal “sense and send” design.
The environment is periodically sampled and the reading is communicated from the sensor. In
this system, the processor node periodically requests a temperature reading from the sensor
node. In the request (4 bytes), the sensor node can be instructed to send the response (8 bytes)
directly to the radio node, which transmits the message. These requests are infrequent (every
15 s) and short in duration, leading to a bus utilization of only 0.0022% at 400 kHz.

While transmitting the message directly from the sensor to the radio does reduce total bus
utilization by 40%, that resource is not contested in this case. Energy, however, is always a
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1.5 mm

︸ ︷︷ ︸
2.6 mm

Figure 5.5: Temperature sensing system. A system designed as part of the Michigan
Micro Mote project consisting of a 2 µAH battery, a 900 MHz near-field radio, an ARM
Cortex M0 processor, and an ultra-low power temperature sensor, interconnected using MBus.

concern. In this three-chip stack there is one sender, one receiver, and one forwarder; sending
an 8 byte message requires

(64 bits + 19 bits)× (27.45
pJ/bit

TX
+ 22.71

pJ/bit

RX
+ 17.55

pJ/bit

FWD
)

= 5.6 nJ; sending it twice would require 11.2 nJ. Further energy savings come from not
powering on the processor. The processor uses approximately 20 pJ/cycle and requires about
50 cycles to handle an interrupt and copy an 8 byte message to be sent again, using

50 cycles× 20
pJ

cycle

= 1 nJ. To collect an empirical estimate of the energy cost of an entire sense and send
sequence, the system is programmed to sense and send continuously. Using the average power
draw and sample rate during this loop, each sense and send event requires about 100 nJ of
energy. By supporting any-to-any communication, MBus reduces the energy consumption
of each sense and send event by 6.6 nJ (roughly 7%). Using the crude battery capacity
of approximation of 2 µAh×3.8 V = 27.4 mJ, for a 15 s sample interval this increases node
lifetime by 71 hours, from around 44.5 to around 47.5 days.

Monitor and Alert

For a second system, the motion-activated camera seen in Figure 5.6, exemplifies a typical
monitor, filter, and alert system, and it demonstrates the need and efficacy of MBus’s power
faculties and efficient handling of large messages. During ultra-low power motion detection,
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(a) Integrated System (b) Captured Image

Figure 5.6: Motion detection and imaging system. (a) An imager made of a 900 MHz
near-field radio, a 5 µAH battery, an ARM Cortex M0, and a 160× 160 pixel, 9-bit grayscale
imager with ultra-low power motion detection all connected using MBus. (b) A full-resolution
(28.8 kB) image that was transferred by MBus.

the imager power-gates nearly all of its logic to minimize leakage. When motion is detected,
the motion detector simply needs to assert one wire for MBus to wake the chip. By decoupling
power management, the motion detector may act as a simple, standalone circuit or as a
trigger to enter the more power-hungry image capture state whenever motion is detected.

The imager itself is a 160× 160 pixel CMOS camera with 9-bit single-channel (grayscale)
resolution. A full resolution image is 28.8 kB. The implemented MBus clock is run-time
tunable from 10 kHz to up to 6.67 MHz (default is 400 kHz). Transferred as a single message,
a full resolution image could take from 4.2 ms (238 fps) to 2.9 s (0.3 fps) depending on clock
speed. Like most CMOS imagers, however, the camera reads pixels out one row at a
time. To better cooperate with other possible bus users, the camera sends each row as
a separate message, with small delays in-between while the next row is read out. Recall
the correlation from Figure 5.3 between MBus message length and efficiency. By sending
160 180-byte messages instead of one 28.8 kB message, the image transmission incurs an
additional 3,021 bits or 1.31% of overhead. By comparison, I2C would incur 28,810 bits
(12.5%) of overhead transmitting the whole image and 30,400 bits of overhead (13.2%) if
sent row-by-row. MBus’s message-oriented acknowledgment protocol results in a 90− 99%
reduction in overhead compared to a byte-oriented approach.

