
How well do student software engineering teams practice
Continuous Integration?

Joshua Zeitsoff

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-183
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-183.html

October 9, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I'd like to thank my advisor, Armando Fox, for his mentorship and guidance
this year as well as throughout my time at ACELab. This master’s report
wouldn’t be possible without your immeasurable support and patience.
 
I'd also like to thank my second reader, Michael Ball, for offering insightful
feedback during the formulation and writing of my master's project.
 
Thank you to my Mom and Dad for your love, support, and encouragement
each day.
We did this together.
 
Thank you to Sophia for supporting me and inspiring me to stay focused in
the most challenging year yet. 
 



Thank you to all the family and friends who shared this journey with me.



 

 
 

How well do student software engineering teams follow Agile practices? 
 

by Joshua Isaac Zeitsoff 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 

Committee: 
 
 
 

Professor Armando Fox 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Michael Ball 
Second Reader 

 
August 13, 2020 

(Date) 

August 14, 2020

Joshua Zeitsoff


Joshua Zeitsoff
How well do student software engineering teams practice Continuous Integration?



How well do student so�ware engineering teams practice
Continuous Integration?

Joshua Zeitso�
jzeitso�@berkeley.edu

University of California, Berkeley
Berkeley, California

ABSTRACT
Student teams in software engineering courses are taught many
processes to make collaboration easier, yet it is challenging to know
if these processes are being followed when teamwork occurs out of
view of the instructor. To gain a better understanding of what the
teams are doing, we propose measuring the data exhaust generated
by web-based project management, code management, and deploy-
ment management tools. To help students in our course coordinate
their work with other developers, we recommend a simpli�ed work-
�ow based on tasks and tools, such as Pivotal Tracker, GitHub, and
Heroku, common to the Agile/XP practice of Continuous Integra-
tion. We designed several tools to help us determine if students
were following our recommended work�ow. We analyze a current
o�ering of a course in which students are taught our recommended
work�ow. Our results suggest that teams did follow the recom-
mended work�ow but at various levels of compliance; that many
teams show substantial variation in compliance among individual
team members; and that our recommended work�ow should be
expanded to explicitly address some student behaviors that we did
not foresee.

1 INTRODUCTION
A common method of teaching the eXtreme Programming (XP) [4]
variant of Agile software development [9] is through team-based
projects. Students are put into teams of 4-6 and work on projects
designing and creating a web application for several iterative cycles.
Some courses may use internal projects and some may connect
students with a real world customer who intends on using the
software they create. We want to teach students how to be e�ective
and disciplined developers when working in software engineering
teams.

Students writing software as part of a team need to coordinate
their work with other developers. Disciplined software engineering
teams follow processes that make the task of coordination easier.
A broad name for one important category of such processes is
“continuous integration.” Continuous Integration is the process by
which developers working on di�erent project tasks complete their
code and tests, have it reviewed and approved by rest of team, and
integrate it into the mainline code in a timely manner [8].

Continuous Integration is just one process that makes coordinat-
ing within teams easier. Students in software engineering courses
are taught many di�erent processes to make working in teams
easier. One challenge instructors face is to be able to verify whether
students are learning and following the processes that are being
taught. In an ideal scenario, an instructor or teaching assistant
would be able to directly observe all actions each student takes. The
instructor could then come to a conclusion as to whether processes

are being understood and followed. However, constant shadowing
is not feasible in classes where students greatly outnumber course
sta�.

We would still like to know how closely students are following
the processes being taught. Our idea is to leverage the tools used
by software engineering teams for version control, project man-
agement, and deployment to understand what students are doing.
These tools all produce data exhaust that can be used to paint a
picture of the actions students are taking while writing software,
even if these actions are occurring out of the view of an instructor.

One obstacle to using tool data generated by students is that
processes taught to students are complex and involve the usage of
several tools. Any attempt to understand what students are doing
needs to connect the actions they are performing across di�erent
tools. We discuss several possible methods to connect actions from
di�erent services.

Using one method of connecting events across di�erent services,
automatic tool integration, we investigated if students in an upper-
division software engineering course followed our recommended
processes. Our �ndings suggest that many teams did follow our pro-
cesses, although at di�erent levels of compliance. Teams appearing
to not follow our processes may have had varying levels of student
compliance. Our results also showed that some student behavior
was not anticipated in our recommended work�ow and should be
addressed in future courses.

