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Abstract

Concentration and Sequential Decision Making in Markovian Environments

by

Vrettos Moulos

Doctor of Philosophy in Computer Science

and the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Satish Rao, Chair

In this dissertation we study concentration properties of Markov chains, and sequential
decision making problems which involve stochastic modeling with Markov chains.

We start by developing a simple yet powerful Hoeffding inequality for Markovian sums under
only the irreducibility assumption. To illustrate its usefulness we provide two applications in
multi-armed bandit problems. The first is about identifying an approximately best Marko-
vian arm, while the second is concerned with regret minimization in the context of Markovian
bandits, generalizing two well known algorithms from the i.i.d. case.

We proceed with the study of the concentration properties of a Lipschitz function applied
to a Markov chain, which form a generalization of Hoeffding’s inequality. In particular we
investigate a transportation problem that arises naturally when the martingale method is
applied. The so called bicausal optimal transport problem for Markov chains, is an optimal
transport formulation suitable for stochastic processes which takes into consideration the
accumulation of information as time evolves. Our analysis is based on a relation between
the transport problem and the theory of Markov decision processes. This way we are able to
derive necessary and sufficient conditions for optimality in the transport problem, as well as
an iterative algorithm, namely the value iteration, for the calculation of the transportation
cost. Additionally, we draw the connection with the classic theory on couplings for Markov
chains, and in particular with the notion of faithful couplings.

Next we focus on a finite-sample analysis of large deviation results for Markov chains. First
we study the exponential family of stochastic matrices, which serve as a change of measure,
and we develop conditions under which the asymptotic Perron-Frobenius eigenvector stays
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strictly positive. This leads to a Chernoff bound which attains a constant prefactor and an
exponential decay with the optimal large deviations rate. Moreover, a finite-sample version
of the law of the iterated logarithm is derived, and a uniform multiplicative ergodic theorem
for the exponential family of tilted transition probability matrices is established.

On the applications side, we give a complete characterization of the sampling complexity of
best Markovian arm identification in one-parameter Markovian bandit models. We derive
instance specific nonasymptotic and asymptotic lower bounds which generalizing those of
the i.i.d. setting, and we analyze the Track-and-Stop strategy, proving that asymptotically
it is at most a factor of four apart from the lower bound.

We conclude with with an extension of the classic stochastic multi-armed bandit problem
which involves multiple plays and Markovian rewards in the rested bandits setting. In order
to tackle this problem we consider an adaptive allocation rule which at each stage combines
the information from the sample means of all the arms, with the Kullback-Leibler upper
confidence bound of a single arm which is selected in round-robin way. For rewards generated
from a one-parameter exponential family of Markov chains, we provide a finite-time upper
bound for the regret incurred from this adaptive allocation rule, which reveals the logarithmic
dependence of the regret on the time horizon, and which is asymptotically optimal. As a
byproduct of our analysis we also establish asymptotically optimal, finite-time guarantees
for the case of multiple plays, and i.i.d. rewards drawn from a one-parameter exponential
family of probability densities. Finally, we provide simulation results that illustrate that
calculating Kullback-Leibler upper confidence bounds in a round-robin way, is significantly
more efficient than calculating them for every arm at each round, and that the expected
regrets of those two approaches behave similarly.
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Chapter 1

Introduction

The goal of this dissertation is to develop tools that help the analysis of Markov chains
in the finite sample regime, those usually take the form of a concentration inequality, and
then utilize them in order to study sequential decision making problems in Markovian en-
vironments. In this introduction, we first briefly define what is a Markov chain, and we
present three limit theorems that drive our finite sample developments. We then introduce
the multi-armed bandits problem, and we describe the identification and the regret mini-
mization objectives with which we will be concerned. The introduction is by no means a
complete treatment of the theory of Markov chains, and multi-armed bandits - we merely
present some results that will motivate the chapters that follow. We conclude this chapter
by giving a general outline of the dissertation. Relevant literature can be found in the corre-
sponding chapters. The target audience of the presentation has a background in probability
and statistics at a graduate level.

1.1 Markov chains, limit theorems, and their

finite-sample counterparts

The main object of study in this dissertation is homogeneous Markov chains on a finite state
space S. That is a sequence of random variables {Xn}n∈Z≥0

taking values on S, which is
driven by an initial distribution, q, on S, and a transition probability matrix P : S × S →
[0, 1], so that the finite dimensional distributions are given, for every n ∈ Z≥0 , by

Pq(X0 = x0, X1 = x1, . . . , Xn = xn) = q(x0)P (x0, x1) · · ·P (xn−1, xn). (1.1)

Through Kolmogorov’s extension theorem those finite dimensional distributions will define
a stochastic process. (1.1) implies the Markov property which roughly speaking states that
the past and the future are conditionally independent given the present. More formally, for
all n ∈ Z≥0 , we have that

Pq(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = Pq(Xn+1 = xn+1 | Xn = xn) = P (xn, xn+1),



CHAPTER 1. INTRODUCTION 2

for all x0, x1, . . . , xn+1 ∈ S.
The Markov property extends to the strong Markov property which essentially allows us

to substitute the fixed deterministic n, with a random stopping time T with Pq(T <∞) = 1
so that

Pq(XT+1 = y | XT = x,E) = Pq(XT+1 = y | XT = x) = P (x, y),

for all x, y ∈ S and E ∈ F(X0, . . . , XT−1).
Using the strong Markov property we can decompose a Markov chain in a sequence of

i.i.d. blocks plus some residuals, which allows us to port limit theorems from the i.i.d. case
to the Markovian case. In particular we define recursively the k-th return time to the initial
state as {

τ0 = 0,

τk = inf {n > τk−1 : Xn = X0}, for k ≥ 1.

Those return times partition the Markov chain in a sequence {vk}k∈Z>0 of i.i.d. random
blocks given by

vk =
(
Xτk−1

, . . . , Xτk−1

)
, for k ≥ 1.

Let P be an irreducible transition probability matrix. Then the Markov chain possess
a unique stationary distribution π. Let f : S → R be a real valued function on the state
space, and define the partial sums

Sn = f(X0) + f(X1) + · · ·+ f(Xn).

Let µ0 =
∑

x∈S f(x)π(x) be the stationary mean of the chain. We will be concerned with
the convergence properties of the centralized sums, Sn − nµ0, under various scalings.

Using the decomposition of a Markov chain in i.i.d. blocks, one can first establish a law
of large numbers for Markov chains.

Theorem 1 (Law of Large Numbers, Theorem I.15.2 in [19]).

Sn − nµ0

n

a.s.→ 0, as n→∞.

In this dissertation we utilize the theory of large deviations in order to give a Chernoff
bound for the probability of a Markovian sample mean deviating from the stationary mean.
Our bound captures an exponential decay with a tight rate as this is dictated by the asymp-
totic theory of large deviations, and prefactor which is constant with amount of deviation.
This bound serves as finite-sample product of Theorem 1 and is presented in Theorem 10.

The next important limit theorem that we will be concerned with is the central limit
theorem for Markov chains. In the Markovian case the variance that appears in the central
limit theorem is the stationary variance plus a sum of decaying covariances, and is given by
the following formula

σ2
0 = varπ(f(X1)) +

∞∑
k=1

covπ(f(X1), f(Xk+1)).
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Theorem 2 (Central Limit Theorem, Theorem I.16.1 in [19]).

Sn − nµ0√
n

d→ N(0, σ2
0).

In Theorem 4 we develop a Hoeffding inequality for Markov chains, while requiring only
irreducibility, in contrast to other works which require aperiodicity as well. Our Hoeffding
inequality describes the Gaussian tails that the centralized Markovian sums exhibit, and so
it can be viewed as a finite-sample aspect of the central limit theorem for Markov chains. In
particular it gives a variance proxy through the hitting time quantities of the chain.

A further extension of Hoeffding’s inequality, and yet another manifestation of the central
limit theorem, is the bounded differences inequality. Here we study an optimal transport
problem which naturally arises when one applies the martingale method in order to derive
the bounded differences inequality for Markov chains. We relate this optimal transport
problem, with Markov decision processes, and using them we describe necessary and sufficient
conditions for optimality as well as a fixed point iteration to solve it.

The central limit theorem, Theorem 2, implies that

lim sup
n→∞

Sn − nµ0√
n

a.s.
= ∞,

and if we compare this with law of large numbers, Theorem 1, it is natural to question what
is the scaling under which the centralized sums lie almost surely in a compact interval. The
answer to this question is given from the law of the iterated logarithm.

Theorem 3 (Law of the Iterated Logarithm, Theorem I.16.5 in [19]).

lim sup
n→∞

Sn√
n log log n

a.s.
=
√

2σ2
0.

In Theorem 11 we develop a finite sample deviation inequality in the spirit of Theorem 3.
We use techniques from the theory of large deviations, an exponential martingale, and a
peeling argument dividing time in exponential epochs which is typical in law of iterated
logarithm type of proofs.

1.2 Multi armed bandits

From the application perspective in this dissertation we use Markov chains to model a
sequential decision making problem in unknown random environments. More precisely, we
consider the setting known under the conventional name of stochastic multi-armed bandit,
in reference to the gambling game. In the multi-armed bandit model, the emphasis is put
on focusing as quickly as possible on the best available options rather than on estimating
precisely the efficiency of each option. These options are referred to as arms, and each of
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them is associated with a stochastic process, with unknown statistics for the player. Arms
are indexed by a ∈ {1, . . . , K} and associated with a stochastic process paremetrized by θa
and governed by the probability law Pθa . In our context the stochastic process are Markov
chains, parametrized by their stationary mean, which is unknown to the player. At each
time-step the player selects an arm and the corresponding Markov chain evolves by one time
step, and she observes this evolution through a reward function, while the Markov chains
for the rest of the arms stay frozen, i.e. we consider the rested bandits setting.

We study first the problem where the goal of the player is to identify, with some fixed
confidence δ, the Markov chain with the largest stationary mean using as few samples as
possible. Our contribution is a lower bound on the sampling complexity, the derivation
of which involves the i.i.d. block structures that are inherent in Markov chains, as well
as a sampling algorithm which together with the lower bound characterize the sampling
complexity of the problem in the high confidence regime that δ → 0.

An alternative objective is the one of regret minimization. There a time horizon T is
prescribed and the goal of the player is to select arms in such a way so as to make the
cumulative reward over the whole time horizon T as large as possible. For this task the
player is faced with an exploitation versus exploration dilemma. At each round she needs
to decide whether she is going to exploit the best arm according to the information that we
have gathered so far, or she is going to explore some other arms which do not seem to be so
rewarding, just in case that the rewards she have observed so far deviate significantly from
the expected rewards. The answer to this dilemma is usually coming by calculating indices
for the arms and ranking them according to those indices, which should incorporate both
information on how good an arm seems to be as well as on how many times it has been played
so far. Here we take an alternative approach were instead of calculating the indices for all the
arms at each round, we just calculate the index for a single arm in a round-robin way. We
provide a finite time analysis of our algorithm which matches the known lower bound, as well
as simulation results which illustrate that this round-robin scheme is computationally much
more efficient than other well known algorithms. A practical example of this Markovian
modeling involves a casino with slot-machines whose reward distribution is changing based
on the reward just observed. The casino in attempt to make more money is allowed in this
framework to change the reward distribution of an arm that just produced a high reward to
a stingy one.

1.3 Organization

• In Chapter 2 we present Hoeffding’s inequality for Markov chains, which reveals its
Gaussian tails. Additionally, the bounded differences inequality for Markov chains
gives rise to an optimal transport problem, which is related to coupling, and solved via
the theory of Markov decision processes.

• In Chapter 3 we take a large deviations perspective on Markov chains, we study expo-
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nential families of stochastic matrices, and using them we develop a Chernoff bound,
as well as a maximal deviation inequality related to the law of the iterated logarithm.

• In Chapter 4 we investigate the problem of best Markovian arm identification with fixed
confidence, where we develop a lower bound, as well as an algorithm, which combined
characterize the sampling complexity of the problem.

• In Chapter 5 we study the problem of regret minimization for Markovian bandits with
multiple plays. We give a finite-time analysis for a round-robin KL-UCB algorithm,
which is asymptotically optimal, and much more efficient than other KL-UCB type of
algorithms.

1.4 Bibliographic notes

The results in this dissertation ad based on the papers [73, 74, 70, 72, 71]. In particular the
results in [74] are based on collaboration with Venkat Anantharam.



6

Chapter 2

Concentration inequalities and
transportation problems for Markov
chains

2.1 Introduction

Let {Xk}k∈Z≥0
be a Markov chain on a finite state space S, with initial distribution q, and

irreducible transition probability matrix P , governed by the probability law Pq. Let π be
its stationary distribution, and f : S → [a, b] be a real-valued function on the state space.
Then the strong law of large numbers for Markov chains asserts that,

1

n

n∑
k=1

f(Xk)
Pq −a.s.→ Eπ[f(X1)], as n→∞.

Moreover, the central limit theorem for Markov chains provides a rate for this convergence,

√
n

(
1

n

n∑
k=1

f(Xk)− Eπ[f(X1)]

)
d→ N(0, σ2), as n→∞,

where σ2 = limn→∞
1
n

varq (
∑n

k=1 f(Xk)) is the limiting variance.
Those asymptotic results are insufficient in many applications which require finite-sample

estimates. One of the most important such application is the convergence of Markov chain
Monte Carlo (MCMC) approximation techniques [67], where a finite-sample estimate is
needed to bound the approximation error. Further applications include theoretical com-
puter science and the approximation of the permanent [47], as well as statistical learning
theory and multi-armed bandit problems [73].

Motivated by this discussion we provide in Section 2.2 a finite-sample Hoeffding inequal-
ity for finite Markov chains. In the special case that the random variables {Xk}k∈Z≥0

are
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independent and identically distributed according to π, Hoeffding’s classic inequality [44]
states that,

P

(∣∣∣∣∣
n∑
k=1

(f(Xk)− E[f(X1)])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2

2ν2

}
,

where ν2 = 1
4
n(b−a)2. In Theorem 4 we develop a version of Hoeffding’s inequality for finite

state Markov chains. Our bound is very simple and easily computable, since it is based on
martingale techniques and it only involves hitting times of Markov chains which are very
well studied for many types of Markov chains [2]. It is worth mentioning that our bound is
based solely on irreducibility, and it does not make any extra assumptions like aperiodicity
or reversibility which prior works require.

There is a rich literature on finite-sample bounds for Markov chains. One of the earliest
works [23] uses counting and a generalization of the method of types, in order to derive
a Chernoff bound for Markov chains which are irreducible and aperiodic. An alternative
approach [92, 74], uses the theory of large deviations to derive sharper Chernoff bounds.
When reversibility is assumed, the transition probability matrix is symmetric with respect
to the space L2(π), which enables the use of matrix perturbation theory. This idea leads to
Hoeffding inequalities that involve the spectral gap of the Markov chain and was initiated
in [39]. Refinements of this bound were given in a series of works [26, 48, 60, 59, 68]. In [77,
81, 34] a generalized spectral gap is introduced in order to obtain bounds even for a certain
class of irreversible Markov chains as long as they posses a strictly positive generalized
spectral gap. Information-theoretic ideas are used in [54] in order to derive a Hoeffding
inequality for Markov chains with general state spaces that satisfy Doeblin’s minorization
condition, which in the case of a finite state space can be written as,

∃m ∈ Z>0 ∃y ∈ S ∀x ∈ S : Pm(x, y) > 0. (2.1)

Of course there are irreducible transition probability matrices P for which (2.1) fails, but if
we further assume aperiodicity, then (2.1) is satisfied. Our approach uses Doob’s martingale
combined with Azuma’s inequality, and is probably closest related to the work in [40], where
a bound for Markov chains with general state spaces is established using Dynkin’s martingale.
But the result in [40] heavily relies on the Markov chains satisfying Doeblin’s condition (2.1).
A regeneration approach for uniformly ergodic Markov chains, where one splits the Markov
chain in i.i.d. blocks, and reduces the problem to the concentration of an i.i.d. process, can
be found in [28].

Another line of research is related to the concentration of a function of n random variables
around its mean, under Markovian or other dependent structures. This was pioneered by the
works of Marton [63, 64, 66] who used the transportation-information method, and further
developed using the martingale method and coupling in [83, 65, 17, 53, 77, 52]. In Section 2.3
we study the optimal transport problem arising in the study of concentration of measure for
Markov chains, from a causal/adaptive point of view.

We give some applications of our concentration results in Section 2.5, where we study
two Markovian multi-armed bandit problems. The stochastic multi-armed bandits problem
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is a prototypical statistical learning problem that exhibits an exploration-exploitation trade-
off. One is given multiple options, referred to as arms, and each of them associated with a
probability distribution. The emphasis is put on focusing as quickly as possible on the best
available option, rather than estimating with high confidence the statistics of each option.
The cornerstone of this field is the pioneering work of Lai and Robbins [56]. Here we study
two variants of the multi-armed bandits problem where the probability distributions of the
arms form Markov chains. First we consider the task of identifying with some fixed confi-
dence an approximately best arm, and we use our bound to analyze the median elimination
algorithm, originally proposed in [33] for the case of i.i.d. bandits. Then we turn into the
problem of regret minimization for Markovian bandits, where we analyze the UCB algorithm
that was introduced in [5] for i.i.d. bandits. For a thorough introduction to multi-armed
bandits we refer the interested reader to the survey [15], and the books [58, 84].

2.2 A Hoeffding Inequality for Irreducible Finite

State Markov Chains

The central quantity that shows up in our Hoeffding inequality, and makes it differ from the
classical i.i.d. Hoeffding inequality, is the maximum hitting time of a Markov chain with an
irreducible transition probability matrix P . This is defined as,

HitT(P ) = max
x,y∈S

E[Ty | X1 = x],

where Ty = inf{n ≥ 0 : Xn+1 = y} is the number of transitions taken in order to visit state
y for the first time. HitT(P ) is ensured to be finite due to irreducibility and the finiteness
of the state space.

Theorem 4. Let {Xk}k∈Z≥0
be a Markov chain on a finite state space S, driven by an initial

distribution q, and an irreducible transition probability matrix P . Let f : S → [a, b] be a
real-valued function. Then, for any t > 0,

Pq

(∣∣∣∣∣
n∑
k=1

(f(Xk)− Eq [f(Xk)])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2

2ν2

}
,

where ν2 = 1
4
n(b− a)2HitT(P )2.

Proof. We define the sums Sl,m = f(Xl) + . . .+f(Xm), for 1 ≤ l ≤ m ≤ n, and the filtration
F0 = σ(∅), Fk = σ(X1, . . . , Xk) for k = 1, . . . , n. Then {E(S1,n | Fk)− E(S1,n | F0)}nk=0, is
a zero mean martingale with respect to {Fk}nk=0, and let ∆k = E(S1,n | Fk)−E(S1,n | Fk−1),
for k = 1, . . . , n, be the martingale differences.

We first note the following bounds on the martingale differences,

min
y∈S

E(S1,n | Fk−1, Xk = y)− E(S1,n | Fk−1) ≤ ∆k,
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and
∆k ≤ max

x∈S
E(S1,n | Fk−1, Xk = x)− E(S1,n | Fk−1).

Therefore, in order to bound the variation of ∆k it suffices to control,

max
x∈S

E(S1,n | Fk−1, Xk = x)−min
y∈S

E(S1,n | Fk−1, Xk = y)

= max
x,y∈S

{E[Sk,n | Xk = x]− E[Sk,n | Xk = y]}

= max
x,y∈S

{E[S1,n−k+1 | X1 = x]− E[S1,n−k+1 | X1 = y]} ,

where in the first equality we used the Markov property, and in the second the time-
homogeneity.

We now use a hitting time argument. Observe the following pointwise statements,

S1,n−k+1 ≤ Tyb+ STy+1,n−k+1, STy+1,n−k+1 + Tya ≤ STy+1,Ty+n−k+1,

from which we deduce that,

S1,n−k+1 ≤ Ty(b− a) + STy+1,Ty+n−k+1.

Taking E[· | X1 = x]-expectations, and using the strong Markov property we obtain,

E[S1,n−k+1 | X1 = x] ≤ (b− a)E[Ty | X1 = x] + E[S1,n−k+1 | X1 = y].

Therefore,

max
x,y∈S

{E[S1,n−k+1 | X1 = x]− E[S1,n−k+1 | X1 = y]} ≤ (b− a)HitT(P ).

With this in our possession we apply Hoeffding’s lemma, see for instance Lemma 2.3 in [25],
in order to get,

E
(
eθ∆k | Fk−1

)
≤ exp

{
θ2(b− a)2HitT(P )2

8

}
= exp

{
θ2ν2

2n

}
, for all θ ∈ R.

Using Markov’s inequality, and successive conditioning we obtain that for θ > 0,

P

(
n∑
k=1

(f(Xk)− Eq [f(Xk)]) ≥ t

)
≤ e−θt E

[
eθ(

∑n
k=1 ∆k)

]
= e−θt E

[
E
(
eθ∆n

∣∣Fn−1

)
eθ(

∑n−1
k=1 ∆k)

]
≤ exp

{
−θt+

θ2ν2

2n

}
E
[
eθ(

∑n−1
k=1 ∆k)

]
≤ . . . ≤ exp

{
−θt+

θ2ν2

2

}
.
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Plugging in θ = t/ν2, we see that,

P

(
n∑
k=1

(f(Xk)− Eq [f(Xk)]) ≥ t

)
≤ exp

{
− t2

2ν2

}
.

The conclusion follows by combining the inequality above for f and −f .

Example 1. Consider a two-state Markov chain with S = {0, 1} and P (0, 1) = p, P (1, 0) = r,
with p, r ∈ (0, 1]. Then,

HitT(P ) = max{E[Geometric(p)],E[Geometric(r)]} = 1/min{p, r},

and Theorem 4 takes the form,

Pq

(∣∣∣∣∣
n∑
k=1

(f(Xk)− Eq [f(Xk)])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−2 min{p2, r2}t2

n(b− a)2

}
.

Example 2. Consider the random walk on the m-cycle with state space S = {0, 1, . . . ,m −
1}, and transition probability matrix P (x, y) = (1{y ≡ x + 1 (mod m)} + 1{y ≡ x − 1
(mod m)})/2. If m is odd, then the Markov chain is aperiodic, while if m is even, then the
Markov chain has period 2. Then,

HitT(P ) = max
y∈S

E[Ty | X1 = 0] = max
y∈S

y(m− y) = bm2/4c,

and Theorem 4 takes the form,

Pq

(∣∣∣∣∣
n∑
k=1

(f(Xk)− Eq [f(Xk)])

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− 2t2

n(b− a)2bm2/4c2

}
.

Remark 1. Observe that the technique used to establish Theorem 4 is limited to Markov
chains with a finite state space S. Indeed, if {Xk}k∈Z>0 is a Markov chain on a countably
infinite state space S with an irreducible and positive recurrent transition probability matrix
P and a stationary distribution π, then we claim that,

1

π(y)
≤ 1 + sup

x∈S
E[Ty | X1 = x], for all y ∈ S,

from which it follows that supx,y∈S E[Ty | X1 = x] =∞, due to the fact that
∑

y∈S π(y) = 1
and S is countably infinite. The aforementioned inequality can be established as follows.

1

π(y)
= E[inf{n ≥ 1 : Xn+1 = y} | X1 = y]

=
∑
x∈S

E[inf{n ≥ 1 : Xn+1 = y} | X2 = x]P (y, x)

≤ sup
x∈S

E[inf{n ≥ 1 : Xn+1 = y} | X2 = x]

= 1 + sup
x∈S

E[Ty | X1 = x].
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Moreover, through Theorem 4 we can obtain a concentration inequality for sums of a
function evaluated on the transitions of a Markov chain. In particular, let

S(2) = {(x, y) ∈ S × S : P (x, y) > 0}.

On the state space S(2) define the transition probability matrix,

P (2) ((x, y), (z, w)) = I{y = z}P (y, w), for (x, y), (z, w) ∈ S(2).

It is straightforward to verify that the fact that P is irreducible, implies that P (2) is irre-
ducible as well. This readily gives the following theorem.

Theorem 5. Let {Xk}k∈Z>0 be a Markov chain on a finite state space S, driven by an initial
distribution q, and an irreducible transition probability matrix P . Let f (2) : S(2) → [a, b] be a
real-valued function evaluated on the transitions of the Markov chain. Then, for any t > 0,

Pq

(∣∣∣∣∣
n∑
k=1

(
f (2)(Xk, Xk+1)− Eq

[
f (2)(Xk, Xk+1)

])∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
− t2

2ν2

}
,

where ν2 = 1
4
n(b− a)2HitT

(
P (2)

)2
.

Corollary 1. When the Markov chain is initialized with its stationary distribution, π, The-
orem 4 and Theorem 5 give the following nonasymptotic versions of the weak law of large
numbers for irreducible Markov chains. For any ε > 0,

Pπ

(∣∣∣∣∣ 1n
n∑
k=1

f(Xk)− Eπ [f(X1)]

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
− 2nε2

(b− a)2HitT(P )2

}
,

and,

Pπ

(∣∣∣∣∣ 1n
n∑
k=1

f (2)(Xk, Xk+1)− Eπ
[
f (2)(X1, X2)

]∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
− 2nε2

(b− a)2HitT (P (2))
2

}
.

