
On Training Robust Policies for Flow Smoothing

Kanaad Parvate
Alexandre Bayen, Ed.
Pieter Abbeel, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-197
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-197.html

December 1, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The D-MALT work was a joint effort with Eugene Vinitsky, Yuqing Du, and
Kathy Jang, advised by Profs. Pieter Abbeel and Alexandre Bayen. The flow
smoothing analysis was a joint effort with Daniel Rothchild, Upadhi Vijay,
Sulaiman Almatrudi and advised by Prof. Susan Shaheen.

I would like to specifically thank Eugene Vinitsky and Prof. Bayen for all of
their support throughout the years. Additionally, I would like to thank all of
my friends and professors who have made my time at Berkeley such a
memorable experience. Go Bears!

Finally, to my parents. Without their constant support and love, none of this
would have been possible. Thank you.

On Training Robust Policies for Flow Smoothing

by Kanaad Parvate

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Alexandre Bayen
Research Advisor

(Date)

* * * * * * *

Professor Pieter Abbeel
Second Reader

(Date)

 May 28, 2020

Pieter Abbeel
May 28, 2020

On Training Robust Policies for Flow Smoothing

Copyright 2020
by

Kanaad Parvate

1

Abstract

On Training Robust Policies for Flow Smoothing

by

Kanaad Parvate

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Flow smoothing, or the use specially designed controllers for automated vehicles to damp
“stop-and-go” waves, has been shown to mitigate ine�ciencies in human driving behavior,
reducing system-wide fuel usage. Using the software framework, Flow, researchers can specify
tra�c scenarios and train flow smoothing controllers using deep reinforcement learning (RL).
RL is a powerful technique for designing e↵ective controllers, however, it tends to create
controllers that overfit to their simulator: the resultant controllers are prone to failure when
transferred to new settings.

We first present D-MALT: Diverse Multi-Adversarial Learning for Transfer. We explore the
hypothesis that perturbing the dynamics of an environment with a diverse pool of adversaries
can combat said failure by ensuring that the controller sees an informative set of possible
perturbations. We demonstrate that the simple technique of rewarding adversaries for reach-
ing di↵erent reward ranges is su�cient for constructing a set of highly diverse adversaries.
Adversaries with the diversity reward find potential controller failure modes whereas we
find that domain randomization, a standard transfer technique, fails to find these modes as
the problem dimensionality increases. We show, in a variety of environments, that training
against the diverse adversaries leads to better transfer than playing against a single adversary
or using domain randomization.

Secondly, we detail a set of transfer tests and evaluations meant to assess the e↵ectiveness
of flow smoothing controllers and evaluate their performance in a variety of tra�c scenarios.
We present two such examples: varying the penetration rate of the AVs in the system
and varying the aggressiveness of human drivers. As new flow smoothing controllers are
developed in Flow, we expect D-MALT and other techniques for developing robustness to be
paramount for successful transfer to physical settings. Analyzing the transfer performance
of these controllers will be crucial to their ultimate deployment.

i

Contents

Contents i

List of Figures ii

List of Tables iv

1 Introduction 1

2 Flow 2
2.1 Flow Smoothing . 2
2.2 Deep Reinforcement Learning . 2
2.3 Flow . 3
2.4 Deployment Challenges . 4

3 D-MALT: Diverse Multi-Adversarial Learning for Transfer 5
3.1 Introduction . 5
3.2 Related Work . 7
3.3 Methods . 7
3.4 Experiments . 10
3.5 Results and Discussion . 13
3.6 Conclusion and Future Work . 18

4 Assessing Controller E↵ectiveness in Flow 21
4.1 Introduction . 21
4.2 Experiment Scenario . 21
4.3 Empirical Results . 22
4.4 Conclusion and Future Work . 26

Bibliography 27

ii

List of Figures

2.1 Overview of the Flow Framework from [37]. Specifically, Flow is comprised of sev-
eral modules that aim to represent the tra�c scenario as an MDP. The pre-defined
actors and simulation dynamics attempt are configured to match a specific de-
ployment environment. Additional dynamics may include logic for toll-metering,
tra�c lights, or other components of the tra�c network. 4

3.1 Comparison between the optimal adversary strategy, a trimodal distribution cap-
tured by three adversaries (shown on top), and some possible single adversary
strategies (shown in blue) which can never express the required multi-modality. 8

3.2 Visualizations of the eigenvalues of the matrices output by 4 adversaries from
a 6-dimensional, 5 adversary run. For each adversary, we sample 100 actions.
The upper row consists of adversaries whose goal was a low policy reward. The
bottom row has adversaries with a higher policy goal. 14

3.3 Visualizations of four of the adversaries for the 2-arm Gaussian bandit; we present
50 sampled arms for each adversary. Upper figures have a high regret target, lower
figures try to decrease the regret. As the di�culty increases, the means get closer
and the std. deviation decreases. On the easiest problem, the two arms are
entirely overlapping. 15

3.4 Regret results from the linear transfer tests. Top row: 2 dimensional system.
Bottom row: 4 dimensional system. The left column depicts the performance
of the policy on the unperturbed, stable system xk+1 = �0.8Ixk + Iuk. The
middle column represents the regret on randomly sampled perturbation matrices
with matrix entries bounded between [� 0.4

dim ,
0.4
dim]. The right column represents

the regret on sampled perturbation matrices that make the system unstable. . . 16
3.5 Eigenvalues of the perturbation matrices as we increase the dimension d. For each

dimension we sample 500 matrices with elements bounded between
⇥�0.4

d ,
0.4
d

⇤

and plot the eigenvalues. Above dimension 2, the probability of sampling an
eigenvalue that makes the uncontrolled system xk+1 = �0.8xk + � unstable
approaches 0. 17

3.6 Performance of increasing number of adversaries vs. domain randomization on
a holdout set of transfer tests. Left graph depicts 2-armed bandit, right depicts
5-armed bandit. 17

iii

3.7 The reward distribution for the multi-armed bandit for the single adversary play-
ing the zero-sum game. At the first timestep the policy has a 50% chance of
recieving a high regret of -10. 18

3.8 Comparison of the e↵ects of di↵erent numbers of adversaries and domain ran-
domization on a swept grid of friction and mass scaling coe�cients for the best
hyper-parameter for each training type. Upper left: 0 adversaries. Upper
right: RARL. Lower left: 5 adversaries. Bottom right: Domain randomization. 19

3.9 Best performing hyperparameters of di↵erent numbers of adversaries and domain
randomization on the holdout tests, averaged across 10 seeds. The x-axis contains
the labels of the corresponding tests described in the supplementary section. Bars
labelled with memory correspond to 10 observations stacked together as the state. 20

4.1 Screenshot of the simulated stretch of the I-210 in SUMO. Red cars represent AVs. 22
4.2 Time and fuel savings for two randomly selected vehicles, in a baseline scenario,

and with flow smoothing present. 23
4.3 Average fuel economy achieved by simulated human drivers as a function of flow

smoothing penetration rate and aggressive driver penetration rate. Each cell lists
the average and standard deviation of the distribution of MPG obtained when
running the simulations with 12 di↵erent random seeds. 25

4.4 When flow smoothing is deployed, average trip times through the deployment area
decrease, and average speed of all vehicles increases. These phenomena suggest
that flow smoothing will cause induced demand. 26

iv

List of Tables

4.1 Fuel economy achieved by the simulated human drivers as a function of the pen-
etration rate of flow-smoothing AVs. 23

v

Acknowledgments

The D-MALT work was a joint e↵ort with Eugene Vinitsky, Yuqing Du, and Kathy Jang,
advised by Profs. Pieter Abbeel and Alexandre Bayen. The flow smoothing analysis was a
joint e↵ort with Daniel Rothchild, Upadhi Vijay, Sulaiman Almatrudi and advised by Prof.
Susan Shaheen.

