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Abstract

The Sparse Manifold Transform and Unsupervised Learning for Signal Representation

by

Yubei Chen

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

and the Designated Emphasis in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Bruno Olshausen, Chair

This dissertation presents three contributions on unsupervised learning. First, I describe a
signal representation framework called the sparse manifold transform that combines key ideas
from sparse coding, manifold learning, and slow feature analysis. It turns non-linear trans-
formations in the primary sensory signal space into linear interpolations in a representational
embedding space while maintaining approximate invertibility. The sparse manifold transform
is an unsupervised and generative framework that explicitly and simultaneously models the
sparse discreteness and low-dimensional manifold structure found in natural scenes. When
stacked, it also models hierarchical composition. I provide a theoretical description of the
transform and demonstrate properties of the learned representation on both synthetic data
and natural videos. Further, the SMT also provides a unifying geometric perspective on the
role of simple and complex cells. I propose a version of SMT in which neurons in the two lay-
ers correspond to simple and complex cells. This provides a new functional explanation for
these cell types: Simple cells can be viewed as representing a discrete sampling of a smooth
manifold in the sensor space, while complex cells can be viewed as representing localized
smooth linear functions on the manifold. While each individual complex cell pools from a
local region, together they tile (Sengupta et al. 2018) the manifold and build an untangled
population representation (DiCarlo & Cox 2007), which tends to preserve the identity of the
signal while straightening the transformations (Henaff et al. 2017). In the localized SMT,
the complex cell layer is learned in an unsupervised manner based on a diffusion process.
The results demonstrate that simple and complex cells are emergent properties in a neural
system that is optimized to learn the manifold structure of dynamic sensory inputs and is
subject to sparse connectivity constraints.
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The second contribution is on the discovery of word factors and word embedding visual-
ization. Co-occurrence statistics based word embedding techniques have proved to be very
useful in extracting the semantic and syntactic representation of words as low dimensional
continuous vectors. This work discovered that dictionary learning can open up these word
vectors as a linear combination of more elementary word factors. I demonstrate many of
the learned factors have surprisingly strong semantic or syntactic meaning corresponding to
the factors previously identified manually by human inspection. Thus dictionary learning
provides a powerful visualization tool for understanding word embedding representations.
Furthermore, I show that the word factors can help in identifying key semantic and syntac-
tic differences in word analogy tasks and improve upon the state-of-the-art word embedding
techniques in these tasks by a large margin.

The third contribution is on a more efficient and effective way to train energy-based mod-
els (EBMs) in high-dimensional spaces. Energy-based models assign unnormalized log-
probability to data samples. This functionality has a variety of applications, such as sam-
ple synthesis, data denoising, sample restoration, outlier detection, Bayesian reasoning, and
many more. But training of EBMs using standard maximum likelihood is extremely slow be-
cause it requires sampling from the model distribution. Score matching potentially alleviates
this problem. In particular, denoising score matching (Vincent 2011) has been successfully
used to train EBMs. Using noisy data samples with one fixed noise level, these models
learn fast and yield good results in data denoising (Saremi & Hyvarinen 2019). However,
demonstrations of such models in high quality sample synthesis of high dimensional data
were lacking. Recently, (Song & Ermon 2019) have shown that a generative model trained
by denoising score matching accomplishes excellent sample synthesis, when trained with
data samples corrupted with multiple levels of noise. Both analysis and empirical evidence
show that training with multiple noise levels is necessary when the data dimension is high.
Leveraging this insight, a novel EBM trained with multi-scale denoising score matching is
proposed. The model exhibits data generation performance comparable to state-of-the-art
techniques such as GANs, and sets a new baseline for EBMs. The proposed model also
provides density information and performs well in an image inpainting task.
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Chapter 1

Introduction

We have seen tremendous progress in supervised learning in the past decade, powered by
the convolutional neural networks (CNNs). (Krizhevsky, Sutskever, et al. 2012) However,
it is widely believed that most of the human learning happens without supervision and a
principled way of doing unsupervised learning is still lacking. Further, a precise definition of
unsupervised learning is missing. This motivated me to look at this fundamental problem
from multiple interesting and interconnected angles to gain insight from each correspondingly.
The very first question that came to my mind was: if we have not found ‘the principle’, then
what are the important pieces? The interpretation of importance is a bit subjective and
I must pick the ones that inspired me the most. Once the pieces are identified, the next
question was: can we stitch and reconcile them into one, which might be closer to the ultimate
principle we are looking for? These two questions led me to the sparse manifold transform
(SMT), which incorporates three pervasive patterns in natural signals: sparse discreteness,
low dimensional manifold structure and hierarchical composition. I will show the promising
results from applying the SMT to natural images and natural videos.

I am strongly biased to see different structures in a similar fashion, or at least I would
search for the connections. Starting from images and videos, I wondered: shall this learning
principle generalize to the other signal modalities? This question motivated me to apply
sparse coding and spectral methods, which are the key ideas in the SMT, to understand
text representation, specifically, word embedding (Mikolov, Yih, et al. 2013; Pennington,
Socher & C. Manning 2014). This query led to the discovery of word factors1, the more
elementary structure hidden in almost all word embedding representations. The word factors
also provided interesting visualization of the word vectors, which seemed to me like black
boxes for quite some time.

In my opinion, a learning theory is not just about machines. It shall also help us plow
through the plethora of enigmatic and difficult to interpret results (Hupe et al. 2001; An-
gelucci & Bullier 2003; Andolina et al. 2007; Olshausen 2013a) yielded in neuroscience re-
search, provide us new questions to ask, and deepen our understanding of the brain. With

1I will use ‘factor’ in a loose way. It doesn’t necessarily imply multiplicative factors.
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this belief, I applied the SMT to explain phenomena in visual cortex, which led to a geometric
theory for complex cells.

Natural signals, e.g. natural images, are frequently highly structured, have randomness
though far from i.i.d. Gaussian noise, and live in a high-dimensional ambient space. I believe
the ultimate model for natural images should be probabilistic, which can be formulated as
an energy function over the signal space. However, the development of the SMT is still
not complete enough to make an enegy-based model. (LeCun et al. 2006) Nevertheless, my
impatience got to me and again with the luring question: how can I construct energy-based
models for natural signals in high-dimensional spaces? As CNNs provide powerful priors
for signal modeling (Ulyanov et al. 2018), I set out to use deep energy estimator networks
(Saremi, Mehrjou, et al. 2018) to approach this problem. This journey led me to the state-of-
the-art energy-based model for natural images and a picture that somewhat unifies denoising
autoencoder and EBMs.

The thoughts above are quite general and we shall dive into more concrete problems in
the following.

Beyond a Known Topological Prior. The success of supervised learning powered by
CNNs is undoubtable. Behind the CNNs, there are two important principles: stationarity
and invariance. Given an image, stationarity means that the statistics in different locations
would be the same, thus a set of features learned can be reused via convolution. On the other
hand, building discriminative representations invariant to the variations within catergory2 is
a long-term goal in vision and many other fields. The invariance is usually achieved by the
pooling operation in the CNNs. Max-pooling provides a simple way to achieve translational
invariance. Both of these two basic operations, convolution and pooling, depend on a uniform
pixel lattice on a 2D image, or in other words the image domain has a known 2-D topological
prior. For an image, these operations might be very natural choices. However, human retinas
are not uniform, the sampling density varies significantly from the fovea to the peripheral
area. Further, different animals have different retina patterns, where many birds have two
distinct fovea per eye, cats do not even have a fovea in their retinas at all! (Morris 2012)
This implies that the learned features correspond to different areas in the retinas are also
different and they can not be shared by convolution. Without the convolution operation,
pooling operations can not be defined either. This begs for more general operations and
concepts, which do not depend on a uniform sampling on a known topological prior. Based
on these observations, I believe self-organization3 is the correct path to solve the issue.

Important Principles for Unsupervised Learning. As I argued earlier, most of human
learning happens without supervision and a principled way of doing unsupervised learn-
ing is still lacking. While a precise definition of unsupervised learning is missing, we can
vaguely define unsupervised learning as finding the patterns among data beyond pure noise.
(Ghahramani 2003) As there are many possible patterns, which should we look for? Inspired

2E.g. a dog in different location of a image shall always be classified as a dog
3In my opinion, manifold learning belongs to self-organization methods.
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by David Mumford’s introduction to pattern theory (Mumford & Desolneux 2010), I attempt
to model three important and pervasive patterns in natural signals: sparse discreteness, low
dimensional manifold structure and hierarchical composition. Each of these concepts have
been individually explored in previous studies. For example, sparse coding (Olshausen &
Field 1996; Olshausen & Field 1997) and ICA (Bell & Sejnowski 1995; Hyvärinen & Oja
2000) can learn sparse and discrete elements that make up natural signals. Manifold learn-
ing (Tenenbaum et al. 2000; Roweis & Saul 2000; Maaten & G. Hinton 2008; Belkin & Niyogi
2002) was proposed to model and visualize low-dimensional continuous transforms such as
smooth 3D rotations or translations of a single discrete element. Deformable, compositional
models (Wu et al. 2010; Felzenszwalb et al. 2010) allow for a hierarchical composition of
components into a more abstract representation. I seek to model these three patterns jointly
as they are almost always entangled in real-world signals and their disentangling poses an
unsolved challenge.

The sparse dictionary learning and manifold learning are the first two principles I picked
from the unsupervised learning literature. The third one rather comes from an efficiency
concern. Arguably humans always learn from temporal sequences rather than i.i.d. data
points. Natural transformations lead to continuous trajectories in the high-dimensional
signal space. Utilizing the temporal sequence would make the learning much more efficient.
Slow feature analysis appeared as a principle to resolve this issue. I will discuss these three
principles further in Chapter 2.

To combine the key insights from the three principles in unsupervised learning, in Chap-
ter 3, I will introduce an interpretable, generative and unsupervised learning model, the
sparse manifold transform (SMT), which has the potential to model all three patterns si-
multaneously and explicitly. The SMT consists of two stages: dimensionality expansion
using sparse coding followed by contraction using manifold embedding. Sparse coding pro-
vides a general feature learning operation and manifold embedding provides a more general
‘pooling’ to achieve invariance and equivarience. The SMT implementation is to my knowl-
edge, the first model to bridge sparse coding and manifold learning. Furthermore, an SMT
layer can be stacked to produce an unsupervised hierarchical learning network. The primary
contribution the SMT is to establish a theoretical framework for the SMT by reconciling
and combining the formulations and concepts from sparse coding and manifold learning.
With the concepts developed in the SMT, I introduce a geometric theory to understand the
relationships between the simple and complex cells in the visual cortex in Chapter 4.

Common Patterns Shared in Different Modalities. There are many different modali-
ties of signals and it’s always my interest to look for some general principles shared between
seemingly unrelated structures. I will show how to use the general SMT concepts in word
representation. Specifically in Chapter 5, I will discuss sparse word factors hidden in almost
all word embedding representations. Specifically, every word vector can be decomposed into
a linear combination of a sparse set of more elementary word factors. Thus we can use
dictionary learning to visualize word vectors. Then followed by a spectral grouping4, the

4Manifold learning is frequently formulated as a spectral problem.
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word analogy task performance can be uniformly improved.

Learning Energy-based Models in High-dimensional Ambient Spaces. Deep con-
volutional neural networks provide very powerful priors for signal modeling. However, build-
ing an energy-based model in high-dimensional ambient spaces with MLE is still quite in-
tractable. Denoising Score matching provides a powerful way to get around sampling. (Vin-
cent 2011) Finally in Chapter 6, I will present how to learn an energy-based model in a
high-dimensional space with a deep energy estimator network and denoising score match-
ing. This work in some sense provides a unified view between energy function and denoising
autoencoder.
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Chapter 2

Discrete, Continuous, and Temporal

2.1 Three Important Principles Used in

Unsupervised Learning

There are three important principles used in unsupervised learning:

• Discrete: Clustering is one of the most classical methods used in the the machine
learning. It essentially follows a ‘winner takes all’ principle: Learning a set of clusters
or templates and then we assign each data point to its closest cluster or template. The
assginment of a data point can be treated as an 1-sparse vector. In my opinion, sparse
coding is a soft clustering, which relaxes the 1-sparse requirement to ‘as sparse as pos-
sible’. This relaxation is important since the hierarchical composition exists in almost
all signals and it makes the learning algorithm more flexible to learn smaller parts than
global templates given limited resource. As a result, sparse coding can decompose a
data point into a sparse combination of the elements in the dictionary. Modeling a
data point either as 1-sparse or k-sparse, it emphasizes the discrete structures in the
signal.

• Continuous: Continuous structures receive a lot of attention in the vision problems.
Many natural transformations (e.g. translations, rotation, scaling, shading change etc.)
can be viewed as continuous. The manifold hypothesis is proposed to handle these
continuous variations and it assume all the data points in a dataset lie along a low-
dimensional manifold immersed in the high-dimensional signal space. This proposal
complements the discrete one and they together provide a more comprehensive view
to the signal modeling.

• Temporal: Arguably humans always learn from temporal sequences rather than i.i.d.
data points. Natural transformations lead to continuous trajectories in the high-
dimensional signal space. Shuffling the data doesn’t necessarily destroy the continuous
manifold strutures as we may later use other methods to recover it (e.g. finding the
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nearest neighbors among all of the shuffled data). However, utilizing the temporal
sequence would make the learning much more efficiently.

These three principles have been repeatedly applied in many different algorithms un-
der different contexts. We choose them as our building blocks to construct a theoretical
unsupervised learning framework.

In the following sections we point out connections between three representative unsu-
pervised learning methods: sparse coding, local linear embedding and slow feature analysis,
each reflect one important unsupervised learning principle discussed above. We then develop
a single framework that utilizes insights from each method to describe our model. Although
we focus here on the application to image data, the concepts are general and may be applied
to other types of data such as audio signals and text. All experiments performed on natural
scenes used the same dataset, described in Supplement A.2.

2.2 Sparse Coding

Sparse coding attempts to approximate a data vector, x ∈ IRn, as a sparse superposition of
dictionary elements φi:

x = Φα + ε (2.1)

where Φ ∈ IRn×m is a matrix with columns φi, α ∈ IRm is a sparse vector of coefficients
and ε is a vector containing independent Gaussian noise samples, which are assumed to be
small relative to x. Typically m > n so that the representation is overcomplete. For a given
dictionary, Φ, the sparse code, α, of a data vector, x, can be computed in an online fashion
by minimizing an energy function composed of a quadratic penalty on reconstruction error
plus an L1 sparseness penalty on α.

In traditional sparse coding (Olshausen & Field 1996) approach, the coefficient vector α
is computed for each input image by performing the optimization:

min
α

1
2∥x −Φα∥2

2 + λ∥α∥1 (2.2)

where λ is a sparsity trade-off penalty. After λ has been computed, then we update the
dictionary by one step following the gradient of the following optimization:

min
Φ

1
2∥x −Φα∥2

2 (2.3)

To learn a dictionary from the dataset, we repreat the step 2.2 and step 2.3 until the
dictionary converges. For this report, we learn a 10-20 times overcomplete dictionary (Ol-
shausen 2013b) and impose the additional restriction of positive-only coefficients (α ⪰ 0).
Empirically, we find that at such an overcompleteness the interpolation behavior of the
dictionary is close to locally linear. Therefore, steering the elements can be accomplished
by local neighborhood interpolation. High overcompleteness with a positive-only constraint
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makes the relative geometry of the dictionary elements more explicit. The positive-only
constraint gives us our modified optimization:

min
α

1
2∥x −Φα∥2

2 + λ∥α∥1, s.t.α ⪰ 0, (2.4)

The dictionary itself is adapted to the statistics of the data so as to maximize the sparsity
of α. The resulting dictionary often provides important insights about the structure of
the data. For natural images, the dictionary elements become ‘Gabor-like’—i.e., spatially
localized, oriented and bandpass—and form a tiling over different locations, orientations and
scales due to the natural transformations of objects in the world. In Figure 2.1 we show a
random subset of the learned dictionary.

Figure 2.1: A random sample of 600 dictionary elements from the learned dictionary (out of
4000 units). Details are better discerned by zoomed in on a monitor.

The sparse code of an image provides a representation that makes explicit the structure
contained in the image. However the dictionary is typically unordered, and so the sparse code
will lose the topological organization that was inherent in the image. The pioneering works of
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(Hyvärinen & P. Hoyer 2000; Hyvärinen, P. O. Hoyer, et al. 2001) and (Osindero et al. 2006)
addressed this problem by specifying a fixed 2D topology over the dictionary elements that
groups them according to the co-occurrence statistics of their coefficients. Other works learn
the group structure from a statistical approach (Lyu & Simoncelli 2008; Ballé et al. 2015;
Köster & Hyvärinen 2010), but do not make explicit the underlying topological structure.
Some previous topological approaches (A. B. Lee et al. 2003; De Silva & G. E. Carlsson
2004; G. Carlsson et al. 2008) used non-parametric methods to reveal the low-dimensional
geometrical structure in local image patches, which motivated us to look for the connection
between sparse coding and geometry. From this line of inquiry, we have developed what we
believe to be the first mathematical formulation for learning the general geometric embedding
of dictionary elements when trained on natural scenes.