2.3 Optimal transport for Markov chains

In this section we study the bicausal optimal transport problem for Markov chains, an optimal
transport formulation suitable for stochastic processes which takes into consideration the
accumulation of information as time evolves. Our analysis is based on a relation between
the transport problem and the theory of Markov decision processes. This way we are able to
derive necessary and sufficient conditions for optimality in the transport problem, as well as
an iterative algorithm, namely the value iteration, for the calculation of the transportation
cost. Additionally, we draw the connection with the classic theory on couplings for Markov
chains, and in particular with the notion of faithful couplings. Finally, we illustrate how the
transportation cost appears naturally in the study of concentration of measure for Markov
chains.
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2.3.1 Problem setting

Let S be a finite set equipped with the discrete topology, and let S be the corresponding Borel
σ-field which in this case is the set of all subsets of S. Let S∞ be the countable infinite product
space, equipped with the product topology, and let S∞ be the corresponding Borel σ-field.
Let X = (Xk)

∞
k=0, X′ = (X ′k)

∞
k=0 be two discrete time stochastic processes on the measurable

space (S∞,S∞), governed by the probability laws µ, µ′ respectively. By a coupling of X,X′

we mean a pair of stochastic processes (X̂, X̂′), on the measurable space (S∞×S∞,S∞⊗S∞),
governed by a probability law γ such that γ(·, S∞) = µ, and γ(S∞, ·) = µ′. Denote the set
of all couplings of µ, µ′ by

Γ(µ, µ′) = {γ ∈ P(S∞ × S∞) : γ(·, S∞) = µ, γ(S∞, ·) = µ′} ,

where P(S∞ × S∞) denotes the set of all probability laws on (S∞ × S∞,S∞ ⊗ S∞).
Let c : S∞ × S∞ → [0,∞] be a S∞ ⊗ S∞-measurable cost function, which has the

following additive form

c(x,x′) =
∞∑
k=0

βkc(xk, yk), (2.2)

for some β ∈ (0, 1], and some c : S × S → [0,∞). In particular, it will be of special interest
the case that the cost function c is the metric

dβ(x,x′) =
∞∑
k=0

βkI{xk 6= x′k}, (2.3)

which for β ∈ (0, 1) induces the product topology on S∞. In a typical optimal transport
problem, see for instance the book of [90], we are interested in finding a coupling γ which
minimizes the cost function c according to the following cost criterion

W (µ, µ′) = inf
γ∈Γ(µ,µ′)

∫
c(x,x′)γ(dx, dx′). (2.4)

Such a formulation might be inadequate in the context of stochastic processes, as the
evolution over time matters, and has to be accounted. In the context of finite horizon
processes the works of [78, 79] recognize this and introduce the nested distance which takes
into consideration the filtrations. They are motivated by applications of the nested distance
for scenario reduction in the context of multistage stochastic optimization. See also the
work of [6] for an application of the nested distance to stability in mathematical finance.
The metric and topological properties of the nested distance has been recently studied in [7].
A generalization of the nested distance is the causal optimal transport problem introduced
by [57] and further developed by [8] where a dynamic programming principle is developed as
well. All those works deal in great generality with processes of finite horizon. In this thesis
we study the bicausal optimal transport problem for Markov chains over an infinite horizon,
drawing motivation by the classic theory of couplings for Markov chains where one might
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naturally seek for an adapted coupling, i.e. one that cannot see into the future, that couples
two chains as fast as possible.

To introduce the bicausal optimal transport problem we first note that any probability
law γ can be factorized, for every n, as

γ((dx0, . . . , dxn), (dx′0, . . . , dx
′
n))

= γ(dx0, dx
′
0)γ(dx1, dx

′
1 | x0, x

′
0) · · · γ(dxn, dx

′
n | x0, . . . , xn−1, x

′
0, . . . , x

′
n−1),

(2.5)

where γ(· | x0, . . . , xk−1, x
′
0, . . . , x

′
k−1) denotes the conditional probability law of ((X̂)∞i=k, (X̂

′)∞i=k)

given that X̂0 = x0, . . . , X̂k−1 = xk−1, X̂
′
0 = x′0, . . . , X̂

′
k−1 = x′k−1. In this work we are

interested in couplings γ which are bicausal, in the sense that for every n, γ(dxn, S |
x0, . . . , xn−1, x

′
0, . . . , x

′
n−1) = µ(dxn | x0, . . . , xn−1), and γ(S, dx′n | x0, . . . , xn−1, x

′
0, . . . , x

′
n−1) =

µ′(dx′n | x′0, . . . , x′n−1). We denote the set of all bicausal couplings of µ, µ′ by

Γbc(µ, µ
′) =

{
γ ∈ P(S∞ × S∞) :

γ(dxn, S | x0, . . . , xn−1, x
′
0, . . . , x

′
n−1) = µ(dxn | x0, . . . , xn−1)

γ(S, dx′n | x0, . . . , xn−1, x
′
0, . . . , x

′
n−1) = µ′(dx′n | x′0, . . . , x′n−1)

}
.

Due to the factorization (2.5) it is clear that Γbc(µ, µ
′) ⊆ Γ(µ, µ′). Additionally, the product

measure µ ⊗ µ′ ∈ Γbc(µ, µ
′), hence none of those sets is empty. The corresponding bicausal

optimal transport problem can be written as

Wbc(µ, µ
′) = inf

γ∈Γbc(µ,µ′)

∫
c(x,x′)γ(dx, dx′). (2.6)

The bicausal optimal transport problem (2.6) is particular interesting in the case that
µ, µ′ are Markovian laws, i.e. (Xk)

∞
k=0, (X

′
k)
∞
k=0 are Markov chains. For the rest of this

chapter we assume that there are initial states x0, x
′
0 ∈ S, and transition probability kernels

P, P ′ : S × S → [0, 1] such that for every n

µ({x0}, dx1, . . . , dxn) = P (x0, dx1)P (x1, dx2) · · ·P (xn−1, dxn),

µ′({x′0}, dx′1, . . . , dx′n) = P ′(x′0, dx
′
1)P ′(x′1, dx

′
2) · · ·P ′(x′n−1, dx

′
n),

and we write
µ = Markov(x0, P ), µ′ = Markov(x′0, P

′).

We note that using two fixed initial states x0, x
′
0 is as general as considering arbitrary initial

distributions, since x0, x
′
0 can be thought of as auxiliary states inducing arbitrary initial

distributions, P (x0, ·), P (x′0, ·) to X1, X
′
1 respectively. For extra clarity we rewrite (2.6) as

Wbc (Markov(x0, P ),Markov(x′0, P
′)) = inf

γ∈Γbc(Markov(x0,P ),Markov(x′0,P
′))

∫
c(x,x′)γ(dx, dx′).

(2.7)
We study the transportation problem (2.7) in Subsection 2.3.3 under the lens of dynamic
programming, where we develop optimality conditions, as well as an iterative procedure,
namely the value iteration, that solves the transportation problem.
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Motivation In the special case that P = P ′, and the cost function c is the metric dβ
given in (2.3), the transportation problem (2.4) can be solved explicitly by works on maximal
coupling from [42, 80, 41]. In particular

W (Markov(x0, P ),Markov(x′0, P )) =
∞∑
k=0

βk
∥∥P k(x0, ·)− P k(x′0, ·)

∥∥
TV

,

where ‖ · ‖TV stands for half the total variation norm of a signed measure.
When β = 1 the transportation problem (2.4) reduces to finding a coupling of two

different initializations of the same Markov chain that couples them in the smallest expected
time. By introducing the coupling time

T = inf
{
n ≥ 0 : X̂n = X̂ ′n

}
,

the transportation problem (2.4) can be written as

W (Markov(x0, P ),Markov(x′0, P )) = inf
γ∈Γ(Markov(x0,P ),Markov(x′0,P ))

Eγ [T ] . (2.8)

This transportation problem is particularly important because it directly leads to a bounded
differences concentration inequality for Markov chains as we discuss in Section 2.4.

The maximal coupling of [80], works on the space-time plane by first simulating the
meeting point, and then constructing the forward and backward chains. As such the coupling
‘cheats’ by looking into the future. [82] initiates the discussion of faithful couplings that do
not look into the future, motivated by the fact that such couplings automatically posses the
‘now equals forever’ property which roughly speaking says that the two chains becoming
equal at a single time is equivalent to having them remain equal for all future times. It is
the bicausal version of the transportation problem

Wbc((Markov(x0, P ),Markov(x′0, P
′))) = inf

γ∈Γbc((Markov(x0,P ),Markov(x′0,P
′)))

Eγ [T ] , (2.9)

that seeks for faithful couplings, that do not look into the future, and minimize the ex-
pected coupling time. In Subsection 2.3.4 we provide necessary and sufficient conditions for
optimality at the transportation problem (2.9), as well as a discussion about properties of
optimal couplings.

2.3.2 Markovian Couplings

Among the set of all bicausal couplings, Γbc (Markov(x0, P ), Markov(x′0, P
′)), it suffices

to turn our attention to Markovian couplings when considering the transportation prob-
lem (2.6). We will establish this in Subsection 2.3.3 as a consequence of the dynamic pro-
gramming theory. A Markovian coupling of Markov(x0, P ), Markov(x′0, P

′) is specified by
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a transition kernel Q : (S × S) × (S ⊗ S) → [0, 1] such that Q((x, x′), (·, S)) = P (x, ·), and
Q((x, x′), (S, ·)) = P ′(x′, ·). We denote the set of all such transition kernels by

ΓM(P, P ′) = {Q : Q((x, x′), (·, S)) = P (x, ·), Q((x, x′), (S, ·)) = P ′(x′, ·)}

The corresponding Markovian coupling is given, for every n, by

γ(({x0}, . . . , dxn), ({x′0}, . . . , dx′n)) = Q((x0, x
′
0), (dx1, dx

′
1)) · · ·Q((xn−1, x

′
n−1), (dxn, dx

′
n)).

(2.10)
We note that any Markovian coupling is bicausal.

We now present some basic examples of Markovian couplings, for the case of a single
Markov chain P = P ′, which have been used extensively in the coupling literature, see for
instance the book [89].

Example 3. The classic coupling, initially introduced by Doeblin in order to establish the
convergence theorem for Markov chains, asserts that X̂n and X̂ ′n evolve independently until
they reach a common state for the first time, and afterwards they move identically.

Qclassic((x, x
′), (y, y′)) =


P (x, y)P (x′, y′), if x 6= x′,

P (x, y), if x = x′, and y = y′,

0, otherwise,

(2.11)

Example 4. A variant of the classic coupling asserts that X̂n and X̂ ′n evolve independently
at all times, and this independent coupling can be used as well to establish the convergence
theorem for Markov chains.

Qind((x, x′), (y, y′)) = P (x, y)P (x′, y′), (2.12)

In both the classic and the independent coupling it is apparent that if we seek for a
Markovian coupling that minimizes some cost criterion, e.g. attaining coupling at the small-
est expected time, then the independent movement can be wasteful. Instead, one should
coordinate the movement of the two copies in a way that optimizes the objective under
consideration. A first such attempt is the following coupling attributed to Wasserstein.

Example 5. Given that X̂n−1 = x and X̂ ′n−1 = x′, the Wassertstein coupling makes X̂n and

X̂ ′n agree with as great probability as possible (which is 1−‖P (x, ·)−P (x′, ·)‖TV ), and then
given that they differ they are made conditionally independent.

QW((x, x′), (y, y′)) =



0, if x = x′, and y 6= y′,

P (x, y), if x = x′, and y = y′,

P (x, y) ∧ P (x′, y), if x 6= x′, and y = y′,

0, if x 6= x′, y 6= y′, and ‖P (x, ·)− P (x′, ·)‖TV = 0,
(P (x,y)−P (x′,y))+(P (x′,y′)−P (x,y′))+

‖P (x,·)−P (x′,·)‖TV
, if x 6= x′, y 6= y′, and ‖P (x, ·)− P (x′, ·)‖TV 6= 0,

(2.13)
where a ∧ b = min(a, b), a+ = −((−a) ∧ 0), and a− = a ∧ 0.
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Making X̂n and X̂ ′n agree with as great probability as possible is a good first step towards
a Markovian coupling with the smallest expected coupling time, although it might be too
greedy of a choice and the conditional independence assertion surely leaves more room for
improvements. It is the objective of this section to provide a characterization of optimal
Markovian couplings using the theory of dynamic programming.

2.3.3 Bicausal optimal transport for Markov chains via dynamic
programming

We start by illustrating that the bicasual transport problem for Markov chains (2.7) can be
viewed as an instance of infinite horizon dynamic programming. When β ∈ (0, 1) we have
an instance of discounted dynamic programming, initially studied by [12], while when β = 1
we have an instance of negative dynamic programming, initially studied by [85]. For two
Markov chains Markov(x0, P ), Markov(x′0, P

′) on the same state space (S,S), and for the
bicausal optimal transport problem (2.7) between them, the associated underlying Markov
decision process is given by the tuple ((S × S,S ⊗ S), (A,A), U, q, β, c) where:

• (S × S,S ⊗ S) stands for the state space of the Markov decision process.

• (A,A) is the action space, where A = P(S×S) is the set of all probability distributions
on S×S equipped with the subspace topology induced from the standard topology on
R|S×S|, and A stands for the corresponding Borel σ-field.

• U(x, x′) = {a ∈ A : a(·, S) = P (x, ·), a(S, ·) = P ′(x′, ·)} is the set of all allowable ac-
tions at state (x, x′), i.e. all the probability distributions on S × S which respect the
coupling constraints.

• q(· | (x, x′), a) = a is the distribution of the state next visited by the Markov decision
process if the system is currently in state (x, x′) and action a ∈ U(x, x′) is taken.

• β ∈ (0, 1] is the discount factor.

• c : S × S → [0,∞) is the cost function.

A policy is a bicausal coupling µ ∈ Γbc(Markov(x0, P ),Markov(x′0, P
′)), and it can be de-

composed as a sequence of conditional distributions as in (2.5) so that if the coupling µ is
used, and up to time n we observe the trajectory x0, . . . , xn, x

′
0, . . . , x

′
n then the action taken

at time n is µ(· | x0, . . . , xn, x
′
0, . . . , x

′
n) which is also the distribution of the state visited by

the Markov decision process at time n+ 1. As it turns out there exists an optimal coupling
for which the conditional distributions do not depend on the whole trajectory but just on the
current state, i.e. there exists an optimal coupling which is Markovian in the sense of (2.10).

We proceed with the definition of some typical operators from the dynamic programming
literature. Let F be the set of all extended real valued functions V : S × S → [0,∞]. For
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Q ∈ ΓM(P, P ′) define the operator TQ : F → F by

TQ(V )(x, x′) = c(x, x′) + β

∫
Q ((x, x′), (dy, dy′))V (y, y′),

which we may also write in functional notation as

TQ(V ) = c+ βQV.

Additionally, define the Bellman operator T : F → F by

T (V )(x, x′) = c(x, x′) + β inf
a∈U(x,x′)

∫
a(dy, dy′)V (y, y′),

or in functional notation as

T (V ) = c+ β inf
Q∈ΓM (P,P ′)

QV.

We note that when β ∈ (0, 1) the Bellman operator T is a β-contraction with respect
to the sup-norm on F , and when β = 1 the Bellman operator T is an increasing map-
ping. In the following theorem we summarize the main results from this dynamic pro-
gramming interpretation of the bicausal optimal transport problem between two Markov
chains (2.7). As it is typical in dynamic programming we consider the transportation cost
Wbc (Markov(x0, P ),Markov(x′0, P

′)) as a function Wbc : S×S → [0,∞] of the initializations
of the two Markov chains, and we write Wbc(x0, x

′
0) for the optimal cost.

Theorem 6.

1. The transportation cost Wbc is a solution to the fixed point equation V = T (V ). When
β ∈ (0, 1) it is the unique solution, while when β = 1 if V ≥ 0 and V = T (V ) then
V ≥ Wbc.

2. The transportation cost Wbc can be calculated via the fixed point iteration{
V0 = 0,

Vk = T (Vk−1), k = 1, 2, . . . ,
(2.14)

If β ∈ (0, 1), then ‖Vk−Wbc‖∞ ≤ βk‖Wbc‖∞, and thus Vk → Wbc as k →∞ at a linear
rate. If β = 1, then the convergence is monotonic, Vk ↑ Wbc as k →∞.

3. There exists an optimal Markovian coupling.

4. Q is an optimal Markovian coupling if and only if TQ(Wbc) = Wbc.
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Proof. When β ∈ (0, 1) parts 1, 2 and 4 follow from Proposition 1 in [11]. When β = 1 parts
1 and 3 follows from Propositions 5 and 7 in [11].

For the rest we need to note that for every x, x′ ∈ S, λ ∈ [0,∞) and k, the set

Uk((x, x
′), λ) =

{
a ∈ U(x, x′) : c(x, x′) + β

∫
a(dy, dy′)Vk(y, y

′) ≤ λ

}
,

is compact as the intersection of the compact set U(x, x′), with a closed half-space.
Then for β ∈ (0, 1) part 3 follows from Proposition 14 in [11], and for β = 1 parts 2 and

3 follow from Proposition 12 in [11].

We note that due to the special structure of U(x, x′), it is a convex polytope arising
from the intersection of a probability simplex with an affine space, the value iteration (2.14)
proceeds by solving at each iteration a linear program. Thus the value iteration (2.14) in
this case can be thought as sequence of finite dimensional linear programs approximating the
bicausal optimal transport cost Wbc which in (2.7) is formulated as an infinite dimensional
linear program.

2.3.4 Coupling of Markov chains in minimum expected time

In this section we specialize the bicausal optimal transport for Markov chains to the case
that we have a single irreducible and aperiodic transition kernel P , and the cost function
c is the metric d1. So essentially we are solving for the bicausal coupling that couples two
Markov chains with different initializations and the same transition kernel in the smallest
expected time

Wbc(Markov(x0, P ),Markov(x′0, P )) = inf
γ∈Γbc(Markov(x0,P ),Markov(x′0,P

′))

∫
d1(x,x′)γ(dx, dx′)

= inf
γ∈Γbc((Markov(x0,P ),Markov(x′0,P

′)))
Eγ [T ] .

Although in the general framework of negative dynamic programming the fixed point equa-
tion V = T (V ) is only a necessary condition for optimality, in our specialized setting we
can establish that it is also sufficient, giving thus a complete set of necessary and sufficient
conditions for both the optimal cost Wbc, and the optimal Markovian coupling Q.

Theorem 7. Wbc is the unique solution of the equations

0 ≤ V <∞, V = T (V ), and V (x, x) = 0 for x ∈ S. (2.15)

Proof. We already know from Theorem 6 that Wbc = T (Wbc). Using the classic Markovian
coupling, (2.11) we see that Wbc(x, x) = 0 for all x ∈ S. Using the independent Markovian
coupling, (2.12), which induces an irreducible Markov chain on S × S we see that

Wbc(x, x
′) ≤ min

y∈S
EQind

(x,x′)[T(y,y)] <∞, for all x, x′ ∈ S.
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Let V : S → [0,∞) be any function satisfying equations (2.15). Let Q be a Markovian
coupling such that Wbc = c+QWbc. Then

V = T (V ) ≤ c+QV = c+QT (V ) ≤ c+Qc+Q2V ≤ · · · ≤
n−1∑
k=0

Qkc+QnV. (2.16)

By definition of Q we have that

Wbc =
∞∑
k=0

Qkc, (2.17)

and since Wbc < ∞ we see that limn→∞Q
nc = 0. We clearly have that c ≤ V , and because

c(x, x′) = 0 ⇒ V (x, x′) = 0, we obtain that c ≤ V ≤ ‖V ‖∞c. Since V <∞ we deduce that

lim
n→∞

QnV = 0. (2.18)

Combining (2.16), (2.17), and (2.18) we obtain that V ≤ Wbc, and because from Theorem 6
Wbc is the minimal fixed point we deduce that V = Wbc.

Next we dig in some properties of an optimal Markovian coupling. In particular, we show
that an optimal Markovian coupling enjoys the ‘sticky’ property of the classic coupling (2.11),
i.e. under an optimal Markovian coupling the two chains evolve in the same way as soon as
they meet.

Lemma 1. Any optimal Markovian coupling Q sticks to the diagonal as soon as it hits it,
i.e.

Q((x, x), (y, y′)) = I{y = y′}P (x, y).

Proof. Fix an optimal Markovian coupling Q. From Theorem 6 it satisfies the equation

c+QWbc = Wbc,

and so in particular ∫
Q((x, x), (dy, dy′))Wbc(y, y

′) = 0.

Since for y 6= y′, Wbc(y, y
′) ≥ 1 we have that Q((x, x), (y, y′)) = 0. Then it follows from the

coupling constraint that Q((x, x), (y, y)) = P (x, y).

Additionally, we show that for two state chains the Wasserstein coupling (2.13) is the
only optimal Markovian coupling.

Lemma 2. When |S| = 2 there is a unique optimal Markovian coupling which is precisely
the Wasserstein coupling (2.13).
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Proof. Let S = {x, x′}. Due to symmetry we have that that Wbc(x, x
′) = Wbc(x

′, x), and in
addition Wbc(x, x) = Wbc(x

′, x′) = 0. So from Theorem 6 we get that

Wbc(x, x
′) = 1 + min

a∈U(x,x′)
(1− a(x, x)− a(x′, x′))Wbc(x, x

′). (2.19)

It is clear that in the minimization in (2.19) we need to make a(x, x), and a(x′, x′) as large
as possible. Due to the coupling constraint, a ∈ U(x, x′), those largest values are

a(x, x) = P (x, x) ∧ P (x′, x), and a(x′, x′) = P (x, x′) ∧ P (x′, x′).

Then from the coupling constraints there are unique corresponding values for a(x, x′), and
a(x′, x). In particular

a(x, x′) = (P (x, x)− P (x′, x))+ = (P (x′, x′)− P (x, x′))+,

a(x′, x) = (P (x′, x)− P (x, x))+ = (P (x, x′)− P (x′, x′))+.

We further note that

‖P (x, ·)− P (x′, ·)‖TV = |P (x, x)− P (x′, x)| = |P (x′, x′)− P (x, x′)|.

Hence in conjunction with Lemma 1 we conclude that there exists a unique optimal Marko-
vian coupling and this is the Wassertstein coupling (2.13).

Moreover, we have closed form expressions for both the non-causal and the bicausal
optimal transport costs

W (x, x′) =
|P (x, x′)− P (x′, x)|
P (x, x′) + P (x′, x)

· 1

1− ‖P (x, ·)− P (x′, ·)‖TV

< Wbc(x, x
′) =

1

1− ‖P (x, ·)− P (x′, ·)‖TV
.

Finally, we give an easy upper bound on the bicausal optimal transport cost for contrac-
tive Markov chains.

Lemma 3. Let δ(P ) = maxx,x′∈S ‖P (x, ·)−P (x′, ·)‖TV be the Doeblin-Dobrushin contraction
coefficient, and assume that δ(P ) < 1. Then

‖Wbc‖∞ ≤
1

1− δ(P )
.

Proof. By definition Wbc(x0, x
′
0) is upper bounded by the cost incurred when the Wasserstein

coupling (2.13) is used. Under the Wasserstein coupling, QW , the probability that we hit the
diagonal in one step from state (x, x′) is 1 − ‖P (x, ·) − P (x′, ·)‖TV . Thus d1(X̂, X̂′) under
the Markovian coupling induced by QW is stochastically dominated by Geometric(1−δ(P )),
and thus

Wbc(x0, x
′
0) ≤ EQW(x0,x′0)[d1(X̂, X̂′)] ≤ 1

1− δ(P )
, for any x0, x

′
0 ∈ S.
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2.4 Concentration of measure for Markov chains

In this section we demonstrate how the transportation cost (2.8) shows up naturally when
one studies concentration of measure for Markov chains. This was first observed in the works
of [63, 64] about contracting Markov chains, and thereafter greatly generalized for classes of
dependent random processes in terms of various mixing coefficients using the transportation-
information method [66, 65, 83]. [17] uses the martingale method combined with maximal
coupling to derive concentration for dependent processes, while [53] uses the martingale
method and a linear programming inequality for the same task. For the Markovian case [77]
using the martingale method establishes a concentration inequality that involves the mixing
time of the chain.

Let f : Sn → R be a functions which is 1-Lipschitz with respect to the Hamming distance

f(x1, . . . , xn)− f(x′1, . . . , x
′
n) ≤

n∑
k=1

I{xk 6= x′k}, for x1, . . . , xn, x
′
1, . . . , x

′
n ∈ S.

Let X ∼ Markov(x0, P ), where P is an irreducible and aperiodic transition kernel. We
would like to study the deviation of the random variable f(X1, . . . , Xn) from its mean
EPx0

[f(X1, . . . , Xn)]. The typical approach to do so is the martingale method. For k =
0, . . . , n we define the martingale

Zk = EPx0
(f(X1, . . . , Xn)|X1, . . . , Xk) ,

and for k = 1, . . . , n we define the martingale differences

∆k = Zk − Zk−1.

Then the quantity of which we want to control the deviations can be written as a telescoping
sum of the martingale differences

f(X1, . . . , Xn)− EPx0
[f(X1, . . . , Xn)] =

n∑
k=1

∆k,

and it suffices to control the range of the martingale differences. For this we note that

min
x′∈S

{
EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk = x′)
}
− EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk−1) ≤ ∆k,

and that

∆k ≤ max
x∈S

{
EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk = x)
}
− EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk−1) .

Thus in order to bound the length of the range of the martingale difference, we just need to
bound

max
x,x′∈S

{
EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk = x)− EPx0
(f(X1, . . . , Xn)|X1, . . . , Xk = x′)

}
.

(2.20)
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Fix x1, . . . , xk−1, x, x
′ ∈ S, and a coupling γ ∈ Γ(µ(· | x1, . . . , xk−1, x), µ(· | x1, . . . , xk−1, x

′)),
where µ = Markov(x0, P ). Then

EPx0
(f(X1, . . . , Xn)|X1 = x1, . . . , Xk−1 = xk−1, Xk = x)−

EPx0
(f(X1, . . . , Xn)|X1 = x1, . . . , Xk−1 = xk−1, Xk = x′)

= Eγ
[
f(x1, . . . , xk−1, X̂k, . . . , X̂n)− f(x1, . . . , xk−1, X̂

′
k, . . . , X̂

′
n)
]

≤ Eγ
[

n∑
i=k

I{X̂i 6= X̂ ′i}

]
≤ Eγ

[
∞∑
i=k

I{X̂i 6= X̂ ′i}

]
,

where we used the Lipschitz condition for f . Thus minimizing over the coupling γ we obtain
that

EPx0
(f(X1, . . . , Xn)|X1, . . . , Xk = x)− EPx0

(f(X1, . . . , Xn)|X1, . . . , Xk = x′) ≤ W (x, x′).