I would like to specifically thank Eugene Vinitsky and Prof. Bayen for all of their support
throughout the years. Additionally, I would like to thank all of my friends and professors
who have made my time at Berkeley such a memorable experience. Go Bears!

Finally, to my parents. Without their constant support and love, none of this would have
been possible. Thank you.

1

Chapter 1

Introduction

Human driving behavior has shown to be unstable: even without the presence of outside
perturbations, “stop-and-go” waves can form and propagate down a highway, causing cars
to constantly accelerate and brake instead of traveling at a constant speed. As a result of
this unnecessary acceleration and braking, tra�c waves have been shown to increase fuel
consumption by as much as 67% [32].

Flow smoothing is a technique that uses a type of adaptive cruise control in mixed-
autonomy settings to dissipate these tra�c waves, reducing the fuel wasted on unnecessary
accelerating and braking. If a large enough fraction of vehicles (⇠ 5-30%) on the road have
a flow-smoothing cruise controller enabled, tra�c waves can be dissipated, even in regions
of high congestion. Existing empirical evidence shows that flow smoothing can reduce real-
world fuel consumption by 40% on a simple ringed road [32].

To facilitate the training and evaluation of controllers in more complex mixed-autonomy
scenarios, researchers developed Flow [37], a framework interfacing an open source tra�c
microsimulator, SUMO [4] with state-of-the-art deep reinforcement learning (RL) algorithms.
RL is a technique for developing controllers that has been shown to be successful in a wide
variety of settings, including video games [24] [21], 3D locomotion [29], and manipulation
[1]. RL policies are developed to maximize a target reward and work especially well when
given access to direct sampling from a simulator.

Policies may seek to maximize average velocity, maintain a certain throughput, minimize
travel time, reduce energy consumption, or otherwise manipulate some characteristic about
the tra�c at a system level. Flow has yielded state of the art controllers for a variety of tra�c
settings [36]. Controllers trained in Flow were even successfully transferred to physical, 1:25
scale cars in a toy-city environment [16].

In this report, we will (1) detail the Flow framework and outline the challenges in de-
ploying policies trained in Flow, (2) present D-MALT: Diverse Multi-Adversarial Learning
for Transfer, a contribution to the robustness literature that can be used in conjunction
with Flow, (3) introduce transfer tests in Flow to the assess the robustness of controllers
across several di↵erent metrics critical for deployment. This work serves as a stepping stone
towards training driving policies in Flow and deploying them at-scale in the real world.

2

Chapter 2

Flow

Flow [37] is a framework for training controllers using deep reinforcement learning in mixed-
autonomy tra�c. In this section, we introduce flow smoothing, introduce Deep RL, detail
the Flow framework, and present several challenges to deployment of controllers trained with
Flow.

2.1 Flow Smoothing

On a given stretch of roadway, the average following distance between cars is determined by
the density of vehicles on the road. When demand for the roadway increases, the density
increases, and the average following distance decreases commensurately. As a result, tra�c
is forced to slow down in order to accommodate the shorter following distance: given human
reaction time, the distance required to stop safely behind a braking vehicle increases with
increasing speed, so a smaller gap between cars requires cars to be going slower.

In an ideal world, all the cars along a congested roadway would travel at the average
speed; this would minimize accelerating and braking, thereby minimizing emissions. How-
ever, constant-speed flow is unstable in practice. As soon as one driver brakes, trailing cars
also have to brake to compensate, eventually leading to tra�c waves. In a tra�c wave, cars
speed up too much when there is space ahead of them and then are forced to brake once they
meet slower tra�c. This accelerating and braking phenomenon forms a positive feedback
loop, and has been shown to lead to the spontaneous formation of stop-and-go tra�c waves.

Flow smoothing is a technique used to smooth out these tra�c waves: by accelerating less
than a human would in the same situation, automated flow-smoothing vehicles can eliminate
waves, leading to reduced energy consumption from all cars along the same stretch of road.

2.2 Deep Reinforcement Learning

Deep Reinforcement Learning (RL) aims develop a controller that operates on a Markov
Decision Process [5], defined by a tuple (S,A, T , r, ⇢0, �, H), where S is a (possibly infinite)

CHAPTER 2. FLOW 3

set of states, A is a set of actions, T : S ⇥ A ⇥ S ! R�0 is the transition probability
distribution, r : S ⇥ A ! R is the reward function, ⇢0 : S) R�0 is the initial state
distribution, � 2 (0, 1] is the discount factor, and H is the time horizon. For most tra�c
tasks in the real world, the MDP is only partially observable, requiring two extra components:
⌦, a set of observations, and S ⇥ ⌦ ! R�0, a probability distribution over observations.

Throughout this work, we leverage policy gradient algorithms which aim to learn a
stochastic policy ⇡✓ : S ⇥ A ! R�0. Policies are parameterized by multilayer neural net-
works. Using samples from an environment, in this case the simulator, the policy is updated
using gradient descent: tuples of (s 2 S, a 2 A, s

0 2 S, r) are collected by rolling out the
policy over the horizon H, and the resulting samples are used to compute gradients.

2.3 Flow

Flow provides an interface between driving simulators and RL libraries. Specifically, it
creates an environment interface, as defined by the popular library OpenAI Gym [7]. For
each training iteration, batches of samples are collected by simulating the policy in the
environment for a given number of timesteps. For each step, the simulator is queried for
an observation, the policy is queried for an action given that observation, the simulator is
stepped forward with that action. The resulting state is produced by the simulator, and the
reward is calculated based on the new state. At the end of a rollout, the simulator is reset
using the initialization procedure specified.

Figure 2.1 illustrates the modular design of Flow. Note that the learned actors use the
environment interface to interact with the simulator. The policies controlling these actors
are decentralized: each AV in the system is controlled by an identical policy, processing
only local observations, and outputting an acceleration for itself. Flow handles the passing
each AVs observation to the policy and correspondingly applying the actions individually.
Flow further allows for the easy construction and design of the network, its dynamics, and
pre-specified controllers that comprise of the other agents in the simulation.

Vehicle dynamics models

Tra�c dynamics can be generally represented by ordinary di↵erential equation (ODE) mod-
els known as car following models (CFMs). These models describe the longitudinal dynamics
of human-driven vehicles, given only observations about itself and the vehicle preceding it.
CFMs vary in terms of model complexity, interpretability, and their ability to reproduce
prevalent tra�c phenomena, including stop-and-go tra�c waves. Separate models are neces-
sary for modeling of a variety of additional complex tra�c dynamics, including lane changing,
merging, driving near tra�c lights, and city driving.

