Assured Autonomy for Safety-Critical and Learning-Enabled
Systems

Vicenc Rubies Royo

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-184
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-184.html

November 19, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Assured Autonomy for Safety-Critical and Learning-Enabled Systems

by

Vicenc Rubies Royo

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Claire J. Tomlin, Chair
Professor S. Shankar Sastry
Professor Laurent El Ghaoui
Professor Dusan Stipanovic

Fall 2020

Assured Autonomy for Safety-Critical and Learning-Enabled Systems

Copyright 2020
by
Vicenc Rubies Royo

Abstract
Assured Autonomy for Safety-Critical and Learning-Enabled Systems
by
Vicenc Rubies Royo
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Claire J. Tomlin, Chair

Autonomous systems are becoming ever more complex. This growth in complexity stems primarily
from continual improvements in computational power, which have enabled, among many things, the
use of more sophisticated high-dimensional dynamical models or the use of deep neural networks
for perception and decision-making. Unfortunately, this increase in complexity is coupled with
an increase in uncertainty on how these systems might behave in safety-critical settings where
guarantees of performance are needed.

In this dissertation, we will first address the challenges involved in the computation of safety
certificates for high-dimensional safety-critical systems and how machine learning, and in particular
artificial neural networks, can provide scalable approximate solutions which work well in practice.
However, reliance on neural networks for autonomy poses itself a challenge, since these function
approximators can sometimes produce erroneous behaviors when exposed to noise or adversarial
attacks, for example. With this in mind, in the second half of the dissertation we will address the
challenges involved in the verification of neural networks, and in particular, how to assess whether
deep feedforward neural networks adhere to safety specifications.

To my parents, Joan and Teresita, and my sisters, Immaculada and Maria.

Sense vosaltres res d’aixo hauria estat possible.

Contents

Contents

[List of Figures|

[List of Tables
(L__Introduction|

(1. Autonomous Systems and Assured Autonomy|

I Assured Autonomy for Safety-Critical Systems|

2 Background and Preliminaries|
2.1 Optimal Control Overview|
2.2 Safety Analysis|
2.3 Safety and Liveness|o
2.4 Computational Techniques and Limitations|
2.5 Chapter Summary| e e

3 High Dimensional Reachability Analysis|
[3.1 Control-Affine Systems| L
[3.2 Classification-based Reachability|
3.3 Examples|
[3.4 Implementation Details|o oL
3.5 Chapter Summary| e

4 Reachability Analysis and Reinforcement Learning|
4.1 Remforcement Learning and Safety|
4.2 Parallels between Reachability Analysis and Reinforcement Learningl

il

ii

iv

vii

11
13
14
16

17
18
19
21
27
28

III Assured Autonomy for Learning-Enabled Systems|

IS Background and Preliminaries|

[5.1 Neural Networks, Performance Guarantees and Safety|.

Th rification Problem|

& Shadow Price Verification

[6.1 Over-Approximating the Image|
[6.2 Overview of Verification via Input-Splits|
h Pr1 nd Bound Rates|

[6.4 Bound Estimation and Splitting|

6.6 Experiments|.,
[6.7 Chapter Summary|

[7__Conclusion|

[7.1 ~Next Steps 1n Assured Autonomy of Safety-Critical Systems| . .

[7.2 Next Steps in Assured Autonomy of Learning-Enabled Systems|

Bibliography

(A ACAS Properties|

iii

40

41
41
42
42
43
44
45

46
46
50
53
55
56
58
64

65
65
66

67

75

List of Figures

v

D1

Visual progression of the value function when solving Hamilton-Jacobi equations on a

grid (figure courtesy of Syliva Herbert)|

B

Reach-avoid set computation for 2D dynamics 1n (3.3)) for two different control bounds.

Sets computed using our method are subsets of the truesets.|

B2

Reach-avoid set computation for the 4D dynamics 1n (3.4) for two different 2D slices

and tangential speed v = 1.|

3.3

Level sets of V* in the (7., v,) states (setting other states to zero) for (a) ground truth

grid-based representation, (b) neural network 11" trained on optimal disturbance

policy d*(-), and (c) neural networks IT“__ and I1¢ _ trained jointly. We encode the

optimal (Iearned) control at each state as a different color. (d) Overlay of level sets from

(a-c). Our method only yields a conservative result (a superset of the ground truth; see

Sec.[3.3) when II* _ is trained against d*(-).| L.

Relative distance between the quadrotor (tracking model) and planned trajectory (plan-

ning model) over time during a hardware test wherein a Crazyflie 2.0 must navigate

through a motion capture arena around spherical obstacles. The quadrotor stays well

within the computed tracking error bound throughout the flight. Note that the tracking

3.4
I
I
I
I

error 1s large because our controller accounts for adversarial disturbances, unlike many

[3.5 Quadrotor flying using a neural network classifier.|.

36

Learning curves for a single classifier of the 6D decoupled system. Classification error

decreases between spikes, which mark each new £ in Algorithm |1l Spikes shrinking

hints that classifiers eventually converge. |

Multiple snapshots of the neural network output of our Safety Q-learning algorithm

for a double-integrator system. As we anneal the discount factor v — 1 during Q-

learning, our learned discounted safety value function asymptotically approaches the

undiscounted value, allowing us to recover the safe set and optimal safety policy with

very highaccuracy.|

Safe sets learned by tabular (left) and deep Q-learning (right) with the discounted Safety

Bellman Equation compared to the analytic set (black).|

Predicted vs. achieved minimum signed distance to violations for 10° simulated rollouts

with 100 trained networks. Red line indicates identity.

Fraction of 1nitial conditions resulting in violations as training proceeds. Each data

point 1s a sample average from 1000 episodes; statistics are taken over 100 independent

training runs. As learning progresses, the fraction of violations reliably decreases, ap-

proaching the ground-truth fraction of unsafe states (from which violation 1s 1nevitable)

for the double 1ntegrator and cart-pole. Lunar lander ground truth 1s unknown.|

36

Slices of the learned lunar lander value function overlaid on the 1image of the viewing

window for § = 0 and § = (0. Computed safe set boundary in black. At low speeds,

the values near the ground are higher close to the landing pad, revealing the effect of

lang- For large downward velocities, ground collision is inevitable from the lower half

Learned half-cheetah safety policies aimed to keep the head and front leg off the ground.

Left to right: typical starting configuration; an unsafe jumping policy learned using

a sum of discounted heights; a safe sitting policy learned using discounted safety or

(Iess reliably) discounted sum of contact penalties; a safe standing policy learned using

4.6
I
I
I
I

discounted safety. |. L

5.1

Exact computation of the reachable set of the ReLU network. Different colors corre-

spond to different polytopic regions and their corresponding mapping into the output

space. Each polytopic region 1s governed by a different affine transform.|

6.1

Example of a convex over-approximation of the imageof 5

6.2

(Left) Bounded output of a ReLLU node. (Right) Convex envelope for the triangle

6.3

The growth 1n the number of constraints across the layers of a neural network encodes

a high-dimensional polytope whose projection over-approximates the image.[.

6.4

Visual progression (from left to right) of Alg. [2| The yellow set with the exclamation

symbol represents the set S. In this instance, the intersection of the 1image with output

set 1s empty. In the bottom row, over-approximations with empty intersections are

grayed out.| e e e e

The choice of axis along which the set 55 1s split may affect the verification time. In this

example, a vertical split (orange) results 1n two over-approximations, one of which still

intersects with S, whereas the horizontal split (blue) results in tighter over-approximations.| 52

Choosing split based on predicted upper and lower bounds for eachnode.|

Alternate convex relaxations of the ReLU non-linearity.|

56
57

Visualization of what an input set 5 might look like for the ACAS benchmark. Here the

set 1s two dimensional, and captures a range of possible headings for both the ownship

59

Vi

6.9

Horizontal histograms displaying the number of branches of each length generated

by each type of splitting procedure. Each pair of histograms is normalized with the

maximum branch length reached for that specific property. For histograms where

timeouts occur we do not report the average tree depth, since the associated tree has not

finished growing. For property 2 we do report the average tree depth only for networks

that could be verified by both IOG and BE procedures. |

Experiments on ACAS: horizontal histograms displaying the number of branches of

each length generated by each type of splitting procedure. Each pair of histograms

1s normalized with the maximum branch length reached for that specific property. ¢

I
I
I
I
I
[6-10
I
I
I

timed out for both splitting criter1a. |o oL oo oL

List of Tables

vil

Verification results (U: unsatisfied. S: satisfied. T: timeout) and search depth (mean

=+ standard deviation) for all properties of the ACAS benchmark. These results show

that our approach validates the properties as well as, or better than, IOG — even with a

reduced search depth. We use ™ 1n property 2 to denote that the comparison 1s only for

networks where neither [OG nor BE procedures had a timeout.|

61

Number of nodes for the two split mechanisms (smaller 1s better) and the ratio of

computational time for the two methods. We can see that for 8 out of 10 properties our

approach (BE) reduces the number of nodes generated, as well as the computational

time. " indicates that some verification did not complete within the allocated time. We

use ' in property 2 to denote that the comparison is only for networks where neither

110G nor BE procedures had a timeout.|

62

Verification results (U: unsatisfied. S: satisfied. T: timeout) and search depth (mean +

standard deviation) for all properties of the ACAS benchmark. Except for property 8,

BE-based splits outperform IOG-based splits 1n all tasks. Property /7 1s omitted since

6.4

Side-by-side comparison of the average three depth depending on the type of relaxation

used. The comparison 1s made only for a subset of the properties for which 1t 1s known

that the intersection of the image and the output setisempty|

viii

Acknowledgments

First and foremost I would like to thank my advisor, Claire, for her continual support and encour-
agement during this journey. Thank you for all the times you gave me confidence when I couldn’t
find it in me. I could not have made it without you.

Special thanks to Professor Shankar Sastry for being part of my dissertation committee, and
Professors Laurent El Ghaoui and Dusan Stipanovic for having been part of my qualifying exam
committee, as well as my dissertation committee.

I also want to thank David Fridovich-Keil, Jaime Fisac, Sylvia Herbert, Somil Bansal and all
of my friends and collaborators in the Hybrid Systems Lab for having made this PhD adventure
the most intellectually rewarding period in my life. It has also been a pleasure to have had the
opportunity to collaborate with Dusan Stipanovic, Roberto Calandra, Roy Dong, Eric Mazumdar
and Dexter Scobee these past few years. While curiosity and the pursuit of knowledge were the
primary factors that set off many of these collaborations, it was ultimately the human dimension,
having met each one of them at a personal level, that made the whole experience truly worthwhile.

Life in the West Coast has felt in many ways similar to my life back at home in Barcelona. For
that, I have to thank the (in)famous “Berkeley Gang” and its members, which include Alejandro
Castillejo, Carlos Florensa, Ignasi Clavera, Julia Gémez, Eduard Ansaldo Giné, Miquel Crusells-
Girona, Marc Dordal, and Batman. Thank you for all the joyful moments we have spent together.

Above all, I want to thank my family: my parents, Joan and Teresita, my sisters, Immaculada
and Maria, and those who never truly left. Without their unconditional love and support none of this
would have been possible.

Chapter 1

Introduction

Technological advancements of the past few decades have led historians to term this current period
in history the Fourth Industrial Revolution [83, [75]]. This period of technological progress is
characterized by an unprecedented increase in automation arising from the fields of control, robotics
and artificial intelligence. These advancements in automation are largely propelled by an outstanding
increase in computational power not available in decades past. The systems that are currently being
developed are more sophisticated, with a larger number of degrees of freedom and greater number
of sensors. In consequence, models used to describe these systems are also becoming more complex
and harder to analyze.

With increased complexity, however, a new problem arises: how can we provide assurances
in the form of safety guarantees? When a system is governed by a simple set of rules it is often
possible to accurately predict its behavior and correct it before it becomes unsafe. If instead the
set of rules describing the system’s behavior is too large and intricate, providing safety guarantees
becomes a challenging task.

The aim for this dissertation will be to tackle the problem of safety assurance by providing a
set of new methodologies for verification of complex safety-critical systems and learning-enabled
systems. The overarching theme will be to use sound theoretical principles from control theory,
optimization and machine learning, to deliver a set of algorithms capable of providing guarantees of
performance and safety.

1.1 Autonomous Systems and Assured Autonomy

The term ‘autonomous system’ is a broad term meant to describe systems which can operate
autonomously, that is, without explicit human inputs. For the purposes of this dissertation we
will focus our attention on two sub-types of systems: safety-critical systems and learning-enabled
systems.

CHAPTER 1. INTRODUCTION 2

Safety-Critical Systems

As the name suggests, safety-critical systems refer to autonomous systems for which safety is
of critical importance. In particular, these are systems whose failure can result irreversible or
catastrophic damage. Examples include most vehicles, such as cars, quadrotors and airplanes, but
also civil infrastructures such as the power grid or water management structures. Models used to
describe these systems are usually derived from first principles and exhibit a range of accuracies
which allow to capture a wide range of possible future behaviors of the system and plan for future
contingencies.

Learning-Enabled Systems

In this dissertation we will take the liberty of defining learning-enabled systems as those autonomous
systems whose behavior relies on the outputs of an artificial (feedforward) neural network. Neural
networks are a type of function approximator widely used in machine learning whose parameters
are usually determined through an iterative optimization procedure (termed training or learning)
such as stochastic gradient descent. Unlike safety-critical systems, the behavior of learning-enabled
systems relies on the quality of the data provided for learning, as well as the learning algorithm itself.
This dependency on data and learning algorithm can make learning-enabled systems unpredictable
at run-time. Therefore, neural network models employed in safety-critical applications should
always be verified before deployment.

Challenges in Assured Autonomy

The main goal of assured autonomy is to endow safety-critical and learning-enabled systems with
guarantees of safety. As we shall see, providing these types of guarantees is a hard task. For
safety-critical systems, the main challenge will be to scale verification tools to more complex,
higher-dimensional models. For learning-enabled systems, the challenge will be to build those tools
and also make them scalable.

1.2 Thesis Overview and Contributions

The main contribution of this thesis will be to provide safety analysis tools for large dynamical
systems, and algorithms for the verification of feedforward neural networks. These tools are built on
top of concepts drawn from reachability theory, optimization and machine learning, which ensures
their robustness and reliability.

The thesis is organized in two parts. In the first half we will be concerned with safety-critical
systems. In Ch. [2]we provide an introduction to dynamical models, which are the main mathematical
framework for modeling physical systems. We then provide an overview on the topic of optimal
control, how it ties to the concept of safety, and why previous approaches to safety analysis have poor
scalability. In Ch. (3| we introduce a classification-based algorithm based on approximate dynamic
programming which is able to provide safety guarantees for high-dimensional dynamical systems.

CHAPTER 1. INTRODUCTION 3

Using this algorithm we are able to accomplish a safe trajectory tracking task on a quadrotor. In
Ch.] we develop a different algorithm for safety analysis based on concepts from reinforcement
learning which can also scale to high-dimensional systems.

In the second half of the thesis we concern ourselves with learning-enabled systems. In Ch. [5|we
provide an introduction to feedforward neural networks and the problem of input-output verification.
We then draw a few connections between reachability theory and neural network verification. In
Ch. [we introduce a method for efficiently over-approximating the mapping of a box-shaped input
set through a neural network, and use it provide an iterative verification algorithm. The algorithm
exploits so-called shadow price information in order to simplify the problem at every step. Our
experiments show improvements in speed and memory required to solve verification problems in
comparison to other state-of-the-art heuristics. Finally, in Ch. [/, we conclude the thesis with some
closing remarks and pointers for future work.

Part I

Assured Autonomy for Safety-Critical
Systems

Chapter 2

Background and Preliminaries

In this chapter we provide a brief introduction to dynamical systems, optimal control and safety
analysis. As we shall see, safety problems can be cast as (robust) optimal control problems which
can be solved numerically by approximating the solution to a partial differential equation or a
variational inequality.

2.1 Optimal Control Overview

Dynamical Systems

A key aspect in guaranteeing the safety of autonomous systems is our ability to predict their behavior
over time. This can be accomplished through the mathematical framework of dynamical systems. In
short, dynamical systems describe the evolution of a set of relevant quantities, or states, denoted as
xr € X CR", over time through a differential equation:

&= f(z,u,d1), 2.1)

where u € U C R™ is the control input and d € D C R" is the disturbance to the system, and
where the set ¢/ and D are compact. The control set ¢/ can be interpreted as the set of actions
available to the controller to influence the evolution of the state, whereas the disturbance set D
represents a set of actions available to some external entity which much like the controller can also
influence the evolution of the state. For example, as we shall see in Sec. [3.3] if the state x represents
the spatial configuration of a quadrotor in space, then the dynamics f describe the continuous
time evolution of this configuration, the input u describes the instantaneous thrust applied by each
propeller and d represents some external physical disturbance such as wind.

The dynamical system (2.1)) describes the continuous-time evolution of the state. When the initial
state of the system is specified to be x for some initial time t, then, under some technical condition{],

ITrajectories of (2.1)) will be uniquely defined provided that the dynamical system f is uniformly continuous and
bounded, and Lipschitz in X for all time 7 € [t, 00).

CHAPTER 2. BACKGROUND AND PRELIMINARIES 6

the control signal u(-) : [t,00) — U together with the disturbance signal d(-) : [t,c0) — D define
the unique trajectory of the system for T' > t as

E(Tst, 0, u(),d()) = / FE(Tst,z,u(), (), u(r), d(r))dr + . 2.2)

or in differential form (€ = d¢/dT) as
(Tt u(),d()) = FET; b2 u(-),d()), u(r), d(r)) (2.3)
E(tstx,u(),d()) = . 2.4)

For notational convenience, we will write 5’;‘;{1(7) =¢&(7;t,z,u(-),d(-)) to denote trajectories when
necessary. Finally, while dynamical systems can have an explicit dependence on time, in this work
we will consider only time-invariant systems, so we will henceforth drop the dependence on ¢,
meaning that & = f(x,u,d).

Feedback Control

The trajectory defined in (2.2)) requires specifying the control signal u(-) (as well as the disturbance
signal d(-)) which determines which controls to apply at every instant in time. When the control
signal is specified as an explicit function of time, rather than implicitly through the state of the
system, this control scheme is known as open-loop control. In other words, the sequence of actions
has been stipulated before the system has started to evolve. While intuitive, this form of control
is problematic because models can be slightly imprecise and noise is often present, making an
accurate prediction of the state impossible. In an ideal world the sequence of open-loop actions
would suffice to produce desirable trajectories, in practice, however, errors compound over time
and the realized trajectories can be far from optimal. To address this, a different type of control
scheme known as feedback control uses the current state of the system to inform which actions to
take. Unlike open-loop control, feedback allows the system to correct for inaccuracies during the
execution of a trajectory based on the instantaneous value of the state. This formulation introduces
the concept of a feedback policy, a function m : R™ x R — U which dictates which control u to
input into the system at time ¢ through the map u = 7 (z, t).

Optimal Control

In the previous section we introduced the concept of a feedback policy, a function which produces
an adaptive control signal based on the instantaneous value of the state. To accomplish this, however,
some metric of optimality or ‘goodness’ must be defined for our problem in order for the controller
to provide appropriate corrective actions. Assuming that no disturbance signal d(-) is present, this
can be accomplished through the definition of a cost functional

V(1) = / e(€8,(), u(r))dr + 1(E2,(T)), 2.5)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 7

a map from the initial conditions (x,t) and control signal u = u(-), to a scalar value. The function
¢: R" x R™ — R is the running cost and [: R" — R is the terminal cost. The value of V" (z,t)
represents a cost and, therefore, the goal of the controller will be to produce a control signal that
minimizes it. The optimal control problem can thus be written as follows:

V(z,t) = inf V%(z,t), (2.6)

u(-)ely

where U7 represents the collection of measurable functions u(-) : [t,T] — U, and V (z,t) is known
as the value function, which provides the value for the initial conditions (z, t).