Another observation motivating this work is that the representation computed using over-
complete sparse coding can exhibit large variability for time-varying inputs that themselves
have low variability from frame to frame (Rozell et al. 2008). While some amount of vari-
ability is to be expected as image features move across different dictionary elements, the
variation can appear unstructured without information about the topological relationship
of the dictionary. In section 3.2 and section 3.3, we show that considering the joint spatio-
temporal regularity in natural scenes can allow us to learn the dictionary’s group structure
and produce a representation with smooth variability from frame to frame (Figure 3.4).

2.3 Manifold Learning

Natural transformations in images usually leads to highly non-linear trajectories in the signal
(image) space, even for the translation operation. In Figure 2.2 we show a translation of a
letter ‘A’ from the left to the right, this is a non-linear since a linear interpolation between
the left and the right image would lead to a superposed ‘A’ shown in the bottom. If we
model the transformation as a smooth manifold, the nonlinear manifold interpolation would
lead to the ‘A’ in between shown on the top.

In manifold learning, one assumes that the data occupy a low-dimensional, smooth mani-
fold embedded in the high-dimensional signal space. A smooth manifold is locally equivalent
to a Euclidean space and therefore each of the data points can be linearly reconstructed by
using the neighboring data points. The Locally Linear Embedding (LLE) algorithm (Roweis
& Saul 2000) first finds the neighbors of each data point in the whole dataset and then
reconstructs each data point linearly from its neighbors. It then embeds the dataset into a
low-dimensional Euclidean space by solving a generalized eigendecomposition problem.

The first step of LLE has the same linear formulation as sparse coding (2.1), with Φ
being the whole dataset rather than a learned dictionary, i.e., Φ = X, where X is the
data matrix. The coefficients, α, correspond to the linear interpolation weights used to
reconstruct a datapoint, x, from its K-nearest neighbors, resulting in a K-sparse code. (In
other work (Elhamifar & Vidal 2011), α is inferred by sparse approximation, which provides
better separation between manifolds nearby in the same space.) Importantly, once the
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Figure 2.2: Even the most typical translation operation would lead to a highly non-linear
trajectory in the image space.

embedding of the dataset X → Y is computed, the embedding of a new point xnew → ynew

is obtained by a simple linear projection of its sparse coefficients. That is, if αnew is the K-
sparse code of xnew, then ynew = Y αnew. Viewed this way, the dictionary may be thought of
as a discrete sampling of a continuous manifold, and the sparse code of a data point provides
the interpolation coefficients for determining its coordinates on the manifold. However, using
the entire dataset as the dictionary is cumbersome and inefficient in practice.

Several authors (De Silva & Tenenbaum 2004; Silva et al. 2006; Vladymyrov & Carreira-
Perpinán 2013) have realized that it is unnecessary to use the whole dataset as a dictionary.
A random subset of the data or a set of cluster centers can be good enough to preserve
the manifold structure, making learning more efficient. Going forward, we refer to these as
landmarks. In Locally Linear Landmarks (LLL) (Vladymyrov & Carreira-Perpinán 2013),
the authors compute two linear interpolations for each data point x:

x = Φlmα + n (2.5)

x = Φdata γ + n′ (2.6)

where Φlm is a dictionary of landmarks and Φdata is a dictionary composed of the whole
dataset. As in LLE, α and γ are coefficient vectors inferred using KNN solvers (where the γ
coefficient corresponding to x is forced to be 0). We can substitute the solutions to equation
(2.5) into Φdata, giving Φdata ≈ ΦlmA, where the jth column of the matrix A is a unique
vector αj. This leads to an interpolation relationship:
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Φlmα ≈ ΦlmAγ (2.7)

The authors sought to embed the landmarks into a low dimensional Euclidean space
using an embedding matrix, Plm, such that the interpolation relationship in equation (2.7)
still holds:

Plmα ≈ PlmAγ (2.8)

where we use the same α and γ vectors that allowed for equality in equations (2.5) and
(2.6). Plm is an embedding matrix for Φlm such that each of the columns of P represents an
embedding of a landmark. Plm can be derived by solving a generalized eigendecomposition
problem (Vladymyrov & Carreira-Perpinán 2013).

The similarity between equation (2.1) and equation (2.5) provides an intuition to bring
sparse coding and manifold learning closer together. However, LLL still has a difficulty in
that it requires a nearest neighbor search. We posit that temporal information provides a
more natural and efficient solution.

2.4 Slow Feature Analysis

The general idea of imposing a ‘slowness prior’ was initially proposed by (Földiák 1991) and
(Wiskott & Sejnowski 2002) to extract invariant or slowly varying features from temporal
sequences rather than using static orderless data points. While it is still common practice
in both sparse coding and manifold learning to collect data in an orderless fashion, other
work has used time-series data to learn spatiotemporal representations (van Hateren & Ru-
derman 1998; Olshausen 2003; Hyvärinen, Hurri, et al. 2003; Goroshin, Bruna, et al. 2015)
or to disentangle form and motion (Berkes et al. 2009; Cadieu & Olshausen 2012; Denton
& Birodkar 2017). In Figure 2.3, we show the classical swiss roll example to illustrate the
benefit of having access to the temporal sequences. Let’s assume the data points occupy
a 2D swiss-roll manifold in the 3D space. It’s possible to perform manifold learning with
enough i.i.d. samples (the gray dots). However, haveing the access to the temporal se-
quences (the red curves), we can start to learn the geometry without waiting till we have
collected enough samples. In high-dimensional signal space, the samples are very sparse and
temporal sequences can make learning much more efficient. Though we do not claim the
temporal sequences are necessary, the combination of topography and temporal coherence
in (Hyvärinen, Hurri, et al. 2003) provides a strong motivation for this work. Later, we will
show the case when temporal sequences are not available.

Here, we utilize temporal adjacency to determine the nearest neighbors in the embedding
space (eq. 2.6) by specifically minimizing the second-order temporal derivative, implying
that video sequences form linear trajectories in the manifold embedding space. So eq.2.6 can
be solved with a deterministic solution rather than performing expensive nearest neighbor
search followed by local linear interpolation:

xt = Φdata sequenceγt + n′ (2.9)
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Figure 2.3: With enough i.i.d. samples (the gray dots), it’s certainly possible to understand
the manifold geometry in the signal space. However the temporal sequences (the red curves)
provides information about the the local geometry without waiting we have collected enough
random samples.

where γt has all zero except for the (t − 1)th and (t + 1)th entries been 1
2 .

A similar approach was recently used by (Goroshin, Mathieu, et al. 2015) to linearize
transformations in natural video. This is a variation of ‘slowness’ that makes the connection
to manifold learning more explicit. It also connects to the ideas of manifold flattening (Di-
Carlo & Cox 2007) or straightening (Hénaff et al. 2019) which are hypothesized to underlie
perceptual representations in the brain.
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Chapter 3

The Sparse Manifold Transform

3.1 Functional Embedding Perspective

The SMT framework differs from the classical manifold learning approach in that it relies
on the concept of functional embedding as opposed to embedding individual data points. We
explain this concept here before turning to the sparse manifold transform in section 3.2.

In classical manifold learning (Huo et al. 2007), for a m-dimensional compact manifold,
it is typical to solve a generalized eigenvalue decomposition problem and preserve the 2nd

to the (d + 1)th trailing eigenvectors as the embedding matrix Pc ∈ IRd×N , where d is as
small as possible (parsimonious) such that the embedding preserves the topology of the
manifold (usually, m ≤ d ≤ 2m due to the strong Whitney embedding theorem (J. Lee
2012)) and N is the number of data points or landmarks to embed. It is conventional to
view the columns of an embedding matrix, Pc, as an embedding to an Euclidean space,
which is (at least approximately) topologically-equivalent to the data manifold. Each of
the rows of Pc is treated as a coordinate of the underlying manifold. One may think of a
point on the manifold as a single, constant-amplitude delta function with the manifold as its
domain. Classical manifold embedding turns a non-linear transformation (i.e., a moving delta
function on the manifold) in the original signal space into a simple linear interpolation in the
embedding space. This approach is effective for visualizing data in a low-dimensional space
and compactly representing the underlying geometry, but less effective when the underlying
function is not a single delta function.

In this work we seek to move beyond the single delta-function assumption, because natural
images are not well described as a single point on a continuous manifold of fixed dimension-
ality. For any reasonably sized image region (e.g., a 16 × 16 pixel image patch), there could
be multiple edges moving in different directions, or the edge of one occluding surface may
move over another, or the overall appearance may change as features enter or exit the region.
Such changes will cause the manifold dimensionality to vary substantially, so that the signal
structure is no longer well-characterized as a manifold.

We propose instead to think of any given image patch as consisting of h discrete structures
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simultaneously moving over the same underlying manifold - i.e., as h delta functions, or an
h-sparse function on the smooth manifold. This idea is illustrated in figure 3.1. First, let us
organize the Gabor-like dictionary learned from natural scenes on a 4-dimensional manifold
according to the position (x, y), orientation (θ) and scale (σ) of each dictionary element
φi. Any given Gabor function corresponds to a point with coordinates (x, y, θ, σ) on this
manifold, and so the learned dictionary as a whole may be conceptualized as a discrete
tiling of the manifold. Then, the k-sparse code of an image, α, can be viewed as a set of
k delta functions on this manifold (illustrated as black arrows in figure 3.1C). Hyvärinen
has pointed out that when the dictionary is topologically organized in a similar manner,
the active coefficients αi tend to form clusters, or “bubbles,” over this domain (Hyvärinen,
Hurri, et al. 2003). Each of these clusters may be thought of as linearly approximating
a “virtual Gabor” at the center of the cluster (illustrated as red arrows in figure 3.1C),
effectively performing a flexible “steering” of the dictionary to describe discrete structures in
the image, similar to steerable filters (Freeman, Adelson, et al. 1991; Simoncelli, Freeman, et
al. 1992; Simoncelli & Freeman 1995; Perona 1995). Assuming there are h such clusters, then
the k-sparse code of the image can be thought of as a discrete approximation of an underlying
h-sparse function defined on the continuous manifold domain, where h is generally greater
than 1 but less than k.

An h-sparse function would not be recoverable from the d-dimensional projection em-
ployed in the classical approach because the embedding is premised on there being only a
single delta function on the manifold. Hence the inverse will not be uniquely defined. Here
we utilize a more general functional embedding concept that allows for better recovery ca-
pacity. A functional embedding of the landmarks is to take the first f trailing eigenvectors
from the generalized eigendecomposition solution as the embedding matrix P ∈ IRf×N , where
f is larger than d such that the h-sparse function can be recovered from the linear projection.
Empirically1 we use f = O(h log(N)).

To illustrate the distinction between the classical view of a data manifold and the ad-
ditional properties gained by a functional embedding, let us consider a simple example of
a function over the 2D unit disc. Assume we are given 300 landmarks on this disc as a
dictionary Φlm ∈ IR2×300. We then generate many short sequences of a point x moving along
a straight line on the unit disc, with random starting locations and velocities. At each time,
t, we use a nearest neighbor (KNN) solver to find a local linear interpolation of the point’s
location from the landmarks, that is xt = Φlmαt, with αt ∈ IR300 and αt ⪰ 0 (the choice
of sparse solver does not impact the demonstration). Now we seek to find an embedding
matrix, P , which projects the αt into an f -dimensional space via βt = P αt such that the tra-
jectories in βt are as straight as possible, thus reflecting their true underlying geometry. This
is achieved by performing an optimization that minimizes the second temporal derivative of
βt, as specified in equation (3.3) below.

Figure 3.2A shows the rows of P resulting from this optimization using f = 21. In-

1This choice is inspired by the result from compressive sensing (Donoho 2006), though here h is different
from k.
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Figure 3.1: Dictionary elements learned from natural signals with sparse coding may be
conceptualized as landmarks on a smooth manifold. A) A function defined on R2 (e.g. a
gray-scale natural image) and one element from its reconstruction are represented by the
black and red curves, respectively. B) The signal is encoded using sparse inference with a
learned dictionary, Φ, resulting in a k-sparse vector (also a function) α, which is defined on
an orderless discrete set {1,⋯,N}. C) α can be viewed as a discrete k-sparse approximation
to the true h-sparse function, αtrue(M), defined on the smooth manifold (k = 8 and h = 3
in this example). Each dictionary element in Φ corresponds to a landmark (black dot) on
the smooth manifold, M . Red arrows indicate the underlying h-sparse function, while black
arrows indicate the k non-zero coefficients of Φ used to interpolate the red arrows. D) Since
Φ only contains a finite number of landmarks, we must interpolate (i.e. “steer”) among a
few dictionary elements to reconstruct each of the true image components.

terestingly, they resemble Zernike polynomials on the unit-disc. We can think of these as
functionals that ”sense” sparse functions on the underlying manifold. Each row p′i ∈ IR300

(here the prime sign denotes a row of the matrix P ) projects a discrete k-sparse approxi-
mation α of the underlying h-sparse function to a real number, βi. We define the full set of
these linear projections β = P α as a ”manifold sensing” of α.

When there is only a single delta-function on the manifold, the second and third rows
of P , which form simple linear ramp functions in two orthogonal directions, are sufficient to
fully represent its position. These two rows would constitute Pc ∈ IR2×300 as an embedding
solution in the classical manifold learning approach, since a unit disk is diffeomorphic to
IR2 and can be embedded in a 2 dimensional space. The resulting embedding β2, β3 closely
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resembles the 2-D unit disk manifold and allows for recovery of a one-sparse function, as
shown in Figure 3.2B.

Figure 3.2: Demonstration of functional embedding on the unit disc. A) The rows of P ,
visualized here on the ground-truth unit disc. Each disc shows the weights in a row of P
by coloring the landmarks according to the corresponding value in that row of P . The color
scale for each row is individually normalized to emphasize its structure. The pyramidal
arrangement of rows is chosen to highlight their strong resemblance to the Zernike poly-
nomials. B) (Top) The classic manifold embedding perspective allows for low-dimensional
data visualization using Pc, which in this case is given by the second and third rows of P
(shown in dashed box in panel A). Each blue dot shows the 2D projection of a landmark
using Pc. Boundary effects cause the landmarks to cluster toward the perimeter. (Bottom)
A 1-sparse function is recoverable when projected to the embedding space by Pc. C) (Top)
A 4-sparse function (red arrows) and its discrete k-sparse approximation, α (black arrows)
on the unit disc. (Bottom) The recovery, αrec, (black arrows) is computed by solving the
optimization problem in equation (3.1). The estimate of the underlying function (red arrows)
was computed by taking a normalized local mean of the recovered k-sparse approximations
for a visualization purpose.

Recovering more than a one-sparse function requires using additional rows of P with
higher spatial-frequencies on the manifold, which together provide higher sensing capacity.
Figure 3.2C demonstrates recovery of an underlying 4-sparse function on the manifold using
all 21 functionals, from p′1 to p′21. From this representation, we can recover an estimate of α
with positive-only sparse inference:

αrec = g(β) ≡ argmin
α

∥β − P α∥2
F + λzTα, s.t. α ⪰ 0, (3.1)
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where z = [∥p1∥2,⋯, ∥pN∥2]T and pj ∈ IR21 is the jth column of P . Note that although αrec is
not an exact recovery of α, the 4-sparse structure is still well preserved, up to a local shift
in the locations of the delta functions. We conjecture this will lead to a recovery that is
perceptually similar for an image signal.

The functional embedding concept can be generalized beyond functionals defined on a
single manifold and will still apply when the underlying geometrical domain is a union of
several different manifolds. A thorough analysis of the capacity of this sensing method is
beyond the scope of this paper, although we recognize it as an interesting research topic for
model-based compressive sensing.

3.2 The Formulation of the SMT

The Sparse Manifold Transform (SMT) consists of a non-linear sparse coding expansion
followed by a linear manifold sensing compression (dimension reduction). The manifold
sensing step acts to linearly pool the sparse codes, α, with a matrix, P , that is learned using
the functional embedding concept (sec. 3.1) in order to straighten trajectories arising from
video (or other dynamical) data as shown in Figure 3.3.

Figure 3.3: While a natural transformation trajectory in the signal space is highly curved,
we would like it to be straightened in the embedding space.

The SMT framework makes three basic assumptions:

1. The dictionary Φ learned by sparse coding has an organization that is a discrete sam-
pling of a low-dimensional, smooth manifold, M (Fig. 3.1).

2. The resulting sparse code α is a discrete k-sparse approximation of an underlying h-
sparse function defined onM . There exists a functional manifold embedding, τ ∶ Φ↪ P ,
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that maps each of the dictionary elements to a new vector, pj = τ(φj), where pj is the
jth column of P s.t. both the topology of M and h-sparse function’s structure are
preserved.