CHAPTER 2. FLOW 4

Figure 2.1: Overview of the Flow Framework from [37]. Specifically, Flow is comprised of
several modules that aim to represent the tra�c scenario as an MDP. The pre-defined actors
and simulation dynamics attempt are configured to match a specific deployment environment.
Additional dynamics may include logic for toll-metering, tra�c lights, or other components
of the tra�c network.

2.4 Deployment Challenges

When designing these controllers for deployment in the real world, careful calibration of
network dynamics and control boundaries is essential. However, in many facets of the simu-
lation, large gaps will exist between the dynamics during training and the dynamics during
deployment. To be deployed in real settings, controllers must be robust to a variety of in-
accuracies, such as observational and actuation noise, fluctuations in density and speed of
tra�c, misspecified driving dynamics, or unpredictable behavior of human drivers.

Jang et al. attempted zero-shot transfer from simulation to real in a 1:25 scale toy city
[16]. They found that transferring naively trained controllers from Flow directly to the
physical environment was unsuccessful, leading to collisions. By introducing noise in both
the actions and the states of the policy during training, the authors improved the policies
performance in transfer. Though this simple trick may have been su�cient for the toy city,
more sophisticated strategies will likely be necessary for a full scale deployment.

Secondly, though human models can be tuned to recreate macroscopic phenomenon such
as stop-and-go-waves, the true behavior of humans may similarly cause a distributional shift
that the controllers were not trained against. Furthermore, injecting noise or otherwise
randomizing the behavior of the humans in a way that is realistic is a non-trivial problem.

The sim-to-real gap between the driving simulator used in Flow and a full-scale road
network with actual autonomous vehicles must be bridged in order to successfully deploy
learned policies on these fleets of vehicles.

5

Chapter 3

D-MALT: Diverse Multi-Adversarial
Learning for Transfer

3.1 Introduction

Developing policies that work e↵ectively across a wide range of potential deployment envi-
ronments is one of the core problems of engineering. The complexity of the physical world
means that the models used to design policies are often inaccurate. This leads to perfor-
mance degradation when policies tuned to fit a particular model are deployed on the true
model, also called model mismatch. In particular, applications such as robotics often em-
ploy physics simulators as models, but the mismatch in dynamics between the simulator
and the real world results in underperforming controllers. This is known as the reality gap.
In this work, we focus on mitigating the performance degradation that results from model
mismatch.

Optimization-based policy design schemes are highly e↵ective at taking advantage of the
particulars of their simulator, often overfitting to the simulator model. In some extreme
cases, policies have been shown to exploit bugs or unrealistic physics, learning policies that
allow them to fly [17]. Some physical dynamics such as contact forces are inherently dif-
ficult to model, making accurate simulation nearly impossible. To make simulation-based
reinforcement learning control design viable, it is necessary to develop techniques that can
alleviate overfitting and guarantee robust performance at transfer time.

For model-free control problems, an e↵ective technique to combat the reality gap is
domain randomization [34], a procedure in which perturbations are randomly sampled for
both the dynamics and the state space: the learned policy should perform well in expectation
over all the dynamics instances. For example, [25] train a robot to push a puck to a goal
while sampling random friction and mass values for the dynamics of the puck. Then, even if
the base value of puck friction is not perfectly modelled in the simulator, the resultant policy
will transfer well as long as the real puck’s friction is near the range of sampled values.

However, simulators have an immense range of possible parameters to vary; domain

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 6

randomization depends critically on a human designer picking appropriate parameters to
randomize. In the puck example, the designers chose to neglect varying the friction of the
arm joints, air resistance, actuation speeds, etc. When the variations between simulator and
reality are obvious, picking the right randomizations is straightforward. However, when the
model mismatch between simulator and reality is less obvious, it is possible to pick ran-
domizations that entirely miss failure modes. Furthermore, because domain randomization
uniformly samples over examples which are not aligned with any notions of task di�culty,
robustness against hard examples is not guaranteed.

An alternate approach is to introduce a single perturbative adversary trained to minimize
the agent’s reward (RARL) [26]. Training against this adversary should yield a policy that
approximately plays a minimax strategy. This policy will act as though the worst possible
outcome could occur at any time, leading to lower performance if the transfer task turns out
to have easier dynamics than the dynamics constructed by the adversary. Furthermore, as
we discuss in Sec. 3.3, standard RL formulations are unlikely to actually yield a minimax
optimal policy.

In this work, we contrast domain randomization and RARL with Diverse Multi-Adversarial
Learning for Transfer (D-MALT), a procedure in which we deploy a set of learned, diverse
adversaries that perturb the system dynamics. We set up the problem as a general-sum,
multi-agent game in which each adversary is given a cumulative reward target that it tries
to push the policy to achieve. Using multiple adversaries with di↵erent target rewards, we
can construct a range of di�cult and easy dynamics for the policy to solve. The agent must
subsequently learn a policy that is robust to a range of very distinct tasks.

We show that adversaries trained with this simple reward are can catch catch failure
modes missed by domain randomization and RARL. We use a multi-armed bandit task and a
linear-quadratic regulator task to illustrate these failure modes and demonstrate that policies
trained using D-MALT surpass both domain randomization and RARL on these baselines.
Finally, we show in a Mujoco Hopper task that training against multiple diverse adversaries
leads to a policy that matches the performance of a hand-designed domain randomization
baseline.

The main contributions of this paper are the following:

• Formulating a simple reward that encourages adversary diversity and showing that this
reward is su�cient to yield significant diversity.

• Showing that even on simple tasks, D-MALT can catch failure modes that domain
randomization consistently misses.

• Demonstrating that playing against diverse adversaries is competitive against hand-
designed domain randomization and can even exceed it on a holdout test set of transfer
tasks.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 7

3.2 Related Work

Our work builds on prior work on using domain randomization to learn robust policies, as
well as existing work on learned domain randomizations. Domain randomization, without
any fine-tuning in the real world, has been used for e↵ective robot grasping [34], manipulating
a puck to a goal [25], learning to fly a quadcopter [28], and manipulating a Rubik’s cube [2].

We di↵er from these approaches in that our domain randomizations are learned, removing
the need for a human to design the specific randomizations. Additionally, as we note in
Sec. 3.3, domain randomization can yield uninformative samples in high-dimensional space.
Unlike [34], we do not consider state space domain randomizations in this work.

Additionally, there is prior work on using one or more adversaries to attempt to learn
a robust policy. In [20], the work closest to ours, they use a method called Active Domain

Randomization, in which a set of diverse adversaries are used to generate the domain ran-
domizations. Our primary improvement over this work is a series of simplifications: we
replace their discriminator reward with a simple goal reward (described in Sec. 3.3) and
show that there is no need to use a training strategy that couples the adversary policies in
the gradient update; simple uncoupled policy gradient algorithms are su�cient and faster.
Robust Adversarial Reinforcement Learning (RARL) [26] uses a single adversary to pick
out friction forces to apply in simulation environments and trains the adversary against the
policy in a zero-sum game to approximate a minimax formulation; we use this work as a
baseline.

We also note a series of other approaches for learning policies that are robust to transfer,
each of which our work is compatible with. Domain randomization is commonly used to
generate tasks in meta learning, as in [23]; our approach can be substituted in to replace
the domain randomization. [31] apply a penalty for adversaries generating trajectories that
di↵er sharply from the base environment. [3] regularize the Lipschitz coe�cient of the policy
to ensure that the policy is smooth across jumps in state and observe that this appears to
improve robustness and generalization. [27] point out that the use of neural networks can
contribute to a loss of robustness, and that simpler linear controllers may help with transfer.