Our contributions are as follows:

(1) We present a recommended work�ow that focuses on con-
necting events across di�erent services to help teach student
software engineering teams how to follow the Agile practice
of Continuous Integration.

(2) We discuss several di�erent methods of connecting events
across services and present results obtained by using one of
these methods.

(3) We show how to analyze whether student teams from a
course o�ering of a upper-division project-based software
engineering course are following our recommended work-
�ow.

The rest of the paper is organized as follows. Section 2 compares
our approach with previous studies that introduced Continuous
Integration in software engineering courses. Section 3 describes
how we organize the tasks involved in Continuous Integration into
a timeline of events occurring across di�erent services. Section
4 discusses three di�erent ways events across services could be
correlated. Section 5 describes three tools we created to correlate
events across di�erent services. Section 6 outlines results from
using one method to correlate events across di�erent services for

1



Joshua Zeitso�

Task Tool & Action Pivotal Tracker Story State

Writing code for a new feature GitHub Branch Creation started
Reviewing code amongst the team GitHub Open Pull Request �nished
Merging code into the main branch GitHub Merge Pull Request delivered

Running tests TravisCI Build delivered
Deploying code to a staging environment Heroku Release delivered

Letting a customer see new feature Heroku Staging Environment delivered

Figure 1: GitHub is a tool used for version control, Heroku is a tool used for deployment and Pivotal Tracker is a tool used for
projectmanagement.We are looking for associations between Pivotal Tracker story state changes and Continuous Integration
activity that should accompany those state changes. This corresponds to columns 2 and 3. Rows of event types we want to
correlate are highlighted.

a semester of a software engineering course. Section 7 discusses
threats to validity and future work.

2 RELATEDWORKS
An investigation of which Agile practices should be taught in soft-
ware engineering courses [10] was based on a taxonomy of team
practices as well as a �eld study with an established software com-
pany. When surveyed about the importance of various Agile prac-
tices, professional developers ranked Continuous Integration sec-
ond most important, behind the practice of Retrospective. Their
ranking supports our decision to measure if students are following
the practice of Continuous Integration among other Agile practices.

Prior work introduced Continuous Integration and Test Driven
Development concepts and tools to software engineering students
[6]. Afterwards, students completed a week long project and were
evaluated on their ability to integrate Continuous Integration and
Test Driven Development into their development cycle based on
tool data and qualitative assessments of their code base. In contrast,
our intention is to use automated tooling to collect data and assess
student compliance with recommended Continuous Integration
practices.

Instructors have also introduced the practice of Continuous Inte-
gration as a means to teach software engineering to large courses of
students working on the same code base with limited instructional
sta� [13]. Continuous Integration tools showing build failures, new
code additions, and failing tests made it easy for the students and
instructors to monitor class progress. However, they focused on
using Continuous Integration as a means to teach a course with
limited resources and not on teaching students about the practice
of Continuous Integration and what processes students should be
following. A comparison between that course and a newer version
of the course [5] showed that most of the improvements were in
student clarity regarding grading and student perception of the
course, and not on explicit teaching of Continuous Integration.

More recently, some instructors have created their own Contin-
uous Integration/Continuous Delivery (CI/CD) pipeline and tested
whether its use helped students to better understand the practices of
CI/CD [7]. 16 students rated their understanding of various CI/CD
topics before and after using the pipeline individually for an hour,
and results showed that their understanding of most topics im-
proved. By contrast, our students typically work on a project in

teams for four two-week iterations and we use tool data to de-
termine if students are following our recommended Continuous
Integration work�ow.

3 RECOMMENDED CONTINUOUS
INTEGRATIONWORKFLOW

In Agile development, Continuous Integration is the process of
rapidly integrating new code into the main line of development to
allow developers to receive fast feedback from other team members
and customers [8].We focus on the events leading up to the moment
of integration. These events are part of a complex process that
involves several tasks.

In particular, our recommended Continuous Integration work-
�ow is based on “branch per feature”, in which each new software
feature is entered into a project-management tool and is developed
on its own code branch. In our course, students use the online
project-management tool Pivotal Tracker, which represents each
feature as a story 1 that describes the new feature’s value to the
customer or development team. In particular, a story is marked
as “started” when a developer begins working on the associated
code and tests, “�nished” when the code and tests are ready to
be reviewed by the rest of the team, and “delivered” when the
reviewed code is merged into the main line of development and
deployed for customer evaluation, in our case using the Heroku
platform-as-a-service.