Many-Node Systems

Both of these microbenchmarks are fundamentally one-sensor systems. One possible concern
of the MBus design is how well it will scale to a greater number of connected nodes and what
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Figure 5.7: Saturating transaction rate. As a shared medium, MBus can only support a
finite number of transactions across all member nodes. The peak transaction rate depends
on the transaction size and bus clock speed.

the impact on lower priority nodes will be. A large and shared bus, ring, or interconnect
topology, is not uncommon in an embedded design. Most microcontrollers have only one
or two I2C and/or SPI interfaces. I2C also has a fixed priority scheme, based on the target
address instead of the physical location of the sender. SPI is more flexible, allowing the
central controller to select a priority scheme dynamically, at the cost of requiring a central
controller to do so. The more important metric is not node count, rather it is the desired
transaction rate – barring protocol overhead, for any bus two nodes sending messages at 1 Hz
yields the same utilization as one node sending at 2 Hz. Figure 5.7 considers possible rates of
MBus transactions as a function of message length. For brief periods of burst transactions
that exceed the saturation rate, MBus provides both physical and logical mechanisms to
enable system designers to federate bus access.

Interoperability

A key design goal was to facilitate interoperability independent of the technology used to
fabricate MBus without requiring any tuning or tweaking. As a series of singled-ended
connections—totem-pole FETs driving gates—the MBus design is well-suited to meet this
constraint. As evidence of this claim, the systems demonstrated here integrate chips from 65,
130, and 180 nm processes from two different fabs. The chips also interoperate with outside
hardware, and in testing have been verified with debug interfaces from an NI board [72] and a
Microsemi IGLOO nano FPGA [73]. Newer MBus chips add built-in level converters for I/O
pins, however all of the chips tested in this work operated at 1.2 V. In well over 1,000 hours
of system testing, we are yet to encounter any MBus-related issues.
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Bitbanging MBus

No existing commercial microcontroller includes an MBus frontend. To investigate MBus
viability on existing microcontrollers without a dedicated MBus interface requires bitbanging
implementation. MBus requirements are modest. A generic C implementation2 requires
only 414 SLoC and requires only four GPIO pins (two must have edge-triggered interrupt
support). To estimate the overhead of bitbanging MBus, we target an MSP430 [70] using
msp430-gcc-4.6.3 [74] and find that the worst case path is 20 instructions (65 cycles
including interrupt entry and exit) to drive an output in response to an edge. With an 8 MHz
system clock speed, the MSP430 can support up to a 120 kHz MBus clock. For a comparison,
compiling3 Wikipedia’s I2C bitbang implementation results in similar overhead, with a longest
path of 21 instructions [75].

5.4 Summary

This chapter described the implementation of MBus and MPQ and evaluated their efficacy in
real-world Smart Dust systems. In many ways, the simple existence of operational millimeter-
scale systems composed of modular pieces marks the success of the proposed design. The
real evaluation, however, will be time. Only time can reveal whether the ideas presented
here successfully accelerate the design and implementation of a range of Smart Dust systems.
With this thought in mind, the next and final chapter steps back and attempts to consider
what else may be required to achieve an ecosystem of Smart Dust—now that we can build
these devices, what is required to help deploy them in practice?

2Available here: https://github.com/mbus/libmbus
3All of the stub functions (e.g. read SCL()) were converted into direct memory accesses assuming a

single memory operation MMIO interface.

https://github.com/mbus/libmbus
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Chapter 6

Debugging & Bringup

The central focus of this dissertation is the design and implementation of modular Smart
Dust systems. The goal of such modularity is to increase the number and diversity of such
systems, towards the creation of a Smart Dust ecosystem. A computational ecosystem requires
supporting tools. Smart Dust will need mechanisms that aid the development and bringup
of new machines. It will also require new introspection paradigms—how does one attach a
debugger to systems that fit inside of many standard connectors?

This chapter seeks to serve as a starting off point for several of these challenges. It
looks at how we might use advanced simulation, coupled with a modern take on in-circuit
emulation, to both accelerate the bringup of systems with new and emerging hardware as
well as to support debugging in existing hardware. It then looks at some of the challenges of
encapsulated systems. This is primarily concerned with the question of how to introspect and
debug systems outside of the laboratory environment. We will see how the design decisions
outlined in Chapter 4 enable both wireless programming and potentially wireless debugging.