Other approaches to tackling sim-to-real include re-tuning the simulator using real-world
data to increase its correspondence with reality [6, 33, 9], using the simulation to discover
high level commands that are obeyed by a controller optimized for command-following in
realistic dynamics [22, 10], using the simulator as a prior on the true model [11], and using
a generative network to make reality look more like the simulator [15].

3.3 Methods

In this section, we discuss the baselines we compare against for our transfer tests: a) domain
randomization, and b) single-adversary training in a minimax formulation (RARL). We
outline weaknesses of both approaches. Finally, we propose D-MALT, a training scheme
that aims to mitigate the identified weaknesses of our baselines.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 8

Baselines

RARL: Robust Adversarial Reinforcement Learning

Our first baseline consists of a policy trained with RARL: a single adversary operating in
a zero-sum game against the policy, as is done in [26]. The zero-sum game approximates a
minimax game (i.e. if the policy reward is rt the adversary reward will be �rt); however, it
is not necessarily equivalent to a minimax game, as RL optimizes the expected return rather
than the minimum or maximum return. Training under this framework can provide a lower
bound on performance; a policy playing a minimax strategy has a guaranteed minimum
return as long as it is deployed in environments that do not apply perturbations exceeding
possible adversarial actions. We note that a single policy playing the true minimax strategy
would yield behavior that is maximally conservative. Because the policy always expects
perturbations that yield the worst possible return, the policy plays conservatively on transfer
tasks that might be easier than its training task.

We note that there is no guarantee of convergence of policy gradient methods to a Nash
equilibrium in zero-sum games [19]. Empirically, policy gradient learning in zero-sum games
often fails to find the Nash equilibrium [13]. Furthermore, it is common to parameterize a
continuous action policy via a diagonal Gaussian distribution; this class of policies is insu�-
ciently expressive to represent any Nash equilibrium that involves a multi-modal, stochastic
adversary policy. Due to this, the adversary can only represent dynamical systems drawn
from a unimodal distribution; playing against an adversary trained in the RL formulation is
unlikely to actually yield the guaranteed lower bound performance that would occur if we
learned a true minimax optimal policy.

Figure 3.1: Comparison between the optimal adversary strategy, a trimodal distribution
captured by three adversaries (shown on top), and some possible single adversary strategies
(shown in blue) which can never express the required multi-modality.

Fig. 3.1 illustrates this issue; the upper figure illustrates a multi-modal strategy in which
an adversary chooses with equal weight between three sets of actions. The unimodal, single
adversary can only approximate this by either concentrating its weight on one of the actions

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 9

or uniformly spreading out between the actions. One could attempt to resolve this by
sampling uniformly over multiple adversaries, each playing a minimax strategy but this is
likely to yield a degenerate case where some of the minimax adversary strategies collapse
onto the same mode instead of covering all the modes. This is one of the reasons diversity
is necessary; it helps to avoid mode collapse.

Domain Randomization

As a second baseline, we train policies in the presence of domain randomizations that are
sampled uniformly at the beginning of each training rollout. For each experiment, we pick
particular randomization parameters that seem to logically correlate with the set of transfer
tasks that we eventually intend to deploy our policies in. However, since policy gradient
methods aim to optimize the expected cumulative return across rollouts, we expect the
resultant policy to perform well in expectation across the distribution of tasks returned by
the domain randomization. Therefore, if the domain randomization is biased towards tasks
that are “easy”, the policy will bias its behavior to favor improved performance on easy
tasks.

As we show on two simple environments, domain randomization can be unintentionally
biased towards tasks that are not particularly di�cult, leading to a policy that performs
poorly on hard examples. Without a deep understanding of the specific problem domain,
there is not an obvious way to tune domain randomization to incorporate knowledge about
the di�culty of the transfer tasks that the policy will be deployed on.

D-MALT: Diverse Adversarial Reinforcement Learning for
Adaptation

In D-MALT, we allow a diverse set of adversaries to pick perturbations that the policy
experiences during training time. Each adversary has an expected policy return target and
achieves maximum return when the policy hits the return target. With this method, we
address the solutions to both weaknesses mentioned above: 1) the presence of multiple
adversaries should alleviate the issues of uni-modality discussed in Sec. 3.3, and 2) the
reward target gives us a knob to tune the di�culty of the set of environments the policy
experiences during training, allowing us to overcome the pitfall of domain randomization
discussed in Sec. 3.3, where most of the sampled perturbations do not actually cause any
degradation in the expected reward. In Sec. 3.3 we describe the formulation of the adversary
reward that we use to tune diversity / task di�culty and in Sec. 3.3 we describe the training
procedure of our algorithm.

Adversary reward function

In reinforcement learning (RL), the goal is to maximize the expected return. If a policy
trained in one environment achieves the same expected return when transferred to another,

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 10

we would say that the controller was robust to transfer even if the distribution of trajectories
in the new environment was completely di↵erent. Thus, environments that directly cause a
shift in reward present valuable information to the policy.

To encourage diversity in the observed rewards, we reward the adversaries for pushing the
policy into trajectories that yield di↵erent expected returns. For notation, we define r

i
adv(t)

as the reward of adversary i at timestep t, rp(t) as the reward of the policy at timestep t

and R
t
p =

Pt
i=0 rp(i) as the cumulative reward of the policy up to timestep t. Finally, we

denote the maximum time-horizon of the problem as T .
We define two hyperparameters: Rlow, the lowest target of the desired reward range and

Rhigh, the highest target. Given N adversaries indexed from 1 to N , we uniformly divide the
reward range between adversaries such that adversary i will have a desired total score of:

r
i
goal = Rlow + i

Rhigh �Rlow

N

Because it is easier to learn a dense reward than a sparse reward, we allocate the total reward
evenly among each timestep. Finally, since many RL problems have termination conditions,
we want the adversary reward to be positive so it does not have an incentive to terminate
the rollout. Putting these to components together, our adversary reward is:

r
i
adv(t) =

r
i
goal �

��rigoal � T
t R

t
p

��+ c

T
(3.1)

where c is a constant used to ensure that the reward is always positive. At each timestep,
the adversary reward is maximized by moving the policy toward hitting the reward target
exactly, treating the cumulative reward target as evenly divided amongst the timesteps.

Training procedure

In the multi-adversary formulation, we sample a new adversary at the start of each rollout,
such that if the batch size is M and we have N adversaries, each adversary sees an average
of M

N samples. In contrast to [26] we do not alternate training between the policy and
adversaries; every adversary that has acted at least once during an iteration receives a
gradient update. We use Proximal Policy Optimization [30] to perform the optimization of
our policies and adversaries. Since only one adversary is active in any given rollout, the
total time cost of D-MALT is the normal cost of stepping the environment plus twice the
amount of time needed to compute actions plus twice the amount of time needed to compute
gradients.