3. A continuous temporal transformation in the input (e.g., from natural movies) lead to
a linear flow on M and also in the geometrical embedding space.

In an image, the elements of the underlying h-sparse function correspond to discrete
components such as edges, corners, blobs or other features that are undergoing some simple
set of transformations. Since there are only a finite number of learned dictionary elements
tiling the underlying manifold, they must cooperate (or ‘steer’) to represent each of these
components as they appear along a continuum.

The desired property of linear flow in the geometric embedding space may be stated
mathematically as

Pαt ≈ 1
2Pαt−1 + 1

2Pαt+1. (3.2)

where αt denotes the sparse coefficient vector at time t. Here we exploit the temporal continu-
ity inherent in the data to solve the otherwise cumbersome nearest-neighbor search required
of LLE or LLL. The embedding matrix P satisfying (3.2) may be derived by minimizing an
objective function that encourages the second-order temporal derivative of P α to be zero:

min
P

∥PAD∥2
F , s.t. PV P T = I (3.3)

where A is the coefficient matrix whose columns are the coefficient vectors, αt, in temporal
order, and D is the second-order differential operator matrix, with Dt−1,t = −0.5,Dt,t =
1,Dt+1,t = −0.5 and Dτ,t = 0 otherwise. V is a positive-definite matrix for normalization, I is
the identity matrix and ∥ ● ∥F indicates the matrix Frobenius norm. We choose V to be the
covariance matrix of α and thus the optimization constraint makes the rows of P orthogonal
in whitened sparse coefficient vector space. Note that this formulation is qualitatively similar
to applying SFA to sparse coefficients, but using the second-order derivative instead of the
first-order derivative.

The solution to this generalized eigen-decomposition problem is given (Vladymyrov &

Carreira-Perpinán 2013) by P = V −
1
2U , where U is a matrix of f trailing eigenvectors (i.e.

eigenvectors with the smallest eigenvalues) of the matrix V −
1
2ADDTATV −

1
2 . Some draw-

backs of this analytic solution are that: 1) there is an unnecessary ordering among different
dimensions, 2) the learned functional embedding tends to be global, which has support as
large as the whole manifold and 3) the solution is not online and does not allow other con-
straints to be posed. In order to solve these issues, we modify the formulation slightly with
a sparse regularization term on P and develop an online SGD (Stochastic Gradient Descent)
solution, which is detailed in the Supplement A.1.

To summarize, the SMT is performed on an input signal x by first computing a higher-
dimensional representation α via sparse inference with a learned dictionary, Φ, and second
computing a contracted code by sensing a manifold representation, β = P α with a learned
pooling matrix, P .
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3.3 Results of the SMT Trained with Natural Videos

Straightening of video sequences. We applied the SMT optimization procedure on
sequences of whitened 20 × 20 pixel image patches extracted from natural videos. We first
learned a 10× overcomplete spatial dictionary Φ ∈ IR400×4000 and coded each frame xt as
a 4000-dimensional sparse coefficient vector αt. We then derived an embedding matrix
P ∈ IR200×4000 by solving equation 3.3. Figure 3.4 shows that while the sparse code αt exhibits
high variability from frame to frame, the embedded representation βt = P αt changes in a
more linear or smooth manner. It should be emphasized that finding such a smooth linear
projection (embedding) is highly non-trivial, and is possible if and only if the sparse codes
change in a locally linear manner in response to smooth transformations in the image. If the
sparse code were to change in an erratic or random manner under these transformations, any
linear projection would be non-smooth in time. Furthermore, we show that this embedding
does not constitute a trivial temporal smoothing, as we can recover a good approximation of
the image sequence via x̂t = Φ g(βt), where g(β) is the inverse embedding function (3.1). We
can also use the functional embedding to regularize sparse inference, as detailed in Section
3.4, which further increases the smoothness of both α and β.

Figure 3.4: SMT encoding of a 80 frame image sequence. A) Rescaled activations for 80
randomly selected α units. Each row depicts the temporal sequence of a different unit. B)
The activity of 80 randomly selected β units. C) Frame samples from the 90fps video input
(top) and reconstructions computed from the αrec recovered from the sequence of β values
(bottom).

Affinity Groups and Dictionary Topology. Once a functional embedding is learned
for the dictionary elements, we can compute the cosine similarity between their embedding

vectors, cos(pj, pk) = pTj pk

∥pj∥2∥pk∥2
, to find the neighbors, or affinity group, of each dictionary

element in the embedding space. In Figure 3.6A we show the affinity groups for a set of
randomly sampled elements from the overcomplete dictionary learned from natural videos.
This figure utilized a visualization technique that depicts each dictionary element as a nee-
dle whose position, orientation and length indicate those properties of the element. The
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Figure 3.5: Needle plot fitting procedure

parameters of the needles were computed from a combination of the analytic signal enve-
lope and the Fourier transform of each dictionary element. The envelope was fitted with
a 2D Gaussian, and its mean was used to determine the center location of the dictionary
element. The primary eigenvector of the Gaussian covariance matrix was used to determine
the spatial extent of the primary axis of variation, which we indicated by the bar length.
The orientation was computed from the peak in the Fourier amplitude map of the dictionary
element. Figure 3.5 gives an illustration of the fitting process. A subset of elements were not
well summarized by this methodology because they do not fit a standard Gaussian profile,
which can be seen in the last row of Figure 3.5. However, the majority appear to be well
characterized by this method. Each box in the main-text figure 3.6 indicates a single affinity
group. The color indicates the normalized similarity between the dictionary elements in the
embedding space.

As one can see in Figure 3.6A, the topology of the embedding learned from the SMT
reflects the structural similarity of the dictionary elements according to the properties of
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position, orientation, and scale. Figure 3.6B shows that the nearest neighbors of each dic-
tionary element in the embedding space are more ‘semantically similar’ than the nearest
neighbors of the element in the pixel space. To measure the similarity, we chose the top
500 most well-fit dictionary elements and computed their lengths and orientations. For each
of these elements, we find the top 9 nearest neighbors in both the embedding space and in
pixel space and then compute the average difference in length (∆ Length) and orientation
(∆ Angle). The results confirm that the embedding space is succeeding in grouping dic-
tionary elements according to their structural similarity, presumably due to the continuous
geometric transformations occurring in image sequences.

Figure 3.6: A) Affinity groups learned using the SMT reveal the topological ordering of a
sparse coding dictionary. Each box depicts as a needle plot the affinity group of a randomly
selected dictionary element and its top 40 affinity neighbors. The length, position, and
orientation of each needle reflect those properties of the dictionary element in the affinity
group. The color shade indicates the normalized strength of the cosine similarity between
the dictionary elements. B) The properties of length and orientation (angle) are more similar
among nearest neighbors in the embedding space (E) as compared to the pixel space (P).

Computing the cosine similarity can be thought of as a hypersphere normalization on the
embedding matrix P . In other words, if the embedding is normalized to be approximately
on a hypersphere, the cosine distance is almost equivalent to the Gramian matrix, P TP .
Taking this perspective, the learned geometric embedding and affinity groups can explain
the dictionary grouping results shown in previous work (Hosoya & Hyvärinen 2016). In that
work, the layer 1 outputs are pooled by an affinity matrix given by P = ETE, where E is the
eigenvector matrix computed from the correlations among layer 1 outputs. This PCA-based
method can be considered an embedding that uses only spatial correlation information, while
the SMT model uses both spatial correlation and temporal interpolation information.

Hierarchical Composition. A SMT layer is composed of two sublayers: a sparse coding
sublayer that models sparse discreteness, and a manifold embedding sublayer that models
simple geometrical transforms. It is possible to stack multiple SMT layers to form a hierar-
chical architecture, which addresses the third pattern from Mumford’s theory: hierarchical
composition. It also provides a way to progressively flatten image manifolds, as proposed by
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DiCarlo & Cox (DiCarlo & Cox 2007). Here we demonstrate this process with a two-layer
SMT model (Figure 3.7A) and we visualize the learned representations. The network is
trained in a layer-by-layer fashion on a natural video dataset as above.

Figure 3.7: SMT layers can be stacked to learn a hierarchical representation. A) The network
architecture. Each layer contains a sparse coding sublayer (red) and a manifold sensing
sublayer (green). B) Example dictionary element groups for Φ(1) (left) and Φ(2) (right).
C) Each row shows an example of interpolation by combining layer 3 dictionary elements.
From left to right, the first two columns are visualizations of two different layer-3 dictionary
elements, each obtained by setting a single element of α(3) to one and the rest to zero. The
third column is an image generated by setting both elements of α(3) to 0.5 simultaneously.
The fourth column is a linear interpolation in image space between the first two images, for
comparison. D) Information is approximately preserved at higher layers. From left to right:
The input image and the reconstructions from α(1), α(2) and α(3), respectively. The rows in
C) and D) are unique examples. See section 3.1 for visualization details.

We can produce reconstructions and dictionary visualizations from any layer by repeat-
edly using the inverse operator, g(β). Formally, we define α

(l)
rec = g(l)(β(l)), where l is the

layer number. For example, the inverse transform from α(2) to the image space will be
xrec = CΦ(1)g(1)(Φ(2)α(2)), where C is an unwhitening matrix. We can use this inverse
transform to visualize any single dictionary element by setting α(l) to a 1-hot vector. Using
this method of visualization, Figure 3.7B shows a comparison of some of the dictionary ele-
ments learned at layers 1 and 2. We can see that lower layer elements combine together to
form more global and abstract dictionary elements in higher layers, e.g. layer-2 units tend
to be more curved, many of them are corners, textures or larger blobs.

Another important property that emerges at higher levels of the network is that dictio-
nary elements are steerable over a larger range, since they are learned from progressively
more linearized representations. To demonstrate this, we trained a three-layer network and
performed linear interpolation between two third-layer dictionary elements, resulting in a
non-linear interpolation in the image space that shifts features far beyond what simple linear
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interpolation in the image space would accomplish (Figure 3.7C). A thorough visualization
of the dictionary elements and groups is provided below.

Dictionary Visualization Here we provide a more complete visualization of the dictionary
elements in the two-layer SMT model. In Figure 3.8, we show 19 representative dictionary
elements and their top 5 affinity group neighbors in both layer 1 (Figure 3.8A) and layer 2
(Figure 3.8B). For each row, we choose a representative dictionary element (on the left side)
and compute its cosine similarity to the rest of the dictionary elements in the embedding
space. The closest 5 elements in the embedding space are shown on its right. So each row
can be treated as a small affinity group. Figures 3.9 and 3.10 show a large random sample
of the dictionary elements in layers 1 and 2, respectively.

3.4 Sparse Coefficient Inference with

Manifold Embedding Regularization

Functional manifold embedding can be used to regularize sparse inference for video sequences.
We assume that in the embedding space the representation has a locally linear trajectory.
Then we can change the formulation from equation 2.4 to the following:

min
αt

∥xt −Φαt∥2
2 + λ∥αt∥1 + γ0∥P (αt − α̃t)∥2

2

s.t. αt ⪰ 0, α̃t = αt−1 + (αt−1 − αt−2),
(3.4)

where α̃t is the casual linear prediction from the previous two steps αt−1, αt−2. Our prelimi-
nary experiments indicate that this can significantly increase the linearity of the embedding
β = Pα.

3.5 Dictionary Embedding Without Time

As we mentioned earlier in Section 2.4, neither sparse coding nor manifold learning requires
temporal sequences. Using temporal to guide the embedding is rather a natural choice,
which can potentially increase the learning efficiency. So the sparse manifold transform, as
a unification of sparse coding and manifold learning, does not require temporal sequences
per se. We will revisit the formulation of the SMT in this chapter to make this point more
clear since Equation (3.2) and Optimization (3.3) may deceptively imply the necessity of
temporal information.

In both Section 2.4 and Section 3.2, we have discussed that the formulation used in
the SMT utilizes the temporal information because the temporal neighbors provides a more
efficient solution than the general nearest neighbor search used in the LLE and other manifold
learning algorithm, specifically eq. (2.9) is used as a surrogate to eq. (2.6) to capture the
local geometry among data points once temporal information is available. With the i.i.d.
data, we can relax the third assumption in Section 3.2 to the following:
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3∗. The local geometry in the input space is preserved in the geometric embedding space.
Here we can choose to preserve any geometric property used by a manifold learning technique,
e.g. nearest neighbor interpolation relationship in LLE, geodesic distance used by ISOMAP,
the weighted distance used in Laplacian eigenmaps etc. Let’s first take the local linear
interpolation as our example.

In some sense, this is redundant given the second assumption. With this more general
formulation, eq. (3.2) would be replaced by the following equation:

Pαi ≈ ∑
j∈NN(i)

γjPαj. (3.5)

where NN(i) is the set of top K nearest neighbor of ith data point and {γj ∣j ∈ NN(i)} are
corresponding the local nearest neighbor interpolation coefficients solved in eq. 2.6.

Overall, this relaxation to non-temporal data still leads to the same optimization:

min
P

∥PAD∗∥2
F , s.t. PV P T = I (3.6)

the only difference is that D∗ is constructed from data local linear interpolation matrix Γ that
D∗ = I − Γ. D∗ is similar to the one used in LLL (Vladymyrov & Carreira-Perpinán 2013)
rather D in Optimization (3.3), which is the second-order temporal differential operator
matrix. If we view D∗ as a general Laplacian operator, D can be viewed as the second-order
line derivative operator.

Let’s look at another example where we choose to build an embedding of our dictionary
with the property used in Laplacian eigenmaps (Belkin & Niyogi 2002). We further assume
we already build the weight W matrix between the data points. Then the optimization to
be solved is the following:

min
P

TrPADATP T , s.t. PAΛATP T = I (3.7)

where D = Λ −W , Wij is the weight between the ith data point and the jth data point and
Λ is the degree matrix of the data points2.

We would like to emphasis again that in the SMT framework, it’s a user’s freedom to
choose which geometric property to preserved. This property could be sequence straightening
(Optimization (3.3)), local linear interpolation (Optimization (3.6)), to bring neighbors in
data space close in the embedding space (Optimization (3.7)) or the data points in the same
category (if label is available) close in the embedding space.

3.6 Hierarchical Representation of Digits

In this section, we apply the general SMT formulation to affNIST dataset and build a
hierarchical representation of hand-written digits. We do not perform whitening in the first

2If Λ is the identity matrix, then PAΛATPT = PV PT .
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layer and the dictionary elements are required to be positive-only. This choice also provides
a better visualization since the digits images are strictly non-negative and negative values
makes a dictionary element look quite different from the input signal.

We adopt Optimization (3.6) to learn a two-layer SMT representation, where each dic-
tionary layer has 4096 dictionary elements. The layer visualization is performed as shown in
Section 3.2. In Figure 3.11, we show the learning result: while the first layer have learned
the basic strokes, the second layer has learned much more global structures. Further, we
can visualize the affinity groups (introduced in Section 3.3), which is shown in Figure 3.12.
As we can see that the dictionary elements in the affinity groups are all semantically similar
and the embedding space successfully captures the geometry of the dictionary.

3.7 Discussion

A key new perspective introduced in this work is to view both the signals (such as images)
and their sparse representations as functions defined on a manifold domain. A gray-scale
image is a function defined on a 2D plane, tiled by pixels. Here we propose that the dictionary
elements should be viewed as the new ‘pixels’ and their coefficients are the corresponding
new ‘pixel values’. The pooling functions can be viewed as low pass filters defined on this
new manifold domain. This perspective is strongly connected to the recent development
in both signal processing on irregular domains (Shuman et al. 2013) and geometric deep
learning (Bronstein et al. 2017).

Previous approaches have learned the group structure of dictionary elements mainly from
a statistical perspective (Hyvärinen & P. Hoyer 2000; Hyvärinen, P. O. Hoyer, et al. 2001;
Osindero et al. 2006; Köster & Hyvärinen 2010; Lyu & Simoncelli 2008; Malo & Gutiérrez
2006). Additional unsupervised learning models (Shan & Cottrell 2013; Paiton et al. 2016;
Le et al. 2012; Zeiler, Taylor, et al. 2011) combine sparse discreteness with hierarchical
structure, but do not explicitly model the low-dimensional manifold structure of inputs.
Our contribution here is to approach the problem from a geometric perspective to learn a
topological embedding of the dictionary elements.

The functional embedding framework provides a new perspective on the pooling functions
commonly used in convnets. In particular, it provides a principled framework for learning
the pooling operators at each stage of representation based on the underlying geometry of
the data, rather than being imposed in a 2D topology a priori as was done previously to learn
linearized representations from video (Goroshin, Mathieu, et al. 2015). This could facilitate
the learning of higher-order invariances, as well as equivariant representations (Sabour et
al. 2017), at higher stages. In addition, since the pooling is approximately invertible due
to the underlying sparsity, it is possible to have bidirectional flow of information between
stages of representation to allow for hierarchical inference (T. S. Lee & Mumford 2003). The
invertibility of SMT is due to the underlying sparsity of the signal, and is related to prior
works on the invertibility of deep networks (Gilbert et al. 2017; Bruna et al. 2013; Zeiler &
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Fergus 2014; Dosovitskiy & Brox 2016). Understanding this relationship may bring further
insights to these models.