In order to tackle the minimization problem in (2.6)), it is possible to use Bellman’s principle of
optimality, which states:

“An optimal policy has the property that whatever the initial state and initial decisions
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.” [9|]

Starting from (2.5)) we have that

T
Viwd) = inf, [o€ (). utm)dr + 1T @)
t+4
= inf { / C(€84(7), ua (7))dr (2.8)
ur (et LJy

b [e)+ U, ()}

u2 (VUL 5 Ji4s
(2.9)

t+6
=t { [e Vet o).+ 9)), (2.10)
u ()eU;t Ly ’ ’

for some 6 € [0,7 — t], where ' = ¢ + § and 2’ = &}(#'). We obtain that the optimal value
at (z,t) is the same as optimizing over the interval [t,¢ + ¢] and adding the contribution of
V(&ri(t +6),t +), that is the value of acting optimally thereafter. Assume that V' is everywhere
differentiable. Multiplying by 1/§ and taking the limit § — 0, we then obtain the partial
differential equation

0=0,V(x,t)+ irelg{c(x,u) + V.V f(z,u)} (2.11)
V(z,T) = I(x), (2.12)

where 0, represents the partial derivative with respect to time and V, is the gradient with respect
to the state. This partial differential equation is known as the Hamilton-Jacobi-Bellman (HJB)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 8

equation. H(x,p,u) := c(x,u) + p- f(x,u) is known as the Hamiltonian, and the optimal control
is given by

u*(z,t) = arg in£ H(z, V.V, u). (2.13)
ue

While the differentiablity assumptions we have made can be quite strong, these can be relaxed,
which leads to the topic of viscosity solutions. For a detailed overview on viscosity solutions for the
HJB equation we refer the reader to [28]].

Robust Optimal Control

In the beginning of this chapter we introduced dynamic systems which depended on the control
input » and disturbance d. So far, however, we have only seen how optimal controls can be found
by solving the HIB equation when no disturbance signal is present. It is therefore natural to ponder
how one would compute optimal controls when a disturbance is present, and in particular, when that
disturbance acts adversarially. This worse-case disturbance framework gives rise to robust optimal
control. Given the cost functional

Vi(a,t) = /t (&2 (7), u(r), d(r))dr + UET)), (2.14)

with d = d(-), the controller seeks to minimize the cost, whereas the disturbance seeks to maximize
it. This can be posed as a zero-sum differential game as follows:

V(z,t)= inf sup V"9(z). (2.15)
u()E€UY 4(.yenT

Unfortunately, this formulation uses an open loop information structure, which implies that the
controller must commit to a control signal first, followed by the disturbance picking its own
disturbance signal after. This formulation is too stringent in that it gives too much information to
the disturbance and doesn’t allow the controller to adapt. To change this, it is necessary to define a
new strategy information pattern, which in essence establishes what information each player (the
controller vs. disturbance) is given at every point in time. Non-anticipative strategies are a type
of strategy information pattern represented by the set '/’ which contains the collection of maps
§ : UF' — DT such that the dependence of 6[u] on u is causal:

7 :={0:U0 =D |u(r) =a(r) ae 7€[tT] (2.16)
= Sul(r) = o[u|(T) a.e. T€t,T]} (2.17)

The predicate in set I'! enforces that the disturbance always acts in the same way for control signals
which are the identical up to some time 7 € [t, T'|. This effectively prevents the disturbance from
exploiting future information of the controller’s signal. Under this strategy information pattern, we
can now write in terms of I'? the following, more suitable zero-sum differential game

V(z,t) = sup inf V®M(z #). (2.18)

ser? u()eUf

CHAPTER 2. BACKGROUND AND PRELIMINARIES 9

It may seem that the inversion of the supremum and infimum imply that the controller now has the
advantage over the disturbance. However, we note that now the disturbance is picking a causal
mapping (not a signal d(-) defined at the onset), which will adaptively change the disturbance
signal according to u(-). Moreover, the disturbance still has the advantage of knowing what the
instantaneous input of the controller is, whereas the controller does not know what the instantaneous
disturbance action will b Using analogous steps to the ones shown in (2.7), we arrive at the
Hamilton-Jacobi-Isaacs (HJI) equatiorﬁ

0= 0,V(x,t) + inf sup{c(z,u,d) + V.,V - f(x,u,d)} (2.19)

ulU gep

V(z,T) = l(z), (2.20)

where the Hamiltonian is H(z,p,u,d) := c(z,u,d) + p - f(z,u,d) and similarly to (2.13), the
optimal control and disturbance are given by

u*(x,t),d"(x,t) = arg inf sup H(x, V.V, u,d). 2.21)
uCU gep

Variational Inequalities

Before ending this overview on optimal control, it is important to introduce a particular cost
functional which will be relevant in the next chapters. The cost functional we will be concerned
about will be

VU (x,t) = min [(§,(7)), (2.22)
T€E[t,T) ’
with corresponding value function
V(z,t) = inf V%(z,t). (2.23)
u(-) U}

In what follows we show how to use Bellman’s principle of optimality to obtain a specific type of
equation known as a variational inequality. Starting with

V(z,t) = inf min [(&) 2.24

(,t) = e i, (& (7)) (2.24)

— inf i min{ min (e m (e 2.25

u1(~1)I€1U§+5 u2(~1)I€1U?+5 mln{TGI[Ig}tr—ll-é] (ga:,t (T))7 Ter[?i?vT] (fz,t(T))} ()

— inf i i [(eM , inf i 1(€92, 2.26

u1(~1)I€1U§+5 mln{TGI[rtl;I}ré] (§m7t (T)) u2('1)I€lTU$+5 Ter[?i?,T] (5;,; ot (T))} ()

= inf min{ min (&3(7)), V(EE({t+0),t+0)} (2.27)
ul(.)e[[}§+5 TE[t,t40] ’ ’

2This fact reverts the order of the supremum and infimum in the differential equation formulation to the more
intuitive inf, ¢y sup cp Where control is the first player and disturbance the second.

3Isaacs worked extensively in the field of differential games. Hence the change of nomenclature from Bellman,
whose work was primarily on optimal control.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 10

At this point note that the infimum of the point-wise minimum between two functions is the same as
the minimum over infima (inf, min{a(x), b(z)} = min{inf, a(z),inf, b(2")}),

V(z,t) = min{ inf min (3(7)), inf V({;% (t+0),t+6)} (2.28)

x,t
u (-)eUtHo TE[t,t+4]) (-)eutte

Note that the above equality holds for all § € [0,¢ — T']. If we set § = 0, then
V(z,t) = min{l(x), V(z,t)} = V(z,t) <l(z) (2.29)

This conveys the intuitive notion that the value of every state and any time is always upper-bounded

by I(z). Assuming that V' is everywhere differentiable, if we multiply (2.28)) by 1/6 (6 > 0) and
take the limit 6 — 0, we have that

l(x) = V(z,t)
)
From (2.29) the first term in the minimum either evaluates to infinity (if {(x) — V(x) > 0) or to

zero (if I(x) — V(x) = 0). Noting the property that (0 = min{0,a(z)} = a(z) > 0), we have
that one of the following conditions must be met in order for (2.30) to hol(ﬂ

0= min{(lsir%
H

SOV (@) + inf (vmv - f(x, u))} (2.30)

2) = V(@,0) >0 A OV(w,t) + inf (viv - f(x,u)) —0 2.31)
(@) =V(x,)=0 A OV(x,t) + inf (vmv - f(x,u)) > 0. (2.32)

The last line can be broken further into two conditions given the following logical equivalence
(a=0Ab>0 <= [a=0Ab>0]®[a=0ADb=0]), sonow one of three conditions must be
met:

x) = V(@,t) >0 A OV (w,1)+ inf (vxv . f(:c,u)) —0 (2.33)
) = V(a,t) =0 A 3V (a,t)+ inf (va : f(a:',u)) >0 (2.34)
() = V(e,t) =0 A V(1) + inf (va - f(:c,u)> _o. (2.35)

Given the following equivalence,
(a>0Ab=0)®(a=0Ab>0)B(a=0Ab=0) <= 0= min{a,b} (2.36)
we finally arrive to what is known as the Hamilton-Jacobi-Bellman variational inequality (HIB-VI):
0= min{ i(x) = V(w,t) , 4V (2,t) + inf <vxv f(x, u)> } (2.37)
V(z,T) = l(x). (2.38)

“Given two statements A (2.31) and B (2.32),, this is equivalent to requiring A ® B = 1, where @ denotes logical
exclusive OR (XOR).

CHAPTER 2. BACKGROUND AND PRELIMINARIES 11

Note that the conditions in (2.31) and (2.32) are automatically encoded in the HIB-VI. Similarly,
following the same steps used to obtain the HIB-VI, we can equivalently obtain the Hamilton-
Jacobi-Isaacs variational inequality (HJI-VI):

0 = min{ () — V(z,t), 0,V (z,t) + inf sup <VIV - f(zx, u, d)) } (2.39)

V(z,T) =1(x). (2.40)

2.2 Safety Analysis

Set Definitions

In this first half of the dissertation we are concerned with ensuring safety for safety-critical systems.
One must first, however, concretize what these safety properties are mathematically. Given that
our dynamical models determine the evolution of the state of the system, our safety specifications
will be in the form of sets of states. To that end, let us define the target set 7 C R™ to be a generic
collection of states, and the backward-reachable set (BRS) R(T) as follows:

Definition 1. (Backward-reachable set). The backward-reachable set of an autonomous dynami-
cal system & = f(x) is the collection of initial states x € R" such that trajectories eventually enter
the set T.

R(T):={z eR" |7 €t,T], &u(T) €T} (2.41)

The above definition of the backward-reachable set assumes that the dynamics are only a
function of the state. In the presence of an input signal (and no disturbance signal), the definition
of backward-reachable set must be expanded to include the additional definitions of a maximal
backward-reachable set R(T) and minimal backward-reachable set R(T):

Definition 2. (Maximal backward-reachable set). The maximal backward-reachable set of a
dynamical system © = f(x,u) is the collection of initial states © € R™ such that there exists some
control signal u(-) € U which is capable of steering the trajectory into the set T.

R(T)={zeR"|Ju(-)eU, ret,T], &, (1) €T} (2.42)

Definition 3. (Minimal backward-reachable set). The minimal backward-reachable set of a dy-
namical system © = f(x,u) is the collection of initial states © € R" such that for every control
signal u(-) € U trajectories can’t stay clear of the set T.

R(T) ={zx e R"|Vu(-) €U, 7 € [t,T], §,(7) € T} (2.43)

The maximal backward-reachable set (2.42) is of particular interest for /iveness problems, where
we want to guarantee whether for some states there exist controls which steer trajectories into 7. In

CHAPTER 2. BACKGROUND AND PRELIMINARIES 12

contrast, the minimal backward-reachable set is important for safety because it defines the
set of states for which no control action exists which avoids 7.

Finally, when both a control signal and a disturbance signal are present, the maximal and minimal
naming convention changes to enforceable and inevitable [28|] respectively, in order to highlight
the fact that when two control inputs are act against each other the geometrical interpretation of
maximal vs. minimal becomes ambiguous.

Definition 4. (Enforceable backward-reachable set). The enforceable backward-reachable set
of a dynamical system i = f(x,u,d) is the collection of initial states x € R™ such that for every
non-anticipative disturbance strategy 6 : U — D, there exists some control signal u(-) € U which
is capable of steering the trajectory into the set T .

R(T):={x eR"|Vs €T, u() €U, 7€ [t,T], &5(r) € T} (2.44)

Definition 5. (Inevitable backward-reachable set). The inevitable backward-reachable set of a
dynamical system & = f(x,u,d) is the collection of initial states x € R™ such that there exists
some non-anticipative disturbance strategy 6 : U — D, such that for every control signal u(-) € U
trajectories can’t stay clear of the set T .

R(T)={zeR"|F0el,Vu(-) €U, 7 € [t,T], f;’;i@') €T} (2.45)

Similar to previous definitions, enforceable backward-reachable sets are useful for
robust liveness problems. In terms of safety, inevitable backward-reachable sets provide
the collection of states for which some disturbance signal will steer trajectories into 7 despite the
controller’s best effort. If 7 is an undesirable set of states for example, R(7) provides the states
for which our system is doomed to fail.

In line with the safety interpretation of inevitable and minimal backward-reachable sets, we
finalize this section by concertizing the two sets which will be relevant for safety analysis. These
sets will be the failure set F and the constraint set IC. The set F represents the collection of
configurations deemed unacceptable for the system. On the other hand, the constraint set C
represents the collection of acceptable configurations. Hence, the constraint set and failure set are
by definition complements of each other 7 = K°.

It is important to point out that states inside the constraint set K are not necessarily safe. Rather,
the set of safe states will be Q) = ICNR(F)¢, whereas the set of unsafe states will be the complement
Q= FUR(F).

Set Definitions as (Robust) Optimal Control Problems

While the sets introduced thus far are conceptually useful, it is necessary to find a way of actually
computing them. This can be accomplished by defining an implicit surface function, namely a
Lipschitz function of the form /() : R™ — R mapping states to a scalar value. This scalar value is
used to delineate sets. For instance, let [be such that

reT «— I(z)<0 (2.46)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 13

then, the following cost functionals V can be defined for our trajectories:

VU(x) = mi}l 1&r(m) Y4 (z) ;= min l(f;l”td(T)). (2.47)

ree) ot € [t,T]

The predicates from definitions (2.42)-(2.435) can now be re-written in terms of (robust) optimal
control problems

(Maximal BRS) Fu(), 7€ [T), G €T = inf V'(x) <0 (2.48)
(Minimal BRS) Vu(-), T € [t,T], (1) €T = Sulg) Vi(z) <0 (2.49)
(Enforceable BRS) Y6, 3u(-), T € [t,T], g;jf(r) €T < Sl;p Lr(lg yrd(r) <0 (2.50)
(Inevitable BRS) 39, Yu(-), T € [t, T, 5;"7;1(7) €T = irgf Sul(ll)) yrd(r) <0, (251)

Recalling the definition of the value (2.6)) and (2.15])), the right-hand sides of (2.57)-(2.58) can be
written in terms of the value function V' (z, t). More concretely, once V' (x, t) is obtained by solving
the HIB-VI or HJI-VI with boundary condition V' (z,7) = I(z), the following property
holds:

Te[t,T], &i(r) € T = V(x,t) <0. (2.52)

Accordingly, for safety analysis, if we define another implicit surface function g(x) such that
reF < g(x) <0and V(z,T) = g(x), then following relation also holds:

x € Q° (unsafe states) <= V(z,t) < 0. (2.53)

That is, the state x at time ¢t < T is unsafe if it belongs to the zero sublevel set of V' (z, t).

2.3 Safety and Liveness

Thus far we have been mainly concerned about safety. However, safety alone is not particularly
interesting unless it is also coupled to an underlying task. For example, guaranteeing that a quadrotor
can reach a room from some starting location within a building while remaining safe is a more
useful problem than guaranteeing safety alone.

Problems that involve reaching a target set while avoiding obstacles are known as reach-avoid
problems, and the aim is to compute the reach-avoid set (RAS) RA(T; K), which is defined as
follows:

Definition 6. (Enforceable reach-avoid set). The enforceable reach-avoid set of a dynamical
system & = f(x,u,d) is the collection of initial states x € R" such that for all non-anticipative
disturbance strategies 6 : U — D, there exists some control signal u(-) € U that is able to drive
trajectories into T while remaining in K at all preceeding times.

RAT;K) ={z e R"|Vs €T, u(-) €U, 7 € [t,T], &) € T A Vs € [t, 7] £24(s) € K.
(2.54)

CHAPTER 2. BACKGROUND AND PRELIMINARIES 14

The predicate in ensures that states which are part of the reach-avoid set are those initial
states such that for all disturbances there exists some control sequence which is able to drive
the subsequent trajectory into 7 while remaining within the constraint set XC. Note that this last
requirement of remaining within K is only enforced before reaching 7, not thereafter. Also note
that we have omitted the definition of the maximal reach-avoid set for simplicity given that it is
practically equivalent to but without a disturbance.

As before, the reach-avoid problem can be formulated as a (robust) optimal control problem by
defining two implicit surface functions, one for the target set and one for the failure set

reT <= l(x) <0 r€F < g(x)>0. (2.55)
In this case, the cost functional is given by

Vra(z) = min, max{ [(&,(7)) max 9(&24(s)) }- (2.56)
The maximum in the above expression acts as an “overwriting” mechanism. If a trajectory always
remains inside K, the second maximization term is always negative and V"(x) is negative only if
the trajectory ever enters into 7. On the other hand, if at some point the constraints are violated
the maximum will be positive, which ensures that trajectories that eventually reach 7 while also
violating constraints yield a positive cost.
With this cost functional defined, we can now also define the maximal and enforceable reach-
avoid sets RA(7; KC) in terms of the value function of the optimal (robust) control problem,

(Maximal RAS) Ju(-), Tet,T], (1) €T = 1r(1€ Vi alx) <0 (2.57)

(Enforceable RAS) Vo, Ju(-), T € [t,T], f;’td(T) €T <= sup 11}% V;é’j(:)s) <0. (2.58)
5 ul(

Again, similar to (2:32), we can solve for the value function V' (z, t) using slight variationg’| of the
the HIB-VI or HJI-VI from (2.37) with boundary condition V (x,T") = max{l(x), g(x)}. In this
case, once V' (x,t) has been computed the following property holds:

Te[t,T], &er(m) €T ANVs et T]&u(s) € K <= V(z,t) <O0. (2.59)

That is, the state = at time ¢ < 7" can reach 7 while remaining inside K if it belongs to the zero
sublevel set of V'(z, t).

2.4 Computational Techniques and Limitations

So far we have seen that the safety problem can be cast as a (robust) optimal control problem, whose
solution V' (x, t) can be obtained by solving the associated the HIB(-VI) or HJI(-VI) equation. The
goal of this chapter will be to provide a high-level overview of how these solutions can be computed
numerically and the limitations that lie therein.

3Obtaining the variational inequality for the cost functional V2 ,(z) follows a similar process as (2.23), which we
omit for brevity.

CHAPTER 2. BACKGROUND AND PRELIMINARIES 15

Finite Difference Methods

Finite difference methods, also known as grid-based methods, are a type of approach for numerically
approximating the solutions of partial differential equations (PDEs). The main idea is to discretize
the space of continuous variables on a grid and use the discretized version of the partial differential
equation to update every grid point. For illustrative purposes, assuming the x € R so that the state
is one-dimensional, attempting to approximate the solution of can be done by re-writing the
PDE in discrete-time and using the discretization as an update rule:

V(t,x+ Azx/2) = V(t,x — Az/2)
Ax

V(z,t—At) « V(z,t)+ At irelbf{{c(x, u)+ f(x,u)} (2.60)
with V(x,T) = I(z), where At and Ax represent the size of the discretization in the time and
state variables respectively. Once this update rule has been established, one can cycle through each
point in the grid and update it accordingly. In practice, an approach like the one shown here is
prone to instabilities leading to erroneous approximations, given that there are many factors which
influence how well finite difference methods will converge to the correct solution. Fortunately,
for Hamilton-Jacobi type equations extensive work has been done [63, 71, [72] and tools have
been developed which are able to effectively compute accurate approximations. Figure [2.1| shows
the typical progression of the value function when numerically computing reachable sets for a
reach-avoid problems using [|63]].

Figure 2.1: Visual progression of the value function when solving Hamilton-Jacobi equations on a grid (figure courtesy
of Syliva Herbert).

Curse of Dimensionality

One of the downsides of using finite difference methods for optimal control problems is that the
discretization happens in both the time and state variables. While time is one dimensional, the state
variables are often multi-dimensional. In essence, this makes the time and space complexity of

CHAPTER 2. BACKGROUND AND PRELIMINARIES 16

solving optimal control problems on a grid exponential. In practical terms, this means that problems
with more that 5 state variables are considered intractable. This computational limitation due to
exponential growth is known as the curse of dimensionality.

An interesting aspect of the curse of dimensionality is that it is pervasive within many engineering
problems and is not unique to finite difference methods for optimal control. In fact, other reachability
approaches which do not employ optimal control to compute reachable sets also suffer from
similar problems. For instance, methods that use ellipsoids or polytopes [48, 149, 59, 45] to
(over-)approximate reachable sets suffer from the curse of dimensionality through the dependency
of volume and state dimensiorﬂ However, when the target sets are convex or the dynamics are linear
these effects only start to become noticeable at slightly higher dimensions than in finite difference
case. In general, a trade-off exists between the accuracy of the approximation of the reachable sets
and scalability. As we will see, this fact will reappear again in the second half of this dissertation.