3.4 Experiments

In this section we briefly characterize the Markov Decision Processes (MDPs), implementa-
tions of domain randomization, and transfer tests for each task. A more complete description
of the state, action, and reward spaces of the MDP is available in the supplementary section.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 11

Overview of the Environments

Linear systems

We use a linear system for demonstrating how domain randomization can fail to identify
critical failure modes. The objective is to minimize the expected cumulative regret of a
quadratic cost for an unknown linear system with the following dynamics:

xk+1 = �↵(I +�)xk + 2(1� ↵)Iak
0.5 < ↵ < 1

|�ij| <
2(1� ↵)

d

(3.2)

where xk is the state of the system at time k, the policy action is ak, � is a perturbation
matrix either picked by an adversary or via domain randomization, and d is the state di-
mension. Every nr we reset the system to prevent the state from going o↵ to infinity in
long-horizon tasks.

The value of ↵ is chosen so that the base system without � is stable. By the Gershgorin
Circle Theorem [14], the bounds on the individual elements of � mean that �max 2(1�↵)
where �max is the spectral radius of �. This implies that the adversary can always destabilize
the uncontrolled system and that the policy can always stabilize the perturbed system.

The agent minimizes the cumulative quadratic regret
PT

t=0
J⇤

T � (xT
t xt + 5uT

t ut) where
J
⇤ = x

T
0 Px0 is the optimal infinite horizon discrete time cost which can be found by solving

the discrete time Algebraic Ricatti Equation to compute a value for P.
The agent’s state space is all previous observed states and actions, concatenated together

and padded with zeros; the reward is rt =
J⇤

T � (xT
t xt+5uT

t ut). The adversary has a horizon
of 1; its only state is x0 and at the first timestep it outputs the entries of the matrix �.

For the domain randomization baseline we uniformly sample the entries of � fromh
�2(1�↵)

n ,
2(1�↵)

n

in⇥n

. This corresponds to a naive domain randomization scheme. Another

possible baseline would be to sample the eigenvalues of � directly and then apply a unitary
similarity transformation to �; however, this approach would fail to construct systems with
geometric multiplicity greater than 1. A researcher hoping to easily construct systems with
non-trivial null-spaces might fall back on uniformly sampling the matrix entries. Thus, we
used this as our baseline rather than directly sampling the matrix eigenvalues.

Multi-armed stochastic bandit

As a second illustrative example we examine a multi-armed stochastic bandit, a problem
widely studied in the reinforcement learning literature. We construct a k-armed bandit
where each arm i is parameterized by a Gaussian with unknown mean µi, bounded between
[�5, 5] and standard deviation �i, bounded between [0.1, 1]. The goal of the policy is to
minimize total cumulative regret RT = T maxi µi �E [

Pn
t=0 X(at)] over a horizon of T steps

where X(at) ⇠ N (µa, �a).

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 12

At each step, the policy is given an observation bu↵er of stacked frames consisting of all
previous action-reward pairs padded with zeros to keep the length fixed. The adversary has
a horizon of 1, and at timestep zero it receives an observation of 0 and outputs k means and
standard deviations that are randomly shu✏ed and assigned to the arms. For our domain
randomization baseline we uniformly sample the means and standard deviations of the arms.

Mujoco

We use the Mujoco Hopper [35] environment as a test of the e�cacy of our method versus
the baselines described in Sec. 3.3. Recalling that one of our goals is to minimize human
involvement, we replace the adversary perturbation formulation of [26] with a more general
perturbation in which the adversary applies an action that is added to the policy actions.
The notion here is that the adversary action is passed through the dynamics function and
represents a perturbed set of dynamics.

Although it is standard to clip actions within some box, we clip the policy and adversary
actions separately. Otherwise, a policy would be able to limit the e↵ect of the adversary by
always taking actions at the bounds of its clipping range.

The policy’s state space consists of the previous h observed states and actions concate-
nated together and padded with zeros; the reward is a combination of distance travelled and
a penalty for large actions. The adversary observes the same state as the agent; its actions
are directly applied onto the policy action. Its reward function is given by Eq. 3.1.

For our domain randomization Hopper baseline, we use the following randomization
scheme: at each rollout, we scale the friction of all joints by a single value uniformly sampled
from [0.7, 1.3]. We also randomly scale the mass of the ’torso’ link by a single value sampled
from [0.7, 1.3].

Train-Validate-Test Split

Unlike standard RL, where the e↵ectiveness of a set of hyperparameters directly corresponds
to its performance during train time, we cannot simply use the cumulative return as the
selection metric, as the optimal hyperparameters on the training task may not necessarily
train the most robust policy.

We adopt the conventional train-validate-test split from supervised learning to evaluate
di↵erent hyperparameters. We use the validation tasks (described in supplementary section)
to select hyperparameters. For the chosen hyperparameters, we retrain the policy across
ten seeds and report the resultant mean and standard deviation of the seeds across the
validation tests. This tests for robustness of the proposed approach to initialization of the
neural network. We also construct a holdout set of “hard” examples for each of the tasks
that we report the mean and standard deviation for (std. deviations are reported in the
supplementary section).

We use the following holdout test sets for the di↵erent environments.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 13

• Linear: a set of systems in which the perturbation matrix always makes the system
unstable.

• Bandit: variations of the std. deviations of the arms to be at their minimum and
maximum values, as well as varying the maximal separation of the arms.

• Mujoco: combinations of low and high values of frictions for di↵erent combinations of
legs and torso.

Exact details on the tests are in the supplementary section.

Code reproducibility

Details on the computational resources used for each environment, including the hyperpa-
rameter sweeping, is available in the supplemental material. Additionally, an estimate of the
total cost of reproduction of this paper is provided in the supplementary section; it comes
out to (⇡ $100) on AWS EC2 when using spot instances.

All code used in this experiment is available at Anonymized and is frozen at git commit
Anonymized. We have constructed a single file that can be used to rerun all of the experiments
and a single file that can be used to reproduce all the graphs. For RL training, we use RLlib
0.8.0 [18] and AWS EC2 for all the computational resources.

3.5 Results and Discussion

Adversary Diversity

To understand whether D-MALT is su�cient to induce diversity in our adversaries, we
visualize the eigenvalues from a 6-dimensional linear system system with five adversaries in
Fig. 3.2, as well as the distribution of adversary arms for a 2-arm bandit in Fig. 3.3. For the
linear system, the learned strategies of the adversary correspond to expected intuition: the
adversaries trying to make the problem di�cult (upper row) output eigenvalues that make
the system unstable. As the adversaries shift to making the problem easier (lower row), they
gradually shift to outputting eigenvalues that help stabilize the system. The diversity in the
bandit cases is also clearly visible in Fig. 3.3. The average regret against the adversaries in
the top row is lower, while the average regret against the bottom row is higher.