Finally, though the SMT framework does not require convolution, incorporating convo-
lution into the SMT may help to scale up the modeling to larger image modeling. We also
leave this as a future direction.
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Figure 3.8: Representative dictionary elements and their top 5 affinity group neighbors in
the embedding space. A) Dictionary elements from layer 1. B) Dictionary elements from
layer 2. We encourage the reader to compare the affinity neighbors to the results found in
(Zeiler & Fergus 2014).
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Figure 3.9: A random sample of 1200 dictionary elements from layer 1 (out of 4000 units).
Details are better discerned by zoomed in on a monitor.
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Figure 3.10: A random sample of 1200 dictionary elements from layer 2 (out of 3000 units).
Details are better discerned by zoomed in on a monitor.
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Figure 3.11: When we apply SMT to the hand-written digits, the high layers learn much
more global structures than the lower layers. So we can stack SMT and build a hierarchical
representation of the input dataset.
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Figure 3.12: The left panel shows two affinity groups from layer 1 and the right panel shows
two from layer 2. Each of the affinity groups is the embedding geometric nearest neighbors
(by cosine similarity) of the corresponding dictionary element in the red box.
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Chapter 4

A Geometric Theory for Complex
Cells

4.1 Introduction

A fundamental role of the visual cortex is to represent structure in natural scenes, including
local features and smooth transformations of these features. It is widely believed that simple
cells learn and recognize these local features, which can be modeled using unsupervised dic-
tionary learning (Olshausen & Field 1996). Previous approaches for understanding complex
cells fall into two major classes: 1) those motivated by invariant image processing (pooling
simple cell features) (Hubel & Wiesel 1962; Riesenhuber & Poggio 1999) and 2) those mo-
tivated by modeling the multivariate higher-order statistics of neural responses (Hyvärinen,
Hurri, et al. 2003; Hyvärinen & Köster 2007; Karklin & Lewicki 2009; Hosoya & Hyvärinen
2016).

Here we provide a unifying geometric perspective on the role of simple and complex cells
based on the a version of the SMT in which neurons in the two layers correspond to simple
and complex cells. This provides a new functional explanation for these cell types: Simple
cells can be viewed as representing a discrete sampling of a smooth manifold in the sensor
space, while complex cells can be viewed as representing localized smooth linear functions
on the manifold. While each individual complex cell pools from a local region, together they
tile (Sengupta et al. 2018) the manifold and build an untangled population representation
(DiCarlo & Cox 2007), which tends to preserve the identity of the signal while straightening
the transformations (Henaff et al. 2017). In the localized SMT, the complex cell layer is
learned in an unsupervised manner based on a diffusion process. Our results demonstrate
that simple and complex cells are emergent properties in a neural system that is optimized to
learn the manifold structure of dynamic sensory inputs and is subject to sparse connectivity
constraints.
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4.2 Methods

We use highly overcomplete positive-only sparse coding to model simple cells as described in
Section 2.2. For each input image patch x, we use FISTA (Beck & Teboulle 2009) to solve
the positive only sparse coefficient inference:

min
α

1
2∥x −Φα∥2

2 + λ∥α∥1, s.t. α ⪰ 0, (4.1)

where Φ ∈ IRn×m is the learned dictionary matrix with dictionary elements φi in each of its
columns, and α ∈ IRm is a positive-only vector of coefficients.

The responses of simple cells are linearly pooled by the complex cells such that β = Pα,
where each of the rows in P is a learned pooling unit. The pooling units can be learned by
solving a variation of the following optimization problem:

min
P

⟨∥PV −
1
2 α̈∥2

2⟩ + γ∥P ∥1

s.t. ∥p′j∥2 = c, ∥pi∥2 = 1, P ⪰ 0
(4.2)

where V −
1
2 is the whitening matrix for α, where V = (α − ⟨α⟩)(α − ⟨α⟩)T , p′j is a row of P

and pi is a column. The constraints are for row and column normalization. The angular
bracket ⟨⋅⟩ stands for temporal average and α̈ is the second-order temporal derivative of α.
It is helpful to reexpress the first term in the objective above as:

⟨∥PV −
1
2 α̈∥2

2⟩ = TrPUP T , U = V −
1
2 ⟨α̈α̈T ⟩V −

1
2 (4.3)

which has a gradient given by PU . Thus to solve (4.2), we can use an iterative proximal
gradient method: 1) gradient descent via P = (1− η)P + ηP (I −U), where η is the step size,
2) sparse shrinkage and rectification P = relu(P − ηγ), 3) row and column normalization.
Note that Step 1) is very similar to a diffusion process, where the diffusion kernel is I − U .
To better condition the optimization, we replace I −U by a sparse diffusion kernel K∗, where
K∗ only preserves the largest 10 absolute values in each column of I −U and each column is
normalized to unit L1 norm. Note that if the temporal sequence is randomly shuffled, both
I −U and K∗ are the identity matrix. Thus K∗ only contains how the activations of α flow
to the geometric neighbors under transformations.

The optimization (4.2) can be viewed as a variation of the Optimization (3.3) , which
leads to spectral and thus global pooling functions rather than localized pooling functions.
However, both solutions lead to smooth pooling functions defined on an underlying simple
cell manifold, which linearize the response from the simple cells after pooling.

4.3 Experiments

Our dataset contains 53 minutes of 128x128 90fps whitened natural video taken on the UC
Berkeley campus. We extract 20x20 pixel random image patches and train a 10x overcom-
plete sparse coding model. Once the dictionary converges, we compute the covariance matrix



CHAPTER 4. A GEOMETRIC THEORY FOR COMPLEX CELLS 33

Figure 4.1: A) A group of simple cells pooled from one complex cell. B) A random sample of
15 complex cells, whose pooling fields are shown as needle plots (described in Section 3.3),
with each bar representing a simple cell fit with a Gabor function.

V and the whitening matrix V −
1
2 of the sparse coefficient vectors, extract patch sequences

to estimate the matrix U , construct the diffusion kernel K∗ from I −U , and train 512 pool-
ing units following the sparse regularized diffusion process described in the method section.
The number of pooling units is not critical and the result changes gracefully with respect to
variation of the pooling dimension.

In Figure 4.1, we show that learned pooling units are relatively ‘localized’ in the sense that
they pool simple cells with similar shapes. To emphasize, ‘local’ is not defined in the pixel
domain but rather in the abstract configuration space, e.g. spatial location, orientation and
scale. The distance in this space is determined by the natural transformations in natural
signals. Fig 4.2A shows that a complex cell in our model has phase invariance while the
simple cells it pools from tile different phases. Fig 4.2B shows the learned complex cells
maintain orientation selectivity while gaining phase invariance. Fig 4.2C displays the F1/F0
ratio (Skottun et al. 1991) of complex and simple cells in the model, revealing a clear bimodal
distribution matching experimental data (De Valois et al. 1982; Skottun et al. 1991).

4.4 Discussion

In this work, we use the insights from SMT to view simple cells as a discrete sampling of an
underlying smooth manifold and complex cells as a smooth tiling of the manifold to build
a locally equivariant representation. We show that localized complex pooling cells can be
learned from temporal signal dynamics. Multiple sensitivity tests show these units admit
similar properties to complex cells in V1. The model predicts that populations of complex
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cells represent the structure in time-varying images in terms of smooth trajectories that
reflect the underlying continuous transformations in images, as opposed to forming invariant
representations of objects per se.
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Figure 4.2: A) A phase sweep of the optimal grating stimuli of a complex cell. Dotted lines
are the responses from the simple cells it pools from. The invariant red dashed line is the
complex cell’s response. B) Orientation selectivity of 3 randomly sampled complex cells. C)
F1/F0 ratio bimodal distribution.
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Chapter 5

Word Embedding Visualization via
Word Factors

5.1 Introduction

Several recent works (Mikolov, K. Chen, et al. 2013; Pennington, Socher & C. Manning
2014; Bojanowski et al. 2017; Peters et al. 2018) show that co-occurrence statistics can be
used to efficiently learn high-quality continuous vector representations of words from a large
corpus of text. The learned word vectors encode rich semantic and syntactic information,
which is demonstrated with word analogies. As shown by (Mikolov, Yih, et al. 2013), vector
arithmetic operations such as: ‘king’ - ‘queen’ = ‘man’ - ‘woman’ reflects the semantic
analogy of what ‘king’ is to ‘queen’ as what ‘man’ is to ‘woman’. Thanks to the competitive
performance of these models, these methods have become fundamental tools used in the
study of natural language processing.

(Allen & Hospedales 2019; Ethayarajh et al. 2019; Levy & Goldberg 2014) explain and
understand these word embeddings from a theoretical perspective. Empirically, visualizing
these embeddings can be difficult since individual dimensions of most word embeddings are
not semantically meaningful.

In the absence of tools to visualize and gain further insight about the learned word
vectors, we have little hope of improving the existing performance on downstream tasks like
word analogy (Mikolov, K. Chen, et al. 2013). There are two major ways for visualizing
word vectors:

• Nearest neighbor approach: we can use either Euclidean distance or cosine similarity
to search for each word vector’s nearest neighbors to find its relevant words (Peters
et al. 2018; Bojanowski et al. 2017; Wieting et al. n.d.). This method only provides a
single scalar number of relatedness information while two words may exhibit much more
intricate relationships than just a relatedness (Pennington, Socher & C. D. Manning
n.d.). For example, man and woman both describe human beings and yet are usually
considered opposite in gender.
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• t-SNE approach (Maaten & G. Hinton 2008; G. E. Hinton & Roweis 2003): This
approach nonlinearly reduces word vectors to a very low dimensional (most likely 2)
space. While such a global method reveals some interesting separation between word
groups, it often distorts (S. Liu et al. 2017) important word vector linear structures
and does not exhibit more delicate components in each word.

• Subset PCA approach (Mikolov, Sutskever, et al. 2013): 1) Select a subset of word
pairs, which have certain relations, e.g. city-country, currency-country, comparative
etc. 2) Perform PCA on the selected subset and visualize the subset with the first two
principle components, as shown in Figure 5.3. The relationship is frequently encoded
by a vector in this subspace. However, performing PCA with all the word vectors
makes this information entirely opaque. This method needs manually selected sets of
words which requires human intervention. Despite this, such a visualization method
does capture important semantic meaning for word vectors.

The linear substructures generated using subset PCA approach and semantic content of
arithmetic operations provide strong motivation to automatically discover the factors which
these underlying word vectors are composed of.

The key insight of this work is that the relationships visualized in the human selected
subsets represent more elementary word factors and a word vector is a linear combination of
a sparse subset of these factors. Dictionary learning (Olshausen & Field 1997; Olshausen &
Field 1996; Bell & Sejnowski 1995) is a useful tool to extract elementary factors from different
modalities. (Murphy et al. 2012; Fyshe et al. 2014; Faruqui et al. 2015; Subramanian et al.
2018) shows sparsity help to improve the dimension interpretability. Specifically, in (Faruqui
et al. 2015), the authors apply non-negative sparse coding (NSC) (P. O. Hoyer 2002; D. D.
Lee & Seung 1999) with binary coefficients to word vectors and suggest to use the resulted
sparse vectors as word vector representation of words. Then (Subramanian et al. 2018)
followed the idea and applied k-sparse autoencoder to further improve the sparse word vector
representation. In this work, we thoroughly explore this idea from a visualization perspective.
Since a word vector may involve a different number of factors with a different strength, neither
binary coefficients or a k-sparse setting would be ideal for such a purpose. In section 5.2,
we reformulate the NSC problem and also introduce the spectral clustering algorithm to
further handle group sparsity. Once NSC has been train on word vectors from different word
embedding methods, in section 5.3, we demonstrate reliable word factors with very clear
semantic meanings, which is consistent with but not limited to the existing prior knowledge.
With these reliable word factors, we then open up the word vectors and visualize them in
many different ways. Through these visualizations, we show many interesting compositions:

apple =0.09“dessert” + 0.11“organism” + 0.16“fruit”

+ 0.22“mobile&IT” + 0.42“other”

Many new word analogy tasks can be easily developed based on these learned word
factors. Different embedding models and text corpus bias can be diagnosed, i.e. we find that
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a factor proportion might change depend on which corpus we use to train the word vector
embedding.

Since several learned word factors may encode a similar meaning and frequently work
together, we can use spectral clustering (Ng et al. 2002; Von Luxburg 2007) to group word
factors with similar meanings. Each group can provide robust semantic meaning for each
factor and identify key semantic differences in a word analogy task. We show in Section 5.4
that these groups help to improve the word analogy tasks significantly in almost every sub-
category irrespective to which word embedding technique we use. Our simple and reliable
discovery provides a new venue to understand the elementary factors in existing word em-
bedding models. In Section 5.5, we discuss a few interesting questions and point out some
potential directions for future work.

5.2 Word Factors Learning and Spectral Grouping

Similar to Section 2.2, We use non-negative overcomplete sparse coding to learn word factors
from word vectors. Given a set of word vectors {xj ∈ IRn} (n = 300 is used in this work as a
convention), we assume each of them is a sparse and linear superposition of word factors φi:

x = Φα + ε, s.t. α ⪰ 0 (5.1)

where Φ ∈ IRn×d is a matrix with columns Φ∶,i, α ∈ IRd is a sparse vector of coefficients
and ε is a vector containing independent Gaussian noise samples, which are assumed to be
small relative to x. Typically d > n so that the representation is overcomplete. This inverse
problem can be efficiently solved by FISTA algorithm (Beck & Teboulle 2009). A word vector
xi is sampled with respect to the responding frequency fi of the word i in the corpus. Once
the sparse coefficients is solved, we can then update the word factors to better reconstruct
the word vectors. Through this iterative optimization, the word factors can be learned. We
provide more details of the algorithm and configurations in Appendix C.2.

Though overcomplete sparse coding tends to extract more accurate elementary factors
and thus approximate signal vectors at better accuracy given a fixed sparsity level, several
learned factors may be corresponding to a similar semantic meanings. (Y. Chen et al. 2018)
proposes to model the relationships by using a manifold embedding, which is essentially a
spectral method. In this work, we use spectral clustering (Ng et al. 2002) to group the
learned word factors into groups.

Since word factors with similar semantic meaning tends to co-activate to decompose a
word vector, we calculate a normalized covariance matrix W of word factor coefficients with
the unit diagonal removed:

W =∑
i

fiα̂iα̂
T
i − I (5.2)

where fi is the frequency of the ith word in the corpus, α̂i is the normalized sparse coefficients

by each dimensions standard deviation such that α̂ij = αij/σj, and σj = [∑i fi(αij)2]
1
2 , j =

1 . . . n.
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This matrix captures the similarity between the word factors. To better perform a spec-
tral clustering, we first make the normalized covariance matrix W sparse by selecting k
largest values in each row of W :

Wsp = fk(W,dim = 0) (5.3)

where fk stands for keeping the k largest values unchanged in the given dimension, while
setting all the other entities to 0. Then we obtain a symmetric sparse matrix:

Wadj =Wsp +W T
sp (5.4)

where Wadj ∈ IRd×d is the adjacency matrix used in spectral clustering (Ng et al. 2002; Von
Luxburg 2007). We use the implementation of the algorithm in Scipy (Jones et al. n.d.).
Using the notation from (Von Luxburg 2007), we first compute a normalized Laplacian
matrix Lsym:

Lsym = I −D−1/2WadjD
−1/2 (5.5)

where D is a diagonal matrix with the sum of each row of the symmetric Wadj on its diagonal.
Suppose we set the number of clusters to k, then the first k eigenvectors of Lsym form the
columns of matrix V ∈ IRd×k:

V = [v1, v2, ..., vk] (5.6)

And we normalize each row of V to get a new matrix U :

U = [u1, u2, ..., ud]T (5.7)

where each row ui = Vi,∶/∥Vi,∶∥2. ∥Vi,∶∥2 indicates the L2 norm of the ith row of V. Finally, a
k-means algorithm is performed on the d rows of U to get the clusters.

5.3 Visualization

The word factors learned for different word embedding models are qualitatively similar. For
simplicity, we show the results for the 300 dimensional GloVe word vectors(Pennington,
Socher & C. Manning 2014) pretrained on CommonCrawl (Pennington, Socher & C. D.
Manning n.d.). We shall discuss the difference across different embedding models at the end
in this section.