2.5 Chapter Summary

In this chapter we first presented an overview of dynamical systems and optimal control. We showed
that the solution of (robust) optimal control problems can be equivalently expressed as the solution
to the HJB/I equation or variational inequality. Secondly, we introduced the topic of safety and how
safety specifications can be expressed in terms of sets of states, and, in particular, in terms of the
constraint set I = F°. Once these safety specifications have been laid out, we can then define a
variety of reachable sets 'R which can be obtained by solving (robust) optimal control problems. By
solving the associated HIB/I equation or variational inequality, we obtain the value function V' (z, t)
whose zero sublevel set is the reachable set for the problem. Finally, we introduce the concept of
the curse of dimensionality and why grid-based methods cannot scale.

Consider the extreme case of fully enclosing an n-dimensional sphere inside the smallest possible n-dimensional
cube. As n grows the ratio between the volumes of the cube and the sphere goes to zero.

17

Chapter 3

High Dimensional Reachability Analysis

This chapter is based on the paper “A Classification-based Approach for Approximate Reachability”
[79], written in collaboration with David Fridovich-Keil, Sylvia Herbert, and Claire Tomlin.

As we have seen in Ch. 2] Hamilton-Jacobi reachability analysis solves an important class
of optimal control problems and differential games. These tools are typically used offline to
perform theoretical safety analysis and provide goal satisfaction guarantees for nonlinear systems.
Applications include collision avoidance [62, 18], vehicle platooning [19]], administering anesthesia
[44], and others [8,, 39, 24]. We can characterize any reachability method (including Hamilton-Jacobi
reachability) according to the following criteria: (a) generality of system dynamics, (b) computation
of control and/or disturbance policies, (c) flexibility in representation of sets, and (d) computational
scalability. The traditional grid-based Hamilton-Jacobi reachability methods presented in Sec. |2.4
perform well for the first three criteria, but suffer from poor computational scalability due to the
curse of dimensionality. Recent work has investigated decomposing high-dimensional systems for
reachability [15}16]; nevertheless, grid-based Hamilton-Jacobi reachability is often intractable for
analyzing coupled high-dimensional and/or multi-agent systems.

Other reachability methods are more scalable but require linear or affine system dynamics. Such
methods may require representing sets using approximative shapes (e.g. polytopes, hyperplanes)
[32} 35, 48| 49,159], or not account for control and disturbance inputs [[69]]. More complex dynamics
can be handled by the methods in [5, 20, |26} 32, 60], but may be less scalable or unable to represent
complex set geometries.

Traditional Hamilton-Jacobi reachability methods represent the value function directly over a
grid, which implicitly specifies the reachable (or avoid, reach-avoid) set, the optimal controller, and
if needed, the optimal disturbance. By contrast, in this work, we will compute an approximation
of the optimal controller and disturbance directly. Equipped with these approximations, we can
compute estimates of the value function and the reachable sets by simulating the known system
dynamics with the learned control and disturbance policies. If a set representation is also required
(e.g. for visualization), a grid may be populated using simulated data.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 18

Neural Networks Applied to Control Systems

Feedforward neural networks are a type of parametric function approximator constructed as a
composition of nonlinear functions. In Ch. [5|we provide an in-depth introduction to feedforward
neural networks. Recently, these types of function approximators have become popular for high-
dimensional control tasks. In deep reinforcement learning, for example, neural networks have been
employed to learn controllers for complex robotic manipulation tasks, e.g. unscrewing a bottle cap
and inserting a peg in a slot [[53} 42, 68, 31]. The control theory literature also includes examples
in which neural networks have been successfully employed to find approximate solutions optimal
control problems or to learn dynamical system models [6, [21}, 76} 98| 23].

Neural networks have also been used for approximate reachability analysis [41}, 25]. Though
conceptually related to these approaches, our method differs in that it exploits the structure of control-
affine systems, which we will define shortly, to cast the optimal control problem into a (repeated)
classification problem. These neural net classifiers can then be used, under some conditions, for
verification—i.e. they can be used to provide safety and/or goal satisfaction guarantees.

In this section we will introduce a class of dynamical systems whose optimal controllers display
so called “bang-bang” behavior. That is, for any given state, when the constraints on the controls are
bounded, closed intervals, and each component is independent of each other, the optimal control will
in general belong to one of the extremal values of the selﬂ (i.e. one of the vertices of the hyperbox
representing the set of controls). This property hints at the possibility of casting the reachability
problem as a classification problem.

In this section we introduce our classification-based method for approximating the optimal
control of Hamilton-Jacobi reachability when the dynamics are control-affine. Even though we
will use feedforward neural networks to build the classifiers, it is possible to use other methods
(e.g. SVM, decision trees). Ultimately, the choice of the classifier determines how conservative the
results of the procedure will be. We leave a full investigation of classifier performance for future
work.

3.1 Control-Affine Systems

A control/disturbance-affine system is a special type of dynamical system of the form

Ny Ny
i=a(r)+ > B+ y(x)d;, 3.1)
i=1 j=1

where o, 3;,7; : R* — R". We will assume that both control and disturbance are bounded
by interval constraints along each dimension, i.e. w; € [u!, ,u’ | fori = 1,..., N,, and

min’ “max

d; € [dj d’]forj =1,..., N;. Observe that when dynamics f are of the form (3.1)), the

min’ “'max

objective in (2.21]) is affine in the instantaneous control v and disturbance d at every time ¢. The
optimal solution, therefore, lies at one of the 2V« (or 2"¢) corners of the hyperbox containing

! Assuming that the gradient of the value function exists and is non-zero.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 19

u (or d). That is, the optimal control and disturbance policies are “bang—bang’ (we refer the
reader to chapter 4 of [55]). Furthermore, the optimal values for any w; or d; at a certain state and
time are mutually independent; therefore, for control/disturbance-affine systems, we can frame the
Hamilton-Jacobi reachability problem (2.18) as a series of N,, + N, binary classification problems
at each time.

3.2 Classification-based Reachability

Algorithm [T describes the process of learning these classifiers in detail. We begin by discretizing
the time-horizon 7" into small (evenly spaced) intervals of size At > 0 in line [3] and proceed to
use the dynamic programming principle backwards in time to build a sequence of approximately
optimal control and disturbance policies. In total, the number of classifiers will be A%(Nu + Ng).

Algorithm 1: Learning policies and disturbances

t Input: & = f(z,u,d), X, U, D, T, At,C, N, Train(-,-)
2 Initialize IT,,, IT; < {}

3 Fork=0,...,|T/At]

4 Initialize P, U*, D* < {} >Initialize empty arrays for training data.

5 Forqg=1,... N

6 Sample = ~ Unif{ X'} > Sample states unifromly at random.

7 Initialize v*, d* < wpin, dmin

8 T+ E(—kAt; x, —(k + 1) AL, Umin, dmin)

9 ¢« C(z,11,,I,) > Obtain value for baseline trajectory.
10 For:=1,..., N, > Find best control.
11 U 4= Ui U Ul
12 ' E(—kAt x, —(k + 1) At 4, dpin)

13 If (C(2,11,,y) < &): uf + ul,,, > Rollout remainder of trajectory.
14 Forj=1,..., Ny >Find best disturbance.
15 d < dpip; d* di

16 v E(—kAt; 2, —(k + 1) AL, tpin, d)

17 If (C(2/, 11, 1y) > ¢): df + d',,s > Rollout remainder of trajectory.
18 U* « {U*,u*} >Append control.
19 D* « {D*,d*} >Append disturbance.
20 P+ {P,x} >Append state.
21 I o yae < Train(P,U*), Hy < {11, 1% At >Train classifier and store it.
2 Hi(k—&-l)At < Train(P, D*), 11, < {1, H‘f(kﬂ)m} >Train classifier and store it.

23 Return I, 11,

For many physical systems, it is preferable to apply a smooth control signal. We note that the bang-bang control
resulting from (2.21) need only be applied at the boundary of the reach-avoid set.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 20

The inputs to the algorithm are the dynamical system f, the set of states X C R", set of controls
U = [Upmin, Umaz] V™, set of disturbances D := [dnin, dmaz)™*, time horizon T', time discretization
At, value evaluation function C' and classification procedure Train.

At an intermediate time ¢ < 0, we will have already obtained the binary classifiers for the
control and disturbance policies from ¢ + At to O: I Av) and H‘(it +an0- Here, I and I1¢ each

denote a set of classifiers for the discrete time step 7 (i.e. |II%| = N, and |[[1¢| = N;). We now
define the function C', which computes the cost (2.18) if control and disturbance acted according to
these pre-trained policies:

Clz, H1(Lt+At):07HElt+At):O> =y (2,1), 3.2)

where, due to our discretization, the control signal u and disturbance signal d are piecewise constant
over time, i.e. u(z,t) = [1%(x) and d(x, t) = [14(z) for t € [r,7 + At), for all discrete time steps
T.

At time ¢, we can determine for some arbitrary state x the optimal control and disturbance as
follows. First, compute the cost of applying Ui = (12, ..., ") and dypin = (d;,, - .., d?)
from ¢ to ¢ + At; that is, let ¢ = C'(£(t + At; 2, £, Wrmin, dmin)» IT¢,, apy0: H?Hm):o)- Now, separately
for each component ¢ of the control vector u (and likewise for d), set ul(t) = Upmqe and compute
the cost. If the cost is less than (greater than, for disturbance) ¢, then this is the optimal control
(disturbance) in dimension 7 at time ¢. This corresponds to lines

Equipped with this procedure for computing approximately optimalﬂ control and disturbance
actions, we record the computed state-action pairs (lines [I8{20) for V states sampled uniformly
over A['|(lines . We then train separate binary classifiers for each component of v and d, and
add them to their current set IT* or II¢. These are finally appended to the time-indexed control
and disturbance policy sets IT,(= {{II3", ..., Iy}, ..., {I1%, ..., TI7*}}) and II; (lines 21H22).
Train(-,-) denotes a training procedure given state-action pairs. The end of this chapter contains
further details pertaining to how the classifiers were trained.

Two of the main benefits of performing approximate reachability analysis using binary classifiers
rather than grids are memory usage and time complexity. The memory footprint of medium-sized
neural networks of the sort used in this work can be on the order of 103 parameters or ~ 10 Kb,
as opposed to ~ 10 Gb for dense grids of 4D systems. In our experience, Algorithm [I] typically
terminates after an hour for the 6D and 7D systems presented in the end of Sec. [3.3] whereas
grid-based methods are completely intractable for coupled systems of that size.

Special Case: Value Function Convergence

For some instances of problem (2.18)) the value function V (z,t) converges: lim;, o, V(x,t) =
V*(z). From (2.21)), the corresponding optimal control and disturbance policies also converge.

3 Approximately optimal, since we compute policies at time ¢ based on previously trained control and disturbance
policies for 7 > t.

4While other distributions could be used, in this work we focus solely on uniform sampling. Different sampling
strategies may result in different algorithm performance.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 21

While in this work we make no claims regarding convergence of the classifiers to the true optimal
policies, our empirical results do suggest convergence in practice (see Fig. [3.6). When this happens,
we denote 1%, = I1*__ (resp. I1¢, = 112 _), for T large enough. In practice, the horizon can be
progressively increased as needed. A benefit of converged policies is that when estimating V*(x)
we only require the last set of binary classifiers I1*__ and IT1? __, allowing us to store only N, + Ny
classifiers.

Summary of Guarantees

Algorithm [I] returns a set of approximately optimal policies for the control and the disturbance for a
finite number of time steps. Recalling (3.2)), in order to obtain an estimate of the value at a certain
state = and time ¢, it suffices to simulate an entire trajectory from that state and time using the
learned policies. The value V!4 (2 t) is the cost of the associated trajectory, measured according
to (2.56).

A benefit of working with policy approximators rather than value function approximators is that
in the case of no disturbance, the value function induced by the learned control policy will always
upper-bound the true value. This means that a reach-avoid set computed via Algorithm [I| will be a
subset of the true reach-avoid set.

For reachability problems involving a disturbance, if the optimal disturbance policy is known a
priori, the same guarantee still applies. However, if the optimal disturbance is unknown and must
also be learned, no guarantees can be made because the learned disturbance policy will not generally
be optimal. We formalize this result with the following proposition.

Proposition 1. If we assume (a) no disturbance, or (b) access to a worst-case optimal disturbance
policy, then the computed reach-avoid set is a subset of the true set.

Proof. First assume no disturbance. Due to the use of function approximators, the control policy 11,
will be suboptimal relative to the optimal controller u*(-), meaning it is less effective at minimizing
the cost functional (2.56). Therefore, V' (x,¢) > V(x,t). Denoting the neural network reach-avoid
sets as RA™ := {x : V(2 t) < 0}, this inequality implies that RA;™ C RA,. O

Note that this applies to all states x and times ¢, not just those that were sampled in Algorithm I}
When optimizing over both control and disturbance this guarantee does not hold because the
disturbance will generally be suboptimal and therefore not worst-case. However, when provided
with an optimal disturbance policy at the onset, we recover the case of optimizing over only control.

3.3 Examples

In this section, we will present two reachability problems without disturbances, and compare the
results of our proposed method with those obtained from a full grid-based approach [61]]. In each
case, we observe that our method agrees with the ground truth, with a small but expected degree of

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 22

1, —8], U € |

Figure 3.1: Reach-avoid set computation for 2D dynamics in (3.3) for two different control bounds. Sets computed
using our method are subsets of the true sets.

conservatism. For these examples, the set £ := {z | [(z) < 0} is a box of side-length 2 centered at
(x,y) = (0,0),and G := {z | g(x) > 0} consists of the outer boundaries (i.e. max{|z|, |y|} < 3)
and the shaded obstacles (Fig. [3.1]and Fig. [3.2).

2D point

Consider a 2D dynamical system with inputs u; € [u,,u;] and us € [u,,Us] which evolves as
follows:

T =y, § = Uy (3.3)

Fig. shows the reach-avoid sets for two different control bounds. We overlay the sets
computed by our method on top of that computed using a dense 121 x 121 grid [61]]. The red set
was computed using standard Hamilton-Jacobi reachability and the blue set was computed using
our classification-based method. Points inside the reach-avoid sets represent states from which there
exists a control sequence which reaches the target while avoiding all obstacles. As guaranteed in
Proposition|l} the set computed via Algorithm |1|is always a subset of the ground truth, meaning that
every state marked in Fig.|3.1|as safe is also safe using the optimal controller. The computation time
for the grid-based approach was 20 seconds, while for the classification-based it was 10 minutes.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 23

—Qur
- - Goe

AR WO

Figure 3.2: Reach-avoid set computation for the 4D dynamics in (3.4)) for two different 2D slices and tangential speed
v =1

4D unicycle

Next, we consider a higher-dimensional system representing a 4D unicycle model:

z (x-position) v cosf
: Y (y-position) vsin 6
= | = 4
s 0 (yaw angle) Uy (3.4
v (tangential speed) Ug

in which controls are tangential acceleration u, € [0, 1] and yaw rate u,, € [—1, 1]. Fig.[3.2|shows a
computed a reach-avoid set for this system for different 2D slices of the 4D state space on a 121*
grid. As expected, our approach yields a conservative subset of the true reach-avoid set. In this case,
the computation time for the grid-based approach was 3 days, while for the classification-based it
was 30 minutes.

FaSTrack overview

FaSTrack (Fast and Safe Tracking) is a recent method for safe real-time motion planning [38].
FaSTrack breaks down an autonomous system into two agents: a simple planning model used for
real-time motion planning, and a more complicated tracking model used to track the generated
plan. To ensure safe tracking, FaSTrack computes the largest relative distance between the two
models (tracking error), and the planning algorithm uses this result to enlarge obstacles for collision-

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 24

checking. The computation also provides an optimal feedback controller to ensure that the tracker
remains within this bound during planning.

To solve for the largest tracking error in FaSTrack, we set the cost I(r, t) in (2.22) as the distance
to the origin in relative position space. We denote relative states by r € R C R¥", and solve a
modified form of (2.22):

Ved(t) == max [(£5%(7),7) (3.5)

TE[t,0] ’

Note that there is no constraint function g(r,t). Also, we now take the maximum value over
time because we want to find the maximum relative distance that could occur between the two
models. Finally, observe that in this formulation, the disturbance actually encompasses two separate
quantities: the original notion of disturbance (e.g. wind), and the planning model’s control input,
which directly affects the relative state dynamics. Henceforth, policy I1¢ __ will represent the
concatenated disturbance and planning algorithm policies.

Following Sec. when the optimal converged disturbance policy I1¢ __ is known analytically,
the policies learned in Algorithm[I| will (by Prop.[I)) yield a value function which over-approximates
the optimal value function, i.e. V4" (r t) > V(r,t). Thus, the maximum relative distance ever
achieved between tracking mode and planning model, from any initial relative state, will always be
greater when using the binary classifier policies than the optimal policy. For safe trajectory tracking,
this translates into enlarging obstacles by a larger amount, meaning we still preserve safety.

FaSTrack Reachability Precomputation

We employ Algorithm [I]to find the largest tracking error for two nonlinear models of the tracking
model, which become control-affine under small angle assumptions. First, we consider a 6D near-
hover model which decouples into three 2D subsystems and thus admits a comparison to grid-based
methods. Then, we present results for a fully-coupled 7D model that cannot be solved exactly using
grid-based techniques and use it for quadrotor control.

6D Decoupled

We first consider a 6D quadrotor tracking model and 3D geometric planning model. Here, the
quadrotor control consists of pitch (¢) and roll (¢) angles, and thrust acceleration (7"), while the
planning model’s maximum speeds are b,, b,, and b, in each dimension. All of our results assume
¢,0 € [-0.1,0.1) rad, T — g € [—2.0,2.0] m/s? and b, = b, = b, = 0.25 m/s. We assume
a maximum velocity disturbance of 0.25 m/s in each dimension. The relative position states
(ra, Ty, r,) and the tracker’s velocity states (.., Tyy, Ty.) adhere to the following relative dynamics:

7;'93 Toyx — dv:g - bx i‘vz gtan 6)
Py | = [Toy —doy — by | , [Toy | = | —gtang (3.6)
7;z Lyz — dvz - bz jjvz T — g

Without yaw, these dynamics decouple into three 2D subsystems, (7, Zyz), (7y, Tyy), and
(r, ..), and we use the technique in [[17] to solve for the value function using (3.3) independently

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 25

R

(a) Ground truth (grid) (b) Classifier IT* oo (¢) Classifiers II*_, (d) Overlaid level curves.
o

Figure 3.3: Level sets of V* in the (r,,v,) states (setting other states to zero) for (a) ground truth grid-based
representation, (b) neural network IT* __ trained on optimal disturbance policy d*(-), and (c) neural networks II* __ and
14 __ trained jointly. We encode the optimal (learned) control at each state as a different color. (d) Overlay of level sets
from (a-c). Our method only yields a conservative result (a superset of the ground truth; see Sec. @ when II* __ is
trained against d* ().

for each 2D subsystem using grid-based techniques. Fig. [3.3] shows the level sets of the value
function V* and corresponding optimal tracker control policies. Fig.[3.3ais the grid-based ground
truth, while Fig. @ shows the induced value function for the neural network classifier policy II*
trained against the optimal disturbance policy d*(-), and Fig. shows the induced value function
when IT1“ _ and [1? _ were trained jointly. Note that the classification-based results shown here did
not take advantage of system decoupling. Corroborating our theoretical results, the level sets of
the value function induced by our learned classifiers over-approximate the true level sets when the
disturbance plays optimally (Fig.[3.3d). Also, observe that using a learned (and hence, generally
suboptimal) I1¢__, the resulting level sets in Fig. 3.3c|still well-approximate (though they do not
include) those in[3.3al For each level curve, the maximum tracking error z is the largest value of
the level curve along the 7, axis. Observe in Fig. [3.3d| that the maximum tracking error is similar in
all three cases. Finally, the line that separates the colored areas in the background of each figure in
Fig.[3.3|denotes the decision boundary for the controller in each case.