Analysis of validation and test set results

In the linear task, the policy trained with RARL always created an unstable system, leading
to a policy unaware that systems could be stable. This subsequently resulted in poor transfer
performance on the tests that primarily had stable eigenvalues (left and middle column in
Fig. 3.4). This stands to reason; a policy trained against RARL has no notion of stable
dynamics and will never learn that dynamics can naturally decay to zero. Conversely, domain
randomization performed well on the stable example but performed poorly on the unstable

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 14

Figure 3.2: Visualizations of the eigenvalues of the matrices output by 4 adversaries from a
6-dimensional, 5 adversary run. For each adversary, we sample 100 actions. The upper row
consists of adversaries whose goal was a low policy reward. The bottom row has adversaries
with a higher policy goal.

examples in 4-dimensions. This can be understood by looking at Fig. 3.5; in 4 dimensions,
random sampling of matrix entries failed to yield any unstable systems (� < 0.2). The logic
for picking the particular form of domain randomization discussed in Sec. 3.4 may have been
compelling, but due to the unexpected clustering behavior of eigenvalues of high dimensional
matrices, domain randomization fails to pick up on the critical notion that linear systems

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 15

Figure 3.3: Visualizations of four of the adversaries for the 2-arm Gaussian bandit; we
present 50 sampled arms for each adversary. Upper figures have a high regret target, lower
figures try to decrease the regret. As the di�culty increases, the means get closer and the
std. deviation decreases. On the easiest problem, the two arms are entirely overlapping.

can be unstable. In contrast, the D-MALT trained policy performed comparably or better
across all of the tests.

In the bandit case, Fig. 3.7 illustrates why RARL does not yield good performance on
the transfer tasks in Fig. 3.6. The adversary learns to output one nearly deterministic arm
with a low reward and a high-reward arm with maximal standard deviation. On average,
the policy has a 50% chance of receiving a reward of -10 on the first step; the optimal
policy strategy in response is to randomly sample an arm at the first timestep and then only
switch arms if it observes a negative reward. This strategy is clearly sub-optimal for other
arm distributions and unsurprisingly performs poorly on the holdout tests. This is a failing
of RARL parametrized by a diagonal Gaussian; it can only represent one set of possible
dynamics. Our approach overcomes this by filling the space with many possible arm types
from easy to hard, leading to a policy that learns a more general identification strategy. Fig.
3.3 shows that the set of arms yielded by the adversaries span a wide range of possible tasks:

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 16

Figure 3.4: Regret results from the linear transfer tests. Top row: 2 dimensional system.
Bottom row: 4 dimensional system. The left column depicts the performance of the policy
on the unperturbed, stable system xk+1 = �0.8Ixk + Iuk. The middle column represents
the regret on randomly sampled perturbation matrices with matrix entries bounded between
[� 0.4

dim ,
0.4
dim]. The right column represents the regret on sampled perturbation matrices that

make the system unstable.

from arms that are well separated and easy to identify to arms that overlap significantly.
Unsurprisingly, Fig. 3.6 shows that the D-MALT trained method sharply outperforms the
RARL strategy.

Fig. 3.6 illustrates that domain randomization did well across most transfer tests. How-
ever, as predicted in Sec. 3.3, it struggled on certain ”di�cult” transfer tests. For example,
our approach significantly outperformed domain randomization on the 5-arm Transfer Test
F with means (-5, -5, -5, -5, 5) and standard deviations of 1.0 for each arm. We found that
the most challenging adversaries often produced distributions that looked similar to Transfer
Test F, giving the learner more opportunities to play against this distribution. As a result,
D-MALT consistently outperformed domain randomization on the transfer tests with a suf-
ficient number of adversaries to play against. Thus, given the same compute budget for a
policy training with D-MALT vs. training against domain randomization, the policy train-
ing with D-MALT will likely produce a more general bandit strategy. This is particularly
interesting for papers like [12], which directly use domain randomization to train a bandit
strategy that appears to be competitive with UCB1 and Thomson sampling. It is possible
that their strategy would not be competitive on instances that were not sampled uniformly.

Surprisingly, RARL training also failed to yield significant improved robustness over no

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 17

Figure 3.5: Eigenvalues of the perturbation matrices as we increase the dimension d. For
each dimension we sample 500 matrices with elements bounded between

⇥�0.4
d ,

0.4
d

⇤
and plot

the eigenvalues. Above dimension 2, the probability of sampling an eigenvalue that makes
the uncontrolled system xk+1 = �0.8xk +� unstable approaches 0.

Figure 3.6: Performance of increasing number of adversaries vs. domain randomization on
a holdout set of transfer tests. Left graph depicts 2-armed bandit, right depicts 5-armed
bandit.

adversary on both the Hopper validation set (Fig. 3.8) and the holdout test set (Fig. 3.9).
This is in contrast to the results in [26]. We surmise that the improved robustness of the
policy trained against a single adversary in that work is due to their particular parameteriza-
tion of the adversary; applying friction at the feet. Being robust to this particular adversary
parameterization may happen to align very well with the set of transfer tests used in that
work. However, the policy trained with D-MALT sharply outperforms the zero adversary
case on both the validation and holdout test set.

Our results for D-MALT vs. domain randomization on Mujoco are less conclusive. We do
not outperform domain randomization when tested on the same mass and friction grid that
domain randomization was allowed to train on. We form our perturbations by adding the
adversary actions to the policy actions; this cannot represent all possible dynamical systems.
It is possible that the dynamical systems that are found by scaling the mass and friction
coe�cients of Hopper cannot be represented by the set of dynamical systems that can be

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 18

Figure 3.7: The reward distribution for the multi-armed bandit for the single adversary
playing the zero-sum game. At the first timestep the policy has a 50% chance of recieving a
high regret of -10.

formed by the adversary. However, on the holdout test set, we perform competitively with
domain randomization: we outperform it on 5 tasks and underperform it on 3 tasks.

3.6 Conclusion and Future Work

In this work we demonstrated that a diverse set of adversaries can e↵ectively train robust
controllers that match and sometimes exceed those trained by domain randomization. Us-
ing two simple examples, a linear system and a bandit, we demonstrated that the standard
technique of domain randomization can fail to yield risky dynamical systems that are eas-
ily identified by learned adversaries. We showed that the diverse adversaries can easily be
learned using a simple reward function that rewards them for pushing the policy to a single
reward target. Finally, using a Mujoco example, we demonstrated that this approach ex-
tended outside of our simple examples and can be competitive with domain randomization
on tasks that were not hand-picked to illustrate failures of domain randomization. In future
work we are interested in exploring the application of this approach to a wider range of
environments.

Additionally, in this work we primarily focused on transfer in simulated tasks. In [1]
the authors found that a learned set of adversaries did not help with transfer for a Rubik’s
cube manipulation task; we will conduct follow-up work to see if our approach to adversary
training helped with an actual robotics task.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 19

Figure 3.8: Comparison of the e↵ects of di↵erent numbers of adversaries and domain random-
ization on a swept grid of friction and mass scaling coe�cients for the best hyper-parameter
for each training type. Upper left: 0 adversaries. Upper right: RARL. Lower left: 5
adversaries. Bottom right: Domain randomization.

CHAPTER 3. D-MALT: DIVERSE MULTI-ADVERSARIAL LEARNING FOR
TRANSFER 20

Figure 3.9: Best performing hyperparameters of di↵erent numbers of adversaries and domain
randomization on the holdout tests, averaged across 10 seeds. The x-axis contains the labels
of the corresponding tests described in the supplementary section. Bars labelled with memory
correspond to 10 observations stacked together as the state.

21

Chapter 4

Assessing Controller E↵ectiveness in
Flow

4.1 Introduction

In this section, we evaluate a flow smoothing controller’s ability to reduce the energy con-
sumption of all vehicles on a stretch of highway. Before being able to deploy this controller,
appropriate transfer tests should evaluate whether the energy gains attained in the baseline
setting are still applicable in a range of similar environments.

