
Succinct Non-Interactive Arguments for Arithmetic Circuits

Nicholas Spooner

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-182
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-182.html

September 30, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Succinct Non-Interactive Arguments for Arithmetic Circuits

by

Nicholas Perry Spooner

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alessandro Chiesa, Chair
Professor Shafi Goldwasser
Professor Kenneth A. Ribet

Fall 2020

Succinct Non-Interactive Arguments for Arithmetic Circuits

Copyright © 2020

by

Nicholas Perry Spooner

1

Abstract

Succinct Non-Interactive Arguments for Arithmetic Circuits

by

Nicholas Perry Spooner
Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Alessandro Chiesa, Chair

This thesis describes a family of new constructions of “succinct” non-interactive arguments
(SNARGs) for arithmetic circuit satisfiability. An argument is a protocol by which a prover can
convince a verifier of the truth of some statement; in this work, the statement will be of the form
“there exists w such C(x,w) = 1”, where C is an arithmetic circuit. By “succinct”, we mean
that the communication is polylogarithmic in the size of C.

All of these constructions are unconditionally secure in the random oracle and quantum
random oracle models. In particular, they do not require any private setup. This is achieved
in each case by designing an interactive oracle proof and then applying a transformation of
Ben-Sasson, Chiesa and Spooner. We show that our argument systems are both asymptotically
efficient and feasible in practice, demonstrating the usefulness of this approach.

More specifically, we obtain the following.

1. A succinct non-interactive argument (AURORA) for general arithmetic circuits, with verifica-
tion time linear in the size of the circuit.

2. A succinct non-interactive argument for “structured” arithmetic circuits, with verification
time polylogarithmic in the size of the circuit.

3. A succinct non-interactive argument with preprocessing (FRACTAL) for general arithmetic
circuits, where the verification time (after offline preprocessing) is polylogarithmic in the size
of the circuit.

Professor Alessandro Chiesa
Dissertation Committee Chair

i

To Mum and Dad. (Don’t worry, you don’t have to read it.)

ii

Contents

Contents ii

List of Figures vi

1 Introduction 1
1.1 Contributions of this thesis . 2

1.1.1 Rank-1 constraint satisfiability . 3
1.1.2 Security properties . 3

1.2 Comparisons with prior work . 4
1.2.1 Transparent vs. trusted setup . 4
1.2.2 Implementations of transparent SNARGs 5

2 Technical preliminaries 8
2.1 Notation . 8

2.1.1 Codes . 8
2.2 Polynomials . 9

2.2.1 Representations of polynomials . 9
2.2.2 The fast Fourier transform . 9
2.2.3 Special polynomials . 9

2.3 Proof systems . 10
2.3.1 Interactive oracle proofs . 10
2.3.2 Zero knowledge . 12
2.3.3 Reed–Solomon encoded IOP . 13
2.3.4 Univariate rowcheck . 15

3 AURORA: an efficient IOP for R1CS 17
3.1 Contributions of this chapter . 17
3.2 Techniques . 19

3.2.1 Our interactive oracle proof for R1CS 19
3.2.2 A sumcheck protocol for univariate polynomials 20
3.2.3 Efficient zero knowledge from algebraic techniques 22
3.2.4 Perspective on our techniques . 23

3.3 Roadmap . 24
3.4 Univariate sumcheck . 24

iii

3.4.1 Zero knowledge . 27
3.4.2 Amortization . 28

3.5 Univariate lincheck . 29
3.6 An RS-encoded IOP for rank-one constraint satisfaction 32

3.6.1 Zero knowledge . 35
3.6.2 Amortization . 37

3.7 From RS-encoded provers to arbitrary provers 38
3.7.1 Zero knowledge . 42

3.8 Aurora: an IOP for R1CS . 44
3.9 libiop: a library for IOP-based SNARGs 46

3.9.1 Library for IOP protocols . 46
3.9.2 BCS transformation . 48
3.9.3 Portfolio of IOP protocols and sub-components 49

3.10 Evaluation . 49
3.10.1 Performance of Aurora . 50
3.10.2 Comparison of Ligero, Stark, and Aurora 51

4 Linear-size IOPs for delegating computation 53
4.1 Introduction . 53

4.1.1 Our results . 54
4.1.2 Limitations of prior work . 58
4.1.3 Open questions . 60

4.2 Technical overview . 60
4.2.1 Our starting point . 61
4.2.2 Checking succinctly-represented linear relations 61
4.2.3 Checking bounded-space computations in polylogarithmic time 64
4.2.4 Checking succinct satisfiability in polylogarithmic time 65
4.2.5 Oracle reductions . 66

4.3 Roadmap . 67
4.4 Oracle reductions . 67

4.4.1 Definitions . 69
4.4.2 Reed–Solomon oracle reductions . 71

4.5 Trace embeddings . 73
4.5.1 Bivariate embeddings . 74
4.5.2 Successor orderings . 76

4.6 A succinct lincheck protocol . 79
4.6.1 Properties of the Lagrange basis . 80
4.6.2 Efficient linear independence via the tensor product 82
4.6.3 Proof of Lemma 4.6.4 . 83
4.6.4 Extension to block-matrix lincheck 85

4.7 Probabilistic checking of interactive automata 87
4.7.1 Staircase matrices . 88
4.7.2 Proof of Lemma 4.7.2 . 90

4.8 Reducing machines to interactive automata 94

iv

4.8.1 Matrix permutation check protocol . 96
4.8.2 Proof of Lemma 4.8.2 . 98

4.9 Proofs of main results . 101
4.9.1 Checking satisfiability of algebraic machines 101
4.9.2 Checking satisfiability of succinct arithmetic circuits 103

5 FRACTAL: post-quantum recursive composition 105
5.1 Introduction . 105

5.1.1 Our results . 106
5.1.2 Comparison with prior work . 109

5.2 Techniques . 113
5.2.1 The role of preprocessing SNARKs in recursive composition 113
5.2.2 From holographic proofs to preprocessing with random oracles 116
5.2.3 An efficient holographic proof for constraint systems 117
5.2.4 Post-quantum and transparent preprocessing 120
5.2.5 Post-quantum and transparent recursive composition 121
5.2.6 The verifier as a constraint system . 123

5.3 Preliminaries . 124
5.3.1 Sparse representations of matrices . 124
5.3.2 Indexed relations . 125
5.3.3 Algebra . 125

5.4 Definition of holographic IOPs . 127
5.4.1 Reed–Solomon encoded holographic IOPs 128
5.4.2 Stronger notions of soundness . 130

5.5 Sumcheck for rational functions . 132
5.6 Holographic lincheck . 134

5.6.1 Holographic proof for sparse matrix arithmetization 134
5.6.2 The protocol . 136

5.7 RS-encoded holographic IOP for R1CS . 139
5.8 Holographic IOP for R1CS . 142
5.9 Definition of preprocessing non-interactive arguments in the ROM 145
5.10 From holographic IOPs to preprocessing arguments 147

5.10.1 Construction . 147
5.10.2 Completeness, efficiency, and non-adaptive zero knowledge 149
5.10.3 Non-adaptive soundness and knowledge 149
5.10.4 Classical adaptive knowledge from state restoration knowledge 151
5.10.5 Adaptive knowledge from round-by-round knowledge 154
5.10.6 Adaptive zero knowledge . 156

5.11 Recursive composition in the URS model . 157
5.11.1 Preprocessing non-interactive arguments (of knowledge) in the URS model157
5.11.2 Preprocessing PCD in the URS model 158
5.11.3 Theorem statement . 159
5.11.4 Construction and its efficiency . 160
5.11.5 Security reduction . 162

v

5.12 Implementation of recursive composition . 164
5.12.1 The preprocessing zkSNARK . 164
5.12.2 Designing the verifier’s constraint system 165

5.13 Evaluation . 174
5.13.1 Performance of the preprocessing zkSNARK 175
5.13.2 Performance of recursive composition 179

A Appendix 194
A.1 Proof of Lemma 3.4.4 . 194
A.2 Proof of Lemma 3.4.5 . 195
A.3 Additional comparisons . 195

A.3.1 Comparison of the LDTs in Ligero, Stark, and Aurora 196
A.3.2 Comparison of the IOPs in Ligero, Stark, and Aurora 196

vi

List of Figures

1.1 Asymptotic comparison of IOPs underlying Ligero, Stark and Aurora. 7
1.2 Comparison of NIZK arguments for circuits 7

3.1 Structure of our IOP for R1CS in terms of key sub-protocols. 24
3.2 Polynomials and codewords used in the IOP protocol given in Fig. 3.3. 46
3.3 Diagram of the zero knowledge IOP for R1CS that proves Theorem 3.8.2. . . . 47
3.4 Performance of Aurora. 52
3.5 Comparison of Aurora, Ligero and Stark. 52

4.1 Comparison of PCP/IOP constructions for circuit satisfiability problems. 58
4.2 Diagram of the results in this chapter. 68
4.3 Commutative diagram showing the relationship between rS and r̂S 81

5.1 Comparison of IOPs for R1CS . 109
5.2 Diagram of our methodology for recursive composition that is post-quantum and

transparent. 109
5.3 Comparison of holographic proofs for arithmetic circuit satisfiability. 110
5.4 Diagram of our RS-encoded holographic IOP for R1CS (Construction 5.7.2). . 143
5.5 We use a sponge construction to realize the hashchain in the BCS verifier. . . . 167
5.6 Diagram of a constraint system for validating an authentication path. 168
5.7 Performance of FRACTAL. 177
5.8 Comparison across several zkSNARKs for R1CS. 178
5.9 Plot showing feasibility of recursion for Fractal. 180

A.1 Parameters of the direct low-degree test and FRI low-degree test. 197
A.2 Aspects of the IOPs underlying Stark, Ligero, and Aurora. 197

vii

Acknowledgments

One man deserves the credit;
one man deserves the blame.
Nikolai Ivanovich Lobachevsky is his name!

Tom Lehrer, Lobachevsky.

If one man deserves the credit (or blame) for the existence of this thesis, that is my advisor,
Alessandro Chiesa.1 His enduring support, enthusiasm, and patience have been absolutely
invaluable throughout the six years we have worked together. Over this period he has dedicated
an enormous amount of time and energy to mentoring me, guiding me both in my research and
in my personal development as an academic. I only hope that I will be as good an advisor to my
own students as Ale has been to me.

Of course, no researcher exists in a vacuum, and I have been very fortunate to work closely
with many other fantastic co-authors: Eli Ben-Sasson, Cecilia Boschini, Benedikt Bünz, Jan
Camenisch, Michael Forbes, Lior Goldberg, Ariel Gabizon, Tom Gur, Peter Manohar, Pratyush
Mishra, Dev Ojha, Max Ovsiankin, Michael Riabzev, Madars Virza and Nick Ward. I am
particularly indebted to Eli for hosting me twice at Technion, and to Jan for supervising my
internship at IBM Research Zürich.

One of the greatest things about the Berkeley theory group is the other graduate students,
all of whom are (in my experience) both talented researchers and a fun bunch. Special thanks
go to my cohort: Arun, Chinmay2, Elizabeth, Morris, Rachel and Tarun. Sharing an office with
friends is a blessing, as are Bobby G’s trivia nights (and Arthur ♥). Thanks also to Seri for his
sage wisdom, and to Sam for finally getting the group a coffee machine (and introducing me to
bike party).

My life as a PhD student started at the University of Toronto, and it would be remiss of
me not to thank Toni Pitassi; she is an excellent advisor who fosters the best in her students,
even if that means they end up transferring to Berkeley. I had a fantastic time as part of the
UofT theory group, thanks in no small part to Noah, Robert, Lalla and Akis, who brightened our
nearly-windowless office even in the darkest Canadian winter.

One advantage of academic life is that you get to have friends in lots of places. Writing
down a list of all the people who have had a positive impact on my life so far would be impossible,
but here is an excerpt: thanks to Jason, Mark, Tom, Alex, Ning, Subin, Matt, Julia, Melissa,
Heidi, Sunoo, Mate, Helen, Pedro, Anya, Yolanda, Sybil, Ashish, Jesse, Michael, Anna, Joanna,
and Jaimie.

A very special thanks to Zoe, who has saved me from working too hard on many occasions,
who bore patiently our various ridiculous adventures around the Bay Area, and who is generally
a wonderful, kind and caring person. Thanks also to Punchy, who once saved me from working
too hard by closing my TeX editor with her nose.

1It should be noted that, to the best of my knowledge, neither he, nor I, nor the real Nikolai Lobachevsky, have
ever committed plagiarism.

2Chinmay suggested an alternative title for my thesis. I will not say what it was.

LIST OF FIGURES viii

I would not be where I am without the support of my family. Thanks to Rosie, Chris and
Odie, and to my late granddad Ken, who really wanted one of his grandchildren to be a scientist.3

Finally, there is not space enough in this entire thesis to account for how much I owe to my mum
and dad; they have been behind me every step of the way, and I am immensely grateful for that.

3He once took me to a lecture about radar engineering, where I understood absolutely nothing.

1

Chapter 1

Introduction

There is perhaps no concept more central to the study of mathematics than that of proof.
Since Euclid, proof has been the gold standard of evidence for mathematical facts, and the method
by which new mathematics is built and communicated. Traditionally, a proof is a rhetorical
device; a sequence of instructions to another mathematician which guides them convincingly
from premise to conclusion. More recently, the development of formal logic provided the tools
to study proofs as mathematical objects in themselves (which laid the foundations for the study
of computation as a mathematical object). However, the essential notion of a proof as a series of
deductions remained unchanged.

Over the past fifty years, computer science has introduced new ideas about what constitutes
a proof. One very fruitful perspective is that a proof is a sort of game between two parties,
a prover and a verifier. The prover’s aim is to convince the verifier of the truth of some
statement; the verifier’s aim is to avoid being duped. Variations on this simple idea lead to a
deep and beautiful theory of the relationship between computation and proof which underpins
computational complexity theory, including the famous P vs. NP question.

In the simplest variant, the prover writes down a proof and passes it to the verifier, who uses
an efficient algorithm to decide whether to accept it or not. Two basic properties are required:
completeness, which asserts that every true statement has a proof, and soundness, which asserts
that if the statement is false then the verifier will not accept any proof. One characterisation of
the class NP is as the set of statements which can be proved in this manner; this also corresponds
roughly to the classical notion of proof.

Of course, one might reasonably ask, why restrict ourselves to this particular type of game?
What if the verifier is allowed to flip coins, and accept a proof of a false statement with very low
probability? The set of statements that can be proved in this way equals the class MA, which is
believed to be strictly larger than NP. If we additionally allow the prover and verifier to engage
in a conversation, we get much more: this is the class IP, which is known to be equal to the set
of statements which can be decided in polynomial space, a much larger class than even MA.
Cryptographic proofs. Viewing the prover as an adversary allows us to think about proofs as
cryptographic objects, and proofs have become indispensable in modern cryptography. Moreover,
cryptography suggests further variations on the notion of proof. One very important variant,
which will be the central subject of this thesis, is a (cryptographic) argument. An argument is a
proof whose soundness relies on an assumption that the prover is computationally bounded.

CHAPTER 1. INTRODUCTION 2

This is a significant departure from the classical definition of proof. Classical (NP, even
IP) proofs have the property that the provenance of the proof is irrelevant: a proof etched on a
stone tablet by a mysterious deity is as good as a proof written by a mathematician under close
surveillance, so long as it can be verified. The mere existence of the proof is enough to convince
us; for this reason we sometimes refer to such proofs as ‘information-theoretic’. An argument
is very different: an all-powerful being might be able to fool us into believing things that are
not true. On the other hand, if we have reason to believe that the prover is more mundane, an
argument might be perfectly adequate for our purposes.

One might ask, of course: why not always use information-theoretic proofs? The answer is
that insisting on such strong soundness limits our ability to obtain proofs with useful properties.
Most importantly for this thesis, information-theoretic soundness imposes a lower bound on the
length of a proof of a given statement (under some reasonable complexity assumptions), even
when we allow for randomness and interaction. Arguments, on the other hand, can be much
shorter than this bound, a property which enables many important cryptographic applications.

1.1 Contributions of this thesis
This thesis describes a family of new constructions of “succinct” non-interactive arguments

(SNARGs) for NP. By “succinct”, we mean that the size of the argument is polylogarithmic in
the size of the nondeterministic computation being proved.

Our constructions follow the methodology introduced in [32], which builds on the classical
SNARG construction of [118]. In [32], it is shown how a certain type of information-theoretic
proof system called an interactive oracle proof (IOP) can be transformed into a SNARG with
unconditional security in the random oracle model.

While each is designed for a different use case, all of the constructions share common roots.
One important similarity as that all of them produce proofs for (some variant of) the rank-1
constraint satisfiability (R1CS) problem, a useful generalisation of arithmetic circuit satisfiability.
We outline each briefly below.

1. A succinct non-interactive argument (AURORA) for general R1CS instances, with verification
time linear in the size of the constraint system.

2. A succinct non-interactive argument for ‘structured’ R1CS instances, with verification time
polylogarithmic in the size of the constraint system.

3. A succinct non-interactive argument with preprocessing (FRACTAL) for general R1CS in-
stances, where the verification time (after offline preprocessing) is polylogarithmic in the size
of the constraint system.

These argument systems are all ‘nearly optimal’, in an asymptotic sense. For a computation of
size N (and fixed security parameter), all of the above systems have proof size polylog(N), and
the prover runs in time O(N logN). What is optimal for verification depends on the setting. For
general instances without preprocessing, the verifier must read the input, and so must run in at
least linear time; this is matched by AURORA. For ‘structured’ instances, where we describe a

CHAPTER 1. INTRODUCTION 3

computation of size N using polylog(N) bits of information, we can aim for verification time
polylog(N), as achieved by the second construction. Finally, if we are allowed to preprocess our
constraint system into a short cryptographic digest, we can similarly aim for online verification
time polylog(N), as achieved by FRACTAL.

In addition to analysing asymptotic efficiency, for both AURORA and FRACTAL we demon-
strate concrete efficiency by designing and evaluating prototypes.

The remainder of this chapter proceeds as follows. In Section 1.1.1 we describe and
motivate the R1CS problem as the “target” problem for our SNARGs. In Section 1.1.2, we
discuss the security guarantees achieved by our constructions.

1.1.1 Rank-1 constraint satisfiability
When building an argument system for NP, an important consideration is the choice of

NP-complete problem that the system ‘natively’ supports. Of course, all NP-complete problems
are equivalent under polynomial-time reductions. Yet, whether such protocols can be efficiently
used in practice actually depends on: (a) the particular NP-complete problem “supported” by
the protocol; (b) the concrete efficiency of the protocol relative to this problem. This creates a
complex tradeoff.

Simple NP-complete problems, like boolean circuit satisfaction, facilitate simple argument
systems; but reducing the statements we wish to prove to boolean circuits is often expensive. On
the other hand, one can design argument systems for rich problems (e.g., an abstract computer)
for which it is cheap to express the desired statements; but such argument systems may use
expensive tools to support these rich problems.

In this thesis we design concretely-efficient argument systems for (variants of) rank-1
constraint satisfiability (R1CS), which is the following natural NP-complete problem over a
finite field F.

Given a vector v ∈ Fk and three matrices A,B,C ∈ Fm×n, can one extend v
to z ∈ Fn (n ≥ k) such that Az ◦Bz = Cz?

Above, and throughout, we use “◦” to denote the entry-wise (Hadamard) product.
We choose R1CS because it strikes an attractive balance: it is expressive, generalising

F-arithmetic circuits via a straightforward linear-time reduction and allowing for unbounded
fan-in “sum-gates”, yet sufficiently structured to simplify protocol design. Moreover, R1CS
has demonstrated strong empirical value: it underlies real-world systems [80] and there are
compilers that reduce to it from program executions (see [149] and references therein). This has
led to efforts to standardize R1CS formats across academia and industry [156].

1.1.2 Security properties
All three constructions are obtained by applying the “BCS transformation” [32] to different

interactive oracle proofs (IOPs). The IOP model is an information-theoretic proof model
introduced by [32, 127] as an interactive generalisation of the probabilistically-checkable proof
(PCP) model [16].

CHAPTER 1. INTRODUCTION 4

It is shown in [32] that applying the BCS transformation to a sound IOP yields a sound
SNARG in the random oracle model. The resulting SNARG is unconditionally secure, in the
sense that soundness holds against even a computationally unbounded adversary provided the
number of queries the adversary can make to the random oracle is (say) polynomially bounded.
As with all constructions proven secure in the random oracle model, in order to instantiate
the construction in the real world we replace random oracle with a function we believe to be
“unstructured enough”; usually this is some keyless hash function like SHA-3.
Zero knowledge. We show that both FRACTAL and AURORA achieve zero knowledge. This
means that a party receiving a proof of a statement does not learn anything that she could not have
computed by herself, except that the statement is true. This is important in many applications,
since we often prove statements relating to secret information.
Proof of knowledge. All of our constructions achieve a stronger soundness property known as
knowledge soundness. At a high level, this means that one can not only prove that a statement
is true, but also that one “knows” why it is true. This is important for many applications where
proofs are used as part of a larger protocol; in particular, it is crucial for the application to
incrementally-verifiable computation in Chapter 5. A SNARG with knowledge soundness is
known as a SNARG of knowledge (SNARK).
Transparent setup. Since our SNARGs are unconditionally secure in the random oracle model,
they automatically achieve a desirable property known as “transparent setup”. A setup procedure
is transparent if it consists only of sampling and publishing randomness; in particular, there is
no secret randomness. This is as compared to “trusted setup”, where we require a trusted party
or protocol to produce and discard secret randomness. Avoiding the need for trusted setup is
enormously beneficial in many applications; see Section 1.2.1 for more details.
Post-quantum security. Moreover, it is shown in [67] that security also holds in the quantum
random oracle model [48]; that is, all of our SNARG constructions achieve post-quantum security.
This provides formal evidence to suggest that our constructions remain post-quantum secure
after instantiating the random oracle. This is significant, because many of the most efficient
constructions of SNARGs rely on pre-quantum assumptions.

1.2 Comparisons with prior work
We present a small survey of related work. Since the landscape of SNARGs is so vast, we

are not able to provide a full account here. Instead, we focus on constructions which are closely
related to ours; in particular, which admit reasonable quantitative comparisons. First, we discuss
one important criterion for categorising SNARGs, and then we compare related work.

1.2.1 Transparent vs. trusted setup
The first succinct argument is due to Kilian [107], who showed how to use collision-

resistant hashing to compile any Probabilistically Checkable Proof (PCP) [16, 82, 11, 10]
into a corresponding interactive argument. Micali showed how a similar construction, in the
random oracle model, yields succinct non-interactive arguments (SNARGs) [118]. Subsequent

CHAPTER 1. INTRODUCTION 5

work showed that Micali’s construction preserves a PCP’s zero knowledge [104] and proof of
knowledge [144] properties. However PCPs remain expensive, and this approach has not led to
SNARGs with good concrete efficiency.

In light of this, a different approach was initially used to achieve SNARG implementations
with good concrete efficiency [124, 29]. This approach, pioneered in [94, 87, 113, 46], relied on
combining certain linearly homomorphic encodings with lightweight information-theoretic tools
known as linear PCPs [103, 46, 136]; this approach was refined and optimized in several works
[34, 33, 74, 95, 49, 97]. These constructions underlie widely-used open-source libraries [131]
and deployed systems [80], and their main feature is that proofs are very short (a few hundred
bytes) and very cheap to verify (a few milliseconds).

Unfortunately, the foregoing approach suffers from a severe limitation, namely, the need
for a central party to generate system parameters for the argument system. Essentially, this party
must run a probabilistic algorithm, publish its output, and “forget” the secret randomness used to
generate it. This party must be trustworthy because knowing these secrets allows forging proofs
for false assertions. While this may sound like an inconvenience, it is a colossal challenge to
real-world deployments. When using cryptographic proofs in distributed systems, relying on a
central party negates the benefits of distributed trust and, even though it is invoked only once in a
system’s life, a party trusted by all users typically does not exist!

The responsibility for generating parameters can in principle be shared across multiple
parties via techniques that leverage secure multi-party computation [31, 52, 53]. This was the
approach taken for the launch of Zcash [1], but it also demonstrated how unwieldy such an
approach is, involving a costly and logistically difficult real-world multi-party “ceremony”.
Successfully running such a multi-party protocol was a singular feat, and systems without such
expensive setup are decidedly preferable.

Some setup is unavoidable because if SNARGs without any setup existed then so would
sub-exponential algorithms for SAT [150]. Nevertheless, one may still aim for a “transparent
setup”, namely one that consists of public randomness, because in practice it is cheaper to realize.
Recent efforts have thus focused on designing SNARGs with transparent setup, as we discuss in
the next section. Note that all of our constructions fall into this category.

1.2.2 Implementations of transparent SNARGs
For purposes of comparison with our constructions, we summarize prior work that has

both designed and implemented transparent SNARGs; see Fig. 1.2 for a table. For a broader
discussion of sublinear arguments, we refer the interested reader to the excellent survey of
Walfish and Blumberg [149]. 1

Based on group-theoretic cryptography. Bulletproofs [50, 56] proves the satisfaction of an
N -gate arithmetic circuit via a recursive use of a low-communication protocol for inner products,
achieving a proof with O(logN) group elements. Hyrax [148] proves the satisfaction of a
layered arithmetic circuit of depth D and width W via proofs of O(D logW) group elements;

1We also note that recent work [19] has used lattice cryptography to achieve sublinear zero knowledge arguments
that are plausibly post-quantum secure, which raises the exciting question of whether these recent protocols can
lead to efficient implementations.

CHAPTER 1. INTRODUCTION 6

the construction applies the Cramer–Damgård transformation [75] to doubly-efficient Interactive
Proofs [90, 73]. Both approaches use Pedersen commitments, and so are vulnerable to quantum
attacks. Also, in both approaches the verifier performs many expensive cryptographic operations:
in the former, the verifier uses O(N) group exponentiations; in the latter, the verifier’s group
exponentiations are linear in the circuit’s witness size. (Hyrax allows fewer group exponentiations
but with longer proofs; see [148].)
Based on symmetric cryptography. The “original” SNARG construction of Micali [118, 104]
has advantages beyond transparency. First, it is unconditionally secure given a random oracle,
which can be instantiated with fast symmetric cryptography.2 Second, it is known to be post-
quantum secure [67]. But the construction relies on PCPs, which remain expensive.

IOPs are “multi-round PCPs” that can also be compiled into non-interactive arguments in
the random oracle model [32]. This compilation retains the foregoing advantages (transparency,
lightweight cryptography, and plausible post-quantum security) and, in addition, facilitates
greater efficiency, as IOPs have superior efficiency compared to PCPs [26, 24, 21, 22, 23].

In this thesis we follow the above approach, by constructing zkSNARKs based on three
new IOP protocols. Two recent works have also taken the same approach, but with different
underlying IOP protocols, which have led to different features. We provide both of these
works as part of our library (Section 3.9), and experimentally compare them with our protocol
(Section 5.13). The discussion below is a qualitative and asymptotic comparison.

• Ligero [9] is a transparent SNARK that proves the satisfiability of an N -gate circuit via proofs
of size O(

√
N) that can be verified in O(N) cryptographic operations. The most natural point

of comparison is therefore AURORA. As summarized in Fig. 1.1, the IOP underlying Ligero
achieves the same oracle proof length, prover time, and verifier time as the AURORA IOP.
However, the query complexity (strictly, symbol size) of AURORA is exponentially smaller,
at the expense of increasing round complexity from 2 to O(logN). The arguments that we
obtain are still non-interactive; our smaller query complexity translates into shorter proofs
(see Fig. 1.2).

• Stark [23] is a transparent SNARK for bounded halting problems on a random access machine.
Given a program P and a time bound T , it proves that P accepts within T steps on a
certain abstract computer (when given suitable nondeterministic advice) via succinct proofs
of size polylog(T). Moreover, verification is also succinct: checking a proof takes time only
|P | + polylog(T), which is polynomial in the size of the statement and much better than
“naive verification” which takes time Ω(|P |+ T).

The natural comparison here is with our SNARG for structured R1CS instances, since this also
targets succinctly-represented computation. In this context, both our SNARG and the Stark
system achieve polylogarithmic verification. However, while Stark achieves O(T log T) proof
length, Õ(T log2 T) prover time, and logarithmic query and round complexity, our SNARG
improves on all of these by a factor of log T , achieving linear proof length, Õ(T log T) prover
time, and constant query and round complexity.

2Some cryptographic hash functions, such as BLAKE2, can process almost 1 gibibyte per second [14].

CHAPTER 1. INTRODUCTION 7

• Supersonic [58] is a transparent preprocessing SNARK for arithmetic circuits. It differs from
the two constructions above, and from ours, in that the transformation from (polynomial) IOP
to SNARK uses a polynomial commitment based on the adaptive root assumption in class
groups, rather than a Merkle tree commitment as in [32]. This leads to an order of magnitude
improvement in proof size versus Fractal, at the cost of a significantly slower prover and loss
of post-quantum security.

protocol round proof length query prover time verifier time
type complexity (field elts) complexity (field ops) (field ops)

Ligero IPCP † 2 O(N) O(
√
N) O(N logN) O(N)

Stark IOP O(logN) O(N logN) O(logN) O(N log2N) O(N)

Aurora IOP O(logN) O(N) O(logN) O(N logN) O(N)

Figure 1.1: Asymptotic comparison of the information-theoretic proof systems underlying
Ligero, Stark, and Aurora, when applied to an N -gate arithmetic circuit.
† An IPCP [106] is a PCP oracle that is checked via an Interactive Proof; it is a special case
of an IOP.

post argument size verifier
name setup quantum? asymptotic N = 106 time

[94][87]
[113][46]...

various private no Oλ(1) 128 B Oλ(k) †

[154] ZK-vSQL private no Oλ(d logN) N/A Oλ(N)
[148] Hyrax public no Oλ(d logN) ‡ 50 kB Oλ(N)
[50] [56] Bulletproofs public no Oλ(logN) 1.5 kB Oλ(N)
[58] Supersonic public no Oλ(logN) 10 kB Oλ(logN) †
[9] Ligero public yes Oλ(

√
N) 4.0 MB Oλ(N)

[23] Stark public yes Oλ(log2N) 3.2 MB Oλ(N)

this work Aurora public yes Oλ(log2N) 110 kB Oλ(N)

this work Fractal public yes Oλ(log2N) 160 kB Oλ(log2N) †

Figure 1.2: Comparison of some non-interactive zero knowledge arguments for proving
statements of the form “there exists a secret w such that C(x,w) = 1” for a given explicit
arithmetic circuit C of N gates (and depth d) and public input x of size k. The table is
grouped by “technology”, and for simplicity assumes that the circuit’s underlying field has
size 2O(λ) where λ is the security parameter. Approximate argument sizes are given for
N = 106 gates over a cryptographically-large field, and a security level of 128 bits; some
argument sizes may differ from those reported in the cited works because size had to be
re-computed for the security level and N used here; also, [154] reports no implementation.
† Given a per-circuit preprocessing step.
‡ A tradeoff between argument size and verifier time is possible; see [148].

8

Chapter 2

Technical preliminaries

2.1 Notation
Given a relationR ⊆ S×T , we denote by L(R) ⊆ S the set of s ∈ S such that there exists

t ∈ T with (s, t) ∈ R; for s ∈ S, we denote by R|s ⊆ T the set {t ∈ T : (s, t) ∈ R}. Given a
set S and strings v, w ∈ Sn for some n ∈ N, the fractional Hamming distance ∆(v, w) ∈ [0, 1]
is ∆(v, w) := 1

n
|{i : vi 6= wi}|.

We denote the concatenation of two vectors u1, u2 by u1‖u2, and the concatenation of two
matrices A,B by [A|B].

All fields F in this thesis are finite, and we denote the finite field of size q by Fq. We say that
H is a subgroup in F if it is either a subgroup of (F,+) (an additive subgroup) or of (F \ {0},×)
(a multiplicative subgroup); we say that H is a coset in F if it is a coset of a subgroup in F
(possibly the subgroup itself).

2.1.1 Codes

Interleaved codes. Given linear codes C1, . . . , Cm ⊆ Fn with alphabet F, we denote by∏m
i=1 Ci ⊆ (Fm)n ≡ Fm×n the linear “interleaved” code with alphabet Fm that equals the set

of all m × n matrices whose i-th row is in Ci. If C1 = · · · = Cm, we write Cm for
∏m

i=1 Ci.
Since the alphabet is Fm, the Hamming distance is taken column-wise: for A,A′ ∈ Fm×n,
∆(A,A′) := 1

n
|{j ∈ [n] : ∃ i ∈ [m] s.t. Ai,j 6= A′i,j}|.

The Reed–Solomon code. Given a subset L of a field F and ρ ∈ (0, 1], we denote by
RS [L, ρ] ⊆ FL all evaluations over L of univariate polynomials of degree less than ρ|L|.
That is, a word c ∈ FL is in RS [L, ρ] if there exists a polynomial p of degree less than ρ|L|
such that ca = p(a) for every a ∈ L. We denote by RS [L, (ρ1, . . . , ρn)] :=

∏n
i=1 RS [L, ρi] the

interleaving of Reed–Solomon codes with rates ρ1, . . . , ρn.

CHAPTER 2. TECHNICAL PRELIMINARIES 9

2.2 Polynomials

2.2.1 Representations of polynomials
We frequently move from univariate polynomials over F to their evaluations on chosen

subsets of F, and back. We use plain letters like f, g, h, π to denote evaluations of polynomials,
and “hatted letters” f̂ , ĝ, ĥ, π̂ to denote corresponding polynomials. This bijection is well-defined
only if the size of the evaluation domain is larger than the degree. Formally, if f ∈ RS [L, ρ] for
L ⊆ F, ρ ∈ (0, 1], then f̂ is the unique polynomial of degree less than ρ|L| whose evaluation on
L equals f . Likewise, if f̂ ∈ F[X] with deg(f) < ρ|L|, then fL := f̂ |L ∈ RS [L, ρ] (but we will
drop the subscript when the choice of subset is clear from context).

2.2.2 The fast Fourier transform
We often rely on polynomial arithmetic, which can be efficiently performed via fast Fourier

transforms and their inverses. In particular, polynomial evaluation and interpolation over an
(affine) subspace of size n of a finite field can be performed in O(n log n) field operations via
an additive FFT [110]. Because in practice the number of FFTs we perform is important, when
discussing complexities we use the notation FFT(F,m) for the cost of a single additive FFT (or
IFFT) on a subspace of F of size m.

Remark 2.2.1. Strictly, an additive FFT evaluates a polynomial of degree d on a subspace of
size d+ 1. To evaluate on a larger subspace (of size n), one can run an FFT over each coset of
the smaller space inside the larger one at a cost of n

d
·O(d log d) = O(n log d). We will suppress

this technicality when it appears, and upper bound the cost of such an evaluation by an FFT on a
subspace of size n.

2.2.3 Special polynomials

Vanishing polynomials. Let F be a finite field, and S ⊆ F. We denote by ZS the unique
non-zero monic polynomial of degree at most |S| that is zero everywhere on S; ZS is called the
vanishing polynomial of S. In this work we use efficiency properties of vanishing polynomials
for sets S that have group structure.