Using GitHub to manage a source code repository, new code
can be written on a separate branch from the main branch. Devel-
opers create Pull Requests on GitHub when their code is ready to
be merged into the main branch. Pull Requests can be reviewed
and commented on by other members of the team. When a team
approves of a new feature, the Pull Request can be merged into the
main branch of code.

The list below shows how we expect the story lifecycle states to
be interleaved with these code-development events; Figure 1 out-
lines the tasks performed as a part of a general work�ow following
Continuous Integration and the tools and corresponding Pivotal
Tracker story state for each task.

• A developer “claims” a story in Pivotal Tracker
• The developer begins working on code and tests for the new
feature, on its own branch

1https://www.pivotaltracker.com/help/articles/terminology/#story

2



How well do student so�ware engineering teams practice Continuous Integration?

• The developer completes the code and tests, and invites the
team to review their work

• After review, the code is merged into the main branch
• The new feature is deployed to the customer for �nal ap-
proval

Figure 2 organizes these tasks and story states into a timeline
showing which actions on GitHub and Heroku students should be
taking at each stage in a Pivotal Tracker story’s lifecycle.

Figure 2: Recommended timeline of events as part of a Con-
tinuous Integration work�ow

While there are other work�ows that teams can follow, this
simpli�ed work�ow has worked well for our students and is a
realistic re�ection of the tools they use and the actions they take.
We chose this simpli�ed version as it best allows us to focus on
what the processes are and how we can measure them.

4 CORRELATING EVENTS ACROSS SERVICES
The work�ow we described incorporates actions on both Pivotal
Tracker and GitHub, which are completely separate tools on which
the student account names may even be di�erent. To reconstruct
student teams’ Continuous Integration actions, we must merge
data together from di�erent tools to generate a timeline of events,
correctly interleaving the events in Figure 1.We describe three ways
events can be correlated across services: automatic tool integrations,
naming conventions, and correlation in time.

Automatic tool integrations. Pivotal Tracker provides func-
tionality that enables certain events in GitHub to trigger story state
changes in an associated Pivotal Tracker project 2. Once the GitHub
repository has been manually connected to a Tracker project, any
commit messages that follow certain formatting rules and include
the ID number of a Tracker story cause a change in the story’s
life cycle state, such as from “started” to “�nished.” However, this
method of associating GitHub activity with speci�c Pivotal Tracker
stories only works if the GitHub repository and Pivotal Tracker

2https://www.pivotaltracker.com/help/articles/github_integration/

project have been set up this way from the beginning and if students
consistently follow the rules for formatting commit messages.

Naming conventions. Another way to connect events across
di�erent services is to establish naming conventions. For example,
we could require that students name their GitHub branches in a
predictable way that includes the ID of the Pivotal Tracker story
that the branch is associated with. This method only works if the
naming convention can be consistently enforced.

Correlation in time. For historical projects that neither con-
�gured automatic tool integrations nor adhered to naming con-
ventions, we can analyze how closely correlated in time di�erent
events were. For example, whenever a team had a Pivotal Tracker
story marked as “started,” the associated action is to create a branch
on GitHub. If a story on Pivotal Tracker changed its state, such as
from “unstarted” to “started,” we could look within a short time
window around this event to see if any Git branch had been created.
If any such branch was found, we could reasonably conclude that
it was created speci�cally for the nearest story that had its state
changed to “started.”

In the projects we studied, we were able to take advantage of
automatic tool integration. Future work studying historical student
projects may have to rely on one of the other methods.

5 TOOLS
5.1 Motivation
We had access to data from 3 semesters of an upper division (3rd
and 4th year students) course on Agile software development at
Berkeley. The course is aimed at students who want experience
developing a medium-sized software application while working in
a team. Enrollment typically reaches approximately 120 students,
who are grouped into teams of 4-6. Each team collaborates with
a customer, typically a nonpro�t or on-campus organization, to
create or extend a web application. Students work on their projects
for the last 8 weeks of the course, which is broken down into four
two-week iterations.

At the end of each iteration, students complete several di�erent
surveys evaluating themselves and their team for the past iteration.
Students complete self-assessment surveys based on [11, 12] meant
to gauge how well their team followed various Agile practices as
well as set a goal for the next iteration. They also complete a peer-
assessment survey allocating points to each member of the team
based on their code and overall contributions for that iteration.
Each student’s email is collected when they �ll out their response.
Each team’s customer also �lls out a feedback survey at the end
of each iteration, ranking the team on several questions related to
their performance. Figure 3 lists an example self-assessment survey
question.