All in all, we can bound the length of the range of the martingale difference ∆k by ‖W‖∞.
Then using the standard martingale method one can obtain the concentration inequality

PPx0

(∣∣f(X1, . . . , Xn)− EPx0
[f(X1, . . . , Xn)]

∣∣ ≥ t
)
≤ 2 exp

{
− 2t2

n‖W‖2
∞

}
. (2.21)

For a full derivation of a concentration inequality which works in more general dependent
settings, than just Markovian dependence, the interested reader is refereed to Theorem 1
in [17] which uses the martingale method together with maximal coupling, and to Theorem
1.1 of [53] which uses a linear programming inequality instead of a coupling argument. The
linear programming inequality that appears in [53] actually also corresponds to maximal
coupling, as it has been observed in [52]. Additionally, we note that if the Markov chain is
periodic and thus coupling techniques are not any more applicable one can still bound (2.20),
in the special case that the function f is additive, by using hitting time arguments as it is
done in [70].

Clearly ‖W‖∞ ≤ ‖Wbc‖∞, and thus replacing ‖W‖∞ with ‖Wbc‖∞ in (2.21) results in
a weaker inequality, although in this way the variance proxy ‖Wbc‖2

∞ has the following
interpretation: let Q be an optimal Markovian coupling, then Wbc(x, x

′) corresponds to the
expected time to hit diagonal when we start from (x, x′) and we transition according Q,
thus the variance proxy is the squared expected time required to hit the diagonal when the
least favorite initialization is used. Additionally, when the transition kernel is contracting,
δ(P ) < 1, we can apply Lemma 3 and further replace ‖Wbc‖∞ by 1/(1− δ(P )), which results
in a specialized version of Theorem 1.2 in [53].
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2.5 Applications to Markovian multiarmed bandits

2.5.1 Setup

There are K ≥ 2 arms, and each arm a ∈ [K] = {1, . . . , K} is associated with a parameter
θa ∈ R which uniquely encodes1 an irreducible transition probability matrix Pθa . We will
denote the overall parameter configuration of all K arms with θθθ = (θ1, . . . , θK) ∈ RK . Arm
a evolves according to the stationary Markov chain, {Xa

n}n∈Z>0 , driven by the irreducible
transition probability matrix Pθa which has a unique stationary distribution πθa , so that
Xa

1 ∼ πθa . There is a common reward function f : S → [c, d] which generates the reward
process {Y a

n }n∈Z>0 = {f(Xa
n)}n∈Z>0 . The reward process, in general, is not going to be a

Markov chain, unless f is injective, and it will have more complicated dependencies than the
underlying Markov chain. Each time that we select arm a, this arm evolves by one transition
and we observe the corresponding sample from the reward process {Y a

n }n∈Z>0 , while all the
other arms stay rested.

The stationary reward of arm a is µ(θa) =
∑

x∈S f(x)πθa(x). Let µ∗(θθθ) = maxa∈[K] µ(θa)
be the maximum stationary mean, and for simplicity assume that there exists a unique arm,
a∗(θθθ), attaining this maximum stationary mean, i.e. {a∗(θθθ)} = arg maxa∈[K] µ(θa). In the
following sections we will consider two objectives: identifying an ε best arm with some fixed
confidence level δ using as few samples as possible, and minimizing the expected regret given
some fixed time horizon T .

2.5.2 Approximate Best Arm Identification

In the approximate best arm identification problem, we are given an approximation accuracy
ε > 0, and a confidence level δ ∈ (0, 1). Our goal is to come up with an adaptive algorithm
A which collects a total of N samples, and returns an arm â that is within ε from the best
arm, a∗(θθθ), with probability at least 1− δ, i.e.

PAθθθ (µ∗(θθθ) ≥ µ(θâ) + ε) ≤ δ.

Such an algorithm is called (ε, δ)-PAC (probably approximately correct).
In [62] a lower bound for the sample complexity of any (ε, δ)-PAC algorithm is derived.

The lower bound states that no matter the (ε, δ)-PAC algorithm A, there exists an instance
θθθ such that the sample complexity is at least,

EAθθθ [N ] = Ω

(
K

ε2
log

1

δ

)
.

A matching upper bound is provided for i.i.d. bandits in [33] in the form of the me-
dian elimination algorithm. We demonstrate the usefulness of our Hoeffding inequality, by
providing an analysis of the median elimination algorithm in the more general setting of
Markovian bandits.

1R and the set of |S| × |S| irreducible transition probability matrices have the same cardinality, and
hence there is a bijection between them.
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Algorithm 1: The β-Median-Elimination algorithm.

Parameters: number of arms K ≥ 2, approximation accuracy ε > 0, confidence
level δ ∈ (0, 1), parameter β;
r = 1, Ar = [K], εr = ε/4, δr = δ/2;
while |Ar| ≥ 2 do

Nr =
⌈

4β
ε2r

log 3
δr

⌉
;

Sample each arm in Ar for Nr times;

For a ∈ Ar calculate Ȳa[r] = 1
Nr

∑Nr
n=1 Y

a
n ;

mr = medianmedianmedian
(
(Ȳa[r])a∈Ar

)
;

Pick Ar+1 such that:

• Ar+1 ⊆ {a ∈ Ar : Ȳa[r] ≥ mr};

• |Ar+1| = b|Ar|/2c;

εr+1 = 3εr/4, δr+1 = δr/2, r = r + 1;

end
return â, where Ar = {â};

Theorem 8. If β ≥ 1
2
(d−c)2 maxa∈[K] HitT(Pθa)

2 then, the β-Median-Elimination algorithm
is (ε, δ)-PAC, and its sample complexity is upper bounded by O

(
K
ε2

log 1
δ

)
.

Proof. The total number of sampling rounds is at most dlog2Ke, and we can set them equal
to dlog2Ke by setting Ar = {â}, for r ≥ R0, where AR0 = {â}. Fix r ∈ {1, . . . , dlog2Ke}.
We claim that,

Pβ−ME
θθθ

(
max
a∈Ar

µ(θa) ≥ max
a∈Ar+1

µ(θa) + εr

)
≤ δr. (2.22)

We condition on the value of Ar. If |Ar| = 1, then the claim is trivially true, so we only
consider the case |Ar| ≥ 2. Let µ∗r = maxa∈Ar µ(θa), and a∗r ∈ arg maxa∈Ar:µ(θa)=µ∗r

Ȳa[r]. We
consider the following set of bad arms,

Br = {b ∈ Ar : Ȳb[r] ≥ Ȳa∗r [r], µ
∗
r ≥ µ(θb) + εr},

and observe that,

Pβ−ME
θθθ

(
µ∗r ≥ µ∗r+1 + εr

)
≤ Pβ−ME

θθθ (|Br| ≥ |Ar|/2). (2.23)

In order to upper bound the latter fix b ∈ Ar and write,

Pβ−ME
θθθ

(
Ȳb[r] ≥ Ȳa∗r [r], µ

∗
r ≥ µ(θb) + εr

∣∣Ȳa∗r [r] > µ∗r − εr/2
)

≤ Pθb(Ȳb[r] ≥ µ(θb) + εr/2) ≤ δr/3,
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where in the last inequality we used Corollary 1. Now via Markov’s inequality this yields,

Pβ−ME
θθθ

(
|Br| ≥ |Ar|/2

∣∣Ȳa∗r [r] > µ∗r − εr/2
)
≤ 2δr/3. (2.24)

Furthermore, Corollary 1 gives that for any a ∈ Ar,

Pθa(Ȳa[r] ≤ µ(θa)− εr/2) ≤ δr/3. (2.25)

We obtain (2.22) by using (2.24) and (2.25) in (2.23).
With (2.22) in our possession, the fact that median elimination is (ε, δ)-PAC follows

through a union bound,

Pβ−ME
θθθ (µ∗(θθθ) ≥ µ(θâ) + ε) ≤ Pβ−ME

θθθ

dlog2Ke⋃
r=1

{
µ∗r ≥ µ∗r+1 + εr

}
≤

∞∑
r=1

δr ≤ δ.

Regarding the sample complexity, we have that the total number of samples is at most,

K

dlog2Ke∑
r=1

Nr/2
r−1 ≤ 2K +

64βK

ε2

∞∑
r=1

(
8

9

)r−1

log
2r3

δ

= O

(
K

ε2
log

1

δ

)
.

2.5.3 Regret Minimization

Our device to solve the regret minimization problem is an adaptive allocation rule, φφφ =
{φt}t∈Z>0 , which is a sequence of random variables where φt ∈ [K] is the arm that we select
at time t. Let Na(t) =

∑t
s=1 I{φs=a}, be the number of times we selected arm a up to time

t. Our decision, φt, at time t is based on the information that we have accumulated so far.
More precisely, the event {φt = a} is measurable with respect to the σ-field generated by

the past decisions φ1, . . . , φt−1, and the past observations {X1
n}

N1(t−1)
n=1 , . . . , {XK

n }
NK(t−1)
n=1 .

Given a time horizon T , and a parameter configuration θθθ, the expected regret incurred
when the adaptive allocation rule φφφ is used, is defined as,

Rφφφθθθ (T ) =
∑

b6∈a∗(θθθ)

Eφφφθθθ [Nb(T )]∆b(θθθ),

where ∆b(θθθ) = µ∗(θθθ)− µ(θb). Our goal is to come up with an adaptive allocation rule that
makes the expected regret as small as possible.
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There is a known asymptotic lower bound on how much we can minimize the expected
regret. Any adaptive allocation rule that is uniformly good across all parameter configura-
tions should satisfy the following instance specific, asymptotic regret lower bound (see [4]
for details), ∑

b6=a∗(θθθ)

∆b(θθθ)

D
(
θb
∥∥ θa∗(θθθ)) ≤ lim inf

T→∞

Rφφφθθθ (T )

log T
,

where D (θ ‖ λ) is the Kullback-Leibler divergence rate between the Markov chains with
transition probability matrices Pθ and Pλ, given by,

D (θ ‖ λ) =
∑
x,y∈S

log
Pθ(x, y)

Pλ(x, y)
πθ(x)Pθ(x, y).

Here we utilize our Theorem 4 to provide a finite-time analysis of the β-UCB adaptive
allocation rule for Markovian bandits, which is order optimal. The β-UCB adaptive alloca-
tion rule, is a simple and computationally efficient index policy based on upper confidence
bounds which was initially proposed in [5] for i.i.d. bandits. It has already been studied in
the context of Markovian bandits in [87], but in a more restrictive setting under the further
assumptions of aperiodicity and reversibility due to the use of the bounds from [39, 60]. For
adaptive allocation rules that asymptotically match the lower bound we refer the interested
reader to [4, 72].

Algorithm 2: The β-UCB adaptive allocation rule.

Parameters: number of arms K ≥ 2, time horizon T ≥ K, parameter β;
Pull each arm in [K] once;
for t = K to T − 1, do

φt+1 ∈ arg max
a∈[K]

{
Ȳa(t) +

√
2β log t

Na(t)

}
end

Theorem 9. If β > 1
2
(d− c)2 maxa∈[K] HitT(Pθa)

2 then,

R
φφφβ−UCB

θθθ (T ) ≤ 8β

 ∑
b6=a∗(θθθ)

1

∆b(θθθ)

 log T +
γ

γ − 2

∑
b6=a∗(θθθ)

∆b(θθθ),

where γ = 4β
(d−c)2 maxa∈[K] HitT(Pθa )2 > 2.

Proof. Fix b 6= a∗(θθθ), and observe that,

Nb(T ) ≤ 1 +
8β

∆b(θθθ)2
log T +

T−1∑
t=2

I{
φt+1=b, Nb(t)≥ 8β

∆b(θθθ)
2 log T

}.
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On the event
{
φt+1 = b, Nb(t) ≥ 8β

∆b(θθθ)2 log T
}

, we have that, either Ȳb(t) ≥ µ(θb) +
√

2β log t
Nb(t)

,

or Ȳa∗(θθθ)(t) ≤ µ∗(θθθ)−
√

2β log t
Na∗(θθθ)(t)

, since otherwise the β-UCB index of a∗(θθθ) is larger than the

β-UCB index of b which contradicts the assumption that φt+1 = b.
In addition, using Corollary 1, we obtain,

Pφφφβ−UCB

θθθ

(
Ȳb(t) ≥ µ(θb) +

√
2β log t

Nb(t)

)

=
t∑

n=1

Pφφφβ−UCB

θθθ

(
Ȳb(t) ≥ µ(θb) +

√
2β log t

Nb(t)
, Nb(t) = n

)

≤
t∑

n=1

Pθb

(
1

n

n∑
k=1

Y b
k ≥ µ(θb) +

√
2β log t

n

)

≤
t∑

n=1

1

tγ
=

1

tγ−1
.

Similarly we can see that,

Pφφφβ−UCB

θθθ

(
Ȳa∗(θθθ)(t) ≤ µ∗(θθθ)−

√
2β log t

Na∗(θθθ)(t)

)
≤ 1

tγ−1
.

The conclusion now follows by putting everything together and using the integral estimate,

T−1∑
t=2

1

tγ−1
≤
∫ ∞

1

1

tγ−1
dt =

1

γ − 2
.



28

Chapter 3

Finite sample large deviations for
Markov chains

3.1 Introduction

Let S be a finite set and (Xk)k∈Z≥0
the coordinate process on SZ≥0 . Given an initial distribu-

tion q on S, and a stochastic matrix P , there exists a unique probability measure Pq on the
sequence space such that the coordinate process (Xk)k∈Z≥0

is a Markov chain with transition
probability matrix P , with respect to the filtration of σ-fields (Fn := σ(X0, . . . , Xn), n ≥ 0).
If we assume further that P is irreducible, then there exists a unique stationary distribu-
tion π for the transition probability matrix P , and for any real-valued function f : S →
R the empirical mean n−1

∑n
k=1 f(Xk) converges Pq-almost-surely to the stationary mean

π(f) :=
∑

x f(x)π(x). The goal of this chapter is to quantify the rate of this convergence by
developing finite sample upper bounds for the large deviations probability

Pq

(
1

n

n∑
k=1

f(Xk) ≥ µ

)
, for µ ≥ π(f).

The significance of studying finite sample bounds for such tail probabilities is not only
theoretical but also practical, since concentration inequalities for Markov dependent random
variables have wide applicability in statistics, computer science and learning theory. Just to
mention a few applications, first and foremost this convergence forms the backbone behind all
Markov chain Monte Carlo (MCMC) integration techniques, see [67]. Moreover, tail bounds
of this form have been used by [47] to develop an approximation algorithm for the permanent
of a nonnegative matrix. In addition, in the stochastic multi-armed bandit literature the
analysis of learning algorithms is based on tail bounds of this type, see the survey of [15].
More specifically the work of [73] uses such a bound to tackle a Markovian identification
problem.

The classic large deviations theory for Markov chains due to [69, 27, 38, 31, 24] suggests
that asymptotically the large deviations probability decays exponentially and the rate is
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given by the convex conjugate Λ∗(µ) of the log-Perron-Frobenius eigenvalue Λ(θ) of the
nonnegative irreducible matrix P̃θ(x, y) := P (x, y)eθf(y). In particular

lim
n→∞

1

n
logPq

(
1

n

n∑
k=1

f(Xk) ≥ µ

)
= −Λ∗(µ), for µ ≥ π(f).

Our objective is to develop a finite sample bound which captures this exponential decay
and has a constant prefactor that does not depend on µ, and is thus useful in applications.
A counting based approach by [23] is able to capture this exponential decay but with a
suboptimal prefactor that depends polynomially on n. Through the development in the
book of [24] (Theorem 3.1.2), which is also presented by [92], one is able to obtain a constant
prefactor, which though depends on µ. This is unsatisfactory because exact large deviations
for Markov chains, see [69, 55], yield that, at least when the supremum supθ∈R{θµ−Λ(θ)} =
Λ∗(µ) is attained at θµ, then

Pq

(
1

n

n∑
k=1

f(Xk) ≥ µ

)
∼

EX∼q[vθµ(X)]

θµ
√

2πnσ2
θµ

e−nΛ∗(µ), as n→∞,

where σ2
θµ

= Λ′′(θµ) and vθµ is a right Perron-Frobenius eigenvector of P̃θµ . Here ∼ denotes
that the ratio of the expressions on the left hand side and the right hand side converges
to 1, and Λ′′(θµ) denotes the second derivative in θ of Λ(θ) at θ = θµ. Thus, if we allow
dependence on µ, then the prefactor should be able to capture a decay of the order 1/

√
n.

If we insist on no dependence on µ though, the best that we can hope for is a constant
prefactor, because otherwise we will contradict the central limit theorem for Markov chains.

In Section 3.4 we establish a tail bound with the optimal rate of exponential decay and
a constant prefactor which depends only on the function f and the stochastic matrix P ,
under the conditions of Section 3.3. The key technique to derive our Chernoff type bound
is the old idea due to [32] of an exponential tilt, which lies at the heart of large deviations
theory. In the world of statistics those exponential changes of measure go by the name
exponential families and the standard reference is the book of [14]. Exponential tilts of
stochastic matrices generalize those of finitely supported probability distributions, and were
first introduced in the work of [69]. Subsequently they formed one of the main tools in the
study of large deviations for Markov chains, see [27, 38, 31, 24, 9, 55]. Naturally they are
also the key object when one conditions on the pair empirical distribution of a Markov chain
and considers conditional limit theorems, as in [22, 13]. A more recent development by [75]
gives an information geometry perspective to this concept, while [43] examine the problem
of parameter estimation for exponential families of stochastic matrices. Here we build on
exponential families of stochastic matrices and by studying the analyticity properties of the
Perron-Frobenius eigenvalue and its associated eigenvector as we parametrically move the
mean of f under exponential tilts, together with conjugate duality, we are able to establish
our main Chernoff type bound.
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In addition to that, in Section 3.5 we use an exponential martingale, coming from the
exponential family of stochastic matrices, in order to derive a maximal inequality for Markov
chains. In the literature there are several approaches that use martingale techniques either
to derive Hoeffding inequalities for Markov chains [40, 70], or more generally to study con-
centration of measure for Markov chains [63, 64, 66, 83, 65, 17, 53, 77, 52]. Nonetheless,
they’re all based either on Dynkin’s martingale or on Doob’s martingale, combined with
coupling ideas, and there is no evidence that they can lead to maximal inequalities. This
maximal inequality constitutes a finite-sample version of the law of the iterated logarithm
for Markov chains.

Finally, in Section 3.6 we establish a uniform multiplicative ergodic theorem. The classic
linear ergodic theory for Markov chains, [19] suggests that

1

n
Eq

[
n∑
k=1

f(Xk)

]
→ π(f), as n→∞.

[9] and [55] have proved a multiplicative version of this under appropriate assumptions,
which state that the scaled log-moment-generating-function Λn(θ) converges pointwise to
the log-Perron-Frobenius eigenvalue

Λn(θ)→ Λ(θ), as n→∞, for any θ ∈ R,

where

Λn(θ) :=
1

n
logEq

[
exp

{
θ

n∑
k=1

f(Xk)

}]
.

For our class of finite Markov chains we are able to establish a uniform multiplicative ergodic
theorem in the terminology of [9].

3.2 Exponential Family of Stochastic Matrices

3.2.1 Construction

Exponential tilting of stochastic matrices originates in the work of [69]. Following this, we
define an exponential family of stochastic matrices which is able to produce Markov chains
with shifted stationary means. The generator of the exponential family is an irreducible
stochastic matrix P , and θ ∈ R represents the canonical parameter of the family. Then we
define

P̃θ(x, y) := P (x, y)eθf(y), (3.1)

(or (̃P )θ(x, y), where (̃·)θ is thought as an operator over matrices). P̃θ has the same nonneg-
ativity structure as P , hence it is irreducible and we can use the Perron-Frobenius theory
in order to normalize it and turn it into a stochastic matrix. Let ρ(θ) (or ρ(P̃θ)) be the
spectral radius of P̃θ, which from the Perron-Frobenius theory is a simple eigenvalue of P̃θ,
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called the Perron-Frobenius eigenvalue, associated with unique left and right eigenvectors
uθ, vθ (or uP̃θ , vP̃θ) such that they both have all entries strictly positive,

∑
x uθ(x) = 1, and∑

x uθ(x)vθ(x) = 1, see for instance Theorem 8.4.4 in the book of [45]. Using P̃θ we define a
family of nonnegative irreducible matrices, parametrized by θ, in the following way

(P )θ (x, y) = Pθ(x, y) :=
P̃θ(x, y)vθ(y)

ρ(θ)vθ(x)
, (3.2)

which are stochastic, since∑
y

Pθ(x, y) =
1

ρ(θ)vθ(x)
·
∑
y

P̃θ(x, y)vθ(y) = 1, for x ∈ S.

In addition the stationary distributions of the Pθ are given by

πθ(x) := uθ(x)vθ(x), for x ∈ S,

since ∑
x

πθ(x)Pθ(x, y) =
vθ(y)

ρ(θ)
·
∑
x

uθ(x)P̃θ(x, y) = πθ(y), for y ∈ S.

Note that the generator stochastic matrix, P , is the member of the family that corre-
sponds to θ = 0, i.e. P0 = P, ρ(0) = 1, u0 = π, v0 = 1, and π0 = π, where 1 is the all
ones vector. In general it is possible that the family is degenerate as the following example
suggests.

Example 6. Let S = {±1}, P (x, y) = 1{x 6= y}, and f(x) = x. Then ρ(θ) = 1, vθ(−1) =
1+eθ

2
, vθ(1) = 1+e−θ

2
, and Pθ = P for any θ ∈ R.

A basic property of the exponential family Pθ is that the composition of (·)θ1 with (·)θ2 ,
is the transform (·)θ1+θ2 , and so composition is commutative. Furthermore we can undo the
transform (·)θ by applying (·)−θ. We state this formally for convenience.

Lemma 4. For any irreducible stochastic matrix P , and any θ1, θ2 ∈ R(
(P )θ2

)
θ1

= (P )θ1+θ2
.

Proof. It suffices to check that
(
vθ1+θ2(y)

vθ2 (y)
, y ∈ S

)
is a right eigenvector of the matrix with

entries
(
P (x,y)eθ2f(y)vθ2 (y)

ρ(θ)vθ2 (x)

)
eθ1f(y), with the corresponding eigenvalue being ρ(θ1+θ2)

ρ(θ2)
. This is a

straightforward calculation.
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3.2.2 Mean Parametrization

The exponential family Pθ defined in (3.2) can be reparametrized using the mean parameters
µ = πθ(f). The duality between the canonical parameters θ and the mean parameters µ is
manifested through the log-Perron-Frobenius eigenvalue Λ(θ) := log ρ(θ). More specifically,
from Lemma 5 it follows that there are two cases for the mapping θ 7→ Pθ. In the nondegen-
erate case that this mapping is nonconstant, Λ′(θ) is a strictly increasing bijection between
the set R of canonical parameters and the set

M := {µ ∈ R : πθ(f) = µ, for some θ ∈ R} (3.3)

of mean parameters, which is an open interval. Therefore, with some abuse of notation,
for any µ ∈ M we may write uµ, vµ, Pµ, πµ for uΛ′−1(µ), vΛ′−1(µ), PΛ′−1(µ), πΛ′−1(µ). In the
degenerate case that the mapping is constant, Λ′(θ) = π(f), and the set M is the singleton
{π(f)}. An illustration of the degenerate case is Example 6.

Lemma 5. Let P be an irreducible stochastic matrix, and f : S → R a real-valued function
on the state space S. Then

(a) ρ(θ), Λ(θ), uθ and vθ are analytic functions of θ on R.

(b) Λ′(θ) = πθ(f).

(c) Λ′′(θ) = var(X,Y )∼πθ�Pθ

(
f(Y ) + vθ(X)

vθ(Y )
d
dθ

vθ(Y )
vθ(X)

)
, where πθ � Pθ denotes the bivariate

distribution defined by (πθ � Pθ)(x, y) := πθ(x)Pθ(x, y).

(d) Either Pθ = P0 = P for all θ ∈ R (degenerate case), or θ 7→ Pθ is an injection
(nondegenerate case).

Moreover, in the degenerate case Λ(θ) = π0(f)θ is linear, while in the nondegenerate
case Λ(θ) is strictly convex.

The proof of Lemma 5 can be found in Section 3.B.

3.2.3 Relative Entropy Rate and Conjugate Duality

For two probability distributions Q and P over the same measurable space we define the
relative entropy between Q and P as

D (Q ‖ P) :=

{
EQ
[
log dQ

dP

]
, if Q is absolutely continuous with respect to P ,

∞, otherwise.

Relative entropies of stochastic processes are most of the time trivial, and so we resort to
the notion of relative entropy rate. Let Q,P be two stochastic matrices over the same state
space S. We further assume that Q is irreducible with associated stationary distribution πQ.
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For any initial distribution q on S we define the relative entropy rate between the Markov
chain Qq induced by Q with initial distribution q, and the Markov chain Pq induced by P
with initial distribution q as

D (Q ‖ P ) := lim
n→∞

1

n
D
(
Qq |Fn

∥∥ Pq |Fn
)
,

where Qq |Fn and Pq |Fn denote the finite dimensional distributions of the probability mea-
sures restricted to the sigma algebra Fn. Note that the definition is independent of the initial
distribution q, since we can easily see using ergodic theory that

D (Q ‖ P ) =
∑
x,y

πQ(x)Q(x, y) log
Q(x, y)

P (x, y)
= D (πQ �Q ‖ πQ � P ),

where πQ �Q denotes the bivariate distribution

(πQ �Q)(x, y) := πQ(x)Q(x, y),

and we use the standard notational conventions log 0 = −∞, log α
0

= ∞ if α > 0, and
0 log 0 = 0 log 0

0
= 0.

For stochastic matrices which are elements of the exponential family Pθ defined in (3.2) we
simplify the relative entropy rate notation as follows. For θ1, θ2 ∈ R and µ1 = Λ′(θ1), µ2 =
Λ′(θ2) we write

D (θ1 ‖ θ2), D (µ1 ‖ µ2) := D (πθ1 � Pθ1 ‖ πθ1 � Pθ2).

For those relative entropy rates Lemma 6 suggests an alternative representation based on
the parametrization. Its proof can be found in Section 3.B.