6.1 M-ulator & ICE

One challenge in the development of a new physical computing platform is the variation in
the development of each piece of the computing platform. Smart Dust systems are composed
of new and novel ultra-low power sensors, memories, processors, and radios. These pieces
naturally develop and stabilize at different rates. The benefit of modular design that allows
each of these pieces to be worked on independently is also the risk: the realization of a
integrated system requires all of pieces. If a system must wait until each modular component
is available to perform integration testing, this can dramatically slow the iteration and
refinement process for the system as a whole.

One classical means to address this limitation is simulation. Simulation capabilities span
a wide range, from circuit-conscious tools, to RTL execution environments, to architecture-
conscious cycle-accurate modeling, to possibly looser transaction level modeling [76]. Most
simulation, however, focuses on the performance of the CPU core. Recent efforts have started
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to look at adapting classical architectural simulation techniques to become platform-aware,
multi-component simulations, but these are still in early stages and require significant effort
to implement simulations of peripherals [77]. Instead, the traditional approach in platform
design is In-Circuit Emulation (ICE) [78].

Decades ago, the usual approach to ICE was to physically remove the CPU core and then
to attach leads to a hardware simulator in its place. With the advent of more advanced in-core
debugging faculties, however, ICE has shifted. Today, external JTAG controllers can trace,
pause, rewind, and overwrite CPU execution. However, these advanced debugging faculties
incur non-trivial overhead. Indeed, for the ARM Cortex-M0 implemented in Chapter 5,
debugging support would have required nearly as much die area as the core itself! Furthermore,
JTAG-based debugging requires physical connection to the core, which is impractical to
support for many Smart Dust configurations. For these reasons, traditional JTAG-based
debugging is not included in the Smart Dust implementations of this dissertation. This
motivates re-considering historical ICE techniques for early-stage bringup when invasive
hardware (i.e. replacing the core with a simulator) is viable, and later the development of
new in-situ debugging techniques for when hardware-based ICE is not an option.

The Case for a Modular CPU Simulator

Instruction set architectures (ISAs) are often thought of as fairly static things. In reality,
however, they see continuous, progressive evolution. In performance cores, each major
processor iteration from Intel adds new extensions to the architecture. In the embedded space,
this process trends both directions. Cores do add extensions that improve performance, but
they also sometimes reduce capability to reduce impacts such as energy overhead or die-area
demand. Indeed, after the success of the Cortex-M3 and later Cortex-M1, ARM released the
further reduced Cortex-M0, their minimalist core, which was the quickest licensed processor
product in ARM history [79]. Figure 6.1 captures some of the heterogeneity in just the
embedded profile of modern ARM cores. As a consequence of this diversity, it is insufficient
to simply build an “ARM simulator.” Rather, a simulator should be able to easily adapt
between the different ISA flavors and capabilities, to better match the hardware ecosystem.

Design of a Modular CPU Simulator

One view of an instruction set architecture is as a 16- or 32-bit instruction address space,
where encoded instructions map onto operations. Instead of a central core that implements
each ISA variant, with this view it is instead possible to create a registration-based, modular
core. Software modules that make up parts of an ISA expose hooks that express what types
of instructions they are capable of decoding and executing:

__attribute__ ((constructor))

static void register_opcodes_arm_v6m_mov(void) {

register_opcode_mask_16(0x4600, 0xb900, mov_reg_t1);
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Graphic adapted from “ARM Cortex-M for Beginners” [80].

Figure 6.1: The ARM microcontroller-class ISA hierarchy The ARM ISA exposes a
wide tradeoff space across complexity and capability for CPU designers. The simplest cores
facilitate basic data processing and peripheral control tasks. Progressively more advanced
cores add support for more advanced data processing, complex bit field manipulations, SIMD,
and floating point operations.

During startup, these registrations run before the simulator begins operation. Composing a
core then requires simply linking in each of the instructions that are valid for a given ISA.