7D Coupled

In this example, we introduce yaw (¢)) into the model as an extra state in (3.7) and introduce yaw
rate control ¢ € [—1.0,1.0] rad/s. The relative position dynamics in (r,,7,,7,) are identical to
(3.6). The remaining states evolve as:

Loz g(sin @ cos z, + sin ¢ sin x)

Tyy | | g(—singcoszy +sinfsinay) 37)
Tor | T cos¢cosf — g :
Ty (8

This dynamical model is now 7D. It is too high-dimensional and coupled in the controls for
current grid-based Hamilton-Jacobi reachability schemes, yet our proposed method is still able to
compute a safety controller and the associated largest tracking error.

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 26

1.2
— 1 e e e e T e g e T vt e e e S R P e e S S e e
8 —Tracking error
5 0.8 - - Precomputed maximum tracking error
-
0 0.6
*.g‘::- 0.4
02

0
0 2 4 6 8 10

Time (s)

Figure 3.4: Relative distance between the quadrotor (tracking model) and planned trajectory (planning model) over time
during a hardware test wherein a Crazyflie 2.0 must navigate through a motion capture arena around spherical obstacles.
The quadrotor stays well within the computed tracking error bound throughout the flight. Note that the tracking error is
large because our controller accounts for adversarial disturbances, unlike many common controllers.

Hardware Demonstration

We tested our learned controller on a Crazyflie 2.0 quadrotor in a motion capture arena. Fig.[3.4]
displays results for (3.7). As shown, the quadrotor stays well within the computed error bound. For
this experiment 11, was trained using a sub-optimal disturbance policy. Even though we do not
have a rigorous safety guarantee in this general case because we computed the disturbance, these
results corroborate our intuition from Fig. |3.3| where the computed error bound remains essentially
unchanged when using a learned disturbance instead of the optimum. However, by Prop. [T} with the
optimal disturbance we could compute a strict guarantee. The hardware demonstration can be seen
in our video: https://youtu.be/_thXAaEJYGM. Figure shows our experimental setup
with the quadrotor tracking the trajectory.

o O

Figure 3.5: Quadrotor flying using a neural network classifier.

https://youtu.be/_thXAaEJYGM

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 27

3.4 Implementation Details

In this work we train each binary classifier by minimizing the cross-entropy loss between inputs
and labels via stochastic gradient descent. We run the classification problem for a pre-specified
number of gradient steps between each new set of policies. Since we expect policies to vary slowly
over time, we initialize the weights for each new network with those from its predecessor. This
serves two purposes. First, it serves as a “warm start” leading to faster stochastic gradient descent
convergence. Second, it provides a practical indicator of policy convergence—i.e. if the initial
classification accuracy of a new policy is almost equal to that of its predecessor, the policy has most
likely converged. Fig. shows a typical learning curve when running Algorithm|l} The figure
shows the progression of the validation error (against unseen state-action pairs) in each iteration.

All feedforward neural network classifiers had two hidden layers of 20 neurons each, with
rectified linear units (ReLLUs) as the activation functions, and a final softmax output. The gradient
descent algorithm employed was RMSprop with learning rate & = 0.001 and momentum constant
£ = 0.95. When using function approximators, it is in general unclear how many samples should
be taken as a function of the state dimension. In our case, the number of points /N sampled at
each iteration was 1k for the 2D example, and 200k for the 4D, 6D and 7D system. All initial
weights and biases were drawn from a uniform probability distribution between [—0.1,0.1]. All
computations were performed on a 12 core, 64-bit machine with Intel® Core™ i7-5820K CPUs @
3.30GHz. In our implementation we did not employ any form of parallelization. All code for the
project can be found at https://github.com/HJReachability/Classification_
Based_Reachability.

Validation Error

0.4 T T T T T
S
5 0.3 8
[
il
bS] 0.2 .
Q
‘©
g 01 1
© I\ lq L | |) sl
0 I 1 | - 1 1 I
0 2 4 6 8 10 12

iteration #

Figure 3.6: Learning curves for a single classifier of the 6D decoupled system. Classification error decreases between
spikes, which mark each new k in Algorithm Spikes shrinking hints that classifiers eventually converge.

https://github.com/HJReachability/Classification_Based_Reachability
https://github.com/HJReachability/Classification_Based_Reachability

CHAPTER 3. HIGH DIMENSIONAL REACHABILITY ANALYSIS 28

3.5 Chapter Summary

In this chapter we introduced a classification-based approach for approximate reachability. We
showed that for control-affine systems, which are very general, yet realistic types of dynamical mod-
els, the optimal policy for reachability problems can be readily encoded as a set of neural network
classifiers. These classifiers can be trained sequentially via approximate dynamic programming
by evaluating how each component of the control (disturbance) vector influences the subsequent
trajectory of the system and the associated value. Once the value is computed for each possible
“bang-bang” control for every sampled state, we gather the approximately optimal controls and states
into pairs, which are then used as training data for classification. We show that this procedure yields
good policies which induce good approximations of the value function and associated reachable sets.
Lastly, we demonstrate the efficacy of the trained classifiers on a tracking task using a quadrotor.

29

Chapter 4

Reachability Analysis and Reinforcement
Learning

This chapter is based on the paper “Bridging Hamilton-Jacobi Safety Analysis and Reinforcement
Learning” [29], written in collaboration with Jaime F. Fisac, Neil Lugovoy, Shormona Ghosh, and
Claire Tomlin.

In Ch. [3| we introduced a classification-based technique which is able to learn an approximately
optimal controller via dynamic programming for reachability problems. In this chapter we will
introduce a different approach that directly approximates the value function (2.23) which draws its
inspiration from reinforcement learning literature.

4.1 Reinforcement Learning and Safety

In recent years, reinforcement learning techniques [88|] have proven their usefulness in computing
data-driven approximate solutions to optimal control problems seeking the maximization of a
discounted additive payoff in complex and high-dimensional systems [64, |37, |82, |52]]. Unfortunately,
functions representing a sum of rewards over time are not well suited to capture the safety objective,
since safety is not determined by how much a system fails on average, but by whether it fails ar all.
Partly for this reason, reinforcement learning techniques have not seen widespread use for safety
analysis.

Another consequence of this disconnect between formulations is that controllers computed
through reinforcement learning are typically not inherently safety-preserving, a limitation that has
hindered their applicability to physical autonomous systems. In recent years, there has been a
growing interest around “safe learning” schemes. Some approaches have proposed formalizing
safety as stability [10] or near-constraint satisfaction [|66, |1]. Others have built on the Hamilton-
Jacobi reachability literature to provide constraint satisfaction guarantees by computing a safety-
preserving control policy and overriding the learning controller when it attempts to violate computed
safety constraints [33}, 3, [30]. Unfortunately, this family of methods inherits the difficulty in scaling

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 30

- -

v =0.85 v =0.96 v =10.99

=
Rk

v =0.998 v=0.99997 ~ =0.99999

Figure 4.1: Multiple snapshots of the neural network output of our Safety Q-learning algorithm for a double-integrator
system. As we anneal the discount factor v — 1 during Q-learning, our learned discounted safety value function
asymptotically approaches the undiscounted value, allowing us to recover the safe set and optimal safety policy with
very high accuracy.

up computations beyond low-dimensional systems.

In this chapter we present work that seeks to unlock a new family of tools for safety analysis by
rendering a wide range of state-of-the-art methods in the reinforcement learning literature readily
usable for safety analysis in high-dimensional systems. Building on the initial work in [2], which
introduced a time discount into the minimum-payoff optimal control problem, we propose a similar,
tighter discounted formulation of Hamilton-Jacobi safety analysis, obtaining a contraction Bellman
operator that lends itself to the use of temporal difference learning techniques. We prove the key
properties of this new discounted Safety Bellman Equation and show that our resulting Safety
Q-learning algorithm converges to the safety state-action value function in finite Markov decision
processes.

The Safety Q-learning scheme allows us to recover the globally optimal solution to the cor-
responding Hamilton-Jacobi analysis (to resolution completeness [7, [74]) in low-dimensional
problems where dense computation is viable: we validate our results using tabular Q-learning
against a double integrator system, achieving high accuracy relative to the analytic solution. We
further observe comparable performance when replacing the state-space grid with a neural network
function approximator. Crucially, annealing the discount factor during learning allows asymptotic
recovery of the solution to the undiscounted safety problem (Fig. {.).

We evaluate deep Safety Q-learning on a variety of simulated robotics tasks, and observe con-
sistently accurate results against numerical dynamic programming solutions. In high-dimensional
systems beyond the reach of traditional numerical methods, predicted safety accurately matches the

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 31

empirical performance of the learned safety controller.

We finally implement policy optimization through an adaptation of the basic REINFORCE
algorithm [93] to our discounted safety formulation, and explore the potential of using sate-of-the-art
methods by similarly adapting the soft actor-critic (SAC) scheme [36]]. The promising results on an
18-dimensional problem suggest the usability of this family of reinforcement learning methods for
learning policies with the ability to preserve safety in high-dimensional systems.

It is important to clarify that our formulation yields a promising new tool for safety analysis: it is
not in itself a safe learning framework, since it requires experiencing failure states in order to learn
about safety. Our approach is primarily meant to be used as a computational tool in conjunction with
a model (simulation) of the system dynamics; its #ruly model-free application, learning constraint
satisfaction online directly on the real system, should be limited to training conditions that are not
safety-critical (for example, a vehicle test track with only virtual obstacles). Once the safety analysis
has been computed (learned), the resulting control policy can be applied to the physical system in
similar conditions to other safety controllers, including safe learning of performance objectives [30].
While our analysis here is presented for deterministic dynamics, robust and stochastic extensions
are possible (and have been explored to some extent in [2]]). We expect that such extensions will
be important for implementation of our formulation on physical systems, which is of course its
ultimate intended application.

4.2 Parallels between Reachability Analysis and
Reinforcement Learning

In Ch. [2| the cost functional (2.5) was introduced. Reinforcement learning seeks to solve an
optimization problem with a very similar cost functional. In discrete time, it is written as follows:

(T—t)/At
Vi, t) = D A TIr(ER (i + 1), u(iAt + 1)) (4.1)

=0

where r(z,u) : X x U — R < oo is known as the reward function, and v € [0, 1) is known as the
discount factor, which is a parameter that regulates how far into the future states and controls in
a trajectory contribute to the value. For infinite time problems where 1" = oo the discount factor
ensures that V' is finite. Using Bellman’s principle of optimality it can be shown that the infinite
time optimal value function must satisfy the condition

Vz) = max r(z,u) + 9V (z + flz,u)At) . (4.2)

Crucially, this condition, when interpreted as an update rule, induces a contraction mapping in the
space of value functions (under the supremum norm), which implies that its successive application to
any initial V' will ultimately converge to the unique solution of (4.2)). This enables key convergence
results in reinforcement learning schemes, most notably temporal-difference learning methods such
as Q-learning [93]].

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 32

In contrast, if we examine the discrete time cost functional for reachability analysis, where again
[(x) is the implicit surface function defined in (2.46)),

VU(x,t) = i Iee 4.3
(0= i &) 43
we obtain, by following analogous steps to the ones shown in (2.24)), that the infinite time optimal
value function must satisfy

V(z) = min {l(x), max V(z+ f(z, u)At)} : 4.4)

An important observation about (4.4) is that, unlike (4.2), it does not induce a contraction mapping
on V' and therefore it is not generally possible to converge to the fixed point by application of value
iteration or temporal difference learning.

4.3 The Search for a Contraction Mapping

Our key observation stems from an intuitive interpretation of time-discounting in the problem of
cumulative rewards: at every instant, there is a small probability 1 —- of transitioning to an absorbing
state from which no more rewards will be accrued. Thus in (4.2)) the discount factor v € [0, 1)
can be seen as the probability of the episode continuing, with 1 — v conversely representing the
probability of transitioning to a terminal state. The following, equivalent definition of the optimal
value function clearly conveys this idea:

V(z) = max (1 —~)r(z,u) + ’y(r(m, u) +V(z+ flz, u)At)) : 4.5)

ueU

The first term in the sum represents the remaining reward that can be obtained if the episode
terminates immediately after one step, whereas the second term shows the rewards that can be
accrued if the episode were to continue. An analogous interpretation in the problem of minimum
payoff over time can be achieved by modifying (4.4) to account for such a transition. Here if,
with probability 1 — v, an episode were to end after the current time step, the minimum future /(")
would be equal to the current /(). This induces the discrete-time discounted dynamic programming
equation

V(z) = (1—-7)l(z) + ymin {Z(I),%lgzj(‘/(l‘ + f(:v,u)At)} : (4.6)

This equation yields a strictly tighter contraction mapping than the recent analysis in [2]. By
discounting locally towards the current [(x), rather than towards a global upper bound L on [, we
significantly reduce the amount of information loss due to discounting. This is shown in at the end
of this chapter.

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 33

Letting [; be the value of [achieved by a discrete-time state trajectory &' at the i-th time step,
the explicit form of the objective maximized in is a “time-discounted” minimum:

J(E8) = (1= 7)lo + 7| min {lo, (1 = 7+ (.7

y(min{ly, (1 —)l + ..)}] .
We prove two key properties of our proposed equation.

Theorem 1. (Contraction mapping) The discounted Safety Bellman Equation (4.6) induces a con-
traction mapping under the supremum norm. That is, let V.V : X — R, then there exists a constant
k € [0,1) such that || BlV] — BlV]|leo < K|V = V|-

Proof. Tt will suffice to show that for all states € X, |B[V](z) — B[V](z)| < &||V = V||s0. We
have:

|BIV](z) — BIV](z)|
=v|min{l(x), max V(z+ flz,u)At)}
— min{l(x), maxV(:E—l—f z, W)AL) }|
Sylrggd{‘/(x—i-f(x,u)At) — max (x+f(x,ﬂ)At)| .

Now, without loss of generality suppose the first maximum is the larger one, and let u* € U/ achieve
it. We continue:

|B[V](z) — B[V](z)|
<V (2 + fla,u)At) = V(2 + flz,u")At)|
<ymax|V(z + f(z,u)At) = V(2 + f(z,u)At)]

<ysup V(%) = V(@) =7V = V| -

Thus the sought contraction constant is in fact y € [0,1). O

Proposition 2. (Value approximation) In the limit of no discounting, the fixed-point solution to the
Safety Bellman Equation (.6)) converges to the undiscounted safety value function.

Proof. Taking the limit of the optimization of (4.7) as y goes to 1 we recover:

lim V(z) = max min {lo, li,lg, ... } ,

ry—>1 uo:7

which solves (4.4) and is equivalent to the discrete-time approximation of (2.47)). [

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 34

The above two theoretical results enable the use of reinforcement learning techniques for safety
analysis. We end this section with an important consequence of Theorem I}

Theorem 2. (Convergence of Safety Q-learning) Let X C X and U C U be finite discretizations of
the state and action spaces, and let £ : X x U — X be a discrete transition function approximating
the system dynamics. The Q-learning scheme applied to the discounted safety problem and executed
on the above discretization converges, with probability 1, to the optimal state-action safety value
function

Q(x,u) := (1 —v)Il(x) + v min {l(x), E}S%{Q(f(x, u), u’)})

in the limit of infinite exploration time and given partly-random episode initialization and learning
policy with full support over X and U respectively. Concretely, learning is carried out by the update
rule:

Quia (5:1) = Qulxw) + e | (1 = 7)I(3)+
~ min {l(x),max@(f(x, u), u’)} — Qr(x, u)} ,

uwelu

for learning rate oy, (x,) satisfying
Zak(x,u) =00 Zai(x,u) < o0,
k k

forallx € X,u e U.

Proof. Our proof follows from the general proof of Q-learning convergence for finite-state, finite-
action Markov decision processes presented in [91]]. Our transition dynamics f, initialization and
policy randomization, and learning rate o, satisfy Assumptions 1, 2, and 3 in [91] in the standard
way. The only critical difference in the proof is the contraction mapping, which we obtain under the
supremum norm by Theorem [I} with this, Assumption 5 in [91] is met, granting convergence of
Q-learning by Theorem 3 in [91]]. [

We stress that, beyond Q-learning, the contraction-mapping property of our discounted safety
backup opens the door to straightforward application of a wide variety of reinforcement learning
schemes to safety analysis. We dedicate the following section to a first demonstration in which we
explore the application of canonical reinforcement learning algorithms in the two main families:
value learning and policy optimization.

4.4 Results

We present the results of implementing our proposed discounted Safety Bellman Equation in
multiple reinforcement learning schemes: tabular Q-learning [93]], deep Q-learning (DQN) [64],

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 35

A

Figure 4.2: Safe sets learned by tabular (left) and deep Q-learning (right) with the discounted Safety Bellman Equation
compared to the analytic set (black).

REINFORCE [95]], and soft actor-critic (SAC) [36]], and four different dynamical systems. We
first validate the computed safety value function and safe set against analytically and numerically
obtained ground-truth references in traditionally tractable systems. We consider two dynamical
systems commonly used as benchmarks in control theory, namely a 2-D double-integrator system
and a 4-D cart-pole system. We then demonstrate the scalability and usefulness of our formulation
in higher-dimensional nonlinear systems, for which exact safety analysis is generally considered
intractable. We use simulation environments common in reinforcement learning [13]], namely a 6-D
lunar lander system and an 18-D “half-cheetah” system.

Validation: comparison to ground truth
Analytic validation: double integrator

The double integrator is a classic reachability example where the control policy seeks to keep the
system in the set {[z,v] € R? : & € [Tuin, Tmax] } With the dynamics characterized by:

rT=v, UV=1u, 4.8)

with |u] < wupmax, Where can be seen as position, v as velocity, and u as an acceleration input.
Analytically, the safe set is characterized by the interior of the boundary defined by the parabolic
segments

Llow + 252, v S 0
e 4.9)

Thigh — 7, — v =0

and the boundaries x = Ty, T = Tnigh. Although simple, this example proves a useful context for
visualizing the effect of v, since the entire value function can be represented in two dimensions.

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 36

It can be seen in Fig. .1 how as +y is annealed the time horizon of safety is effectively extended:
for lower values the value function resembles [(-), and for higher values it approaches the undis-
counted value function. Final accuracy and in-training performance are shown in Fig. 4.3 and
Fig. B.4

Using tabular Q-learning with [(-) as the signed Euclidean distance to the boundary of the
constraint set and annealing v to 1 similar to [70], we observe convergence to the safe set up to
the resolution of the grid. Independently training 100 deep Q-networks [64] with fully-connected
layers using our discounted Safety Bellman Equation we find near-convergence to the safe set
with an average 2.26 x 10~° (minimum 0, maximum 1.27 x 10~%) fraction of points incorrectly
characterized as safe and an average 1.76 x 10~% (minimum 3.26 x 10~°, maximum 3.31 x 107%)
of points falsely characterized as unsafe. Classification is visualized in Fig.

’g Double integrator Cart-pole Lunar lander
®

7 ‘
2 g |
w 0 ,
e 0 0 :
g |
i | 3
2 0 0 0
=~

o

True value (rollout)

Figure 4.3: Predicted vs. achieved minimum signed distance to violations for 106 simulated rollouts with 100 trained
networks. Red line indicates identity.

" Double integrator Cart—pole Lunar lander

=

o 1 8

£ L | % e :

S e

B T L; P

S c o

5 L1 1] I

o 033 & %%%%%%%’%ﬁ% 034 fromeefreeeeeefenial ;iiii 8

S JTTTTT \figiélii%l

3} T = T T T =T T

g 0

i 0 106 0 2x106 0 3x106
Gradient updates

Figure 4.4: Fraction of initial conditions resulting in violations as training proceeds. Each data point is a sample average
from 1000 episodes; statistics are taken over 100 independent training runs. As learning progresses, the fraction of
violations reliably decreases, approaching the ground-truth fraction of unsafe states (from which violation is inevitable)
for the double integrator and cart-pole. Lunar lander ground truth is unknown.

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 37

Numerical validation: cart-pole

The cart-pole system (inverted pendulum) is a classic control problem and one ripe for safety
analysis. A cart moving on a one-dimensional track is attached by a pivot to a pole. The control
policy seeks to keep the pole from falling and to keep the cart from the edge of the track by applying
accelerations to the cart. For this system, the ground truth safe set must be computed numerically on
a grid using dynamic programming [62]. Over 100 random seeds we find that an average 5.16 x 10~°
(minimum 4.90 x 107%, maximum 2.56 x 10~%) fraction of points are misclassified as safe and
an average fraction 5.80 x 10~ (minimum 4.24 x 10~%, maximum 8.4 x 10~%) fraction of points
are misclassified as unsafe, relative to the numerically approximated ground truth. In reality, the
precision of the numerical ground truth is limited by the grid resolution; thus, if we consider any
points less than one full grid cell away from a safe grid point to be safe, we find that only an average
1.47 x 1075 (minimum 0, maximum 4.54 x 10~°) fraction of points are misclassified as safe by our

method (Figs. @.3|and 4.4).