Lemma 6. Let θ1, θ2 ∈ R and µ1 = Λ′(θ1), µ2 = Λ′(θ2). Then

D (θ1 ‖ θ2) = Λ(θ2)− Λ(θ1)− µ1(θ2 − θ1).

We further define the convex conjugate of Λ(θ) as Λ∗(µ) := supθ∈R{θµ−Λ(θ)}. Moreover,
since we saw in Lemma 5 that Λ(θ) is convex and analytic, we have that the biconjugate of
Λ(θ) is Λ(θ) itself, i.e. Λ(θ) = supµ∈R {µθ−Λ∗(µ)}. The convex conjugate Λ∗(µ) represents
the rate of exponential decay for large deviation events, and in the following Lemma 7, which
is established in Section 3.B, we derive a closed form expression for it.

Lemma 7.

Λ∗(µ) =


D (µ ‖ π(f)), if µ ∈M,

lim
µ̂→µ

D (µ̂ ‖ π(f)), if µ ∈ ∂M,

∞, otherwise,

where M is defined in (3.3).
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An inspection of how the supremum was obtained in the previous Lemma 7 yields the
following Corollary 2.

Corollary 2.

Λ∗(µ) =


sup
θ≥0
{θµ− Λ(θ)}, if µ ≥ π(f),

sup
θ≤0
{θµ− Λ(θ)}, if µ ≤ π(f).

3.3 Conditions for the asymptotic positivity of the

Perron-Frobenius eigenvector

In this section we would like to study under what conditions the Perron-Frobenius eigenvector
vθ remains strictly positive asymptotically as θ → ±∞. Recall that vθ is the right Perron-
Frobenius eigenvector of the matrix

P̃θ(x, y) = P (x, y)eθf(y),

but since eigenvectors are invariant under scaling it will be more convenient to consider the
matrix

P θ(x, y) = P (x, y)e−θ(b−f(y)),

where for the state reward function f : S → R, we define b = maxx∈S f(x), and Sb =
arg maxx∈S f(x). Additionally, since we only care about positivity, we will assume that∑

x vθ(x) = 1.
By permuting rows and corresponding columns of P write

P =

[
A B
C D

]
, P θ =

[
A Bθ

C Dθ

]
,

where A represents the transitions from Sb to Sb, B represents the transitions from Sb to
S−Sb, C represents the transitions from S−Sb to Sb, and D represents the transitions from
S − Sb to S − Sb. Additionally, limθ→∞Bθ = 0, and limθ→∞Dθ = 0, so by continuity

lim
θ→∞

ρ(P θ) = ρ(A).

Using standard terminology [10] we say that x ∈ Sb has access to y ∈ Sb if, An(x, y) >
0 for some n ∈ Z≥0 . This way the nonnegative matrix A induces a partition of Sb in
communicating classes. We call the class i final if it has access to no other class, and we call
it basic if ρ(Ai) = ρ(A), where Ai contains only the rows and columns of A that correspond
to transitions within class i.

Let 1, . . . ,M be an enumeration of the final classes of A, and M+1, . . . , N an enumeration
of the non-final classes of A. Write Ai for the transitions inside class i, and Ai,j for the
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transitions from class i to class j. By permuting rows and corresponding columns write

A1 0 0 B1
θ

0 A2
. . . B2

θ
...

...
. . . 0

...
0 0 · · · AM 0 BM

θ

AM+1,1 AM+1,2 · · · · · · AM+1
. . . BM+1

θ
...

...
...

...
...

. . . 0
...

AN,1 AN,2 · · · · · · · · · · · · AN BN
θ

C Dθ


·



v1
θ

v2
θ
...
vMθ
vM+1
θ
...
vNθ
vN+1
θ


= ρ(P θ)



v1
θ

v2
θ
...
vMθ
vM+1
θ
...
vNθ
vN+1
θ


. (3.4)

We are now ready provide necessary conditions for the asymptotic positivity of vθ as θ →∞.

Lemma 8. If lim
θ→∞

vθ > 0, then

1. All the rows of A and C are nonzero.

2. All the final classes of A are basic.

3. All the basic classes of A are final.

Proof.

1. Assume, towards contradiction, that there exists x0 ∈ S such that P (x0, y) = 0 for all
y ∈ Sb. Then

lim
θ→∞

P θ(x0, y) = 0, for all y ∈ S,

and because Pθ(x0, ·) is a probability mass function, there exists y0 ∈ S such that

lim
θ→∞

vθ(y0)

vθ(x0)ρ(P θ)
=∞.

If ρ(A) > 0, then we already have a contradiction. Alternatively, assume that ρ(A) = 0,
and pick y1 ∈ Sb. Because P is irreducible there exists x1 ∈ S such that

P θ(x1, y1) = P (x1, y1) > 0,

and because P (x1, ·) is a probability mass function

lim
θ→∞

vθ(y1)

vθ(x1)ρ(P θ)
<∞,

which gives a contradiction.
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2. From the previous part we already have that all the rows of A are non-zero and so
ρ(A) > 0. For every final class i = 1, . . . ,M

Ai lim
θ→∞

viθ = ρ(A) lim
θ→∞

viθ,

and since limθ→∞ v
i
θ > 0, it follows that ρ(Ai) = ρ(A), and hence i is a basic class.

3. Let j = M + 1, . . . , N be a non-final class. Then

Aj,1 lim
θ→∞

v1
θ + · · ·+ Aj,j−1 lim

θ→∞
vj−1
θ + Aj lim

θ→∞
vjθ = ρ(A) lim

θ→∞
vjθ.

From this we obtain that

max
x

(Aj limθ→∞ v
j
θ)(x)

limθ→∞ v
j
θ(x)

≤ ρ(A).

Additionally a standard upper bound on ρ(Aj) (Theorem 8.1.26. in [45]) is

ρ(Aj) ≤ max
x

(Aj limθ→∞ v
j
θ)(x)

limθ→∞ v
j
θ(x)

,

and so if j is a basic class, then

ρ(Aj) = max
x

(Aj limθ→∞ v
j
θ)(x)

limθ→∞ v
j
θ(x)

= ρ(A).

We claim that limθ→∞ v
j
θ is a right eigenvector of Aj corresponding to ρ(Aj). Assume,

towards contradiction, that there exists x0 with

(Aj lim
θ→∞

vjθ)(x0) < ρ(Aj) lim
θ→∞

vjθ(x0).

Let uj be a positive left eigenvector of Aj with corresponding eigenvalue ρ(Aj). Then

ρ(Aj)
∑
x

uj(x) lim
θ→∞

vjθ(x) =
∑
x

uj(x)(Aj lim
θ→∞

vjθ)(x) < ρ(Aj)
∑
x

uj(x) lim
θ→∞

vjθ(x),

which is a contradiction, and so limθ→∞ v
j
θ is a right eigenvector of Aj corresponding

to ρ(Aj). But this contradicts the fact that

min
x

(Aj limθ→∞ v
j
θ)(x)

limθ→∞ v
j
θ(x)

< ρ(A),

since j is a non-final class and so at least one of the entries of Aj,1, . . . , Aj,j−1 is positive.
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Now we complement the necessary conditions from Lemma 8 with a set of sufficient
conditions.

Lemma 9. If

1. All the rows of A and C are nonzero.

2. All the final classes of A are basic.

3. All the basic classes of A are final.

4. A has exactly one final class.

Then lim
θ→∞

vθ > 0.

Proof.
From (3.4) we get the following equations

• For a final class i = 1, . . . ,M

(ρ(P θ)I − Ai)viθ = Bi
θv
N+1
θ . (3.5)

At the limit
(ρ(A)I − Ai) lim

θ→∞
viθ = 0, (3.6)

and since i is a basic class, limθ→∞ v
i
θ is either positive or equal to zero.

• For a non-final class j = M + 1, . . . , N

vjθ = (ρ(P θ)I − Aj)−1

(
j−1∑
k=1

Aj,kv
k
θ +Bj

θv
N+1
θ

)
, (3.7)

since j is not a basic class, and so ρ(Aj) < ρ(A) ≤ ρ(P θ). Additionally, we note that
(ρ(P θ)I − Aj)−1, and (ρ(A)I − Aj)−1 are positive matrices (Problem 8.3.P12 in [45]).

At the limit

lim
θ→∞

vjθ = (ρ(A)I − Aj)−1

(
j−1∑
k=1

Aj,k lim
θ→∞

vkθ

)
, (3.8)

and if limθ→∞ v
i
θ > 0 for each final class i = 1, . . . ,M , then we see inductively that

limθ→∞ v
j
θ > 0 for each non-final class j = M + 1, . . . , N .
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• For S − Sb, and for θ sufficiently large

vN+1
θ = (ρ(P θ)I −Dθ)

−1C

v
1
θ
...
vNθ

 . (3.9)

At the limit

lim
θ→∞

vN+1
θ = ρ(A)−1C


lim
θ→∞

v1
θ

...
lim
θ→∞

vNθ

 , (3.10)

and because each row of C is nonzero, we see from the previous bullet that limθ→∞ v
i
θ >

0 for each final class i = 1, . . . ,M , implies that limθ→∞ v
N+1
θ > 0.

Now if there is just one final class (M = 1), then indeed limθ→∞ v
1
θ > 0 because,

limθ→∞ v
1
θ = 0 implies that limθ→∞ vθ = 0, and this contradicts the normalization

∑
x∈S vθ(x) =

1.

Note that the sufficient conditions from Lemma 9 require only that A has exactly one
final class in addition to the necessary conditions from Lemma 8. As the following example
suggest this requirement is not always necessary.

Example 7. Let P be the transition matrix for the chain

c

a

b

2/3

1/3

1/2

1/2

1/2
1/2

with f(a) = f(b) = +1, and f(c) = −1. Then

P θ =

 1/2 0 e−2θ/2
0 1/2 e−2θ/2

2/3 1/3 0

 ,
with

ρ(P θ) =
1

4
(1 +

√
1 + 8e−4θ) ↓ 1

2
, as θ ↑ ∞,
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and vθ (picked so that vθ(a) + vθ(b) + vθ(c) = 1) is

1

2ρ(P θ) + 1

ρ(P θ)
ρ(P θ)

1

→
1/4

1/4
1/2

 , as θ →∞.

Note also that 1/2(< ρ(P θ)) is another eigenvalue of P θ with corresponding eigenvector−1
2
0

 .
At the limit the two eigenvalues 1/2 and ρ(P∞) coincide, and the two eigenvectors span the
two dimensional nullspace of I/2− P∞.

If we further define a = minx∈S f(x), and Sa = arg minx∈S f(x), then the sufficient condi-
tions from Lemma 9 can be relaxed to the following simple conditions on the nonnegativity
structure of P .

A 1. The submatrix of P with rows and columns in Sb is irreducible.

A 2. For every x ∈ S − Sb, there exists y ∈ Sb such that P (x, y) > 0.

A 3. The submatrix of P with rows and columns in Sa is irreducible.

A 4. For every x ∈ S − Sa, there exists y ∈ Sa such that P (x, y) > 0.

Lemma 10. Under A 1, and A 2 we have that lim
θ→∞

vθ > 0, while under A 3, and A 4 we

have that lim
θ→−∞

vθ > 0.

A critical ingredient to obtain our tail bounds is the following Proposition 1 which states
that under the assumptions A 1-A 2 the ratio of the entries of the right Perron-Frobenius
eigenvector stays uniformly bounded.

Proposition 1. Let P be an irreducible stochastic matrix on the finite state space S, which,
combined with a real-valued function f : S → R, satisfies A 1-A 2. Then

Ku := sup
θ∈R≥0,x,y∈S

vP θ(x)

vP θ(y)
<∞,

where Ku = Ku(P, f) is a constant depending on the stochastic matrix P , and the function
f . In particular

• if P induces an IID process, i.e. P has identical rows, then Ku = 1;

• if P is a positive stochastic matrix, then Ku ≤ max
x,y,z

P (x, z)

P (y, z)
.

Proof. Lemma 5 yields that θ 7→ vθ(x)/vθ(y) is continuous, and so in conjunction with Lemma 10
we have that the ratio of the entries of the right Perron-Frobenius eigenvector is uniformly
bounded, hence Ku <∞.



CHAPTER 3. FINITE SAMPLE LARGE DEVIATIONS FOR MARKOV CHAINS 40

3.4 Chernoff Bound

In this section we build on exponential families of stochastic matrices and by using the
conditions from Lemma 10 that guarantee the positivity of the asymptotic Perron-Frobenius
eigenvector we are able to establish our main Chernoff type bound, which we state below
together with some remarks.

Theorem 10. Let P be an irreducible stochastic matrix on the finite state space S, with
stationary distribution π, which, combined with a real-valued function f : S → R, satis-
fies A 1-A 2. Then, for any initial distribution q, we have

Pq

(
1

n

n∑
k=1

f(Xk) ≥ µ

)
≤ Kue

−nΛ∗(µ), for µ ≥ π(f),

where Ku = Ku(P, f) is the constant from Proposition 1, and depends only on the stochastic
matrix P and the function f .

Remark 2. Since f is arbitrary and our assumptions A 1-A 2 and A 3-A 4 are symmetric,
we can substitute f with −f , so that Theorem 10 yields a Chernoff type bound for the lower
tail as well. In particular, assuming A 3-A 4 we have

Pq

(
1

n

n∑
k=1

f(Xk) ≤ µ

)
≤ Kle

−nΛ∗(µ), for µ ≤ π(f),

where Kl = Ku(P,−f).

Remark 3. Similarly assuming A 1-A 4 we have the following two-sided Chernoff type bound.

Pq

(
1

n

n∑
k=1

f(Xk) ∈ F

)
≤ 2Ke−n infµ∈F Λ∗(µ), for any F closed in R,

where K = max{Kl, Ku}.
Remark 4. According to Proposition 1, when P is a positive stochastic matrix, i.e. all the
transitions have positive probability, we can replace K with

K ≤ max
x,y,z

P (x, z)

P (y, z)
.

Remark 5. According to Proposition 1, when P induces an IID sequence, i.e. all the rows
of P are identical, then K = 1. Thus Theorem 10 generalizes the classic bound of [18] for
finitely supported IID sequences.

Proof of Theorem 10. In order to derive our bounds we use a change of measure argument,
an idea due to [32]. We denote by P(θ)

q the probability distribution of the Markov chain with
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initial distribution q and stochastic matrix Pθ, while for θ = 0 we just write Pq for P(0)
q . The

finite dimensional distributions Pq |Fn and P(θ)
q |Fn are absolutely continuous with each other

and their Radon-Nikodym derivative is given by

dPq |Fn
dP(θ)

q |Fn
=
vθ(X0)

vθ(Xn)
exp {−θSn + nΛ(θ)} ,

where we denote the sums by Sn :=
∑n

k=1 f(Xk).
Fix θ ∈ R≥0. Then

Pq(Sn ≥ nµ) = Eq [1{Sn ≥ nµ}]

= E(θ)
q

[
vθ(X0)

vθ(Xn)
e−θSn+nΛ(θ)1{Sn ≥ nµ}

]
≤ Ku E(θ)

q

[
e−θ(Sn−nµ)1{Sn ≥ nµ}

]
e−n(θµ−Λ(θ))

≤ Kue
−n(θµ−Λ(θ)),

where in the first inequality we used Proposition 1.
When µ ∈ [π(f), b), we can set θ = Λ′−1(µ) ≥ Λ′−1(π(f)) = 0 and then from Lemma 6

we have that D (µ ‖ π(f)) = θµ − Λ(θ). When µ = b, we let θ go to ∞. The conclusion
follows from Corollary 2.

In this bound we cannot hope for something more than a constant prefactor. First of all,
by differentiating twice the formula proved in Lemma 6 we obtain

lim
µ→π(f)

1

(µ− π(f))2
D (µ ‖ π(f)) =

1

2

1

Λ′′(0)
.

In addition, if we fix z ≥ 0 and set µ = π(f) + cz/
√
n, where c2 = π

(
f̂ 2 − (P f̂)2

)
and

f̂ is a solution of the Poisson equation (I − P )f̂ = f − π(f), then due to the central limit
theorem for Markov chains, see for instance [19], we have that

lim
n→∞

Pq(Sn ≥ nµ) =

∫ ∞
z

1√
2π
e−x

2/2dx.

Therefore if we want the optimal rate of exponential decay and a prefactor which does not
depend on µ, then the best we can attain is a constant prefactor.

3.5 A maximal inequality for Markov chains

In order to derive a maximal inequality for Markov chains we will utilize an exponential

martingale which is essentially coming from the Radon-Nikodym derivative
dP(θ)

q |Fn
dPq |Fn

.
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Lemma 11. Let {Xn}n∈Z≥0
be a Markov chain over the finite state space S with an irre-

ducible transition matrix P and initial distribution q. Let f : S → R be a nonconstant
real-valued function on the state space. Fix θ ∈ R and define,

M θ
n =

vθ(Xn)

vθ(X0)
exp {θ(f(X1) + . . .+ f(Xn))− nΛ(θ)} . (3.11)

Then {M θ
n}n∈Z>0 is a martingale with respect to the filtration {Fn}n∈Z>0 , where Fn is the

σ-field generated by X0, . . . , Xn.

Proof.

E(M θ
n+1 | Fn) = M θ

n

e−Λ(θ)

vθ(Xn)
E(vθ(Xn+1)eθf(Xn+1) | Fn)

= M θ
n

e−Λ(θ)

vθ(Xn)

∑
x∈S

vθ(x)eθf(x)P (Xn, y)

= M θ
n

e−Λ(θ)

vθ(Xn)

∑
x∈S

P̃θ(Xn, x)vθ(x)

= M θ
n,

where in the last equality we used the fact that vθ is a right Perron-Frobenius eigenvector of
P̃θ.

Theorem 11. Let {Xn}n∈Z≥0
be an irreducible Markov chain over the finite state space

S with transition matrix P , initial distribution q, and stationary distribution π. Let f :
S → R be a non-constant function on the state space. Denote by µ(0) =

∑
x∈S f(x)π(x)

the stationary mean when f is applied, and by Ȳn = 1
n

∑n
k=1 Yk the empirical mean, where

Yk = f(Xk). Assume that the pair P, f satisfied conditions A 1, A 2, A 3, and A 4. Then
for all t, c > 1 we have

P
(
∃k ≥ 1 : kD

(
Ȳk
∥∥ µ(0)

)
≥ tc

t− 1
log log k + t

)
≤ 2Kectc

c− 1
e−t,

where K = K(P, f) is a positive constant depending only on the transition probability matrix
P and the function f .

Proof. In order to handle the Markovian dependence we need to use the exponential mar-
tingale for Markov chains from Lemma 11, as well as continuity results for the right Perron-
Frobenius eigenvector.

Following the proof strategy used to establish the law of the iterated logarithm, we split
the positive integers into chunks of exponentially increasing sizes. Denote by α > 1 the
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growth factor, to be specified later, and let nm = bαmc be the end point of the m-th chunk,
with n0 = 0. For the m-th chunk we have that

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ tc

t− 1
log log k + t

}
⊆

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, D

(
Ȳk
∥∥ µ(0)

)
≥ tc

(t− 1)nm
log log(nm−1 + 1) +

t

nm

}
.

Let µm = inf
{
µ < µ(0) : D (µ ‖ µ(0)) ≤ tc

(t−1)nm
log log(nm−1 + 1) + t

nm

}
, and θm = Λ̇−1(µm) <

Λ̇−1(µ(0)) = 0 so that θmµm − Λ(θm) = D (µm ‖ µ(0)). Then,{
µ(0) ≥ Ȳk, D

(
Ȳk
∥∥ µ(0)

)
≥ ε

nm

}
⊆
{
Ȳk ≤ µm

}
=
{
eθmkȲk−kΛ(θm) ≥ ek(θmµm−Λ(θm))

}
=

{
M θm

k ≥
vθm(Xk)

vθm(X0)
ekD(µm ‖ µ(0))

}
⊆
{
M θm

k ≥
vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
.

At this point we use assumptions A 3, and A 4 in order to invoke Proposition 1, and get
that there exists a constant Kl = Kl(P, f) ≥ 1 such that

1

Kl

≤ inf
θ∈R≤0,x,y∈S

vθ(y)

vθ(x)
.

This gives us the inclusion,{
M θm

k ≥
vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
⊆
{
M θm

k ≥
e(nm−1+1)D(µm ‖ µ(0))

Kl

}
.

In Lemma 11 we have established that M θm
k is a positive martingale, which combined with

a maximal inequality for martingales due to [91] (see Exercise 4.8.2 in [29] for a modern
reference), yields that,

P

 nm⋃
k=nm−1+1

{
M θm

k ≥
e(nm−1+1)D(µm ‖ µ(0))

Kl

}
≤ Kle

−(nm−1+1)D(µm ‖ µ(0))

≤ Kl exp

{
−nm−1 + 1

nm
· tc

(t− 1)
log log(nm−1 + 1)− nm−1 + 1

nm
t

}
≤ Kl exp

{
− tc

α(t− 1)
log log(bαm−1c+ 1)− t

α

}
.
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We pick the growth factor α = t/(t − 1), and we union bound over the chunks, to deduce
that

P
(
∃k ≥ 1 : µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ tc

t− 1
log log k + t

)
≤ Klect

c

c− 1
e−t.

In the same way we can also deduce, by consuming assumptions A 1, and A 2, that

P
(
∃k ≥ 1 : µ(0) ≤ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ tc

t− 1
log log k + t

)
≤ Kuect

c

c− 1
e−t.

From this the conclusion follows with K = max{Kl, Ku}.

3.6 A Uniform Multiplicative Ergodic Theorem

Theorem 12. Let P be an irreducible stochastic matrix on the finite state space S, which
combined with a real-valued function f : S → R satisfies A 1-A 4. Then

sup
θ∈R
|Λn(θ)− Λ(θ)| ≤ logK

n
.

where K is the constant from Proposition 1.
Therefore Λn(θ) converges uniformly on R to Λ(θ) as n→∞.

Proof. We start with the calculation

enΛn(θ) =
∑

x0,x1,...,xn−1,xn

q(x0)P (x0, x1)eθf(x1) · · ·P (xn−1, xn)eθf(xn)

=
∑
x0,xn

q(x0)P̃ n
θ (x0, xn).

From this, using the fact that vθ is a right Perron-Frobenius eigenvector of P̃θ, we obtain

min
x,y

vθ(y)

vθ(x)
≤ exp {nΛn(θ)− nΛ(θ)} ≤ max

x,y

vθ(y)

vθ(x)
.

The conclusion now follows by applying Proposition 1.
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Appendix

3.A Analyticity of Perron-Frobenius Eigenvalues and

Eigenvectors

Here we use the implicit function theorem in order to deduce in Lemma 12 that the Perron-
Frobenius eigenvalue and eigenvectors are analytic functions of the entries of the matrix, at
a level of generality adequate for our purposes.

Lemma 12. Let M ∈ Rs×s
≥0 be a nonnegative irreducible matrix. Let W range over Rs×s in

an open neighborhood of M . Then uW , ρ(W ) and vW are analytic as functions of the entries
of the matrix W in an open neighborhood of M where W is irreducible.

Proof. We define the vector-valued function F : R(s+1)2 → R2(s+1)

F (W,u, ρ, v) :=


(W> − ρI)u

1>u− 1
(W − ρI)v
u>v − 1

 ,
where we use column vectors, and 1 denotes the all ones vector. At this point no assumptions
are made about the structure of W . Note that each coordinate of the vector F (W,u, ρ, v) is
a multivariate polynomial of degree at most two, and hence each coordinate is an analytic
function of W,u, ρ and v.

In addition F (M,uM , ρ(M), vM) = 0, and the Jacobian of F with respect to u, ρ, v
evaluated at W = M,u = uM , ρ = ρ(M), v = vM is

JF,u,ρ,v(M,uM , ρ(M), vM) =


M> − ρ(M)I −uM 0

1> 0 0
0 −vM M − ρ(M)I
v>M 0 u>M

 .
We can easily verify that this Jacobian is left invertible. If

[
u> ρ v>

]>
is in the kernel of

JF,u,ρ,v(M,uM , ρ(M), vM), then M>u = ρ(M)u + ρuM , so if we multiply from the left with
v>M , we get that ρ = 0. In the same fashion we can deduce that u = v = 0, and thus the
kernel of the Jacobian is trivial.
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Then the analytic implicit function theorem guarantees that there exists a unique vector-
valued function g : Rs2 → R2s+1 with each coordinate analytic, such that

g(M) =

 uM
ρ(M)
vM

 , and F (W, g(W )) = 0, for all W in a neighborhood of M.

Finally, due to the Perron-Frobenius theorem g(W ) has to equal
[
u>W ρ(W ) v>W

]>
for

irreducible matrices W in this neighborhood of M .

3.B Proofs from Section 2

Proof of Lemma 5.

(a) Each entry of P̃θ is an analytic function of θ, and the conclusion follows from Lemma 12
in Section 3.A.

(b) For any x, y ∈ S such that P (x, y) > 0 we have

logPθ(x, y) = logP (x, y) + θf(y)− Λ(θ) + log vθ(y)− log vθ(x).

Differentiating with respect to θ, and taking expectations with respect to πθ � Pθ we
obtain

E(X,Y )∼πθ�Pθ
d

dθ
logPθ(X, Y ) = πθ(f)− Λ′(θ).

The conclusion follows because

E(X,Y )∼πθ�Pθ
d

dθ
logPθ(X, Y ) =

∑
x

πθ(x)
d

dθ

(∑
y

Pθ(x, y)

)
= 0.

(c) For any x, y ∈ S such that P (x, y) > 0 we have

d2

dθ2
logPθ(x, y) = −Λ′′(θ) +

d2

dθ2
log vθ(y)− d2

dθ2
log vθ(x).

Taking expectations with respect to πθ � Pθ we obtain

Λ′′(θ) = −E(X,Y )∼πθ�Pθ
d2

dθ2
logPθ(X, Y )

= E(X,Y )∼πθ�Pθ

(
d

dθ
logPθ(X, Y )

)2

= E(X,Y )∼πθ�Pθ

(
f(Y )− πθ(f) +

vθ(X)

vθ(Y )

d

dθ

vθ(Y )

vθ(X)

)2

.
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(d) Part (c) already ensures that Λ(θ) is convex. Moreover we see that

Λ′′(θ) = 0 for all θ ∈ (θ1, θ2), iff Pθ = P θ1+θ2
2

for all θ ∈ (θ1, θ2).