If S is a multiplicative subgroup of F, then ZS(X) = X |S| − 1, and so ZS(X) can be
evaluated at any α ∈ F in O(log |S|) field operations. More generally, if S is a γ-coset of a
multiplicative subgroup S0 (namely, S = γS0) then ZS(X) = γ|S|ZS0(X/γ) = X |S| − γ|S|.

If S is an (affine) subspace of F, then ZS is called an (affine) subspace polynomial. In
this case, there exist coefficients c0, . . . , ck ∈ F, where k := dim(S), such that ZS(X) =
Xpk +

∑k
i=1 ciX

pi−1
+ c0 (if S is linear then c0 = 0). Hence, ZS(X) can be evaluated at

any α ∈ F in O(k log p) = O(log |S|) operations. Such polynomials are called linearized
because they are Fp-affine maps: if S = S0 + γ for a subspace S0 ⊆ F and shift γ ∈ F, then
ZS(X) = ZS0(X − γ) = ZS0(X) − ZS0(γ), and ZS0 is an Fp-linear map. The coefficients
c0, . . . , ck can be derived from a description of S (any basis of S0 and the shift γ) in O(k2 log p)
field operations (see [108, Chapter 3.4] and [27, Remark C.8]).

CHAPTER 2. TECHNICAL PRELIMINARIES 10

Lagrange polynomials. For F a finite field, S ⊆ F, a ∈ S, we denote by LS,a the unique
polynomial of degree less than |S| such that LS,a(a) = 1 and LS,a(b) = 0 for all b ∈ S \ {a}.
Note that

LS,a(X) =

∏
b∈S\{a}(X − b)∏
b∈S\{a}(a− b)

=
L′S(X)

L′S(a)
,

where L′S(X) is the polynomial ZS(X)/(X − a). For additive and multiplicative subgroups
S and a ∈ S, we can evaluate LS,a(X) at any α ∈ F in polylog(|S|) field operations. This is
because an arithmetic circuit for L′S can be efficiently derived from an arithmetic circuit for ZS
[138].

2.3 Proof systems
Much of this work is about interactive oracle proofs (IOPs), and variants thereof. In this section
we formally define IOPs and describe relevant properties and complexity measures.

2.3.1 Interactive oracle proofs
Interactive Oracle Proofs (IOPs) [32, 127] combine aspects of Interactive Proofs [15, 91]

and Probabilistically Checkable Proofs [16, 11, 10], and also generalize the notion of Interactive
PCPs [106].

A k-round public-coin IOP has k rounds of interaction. In the i-th round of interaction,
the verifier sends a uniformly random message mi to the prover; then the prover replies with a
message πi to the verifier. After k rounds of interaction, the verifier makes some queries to the
oracles it received and either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness error ε is a pair
(P,V), where P,V are probabilistic algorithms, that satisfies the following properties. (See
[32, 127] for details.)

Completeness: For every instance-witness pair (x,w) in the relation R, (P(x,w),V(x)) is a
k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃, (P̃,V(x)) is a
k(n)-round interactive oracle protocol with accepting probability at most ε(n).

Like the IP model, a fundamental measure of efficiency is the round complexity k. Like the
PCP model, two additional fundamental measures of efficiency are the proof length p, which is
the total number of alphabet symbols in all of the prover’s messages, and the query complexity q,
which is the total number of locations queried by the verifier across all of the prover’s messages.

We say that an IOP system is non-adaptive if the verifier queries are non-adaptive, namely,
the queried locations depend only on the verifier’s inputs and its randomness. All of our IOP
systems will be non-adaptive.

Since the verifier is public coin, its behavior in the interactive part of the protocol is easy to
describe. We can therefore think of V as a randomized algorithm which, given its prior random

CHAPTER 2. TECHNICAL PRELIMINARIES 11

messages and oracle access to the prover’s messages, makes queries to the prover’s messages
and either accepts or rejects.

The foregoing division allows us to separately consider the randomness and soundness
error for these two phases, which is useful for a more fine-grained soundness-error reduction.
Letting ri and rq be the randomness complexities of interaction and query phases respectively,
the quantities εi and εq satisfy the following relation (for all instances x /∈ L(R) and malicious
provers P̃):

Pr

[
Pr

r←{0,1}rq
[V~π(x,m1, . . . ,mk; r) = 1] ≥ εq

∣∣∣∣
(m1, . . . ,mk)← {0, 1}ri

π1, . . . , πk ← (P̃ , (m1, . . . ,mk))

]
≤ εi .

That is, the probability that random messages make V accept with probability at least εq (over
internal randomness) is at most εi. In particular, the overall soundness error is at most εi + εq.
Note that an IOP with εi = 0 is a PCP, an IOP with εq = 0 is an IP, and an IOP with both
εi = εq = 0 is a deterministic (NP) proof.

Given the above, consider a “semi-black-box” example of soundness-error reduction: the
interactive phase is run once, and then we repeat the query phase ` times with fresh randomness.
This yields an IOP with query complexity ` · q, randomness complexity ri + ` · rq, and soundness
error εi + ε`q, but with the same proof length and number of rounds. The running time of the
prover is unchanged, and the verifier runs in time O(` · tV). By comparison, repetition of the
entire protocol yields proof length ` · p and ` · k rounds, for soundness error (εi + εq)

`; the prover
runs in time O(` · tP) and the verifier in time O(` · tV).
Proof of knowledge. The IOP protocols presented in this paper satisfy a stronger notion
of soundness called proof of knowledge: if a prover algorithm P̃ convinces the verifier with
sufficiently high probability, it is possible to efficiently extract a witness from P̃ . In order to
give a formal definition, we define the quantity wR(n) := max{|w| : (x,w) ∈ R, |x| = n}, the
maximum witness length for an instance of length n.

Proof of knowledge: There exists a probabilistic polynomial-time algorithm E such that for
every instance x and unbounded malicious prover P̃ that makes V accept with probability
µ, EP̃ (x, 1wR(n)) outputs w such that (x,w) ∈ R with probability at least µ− ε(n).

2.3.1.1 IOPs of proximity

An IOP of Proximity extends an IOP the same way that PCPs of Proximity extend PCPs.
An IOPP system for a relation R with round complexity k, soundness error ε, and proximity
parameter δ is a pair (P, V) that satisfies the following properties.

Completeness: For every instance-witness pair (x,w) in the relationR, (P (x,w), V w(x)) is a
k(n)-round interactive oracle protocol with accepting probability 1.

Soundness: For every instance-witness pair (x,w) with ∆(w,R|x) ≥ δ(n) and unbounded
malicious prover P̃ , (P̃ , V w(x)) is a k(n)-round interactive oracle protocol with accepting
probability at most ε(n).

CHAPTER 2. TECHNICAL PRELIMINARIES 12

Efficiency measures for IOPPs are as for IOPs, except that we also count queries to the witness.
Namely, if V makes at most qw queries to w and at most qπ queries across all prover messages,
the query complexity is q := qw + qπ. Like with IOPs, we divide public-coin IOPPs into an
interaction phase and a query phase.
Low-degree testing. For the purposes of this paper, a low-degree test is an IOPP for the
Reed–Solomon relation RRS := {((L, ρ), p) : L ⊆ F, ρ ∈ (0, 1], p ∈ RS [L, ρ]}. In this case ε
and δ are functions of ρ.

2.3.2 Zero knowledge
The definitions of unconditional (perfect) zero knowledge that we use for IOPs and for

IOPPs follow those in [92, 105, 24]. We first define the notion of a view and of straightline
access; after that we define zero knowledge for IOPs and for IOPPs in a way that suffices for our
purposes.

Definition 2.3.1. Let A,B be algorithms and x, y strings. We denote by View (B(y), A(x)) the
view ofA(x) in an interactive oracle protocol withB(y), i.e., the random variable (x, r, a1, . . . , an)
where x is A’s input, r is A’s randomness, and a1, . . . , an are the answers to A’s queries into
B’s messages.

Definition 2.3.2. An algorithm B has straightline access to an algorithm A if B interacts with
A, without rewinding, by exchanging messages with A and answering any oracle queries along
the way.

We denote by BA the concatenation of A’s random tape and B’s output when it has
straightline access to A. (Since A’s random tape could be super-polynomially large, B cannot
sample it for A and then output it; instead, we restrict B to not see it, and we prepend it to B’s
output.)

For IOPs, we consider unconditional (perfect) zero knowledge against bounded-query
verifiers.

Definition 2.3.3. An IOP system (P,V) for a relationR is (perfect) zero knowledge against
query bound b if there exists a simulator algorithm S such that for every b-query algorithm
Ṽ and instance-witness pair (x,w) ∈ R, SṼ(x) and View (P(x,w), Ṽ(x)) are identically
distributed. (An algorithm is b-query if, on input x, it makes at most b(|x|) queries to any oracles
it has access to.) Moreover, S must run in time poly(|x|+ qṼ(|x|)), where qṼ(·) is Ṽ’s query
complexity.

For zero knowledge against arbitrary polynomial-time adversaries, it suffices for b to be
superpolynomial. Note that S’s running time is required to be polynomial in the input size
|x| and the actual number of queries Ṽ makes (as a random variable) and, in particular, may
be polynomial even if b is not. We do not restrict Ṽ to make queries only at the end of the
interaction; all of our protocols will be zero knowledge against the more general class of verifier
that can, at any time, make queries to any oracle it has already received.

For IOPPs, we consider unconditional (perfect) zero knowledge against unbounded-query
verifiers.

CHAPTER 2. TECHNICAL PRELIMINARIES 13

Definition 2.3.4. An IOPP system (P, V) for a relationR is (perfect) zero knowledge against
unbounded queries if there exists a simulator algorithm S such that for every algorithm Ṽ
and instance-witness pair (x,w) ∈ R, the following two random variables are identically
distributed: (

SṼ ,w(x) , qS

)
and

(
View (P (x,w), Ṽ w(x)) , qṼ

)
,

where qS is the number of queries to w made by S, and qṼ is the number of queries to w or to
prover messages made by Ṽ . Moreover, S must run in time poly(|x|+ qṼ(|x|)), where qṼ(·) is
Ṽ’s query complexity.

2.3.3 Reed–Solomon encoded IOP
We typically first describe IOPs for which soundness only holds against provers whose mes-

sages are Reed–Solomon codewords of specified rates and on which certain rational constraints
hold, and later “compile” them into standard IOPs.1 This facilitates focusing on a protocol’s key
ideas, and leaves handling provers that do not respect this restriction to generic tools.

Later in this thesis we consider two incomparable generalizations of RS-encoded IOPs. In
Section 4.4, we define oracle reductions, which aim to capture a wide class of reductions between
protocols in the IOP setting. In the language of oracle reductions, an RS-IOP is a reduction
to univariate low-degree testing. In Section 5.4, we define RS-encoded holographic IOPs (RS-
hIOPs), which generalize RS-IOPs to a preprocessing setting. Nonetheless, we believe the basic
definition is informative, since it captures the core idea with minimal additional complications.

Returning to the matter at hand, we first define what we mean by a rational constraint.

Definition 2.3.5. A rational constraint is a pair (C, σ) where C = (N,D), N : F1+` → F,
D : F → F are arithmetic circuits and σ ∈ (0, 1] is a rate parameter. A rational constraint
(C, σ) and an interleaved word f ∈ (L → F)` jointly define a codeword C[f] : L → F, given
by C[f](α) := N(α,f1(α),...,f`(α))

D(α)
for all α ∈ L. A rational constraint (C, σ) is satisfied by f if

C[f] ∈ RS [L, σ].2

A Reed–Solomon encoded IOP (RS-encoded IOP) for a relation R is a tuple (P, V, (~ρi)
k
i=1),

where P and V are probabilistic algorithms and ~ρ1 ∈ (0, 1]`1 , . . . , ~ρk ∈ (0, 1]`k , that satisfies the
following properties.

Completeness: For every instance-witness pair (x,w) in the relation R, (P (x,w), V (x)) is a
k(n)-round interactive oracle protocol, where the i-th message of P is a codeword of
RS [L, ~ρi], and V outputs a set of rational constraints that are satisfied with respect to the
prover’s messages with probability 1.

1Rational constraints enable us to capture useful optimizations that involve testing “virtual oracles” implicitly
derived from oracles sent by the prover. Such optimizations reduce argument size in the resulting zkSNARKs as
discussed, e.g., in [23].

2For α ∈ L, if D(α) = 0 then we define C[f](α) := ⊥. Note that if this holds for some α ∈ L then, for any
word f and rate parameter σ, the rational constraint (C, σ) is not satisfied by f ; in particular, the completeness
condition does not hold.

CHAPTER 2. TECHNICAL PRELIMINARIES 14

Soundness: For every instance x /∈ L(R) and unbounded malicious prover P̃ whose i-th
message is a codeword of RS [L, ~ρi], (P̃ , V (x)) is a k(n)-round interactive oracle protocol
wherein the set of rational constraints output by V are satisfied with respect to the prover’s
messages with probability at most ε(n).

All RS-encoded IOPs that we consider also satisfy a proof of knowledge property.

Proof of knowledge: There exists a probabilistic polynomial-time algorithm E such that for
every instance x and unbounded malicious prover P̃ , whose i-th message is a codeword
of RS [L, ~ρi], that makes V output satisfiable rational constraints with probability µ,
EP̃ (x, 1wR(n)) outputs w such that (x,w) ∈ R with probability at least µ− ε(n).

A useful complexity measure of a Reed–Solomon encoded IOP is its maximum rate, which
informally is the maximum over the (prescribed) rates of codewords sent by the prover and those
induced by the verifier’s rational constraints. To formally define it, we need to first introduce the
degree and rate of a circuit.

Definition 2.3.6. The degree of an arithmetic circuitC : F1+` → F on input degrees d1, . . . , d` ∈
N, denoted deg(C; d1, . . . , d`), is the smallest integer e such that for all pi ∈ F≤di [X] there exists
a polynomial q ∈ F≤e[X] such that C(X, p1(X), . . . , p`(X)) ≡ q(X). Given domain L ⊆ F
and rates ~ρ ∈ (0, 1]`, the rate of C is rate(C; ~ρ) := deg(C; ρ1|L|, . . . , ρ`|L|)/|L|. (The domain
L will be clear from context.) Note that if ` = 0 then the foregoing notion of degree coincides
with the usual one (namely, deg(C) is the degree of the polynomial described by C), and the
foregoing notion of rate is simply rate(C) := deg(C)/|L|.

A Reed–Solomon encoded IOP (P, V, (~ρi)
k
i=1) has maximum rate (ρc, ρe) if:

• ρc (constraint rate) is (at least) the maximum among the rates in ~ρ := (~ρi)
k
i=1 and the rates in

{σ : C ∈ V , (C, σ) ∈ C};

• ρe (effective rate) is (at least) the maximum among ρc and the rates in {rate(N ; ~ρ), σ +
rate(D) : C ∈ V , (C, σ) ∈ C}.

Note that ρc ≤ ρe. The definition of ρe may appear mysterious, but it is naturally motivated by
the proof of Theorem 3.7.1.

Remark 2.3.7. The model of RS-encoded IOPs does not forbid the verifier from making queries
to messages. However, in all of our protocols to achieve soundness it suffices for the rational
constraints output by the verifier to be satisfied (and so the verifier does not make any queries). For
this reason, we do not consider query complexity when discussing RS-encoded IOPs. Naturally,
after we “compile” an RS-encoded IOP into a corresponding (regular) IOP, the resulting verifier
will make queries to the proof; for details, see Section 3.7.

CHAPTER 2. TECHNICAL PRELIMINARIES 15

2.3.3.1 Proximity

In an RS-encoded IOP of Proximity (RS-encoded IOPP), soundness must hold only if
prover messages are Reed–Solomon codewords and the witness is a tuple of Reed–Solomon
codewords. Formally, a Reed–Solomon IOPP system for a relationR ⊆ {0, 1}n × RS [L, ~ρw] is
a tuple (P, V, (~ρi)

k
i=1), where P and V are probabilistic algorithms, that satisfies the properties

below. Note that the rational constraints output by the verifier may now also take the witness as
input; the definition of maximum rate is modified accordingly.

Completeness: For every instance-witness pair (x,w) in the relationR, (P (x,w), V w(x)) is a
k(n)-round interactive oracle protocol with accepting probability 1, where the i-th message
of P is a codeword of RS [L, ~ρi], and V outputs a set of rational constraints that are satisfied
with respect to the witness and the prover’s messages with probability 1.

Soundness: For every instance-witness pair (x,w) with w ∈
(
RS [L, ~ρw] \R|x

)
and unbounded

malicious prover P̃ whose i-th message is a codeword of RS [L, ~ρi], (P̃ , V w(x)) is a
k(n)-round interactive oracle protocol wherein the set of rational constraints output by V
are satisfied with respect to the witness and the prover’s messages with probability at most
ε(n).

While the soundness condition does not consider “distance” of candidate witnesses toR|x
(as in Section 2.3.1.1), we think of the notion above as an IOPP because soundness holds with
respect to a particular witness provided as an oracle to the verifier. (This is analogous to “exact”
PCPPs in [105].)

2.3.3.2 Zero knowledge

The definition of zero knowledge for RS-encoded IOPs (resp., RS-encoded IOPPs) equals
that for IOPs (resp., IOPPs). This is because the definitions of RS-encoded IOPs and (standard)
IOPs differ only in the soundness condition. Note that while the honest verifiers that we consider
never make queries, a malicious verifier may do so. Indeed, we must allow malicious verifiers
to make queries in order to “lift” zero knowledge guarantees from an RS-encoded IOP to a
corresponding (regular) IOP, and thereby achieve the notion of zero knowledge against a given
query bound b stated in Section 2.3.2. We further note that the structure of the compiler that
performs this lifting (see Section 3.7) motivates a definition of query bound b that can lead to
more efficient constructions. Namely, since all of the prover messages and witnesses are over the
same domain L, we merely count the number of distinct queries to this common domain, i.e., if
a malicious verifier queries multiple prover messages (or witnesses) at the same position α ∈ L,
we consider it a single query.

2.3.4 Univariate rowcheck
We describe univariate rowcheck, a noninteractive RS-encoded IOPP for simultaneously

testing satisfaction of a given arithmetic constraint on a large number of inputs. The next
definition captures this.

CHAPTER 2. TECHNICAL PRELIMINARIES 16

Definition 2.3.8 (rowcheck relation). The relationRROW is the set of all pairs
(

(F, L,H, ρ,w, c) , (f1, . . . , fw)
)

where F is a finite field, L,H are affine subspaces of F with L ∩H = ∅, ρ ∈ (0, 1), w ∈ N, c is
an arithmetic circuit, f1, . . . , fw ∈ RS [L, ρ], and ∀ a ∈ H , c(f̂1(a), . . . , f̂w(a)) = 0.

Standard techniques for testing membership in the vanishing subcode of the Reed–Solomon
code [41] directly imply a non-interactive RS-encoded IOPP for the above rowcheck relation.
Namely, the system of equations {c(f̂1(a), . . . , f̂w(a)) = 0}a∈H is equivalent via the factor theo-
rem to the statement “there exists g ∈ RS[L, deg(c)ρ−|H|/|L|] such that ĝ(X) ·

∏
a∈H (X − a)

≡ c(f̂1(X), . . . , f̂w(X))”. Therefore, the prover could send g to the verifier, who could proba-
bilistically check the identity at a random point of L, with a soundness error of deg(c)ρ. In fact,
within the formalism of RS-encoded IOPPs (and given that L ∩H = ∅) there is no need for the
prover to send anything: the verifier can simply check that p ∈ RS[L, deg(c)ρ − |H|/|L|] for
the function p : L→ F defined by

∀ a ∈ L , p(a) :=
c(f̂1(a), . . . , f̂w(a))

ZH(a)
.

The maximum rate for the foregoing RS-encoded IOPP is (ρc, ρe) = (max{ρ, deg(c)ρ −
|H|/|L|}, deg(c) · ρ). Note that the verifier can simulate oracle access to the function p when
given oracle access to the witness oracles f1, . . . , fw. Each query to p requires evaluating the
arithmetic circuit c and the vanishing polynomial ZH . Throughout, we directly use the above
ideas without encapsulating them in “rowcheck sub-protocols”.

17

Chapter 3

AURORA: an efficient IOP for R1CS

In this chapter we present AURORA, a zero knowledge SNARG of knowledge (zkSNARK)
for (an extension of) arithmetic circuit satisfiability whose argument size is polylogarithmic
in the circuit size. Aurora also has attractive features: it uses a transparent setup, is plausibly
post-quantum secure, and only makes black-box use of fast symmetric cryptography (any
cryptographic hash function modeled as a random oracle).

Our work makes an exponential asymptotic improvement in argument size over Ligero [9],
a recent zero knowledge non-interactive argument with similar features but where proofs scale as
the square root of the circuit size. For example, Aurora’s proofs are 30× smaller than Ligero’s
for circuits with a million gates (which already suffices for representative applications such as
Zcash).

Our work also complements and improves on Stark [23], a recent zkSNARK that targets
computations expressed as bounded halting problems on random access machines. While Stark
was designed for a different computation model, we can still study its efficiency when applied to
arithmetic circuits. In this case Aurora’s prover is faster by a logarithmic factor (in the circuit
size) and Aurora’s proofs are concretely much shorter, e.g., 20× smaller for circuits with a
million gates.

The efficiency features of Aurora stem from a new Interactive Oracle Proof (IOP) that solves
a univariate analogue of the important sumcheck problem [115], in which query complexity is
logarithmic in the degree of the summand polynomial. This is an exponential improvement over
the original multi-variate protocol, where communication complexity is (at least) linear in the
degree of the polynomial. We believe this protocol and its analysis are of independent interest.

3.1 Contributions of this chapter
We present several contributions: (1) an IOP protocol for R1CS with attractive efficiency

features; (2) design, implementation, and evaluation of a transparent zkSNARK for R1CS, based
on this IOP; (3) a library for writing IOP-based non-interactive arguments. We now describe
each contribution.
(1) IOP for R1CS. We construct a zero knowledge IOP protocol for rank-1 constraint satisfac-
tion (R1CS) with linear proof length and logarithmic query complexity.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 18

Given an R1CS instance C = (A,B,C) withA,B,C ∈ Fm×n, we denote byN = Ω(m+n)
the total number of non-zero entries in the three matrices and by |C| the number of bits required
to represent these; note that |C| = Θ(N log |F|). One can view N as the number of “arithmetic
gates” in the R1CS instance.

Theorem 3.1.1 (informal). There is an O(logN)-round IOP protocol for R1CS with proof
length O(N) over alphabet F and query complexity O(logN). The prover uses O(N logN)
field operations, while the verifier uses O(N) field operations. The IOP protocol is public coin
and is a zero knowledge proof of knowledge.

The core of our result is a solution to a univariate analogue of the classical sumcheck
problem [115]. Our protocol (including zero knowledge and soundness error reduction) is
relatively simple: it is specified in a single page (see Fig. 3.3 in Section 3.8), given a low-degree
test as a subroutine. The low degree test that we use is a recent highly-efficient IOP for testing
proximity to the Reed–Solomon code [22].
(2) zkSNARK for R1CS. We design, implement, and evaluate Aurora, a zero knowledge
SNARG of knowledge (zkSNARK) for R1CS with several notable features: (a) it only makes
black-box use of fast symmetric cryptography (any cryptographic hash function modeled as a
random oracle); (b) it has a transparent setup (users merely need to “agree” on which crypto-
graphic hash function to use); (c) it is plausibly post-quantum secure (there are no known efficient
quantum attacks against this construction). These features follow from the fact that Aurora
is obtained by applying the transformation of [32] to our IOP for R1CS. This transformation
preserves both zero knowledge and proof of knowledge of the underlying IOP. The following
theorem is obtained straightforwardly by combining Theorem 3.1.1 with [32, Theorem 7.1].

Theorem 3.1.2 (informal). There exists a zkSNARK for R1CS that is unconditionally secure in
the random oracle model with proof length Oλ(log2N). The prover runs in time Oλ(N logN)
and the verifier in time Oλ(N). (Here for simplicity we take the field F to have size 2Θ(λ) where
λ is the security parameter.)

For example, setting our implementation to a security level of 128 bits over a 192-bit finite
field, proofs range from 40 kB to 130 kB for instances of up to millions of gates; producing
proofs takes on the order of several minutes and checking proofs on the order of several seconds.
(See Section 5.13 for details.)

Overall, as indicated in Fig. 1.2, we achieve the smallest argument size among (plausibly)
post-quantum non-interactive arguments for circuits, by more than an order of magnitude. Other
approaches achieve smaller argument sizes by relying on (public-key) cryptography that is
insecure against quantum adversaries.
(3) libiop: a library for non-interactive arguments. We provide libiop, a codebase
that enables the design and implementation of non-interactive arguments based on IOPs. The
codebase uses the C++ language and has three main components: (1) a library for writing
IOP protocols; (2) a realization of [32]’s transformation, mapping any IOP written with our
library to a corresponding non-interactive argument; (3) a portfolio of IOP protocols. We
have released libiop under a permissive software license for the community (see https:

//github.com/scipr-lab/libiop). We believe that our library will serve as a useful tool in
meeting the increasing demand by practitioners for transparent non-interactive arguments.

https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 19

3.2 Techniques
Our main technical contribution is a linear-length logarithmic-query IOP for R1CS (Theo-

rem 3.1.1), which we use to design, implement, and evaluate a transparent zkSNARK for R1CS.
Below we summarize the main ideas behind our protocol, and postpone to Sections 3.9 and 5.13
discussions of our system. In Section 3.2.1, we describe our approach to obtain the IOP for
R1CS; this approach leads us to solve the univariate sumcheck problem, as discussed in Sec-
tion 3.2.2; finally, in Section 3.2.3, we explain how we achieve zero knowledge. In Section 3.2.4
we conclude with a wider perspective on the techniques used in this paper.

3.2.1 Our interactive oracle proof for R1CS
The R1CS relation consists of instance-witness pairs ((A,B,C, v), w), where A,B,C

are matrices and v, w are vectors over a finite field F, such that (Az) ◦ (Bz) = Cz for z :=
(1, v, w) and “◦” denotes the entry-wise product.1 For example, R1CS captures arithmetic circuit
satisfaction: A,B,C represent the circuit’s gates, v the circuit’s public input, and w the circuit’s
private input and wire values.2

We describe the high-level structure of our IOP protocol for R1CS, which has linear proof
length and logarithmic query complexity. The protocol tests satisfaction by relying on two
building blocks, one for testing the entry-wise vector product and the other for testing the linear
transformations induced by the matrices A,B,C. Informally, we thus consider protocols for the
following two problems.

• Rowcheck: given vectors x, y, z ∈ Fm, test whether x ◦ y = z, where “◦” denotes entry-wise
product.

• Lincheck: given vectors x ∈ Fm, y ∈ Fn and a matrix M ∈ Fm×n, test whether x = My.

One can immediately obtain an IOP for R1CS when given IOPs for the rowcheck and
lincheck problems. The prover first sends four oracles to the verifier: the satisfying assignment
z and its linear transformations yA := Az, yB := Bz, yC := Cz. Then the prover and verifier
engage in four IOPs in parallel:
– An IOP for the lincheck problem to check that “yA = Az”. Likewise for yB and yC .
– An IOP for the rowcheck problem to check that “yA ◦ yB = yC”.
Finally, the verifier checks that z is consistent with the public input v. Clearly, there exist
z, yA, yB, yC that yield valid rowcheck and lincheck instances if and only if (A,B,C, v) is a
satisfiable R1CS instance.

1Throughout, we assume that F is “friendly” to FFT algorithms, i.e., F is a binary field or its multiplicative
group is smooth.

2The reader may be familiar with a standard arithmetization of circuit satisfaction (used, e.g., in the inner PCP of
[10]). Given an arithmetic circuit with m gates and n wires, each addition gate xi ← xj +xk is mapped to the linear
constraint xi = xj +xk and each product gate xi ← xj ·xk is mapped to the quadratic constraint xi = xj ·xk. The
resulting system of equations can be written as A · ((1, x)⊗ (1, x)) = b for suitable A ∈ Fm×(n+1)2 and b ∈ Fm.
However, this reduction results in a quadratic blowup in the instance size. There is an alternative reduction due to
[117, 87] that avoids this.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 20

The foregoing reduces the goal to designing IOPs for the rowcheck and lincheck problems.
As stated, however, the rowcheck and lincheck problems only admit “trivial” protocols

in which the verifier queries all entries of the vectors in order to check the required properties.
In order to allow for sublinear query complexity, we need the vectors x, y, z to be encoded via
some error-correcting code. We use the Reed–Solomon (RS) code because it ensures constant
distance with constant rate while at the same time it enjoys efficient IOPs of Proximity [22].

Given an evaluation domain L ⊆ F and rate parameter ρ ∈ [0, 1], RS [L, ρ] is the set of
all codewords f : L → F that are evaluations of polynomials of degree less than ρ|L|. Then,
the encoding of a vector v ∈ FS with S ⊆ F and |S| < ρ|L| is v̂|L ∈ FL where v̂ is the unique
polynomial of degree |S| − 1 such that v̂|S = v. Given this encoding, we consider “encoded”
variants of the rowcheck and lincheck problems.

• Univariate rowcheck (Definition 2.3.8): given a subset H ⊆ F and codewords f, g, h ∈
RS [L, ρ], check that f̂(a) · ĝ(a) − ĥ(a) = 0 for all a ∈ H . (This is a special case of the
definition that we use later.)

• Univariate lincheck (Definition 3.5.1): given subsets H1, H2 ⊆ F, codewords f, g ∈
RS [L, ρ], and a matrix M ∈ FH1×H2 , check that f̂(a) =

∑
b∈H2

Ma,b · ĝ(b) for all a ∈ H1.

Given IOPs for the above problems, we can now get an IOP protocol for R1CS roughly as
before. Rather than sending z, Az,Bz, Cz, the prover sends their encodings fz, fAz, fBz, fCz.
The prover and verifier then engage in rowcheck and lincheck protocols as before, but with
respect to these encodings.

For these encoded variants, we achieve IOP protocols with linear proof length and logarith-
mic query complexity, as required. We obtain a protocol for rowcheck via standard techniques
from the probabilistic checking literature [41]. As for lincheck, we do not use any routing and
instead use a technique (dating back at least to [16]) to reduce the given testing problem to a
sumcheck instance. However, since we are not working with multivariate polynomials, we cannot
rely on the usual (multivariate) sumcheck protocol. Instead, we present a novel protocol that
realizes a univariate analogue of the classical sumcheck protocol, and use it as the testing “core”
of our IOP protocol for R1CS. We discuss univariate sumcheck next.

Remark 3.2.1. The verifier receives as input an explicit (non-uniform) description of the set
of constraints, namely, the matrices A,B,C. In particular, the verifier runs in time that is at
least linear in the number of non-zero entries in these matrices (if we consider a sparse-matrix
representation for example).

3.2.2 A sumcheck protocol for univariate polynomials
A key ingredient in our IOP protocol is a univariate analogue of the classical (multivariate)

sumcheck protocol [115]. Recall that the classical sumcheck protocol is an IP for claims of the
form “

∑
~a∈Hm f(~a) = 0”, where f is a given polynomial in F[X1, . . . , Xm] of individual degree d

andH is a subset of F. In this protocol, the verifier runs in time poly(m, d, log |F|) and accesses f
at a single (random) location. The sumcheck protocol plays a fundamental role in computational

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 21

complexity (it underlies celebrated results such as IP = PSPACE [137] and MIP = NEXP [17])
and in efficient proof protocols [90, 73, 143, 141, 142, 145, 146, 153, 154, 148].

We work with univariate polynomials instead, and need a univariate analogue of the
sumcheck protocol (see previous subsection): how can a prover convince the verifier that

“
∑

a∈H f(a) = 0” for a given polynomial f ∈ F[X] of degree d and subset H ⊆ F? Designing a
“univariate sumcheck” is not straightforward because univariate polynomials (the Reed–Solomon
code) do not have the tensor structure used by the sumcheck protocol for multivariate polynomials
(the Reed–Muller code). In particular, the sumcheck protocol has m rounds, each of which
reduces a sumcheck problem to a simpler sumcheck problem with one variable fewer. When
there is only one variable, however, it is not clear to what simpler problems one can reduce.

Using different ideas, we design a natural protocol for univariate sumcheck in the cases
where H is an additive or multiplicative coset in F (i.e., a coset of an additive or multiplicative
subgroup of F).

Theorem (informal). The univariate sumcheck protocol over additive or multiplicative cosets
has a O(log d)-round IOP with proof complexity O(d) over alphabet F and query complexity
O(log d). The IOP prover uses O(d log |H|) field operations and the IOP verifier uses O(log d+
log2 |H|) field operations.

We now provide the main ideas behind the protocol, when H is an additive coset in F.
Suppose for a moment that the degree d of f is less than |H| (we remove this restriction

later). A theorem of Byott and Chapman [59] states that the sum of f over (an additive coset) H
is zero if and only if the coefficient of X |H|−1 in f is zero. In particular,

∑
a∈H f(a) is zero if

and only if f has degree less than |H| − 1. Thus, the univariate sumcheck problem over H when
d < |H| is equivalent to low-degree testing.

The foregoing suggests a natural approach: test that f has degree less than |H|−1. Without
any help from the prover, the verifier would need at least |H| queries to f to conduct such a
test, which is as expensive as querying all of H . However, the prover can help by engaging
with the verifier in an IOP of Proximity for the Reed–Solomon code. For this we rely on the
recent construction of Ben-Sasson et al. [22], which has proof length O(d) and query complexity
O(log d).

In our setting, however, we need to also handle the case where the degree d of f is larger
than |H|. For this case, we observe that we can split any polynomial f into two polynomials g
and h such that f(x) ≡ g(x) +

∏
α∈H(x− α) · h(x) with deg(g) < |H| and deg(h) < d− |H|;

in particular, f and g agree on H , and thus so do their sums on H . This observation suggests the
following extension to the prior approach: the prover sends g (as an oracle) to the verifier, and
then the verifier performs the prior protocol with g in place of f . Of course, a cheating prover
may send a polynomial g that has nothing to do with f , and so the verifier must also ensure that
g is consistent with f . To facilitate this, we actually have the prover send h rather than g; the
verifier can then “query” g(x) as f(x)−

∏
α∈H(x− α) · h(x); the prover then shows that f, g, h

are all of the correct degrees.
A similar reasoning works when H is a multiplicative coset in F (see Remark 3.4.6). It

remains an interesting open problem to establish whether the foregoing can be extended to any
subset H in F.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 22

Remark 3.2.2 (vanishing vs. summing). The following are both linear subcodes of the Reed–
Solomon code:

VanishRS[F, L,H, d] :={f : L→ F | f has degree < d and is zero everywhere on H} ,
SumRS[F, L,H, d] :={f : L→ F | f has degree < d and sums to zero on H} .