We outline the analysis around two of these transfer tests: penetration rate of AVs and
increased aggressive driving by humans. Though we use a naive, hand-designed controller
rather than a trained RL policy, the software components used to evaluate this controller are
analogous with those used to evaluate RL controllers. As more sophisticated controllers are
trained, this contribution to Flow allows researchers easily design analyze their robustness
to a variety of perturbations.

Furthermore, when deploying these controllers, researchers must be aware of a number
of other important system-level metrics such as total travel time and average velocity. We
report empirical measured values for the various penetration rates tested, and note their
connection to induced demand.

4.2 Experiment Scenario

We choose to analyze the FollowerStopper controller, designed by [32]. This controller aims
to maintain a pre-tuned target speed, even if a larger gap opens up in front of it. By not
“filling-the-gap,” the controller uses the headway opened up in front of it as a damper to
reduce wave instability. Note, this is not a controller trained with RL; however, this controller
captures many of the important characteristics of general flow smoothing controllers, namely,
the large headway of the flow smoothing vehicle and periods of time in which the flow
smoothing vehicle is travelling slower than its neighbors.

CHAPTER 4. ASSESSING CONTROLLER EFFECTIVENESS IN FLOW 22

Figure 4.1: Screenshot of the simulated stretch of the I-210 in SUMO. Red cars represent
AVs.

Using a calibrated model of the I-210, we simulate about five minutes of tra�c flow across
the highway using SUMO. The simulation is initialized with free-flowing tra�c. Figure 4.1
shows the simulated highway soon after initialization.

We use the fuel consumption models built into SUMO to estimate the fuel usage for
each of the vehicles on the highway. Specifically, we report both the total fuel usage of the
vehicles and compute the average instantaneous MPG of a vehicle throughout its duration
in the simulation.

4.3 Empirical Results

In this section we detail the results of the flow smoothing experiments.

E↵ectiveness of Flow Smoothing

We find that deploying flow smoothing vehicles onto the I-210 yields savings in both time
and fuel usage. Figure 4.2 shows the traces of vehicles in two di↵erent scenarios: a base-
line scenario without flow smoothing, and a scenario with flow smoothing vehicles present.
Notably, the vehicle in the flow smoothing scenario traverses the stretch of highway in less
time, as it does not have to pass through a the tra�c wave and slow down. Furthermore,
the vehicle uses less fuel, as it does not have to decelerate and accelerate through the wave.

To illustrate the e↵ects of flow smoothing in aggregate, Table 4.1 reports the average
MPG of all non-AV simulated cars as a function of the penetration rate of flow-smoothing
AVs. As expected, increasing the penetration rate of flow smoothing vehicles dramatically
increases the average fuel economy of the human drivers, by almost a factor of 2. This

CHAPTER 4. ASSESSING CONTROLLER EFFECTIVENESS IN FLOW 23

(a) Space—Time plot for two vehicles. Note
the waves the red vehicle passes through 60%
of the way through.

(b) Fuel usage plot for two vehicles.

Figure 4.2: Time and fuel savings for two randomly selected vehicles, in a baseline sce-
nario, and with flow smoothing present.

Penetration 0% 10% 20% 30%
MPG 19± 2 25± 2 34± 4 36± 0

Table 4.1: Fuel economy achieved by the simulated human drivers as a function of the
penetration rate of flow-smoothing AVs.

CHAPTER 4. ASSESSING CONTROLLER EFFECTIVENESS IN FLOW 24

doubling of fuel economy is broadly in line with empirical results of [32], who found that fuel
consumption decreased by 40% with flow smoothing present.

Sensitivity to Aggressive Human Drivers

There are a number of potential mismatches between realistic human driving behavior and
the models used in SUMO; we chose to analyze the e↵ect of increasing the aggressiveness of
human drivers when making lane changes. Because flow smoothing controllers aim to open
large headway as a method of damping waves, we suspected that vehicles that lane change
more frequently and into smaller gaps may reduce the e↵ectiveness of the flow smoothing
controller.

We designed an “aggressive” human driver model with the same car-following controller
as the other humans in the simulation but design a lane changing controller that encourages
them to change lanes more aggressively. We then ran experiments to measure the MPG of
the non-AVs as above, varying the penetration rate of flow smoothing vehicles and aggressive
drivers.

Figure 4.3 shows the results from this two-dimensional sensitivity analysis. Error bars
listed represent one standard deviation around the mean MPG value obtained over 12 runs
with di↵erent random seeds. The left-most column of the figure demonstrates the e↵ect of
introducing flow smoothing when no aggressive drivers are present. As the human drivers
make increasingly aggressive lane changes, the positive e↵ects of flow smoothing are atten-
uated. At 50% aggressive driver penetration, the benefits of flow smoothing are almost
entirely eliminated.

These results highlight a central challenge of designing flow smoothing controllers: traf-
fic microsimulations have accurate enough human driver models to reproduce macroscopic
tra�c phenomena such as tra�c waves, but the e↵ectiveness of flow smoothing depends on
the microscopic movements of individual cars (in this case, lane changes). Modeling these
microscopic movements based on real data is a challenging and unsolved problem. To our
knowledge, we are the first to examine how the e↵ectiveness of flow smoothing degrades as a
function of driver behavior, and we argue that sensitivity analyses like these are crucial for
the successful development of flow smoothing controllers. Before we can be confident that
flow smoothing microsimulations accurately reflect the e↵ects that flow smoothing would
have on a real road, it will be necessary to measure how human drivers actually behave in a
deployment region, and simulate whether drivers like those will hinder flow smoothers.

Travel Time and System Average Velocity

Improved travel time or average speeds are of particular interest to researchers, as the increase
in demand caused by improved travel times or average speed could cause induce demand,
defined as additional trips that are created because the system is now more desirable to
travelers. The resulting increase in travel could o↵set the fuel savings gains generated by
flow smoothing vehicles.

CHAPTER 4. ASSESSING CONTROLLER EFFECTIVENESS IN FLOW 25

Figure 4.3: Average fuel economy achieved by simulated human drivers as a function of flow
smoothing penetration rate and aggressive driver penetration rate. Each cell lists the average
and standard deviation of the distribution of MPG obtained when running the simulations
with 12 di↵erent random seeds.

We therefore present both the system trip time improvement and average speed improve-
ment in Figure 4.4. In our simulations, we find a nearly 25% decrease in trip time and a
50% increase in average speeds as the penetration rate of flow smoothing vehicles increases
to 30%.

In order to estimate the potential for induced demand, we refer to [8], who comprehen-
sively model short- and long-term induced demand e↵ects. These authors find that, in the
long term, “every 10% increase in travel speeds is associated with a 6.4% increase in VMT”
[8]. Applying this number directly to flow smoothing is di�cult, since the projects used to
obtain this elasticity figure were all highway widening projects. However, without prior flow
smoothing deployments to refer to, this is likely as accurate an estimate of induced demand
as we can feasibly make. In our case, average travel speeds increase by 50% for 30% flow
smoother penetration. Referring to [8], this suggests that we would see an increase in VMT
of about 30%, far less than the 100% increase in VMT that would be needed to o↵set the
fuel savings at 30% flow smoothing penetration.