Survey responses were the �rst data we examined to determine
what teams were doing out of view of the instructor. Our goal was
to standardize and compare survey responses across three o�erings
of the course so that all surveys could be analyzed together. This
task was challenging for several reasons.

• Some questions hadminor changes inwording across semesters,
so we had to establish correspondence among questions.

• Response scales (e.g. 0-5 vs. 0-10) sometimes di�ered across
semesters.

3



Joshua Zeitso�

Score Description

10 I sync with the main repo and close out my feature/bug branches daily or more often
8 I sync with the main repo regularly, but my feature/bug branches may be open for a few days
6 I sync with the main repo every few days; I resolve merge con�icts as needed when merging my changes
4 We work more or less independently but use merges and pull requests "as needed" to stay in sync
0 We do one big merge before trying to push new features to production at the end of the iteration

Figure 3: This is an example self-assessment rubric provided to teams for a question related to Continuous Integration. Some
other question topics include Test Driven Development, Collective Ownership, and Pairing.

• The methods of collecting responses, and the data format of
those responses, varied from semester to semester.

• The students’ email addresses as reported in their responses
did not always match the identities used on the course tools,
such as GitHub, Tracker, and Heroku.

To address these challenges, standardizing the responses re-
quired a combination of manual massaging and automated pro-
cessing using custom scripts.

As we standardized survey responses, we created a mapping
of student and project identities. A mapping of each student and
project’s identity on each tool used, as well as in the survey re-
sponses, will make it easier to analyze survey and tool data to-
gether.

5.2 Pseudonymizer
To address the problem of student identi�ers di�ering across ser-
vices, we created an application that stores a mapping of both stu-
dent and project identi�ers for each service used in the course that
we collect data from. The application is deployed as a proxy that
sends and receives API requests between any of the services and
a client, automatically performing the mappings. Figure 4 shows
how our application lies in between clients and API services.

Without our application, each client would need to store every
student and project’s identi�er for each API service. Instead, our
application stores this information and provides each client with a
unique and randomly generated identi�er, or pseudonym, for each
student and project. Our application is called the "pseudonymizer"
since it generates pseudonyms for students and projects, while the
unique and randomly generated identi�ers are called pseudonymizer
IDs.

If a client previously only had a student’s real identi�er for one
service API, but the pseudonymizer was deployed with real student
identi�ers for several APIs and this client was given an API key
for the pseudonymizer, it would be possible for this client to now
make requests to any of the service APIs included at deployment
of the pseudonymizer. However, clients must obtain an API key for
the pseudonymizer in order to access any data about students.

The pseudonymizer uses special formatting in API requests sent
to it by clients to determine which identi�ers need to be translated.
Figure 5 shows how a client would format a student or project’s
pseudonymizer ID in any request sent to the pseudonymizer. The
pseudonymizer looks for speci�c keys in the JSONs returned by
service APIs in order to make a best e�ort attempt to translate real
student identi�ers back into their pseudonymizer ID counterparts.

Figure 4: Our pseudonymizer tool forwards requests be-
tween clients and API services.

Any clients currently making API requests directly to service
APIs would only need to change the request endpoint and parame-
ters to integratewith the pseudonymizer. Figure 6 shows an example
URL a client would make a request to before integrating with the
pseudonymizer. Figure 7 shows the new URL a client would make a
request to. The client should include the service API endpoint as a
query parameter in the request to the pseudonymizer with real stu-
dent identi�ers replaced with their pseudonymizer ID counterparts.
The pseudonymizer IDs in the URL have been specially formatted
so that the pseudonymizer knows to translate them.

The pseudonymizer is hosted in the cloud and deployed with a
mapping of student and project identi�ers for service APIs.

5.3 GitWrapper
One of our initial goals was to analyze historical projects in which
our only option was to use time correlation. We were challenged
by the fact that the GitHub API only returns the previous 90 days’
worth of activity, since the activity in the projects wewere analyzing
occurred much longer ago than that. To solve this challenge, we
inspected the graph of Git commits to determine branch creation
times, since it is common practice to write and commit code on a

4



How well do student so�ware engineering teams practice Continuous Integration?