Our univariate sumcheck protocol is an IOP of Proximity for SumRS, and is reminiscent of IOPs
of Proximity for VanishRS (e.g., see [23]). Nevertheless, there are also intriguing differences
between the two cases. For example, while it is known how to test proximity to VanishRS for
general H , we only know how to test proximity to SumRS when H is a coset. Additionally,
our IOP protocol for R1CS from Section 3.2.1 can be viewed as a reduction from checking
satisfaction of R1CS to testing proximity to SumRS; we do not know how to carry out a similar
reduction to VanishRS. Indeed, there is an interactive reduction from VanishRS to SumRS, but
no reduction in the other direction is known.

3.2.3 Efficient zero knowledge from algebraic techniques
The ideas discussed thus far yield an IOP protocol for R1CS with linear proof length and

logarithmic query complexity. However these by themselves do not provide zero knowledge.
We achieve zero knowledge by leveraging recent algebraic techniques [26]. Informally,

we adapt these techniques to achieve efficient zero knowledge variants of key sub-protocols,
including the univariate sumcheck protocol (see Section 3.4.1) and low-degree testing (see
Section 3.7.1), and combine these to achieve a zero knowledge IOP protocol for R1CS (see
Sections 3.6.1 and 3.8).

We summarize the basic intuition for how we achieve zero knowledge in our protocols.
First, we use bounded independence. Informally, rather than encoding a vector z ∈ FH by

the unique polynomial of degree |H| − 1 that matches z on H , we instead sample uniformly at
random a polynomial of degree, say, |H| + 9 conditioned on matching z on H . Any set of 10
evaluations of such a polynomial are independently and uniformly distributed in F (and thus
reveal no information about z), provided these evaluations are outside of H . To ensure this latter
condition, we choose the evaluation domain L of Reed–Solomon codewords to be disjoint from
H . Thus, for example, if H is a linear space (an additive subgroup of F) then we choose L to
be an affine subspace (a coset of some additive subgroup), since the underlying machinery for
low-degree testing (e.g., [22]) requires codewords to be evaluated over algebraically-structured
domains. All of our protocols are robust to these variations.

Bounded independence alone does not suffice, though. For example, in the sumcheck
protocol, consider the case where the input vector z ∈ FH is all zeroes. The prover samples
a random polynomial f̂ of degree |H| + 9, such that f̂(a) = 0 for all a ∈ H , and sends its
evaluation f over L disjoint from H to the verifier. As discussed, any ten queries to f result in
ten independent and uniformly random elements in F. Observe, however, that when we run the
sumcheck protocol on f , the polynomial g (the remainder of f̂ when divided by

∏
α∈H(x− α))

is the zero polynomial: all randomness is removed by the division.
To remedy this, we use self-reducibility to reduce a sumcheck claim about the polynomial f

to a sumcheck claim about a random polynomial. The prover first sends a random Reed–Solomon

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 23

codeword r, along with the value β :=
∑

a∈H r(a). The verifier sends a random challenge ρ ∈ F.
Then the prover and verifier engage in the univariate sumcheck protocol with respect to the new
claim “

∑
a∈H ρf(a) + r(a) = β”. Since r is uniformly random, ρf + r is uniformly random for

any ρ, and thus the sumcheck protocol is performed on a random polynomial, which ensures
zero knowledge. Soundness is ensured by the fact that if f does not sum to 0 on H then the new
claim is true with probability 1/|F| over the choice of ρ.

3.2.4 Perspective on our techniques
A linear-length logarithmic-query IOP for a “circuit-like” NP-complete relation like R1CS

(Theorem 3.1.1) may come as a surprise. We wish to shed some light on our IOP construction by
connecting the ideas behind it to prior ideas in the probabilistic checking literature, and use these
connections to motivate our construction.

A significant cost in all known PCP constructions with good proof length is using routing
networks to reduce combinatorial objects (circuits, machines, and so on) to structured algebraic
ones;3 routing also plays a major role in many IOPs [26, 24, 21, 23]. While it is plausible that
one could adapt routing techniques to route the constraints of an R1CS instance (similarly to
[126]), such an approach would likely incur logarithmic-factor overheads, precluding linear-size
IOPs.

A recent work [25] achieves linear-length constant-query IOPs for boolean circuit satisfac-
tion without routing the input circuit. Unfortunately, [25] relies on other expensive tools, such
as algebraic-geometry (AG) codes and quasilinear-size PCPs of proximity [41]; moreover, it
is not zero knowledge. Informally, [25] tests arbitrary (unstructured) constraints by invoking a
sumcheck protocol [115] on a O(1)-wise tensor product of AG codes; this latter is then locally
tested via tools in [40, 41].

One may conjecture that, to achieve an IOP for R1CS like ours, it would suffice to merely
replace the AG codes in [25] with the Reed–Solomon code, since both codes have constant rate.
But taking a tensor product exponentially deteriorates rate, and testing proximity to that tensor
product would be expensive.

An alternative approach is to solve a sumcheck problem directly on the Reed–Solomon
code. Existing protocols are not of much use here: the multivariate sumcheck protocol relies on a
tensor structure that is not available in the Reed–Solomon code, and recent IOP implementations
either use routing [21, 23] or achieve only sublinear query complexity [9].

Instead, we design a completely new IOP for a sumcheck problem on the Reed–Solomon
code. We then combine this solution with ideas from [25] (to avoid routing) and from [26] (to
achieve zero knowledge) to obtain our linear-length logarithmic-query IOP for R1CS. Along the
way, we rely on recent efficient proximity tests for the Reed–Solomon code [22].

3Polishchuk and Spielman [126] reduce boolean circuit satisfaction to a trivariate algebraic coloring problem with
“low-degree” neighbor relations, by routing the circuit’s wires over an arithmetized routing network. Ben-Sasson and
Sudan [41] reduce nondeterministic machine computations to a univariate algebraic satisfaction problem by routing
the machine’s memory accesses over another arithmetized routing network. Routing is again a crucial component in
the linear-size sublinear-query PCPs of [38].

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 24

3.3 Roadmap
Subsequent sections describe subprotocols, presented as Reed–Solomon encoded IOPs,

which are IOPs for which soundness only holds against provers whose messages are Reed–
Solomon codewords of specified rates, that are later compiled into standard IOPs. In Section 3.6
we combine the rowcheck and lincheck protocols to obtain an RS-encoded IOP for R1CS. In
Section 3.7 we explain how to transform RS-encoded IOPs to standard IOPs, and in Section 3.8
we apply this transformation to our RS-encoded IOP for R1CS. Fig. 3.1 summarizes the structure
of our IOP for R1CS. Finally, in Section 3.9 we describe our implementation and in Section 5.13
we report on its evaluation.

Throughout, we focus on the case where all relevant domains are additive cosets (affine
subspaces) in F. The case where domains are multiplicative cosets is similar, with only minor
modifications (see Remark 3.4.6). Moreover, while for convenience we limit our discussions to
establishing soundness, all protocols described in this paper are easily seen to satisfy the stronger
notion of proof of knowledge. Informally, this is because we prove soundness by showing that
oracles sent by convincing provers can be decoded to valid witnesses.

R1CS

Rowcheck
(Section 2.3.4)

Lincheck
(Section 3.5)

Sumcheck
(Section 3.4)

IOP of Proximity for
Reed–Solomon code

(e.g. [22])

RS-encoded IOP for R1CS (Section 3.6)

IOP for R1CS (Section 3.8)

(Section 3.7)

Figure 3.1: Structure of our IOP for R1CS in terms of key sub-protocols.

3.4 Univariate sumcheck
We describe univariate sumcheck, an RS-encoded IOPP for testing whether a low-degree

univariate polynomial f̂ sums to zero on a given subspace H ⊆ F. This protocol is a univariate
analogue of the multi-variate sumcheck protocol [115].

If f̂ has degree less than d, then f̂ can be uniquely decomposed into polynomials ĝ, ĥ of
degrees less than |H| and d−|H| (respectively) such that f̂ ≡ ĝ+ZH · ĥ, where ZH is the vanish-
ing polynomial of H (see Section 2.2.3). This implies that

∑
a∈H f̂(a) =

∑
a∈H(ĝ(a) +ZH(a) ·

ĥ(a)) =
∑

a∈H ĝ(a). By Lemma 3.4.4 below, this latter expression is equal to β
∑

a∈H a
|H|−1,

where β is the coefficient of X |H|−1 in ĝ(X). Note that
∑

a∈H a
|H|−1 6= 0 since otherwise this

would imply that all functions sum to zero on H . Thus,
∑

a∈H f̂(a) = 0 if and only if β = 0.
This suggests the following RS-encoded IOPP (actually an RS-encoded PCPP). The prover

sends g, h (the evaluations of ĝ, ĥ). The verifier now must check that (a) f̂ ≡ ĝ + ZH · ĥ,
and (b) the coefficient of X |H|−1 in ĝ is zero. For both conditions we use the definition of

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 25

an RS-encoded IOPP: the verifier outputs a rational constraint specifying that the polynomial
f̂ −ZH · ĥ is of degree less than |H| − 1, which corresponds to forcing the coefficient of X |H|−1

to be zero. In the final (non-encoded) IOPP protocol this will correspond to testing proximity of
f̂ − ZH · ĥ to a Reed–Solomon code with rate parameter (|H| − 1)/|L|.

Below we consider the more general case of testing that the sum equals a given µ ∈ F
(rather than zero).

Definition 3.4.1 (sumcheck relation). RSUM is the set of pairs
(

(F, L,H, ρ, µ) , f
)

where F is a
finite field, L,H are affine subspaces of F, ρ ∈ (0, 1), µ ∈ F, f ∈ RS [L, ρ], and

∑
a∈H f̂(a) = µ.

Theorem 3.4.2. There exists an RS-encoded IOPP (Protocol 3.4.3) for the sumcheck relation
RSUM with the following parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = |L|
randomness r = 0
soundness error ε = 0
prover time tP = O(|L| log |H|) + 2 · FFT(F, |L|)
verifier time tV = O(log2 |H|)
maximum rate (ρc, ρe) = (ρ, ρ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Protocol 3.4.3. Let f ∈ RS [L, ρ] be the witness oracle, and let f̂ be the unique polynomial of
degree at most ρ|L| that agrees with f . The RS-encoded IOP protocol (P, V) forRSUM proceeds
as follows.

1. P computes the unique polynomials ĝ and ĥ and unique element β ∈ F such that deg(ĝ) <
|H| − 1, deg(ĥ) < ρ|L| − |H|, and f̂(X) ≡ ĝ(X) + βX |H|−1 + ZH(X)ĥ(X).

2. P sends h := ĥ|L ∈ RS[L, ρ− |H|/|L|] to V .
3. V computes ξ :=

∑
a∈H a

|H|−1 (this can be done efficiently as explained below), and accepts
if and only if p ∈ RS[L, (|H|−1)/|L|] where p̂(X) := ξ ·f̂(X)−µ·X |H|−1−ξ ·ZH(X)ĥ(X).
In the formalism of RS-encoded IOPs (see Section 2.3.3), this corresponds to the rational
constraint (C, σ) := ((N,D), |H|−1

|L|) whereN(X,Z1, Z2) := ξ·Z1−µ·X |H|−1−ξ·ZH(X)·Z2

and D(X) := 1.

Note that the maximum rate in the above protocol (as defined in Section 2.3.3) is ρ.

Proof. Completeness and soundness rely on the following lemma:

Lemma 3.4.4 ([59, Theorem 1], restated). Let H be an affine subspace of F, and let ĝ(x) be a
univariate polynomial over F of degree (strictly) less than |H| − 1. Then

∑

a∈H

ĝ(a) = 0.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 26

We provide a self-contained proof of this statement in Appendix A.1.
Completeness. Consider f ∈ RS [L, ρ] with

∑
a∈H f̂(a) = µ. Then, by definition of g, h and

Lemma 3.4.4,
µ =

∑

a∈H

(
ĝ(a) + β · a|H|−1 + ZH(a)ĥ(a)

)
= βξ .

Therefore,

ξ · f̂(X)− µ ·X |H|−1 − ξ · ZH(X)ĥ(X)

≡ ξ ·
(
ĝ(X) + βX |H|−1 + ZH(X)ĥ(X)

)
− µ ·X |H|−1 − ξ · ZH(X)ĥ(X)

≡ ξ · ĝ(X) + ξβX |H|−1 − µ ·X |H|−1 ≡ ξ · ĝ(X) .

Hence p̂(X) ≡ ξ · ĝ(X), and so p ∈ RS[L, |H|−1
|L|].

Soundness. Consider f ∈ RS [L, ρ] with
∑

a∈H f̂(a) = µ′ 6= µ. We show that for any
h ∈ RS[L, ρ − |H|

|L|], it holds that p /∈ RS[L, |H|−1
|L|]. Suppose towards contradiction that p ∈

RS[L, |H|−1
|L|]. Then, by Lemma 3.4.4, we have that

∑
a∈H p̂(a) = 0. But also we have that

∑

a∈H

p̂(a) =
∑

a∈H

(ξ · f̂(a)− µ · a|H|−1) = ξ(µ′ − µ) 6= 0

since ξ 6= 0. This is a contradiction.
Efficiency. For computational efficiency of the verifier, we use an additional lemma due to
[59].

Lemma 3.4.5 ([59], implicit in the proof of Theorem 1). If H is an affine subspace of F, then∑
a∈H a

|H|−1 equals the linear term of ZH .

The verifier runs in time O(log2 |H|): its work consists of finding the linear term of
ZH , which can be achieved via a divide-and-conquer algorithm, and evaluating ZH at a single
point. The prover runs in time O(|L| log |H|) + 2 · FFT(F, |L|): the polynomial division can
be performed by interpolating (one IFFT) over L to obtain the coefficients of f , running a
divide-and-conquer algorithm to obtain the O(log |H|) coefficients of ZH , performing standard
polynomial division to obtain ĥ, and computing its evaluation h via an FFT.

Remark 3.4.6. The univariate sumcheck relation states that H,L are affine subspaces of F
(Definition 3.4.1). One can define a similar relation where H,L are multiplicative cosets in F, in
which case Theorem 3.4.2 holds essentially unchanged. The protocol is similar to Protocol 3.4.3,
except that ĝ and ĥ are such that f̂(X) = X · ĝ(X) + β + ZH(X)ĥ(X). The rational constraint
becomes (C, σ) := ((N,D), |H|−1

|L|) where N(X,Z1, Z2) := |H| · Z1 − µ − |H| · ZH(X) · Z2,
D(X) := X . Correctness of this protocol follows from the fact that, if H is a multiplicative
coset,

∑
α∈H p̂(α) = p̂(0) · |H| for all polynomials p̂ with deg(p̂) < |H|.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 27

3.4.1 Zero knowledge
We describe how to modify Protocol 3.4.3 to achieve zero knowledge; the modification is an

adaptation of algebraic techniques from [26, 24]. The prover first sends a random Reed–Solomon
codeword q ∈ RS [L, ρ]. The verifier then replies with a random “challenge” element c ∈ F.
Finally, the prover and verifier engage in Protocol 3.4.3 with respect to the “virtual” oracle
p := c · f + q, and new target value c · µ+

∑
a∈H q̂(a). Since p is an (almost) uniformly random

Reed–Solomon codeword, one can efficiently simulate the sumcheck prover with input p. We
obtain the following theorem.

Theorem 3.4.7. There exists an RS-encoded IOPP (Protocol 3.4.8) for the sumcheck relation
RSUM (Definition 3.4.1), which is zero knowledge against unbounded queries, with the following
parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = 2|L|
randomness r = log |F|
soundness error ε = 1/|F|
prover time tP = O(|L| log |H|) + 3 · FFT(F, |L|)
verifier time tV = O(log2 |H|)
maximum rate (ρc, ρe) = (ρ, ρ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Protocol 3.4.8. Let f ∈ RS [L, ρ] be the witness oracle. Let (PSUM, VSUM) be the RS-encoded
IOP forRSUM (Protocol 3.4.3). The zero knowledge RS-encoded IOP (P, V) forRSUM proceeds
as follows.
1. P samples q ∈ RS [L, ρ] uniformly at random and sends it to V , along with β :=

∑
a∈H q(a).

2. V samples c ∈ F uniformly at random, and sends it to P .
3. P and V invoke

(
PSUM(x′, c · f + q), V c·f+q

SUM (x′)
)
, where x′ := (F, L,H, ρ, c · µ+ β).

Proof.
Completeness. Follows from the completeness of univariate sumcheck.
Soundness. Suppose that

∑
a∈H f̂(a) = α 6= µ. Let β′ :=

∑
a∈H q

′(a), where q′ is sent by
P̃ in the first round. Then

∑
a∈H(c · f̂ + q′)(a) = c · α + β′, which is equal to c · µ + β if

and only if c = β−β′
α−µ , which happens with probability 1/|F| for any fixed β, β′. Hence with

probability 1 − 1/|F|, (x′, c · µ + β) /∈ RSUM, and soundness follows by the soundness of the
standard protocol.
Zero knowledge. We describe a simulator S that, given straightline access to a (malicious)
verifier Ṽ and oracle access to a witness oracle f ∈ RS [L, ρ], perfectly simulates Ṽ ’s view in
the real protocol.

1. Sample qsim ∈ RS [L, ρ] uniformly at random and start simulating Ṽ .
2. Answer any query to f by querying f , and answer any query to q by querying qsim. Let
Qsim ⊆ L be Ṽ ’s queries to q from the beginning of the simulation until the next step.

3. Send βsim :=
∑

a∈H q̂sim(a) to Ṽ .

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 28

4. Receive c̃sim ∈ F from Ṽ .
5. Sample psim ∈ RS [L, ρ] uniformly at random such that, for every ω ∈ Qsim, psim(ω) =
c̃sim · f(ω) + qsim(ω) and

∑
a∈H psim(a) = c̃sim · µ+ βsim; this requires |Qsim| queries to

f . (Note that if |Qsim| > ρ|L| then psim ≡ f̂ + rsim.)
6. Answer any query to f by querying f (as before), and answer any query to q by querying
psim − c̃sim · f .

7. Simulate the interaction of PSUM(x′, psim) and Ṽ .

Note that S runs in polynomial time, and the number of queries it makes to f is exactly the
number of queries that Ṽ makes to f and q.

To see that Ṽ ’s view is perfectly simulated, we consider a hybrid experiment in which the
“hybrid prover” reads all of f (like the honest prover in the real world) but can modify messages
after they are sent (like the simulator in the ideal world).

1. Sample q ∈ RS [L, ρ] uniformly at random and start simulating Ṽ .
2. Send q to Ṽ , along with β :=

∑
a∈H q(a). Let Q ⊆ L be Ṽ ’s queries to q from the

beginning of the simulation until the next step.
3. Receive c̃ ∈ F from Ṽ .
4. Sample p ∈ RS [L, ρ] uniformly at random such that, for every ω ∈ Q, p(ω) = c̃ · f(ω) +
q(ω) and

∑
a∈H p(a) = c̃ · µ+ β.

5. Replace q with p− c̃ · f .
6. Simulate the interaction of PSUM(x′, p) and Ṽ .

The distribution of Ṽ ’s view in the real protocol is identical to the distribution of Ṽ ’s view
in the above experiment. In particular, all of Ṽ ’s queries to q after its replacement by p− c · f
have the correct distribution. Moreover, it is not hard to see that Ṽ ’s view in the above experiment
and S’s output are identically distributed.
Efficiency. Most of the parameters are seen from the protocol description. We require the prover
to send q ∈ RS [L, ρ] uniformly at random, which can be done by choosing ρ|L| coefficients
uniformly at random and performing one FFT to evaluate that polynomial over L.

3.4.2 Amortization
Given m instance-witness pairs for univariate sumcheck

(
(F, L,H, ρi, µi), fi

)
i∈[m]

, we
want to test that all of them are inRSUM. This is achieved with an `-fold increase in complexity,
but we want to do this much more efficiently. This will be crucial in our final protocol. We first
state formally the relation we will test.

Definition 3.4.9 (`-sumcheck relation). The relationR`
SUM is the set of all `-tuples

(
(x1, . . . , x`), (f1, . . . , f`)

)

such that, for every i ∈ {1, . . . , `}, xi = (F, L,H, ρi, µi), and (xi, fi) ∈ RSUM.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 29

The idea is to have the verifier choose z1, . . . , zm ∈ F uniformly at random and send them
to the prover, and then to test that

∑
a∈H

∑m
i=1 zifi(a) =

∑m
i=1 ziµi. Completeness is easy to

see, and soundness follows from properties of random linear combinations. The verifier runtime
is increased only by an additive m term, which corresponds to sending z1, . . . , zm and querying
each fi in one position. Crucially, the proof length is unchanged, and the prover still only
performs three FFTs. We obtain the following lemma.

Lemma 3.4.10. There is an RS-encoded IOPP for the univariate m-sumcheck relation (Defini-
tion 3.4.9) with the following parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = |L|
randomness r = m log |F|
soundness error ε = 1/|F|
prover time tP = O(|L| log |H|+m · |L|) + 2 · FFT(F, |L|)
verifier time tV = O(log2 |H|+m)
maximum rate (ρc, ρe) = (ρ, ρ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

for any instance ~x = (x1, . . . , xm) =
(

(F, L,H, ρi, µi)
)m
i=1

, where ρ := maxi ρi.

Protocol 3.4.11. Let ρ := maxi ρi, and let f1, . . . , fm ∈ RS [L, ρ] be the witness oracles. Let
(PSUM, VSUM) be the standard RS-encoded IOP for univariate sumcheck (Protocol 3.4.3). The
RS-encoded IOP protocol for univariate m-sumcheck proceeds as follows.
1. V chooses z1, . . . , zm ∈ F uniformly at random, and sends them to P .
2. P and V invoke

(
PSUM(x∗,w∗), V w

∗
SUM(x∗)

)
, where x∗ := (F, L,H, ρ,

∑m
i=1 ziµi), w

∗ :=∑m
i=1 zifi.

Proof.
Completeness. Suppose that, for all i ∈ [m], (xi, fi) ∈ RSUM. Then for any choice of
z1, . . . , zm ∈ F,

∑
a∈H

∑m
i=1 zifi(a) =

∑m
i=1 ziµi, so (x∗,w∗) ∈ RSUM.

Soundness. Suppose that, for some i ∈ [m], (xi, fi) /∈ RSUM. Then since z1, . . . , zm ∈ F are
uniformly random,

∑
a∈H

∑m
i=1 zifi(a) =

∑m
i=1 ziµi (i.e., (x∗,w∗) ∈ RSUM) with probability at

most 1/|F|.
Efficiency. The efficiency of the system corresponds to a single invocation of univariate
sumcheck. The prover, in addition to the cost of running PSUM, pays O(m · |L|) to construct w∗.
The verifier pays only an additive O(m) to pick z1, . . . , zm and construct x∗.

3.5 Univariate lincheck
We describe univariate lincheck, an RS-encoded IOPP for verifying linear relations on

Reed–Solomon codewords. Given H1, H2 ⊆ F, f1, f2 ∈ RS [L, ρ], and a coefficient matrix
M ∈ FH1×H2 , we want to check that f̂1|H1 = M · f̂2|H2 , where · is standard matrix multiplication
over F. The next definition captures this.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 30

Definition 3.5.1 (lincheck relation). The relationRLIN is the set of all pairs
(

(F, L,H1, H2, ρ,M) , (f1, f2)
)

where F is a finite field, L,H1, H2 are affine subspaces of F, ρ ∈ (0, 1), f1, f2 ∈ RS [L, ρ],
M ∈ FH1×H2 , and ∀ a ∈ H1 f̂1(a) =

∑
b∈H2

Ma,b · f̂2(b).

To build intuition, consider that, given vectors x ∈ Fm, y ∈ Fn and a matrix M ∈ Fm×n,
a simple probabilistic test for the claim “x = My” is to check that 〈r, x −My〉 = 0 for a
random r ∈ Fm. Indeed, if x 6= My then Prr[〈r, x − My〉 = 0] = 1/|F|. However, this
approach would require the verifier to sample m random field elements, and send these to
the prover. A straightforward modification (used also, e.g., in [16, §5.2]) requires only a
single random field element and incurs only a modest increase in soundness error. Namely,
letting h(X) := 〈 ~X, x − My〉 where ~X := (1, X, . . . , Xm−1), if x 6= My then h(X) is a
non-zero polynomial of degree less than m over F, and thus Prα∈F[h(α) = 0] ≤ m/|F|. The
verifier now merely has to sample and send α ∈ F, and the prover must then prove the claim
“h(α) = 0” to the verifier. This latter claim is in fact a claim about sums: one can rewrite h(X)

as 〈 ~X, x〉 − 〈M> ~X, y〉 and, expanding the inner products, we obtain the two-sum expression
h(α) =

∑m
i=1 α

i−1xi −
∑n

j=1(
∑m

i=1 Mi,jα
i−1)yj .

We now return to the RS-encoded version of the problem (defined above), and explain how
the prover can handle the claim “h(α) = 0” via the univariate sumcheck protocol.

We can think of f̂1 and f̂2 as the low-degree extensions of some x ∈ FH1 and y ∈ FH2 with
m := |H1| and n := |H2|. The verifier samples and sends α ∈ F to the prover; the prover and
verifier each compute the low-degree extension p̂(1)

α of ~α := (1, α, . . . , αm−1), and the low-degree
extension p̂(2)

α of M>~α. We can then write h(α) =
∑

a∈H1
p̂

(1)
α (a)f̂1(a) −

∑
b∈H2

p̂
(2)
α (b)f̂2(b).

In sum, we reduced the claim “h(α) = 0” to a sumcheck instance of the polynomial p̂(1)
α (·)f̂1(·)

over H1 and one of the polynomial p̂(2)
α (·)f̂2(·) over H2.

While h(α) equals zero in the honest case, the value of each summation may reveal
information. Therefore, to ensure zero knowledge, we combine these two summations into a
single summation over the affine space H1 � H2, defined to be the smallest affine space that
contains both H1 and H2 (and note that if H1, H2 are linear subspaces then H1 �H2 = H1 +H2).
Since the precise choice of H1, H2 is not important, for efficiency we will typically choose
H1 ⊆ H2 or H2 ⊆ H1 in order to minimize |H1 �H2|.

Theorem 3.5.2. Protocol 3.5.3 below is an RS-encoded IOPP forRLIN (Definition 3.5.1) with
parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 1
proof length p = |L|
randomness r = log |F|
soundness error ε = |H1|/|F|

prover time tP =
O(‖M‖+ |L| log s) + 4 · FFT(F, |L|)

+t(PSUM;F, |L|, s)
verifier time tV = O(‖M‖+ s) + t(VSUM;F, |L|, s)
maximum rate (ρc, ρe) = (ρ, ρ+ s/|L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 31

where s := |H1 �H2| and ‖M‖ is the number of nonzero entries of M .

Protocol 3.5.3. Let f1, f2 ∈ RS [L, ρ] be the witness oracles, and let f̂1, f̂1 be the unique
polynomials of degree at most ρ|L| that agree with f1, f2. For every α ∈ F, we define
qα ∈ RS [L, ρ+ |H1 �H2|/|L|] to be the codeword obtained by evaluating on L the follow-
ing polynomial:

q̂α(X) := f̂1(X)p̂(1)
α (X)− f̂2(X)p̂(2)

α (X) ,

where

• p̂(1)
α is the unique polynomial of degree less than |H1 �H2| s.t. p̂(1)

α (a) = αγ(a) for all a ∈ H1,
and p̂(1)

α (b) = 0 for all b ∈ H1 �H2 \H1;
• p̂(2)

α is the unique polynomial of degree less than |H1 �H2| s.t. p̂(2)
α (b) =

∑
a∈H1

Ma,b · αγ(a)

for all b ∈ H2, and p̂(2)
α (a) = 0 for all a ∈ H1 �H2 \H2.

Denote by (PSUM, VSUM) the RS-encoded IOPP for univariate sumcheck (Protocol 3.4.3). The
RS-encoded IOPP (P, V) forRLIN works as follows.
1. P and V agree in advance on an ordering γ : H1 → {0, . . . , |H1| − 1} of H1.
2. V draws a uniformly random α ∈ F and sends it to P . This, along with the witness oracles f1

and f2, defines the polynomial qα. Note that V can use its oracles f1, f2 to simulate access to
the oracle qα.

3. P and V run (PSUM(x′, qα), V qα
SUM(x′)) where x′ := (F, L,H1 �H2, ρ+ |H1 �H2|/|L|, µ = 0).

4. V accepts if and only if VSUM accepts.

Proof. Completeness and soundness rely on the fact that, by rearranging terms, for every α ∈ F
it holds that:

h(α) :=
∑

b∈H1�H2

q̂α(b) =
∑

a∈H1

f̂1(a)αγ(a) −
∑

b∈H2

∑

a∈H1

Ma,bf̂2(b)αγ(a)

=
∑

a∈H1

(
f̂1(a)−

∑

b∈H2

Ma,b · f̂2(b)

)
· αγ(a) .

Completeness. Suppose that, for all a ∈ H1, f̂1(a) =
∑

b∈H2
Ma,b · f̂2(b). For every α ∈ F,

h(α) = 0 and thus
∑

b∈H2
q̂α(b) = 0. Completeness of the univariate sumcheck implies that

VSUM always accepts.
Soundness. Suppose that there exists a ∈ H1 such that f̂1(a) 6=

∑
b∈H2

Ma,b·f̂2(b). This implies
that h is a nonzero polynomial of degree less than |H1|, and so Prα∈F[h(α) = 0] < |H1|/|F|. If
h(α) 6= 0, then

∑
b∈H2

q̂α(b) 6= 0 and in this case VSUM rejects.
Efficiency. Both parties run the univariate sumcheck as a subroutine. In addition, the prover
needs to compute qα = q̂α|L (the evaluation of q̂α over L), for example as follows: (i) evaluate
p̂

(1)
α over L in time O(|H1 �H2|) + 2 · FFT(F, |L|); (ii) evaluate p̂(2)

α over L in time O(‖M‖+
|H1 � H2|) + 2 · FFT(F, |L|); (iii) compute qα from these components in time O(|L|). The
verifier needs to construct a circuit that simulates oracle access to qα, which can be done in time
O(‖M‖+ |H1 �H2|), and then run VSUM.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 32

3.6 An RS-encoded IOP for rank-one constraint satisfaction
We describe an RS-encoded IOP for rank-one constraint satisfaction (R1CS). An R1CS

instance consists of matrices A,B,C ∈ Fm×(n+1) and explicit input v ∈ Fk, and it is satisfiable
if there exists w ∈ Fn−k such that Az ◦ Bz = Cz where z = (1, v, w) ∈ Fn+1 and ◦ denotes
entry-wise (Hadamard) product.

Definition 3.6.1 (R1CS relation). The relationRR1CS is the set of all pairs
(
(I, v), w

)
where F

is a finite field, k, n,m ∈ N denote the number of inputs, variables and constraints respectively
(k ≤ n), A,B,C are m × (1 + n) matrices over F, v ∈ Fk, and w ∈ Fn−k, such that for all
i ∈ [m]

(∑n
j=0 Ai,jzj

)
·
(∑n

j=0Bi,jzj
)

=
(∑n

j=0Ci,jzj
)
, where z := (1, v, w) ∈ Fn+1.

We describe how to obtain an RS-encoded IOP for R1CS by using RS-encoded IOPPs for
lincheck (which we obtained in Section 3.5) and rowcheck (see Section 2.3.4).

Let H1, H2 be subspaces of F such that |H1| = m and |H2| = n+ 1, and view A,B,C as
matrices in FH1×H2 . The prover first sends four oracles: fz that (purportedly) is the low-degree
extension of z : H2 → F; and fAz, fBz, fCz that (purportedly) are the low-degree extensions
of Az,Bz, Cz : H1 → F. The verifier uses the lincheck protocol to test that, indeed, fAz is
a low-degree extension of Az, and likewise for fBz, fCz. Then the verifier uses the rowcheck
protocol to check that fAz(a) · fBz(a) = fCz(a) for all a ∈ H1.

The above protocol almost works, with the one problem being that the prover could cheat by
sending fz that is inconsistent with the explicit input v. We remedy this by (roughly) having the
prover send the low-degree extension fw of w instead of fz. The verifier only needs to query one
point of fz, which it can do by making one query to fw and evaluating the low-degree extension
of v at one point.

The above protocol uses three linchecks and one rowcheck. Each lincheck is a probabilistic
reduction to sumcheck; this means running the sumcheck protocol three times (in parallel). The
sumcheck protocol is relatively expensive, so we use the optimization of bundling these sumcheck
instances (see Section 3.4.2). We also save computation by choosing the same challenge α for
each of the linchecks.

Below we provide details about the foregoing intuition. After that we provide additional
subsections that explain how to modify the “basic” protocol to achieve additional goals: in
Section 3.6.1 we describe how to achieve zero knowledge; in Section 3.6.2 we describe how
to amortize the cost of verifying the satisfaction of multiple R1CS instances (sharing the same
matrices) at the same time.

Theorem 3.6.2. Protocol 3.6.3 below is an RS-encoded IOP of knowledge for RR1CS (Defini-

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 33

tion 3.6.1) with parameters:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = 5|L|
randomness r = O(log |F|)
soundness error ε = m+1

|F|

prover time tP =
O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+17 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m)

maximum rate (ρc, ρe) = (max(m,n+1)
|L| , 2 max(m,n+1)

|L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

for any instance x = (I, v) and any affine subspace L of F.

Protocol 3.6.3. The prover P and verifier V both receive as input an R1CS instance (I, v), and
the prover P also receives as input a corresponding R1CS witness w; as above, z := (1, v, w) ∈
Fn+1.

Below, (PLIN, VLIN) denotes the RS-encoded IOPP for univariate lincheck (Protocol 3.5.3).
LetH1, H2 be two affine subspaces of F with |H1| = m and |H2| = n+1 such thatH1 ⊆ H2

or H2 ⊆ H1; this implies that H1 �H2 = H1 ∪H2. (We assume without loss of generality that
m, n+ 1, and k + 1 are powers of char(F).) Let γ : H1 ∪H2 → {0, . . . , |H1 ∪H2| − 1} be an
ordering on H1 ∪H2 such that γ(Hi) = {0, . . . , |Hi| − 1} for i ∈ {1, 2}. We view A,B,C as
matrices in FH1×H2 via this ordering.
1. Compute LDE of the input. Letting H≤k2 := {b ∈ H2 : 0 ≤ γ(b) ≤ k}, P and V construct
f̂(1,v)(X), the unique polynomial of degree less than |H≤k2 | = k+1 such that, for all b ∈ H≤k2 ,

f̂(1,v)(b) =

{
1 if γ(b) = 0,
vi if γ(b) = i and i ∈ {1, . . . , k}.

2. Witness and auxiliary oracles. P sends to V the oracle codewords fw ∈ RS[L, n−k|L|] and
fAz, fBz, fCz ∈ RS[L, m|L|] defined as follows.

• fw := f̂w|L where f̂w is the unique polynomial of degree less than n− k such that

∀ b ∈ H2 with k < γ(b) ≤ n, f̂w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H≤k2

(b)
.

• fAz := f̂Az|L where f̂Az is the unique polynomial of degree less than m such that, for all
a ∈ H1, f̂Az(a) =

∑
b∈H2

Aa,b · zγ(b) = (Az)a. The other codewords, fBz and fCz, are
defined similarly.