In the case of ARM in particular, this concept can actually extend further. The example
above is for the t1 encoding of the mov reg (Move Register) operation. This is the only
supported encoding for Cortex-M0’s, but the Cortex-M3 profile adds t2, t3, and t4 encodings
(for things such as access to higher-numbered registers or control of status flags). From a func-
tional modeling perspective, there is one Move Register operation that captures the capability
of all of these encodings. The compute core then can be made of a generic Move Register
operation, optimized for simulation performance and shared among all implementations, while
the design-time selection of ISA becomes minimal decoding shims:
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static void mov_reg_t1(uint16_t inst) {

uint8_t rd = (inst & 0x7);

uint8_t rm = (inst & 0x78) >> 3;

uint8_t D = !!(inst & 0x80);

rd |= (D << 3);

uint8_t setflags = false;

return mov_reg(rd, rm, setflags);

}

static void mov_reg_t3(uint32_t inst) {

uint8_t rm = inst & 0xf;

uint8_t rd = (inst >> 8) & 0xf;

uint8_t setflags = (inst >> 16) & 0x1;

return mov_reg(rd, rm, setflags);

}

Adding Peripherals to a Modular CPU Simulator

Much of what makes embedded processing chips interesting is not the processing core itself,
but peripherals in its memory map. In hardware, these peripherals are often designed and
implemented as isolated modules, connected by the shared memory bus. Simulation can
again mimic this design point and capitalize on a registration-based philosophy to build a
modular core:

__attribute__ ((constructor))

void register_memmap_ram(void) {

union memmap_fn mem_fn;

mem_fn.R_fn32 = ram_read;

register_memmap("RAM", false, 4, mem_fn, RAMBOT, RAMTOP);

mem_fn.W_fn32 = ram_write;

register_memmap("RAM", true, 4, mem_fn, RAMBOT, RAMTOP);

}

In this example, even something as fundamental to a core as its memory is attached via
registration to the memory bus.
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Future Work: Design of a Modular Platform Simulator

The simulator presented in this document is capable of simulation of a complete CPU core
and its on-die, integrated peripherals. The simulator also exposes I/O, both for interfacing
with real hardware as part of the in-circuit emulation discussed next as well as other software
simulators. The question of how to integrate multiple simulators into a cohesive and complete
platform simulator remains yet unaddressed by this work. However, once again, a registration-
based architecture seems like an appropriate design point. Much as on-die peripherals share
a common internal memory bus, the chips that make up a Smart Dust platform now share
the common interconnect bus introduced in this thesis. This can again be captured by
an interconnect simulator and dispatch core. For simulation, however, this interconnect
point cannot only be a message bus, but also must expose primitives that express a joint
understanding of time, since the modules under simulation no longer share a common clock
source. ICE necessarily forgoes this, as the simulated core cannot keep pace with real hardware
anyway, but for system modeling such time management would be of great value.

Narrow Interfaces Enable Record & Replay

The majority of the runtime implementation of any simulated core under this architecture
exists in the dynamically loaded modules. Still, these modules do need a common API back
to the actual core. In practice, this reduces to the following primitives:

tick Entry point called to compute results from this cycle
register {read,write} Access a “register-like” object
memory {read,write} Access a “memory-like” address
state {read,write} Access custom, local, architectural state

One interesting challenge in modeling hardware is properly capturing parallel execution.
The simulator core follows a tick/tock design, where all results for a cycle are computed
during the tick, but not written until the tock. What is critical in this interface, is that only
the tick is exposed to individual modules. The tock is handled by the core, which ensures that
no writes complete until all modules have computed using the correct values for the active
cycle. This allows the simulator core to execute module ticks in any arbitrary order—indeed,
the simulator will actually spawn local threads if appropriate and execute simulated modules
in parallel, unbeknownst to the modules themselves. For this tick/tock operation to work
correctly, all access to any potentially shareable architectural state must go through the
remaining listed interfaces.