API ID Pseudonymizer ID Formatted ID

example_github_user abcd1234 %{user}%{Resolver}%{abcd1234}
example_github_project efgh5678 %{project}%{Resolver}%{efgh5678}

Figure 5: Example Formatting of IDs in Request to Pseudonymizer

https://api.github.com/repos/example_github_repo/example_github_user/pulls

Figure 6: Example URL for Client without using Pseudonymizer

https://pseudo-
pro.herokuapp.com?uri=https://api.github.com/repos/%{user}%{Resolver}%{abcd1234}/%{project}%{Resolver}%{efgh5678}/pulls

Figure 7: Example URL for Client using Pseudonymizer

branch relatively soon after creating it. We designed a service for
the convenience of clients that provides the same API as GitHub
for branches by using the commit history to extract information.

Our goal was to �nd the �rst commit on each branch in a reposi-
tory and use the dates of those �rst commits as approximations of
when each branch was created. There are two challenges to accom-
plishing this goal. The �rst challenge is �nding all branches in a
repository. The second is �nding the �rst commit on each of those
branches. Figure 8 shows an example Git branch structure that we
will use for the remainder of this section.

Figure 8: Example Branch Structure

Once branches are deleted, Git can no longer readily access them.
However, merged branches can easily be found in the graph of Git
commits by looking at the parents of merge commits. A merge
commit is a commit generated when one branch is merged into
another branch with diverged histories [1]. In Figure 8, commit "H"
is an example merge commit with two parents. Commit "G" is the
parent from the main branch and commit "C" is the parent from
the feature branch. We leveraged the �ltering options for the "git
log" [2] command to obtain a list of all merge commits.

Given the commit at which a feature branch merged into the
main branch, our challenge lay in �nding the �rst commit on that
feature branch. In Figure 8, the commit we want to �nd is rep-
resented by commit "A". Our plan was to list all commits on the
feature branch from the parent of the merge commit to the last
commit on the main branch before the feature branch diverged. In
our example, this corresponds to listing all commits from commit
"C" to commit "D".

Commit "D" can be found by identifying the best common an-
cestor between commit "H" and commit "C". Git has a command,
"merge-base" [3] to �nd the best common ancestor between two

commits. Given commit "D", we could list all commits from commit
"C" back in time to commit "D" and return the creation date of the
last commit in that list, commit "A". Repeating this process for each
merge commit would give us an estimated creation date for each
branch in a repository.

We recognize that our approach will not work for all branch
structures, such as merging two branches without diverged histo-
ries [1]. However, anecdotally we have reason to believe that this
approach covers the branching behavior of most students.

5.4 EventCollector
The EventCollector is a tool that we use built by collaborators.
The EventCollector gathers data from service APIs and imputes a
percentage of correlated events. A user can specify which services
they want to correlate events from, which �elds are of interest
from the responses returned by APIs, and whether those events
should be correlated using a time correlation window or naming
conventions. This tool is described in more detail in a paper still in
preparation written by our collaborators.

6 RESULTS
We analyzed projects from a summer 2020 o�ering of an Agile
software engineering course aimed at juniors and seniors at a large
US university. Small teams of students were each given the same
starter code for a web application and asked to complete a set of
features, some of which were common to all teams and some of
which teams could choose among. A typical team consisted of three
students, but a few teams contained only one or two students due
to others dropping the course. Because the summer o�ering of the
course was condensed in time, the course ran at a faster pace than
it would during the academic year, so teams had a single ten-day
sprint to complete all the features; during the semester, four two-
week long iterations would have been more likely. Each team had
a GitHub repository and a Pivotal Tracker project to track progress
on the features.

Of 31 teams, four had to be removed from our data set because
they showed no Pivotal Tracker activity. Two of these did not
properly integrate with the course’s research tools, and two projects
had no Pivotal Tracker data during the iteration. This left us with

5



Joshua Zeitso�

Type Explanation Compliant

0 branches A “started” story that was connected to 0 GitHub branches No
1 unique branch A “started” story that was connected to 1 GitHub branch. This GitHub branch

was not connected to any other “started” stories
Yes

1 non-unique branch A “started” story that was connected to 1 GitHub branch. This GitHub branch
was also connected to other “started” stories.

No

Figure 9: Di�erent Story-Branch structures found in student behavior

27 teams who had Pivotal Tracker data during their 10 day long
iteration.