These implicitly define the “virtual oracle” fz := f̂z|L where f̂z(X) := f̂w(X) · Z
H≤k2

(X) +

f̂(1,v)(X). Note that f̂z(b) = zγ(b) for all b ∈ H2, and fz ∈ RS[L, n+1
|L|].

3. Run subprotocols. P and V run the following in parallel:
(a) (PLIN(xALIN, (fAz, fz)), V

fAz ,fz
LIN (xALIN)) with xALIN := (F, L,H1, H2, |H1 ∪H2|/|L|, A).

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 34

(b) (PLIN(xBLIN, (fBz, fz)), V
fBz ,fz

LIN (xBLIN)) with xBLIN := (F, L,H1, H2, |H1 ∪H2|/|L|, B).
(c) (PLIN(xCLIN, (fCz, fz)), V

fCz ,fz
LIN (xCLIN)) with xCLIN := (F, L,H1, H2, |H1 ∪H2|/|L|, C).

(d) Check p ∈ RS[L, (|H1| − 1)/|L|] for p̂(X) := (f̂Az(X) · f̂Bz(X)− f̂Cz(X))/ZH1(X).
In the formalism of RS-encoded IOPs (see Section 2.3.3), this corresponds to the rational
constraint (C, σ) := ((N,D), (|H1| − 1)/|L|) where N(X,Z1, Z2, Z3) := Z1 · Z2 − Z3

and D(X) := ZH1(X). This realizes the required rowcheck (see Section 2.3.4).
4. V accepts if and only if all of the above subverifiers accept.
Note that the maximum rate across the protocol is ρe = 2|H1 ∪H2|/|L|.

Proof.
Completeness. Suppose that w ∈ Fn−k is a valid witness for the instance (I, v), and define
z := (1, v, w) ∈ Fn+1. By construction, f̂z is a low-degree extension of z over H2 (i.e.,
f̂z(b) = zγ(b) for all b ∈ H2). Therefore, for all a ∈ H1 it holds that f̂A(a) =

∑
b∈H2

Aa,bzγ(b) =∑
b∈H2

Aa,bf̂z(b), and so Step 3a (lincheck on (fAz, fz)) always accepts. By the same argument,
Steps 3b and 3c always accept. Finally, the fact that w is a valid witness implies that, for
all a ∈ H1, it holds that f̂A(a) · f̂B(a) − f̂C(a) = (

∑
b∈H2

Aa,bzγ(b)) · (
∑

b∈H2
Ba,bzγ(b)) −

(
∑

b∈H2
Ca,bzγ(b)) = 0, which means that Step 3d always accepts.

Soundness. Suppose that the instance (I, v) is not satisfiable, i.e., for all w ∈ Fn−k, letting
z := (1, v, w), there exists i ∈ [m] such that (

∑n
j=0Ai,jzj) · (

∑n
j=0 Bi,jzj) 6= (

∑n
j=0Ci,jzj).

Let the oracles sent by a malicious prover be f ′w, f
′
A, f

′
B, f

′
C , and let f ′z := f̂ ′z|H where f̂ ′z(X) :=

f̂ ′w(X) · Z
H≤k2

(X) + f̂(1,v)(X). We distinguish between multiple cases.

(i) There exists a ∈ H1 for which f̂ ′A(a) 6=
∑

b∈H2
Aa,bf̂

′
z(b). Then, by soundness of the

lincheck protocol, Step 3a accepts with probability |H1|
|F| .

(ii) If analogous statements hold for f ′B or f ′C , then analogous conclusions hold for Step 3b or
Step 3c.

(iii) For all a ∈ H1 it holds that f̂ ′A(a) =
∑

b∈H2
Aa,bf̂

′
z(b), and likewise for f̂ ′B, f̂

′
C . Then

by assumption there exists a ∈ H1 such that f ′A(a) · f ′B(a) − f ′C(a) 6= 0. We conclude
that f̂ ′Az(X) · f̂ ′Bz(X)− f̂ ′Cz(X) is not divisible by ZH1(X), which implies that the ratio
of these two polynomials does not yield a codeword p ∈ RS[L, (|H1| − 1)/|L|], so the
verifier rejects (with probability 1).

The soundness error is given by maximizing over the above cases.
Next, we discuss two optimizations that come from viewing the lincheck protocols as

probabilistic interactive reductions to sumcheck: given an instance-witness pair
(

(F, L,H1, H2, ρ,M) , (f1, f2)
)

the lincheck protocol outputs an instance-witness pair
(
(F, L,H1 ∪H2, ρ+ |H1 ∪H2|/|L|, 0), qα

)

for sumcheck.
Optimization: one sumcheck suffices. All lincheck summations are taken over the same
space, so we can save costs by running a single execution of the amortized sumcheck protocol
(see Lemma 3.4.10 in Section 3.4.2).

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 35

Optimization: re-use α. Each lincheck protocol instructs the verifier to send a random α ∈ F
to the prover. The verifier thus chooses α1, α2, α3 ∈ F uniformly and independently, and sends
(α1, α2, α3) to the prover. But this means that the verifier must compute p̂αi for each i. We
observe that choosing α1 = α2 = α3 ∈ F uniformly at random does not affect soundness, which
means that the verifier only has to compute p̂α for one α. This will become more important later
in Section 3.6.2 when we consider amortizing multiple instances.
Efficiency. The prover computes Az, Bz, Cz and their low-degree extensions, along with the
low-degree extensions of w and z, in time O(‖A‖+ ‖B‖+ ‖C‖+ n+m) + 5 · FFT(F, |L|).
The verifier evaluates fz at a single point in L, which costs O(n+m). Summing over the costs
of the subprotocols and amortizing the sumcheck cost across the four instances yields the stated
expressions.
Proof of knowledge. Suppose that P̃ causes the verifier’s rational constraints to be satisfied with
probability at least µ. Then by the soundness analysis with probability at least µ− m+1

F it holds
that f̂A(a) · f̂B(a)− f̂C(a) = (

∑
b∈H2

Aa,bf̂z(b)) · (
∑

b∈H2
Ba,bf̂z(b))− (

∑
b∈H2

Ca,bf̂z(b)) = 0.
Hence it holds that fw encodes a valid witness w for x. The extractor queries fw at sufficiently
many points to decode w.

3.6.1 Zero knowledge
We describe how to modify Protocol 3.6.3 to achieve zero knowledge against bounded-

query malicious verifiers; the modification is an adaptation of algebraic techniques from [26, 24].
Essentially, instead of providing the unique low-degree extensions of w,Az,Bz, Cz, the prover
provides randomized low-degree extensions that are over a domain L ⊆ F chosen such that
(H1 ∪H2) ∩ L = ∅ (in particular, L will be affine so that 0F /∈ L). This ensures that a bounded
number of queries to the witness and auxiliary oracles does not reveal any information about w.
Then, both prover and verifier use our zero knowledge sumcheck protocol (see Protocol 3.4.8 in
Section 3.4.1) instead of the “plain” sumcheck protocol used above.

Theorem 3.6.4. For any b : N→ N, Protocol 3.6.5 below is an RS-encoded IOP of knowledge
forRR1CS (Definition 3.6.1) that is zero knowledge against query bound b with parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = 6|L|
randomness r = O(log |F|)
soundness error ε = m+1

|F|

prover time tP =
O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+18 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m)

maximum rate (ρc, ρe) = (
2 max(m,n+1)+2b

|L| ,
2 max(m,n+1)+2b

|L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

for any instance x = (I, v).

Protocol 3.6.5 (ZK variant of Protocol 3.6.3). We use the same notation as in Protocol 3.6.3,
with the only additional constraint that (H1 ∪H2) ∩ L = ∅.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 36

1. Compute LDE of the input. Same as Step 1 in Protocol 3.6.3.
2. Witness and auxiliary oracles. P sends to V the oracle codewords fw ∈ RS[L, n−k+b

|L|]

and fAz, fBz, fCz ∈ RS[L, m+b
|L|] defined as follows.

• fw := f̄w|L where f̄w is a random polynomial of degree less than n− k + b such that

∀ b ∈ H2 with k < γ(b) ≤ n, f̄w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H≤k2

(b)
.

• fAz := f̄Az|L where f̄Az is a random polynomial of degree less than m+ b such that, for
all a ∈ H1, f̄Az(a) =

∑
b∈H2

Aa,b · zγ(b) = (Az)a. The other codewords, fBz and fCz, are
defined similarly.

As before, the above implicitly define the “virtual oracle” fz := f̂z|L where f̂z(X) :=
f̄w(X) · Z

H≤k2
(X)+f̂(1,v)(X). Again f̂z(b) = zγ(b) for all b ∈ H2, but now fz ∈ RS[L, n+1+b

|L|]

since f̄w has higher degree.
3. Run subprotocols. The same as Step 3 in Protocol 3.6.3, except that P and V run the

(amortized) zero knowledge sumcheck protocol (see Protocol 3.4.8 in Section 3.4.1). Several
rates need to be adjusted to take into account the fact that the codewords encoding the
satisfying assignment (and its linear transformations) have degree higher by b. This results in
the following maximum rate

(ρc, ρe) =

(
2|H1 ∪H2|+ 2b

|L|
,
2|H1 ∪H2|+ 2b

|L|

)
.

4. V accepts if and only if all of the above subverifiers accept.

Proof. Completeness, soundness, and proof of knowledge follow almost directly from the proof
of Theorem 3.6.2, so we do not discuss them. Before discussing zero knowledge, we note that
the round complexity can be reduced to 2 by running the first round of the zero knowledge
sumcheck protocol (Protocol 3.4.8) in parallel with the first round of Protocol 3.6.5. We now
argue the zero knowledge guarantee (see Definition 2.3.3): we need to construct a probabilistic
simulator S that, given as input a satisfiable R1CS instance (I, v) and straightline access to a
b-query malicious verifier Ṽ , outputs a view that is identically distributed as Ṽ ’s view when
interacting with an honest prover.

At a high level, S simulates the oracles fw, fAz, fBz, fCz by answering each query with
uniformly random field elements. Given these, it runs the simulator for the amortized zero
knowledge sumcheck, answering the subsimulator’s queries to the virtual oracle by “querying”
the appropriate locations of fw, fAz, fBz, fCz. More precisely, on input x, the simulator operates
as follows.

1. Prepare a table T for (fAz, fBz, fCz, fw) which is initially empty. Whenever we “query” an ora-
cle fx at a point a ∈ L, where x is one ofAz,Bz, Cz, w, if (a, bAz, bBz, bCz, bw) ∈ T then out-
put bx; otherwise, choose bAz, bBz, bCz, bw ∈ F uniformly at random, add (a, bAz, bBz, bCz, bw)
to T and output bx.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 37

2. “Send” the oracles fAz, fBz, fCz, fw to Ṽ . In parallel, “send” the first prover message r in the
univariate ZK sumcheck protocol (Protocol 3.4.8), and use the simulator for that protocol to
answer queries to r.

3. Run the prover for each subprotocol in Step 3, except that we do not explicitly construct any
witness (we think of them as arithmetic circuits with oracle gates), and we do not run the
sumcheck protocol.

4. Pass the instances constructed in the previous step to the simulator for the zero knowl-
edge 3-sumcheck protocol. When the subsimulator queries one of the oracles, evaluate the
corresponding circuit and use T to look up the necessary values of fAz, fBz, fCz, fw.

The subsimulator makes the same number of queries to the “amortized” virtual oracle as the veri-
fier makes to the sumcheck proof oracle; in particular, this is at most b. By inspecting the virtual
oracle, we see that the answer to a query a ∈ F depends only on fAz(a), fBz(a), fCz(a), fw(a)
(and fv(a), which is known). Hence |T | ≤ b. It remains to show that T is consistent with the
real view.

We look at fw; the other cases are essentially identical. We can write f̄w as

f̄w := f̂w(X) + ZH>k
2

(X) ·R(X) ,

where R(X) is a uniformly random polynomial of degree less than b and H>k
2 := H2 \H≤k2 .

Since ZH>k
2

is nonzero outside of H>k
2 , any vector

(
f̄w(a)

)
a∈Q is distributed uniformly in FQ

for any Q ⊆ F such that Q ∩H2 = ∅ and |Q| ≤ b. In particular, this holds for the set of query
positions asked by the subsimulator, even if they are chosen adaptively based on the answers to
previous queries.

3.6.2 Amortization
We describe efficiency savings that can be made when one considers multiple R1CS

instances with the same constraints (but different inputs). More precisely, we seek an RS-
encoded IOP for the following relation:

Definition 3.6.6 (`-wise R1CS relation). The relationR`
R1CS is the set of all pairs

(
(x1, . . . , x`), (w1, . . . , w`)

)

such that, for every i ∈ {1, . . . , `}, xi = (F, k, n,m,A,B,C, v(i)) and (xi, wi) ∈ RR1CS.

We have already obtained an RS-encoded IOP forRR1CS (Protocol 3.6.3), so we can obtain
an RS-encoded IOP forR`

R1CS by running this IOP in parallel ` times. Note, however, that the
running time of both the prover and the verifier increases by a multiplicative factor of `.

We modify this strategy to ensure that the verifier’s running time increases by only an
additive factor in `, for a total of O(‖A‖ + ‖B‖ + ‖C‖ + n + m + m). This is significant
because, as ` increases, the amortized per-instance cost becomes constant. The modification
follows from an observation used in the proof of Theorem 3.6.2: we choose the same random

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 38

α ∈ F for all lincheck instances that result from the ` parallel executions, and then amortize all
of the resulting sumcheck instances (see Section 3.4.2). The verifier then only has to evaluate the
auxiliary lincheck polynomials once.

Corollary 3.6.7. For every m ∈ N there exists an RS-encoded IOP forRm
R1CS (Definition 3.6.6)

with parameters:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = 2
proof length p = (4m+ 1)|L|
randomness r = O(m log |F|)
soundness error ε = m+1

|F|

prover time tP =
m ·O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+17 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m+m)

maximum rate (ρc, ρe) = (max(m,n+1)
|L| , 2 max(m,n+1)

|L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

3.7 From RS-encoded provers to arbitrary provers
In prior sections we have designed IOP protocols based on the simplifying assumption that

a malicious prover is restricted to sending Reed–Solomon codewords of prescribed rates. In this
section we describe how to transform any IOP protocol that is sound under this assumption into
one that is sound against all provers.

This by itself should not be surprising: the probabilistic checking literature is rich with
such transformations, which are enabled by the tools of low-degree testing and self-correction.
However, our goal here is to obtain a transformation that is particularly efficient for the setting of
this paper, as we now explain.

There is a straightforward approach to using low-degree testing, which we now spell out
since it serves as a comparison point. Suppose that we have a low-degree test for RS [L, ρ]
with soundness error εLDT and proximity parameter δLDT, and we wish to transform a given
RS-encoded IOP (P, V, (~ρi)

k
i=1) into a corresponding IOP that is sound against all provers. Let

us assume for simplicity that ~ρ1 = · · · = ~ρk = (ρ) for some ρ ∈ (0, 1], that is, each prover
message consists of one codeword in RS [L, ρ].

The naive approach is to individually run the low-degree test on each prover message. If
all tests pass with probability greater than εLDT, then every message π̃i is δLDT-close to some
codeword πi ∈ RS [L, ρ]. If the verifier makes q uniform queries, the probability that any one
of these queries does not “see” (πi)

k
i=1 is at most q · δLDT. Conditioned on the verifier “seeing”

(πi)
k
i=1, the verifier’s acceptance probability is exactly the same as in the RS-encoded protocol.

While the foregoing approach “works”, it has two inefficiencies. First, it runs one low-
degree test for each purported codeword, which is undesirable because low-degree tests are
expensive. Second, the soundness error of the RS-encoded IOP typically decreases by increasing
q, which creates a trade-off with the soundness error q · δLDT of the transformation.

We address the first problem by testing a random linear combination of the πi, following an
idea introduced in [130] (in the context of interactive proofs of proximity) and applied in [9] (in

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 39

the context of interactive PCPs of proximity). The verifier samples a1, . . . , ak ∈ F uniformly
and independently at random, and sends these to the prover; the prover and verifier then engage
in a low-degree test for the “virtual oracle” π̃ :=

∑k
i=1 aiπ̃i. If π̃i ∈ RS [L, ρ] for all i, then

π̃ ∈ RS [L, ρ]. If instead π̃i is δ-far from RS [L, ρ] for some i (and δ small enough), then one can
show that π̃ is also δ-far with high probability. Thus, a single low-degree test is run, regardless
of the number of oracles k.

We address the second problem by using an observation due to [23] about testing rational
constraints (see Section 2.3.3). In the encoded protocols in this work (and in [23]), sound-
ness entails testing both that the prover’s messages are low-degree and that they satisfy some
existentially-quantified polynomial equations; for example, “message f is low-degree and there
is a low-degree g such that f ≡ g · ZH”. The standard way to test this property is for the prover
to send g; the verifier can then check the relation by querying at a uniformly random point in the
domain, but this creates the aforementioned trade-off. However, [23] observe that the verifier
can simulate queries to g itself, given query access to f , since g(α) = f(α)/ZH(α) (when
ZH(α) 6= 0). Thus the prover does not have to send g, but only has to show that g is low-degree.
In all of our protocols, this observation results in RS-encoded IOPs with q = 0, and we will
assume that this is the case in the transformation described in this section.

In this exposition we have made the simplifying assumption that the desired rate for each
codeword in each proof is the same. In our protocols (in particular, the sumcheck protocol) this
will not be the case, and so we must also handle differing rates. In some settings it suffices
to test for proximity to RS [L,maxi ρi]

k, but not in our setting. This is because the soundness
of univariate sumcheck relies on g being close to RS [L, (|H| − 1)/|L|]; soundness breaks if g
is merely close to (say) RS [L, |H|/|L|] (or RS codes with bigger rates). Following [41], we
instead multiply each π̃i by an appropriately-chosen monomial and then take a random linear
combination. We show that if Π̃ is δ-far from RS [L, (ρ1, . . . , ρk)] then with high probability π̃ is
far from RS [L,maxi ρi], which suffices for soundness. We obtain the following theorem.

Theorem 3.7.1. Suppose that we are given:
• an RS-encoded IOP (PR, VR, (~ρi)

kR
i=1), with maximum rate (ρc, ρe), for a relationR;

• an IOPP (PLDT, VLDT) for the RS code RS [L, ρc].
Then we can combine these two ingredients to obtain an IOP (P, V) for R with the following
parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = ΣR

number of rounds k = kR + kLDT

proof length p = pR + pLDT

query complexity qπ = qLDT
π + qLDT

w
·
∑k

i=1 `
R
i

randomness (ri, rq) =
(
rRi + rLDT

i + (
∑k

i=1 `
R
i + c) log |F|, rLDT

q

)

soundness error (εi, εq) =
(
εR + |L|

|F| + εLDT
i , εLDT

q

)

prover time tP = O(tRP + tLDT
P)

verifier time tV = O(tRV + tLDT
V)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

provided δLDT < min(1−2ρc
2
, 1−ρc

3
, 1− ρe), and where c is the maximum size of a constraint set

output by VR. (Parameters with superscript “R” and “LDT” are parameters for (PR, VR) and
(PLDT, VLDT) respectively.)

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 40

Moreover, if (PR, VR) is an RS-encoded IOP of knowledge, then (P, V) is an IOP of
knowledge.

Recall that `Ri is the height of the i-th prover message, i.e., the i-th prover message has alphabet
F`Ri .

Protocol 3.7.2. Letting (PR, VR) and (PLDT, VLDT) be as in the theorem statement, we need to
construct an IOP (P, V) forR. The prover P and verifier V both receive as input an instance x,
and the prover P also receives as input a corresponding witness w.
1. RS-encoded IOP for R. P and V simulate (PR(x,w), VR(x)). During this protocol,

the prover sends oracle codewords π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈ RS [L, ~ρkR], and the verifier
outputs a set of rational constraints C. Let ` :=

∑kR

i=1 `i + |C|, ~ρ = (~ρ1, . . . , ~ρkR), ~ρC :=
(σ)(C,σ)∈C, and ~σ := (~ρ, ~ρC) ∈ (0, 1]`.

2. Random linear combination. V samples ~z ∈ F2` uniformly at random and sends it to P.
3. Low-degree test. P and V simulate (PLDT(~z>Π), V ~z>Π

LDT) where Π :=
[

Π0

Π1

]
∈ F2`×L is as

follows:

• Π′0 ∈ F`×L is the matrix obtained by “stacking” vertically the matrices π1, . . . , πkR , and
Π0 is obtained by stacking Π′0 with (C[Π′0])(C,σ)∈C.

• Π1 ∈ F`×L is the matrix whose entries are (Π1)i,a := a(ρc−σi)|L| · (Π0)i,a for all i ∈
{1, . . . , `}, a ∈ L.

4. V accepts if and only if VLDT accepts.

Proof.
Completeness. If πi ∈ RS [L, ~ρi] for all i, then ~z>Π ∈ RS [L, ρc] and thus PLDT makes VLDT

accept. Completeness then follows immediately from the completeness of the RS-encoded IOP
(PR, VR).
Soundness. Suppose that x /∈ L(R) and fix a malicious prover; let δ := δLDT. During the
protocol, the prover sends oracles π̃1, . . . , π̃kR; let Π̃ :=

[
Π̃0

Π̃1

]
be as in the protocol description

but with respect to the messages π̃i. We argue that the verifier accepts with probability at most
εR + |L|/|F|+ εLDT

i . To do this, we first show that it must hold that ∆(Π̃0,RS [L,~σ]) > δ; then
we show that given this, the verifier’s acceptance probability is bounded as required. Recall that
here ∆ denotes the column-wise distance (see Section 2.1.1).

Let E be the event that the verifier accepts in the query phase with probability greater than
εLDT
q , given the transcript of the interactive phase. Observe that

Pr[E] = Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] · Pr[∆(Π̃0,RS [L,~σ]) > δ]

+ Pr[E | ∆(Π̃0,RS [L,~σ]) ≤ δ] · Pr[∆(Π̃0,RS [L,~σ]) ≤ δ]

≤ Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] + Pr[∆(Π̃0,RS [L,~σ]) ≤ δ] .

We will bound each of these terms individually. First, recall from Section 2.3.3 the properties of
ρe and ρc.
• ρc is (at least) the maximum among the rates in ~ρ := (~ρi)

k
i=1 and the rates in {σ : C ∈

V , (C, σ) ∈ C};

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 41

• ρe is (at least) the maximum among ρc and the rates in {rate(N ; ~ρ), σ + rate(D) : C ∈
V , (C, σ) ∈ C}.

In particular, ρe ≥ ρc.

• The probability of E when ∆(Π̃0,RS [L,~σ]) > δ. First we argue that if ∆(Π̃0,RS [L,~σ]) >
δ then ∆(Π̃,RS [L, ρc]

2`) > δ; then we cite a claim stating that, given this, a random linear
combination of Π̃ is δ-far from RS [L, ρc] with high probability; finally we derive the bound
of the aforementioned probability.

Claim 3.7.3. For any δ < (1− 2ρc)/2, if ∆(Π̃0,RS [L,~σ]) > δ then ∆(Π̃,RS [L, ρc]
2`) > δ.

Proof. Suppose by way of contradiction that ∆(Π̃,RS [L, ρc]
2`) ≤ δ, and let Π̂ =:

[
Π̂0

Π̂1

]
∈

RS [L, ρc]
` be such that ∆(Π̃, Π̂) ≤ δ. For each i, let pi, p′i ∈ RS [L, ρc] be the i-th rows of

Π̂0, Π̂1 respectively. We argue that pi ∈ RS [L, σi] for every i, which implies Π̂0 ∈ RS [L,~σ],
so ∆(Π̃0,RS [L,~σ]) ≤ ∆(Π̃0, Π̂0) ≤ ∆(Π̃, Π̂) ≤ δ, which is a contradiction.

Suppose towards contradiction that there exists i such that pi ∈ RS [L, ρc] \ RS [L, σi]. Then
q := pi ·X(ρc−σi)|L| ∈ RS [L, 2ρc − σi] \ RS [L, ρc]; in particular, q 6= p′i, which implies that
∆(q, p′i) ≥ 1−(2ρc−σi). However, because ∆(Π̃,RS [L, ρc]

2`) ≤ δ, we have that, letting p̃i be
the i-th row of Π̃0, ∆(p̃i ·X(ρc−σi)|L|, q) = ∆(p̃i, pi) ≤ δ and ∆(p̃i ·X(ρc−σi)|L|, p′i) ≤ δ. By the
triangle inequality we have that ∆(q, p′i) ≤ 2δ < 1− (2ρc− σi), which is a contradiction.

Claim 3.7.4. For all δ = d/|L| < (1− ρc)/3, if ∆(Π̃,RS [L, ρc]
2`) > δ then

Pr
~z←F2`

[
∆(~z>Π̃,RS [L, ρc]) ≥ δ

]
≥ 1− |L|

|F|
.

Proof. It suffices to show that there exists ~z0 such that ∆(~z>0 Π̃,RS [L, ρc]) > δ. The claim
then follows from [39, Theorem 4.1] by setting ε := (|L|+|F|−2`)−1, since ∆(~z>Π̃,RS [L, ρc])
is an integer multiple of |L|−1 and the above probability is an integer multiple of |F|−2`.

If there exists a row π̃i of Π̃ such that ∆(π̃i,RS [L, ρc]) > δ then we are done. So we assume
that all rows are at a distance at most δ from RS [L, ρc].

We may assume without loss of generality that the closest codeword to each row of Π̃ is zero,
since distance is preserved under shifting by codewords. By assumption the number of nonzero
columns of Π̃ is more than d. The probability that the inner product of a nonzero column with
~z is zero is 1/|F|, so by a union bound the probability that the inner product of any nonzero
column with ~z is zero is at most |L|/|F|; hence with probability at least 1− |L|/|F| it holds
that ∆(~z>Π̃, 0) > δ. Fix some ~z such that this inequality holds. We show that there exists ~z0

such that δ < ∆(~z>0 Π̃, 0) ≤ 2δ < 2(1 − ρc)/3; this implies that ∆(~z>0 Π̃,RS [L, ρc]) > δ by
the triangle inequality and the distance property of the code.

For each i ∈ [2`], let pi :=
∑i

j=1 zjπ̃j; then p0 = 0 and p2` = ~z>Π̃. We therefore have that
∆(p0, 0) = 0 and ∆(p2`, 0) ≥ δ. We also have that ∆(pi, pi+1) ≤ δ, and so there exists i∗ such
that δ < ∆(pi∗ , 0) ≤ 2δ. We choose ~z0 to be the vector of the first i∗ entries of ~z followed by
zeroes.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 42

Combining the two claims: if ∆(Π̃0,RS [L,~σ]) > δ then, with probability at least 1− |L|/|F|,
it holds that ∆(~z>Π̃,RS [L, ρc]) ≥ δ. Then Pr[E | ∆(Π̃0,RS [L,~σ]) > δ] ≤ εLDT

i + |L|/|F|
by definition of εLDT

q .

• The probability that ∆(Π̃0,RS [L,~σ]) ≤ δ. Let π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈ RS [L, ~ρkR] be
the closest codewords to the prover’s messages π̃1, . . . , π̃kR . We can construct a prover P̂ for
the encoded IOP, which sends messages π1, . . . , πkR . We show that if ∆(Π̃0,RS [L,~σ]) ≤ δ,
then for all (C, σ) ∈ C it holds that C[Π̂′0] ∈ RS [L, σ]. By the soundness of the encoded IOP,
this occurs with probability at most εR.

Take some (C, σ) ∈ C, and let πC ∈ RS [L, σ] be the (unique) closest codeword to C[Π̃′0].
Since ∆(Π̃′0,RS [L, ~ρ]) ≤ δ and C operates column-wise, we have that ∆(πC, C[Π̂′0]) ≤ δ.

Let (N,D) := C; then ∆(πC · D,N [Π̂′0]) ≤ δ. Since πC · D ∈ RS [L, σ + rate(D)]
and N [Π̂′0] ∈ RS [L, rate(N ; ~ρ)], we have that πC · D ≡ N [Π̂′0] since δ < 1 − ρe ≤
1 − max(rate(N ; ~ρ), σ + rate(D)). In particular, this implies that D divides N [Π̂′0] as a
polynomial, and so C[Π̂′0] ∈ RS [L, rate(N ; ~ρ)− rate(D)]. (Note that ⊥ /∈ C[Π̂′0] because
otherwise the completeness condition of the RS-encoded IOP would fail to hold.) We conclude
that C[Π̂′0] = πC ∈ RS [L, σ].

Proof of knowledge. Suppose that P̃ causes the verifier to accept with probability µ. By a
union bound, the probability that ∆(Π̃0,RS [L,~σ]) ≤ δ is at least µ− (|L|/|F|+ εLDT

i + εLDT
q).

Using an efficient algorithm for Reed–Solomon decoding (such as Berlekamp–Welch), we can
recover Π̂′0 from Π̃′0. By the above soundness analysis, we have that for all (C, σ) ∈ C we
have C[Π̂′0] ∈ RS [L, σ]. The extractor runs P̃ , corrects its messages and forwards them to the
extractor for the RS-encoded IOP. By the knowledge guarantee of the RS-encoded IOP, the
extractor succeeds with probability at least µ− (|L|/|F|+ εLDT

i + εLDT
q + εR).

3.7.1 Zero knowledge
We describe how to modify the transformation above to preserve zero knowledge, thereby

showing how to efficiently convert an RS-encoded IOP with a zero knowledge guarantee into
a corresponding IOP with the same zero knowledge guarantee. The transformation uses the
random self-reducibility of Reed–Solomon proximity testing, which implies that the low-degree
test used in the transformation need not be zero knowledge (the only requirement is that its
honest prover must run in polynomial time). In particular, the honest prover in the new protocol
will send, in addition to the messages of the underlying RS-encoded IOP, a random codeword r,
which is added to the linear combination of messages that are tested for proximity to RS.

Theorem 3.7.5. Suppose that we are given:
• an RS-encoded IOP (PR, VR, (~ρi)

kR
i=1), with maximum rate (ρc, ρe), for a relation R that is

zero knowledge against b queries;
• an IOPP (PLDT, VLDT) for the RS code RS [L, ρc] with a polynomial-time honest prover (not

necessarily zero knowledge).

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 43

Then we can combine these two ingredients to obtain an IOP (P, V) forR, also zero knowledge
against b queries, with the following parameters:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = ΣR

number of rounds k = kR + kLDT + 1
proof length p = pR + pLDT + |L|
query complexity qπ = qLDT

π + qLDT
w
·
∑k

i=1 `
R
i

randomness (ri, rq) =
(
rRi + rLDT

i + (
∑k

i=1 `
R
i + c) log |F|, rLDT

q

)

soundness error (εi, εq) =
(
εR + |L|

|F| + εLDT
i , εLDT

q

)

prover time tP = O(tRP + tLDT
P)

verifier time tV = O(tRV + tLDT
V)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

provided δLDT < min(1−2ρc
2
, 1−ρc

3
, 1− ρe), and where c is the maximum size of a constraint set

output by VR. (Parameters with superscript “R” and “LDT” are parameters for (PR, VR) and
(PLDT, VLDT) respectively; highlights denote parameter differences with Theorem 3.7.1.)

Protocol 3.7.6. Letting (PR, VR) and (PLDT, VLDT) be as in the theorem statement, we need to
construct an IOP (P, V) forR. The prover P and verifier V both receive as input an instance x,
and the prover P also receives as input a corresponding witness w.
1. Masking codeword for low-degree test. P sends to V a random r ∈ RS [L, ρc].
2. RS-encoded IOP for R. In parallel to the above, P and V simulate (PR(x,w), VR(x)). In

the course of this protocol, the prover sends oracle codewords π1 ∈ RS [L, ~ρ1] , . . . , πkR ∈
RS [L, ~ρkR], and the verifier specifies a set of rational constraints C. Let ` :=

∑kR

i=1 `i + |C|.
3. Random linear combination. V samples ~z ∈ F2` uniformly at random and sends it to P.
4. Low-degree test. P and V simulate (PLDT(~z>Π + r), V ~z>Π+r

LDT) where Π :=
[

Π0

Π1

]
∈ F2`×L

is defined as in Protocol 3.7.2.
5. V accepts if only if VLDT accepts.

Proof. Completeness and soundness follow almost immediately from those of Protocol 3.7.2.
Indeed, we can view Protocol 3.7.6 as Protocol 3.7.2 modified so that (PR, VR) begins with
an additional “dummy” round where the prover just sends a random codeword. (Note that we
can fix ~z’s random coefficient for r to be 1 almost without loss of generality since distance to
Reed–Solomon codewords is preserved under multiplication by a nonzero constant.) We now
focus on arguing the zero knowledge property.

Let SR be the simulator for (PR, VR), witnessing zero knowledge against b queries. The
simulation guarantee for SR is that, for any ṼR that makes at most b distinct queries across all
oracles, View(PR(x,w), ṼR) and the output of SṼRR (x) are identically distributed.

Consider the simulator S for (P, V) that, given a malicious verifier Ṽ , constructs a new
malicious verifier ṼR (defined below), then runs SR on ṼR, and finally outputs what ṼR outputs
given its simulated view.

1. Start running Ṽ .
2. Sample rsim ∈ RS [L, ρc] uniformly at random, and answer Ṽ ’s queries to r with rsim; let
Qsim be the verifier’s queries to r in this phase.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 44

3. For kR rounds, forward Ṽ ’s messages to the prover. Answer all of Ṽ ’s queries to the
received oracles honestly. Receive a set of rational constraints C̃ from Ṽ .

4. Receive z̃ ∈ F2` from Ṽ .
5. For every ω ∈ Qsim, query every oracle received at ω. For each oracle defined by a

rational constraint (C̃, σ̃) ∈ C̃, evaluate C̃ at ω.
6. Let p(ω)

0 ∈ F` be the value of each oracle at point ω, p(ω)
1 be given by (p

(ω)
1)i :=

ωρ−σi(p
(ω)
0)i for i ∈ [`], and p(ω) ∈ F2` be the concatenation of p(ω)

0 and p(ω)
1 .

7. Sample psim ∈ RS [L, ρc] uniformly at random such that, for every ω ∈ Qsim, psim(ω) =
z̃>p(ω) + rsim(ω).

8. Now when Ṽ queries r at ω, query every oracle received at ω and answer with psim(ω)−
z̃>p(ω).

9. Simulate the interaction of PLDT(p) and Ṽ .
10. Output the view of the simulated Ṽ .

For every query that Ṽ makes to r, ṼR makes a query to every oracle it has received in the
same location. Similarly, for each query Ṽ makes to any other oracle, ṼR makes at most one
query to some received oracle. Hence ṼR makes at most b distinct queries across all oracles, and
so the simulation guarantee holds.

To show zero knowledge, we exhibit the following hybrid experiment, in which the view of
Ṽ is identically distributed to the output of the simulator.

1. Run the honest prover PR(x, f); let Π be as in the protocol.
2. Sample r ∈ RS [L, ρc] uniformly at random and send it to Ṽ . Let Q ⊆ L be the verifier’s

queries to r in this phase.
3. Receive z̃ ∈ F2` from Ṽ .
4. Sample p ∈ RS [L, ρc] uniformly at random such that, for every ω ∈ Q, p(ω) =

(z̃>Π)ω + r(ω).
5. Replace r with p− z̃>Π.
6. Simulate the interaction of PLDT(p) and Ṽ .