Scalability: safety for high dimensional systems

The two examples we have shown thus far help us validate our approach against well-established
safety analysis tools. However, a motivating factor of this work is to enable safety analysis for
systems that are too high-dimensional for traditional approaches. In this section we will explore
how our method fares in two high-dimensional systems from the OpenAl Gym environment
collection [[13]].

Temporal difference: lunar lander

We first consider a lunar lander system with 6 states s = [z,y,0, %, 7, 9] (vehicle pose and ve-
locities). The signed distance safety function is defined as I(s) = max{lgy(s), liana(s)}, With
lﬂY(S) = IIlIIl{LE B xﬁin? x%ax &,y — yﬁina yrqul)ax - y}’ and llaﬂd(5> :min{x_xiim xﬁlax_QJ? e_emin’
Omax — 0> U— Umin }- Terms marked with superscript w indicate viewing window limits, and terms
marked with superscript p indicate landing pad limits. The margin [(+) is thus constructed to allow
either flying in free space or landing on the pad; this example illustrates the ability to encode
arbitrary state constraints through a signed distance function.

We train 100 Safety DQNs with different random seeds and compare learned values against
the observed safety by performing on-policy rollouts in simulation (Fig. 4.3)). Since computing
the safety value function through dynamic programming is intractable on 6-dimensional systems,
there is no known ground truth to compare against (Fig. #.4). While the learned Q-value function
may be suboptimal, it does give accurate safety predictions for its induced best-effort policy. We
present z-y slices of a sample trained value function in Fig. @.5] where the learned safety structure
can be seen.

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 38

vy = —1 vy =0 v =1
/w—’_“
\hﬁ S . <
N — — e e T R

o [

\
(

Figure 4.5: Slices of the learned lunar lander value function overlaid on the image of the viewing window for § = 0
and 6 = 0. Computed safe set boundary in black. At low speeds, the values near the ground are higher close to the
landing pad, revealing the effect of [},,q. For large downward velocities, ground collision is inevitable from the lower
half of the screen.

Policy optimization: half-cheetah

Many successful modern reinforcement learning methods use neural networks to directly represent
control policies and search for efficient strategies. A number of policy gradient algorithms derive
their policy update from the REINFORCE rule [95]]:

VoBerr,[J(€)] = Benr, [V log(pr, (€))J(E)] (4.10)

with p, () denoting the probability of taking a trajectory £ under the stochastic policy 7y parametrized
by 6, and J(-) denoting the outcome of £. Taking J(-) to represent the time-discounted minimum
payoff [(-) of the trajectory as in (4.7)), we can directly optimize a policy for discounted safety.

We consider an 18-dimensional half-cheetah system within the MuJoCo physics simulator [90],
and define [(-) to be the minimum height of the head and the front leg, so that a failure occurs if
either touches the ground (Fig. 4.6). Note that we must (at least in part) initialize trajectories at
configurations from which the system could in principle maintain safety. Running policy gradient
using REINFORCEE, all policies trained for discounted safety attempt to balance, though not always
successfully, and some learn to sit. In contrast, policies trained with the standard reinforcement
learning formulation using {(-) as an additive reward tend to raise the front leg and sometimes jump,
and invariably fall over. Defining an alternative reward that purely penalizes forbidden contacts
similarly failed to yield safe learned behaviors.

Using the more sophisticated soft actor-critic (SAC) algorithm [36] we find that after hyper-
parameter optimization, all policies trained across 20 random seeds using a discounted sum of [(+)
launch the cheetah into the air and always fall over. Using a discounted sum of contact penalties,

CHAPTER 4. REACHABILITY ANALYSIS AND REINFORCEMENT LEARNING 39

O
0O

Initial conditions ~ Unsafe jumping Safe sitting Safe standing

Figure 4.6: Learned half-cheetah safety policies aimed to keep the head and front leg off the ground. Left to right:
typical starting configuration; an unsafe jumping policy learned using a sum of discounted heights; a safe sitting policy
learned using discounted safety or (less reliably) discounted sum of contact penalties; a safe standing policy learned
using discounted safety.

65% of policies do learn to sit; however, the remaining 35% produce unsafe jumping behavior. We
speculate that the sparsity of the reward signal makes learning challenging. Across the 20 random
seeds, all policies trained with discounted safety visibly attempt to stand: 80% of them succeed in
doing so reliably, with an additional 5% reliably sitting if standing fails. The different emergent
policies are depicted in Fig.

4.5 Chapter Summary

In this chapter we have presented a learning based approach to reachability problems. We showed
that the optimality condition for the infinite time value function can be modified to incorporate
a discount factor and yield an update rule which is a contraction mapping. Using this fact, we
are able to modify several reinforcement learning algorithms, such as tabular Q-learning, DQN,
REINFORCE and SAC, in order to learn the optimal value function or control policy for the
reachability problem. We test these modified algorithms in a variety of low-dimensional and
high-dimensional robotic tasks. Our results show promise in scaling reachability tools to higher
dimensional systems.

Part 11

Assured Autonomy for Learning-Enabled
Systems

40

41

Chapter 5

Background and Preliminaries

In this chapter we provide an introduction to feedforward rectifier linear unit (ReLLU) neural net-
works, or (feedforward) ReLU networks for short, which are a type of function approximator widely
used in machine learning. We highlight some of the challenges associated with the deployment of
these approximators in the real world, and formalize some of the problems in guaranteeing their
behavior.

5.1 Neural Networks, Performance Guarantees and Safety

Neural networks have become ubiquitous in many engineering applications, particularly in domains
relating to vision [50], speech recognition [34} 46], reinforcement learning [85, |65]] and control [94]].
While many of these applications are used in contexts where safety is of little concern, practitioners
are increasingly employing them in safety-critical domains such as self-driving cars [|11]], health-
care [[73]] or the power-grid [87], where performance guarantees are a requirement. This can be
particularly concerning when taking into account adversarial attacks on neural networks [4, 58],
which show how brittle some of these systems can be in practice.

Providing guarantees of performance for neural networks is computationally hard. It can
been shown that the verification problem (which will be described in the next sections) is NP-
Complete [43],[86]]. Despite this fact, it is possible to find approximate solutions to certain problems
in polynomial time [99} 100]. In general, the stronger a desired guarantee is, the more computation-
ally challenging the problem becomes.

It is important to point out that the use of neural networks happens in several stages: first, the
neural network must be trained using an appropriate learning algorithm and data, and, then, once
training is completed, it can be deployed in the real world. Paradigms for ensuring performance
guarantees exist during training [81, 51} |54]], while the parameters of the network are being updated,
and during deployment, once the parameters of the network have been ﬁxe In this dissertation we
will be concerned with the latter type of performance guarantees and will forego delving into the

'The dichotomy between training and deployment is also known as training vs. inference.

CHAPTER 5. BACKGROUND AND PRELIMINARIES 42

details of how (robust) training is accomplished for neural networks. For further information on
neural network training we direct the reader to [22].

5.2 Feedforward ReLU Networks

A feedforward ReLU network is a parameterized function fp(x) defined as

22‘4_1 :I/szﬁ—b“ fori = 1,,K—1

5.1
z; =max{z;,0}, forj =2,.., K -1, -1

with W; € R™M+1xmi h € R"+1 2y = x € B and fy(x) = Zx. We define the input set B to be a
bounded convex set in R™, and, similarly, we also define the output set S, to be a convex set or a
union of convex sets in R"%. The set § = {W;,b;},—1__x_1 represents the set of parameters of the
network.

From the definition of Equation (5.1)), it is clear that ReLU networks are piece-wise affine
functions. This follows from the fact that any composition of an affine function (i.e. linear function
plus a bias term) and a piece-wise affine function results in a piece-wise affine function. An
important aspect that will come into play in later sections, is that the domain is partitioned into
polytopic regions P; such that | J, P; = R"™. For a closer look at the properties of ReLU networks,
including the partition of the domain into polytopic regions, we direct the reader to [67, 84, [77].

5.3 The Verification Problem

In this section we introduce the verification problem for neural networks. This problem is very
general in its formulation: it takes in an input set 3 and a (ReLU) neural network fj(z), and tries to
predict how these interact with a set S in the output space. The ambiguity of what the input set B
and output set S represent is deliberate since neural networks can be used in a variety of contexts
where the inputs and outputs can also vary. For example, for advisory-type neural networks in
collision avoidance, the input space can represent the set of relative states between two vehicles,
and the output space can represent the probability of collision. In this context, B could represent a
set of configurations between vehicles and & some interval of probabilities. If the neural network
is used for digit recognition in images (i.e. [0, 1, ..., 9]), the input space would be the set of pixel
images, and the output would correspond to a 10-dimensional vector of probabilities which sum up
to one. In this case, B could represent a “volume” of noisy images around some nominal image,
and S a half-space denoting the outputs whose inputs are more likely to resemble O than 1.

Verification Problem

Given a feedforward neural network fj(x), an input set 3 and an output set S, the solution to the
verification problem returns whether the proposition

Vo € B, folz) ¢ S (5.2)

CHAPTER 5. BACKGROUND AND PRELIMINARIES 43

is true or false. In other words, it seeks an answer to the question: does the mapping of the input
set BB through the neural network intersect with the output set S? In most settings, the input set is
taken to be a fixed hyperrectangle, norm ball or polytope in the input space, while the output set is a
polytope or union of polytopes.

5.4 Connections between Reachability and Neural Network
Verification

In Ch. [2] we introduced the topic of reachability theory for dynamical systems. Reachability is
also intimately tied to verification. If we view BB and S, as the constraint set C and failure set F
introduced in Sec. respectively, can be viewed as a discrete time reachability problem with
time horizon 7" = 1, where the dynamics evolve autonomously as follows:

Ti41 = fe(xt)- (5.3)

Let us define the avoid set as
A={z, e R" |z, € K N folxy) & F} , (5.4)

which is the set of states starting at C such that in one step they do not enter into F. We would like
to know whether A = IC, that is, whether all states in the constraint set remain “safe”. Note that fj
is a piece-wise affine function as per Sec. which means that the domain of fjy is partitioned into
convex polytopic regions P;:

i1 = fo(zy) = Foy + fi if Ay < b, (5.5)

where F;, A; € R™"*™ | f, b, € R™, and the index i enumerates each polytopic region. In light of
this, solving the reachability (or verification) problem can be addressed by (a) subdividing the con-
straint set KC (B) into its polytopic subcomponentﬂ (b) propagating each polytopic subcomponent
with its corresponding affine transform (53.5]) and (c) checking that each mapped subcomponent does
not intersect with F (S) . Checking for intersection is a convex problem which can be efficiently
solved. Note that the same geometrical reasoning also holds when y = fy(x), and x and y do not
belong in the same vector space. Figure [5.1] shows what the exact computation of the reachable set
looks like.

Unfortunately, even for single layer ReLLU networks, this approach cannot scale for large input
spaces. The underlying reason being the polytopic subdivision of the domain of fy, which is caused
by the ReLU nonlinearity ¢(z) = max{z, 0} which can be equivalently expressed as a matrix

vector product
o(z) =Dz, (5.6)

where D;; = 1if (z; > 0 A i = j) is true, and O otherwise. If we let 2,1 = ¢(x;) and pick
B=K={r € R"|||zt|]|l« <~} forany vy > 0, the number of polytopic subcomponents of K

2Here we assume that the constraint set is convex.

CHAPTER 5. BACKGROUND AND PRELIMINARIES 44

Input Space Output Space

B fo(B)

Figure 5.1: Exact computation of the reachable set of the ReLLU network. Different colors correspond to different
polytopic regions and their corresponding mapping into the output space. Each polytopic region is governed by a
different affine transform.

that need to be propagated will be 2™. In other words, the number of polytopic regions grows at
least exponentially with input dimension, which hinders the scalability of this type of approach.
Furthermore, since the number of regions also depends on the number of layers of the neural
network, this problem can also arise in small dimensional input spaces.

In the same spirit as approximate reachability for non-linear systems, which foregoes exactness
of the reachable sets with over- or under-approximations in the form of polytopes or ellipsoids, in
the next chapter we present over-approximation methodologies for neural network verification with
better scaling properties.

5.5 Related Work

Starting with the works from [40, 43|, the authors use Satisfiability Modulo Theory (SMT) solvers
to answer Equation (5.2) for ReLU networks and, more generally, networks containing piece-wise
linear activations. In their approaches, an answer is reached by leveraging the finite set of possible
activations induced by the network’s non-linearities. A similar reasoning is found in [56, 89] using
Mixed Integer Linear Programming (MILP) solvers. Other approaches inspired by reachability
include the work from [97]], where the structure of the domain induced by the ReLLU non-linearities
is exploited to compute the exact set of possible outputs in a similar way to the approach described
in Sec. [5.4] In contrast, in [96] the set of possible outputs is approximated by gridding the input set.

Of particular interest for the next chapter are the works of [27]] and [47]. In [27], they introduce
a novel convex relaxation of the ReLU non-linearity in order to render the problem easier to solve
for the SMT solver. In [47], the authors used this relaxation and duality to compute rapid over-
approximations of the set of possible outputs for the network. In [78]] they expand on this duality
approach. A new interesting direction which does not rely on SMT or MILP solvers was presented

CHAPTER 5. BACKGROUND AND PRELIMINARIES 45

by [92]. In this work, a divide and conquer approach was used to repeatedly partition the input set
into smaller sub-domains and check the property individually for each partition. Other works which
exploit similar over-approximation techniques can be found in [14, 57,99, 100]].

In the next chapter, we build upon the input-splitting technique from [92]]. We experimentally
show that splits based on input-output gradient metrics are generally inefficient. We provide a new
methodology that substantially reduces the number of splits and the runtime required to verify a
network for a given input set.

5.6 Chapter Summary

In this chapter we have provided an overview of feedforward ReLU networks and introduced the
verification problem. When then discussed one approach for computing the exact mapping of B
through the network, and saw that it also suffers from the curse of dimensionality. Finally, we
presented some of the related work in the field of neural network verification.

46

Chapter 6

Shadow Price Verification

This chapter is based on the paper “Fast Neural Network Verification via Shadow Prices” [50],
written in collaboration with Roberto Calandra, Dusan Stipanovic, and Claire Tomlin.

In Ch. [5] we introduced the verification problem for ReLU networks and saw that computing
the exact mapping of the input set 53 through the network in order to verify its intersection with the
output set S was too computationally expensive. In this chapter we first present an approach which
over-approximates the image of B through the ReLU network (which we denote as fy(13)). Then,
using this over-approximation technique we present a splitting heuristic and an iterative algorithm
which are able to solve the verification problem efficiently. Finally, we introduce a variant of the
algorithm which is substantially faster.

6.1 Over-Approximating the Image

In general, the image of input set B through a feedforward neural network is not convex (see
Fig. [5.1I). The non-convexity arises from the non-linearities introduced by the ReLU activation
function ¢(z) := max{z, 0} at every layer. In order to over-approximate the image of B, fy(B), it
is convenient to rewrite as a recursive set definition:

~

Zip1 = {Wizi + b | 2 € proj,, (Zi)} fori=1,..,.K—1 6.1)
Zi = {15, 5] €R*™ | z; = (), % € Z;} forj=2,..,K—1 (6.2)
Z,:={[0,2] e R* | 2/ € B}, (6.3)

where proj,, (+) is the projection operator of its argument onto its last n dimensions. For an appro-
priate selection of a predicate g(-, -) (discussed in the next section), we can instead replace
with

Zi={lz;, 5" €R™ | g(2,%), % € Z2;} forj=2,.., K —1, (6.4)

in a way which ensures that we have Z’j D Z;, and consequently, Zi D fo(B). That is, if we
choose the predicate appropriately, we obtain a convex over-approximation of the image fp(B).

CHAPTER 6. SHADOW PRICE VERIFICATION 47

B Convex

Input . .~ Output

Figure 6.1: Example of a convex over-approximation of the image of B.

“j+1 Zj+1

v
>

| ; ;
Lk I Ljik

Figure 6.2: (Left) Bounded output of a ReLU node. (Right) Convex envelope for the triangle relaxation.

Figure shows a generic convex over-approximation of the image. Since Z is generally a
polytope, we will instead denote the over-approximation as Pg, that is, Pg = Z .

Triangle Relaxation

The first type of predicate we will introduce produces the tightest over-approximation of the image,
which is known as the triangle relaxation as shown in Fig. The predicate for this type of
relaxation is the following:

9(z1.%) = NEiw =20 A zpg = Zm Az < dijg(Zp — Lwg))- (6.5)
k

where (-)y) denotes the k-th element of a vector, d;j = u_[:ﬁ]_[k], where I;5) and u;p are lower
J J

and upper bounds for Z; respectively (i.e. [< Zj < ujk). To ease the notation, we simply
state that any positive lower bound or negative upper bound is set to zero. From (5.1)), the recursive

CHAPTER 6. SHADOW PRICE VERIFICATION 48

relation given by this predicate can be equivalently written as

Ziyn =Wz +b;, fori=1,... . K —1
2j =0, forj=2 ., K-1

2j = Zj,

zj 2 D;(% — 1)

(6.6)

Here, the matrix D); is diagonal, so that D; = diag(d;).
Computing the lower and upper bounds /;;; and w; for this relaxation can be accomplished in
a layer-by-layer fashion by solving linear programs (LPs) from 7 = 1 to K — 2 of the form

?

IA

g = min (Wggproj,, (2) +bju) st Az
: (6.7)

!

N\
DN

i) = max (W ik 1proj,, (2) + by A

where Wj;. 1 denotes the k-th row of W;. The constraints fl and 5 represent a polytope in a
n;-dimensional space, where n; = Z ;—; "u. This polytope grows in dimension as a result of taking
into consideration more and more upper and lower bounds from earlier layers.

The constraint set given by Ay and by is provided as part of the verification problem. Together,
they represent the input set B := {z | Az < bl} which we assume to be a box in R"!. The
expressions for A and b; for the j-th (j > 2) layer are given by the following recursion,

- 0 —I

2 Rio D W T (6.8)
- be
= [P L~ L Dyt)"

5

where O;_ is a matrix of zeros whose number of columns is equal to k 1 ny. Note how the
dimensionality of the constraints given by AJ and bj increases as we try to compute upper and lower
bounds for deeper layers. These expressions can be derived from the inequalities provided in (6.6)
in conjunction with (6.7)). For clarity, we provide the expressions for Ay.s and by

CHAPTER 6. SHADOW PRICE VERIFICATION 49

Al 0 b1
: 0 —I| ; 0
A=y)b —by ’
DWW, T Dy (by — 1)
A, 0 0] [b]
0 - 0 0 (6.9)
) W, -1 0| _ —by
Ay = |-D,W; I 0 |,by=|Dy(by—1)
0 0 I 0
0 W, -1 —b,
0 DWW, I | Dy(by — 1) |

Note that to generate Aj and bs, first we have to solve a series of LPs using the constraints given by
Ag and b,. This approach builds an increasingly large dimensional polytope whose projection onto
the output space over-approximates the image of fy(3). Namely,

fe(B) C Pp:= {WK—lprOjnK_l(z) +br_1 | AK—QZ < BK—2}~ (6.10)
L |2
i

\\\
N

Pg

Input Space Output Space
Figure 6.3: The growth in the number of constraints across the layers of a neural network encodes a high-dimensional
polytope whose projection over-approximates the image.

In Fig. [6.3] we provide a depiction of how the growing number of constraints represents a
high-dimensional polytope whose projection over-approximates the image.

CHAPTER 6. SHADOW PRICE VERIFICATION 50

6.2 Overview of Verification via Input-Splits

One of the useful features of this bounded convex over-approximation is that it provides sufficient
conditions to check for intersection with the output set S. From Fig. [6.1] if the intersection of the
over-approximation with S is empty, then so is the intersection of the image and S:

PsNS=0 = f(B)NS=10 (6.11)

On the other hand, the inverse of this statement is generally not true. However, if the intersection
is non-empty, we can subdivide the set B3 into smaller partitions and use (6.11)) on each partition
separately. The next section describes this idea in detail.