This narrow interface forms the foundation of an (optional—runtime performance tradeoff)
deterministic record and replay system for the simulator. Because all architectural state
goes through these narrow interfaces, the core can easily track all hardware updates from
every cycle. Rewinding then simply requires storing the previous value as well in this data
structure. Unlike many CPU-centric simulator designs, I/O between integrated peripherals is
implicitly captured in this design point, since the peripherals run under the same execution
context and are restricted to the same narrow, tracking-capable interface.
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M-ulator as a Pedagogical Tool

Another advantage of modular design is the parallels to educational philosophy. When
introducing complex topics, such as the operation of an embedded core or integrated System-
on-Chip (SoC) platform, instruction often begins with simplified views that focus on one
complex piece. A modular simulator enables empirical lab work that mirrors this same
philosophy. When learning encoding, students can modify just the registration of one
instruction and see how it changes the rest of the core’s operation, with no need to understand
any of the rest of the system.

As a case study in the value of such a design, in the fall of 2012, we undertook the
audacious proposal of having an entire class of undergraduate students work in a single,
shared repository to implement a real-world ISA largely from scratch—in one month. The
initial machine supported only two simple instructions: move immediate and unconditional
branch. This is just enough to allow the execution of code that demonstrates easily observable
architectural changes and runs forever. Each student was independently assigned one operation
to implement (e.g. add register), one encoding for a different operation (e.g. load word
from lower registers with immediate offset), and one instruction they were responsible for
verifying the correctness of. Alongside this was opaque, pre-compiled, instructor-validated
implementations that served as a reference. In this way, students could compose a simulator
made of a mixture new parts from the class as they were developed with parts that were known
to work such that they could test their own implementations. Figure 6.2 shows how this was
presented to students, who were tasked to write both operations and testbenches. In the end,
the capability for independent progress coupled with shared accountability resulted a core
that successfully executed every instructor supplied testbench (and, the student testbenches
even found some bugs in the instructor solution!). As the course continued, the simulator
was later used to demonstrate the principles of memory-mapped peripherals, as well as the
foundation of an ethical-hacking project as a group component of the final exam.

M-ulator as a Debugging Tool

Hardware becomes available in stages. First, there is a high-level expression of what a
piece of hardware will do—a functional model. Then, there is RTL and possibly synthesis,
a yet-to-be-fabricated, but precise representation of how hardware will operate. Finally,
there is the actual, realized hardware itself. As a functional simulator, M-ulator provides an
independent reference implementation of what hardware is expected to do.

Cutting edge, experimental hardware holds the risk of truly unexpected bugs. As an
example, as part of a refactor to begin optimizing the code that would run on the Smart Dust
systems for size, several variables holding only Boolean true/false values were converted from
uint32 t to uint8 t. With only this change, some of the variables could no longer be set to
true. In some cases, trying to set one variable to true would actually set a different variable
true. Both the realized silicon and RTL simulation exhibited the same behavior. Could this
be a compiler bug, what could cause such behavior? Running the same code on the M-ulator,
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Figure 6.2: High-level design of M-ulator. The architecture of M-ulator mirrors that
of real hardware. This allows for runtime modularity, where individual components can be
implemented either via software emulation or as pass-throughs to real hardware. It further
serves a pedagogical goal, as it allows laboratory and project work to explore and implement
normally tightly-integrated components in isolation.

however, each variable was set and read back correctly. Different execution traces between
M-ulator and hardware allowed rapid confirmation of a hardware bug.

As the design of M-ulator allows for introspection of architectural state, in this case, it
was also able to assist in identifying the bug. The two implementations performed identically
until one cycle where the RTL implementation wrote to a different memory address than the
M-ulated version. The instruction and register contents were the same in both machines, yet
the memory controller in the RTL version had a slightly different address. This pointed to
some error between the CPU core and the memory controller—a narrow search space. Because
both the MBus controller and the CPU can instantiate transactions on the memory bus, they
must go through an arbiter to access the memory bus. The MBus implementation was only
capable of full, word-aligned access and therefore simply tied the bottom two address bits to
zero. The CPU, however, was now attempting to issue single byte memory bus transactions
where the bottom two bits suddenly hold significance. With the confidence that there was
an error in the hardware, and a narrow search space, this entire debugging process took less
than an afternoon.
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In-Circuit Emulation & the ICE Board

Due to the severe resource constraints of Smart Dust systems, the physical CPU chip has
no on-board debugging faculties. When tracking down system integration bugs, however, a
debugger is an invaluable tool. The simulator is effectively capable as operating as a CPU
chip in a Smart Dust system—it can run the same software and should exhibit the same
behavior. Using this capability, however, requires the ability to interface the simulated core
with the rest of the chips in a Smart Dust system.