One can verify that the view of Ṽ in this hybrid is also identically distributed to the view of Ṽ
in the real protocol. In particular, all answers to Ṽ ’s queries to r after its replacement by p are
correctly distributed.

3.8 Aurora: an IOP for R1CS
We describe the IOP for R1CS (Definition 3.6.1) that comprises the main technical contri-

bution of this paper, and also underlies the zkSNARK for R1CS that we have designed and built
(more about this in Section 3.9).

For the discussions below, we introduce notation about the low-degree test in [22], known
as “Fast Reed–Solomon IOPP” (FRI): given a subspace L of a binary field F and rate ρ ∈ (0, 1),
we denote by εFRI

i (F, L) and εFRI
q (L, ρ, δ) the soundness error of the interactive and query phases

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 45

in FRI (respectively) when testing proximity of a δ-far function to RS [L, ρ]. See Appendix A.3.1
for details about these functions.

We first provide a “barebones” statement with constant soundness error and no zero
knowledge.

Theorem 3.8.1. There is an IOP of knowledge forRR1CS (Definition 3.6.1) over binary fields
F that, given an R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1) be
a constant and L be any subspace of F such that 2 max(m,n + 1) ≤ ρ|L|, has the following
parameters:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (5 + 1

3)|L|
query complexity qπ = O(log |L|)
randomness (ri, rq) = (O(log |L| · log |F|), O(log |L|))
soundness error (εi, εq) =

(
m+1
|F| + |L|

|F| + εFRI
i (F, L), εFRI

q (L, ρ, δ)
)

prover time tP = O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖) + 17 · FFT(F, |L|)
verifier time tV = O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where δ := min(1−2(ρ/2)
2

, 1−(ρ/2)
3

, 1− ρ).

Proof. Apply the transformation in Section 3.7 (see Theorem 3.7.1) to two ingredients: (a) the
RS-encoded IOP for R1CS in Section 3.6 (see Theorem 3.6.2); and (b) the FRI low-degree test
with proximity parameter δLDT := δ. Note that the condition on δLDT is satisfied by definition.
The resulting protocol is sound against all malicious provers (and not just provers that send
oracles that are Reed–Solomon codewords).

Next, we provide a statement that additionally has parameters for controlling the soundness
error, is zero knowledge, and includes other (whitebox) optimizations; the proof is analogous
except that we use zero knowledge components (the RS-encoded IOP of Theorem 3.6.4 and
the transformation of Theorem 3.7.5). The resulting IOP protocol, fully specified in Fig. 3.3,
underlies our zkSNARK for R1CS (see Section 3.9).

Theorem 3.8.2. There is an IOP of knowledge forRR1CS (Definition 3.6.1) over binary fields
F that, given an R1CS instance having n variables and m constraints, letting ρ ∈ (0, 1) be a
constant and L be any subspace of F such that 2 max(m,n+ 1) + 2b ≤ ρ|L|, is zero knowledge
against b queries and has the following parameters:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alphabet Σ = F
number of rounds k = O(log |L|)
proof length p = (4 + 2λi + λ′iλ

FRI
i /3)|L|

query complexity qπ = O(λiλ
FRI
i λFRI

q log |L|)
randomness (ri, rq) =

(
O((λiλ

′
i + λFRI

i log |L|) log |F|), O(λFRI
q log |L|)

)

soundness error (εi, εq) =
(

(m+1
|F|)λi + (|L||F|)

λ′i + εFRI
i (F, L)λ

FRI
i , εFRI

q (L, ρ, δ)λ
FRI
q

)

prover time tP =
λi · (O(|L| · log(n+m) + ‖A‖+ ‖B‖+ ‖C‖)

+18 · FFT(F, |L|)) +O(λ′iλ
FRI
i |L|)

verifier time tV =
λi ·O(‖A‖+ ‖B‖+ ‖C‖+ n+m+ log |L|)

+O(λ′iλ
FRI
i λFRI

q log |L|)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 46

where δ := min(1−2ρ
2
, 1−ρ

3
, 1− ρ). Setting b ≥ qπ ensures honest-verifier zero knowledge.

Given an R1CS instance (I, v), we fix subspaces H1, H2 ⊆ F such that |H1| = m and
|H2| = n+ 1 (padding to the nearest power of 2 if necessary) with H1 ⊆ H2 or H2 ⊆ H1, and a
sufficiently large affine subspace L ⊆ F such that L∩ (H1 ∪H2) = ∅. We let t := |H1 ∪H2| =
max(m,n + 1). Fig. 3.2 below gives polynomials and codewords used in Fig. 3.3. We also
define ξ :=

∑
a∈H1∪H2

at−1.
Finally, we note that we have tailored the transformation from Section 3.7 to the RS-

encoded IOP from Section 3.6 in the sense that for most oracles of sub-maximal rate it actually
suffices to test proximity to the maximal rate so they only appear once (unshifted) in the matrix
Π. The single exception is the (virtual) oracle gi used in the sumcheck protocol, for which we
must test proximity with rate exactly (t− 1)/|L|. Because of this, gi is the only oracle for which
we test both gi and a shift of it, as is shown in the matrix Π in Fig. 3.3.

polynomial degree values that define the polynomial

pα t− 1 p̂α(a) =

{
αγ(a) for a ∈ H1

0 for a ∈ (H1 ∪H2) \H1

p
(M)
α t− 1 p̂

(M)
α (b) =

{∑
a∈H1

Ma,b · αγ(a) for b ∈ H2

0 for b ∈ (H1 ∪H2) \H2

codeword code polynomial that defines the codeword

fw RS
[
L, n−k+b

|L|

]
random polynomial f̄w of degree less than n− k + b such that,

for all b ∈ H2 with k < γ(b) ≤ n, f̄w(b) =
wγ(b)−k − f̂(1,v)(b)

Z
H≤k2

(b)

fMz RS
[
L, m+b

|L|

]
random polynomial f̄Az of degree less than m+ b such that,
for all a ∈ H1, f̄Az(a) =

∑
b∈H2

Ma,b · zγ(b) = (Mz)a

Figure 3.2: Polynomials and codewords used in the IOP protocol given in Fig. 3.3.

3.9 libiop: a library for IOP-based SNARGs
We provide libiop (see https://github.com/scipr-lab/libiop), a codebase that

enables the design and implementation of IOP-based non-interactive arguments. The codebase
uses the C++ language and has three main components: (1) a library for writing IOP protocols;
(2) a realization of the [32] transformation, mapping any IOP written with our library to a
corresponding non-interactive argument; (3) a portfolio of IOP protocols. We discuss each of
these components in turn.

3.9.1 Library for IOP protocols
We provide a library that enables a programmer to write IOP protocols. Informally, the

programmer provides a blueprint of the IOP by specifying, for each round, the number and

https://github.com/scipr-lab/libiop

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 47

P ((I, v), w) V (I, v)

Sample (as in Fig. 3.2):
• fw ∈ RS

[
L, n−k+b

|L|

]

• fAz, fBz, fCz ∈ RS
[
L, m+b

|L|

]

Sample ri ← RS
[
L, 2t+b−1

|L|

]

for univariate sumcheck below,
and compute
µi :=

∑
a∈H1∪H2

ri(a)

repeat for i = 1, . . . , λi in parallel:

fz := fw · ZH≤k2
+ f(1,v)

αi ← F, ~si ← F3

qi,1 := fAz · pαi − fz · p
(A)
αi

virtual or-
acles for
lincheck

qi,2 := fBz · pαi − fz · p
(B)
αi

qi,3 := fCz · pαi − fz · p
(C)
αi

reduction from R1CS to sumcheck

lincheck

amortized zero knowledge univariate sumcheck

low-degree test

Compute:

gi ∈ RS

[
L,
t− 1

|L|

]
, hi ∈ RS

[
L,
t+ b

|L|

]

s.t. r̂i(X) +
3∑

j=1

si,j q̂i,j(X)

= ĝi(X) + ξ−1µi ·Xt−1

+ ZH1∪H2(X) · ĥi(X)

r
(1)
LDT, . . . , r

(λ′i)
LDT ← RS

[
L, 2t+2b

|L|

]

Π :=

fw
fAz
fBz
fCz

(fAz · fBz − fCz)/ZH1

r1; . . . ; rλi
h1; . . . ;hλi
g1; . . . ; gλi

(X(2t+2b)−(t−1)gi)
λi
i=1

~y1, . . . , ~yλ′i ← F5+4λi

RS proximity test:
FRI(~y>i Π + r

(i)
LDT)

For all a ∈ L, gi(a) :=

ri(a) +
3∑

j=1

si,jqi,j(a)

− ξ−1µi · at−1

− ZH1∪H2(a) · hi(a)

fw, fAz, fBz, fCz

ri, µi

αi, ~si

hi

r
(1)
LDT, . . . , r

(λ′i)
LDT

~y1, . . . , ~yλ′i

i = 1, . . . , λ′i

Figure 3.3: Diagram of the zero knowledge IOP for R1CS that proves Theorem 3.8.2.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 48

sizes of oracle messages (and non-oracle messages) sent by the prover, as well as the number of
random bytes subsequently sent by the verifier. For the prover, the programmer specifies how
each message is to be computed. For the verifier, the programmer specifies how oracle queries
are generated and, also, how the verifier’s decision is computed based on its random choices and
information received from the prover. Notable features of our library include:

• Support for writing new IOPs by using other IOPs as sub-protocols. This includes juxta-
posing or interleaving selected rounds of these sub-protocols. This latter feature not only
facilitates reducing round complexity in complex IOP constructions but also makes it possible
to take advantage of optimizations such as column hashing (discussed in Section 3.9.2) when
constructing a non-interactive argument.

• A realization of the transformation described in Section 3.7, which constructs an IOP by
combining an encoded IOP (as defined in Section 2.3.3) and a low-degree test (as defined
in Section 2.3.1.1). This is a powerful paradigm (it applies to essentially all published IOP
protocols) that reduces the task of writing an IOP to merely providing suitable choices of these
two simpler ingredients.

3.9.2 BCS transformation
We realize the transformation of [32], by providing code that maps any IOP written in our

library into a corresponding non-interactive argument (which consists of a prover algorithm and
a verifier algorithm).

We use BLAKE2b [14] to instantiate the random oracle in the [32] transformation (our
code allows to conveniently specify alternative instantiations). This hash function is an improve-
ment to BLAKE (a finalist in the SHA-3 competition) [13], and its performance on all recent
x86 platforms is competitive with the most performant (and often hardware-accelerated) hash
functions [122]. Moreover, BLAKE2b can be configured to output digests of any length between
1 and 64 bytes (between 8 and 512 bits in multiples of 8). When aiming for a security level of λ
bits, we only need the hash function to output digests of 2λ bits, and our code automatically sets
this length.

Our code incorporates additional optimizations that, while simple, are generic and effective.
One is column hashing, which informally works as follows. In many IOP protocols

(essentially all published ones, including Ligero [9] and Stark [23]), the prover sends multiple
oracles over the same domain in the same round, and the verifier accesses all of them at the
same index in the domain. The prover can then build a Merkle tree over columns consisting
of corresponding entries of the oracles, rather than building separate Merkle trees for each or
a single Merkle tree over their concatenation. This reduces a non-interactive proof’s length,
because the proof only has to contain a single authentication path for the desired column, rather
than authentication paths corresponding to the indices across all the oracles.

Another optimization is path pruning. When providing multiple authentication paths
relative to the same root (in the non-interactive argument), some digests become redundant and
can thus be omitted. For example, if one considers the authentication paths for all leaves in
a particular sub-tree, then one can simple provide the authentication path for the root of the

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 49

sub-tree. A simple way to view this optimization is to provide the smallest number of digests to
authenticate a set of leaves.

3.9.3 Portfolio of IOP protocols and sub-components
We have used our library to realize the IOP protocols below. (We have publicly released

the first two.)

• Aurora: our IOP protocol for R1CS (specifically, the one provided in Fig. 3.3 in Section 3.8).

• Ligero: an adaptation of the IOP protocol in [9] to R1CS. While the protocol(s) in [9] are
designed for (boolean or arithmetic) circuit satisfiability, the same ideas can be adapted to
support R1CS at no extra cost. This simplifies comparisons with R1CS-based arguments, and
confers additional expressivity.

• Stark: the IOP protocol in [23] for Algebraic Placement and Routing (APR), a language
that is a “succinct” analogue of algebraic satisfaction problems such as R1CS. (See [23] for
details.)

Each of these IOPs is obtained by specifying an encoded IOP and a low-degree test. As explained
in Sections 3.9.1 and 3.9.2, our library compiles these into an IOP protocol, and the latter into a
non-interactive argument. This toolchain enables writing protocols with fewer lines of code, and
enhances code auditability.

The IOP protocols above benefit from several algebraic components that our library also
provides.

• Finite field arithmetic. We support prime and binary fields. Our prime field arithmetic uses
Montgomery representation [120]. Our binary field arithmetic uses the carryless multipli-
cation instructions [98]; these are ubiquitous in x86 CPUs and, being used in AES-GCM
computations, are highly optimized.

• FFT algorithms. The choice of FFT algorithm depends on whether the R1CS instance (and
thus the rest of the protocol) is defined over a prime or binary field. In the former case, we use
the radix-2 FFT (whose evaluation domain is a multiplicative coset of order 2a for some a)
[72]. In the latter case, we use an additive FFT (whose evaluation domain is an affine subspace
of the binary field) [62, 86, 43, 110, 109]. We also provide the respective inverse FFTs, and
variants for cosets of the base domains.

Remark 3.9.1. Known techniques can be used to reduce given programs or general machine
computations to low-level representations such as R1CS and APR (see, e.g., [34, 147, 23]). Such
techniques have been compared in prior work, and our library does not focus on these.

3.10 Evaluation
In Section 3.10.1 we evaluate the performance of Aurora. Then, in Section 3.10.2 we com-

pare Aurora with Ligero [9] and Stark [23], two other IOP-based zkSNARKs. Our experiments

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 50

not only demonstrate that Aurora’s performance matches the theoretical predictions implied
by the protocol but also that Aurora achieves the smallest argument size of any IOP-based
zkSNARK, by more than an order of magnitude.

That said, there is still a sizable gap between the argument sizes of IOP-based zkSNARKs
and other zkSNARKs that use public-key cryptographic assumptions vulnerable to quantum
adversaries; see Fig. 1.2 for how argument sizes vary across these. It remains an exciting open
problem to close this gap.

Experiments ran on a machine with an Intel Xeon W-2155 3.30GHz 10-core processor and
64GB of RAM.

3.10.1 Performance of Aurora
We consider Aurora at the standard security level of 128 bits, over the binary field F2192 .

We report data on key efficiency measures of a zkSNARK: the time to generate a proof (running
time of the prover), the length of a proof, and the time to check a proof (running time of the
verifier). We also indicate how much of each cost is due to the IOP protocol, and how much is
due to the BCS transformation [32].

In Aurora, all of these quantities depend on the number of constraints m in an R1CS
instance.4 Our experiments report how these quantities change as we vary m over the range
{210, 211, . . . , 220}.
Prover running time. In Fig. 3.4 we plot the running time of the prover, as absolute cost (top
left graph) and as relative cost when compared to native execution (bottom left graph). For
R1CS, native execution is the time that it takes to check that an assignment satisfies the constraint
system. The plot confirms the quasilinear complexity of the prover; proving times range from
fractions of a second to several minutes. Proving time is dominated by the cost of running the
underlying IOP prover.
Argument size. In Fig. 3.4 we plot argument size, as absolute cost (top middle graph) and as
relative cost when compared to native witness size (bottom middle graph). For R1CS, native
witness size is the number of bytes required to represent an assignment to the constraint system.
The plot shows that compression (argument size is smaller than native witness size) occurs
for m ≥ 2000. The plot also shows that argument size ranges from 40 kB to 130 kB, and is
dominated by the cryptographic digests to authenticate query answers.
Verifier running time. In Fig. 3.4 we plot the running time of the verifier, as absolute cost
(top right graph) and as relative cost when compared to native execution (bottom right graph).
The plot shows that verification times range from milliseconds to seconds, and confirms that our
implementation incurs a constant multiplicative overhead over native execution.

4The number of variables n also affects performance, but it is usually close to m and so we take n ≈ m in our
experiments. The number of inputs k in an R1CS instance is at most n, and in typical applications it is much smaller
than n, so we do not focus on it.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 51

3.10.2 Comparison of Ligero, Stark, and Aurora
In Fig. 3.5 we compare costs (proving time, argument size, and verification time) on R1CS

instances for three IOP-based zkSNARKs: Ligero [9], Stark [23], and Aurora (this work). As in
Section 3.10.1, we plot costs as the number of constraints m increases (and with n ≈ m variables
as explained in Footnote 4); we also set security to the standard level of 128 bits and use the
binary field F2192 .
Comparison of Ligero and Aurora. Ligero natively supports R1CS so a comparison with
Aurora is straightforward. Fig. 3.5 (middle graph) shows that argument size in Aurora is much
smaller than in Ligero, even for a relatively small number of constraints. The gap between the two
grows bigger as the number of constraints increases, as Aurora’s argument size is polylogarithmic
while Ligero’s is only sublinear (an exponential gap).
Comparison of Stark and Aurora. Stark does not natively support the NP-complete relation
R1CS but instead natively supports an NEXP-complete relation known as Algebraic Placement
and Routing (APR). These two relations are quite different, and so to achieve a meaningful
comparison, we consider an APR instance that simulates a given R1CS instance. We thus plot
the costs of Stark on a hand-optimized APR instance that simulates R1CS instances. Relying
on the reductions described in [23], we wrote an APR instance that realizes a simple abstract
computer that checks that a variable assignment satisfies each one of the rank-1 constraints in a
given R1CS instance.

Referring to Fig. 3.5, the middle graph shows that argument size in Aurora is much smaller
than in Stark, even if both share the same asymptotic growth. This is due to the fact that R1CS
and APR target different computation models (explicit circuits vs. uniform computations), so
Stark incurs significant overheads when used for R1CS. The right graph shows that verification
time in Stark grows linearly with the number of constraints (like Ligero and Aurora); indeed, the
verifier must read the description of the statement being proved, which is the entire constraint
system.

CHAPTER 3. AURORA: AN EFFICIENT IOP FOR R1CS 52

10-2

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Aurora
IOP

BCS

104

105

106

107

108

210 211 212 213 214 215 216 217 218 219 220

ar
gu

m
en

t s
iz

e
(b

yt
es

)

number of constraints

native
Aurora

IOP
BCS

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ve
ri

fi
er

 ti
m

e
(s

)

number of constraints

Aurora
IOP

BCS

103

104

105

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f p

ro
ve

r t
im

e
ov

er
 n

at
iv

e
ex

ec
ut

io
n

number of constraints

time(prover)/time(native)

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f a

rg
um

en
t s

iz
e

to
 w

itn
es

s
si

ze

number of constraints

size(argument)/size(witness)

101

102

103

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f v

er
if

ie
r t

im
e

ov
er

 n
at

iv
e

ex
ec

ut
io

n

number of constraints

time(verifier)/time(native)

Figure 3.4: From left to right: proving time, argument size and verification time in Aurora.
The top row of graphs shows absolute values; the bottom row shows the ratio to native
execution.

10-2

10-1

100

101

102

103

104

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Aurora
Ligero

Stark
104

105

106

107

108

210 211 212 213 214 215 216 217 218 219 220

ar
gu

m
en

t s
iz

e
(b

yt
es

)

number of constraints

Aurora
Ligero

Stark

Figure 3.5: From left to right: comparisons of proving time, argument size and verification
time in Aurora, Ligero and Stark.

53

Chapter 4

Linear-size IOPs for delegating
computation

4.1 Introduction
Checking computations faster than they can be run is a central goal in the theory of

computation. The study of proof protocols that enable fast verification has produced powerful
tools for complexity theory and cryptography, and has even led to applications to real-world
problems such as delegation of computation. For applications, it is crucial that the underlying
complexity-theoretic objects are efficient.

An influential line of work began with probabilistically checkable proofs (PCPs) [16].
These are non-interactive proofs for membership in a language, which admit fast probabilistic
verification based on local queries to the proof. While the most prominent application of PCPs is
to hardness of approximation [82], seminal works of Kilian [107] and Micali [118] showed that
PCPs can also be used to obtain computationally-sound schemes for delegation of computation
that are asymptotically efficient.

The application of PCPs to delegation of computation singles out particular design objec-
tives, distinct from those that arise from hardness of approximation. The relevant complexity
measures for PCPs in the context of delegation are: query complexity, verifier time, and prover
time. The latter two are self-explanatory, since the proof must be produced and validated; the
former arises because, in existing delegation schemes based on PCPs, communication complexity
depends linearly on the query complexity of the underlying PCP. Note that the running time of
the prover is not typically considered in the context of PCPs, because one considers only the
existence of a valid PCP string and not how it is constructed. For delegation schemes, on the
other hand, the time required to generate the proof is often a barrier to practical use.

An ideal PCP for delegation would have constant query complexity, (poly)logarithmic
verifier time, and linear prover time. This naturally implies that the proof length must also be
linear, since it is a lower bound on the prover’s running time in most applications. State-of-the-art
PCPs achieve constant query complexity and polylogarithmic verifier time, but only quasilinear
(O(N logcN)) proof length [119]. While the proof length is asymptotically close to optimal, c is
a fairly large constant, and moreover the construction uses gap amplification techniques that are

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 54

not believed to be concretely efficient. The only construction of PCPs with linear proof length
has query complexity O(N ε) and a verifier that runs in non-uniform polynomial time [38]; the
running time of the prover is not specified. Clearly, these parameters are a long way from those
desired of PCPs for fast verification of computation.

In light of these apparent barriers, Ben-Sasson et al. [32] have demonstrated how to obtain
computationally-sound delegation schemes from interactive oracle proofs (IOPs). This is a
natural generalization of PCPs independently introduced by [32, 127] (also generalizing the
“interactive PCP” model studied in [106]). An IOP is an interactive protocol consisting of multiple
rounds, where in each round the verifier sends a challenge and the prover responds with a PCP
oracle to which the verifier can make a small number of queries. The proof length of an IOP is
the total length of all oracles sent by the prover, and the query complexity is the total number of
queries made to these oracles. The study of IOPs explores the tradeoff between a new efficiency
measure, round complexity, and other efficiency measures. Viewed in this way, a PCP is an IOP
with optimal round complexity.

The work of [32] justifies why exploiting the tradeoff between round complexity and
other efficiency measures is potentially advantageous for constructing computationally-sound
delegation schemes. In particular, if we could obtain IOPs with constant round complexity that
otherwise match the parameters of an ideal PCP (constant query complexity, polylogarithmic
verifier time, linear prover time), then we would obtain delegation schemes that have the same
asymptotic efficiency as those derived from an ideal PCP. Thus, for the purposes of verifiable
delegation schemes, it suffices to construct such “ideal” IOPs.

A recent line of works has leveraged this tradeoff to establish a number of results that
we do not know how to achieve via PCPs alone [26, 25, 21, 22, 23, 129]. Two constructions
are particularly relevant for us: [25] achieves IOPs for Boolean circuit satisfiability (CSAT)
with linear proof length, unspecified polynomial prover time, and constant query and round
complexity,1 and AURORA achieves logarithmic-round IOPs for arithmetic circuit satisfiability
with Õ(N logN) prover time,2 linear proof length, and logarithmic query complexity.

However, these IOPs do not have sublinear verifier time (see Section 4.1.2). The state-of-the-
art for IOPs with polylogarithmic verifier time is [23], which achieves O(N logN) proof length,
Õ(N log2N) prover time, and logarithmic query and round complexity. Our goal in this chapter
is to make progress towards constructing ideal IOPs by giving a construction that simultaneously
achieves the state of the art in all of these metrics: linear proof length, Õ(N logN) prover time,
constant query and round complexity, and polylogarithmic verifier time.

4.1.1 Our results
In this chapter we construct IOPs for algebraic computations over large fields that are

“almost” ideal; namely, we achieve linear proof length, O(N logN) (strictly quasilinear) prover
arithmetic complexity, constant query and round complexity, and polylogarithmic verifier time.
Our new IOP protocols match the state-of-the-art proof length and prover complexity of AURORA,

1Subsequent to this work, [129] showed how to achieve such IOPs for CSAT where the proof length is (1 + ε)N
for any ε > 0. Their verifier runs in time Õ(N).

2Here the Õ notation hides poly(log logN) factors.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 55

while at the same time achieving an exponential improvement in verifier time for a rich class of
computations. We focus on arithmetic complexity as the natural notion of efficiency for IOPs for
algebraic problems.3

The arithmetic complexity of our prover is tightly connected to the proof length. That
is, the proof consists of a constant number of Reed–Solomon codewords of size O(N), and
the running time of the prover is dominated by the time required to produce these encodings.
In particular, if there were a linear-time encoding procedure for the Reed–Solomon code, our
prover would run in linear time, and thereby achieve optimal prover efficiency without any other
changes to the scheme itself.
Small fields. All of our results are stated over large fields. Computations over small fields (e.g.
F2) can be handled by moving to an extension field, which introduces an additional logarithmic
factor in the proof length and prover time (the same is true of [23], as well as AURORA and
FRACTAL). Even with this additional logarithmic factor, our construction matches the state of
the art for prover complexity (but not proof length) for succinct boolean circuit satisfiability,
while improving verifier time to polylogarithmic.

4.1.1.1 Delegating bounded-space algebraic computation

Rank-one constraint satisfiability (R1CS) is a natural generalization of arithmetic circuits
that is widely used across theoretical and applied constructions of proof systems (see [55]). An
R1CS instance is specified by matrices A,B,C over a finite field F, and is satisfied by a vector
w if Aw ◦ Bw = Cw, where ◦ is the element-wise (Hadamard) product. Arithmetic circuits
reduce in linear time to R1CS instances.

Many problems of interest, however, involve R1CS instances where the matrices A,B,C
have some structure. For example, many applications consider computations that involve
checking many Merkle authentication paths — in this case a hash function is invoked many
times, within the same path and across different paths. It would be valuable for the verifier
to run in time that is related to a succinct representation of such instances, rather than to the
(much larger) explicit representation that “ignores” the structure. In light of this motivation,
we introduce a notion of succinctly-represented R1CS instances that capture a rich class of
bounded-space algebraic computations. (Later in the paper we refer to these as algebraic
automata.)

Definition 4.1.1 (informal). A succinct R1CS instance is specified by matricesA = [A0|A1], B =
[B0|B1], C = [C0|C1] ∈ Fk×2k over F, and time bound T , and is satisfied by a vector z ∈ FkT if

A0 A1

A0 A1

.
A0 A1

 z ◦

B0 B1

B0 B1

.
B0 B1

 z =

C0 C1

C0 C1

.
C0 C1

 z

3In terms of bit operations, the prover runs in time O(N ′ log2N ′ poly(log logN ′)) = Õ(N logN), where
N ′ = N/ log |F| = Θ(N/ logN) is the size of the instance measured in field elements.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 56

The relation Succinct-R1CS consists of pairs (x, z) s.t. x is an instance of succinct R1CS satisfied
by z.

The size of an instance is O(k2 + log T), but the size of the described computation is kT .
Note that Succinct-R1CS is a PSPACE-complete relation, while the (regular) R1CS relation is
merely NP-complete.

To obtain some intuition about the definition, consider the problem of repeated application
of an arithmetic circuit C : Fn → Fn. Suppose that we want to check that there exists z such
that CT (z) = 0n, where CT = C(C(· · · C(·))) is the circuit that applies C iteratively T times. The
circuit CT has size Ω(|C| · T), and if the verifier were to “unroll” the circuit then it would pay
this cost in time. However, the R1CS instance corresponding to CT is of the above form, with
k = O(|C|), where (roughly) the matrices A0, B0, C0 represent the gates of C and A1, B1, C1

represent the wires between adjacent copies of C. (The condition that the output of CT is zero is
encoded separately as a “boundary constraint”; see Definition 4.7.1 for details.)

Our first result gives a constant-round IOP for satisfiability of succinct R1CS where the
verifier runs in time poly(k, log T), the prover has arithmetic complexity O(kT log kT), and the
proof length is O(kT log |F|) (linear in the computation transcript). In the theorem statement
below we take k = O(1) for simplicity.

Theorem 1 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any computation
time bound T (n) and large smooth field family F(n), there is a 4-round IOP for succinct R1CS
over F(n), with proof length O(T (n) log |F(n)|), 4 queries, and soundness error ε0. The prover
uses O(T (n) log T (n)) field operations and the verifier uses poly(n, log T (n)) field operations.

As in prior work (e.g., [41]), “large smooth field” refers to a field of size Ω(N), whose
additive or multiplicative group has a nice decomposition (see Definitions 4.9.2 and 4.9.3). For
example, ensembles of large enough binary fields have this property, as well as prime fields with
smooth multiplicative groups.

4.1.1.2 Delegating unbounded-space algebraic computation

While algebraic automata capture a useful class of computations, they are restricted to space-
bounded computation (recall Succinct-R1CS ∈ PSPACE). In particular, they do not capture
general NEXP computations unless PSPACE = NEXP. Our second result shows that a NEXP-
complete algebraic problem, namely a succinct version of the arithmetic circuit satisfiability
problem over large fields, has efficient IOPs.
Succinct SAT. In more detail, first recall the NP-complete problem of arithmetic circuit
satisfiability, denoted ASAT, in which the goal is to decide whether an arithmetic circuitC : Fk →
F over a finite field F has a satisfying assignment or not. Then, to capture NEXP, we follow
Papadimitriou and Yannakakis [123] and consider a succinct version of the arithmetic circuit
satisfiability problem, denoted Succinct-ASAT.4 In this variant of the problem, we consider the

4Informally, Papadimitriou and Yannakakis [123] showed that if a language L is NP-complete under a local
reduction, then its succinct version Succinct-L is NEXP-complete. A reduction is local if each bit of the reduction’s
output can be computed from a poly-logarithmic number of bits of the input, in poly-logarithmic time (which is
typically the case for NP-completeness reductions).

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 57

satisfiability of circuits of size N that are represented by circuit descriptors of size O(logN).
These descriptors are themselves circuits that, given a gate index g, return the type of gate g
(addition or multiplication), its left input gate, and its right input gate.

Definition 4.1.2 (informal). The relation Succinct-ASAT consists of pairs
(
(F,m,H, I, o,D), w

)
,

where F is a finite field, m ∈ N, H is a succinctly-represented subset of Fm representing the
gates of the circuit, I is a subset of H representing the input gates, o ∈ H is the output gate,
D : H → ({+,"} ×H ×H) ∪ {F} is a circuit descriptor of an arithmetic circuit C, and the
witness w : I → F is such that C(w) = 0.

Our second result is an IOP for Succinct-ASAT that has linear proof length and constant
query complexity. We stress that the verifier in this IOP runs in (poly)logarithmic time in the
size N of the circuit.5

Theorem 2 (informal). There is a universal constant ε0 ∈ (0, 1) such that there is a 5-round IOP
for Succinct-ASAT over large smooth fields with proof length O(N), 5 queries, and soundness
error ε0. The prover uses O(N logN) field operations and the verifier uses poly(|D|, logN)
field operations.

As in prior work (e.g., [41]), “large smooth field” refers to a field of size Ω(N), whose
additive or multiplicative group has a nice decomposition (see Definition 4.9.2). For example,
ensembles of large enough binary fields have this property. A round consists of a verifier message
followed by a prover (oracle) message.

The single logarithmic factor in the prover’s arithmetic complexity solely comes from the
use of a constant number of Fast Fourier transforms over domains of size Θ(N). This prover
time matches the best prover times of protocols for non-succinct arithmetic circuit satisfiability
(which is merely NP-complete).

We remark that standard query reduction techniques do not preserve linear proof length
here. Nevertheless, they can be modified in a straightforward way to preserve it, at the cost of an
additional round of interaction. In particular, the number of queries in Theorem 2 can be reduced
to 2 at the cost of an additional round.
Algebraic machines. We prove Theorem 2 by designing an IOP for the algebraic machine
relation. This is a natural algebraic analogue of the bounded accepting problem for nondetermin-
stic random-access machines, where the transition function is an arithmetic (rather than Boolean)
circuit. There is a simple linear-size reduction from Succinct-ASAT to the satisfiability problem
for algebraic machines: the machine holds the values of the wires in its memory, and checks that
each gate is correctly evaluated.

Theorem 3 (informal). There is a universal constant ε0 ∈ (0, 1) such that, for any computation
time bound T (n) and large smooth field F(n), there is a 5-round IOP for the satisfiability problem
of T (n)-time algebraic machines over F(n), with proof length O(T (n) log |F(n)|), 5 queries,
and soundness error ε0. The prover uses O(T (n) log T (n)) field operations and the verifier uses
poly(n, log T (n)) field operations.

5This is because the verifier runs in time polynomial in the size of the circuit descriptor D, which in turn is
logarithmic in the size of the circuit C that it describes.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 58

For simplicity, we have stated Theorem 3 for machines whose description is a constant
number of field elements, or Θ(log |F|) bits. The proof length is linear in the size of the
computation trace, which is N := Θ(T log |F|) bits. We stress that the number of queries is 5,
regardless of the machine.
On the power of machines. In the linear-length regime, the choice of computational model
supported by a proof protocol is important, because reductions between problems typically
introduce logarithmic factors. For example, it is not known how to reduce a random-access
machine, or even a Turing machine, to a circuit of linear size. Indeed, the linear-size sublinear-
query PCP of [38] only works for circuit but not machine computations. We thus view Theorem 3
as particularly appealing, because it achieves linear length for a powerful model of computation,
algebraic machines, which facilitates linear-size reductions from many other problems. Notably,
while Theorem 3 implies Theorem 2, we do not know whether the converse holds. We view the
identification of a model which is both highly expressive and amenable to efficient probabilistic
checking using IOPs as a contribution of this work.

rounds type prover time verifier time proof length queries
[119] 1 SB N polylog(N) ∗ polylog(N) N polylog(N) O(1)

[38] 1 B poly(N) † poly(N) † Oε(N) N ε

[25] 3 B poly(N) poly(N) O(N) O(1)

[23] O(logN) SA ♦ Õ(N log2N) ‡ polylog(N) O(N logN) O(logN)

AURORA O(logN) A ♦ Õ(N logN) ‡ poly(N) O(N) O(logN)

this chapter 5 SA ♦ Õ(N logN) ‡ polylog(N) O(N) 5

Figure 4.1: Comparison of PCP/IOP constructions for circuit satisfiability problems for
a (fixed) constant soundness. Here N is the size of the circuit in bits, which means that,
for arithmetic circuits, N implicitly includes a factor of log |F|. For succinct problems,
the circuit size N is exponential in the size of its description. “Type” refers to the type of
circuit supported by the construction: “S” denotes “succinct”, “B” denotes “boolean” and
“A” denotes “arithmetic”.
∗: [119] shows a poly(N) bound; this tighter bound is due to [28].
♦: The size of the underlying field must grow as Ω(N) to achieve the stated efficiency.
Problems over smaller fields (e.g. boolean circuits) incur a multiplicative cost of logN in
prover time and proof length.
†: The specified time is for non-uniform computation (each input size receives poly(N)
advice bits).
‡: The notation Õ hides poly(log logN) factors, which arise because here we consider the
bit complexity of the prover (rather than the arithmetic complexity).