Recursively Splitting Sets

In Sec. we explained how to build a convex over-approximation of the image fp(5) in a
layer-by-layer basis. Note, that for any split of the input set into two subsets 3; and 55 such that
By U By, = B, the associated over-approximations P, and Pg, will have that

Pr, UPp, C Pg. (6.12)

This follows from the fact that splitting the input set reduces all the feasible regions for the LPs in
(6.7), which results in greater lower bounds or smaller upper bounds in the computation of Py, and
Ps,.

Splitting the input set I3 is particularly useful for verification since it breaks the problem into
two sub-problems. Specifically, and without loss of generality, one of three things may happen:

1. The intersection is empty for both Pg, and Pg,, and thus the image fy(B) does not intersect
with S.

2. The intersection is non-empty for Py, but empty for Pg,, in which case B; can be discarded
from the verification problem, but 3; must be kept for further analysis.

3. Finally, both Pg, and Pg, intersect with S. B; and B, must be kept for further analysis.

Given these outcomes, a natural algorithm arises for the verification of the property of interest;
starting with 3, we compute the convex over-approximation Pg. If the intersection with S is empty
for Pg, the intersection is empty for the image as well and we are done. Otherwise, we can split
B in two halves B; and B,, and compute Pg, and Pg,. Given the list of possible outcomes, the
algorithm will either: end with the property being false, be able to discard one of the halves, or, in
the worst case, keep both B, and B, for further analysis. This procedure induces a growing binary
tree whose nodes represent smaller and smaller bisections of the input set 5.

Algorithm 2| provides the aforementioned procedure for verifying whether fy(53) intersects
with S, which as previously stated we assume to be a union of a finite number convex sets. This
assumption is required so that in Line |3| the intersection check can be done efficiently via convex

CHAPTER 6. SHADOW PRICE VERIFICATION 51

Algorithm 2: Recursive Splitting (Depth First Search)
1 Verification(S, B, 0)

2 Pp < ConvexOverApprox (B, 0)

3 If Ps NS = () then >Intersection is empty.
4 Return False

5 Else >Intersection is not empty.
6 If IsExact(P) then >Check over-approximation is tight.
7 Return True

8 By, By < Split(B) >Bisect the set.
9 Return Verification(S, By, 0) V Verification(S, Bz, 0)

Input /
Output

Figure 6.4: Visual progression (from left to right) of Alg. [2| The yellow set with the exclamation symbol represents the
set S. In this instance, the intersection of the image with output set is empty. In the bottom row, over-approximations
with empty intersections are grayed out.

optimization packages. When the intersection is non-empty, Line [6] checks whether the over-
approximation is tight/exact or not. If it is exact, it must be true that fy(B) intersects with S. If it is
not, in line [§] we split the set into two halves and attempt to solve the verification problem for each
half separately. The next sections describe the auxiliary functions “IsExact” and “Split” in lines [6]
and 8| Figure shows pictorially what the progression of the algorithm looks like.

CHAPTER 6. SHADOW PRICE VERIFICATION 52

Ps Ps

By
____________ P, Py

Figure 6.5: The choice of axis along which the set B is split may affect the verification time. In this example, a vertical
split (orange) results in two over-approximations, one of which still intersects with S, whereas the horizontal split (blue)
results in tighter over-approximations.

Over-approximation and Image Equivalence

In the previous section we hinted at the fact that some instances of Py can be tight or exact, that is
Ps = fo(B). From Sec. we know that a ReLU network sub-divides the domain into convex
polytopes P;, and that within each polytope the input-output relation is affine, i.e. it is a piece-wise
affine function. Then the following must hold:

1.) BCP, — Ujik] < 0 or 0L lj[k] Vi, k

2.)BC P, = Ps= fo(B) (6.13)

The first line in follows from the fact that the boundaries of the polytopes P; arise from
the discontinuity of the non-linear activations max{z, 0}. The second line follows from the first
one: if [;, < wjp < 0or0 <1 < wujy forall j and £, then the relaxations of the ReL U activations
will be exact and fy(B) is just an affine transformation of B.

Splitting Criterion

From Algorithm [2| a natural question arises: what is considered to be a “good” split of the input
set? While simply stated, this question is far from trivial. Picking appropriate splits has important
consequences regarding the time and memory efficiency of input-splitting verification algorithms.
In Fig. [6.5] an example is provided showcasing this phenomenon. The horizontal split results in an
over-approximation that guarantees that the image of 13 does not intersect with S. In contrast, the
vertical split results in an over-approximation that still intersects S.

To the best of our knowledge, current input-splitting methods [92]] use gradient information
between inputs and outputs to decide which axis to split. We will denote this heuristic as the
input-output gradient heuristic. These methods leverage the structure of the Jacobian of the ReLU
network to compute bounds on the gradient between inputs and outputs. In particular, note that for

CHAPTER 6. SHADOW PRICE VERIFICATION 53

any point in the domain, the Jacobian for a ReLU network can always be written as

K—-2
J =Wy, H ¥, Wi (6.14)

=1

for 3; = diag(v;) and the Boolean vector v; € {0, 1}"+!. Starting from ¢ = K — 1 going backwards
to ¢ = 1, these methods select appropriate values of v; to compute upper bounds for | |dJ;’T(:) oo < Uk
for k = 1,...,n;. Using the side lengths Ax; of the box, B is split in half across the axis with
greatest smear value s, = UpAx,. Geometrically, this mechanism tries to reduce in half the box
along the axis that causes most “stretching” for any of the outputs. This reasoning, however, can
be counterproductive when considering which splits to make. In particular, the upper bound might
be very loose in practice, and even in cases where U can be achieved, it may be the case that the
polytopic region that achieves this upper bound is very small.

Fundamentally, the over-approximation is caused by the convex relaxations of the ReL.U non-
linearities, therefore, we posit that an effective splitting procedure should leverage the information
of the relaxed nodes (i.e. nodes for which the convex relaxation is not exact) rather than using
bounds on the gradients between input and outputs. In the next sections we investigate how to
estimate changes in the upper and lower bounds of any given node given a specific split in 5.

6.3 Shadow Prices and Bound Rates

We now study the sensitivity of the lower and upper bounds for a relaxed ReLLU node with respect
to changes in the shape of the input box. To that end, we introduce some useful properties of linear
programs and relate them to our problem at hand.

Measuring Constraint Sensitivity

For a linear program with non-empty feasible region the following holds

Y= i = * * 1 \T y*
= s.tm,igjb wz = wz 4 (AZ"=b)"A (6.15)
D= > — ¥ o =k \T Y *
pr=max wz = wZ+(-AZ)N, (6.16)

where z* and z* correspond to the primal’s maximizer/minimizer and * = 0 and * >= 0 correspond
to the dual’s minimizer/maximizer. This result follows from strong duality and complementary
slackness [[12]. A useful feature of the right-hand sides of (6.I5) is that they link how small
perturbations of the constraint parameters (A and b) affect the optimal values p* and p*. In the field
of economics, the rate of increase/decrease of the optimal value with respect to a certain constraint
is known as the shadow price. In some instances the shadow prices are the optimal dual variables.

From (6.13)), we can readily study how small changes in the size of the input box affect the
upper and lower bounds of all nodes in the first layer of the network. In particular, it follows that for

CHAPTER 6. SHADOW PRICE VERIFICATION 54

the k-th node in the first layer and the i-th bias of our constraint set,

dlyjgy .

Ty Ak o A (6.17)
This result is expected, since the growth of bias terms results in a bigger box and, thus, in smaller
lower bounds and bigger upper bounds. A nice feature of most modern LP solvers is that they
provide the associated optimal dual variables when solving the primal problem. These rates can
therefore be computed without any noticeable computational overhead when generating the convex
over-approximations.

% dul[;ﬂ -

Forward Computation of the Bound Rates

With the definitions for flj and Ej available from the end of Sec. and (6.13), we can proceed
to compute the rates of the upper and lower bounds with respect to the bias terms of our input
box. Denoting ()}, /_\] 1) and (2} ,, 77,) as the set of primal and dual optimal variables for the
maximization and minimization problems from (6.7)), we have that

dl (k] d (NT d
2 = — bi \;) (A 25)AL)
dbl[l] dbl[l] J 25k dbl[z] ([k]) 25k

L (57 %) + ? ((Az)) -
dbp) dbl[] dbyp)

Before proceeding to drive the analytic expression of (6.18), it is worth noting that changes in the
bias terms of the input box EL: only affect (through the computation of the upper and lower bounds)
a subset of the entries of flj and Z~)j. In particular, given R;.;_; and ry.;_; defined in (6.8), only
entries containing dependencies with D;.;_; and [;.;_; will contribute to the gradient expression in
(6.18). Hence, focusing our attention to the first term, for any vector A

~d (Z)T)\) = ~d BT/\() +]z_i TT)\l
by 7 d ' :

(6.18)

bufi =
j_l d
= Aop + 7 (Di(be — ll»T)‘i
1=1 %YL[] (6.19)
o+]Zi i d wpbyg — wgli N .
— dbyy g — gy I
Jj—1 ny
dU[[t dll[t
i+ A;
lzl ; (Yoy by > .

Ly (L —bupey) g by —wg)
(jiz[t] lig)? and ¢; = (=) . . o
and A respectively. The term by denotes entry ¢ of the bias term in layer /. From (6.19) it is clear

that the rates of the upper and lower bounds for layer ;7 depend on all the rates from previous layers.

where ¢; = and \;, \; correspond to a subset of the entries in),

CHAPTER 6. SHADOW PRICE VERIFICATION 55

Algorithm 3: Bound Estimation-based Splitting

1 Split(B, (1,u), (2%, A*), (2%, *))
2 Forj=1,...,. K —1do

3 Fork =1,...,n;do

4 ZZ”[’“] — LowerBoundRates(B (Lu), (25, 0%), (25, 2%)) (as per Sec. |6.3
1

5 —db . <+ UpperBoundRates(B, (I, u), (z*,\"), (z*, 5*)) (as per Sec. [6.3
1

6 i=1c=L(1)

7 Fork:2,...,n1 do

8 If L(k) < c then

9 c <+ L(k)

10 1<k

u - BB >Split in half through i-th axis.

12 BQ <— B\Bl

13 Return B, B,

The rates for the second term can be derived in a similar manner. For any vector z and A,

d -
——(A;2) "N = —((A120)" N0 + { }
B = (i) Z)
j—l d
=Y = (=DiWE)"y
= dbip (6.20)
j—1 ny .
. d (I/Vl[t,:]zl—l)ul[t]/\A
=1 =0 b W — by "
Izl . dly dult]
P 1[4] 1(4]
5 — b (wigzi-1) b — n(mzy)
where ¢ = (ur—lg)? 0 nd &, = (uig—lipg)?

Using (6.19) together with (6.20) we can compute expressions for (6.18)) in a forward manner
using the optimal primal and dual variables. That is, we have the rate of change of all the upper

bounds and lower bounds of each node in the network with respect to the bias terms of our input
box B.

6.4 Bound Estimation and Splitting

With the information provided in Sec. [6.3] we have means to estimate how the lower and upper
bounds of our convex relaxation change as a function of the biases of the input set. In particular,

CHAPTER 6. SHADOW PRICE VERIFICATION 56

node 1 ‘ node 1

B B P
S S

Figure 6.6: Choosing split based on predicted upper and lower bounds for each node.

splitting the box B in half can be viewed as translating one of its facets to the center. Since the
translation of any facet is achieved by reducing the associated bias term by a certain amount Ab, ,,
the estimated new lower and upper bounds for the resulting set B; C B will be

i
Bi 7.
Lt =~ L + == dbl[z] Ay
dujfk)
S Ay,
dby

6.21)
BZ ~

Using these estimates, we propose the following metric for determining which axis to split along:

K-2 nj

==Y > max{0,ulj} min{0, 15 }. (6.22)

=1 k=1

Whichever axis minimizes L(4) is chosen for splitting. The max/min terms in the sum ensure that
upper and lower bounds that start close to zero have less contribution in the overall splitting decision.
Note how the cost metric is only zero whenever all relaxations are tight. We summarize this splitting
procedure in Algorithm 3] Figure [6.6depicts what the splitting decision looks like based on the
predicted upper and lower bounds.

6.5 Limitations and Convex Relaxation Alternatives

Parallel Relaxation

In Sec. [6.1| we presented the triangle relaxation. As we saw, this type of relaxation yields the tightest
over-approximation possible. However, in order to generate it, it is necessary to solve LPs for every
single node in the neural network. While LP solvers are generally fast, neural networks can have
thousands of nodes. This limits the types of networks whose over-approximation can be computed

CHAPTER 6. SHADOW PRICE VERIFICATION 57

Figure 6.7: Alternate convex relaxations of the ReLU non-linearity.

using the triangle relaxation. Consider instead a relaxation like the one shown in Fig. whose
predicate is given by

9(25. %) = Nz = agmzin A ziw < diw (G — L)) - (6.23)
k
Unlike the triangle relaxation which is specified with two lower bounds and a single upper bound,
this type of relaxation is given by a single upper bound and a single lower bound. The term
;i € [0, 1] determines the slope of the lower bound. Again from (5.1)), the recursive relation given
by this predicate can be written as

2i+1 = szz+bza fori = 1,...,K— 1

6.24
Az 22, X Dj(z—1;), forj=2,..,K—1. (€29

The matrices D;, A; are diagonal, so D; = diag(d;) and A; = diag(«;) .

Unlike the trlangle relaxation, the fact that we use only one upper bound and one lower bound
allows us to compute an over-approximation of fp(53) without using LP solvers, which is much
faster in practice, but at the expense of an approximation that is less tight. For a given input set 5,
using predicate (6.23)), it can be shown that for any 2;,4,j = 1,..., K — 1 in (5.1) and z; € B, there
exist two affine functions f};,(z) and f{ (1) such that

M 21+ hL + tL]+1(21) = Ziy = fﬁrl(zl) = MjUzl + h]U + t]U, (6.25)
with M, M € R%>™ and hl, hY tF, ¢} € R". Denote for any real matrix M,

M|, =(M>006M
M| =(M<0)oM

to be the operators that return the positive and negative entries of their argument, where © is the
Hadamard (element-wise) product. For ¢ = {L, U}, the terms in have the relationship

J J
M¢ =S¢, hS = b+ Y K§,by 15 =" LS 4lks
. . | . 6.26
= Kjﬁka K;{k = (S;{k+1‘+Dk+l + S](',]k—‘,-l‘_Ak-i-l) L;{k = Sy[{kﬂLDkH ()
Si; =W,

ka - (S'Lk+1

s

L
+Ak+1 + Sk

Diya) = Siin

Dy

CHAPTER 6. SHADOW PRICE VERIFICATION 58

To see why relationships and hold, assume that for some layer we have all
preceding lower and upper bounds /; and u;, and preceding diagonal matrices D, and A;. Starting
from 2,1, = W;z; + b;, we can derive an upper bound in terms of z;_; by following these steps:

2]'_'_1 = VVij + bj (627)
2j+1 = VV] Zj + Wj Zj + bj (628)
+ —
Aj?:’j = Zj = Dj(éj — lj) — 2j+1 = Wj Dj(éj — lj) + Wj Ajﬁj + bj (629)
l’ —_
Ziv1 = (W +Dj +W;| Aj)z+b; —W; +Djlj (6.30)
2’j+1 j Kjfléj + bj - Ljfllj (631)
ZA’j = VVj_lzj_l + bj_l — 2]‘4_1 = Kj_1Wj_1Zj_1 + Kj_1bj_1 + bj — Lj—llj . (632)

In (6.28) we separate the weight matrix into its positive and negative components. In using
the convex relaxation from (6.24)), we can find an upper bound for Z;;; by multiplying the upper
bound with the positive component of the weight matrix, and the lower bound with the negative
component of the weight matrix. In (6.30) and (6.31)) we rearrange and relabel some terms. Finally,
in (6.32) we substitute Z; in terms of z;_;. Noting that the right-hand side of the last inequality
follows the same pattern as the right-hand side of (i.e. we have K;_;W;_, instead of IV},
and K;_1b;_1 + b; — L;_1l; instead of b;), we can repeat this entire procedure until we have Z;_,
bounded in terms of z;, obtaining (6.25) as a result. Lastly, deriving the lower bound for Z;; in
terms of z;_; follows the same procedure, with the exception that the terms multiplying W ‘ . and

W; | _ are reversed.

Computing the bound rates in (6.18)) follows the same progression as in Sec. [6.3] However,
the rates must be computed using the relations shown in (6.26)). For our experiments that we show
in the next section we assumed the lower bound’s slope to be the same as the upper bound’s, that
is ak) = djp for all j, k. This type of relaxation we will denote as parallel relaxation, which
corresponds to the middle plot in Fig.

6.6 Experiments

In this section, we present the experimental results obtained on a set of benchmark verification tasks.
As a baseline, we compare against the input-output gradient-based method discussed at the end of
Sec. The first half of the experiments are based on the triangle relaxation. The second half are
based on the parallel relaxation. In the last section we discuss the impact of the choice of relaxation.

Airborne Collision Avoidance System Verification

The ACAS benchmark verification task comprises a set of ten properties ¢;.1o to be checked on a
subset of 45 feedforward ReLU networks. All of the neural networks have the same architecture,
with 5 inputs, 5 outputs and 6 hidden layers with 50 neurons each. The five inputs represent a

CHAPTER 6. SHADOW PRICE VERIFICATION 59

Figure 6.8: Visualization of what an input set B might look like for the ACAS benchmark. Here the set is two
dimensional, and captures a range of possible headings for both the ownship and the intruder.

specific configuration between two aircraft, one which is denoted as the ownship, and the other as
the intruder. The inputs are p (distance between aircraft), 6 (heading angle of ownship), 1 (heading
angle of intruder), v, (speed of ownship) and v;,,; (speed of intruder). The output corresponds
to five scalars: C'OC (Clear of Conflict), weak left, weak right, strong left and strong right. The
output with the greatest value is the advice action for the ownship. The properties ¢;.19 specify a
box-shaped subset B in the input space and the set S in the output space. A property is said to be
unsatisfied for a given network if is true, otherwise the network satisfies the property. For
convenience we make it explicit in the following statement,

¢ is unsatisfied < fy(B)NS = 0. (6.33)

Details for each property are given in Appx. [A] For further details on this benchmark we direct the
reader to [43]]. Figure[6.8]depicts an instance of the input set 13 for this type of verification problem.

The utility of verification in this setting is clear: there exist certain relative configurations
between aircraft which should never (or always) violate certain specifications. In Fig. for
example, if the range of headings is small it should never be the case that the advisory be COC, since
both aircraft are headed for collision. The ACAS benchmark defines a set of relative configurations
for which the appropriate (or inappropriate) advisory is known a priori. Verification then ensures
that the network behaves as expected under those known circumstances.

Experimental Details

There are a few technical aspects that need to be clarified before proceeding to the results. In our
implementation, we did not use any form of parallelism, even though this approach can be readily

CHAPTER 6. SHADOW PRICE VERIFICATION 60

0

1
Input-Output Gradients ~ ==--= Average Tree Depth

Bound Estimation (Ours) Timeout

Figure 6.9: Horizontal histograms displaying the number of branches of each length generated by each type of splitting
procedure. Each pair of histograms is normalized with the maximum branch length reached for that specific property.
For histograms where timeouts occur we do not report the average tree depth, since the associated tree has not finished
growing. For property 2 we do report the average tree depth only for networks that could be verified by both IOG and
BE procedures.

extended to a parallel implementation similar to [92]. Each individual network to be verified was
given a maximum execution time of 3 hours, at which point the verification function halts and
a timeout flag is returned. All verification tasks were performed on a 12 core, 64-bit machine
with Intel Core 17-5820K CPUs @ 3.30GHz. All code was written in Python using the Gurobi
optimization package.

Comparison of Splitting Procedures for the Triangle Relaxation

In this section, we provide a side-by-side comparison between input-output gradient-based splits (I0G)
and splits generated by our approach based on shadow prices and bound estimation (BE). In this
section we employ the triangle relaxation to compute over-approximations.