Direct Hardware Mapping is Too Slow

As an initial thought, the simplest hardware interface would simply export each pin described
by a module in the simulator to a remote GPIO pin on a partner hardware platform. Such a
bit-banged approach would require the simulator to achieve precise timing control over these
remote pins, however. When interfacing with hardware, real-world timing constraints must
be met. Pure simulation allows for time dilation, the simulator core can slow all modules to
run at the same speed relative to one another. The simulator does not control the clocks on
remote hardware, however, which means that it must support true real-time operation. This
was not a design goal of the simulator, however, which sought functional correctness but not
necessarily strict timing.

M-ulation

Bit-banging pins is not the way that a real CPU interfaces with hardware either. Rather,
application-specific peripherals handle timing sensitive operations, such as the low-level details
of a bus transaction, and the CPU interacts with these peripherals over memory mapped
I/O. This insight describes the in-circuit emulation strategy. Figure 6.3 shows the support
hardware board, which includes an FPGA capable of implementing arbitrary peripherals.
To the simulator, the FPGA is simply another peripheral that hangs off the memory bus
of the simulated core. The simulator sees no difference between interfacing with real-world
hardware and or another simulated peripheral.

There is one key difference between a hardware peripheral and a simulated peripheral.
Simulated peripherals are only permitted to manipulate hardware state following the simulated
clock. For this reason, the FPGA does not literally hang off of the simulated memory bus.
Instead, there is an interface layer which acts as a peripheral to the simulator and uses a
custom protocol specific to and optimized for each peripheral to interact with the FPGA.

Towards Reproducible Execution Traces While the simulator cannot stop time in the
real world, it can replay it. This section describes one aspect of the FPGA protocol which is
an initial step towards deterministic record and replay of hardware execution events. The
core of the idea is an event log that runs between the FPGA and the support peripheral
that interfaces with the simulator. If the simulator wishes to rewind and replay events, the
support layer could in principle use the timing provided by a real-world event trace from
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Figure 6.3: The ICE board. A custom hardware board that allows flexible hardware
access. It supports both traditional in-circuit emulation tasks as well as more general purpose
debugging and programming of arbitrary hardware in the greater M3 Smart Dust ecosystem.

hardware coupled with a model for that hardware peripheral to allow replay of hardware
event sequences. As a first step, the hardware and interface work to capture and label a
coherent view of events.

Event IDs are an unsigned single byte number. They define a total ordering the events
actually occurred in the system. In particular, if a command message is being sent to set
GPIO 0 (an output) high at the same time that GPIO 1 (an input) goes high, the ordering will
be Event N: GPIO 1 --> High then Event N+1: GPIO 0 --> High. For message format
consistency, event ids are included in both directions of communication, however the field
may be safely ignored by the FPGA. The FPGA itself must by definition have some order of
I/O events it processed, which are encapsulated by these event ids. The event id of a control
message is assigned by the FPGA whenever it actually processes the event and is indicated
to the controller via the ACK message.
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Some decisions in microcontrollers necessarily race. As contrived example, if two GPIO
pins are defined as interrupts but are electrically connected in the external circuit, and
then line is pulled high, which interrupt fires first? While the decision is arbitrary, there is
motivation to define an ordering of events in the system. The events observed by ICE can be
replayed in the M-ultaor for debugging, but the is only possible if they can be accurately
re-created. In practice, this diverges to two ideas:

Concurrent Events: Two events could be labeled with the same event id, indicating
that they occurred too close together in time for the ICE to distinguish them. This would
require divergence in the simulator for debugging runs. While conceptually feasible, this is
non-trivial and could quickly balloon into an intractable number of concurrent execution
paths.