4.1.2 Limitations of prior work
There are relatively few works that explicitly deal with prover complexity for PCP and

IOP constructions. We present a comparison of the relevant parameters for each construction in
Fig. 4.1. Since we are concerned with logarithmic factors, it is not sufficient to specify only a

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 59

complexity class (NP or NEXP) for each one. Instead, for each proof system we give a canonical
expressive language for which the given parameters are achieved. In particular, the first three
proof systems are for boolean circuit problems, and the latter three are for arithmetic circuit
problems. For purposes of comparison, all of the parameters for both boolean and arithmetic
constructions are presented in terms of bit complexity.

Our construction also achieves asymptotically optimal proof length and query complexity,
which are more well-studied metrics. There are two natural approaches that one could take
to achieve such a result: (1) start from a construction with constant query complexity and
reduce proof length; or (2) start from a construction with linear proof length and reduce query
complexity. We summarize prior works that have followed these approaches, and highlight the
limitations that arise in each case.
Approach (1). The first approach has been studied extensively [16, 126, 102, 42, 88, 37], leading
to PCPs for NEXP with proof length N polylog(N) and query complexityO(1) [41, 36, 77, 119].
Later works have reduced the logarithmic factors in the proof length [28, 27], but attempts to
achieve linear length have failed. Recent work has obtained IOPs with proof length O(N logN)
but at the cost of increasing query complexity from O(1) to O(logN) [21, 23].
Approach (2). The second approach has received much less attention. Insisting on linear proof
length significantly restricts the available techniques because many tools introduce logarithmic
factors in proof length. For example, one cannot rely on arithmetization via multivariate
polynomials and standard low-degree tests, nor rely on algebraic embeddings via de Bruijn
graphs for routing; in addition, query-reduction techniques for interactive PCPs [106] do not
apply to the linear proof length regime. The state-of-the-art in linear-length PCPs is due to [38],
and the construction is based on a non-uniform family of algebraic geometry (AG) codes (every
input size needs a polynomial-size advice string). In more detail, [38] proves that for every
ε ∈ (0, 1) there is a (non-uniform) PCP for the NP-complete problem CSAT (Boolean circuit
satisfiability) with proof length 2O(1/ε)N and query complexity N ε, much more than our goal of
O(1).

By leveraging interaction, [25] obtains IOPs for CSAT with proof length O(N) and query
complexity O(1). This is a natural starting point for our goal of achieving polylogarithmic-time
verification, because we are “only” left to extend this result from CSAT to its succinct analogue,
Succinct-CSAT. Unfortunately, the construction in [25] uses AG codes and such an extension
would, in particular, require obtaining a succinct representation of a dense asymptotically good
family of AG codes over a small field, which is out of reach of current techniques. More generally,
we do not know of any suitable code over small fields, which currently seems to prevent us from
obtaining linear-size IOPs for Succinct-CSAT.

We now consider arithmetic circuit satisfiability defined over fields F that are large (of
size Ω(N)). In this regime, we have seen IOPs for ASAT with proof length O(N) and query
complexity O(logN), in Chapter 3. The arithmetization, following [41], is based on the Reed–
Solomon code and uses the algebraic structure of large smooth fields. Testing is done via
FRI [22], a recent IOP of proximity for the Reed–Solomon code with linear proof length and
logarithmic query complexity. The construction in Chapter 3, which we will build upon, falls
short of our goal on two fronts: verifier time is linear in the size of the circuit rather than
polylogarithmic, and query complexity is logarithmic rather than constant.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 60

Comparison with [21, 23]. The techniques that we use in this work to achieve linear proof
length could be applied to the protocols of [21, 23], which would yield linear-size proofs there.
In this modified protocol, however, in order to verify time-T computations the verifier must read
O(log T) field elements from the proof (see e.g. [23, Lemma B.9]); in our protocol, the number
of field elements the verifier reads is a universal constant. This is because the query complexity
of these protocols depends linearly on the size of the description of the transition function of the
machine (e.g., for Succinct-ASAT, this would be the size of the circuit descriptor).

4.1.3 Open questions
We highlight four problems left open by our work.

Optimal arithmetic complexity. The prover in our construction has strictly quasilinear arith-
metic complexity and produces a proof of linear size. A natural question is whether the arithmetic
complexity of the prover can be reduced to linear. To do so with our construction would require
a breakthrough in encoding algorithms for the Reed–Solomon code. A promising direction may
be to build IOPs based on codes with linear-time encoding procedures [139, 101, 51].
All fields. The question of whether it is possible to simultaneously achieve linear-length proofs
and polylogarithmic-time verifier for Succinct-ASAT over any field F remains open. Progress on
this question motivates the search for arithmetization-friendly families of good codes beyond the
Reed–Solomon code. For example, the case of F = F2, which corresponds to boolean circuits,
motivates the search for succinctly-represented families of good algebraic-geometry codes over
constant-size fields with fast encoding algorithms.
Zero knowledge. Zero knowledge, while not a goal of this work, is a desirable property, because
zero knowledge PCP/IOPs lead to zero knowledge succinct arguments [104, 32]. Straightforward
modifications to the protocol, similar to those described in Section 3.2.3, achieve a notion of
zero knowledge wherein the simulator runs in time polynomial in the size of the computation
being checked, which is meaningful for nondeterministic problems since it does not have access
to the witness.

There is a stronger notion of zero knowledge for succinct languages where the simulator
runs in polylogarithmic time (in time polynomial in the size of the instance). This gap was
precisely the subject of a work on designing succinct simulators for certain tests [24]. Whether
low-degree tests with the parameters we require have succinct simulators remains an intriguing
problem that we leave to future research.
Round complexity. Our protocol has 5 rounds. Round complexity can be reduced to 4 at the
cost of increased (constant) query complexity. Reducing round complexity beyond this while
preserving linear proof length and polylogarithmic time verification, or finding evidence against
this possibility, remains open.

4.2 Technical overview
We discuss the main ideas behind our results. Recall that Succinct-ASAT is the satisfi-

ability problem for succinctly-represented arithmetic circuits over the field F; this problem

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 61

is NEXP-complete for any field F [123]. Our goal is to construct an IOP for Succinct-ASAT,
over a large field F, with proof length that is linear in the size of the circuit N and strictly
quasilinear (O(N logN)) prover arithmetic complexity; crucially, the running time of the verifier
is polylogarithmic in the size of the circuit (more precisely, polynomial in the size of the circuit
descriptor). Additionally, we strive to optimize the query and round complexity of this IOP. We
stress that no prior work achieves non-trivial linear-length PCPs or IOPs wherein the verifier
runs in polylogarithmic time in the size of the circuit.

The rest of this section is organized as follows. In Section 4.2.1 we discuss where the
construction in Chapter 3 fails to achieve polylogarithmic verification. In Section 4.2.2 we
discuss our approach to overcoming the limitations of prior work by describing a new protocol
for checking succinctly-represented linear relations; this achieves an exponential improvement
over the prior state of the art. In Section 4.2.4 we discuss how to overcome the challenges that
arise when attempting to build on this exponential improvement to checking the computation of
algebraic automata, and then of algebraic machines (which capture Succinct-ASAT as a special
case). In Section 4.2.5 we describe a modular framework, which we call oracle reductions, in
which we prove our results.

4.2.1 Our starting point
The IOP designed in this chapter is built upon the AURORA IOP from Chapter 3. Recall

that the AURORA IOP is obtained by combining the lincheck protocol (Section 3.5) and the
rowcheck protocol (Section 2.3.4).

While on the one hand the verifier in the rowcheck protocol runs in time that is polyloga-
rithmic in |H| (which is good) the verifier in the lincheck protocol runs in time that is linear in
|H| (which is much too slow). In other words, if we simply invoked the AURORA IOP on the
circuit described by an instance of Succinct-ASAT, the verifier would run in time that is linear in
the circuit size, which is exponentially worse than our goal of polylogarithmic time. This state of
affairs is the starting point of this chapter.

Next, in Section 4.2.2, we discuss how to obtain a succinct lincheck protocol that, for
suitable linear relations, is exponentially more efficient. After that, in Section 4.2.4, we discuss
how to build on our succinct lincheck protocol to reduce Succinct-ASAT to testing membership
in the Reed–Solomon code, while achieving verifier time that is polylogarithmic in circuit size.

Throughout, we present our contributions as oracle reductions from some computational
task to testing membership in the Reed–Solomon code. Loosely speaking, these are reductions
in the setting of the IOP model (and therefore, in particular, allow interaction in which the
prover sends PCP oracles). This abstraction allows us to decouple IOP protocol-design from the
low-degree test that we invoke at the end of the protocol. They generalise the RS-encoded IOP
framework described in Section 5.4.1. See Section 4.2.5 for details.

4.2.2 Checking succinctly-represented linear relations
Following the above discussion, we now temporarily restrict our attention to devising a

lincheck protocol, which reduces checking linear relations defined by matrices M ∈ FH×H
to testing membership in the Reed–Solomon code, in which the verifier runs in time that is

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 62

polylogarithmic in |H|. This is not possible in general, however, because the verifier needs to
at least read the description of the matrix M . We shall have to consider matrices M that have
a special structure that can be exploited to obtain an exponential improvement in verifier time.
This improvement is a core technical contribution of this paper, and we refer to the resulting
reduction as the succinct lincheck protocol. We start by briefly recalling the lincheck protocol
from Section 3.5.

Definition 4.2.1 (informal). In the lincheck problem, we are given a subset H ⊆ F, Reed–
Solomon codewords f, g ∈ RS [L, ρ] encoding vectors x, y ∈ FH , and a matrix M ∈ FH×H . The
goal is to check that x = My.

A simple probabilistic test for the claim “x = My” is to check that 〈r, x−My〉 = 0 for
a random r ∈ FH . Indeed, if x 6= My, then Prr∈FH [〈r, x−My〉 = 0] = 1/|F|. However, this
approach would require the verifier to sample, and send to the prover, |H| random field elements
(too many).

A natural derandomization is to choose ~r using a small-bias generator over F, rather than
uniformly at random. A small-bias generator G over F is a function with the property that for
any nonzero z ∈ FH , it holds with high probability over ρ ∈ {0, 1}` that 〈z,G(ρ)〉 6= 0. Now
the verifier needs to send only ` bits to the prover, which can be much smaller than |H| log |F|.

A natural choice (used also, e.g., in [16, §5.2]) is the powering construction of [6], which
requires sending a single random field element (` = log |F|), and incurs only a modest increase in
soundness error. In this construction, we define a vector ~r(X) ∈ F[X]H of linearly independent
polynomials in X , given by (1, X,X2, . . . , X |H|−1). The small-bias generator is then G(α) :=
~r(α) for α ∈ F. If z is nonzero then h(X) := 〈~r(X), z〉 is a nonzero polynomial and so
Prα∈F[〈G(α), z〉 = 0] ≤ deg(h)/|F|. The verifier now merely has to sample and send α ∈ F,
and the prover must then prove the claim “h(α) = 0” to the verifier. Rearranging, this is the
same as testing that 〈~r(α), x〉 − 〈~r(α)M, y〉 = 0. The problem is thus reduced to checking inner
products of known vectors with oracles.

In the setting of Reed–Solomon codewords, if fu is an encoding of u and fv is an encoding
of v, then fu · fv is an encoding of u ◦ v, the pointwise product of u and v. Hence, to check
that 〈u, v〉 = c, it suffices to check that the low-degree polynomial fu · fv sums to c on H , since
〈u, v〉 =

∑
h∈H fu(h)fv(h). This can be achieved by running the univariate sumcheck protocol

(Section 3.4) on the codeword fu · fv. This protocol requires the verifier to efficiently determine
the value of fu · fv at a given point in L.
The inefficiency. The foregoing discussion tells us that, to solve the lincheck problem, the
verifier must determine the value of the Reed–Solomon encodings of ~r(α) ◦ x and ~r(α)M ◦ y
at a given point in L. The encodings of the vectors x and y are provided (as f and g). Hence it
suffices for the verifier to evaluate low-degree extensions of ~r(α) and ~r(α)M at a given point,
and then perform a field multiplication.

This last step is the computational bottleneck of the protocol. In Section 3.5, the verifier
evaluates the low-degree extensions of ~r(α) and M>~r(α) via Lagrange interpolation, which
requires time Ω(|H|). To make our verifier efficient, we must evaluate both low-degree exten-
sions in time polylog(|H|). In particular, this requires that M be succinctly represented, since
computing the low-degree extension of ~r(α)M in general requires time linear in the number of
nonzero entries in M , which is at least |H|.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 63

The original lincheck protocol chooses the linearly independent polynomials ~r(X) to be
the standard (or coefficient) basis (1, X, . . . , X |H|−1). For this basis, however, we do not know
how to efficiently evaluate the low-degree extension of ~r(α). This problem must be addressed
regardless of the matrix M .
A new basis and succinct matrices. We leverage certain algebraic properties to overcome the
above problem. There is another natural choice of basis for polynomials, the Lagrange basis
(LH,h(X))h∈H , where LH,h is the unique polynomial of degree less than |H| with LH,h(h) = 1
and LH,α(γ) = 0 for all γ ∈ H \ {h}. We observe that the low-degree extension of ~r(α) =
(LH,h(α))h∈H ∈ FH has a simple form that allows one to evaluate it in time polylog(|H|)
provided thatH is an additive or multiplicative subgroup of F. In other words, the Lagrange basis
yields a small-bias generator over F whose low-degree extension can be computed efficiently.

It remains to find a useful class of succinctly-represented matrices M for which one can
efficiently evaluate a low-degree extension of ~r(α)M ∈ FH . The foregoing discussion suggests
a natural condition: if we can efficiently compute a low-degree extension of a vector v ∈ FH
then we should also be able to efficiently compute a low-degree extension of the vector vM . If
this holds for all vectors v, we say that the matrix M is (algebraically) succinct. For example,
the identity matrix satisfies this definition (trivially), and so does the matrix with 1s on the
superdiagonal for appropriate choices of F and H (see Section 4.7.1).

In sum, if we choose the Lagrange basis in the lincheck protocol and the linear relation is
specified by a succinct matrix, then, with some work, we obtain a lincheck protocol where the
verifier runs in time polylog(|H|). To check satisfiability of succinctly-represented arithmetic
circuits, however, we need to handle a more general class of matrices, described next.
Succinct lincheck for semisuccinct matrices. We will relax the condition on a matrix M
in a way that captures the matrices that arise when checking succinctly-described arithmetic
circuits, while still allowing us to obtain a lincheck protocol in which the verifier runs in time
polylog(|H|).

We show that the matrices that we consider are semisuccinct, namely, they can be de-
composed into a “large” part that is succinct and a “small” part that has no special structure.6

This structure should appear familiar, because it is analogous to how a succinctly-described
circuit consists of a small arbitrary component (the circuit descriptor) that is repeatedly used
in a structured way to define the large circuit. Another analogy is how in an automaton or
machine computation a small, and arbitrary, transition function is repeatedly applied across a
large computation.

Specifically, by “decompose” we mean that the matrix M ∈ FH×H can be written as the
Kronecker product of a succinct matrix A ∈ FH1×H1 and a small matrix B ∈ FH2×H2; we write
M = A⊗B. (Succinctly representing a large operator like M via the tensor product of simpler
operators should be a natural idea to readers familiar with quantum information.) In order for
the product to be well-defined, we must supply a bijection Φ: H → H1 ×H2. If this bijection
satisfies certain algebraic properties, which preserve the succinctness of the matrix A, we call it
a bivariate embedding.

We obtain a succinct lincheck protocol for semisuccinct matrices.

6We actually need to handle matrices that are the sum of semisuccinct matrices, but we ignore this in this
high-level discussion.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 64

Lemma 4.2.2 (informal). There is a linear-length oracle reduction from the lincheck problem
for semisuccinct matrices to testing membership in the Reed–Solomon code, where the verifier
runs in polylogarithmic time.

Next, we discuss how to obtain a reduction from algebraic automata (succinct R1CS)
to testing membership in the Reed–Solomon code, where the verifier runs in time that is
polylogarithmic in the circuit size, by building on our succinct lincheck protocol for semisuccinct
matrices.

4.2.3 Checking bounded-space computations in polylogarithmic time
An instance of the algebraic automaton relation is specified by three k × 2k matrices

(A,B,C) over F, and a time bound T . A witness f : [T]→ Fk is valid if

∀ t ∈ [T − 1] Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1) , (4.1)

where f(t, t+ 1) := f(t)‖f(t+ 1) is the concatenation of the consecutive states f(t) ∈ Fk and
f(t+ 1) ∈ Fk.

We use the term “algebraic automata” since one can think of A,B,C as specifying the
transition relation of a computational device with k algebraic registers, and f as an execution
trace specifying an accepting computation of the device. The relation is PSPACE-complete:
it is in NPSPACE because it can be checked by a polynomial-space Turing machine with one-
directional access to an exponential-size witness, and recall that NPSPACE = PSPACE; also,
it is PSPACE-hard because given an arithmetic circuit specifying the transition relation of a
polynomial-space machine, we can find an equisatisfiable R1CS instance in linear time.

If we view the execution trace f as a vector f = f(1)‖ · · · ‖f(T) ∈ FTk, then we can
rewrite the condition in Eq. (4.1) via the following (possibly exponentially large) R1CS equation:

A0 A1

A0 A1

.
A0 A1

 f ◦

B0 B1

B0 B1

.
B0 B1

 f =

C0 C1

C0 C1

.
C0 C1

 f

where A0, A1 ∈ Fk×k are the first half and second half of A respectively; and likewise for B and
C. We thus see that algebraic automata are equivalent to Succinct-R1CS.

The matrices in the above R1CS equation have a rigid block structure that we refer to as a
staircase. Given the discussions in Sections 4.2.1 and 4.2.2, in order to achieve polylogarithmic
verifier time, it suffices to show that staircase matrices are semisuccinct (or, at least, the sum of
few semisuccinct matrices).

So let S(M0,M1) be the staircase matrix of two given k × k matrices M0,M1 over F.
Namely, S(M0,M1) is the Tk × Tk matrix with M0-blocks on the diagonal and M1-blocks on
the superdiagonal. Observe that:
1. we can write the matrix with M0-blocks on the diagonal as I ⊗M0, where I is the T × T

identity matrix;

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 65

2. we can write the matrix with M1-blocks on the superdiagonal as I) ⊗M1, where I) is the
T × T matrix with 1s on the superdiagonal.

Under an appropriate mapping from [Tk] into a subset of F, we prove that both of these matrices
are semisuccinct. This tells us that S(M0,M1) is the sum of two semisuccinct matrices:

S(M0,M1) :=

M0 M1

M0 M1

.
M0 M1

M0

= I ⊗M0 + I) ⊗M1 ∈ FTk × FTk .

(Note that the above is not exactly the matrix structure we want, because of the extra M0 block;
we handle this technicality separately.) We obtain the following lemma.

Lemma 4.2.3 (informal). There is a linear-length oracle reduction from the algebraic automaton
relation to testing membership in the Reed–Solomon code, where the verifier runs in time
poly(k, log T).

4.2.4 Checking succinct satisfiability in polylogarithmic time
We outline our construction of a linear-length IOP for succinct circuit satisfiability (Succinct-ASAT)
over a large smooth field F. Informally, our strategy is as follows. First, we note that there
is a simple linear-size reduction (see Section 4.9.2) from Succinct-ASAT to satisfiability of
an algebraic automaton augmented with a permutation constraint; we refer to the latter as an
algebraic machine. Then, we prove that checking such an instance can be reduced to checking
an algebraic automaton without the permutation constraint, which can be achieved as described
in the previous section. In the remainder of this section we discuss the main technical challenges
that arise in this approach.

An instance of the algebraic (R1CS) machine relation is specified by two algebraic (R1CS)
automata (A,A′). A witness (f, π), where f : [T]→ Fk is an execution trace and π : [T]→ [T]
is a permutation, is valid if: (1) f is a valid witness for the automaton A, and (2) f ◦ π is
a valid witness for the automaton A′. The algebraic machine relation is NEXP-complete, as
Succinct-ASAT reduces to it in linear time (see Section 4.9.2).
Execution traces for machines. Before we discuss how we reduce from the algebraic machine
relation, we briefly explain why the above relation is a natural problem to consider, and in
particular why it has anything to do with (random-access) machines. Recall that a random-access
machine is specified by a list of instructions, each of which is an arithmetic operation, a control-
flow operation, or a read/write to memory. One way to represent the execution trace for the
machine is to record the state of the entire memory at each time step; for a time-T space-S
computation, such an execution trace has size Θ(TS) (much more than linear!). Yet, the machine
can access only a single memory location at each time step. Thus, instead of writing down the
state of the entire memory at each time step, we could hope to only write the state of the accessed
address — this would reduce the size of the trace to Θ(T logS). The problem then is that it is no
longer possible to check consistency of memory via local constraints because the same address
can be accessed at any time.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 66

Classical techniques of Gurevich and Shelah [100] tell us that one can efficiently represent
an execution trace for a machine via two execution traces that are permutations of one another.
Informally, sorting the execution trace by time enables us to check the transition relation of the
machine; and sorting the execution trace by the accessed addressed (and then by time) enables
us to locally check that memory is consistent. (One must ensure that, for each location, if we
write some value to memory and then read the same address, we retrieve that same value.) The
transition relation and memory consistency can each be expressed individually as automata. This
view of machines immediately gives rise to the algebraic machine relation above.
Checking the algebraic machine relation. We have discussed how to check automata in
Section 4.2.3, so it remains to check that the traces are permutations of one another. Historically
this has been achieved in the PCP literature using algebraic embeddings of routing networks;
e.g., see [27]. The problem is that this increases the size of the representation of the execution
trace by at least a logarithmic factor. We instead use an interactive permutation test from the
program checking literature [114, 47]. The test is based on the observation that u ∈ FT is a
permutation of v ∈ FT if and only if the multi-sets given by their elements are equal, which
is true if and only if the polynomials pu(X) =

∏T
i=1(X − ui) and pv(X) =

∏T
i=1(X − vi) are

equal. Thus it suffices to evaluate each polynomial at a random point and check equality.
These polynomials require time Θ(T) to evaluate, which in our setting is exponential.

Therefore the prover must assist the verifier with the evaluation. We show that evaluating this
polynomial can be expressed as an algebraic automaton, and can therefore be checked again
using the protocol from Section 4.2.3.

The reader may believe that by now we have reduced checking an algebraic machine to
checking three instances of algebraic automata. Recall, however, that the algebraic automaton
relation is PSPACE-complete, whereas the algebraic machine relation is NEXP-complete. What
happened? The answer lies in the randomness used in the permutation automaton. In order to
check that u is a permutation of v, the prover must first commit to u and v before the verifier
chooses his evaluation point α, and then the prover sends the trace of the automaton that evaluates
pu(α), pv(α). This trace depends on the choice of α, and so we use interaction. This is captured
by the interactive automaton relation (Definition 4.7.1), which is NEXP-complete; it can be
checked in essentially the same way as the automaton relation described in Section 4.2.3.

We hence obtain the following lemma.

Lemma 4.2.4 (informal). There is a linear-length oracle reduction from the algebraic machine
relation (hence, Succinct-ASAT) to testing membership in the Reed–Solomon code, where the
verifier runs in time poly(k, log T).

4.2.5 Oracle reductions
Many results in this paper describe IOPs that reduce a computational problem to mem-

bership in (a subcode of) the Reed–Solomon code. We find it useful to capture this class of
reductions via a precise definition. This lets us prove general lemmas about such reductions, and
obtain our protocols in a modular fashion.

We thus formulate a new notion that we call interactive oracle reductions (in short, oracle
reductions). Informally, an oracle reduction is a protocol that reduces from a computational

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 67

problem to testing membership in a code (in this paper, the code is the interleaved Reed–Solomon
code). This is a well-understood idea in constructions of PCPs and IOPs. Our contribution is to
provide a formal framework for this technique.

We illustrate the notion of oracle reductions via an example. Consider the problem of
testing proximity to the vanishing Reed–Solomon code, which plays an important role in a PCP
of Ben-Sasson and Sudan [41] and several other PCPs/IOPs. Informally, the goal is to test
whether a univariate polynomial f , provided as an oracle, is zero everywhere on a subset H of F.

We describe an oracle reduction that maps the foregoing problem to the problem of testing
membership in the Reed–Solomon code of the related polynomial g := f/ZH . Observe that f
is divisible by ZH if and only if f is zero everywhere in H , and so g is in the Reed–Solomon
code if and only if f satisfies the desired property. But what exactly is g? In the oracle reduction
framework, we refer to g as a virtual oracle: an oracle whose value at any given point in its
domain can be determined efficiently by making a small number of queries to concrete oracles.
In this case, so long as the domain L we choose for g does not intersect H , a verifier can evaluate
g at any point α ∈ L with only a single query to f . To test that g is low degree, the verifier can
invoke any low-degree test on g, and simulate queries to the virtual oracle g via queries to f .

The two main parameters in an oracle reduction are the proof length, which is simply the
total length of the oracles sent by the prover, and the locality, which is the number of queries one
would have to make to the concrete oracles to answer a single query to any virtual oracle (in this
paper, locality always equals the number of rounds). Using the perspective of oracle reductions,
our main theorems (Theorems 1 and 2) follows by combining two main sub-components: (1) a
linear-length 3-local oracle reduction from the Succinct-ASAT problem to proximity testing to
the Reed–Solomon code (discussed in Section 4.2.4); and (2) a linear-length 3-query IOP for
testing proximity to the Reed–Solomon code from [25] (see Lemma 4.9.1).

4.3 Roadmap
Fig. 4.2 below provides a diagram of the results proved in this chapter. The remaining

sections in this chapter are organized as follows. In Section 4.4 we define oracle reductions,
and prove how to create IOP protocols from RS oracle reductions and RS proximity tests. In
Section 4.5 we define and construct trace embeddings. In Section 4.6 we describe our succinct
lincheck protocol. In Section 4.7 we describe an oracle reduction from R1CS automata to testing
proximity to the Reed–Solomon code, proving Theorem 1. In Section 4.8 we describe an oracle
reduction from R1CS machines to testing proximity to the Reed–Solomon code. In Section 4.9
we prove Theorem 2 and Theorem 3.

4.4 Oracle reductions
We define interactive oracle reductions (henceforth just oracle reductions), which, infor-

mally, are reductions from computational problems to the problem of testing membership of
collections of oracles in a code.

The main result in this section is Lemma 4.4.4 (and an implication of it, Corollary 4.4.9),

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 68

Theorem 1:
IOP for succinct R1CS

Theorem 2:
IOP for succinct arithmetic circuits

Theorem 3:
IOP for algebraic machines

[25]:
linear-size constant-query
IOP of proximity for RS

with polylog verifier

Lemma 5.3.4:
univariate sumcheck

Lemma 4.6.4:
succinct lincheck

Lemma 4.7.2:
(interactive) algebraic automata

Lemma 4.8.2:
algebraic machines

Corollary 4.4.9: create IOP protocol from
RS oracle reduction and RS proximity test

Figure 4.2: Diagram of the results in this chapter.

which enables the construction of IOPs by modularly combining oracle reductions and proximity
tests. The ideas underlying oracle reductions are not new. Essentially all known constructions
of PCPs/IPCPs/IOPs consist of two parts: (1) an encoding, typically via an algebraic code, that
endows the witness with robust structure (often known as arithmetization); and (2) a procedure
that locally tests this encoding (often known as low-degree testing).

Oracle reductions provide a formal method of constructing proof systems according to
this framework. We use them to express results in Sections 4.6 to 4.8, which significantly
simplifies exposition. Additionally, expressing our results as oracle reductions enables us to
consider the efficiency of the oracle reduction itself as a separate goal from the efficiency of the
low-degree test. In particular, future improvements in low-degree testing will lead immediately
to improvements in our protocols.

This section has two parts: in Section 4.4.1 we define oracle reductions; then in Sec-
tion 4.4.2, we introduce a special case of oracle reductions where the target code is the Reed–
Solomon (RS) code. For this special case we give additional lemmas: we show that it suffices to
prove a weaker soundness property, because it generically implies standard soundness; also, we
show that all such oracle reductions admit a useful optimization which reduces the number of
low-degree tests needed to a single one.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 69

4.4.1 Definitions
Informally, an oracle reduction is an interactive public-coin protocol between a prover and

a verifier that reduces membership in a language to a promise problem on oracles sent by the
prover during the protocol.

In more detail, an oracle reduction from a language L ⊆ X to a relation R′ ⊆ X ′ × Σs

is an interactive protocol between a prover and a verifier that both receive an instance x ∈ X ,
where in each round the verifier sends a message and the prover replies with an oracle (or several
oracles), as in the IOP model. Unlike in an IOP, the verifier does not make any queries. Instead,
after the interaction the verifier outputs a list of claims of the form “(x,Π) ∈ R′”, which may
depend on the verifier’s randomness, where x′ ∈ X ′ and Π is a deterministic oracle algorithm
that specifies a string in Σs as follows: the i-th entry in Σs is computed as Ππ1,...,πr(i), where πj
is the oracle sent by the prover in the j-th round. The reduction has the property that if x ∈ L
then all claims output by the verifier are true, and if instead x /∈ L then (with high probability
over the verifier’s randomness) at least one claim is false.

We refer to each oracle algorithm Π(j) as a virtual oracle because Π(j) represents an oracle
that is derived from oracles sent by the prover. We are interested in virtual oracles Π(j) where,
for each i, the number of queries Ππ1,...,πr(i) makes to the oracles is small. For simplicity, we
also assume that the algorithms are non-adaptive in that the queried locations are independent of
the answers to the queries.

A crucial property is that virtual oracles with small locality compose well, which allows us
to compose oracle reductions. For this we need an oracle reduction of proximity (Definition 4.4.3),
which we can view as an oracle reduction from a relation R ⊆ X × Σs to another relation
R′ ⊆ X ′ × Σs′ . Then we can construct an oracle reduction from L to R′ by composing an
oracle reduction A from L toR′ with an oracle reduction of proximity B fromR′ toR′′. Such a
reduction may output virtual oracles of the form ΠΠA

B where ΠB is a virtual oracle output by B
and ΠA is a virtual oracle output by A. This can be expressed as a standard virtual oracle with
access to the prover messages, and if ΠA and ΠB have small locality then so does ΠΠA

B .
We now formalize the foregoing discussion, starting with the notion of a virtual ora-

cle. Since the virtual oracles in this work are non-adaptive, we specify them via query (“pre-
processing”) and answer (“post-processing”) algorithms. The query algorithm receives an index
i ∈ [s] and computes a list of locations to be queried across oracles. The answer algorithm
receives the same index i, and answers to the queries, and computes the value of the virtual
oracle at location i. In other words, the answer algorithm computes the value of the virtual oracle
at the desired location from the values of the real oracles at the queried locations.

Definition 4.4.1. A virtual oracle Π of length s over an alphabet Σ is a pair of deterministic
polynomial-time algorithms (Q,A). Given any oracles π1, . . . , πr of appropriate sizes, these
algorithms define an oracle Π ∈ Σs given by Π[π1, . . . , πr](i) := A(i, (πj[k])(j,k)∈Q(i)) for
i ∈ [s]. Π is `-local if maxi∈[s] |Q(i)| ≤ `.

Observe that the definition of a virtual oracle given above is equivalent to saying that Π is
an algorithm with non-adaptive query access to π1, . . . , πr. Where convenient we will use this
perspective.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 70

We now define the notion of an oracle reduction. Since in this work we primarily deal with
relations, rather than languages, we define our reductions accordingly.

Definition 4.4.2. An oracle reduction from a relationR to a relationR′ with base alphabet Σ
is an interactive protocol between a prover P and verifier V that works as follows. The prover
P takes as input an instance-witness pair (x,w) and the verifier V takes as input the instance
x. In each round, V sends a message mi ∈ {0, 1}∗, and P replies with an oracle πi ∈ Σ∗i over
an alphabet Σi = Σsi; let π1, . . . , πr be all oracles sent.7 After the interaction, V outputs a
list of instances (x(1), . . . ,x(m)) and a list of virtual oracles (Π(1), . . . ,Π(m)) over alphabets
Σ′1, . . . ,Σ

′
m respectively, where Σ′i = Σs′i .

We say that the oracle reduction has soundness error ε and distance δ if the following
conditions hold.

• Completeness: If (x,w) ∈ R then, with probability 1 over the verifier’s randomness,
for every j ∈ [m] it holds that

(
x

(j),Π(j)[π1, . . . , πr]
)
∈ R′ where (x(j),Π(j))j∈[m] ←

(P (x,w), V (x)).

• Soundness:8 If x /∈ L(R) then for any prover P̃ , with probability 1 − ε over the veri-
fier’s randomness, there exists j ∈ [m] such that ∆(Π(j)[π1, . . . , πr],R′|x(j)) > δ where
(x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

An oracle reduction is public coin if all of the verifier’s messages consist of uniform
randomness. All of the oracle reductions we present in this paper are public coin. Note that
we can always choose the base alphabet Σ to be {0, 1}, but it will be convenient for us to use a
larger base alphabet.

This above definition can be viewed as extending the notion of linear-algebraic CSPs [26],
and indeed Lemma 4.4.4 below gives a construction similar to the “canonical” PCP described in
that work.

It will be useful to compose oracle reductions. As in the PCP setting, for this we will
require an object with a stronger proximity soundness property.

Definition 4.4.3. An oracle reduction of proximity is as in Definition 4.4.2 except that, for a
given proximity parameter δ0 ∈ (0, 1), the soundness condition is replaced by the following one.

• Proximity soundness: If (x,w) is such that ∆(w,R|x) > δ0 then for any prover P̃ , with prob-
ability 1−ε over the verifier’s randomness, ∃ j ∈ [m] such that ∆(Π(j)[π1, . . . , πr],R′|x(j)) >
δ(δ0) where (x(j),Π(j))j∈[m] ← (P (x,w), V (x)).

In the PCPP literature the foregoing soundness property is usually known as robust sound-
ness, and the condition is expressed in terms of expected distance. The definition given here is
more convenient for us.
Efficiency measures. There are several efficiency measures that we study for an oracle reduc-
tion.

7Sometimes it is convenient to allow the prover to reply with multiple oracles πi,1, πi,2, . . .; all discussions
extend to this case.

8This is analogous to the “interactive soundness error” εi in Section 2.3.1.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 71

• An oracle reduction has r rounds if the interactive protocol realizing it has r rounds.
• An oracle reduction has m virtual oracles and locality ` if the verifier outputs at most m

virtual oracles {Π(j) = (Qj, Aj)}j∈[m], and it holds that maxi∈[s] | ∪mj=1 Qj(i)| ≤ `. Note that
the answer to a single query may consist of multiple symbols over the base alphabet Σ, but we
count the query only once.
• An oracle reduction has length s =

∑r
i=1 si|πi| over the base alphabet. Its length in bits is

s log |Σ|.