Table[6.|shows the verification results for each of the 10 properties. The first column enumerates
the properties and the second column shows the number of networks the property was tested against.
The third and fifth columns show the verification results, which can either be unsatisfied, satisfied
or timeout, for the IOG and BE-based splits, respectively. Columns four and six show the average
depth for the binary trees generated during the verification procedures. When timeouts occurred, we
did not report the average depth and standard deviations, as they are misleading metrics representing
partially built binary trees, the only exception being property 2'} for which 30 networks were able

ISimilar to [92], we omit networks { Ny 2, N5 3}

CHAPTER 6. SHADOW PRICE VERIFICATION 61

10G BE (Ours)

¢ | #NNs U/S/T Search depth | U/S/T Search depth
1 45 45/0/0 7.22+£2.11 | 45/0/0 6.79 £1.90
2 34 0/30/4 17.87£9.00" | 0/32/2 14.29 4+ 7.94*
3 42 42/0/0 4.96 &+ 2.50 | 42/0/0 2.03+1.49
4 42 42/0/0 0.924+1.13 | 42/0/0 0.85+£1.03
5 1 1/0/0 10.5 4+ 3.65 1/0/0 9.25 £2.79
6 1 0/0/1 N/A 1/0/0 10.1 +2.48
7 1 0/0/1 N/A 0/0/1 N/A

8 1 0/1/0 24.1+£13.40 | 0/1/0 18.33 £10.05
9 1 1/0/0 9.53 £1.47 1/0/0 9.09 £1.47
10 1 1/0/0 5.96 £ 0.80 1/0/0 5.34 +0.89

Table 6.1: Verification results (U: unsatisfied. S: satisfied. T: timeout) and search depth (mean + standard deviation) for
all properties of the ACAS benchmark. These results show that our approach validates the properties as well as, or
better than, IOG — even with a reduced search depth. We use * in property 2 to denote that the comparison is only for
networks where neither IOG nor BE procedures had a timeout.

to be verified by both IOG and BE procedure

The horizontal histograms in Fig. depict the number of branches (horizontal axis) of a
specific depth (vertical axis) for the binary trees generated by the verification tasks. For each
histogram, the distribution on the left (green) corresponds to the distribution generated by BE-based
splitting. The distributions on the right (blue) correspond to IOG-based splits. The dashed red
line in each plot shows the average depth, which is reported in Table In cases where timeouts
occurred for either type of procedure we include an exclamation mark.

Table shows a few other metrics from the verification tasks. The first two columns are the
same as Tbl. [6.1] Columns three and four show the exact number of nodes that were generated
during verification of each task. The fifth column shows the ratio of times between BE-based splits
and IOG-based splits for a given verification task. Values above 1.0 imply a strict improvement of
BE-splits over IOG-splits. In cases where timeouts occurred we include an asterisk symbol.

210G timeouts: networks {N3 3, N3 4, N3 g, Ny o }. BE timeouts: networks { N3 3, Ny o}

CHAPTER 6. SHADOW PRICE VERIFICATION

¢ | #NNs | OZNodesBE tioc /tsE
1 45 5241 4541 1.145
2 34~ 7991 5537 1.146'
3 43 464 164 2.770
4 43 84 82 1.085
5 1 491 369 1.140
6 I* >1808* 1210 | >1.466*
7 1* >1269* >083* 1.0*

8 1 95 245 0.823
9 1 947 737 1.264
10 1 105 63 1.297

62

Table 6.2: Number of nodes for the two split mechanisms (smaller is better) and the ratio of computational time for the
two methods. We can see that for 8 out of 10 properties our approach (BE) reduces the number of nodes generated, as
well as the computational time. * indicates that some verification did not complete within the allocated time. We use

in property 2 to denote that the comparison is only for networks where neither IOG nor BE procedures had a timeout.

10G BE (Ours)

Property | (U, S, T) avg. depth | t;0¢ [sec] | avg. depth | tpg [sec] tioe/tsr
o3 (45,0,0) | 10.41 £2.73 3781 9.47 +2.27 2824 x1.34
o) (0,33,1) | 8.31+£2.96 153 5.82+25 68 x2.25
o3 (42,0,0) | 7.8742.48 482 5.27 +£ 1.87 178 x2.7
04 (42,0,0) | 4.64 +2.33 88 3.14+ 141 59 x1.5
o5 (1,0,0) | 11.01 +£1.62 773 10.61 £ 1.64 576 x1.34
bg.1 (1,0,0) | 12.84 +2.46 1694 12.56 £+ 2.30 1606 x1.05
6.2 (1,0,0) | 17.67 +£4.01 6953 15.62 + 3.36 4470 x1.5
o8 (0,1,0) | 12.21£0.77 1802 12.97 £ 1.00 3242 x0.56
09 (1,0,0) | 11.59+1.41 1335 10.90 £1.25 870 x1.53
10 (1,0,0) | 10.334+1.73 328 9.84 +1.52 282 x1.16

Table 6.3: Verification results (U: unsatisfied. S: satisfied. T: timeout) and search depth (mean =+ standard deviation) for
all properties of the ACAS benchmark. Except for property 8, BE-based splits outperform IOG-based splits in all tasks.
Property 7 is omitted since both heuristics timed out.

Comparison of Splitting Procedures for the Parallel Relaxation

In the previous section we compared I0G-based splits vs BE-based splits under the triangle
relaxation. In this section we repeat the same experiments but using the parallel relaxation. In Fig.
we show the average over all the trees generated for each of the verified ACAS properties. We
omit property 7 since it timed-out for both heuristics.

In Table [6.3] we show the average depth of the binary trees generated during verification, and the
corresponding computational time. Except for property 8, BE-based splits outperforms IOG-based

CHAPTER 6.

18 2 12
0 0
P6.1
2 25
0 0

1 0 11

b2

14

P6.2

14

0 1

SHADOW PRICE VERIFICATION

b3

s

0

Input-Output Gradients

Bound Estimation (Ours)

9 ¢4 16
0 0
9
16 ¢ 14
0 0
11 0 11
----- Average Tree Depth

63

b5

b10

Figure 6.10: Experiments on ACAS: horizontal histograms displaying the number of branches of each length generated
by each type of splitting procedure. Each pair of histograms is normalized with the maximum branch length reached for
that specific property. ¢ timed out for both splitting criteria.

splits in all verification tasks were neither timed out. From these results, we see that splitting based
on shadow price information can produce speed-up gains of up to x2.7, as seen in property ¢s, and

only for one property (¢g) we observe a decrease in computational performance.

Discussion on the Choice of Relaxation

In the previous sections we explored how BE-based splits affect verification performance in compar-
ison to IOG-based splits, under different convex relaxations. This section will be devoted to briefly
analyzing how the choice of relaxation affected the verification results.

10G (avg. depth) BE (avg. depth)
Property triangle parallel triangle parallel
01 7.22+£2.11|1041£273|6.79£1.90 | 947+ 2.27
®3 4.96 £2.50 | 7.87+£2.48 | 2.03£1.49 | 527+ 1.87
on 092£1.13| 464+233 | 0.85£1.03| 3.14+1.41
®s 10.5£3.65 | 11.01 £1.62 | 9.25+£2.79 | 10.61 £ 1.64
®9 9.53£147 | 11.59+1.41 | 9.09£1.47 | 10.90 £1.25
P10 5.96+0.80 | 10.33£1.73 | 5.34+0.89 | 9.84 £1.52

Table 6.4: Side-by-side comparison of the average three depth depending on the type of relaxation used. The comparison
is made only for a subset of the properties for which it is known that the intersection of the image and the output set is

empty.

Table[6.4]corroborates our intuition that the triangle relaxation should always result in verification

CHAPTER 6. SHADOW PRICE VERIFICATION 64

trees that are shallower than the parallel relaxation. Yet, despite this result, verification on the ACAS
benchmark is much faster using parallel relaxations than triangle relaxations. The reason for that
is that parallel relaxations do not require computing LPs for every node. While the results for the
triangle relaxation in the experimental section only show relative speed between BE- and IOG-based
splits, the overall time for verifying a single network is in the order of 2 hours. In contrast, verifying
a network using the parallel relaxation as shown in Tbl. can take less than 10 minutes in many
cases.

6.7 Chapter Summary

In this chapter we introduced the concept of convex relaxations of the ReLU network in order to
over-approximate fy(3). We then introduced an algorithm capable of verifying ReLU networks
by repeatedly splitting the input set into smaller and smaller regions. However, deciding how to
split the input set is non-trivial. Therefore, we introduced a heuristic based on shadow prices which
estimates how different splits will affect all intermediate upper and lower bounds in the network.
In the experimental section we compare how this heuristic compares to alternate heuristics on the
ACAS verification benchmark. Our results show that using shadow prices to determine splitting
decisions works best in practice. Finally, we provide a comparison between the triangle and parallel
relaxation for verification.

65

Chapter 7

Conclusion

The overarching goal of this dissertation has been to provide a new set of tools for assured autonomy
of safety-critical and learning-enabled systems. In the first half of the thesis we provided two
approaches for guaranteeing safety in high-dimensional dynamical models using neural networks to
approximate the optimal policy or value function for the reachability problem. Our experiments
indicated that the resulting reachable sets are accurate in practice despite the limitations posed
by the use of function approximators. In the second part of the thesis we introduced the veri-
fication problem for ReLU networks and provided an algorithm capable of solving it by using
over-approximations and iterative refinements. We saw that the refinements require the choice
of a splitting heuristic which we based on shadow price metrics. Our experimental results show
that the use of shadow prices enables faster verification than other state-of-the-art heuristics for
refinement-based verification.

7.1 Next Steps in Assured Autonomy of Safety-Critical
Systems

In Ch. 4 we were able to connect the concepts of reachability theory and reinforcement learning
into a safety learning framework. However, current safety learning tools, unlike some existing
reinforcement learning techniques, are not able to incorporate high-dimensional observations such
as images into their analysis. One of the main challenges will be how to define implicit surface
functions for problems with high-dimensional observations. The space of images, for instance, is
too large and complex for implicit surface functions to be defined over it. There exist approaches in
reinforcement learning which use projections into low-dimensional latent spaces to make problems
more tractable. Following this idea, and interesting direction would be to learn implicit surface
functions in latent spaces.

Another interesting research direction would consist in finding function approximators for the
safety learning problem which posses some form of convergence or error guarantees. The value
function computed using Q-networks presented in Ch. 4|is neither an over-approximation or an
under-approximation of the true value function. While simulation can be used to get a conservative

CHAPTER 7. CONCLUSION 66

approximation of the true value, it would be convenient to use function approximators which can
directly provide (conservative) information about the value of states.

7.2 Next Steps in Assured Autonomy of Learning-Enabled
Systems

While Ch. [6] provided a useful framework for verifying neural networks, verification is ultimately
a very challenging problem due to its NP-Complete computational complexity. As we saw by
comparing the triangle and the parallel relaxations side-by-side, there is often a worthwhile trade-off
between approximation accuracy and speed when dealing with verification problems. Trade-offs
of this form might be useful outside of verification, however. In particular, when training neural
networks, adding some structure to the weights and biases to ease the cost of verification at the
expense of a small reduction in performance might be well worth it.

Along these same lines, it might also prove fruitful to investigate probabilistic or statistical
guarantees rather than absolute ones of the type provided in this thesis. Sampling large quantities
of inputs can be done very fast, which might allow for cheap-to-compute probabilistic over-
approximations. While the types of guarantees would be weaker due to their inherent probabilistic
nature, for many applications high-confidence guarantees might be more than enough.

67

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Joshua Achiam et al. “Constrained Policy Optimization”. In: International Conference on
Machine Learning. 2017, pp. 22-31.

Anayo K. Akametalu et al. “A Minimum Discounted Reward Hamilton-Jacobi Formulation
for Computing Reachable Sets”. In: arXiv preprint (2018). URL: https://arxiv.org/
abs/1809.00706l

Anayo Kenechuku Akametalu et al. “Reachability-based safe learning with Gaussian pro-
cesses”. In: Conference on Decision and Control (CDC) (2014), pp. 1424-1431. DOTI:
10.1109/CDC.2014.7039601. URL: http://www.ece.ubc.ca/%$7B~%
7Dkaynama /papers/CDC2014%7B%5C_%7Dsafelearning.pdf$20http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
7039601

Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep learning in computer
vision: A survey”. In: IEEE Access 6 (2018), pp. 14410-14430.

Matthias Althoff. “An Introduction to CORA 2015.” In: ARCH@ CPSWeek. 2015, pp. 120-
151.

Somil Bansal et al. “Learning quadrotor dynamics using neural network for flight control”.
In: Decision and Control (CDC), 2016 IEEE 55th Conference on. IEEE. 2016, pp. 4653—
4660.

Jérome Barraquand and Jean -Claude Latombe. “Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles™. In: Algorithmica 10.2
(Oct. 1993), p. 121. 1SSN: 1432-0541. pO1: 10 .1007 /BF01891837. URL: https :
//doi.org/10.1007/BF01891837.

Alexandre M. Bayen et al. “Aircraft Autolander Safety Analysis Through Optimal Control-
Based Reach Set Computation”. In: AIAA J. Guidance, Control, and Dynamics 30.1 (2007).

Richard Bellman. Dynamic Programming. 1st ed. Princeton, NJ, USA: Princeton University
Press, 1957. URL: http://books.google.com/books?id=fyVtp3EMxasC%
TB%$5C&%7Dpg=PR5%7B%5C&%$7Ddg=dynamic+programming+richard+e+
bellman%$ 7B%$5C&%$7Dclient=firefox-a%$7/B%$5C#%7Dv=onepage% 7/B%
5C&%7Dg=dynamic%$20programming%$20richard%20e%20bellman%$7B%$5C&
s /Df=falsel

https://arxiv.org/abs/1809.00706
https://arxiv.org/abs/1809.00706
https://doi.org/10.1109/CDC.2014.7039601
http://www.ece.ubc.ca/%7B~%7Dkaynama/papers/CDC2014%7B%5C_%7Dsafelearning.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7039601
http://www.ece.ubc.ca/%7B~%7Dkaynama/papers/CDC2014%7B%5C_%7Dsafelearning.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7039601
http://www.ece.ubc.ca/%7B~%7Dkaynama/papers/CDC2014%7B%5C_%7Dsafelearning.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7039601
http://www.ece.ubc.ca/%7B~%7Dkaynama/papers/CDC2014%7B%5C_%7Dsafelearning.pdf%20http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7039601
https://doi.org/10.1007/BF01891837
https://doi.org/10.1007/BF01891837
https://doi.org/10.1007/BF01891837
http://books.google.com/books?id=fyVtp3EMxasC%7B%5C&%7Dpg=PR5%7B%5C&%7Ddq=dynamic+programming+richard+e+bellman%7B%5C&%7Dclient=firefox-a%7B%5C#%7Dv=onepage%7B%5C&%7Dq=dynamic%20programming%20richard%20e%20bellman%7B%5C&%7Df=false
http://books.google.com/books?id=fyVtp3EMxasC%7B%5C&%7Dpg=PR5%7B%5C&%7Ddq=dynamic+programming+richard+e+bellman%7B%5C&%7Dclient=firefox-a%7B%5C#%7Dv=onepage%7B%5C&%7Dq=dynamic%20programming%20richard%20e%20bellman%7B%5C&%7Df=false
http://books.google.com/books?id=fyVtp3EMxasC%7B%5C&%7Dpg=PR5%7B%5C&%7Ddq=dynamic+programming+richard+e+bellman%7B%5C&%7Dclient=firefox-a%7B%5C#%7Dv=onepage%7B%5C&%7Dq=dynamic%20programming%20richard%20e%20bellman%7B%5C&%7Df=false
http://books.google.com/books?id=fyVtp3EMxasC%7B%5C&%7Dpg=PR5%7B%5C&%7Ddq=dynamic+programming+richard+e+bellman%7B%5C&%7Dclient=firefox-a%7B%5C#%7Dv=onepage%7B%5C&%7Dq=dynamic%20programming%20richard%20e%20bellman%7B%5C&%7Df=false
http://books.google.com/books?id=fyVtp3EMxasC%7B%5C&%7Dpg=PR5%7B%5C&%7Ddq=dynamic+programming+richard+e+bellman%7B%5C&%7Dclient=firefox-a%7B%5C#%7Dv=onepage%7B%5C&%7Dq=dynamic%20programming%20richard%20e%20bellman%7B%5C&%7Df=false

BIBLIOGRAPHY 68

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Felix Berkenkamp et al. “Safe learning of regions of attraction for uncertain, nonlinear
systems with Gaussian processes”. In: Conference on Decision and Control (CDC) (2016),
pp. 4661-4666. DO1: 10.1109/CDC.2016.7798979. arXiv: 1603.04915.

Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint
arXiv:1604.07316 (2016).

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Greg Brockman et al. “OpenAl Gym”. In: arXiv preprint (2016). URL: https://arxiv.
org/abs/1606.01540.

Rudy Bunel et al. “Piecewise Linear Neural Network verification: A comparative study”.
In: CoRR abs/1711.00455 (2017). arXiv: 1711.00455. URL: http://arxiv.orqg/
abs/1711.00455.

Mo Chen, Sylvia Herbert, and Claire J Tomlin. “Exact and efficient Hamilton-Jacobi-based
guaranteed safety analysis via system decomposition”. In: Proc. IEEE Int. Conf. Robotics
and Automation. 2016.

Mo Chen, Sylvia Herbert, and Claire J Tomlin. “Fast reachable set approximations via state
decoupling disturbances”. In: Proc. IEEE Conf. Decision and Control. 2016.

Mo Chen et al. “Decomposition of Reachable Sets and Tubes for a Class of Nonlinear
Systems”. In: IEEE Trans. Autom. Control (to appear) (2016).

Mo Chen et al. “Robust Sequential Path Planning Under Disturbances and Adversarial
Intruder”. In: The American Institute of Aeronautics and Astronautics (2016).

Mo Chen et al. “Safe Platooning of Unmanned Aerial Vehicles via Reachability”. In: Proc.
IEEE Conf. Decision and Control. 2015.

Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. “Flow*: An analyzer for non-

linear hybrid systems”. In: International Conference on Computer Aided Verification.
Springer. 2013, pp. 258-263.

Zheng Chen and Sarangapani Jagannathan. “Generalized Hamilton—Jacobi—Bellman formulation-
based neural network control of affine nonlinear discrete-time systems”. In: IEEE Transac-
tions on Neural Networks 19.1 (2008), pp. 90-106.

Ivan Nunes Da Silva et al. “Artificial neural network architectures and training processes”.
In: Artificial neural networks. Springer, 2017, pp. 21-28.

Shi-Lu Dai, Cong Wang, and Min Wang. “Dynamic learning from adaptive neural network
control of a class of nonaffine nonlinear systems”. In: IEEFE transactions on neural networks
and learning systems 25.1 (2014), pp. 111-123.

Jerry Ding et al. “Reachability Calculations for Automated Aerial Refueling”. In: Proc.
IEEE Conf. Decision and Control. 2008.

https://doi.org/10.1109/CDC.2016.7798979
https://arxiv.org/abs/1603.04915
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455
http://arxiv.org/abs/1711.00455

BIBLIOGRAPHY 69

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Badis Djeridane and John Lygeros. “Neural approximation of PDE solutions: An application
to reachability computations”. In: IEEE Conference on Decision and Control. IEEE. 2006,
pp. 3034-3039.

Tommaso Dreossi, Thao Dang, and Carla Piazza. “Parallelotope bundles for polynomial
reachability”. In: Proceedings of the 19th International Conference on Hybrid Systems:
Computation and Control. ACM. 2016, pp. 297-306.

Riidiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks”.
In: CoRR abs/1705.01320 (2017). arXiv: 1705.01320. URL: http://arxiv.orqg/
abs/1705.01320.

Jaime Fernandez Fisac. Game-Theoretic Safety Assurance for Human-Centered Robotic
Systems. University of California, Berkeley, 2019.

Jaime F Fisac et al. “Bridging hamilton-jacobi safety analysis and reinforcement learn-
ing”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp- 8550-8556.