CHAPTER 4. ASSESSING CONTROLLER EFFECTIVENESS IN FLOW 26

(a) Average trip time vs. penetration of flow
smoothers. Flow smoothing reduces travel
times due to smoother flow of tra�c.

(b) Average speed vs. penetration of flow
smoothing analysis. Vehicles move faster when
flow smoothing is deployed.

Figure 4.4: When flow smoothing is deployed, average trip times through the deployment
area decrease, and average speed of all vehicles increases. These phenomena suggest that
flow smoothing will cause induced demand.

4.4 Conclusion and Future Work

We have constructed a set of transfer tests to assess the e↵ectiveness of the flow smoothing
controller under varying penetration rates and aggressive driver percentages. The changes to
Flow that enabled these transfer tests can be used to design a number of di↵erent scenarios
to assess a controllers e↵ectiveness in other regimes.

In D-MALT, we perform a train-validate-test analysis to choose hyperparameters and
algorithms. We anticipate that this contribution will be applied in a similar fashion to gauge
the e↵ectiveness and choose hyperparameters for various training strategies.

It would be further interesting to apply the adversarial behavior directly to the behavior
of the human vehicles in the simulation. This formulation is very enticing, as traditional
methods of generating robustness, such as domain randomization, struggle to characterize
the range of potential driving behaviors of a human. Rather, by allowing the adversaries to
learn or modifying existing human driving policies, we can potentially generate robustness
in the trained controllers without explicitly characterizing a range of behaviors.

27

Bibliography

[1] Ilge Akkaya et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv preprint

arXiv:1910.07113 (2019).

[2] OpenAI: Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In:
The International Journal of Robotics Research 39.1 (2020), pp. 3–20.

[3] Reda Bahi Slaoui et al. “Robust Domain Randomization for Reinforcement Learning”.
In: arXiv preprint arXiv:1910.10537 (2019).

[4] Michael Behrisch et al. “SUMO–simulation of urban mobility: an overview”. In: Pro-
ceedings of SIMUL 2011, The Third International Conference on Advances in System

Simulation. ThinkMind. 2011.

[5] Richard Bellman. “A Markovian decision process”. In: Journal of Mathematics and

Mechanics (1957), pp. 679–684.

[6] Konstantinos Bousmalis et al. “Using simulation and domain adaptation to improve ef-
ficiency of deep robotic grasping”. In: 2018 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2018, pp. 4243–4250.

[7] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[8] Robert Cervero. “Road expansion, urban growth, and induced travel: A path analysis”.
In: Journal of the American Planning Association 69.2 (2003), pp. 145–163.

[9] Yevgen Chebotar et al. “Closing the sim-to-real loop: Adapting simulation randomiza-
tion with real world experience”. In: 2019 International Conference on Robotics and

Automation (ICRA). IEEE. 2019, pp. 8973–8979.

[10] Paul Christiano et al. “Transfer from simulation to real world through learning deep
inverse dynamics model”. In: arXiv preprint arXiv:1610.03518 (2016).

[11] Mark Cutler and Jonathan P How. “E�cient reinforcement learning for robots using
informative simulated priors”. In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE. 2015, pp. 2605–2612.

[12] Yan Duan et al. “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”.
In: arXiv preprint arXiv:1611.02779 (2016).

BIBLIOGRAPHY 28

[13] Jakob Foerster et al. “Learning with opponent-learning awareness”. In: Proceedings
of the 17th International Conference on Autonomous Agents and MultiAgent Sys-

tems. International Foundation for Autonomous Agents and Multiagent Systems. 2018,
pp. 122–130.

[14] Semyon Aranovich Gershgorin. “Uber die abgrenzung der eigenwerte einer matrix”.
In: 6 (1931), pp. 749–754.

[15] Stephen James et al. “Sim-to-real via sim-to-sim: Data-e�cient robotic grasping via
randomized-to-canonical adaptation networks”. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition. 2019, pp. 12627–12637.

[16] Kathy Jang et al. “Simulation to scaled city: zero-shot policy transfer for tra�c control
via autonomous vehicles”. In: CoRR abs/1812.06120 (2018). arXiv: 1812.06120. url:
http://arxiv.org/abs/1812.06120.

[17] Victoria Krakovna. Specification gaming examples in AI. 2018. url: https://vkrakovna.
wordpress.com/2018/04/02/specification-gaming-examples-in-ai/.

[18] Eric Liang et al. “RLlib: Abstractions for distributed reinforcement learning”. In: arXiv
preprint arXiv:1712.09381 (2017).

[19] Eric Mazumdar and Lillian J Ratli↵. “On the convergence of gradient-based learning
in continuous games”. In: arXiv preprint arXiv:1804.05464 (2018).

[20] Bhairav Mehta et al. “Active Domain Randomization”. In: arXiv preprint arXiv:1904.04762
(2019).

[21] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv
preprint arXiv:1312.5602 (2013).

[22] Igor Mordatch et al. “Combining model-based policy search with online model learn-
ing for control of physical humanoids”. In: 2016 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2016, pp. 242–248.

[23] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep Rein-
forcement Learning with Model-Free Fine-Tuning”. In: CoRR abs/1708.02596 (2017).
arXiv: 1708.02596. url: http://arxiv.org/abs/1708.02596.

[24] OpenAI. OpenAI Five. https://blog.openai.com/openai-five/. 2018.

[25] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics randomiza-
tion”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2018, pp. 1–8.

[26] Lerrel Pinto et al. “Robust adversarial reinforcement learning”. In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 2817–2826.

[27] Aravind Rajeswaran et al. “Towards generalization and simplicity in continuous con-
trol”. In: Advances in Neural Information Processing Systems. 2017, pp. 6550–6561.

BIBLIOGRAPHY 29

[28] Fereshteh Sadeghi and Sergey Levine. “Cad2rl: Real single-image flight without a single
real image”. In: arXiv preprint arXiv:1611.04201 (2016).

[29] John Schulman et al. “High-dimensional continuous control using generalized advan-
tage estimation”. In: arXiv preprint arXiv:1506.02438 (2015).

[30] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347 (2017).

[31] Hiroaki Shioya, Yusuke Iwasawa, and Yutaka Matsuo. “Extending robust adversarial
reinforcement learning considering adaptation and diversity”. In: (2018).

[32] Raphael E Stern et al. “Dissipation of stop-and-go waves via control of autonomous ve-
hicles: Field experiments”. In: Transportation Research Part C: Emerging Technologies

89 (2018), pp. 205–221.

[33] Jie Tan et al. “Sim-to-real: Learning agile locomotion for quadruped robots”. In: arXiv
preprint arXiv:1804.10332 (2018).

[34] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: 2017 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS). IEEE. 2017, pp. 23–30.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE. 2012, pp. 5026–5033.

[36] Eugene Vinitsky et al. “Benchmarks for reinforcement learning in mixed-autonomy
tra�c”. In: Proceedings of The 2nd Conference on Robot Learning. Ed. by Aude Billard
et al. Vol. 87. Proceedings of Machine Learning Research. PMLR, 2018, pp. 399–409.
url: http://proceedings.mlr.press/v87/vinitsky18a.html.

[37] Cathy Wu et al. “Flow: Architecture and benchmarking for reinforcement learning in
tra�c control”. In: arXiv preprint arXiv:1710.05465 (2017).