Other efficiency measures include the running time of the prover and of the verifier.
Oracle reductions combine naturally with proofs of proximity to produce IOPs. The

following lemma is straightforward, and we state it without proof.

Lemma 4.4.4. Suppose that there exist:
(i) an r-round oracle reduction from R to R′ over base alphabet Σ with soundness error ε,

distance δ, length s, locality `, and m virtual oracles;
(ii) an r′-round IOPP for R′ over alphabet Σ with soundness error ε′, proximity parameter

δ′ ≤ δ, length s′, and query complexity (qw, qπ).
Then there exists an (r +mr′)-round IOP forR with soundness error ε+ ε′, length s+ s′ ·m
over Σ, and query complexity (qw · `+ qπ) ·m.

4.4.2 Reed–Solomon oracle reductions
In this work we focus on a special class of oracle reductions, in which we reduce to

membership in the Reed–Solomon code, and where the virtual oracles have a special form. These
reductions coincide with “RS-encoded IOPs” as defined in Section 2.3.3, which we recast in the
language of virtual oracles.

We first define the notion of a rational constraint, a special type of virtual oracle that is
“compatible” with the (interleaved) Reed–Solomon code.

Definition 4.4.5. A rational constraint is a virtual oracle Π = (Q,A) over a finite field F
where Q(α) = ((1, α), . . . , (r, α)) and A(α, β1, . . . , βr) = N(α, β1, . . . , βr)/D(α), for two
arithmetic circuits (without division gates) N : F

∑
i si → F and D : F→ F.

A Reed–Solomon (RS) oracle reduction is a reduction from some relation to membership
in the Reed–Solomon code, where additionally every oracle is a rational constraint.

Definition 4.4.6. A Reed–Solomon (RS) oracle reduction over a domain L ⊆ F is an oracle
reduction, over the base alphabet F, from a relationR to the interleaved Reed–Solomon relation

R∗RS :=
{

(~ρ, f) s.t. ~ρ ∈ (0, 1]∗, f : L→ F is a codeword in RS [L, ~ρ]
}

where every virtual oracle output by the verifier is a rational constraint, except for a special
instance (~ρ0,Π0), which the verifier must output. Π0, over alphabet F

∑
i si , is given by Π0(α) =

(π1(α), . . . , πr(α)) (i.e., it is a stacking of the oracles sent by the prover).

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 72

In this work we will assume throughout that L comes a family of subgroups (of a family of
fields) such that there is an encoding algorithm for the Reed–Solomon code on domain L with
arithmetic complexity O(|L| log |L|).

Note that Π0 is not a rational constraint because its alphabet is not F. Later we will also
refer to the non-interleaved Reed–Solomon relationRRS := {(ρ, f) : ρ ∈ (0, 1], f ∈ RS [L, ρ]}.

RS oracle reductions have a useful property: if the soundness condition holds for δ = 0,
then the soundness condition also holds for a distance δ > 0 related to the maximum rate of
the reduction. Informally, the maximum rate is the maximum over the (prescribed) rates of
codewords sent by the prover and those induced by the verifier’s rational constraints. To define
it, we need the notation for the degree and rate of a circuit from Definition 2.3.6.

An oracle reduction has maximum rate ρ∗ if, for every rational constraint (σ,Π) output by
the verifier, max(rate(N ; ~ρ0), σ + rate(D)) ≤ ρ∗. This expression is motivated by the proof of
the following lemma; see Theorem 3.7.1 for details.

Lemma 4.4.7. Suppose that an RS oracle reduction with maximum rate ρ∗ satisfies the following
weak soundness condition: if x /∈ L(R) then for any prover P̃ , with probability 1− ε over the
verifier’s randomness, there exists j ∈ [m] such that (ρ(j),Π(j)[π1, . . . , πn]) /∈ RRS. Then the
reduction satisfies the standard soundness condition (see Definition 4.4.2) with soundness error
ε and distance δ := 1

2
(1− ρ∗).

This means that for the oracle reductions in this paper we need only establish weak
soundness. Also, one can see that RS oracle reductions have locality r (the number of rounds),
since |Q(α)| = r for all α ∈ L.

The following lemma shows that, for RS oracle reductions, it suffices to run the proximity
test on a single virtual oracle. This reduces the query complexity and proof length when we
apply Lemma 4.4.4.

Lemma 4.4.8. Suppose that there exists an r-round RS oracle reduction fromR over domain
L, m virtual oracles, soundness error ε, maximum rate ρ∗, and distance δ. Then there is
an r-round oracle reduction from R to the non-interleaved Reed–Solomon relation RRS with
locality r, one virtual oracle, soundness error ε + |L|/|F|, maximum rate ρ∗, and distance
min(δ, (1− ρ∗)/3, (1− 2ρ∗)/2).

Proof. Implicit in Theorem 3.7.1, where it follows from [39].

Combining Lemmas 4.4.4, 4.4.7 and 4.4.8 yields the following useful corollary. We shall
invoke it, in Section 4.9, on the two main building blocks obtained in this paper in order to prove
our main result.

Corollary 4.4.9. Suppose that there exist:
(i) an r-round RS oracle reduction from R over domain L, m virtual oracles, length s and

rate ρ∗ that satisfies the weak soundness condition with soundness error ε;
(ii) an r′-round IOP of proximity for RRS with soundness error ε′, proximity parameter

δ′ < min((1− ρ∗)/3, (1− 2ρ∗)/2), length p and query complexity (qw, qπ).
Then there exists an (r + r′)-round IOP for R with soundness error ε + ε′ + |L|

|F| , length s + p
and query complexity qw · r + qπ.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 73

4.5 Trace embeddings
The IOPs that we construct rely on the algebraic structure of univariate polynomials. For

example, all prover messages are (allegedly) Reed–Solomon codewords. Since our proof systems
argue the validity of execution traces, which are two-dimensional “tall and skinny” tables
representing the state of a small number of registers in each step of a long computation, we
need to embed such traces into univariate polynomials, in a way that allows us to efficiently
reconstruct the two-dimensional structure and traverse it. Ad-hoc methods for obtaining such
embeddings are ubiquitous in the PCP literature, and typically rely on the algebraic structure of
the underlying field; see, e.g., [126, 102, 41, 36, 28, 70] for examples.

We introduce trace embeddings, a notion that abstracts the foregoing methods and encapsu-
lates the algebraic structure required to instantiate them. Throughout, by “efficient” we mean a
function that can be evaluated in time that is polylogarithmic in the size of its domain (which is
the usual notion of efficiency given an appropriate encoding of the input). Informally, a trace
embedding has two components:

1. A bivariate embedding, which encodes a table A ∈ FN×n into a function fA : H → F, with
H ⊆ F of size Nn, whose (univariate) low-degree extension admits efficient extraction of
A’s row/column structure.

In more detail, a bivariate embedding (Definition 4.5.3) is a method of embedding two-
dimensional data, indexed by coordinates (h1, h2) ∈ H1 × H2 (with H1, H2 ⊆ F), into
one-dimensional data, indexed by a single coordinate h ∈ H (with H ⊆ F), such that (h1, h2)
can be efficiently derived from h. Also, the embedding’s projections to its two coordinates
have efficiently-computable low-degree extensions.

2. A successor ordering, which induces a total order on the domain and allows for efficiently
moving from each element to its successor. In more detail, we equip H1 with an ordering
γ : [|H1|] → H1 given by a “first” element 1H1 ∈ H1 and an efficiently-computable low-
degree polynomial N . The ordering is γ(1) := 1H1 and γ(i + 1) := N(γ(i)) for every
i ∈ {1, . . . , |H1| − 1}.

Note the asymmetry in the definition: we require H1 to have a successor ordering, whereas we
require nothing of H2. This is because in our application H1 will be large (roughly the length of
the computation) whereas H2 will be small (roughly the number of registers in the computation).

For convenience, we first present the formal definition of trace embeddings below, and
discuss the components it uses, as well as their properties, in the following subsections.

Definition 4.5.1. Let F be a finite field. A trace embedding is a tuple T = (Φ,O, γ) where
Φ: H → H1 ×H2 is an efficient bivariate embedding in F (see Section 4.5.1), O an efficient
successor ordering on H1 (see Section 4.5.2), and γ : [|H2|]→ H2 an ordering on H2. Addition-
ally, we require that the vanishing polynomial ZH1 and its (standard formal) derivative can be
evaluated anywhere on F in polylog(|H|) field operations.

Letting N := |H1| and n := |H2|, a trace embedding T induces a bijection T : [N]× [n]→
H defined as T (i, j) := Φ−1(γO(i), γ(j)) for every i ∈ [N] and j ∈ [n], and γO being the

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 74

ordering induced by O. In light of this, we sometimes simply write T : [N]× [n]→ H to refer
to a trace embedding (instead of writing the tuple that defines it), which means that we consider
any trace embedding that induces such a bijection.

In the remainder of this section, we give the formal definitions of bivariate embeddings and
successor orderings, and prove the following lemma about the existence and efficient realizability
of trace embeddings.

Lemma 4.5.2. The field F of size pe, for prime p, has trace embeddings of all sizes (N, n) for
which either:

(i) Nn divides pe − 1, and N, n are coprime; or
(ii) N = pi and n = pj for all i, j such that i+ j < e.

Moreover, there is a polynomial-time algorithm that, on input a description of F, integers N and
1n, outputs a description of a trace embedding of size N × n, if N, n satisfy one of the above
conditions (and ⊥ otherwise).

4.5.1 Bivariate embeddings
We define the notion of an (efficient) bivariate embedding, and show that it can be instanti-

ated via the additive or multiplicative subgroup structure of a finite field. Then in Section 4.5.1.1,
we state some simple linear-algebraic implications of bivariate embeddings that are used fre-
quently in subsequent sections.

Definition 4.5.3. Let F be a finite field. A (low-degree) bivariate embedding in F is a tuple
(Φ1,Φ2, H,H1, H2) where H,H1, H2 are subsets of F, Φ1 ∈ F[X] is a polynomial of degree
|H2|, Φ2 ∈ F[X] is a polynomial of degree |H1|, such that the function Φ: H → H1 × H2

defined as Φ(h) := (Φ1(h),Φ2(h)) is a bijection.
A bivariate embedding Φ: H → H1×H2 is efficient if Φ1 and Φ2 can be evaluated at any

α ∈ F in polylog(|H|) field operations.

For notational convenience we refer to a bivariate embedding (Φ1,Φ2, H,H1, H2) with
the notation Φ: H → H1 ×H2, defined as in Definition 4.5.3, leaving the polynomials Φ1,Φ2

implicit.
The degrees of Φ1,Φ2 will impact the efficiency of our proof system, and so we aim to

minimize them. In particular, the degree choices in the definition are minimal: if Φ1 has degree
d > 0 then ZH1(Φ1(X)) has degree |H1| · d, is not the zero polynomial, and is zero everywhere
on H , so d ≥ |H|/|H1| = |H2|; a similar statement holds for Φ2. Since we achieve these
degree bounds in the constructions below, we make these choices part of the above definition. In
particular, ZH1(Φ1(X)) and ZH2(Φ2(X)) are each multiples of ZH .

While for any H,H1, H2 ⊆ F with |H| = |H1| · |H2| there exist (many) bijections
H → H1 ×H2, the aforementioned degree constraints severely limit our choices for these sets.
All known constructions use the group structure of H . It remains an intriguing open question to
determine whether other constructions exist.

Efficiency is an even stronger requirement. Since the “truth table” of Φ is of size |H|, it
must be that H has some inherent product structure that we can exploit. In our protocols, H will

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 75

be an additive or multiplicative subgroup of F and H1, H2 will be isomorphic to subgroups of H
whose product is H .

We now construct efficient bivariate embeddings, over multiplicative and additive subgroups
of the field.

Lemma 4.5.4. Let F be a finite field, and let H,H1, H2 be multiplicative subgroups of F
such that |H| = |H1| · |H2| and gcd(|H1|, |H2|) = 1. Then, there exists an efficient bivariate
embedding Φ: H → H1 ×H2.

Proof. Map each h ∈ H to the pair Φ(h) := (h|H2|, h|H1|) ∈ H1×H2. By the Chinese Remainder
Theorem, Φ is an isomorphism. Moreover, the polynomials Φ1(X) :=X |H2| and Φ2(X) :=X |H1|

agree with Φ on H , and can be evaluated in O(log(|H1|) + log(|H2|)) = O(log(|H|)) field
operations.

Lemma 4.5.5. Let F be a finite field, and let V,W be additive subgroups of F with respective
sizes m,n and such that V ∩W = {0}. Then there exists an efficient bivariate embedding
Φ: V ⊕W → ZW (V)× ZV (W).

Proof. Map each v+w ∈ V ⊕W (with v ∈ V and w ∈ W) to Φ(v+w) := (ZW (v),ZV (w)) ∈
ZW (V) × ZV (W), where ZW and ZV are the vanishing polynomials of V and W . Since
ZW is injective on V and ZV is injective on W , Φ is a bijection. Moreover, the polynomials
Φ1(X) := ZW (X) and Φ2(X) := ZV (X) can be evaluated in O(log2(|W |) + log2(|V |)) =
O(log2(|H|)) field operations.

4.5.1.1 Linear-algebraic properties

We use bivariate embeddings as a natural, and algebraically friendly, way to identify the
tensor product space FH1 ⊗ FH2 with FH . This is expressed via the definitions and propositions
below, which we state without proof. The propositions follow from standard linear algebra and
the fact that a bivariate embedding extends bijections γ1 : H1 → [|H1|] and γ2 : H2 → [|H2|] to
a bijection γ : H → [|H1|]× [|H2|].

Definition 4.5.6. Define ⊗Φ : FH1 × FH2 → FH to be the bilinear function that maps u ∈ FH1

and v ∈ FH2 to u⊗Φ v ∈ FH where (u⊗Φ v)(h) := u(Φ1(h)) · v(Φ2(h)) for every h ∈ H .

Proposition 4.5.7. The function ⊗Φ : FH1 × FH2 → FH is a tensor product.

Definition 4.5.8. Let Φ: H → H1 ×H2 be a bivariate embedding. The Kronecker product of
matrices A ∈ FH1×H1 and B ∈ FH2×H2 with respect to Φ is the matrix A⊗Φ B ∈ FH×H where
(A⊗Φ B)(h, h′) := A(Φ1(h),Φ1(h′)) ·B(Φ2(h),Φ2(h′)) for every h, h′ ∈ H .

Proposition 4.5.9. Let A ∈ FH1×H1 and B ∈ FH2×H2 . Then (A⊗Φ B) is the unique linear map
such that, for every u ∈ FH1 and v ∈ FH2 , (A ⊗Φ B)(u ⊗Φ v) = (Au) ⊗Φ (Bv), under usual
matrix multiplication.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 76

4.5.2 Successor orderings
A successor ordering of a set S is a pairO = (1S, N) where 1S ∈ S is a distinguished first

element and N ∈ F[X] is a degree-1 successor polynomial that induces an ordering by mapping
each element of S to its “successor”. That is, O induces a bijection γO : [|S|] → S given by
γO(1) = 1S , γO(2) = N(1S), γO(3) = N(N(1S)), and so on. We call O efficient if N can be
evaluated in polylog(|S|) field operations.

We show that all multiplicative subgroups S of F have efficient successor orderings, by
relying on any isomorphism S ∼= Z|S|. We also show that, for |F| = pe, there exists an additive
subgroup S of F of size pi with an efficient successor ordering, if p is small enough. This relies
on “simulating” the field Fpi inside S.

4.5.2.1 Multiplicative subgroups

The construction for multiplicative subgroups is straightforward. The following lemma
gives the construction of a successor ordering for any multiplicative subgroup of F, that is, of
any size dividing |F| − 1.

Lemma 4.5.10. Let F be a finite field. Every multiplicative subgroup S of F has an efficient
successor ordering.

Proof. Choose a generator g of S (note that S is cyclic), and then let 1S := 1F and N(X) := gX .

4.5.2.2 Additive subgroups

In order to give the construction for additive subgroups, we first need to generalize the
definition of successor ordering given above. That is, we need to be more permissive about the
successor polynomials N we allow.

In later sections, we use successor orderings by composing the polynomial N with other
polynomials that enforce correct computation. We must ensure that this composition does
not have too large of a degree. Ideally we would like N to have degree O(1) because then
deg(g ◦N) = O(deg g) for any g ∈ F[X]. When S is a multiplicative subgroup we can achieve
this (as N has degree 1), but when S is an additive subgroup we get deg(N) = Ω(|S|), which
would give deg(g ◦ N) = Ω(|S| deg g). Since |S| and deg(g) will be each approximately the
computation length T , the degree of the composed polynomial would be Ω(T 2). This would
prevent us from achieving, e.g., IOPs of linear proof length.

To deal with this, we use the fact that the additive N satisfies a useful structural property, to
which we refer as being piecewise polynomial. A function f is a piecewise polynomial of degree
d with respect to a partition (S1, . . . , S`) of S if there exist polynomials (f1, . . . , f`) of degree d
such that

∀ i ∈ [`], ∀α ∈ Si , f(α) = fi(α) .

If si is a degree-|S| extension of the indicator for Si in S then
∑`

i=1 si(X)g(fi(X)) has degree
O(|S|+ deg g) and agrees with g ◦N on S. This is an additive rather than multiplicative increase
in the degree, and later will yield a degree bound of O(T) as required. We now define formally
the notion of a piecewise polynomial.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 77

Definition 4.5.11. Let F be a finite field and S ⊆ F. A piecewise polynomial on S is a pair
F = (S,F) where S = (S1, . . . , S`) is a partition of S and F = (f1, . . . , f`) ∈ F[X]`. Let si be
the unique extension of degree less than |S| of the indicator for Si in S. The value of F = (S,F)
at α ∈ F is F (α) :=

∑`
i=1 si(α)fi(α).

A piecewise polynomial (S,F) has piecewise degree d if maxf∈F deg(f) ≤ d. A piecewise
polynomial is efficient if each si, fi can be evaluated in time polylog(|S|), and ` = polylog(|S|).

The following proposition shows that the special structure of piecewise polynomials allows
for composition with an additive, rather than multiplicative, dependence on |S|.

Proposition 4.5.12. If F = (S,F) is piecewise polynomial on S with degree d and g ∈ F[X],
then there is a polynomial h of degree |S|+ d · deg(g) that agrees with g ◦ F on S. Moreover, if
F is efficient and g can be evaluated in polylog(|S|) field operations then h can be evaluated in
polylog(|S|) field operations.

Proof. Let h(X) :=
∑`

i=1 si(X)g(fi(X)) ∈ F[X], where si is the unique extension of degree
less than |S| of the indicator function of Si in S. Then since the si are indicators for a partition
of S,

∀α ∈ S , g(f(α)) = g

(∑̀

i=1

si(α)fi(α)

)
=
∑̀

i=1

si(α)g(fi(α)) = h(α) .

Observe that h has the required degree and can be evaluated in polylog(|S|) field operations.

Now we are ready to formally define a successor ordering.

Definition 4.5.13. Let F be a finite field and S ⊆ F. A successor ordering on S is a pair
O = (1S, N) where 1S ∈ S and N is a piecewise polynomial on S of degree 1 such that
S = {α1, . . . , α|S|}, where

α1 := 1S and αi+1 := N(αi) inductively for every i ∈ {1, . . . , |S| − 1}.

Let γO : S → {1, . . . , |S|} be the ordering on S induced by O, i.e., γO(αi) := i for every
i ∈ {1, . . . , |S|}.

A successor ordering is efficient if the piecewise polynomial N is efficient.

Note that since a polynomial of degree d has a trivial piecewise representation of degree d,
the foregoing definition also captures the simpler multiplicative case.

Let p be prime. For the field F of size pe, we give constructions of efficient ordered subsets
of any size pi (for 1 ≤ i < e) provided p is small enough relative to i.

The following lemma appears in [41, 28, 23]. We restate it here in the language of successor
orderings, and for completeness we also provide a proof.

Lemma 4.5.14. Let F be a finite field of size pe. For every i ∈ {1, . . . , e − 1} there exists an
additive subgroup S in F of size pi with a successor ordering O. If in addition p = O(log |S|)
then O is efficient.

Proof. We view F as Fp[ξ]/(f) for some f ∈ Fp[ξ]. To prove the lemma, we first move to the
ring Fp[ξ] and show that there exists a subspace of Fp[ξ] that is isomorphic to a “multiplicative”
subset of Fp[ξ].

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 78

Claim 4.5.15. Let S := span{1, ξ, . . . , ξi−1} ⊆ Fp[ξ], and let G := {0, 1, ξ, ξ2, . . . , ξp
i−2} ⊆

Fp[ξ]. Let g(ξ) ∈ Fp[ξ] be a primitive polynomial of degree i, and let ϕ : Fp[ξ] → Fp[ξ] be
defined as ϕ(f) := f mod g where division is in the ring Fp[ξ]. Then S = ϕ(G).

Proof of claim. It suffices to show that ϕ is a bijection on G, since S is the image of ϕ (i.e.,
S = ϕ(Fp[ξ])). Since g is primitive, g has a root ω ∈ Fpi such that Fpi = {0, 1, ω, ω2, . . . , ωp

i−2}.
Since Fp[ξ]/(g(ξ)) is isomorphic to Fpi via the map ξ 7→ ω, we deduce that |ϕ(G)| = |G|. Thus
S = ϕ(G) as claimed.

We have that S is isomorphic to S + (f) ⊆ F, and so we can regard S as a subset of F. We
now construct a successor ordering O = (1S, N) on S. We set 1S := 0, and are then left to
define the piecewise polynomial N . We divide S into cosets of S ′ := span{1, ξ, . . . , ξi−2} as
S =

⋃
c∈Fp cξ

i−1 +S ′. These cosets have the property that if ϕ(ξj) ∈ cξi−1 +S ′ then ϕ(ξj+1) =

ξ · ϕ(ξj)− c · g(ξ). Note that this is true in F since it is true in Fp[ξ] and deg(f) > i = deg(g).
Our partition of S consists of the sets {0}, S ′\{0}, and the set S ′+cξi−1 for all c ∈ Fp\{0}.

The corresponding polynomial partition is {LS,0, L0(ZS′(X))−LS,0(X)}∪{Lc◦ZS′}c∈Fp , where

• LS,0 is the unique polynomial of degree less than |S| with LS,0(0) = 1 and LS,0(γ) = 0 for
γ ∈ S \ {0};
• Lc is the unique polynomial of degree less than p such that

Lc(c · ZS′(ξi−1)) = 1 and Lc(γ · ZS′(ξi−1)) = 0 for every γ ∈ Fp \ {c} .

By the Fp-linearity of ZS′ , we have that, for every α ∈ S, Lc(ZS′(α)) = 1 if α ∈ S ′ + cξi−1 and
0 otherwise. Hence this is indeed the desired partition. The value of N on a ∈ S should be

N(a) =

1 if a = 0

ξ · a if a ∈ S ′ \ {0}
ξ · a− c · g(ξ) if a ∈ S ′ + cξi−1

This gives N(0) = 1 = ϕ(1), and N(ϕ(ξj)) = ϕ(ξj+1) for every j ∈ {0, 1, . . . , pi − 2}.
Thus, the polynomial

N(X) := LS,0(X) ·1 + (L0(ZS′(X))−LS,0(X)) · ξ ·X+
∑

c∈Fp\{0}

Lc(ZS′(X)) · (ξ ·X− c ·g(ξ))

takes the correct values on S, and has piecewise degree 1.
Finally, observe that N can be evaluated in poly(p, log(|S|)) field operations, which is

polylog(|S|)) when p = O(log |S|). Indeed: (1) since S is a subspace, a Lagrange polynomial
LS,0 can be evaluated in polylog(|S|) field operations; (2) Lc is a Lagrange polynomial over
the field of size p and thus can be evaluated in O(log p) field operations; and (3) since S ′ is a
subspace, the vanishing polynomial ZS′ can be evaluated in polylog(|S ′|) field operations. The
dependence on p (rather than log p) in the cost for evaluating N comes from adding the terms in
the sum.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 79

4.6 A succinct lincheck protocol
We describe succinct lincheck, an oracle reduction for checking a useful class of succinctly-

represented linear relations on Reed–Solomon codewords. This oracle reduction is later used to
obtain an oracle reduction for R1CS automata (see Section 4.7), and can be viewed as a succinct
analogue of the univariate lincheck protocol (Section 3.5). We recall the lincheck relation defined
in that section, and for simplicity focus on the special case of linear relations defined by square
constraint matrices.

Definition 4.6.1. The lincheck relationRLIN consists of pairs
(
(F, L,H, ρ,M), (f1, f2)

)
where

F is a finite field, L,H ⊆ F, ρ ∈ (0, 1), f1, f2 ∈ RS [L, ρ], M ∈ FH×H , and ∀ a ∈ H f̂1(a) =∑
b∈HMa,b · f̂2(b).

Recall that the protocol forRLIN in Section 3.5, which we outlined in Section 4.2.2, supports
any constraint matrix M ∈ FH×H , and so it cannot run in time o(||M ||) (let alone in our target
time of polylogarithmic in ||M ||) for every matrix M , because the verifier must at least read the
description of M .

In this section, we show that, for an expressive family of constraint matrices, we can
design a “succinct” lincheck protocol wherein the verifier runs exponentially faster than in
Protocol 3.5.3 To this end, we first observe that the verifier’s expensive work in the lincheck
protocol consists of evaluating low-degree extensions of the two vectors rα := (gh(α))h∈H ∈ FH
and sα := rαM ∈ FH ; this involves Ω(||M || + |H|) field operations. Then we show how
to perform such evaluations in polylog(|H|) field operations (and thereby make the verifier
exponentially faster) for a class of matrices M that arise from T -time computations. Informally,
we rely on a clever choice of linearly-independent polynomials (gh(α))h∈H and also on special
algebraic properties of the matrices M , related to the algebraic structure of F.

We now motivate the algebraic properties that we use, and then state our result.
Semisuccinct matrices. The lincheck protocol (Protocol 3.5.3) chooses the linearly independent
polynomials (gh(X))h∈H to be the standard basis (1, X,X2, . . . , X |H|−1). We do not know how
to efficiently evaluate the low-degree extension of rα with respect to this basis. But there is
another natural choice of basis for polynomials, the Lagrange basis (LH,h)h∈H . In Section 4.6.1
we show that the low-degree extension r̂α of rα with respect to this basis has a simple form that
allows one to evaluate r̂α in time polylog(|H|).

The foregoing suggests a natural condition on the matrix M to require: if we can efficiently
compute a low-degree extension of a vector v ∈ FH , then we should also be able to efficiently
compute a low-degree extension of the vector vM ∈ FH . This notion of (algebraic) succinctness
is formally captured as follows.

Definition 4.6.2. Let H ⊆ F and κ : N → N. A vector v ∈ FH is d-extendable if there is
p ∈ F[X] of degree at most d that agrees with v on H and p can be evaluated at any α ∈ F in
polylog(|H|) field operations. A matrix A ∈ FH×H is κ-succinct if, for every d ≥ |H| − 1, vA
is κ(d)-extendable whenever v is d-extendable.

The identity matrix trivially satisfies the above definition, and later on we will show that
the matrix with 1s on the superdiagonal is also algebraically succinct for certain choices of F
and H (see Lemma 4.7.4).

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 80

Unfortunately, Definition 4.6.2 turns out to be too restrictive for us. But it is a starting point
for a more general notion that suffices. Concretely, the matrices that arise in Section 4.7 are not
themselves succinct, but they can be decomposed into a part that is succinct and a part that is
“small”. This is analogous to a Turing machine, where a computation is specified by repeated
applications of a small transition function.

Definition 4.6.3. Let Φ: H → H1 ×H2 be a bivariate embedding, and let κ : N→ N. A matrix
M ∈ FH×H is (Φ, κ)-semisuccinct if M = A⊗Φ B for κ-succinct A ∈ FH1×H1 and arbitrary
B ∈ FH2×H2 .

In the definition there is an asymmetry between H1 and H2, since we think of H1 as large and
H2 as small.

To handle semisuccinct matrices we need a slightly different property from the polynomials
(gh(X))h∈H . Namely we need that the vector rα := (gh(α))h∈H can be written as a tensor
product of vectors r(1)

α ∈ FH1 and r(2)
α ∈ FH2 such that we can efficiently compute the low-

degree extension of r(1)
α . Then, by definition of the Kronecker product, rαM = (r

(1)
α A)⊗(r

(2)
α B).

Since A is succinct and B is small, we can compute the LDEs of r(1)
α A and r(2)

α B efficiently,
then use Lemma 4.6.7 to compute the LDE of their tensor product. In Section 4.6.2 we show
how to construct (gh(X))h∈H from the Lagrange bases on H1 and H2.
A succinct lincheck protocol. The main result of the section is an oracle reduction, with
linear length and locality 2, from lincheck on sums of semisuccinct matrices. The verifier
uses poly(|x|) = poly(`, n, logN) field operations, which is polylogarithmic in the size of the
succinct part of the matrix.

Lemma 4.6.4. Let F be a finite field with an efficient bivariate embedding Φ: H → H1 ×H2

where H is a coset in F. Suppose that M ∈ FH×H has the form M =
∑`

i=1Mi where each
Mi ∈ FH×H is (Φ, κ)-semisuccinct.

Setting N := |H1|, n := |H2|, and d := n · (N + κ(N)), there is a 1-round RS oracle
reduction of proximity (Protocol 4.6.12) forRLIN for instances of the form x = (F, L,H, ρ,M)
with the following parameters:

length |L| soundness error d/|F| prover time |L| log |L|+ ||M ||
locality 2 distance 1

2
(1− ρ− d

|L|) verifier time poly(|x|) .

(Above ||M || denotes the number of non-zero entries in the matrix M ∈ FH×H .)

Organization. In Sections 4.6.1 and 4.6.2 we develop algebraic preliminaries. In Section 4.6.3
we prove Lemma 4.6.4. In Section 4.6.4 we extend Lemma 4.6.4 to handle a block-matrix
lincheck relation. This latter relation is the one that we actually use in Section 4.7 to obtain an
oracle reduction for interactive R1CS automata.

4.6.1 Properties of the Lagrange basis
Let F be a finite field and S a subset of F. The Lagrange basis over S are the polynomials

LS := (LS,α)α∈S where LS,α is the unique polynomial of degree less than |S| with LS,α(α) = 1

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 81

r̂S(f(X), Y) rfS

r̂S(f(α), Y) r
f(α)
S

evalY (S)

evalX(α) eval′X(α)

LDE

Figure 4.3: Commutative diagram showing the relationship between the vector of (univariate)
polynomials rS and the bivariate polynomial r̂S . The function evalY (S) maps a polyno-
mial g(X,Y) to the vector of polynomials (g(X,β))β∈S . The function evalX(α) maps
a polynomial g(X,Y) to the polynomial g(α, Y). The function eval′X(α) maps a vector
of polynomials (gβ(X))β∈S to the vector of polynomials (gβ(α))α∈S . The function LDE
maps a vector (rβ)β∈S ∈ FS to the unique polynomial g of degree less than |S| such that
g(β) = rβ for all β ∈ S.

and LS,α(γ) = 0 for all γ ∈ S \ {α}. Recall that LS is a basis for the (vector space of)
polynomials in F[X] of degree less than |S|.

In this work it will be convenient to consider an unnormalized version of the Lagrange
basis. We let L′S,β := ZS(X)/(X − β), and define the vector of polynomials

rS := (L′S,β)β∈S =

(
ZS(X)

X − β

)

β∈S
∈ F[X]S .

Observe that L′S,β is a polynomial of degree less than |S| that is zero on S \ {β}, and is therefore
equal to LS,β up to a multiplicative (nonzero) constant factor. It follows that rS is also a basis for
the vector space of polynomials of degree less than |S|. The following lemma shows that the
unique low-degree extension of rS ∈ F[X]S , which is a bivariate polynomial r̂S ∈ F[X, Y], has
a simple explicit form.

Lemma 4.6.5. r̂S(X, Y) := (ZS(X)− ZS(Y))/(X − Y) is the unique low-degree extension of
rS .

Proof. Observe that r̂S is a polynomial of degree |S| − 1 in Y because X − Y divides ZS(X)−
ZS(Y). Moreover, for every β ∈ S, r̂S(X, β) = ZS(X)/(X − β) = L′S,β(X), which is the β-th
entry of rS .

Given a polynomial f ∈ F[X], we define rfS ∈ F[X]S to be the vector of polynomials
obtained by composing each entry of rS with f :

rfS := (L′S,β ◦ f)β∈S =

(
ZS(f(X))

f(X)− β

)

β∈S
∈ F[X]S .

Note that when f = α ∈ F, this corresponds to evaluating each entry of the vector rS at the
point α. Also, Lemma 4.6.5 implies that the unique low-degree extension of rfS is r̂S(f(X), Y).
The next lemma shows that for certain sets S we can evaluate this low-degree extension very
efficiently.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 82

Lemma 4.6.6. Let S be a subset of F whose vanishing polynomial ZS and its formal derivative
DZS can both be evaluated at any point in polylog(|S|) field operations. Then, given any
α, β ∈ F, the unique low-degree extension of rαS , which is r̂S(α, Y), can be evaluated at β
in polylog(|S|) field operations. In particular, this holds when the set S is an additive or
multiplicative subgroup of F.

Proof. If α− β 6= 0, we can evaluate r̂S(α, β) directly by computing (ZS(α)−ZS(β))/(α− β)
in polylog(|S|) field operations. If instead α − β = 0 then we use a different approach:
observing that the polynomial r̂S(X,X) is the formal derivative of ZS(X), we evaluate r̂S(α, β)
by computing r̂S(β, β) = (DZS)(β). (Note that when S is a multiplicative subgroup then
DZS(X) = |S|X |S|−1. And when S is an additive subgroup, ZS is a linearized polynomial, so
its derivative is the coefficient of the linear term.)

4.6.2 Efficient linear independence via the tensor product
We use the bivariate polynomial introduced in Section 4.6.1 to find a vector of linearly

independent polynomials that decomposes via the tensor product (see Definition 4.5.6). We
begin by noting that the efficiency of evaluating low-degree extensions is preserved by tensor
products.

Lemma 4.6.7. Let Φ: H → H1 ×H2 be an efficient bivariate embedding (see Definition 4.5.3).
Let û ∈ F[X] be a degree-du extension of u ∈ FH1 , and v̂ ∈ F[X] a degree-dv extension of
v ∈ FH2 . For every β ∈ F, if û, v̂ can be evaluated at β in time Tu, Tv, then an extension of
u⊗Φv ∈ FH of degree |H2|·du+|H1|·dv can be evaluated at β in timeO(Tu+Tv+polylog |H|).

Proof. The polynomial û(Φ1(X))v̂(Φ2(X)) ∈ F[X] agrees with the vector u⊗Φ v ∈ FH on H ,
has degree |H2| · du + |H1| · dv, and can be evaluated in time O(Tu + Tv + polylog |H|).