If such an interval (θ1, θ2) exists, then we claim that we can enlarge it to the whole
real line. To see this fix any 0 < ε < θ2−θ1

2
. Then using Lemma 4 twice we obtain that

for any θ ∈ (θ1, θ2)

Pθ±ε = (Pθ)±ε =
(
P θ1+θ2

2

)
±ε

= P θ1+θ2
2
±ε = P θ1+θ2

2

.

By repeating this process we see that Pθ = P0 = P for all θ ∈ R.

Alternatively, if no such interval exists, then Λ′(θ) is strictly increasing and Λ(θ) is
strictly convex. Moreover, for θ1 < θ2 we have that πθ1(f) = Λ′(θ1) < Λ′(θ2) = πθ2(f),
and so Pθ1 6= Pθ2 , establishing that in this case θ 7→ Pθ is an injection.

Proof of Lemma 6.

D (θ1 ‖ θ2) = E(X,Y )∼πθ1�Pθ1 log
Pθ1(X, Y )

Pθ2(X, Y )

= Λ(θ2)− Λ(θ1)− Λ′(θ1)(θ2 − θ1)

+ E(X,Y )∼πθ1�Pθ1 log
vθ1(Y )

vθ1(X)
− E(X,Y )∼πθ1�Pθ1 log

vθ2(Y )

vθ2(X)

= Λ(θ2)− Λ(θ1)− µ1(θ2 − θ1),

where the second equality is using the calculations from the proof of Lemma 5 (b).

Proof of Lemma 7. From Lemma 5 we have that θ 7→ θµ−Λ(θ) is either the linear function
θ 7→ (µ − π(f))θ, in which case the conclusion follows right away, or otherwise it is strictly
concave.

In the latter case M = (µ−, µ+) for some µ− < µ+. If µ ∈ M, then θ = Λ′−1(µ) is the
unique maximizer and the conclusion follows from Lemma 6. If µ = µ+, then the function
keeps on growing as θ → ∞, or equivalently as µ̂ → µ, which in conjunction with the
representation of the relative entropy rate from Lemma 6 establishes this case. If µ > µ+,
then limθ→∞ (θµ− Λ(θ)) = limθ→∞ θ(µ− µ+) + limµ̂→µ+ D (µ̂ ‖ π(f)) =∞. The arguments
are the same for the other two cases.
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Chapter 4

Best Markovian Arm Identification
with Fixed Confidence

4.1 Introduction

In this chapter we study a problem about best arm identification. There are K independent
options which are referred to as arms. Each arm a is associated with a discrete time stochastic
process, which is characterized by a parameter θa and it’s governed by the probability law
Pθa . At each round we select one arm, without any prior knowledge of the statistics of the
stochastic processes. The stochastic process that corresponds to the selected arm evolves by
one time step, and we observe this evolution through a reward function, while the stochastic
processes for the rest of the arms stay still. A confidence level δ ∈ (0, 1) is prescribed, and
our goal is to identify the arm that corresponds to the process with the highest stationary
mean with probability at least 1− δ, and using as few samples as possible.

In the work of [37] the discrete time stochastic process associated with each arm a is
assumed to be an IID process. Here we go one step further and we study more complicated
dependent processes, which allow us to use more expressive models in the stochastic multi-
armed bandits framework. More specifically we consider the case that each Pθa is the law of an
irreducible finite state Markov chain associated with a stationary mean µ(θa). We establish
a lower bound (Theorem 13) for the expected sample complexity, as well as an analysis of the
Track-and-Stop strategy, proposed for the IID setting in [37], which shows (Theorem 14) that
asymptotically the Track-and-Stop strategy in the Markovian dependence setting attains a
sample complexity which is at most a factor of four apart from our asymptotic lower bound.
Both our lower and upper bounds extend the work of [37] in the more complicated and more
general Markovian dependence setting.

The abstract framework of multi-armed bandits has numerous applications in areas like
clinical trials, ad placement, adaptive routing, resource allocation, gambling etc. For more
context we refer the interested reader to the survey of [15]. Here we generalize this model
to allow for the presence of Markovian dependence, enabling this way the practitioner to



CHAPTER 4. BEST MARKOVIAN ARM IDENTIFICATION WITH FIXED
CONFIDENCE 49

use richer and more expressive models for the various applications. In particular, Markovian
dependence allows models where the distribution of next sample depends on the sample just
observed. This way one can model for instance the evolution of a rigged slot machine, which
as soon as it generates a big reward for the gambler, it changes the reward distribution to a
distribution which is skewed towards smaller rewards.

The cornerstone of stochastic multi-armed bandits is the seminal work of [56]. They
considered K IID process with the objective being to maximize the expected value of the
sum of the observed rewards, or equivalently to minimize regret. In the same spirit [3, 4]
examine the generalization where one is allowed to collect multiple rewards at each time
step, first in the case that processes are IID [3], and then in the case that the processes are
irreducible and aperiodic Markov chains [4]. A survey of the regret minimization literature
is contained in [15].

An alternative objective is the one of identifying the process with the highest stationary
mean as fast as and as accurately as possible, notions which are made precise in Subsec-
tion 4.2.1. In the IID setting, [33] establish an elimination based algorithm in order to find
an approximate best arm, and [62] provide a matching lower bound. [46] propose an upper
confidence strategy, inspired by the law of iterated logarithm, for exact best arm identifi-
cation given some fixed level of confidence. In the asymptotic high confidence regime, the
problem is settled by the work of [37], who provide instance specific matching lower and
upper bounds. For their upper bound they propose the Track-and-Stop strategy which is
further explored in the work of [50].

4.2 Problem Formulation

4.2.1 One-parameter family of Markov Chains

In order to model the problem we will use a one-parameter family of Markov chains on a finite
state space S. Each Markov chain in the family corresponds to a parameter θ ∈ Θ, where
Θ ⊆ R is the parameter space, and is completely characterized by an initial distribution
qθ = [qθ(x)]x∈S, and a stochastic transition matrix Pθ = [Pθ(x, y)]x,y∈S, which satisfy the
following conditions.

Pθ is irreducible for all θ ∈ Θ. (4.1)

Pθ(x, y) > 0 ⇒ Pλ(x, y) > 0, for all θ, λ ∈ Θ, x, y ∈ S. (4.2)

qθ(x) > 0 ⇒ qλ(x) > 0, for all θ, λ ∈ Θ, x ∈ S. (4.3)

There are K Markovian arms with parameters θθθ = (θ1, . . . , θK) ∈ ΘK , and each arm
a ∈ [K] = {1, . . . , K} evolves as a Markov chain with parameter θa which we denote by
{Xa

n}x∈Z≥0
. A non-constant real valued reward function f : S → R is applied at each state

and produces the reward process {Y a
n }n∈Z≥0

given by Y a
n = f(Xa

n). We can only observe the
reward process but not the internal Markov chain. Note that the reward process is a function
of the Markov chain and so in general it will have more complicated dependencies than the
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Markov chain. The reward process is a Markov chain if and only if f is injective. For each
θ ∈ Θ there is a unique stationary distribution πθ = [πθ(x)]x∈S associated with the stochastic
matrix Pθ, due to (4.1). This allows us to define the stationary reward of the Markov chain
corresponding to the parameter θ as µ(θ) =

∑
x f(x)πθ(x). We will assume that among the

K Markovian arms there exists precisely one that possess the highest stationary mean, and
we will denote this arm by a∗(θθθ), so in particular

{a∗(θθθ)} = arg max
a∈[K]

µ(θa).

The set of all parameter configurations that possess a unique highest mean is denoted by

ΘΘΘ =

{
θθθ ∈ ΘK :

∣∣∣∣∣arg max
a∈[K]

µ(θa)

∣∣∣∣∣ = 1

}
.

The Kullback-Leibler divergence rate characterizes the sample complexity of the Markovian
identification problem that we are about to study. For two Markov chains of the one-
parameter family that are indexed by θ and λ respectively it is given by,

D (θ ‖ λ) =
∑
x,y∈S

log
Pθ(x, y)

Pλ(x, y)
πθ(x)Pθ(x, y),

where we use the standard notational conventions log 0 = ∞, log α
0

= ∞ if α > 0, and
0 log 0 = 0 ln 0

0
= 0. It is always nonnegative, D (θ ‖ λ) ≥ 0, with equality occurring if and

only if Pθ = Pλ, and so µ(θ) 6= µ(λ) yields that D (θ ‖ λ) > 0. Furthermore, D (θ ‖ λ) <∞
due to (4.2).

With some abuse of notation we will also write D (P ‖ Q) for the Kullback-Leibler diver-
gence between two probability measures P and Q on the same measurable space, which is
defined as

D (P ‖ Q) =

{
EP

[
log dP

dQ

]
, if P� Q

∞, otherwise,

where P� Q means that P is absolutely continuous with respect to Q, and in that case dP
dQ

denotes the Radon-Nikodym derivative of P with respect to Q.

4.2.2 Best Markovian Arm Identification with Fixed Confidence

Let θθθ ∈ ΘΘΘ be an unknown parameter configuration for the K Markovian arms. Let δ ∈
(0, 1) be a given confidence level. Our goal is to identify a∗(θθθ) with probability at least
1 − δ using as few samples as possible. At each time t we select a single arm At and we
observe the next sample from the reward process {Y At

n }n∈Z≥0
, while all the other reward

processes stay still. Let Na(t) =
∑t

s=1 I{As=a} − 1 be the number of transitions of the
Markovian arm a up to time t. Let Ft be the σ-field generated by our choices A1, . . . , At
and the observations {Y 1

n }
N1(t)
n=0 , . . . , {Y a

n }
NK(t)
n=0 . A sampling strategy, Aδ, is a triple Aδ =

((At)t∈Z>0 , τδ, âτδ) consisting of:
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• a sampling rule (At)t∈Z>0 , which based on the past decisions and observations Ft,
determines which arm At+1 we should sample next, so At+1 is Ft-measurable;

• a stopping rule τδ, which denotes the end of the data collection phase and is a stopping
time with respect to the filtration (Ft)t∈Z>0 , such that EAδλλλ [τδ] <∞ for all λλλ ∈ ΘΘΘ;

• a decision rule âτδ , which is Fτδ -measurable, and determines the arm that we estimate
to be the best one.

Sampling strategies need to perform well across all possible parameter configurations in
ΘΘΘ, therefore we need to restrict our strategies to a class of uniformly accurate strategies.
This motivates the following standard definition.

Definition 1 (δ-PC). Given a confidence level δ ∈ (0, 1), a sampling strategyAδ = ((At)t∈Z>0 , τδ, âτδ)
is said to be δ-PC (Probably Correct) if,

PAδλλλ (âτδ 6= a∗(λλλ)) ≤ δ, for all λλλ ∈ ΘΘΘ.

Therefore our goal is to study the quantity,

inf
Aδ:δ−PC

EAδθθθ [τδ],

both in terms of finding a lower bound, i.e. establishing that no δ-PC strategy can have
expected sample complexity less than our lower bound, and also in terms of finding an upper
bound, i.e. a δ-PC strategy with very small expected sample complexity. We will do so in the
high confidence regime of δ → 0, by establishing instance specific lower and upper bounds
which differ just by a factor of four.

4.3 Lower Bound on the Sample Complexity

Deriving lower bounds in the multi-armed bandits setting is a task performed by change of
measure arguments initial introduced by [56]. Those change of measure arguments capture
the simple idea that in order to identify the best arm we should at least be able to differentiate
between two bandit models that exhibit different best arms but are statistically similar. Fix
θ ∈ ΘΘΘ, and define the set of parameter configurations that exhibit as best arm an arm
different than a∗(θθθ) by

Alt(θθθ) = {λλλ ∈ ΘΘΘ : a∗(λλλ) 6= a∗(θθθ)}.
Then we consider an alternative parametrization λλλ ∈ Alt(θθθ) and we write their log-likelihood
ratio up to time t

log

(
dPAδθθθ |Ft
dPAδλλλ |Ft

)
=

K∑
a=1

I{Na(t)≥0} log
qθa(X

a
0 )

qλa(X
a
0 )

+
K∑
a=1

∑
x,y

Na(x, y, 0, t) log
Pθa(x, y)

Pλa(x, y)
,

(4.4)
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where Na(x, y, 0, t) =
∑t−1

s=0 1{Xa
s = x,Xa

s+1 = y}. The log-likelihood ratio enables us to
perform changes of measure for fixed times t, and more generally for stopping times τ with
respect to (Ft)t∈Z>0 , which are PAδθθθ and PAδλλλ -a.s. finite, through the following change of
measure formula,

PAδλλλ (E) = EAδθθθ

[
IE
dPλλλ |Fτ
dPθθθ |Fτ

]
, for any E ∈ Fτ . (4.5)

In order to derive our lower bound we use a technique developed for the IID case by [37]
which combines several changes of measure at once. To make this technique work in the
Markovian setting we need the following inequality which we derive in Section 4.A using a
renewal argument for Markov chains.

Lemma 13. Let θθθ ∈ ΘΘΘ and λλλ ∈ Alt(θθθ) be two parameter configurations. Let τ be a stopping
time with respect to (Ft)t∈Z>0 , with EAδθθθ [τ ], EAδλλλ [τ ] <∞. Then

D
(
PAδθθθ |Fτ

∥∥∥ PAδλλλ |Fτ
)
≤

K∑
a=1

EAδθθθ [Na(τ)]D (θa ‖ λa)

+
K∑
a=1

D (qθa ‖ qλa) +
K∑
a=1

Rθa

∑
x,y

πθa(x)Pθa(x, y)

∣∣∣∣log
Pθa(x, y)

Pλa(x, y)

∣∣∣∣ ,
where Rθa = Eθa [inf{n > 0 : Xa

n = Xa
0}] <∞, the first summand is finite due to (4.3), and

the second summand is finite due to (4.2).

Combining those ingredients with the data processing inequality we derive our instance
specific lower bound for the Markovian bandit identification problem in Section 4.A.

Theorem 13. Assume that the one-parameter family of Markov chains on the finite state
space S satisfies conditions (4.1), (4.2), and (4.3). Fix δ ∈ (0, 1), let f : S → R be
a nonconstant reward function, let Aδ be a δ-PC sampling strategy, and fix a parameter
configuration θθθ ∈ ΘΘΘ. Then

T ∗(θθθ) ≤ lim inf
δ→0

EAδθθθ [τδ]

log 1
δ

,

where

T ∗(θθθ)−1 = sup
www∈M1([K])

inf
λλλ∈Alt(θθθ)

K∑
a=1

waD (θa ‖ λa),

and M1 ([K]) denotes the set of all probability distributions on [K].

As noted in [37] the sup in the definition of T ∗(θθθ) is actually attained uniquely, and
therefore we can define www∗(θθθ) as the unique maximizer,

{www∗(θθθ)} = arg max
www∈M1([K])

inf
λλλ∈Alt(θθθ)

K∑
a=1

waD (θa ‖ λa).
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4.4 Upper Bound on the Sample Complexity: the

(α, δ)(α, δ)(α, δ)-Track-and-Stop Strategy

The (α, δ)-Track-and-Stop strategy, which was proposed in [37] in order to tackle the IID
setting, tries to track the optimal weights w∗a(θθθ). In the sequel we will also write www∗(µµµ), with
µµµ = (µ(θ1), . . . , µ(θK)), to denote www∗(θθθ). Not having access to µµµ, the (α, δ)-Track-and-Stop
strategy tries to approximate µµµ using sample means. Let µ̂µµ(t) = (µ̂1(N1(t)), . . . , µ̂K(NK(t)))
be the sample means of the K Markov chains when t samples have been observed overall
and the calculation of the very first sample from each Markov chain is excluded from the
calculation of its sample mean, i.e.

µ̂a(t) =
1

Na(t)

Na(t)∑
s=1

Y a
s .

By imposing sufficient exploration the law of large numbers for Markov chains will kick in
and the sample means µ̂µµ(t) will almost surely converge to the true means µµµ, as t→∞.

We proceed by briefly describing the three components of the (α, δ)-Track-and-Stop strat-
egy.

4.4.1 Sampling Rule: Tracking the Optimal Proportions

For initialization reasons the first 2K samples that we are going to observe are Y 1
0 , Y

1
1 , . . . , Y

K
0 , Y K

1 .
After that, for t ≥ 2K we let Ut = {a : Na(t) <

√
t−K/2} and we follow the tracking rule:

At+1 ∈


arg min
a∈Ut

Na(t), if Ut 6= ∅ (forced exploration),

arg max
a=1,...,K

{
w∗a(µ̂µµ(t))− Na(t)

t

}
, otherwise (direct tracking).

The forced exploration step is there to ensure that µ̂µµ(t)
a.s.→ µµµ as t→∞. Then the continuity

of µµµ 7→ www∗(µµµ), combined with the direct tracking step guarantees that almost surely the

frequencies Na(t)
t

converge to the optimal weights w∗a(µµµ) for all a = 1, . . . , K.

4.4.2 Stopping Rule: (α, δ)(α, δ)(α, δ)-Chernoff’s Stopping Rule

For the stopping rule we will need the following statistics. For any two distinct arms a, b if
µ̂a(Na(t)) ≥ µ̂b(Nb(t)), we define

Za,b(t) =
Na(t)

Na(t) +Nb(t)
D (µ̂a(Na(t)) ‖ µ̂a,b(Na(t), Nb(t)))+

Nb(t)

Na(t) +Nb(t)
D (µ̂b(Nb(t)) ‖ µ̂a,b(Na(t), Nb(t))),
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while if µ̂a(Na(t)) < µ̂b(Nb(t)), we define Za,b(t) = −Zb,a(t), where

µ̂a,b(Na(t), Nb(t)) =
Na(t)

Na(t) +Nb(t)
µ̂a(Na(t)) +

Nb(t)

Na(t) +Nb(t)
µ̂b(Nb(t)).

Note that the statistics Za,b(t) do not arise as the closed form solutions of the Generalized
Likelihood Ratio statistics for Markov chains, as it is the case in the IID bandits setting.

For a confidence level δ ∈ (0, 1), and a convergence parameter α > 1 we define the
(α, δ)-Chernoff stopping rule following [37]

τα,δ = inf {t ∈ Z>0 : ∃a ∈ {1, . . . , K} ∀b 6= a, Za,b(t) > (0 ∨ βα,δ(t))} ,

where βα,δ(t) = 2 log Dtα

δ
, D =

2αKC2

α− 1
, and C = C(P, f) is the constant from Propo-

sition 1. In the special case that P is a positive stochastic matrix we can explicitly set
C = maxx,y,z

P (y,z)
P (x,z)

. It is important to notice that the constant C = C(P, f) does not de-

pend on the bandit instance θθθ or the confidence level δ, but only on the generator stochastic
matrix P and the reward function f . In other words it is a characteristic of the exponential
family of Markov chains and not of the particular bandit instance, θθθ, under consideration.

4.4.3 Decision Rule: Best Sample Mean

For a fixed arm a it is clear that, minb6=a Za,b(t) > 0 if and only if µ̂a(Na(t)) > µ̂b(Nb(t)) for
all b 6= a. Hence the following simple decision rule is well defined when used in conjunction
with the (α, δ)-Chernoff stopping rule:

{âτα,δ} = arg max
a=1,...,K

µ̂a(Na(ττα,δ)).

4.4.4 Sample Complexity Analysis

In this section we establish that the (α, δ)-Track-and-Stop strategy is δ-PC, and we upper
bound its expected sample complexity. In order to do this we use our Markovian concentra-
tion bound Theorem 10 from Section 3.4.

We first use it in order to establish the following uniform deviation bound.

Lemma 14. Let θθθ ∈ ΘΘΘ, δ ∈ (0, 1), and α > 1. Let Aδ be a sampling strategy that uses
an arbitrary sampling rule, the (α, δ)-Chernoff’s stopping rule and the best sample mean
decision rule. Then, for any arm a,

PAδθθθ (∃t ∈ Z>0 : Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2) ≤ δ

K
.

With this in our possession we are able to prove in Section 4.B that the (α, δ)-Track-and-
Stop strategy is δ-PC.
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Proposition 2. Let δ ∈ (0, 1), and α ∈ (1, e/4]. The (α, δ)-Track-and-Stop strategy is δ-PC.

Finally, we obtain that in the high confidence regime, δ → 0, the (α, δ)-Track-and-Stop
strategy has a sample complexity which is at most 4α times the asymptotic lower bound
that we established in Theorem 13.

Theorem 14. Let θθθ ∈ ΘΘΘ, and α ∈ (1, e/4]. The (α, δ)-Track-and-Stop strategy, denoted
here by Aδ, has its asymptotic expected sample complexity upper bounded by,

lim sup
δ→0

EAδθθθ [τα,δ]

log 1
δ

≤ 4αT ∗(θθθ).
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Appendix

4.A Lower Bound on the Sample Complexity

We first prove Lemma 13, for which we will apply a renewal argument. Using the strong
Markov property we can derive the following standard, see [30], decomposition of a Markov
chain in IID blocks.

Fact 1. Let {Xn}n∈Z≥0
be an irreducible Markov chain with initial distribution q, and tran-

sition matrix P . Define recursively the k-th return time to the initial state as{
τ0 = 0

τk = inf {n > τk−1 : Xn = X0}, for k ≥ 1,

and for k ≥ 1 let rk = τk − τk−1 be the residual time. Those random times partition the
Markov chain in a sequence {vk}k∈Z>0 of IID random blocks given by

vk = (rk, Xτk−1
, . . . , Xτk−1), for k ≥ 1.

Let N(x, n,m) be the number of visits to x that occurred from time n up to time m, and
N(x, y, n,m) to be the number of transitions from x to y that occurred from time n up to
time m

N(x, n,m) =
m−1∑
s=n

1{Xs = x},

N(x, y, n,m) =
m−1∑
s=n

1{Xs = x,Xs+1 = y}.

It is well know, see [30], that the stationary distribution π of the Markov chain is given by

π(x) =
E(q,P ) N(x, 0, τ1)

E(q,P ) τ1

, for any x ∈ S. (4.6)

In the following lemma we establish a similar relation for the invariant distribution over pairs
of the Markov chain.
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Lemma 15.

π(x)P (x, y) =
E(q,P ) N(x, y, 0, τ1)

E(q,P ) τ1

, for any x, y ∈ S.

Proof. Using (4.6) it is enough to show that for any initial state x0,

E(x0,P ) N(x, 0, τ1)P (x, y) = E(x0,P ) N(x, y, 0, τ1),

or equivalently that,

E(x0,P )

τ1−1∑
n=0

1{Xn = x}P (x, y) = E(x0,P )

τ1−1∑
n=0

1{Xn = x,Xn+1 = y}.

Conditioning over the possible values of τ1, and using Fubini’s Theorem we obtain

E(x0,P )

τ1−1∑
n=0

1{Xn = x}P (x, y) =
∞∑
t=1

Px0(τ1 = t)
t−1∑
n=0

P(x0,P )(Xn = x | τ1 = t)P (x, y)

=
∞∑
n=0

∞∑
t=n+1

P(x0,P )(Xn = x, τ1 = t)P (x, y)

=
∞∑
n=0

P(x0,P )(Xn = x, τ1 > n)P (x, y)

=
∞∑
n=0

P(x0,P )(Xn = x,Xn+1 = y)P(x0,P )(τ1 > n | Xn = x)

=
∞∑
n=0

P(x0,P )(Xn = x,Xn+1 = y, τ1 > n)

= E(x0,P )

τ1−1∑
n=0

1{Xn = x,Xn+1 = y},

where the second to last equality holds true due to the reversed Markov property

P(x0,P )(τ1 > n | Xn = x,Xn+1 = y) = P(x0,P )(τ1 > n | Xn = x).

The following Lemma, which is a variant of Lemma 2.1 in [4], is the place where we use
the IID block structure of the Markov chain.

Lemma 16. Define the mean return time of the Markov chain with initial distribution q and
irreducible transition matrix P by

R = E(q,P )[inf {n > 0 : Xn = X0}] <∞.
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Let Fn be the σ-field generated by X0, X1, . . . , Xn. Let τ be a stopping time with respect to
(Fn)n∈Z≥0

, with E(q,P ) τ <∞. Then∣∣E(q,P ) N(x, y, 0, τ)− π(x)P (x, y)E(q,P ) τ
∣∣ ≤ π(x)P (x, y)R, for all x, y ∈ S.

Proof. Using the k-th return times from Fact 1 we decompose N(x, y, 0, τk) in k IID sum-
mands

N(x, y, 0, τk) =
k−1∑
i=0

N(x, y, τi, τi+1).

Now let κ = inf {k > 0 : τk ≥ τ}, so that τκ is the first return time to the initial state after
or at time τ . By definition of τκ we have that

τκ − τ ≤ τκ − τκ−1.

Taking expectations we obtain

E(q,P )[τκ − τ ] ≤ E(q,P )[τκ − τκ−1] = E(q,P ) rκ = E(q,P ) r1 = R,

which also gives that
E(q,P )[τκ] ≤ E(q,P )[τ ] +R <∞.

This allows us to use Wald’s identity, followed by Lemma 15, followed by Wald’s identity
again, in order to get

E(q,P ) N(x, y, 0, τκ) = E(q,P )

κ−1∑
i=0

N(x, y, τi, τi+1)

= E(q,P )[N(x, y, 0, τ1)]Eq[κ]

= p(x)P (x, y)E(q,P )[τ1]E(q,P )[κ]

= p(x)P (x, y)E(q,P )[τκ].

Therefore,

E(q,P ) N(x, y, 0, τ) ≤ E(q,P ) N(x, y, 0, τκ)

= π(x)P (x, y)E(q,P )[τκ]

≤ π(x)P (x, y)(E(q,P )[τ ] +R).

For the other direction we use the pointwise inequality

τ − τκ−1 ≤ τκ − τκ−1,

to deduce that

E(q,P ) N(x, y, 0, τ) ≥ E(q,P ) N(x, y, 0, τκ−1)

= π(x)P (x, y)E(q,P )[τκ−1]

≥ π(x)P (x, y)(E(q,P )[τ ]−R).
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Proof of Lemma 13.