Once word factors have been learned and each word vector’s sparse decomposition α has
been inferred by Equation 5.1, we can denote all the decompositions in the matrix form as
the following:

X ≈ ΦA, s.t. A ⪰ 0 (5.8)

where X∶,i = xi and A∶,i = αi, X ∈ IRn×N and A ∈ IRd×N . N is the size of the vocabulary. We
do not require the dictionary Φ to be non-negative.
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We can visualize a word factor Φ∶,j by examining its corresponding row Aj,∶ in A and vi-
sualize a word vector x∶,i by examining the corresponding column αi of A. Since word factors
are learned in an unsupervised fashion, the explicit meaning of each factor is unknown in ad-
vance. To help understand the meaning of a specific factor, we print out the words that have
high coefficients for this factor, some examples are illustrated in Table 5.1. We first present
the visualization of word factors and give each factor a semantic name. Then we decompose
word vectors into linear combinations of word factors. Furthermore, we demonstrate factor
groups and discuss the difference across multiple word embedding models.

Word Factor Visualization

Word factors can be visualized through the sparse coding coefficients of each word vector. We
refer to these coefficients as activations as they describe how much a factor is turned on for a
specific word. In Table 5.1, we demonstrate a set of factors with their top-activation words.
Usually the top-activation words for each factor share an obvious semantic or syntactic
meaning. Based on the top-activation words, a semantic name can be given to each factor
as a guide. For example, for factor 59, we can call it “medical” since most of the words have
activation on it are related to medical purpose. In the Appendix C.1, we discuss this naming
procedure in more detail.

Reliability. The factors we discovered exhibit strong reliability. For instance, a female
factor is illustrated in Figure 5.1. Clearly, the activations remain all 0s for the male words, but
have high values for the female words. Similarly strong word factors are also found to capture
syntactic meanings of words. Figure 5.4 shows activations on a factor representing the
superlative information, i.e. the superlative factor, where the superlative forms of adjectives
have relatively high coefficients. The significance is obvious from the sharp contrast in the
heights of the bars.

The Learned Factors Match the Prior. We empirically find that for each of the 14
word analogy tasks, there are always a few corresponding factors capture the key semantic
difference, e.g. the “female”, “superlative”, “country” factors shown in Table 5.1. Given
the learned word factors closely matched the 14 word analogy tasks chosen based on human
priors, we can expect the rest majority of the learned factors may provide an automatic
method to select and construct the word analogy tasks. For instance, Figure 5.2 shows a
factor corresponding to professions. For words such as “entertain”, “poem”, “law” and so
on, it has 0 or very small activation, whereas for “entertainer”, “poet” and “lawyer”, the
activations are clearly large. In Appendix C.3, we provide more of such generated word
analogy tasks by the learned factors.

Unclear Factors. While most of the factors have a strong and clear semantic meaning,
there are also about less than 10% of them that we can not identify. Some of these factors
have relatively dense activations that they may activate on more than 10% of the whole
vocabulary while the activations are relatively low. Some of the factors seem to cluster
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Figure 5.1: “Female” factor’s activation w.r.t. a selected set of words contain both male-
related words and female related words.

either high or low frequency words regardless of the semantics, e.g. a factor’s top-activation
words are all rare words. We feel that some of these unidentifiable factors might actually
have semantic meaning with more summarization effort and the rest might be due to an
optimization choice, e.g. we sampled word embedding in proportion to the words’ frequency
during optimization, so that high frequency words got more exposure than low frequency
ones.

Factor Groups. Different factors may correspond to similar semantic meaning and in a
particular word vector, they co-activate or only one of them activate. But in general similar
factors tend to have a relatively higher co-activation. Based on the co-activation strength, we
can cluster word factors in to groups, each provides a more reliable semantic and syntactic
meaning detection. In Appendix C.4, we show the co-activation patterns in more details.

Word Vector Visualization

As a result of sparse coding, every word vector can now be expressed as a linear combination
of a limited number of word factors. This makes it possible for us to open up continuous
word vectors and see different aspects of meanings through the component factors. In Figure
5.5, we show several word vectors as a combinations of highly activated factors.

Polysemy Separation. Words like “apple” contain multiple senses of meanings but are en-
coded into one continuous vector. By visualization through word factors, different senses are
separated. As is shown in figure 5.5, the vector of “apple” contains 4 major factors: “tech-
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Figure 5.2: “Profession” factor’s activation w.r.t. a selected set of words contain action-
related words and their profession form.

nology”, “fruit”, “dessert” and “organism”. This combination coincides with our knowledge
that “apple” is a fruit, a food ingredient, a living creature and a well-known tech company.
Another polysemous example is the word “China”: the presence of factor “ware” makes sense
as the training corpus is not case sensitive. We further notice the “country” factors and the
“Chinese” factor, which is closely related to specific Chinese nouns such as the names of its
provinces and cities. In fact a combination of the “country” factor and a “country-specific”
factor shows up as a common combination in the names of countries.

Semantic + Syntactic. Besides polysemy, we also find that words are opened up as com-
binations of both semantic and syntactic factors: “big” has both “size” and “comparative”
factor; “won” has “match”, “award”, “sports” and of course “past tense”.

Unexpected Meaning. Sometimes a word may have an unexpected factor, e.g. in the
visualization of “so”, we find a “German” factor, of which all the top activated words are
German word pieces like “doch”, “aber”, “voll”, “schön” and “ich”. The possible explanation
for this is that the training data of the embedding model covers German corpus, and “so”
is actually also used in German.

Word Vectors Manipulations. Prior work (Mikolov, Yih, et al. 2013) has demonstrated
that linear operations between continuous word vectors can capture linguistic regularities.
Now given such factors with clear and strong semantic meanings, it is natural to think of
some manipulations. An interesting question is: if we manually add in or subtract out a
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Figure 5.3: PCA visualization of a new word analogy task: “profession”, which are auto-
matically generated by the “profession” word factor.

certain factor from a word vector, would the new word vector be consistent with the semantic
relations entailed by the manipulation? To validate this, we manipulate a vector with some
factors, and see what is the nearest word in the embedding space. Examples are listed in
Table 5.2. Since the average norm of the word vectors we use is about 7.2, while the factors
are of unit norm, we give a constant coefficient of 4 to the factors so that their lengths
become comparable but still shorter than the word vectors, therefore can be appropriately
regarded as components of word vectors. Results show that both syntactic and semantic
meanings including part of speech, gender, sentiment and so on are successfully modified
in the desired way. This interesting experiment shows the potential of word factors. Given
their explicit meanings, now we are no longer limited to operations between word vectors,
but can also conduct operations between word vectors and factors.

Comparison Across Different Models

We conducted experiments with several mainstream word embedding models, including
GloVe, Fasttext, Word2vec CBoW and Word2vec skipgram, all of 300 dimension. For GloVe,
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Figure 5.4: “Superlative” factor’s activation w.r.t. a selected set of words contain words and
their superlative forms.

we download model pretrained on CommonCrawl (Pennington, Socher & C. D. Manning
n.d.). For fasttext, we download model pretrained on Wikipedia 2017, UMBC webbase cor-
pus and statmt.org news dataset (Mikolov, Grave, et al. n.d.). And for Word2vec models,
we trained them on 3B token wikipedia dump (Wikimedia 2019). Although the results are
similar between different embedding models, we also notice some interesting differences that
can provide understanding of the models. In the fastText embeddings, word “sing” has a
abnormally high activation on the factor “present tense”, as is shown in Figure 5.6. This
is because the algorithm trains word embeddings based on subword n-grams (Bojanowski
et al. 2017; Joulin et al. 2016), in this way word “sing” is considered as if a word in present
tense because it contains a three-gram “ing”. This shows that despite the advantages of
using subword n-grams to embed words, such as tackling out-of-vocabulary issue and encode
strong syntactic information, it may also lead to problems. Such a visualization can be used
to diagnose and provide insights to improve the existing methods.

There are also differences that reflect bias in different corpus. For example, we compared
the pretrained GloVe and a GloVe model trained only on Wikipedia, and refer to them as
“GloVe Crawl” and “GloVe Wiki”. As a result, we discovered the factor “bedding” in the
visualization of vector “king” in the “GloVe Crawl”, while it is missing in “GloVe Wiki”.
The only difference between the two models is the training data. The presence of factor
“bedding” actually makes sense because “king” is frequently used to describe the size of
beds and bedclothes. The reason why it is missing in “GloVe Wiki” is likely due to the
difference in training data. Which is to say such usage of “king” is much less frequent
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Figure 5.5: Word vectors can be decomposed into a sparse linear combination of word factors.
Due to a space limit, we only show the major factors and leave the rest as “others”.

in Wikipedia than in CommonCrawl, so it is possible that this aspect of meaning is not
significant on Wikipedia. In order to verify this, we examined the average co-occurrence
statistics in Wikipedia between “king” and top 100 activated words of factor “royal” and
“bedding”. The fact that the former is more than 30 times larger than the latter supports
the assumption that “king” appears rather rarely in the “bedding” context. Thus a factor
of “bedding” is hard to get given the corpus from Wikipedia. This comparison shows that
the difference in data is captured by embedding models and displayed by our factors.

5.4 Improvement in Semantic and Syntactic Tasks

with Word Factors

Word analogy task is a classic task for evaluating the quality of word embeddings. Proposed
first by (Mikolov, K. Chen, et al. 2013), it measures the accuracy of answering the question
: A is to B as C is to D, such as ‘king’ is to ‘queen’ as ‘man’ is to ‘woman’ and ‘slow’ is
to ‘slower’ as ’good’ is to ’better’. Given word A, B and C, a model must try to predict D.
The conventional approach taken by the word embeddings (Mikolov, K. Chen, et al. 2013;
Pennington, Socher & C. Manning 2014; Bojanowski et al. 2017) is a vector arithmetic:
calculate B −A +C, and find its nearest neighbor in the embedding space as the predicted
word. While this approach leads to good results, several failure modes are shown in Table 5.5.
Although vector arithmetic returns a word very close to the ground truth in terms of meaning,
it fails to identify the key semantic relationship implied in the question.

However, if semantic meaning captured by the factors are reliable enough, they should be
able to identify the semantic difference and therefore correct such mistakes very easily. To
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Figure 5.6: The word vector “sing” learned by fastText has a high activation on the “present
tense” factor, due to the subword structure ‘ing’.

Figure 5.7: Difference between embedding models. The visualization of “king” has significant
“bedding” factor in “GloVe Crawl”, but it is not found in “GloVe Wiki”.

do this, we propose a simple factor group selection approach, where we require the predicted
word to not only be the closest in the embedding space, but also have an higher activation
on the specific factor groups than that of the words in the other category. For example, to be
selected as an answer, “queen”’s activation on the “female” factor group must be higher than
those male words in the subtask. By simply applying this factor group selection approach,
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we achieve consistent improvement for every embedding algorithm on almost every subtask.
For many subtasks, the improvement is quite significant. Three experiments in Table 5.3
get a decreased performance, most likely due to the correct factors are not grouped together
during spectral clustering.

Besides validating the previously identified relationships, as mentioned in Section 5.3,
we are also able to find many new ones using the factors, such as “ideology” (Figure C.2),
“profession” (Figure 5.3) and “adj-to-verb” (Figure C.1). The questions are constructed in
the same way as word analogy tasks. Here are examples from each new task:

Vcollectivist − Vcollectivism = Vliberal − Vliberalism

Ventertain − Ventertainer = Vpoem − Vpoet
Vsensational − Vsensationalize = Vmarginal − Vmarginalize

Performance of each embedding method on the new tasks is shown in Table 5.4, which
has the same behavior as shown in Table 5.3. Consistent improvements are obtained once
we apply the simple factor group selection method. This further demonstrates that word
factors can capture reliable semantic meanings and the phenomenon is not only constraint
to the previously proposed ones in the word analogy task.

5.5 Discussion

In this work, we show that dictionary learning can extract elementary factors from continuous
word vectors. By using the learned factors, we can meaningfully decompose word vectors
and visualize them in many interesting ways. Further, we demonstrate with these factors, we
can consistently improve many word embedding methods in word analogy tasks. The word
factors may provide an convenient mechanism to develop new word analogy tasks beyond
the existing 14 ones. Further examination of existing word embedding models may leads to
further improvements.

A fundamental question that remains to be answered is why word factors can be combined
in such linear fashion? (Levy & Goldberg 2014) provides one possible explanation: with
sparse word representation, which explicitly encode each word’s context statistics, one can
also construct equally good word vectors. If we see a word vector as an explicit statistic based
on a word’s surrounding context, then this context may fall into sub-categories of words.
Our guess is that the learned word factors reflects each of these sub-context categories. This
suggests an interesting future direction of our work. A limit of this work is that all the
word vectors we visualize are trained from methods which ignore the context of a word used
in a specific instance. Applying dictionary learning to attention-based methods (Vaswani
et al. 2017; Devlin et al. 2019) is another interesting future direction. Finally, the existence
of more elementary meaning than words is a debatable argument in linguistic study. The
learned word factors may also provide insights and verification to the sememe thoery (Bazell
1966; Niu et al. 2017; Xie et al. 2017). We leave this to the future work.
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factors top activation words

59
“medical”

hospital, medical, physician, physicians, nurse, doctor, hospitals, doctors,
nurses, patient, nursing, medicine, care, healthcare, psychiatric, clinic,
psychiatry, ambulance, pediatric

116
“vehicle”

vehicles, vehicle, driving, drivers, cars, car, driver, buses, truck, trucks,
taxi, parked, automobile, fleet, bus, taxis, passenger, van, automobiles,
accidents, motorcycle, mph

193
“ware”

pottery, bowl, bowls, porcelain, ware, vase, teapot, china, saucer, denby,
vases, saucers, ceramic, glass, plates, earthenware, pitcher, wedgwood,
pots, plate, tureen, jug, pot, jar

296
“mobile&IT”

ipad, iphone, ios, itunes, apple, android, app, ipod, airplay, 3g, 4s, apps,
ipads, htc, tablet galaxy, jailbreak, iphones, netflix, mac, os, touch, nook,
skyfire, dock, siri, eris, 4g, tablets

337
“superlative”

strongest, funniest, largest, longest, oldest, fastest, wettest, tallest,
heaviest, driest, sexiest, scariest, coldest, hardest, richest, biggest,
happiest, smallest, toughest, warmest, most

461
“country”

venezuela, germany, paraguay, uruguay, norway, russia, lithuania,
ecuador, netherlands, estonia, korea, brazil, argentina, albania, denmark,
poland, europe, sweden, colombia

470
“bedding”

mattress, pillow, bed, mattresses, beds, pillows, queen, ottoman,
simmons, cushion, bedding, topper, foam, plush, sleeper, sofa, comforter,
couch, futon, seat, bolster, pad, sleeping

493
“royal”

king, royal, throne, prince, monarch, emperor, duke, queen, reign,
coronation, kings, empress, regent, dynasty, palace, monarchs, ruler,
crown, heir, monarchy, kingdom, sultan, consort

582
“fruit”

fruit, fruits, pears, oranges, apples, peaches, grapes, apple, ripe, plums,
bananas, mandarin, grapefruit, peach, berries, tomatoes, kiwi,
watermelon, berry, lemons, mango, canning, kiwis

635
“Chinese”

china, fujian, zhejiang, guangdong, hangzhou, shandong, shanghai,
qingdao, beijing, chongqing, guangzhou, sichuan, jiangsu, hainan, hebei,
luoyang, shenzhen, nanjing, henan

781
“national”

croatian, american, lithuanian, norwegian, vietnamese, chinese, romanian,
bulgarian, indonesian, armenian serbian, turkish, hungarian, korean,
malaysian, italian, austrian

886
“female”

her, queen, herself, she, actress, feminist, heroine, princess, empress,
sisters, woman, dowager, lady, sister, mother, goddess, women, daughter,
diva, maiden, girl, née, feminism, heroines

Table 5.1: In this figure we show a set of learned factors with its top-activation words.
Based on the common aspect of the first 20% of the top-activation words (usually around
100 words), we can give each of the factors a semantic name.
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Table 5.2: Factor-vector manipulations and factor-factor manipulations. The word vectors’
average norm is 7.2. The learned word factors all have unit norm.