I/O Pass-Through: Currently, the FPGA and the M3 share GPIO pins (Nx2 header):

/-----\

FPGA ---- | o o | ----- M3

\-----/

GPIO N

Instead, this can be rearranged to explicitly pass all I/O through the FPGA:

/---\

| o | ---- FPGA -- {TP} -- M3

\---/

GPIO N

This has the disadvantage of doubling the number of FPGA I/O pins consumed for each
of the M3 I/O pins. It does enable the FPGA to strictly define an order of events. On the
existing ICE hardware prototype, there is sufficient hardware available to adapt to this model
for one bank of eight I/O pins (e.g. mapping GPIOs 16-23 as FPGA-input only, jumpering
over GPIOs 8-15 and having the FPGA drive those, leaving GPIOs 0-7 as the first one).

The ICE Board as General Platform Support Tool

There is additional motivation for not directly hanging the ICE board off of the simulated
memory bus. Many use cases for the ICE board do not require the simulator at all. As a
general purpose hardware platform, the ICE board is useful as a support and interface tool
for the greater M3 Smart Dust ecosystem. For this reason, the interface to the ICE board is
written as a general purpose Python library.1

As MBus frontends and support boards are not yet prevalent devices, the board can
operate as a general purpose MBus interface. Lightweight tools allow for snooping of MBus

1Available here: https://github.com/mbus/m3-python. Also included here is a command-line scripting
environment for direct interfacing with the ICE board as well as a simulator for the ICE board itself, to allow
M-ulation without ICE hardware.

https://github.com/mbus/m3-python
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Figure 6.4: A pressure sensor encapsulated in bio-compatible epoxy. Deployment
considerations for Smart Dust systems limit the capacity to physically interface with devices.

transactions or programmable interaction with MBus events. The FPGA image and supporting
libraries also can support an I2C peripheral, GPIO peripherals, and several other specialty
hardware peripherals. For systems that are physically accessible, such as the CPU chip seen
in debug packaging in Figure 6.3, MBus transactions sent via the ICE board are actually the
primary means of programming. This is yet one more advantage of the system bus design,
wherein programming is simply an MBus DMA operation that writes instruction memory.

6.2 Encapsulated Interactions

What happens once we leave the realm of debug systems and debugging-optimized packaging?
Consider for example the system shown in Figure 6.4. This is a system that has been wholly
encapsulated in a bio-compatible epoxy for implantation. This is not a system that can be
plugged into to program or debug.

Wireless Interactions

The natural solution to this problem is to communicate wirelessly with the Smart Dust device.
Here, the resource constraints rear up again in force. Indeed, the story has actually come full
circle to the original Smart Dust efforts from the 1990s, where much of the research effort
was dedicated to addressing the communication problem [1].

RF Communication and the Idle Listening Problem

There has been significant advancement in the capability of low-power RF-based communi-
cation. Today, it is feasible to support short bursts of two-way RF-based communication
on a cubic-millimeter energy budget. The challenge, however, lies in the time between
communications. The viability of RF-based communication, like much of the Smart Dust
system, hinges on the ability to duty cycle the radio frontend. This line of thinking leads, of
course, to the well-known idle-listening problem [30]—when should the radio turn on? At
Smart Dust energy budgets, periodic wakeup of the most energy-intensive element simply to
learn there is no communication occurring is not a wise design point.
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A Return to Visible Light Communication

Again, therefore, we look back to the origins of Smart Dust, and find this problem too was both
anticipated and solved [24]. Visible Light Communication receives requires significantly less
energy. The systems demonstrated earlier all include a 695 pW always-on optical frontend [81].
This hardware component is capable of both acting as a wakeup trigger as well as receiving
arbitrary, encoded data.

Remote Programming and Debugging with MPQ

The salient question for this dissertation is how to meaningfully integrate this visible light
communication frontend with the rest of the encapsulated system? The answer continues
to demonstrate the generality and flexibility of the generic and general purpose central bus
interface: it is simply one more device on the system bus. The optical link directly writes
arbitrary messages onto the system bus, with no requirements for any local decision-making
or computational capability in the optical receiver (beyond a few bits of buffering).

To begin, this interface allows for remote programming of the system. Recall, that
programming systems with MPQ can be achieved by simply issuing a DMA transfer to the
program memory of a CPU chip. By issuing a streaming transaction, a remote endpoint
can upload complete program images directly to an encapsulated system. This design
eschews traditional complexities such as the transient need for space for both the existing
bootloader that is receiving the program and the new program that is being loaded. While
a transaction may be interrupted or corrupted, unlike the bootloader update scenario, this
does not permanently corrupt the machine. A new transaction can simply try again, issuing
a fresh DMA that overwrites the corrupt image.