Follows by taking EAδθθθ of the log-likelihood ratio, log

(
PAδ
θθθ
|Fτ

PAδ
λλλ
|Fτ

)
, given by (4.4), and apply-

ing Lemma 16 K times for the stopping times Na(τ) + 1, a = 1, . . . , K.

The last part of Section 4.A involves the proof of Theorem 13.

Proof of Theorem 13.
Consider an alternative parametrization λλλ ∈ Alt(θθθ). The data processing inequality, see [21],
gives us as a way to lower bound the Kullback-Leibler divergence between the two probability
measures PAδθθθ |Fτδ and PAδλλλ |Fτδ . In particular,

D2

(
PAδθθθ (E)

∥∥∥ PAδλλλ (E)
)
≤ D

(
PAδθθθ |Fτδ

∥∥∥ PAδλλλ |Fτδ
)
, for any E ∈ Fτδ ,

where for p, q ∈ [0, 1], D2 (p ‖ q) denotes the binary Kullback-Leibler divergence,

D2 (p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

.

We apply this inequality with the event E = {âτδ 6= a∗(θθθ)} ∈ Fτδ . The fact that the strategy
Aδ is δ-PC implies that

Pθθθ(E) ≤ δ, and Pλλλ(E) ≥ 1− δ,

hence
D2 (δ ‖ 1− δ) ≤ D

(
PAδθθθ |Fτδ

∥∥∥ PAδλλλ |Fτδ
)
.

Combining this with Lemma 13 we get that

D2 (δ ‖ 1− δ) ≤
K∑
a=1

D (qθa ‖ qλa) +
K∑
a=1

(
EAδθθθ [Na(τδ)] +Ra

)
D (θa ‖ λa).

The fact that
∑K

a=1Na(τδ) ≤ τδ gives,

D2 (δ ‖ 1− δ)−
K∑
a=1

D (qθa ‖ qλa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
K∑
a=1

EAδθθθ [Na(τδ)] +Ra∑K
b=1

(
EAδθθθ [Nb(τδ)] +Rb

)D (θa ‖ λa),
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and now we follow the technique of [37] which combines multiple alternative models λλλ,

D2 (δ ‖ 1− δ)−
K∑
a=1

D (qθa ‖ qλa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
inf

λλλ∈Alt(θθθ)

K∑
a=1

EAδθθθ [Na(τδ)] +Ra∑K
b=1

(
EAδθθθ [Nb(τδ)] +Rb

)D (θa ‖ λa)

≤

(
EAδθθθ [τδ] +

K∑
a=1

Ra

)
sup

www∈M1([K])

inf
λλλ∈Alt(θθθ)

K∑
a=1

waD (θa ‖ λa).

The conclusion follows by letting δ go to 0, and using the fact that

lim
δ→0

D2 (δ ‖ 1− δ)
log 1

δ

= 1.

4.B Upper Bound on the Sample Complexity: the

(α, δ)(α, δ)(α, δ)-Track-and-Stop Strategy

The proof of Lemma 14 uses the concentration bound Theorem 10, combined with the
monotonicity of the Kullback-Leibler divergence rate.

Proof of Lemma 14.
We first note the following inclusion of events

∞⋃
t=1

t⋃
n=1

{Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2, Na(t) = n}

⊆
∞⋃
t=1

t⋃
n=1

{nD (µ̂a(n) ‖ µa) ≥ βα,δ(t)/2}

=
∞⋃
t=1

{tD (µ̂a(t) ‖ µa) ≥ βα,δ(t)/2} ,

where the last equality follows because, by the monotonicity of t 7→ βα,δ(t)/2 we have that
for each n ∈ Z>0 and for each t = n, n+ 1, . . .

{nD (µ̂a(n) ‖ µa) ≥ βα,δ(t)/2} ⊆ {nD (µ̂a(n) ‖ µa) ≥ βα,δ(n)/2} .
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Combining this with a union bound we obtain

PAδθθθ (∃t ∈ Z>0 : Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2)

≤ Pθa (∃t ∈ Z>0 : tD (µ̂a(t) ‖ µa) ≥ βα,δ(t)/2)

≤
∞∑
t=1

Pθa
(
D (µ̂a(t) ‖ µa) ≥

βα,δ(t)

2t

)
.

We focus on upper bounding

Pθa
(
D (µ̂a(t) ‖ µa) ≥

βα,δ(t)

2t
, µ̂a(t) ≥ µa

)
.

Let µa,t be the unique (due to the monotonicity of the Kullback-Leibler divergence rate)
solution (if no solution exists then the probability is already zero) of the equations

D (µa,t ‖ µa) =
βα,δ(t)

2t
, and µa ≤ µa,t ≤M.

Then the combination of the monotonicity of the Kullback-Leibler divergence rate, and The-
orem 10 gives

Pθa
(
D (µ̂a(t) ‖ µa) ≥

βα,δ(t)

2t
, µ̂a(t) ≥ µa

)
= Pθa (µ̂a(t) ≥ µa,t) ≤

δ

D

1

tα
C2.

We further upper bound the constant c(Pµa) by c(P )2 using Lemma 4, in order to obtain a
uniform upper bound for any Markovian arm coming from the family.

A similar bound holds true for

Pθa
(
D (µ̂a(t) ‖ µa) ≥

βα,δ(t)

2t
, µ̂a(t) ≤ µa

)
.

The conclusion follows by summing up over all t and using the simple integral based estimate

∞∑
t=1

1

tα
≤ α

1− α
.

Embarking on the proof of the fact that the (α, δ)-Track-and-Stop strategy is δ-PC we
first show that the error probability is at most δ no matter the bandit model.

Proposition 3. Let θθθ ∈ ΘΘΘ, δ ∈ (0, 1), and α > 1. Let Aδ be a sampling strategy that uses
an arbitrary sampling rule, the (α, δ)-Chernoff’s stopping rule and the best sample mean
decision rule. Then,

PAδθθθ (τα,δ <∞, âτα,δ 6= a∗(µµµ)) ≤ δ.
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Proof. The following lemma which is easy to check, and its proof is omitted, will be useful
in our proof of Proposition 3.

Lemma 17. The generalized Jensen-Shannon divergence

Ia(µ, λ) = aD (µ ‖ aµ+ (1− a)λ) + (1− a)D (λ ‖ aµ+ (1− a)λ), for a ∈ [0, 1]

satisfies the following variational characterization

Ia(µ, λ) = inf
µ′<λ′

{aD (µ ‖ µ′) + (1− a)D (λ ‖ λ′)} .

If τα,δ < ∞ and âτα,δ 6= a∗(µµµ), then there ∃t ∈ Z>0 and there ∃a 6= a∗(µµµ) such that
Za,a∗(µµµ)(t) > βα,δ(t). In this case we also have

βα,δ(t) < Za,a∗(µµµ)(t)

= Na(t)D
(
µ̂a(Na(t))

∥∥ µ̂a,a∗(µµµ)(Na(t), Na∗(µµµ)(t))
)
+

Na∗(µµµ)(t)D
(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µ̂a,a∗(µµµ)(Na(t), Na∗(µµµ)(t))
)

= (Na(t) +Na∗(µµµ)(t))I Na(t)
Na(t)+Na∗(µµµ)(t)

(µ̂a(Na(t)), µ̂a∗(µµµ)(Na∗(µµµ)(t)))

= inf
µ′a<µ

′′
a

{
Na(t)D (µ̂a(Na(t)) ‖ µ′a) +Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µ′′a)}
≤ Na(t)D (µ̂a(Na(t)) ‖ µa) +Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µa∗(µµµ)

)
,

where the third equality follows from the variational formula for the generalized Jensen-
Shannon divergence given in Lemma 17, and the last inequality follows from the fact that
µa < µa∗(µµµ).

This in turn implies that

βα,δ(t)/2 < Na(t)D (µ̂a(Na(t)) ‖ µa),

or
βα,δ(t)/2 < Na∗(µµµ)(t)D

(
µ̂a∗(µµµ)(Na∗(µµµ)(t))

∥∥ µa∗(µµµ)

)
.

Therefore by union bounding over the K arms we obtain

PAδθθθ (τδ <∞, âτδ 6= a∗(µµµ))

≤
K∑
a=1

PAδθθθ (∃t ∈ Z>0 : Na(t)D (µ̂a(Na(t)) ‖ µa) ≥ βα,δ(t)/2) .

The conclusion now follows by applying Lemma 14.

Proof of Proposition 2.
Following the proof of Proposition 13 in [37], and observing that in their proof they show
that τα,δ is essentially bounded we obtain that

EAδθθθ [τα,δ] <∞.

This combined with Proposition 3 establishes that the (α, δ)-Track-and-Stop strategy is δ-
PC.
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Proof of Theorem 14.
Finally for the proof the sample complexity of the (α, δ)-Track-and-Stop strategy in Theo-
rem 14 we follow the proof of Theorem 14 in [37], where we substitute the usage of the law
of large numbers with the law of large numbers for Markov chains, and in order to establish
their Lemma 19 we use our concentration bound in Theorem 10.
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Chapter 5

Regret minimization for Markovian
bandits

5.1 Introduction

In this chapter we study a generalization of the stochastic multi-armed bandit problem,
where there are K independent arms, and each arm a ∈ [K] = {1, . . . , K} is associated
with a parameter θa ∈ R, and modeled as a discrete time stochastic process governed by the
probability law Pθa . A time horizon T is prescribed, and at each round t ∈ [T ] = {1, . . . , T}
we select M arms, where 1 ≤ M ≤ K, without any prior knowledge of the statistics of the
underlying stochastic processes. The M stochastic processes that correspond to the selected
arms evolve by one time step, and we observe this evolution through a reward function,
while the stochastic processes for the rest of the arms stay frozen, i.e. we consider the rested
bandits setting. Our goal is to select arms in such a way so as to make the cumulative
reward over the whole time horizon T as large as possible. For this task we are faced with
an exploitation versus exploration dilemma. At each round we need to decide whether we
are going to exploit the best M arms according to the information that we have gathered
so far, or we are going to explore some other arms which do not seem to be so rewarding,
just in case that the rewards we have observed so far deviate significantly from the expected
rewards. The answer to this dilemma is usually coming by calculating indices for the arms
and ranking them according to those indices, which should incorporate both information on
how good an arm seems to be as well as on how many times it has been played so far. Here
we take an alternative approach where instead of calculating the indices for all the arms at
each round, we just calculate the index for a single arm in a round-robin way.

5.1.1 Contributions

1. We first consider the case that theK stochastic processes are irreducible Markov chains,
coming from a one-parameter exponential family of Markov chains. The objective is
to play as much as possible the M arms with the largest stationary means, although
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we have no prior information about the statistics of the K Markov chains. The differ-
ence of the best possible expected rewards coming from those M best arms and the
expected reward coming from the arms that we played is the regret that we incur. To
minimize the regret we consider an index based adaptive allocation rule, Algorithm 3,
which is based on sample means and Kullback-Leibler upper confidence bounds for the
stationary expected rewards using the Kullback-Leibler divergence rate. We provide
a finite-time analysis, Theorem 15, for this KL-UCB adaptive allocation rule which
shows that the regret depends logarithmically on the time horizon T , and matches
exactly the asymptotic lower bound, Corollary 3.

2. In order to make the finite-time guarantee possible we devise several deviation lemmata
for Markov chains. An exponential martingale for Markov chains is proven, Lemma 11,
which leads to a maximal inequality for Markov chains, Lemma 18. In the literature
there are several approaches that use martingale techniques either to derive Hoeffding
inequalities for Markov chains [40, 70], or more generally to study concentration of
measure for Markov chains [63, 64, 66, 83, 65, 17, 53, 77]. Nonetheless, they’re all
based either on Dynkin’s martingale or on Doob’s martingale, combined with coupling
ideas, and there is no evidence that they can lead to maximal inequalities. Moreover,
a Chernoff bound for Markov chains is devised, Lemma 19, and its relation with the
work of [74] is discussed in Remark 10.

3. We then consider the case that the K stochastic processes are i.i.d. processes, each
corresponding to a density coming from a one-parameter exponential family of den-
sities. We establish, Theorem 16, that Algorithm 3 still enjoys the same finite-time
regret guarantees, which are asymptotically optimal. The case where Theorem 16 fol-
lows directly from Theorem 15 is discussed in Remark 8. The setting of single plays
is studied in [16], but with a much more computationally intense adaptive allocation
rule.

4. In Section 5.6 we provide simulation results illustrating the fact that round-robin KL-
UCB adaptive allocation rules are much more computationally efficient than KL-UCB
adaptive allocation rules, and similarly round-robin UCB adaptive allocation rules are
more computationally efficient than UCB adaptive allocation rules, while the expected
regrets, in each family of algorithms, behave in a similar way. This brings to light
round-robin schemes as an appealing practical alternative to the mainstream schemes
that calculate indices for all the arms at each round.

5.1.2 Motivation

Multi-armed bandits provide a simple abstract statistical model that can be applied to
study real world problems such as clinical trials, ad placement, gambling, adaptive routing,
resource allocation in computer systems etc. We refer the interested reader to the survey
of [15] for more context, and to the recent books of [58, 84]. The need for multiple plays
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can be understood in the setting of resource allocation. Scheduling jobs to a single CPU
is an instance of the multi-armed bandit problem with a single play at each round, where
the arms correspond to the jobs. If there are multiple CPUs we get an instance of the
multi-armed bandit problem with multiple plays. The need of a richer model which allows
the presence of Markovian dependence is illustrated in the context of gambling, where the
arms correspond to slot-machines. It is reasonable to try to model the assertion that if a
slot-machine produced a high reward the n-th time played, then it is very likely that it will
produce a much lower reward the (n+1)-th time played, simply because the casino may decide
to change the reward distribution to a much stingier one if a big reward was just produced.
This assertion requires, the reward distributions to depend on the previous outcome, which
is precisely captured by the Markovian reward model. Moreover, we anticipate this to be
an important problem attempting to bridge classical stochastic bandits, controlled Markov
chains (MDPs), and non-stationary bandits.

5.1.3 Related Work

The cornerstone of the multi-armed bandits literature is the pioneering work of [56], which
studies the problem for the case of i.i.d. rewards and single plays. [56] introduce the change
of measure argument to derive a lower bound for the problem, as well as round robin adaptive
allocation rules based on upper confidence bounds which are proven to be asymptotically
optimal. [3] extend the results of [56] to the case of i.i.d. rewards and multiple plays,
while [1] considers index based allocation rules which are only based on sample means and are
computationally simpler, although they may not be asymptotically optimal. The work of [1]
inspired the first finite-time analysis for the adaptive allocation rule called UCB by [5], which
is though asymptotically suboptimal. The works of [16, 36, 61] bridge this gap by providing
the KL-UCB adaptive allocation rule, with finite-time guarantees which are asymptotically
optimal. Additionally, [51] study a Thompson sampling algorithm for multiple plays and
binary rewards, and they establish a finite-time analysis which is asymptotically optimal.
Here we close the problem of multiple plays and rewards coming from an exponential family of
probability densities by showing finite-time guarantees which are asymptotically optimal, via
adaptive allocation rules which are much more efficiently computable than their precursors.

The study of Markovian rewards and multiple plays in the rested setting, is initiated in
the work of [4]. They report an asymptotic lower bound, as well as a round robin upper
confidence bound adaptive allocation rule which is proven to be asymptotically optimal.
However, it is unclear if the statistics that they use in order to derive the upper confidence
bounds, in their Theorem 4.1, can be recursively computed, and the practical applicability
of their results is therefore questionable. In addition, they don’t provide any finite-time
analysis, and they use a different type of assumption on their one-parameter family of Markov
chains. In particular, they assume that their one-parameter family of transition probability
matrices is log-concave in the parameter, equation (4.1) in [4], while we assume that it is
a one-parameter exponential family of transition probability matrices. [87, 88] extend the
UCB adaptive allocation rule of [5], to the case of Markovian rewards and multiple plays.
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They provide a finite-time analysis, but their regret bounds are suboptimal. Moreover they
impose a different type of assumption on their configuration of Markov chains. They assume
that the transition probability matrices are reversible, so that they can apply Hoeffding
bounds for Markov chains from [39, 60]. In a recent work [70] developed a Hoeffding bound
for Markov chains, which does not assume any conditions other than irreducibility, and using
this he extended the analysis of UCB to an even broader class of Markov chains. One of
our main contributions is to bridge this gap and provide a KL-UCB adaptive allocation rule,
with a finite-time guarantee which is asymptotically optimal. In a different line of work [76,
88] consider the restless bandits Markovian reward model, in which the state of each arm
evolves according to a Markov chain independently of the player’s action. Thus in the restless
setting the state that we next observe is now dependent on the amount of time that elapses
between two plays of the same arm.

5.2 Problem Formulation

5.2.1 One-Parameter Family of Markov Chains

We consider a one-parameter family of irreducible Markov chains on a finite state space
S. Each member of the family is indexed by a parameter θ ∈ R, and is characterized
by an initial distribution qθ = [qθ(x)]x∈S, and an irreducible transition probability matrix
Pθ = [Pθ(x, y)]x,y∈S, which give rise to a probability law Pθ. There are K ≥ 2 arms, with
overall parameter configuration θθθ = (θ1, . . . , θK) ∈ RK , and each arm a ∈ [K] = {1, . . . , K}
evolves internally as the Markov chain with parameter θa which we denote by {Xa

n}n∈Z≥0
.

There is a common noncostant real-valued reward function on the state space f : S → R, and
successive plays of arm a result in observing samples from the stochastic process {Y a

n }n∈Z≥0
,

where Y a
n = f(Xa

n). In other words, the distribution of the rewards coming from arm a is
a function of the Markov chain with parameter θa, and thus it can have more complicated
dependencies. As a special case, if we pick the reward function f to be injective, then the
distribution of the rewards is Markovian.

For θ ∈ R, due to irreducibility, there exists a unique stationary distribution for the
transition probability matrix Pθ which we denote with πθ = [πθ(x)]x∈S. Furthermore, let
µ(θ) =

∑
x∈S f(x)πθ(x) be the stationary mean reward corresponding to the Markov chain

parametrized by θ. Without loss of generality we may assume that the K arms are ordered
so that,

µ(θ1) ≥ . . . ≥ µ(θN) > µ(θN+1) . . . = µ(θM) = . . . = µ(θL) > µ(θL+1) ≥ . . . ≥ µ(θK),

for some N ∈ {0, . . . ,M − 1} and L ∈ {M, . . . ,K}, where N = 0 means that µ(θ1) = . . . =
µ(θM), L = K means that µ(θM) = . . . = µ(θK), and we set µ(θ0) =∞ and µ(θK+1) = −∞.
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5.2.2 Regret Minimization

We fix a time horizon T , and at each round t ∈ [T ] = {1, . . . , T} we play a set φt of M
distinct arms, where 1 ≤ M ≤ K is the same through out the rounds, and we observe
rewards {Za

t }a∈[K] given by,

Za
t =

{
Y a
Na(t), if a ∈ φt

0, if a 6∈ φt,

where Na(t) =
∑t

s=1 I{a ∈ φs} is the number of times we played arm a up to time t.
Using the stopping times τan = inf{t ≥ 1 : Na(t) = n}, we can also reconstruct the
{Y a

n }n∈Z>0 process, from the observed {Za
t }t∈Z>0 process, via the identity Y a

n = Za
τan

. Our
play φt is based on the information that we have accumulated so far. In other words,
the event {φt = A}, for A ⊆ [K] with |A| = M , belongs to the σ-field generated by
φ1, {Za

1}a∈[K], . . . , φt−1, {Za
t−1}a∈[K]. We call the sequence φφφ = {φt}t∈Z>0 of our plays an

adaptive allocation rule. Our goal is to come up with an adaptive allocation rule φφφ, that
achieves the greatest possible expected value for the sum of the rewards,

ST =
T∑
t=1

∑
a∈[K]

Za
t =

∑
a∈[K]

Na(T )∑
n=1

Y a
n ,

which is equivalent to minimizing the expected regret,

Rφφφθθθ (T ) = T
M∑
a=1

µ(θa)− Eφφφθθθ [ST ]. (5.1)

5.2.3 Asymptotic Lower Bound

A quantity that naturally arises in the study of regret minimization for Markovian bandits
is the Kullback-Leibler divergence rate between two Markov chains, which is a generalization
of the usual Kullback-Leibler divergence between two probability distributions. We denote
by D (θ ‖ λ) the Kullback-Leibler divergence rate between the Markov chain with parameter
θ and the Markov chain with parameter λ, which is given by,

D (θ ‖ λ) =
∑
x,y∈S

log
Pθ(x, y)

Pλ(x, y)
πθ(x)Pθ(x, y), (5.2)

where we use the standard notational conventions log 0 = ∞, log α
0

= ∞ if α > 0, and
0 log 0 = 0 log 0

0
= 0. Indeed note that, if Pθ(x, ·) = pθ(·) and Pλ(x, ·) = pλ(·), for all

x ∈ S, i.e. in the special case that the Markov chains correspond to IID processes, then
the Kullback-Leibler divergence rate D (θ ‖ λ) is equal to the Kullback-Leibler divergence
D (pθ ‖ pλ) between pθ and pλ,

D (θ ‖ λ) =
∑
x,y∈S

log
pθ(y)

pλ(y)
pθ(x)pθ(y) =

∑
y∈S

log
pθ(y)

pθ(y)
pθ(y) = D (pθ ‖ pλ).
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Under some regularity assumptions on the one-parameter family of Markov chains, [4]
in their Theorem 3.1 are able to establish the following asymptotic lower bound on the ex-
pected regret for any adaptive allocation rule φφφ which is uniformly good across all parameter
configurations,

lim inf
T→∞

Rφφφθθθ (T )

log T
≥

K∑
b=L+1

µ(θM)− µ(θb)

D (θb ‖ θM)
. (5.3)

A further discussion of this lower bound, as well as an alternative derivation can be found
in Section 5.D,

The main goal of this work is to derive a finite time analysis for an adaptive allocation
rule which is based on Kullback-Leibler divergence rate indices, that is asymptotically op-
timal. We do so for the one-parameter exponential family of Markov chains, which forms
a generalization of the classic one-parameter exponential family generated by a probability
distribution with finite support.

5.2.4 One-Parameter Exponential Family Of Markov Chains

Let S be a finite state space, f : S → R be a nonconstant reward function on the state
space, and P an irreducible transition probability matrix on S, with associated stationary
distribution π. P will serve as the generator stochastic matrix of the family. Let µ(0) =∑

x∈S f(x)π(x) be the stationary mean of the Markov chain induced by P when f is applied.
By tilting exponentially the transitions of P we are able to construct new transition matrices
that realize a whole range of stationary means around µ(0) and form the exponential family
of stochastic matrices. Let θ ∈ R, and consider the matrix P̃θ(x, y) = P (x, y)eθf(y). Denote
by ρ(θ) its spectral radius. According to the Perron-Frobenius theory, see Theorem 8.4.4 in
the book of [45], ρ(θ) is a simple eigenvalue of P̃θ, called the Perron-Frobenius eigenvalue,
and we can associate to it unique left uθ and right vθ eigenvectors such that they are both
positive,

∑
x∈S uθ(x) = 1 and

∑
x∈S uθ(x)vθ(x) = 1. Using them we define the member of

the exponential family which corresponds to the natural parameter θ as,

Pθ(x, y) =
vθ(y)

vθ(x)
exp {θf(y)− Λ(θ)}P (x, y), (5.4)

where Λ(θ) = log ρ(θ) is the log-Perron-Frobenius eigenvalue. It can be easily seen that
Pθ(x, y) is indeed a stochastic matrix, and its stationary distribution is given by πθ(x) =
uθ(x)vθ(x). The initial distribution qθ associated to the parameter θ, can be any distribution
on S, since the KL-UCB adaptive allocation rule that we devise, and its guarantees, will be
valid no matter the initial distributions.

Example 8 (Two-state chain). Let S = {0, 1}, and consider the transition probability matrix,
P , representing two coin-flips, Bernoulli(p) when we’re in state 0, and Bernoulli(q) when
we’re in state 1. We require that P is irreducible, so p ∈ (0, 1] and q ∈ [0, 1).

P =

[
1− p p
1− q q

]
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The exponential family of transition probability matrices generated by P and f(x) = 2x− 1
is given by,

Pθ =
1

ρ(θ)

[
(1− p)e−θ ρ(θ)− (1− p)e−θ
ρ(θ)− qeθ qeθ

]
,

where,

ρ(θ) =
(1− p)e−θ + qeθ +

√
((1− p)e−θ − qeθ)2 + 4p(1− q)

2
.

In the special case that p = q, we get back the typical exponential family of Bernoulli(pθ)
coin-flips, with

1− pθ =
(1− p)e−θ

(1− p)e−θ + peθ
.

Exponential families of Markov chains date back to the work of [69]. For a short overview
of one-parameter exponential families of Markov chains, as well as proofs of the following
properties, we refer the reader to Section 2 in [74]. The log-Perron-Frobenius eigenvalue Λ(θ)
is a convex analytic function on the real numbers, and through its derivative, Λ̇(θ), we obtain
the stationary mean µ(θ) of the Markov chain with transition matrix Pθ when f is applied,
i.e. Λ̇(θ) = µ(θ) =

∑
x∈S f(x)πθ(x). When Λ(θ) is not the linear function θ 7→ µ(0)θ,

the log-Perron-Frobenius eigenvalue, Λ(θ), is strictly convex and thus its derivative Λ̇(θ) is
strictly increasing, and it forms a bijection between the natural parameter space, R, and the
mean parameter space, M = Λ̇(R), which is a bounded open interval.