Manipulations Nearest Neighbors

Vgood + 4Fsuperlative Vbest
Vking + 4Ffemale Vqueen
VItaly + 4Fnational VItalian

Vunwise + 4Fnegative prefix Vprudent
Vhospital + 4Fvehicle Vambulance
Vsoldier − 4Fmilitary Vman

Vdancers − 4Fprofession Vdance
Vkindle − 4Fbook Vipad

Table 5.3: Performance on word analogy task for different word embedding models

W2V
sg ori

W2V
sg group

Fasttext
ori

Fasttext
group

W2V
cb ori

W2V
cb group

GloVe
ori

GloVe
group

0 93.87 93.87 56.92 58.10 88.34 89.13 80.04 83.99
1 89.86 90.52 40.01 40.79 87.48 87.97 79.86 83.52
2 11.06 12.02 36.54 37.26 16.35 18.27 20.19 22.84
3 72.15 75.76 23.89 24.11 68.22 68.79 65.46 66.11
4 86.17 87.15 89.13 89.92 89.33 90.12 96.44 98.02
5 32.16 44.56 75.00 76.61 34.38 38.81 43.15 42.24
6 44.46 47.91 68.97 71.18 40.39 43.47 35.10 42.61
7 83.93 86.71 97.15 97.15 89.56 90.24 87.69 91.67
8 62.59 73.86 99.15 99.15 63.83 69.79 92.23 95.55
9 66.38 87.41 97.73 100.00 69.98 86.74 82.77 96.12
10 90.31 90.43 85.05 85.74 88.12 88.68 69.36 72.67
11 61.99 63.08 84.94 90.71 67.05 71.60 64.10 83.72
12 76.43 71.55 96.70 97.15 80.26 82.36 95.95 91.44
13 71.26 82.99 95.63 98.74 63.79 72.07 67.24 88.51

Sem 79.53 81.16 40.81 41.42 77.22 77.86 72.84 75.31
Syn 67.95 73.47 89.38 91.19 69.32 74.01 72.59 79.80
Tot 72.70 76.63 74.42 75.86 72.56 75.59 72.69 77.96
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Table 5.4: Word analogy performance on new tasks for different word embedding models

W2V sg
ori

W2V sg
group

Fasttext
ori

Fasttext
group

W2V cb
ori

W2V cb
group

GloVe
ori

GloVe
group

Ideology 56.00 56.00 93.33 93.33 56.50 58.67 82.00 85.50
Profession 27.78 38.30 65.79 77.19 36.55 45.03 36.26 53.80

Adj-to-verb 8.97 13.46 62.82 65.38 16.03 16.67 24.36 26.28
Total 40.53 44.44 80.42 84.34 44.54 48.45 59.56 67.21

Table 5.5: A few examples to show the typical errors in word analogy tasks using word
vectors.

Vector arithmetic Ground truth Prediction

unreasonable -
reasonable + competitive

uncompetitive competition

worse - bad + cheap cheaper cheapest

greece - athens + beijing china shanghai

danced - dancing
+ enhancing

enhanced enhance

wife - husband
+ policeman

policewoman policemen
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Chapter 6

Learning Energy-based Models with
Multiscale Denoising Score Matching

6.1 Introduction

Treating data as stochastic samples from a probability distribution and developing models
that can learn such distributions is at the core for solving a large variety of application
problems, such as error correction/denoising (Vincent, Larochelle, Lajoie, et al. 2010), out-
lier/novelty detection (Zhai et al. 2016; Choi & Jang 2018), sample generation (Nijkamp et
al. 2019; Du & Mordatch 2019), invariant pattern recognition, Bayesian reasoning (Welling
& Teh 2011) which relies on good data priors, and many others.

Energy-Based Models (EBMs) (LeCun et al. 2006; Ngiam et al. 2011) assign an energy
E(xxx) to each data point xxx which implicitly defines a probability by the Boltzmann dis-
tribution pm(xxx) = e−E(xxx)/Z. Sampling from this distribution can be used as a generative
process that yield plausible samples of xxx. Compared to other generative models, like GANs
(Goodfellow et al. 2014), flow-based models (Dinh et al. 2015; Kingma & Dhariwal 2018), or
auto-regressive models (van den Oord et al. 2016; Ostrovski et al. 2018), energy-based models
have significant advantages. First, they provide explicit (unnormalized) density information,
compositionality (G. E. Hinton 1999; Haarnoja et al. 2017), better mode coverage (Kumar
et al. 2019) and flexibility (Du & Mordatch 2019). Further, they do not require special
model architecture, unlike auto-regressive and flow-based models. Recently, Energy-based
models has been successfully trained with maximum likelihood (Nijkamp et al. 2019; Du &
Mordatch 2019), but training can be very computationally demanding due to the need of
sampling model distribution. Variants with a truncated sampling procedure have been pro-
posed, such as contrastive divergence (G. E. Hinton 2002). Such models learn much faster
with the draw back of not exploring the state space thoroughly (Tieleman 2008).
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Score Matching, Denoising Score Matching and Deep Energy
Estimators

Score matching (SM) (Hyvärinen 2005) circumvents the requirement of sampling the model
distribution. In score matching, the score function is defined to be the gradient of log-density
or the negative energy function. The expected L2 norm of difference between the model
score function and the data score function are minimized. One convenient way of using score
matching is learning the energy function corresponding to a Gaussian kernel Parzen density
estimator (Parzen 1962) of the data: pσ0(x̃xx) = ∫ qσ0(x̃xx∣xxx)p(xxx)dxxx. Though hard to evaluate,
the data score is well defined: sd(x̃xx) = ∇x̃xx log(pσ0(x̃xx)), and the corresponding objective is:

LSM(θ) = Epσ0(x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (6.1)

(Vincent 2011) studied the connection between denoising auto-encoder and score match-
ing, and proved the remarkable result that the following objective, named Denoising Score
Matching (DSM), is equivalent to the objective above:

LDSM(θ) = Epσ0(x̃xx,xxx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (6.2)

Note that in (6.2) the Parzen density score is replaced by the derivative of log density of
the single noise kernel ∇x̃xx log(qσ0(x̃xx∣xxx)), which is much easier to evaluate. In the particular

case of Gaussian noise, log(qσ0(x̃xx∣xxx)) = −
(x̃̃x̃x−xxx)2

2σ2
0

+C, and therefore:

LDSM(θ) = Epσ0(x̃xx,xxx) ∥ xxx − x̃xx + σ0
2∇x̃xxE(x̃xx; θ) ∥2 (6.3)

The interpretation of objective (6.3) is simple, it forces the energy gradient to align with
the vector pointing from the noisy sample to the clean data sample. Essentially, this requires
the derivative of the energy function to be a denoising autoencoder (Vincent, Larochelle,
Bengio, et al. 2008), therefore it is named denoising score matching. To optimize an objec-
tive involving the derivative of a function defined by a neural network, (Kingma & LeCun
2010) proposed the use of double backpropagation (Drucker & Le Cun 1991). Deep energy
estimator networks (Saremi, Mehrjou, et al. 2018) first applied this technique to learn an
energy function defined by a deep neural network. In this work and similarly in (Saremi &
Hyvarinen 2019), an energy-based model was trained to match a Parzen density estimator
of data with a certain noise magnitude. The previous models were able to perform denoising
task, but they were unable to generate high-quality data samples from a random input ini-
tialization. Recently, (Song & Ermon 2019) trained an excellent generative model by fitting
a series of score estimators coupled together in a single neural network, each matching the
score of a Parzen estimator with a different noise magnitude.

The questions we address here is why learning energy-based models with single noise level
does not permit high-quality sample generation and what can be done to improve energy
based models. Our work builds on key ideas from (Saremi, Mehrjou, et al. 2018; Saremi &
Hyvarinen 2019; Song & Ermon 2019). Section 6.2, provides a geometric view of the learning
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problem in denoising score matching and provides a theoretical explanation why training
with one noise level is insufficient if the data dimension is high. Section 6.3 presents a novel
method for training energy based model, Multiscale Denoising Score Matching (MDSM).
Section 6.4 describes empirical results of the MDSM model and comparisons with other
models.

A. Training B. Sampling

?

?

Single noise level All noise levels

Figure 6.1: Illustration of anneal denoising score matching. A. During training, derivative
of log-likelihood is forced to point toward data manifold, establishing energy difference be-
tween points within manifold and points outside. Note that energy is negative log-likelihood
therefore energy is higher for point further away from data manifold. B. During annealed
Langevin sampling, sample travel from outside data manifold to data manifold. Shown are
singled step denoised sample during sampling of an energy function trained with MDSM on
Fashion-MNIST (see text for details).

6.2 A Geometric view of Denoising Score Matching

(Song & Ermon 2019) used denoising score matching with a range of noise levels, achieving
great empirical results. The authors explained that large noise perturbation are required to
enable the learning of the score in low-data density regions. But it is still unclear why a
series of different noise levels are necessary, rather than one single large noise level. Following
(Saremi & Hyvarinen 2019), we analyze the learning process in denoising score matching
based on measure concentration properties of high-dimensional random vectors.

We adopt the common assumption that the data distribution to be learned is high-
dimensional, but only has support around a relatively low-dimensional manifold (Tenenbaum
et al. 2000; Roweis & Saul 2000; Lawrence 2005). If the assumption holds, it causes a problem
for score matching: The density, or the gradient of the density is then undefined outside the
manifold, making it difficult to train a valid density model for the data distribution defined
on the entire space. (Saremi & Hyvarinen 2019) and (Song & Ermon 2019) discussed this
problem and proposed to smooth the data distribution with a Gaussian kernel to alleviate
the issue.
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To further understand the learning in denoising score matching when the data lie on a
manifold X and the data dimension is high, two elementary properties of random Gaussian
vectors in high-dimensional spaces are helpful: First, the length distribution of random
vectors becomes concentrated at

√
dσ (Vershynin 2018), where σ2 is the variance of a single

dimension. Second, a random vector is always close to orthogonal to a fixed vector (Tao
2012). With these premises one can visualize the configuration of noisy and noiseless data
points that enter the learning process: A data point xxx sampled from X and its noisy version
x̃xx always lie on a line which is almost perpendicular to the tangent space TxxxX and intersects
X at xxx. Further, the distance vectors between (xxx, x̃xx) pairs all have similar length

√
dσ. As

a consequence, the set of noisy data points concentrate on a set X̃√dσ,ε that has a distance

with (
√
dσ − ε,

√
dσ + ε) from the data manifold X , where ε≪

√
dσ.

Therefore, performing denoising score matching learning with (xxx, x̃xx) pairs generated with
a fixed noise level σ, which is the approach taken previously except in (Song & Ermon 2019),
will match the score in the set X̃√dσ,ε and enable denoising of noisy points in the same set.
However, the learning provides little information about the density outside this set, farther
or closer to the data manifold, as noisy samples outside X̃√dσ,ε rarely appear in the training
process. An illustration is presented in Figure 6.1A.

Let X̃C
√

dσ,ε
denote the complement of the set X̃√dσ,ε. Even if pσ0(x̃xx ∈ X̃C

√

dσ,ε
) is very

small in high-dimensional space, the score in X̃C
√

dσ,ε
still plays a critical role in sampling

from random initialization. This analysis may explain why models based on denoising score
matching, trained with a single noise level encounter difficulties in generating data samples
when initialized at random. For an empirical support of this explanation, see our experiments
with models trained with single noise magnitudes (Appendix B.2). To remedy this problem,
one has to apply a learning procedure of the sort proposed in (Song & Ermon 2019), in which
samples with different noise levels are used. Depending on the dimension of the data, the
different noise levels have to be spaced narrowly enough to avoid empty regions in the data
space. In the following, we will use Gaussian noise and employ a Gaussian scale mixture to
produce the noisy data samples for the training (for details, See Section 6.3 and Appendix
B.1).

Another interesting property of denoising score matching was suggested in the denois-
ing auto-encoder literature (Vincent, Larochelle, Lajoie, et al. 2010; Karklin & Simoncelli
2011). With increasing noise level, the learned features tend to have larger spatial scale. In
our experiment we observe similar phenomenon when training model with denoising score
matching with single noise scale. If one compare samples in Figure B.1, Appendix B.2, it is
evident that noise level of 0.3 produced a model that learned short range correlation that
spans only a few pixels, noise level of 0.6 learns longer stroke structure without coherent
overall structure, and noise level of 1 learns more coherent long range structure without
details such as stroke width variations. This suggests that training with single noise level in
denoising score matching is not sufficient for learning a model capable of high-quality sample
synthesis, as such a model have to capture data structure of all scales.
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6.3 Learning Energy-based model with Multiscale

Denoising score matching

Multiscale Denoising Score matching

Motivated by the analysis in section 6.2, we strive to develop an EBM based on denoising
score matching that can be trained with noisy samples in which the noise level is not fixed
but drawn from a distribution. The model should approximate the Parzen density estima-
tor of the data pσ0(x̃xx) = ∫ qσ0(x̃xx∣xxx)p(xxx)dx. Specifically, the learning should minimize the
difference between the derivative of the energy and the score of pσ0 under the expectation
EpM (x̃xx) rather than Epσ0(x̃xx), the expectation taken in standard denoising score matching. Here
pM(x̃xx) = ∫ qM(x̃xx∣xxx)p(xxx)dx is chosen to cover the signal space more evenly to avoid the mea-
sure concentration issue described above. The resulting Multiscale Score Matching (MSM)
objective is:

LMSM(θ) = EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (6.4)

Compared to the objective of denoising score matching (6.1), the only change in the new
objective (6.4) is the expectation. Both objectives are consistent, if pM(x̃xx) and pσ0(x̃xx) have
the same support, as shown formally in Proposition 1 of Appendix B.1. In Proposition 2, we
prove that Equation 6.4 is equivalent to the following denoising score matching objective:

LMDSM∗ = EpM (x̃xx)qσ0(xxx∣x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (6.5)

The above results hold for any noise kernel qσ0(x̃xx∣xxx), but Equation 6.5 contains the
reversed expectation, which is difficult to evaluate in general. To proceed, we choose
qσ0(x̃xx∣xxx) to be Gaussian, and also choose qM(x̃xx∣xxx) to be a Gaussian scale mixture: qM(x̃xx∣xxx) =
∫ qσ(x̃xx∣xxx)p(σ)dσ and qσ(x̃xx∣xxx) = N (xxx,σ2Id). After algebraic manipulation and one approx-
imation (see the derivation following Proposition 2 in Appendix B.1), we can transform
Equation 6.5 into a more convenient form, which we call Multiscale Denoising Score Match-
ing (MDSM):

LMDSM = Ep(σ)qσ(x̃xx∣xxx)p(xxx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 (6.6)

The square loss term evaluated at noisy points x̃xx at larger distances from the true data
points xxx will have larger magnitude. Therefore, in practice it is convenient to add a mono-
tonically decreasing term l(σ) for balancing the different noise scales, e.g. l(σ) = 1

σ2 . Ideally,
we want our model to learn the correct gradient everywhere, so we would need to add noise of
all levels. However, learning denoising score matching at very large or very small noise levels
is useless. At very large noise levels the information of the original sample is completely
lost. Conversely, in the limit of small noise, the noisy sample is virtually indistinguishable
from real data. In neither case one can learn a gradient which is informative about the data
structure. Thus, the noise range needs only to be broad enough to encourage learning of
data features over all scales. Particularly, we do not sample σ but instead choose a series of
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fixed σ values σ1⋯σK . Further, substituting log(qσ0(x̃xx∣xxx)) = −
(x̃̃x̃x−xxx)2

2σ2
0

+ C into Equation 6.4,

we arrive at the final objective:

L(θ) = ∑
σ∈{σ1⋯σK}

Eqσ(x̃xx∣xxx)p(xxx)l(σ) ∥ xxx − x̃xx + σ2
0∇x̃xxE(x̃xx; θ) ∥2 (6.7)

It may seem that σ0 is an important hyperparameter to our model, but after our approx-
imation σ0 become just a scaling factor in front of the energy function, and can be simply set
to one as long as the temperature range during sampling is scaled accordingly (See Section
6.3). Therefore the only hyper-parameter is the rang of noise levels used during training.

On the surface, objective (6.7) looks similar to the one in (Song & Ermon 2019). The
important difference is that Equation 6.7 approximates a single distribution, namely pσ0(x̃xx),
the data smoothed with one fixed kernel qσ0(x̃xx∣xxx). In contrast, (Song & Ermon 2019) ap-
proximate the score of multiple distributions, the family of distributions {pσi(x̃xx) ∶ i = 1, ..., n},
resulting from the data smoothed by kernels of different widths σi. Because our model learns
only a single target distribution, it does not require noise magnitude as input.

Sampling by Annealed Langevin Dynamics

Langevin dynamics has been used to sample from neural network energy functions (Du &
Mordatch 2019; Nijkamp et al. 2019). However, the studies described difficulties with mode
exploration unless very large number of sampling steps is used. To improve mode explo-
ration, we propose incorporating simulated annealing in the Langevin dynamics. Simulated
annealing (Kirkpatrick et al. 1983; Neal 2001) improves mode exploration by sampling first
at high temperature and then cooling down gradually. This has been successfully applied to
challenging computational problems, such as combinatorial optimization.

To apply simulated annealing to Langevin dynamics. Note that in a model of Brownian
motion of a physical particle, the temperature in the Langevin equation enters as a factor√
T in front of the noise term, some literature uses

√
β−1 where β = 1/T (Jordan et al. 1998).

Adopting the
√
T convention, the Langevin sampling process (Bellec et al. 2017) is given by:

xxxt+1 = xxxt −
ε2

2
∇xxxE(xxxt; θ) + ε

√
TtN (0, Id) (6.8)

where Tt follows some annealing schedule, and ε denotes step length, which is fixed. During
sampling, samples behave very much like physical particles under Brownian motion in a
potential field. Because the particles have average energies close to the their current thermic
energy, they explore the state space at different distances from data manifold depending on
temperature. Eventually, they settle somewhere on the data manifold. The behavior of the
particle’s energy value during a typical annealing process is depicted in Appendix Figure
B.7B.