Jaime F. Fisac* et al. “A general safety framework for learning-based control in uncertain
robotic systems”. In: IEEE Transactions on Automatic Control (in press) (2018).

Carlos Florensa et al. “Reverse curriculum generation for reinforcement learning”. In: arXiv
preprint arXiv:1707.05300 (2017).

Goran Frehse et al. “SpaceEx: Scalable verification of hybrid systems”. In: International
Conference on Computer Aided Verification. Springer. 2011, pp. 379-395.

Jeremy H. Gillula and Claire J. Tomlin. “Guaranteed Safe Online Learning via Reachability:
tracking a ground target using a quadrotor’. In: International Conference on Robotics
and Automation (ICRA) (May 2012), pp. 2723-2730. DOI1: 10.1109/ICRA.2012.
6225136. URL: http://ieeexplore.ieee.orqg/lpdocs/epic03/wrapperh
htm?arnumber=6225136.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with
deep recurrent neural networks”. In: IEEE international conference on Acoustics, speech
and signal processing (ICASSP). 2013, pp. 6645-6649.

Mark R Greenstreet and Ian Mitchell. “Integrating projections”. In: International Workshop
on Hybrid Systems: Computation and Control. Springer. 1998, pp. 159-174.

Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Rein-
forcement Learning with a Stochastic Actor”. In: CoRR abs/1801.01290 (2018). arXiv:
1801.01290.L URL: http://arxiv.org/abs/1801.01290.

Nicolas Heess et al. “Emergence of Locomotion Behaviours in Rich Environments”. In:
CoRR abs/1707.02286 (2017). arXiv: 1707 .02286. URL: http://arxiv.org/abs/
1707.02286.

Sylvia L. Herbert* et al. “FaSTrack: a Modular Framework for Fast and Guaranteed Safe
Motion Planning”. In: IEEE Conference on Decision and Control (2017).

https://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1705.01320
https://doi.org/10.1109/ICRA.2012.6225136
https://doi.org/10.1109/ICRA.2012.6225136
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6225136
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6225136
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286

BIBLIOGRAPHY 70

[39] Haomiao Huang et al. “A differential game approach to planning in adversarial scenarios: A
case study on capture-the-flag”. In: Proc. IEEE Int. Conf. Robotics and Automation. 2011.

[40] Xiaowei Huang et al. “Safety Verification of Deep Neural Networks”. In: CoRR abs/1610.06940
(2016). arXiv:|1610.06940. URL: http://arxiv.org/abs/1610.06940.

[41] Frank Jiang et al. “Using neural networks to compute approximate and guaranteed feasible
Hamilton-Jacobi-Bellman PDE solutions”. In: arXiv preprint arXiv:1611.03158 (2016).

[42] Gregory Kahn et al. “Plato: Policy learning using adaptive trajectory optimization”. In:
Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE. 2017,
pp- 3342-3349.

[43] Guy Katz et al. “Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”.
In: CoRR abs/1702.01135 (2017). arXiv: 1702.01135. URL: http://arxiv.orqg/
abs/1702.01135.

[44] Shahab Kaynama et al. “Computing the viability kernel using maximal reachable sets”. In:

Proceedings of the 15th ACM international conference on Hybrid Systems: Computation
and Control. ACM. 2012, pp. 55-64.

[45] Shahab Kaynama et al. “Scalable safety-preserving robust control synthesis for continuous-
time linear systems”. In: IEEE Transactions on Automatic Control 60.11 (2015), pp. 3065—
3070. 1sSN: 00189286. DOI: 10.1109/TAC.2015.2411872. arXiv: 1312.33909.

[46] Yoon Kim. “Convolutional neural networks for sentence classification”. In: arXiv preprint
arXiv:1408.5882 (2014).

[47] J. Zico Kolter and Eric Wong. “Provable defenses against adversarial examples via the
convex outer adversarial polytope”. In: CoRR abs/1711.00851 (2017). arXiv: 1711 .00851.
URL: http://arxiv.org/abs/1711.00851.

[48] Alexander B Kurzhanski and Pravin Varaiya. “Ellipsoidal techniques for reachability analy-
sis: internal approximation”. In: Systems & control letters 41.3 (2000), pp. 201-211.

[49] Alexander B Kurzhanski and Pravin Varaiya. “On ellipsoidal techniques for reachability
analysis. part ii: Internal approximations box-valued constraints”. In: Optimization methods
and software 17.2 (2002), pp. 207-237.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), p. 436.

[51] Mathias Lecuyer et al. Certified Robustness to Adversarial Examples with Differential
Privacy. 2019. arXiv:|1802.03471 [stat .ML].

[52] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: CoRR
abs/1504.00702 (2015). arXiv: 1504 . 00702, URL: http://arxiv.orqg/abs/
1504.00702.

[53] Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1334-1373.

https://arxiv.org/abs/1610.06940
http://arxiv.org/abs/1610.06940
https://arxiv.org/abs/1702.01135
http://arxiv.org/abs/1702.01135
http://arxiv.org/abs/1702.01135
https://doi.org/10.1109/TAC.2015.2411872
https://arxiv.org/abs/1312.3399
https://arxiv.org/abs/1711.00851
http://arxiv.org/abs/1711.00851
https://arxiv.org/abs/1802.03471
https://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702

BIBLIOGRAPHY 71

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Bai Li et al. “Second-order adversarial attack and certifiable robustness”. In: (2018).

Daniel Liberzon. Calculus of variations and optimal control theory: a concise introduction.
Princeton University Press, 2011.

Alessio Lomuscio and Lalit Maganti. “An approach to reachability analysis for feed-forward
ReLU neural networks”. In: CoRR abs/1706.07351 (2017). arXiv: 1706 .07351. URL:
http://arxiv.org/abs/1706.07351.

Jingyue Lu and M Pawan Kumar. “Neural Network Branching for Neural Network Verifica-
tion”. In: arXiv preprint arXiv:1912.01329 (2019).

Aleksander Madry et al. “Towards deep learning models resistant to adversarial attacks”. In:
arXiv preprint arXiv:1706.06083 (2017).

John N Maidens et al. “Lagrangian methods for approximating the viability kernel in
high-dimensional systems”. In: Automatica 49.7 (2013), pp. 2017-2029.

Anirudha Majumdar et al. “Convex optimization of nonlinear feedback controllers via
occupation measures’”. In: The International Journal of Robotics Research 33.9 (2014),
pp- 1209-1230.

Ian Mitchell. A Toolbox of Level Set Methods. http : / / people .cs . ubc.ca/
~mitchell/ToolboxLS/index.html. 2009.

Ian M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games”. In: IEEE Transactions on
Automatic Control 50.7 (July 2005), pp. 947-957. 1SSN: 0018-9286. DO1: 10.1109/TAC.
2005.851439. URL: http://ieecexplore.ieece.org/lpdocs/epic03/
wrapper.htm?arnumber=1463302.

Ian Mitchell and Jeremy Templeton. “A Toolbox of Hamilton-Jacobi Solvers for Analysis of
Nondeterministic Continuous and Hybrid Systems”. In: vol. 3414. Mar. 2005, pp. 480—-494.
DOI:|10.1007/978-3-540-31954-2_31.

Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In:
Nature 518.7540 (2015), pp. 529-533. 1SSN: 0028-0836. DOI: 10.1038/naturel4236.
URL: http://dx.doi.org/10.1038/naturel4236.

Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

TM M Moldovan and P Abbeel. “Safe exploration in Markov decision processes”. In:
International Conference on Machine Learning (ICML) (2012). arXiv: larXiv: 1205.
4810v3. URL: http://arxiv.orqg/abs/1205.4810.

Guido F Montufar et al. “On the number of linear regions of deep neural networks”. In:
Advances in neural information processing systems. 2014, pp. 2924-2932.

Anusha Nagabandi et al. “Neural network dynamics for model-based deep reinforcement
learning with model-free fine-tuning”. In: arXiv preprint arXiv:1708.02596 (2017).

https://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
http://people.cs.ubc.ca/~mitchell/ToolboxLS/index.html
https://doi.org/10.1109/TAC.2005.851439
https://doi.org/10.1109/TAC.2005.851439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1463302
https://doi.org/10.1007/978-3-540-31954-2_31
https://doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/abs/arXiv:1205.4810v3
https://arxiv.org/abs/arXiv:1205.4810v3
http://arxiv.org/abs/1205.4810

BIBLIOGRAPHY 72

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Petter Nilsson and Necmiye Ozay. “Synthesis of separable controlled invariant sets for
modular local control design”. In: American Control Conference (ACC), 2016. IEEE. 2016,
pp. 5656-5663.

OpenAl. OpenAl Five. https://blog.openai.com/openai—-five/. [Online;
accessed 18 September 2018]. 2018. URL: https://blog.openai.com/openai-—
five/.

Stanley Osher, Ronald Fedkiw, and K Piechor. “Level set methods and dynamic implicit
surfaces”. In: Appl. Mech. Rev. 57.3 (2004), B15-B15.

Stanley Osher and Chi-Wang Shu. “High-Order Essentially Nonoscillatory Schemes for
Hamilton—Jacobi Equations”. In: Siam Journal on Numerical Analysis - SIAM J NUMER
ANAL 28 (Aug. 1991). DOI1: 10.1137/07280409.

Scott M Pappada et al. “Neural network-based real-time prediction of glucose in patients
with insulin-dependent diabetes”. In: Diabetes technology & therapeutics 13.2 (2011),
pp. 135-141.

Peng Cheng and S.M. LaValle. “Resolution complete rapidly-exploring random trees”. In:
2003, pp. 267-272. DOI:|10.1109/robot .2002.1013372.

Elena G Popkova, Yulia V Ragulina, and Aleksei V Bogoviz. “Fundamental differences of
transition to industry 4.0 from previous industrial revolutions”. In: Industry 4.0: Industrial
Revolution of the 21st Century. Springer, 2019, pp. 21-29.

Bostjan Potocnik et al. “Model-based predictive control of hybrid systems: a probabilistic
neural-network approach to real-time control”. In: Journal of Intelligent and Robotic Systems
51.1 (2008), pp. 45-63.

Maithra Raghu et al. “On the expressive power of deep neural networks”. In: Proceedings
of the 34th International Conference on Machine Learning. Vol. 70. JMLR. org. 2017,
pp. 2847-2854.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified Defenses against Adver-
sarial Examples”. In: CoRR abs/1801.09344 (2018). arXiv: 1801 .09344. URL: http:
//arxiv.org/abs/1801.09344.

Vicenc Rubies-Royo et al. “A Classification-based Approach for Approximate Reachability”.
In: 2019 International Conference on Robotics and Automation (ICRA). 2019, pp. 7697—
7704.

Vicenc Rubies-Royo et al. “Fast neural network verification via shadow prices”. In: arXiv
preprint arXiv:1902.07247 (2019).

Hadi Salman et al. “Provably robust deep learning via adversarially trained smoothed
classifiers”. In: Advances in Neural Information Processing Systems. 2019, pp. 11292—
11303.

John Schulman et al. “Trust Region Policy Optimization”. In: CoRR abs/1502.05477 (2015).
arXiv:1502.05477. URL: http://arxiv.org/abs/1502.05477.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://doi.org/10.1137/0728049
https://doi.org/10.1109/robot.2002.1013372
https://arxiv.org/abs/1801.09344
http://arxiv.org/abs/1801.09344
http://arxiv.org/abs/1801.09344
https://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477

BIBLIOGRAPHY 73

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Klaus Schwab. The fourth industrial revolution. Currency, 2017.

Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. “Bounding and Count-
ing Linear Regions of Deep Neural Networks”. In: CoRR abs/1711.02114 (2017). arXiv:
1711.02114, URL: http://arxiv.org/abs/1711.02114

David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature
550.7676 (2017), p. 354.

Aman Sinha, Hongseok Namkoong, and John Duchi. “Certifying some distributional ro-
bustness with principled adversarial training”. In: arXiv preprint arXiv:1710.10571 (2017).

Jian Sun et al. “An integrated critic-actor neural network for reinforcement learning with
application of DERs control in grid frequency regulation”. In: International Journal of
Electrical Power & Energy Systems 111 (2019), pp. 286-299.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT
press, 1998.

Vincent Tjeng and Russ Tedrake. “Verifying Neural Networks with Mixed Integer Program-
ming”. In: CoRR abs/1711.07356 (2017). arXiv:|1711.07356. URL: http://arxiv.
org/abs/1711.07356l

Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-
based control”. In: International Conference on Intelligent Robots and Systems (IROS)
(2012), pp. 5026-5033. URL: http://citeseerx.ist .psu.edu/viewdoc/
download?doi=10.1.1.296.6848&rep=repl&type=pdf.

John N. Tsitsiklis. “Asynchronous Stochastic Approximation and Q-Learning”. In: Machine
Learning 16.3 (1994), pp. 185-202.

Shigi Wang et al. “Formal Security Analysis of Neural Networks using Symbolic Intervals”.
In: CoRR abs/1804.10829 (2018). arXiv: 1804.10829. URL: http://arxiv.orqg/
abs/1804.108209.

Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning 8.3-
4 (May 1992), pp. 279-292. 1SSN: 0885-6125. DOI: 10 . 1007 /BF00992698. URL:
http://link.springer.com/10.1007/BF00992698.

Tyler Westenbroek et al. “Feedback Linearization for Unknown Systems via Reinforcement
Learning”. In: arXiv preprint arXiv:1910.13272 (2019).

Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine Learning 8.3 (May 1992), pp. 229-256. ISSN: 1573-
0565. poI: 10 . 1007 /BF00992696. URL: https : //doi.org/10.1007 /
BF00992696.

Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. “Output Reachable Set Estima-
tion and Verification for Multi-Layer Neural Networks”. In: CoRR abs/1708.03322 (2017).
arXiv: 1708.03322, URL: http://arxiv.org/abs/1708.03322.

https://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
https://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.6848&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.6848&rep=rep1&type=pdf
https://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
https://doi.org/10.1007/BF00992698
http://link.springer.com/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://arxiv.org/abs/1708.03322
http://arxiv.org/abs/1708.03322

BIBLIOGRAPHY 74

[97] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. “Reachable Set Computation and
Safety Verification for Neural Networks with ReLU Activations”. In: CoRR abs/1712.08163
(2017). arXiv:|1712.08163. URL: http://arxiv.org/abs/1712.08163.

[98] Huaguang Zhang, Yanhong Luo, and Derong Liu. ‘“Neural-network-based near-optimal
control for a class of discrete-time affine nonlinear systems with control constraints”. In:
IEEFE Transactions on Neural Networks 20.9 (2009), pp. 1490-1503.

[99] Huan Zhang et al. “Efficient neural network robustness certification with general activation
functions”. In: Advances in neural information processing systems. 2018, pp. 4939-4948.

[100] Huan Zhang et al. “Efficient neural network robustness certification with general activation
functions”. In: Advances in neural information processing systems. 2018, pp. 4939-4948.

https://arxiv.org/abs/1712.08163
http://arxiv.org/abs/1712.08163

75

Appendix A
ACAS Properties

Here we list the set of properties to be verified in the ACAS benchmark.

Property ¢;:

e Description: If the intruder is distant and is significantly slower than the ownship, the score of a
COC advisory will always be below a certain fixed threshold.

o Tested on: all 45 networks.

e Input constraints: p > 55947.691, vy, > 1145, viy < 60.

e Desired output property: the score for COC is at most 1500.

Property ¢-:

e Description: If the intruder is distant and is significantly slower than the ownship, the score of a
COC advisory will never be maximal.

e Tested on: NV, , for all z > 2 and for all y, except V2 and N; 3.

e Input constraints: p > 55947.691, vy, > 1145, vy, < 60.

e Desired output property: the score for COC is not the maximal score.

Property ¢:

e Description: If the intruder is directly ahead and is moving towards the ownship, the score for
COC will not be minimal.

e Tested on: all networks except Ny 7, IV} g, and IV g.

e Input constraints: 1500 < p < 1800, —0.06 < 8 < 0.06, ¥ > 3.10, vy > 980, vipe > 960.

e Desired output property: the score for COC is not the minimal score.

Property ¢,:

e Description: If the intruder is directly ahead and is moving away from the ownship but at a lower
speed than that of the ownship, the score for COC will not be minimal.

e Tested on: all networks except V; 7, N; g, and [V} g.

APPENDIX A. ACAS PROPERTIES 76

e Input constraints: 1500 < p < 1800, —0.06 < 6 < 0.06, ¥ = 0, Vown > 1000, 700 < vy <
800.
e Desired output property: the score for COC is not the minimal score.

Property ¢s:

e Description: If the intruder is near and approaching from the left, the network advises “strong
right”.

e Tested on: V, ;.

e Input constraints: 250 < p < 400, 0.2 < 6 < 0.4, —3.141592 < ¢ < —3.141592 + 0.005,
100 < Vown < 400, 0 < vy < 400.

e Desired output property: the score for “strong right” is the minimal score.

Property ¢g:

e Description: If the intruder is sufficiently far away, the network advises COC.

o Tested on: NV, ;.

e Input constraints: 12000 < p < 62000, (0.7 < 6 < 3.141592) Vv (—3.141592 < § < —0.7),
—3.141592 < ¢ < —3.141592 + 0.005, 100 < vown < 1200, 0 < vy < 1200.

e Desired output property: the score for COC is the minimal score.

Property ¢;:

e Description: If vertical separation is large, the network will never advise a strong turn.

e Tested on: NV .

e Input constraints: 0 < p < 60760, —3.141592 < 0 < 3.141592, —3.141592 < ¢ < 3.141592,
100 < Vown < 1200, 0 < vy < 1200.

e Desired output property: the scores for “strong right” and “strong left” are never the minimal
scores.

Property ¢s:

e Description: For a large vertical separation and a previous “weak left” advisory, the network
will either output COC or continue advising “weak left”.

o Tested on: N .

e Input constraints: 0 < p < 60760, —3.141592 < 0§ < —0.75 - 3.141592, —0.1 < ¢ < 0.1,
600 < vown < 1200, 600 < vip < 1200.

e Desired output property: the score for “weak left” is minimal or the score for COC is minimal.

Property ¢q:

e Description: Even if the previous advisory was “weak right”, the presence of a nearby intruder
will cause the network to output a “strong left” advisory instead.

o Tested on: NV 3.

e Input constraints: 2000 < p < 7000, —0.4 < 0 < —0.14, —3.141592 < ¢p < —3.141592 +
0.01, 100 < vgwn < 150, 0 < vy < 150.

APPENDIX A. ACAS PROPERTIES 77

e Desired output property: the score for “strong left” is minimal.

Property ¢1:

e Description: For a far away intruder, the network advises COC.

o Tested on: NV, 5.

e Input constraints: 36000 < p < 60760, 0.7 < 0 < 3.141592, —3.141592 < ¢ < —3.141592 +
0.01, 900 < vown < 1200, 600 < vy < 1200.

e Desired output property: the score for COC is minimal.

	Contents
	List of Figures
	List of Tables
	Introduction
	Autonomous Systems and Assured Autonomy
	Thesis Overview and Contributions

	Assured Autonomy for Safety-Critical Systems
	Background and Preliminaries
	Optimal Control Overview
	Safety Analysis
	Safety and Liveness
	Computational Techniques and Limitations
	Chapter Summary

	High Dimensional Reachability Analysis
	Control-Affine Systems
	Classification-based Reachability
	Examples
	Implementation Details
	Chapter Summary

	Reachability Analysis and Reinforcement Learning
	Reinforcement Learning and Safety
	Parallels between Reachability Analysis and Reinforcement Learning
	The Search for a Contraction Mapping
	Results
	Chapter Summary

	Assured Autonomy for Learning-Enabled Systems
	Background and Preliminaries
	Neural Networks, Performance Guarantees and Safety
	Feedforward ReLU Networks
	The Verification Problem
	Connections between Reachability and Neural Network Verification
	Related Work
	Chapter Summary

	Shadow Price Verification
	Over-Approximating the Image
	Overview of Verification via Input-Splits
	Shadow Prices and Bound Rates
	Bound Estimation and Splitting
	Limitations and Convex Relaxation Alternatives
	Experiments
	Chapter Summary

	Conclusion
	Next Steps in Assured Autonomy of Safety-Critical Systems
	Next Steps in Assured Autonomy of Learning-Enabled Systems

	Bibliography
	ACAS Properties