Students were directed to documentation3 describing how to
use Pivotal Tracker’s automatic integration feature with GitHub.
This feature allows teams to link a speci�c Git branch to a Pivotal
Tracker story, after which any Pull Requests opened or merged for
that branch are displayed in Pivotal Tracker with the associated
story. We examined if students followed each of the 3 pairs of events
in Figure 1.

6.1 Does Starting a Story Correspond With
Creating a Branch?

In the ideal version of our recommended work�ow, each Tracker
story is associated with exactly one branch on Git; the branch is
created when work on the story is started, and the branch is merged
when the story is delivered. In practice, however, we found that
the correspondence between stories and branches was not always
one-to-one. Figure 9 shows the three di�erent types of branch
structures we found. We decided that only stories with their own
unique branch were compliant to our recommended process, and
that other story-branch structures were not ideal behaviors.

Figure 10 shows that students did not create a Git branch for
each story they marked as “started” on Pivotal Tracker. Each red
dot on the graph represents one team; teams completed di�erent
numbers of stories. Stories that were connected with a Git branch
were denoted as correlated. Teams following the recommended
process have the same number of “started” stories as correlated
stories, and therefore lie along the diagonal of the graph. However,
many teams had more “started” stories than correlated stories.

We discovered that the reason for noncompliance was the pres-
ence of the other branch structures in Figure 9. Therefore, examin-
ing only “started” and correlated stories does not provide enough
information about these alternative branching behaviors. We cate-
gorized the di�erent story-branch structures seen for each team in
Figure 11. Teams are sorted in order of how many compliant stories
they had. A compliant story is a story with its own unique branch;
this branch is not connected to any other stories. We notice that
some teams did not manage to connect any of their “started” stories
to Git branches, while some teams manage to have every “started”
story connected to its own Git branch.

In addition to understanding the compliance of each team, we
were also interested in the behaviors of individual students in the
team. We measured each team’s percentage of compliant stories, as

3https://www.pivotaltracker.com/help/articles/github_integration/

Figure 10: Teams did not link every “started” story with a
Git branch. Each red dot represents a team.

well as the percentage of compliant stories for each student. A stu-
dent’s compliance percentage is determined by dividing the number
of compliant stories they “started” by the total number of stories
they “started”. A team’s compliance percentage is found by dividing
the total number of compliant stories “started” by students within
that team by the total number of stories “started” by students within
that team. Figure 12 shows how each team’s overall percentage of
compliant stories compares to the students in that team. Teams are
sorted by their percentage of compliant stories. This di�ers from
Figure 11, which is in order of how many total compliant stories
they had. While most-compliant teams had all members following
the recommended process, behavior varied more widely for less-
compliant teams. In particular, around one-fourth of teams include
at least one member who was achieving 100% compliance, but the
team’s overall percentage was brought down by other members of
the team.

One challenge a�ecting our analysis is one student might mark
a story as “started”, but a di�erent student may create the branch
for that story. We found that this occurred for 75 stories out of
246 total stories. Of these 75 stories, 30 of them were stories that
belonged to branches with multiple stories. This suggests that a
nontrivial amount (30.4%) of “started” stories were connected to
a branch created by a di�erent student, and of those stories, 40%
were connected to a branch also connected to other stories.

6



How well do student so�ware engineering teams practice Continuous Integration?

Figure 11: Di�erent types of branch structure for “started”
stories for each team. Stories with their own unique branch
are deemed compliant. Stories with 0 branches or a branch
connected to other stories are non-compliant. Teams are
sorted in order of how many compliant stories they had.

Figure 12: The percentage of compliant stories per student
varied greatly within teams. Teams are sorted in order of
their compliance percentage.

6.2 Does Finishing a Story Correspond With
Opening a Pull Request?

In our recommended work�ow, a story is marked “�nished” when
the code is ready to be reviewed, so the state transition to “�nished”
should be correlated with the opening of a new Pull Request in
GitHub. As Figure 13 shows, many stories were marked as “�n-
ished” but were not connected with an opened Pull Request. Stories
marked as “�nished” might not be connected with an opened Pull
Request for several reasons. If teams never connected the story
with a Git branch, then there wouldn’t be a branch to �nd a pull

request from. Alternatively, a branch may have been merged di-
rectly, without opening a Pull Request to �rst solicit review from
team members. Neither of these behaviors is compliant with our
recommended work�ow.

Figure 13: Number of stories that were marked as “�nished”
that were connected with an Open PR on GitHub. Each red
dot represents a team.