If the obtained sample is still slightly noisy, we can apply a single step gradient denoising
jump (Saremi & Hyvarinen 2019) to improve sample quality:

xxxclean = xxxnoisy − σ2
0∇xxxE(xxxnoisy; θ) (6.9)
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This denoising procedure can be applied to noisy sample with any level of Gaussian noise
because in our model the gradient automatically has the right magnitude to denoise the
sample. This process is justified by the Empirical Bayes interpretation of this denoising
process, as studied in (Saremi & Hyvarinen 2019).

(Song & Ermon 2019) also call their sample generation process annealed Langevin dy-
namics. It should be noted that their sampling process does not coincide with Equation 6.8.
Their sampling procedure is best understood as sequentially sampling a series of distributions
corresponding to data distribution corrupted by different levels of noise.

6.4 Image Modeling Results

Training and Sampling Details. The proposed energy-based model is trained on standard
image datasets, specifically MNIST, Fashion MNIST, CelebA (Z. Liu et al. 2015) and CIFAR-
10 (Krizhevsky, G. Hinton, et al. 2009). During training we set σ0 = 0.1 and train over a noise
range of σ ∈ [0.05,1.2], with the different noise uniformly spaced on the batch dimension. For
MNIST and Fashion MNIST we used geometrically distributed noise in the range [0.1,3].
The weighting factor l(σ) is always set to 1/σ2 to make the square term roughly independent
of σ. We fix the batch size at 128 and use the Adam optimizer with a learning rate of 5×10−5.
For MNIST and Fashion MNIST, we use a 12-Layer ResNet with 64 filters, for the CelebA
and CIFAT-10 data sets we used a 18-Layer ResNet with 128 filters (He et al. 2016a; He
et al. 2016b). No normalization layer was used in any of the networks. We designed the
output layer of all networks to take a generalized quadratic form (Fan et al. 2018). Because
the energy function is anticipated to be approximately quadratic with respect to the noise
level, this modification was able to boost the performance significantly. For more detail on
training and model architecture, see Appendix B.4. One notable result is that since our
training method does not involve sampling, we achieved a speed up of roughly an order of
magnitude compared to the maximum-likelihood training using Langevin dynamics 1. Our
method thus enables the training of energy-based models even when limited computational
resources prohibit maximum likelihood methods.

We found that the choice of the maximum noise level has little effect on learning as long
as it is large enough to encourage learning of the longest range features in the data. However,
as expected, learning with too small or too large noise levels is not beneficial and can even
destabilize the training process. Further, our method appeared to be relatively insensitive
to how the noise levels are distributed over a chosen range. Geometrically spaced noise as
in (Song & Ermon 2019) and linearly spaced noise both work, although in our case learning
with linearly spaced noise was somewhat more robust.

For sampling the learned energy function we used annealed Langevin dynamics with
an empirically optimized annealing schedule,see Figure B.7B for the particular shape of

1For example, on a single GPU, training MNIST with a 12-layer Resnet takes 0.3s per batch with our
method, while maximum likelihood training with a modest 30 Langevin step per weight update takes 3s per
batch. Both methods need similar number of weight updates to train.
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annealing schedule we used. In contrast, annealing schedules with theoretical guaranteed
convergence property takes extremely long (S. Geman & D. Geman 1984). The range of
temperatures to use in the sampling process depends on the choice of σ0, as the equilibrium
distribution is roughly images with Gaussian noise of magnitude

√
Tσ0 added on top. To

ease traveling between modes far apart and ensure even sampling, the initial temperature
needs to be high enough to inject noise of sufficient magnitude. A choice of T = 100, which
corresponds to added noise of magnitude

√
100∗0.1 = 1, seems to be sufficient starting point.

For step length ε we generally used 0.02, although any value within the range [0.015,0.05]
seemed to work fine. After the annealing process we performed a single step denoising to
further enhance sample quality.

Figure 6.2: Samples from our model trained on Fashion MNIST, CelebA and CIFAR-10.
See Figure B.5 and Figure B.6 in Appendix for more samples and comparison with training
data.

Unconditional Image Generation. We demonstrate the generative ability of our model
by displaying samples obtained by annealed Langevin sampling and single step denoising
jump. We evaluated 50k sampled images after training on CIFAR-10 with two performance
scores, Inception (Salimans et al. 2016) and FID (Heusel et al. 2017). We achieved Inception
Score of 8.31 and FID of 31.7, comparable to modern GAN approaches. Scores for CelebA
dataset are not reported here as they are not commonly reported and may depend on the
specific pre-processing used. More samples and training images are provided in Appendix for
visual inspection. We believe that visual assessment is still essential because of the possible
issues with the Inception score (Barratt & R. Sharma 2018). Indeed, we also found that
the visually impressive samples were not necessarily the one achieving the highest Inception
Score.

Although overfitting is not a common concern for generative models, we still tested our
model for overfitting. We found no indication for overfitting by comparing model samples
with their nearest neighbors in the data set, see Figure B.2 in Appendix.

2Author reported difficulties evaluating Likelihood
3Upper Bound obtained by Reverse AIS
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Table 6.1: Unconditional Inception score, FID scores and Likelihoods for CIFAR-10

Model IS ↑ FID ↓ Likelihood NNL (bits/dim) ↓

iResNet (Behrmann et al. 2019) - 65.01 Yes 3.45
PixelCNN (van den Oord et al. 2016) 4.60 65.93 Yes 3.14

PixelIQN (Ostrovski et al. 2018) 5.29 49.46 Yes -

Residual Flow (R. T. Chen et al. 2019) - 46.37 Yes 3.28

GLOW (Kingma & Dhariwal 2018) - 46.90 Yes 3.35

EBM (ensemble) (Du & Mordatch 2019) 6.78 38.2 Yes - 2

MDSM (Ours) 8.31 31.7 Yes 7.04 3

SNGAN (Miyato et al. 2018) 8.22 21.7 No -

NCSN (Song & Ermon 2019) 8.91 25.32 No -

Mode Coverage. We repeated with our model the 3 channel MNIST mode coverage
experiment similar to the one in (Kumar et al. 2019). An energy-based model was trained on
3-channel data where each channel is a random MNIST digit. Then 8000 samples were taken
from the model and each channel was classified using a small MNIST classifier network. We
obtained results of the 966 modes, comparable to GAN approaches. Training was successful
and our model assigned low energy to all the learned modes, but some modes were not
accessed during sampling, likely due to the Langevin Dynamics failing to explore these
modes. A better sampling technique such as HMC (Neal et al. 2011) or a Maximum Entropy
Generator (Kumar et al. 2019) could improve this result.

Image Inpainting. Image impainting can be achieved with our model by clamping a part of
the image to ground truth and performing the same annealed Langevin and Jump sampling
procedure on the missing part of the image. Noise appropriate to the sampling temperature
need to be added to the clamped inputs. The quality of inpainting results of our model
trained on CelebA and CIFAR-10 can be assessed in Figure 6.3. For CIFAR-10 inpainting
results we used the test set.

Log likelihood estimation. For energy-based models, the log density can be obtained after
estimating the partition function with Annealed Importance Sampling (AIS) (Salakhutdinov
& Murray 2008) or Reverse AIS (Burda et al. 2015). In our experiment on CIFAR-10 model,
similar to reports in (Du & Mordatch 2019), there is still a substantial gap between AIS
and Reverse AIS estimation, even after very substantial computational effort. In Table 6.1,
we report result from Reverse AIS, as it tends to over-estimate the partition function thus
underestimate the density. Note that although density values and likelihood values are not
directly comparable, we list them together due to the sheer lack of a density model for
CIFAR-10.
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Figure 6.3: Demonstration of the sampling process (left), and image inpainting (right).
The sampling process is shown with Gaussian noise (top left), and denoised by single step
gradient jump (lower left). The column next to sampling process shows samples after the
last denoising jump at the end of sampling. Inpainting results are shown next to initial
image (left column) and the ground truth image (right column).

We also report a density of 1.21 bits/dim on MNIST dataset, and we refer readers to (Du
& Mordatch 2019) for comparison to other models on this dataset. Note that this number
follows a different convention than the number for CIFAR-10, which consider images pixal
values to lie between [0,255]. More details on this experiment is provided in the Appendix.

Outlier Detection. (Choi & Jang 2018) and (Nalisnick et al. 2019) have reported intriguing
behavior of high dimensional density models on out of distribution samples. Specifically, they
showed that a lot of models assign higher likelihood to out of distribution samples than real
data samples. We investigated whether our model behaves similarly.

Our energy function is only trained outside the data manifold where samples are noisy,
so the energy value at clean data points may not always be well behaved. Therefore, we
added noise with magnitude σ0 before measuring the energy value. We find that our network
behaves similarly to previous likelihood models, it assigns lower energy, thus higher density,
to some OOD samples. We show one example of this phenomenon in Appendix Figure B.7A.

We also attempted to use the denoising performance, or the objective function to perform
outlier detection. Intriguingly, the results are similar as using the energy value. Denoising
performance seems to correlate more with the variance of the original image than the content
of the image.
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6.5 Discussion

In this work we provided analyses and empirical results for understanding the limitations of
learning the structure of high-dimensional data with denoising score matching. We found
that the objective function confines learning to a small set due to the measure concentration
phenomenon in random vectors. Therefore, sampling the learned distribution outside the set
where the gradient is learned does not produce good result. One remedy to learn meaningful
gradients in the entire space is to use samples during learning that are corrupted by different
amounts of noise. Indeed, (Song & Ermon 2019) applied this strategy very successfully.

The central contribution of our paper is to investigate how to use a similar learning
strategy in EBMs. Specifically, we proposed a novel EBM model, the Multiscale Denoising
Score Matching (MDSM) model. The new model is capable of denoising, producing high-
quality samples from random noise, and performing image inpainting. While also providing
density information, our model learns an order of magnitude faster than models based on
maximum likelihood.

Our approach is conceptually similar to the idea of combining denoising autoencoder and
annealing (Geras & Sutton 2015; Chandra & R. K. Sharma 2014; Q. Zhang & L. Zhang 2018)
though this idea was proposed in the context of pre-training neural networks for classification
applications. Previous efforts of learning energy-based models with score matching (Kingma
& LeCun 2010; Song, Garg, et al. 2019) were either computationally intensive or unable to
produce high-quality samples comparable to those obtained by other generative models such
as GANs. (Saremi, Mehrjou, et al. 2018) and (Saremi & Hyvarinen 2019) trained energy-
based model with the denoising score matching objective but the resulting models cannot
perform sample synthesis from random noise initialization.

Recently, (Song & Ermon 2019) proposed the NCSN model, capable of high-quality
sample synthesis. This model approximates the score of a family of distributions obtained
by smoothing the data by kernels of different widths. The sampling in the NCSN model
starts with sampling the distribution obtained with the coarsest kernel and successively
switches to distributions obtained with finer kernels. Unlike NCSN, our method learns an
energy-based model corresponding to pσ0(x̃xx) for a fixed σ0. This method improves score
matching in high-dimensional space by matching the gradient of an energy function to the
score of pσ0(x̃xx) in a set that avoids measure concentration issue.

All told, we offer a novel EBM model that achieves high-quality sample synthesis, which
among other EBM approaches provides a new state-of-the art. Compared to the NCSN
model, our model is more parsimonious than NCSN and can support single step denoising
without prior knowledge of the noise magnitude. But our model performs sightly worse than
the NCSN model, which could have several reasons. First, the derivation of Equation 6.6
requires an approximation to keep the training procedure tractable, which could reduce the
performance. Second, the NCSN’s output is a vector that, at least during optimization,
does not always have to be the derivative of a scalar function. In contrast, in our model
the network output is a scalar function. Thus it is possible that the NCSN model performs
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better because it explores a larger set of functions during optimization.
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Appendix A

Appendix for the SMT

A.1 Online SGD Solution

Some minor drawbacks of the analytic generalized eigendecomposition solution are that:
1) there is an unnecessary ordering among different embedding dimensions, 2) the learned
functional embedding tends to be global, which has support as large as the whole manifold
and 3) the solution is not online and does not allow other constraints to be posed. In
order to solve these issues, we modify the formulation of equation 3.3 slightly with a sparse
regularization term on P and develop an online SGD (Stochastic Gradient Descent) solution:

min
P

γ0∥PAD∥2
F + γ1∥PW ∥1, s.t. PV P T = I, (A.1)

where γ0 and γ1 are both positive parameters, W = diag(⟨α⟩) and ∥ ● ∥1 is the L1,1 norm, V
is the covariance matrix of α. The sparse regularization term encourages the functionals to
be localized on the manifold.

The iterative update rule for solving equation (A.1) to learn the manifold embedding
consists of:

1. One step along the whitened gradient computed on a mini-batch:
P += −2γ0ηPPADDTATV −1, where V −1 serves to whiten the gradient. ηP is the
learning rate of P .

2. Weight regularization: P = Shrinkage
⟨α⟩,γ1(P ), which shrinks each entry in the jth

column of P by γ1⟨αj⟩.

3. Parallel orthogonalization: (PV P T )− 1
2P , which is a slight variation to an orthogonal-

ization method introduced by (Karhunen et al. 1997).
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A.2 Dataset and Preprocessing

The natural videos were captured with a head-mounted GoPro 5 session camera at 90fps.
The video dataset we used contains about 53 minutes (about 300,000 frames) of 1080p video
while the cameraperson is walking on a college campus. For each video frame, we select
the center 1024x1024 section and down-sample it to 128x128 by using a steerable pyramid
(Simoncelli & Freeman 1995) to decrease the range of motion in order to avoid temporal
aliasing. For each 128x128 video frame, we then apply an approximate whitening in the
Fourier domain: For each frame, 1) take a Fourier transform, 2) modulate the amplitude by
a whitening mask function w(u, v), 3) take an inverse Fourier transform. Since the Fourier
amplitude map of natural images in general follows a 1/f law(Field 1987), the whitening
mask function is chosen to be the product: w(u, v) = w1(u, v)w2(u, v), where w1(u, v) = r
is a linear ramp function of the frequency radius r(u, v) = (u2 + v2) 1

2 and w2 is a low-pass

windowing function in the frequency domain w2(u, v) = e−(
r
r0
)
4

, with r0 = 48. The resulting
amplitude modulation function is shown in Supplementary Figure A.1. For a more thorough
discussion on this method, please see (Atick & Redlich 1990; Atick & Redlich 1992; Olshausen
& Field 1997). We found that the exact parameters for whitening were not critical. We also
implemented a ZCA version and found that the results were qualitatively similar.

Figure A.1: In this figure we show the whitening mask function w(u, v). Since w is radial
symmetric, we show its value with respect to the frequency radius r as a 1-D curve. As we
are using 128x128 images, the frequency radius we show is from 0 to 64, which is the Nyquist
frequency.
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Appendix B

Appendix for Multiscale Denoising
Score Matching

B.1 MDSM Objective

In this section, we provide a formal discussion of the MDSM objective and suggest it as an
improved score matching formulation in high-dimensional space.

(Vincent 2011) illustrated the connection between the model score −∇x̃xxE(x̃xx; θ) with the
score of Parzen window density estimator ∇x̃xx log(pσ0(x̃xx)). Specifically, the objective is Equa-
tion 6.1 which we restate here:

LSM(θ) = Epσ0(x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (B.1)

Our key observation is: in high-dimensional space, due the concentration of measure, the
expectation w.r.t. pσ0(x̃xx) over weighs a thin shell at roughly distance

√
dσ to the empirical

distribution p(x). Though in theory this is not a problem, in practice this leads to results
that the score are only well matched on this shell. Based on this observation, we suggest to
replace the expectation w.r.t. pσ0(x̃xx) with a distribution pσ′(x̃xx) that has the same support
as pσ0(x̃xx) but can avoid the measure concentration problem. We call this multiscale score
matching and the objective is the following:

LMSM(θ) = EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃xxE(x̃xx; θ) ∥2 (B.2)

Proposition 1. LMSM(θ) = 0 ⇐⇒ LSM(θ) = 0 ⇐⇒ θ = θ∗.

Given that pM(x̃xx) and pσ0(x̃xx) has the same support, it’s clear that LMSM = 0 would be
equivalent to LSM = 0. Due to the proof of the Theorem 2 in (Hyvärinen 2005), we have
LSM(θ) ⇐⇒ θ = θ∗. Thus, LMSM(θ) = 0 ⇐⇒ θ = θ∗.

Proposition 2. LMSM(θ) ⌣ LMDSM∗ = EpM (x̃xx)qσ0(xxx∣x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2.
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We follow the same procedure as in (Vincent 2011) to prove this result.