The Kullback-Leibler divergence rate from (5.2), when instantiated for the exponential
family of Markov chains, can be expressed as,

D (θ ‖ λ) = Λ(λ)− Λ(θ)− Λ̇(θ)(λ− θ),

which is convex and differentiable over R×R. Since Λ̇ : R →M forms a bijection from the
natural parameter space, R, to the mean parameter space,M, with some abuse of notation

we will write D (µ ‖ ν) for D
(

Λ̇−1(µ)
∥∥∥ Λ̇−1(ν)

)
, where µ, ν ∈ M. Furthermore, D (· ‖ ·) :

M×M→ R≥0 can be extended continuously, to a function D (· ‖ ·) : M̄×M̄ → R≥0∪{∞},
where M̄ denotes the closure ofM. This can even further be extended to a convex function
on R × R, by setting D (µ ‖ ν) = ∞ if µ 6∈ M̄ or ν 6∈ M̄. For fixed ν ∈ R, the function
µ 7→ D (µ ‖ ν) is decreasing for µ ≤ ν and increasing for µ ≥ ν. Similarly, for fixed µ ∈ R,
the function ν 7→ D (µ ‖ ν) is decreasing for ν ≤ µ and increasing for ν ≥ µ.

5.3 A Maximal Inequality for Markov Chains

The following definition is the technical condition that we will require for our maximal
inequality.

Definition 2 (Doeblin’s type of condition). Let P be a transition probability matrix on the
finite state space S. For a nonempty set of states A ⊂ S, we say that P is A-Doeblin if, the
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submatrix of P with rows and columns in A is irreducible, and for every x ∈ S − A there
exists y ∈ A such that P (x, y) > 0.

Example 8 (continued). For this example P being {0}-Doeblin means that p, q ∈ [0, 1),
but already irreducibility imposed the constraints p ∈ (0, 1] and q ∈ [0, 1), hence the only
additional constraint is p 6= 1.

Remark 6. Our Definition 2 is inspired by the classic Doeblin’s Theorem, see Theorem
2.2.1 in [86]. Doeblin’s Theorem states that, if the transition probability matrix P satisfies
Doeblin’s condition (namely there exists ε > 0, and a state y ∈ S such that for all x ∈ S
we have P (x, y) ≥ ε), then P has a unique stationary distribution π, and for all initial
distributions q we have geometric convergence to stationarity, i.e. ‖qP n − π‖1 ≤ 2(1 − ε)n.
Doeblin’s condition, according to our Definition 2, corresponds to P being {y}-Doeblin for
some y ∈ S.

Lemma 18 (Maximal inequality for irreducible Markov chains satisfying Doeblin’s con-
dition). Let {Xn}n∈Z≥0

be an irreducible Markov chain over the finite state space S with
transition matrix P , initial distribution q, and stationary distribution π. Let f : S → R be
a non-constant function on the state space. Denote by µ(0) =

∑
x∈S f(x)π(x) the stationary

mean when f is applied, and by Ȳn = 1
n

∑n
k=1 Yk the empirical mean, where Yk = f(Xk).

Assume that P is (arg minx∈S f(x))-Doeblin. Then for all ε > 1 we have

P

(
n⋃
k=1

{
µ(0) ≥ Ȳk and kD

(
Ȳk
∥∥ µ(0)

)
≥ ε
})
≤ C−edε log nee−ε,

where C− = C−(P, f) is a positive constant depending only on the transition probability
matrix P and the function f .

Remark 7. If we only consider values of ε from a bounded subset of (1,∞), then we don’t
need to assume that P is (arg minx∈S f(x))-Doeblin, and the constant C− will further depend
on this bounded subset. But in the analysis of the KL-UCB adaptive allocation rule we will
need to consider values of ε that increase with the time horizon T , therefore we have to
impose the assumption that P is (arg minx∈S f(x))-Doeblin, so that C− has no dependencies
on ε.

i.i.d. versions of this maximal inequality have found applicability not only in multi-
armed bandit problems, but also in the case of context tree estimation, [35], indicating that
our Lemma 18 may be of interest for other applications as well.

5.4 The Round-Robin KL-UCB Adaptive Allocation

Rule for Multiple Plays and Markovian Rewards

For each arm a ∈ [K] we define the empirical mean at the global time t as,

Ȳa(t) = (Y a
1 + . . .+ Y a

Na(t))/Na(t), (5.5)
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and its local time counterpart as,

Ȳ a
n = (Y a

1 + . . .+ Y a
n )/n,

with their link being Ȳ a
n = Ȳa(τ

a
n), where τan = inf{t ≥ 1 : Na(t) = n}. At each round t we

calculate a single upper confidence bound index,

Ua(t) = sup

{
µ ∈M : D

(
Ȳa(t)

∥∥ µ) ≤ g(t)

Na(t)

}
, (5.6)

where g(t) is an increasing function, and we denote its local time version by,

Ua
n(t) = sup

{
µ ∈M : D

(
Ȳ a
n

∥∥ µ) ≤ g(t)

n

}
.

Note that Ua(t) is efficiently computable via a bisection method due to the monotonicity of
D
(
Ȳa(t)

∥∥ ·). It is straightforward to check, using the definition of Ua
n(t), the following two

relations,

Ȳ a
n ≤ Ua

n(t) for all n ≤ t, (5.7)

Ua
n(t) is increasing in t ≥ n for fixed n. (5.8)

Furthermore, in Section 5.B we study the concentration properties of those upper confidence
indices and of the sample means, using the concentration results for Markov chains from Sec-
tion 5.3. The idea of calculating indices in a round robin way, dates back to the seminal
work of [56]. Here we exploit this idea, which seems to have been forgotten over time in
favor of algorithms that calculate indices for all the arms at each round, and we augment
it with the usage of the upper confidence bounds in (5.6), which are efficiently computable,
see Section 5.6 for simulation results, as opposed to the statistics in Theorem 4.1 from [4].
Moreover, this combination of a round-robin scheme and the indices in (5.6) is amenable to
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a finite-time analysis, see Section 5.C.

Algorithm 3: The round-robin KL-UCB adaptive allocation rule.

Parameters: number of arms K ≥ 2, time horizon T ≥ K, number of plays
1 ≤M ≤ K,

KL divergence rate function D (· ‖ ·) : M̄ × M̄ → R≥0, increasing function
g : Z>0 → R, parameter δ ∈ (0, 1/K);

Initializaton: In the first K rounds pull each arm M times and set
Ȳa(K) = (Y a

1 + . . .+ Y a
M)/M , for a = 1, . . . , K;

for t = K, . . . , T − 1 do
Let Wt = {a ∈ [K] : Na(t) ≥ dδte};
Pick any subset of arms Lt ⊆ Wt such that:

• |Lt| = M ;

• and min
a∈Lt

Ȳa(t) ≥ sup
b∈Wt−Lt

Ȳb(t);

Let b ≡ t+ 1 (mod K), with b ∈ [K];

Let Ub(t) = sup

{
µ ∈M : D

(
Ȳb(t)

∥∥ µ) ≤ g(t)

Nb(t)

}
;

if b ∈ Lt or min
a∈Lt

Ȳa(t) ≥ Ub(t) then

Pull the M arms in φt+1 = Lt;
else

Pick any a ∈ arg min
a∈Lt

Ȳa(t);

Pull the M arms in φt+1 = (Lt \ {a}) ∪ {b};
end

end

Proposition 4. For each t ≥ K we have that |Wt| ≥M , and so Algorithm 3 is well defined.

Theorem 15 (Markovian rewards and multiple plays: finite-time guarantees). Let P be an
irreducible transition probability matrix on the finite state space S, and f : S → R be a
real-valued reward function, such that P is (arg minx∈S f(x))-Doeblin. Assume that the K
arms correspond to the parameter configuration θθθ ∈ RK of the exponential family of Markov
chains, as described in Equation 5.4. Without loss of generality assume that the K arms are
ordered so that,

µ(θ1) ≥ . . . ≥ µ(θN) > µ(θN+1) . . . = µ(θM) = . . . = µ(θL) > µ(θL+1) ≥ . . . ≥ µ(θK).

Fix ε ∈ (0,min(µ(θN)− µ(θM), µ(θM)− µ(θL+1))). The KL-UCB adaptive allocation rule for
Markovian rewards and multiple plays, Algorithm 3, with the choice g(t) = log t+ 3 log log t,
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enjoys the following finite-time upper bound on the regret,

Rφφφθθθ (T ) ≤
K∑

b=L+1

µ(θM)− µ(θb)

D (µ(θb) ‖ µ(θM)− ε)
log T + c1

√
log T + c2 log log T + c3

√
log log T + c4,

where c1, c2, c3, c4 are constants with respect to T , which are given more explicitly in the
analysis.

Corollary 3 (Asymptotic optimality). In the context of Theorem 15 the KL-UCB adaptive
allocation rule, Algorithm 3, is asymptotically optimal, and,

lim
T→∞

Rφφφθθθ (T )

log T
=

K∑
b=L+1

µ(θM)− µ(θb)

D (µ(θb) ‖ µ(θM))
.

5.5 The Round-Robin KL-UCB Adaptive Allocation

Rule for Multiple Plays and i.i.d. Rewards

As a byproduct of our work in Section 5.4 we further obtain a finite-time regret bound,
which is asymptotically optimal, for the case of multiple plays and i.i.d. rewards, from an
exponential family of probability densities.

We first review the notion of an exponential family of probability densities, for which the
standard reference is [14]. Let (X,X , ρ) be a probability space. A one-parameter exponential
family is a family of probability densities {pθ : θ ∈ Θ} with respect to the measure ρ on X,
of the form,

pθ(x) = exp{θf(x)− Λ(θ)}h(x), (5.9)

where f : X → R is called the sufficient statistic, is X -measurable, and there is no c ∈ R such

that f(x)
ρ−a.s.

= c, h : X → R≥0 is called the carrier density, and is a density with respect to ρ,

and Λ is the log-Moment-Generating-Function and is given by Λ(θ) = log
∫
X
eθf(x)h(x)ρ(dx),

which is finite for θ in the natural parameter space Θ = {θ ∈ R :
∫
X
eθf(x)h(x)ρ(dx) <∞}.

The log-MGF, Λ(θ), is strictly convex and its derivative forms a bijection between the natural
parameters, θ, and the mean parameters, µ(θ) =

∫
X
f(x)pθ(x)ρ(dx). The Kullback-Leibler

divergence between pθ and pλ, for θ, λ ∈ Θ, can be written as D (θ ‖ λ) = Λ(λ) − Λ(θ) −
Λ̇(θ)(λ− θ).

For this section, each arm a ∈ [K] with parameter θa corresponds to the i.i.d. process
{Xa

n}n∈Z>0 , where each Xa
n has density pθa with respect to ρ, which gives rise to the i.i.d.

reward process {Y a
n }n∈Z>0 , with Y a

n = f(Xa
n).

Remark 8. When there is a finite set S ∈ X such that ρ(S) = 1, then the exponential family
of probability densities in Equation 5.9, is just a special case of the exponential family of
Markov chains in Equation 5.4, as can be seen by setting P (x, ·) = h(·), for all x ∈ S. Then
vθ(x) = 1 for all x ∈ S, the log-Perron-Frobenius eigenvalue coincides with the log-MGF,
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and Θ = R. Therefore, Theorem 15 already resolves the case of multiple plays and i.i.d.
rewards from an exponential family of finitely supported densities.

Theorem 16 (i.i.d. rewards and multiple plays: finite-time guarantees). Let (X,X , ρ) be
a probability space, f : X → R a X -measurable function, and h : X → R≥0 a density with
respect to ρ. Assume that the K arms correspond to the parameter configuration θθθ ∈ ΘK of
the exponential family of probability densities, as described in Equation 5.9. Without loss of
generality assume that the K arms are ordered so that,

µ(θ1) ≥ . . . ≥ µ(θN) > µ(θN+1) . . . = µ(θM) = . . . = µ(θL) > µ(θL+1) ≥ . . . ≥ µ(θK).

Fix ε ∈ (0,min(µ(θN)− µ(θM), µ(θM)− µ(θL+1))). The KL-UCB adaptive allocation rule
for i.i.d. rewards and multiple plays, Algorithm 3, with the choice g(t) = log t + 3 log log t,
enjoys the following finite-time upper bound on the regret,

Rφφφθθθ (T ) ≤
K∑

b=L+1

µ(θM)− µ(θb)

D (µ(θb) ‖ µ(θM)− ε)
log T + c1

√
log T + c2 log log T + c3

√
log log T + c4,

where c1, c2, c3, c4 are constants with respect to T .
Consequently, the KL-UCB adaptive allocation rule, Algorithm 3, is asymptotically opti-

mal, and,

lim
T→∞

Rφφφθθθ (T )

log T
=

K∑
b=L+1

µ(θM)− µ(θb)

D (µ(θb) ‖ µ(θM))
.

Remark 9. For the special case of single plays, M = 1, such a finite-time regret bound is
derived in [16], and here we generalize it for multiple plays, 1 ≤ M ≤ K. One striking
difference is that we consider calculations of KL upper confidence bounds in a round-robin
way, as opposed to calculating them for all the arms at each round. But computing KL-UCB
indices adds an extra computational overhead, as it entails inverting an increasing function
via the bisection method. Thus, our approach has important practical implications as it
leads to significantly more efficient algorithms. We verify this via simulations in Section 5.6.

5.6 Simulation Results

In the context of Example 8, we set p = 0.49, q = 0.45, K = 14, and T = 106. We generated
the bandit instance θ1, . . . , θK by drawing i.i.d. N(0, 1/16) samples. Four adaptive allocation
rules were taken into consideration:

1. UCB: at reach round calculate all UCB indices,

UUCB
a (t) = Ȳa(t) + β

√
2 log t

Na(t)
, for a = 1, . . . , K.



CHAPTER 5. REGRET MINIMIZATION FOR MARKOVIAN BANDITS 76

2. Round-Robin UCB: at reach round calculate a single UCB index,

UUCB
b (t) = Ȳb(t) + β

√
2 log t

Nb(t)
, only for b ≡ t+ 1 (mod K).

3. KL-UCB: at reach round calculate all KL-UCB indices,

UKL−UCB
a (t) = sup

{
µ ∈M : D

(
Ȳa(t)

∥∥ µ) ≤ log t+ 3 log log t

Na(t)

}
, for a = 1, . . . , K.

4. Round-Robin KL-UCB: at reach round calculate a single KL-UCB index,

UKL−UCB
b (t) = sup

{
µ ∈M : D

(
Ȳb(t)

∥∥ µ) ≤ log t+ 3 log log t

Nb(t)

}
, only for b ≡ t+1 (mod K).

For the UCB indices, after some tuning, we picked β = 1 which is significantly smaller than
the theoretical values of β from [87, 88, 70]. For each of those adaptive allocation rules 104

Monte Carlo iterations were performed in order to estimate the expected regret, and the
simulation results are presented in the following plots.

Figure 5.6.1: Regret of the various algo-
rithms as a function of time in linear scale.

Figure 5.6.2: Regret of the various algo-
rithms as a function of time in logarithmic
scale.

For our simulations we used the programming language C, to produce highly efficient
code, and a personal computer with a 2.6GHz processor and 16GB of memory. We report that
the simulation for the Round-Robin KL-UCB adaptive allocation rule was 14.48 times faster
than the simulation for the KL-UCB adaptive allocation rule. This behavior is expected since
each calculation of a KL-UCB index induces a significant computation cost as it involves
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finding the inverse of an increasing function using the bisection method. Additionally, the
simulation for the Round-Robin UCB adaptive allocation rule was 3.15 times faster than the
simulation for the KL-UCB adaptive allocation rule, and this is justified from the fact that
calculating mathematical functions such as log(·) and

√
·, is more costly than calculating

averages which only involve a division. Our simulation results yield that in practice round-
robin schemes are significantly faster than schemes that calculate the indices of all the arms
at each round, and the computational gap is increasing with the number of arms K, while
the behavior of the expected regrets is very similar.
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Appendix

5.A Concentration Lemmata for Markov Chains

We first develop a Chernoff bound, which remarkably does not impose any conditions on the
Markov chain other than irreducibility, which is though a mandatory requirement for the
stationary mean to be well-defined.

Lemma 19 (Chernoff bound for irreducible Markov chains). Let {Xn}n∈Z≥0
be an irreducible

Markov chain over the finite state space S with transition probability matrix P , initial dis-
tribution q, and stationary distribution π. Let f : S → R be a nonconstant function on
the state space. Denote by µ(0) =

∑
x∈S f(x)π(x) the stationary mean when f is applied,

and by Ȳn = 1
n

∑n
k=1 Yk the empirical mean, where Yk = f(Xk). Let F be a closed subset of

M∩ [µ(0),∞). Then,

P
(
Ȳn ≥ µ

)
≤ C+e

−nD(µ ‖ µ(0)), for µ ∈ F,

where D (· ‖ ·) stands for the Kullback-Leibler divergence rate in the exponential family of
stochastic matrices generated by P and f , and C+ = C+(P, f, F ) is a positive constant
depending only on the transition probability matrix P , the function f and the closed set F .

Proof of Lemma 19.
Using the standard exponential transform followed by Markov’s inequality we obtain that
for any θ ≥ 0,

P(Ȳn ≥ µ) ≤ P(enθȲn ≥ enθµ) ≤ exp

{
−n
(
θµ− 1

n
logE

[
eθ(f(X1)+...+f(Xn))

])}
.
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We can upper bound the expectation from above in the following way,

E
[
eθ(f(X1)+...+f(Xn))

]
=

∑
x0,...,xn∈S

q(x0)P (x0, x1)eθf(x1) . . . P (xn−1, xn)eθf(xn)

=
∑

x0,xn∈S

q(x0)P̃ n
θ (x0, xn)

≤ 1

minx∈S vθ(x)

∑
x0,xn∈S

q(x0)P̃ n
θ (x0, xn)vθ(xn)

=
ρ(θ)n

minx∈S vθ(x)

∑
x0∈S

q(x0)vθ(x0)

≤ max
x,y∈S

vθ(y)

vθ(x)
ρ(θ)n,

where in the last equality we used the fact that vθ is a right Perron-Frobenius eigenvector of
P̃θ.

From those two we obtain,

P(Ȳn ≥ µ) ≤ max
x,y∈S

vθ(y)

vθ(x)
exp {−n(θµ− Λ(θ))} ,

and if we plug in θµ = Λ̇−1(µ), which is a nonnegative real number since µ ∈ F ⊆ M ∩
[µ(0),∞), we obtain,

P(Ȳn ≥ µ) ≤ max
x,y∈S

vθµ(y)

vθµ(x)
exp

{
−nD (µ ‖ µ(0))

}
,

We assumed that F is closed, and moreover F is bounded since it is a subset of the bounded
open interval M. Therefore, F is compact, and so Λ̇−1(F ) is compact as well. Then due to
the fact that θ 7→ vθ(x)/vθ(y) is continuous, from Lemma 2 in [74], we deduce that,

sup
θ∈Λ̇−1(F )

max
x,y∈S

vθ(y)

vθ(x)
<∞,

which we define to be the finite constant C+ of Lemma 19, and which may only depend on
P, f and F .

Remark 10. This bound is a variant of Theorem 1 in [74], where the authors derive a Chernoff
bound under some structural assumptions on the transition probability matrix P and the
function f . In our Lemma 19, following their techniques, we derive a Chernoff bound without
any assumptions, relying though on the fact that µ lies in a closed subset of the mean
parameter space.

Next, we proceed with the proof of the maximal inequality in Section 5.3.
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Proof of Lemma 18.
Our proof extends the argument from Lemma 11 in [16], which deals with IID random
variables. In order to handle the Markovian dependence we need to use the exponential
martingale for Markov chains from Lemma 11, as well as continuity results for the right
Perron-Frobenius eigenvector.

Following the proof strategy used to establish the law of the iterated logarithm, we split
the range of the union [n] into chunks of exponentially increasing sizes. Denote by α > 1 the
growth factor, to be specified later, and let nm = bαmc be the end point of the m-th chunk,
with n0 = 0. An upper bound on the number of chunks is M = dlog n/ logαe, and so we
have that

n⋃
k=1

{
µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ ε
}
⊆

M⋃
m=1

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, kD

(
Ȳk
∥∥ µ(0)

)
≥ ε
}

⊆
M⋃
m=1

nm⋃
k=nm−1+1

{
µ(0) ≥ Ȳk, D

(
Ȳk
∥∥ µ(0)

)
≥ ε

nm

}
.

Let µm = inf{µ < µ(0) : D (µ ‖ µ(0)) ≤ ε/nm}, and θm = Λ̇−1(µm) < Λ̇−1(µ(0)) = 0 so that
θmµm − Λ(θm) = D (µm ‖ µ(0)). Then,{

µ(0) ≥ Ȳk, D
(
Ȳk
∥∥ µ(0)

)
≥ ε

nm

}
⊆
{
Ȳk ≤ µm

}
=
{
eθmkȲk−kΛ(θm) ≥ ek(θmµm−Λ(θm))

}
=

{
M θm

k ≥
vθm(Xk)

vθm(X0)
ekD(µm ‖ µ(0))

}
⊆
{
M θm

k ≥
vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
.

At this point we use the assumption that P is (arg minx∈S f(x))-Doeblin in order to invoke
Proposition 1 from [74], which in our setting states that there exists a constant C− =
C−(P, f) ≥ 1 such that,

1

C−
≤ inf

θ∈R≤0,x,y∈S

vθ(y)

vθ(x)
.

This gives us the inclusion,{
M θm

k ≥
vθm(Xk)

vθm(X0)
e(nm−1+1)D(µm ‖ µ(0))

}
⊆
{
M θm

k ≥
e(nm−1+1)D(µm ‖ µ(0))

C−

}
.

In Lemma 11 we have established that M θm
k is a positive martingale, which combined with

a maximal inequality for martingales due to [91] (see Exercise 4.8.2 in [29] for a modern
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reference), yields that,

P

 nm⋃
k=nm−1+1

{
M θm

k ≥
e(nm−1+1)D(µm ‖ µ(0))

C−

} ≤ C−e
−(nm−1+1)D(µm ‖ µ(0))

≤ C−e
−εnm−1+1

nm ≤ C−e
− ε
α .

To conclude, we pick the growth factor α = ε/(ε − 1), and we upper bound the number of
chunks by M ≤ dε log ne.

5.B Concentration Properties of Upper Confidence

Bounds and Sample Means

Lemma 20. For every arm a = 1, . . . , K, and t ≥ 3, we have that,

Pθa
(

min
n=1,...,t

Ua
n(t) ≤ µ(θa)

)
≤

4eCa
−

t log t
, (5.10)

where Ca
− is the constant prescribed in Lemma 18, when the maximal inequality is applied to

the Markov chain with parameter θa.

Proof.

Pθa
(

min
n=1,...,t

Ua
n(t) ≤ µ(θa)

)
≤ Pθa

(
t⋃

n=1

{µ(θa) > Ȳ a
n and nD

(
Ȳ a
n

∥∥ µ(θa)
)
≥ g(t)}

)

≤ Ca
−edg(t) log tee−g(t) ≤ 4Ca

−e(log t)2e−g(t) =
4eCa

−

t log t
,

where for the first inequality we used Equation 5.7 and the definition of Ua
n(t), while for the

second inequality we used Lemma 18.

Lemma 21. For every arm a = 1, . . . , K, and for µ(λ) > µ(θa),

∞∑
n=1

Pθa(µ(λ) ≤ Ua
n(T )) ≤ g(T )

D (µ(θa) ‖ µ(λ))
+ 1 + 8σ2

θa,λ

(
Ḋ (µ(θa) ‖ µ(λ))

D (µ(θa) ‖ µ(λ))

)2

(5.11)

+ 2
√

2πσ2
θa,λ

√√√√Ḋ (µ(θa) ‖ µ(λ))
2

D (µ(θa) ‖ µ(λ))
3

√
g(T ),

where σ2
θ,λ = supθ∈[θa,λ] Λ̈(θ) ∈ (0,∞), and Ḋ (µ(θa) ‖ µ(λ)) = dD(µ ‖ µ(λ))

dµ
|µ=µ(θa).
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Proof. The proof is based on the argument given in Appendix A.2 of [16], adapted though for
the case of Markov chains. If µ(λ) ≤ Ua

n(T ), and Ȳ a
n ≤ µ(λ), then D

(
Ȳ a
n

∥∥ µ(λ)
)
≤ g(T )/n.

Let µx = inf{µ ≤ µ(λ) : D (µ ‖ µ(λ)) ≤ x}. This in turn implies that D
(
Ȳ a
n

∥∥ µ(λ)
)
≤

D
(
µg(T )/n

∥∥ µ(λ)
)
, and using the monotonicity of µ 7→ D (µ ‖ µ(λ)) for µ ≤ µ(λ), we further

have that Ȳ a
n ≥ µg(T )/n. This argument shows that,

Pθa(µ(λ) ≤ Ua
n(T )) ≤ Pθa(µg(T )/n ≤ Ȳ a

n ).

Therefore,

∞∑
n=1

Pθa(µ(λ) ≤ Ua
n(T )) ≤ g(T )

D (µ(θa) ‖ µ(λ))
+ 1 +

∞∑
n=n0+1

Pθa(µg(T )/n ≤ Ȳ a
n ),

where n0 =
⌈

g(T )
D(µ(θa) ‖ µ(λ))

⌉
.

Fix n ≥ n0 +1. Then D (µ(θa) ‖ µ(λ)) > g(T )/n, and therefore µg(T )/n > µ(θa). Further-
more note that µg(T )/n is increasing to µ(λ) as n increases, therefore µg(T )/n lives in the closed
interval [µ(θa), µ(λ)], and we can apply Lemma 19 for the Markov chain that corresponds to
the parameter θa,

Pθa(Ȳ a
n ≥ µg(T )/n) ≤ Ca

+e
−nD(µg(T )/n ‖ µ(θa)).

Thus we are left with the task of controlling the sum,

∞∑
n=n0+1

e−nD(µg(T )/n ‖ µ(θa)).