Supporting arbitrary messages allows for remote debugging as well. Here, a debugging
system capitalizes on the ability of the system bus to exert operations on any node in the
system. A remote endpoint can issue transactions that activate sensors, trigger internal test
procedures, and even write results to radio memory and trigger packets to enable bidirectional
communication during the debugging session.

As a thought experiment, one could even consider the implementation of an approximation
of remote JTAG. Assuming a small amount of program memory is unused and available, a
miniature debugger instance could be loaded (via streaming DMA). Breakpoints could be
simulated by overwriting key instructions with jumps to the loaded debugging instance.

Even single-step operation is possible. Here, one would replace an instruction with a
break into the micro-debugger routine. The debugger would then replace the jump into
itself with the original instruction and overwrite the next instruction in the stream with a
call back to itself. Certain overwritten instructions, such as branches, would require the
debugger to actually simulate the execution of the instruction to properly complete this
operation. Loading a simulator into scratch space on the device is intractable, but instead
the single-stepping mode could expand to full M-ulation. Upon first entry, the trap routine
reports all hardware state to a remote simulator instance. Subsequently, the loop becomes:
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offload the newly overwritten instruction to the simulator and then receive back a series of
hardware state updates to issue via micro-ops streamed into a small execution buffer in the
trap; these micro-ops would include restoring the executed instruction in main memory and
loading the next instruction to overwrite. In this way, a remote debugger and simulator
instance with no a priori knowledge of the code on the Smart Dust node could implement
full single-step debugging. Such a design is certainly not efficient, but it does demonstrate
the power and expressivity of the system bus interface: it enables full-featured debugging
capabilities with zero hardware modification.

6.3 Summary

This chapter looks at some of the initial questions that come up as millimeter-scale computing
moves beyond the creation and composition of Smart Dust devices. These are the pragmatic
questions that ask how such devices will actually be deployed and used—how to load code
onto Dust, how to debug Dust? Here again, the modular, composable design shines, only now
that modularity is extended outside the physical envelope of the system. Conceptually, these
interfaces allow the dynamic interposition of arbitrary modules into encapsulated systems.
This is a powerful, but optimistic, primitive. This dissertation answers how to enable this
class of computing. It does not answer how to secure Smart Dust or how to secure the world
in the face of its development.
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Chapter 7

Conclusion

Embedded systems are interesting because they are embedded in the physical world. The
capability to put computation and intelligence into the environment expands the reach of
the digital world into the physical world. Physically shrinking computing expands this
reach further by increasing the number and diversity of scenarios into which computing can
reasonably be embedded. By its nature, however, each embedded context is different. This
demands a significantly greater diversity in the design and capability of individual embedded
systems as compared to traditional computing domains.

A ring topology is, perhaps surprisingly, not just appropriate for resource-constrained
systems but key to enabling composable design. A clockless, “shoot-through” ring can alleviate
much of the overhead and complexity associated with traditional ring-based architectures.
For specialized, embedded devices, the tight integration required by a ring does not generally
introduce meaningful fragility—what use is a wireless sensor node without a working sensor
chip? When this computing class is able to evolve back towards generality, the use of
an isolated, logic-free “shoot-through” frontend mitigates risk from failures and enhances
robustness, as it allows the ring-based system to operate despite other failures.

Composable design is achievable for and useful to the millimeter-scale computing class.
There are overheads to modularity and new challenges in the composition of pitch black silicon,
but the careful design of an interconnect and its interfaces enables viable modular Smart Dust.
While this result makes a library-of-parts model possible, it does not will such a library into
existence, nor then is the resultant ecosystem of millimeter-scale systems yet realized. There
remain numerous key challenges to the widespread emergence of the Smart Dust computing
class, such as physical packaging, security models, localization, and decommissioning. It is
my sincerest hope, however, that the work presented in this dissertation can accelerate all of
these efforts, and help to enable the advent of a new class of computing.
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