JMSM(θ) = EpM (x̃xx) ∥ ∇x̃xx log(pσ0(x̃xx)) +∇x̃E(x̃xx; θ) ∥2

= EpM (x̃xx) ∥ ∇x̃E(x̃xx; θ) ∥2 +2S(θ) +C

S(θ) = EpM (x̃xx)⟨∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)⟩

= ∫
x̃xx
pM(x̃xx)⟨∇x̃xx log(pσ0(x̃xx)),∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx
pM(x̃xx)⟨∇x̃xxpσ0(x̃

xx)
pσ0(x̃xx)

,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx

pM(x̃xx)
pσ0(x̃xx)

⟨∇x̃xxpσ0(x̃xx),∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx

pM(x̃xx)
pσ0(x̃xx)

⟨∇x̃xx∫
xxx
p(xxx)qσ0(x̃xx∣xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx

pM(x̃xx)
pσ0(x̃xx)

⟨∫
xxx
p(xxx)∇x̃xxqσ0(x̃xx∣xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx

pM(x̃xx)
pσ0(x̃xx)

⟨∫
xxx
p(xxx)qσ0(x̃xx∣xxx)∇x̃xx log qσ0(x̃xx∣xxx)dxxx,∇x̃xxE(x̃xx; θ)⟩ dx̃xx

= ∫
x̃xx
∫
xxx

pM(x̃xx)
pσ0(x̃xx)

p(xxx)qσ0(x̃xx∣xxx)⟨∇x̃xx log qσ0(x̃xx∣xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

= ∫
x̃xx
∫
xxx

pM(x̃xx)
pσ0(x̃xx)

pσ0(x̃xx,xxx)⟨∇x̃xx log qσ0(x̃xx∣xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

= ∫
x̃xx
∫
xxx
pM(x̃xx)qσ0(xxx∣x̃xx)⟨∇x̃xx log qσ0(x̃xx∣xxx),∇x̃xxE(x̃xx; θ)⟩ dx̃xxdxxx

Thus we have:

LMSM(θ) = EpM (x̃xx) ∥ ∇x̃xxE(x̃xx; θ) ∥2 +2S(θ) +C
= EpM (x̃xx)qσ0(xxx∣x̃xx) ∥ ∇x̃xxE(x̃xx; θ) ∥2 +2EpM (x̃xx)qσ0(xxx∣x̃xx)⟨∇x̃xx log qσ0(x̃xx∣xxx),∇x̃xxE(x̃xx; θ)⟩ +C
= EpM (x̃xx)qσ0(xxx∣x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 +C ′

So LMSM(θ) ⌣ LMDSM∗ .

The above analysis applies to any noise distribution, not limited to Gaussian. but
LMDSM∗ has a reversed expectation form that is not easy to work with. To proceed fur-
ther we study the case where qσ0(x̃xx∣xxx) is Gaussian and choose qM(x̃xx∣xxx) as a Gaussian scale
mixture (Wainwright & Simoncelli 2000) and pM(x̃xx) = ∫ qM(x̃xx∣xxx)p(xxx)dx. By Proposition 1
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and Proposition 2, we have the following form to optimize:

LMDSM∗(θ) = ∫
x̃xx
∫
xxx
pM(x̃xx)qσ0(xxx∣x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

= ∫
x̃xx
∫
xxx

qσ0(xxx∣x̃xx)
qM(xxx∣x̃xx)

pM(x̃xx)qM(xxx∣x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

= ∫
x̃xx
∫
xxx

qσ0(xxx∣x̃xx)
qM(xxx∣x̃xx)

pM(xxx, x̃xx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx

= ∫
x̃xx
∫
xxx

qσ0(xxx∣x̃xx)
qM(xxx∣x̃xx)

qM(x̃xx∣xxx)p(xxx) ∥ ∇x̃xx log(qσ0(x̃xx∣xxx)) +∇x̃xxE(x̃xx; θ) ∥2 dx̃xxdxxx (*)

≈ LMDSM(θ)

To minimize Equation (*), we can use the following importance sampling procedure
(Russell & Norvig 2016): we can sample from the empirical distribution p(xxx), then sample

the Gaussian scale mixture qM(x̃xx∣xxx) and finally weight the sample by
qσ0(xxx∣x̃xx)

qM (xxx∣x̃xx)
. We expect the

ratio to be close to 1 for the following reasons: Using Bayes rule, qσ0(xxx∣x̃xx) =
p(xxx)qσ0(x̃xx∣xxx)

pσ0(x̃xx)
we can

see that qσ0(xxx∣x̃xx) only has support on discret data points xxx, same thing holds for qM(xxx∣x̃xx).
because in x̃xx is generated by adding Gaussian noise to real data sample, both estimators
should give results highly concentrated on the original sample point xxx. Therefore, in practice,
we ignore the weighting factor and use Equation 6.6. Improving upon this approximation is
left for future work.

B.2 Problem with single noise denoising score

matching

To compare with previous method, we trained energy-based model with denoising score
matching using one noise level on MNIST, initialized the sampling with Gaussian noise of
the same level, and sampled with Langevin dynamics at T = 1 for 1000 steps and perform
one denoise jump to recover the model’s best estimate of the clean sample, see Figure B.1.
We used the same 12-layer ResNet as other MNIST experiments. Models were trained for
100000 steps before sampling.

B.3 Overfitting test

We demonstrate that the model does not simply memorize training examples by comparing
model samples with their nearest neighbors in the training set. We use Fashion MNIST
for this demonstration because overfitting can occur there easier than on more complicated
datasets, see Figure B.2.
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0.3 0.6 1.0

Figure B.1: Denoised samples from energy-based model trained with denoising score match-
ing with single magnitude Gaussian noise on MNIST. Noise magnitude used in training is
shown above samples.

B.4 Details on Training and Sampling

We used a custom designed ResNet architecture for all experiments. For MNIST and Fashion-
MNIST we used a 12-layer ResNet with 64 filters on first layer, while for CelebA and CIFAR
dataset we used a 18-layer ResNet with 128 filters on the first layer. All network used the
ELU activation function. We did not use any normalization in the ResBlocks and the filer
number is doubled at each downsampling block. Details about the structure of our networks
used can be found in our code release. All mentioned models can be trained on 2 GPUs
within 2 days.

Since the gradient of our energy model scales linearly with the noise, we expected our
energy function to scale quadratically with noise magnitude. Therefore, we modified the
standard energy-based network output layer to take a flexible quadratic form (Fan et al.
2018):

Eout = (∑
i

aihi + b1)(∑
i

cihi + b2) +∑
i

dih
2
i + b3 (B.3)

where ai, ci, di and b1, b2, b3 are learnable parameters, and hi is the (flattened) output of last
residual block. We found this modification to significantly improve performance compared
to using a simple linear last layer.

For CIFAR and CelebA results we trained for 300k weight updates, saving a checkpoint
every 5000 updates. We then took 1000 samples from each saved networks and used the
network with the lowest FID score. For MNIST and fashion MNIST we simply trained for
100k updates and used the last checkpoint. During training we pad MNIST and Fashion
MNIST to 32*32 for convenience and randomly flipped CelebA images. No other modification
was performed. We only constrained the gradient of the energy function, the energy value
itself could in principle be unbounded. However, we observed that they naturally stabilize
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Figure B.2: Samples from energy-based model trained on Fashion MNIST (Left column)
next to 10 (L2) nearest neighbors in the training set.

so we did not explicitly regularize them. The annealing sampling schedule is optimized to
improve sample quality for CIFAR-10 dataset, and consist of a total of 2700 steps. For
other datasets the shape has less effect on sample quality, see Figure B.7 B for the shape of
annealing schedule used.

For the Log likelihood estimation we initialized reverse chain on test images, then sample
10000 intermediate distribution using 10 steps HMC updates each. Temperature schedule
is roughly exponential shaped and the reference distribution is an isotropic Gaussian. The
variance of estimation was generally less than 10% on the log scale. Due to the high variance
of results, and to avoid getting dominated by a single outlier, we report average of the log
density instead of log of average density.

B.5 Extended Samples and Inpainting results

We provide more inpainting examples and further demonstrate the mixing during sampling
process in Figure B.3. We also provide more samples for readers to visually judge the quality
of our sample generation in Figure B.4, B.5 and B.6. All samples are randomly selected.
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Figure B.3: Denoised Sampling process and inpainting results. Sampling process is from left
to right.

B.6 Sampling process and Energy value comparisons

Here we show how the average energy of samples behaves vs the sampling temperature. We
also show an example of our model making out of distribution error that is common in most
other likelihood based models (Nalisnick et al. 2019) Figure B.7.
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Figure B.4: Extended Fashion MNIST and MNIST samples
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Figure B.5: Samples (left panel) from network trained on CelebA, and training examples
from the dataset (right panel).
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Figure B.6: Samples (left panel) from energy-based model trained on CIFAR-10 next to
training examples (right panel).
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B.A.

Figure B.7: A. Energy values for CIFAR-10 train, CIFAR-10 test and SVHN datasets for a
network trained on CIFAR-10 images. Note that the network does not over fit to the training
set, but just like most deep likelihood model, it assigns lower energy to SVHN images than
its own training data. B. Annealing schedule and a typical energy trace for a sample during
Annealed Langevin Sampling. The energy of the sample is proportional to the temperature,
indicating sampling is close to a quasi-static process.
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Appendix C

Appendix for Word Factors

C.1 The Word Factor Naming Procedure

In this section we illustrate how the factors are named. A factor is named based on the
common aspect of its top-activation words. Specifically, for every factor, we use the word
frequency to weight the factor’s activation on each word, and take the top words that totally
contributing 20% of the total weighted activation. The idea is that a factor should be better
represented by words that have strong and obvious activation and show up frequently as
well. Usually we get up to 200 words but the number varies from factor to factor. We
demonstrate four factors: “national”, “mobile&IT”, “superlative”, “ideology”, among which
the first two are semantic factors and the latter two are syntactic factors.

“national” Factor. The top 20% activation of the No.781 factor contains about 80 words.
They are enumerated as the following:

croatian, american, lithuanian, norwegian, vietnamese, chinese, romanian, bulgarian,
indonesian, armenian, serbian, turkish, hungarian, korean, malaysian, italian, austrian,
portuguese, mexican, macedonian, german, scottish, albanian, cambodian, bosnian, rican,
filipino, lebanese, swedish, estonian, irish, venezuelan, dutch, pakistani, haitian, iranian,
peruvian, argentine, malay, colombian, danish, ethiopian, australian, european, chilean,
brazilian, israeli, japanese, indian, finnish, singaporean, african, british, nigerian, argen-
tinian, belgian, hispanic, french, cypriot, guatemalan, latvian, russian, welsh, algerian, bo-
livian, egyptian, moroccan, belarusian, jamaican, icelandic, samoan, uruguayan, georgian,
ukrainian, jordanian, flemish, muslim, yugoslav, greek, jewish

By looking into these words, we can easily identify that almost every one of them is
related to a specific national meaning, thus this factor can be named “national”.

“mobile&IT” Factor. The top 20% activation of the No.296 factor contains about 130
words. They are enumerated as the following:

ipad, iphone, ios, itunes, apple, android, app, ipod, airplay, 3g, 4s, apps, ipads, htc, tablet,
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macbook, kindle, galaxy, jailbreak, iphones, netflix, mac, os, touch, nook, skyfire, dock, siri,
eris, 4g, thunderbolt, tablets, google, nexus, ipa, barnes, blackberry, sync, devices, hulu, de-
vice, ota, amazon, spotify, macworld, retina, wifi, g1, gb, facebook, nfc, syncing, downgrade,
protector, iplayer, ipods, 2g, tethered, zune, lte, instagram, s3, kinect, usd, itv, mackintosh,
tethering, rooted, tether, shuffle, sansa, garageband, nano, wwdc, smartphones, downgraded,
dsi, hotspot, jailbreaking, gps, drm, icloud, smartphone, playbook, casemate, twitter, 3gs,
droid, gen., ics, snapchat, multitasking, fuze, stylus, docking, pandora, docks, gadgets, rhap-
sody, powerbook, tv2, synced, fw, appstore, skype, armband, hd, macbooks, ipo, ssd, evo,
aggregator, eyetv, macintosh, g5, folios, steve, sd, gestures, lumia, gen, keynote, shazam, 5g,
jellybean, androids, ipcc, cases, magicjack, aria

By looking into these words, we can easily identify that almost every one of them is
related to mobile devices and IT technology, such as apps, brands and etc. Thus we name
factor No.296 as “mobile&IT”.

While for the semantic factor, it requires more human knowledge to name a factor given
the top activation words, the naming procedure is less subjective if a factor captures syntactic
meaning.

“superlative” Factor. For instance, the top 20% activation of the No.337 factor contains
about 70 words:

strongest, funniest, largest, longest, oldest, fastest, wettest, tallest, heaviest, driest, sexi-
est, scariest, coldest, hardest, richest, biggest, happiest, smallest, toughest, warmest, most,
brightest, loudest, shortest, costliest, coolest, smartest, darkest, slowest, weakest, greatest,
lightest, deadliest, thickest, craziest, sunniest, deepest, quickest, busiest, best, cleanest, sad-
dest, worst, ugliest, densest, sweetest, nicest, wealthiest, hottest, weirdest, dumbest, dullest,
poorest, highest, bloodiest, prettiest, grandest, safest, meanest, bravest, strangest, catchiest,
dirtiest, proudest, cleverest, purest, quietest, fairest, youngest, sharpest

It’s clear that this factor captures the “superlative” form of different words.

“ideology” Factor. Finally, we demonstrate the top 20% activating about 120 words of
the No.674 factor:

nationalism, liberalism, socialism, individualism, capitalism, communism, fascism, anar-
chism, materialism, humanism, secularism, feudalism, republicanism, modernism, conser-
vatism, rationalism, imperialism, totalitarianism, militarism, multiculturalism, feminism,
marxism, racism, ideology, consumerism, pacifism, modernity, romanticism, utilitarianism,
fundamentalism, positivism, democracy, authoritarianism, patriotism, unionism, politics, en-
vironmentalism, internationalism, paganism, absolutism, nazism, radicalism, commercial-
ism, pluralism, naturalism, colonialism, protestantism, relativism, idealism, egalitarianism,
patriarchy, sexism, spiritualism, libertarianism, regionalism, atheism, mysticism, populism,
collectivism, ideologies, pragmatism, universalism, isolationism, anarchy, paternalism, an-
tisemitism, protectionism, federalism, transcendentalism, deism, religiosity, elitism, deter-
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minism, neoclassicism, postmodernism, centralism, orthodoxy, empiricism, industrialization,
catholicism, puritanism, monasticism, separatism, promoted, realism, classicism, altruism,
zionism, nihilism, bolshevism, globalization, sectarianism, progressivism, expressionism, ori-
entalism, morality, modernization, barbarism, christianity, occultism, expansionism, slavery,
interventionism, traditionalism, tyranny, monogamy, surrealism, abolitionism, primitivism,
hedonism, vegetarianism, historicism, chauvinism, humanitarianism, asceticism, dualism,
doctrine, unitarianism, misogyny, extremism

The idea that it reflects ideology forms of different concepts is quite obvious once we see
the words. So the factor summarized as “ideology”.

C.2 The Details of the Non-negative Sparse Coding

Optimization

As a convention, all the word vectors used in this word is 300 dimensional and we choose our
dictionary to have 1000 word factors.1 To learn the word factors, we use a typical iterative
optimization procedure:

min
A

1
2∥X −ΦA∥2

F + λ∑
i

∥αi∥1, s.t. αi ⪰ 0, (C.1)

min
Φ

1
2∥X −ΦA∥2

F , ∥Φj∥2 ≤ 1. (C.2)

These two optimizations are both convex, we solve them iteratively to learn the word
factors: In practice, we use minibatches contains 100 word vectors as X. Optimization C.1
can converge in 500 steps using the FISTA algorithm. We experimented with different λ
values from 0.3 to 1, and choose λ = 0.5 to give results presented in this paper. Once the
sparse coefficients have been inferred, we update our dictionary Φ based on Optimization C.2
by one step using an approximate second-order method, where the Hessian is approximated
by its diagonal to achieve an efficient inverse (Duchi et al. 2011). The second-order parameter
update method usually leads to much faster convergence of the word factors. Empirically,
we train 200k steps and it takes about 2-3 hours on a Nvidia 1080 Ti GPU.

C.3 The New Word Analogy Tasks Generated

In this section, we would like to demonstrate further that the word factors are more elemen-
tary structures than word vectors with Figure C.1 and Figure C.2.

1We also experimented other settings and they all lead to qualitatively similar result and discussing the
difference is beyond the scope of this work.
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Figure C.1: PCA of the generated adj-to-verb examples.

Figure C.2: PCA visualization of a new word analogy task: “ideology”, which are automat-
ically generated by the “ideology” word factor.

C.4 Factor Group Co-activation

In Figure C.3 and C.4 we use heat maps to visualize the activations of factors within a
group. A heat map shows a fraction of the activation matrix A in Equation 5.8, with each
row corresponds to a factor, each column to a word. Therefore, a bright block indicates a
high activation on the given word and the dark background means 0 values. It is very clear
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that factors within a group are often activated together on the same words, forming parallel
bright bands across the heat maps.

Figure C.3: This figure shows the co-activation pattern of factors in the “past tense” factor
group.

Figure C.4: This figure shows the co-activation pattern of factors in the “singular form”
factor group.
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