6.3 Does Delivering a Story Correspond With
Merging a Pull Request?

Similarly, Figure 14 shows that many stories were marked as “de-
livered” but were not connected with a merged Pull Request. Com-
pliance with this step is even lower than for the previous two steps.
Stories marked as “delivered” might not be connected with amerged
Pull Request for reasons similar to “�nished” stories not being con-
nected with open Pull Requests. Additionally, “delivered” stories
may have had PRs opened for them, but they were not able to be
merged before the course ended. (Pull requests can remain open
while the team discusses the new additions and any recommended
�xes are made, and as the project occurred at the end of the course
and teams only had a few days to complete it, it’s possible that
some opened PRs were not able to be approved by the team and
merged before the course ended.)

7 DISCUSSION AND FUTUREWORK
A few observations from the results will guide our enhancement of
both the recommended work�ow and the method of monitoring it
in future o�erings of the course.

Examine student behaviors aswell as teambehaviors.Teams
that appear marginally compliant may include students who are
following the process diligently, and teams that appear more com-
pliant may include non-compliant students. Besides rami�cations
for evaluating teams, this observation suggests there may be an
opportunity to incentivize students on a team to in�uence each
others’ behavior more directly.

There are many ways not to follow an ideal process. Eval-
uating if students are following a recommended process is not a

7



Joshua Zeitso�

Figure 14: Number of stories marked as “delivered” that
were connected with a Merged PR on GitHub. Each red dot
represents a team.

simple binary classi�cation problem. Our idealized work�ow ex-
pected that students would create exactly one branch per story. But
we observed many ways to deviate from this behavior, including
stories that were marked as “started” multiple times, branches cre-
ated for stories that were not yet marked as “started”, and multiple
“started” stories sharing the same branch. Manual inspection or
interviews with students would be required in this case to under-
stand why each behavior arose; for example, while working on their
�rst story, a student may inadvertently write code that completes
another story if the stories have overlapping logic. In future o�er-
ings of the course, our work�ow should explicitly identify these
behaviors as examples or non-examples of compliance and give
speci�c guidance to avoid slipping into non-compliant behavior
“accidentally.”

More iterations may be better. Our data came from the sum-
mer o�ering of a course that is normally o�ered during the aca-
demic semester. This summer o�ering is 8 weeks long, while a fall
or spring o�ering of this course lasts for 15 weeks. Due to the short-
ened time frame for summer courses, students only participated in
a single ten-day long iteration; during a fall or spring o�ering, they
would have participated in four two-week long iterations. Partic-
ularly interesting would be observing how and whether students
on the same team who initially show varying levels of compliance
would in�uence each others’ behavior over time, and whether the
team as a whole improves or worsens over time as a result.

8 CONCLUSION
Instructors of software engineering courses want to know if stu-
dents are understanding the processes being taught. It is di�cult to
know de�nitively if students are understanding each process since
student behavior cannot be directly observed. However, we propose
that instructors can use the data exhaust from tools used by students
to know what student teams are doing. We present a recommended
work�ow for student teams that integrates project, code, and build

management tools to help students coordinate the di�cult task of
Continuous Integration. Since our work�ow attempts to connect
student actions across di�erent tools, we list several methods of
doing so and report on our results using the method of automatic
tool integration. Our results indicate that teams did follow our rec-
ommended work�ow but at various levels of compliance. Student
compliance in teams at either end of the spectrum was uniform, but
teams in the middle of the spectrum had varying levels of student
adherence. Our recommended work�ow should be expanded to
explicitly address some student behaviors we did not expect. We
hope that this work allows others to design processes similar to
ours and use our tools to come to interesting conclusions of their
own.

ACKNOWLEDGMENTS
Armando Fox provided primary guidance through this process and
o�ered valuable perspective and experience from an instructor’s
point of view. Michael Ball o�ered additional insight and gave feed-
back on earlier drafts of this paper. Cesar Garcia Pascal, Alejandro
Guerrero, Pablo Fernandez, and Antonio Ruiz-Cortez created the
EventCollector system used to collect data and the recommended
work�ow proposed to students. Jack Boreczky helped design and
develop the Pseudonymizer tool. Srujay Korlakunta facilitated our
use of data from the summer version of our course. Jack Boreczky,
Srujay Korlakunta, and Karthik Sreedhar also helped to categorize
past survey responses. Rafael Fresno also completed initial work
that laid the foundation for the EventCollector infrastructure used
in this paper.