First note that by definition µg(T )/n is increasing in n, therefore D
(
µg(T )/n

∥∥ µ(θa)
)

is positive
and increasing in n, hence we can perform the following integral bound,

∞∑
n=n0+1

e−nD(µg(T )/n ‖ µ(θa)) ≤
∫ ∞

g(T )
D(µ(θa) ‖ µ(λ))

e−sD(µg(T )/s ‖ µ(θa))ds

= g(T )

∫ D(µ(θa) ‖ µ(λ))

0

1

x2
e−

g(T )
x
D(µx ‖ µ(θa))dx. (5.12)

The function µ 7→ D (µ ‖ µ(λ)) is convex thus,

D (µ ‖ µ(λ)) ≥ D (µ(θa) ‖ µ(λ)) + Ḋ (µ(θa) ‖ µ(λ))(µ− µ(θa)),

where Ḋ (µ(θa) ‖ µ(λ)) = dD(µ ‖ µ(λ))
dµ

|µ=µ(θa). Plugging in µ = µx ≥ µ(θa), for x ∈
[0, D (µ(θa) ‖ µ(λ))], we obtain

D (µ(θa) ‖ µ(λ))− x ≤ Ḋ (µ(θa) ‖ µ(λ))(µ(θa)− µx). (5.13)
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From Lemma 8 in [74] we have that,

D (µx ‖ µ(θa)) ≥
(µx − µ(θa))

2

2σ2
θa,λ

, (5.14)

where σ2
θa,λ

= supθ∈[θa,λ] Λ̈(θ) ∈ (0,∞).
Combining Equation 5.13 and Equation 5.14 we deduce that,

D (µx ‖ µ(θa)) ≥

(
D (µ(θa) ‖ µ(λ))− x√
2σθa,λḊ (µ(θa) ‖ µ(λ))

)2

.

Now we use this bound and break the integral in Equation 5.12 in two regions, I1 =
[0, D (µ(θa) ‖ µ(λ))/2] and I2 = [D (µ(θa) ‖ µ(λ))/2, D (µ(θa) ‖ µ(λ))]. In the first region
we use the fact that x ≤ D (µ(θa) ‖ µ(λ))/2 to deduce that,∫

I1

1

x2
e−

g(T )
x
D(µx ‖ µ(θa))dx ≤

∫
I1

1

x2
exp

{
− g(T )

8σ2
θa,λ

x

(
D (µ(θa) ‖ µ(λ))

Ḋ (µ(θa) ‖ µ(λ))

)2
}
dx

≤
8σ2

θa,λ

g(T )

(
Ḋ (µ(θa) ‖ µ(λ))

D (µ(θa) ‖ µ(λ))

)2

.

In the second region we use the fact that D (µ(θa) ‖ µ(λ))/2 ≤ x ≤ D (µ(θa) ‖ µ(λ)) to
deduce that,

∫
I2

1

x2
e−

g(T )
x
D(µx ‖ µ(θa))dx ≤

∫
I2

4 exp
{
− (x−D(µ(θa) ‖ µ(λ)))2

2Σθa,λ

}
D (µ(θa) ‖ µ(λ))2 dx

≤
∫ D(µ(θa) ‖ µ(λ))

−∞

4 exp
{
− (x−D(µ(θa) ‖ µ(λ)))2

2Σθa,λ

}
D (µ(θa) ‖ µ(λ))2 dx

=
2
√

2πσ2
θa,λ√

g(T )

√√√√Ḋ (µ(θa) ‖ µ(λ))
2

D (µ(θa) ‖ µ(λ))3 ,

where Σθa,λ =
σ2
θa,λ

Ḋ(µ(θa) ‖ µ(λ))
2
D(µ(θa) ‖ µ(λ))

g(T )
.

Lemma 22. For every arm a = 1, . . . , K,

Pθa
(

max
n=dδte,...,t

|Ȳ a
n − µ(θa)| ≥ ε

)
≤ cηδt

1− η
, for δ ∈ (0, 1), ε > 0, (5.15)

where η = η(θθθ, ε) ∈ (0, 1), and c = c(θθθ, ε) are constants with respect to t.
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Proof. Using the same technique as in the proof of Lemma 19, we have that for any θ ≥ 0
and any η ≤ 0,

Pθa
(

max
n=dδte,...,t

|Ȳ a
n − µ(θa)| ≥ ε

)
≤

∞∑
n=dδte

max
x,y∈S

vaθ (y)

vaθ (x)
e−n(θ(µ(θa)+ε)−Λa(θ))

+
∞∑

n=dδte

max
x,y∈S

vaη(y)

vaη(x)
e−n(η(µ(θa)−ε)−Λa(η)),

where by Λa(θ) we denote the log-Perron-Frobenious eigenvalue generated by Pθa , and simi-
larly by vaθ the corresponding right Perron-Frobenius eigenvector.

By picking θ = θaε large enough, and η = ηaε small enough, we can ensure that θ(µ(θa) +
ε)− Λa(θ) > 0, and η(µ(θa)− ε)− Λa(η) > 0, and so there are constants η = η(θθθ, ε) ∈ (0, 1)
and c = c(θθθ, ε), such that for any a = 1, . . . , K,

Pθa
(

max
n=dδte,...,t

|Ȳ a
n − µ(θa)| ≥ ε

)
≤ c

∞∑
n=dδte

ηn ≤ cηδt

1− η
.

5.C Analysis of Algorithm 3

As a proxy for the regret we will use the following quantity which involves directly the
number of times each arm a ∈ {1, . . . , N} hasn’t been played, and the number of times each
arm b ∈ {L+ 1, . . . , K} has been played,

R̃φφφθθθ (T ) =
N∑
a=1

(µ(θa)− µ(θM))Eφφφθθθ [T −Na(T )] +
K∑

b=L+1

(µ(θM)− µ(θb))Eφφφθθθ [Nb(T )]. (5.16)

For the IID case R̃φφφθθθ (T ) = Rφφφθθθ (T ), and in the more general Markovian case R̃φφφθθθ (T ) is just a

constant term apart from the expected regret Rφφφθθθ (T ). Note that a feature that makes the
case of multiple plays more delicate than the case of single plays, even for IID rewards, is
the presence of the first summand in Equation 5.16. For this we also need to analyze the
number of times each of the best N arms hasn’t been played.

Lemma 23. ∣∣∣Rφφφθθθ (T )− R̃φφφθθθ (T )
∣∣∣ ≤ K∑

a=1

Ra ·
∑
x∈S

|f(x)|,

where Ra = Eθa
[
inf{n ≥ 1 : Xa

n+1 = Xa
1}
]
<∞.
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We start the analysis by establishing the relation between the expected regret, Equa-
tion 5.1, and its proxy, Equation 5.16. For this we will need the following lemma.

Lemma 24 (Lemma 2.1 in [4]). Let {Xn}n∈Z≥0
be a Markov chain on a finite state space

S, with irreducible transition probability matrix P , stationary distribution π, and initial
distribution q. Let Fn be the σ-field generated by X0, . . . , Xn. Let τ be a stopping time with
respect to the filtration {Fn}n∈Z≥0

such that E[τ ] < ∞. Define N(x, n) to be the number of
visits to state x from time 1 to time n, i.e. N(x, n) =

∑n
k=1 I{Xk = x}. Then

|E[N(x, τ)]− π(x)E[τ ]| ≤ R, for x ∈ S,

where R = E[inf{n ≥ 1 : Xn+1 = X1}] <∞.

Proof of Lemma 23.
First note that,

ST =
K∑
a=1

∑
x∈S

f(x)Na(x,Na(T )).

For each a ∈ [K], using first the triangle inequality, and then Lemma 24 for the stopping
time Na(T ), we obtain,∣∣∣∣∣∑

x∈S

f(x)(Eφφφθθθ [Na(x,Na(T ))]− πθa(x)Eφφφθθθ [Na(T )])

∣∣∣∣∣
≤
∑
x∈S

|f(x)|
∣∣∣Eφφφθθθ [Na(x,Na(T ))]− πθa(x)Eφφφθθθ [Na(T )]

∣∣∣
≤ Ra ·

∑
x∈S

|f(x)|.

Hence summing over a ∈ [K], and using the triangle inequality, we see that,∣∣∣∣∣ST −
K∑
a=1

µ(θa)EAδθθθ [Na(T )]

∣∣∣∣∣ ≤
K∑
a=1

Ra ·
∑
x∈S

|f(x)|.
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To conclude the proof note that,

T

M∑
a=1

µ(θa)−
K∑
a=1

µ(θa)EAδθθθ [Na(T )]

=
N∑
a=1

µ(θa)EAδθθθ [T −Na(T )] + µ(θM)(M −N)− µ(θM)
K∑

a=N+1

EAδθθθ [Na(T )]

+
K∑

b=L+1

(µ(θM)− µ(θb))EAδθθθ [Nb(T )]

=
N∑
a=1

(µ(θa)− µ(θM))EAδθθθ [T −Na(T )] +
K∑

b=L+1

(µ(θM)− µ(θb))EAδθθθ [Nb(T )],

where in the last equality we used the fact that
∑N

a=1 E
Aδ
θθθ [Na(T )] +

∑K
a=N+1 E

Aδ
θθθ [Na(T )] =

TM .

Next we show that Algorithm 3 is well-defined.

Proof of Proposition 4.
Recall that

∑
a∈[K]Na(t) = tM , and so there exists an arm a1 such that Na1(t) ≥ tM/K.

Then
∑

a∈[K]−{a1}Na(t) ≥ t(M − 1), and so there exists an arm a2 6= a1 such that Na2(t) ≥
t(M − 1)/(K − 1). Inductively we can see that there exist M distinct arms a1, . . . , aM such
that Nai(t) ≥ t(M − i+ 1)/(K − i+ 1) ≥ t/K > δt, for i = 1, . . . ,M .

5.C.1 Sketch for the rest of the analysis

Due to Lemma 23, it suffices to upper bound the proxy for the expected regret given in Equa-
tion 5.16. Therefore, we can break the analysis in two parts: upper bounding EAδθθθ [T−Na(T )],

for a = 1, . . . , N , and upper bounding EAδθθθ [Nb(T )], for b = L+ 1, . . . , K.
For the first part, we show in Section 5.C that the expected number of times that an arm

a ∈ {1, . . . , N} hasn’t been played, is of the order of O(log log T ).

Lemma 25. For every arm a = 1, . . . , N ,

Eφφφθθθ [T −Na(T )] ≤
4eγ2NC

⌈
2 log γ

log 1
δ

⌉
log γ

log log T + γr0 +
cγ2ηδK

(1− η)(1− ηδ)3
,

where γ, r0, η, c and C are constants with respect to T .

For the second part, if b ∈ {L+1, . . . , K}, and b ∈ φt+1, then there are three possibilities:

1. Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt,
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2. Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1,

3. Lt ∩ {L+ 1, . . . , K} 6= ∅.

This means that,

Eφφφθθθ [Nb(T )] ≤M +
T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
+

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
+

T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . , K} 6= ∅),

and we handle each of those three terms separately.
We show that the first term is upper bounded by O(1).

Lemma 26.

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
≤ cLηδK

(1− η)(1− ηδ)
,

where c and η are constant with respect to T .

The second term is of the order of O(log T ), and it is the term that causes the overall
logarithmic regret.

Lemma 27.

T−1∑
t=K

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
≤ log T + 3 log log T

D (µ(θb) ‖ µ(θM)− ε)
+ 1 + 8σ2

µ(θa),µ(θM )−ε

(
Ḋ (µ(θb) ‖ µ(θM)− ε)
D (µ(θb) ‖ µ(θM)− ε)

)2

+ 2
√

2πσ2
µ(θa),µ(θM )−ε

√√√√Ḋ (µ(θb) ‖ µ(θM)− ε)2

D (µ(θb) ‖ µ(θM)− ε)3

(√
log T +

√
3 log log T

)
,

where σ2
µ(θa),µ(θM )−ε, and Ḋ (µ(θb) ‖ µ(θM)− ε) = dD(µ ‖ µ(θM )−ε)

dµ
|µ=µ(θb), are constants with

respect to T .

Finally, we show that the third term is upper bounded by O(log log T ).
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Lemma 28.

T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . , K} 6= ∅) ≤
4eγ2LC

⌈
2 log γ

log 1
δ

⌉
log γ

log log T + γr0 +
cγ2ηδK

(1− η)(1− ηδ)3
,

where γ, r0, η, c and C are constants with respect to T .

This concludes the proof of Theorem 15, modulo the four bounds of this subsection which
are established in the next subsection.

5.C.2 Proofs for the four bounds

For the rest of the analysis we define the following events which describe good behavior of
the sample means and the upper confidence bounds. For γ, r ∈ Z>1 let,

Ar =
⋂
a∈[K]

⋂
γr−1≤t≤γr+1

{
max

n=dδte,...,t
|Ȳ a
n − µ(θa)| < ε

}
,

Br =
⋂
a∈[N ]

⋂
γr−1≤t≤γr+1

{
min

n=1,...,dδte−1
Ua
n(t) > µ(θN)

}
,

Cr =
⋂
a∈[L]

⋂
γr−1≤t≤γr+1

{
min

n=1,...,dδte−1
Ua
n(t) > µ(θa)

}
.

Indeed, the following bounds, which rely on the concentration results of Section 5.3, suggest
that those events will happen with some good probability.

Lemma 29.

Pθθθ(Acr) ≤
cKηδγ

r−1

(1− η)(1− ηδ)
, Pθθθ(Bc

r) ≤
4eNC

⌈
2 log γ

log 1
δ

⌉
(r − 1)γr−1 log γ

, Pθθθ(Cc
r) ≤

4eLC
⌈

2 log γ

log 1
δ

⌉
(r − 1)γr−1 log γ

,

where η ∈ (0, 1), c and C are constants with respect to r.

Proof. The first bound follows directly from Equation 5.15 and a union bound.

For the second bound, let p =
⌈

2 log γ

log 1
δ

⌉
, so that

⌊
γr−1

δp

⌋
≥ γr+1. For i = 0, . . . , p let

ti =
⌊
γr−1

δi

⌋
, and define,

Di =
⋂
a∈[N ]

{
min

n=1,...,ti
Ua
n(t) > µ(θa)

}
.

From Equation 5.10 we see that,

Pθθθ(Dc
i ) ≤

4eN maxa∈[N ]C
a
−

ti log ti
≤

4eN maxa∈[N ] C
a
−

(r − 1)γr−1 log γ
,
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where Ca
− is the constant from Lemma 18.

Fix a ∈ [N ], and γr−1 ≤ t ≤ γr+1. There exists i ∈ {0, . . . , p− 1} such that ti ≤ t ≤ ti+1,
and so ti > δti − 1 ≥ δt− 1, which gives that ti ≥ dδte − 1. On Di, due to Equation 5.8, we
have that,

min
n=1,...,dδte−1

Ua
n(t) ≥ min

n=1,...,dδte−1
Ua
n(ti) ≥ min

n=1,...,ti
Ua
n(ti) > µ(θa) ≥ µ(θN).

Therefore,

Pθθθ(Bc
r) ≤

p−1∑
i=0

Pθθθ(Dc
i ) ≤

4eNpmaxa∈[N ] C
a
−

(r − 1)γr−1 log γ
.

The third bound is established along the same lines.

In order to establish Lemma 25 we need the following lemma which states that, on Ar∩Br,
an event of sufficiently large probability according to Lemma 29, all the best N arms are
played.

Lemma 30 (Lemma 5.3 in [3]). Fix γ ≥ d(1−Kδ)−1e+ 2, and let r0 = dlogγ
2K

1−Kδ−γ−1 e+ 2.

For any r ≥ r0, on Ar ∩Br we have that [N ] ⊂ φt+1 for all γr ≤ t ≤ γr+1.

Proof of Lemma 25.

Eφφφθθθ [T −Na(T )] ≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

Pφφφθθθ (a 6∈ φt+1)

≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

(Pθθθ(Acr) + Pθθθ(Bc
r))

≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

 cKγr+1ηδγ
r−1

(1− η)(1− ηδ)
+

4eγ2NC
⌈

2 log γ

log 1
δ

⌉
(r − 1) log γ

 ,

where the second inequality follows from Lemma 30, and the third from Lemma 29. Now we
use a simple logarithmic upper bound on the harmonic number to obtain,

dlogγ(T−1)e−1∑
r=r0

1

r − 1
≤
dlogγ(T−1)e−1∑

r=3

1

r − 1
≤ log logγ T ≤ log log T.

Finally, we can upper bound the other summand by a constant, with respect to T , in the
following way,

dlogγ(T−1)e−1∑
r=r0

γr−1ηδγ
r−1 ≤

∞∑
k=1

kηδk =
ηδ

(1− ηδ)2
.



CHAPTER 5. REGRET MINIMIZATION FOR MARKOVIAN BANDITS 90

Proof of Lemma 26.
Using Equation 5.15 it is straightforward to see that

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| ≥ ε for some a ∈ Lt

)
≤ cLηδt

1− η
,

and the conclusion follows by summing the geometric series.

Proof of Lemma 27.
Assume that Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1. Then it must be
the case that b ≡ t + 1 (mod K), b 6∈ Lt, and Ub(t) > mina∈Lt Ȳa(t) > mina∈Lt µ(θa) − ε ≥
µ(θM)− ε. This shows that,

Pφφφθθθ
(
Lt ⊆ [L], and |Ȳa(t)− µ(θa)| < ε for all a ∈ Lt, and b ∈ φt+1

)
≤ Pφφφθθθ (b ∈ φt+1, and Ub(t) > µ(θM)− ε).

Furthermore,

T−1∑
t=K

Pφφφθθθ (b ∈ φt+1, and Ub(t) > µ(θM)− ε)

=
T−1∑
t=K

M+T−K∑
n=M+1

Pφφφθθθ (τ bn = t+ 1, and U b
n(t) > µ(θM)− ε)

≤
T−1∑
t=K

M+T−K∑
n=M+1

Pφφφθθθ (τ bn = t+ 1, and U b
n(T ) > µ(θM)− ε)

=
M+T−K∑
n=M+1

T−1∑
t=K

Pφφφθθθ (τ bn = t+ 1, and U b
n(T ) > µ(θM)− ε)

≤
M+T−K∑
n=M+1

Pθb(U
b
n(T ) > µ(θM)− ε),

where in the first inequality we used Equation 5.8. Now the conclusion follows from Equa-
tion 5.11.

In order to establish Lemma 28 we need the following lemma which states that, on Ar∩Cr,
an event of sufficiently large probability according to Lemma 29, only arms from {1, . . . , L}
have been played at least dδte times and have a large sample mean.

Lemma 31 (Lemma 5.3 B in [3]). Fix γ ≥ d(1−Kδ)−1e+2, and let r0 = dlogγ
2K

1−Kδ−γ−1 e+2.

For any r ≥ r0, on Ar ∩ Cr we have that Lt ⊆ [L] for all γr ≤ t ≤ γr+1.
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Proof of Lemma 28.
From Lemma 31 we see that,

T−1∑
t=K

Pφφφθθθ (Lt ∩ {L+ 1, . . . , K} 6= ∅) ≤ γr0 +

dlogγ(T−1)e−1∑
r=r0

∑
γr≤t≤γr+1

(Pθθθ(Acr) + Pθθθ(Cc
r)).

The rest of the calculations are similar with the proof of Lemma 25.

Proof of Corollary 3.
In the finite-time regret bound of Theorem 15 we divide by log T , let T go to ∞, and then
let ε go to 0 in order to get,

lim sup
T→∞

Rφφφθθθ (T )

log T
≤

K∑
b=L+1

µ(θM)− µ(θb)

D (µ(θb) ‖ µ(θM))
.

The conclusion now follows by using the asymptotic lower bound from Equation 5.3.

Proof of Theorem 16.
The proof of Theorem 16 follows along the lines the proof of Theorem 15, by replacing
instances of entries of the right Perron-Frobenius eigenvector vθ(x) with one, and is thus
omitted.

5.D General Asymptotic Lower Bound

Recall from Subsection 5.2.1 the general one-parameter family of Markov chains {Pθ : θ ∈ Θ},
where each Markovian probability law Pθ is characterized by an initial distribution qθ and a
transition probability matrix Pθ. For this family we assume that,

Pθ is irreducible for all θ ∈ Θ. (5.17)

Pθ(x, y) > 0 ⇒ Pλ(x, y) > 0, for all θ, λ ∈ Θ, x, y ∈ S. (5.18)

qθ(x) > 0 ⇒ qλ(x), for all θ, λ ∈ Θ, x ∈ S. (5.19)

In general it is not necessary that the parameter space Θ is the whole real line, but it is
assumed to satisfy the following denseness condition. For all λ ∈ Θ and all δ > 0, there
exists λ′ ∈ Θ such that,

µ(λ) < µ(λ′) < µ(λ) + δ. (5.20)

Furthermore, the Kullback-Leibler divergence rate is assumed to satisfy the following conti-
nuity property. For all ε > 0, and for all θ, λ ∈ Θ such that µ(λ) > µ(θ), there exists δ > 0
such that,

µ(λ) < µ(λ′) < µ(λ) + δ ⇒ |D (θ ‖ λ)−D (θ ‖ λ′)| < ε. (5.21)
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An adaptive allocation rule φφφ is said to be uniformly good if,

Rφφφθθθ (T ) = o(Tα), for all θθθ ∈ ΘK , and all α > 0.

Under those conditions [4] establish the following asymptotic lower bound.

Theorem 17 (Theorem 3.1 from [4]). Assume that the one-parameter family of Markov
chains on the finite state space S, together with the reward function f : S → R, satisfy
conditions (5.17), (5.18), (5.19), (5.20), and (5.21). Let φφφ be a uniformly good allocation
rule. Fix a parameter configuration θθθ ∈ ΘK, and without loss of generality assume that,

µ(θ1) ≥ . . . ≥ µ(θN) > µ(θN+1) . . . = µ(θM) = . . . = µ(θL) > µ(θL+1) ≥ . . . ≥ µ(θK).

Then for every b = L+ 1, . . . , K,

1

D (θb ‖ θM)
≤ lim inf

T→∞

Eφφφθθθ [Nb(T )]

log T
.

Consequently,
K∑

b=L+1

µ(θM)− µ(θb)

D (θb ‖ θM)
≤ lim inf

T→∞

Rφφφθθθ (T )

log T
.

Lower bounds on the expected regret of multi-armed bandit problems are established
using a change of measure argument, which relies on the adaptive allocation rule being
uniformly good. [56] gave the prototypical change of measure argument, for the case of i.i.d.
rewards, and [4] extended this technique for the case of Markovian rewards. Here we give an
alternative simplified proof using the data processing inequality, an idea introduced in [49,
20] for the i.i.d. case.

We first set up some notation. Denote by FT the σ-field generated by the random vari-
ables φ1, . . . , φT , {X1

n}
N1(T )
n=0 , . . . , {XK

n }
NK(T )
n=0 , and let Pφφφθθθ |FT be the restriction of the prob-

ability distribution Pφφφθθθ on FT . For two probability distributions P and Q over the same
measurable space we define the Kullback-Leibler divergence between P and Q as

D (P ‖ Q) =

{
EP

[
log dP

dQ

]
, if P� Q,

∞, otherwise,

where dP
dQ denotes the Radon-Nikodym derivative, when P is absolutely continuous with re-

spect to Q. Note that we have used the same notation as for the Kullback-Leibler divergence
rate between two Markov chains, but it should be clear from the arguments whether we re-
fer to the divergence or the divergence rate. For p, q ∈ [0, 1], the binary Kullback-Leibler
divergence is denoted by

D2 (p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

.

The following lemma, from [73], will be crucial in establishing the lower bound.
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Lemma 32 (Lemma 1 in [73]). Let θθθ,λλλ ∈ ΘK be two parameter configurations. Let τ be a
stopping time with respect to (Ft)t∈Z>0 , with EAδθθθ [τ ], EAδλλλ [τ ] <∞. Then

D
(
PAδθθθ |Fτ

∥∥∥ PAδλλλ |Fτ
)
≤

K∑
a=1

EAδθθθ [Na(τ)]D (θa ‖ λa)

+
K∑
a=1

D (qθa ‖ qλa) +
K∑
a=1

Rθa

∑
x,y

πθa(x)Pθa(x, y)

∣∣∣∣log
Pθa(x, y)

Pλa(x, y)

∣∣∣∣ ,
where Rθa = Eθa

[
inf{n ≥ 1 : Xa

n+1 = Xa
1}
]
<∞, the first summand is finite due to (5.19),

and the second summand is finite due to (5.18).

Proof of Theorem 17.
Fix b ∈ {L + 1, . . . , K}, and ε > 0. Due to Equation 5.20 and Equation 5.21, there exists
λ ∈ Θ such that

µ(θM) < µ(λ), and |D (θb ‖ θM)−D (θb ‖ λ)| < ε.

We consider the parameter configuration λλλ = (λ1, . . . , λK) given by,

λa =

{
θa, if a 6= b,

λ, if a = b.

Using Lemma 32 we obtain,

D
(
Pφφφθθθ |FT

∥∥∥ Pφφφλλλ |FT
)
≤ D (qθb ‖ qλ) +RθbD (θb ‖ λ) + Eφφφθθθ [Nb(T )]D (θb ‖ λ).

From the data processing inequality, see the book of [21], we have that for any event E ∈ FT ,

D2

(
Pφφφθθθ (E)

∥∥∥ Pφφφλλλ(E)
)
≤ D

(
Pφφφθθθ |FT

∥∥∥ Pφφφλλλ |FT
)
.

We select E = {Nb(T ) ≥
√
T}. Then using Markov’s inequality, and the fact that φφφ is

uniformly good we obtain for any α > 0,

Pφφφθθθ (E) ≤
Eφφφθθθ [Nb(T )]√

T
=
o(Tα)√

T
, Pφφφλλλ(Ec) ≤

Eφφφλλλ[T −Nb(T )]

T −
√
T

=
o(Tα)

T −
√
T
.

Using those two inequalities we see that,

lim inf
T→∞

D2

(
Pφφφθθθ (E)

∥∥∥ Pφφφλλλ(E)
)

log T
= lim inf

T→∞

log 1

PAδ
λλλ

(Ec)

log T
≥ lim

T→∞

log T−
√
T

o(Tα)

log T
= 1.

Therefore,

lim inf
T→∞

Eφφφθθθ [N b(T )]

log T
≥ 1

D (θb ‖ λ)
≥ 1

D (θb ‖ θM) + ε
,

and the first part of Theorem 17 follows by letting ε go to 0. The second part follows
from Lemma 23, and Equation 5.16.
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