REFERENCES
[1] [n.d.]. . Retrieved August 11, 2020 from https://www.atlassian.com/git/tutorials/

using-branches/git-merge#:~:text=A%20fast%2Dforward%20merge%20can,to%
20the%20target%20branch%20tip

[2] [n.d.]. . Retrieved August 11, 2020 from https://git-scm.com/docs/git-log
[3] [n.d.]. . Retrieved August 11, 2020 from https://git-scm.com/docs/git-merge-base
[4] Kent Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-

Wesley Longman Publishing Co., Inc.
[5] William Billingsley and Jim Steel. 2013. A Comparison of Two Iterations of a

Software Studio Course Based on Continuous Integration. In Proceedings of the
18th ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’13). Association for Computing Machinery, New York, NY, USA, 213–218.
https://doi.org/10.1145/2462476.2465592

[6] Jon Bowyer and Janet Hughes. 2006. Assessing Undergraduate Experience of
Continuous Integration and Test-Driven Development. In Proceedings of the
28th International Conference on Software Engineering (ICSE ’06). Association for
Computing Machinery, New York, NY, USA, 691–694. https://doi.org/10.1145/
1134285.1134393

[7] B. P. Eddy, N. Wilde, N. A. Cooper, B. Mishra, V. S. Gamboa, K. M. Shah, A. M.
Deleon, and N. A. Shields. 2017. A Pilot Study on Introducing Continuous
Integration and Delivery into Undergraduate Software Engineering Courses. In
2017 IEEE 30th Conference on Software Engineering Education and Training (CSEE
T). 47–56.

[8] Martin Fowler. 2006. Continuous Integration. Retrieved August 9, 2020 from
https://martinfowler.com/articles/continuousIntegration.html

[9] Armando Fox and David Patterson. 2014. Engineering Software as a Service: An
Agile Approach Using Cloud Computing (1st ed.). Strawberry Canyon LLC, San
Francisco, CA.

[10] An Ju, Adnan Hemani, Yannis Dimitriadis, and Armando Fox. 2020. What Agile
Processes Should We Use in Software Engineering Course Projects?. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for ComputingMachinery, New York, NY, USA, 643–649.
https://doi.org/10.1145/3328778.3366864

[11] William Krebs. 2002. Turning the Knobs: A Coaching Pattern for XP through
Agile Metrics. In Extreme Programming and Agile Methods — XP/Agile Universe
2002, Don Wells and Laurie Williams (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 60–69.

8

https://www.atlassian.com/git/tutorials/using-branches/git-merge#:~:text=A%20fast%2Dforward%20merge%20can,to%20the%20target%20branch%20tip
https://www.atlassian.com/git/tutorials/using-branches/git-merge#:~:text=A%20fast%2Dforward%20merge%20can,to%20the%20target%20branch%20tip
https://www.atlassian.com/git/tutorials/using-branches/git-merge#:~:text=A%20fast%2Dforward%20merge%20can,to%20the%20target%20branch%20tip
https://git-scm.com/docs/git-log
https://git-scm.com/docs/git-merge-base
https://doi.org/10.1145/2462476.2465592
https://doi.org/10.1145/1134285.1134393
https://doi.org/10.1145/1134285.1134393
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1145/3328778.3366864


How well do student so�ware engineering teams practice Continuous Integration?

[12] Todd Sedano, Paul Ralph, and Cécile Péraire. 2017. Software Development Waste.
In Proceedings of the 39th International Conference on Software Engineering (ICSE
’17). IEEE Press, 130–140. https://doi.org/10.1109/ICSE.2017.20

[13] J. G. Süß and W. Billingsley. 2012. Using continuous integration of code and
content to teach software engineering with limited resources. In 2012 34th Inter-
national Conference on Software Engineering (ICSE). 1175–1184.

9

https://doi.org/10.1109/ICSE.2017.20

	Abstract
	1 Introduction
	2 Related Works
	3 Recommended Continuous Integration Workflow
	4 Correlating Events Across Services
	5 Tools
	5.1 Motivation
	5.2 Pseudonymizer
	5.3 GitWrapper
	5.4 EventCollector

	6 Results
	6.1 Does Starting a Story Correspond With Creating a Branch?
	6.2 Does Finishing a Story Correspond With Opening a Pull Request?
	6.3 Does Delivering a Story Correspond With Merging a Pull Request?

	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References