We define a vector of polynomials tΦ
H ∈ F[X]H and, for every α ∈ F, the vector of elements

t
Φ(α)
H ∈ FH obtained by evaluating each polynomial. We prove that the polynomials in tΦ

H are
linearly independent (Lemma 4.6.9), that a low-degree extension of t

Φ(α)
H can be efficiently

evaluated (Corollary 4.6.10), and that a low-degree extension of t
Φ(α)
H M can be efficiently

evaluated when M is semisuccinct (Corollary 4.6.11).

Definition 4.6.8. Let Φ: H → H1 ×H2 be a bivariate embedding. We define tΦ
H ∈ F[X]H to

be the vector of polynomials given by

tΦ
H := rΦ1

H1
⊗Φ rΦ2

H2
=
(
L′H1,h1

(Φ1(X))
)
h1∈H1

⊗Φ

(
L′H2,h2

(Φ2(X))
)
h2∈H2

.

Moreover, for any α ∈ F, we define t
Φ(α)
H ∈ FH to be the vector of field elements given by

t
Φ(α)
H := r

Φ1(α)
H1

⊗Φ r
Φ2(α)
H2

=
(
L′H1,h1

(Φ1(α))
)
h1∈H1

⊗Φ

(
L′H2,h2

(Φ2(α))
)
h2∈H2

.

Lemma 4.6.9. Let Φ: H → H1 ×H2 be a bivariate embedding. Then tΦ
H ∈ F[X]H is a vector

of |H| linearly independent polynomials of degree less than 2|H|. (Note that tΦ
H is not a basis

for the space of polynomials of degree less than 2|H| because it contains only |H| elements.)

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 83

Proof. For every h ∈ H there exists c ∈ F such that

(rΦ1
H1
⊗Φ rΦ2

H2
)(h) = c · LH1,Φ1(h)(Φ1(X)) · LH2,Φ2(h)(Φ2(X)) .

This is a polynomial of degree less than 2|H1||H2| = 2|H| that is zero everywhere on H except
at h.

Corollary 4.6.10. Let Φ: H → H1 ×H2 be an efficient bivariate embedding. For every α ∈ F,
a degree-2|H| extension of t

Φ(α)
H ∈ FH can be evaluated at any β ∈ F in poly(log |H1|, log |H2|)

field operations.

Proof. The polynomials Φ1 and Φ2 can be evaluated at α in polylog(|H|) field operations, since
Φ is efficient. By Lemma 4.6.6, the unique low-degree extensions of r

Φ1(α)
H1

and r
Φ2(α)
H2

can
each be evaluated at β in time polylog(|H|). Note that these polynomials have degrees |H1|
and |H2| respectively. Thus, by Lemma 4.6.7, an extension of t

Φ(α)
H = r

Φ1(α)
H1

⊗Φ r
Φ2(α)
H2

∈ FH
of degree |H2| · |H1| + |H1| · |H2| = 2|H| can be evaluated at β in time polylog(|H|) =
poly(log |H1|, log |H2|).

Corollary 4.6.11. Let Φ: H → H1 × H2 be an efficient bivariate embedding. Let M be a
(Φ, κ)-semisuccinct matrix, and let d := |H2| · (|H1| + κ(|H1|)). For every α ∈ F, a degree-d
extension of t

Φ(α)
H M ∈ FH can be evaluated at any β ∈ F in time poly(log |H1|, |H2|).

Proof. The polynomials Φ1 and Φ2 can be evaluated at α in polylog(|H|) field operations, since
Φ is efficient. We can write M = A⊗Φ B where A ∈ FH1×H1 is κ-succinct and B ∈ FH2×H2 is
arbitrary, since M is (Φ, κ)-semisuccinct (see Definition 4.6.3). Since A is κ-succinct, we can
evaluate a degree-κ(|H1|) extension of r

Φ1(α)
H1

A at β in time polylog(|H|) (see Definition 4.6.2).
We can evaluate a degree-|H2| extension of r

Φ2(α)
H2

B at β in time poly(log |H|, |H2|) by direct
interpolation. Thus, by Lemma 4.6.7, we can evaluate a degree-d extension of t

Φ(α)
H M =

(r
Φ1(α)
H1

A)⊗Φ (r
Φ2(α)
H2

B) in time poly(log |H|, |H2|).

4.6.3 Proof of Lemma 4.6.4
We describe succinct lincheck, the RS oracle reduction that proves Lemma 4.6.4. Below

we use as a subroutine the univariate sumcheck protocol (Protocol 3.4.3), which is an RS
oracle reduction (PSUM, VSUM) for the relation RSUM of instance-witness pairs (xSUM,wSUM) =(

(F, L,H, ρ, µ) , f
)

such that F is a finite field, L is a subset of F, H is a coset in F, ρ ∈ (0, 1)

is a rate parameter, µ is an element in F, f is a codeword in RS [L, ρ], and
∑

a∈H f̂(a) = µ.
In this (non-interactive) reduction, the prover sends a proof oracle πΣ to the verifier, and the
verifier outputs the rates (ρ0, ρ1, ρ2) = (ρ, ρ − |H|/|L|, (|H| − 1)/|L|) and the virtual oracles
(Π0,Π1,Π2) = (f, πΣ,ΠΣ[f, πΣ]) for some ΠΣ (whose exact form depends on H and µ).

Protocol 4.6.12. Let F be a finite field, and Φ: H → H1 ×H2 an efficient bivariate embedding
in F where H is a coset in F; set N := |H1| and n := |H2|. Succinct lincheck is a RS oracle
reduction (P, V) that works for lincheck instances x = (F, L,H, ρ,M) for which the matrix M
has the form

∑`
i=1Mi ∈ FH×H and each matrix Mi ∈ FH×H is (Φ, κ)-semisuccinct.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 84

We describe the interaction between a prover P and verifier V that both receive an input a
lincheck instance x as above, and where the prover P additionally receives a lincheck witness
(f1, f2) (see Definition 3.5.1).

First, the verifier V draws a uniformly random α ∈ F and sends it to the prover P . The
element α defines polynomials p̂(1)

α (Y) and p̂(2)
α (Y) in F[Y] known to both prover and verifier:

• p̂(1)
α (Y), a degree-2nN extension of the vector t

Φ(α)
H ∈ FH (see Definition 4.6.8). By Corol-

lary 4.6.10, p̂(1)
α (Y) can be evaluated anywhere in poly(logN, log n) field operations.

• p̂(2)
α (Y), a degree-(n · (N + κ(N))) extension of the vector t

Φ(α)
H M ∈ FH . Note that

t
Φ(α)
H M = t

Φ(α)
H ·

(∑̀

i=1

Mi

)
=
∑̀

i=1

t
Φ(α)
H Mi .

EachMi is (Φ, κ)-semisuccinct so, by Corollary 4.6.11, a degree-(n·(N+κ(N))) extension of
t

Φ(α)
H Mi can be evaluated anywhere in poly(logN, n) field operations. By linearity, p̂(2)

α (Y),
which is a degree-(n · (N + κ(N))) extension of t

Φ(α)
H M , can be evaluated anywhere in

poly(`, logN, n) field operations.

Moreover, the element α and the witness codewords f1, f2 ∈ RS [L, ρ] jointly define the polyno-
mial q̂α(Y) in F[Y] defined as follows:

q̂α(Y) := p̂(1)
α (Y)f̂1(Y)− p̂(2)

α (Y)f̂2(Y) .

Observe that q̂α(Y) allegedly sums to zero on H , and has degree max{2nN, n · (N + κ(N))},
which is n · (N + κ(N)) since κ(N) ≥ N . In particular, qα = q̂α|L (the restriction of the
polynomial q̂α(Y) to the domain L) is a codeword in RS [L, ρ′] for the rate parameter ρ′ := ρ+
n·(N+κ(N))

|L| .
Next, the prover P and verifier V assemble the sumcheck instance xSUM = (F, L,H, ρ′, 0),

and then run the univariate sumcheck protocol (an oracle reduction) with P playing the role of
P qα

SUM(xSUM) and V playing the role of VSUM(xSUM). This results in P qα
SUM(xSUM) sending a proof

oracle πΣ and then VSUM(xSUM) outputting a list of instances and corresponding virtual oracles,
as required of an oracle reduction.

Since (PSUM, VSUM) is an RS oracle reduction, we know that the instances output by VSUM

are rate parameters for the relationRRS over the domain L (see Definition 4.4.6). In the particular
case at hand, VSUM outputs the rate parameters (ρ′, ρ′−|H|/|L|, (|H|−1)/|L|) and corresponding
virtual oracles (qα, πΣ,ΠΣ[qα, πΣ]).

Finally, the verifier V outputs the rate parameters (ρ, ρ, ρ1, ρ2) := (ρ, ρ, ρ′−|H|/|L|, (|H|−
1)/|L|) and the virtual oracles (Πf1 ,Πf2 ,Π1,Π2) defined as follows:

Πf1 [f1, f2, πΣ] := f1 Πf2 [f1, f2, πΣ] := f2 Π1[f1, f2, πΣ] := πΣ Π2[f1, f2, πΣ] := ΠΣ[qα, πΣ]

Queries to qα are simulated via queries to f1 and f2.
Note that since (PSUM, VSUM) is an RS oracle reduction then so is (P, V): each of the virtual

oracles output by V are rational constraints, and every oracle sent by the prover appears as some
virtual oracle.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 85

Since tΦ
H ∈ F[X]H is a vector of linearly independent polynomials, the lincheck condition

holds if and only if a certain polynomial equation in X holds:
{
f̂1(a) =

∑

b∈H

Ma,b · f̂2(b)

}

a∈H

←→
∑

a∈H

tΦ
H [a]f̂1(a) ≡

∑

a∈H

tΦ
H [a]

∑

b∈H

Ma,bf̂2(b) .

Rearranging the right-hand side of the polynomial equation yields:
∑

a∈H

tΦ
H [a] ·

∑

b∈H

Ma,bf̂2(b) ≡
∑

b∈H

f̂2(b) ·
∑

a∈H

tΦ
H [a]Ma,b ≡

∑

b∈H

f̂2(b) · (tΦ
HM)[b] .

For any choice of α ∈ F, we can evaluate each side of the polynomial equation:

∑

a∈H

p̂(1)
α (a)f̂1(a) =

(∑

a∈H

tΦ
H [a]f̂1(a)

)
(α) ,

∑

b∈H

p̂(2)
α (b)f̂2(b) =

(∑

b∈H

(tΦ
HM)[b]f̂2(b)

)
(α) .

These evaluations are equal if and only if
∑

a∈H q̂α(a) = 0.
Completeness. Suppose that the lincheck condition holds. This implies that f1 is a codeword
in RS [L, ρ], and thus so is its corresponding virtual oracle, Πf1 [f1, f2, πΣ]. Similarly for f2

and Πf2 [f1, f2, πΣ]. Moreover, for every α ∈ F it holds that
∑

a∈H q̂α(a) = 0, which means
that (xSUM, qα) is a valid instance-witness pair for the sumcheck relation, and so completeness
of the sumcheck protocol implies that Π1[f1, f2, πΣ] = πΣ is a codeword in RS [L, ρ1], and
Π2[f1, f2, πΣ] = ΠΣ[qα, πΣ] is a codeword in RS [L, ρ2].
Soundness. Suppose that the lincheck condition does not hold. If either f1 = Πf1 [f1, f2, πΣ]
or f2 = Πf2 [f1, f2, πΣ] is not a codeword in RS [L, ρ], then we are done. So suppose instead
that f1, f2 are codewords in RS [L, ρ], which means that qα ∈ RS [L, ρ′]. In this case there must
exist a ∈ H such that f̂1(a) 6=

∑
b∈H0

Ma,b · f̂2(b). With probability at least 1− n·(N+κ(N))
|F| , it

holds that
∑

a∈H q̂α(a) 6= 0. By soundness of the sumcheck protocol, either πΣ /∈ RS [L, ρ1] or
ΠΣ[qα, πΣ] /∈ RS [L, ρ2]. This means that either Π1[f1, f2, πΣ] /∈ RS [L, ρ1] or Π2[f1, f2, πΣ] /∈
RS [L, ρ2], and again we are done. (The distance in the statement of Lemma 4.6.4 follows via an
application of Lemma 4.4.7.)
Efficiency. The length of the reduction is the same as that of the sumcheck protocol, which is
|L|. The locality is one more than that of the sumcheck protocol (since a query to qα translates
to a query to each of f1 and f2), for a total of 3. The running time of the verifier is dominated
by the cost of constructing the virtual oracles Π1 and Π2 each of which requires producing a
circuit that answers a query to qα by combining answers to queries to f1 and f2. This requires
producing circuits for evaluating p̂(1)

α and p̂(2)
α on a point in L. Corollaries 4.6.10 and 4.6.11 give

the claimed running time.

4.6.4 Extension to block-matrix lincheck
The lincheck relation in Definition 3.5.1 is a special case of a relation that we use in the

proof of Lemma 4.7.2 (see Section 4.7.2), in order to obtain an oracle reduction for interactive

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 86

R1CS automata. We now describe the more general relation, and then explain how the ideas
discussed so far directly extend to handle it.

The lincheck relation requires checking that v1 = Mv2 where v1, v2 ∈ FH are encoded by
Reed–Solomon codewords f1, f2 ∈ RS [L, ρ] respectively. Later on, we will want to check such
conditions for vectors v1 := v

(1)
1 ‖ . . . ‖v

(r)
i and v2 := v

(1)
2 ‖ . . . ‖v

(s)
2 such that each v(i)

1 , v
(j)
2 ∈ FH

is individually encoded by a Reed–Solomon codeword f (i)
1 , f

(j)
2 respectively. We decompose

M into several H ×H block matrices M (i,j), so that v1 = Mv2 if and only if, for all i ∈ [r], it
holds that v(i)

1 =
∑s

j=1 M
(i,j)v

(j)
2 . The block-matrix form of the lincheck relation is obtained by

re-writing this condition in terms of codewords f (i)
1 , f

(j)
2 .

Definition 4.6.13. For r, s ∈ N, the block-matrix lincheck relationRr,s
LIN consists of instance-

witness pairs
(x,w) =

(
(F, L,H, ρ,M), (f1, f2)

)

where F is a finite field, L,H are subsets of F, ρ is a rate parameter in (0, 1), f1 = (f
(1)
1 , . . . , f

(r)
1)

and f2 = (f
(1)
2 , . . . , f

(s)
2) are lists of codewords in RS [L, ρ], M = (M (i,j))i∈[r],j∈[s] is a block

matrix with each M(i,j) ∈ FH×H , and for all i ∈ [r] and a ∈ H it holds that f̂ (i)
1 (a) =∑s

j=1

∑
b∈HM

(i,j)
a,b f̂

(j)
2 (b).

The succinctness condition that we now consider on the block matrix is that each block
M (i,j) is a sum of semisuccinct matrices. We can then extend Protocol 4.6.12, in a straightforward
way, to obtain an oracle reduction for the block-matrix lincheck relationRr,s

LIN. Informally, the
verifier’s first message contains, in addition to α ∈ F, random elements β1, . . . , βr ∈ F. We then
consider the virtual oracle q induced by the polynomial

q̂(Y) :=
r∑

i=1

βi

(
p̂(1)
α (Y)f̂

(i)
1 (Y)−

s∑

j=1

p̂(i,j)
α (Y)f̂

(i)
2 (Y)

)

where p̂(i,j)
α is defined like p̂(2)

α but with respect to the matrix M (i,j) ∈ FH×H .
The foregoing ideas allow us to extend Lemma 4.6.4 to the block-matrix lincheck relation,

and we obtain the following lemma, which we state without proof. The verifier uses poly(|x|) =
poly(`, r, s, n, logN) field operations, which is polylogarithmic in the size of the succinct part
of the matrix.

Lemma 4.6.14. Let F be a finite field with an efficient bivariate embedding Φ: H → H1 ×H2

where H is a coset in F. Suppose that M = (M (i,j))i∈[r],j∈[s] is a block matrix where each block
has the form M (i,j) =

∑`
ι=1M

(i,j)
ι and each M (i,j)

ι ∈ FH×H is (Φ, κ)-semisuccinct.
Setting N := |H1|, n := |H2|, and d := n · (N + κ(N)), there is a 1-round RS oracle

reduction of proximity forRr,s
LIN for instances of the form x = (F, L,H, ρ,M) with the following

parameters:

length |L| soundness error (d+ 1)/|F| prover time |L| log |L|+ ||M||
locality 2 distance 1

2
(1− ρ− d

|L|) verifier time poly(|x|) .

(Above ||M|| denotes the total number of non-zero entries across all blocks of the matrix
M = (M (i,j))i∈[r],j∈[s].)

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 87

4.7 Probabilistic checking of interactive automata
We define the R1CS automata relation, which considers checking algebraic computation that

has no external memory, and show how to reduce it to the lincheck relation (see Definition 4.6.13),
via an oracle reduction. Combining this reduction with results in Section 4.6, we obtain an oracle
reduction from R1CS automata to testing proximity to the Reed–Solomon code (see Lemma 4.7.2
below). This oracle reduction is later used to obtain an oracle reduction for a relation about R1CS
machines (see Section 4.8), which have external memory.

Informally, we define computation on R1CS automata as follows. Let F be a finite field,
T ∈ N be a computation time, and k ∈ N a computation width. We consider execution traces
f : [T]→ Fk that represent T -time computations in which each state f(t) of the computation is
a vector of k elements in F. An R1CS automaton is specified by matrices A,B,C ∈ Fk×2k that
define R1CS time constraints, and a set of boundary constraints B ⊆ [T]× [k]×F. An execution
trace f : [T]→ Fk is accepted by the automaton if:

• f satisfies the R1CS time constraints, namely, for every t ∈ [T − 1], letting f(t, t + 1)
be the concatenation of the consecutive states f(t) ∈ Fk and f(t + 1) ∈ Fk, it holds that
Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1);

• f satisfies the boundary constraints, namely, for every (t, j, α) ∈ B it holds that f(t)j = α.

Intuitively, time constraints enforce that each state in the execution trace is consistent with the
prior one. Boundary constraints enforce that given locations in the execution trace have given
values, for example, they could ensure that the computation started at a certain initial state and
halted at a certain final state.
Interactive automata. We shall in fact consider a more general notion of computation that
allows interaction with a prover, which we call interactive R1CS automata. This notion enables
an efficient oracle reduction from R1CS machines, as described in Section 4.8.

Informally, in interactive R1CS automata, instead of considering execution traces f : [T]→
Fk, we consider prover strategies Pw that output an execution sub-trace wi : [T]→ Fs in each
round of a public-coin protocol of r rounds. By juxtaposing the sub-traces w1, . . . , wr one
obtains a trace f : [T]→ Frs, which is then accepted if it satisfies time constraints and boundary
constraints similarly as above. Crucially, the matrices defining time constraints can depend on
the verifier’s randomness in the public-coin protocol.

Below we define a universal relationRr,ε
R1A that captures computations on r-round interac-

tive R1CS automata with soundness error ε. We denote the computation time by T , the length of
a verifier message by `, the width of a sub-trace by s, and the width of a trace by k := rs. Given
a trace f : [T]→ Fk, we denote by f(i, j) ∈ F2k the concatenation of the two states f(i) ∈ Fk
and f(j) ∈ Fk.

Definition 4.7.1. The promise relation Rr,ε
R1A = (RYes,LNo) of bounded accepting compu-

tation problems on interactive R1CS automata is defined as follows. An instance x =
(F,A,B,C,B, `) consists of a finite field F, functions A,B,C : Fr` → Fs×2rs defining time
constraints, and boundary constraints B ⊆ [T]× [rs]× F. A witness Pw is a prover strategy for
the following game defined by x. Let Vx be the interactive Turing machine that interacts with Pw

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 88

for r rounds, where in the i-th round Vx sends a random ai ∈ F`, and Pw replies with a message
wi : [T] → Fs. At the end of the interaction, letting a := (a1, . . . , ar) ∈ Fr` and f : [T] → Frs
be defined as f(t) := w1(t)‖ . . . ‖wr(t), Vx accepts if the following holds.

• Time constraints: ∀ t ∈ [T − 1], A(a)f(t, t+ 1) ◦B(a)f(t, t+ 1) = C(a)f(t, t+ 1) .

• Boundary constraints: ∀ (t, j, α) ∈ B, f(t)j = α .

A pair (x, Pw) is inRYes if (Pw, Vx) accepts with probability 1. On the other hand, an instance
x is in LNo if for every prover strategy P̃ it holds that (P̃ , Vx) accepts with probability at most ε.

In this section we obtain an oracle reduction, with linear length and locality r + 1, from
interactive R1CS automata to testing proximity to the Reed–Solomon code. The verifier uses
poly(|x|) = poly(r, s, |B|, log T) field operations, which is exponentially faster than the compu-
tation time T , since the dependence on the T is polylogarithmic instead of polynomial.

Lemma 4.7.2. Let F be a finite field, H a coset in F, and L a subset of F with L ∩H = ∅. Let
T : [T]× [s]→ H be a trace embedding in F. There is an RS oracle reduction over domain L
(Protocol 4.7.7) for instances x of Rr,ε

R1A over F and of computation time T and width k = rs.
The reduction has r + 1 rounds and the following parameters:

length (r + 4)|L| soundness error ε+ (3sT + 1)/|F| prover time |L| · (log |L|+ |x|)
locality r + 1 distance 1

2
(1− 4sT/|L|) verifier time poly(|x|)

.

The rest of this section is dedicated to proving Lemma 4.7.2. Our high-level approach is to
first identify a family of semisuccinct matrices (see Definition 4.6.3) that can express computation
via R1CS automata. We call this family staircase matrices and, in Section 4.7.1, prove that they
are indeed semisuccinct. Then, in Section 4.7.2 we prove Lemma 4.7.2 by invoking the succinct
lincheck protocol in Section 4.6 (which requires semisuccinct matrices) on carefully chosen
staircase matrices, derived from an interactive automaton.

4.7.1 Staircase matrices
We introduce the notion of staircase matrices and prove that they are the sum of two

semisuccinct matrices. This requires establishing simple algebraic properties of the identity
matrix and a related matrix.

First recall from Definition 4.6.2 that a matrix A ∈ FS×S is κ-succinct if, for every
d ≥ |S| − 1 and v ∈ FS , a degree-κ(d) extension of vA can be evaluated anywhere in F in
time polylog(|S|) whenever a degree-d extension of v can be evaluated anywhere in F in time
polylog(|S|). The identity matrix on a subset S of F (the matrix I ∈ FS×S with I(α, α) = 1 for
all α ∈ S and 0 elsewhere) is trivially κ-succinct for κ(d) := d: if a degree-d extension of v can
be evaluated anywhere in F in time T , then so can a degree-d extension of vI .

We now define the shifted identity matrix, for a given successor ordering, and prove
that it is κ-succinct, where κ depends on algebraic properties of the successor ordering on
the subset S that we consider. Recall from Definition 4.5.13 that a successor ordering on

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 89

S ⊆ F is a pair O = (1S, N) where 1S ∈ S and N is a piecewise polynomial on S of degree
1 such that S = {α1, . . . , α|S|}, where α1 := 1S and αi+1 := N(αi) inductively for every
i ∈ {1, . . . , |S| − 1}.

Definition 4.7.3. Let F be a field, S a subset of F, and O = (1S, N) a successor ordering
on S. The shifted identity matrix I)O ∈ FS×S has I)O(α,N(α)) = 1 for all α ∈ S such that
γO(α) < |S|, and 0 elsewhere. Under the ordering γO, we can view I)O as the following matrix:

I)O =

0 1

0
. . .
. . . 1

0

 .

Lemma 4.7.4. Let S be a subset of F whose vanishing polynomial can be computed in polylog(|S|)
field operations and O = (1S, N) be an efficient successor ordering on S (see Definition 4.5.13).
Then I)O is κ-succinct for κ(d) := |S|+ d.

Proof. Let r ∈ FS and d ≥ |S| be such that a degree-d extension r̂ ∈ F[X] of r can be evaluated
in T field operations. We prove that a degree-(|S|+ d) extension r̂)O ∈ F[X] of r)O := rI)O ∈ FS
can be evaluated in O(T + polylog(|S|)) field operations.

Observe that r)O = (0, r1, . . . , r|S|−1) is the right shift of r, so that, for every α ∈ S, we
have

r)O(α) = r(N(α))− r(N(1S)) · I[α = 1S]

where I[α = 1S] is the indicator function for 1S on S. Let (S,F) =
(
(S1, . . . , S`), (f1, . . . , f`)

)

be a piecewise polynomial of piecewise degree 1 that computes N (see Definition 4.5.11), and
let si be the unique extension of degree less than |S| of the indicator for Si in S. We have that

r(N(α)) = r

(∑̀

i=1

si(α)fi(α)

)
=
∑̀

i=1

si(α)r(fi(α)) .

We deduce that

r̂)O(X) :=

(∑̀

i=1

si(X) · r̂(fi(X))

)
−

(∑̀

i=1

si(1S) · r̂(fi(1S))

)
· LS,1S(X)

is a degree-(|S| + d) extension of r)O. Note that LS,1S can be evaluated in polylog(|S|) opera-
tions, since the vanishing polynomial of S can be evaluated in polylog(|S|) operations. (See
Section 2.1.1). Hence, taking also into account that N is efficient, we conclude that r̂)O can be
evaluated in O(T + polylog(|S|)) operations.

The staircase matrix of two matrices M and M ′ is the block matrix whose diagonal consists
of blocks of M and its superdiagonal consists of blocks of M ′. Algebraically, we capture this
by considering the matrix that consists of the sum of two terms: (1) the tensor product of the
identity matrix with M ; and (2) the tensor product of the shifted identity matrix with M ′. We

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 90

formally define this notion, and then use Lemma 4.7.4 to deduce that each of these two terms
is semisuccinct. Recall from Definition 4.6.3 that a matrix M ∈ FH×H is (Φ, κ)-semisuccinct,
where Φ: H → H1 × H2 is a bivariate embedding and κ : N → N, if M can be written as
A⊗Φ B for κ-succinct A ∈ FH1×H1 and arbitrary B ∈ FH2×H2 .

Definition 4.7.5. Let F be a finite field, Φ: H → H1 ×H2 a bivariate embedding in F, and O a
successor ordering on H1. The staircase matrix of two matrices M,M ′ ∈ FH2×H2 is the matrix
in FH×H defined as

SΦ,O(M,M ′) := I ⊗Φ M + I)O ⊗Φ M
′

where I and I)O are the identity and shifted identity matrices in FH1×H1 , respectively. Under the
appropriate ordering on H , we can write SΦ,O(M,M ′) as the block matrix:

SΦ,O(M,M ′) =

M M ′

M M ′

M M ′

.
M M ′

M

.

Corollary 4.7.6. Let F be a finite field, Φ: H → H1 ×H2 an efficient bivariate embedding in F,
and O = (1H1 , N) an efficient successor ordering on H1. Then each of the terms in a staircase
matrix SΦ,O(M,M ′) = I ⊗Φ M + I)O ⊗Φ M

′ is (Φ, κ)-semisuccinct for κ(d) := |H1|+ d.

4.7.2 Proof of Lemma 4.7.2
We show an oracle reduction, with linear length and locality r + 1, from the interactive

R1CS automata relation Rr,ε
R1A to testing proximity to the Reed–Solomon code. Let x =

(F,A,B,C,B, `) be an instance of the relationRr,ε
R1A, and let Pw be a candidate witness for x.

Recall that the witness Pw is a prover strategy for the r-round public-coin game defined by the
verifier Vx determined by x.

In round i of this game, Vx sends a uniformly random ai ∈ F`, and Pw replies with a
message wi : [T] → Fs. Letting a := (a1, . . . , ar) ∈ Fr` and f : [T] → Frs be defined as
f(t) := w1(t)‖ . . . ‖wr(t), to check membership in the relation Rr,ε

R1A it suffices to verify the
following.

(i) Time constraints: ∀ t ∈ [T − 1] , A(a)f(t, t+ 1) ◦B(a)f(t, t+ 1) = C(a)f(t, t+ 1).
(ii) Boundary constraints: ∀ (t, j, α) ∈ B , f(t)j = α.

Our task now is to specify the prover P and the verifier V of a suitable Reed–Solomon
oracle reduction. Informally, the prover P and verifier V engage in an “encoded” version of the
game defined by x. Then, the verifier uses the prover’s encoded messages to reduce checking the
time constraints and the boundary constraints to membership in the Reed–Solomon code.

The role of staircase matrices (defined in Section 4.7.1) for these checks can be explained
as follows. Let A(a)1 be the first rs columns of A(a), and A(a)2 the remaining rs columns;

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 91

similarly for B(a) and C(a). Viewing f as a vector f(1)‖ · · · ‖f(T) ∈ FkT , we left-multiply the
vector f by staircase matrices, obtaining:

fA := S(A(a)1,A(a)2) · f = A(a)f(1, 2)‖ · · · ‖A(a)f(T − 1, T)‖A(a)1f(T) ∈ FsT ,

fB := S(B(a)1,B(a)2) · f = B(a)f(1, 2)‖ · · · ‖B(a)f(T − 1, T)‖B(a)1f(T) ∈ FsT ,

fC := S(C(a)1,C(a)2) · f = C(a)f(1, 2)‖ · · · ‖C(a)f(T − 1, T)‖C(a)1f(T) ∈ FsT .

(For simplicity, we suppress the bivariate embedding and successor ordering used to define a
staircase matrix.)

The time constraints are equivalent to checking that fA, fB, fC are consistent with f , which
we can do via our new succinct lincheck protocol from Section 4.6, and also checking that
fA ◦ fB and fC agree on their first s · (T − 1) entries, which we can do via other (standard)
probabilistic checking tools.

We now provide a formal description of the reduction and then discuss its properties.

Protocol 4.7.7. Let F be a finite field, H a coset in F, and L a subset of F with L ∩ H = ∅.
Let T = (Φ: H → H1 × H2,O, γ) be a trace embedding in F with T = |H1| and s = |H2|
(see Definition 4.5.1). We show a Reed–Solomon oracle reduction over domain L, which
works on instances x = (F,A,B,C,B, `) for the relation Rr,ε

R1A (see Definition 4.7.1) that
have computation time T and width k = rs. The oracle reduction is specified by the prover P
and verifier V described below. Recall that P and V receive the instance x as input, while P
additionally receives a witness Pw for x.

1. Interaction. The prover P and verifier V engage in an “encoded” version of the r-round
game induced by x. In round i, first V behaves exactly as Vx by sending random elements
ai ∈ F`; then P obtains a message wi : [T]→ Fs from Pw and, instead of sending wi, sends
its encoding πwi := π̂wi|L, where π̂wi is the unique polynomial of degree less than sT such
that

∀ t ∈ [T] , ∀ j ∈ [s] π̂wi
(
T (t, j)

)
= (wi(t))[j] .

For each i ∈ [r], the verifier V outputs the rate parameter ρwi := sT/|L| and virtual oracle
Πwi := πwi .

2. Proof oracles. The prover P uses the verifier randomness a = (a1, . . . , ar) ∈ Fr` to compute
the matrices A(a),B(a),C(a) ∈ Fs×2rs. We view these as 2r block matrices with blocks of
size s× s:

A(a) =
(
A

(1)
1 · · · A

(r)
1 A

(1)
2 · · · A

(r)
2

)
,

B(a) =
(
B

(1)
1 · · · B

(r)
1 B

(1)
2 · · · B

(r)
2

)
,

C(a) =
(
C

(1)
1 · · · C

(r)
1 C

(1)
2 · · · C

(r)
2

)
.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 92

Next, P computes the unique polynomials π̂A, π̂B, π̂C of degree less than sT such that

∀h ∈ H π̂A(h) =
(r∑

i=1

SΦ,O(A
(i)
1 , A

(i)
2) · π̂wi|H

)
[h] ,

∀h ∈ H π̂B(h) =
(r∑

i=1

SΦ,O(B
(i)
1 , B

(i)
2) · π̂wi|H

)
[h] ,

∀h ∈ H π̂C(h) =
(r∑

i=1

SΦ,O(C
(i)
1 , C

(i)
2) · π̂wi|H

)
[h] .

Finally, P sends to V the codewords in RS[L, sT/|L|] obtained by restricting the above
polynomials to L:

πA := π̂A|L πB := π̂B|L πC := π̂C|L .

The verifier V outputs rate parameters (ρA, ρB, ρC) and virtual oracles (ΠA,ΠB,ΠC) de-
fined as:

ρA := sT/|L| ΠA := πA ,

ρB := sT/|L| ΠB := πB ,

ρC := sT/|L| ΠC := πB .

3. Succinct lincheck. The prover P and verifier V invoke the block-matrix succinct lincheck
of Lemma 4.6.14 on the instance xLIN := (F, L,H, ρ,M) and witness
wLIN := ((πA, πB, πC), (πw1 , . . . , πwr)), where

M :=

SΦ,O(A

(1)
1 , A

(1)
2) · · · SΦ,O(A

(r)
1 , A

(r)
2)

SΦ,O(B
(1)
1 , B

(1)
2) · · · SΦ,O(B

(r)
1 , B

(r)
2)

SΦ,O(C
(1)
1 , C

(1)
2) · · · SΦ,O(C

(r)
1 , C

(r)
2)

 .

The verifier V outputs the rate parameters and virtual oracles output by the verifier of this
RS oracle reduction. The maximum rate across these is ρ + d/|L|, where ρ := sT/|L| and
d := s · (T + κ(T)) = 3sT , since κ(T) = |H1|+ T = 2T by Corollary 4.7.6.

4. Rowcheck. Define the set HROW := H \ {T (T, 1), . . . , T (T, s)}. The verifier V outputs the
rate parameter ρROW and virtual oracle ΠROW defined as:

ρROW :=
2sT − |HROW|

|L|
and ΠROW(α) :=

πA(α) · πB(α)− πC(α)

ZHROW
(α)

,

where ZHROW
(X) := ZH1(Φ1(X))/Z{T (T,1),...,T (T,s)}(X) is (a multiple of) the vanishing

polynomial of HROW because ZH1(Φ1(X)) is (a multiple of) the vanishing polynomial of
H . Observe that ZHROW

can be evaluated in poly(log T, s) field operations because: (1) the
definition of a trace embedding (Definition 4.5.1) requires that ZH1 and Φ1 can each be
evaluated in polylog(|H|) = polylog(Ts) field operations; (2) the denominator can be

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 93

evaluated in poly(s) field operations. (We also know that H is a coset in F, a condition
inherited from univariate sumcheck, which means that the vanishing polynomial of H can
directly be evaluated in polylog(|H|) field operations. The above reasoning assumes less.)

The above is an RS oracle reduction of proximity over domain L for the rowcheck relation
RROW, consisting of instance-witness pairs (xROW,wROW), where xROW = (F, L,HROW, ρROW)
and wROW = (π1, π2, π3), such that π1, π2, π3 ∈ RS [L, ρ] and, for every α ∈ HROW, π̂1(α) ·
π̂2(α)− π̂3(α) = 0.

5. Enforce boundary constraints. The verifier V partitions the boundary constraints B into
(B1, . . . ,Br) so that the constraints in Bi apply to the message wi : [T] → Fs. Namely, for
each i ∈ [r], V defines

Bi :=
{

(t, j′, α)
∣∣∣ ∃ j′ ∈ {1, . . . , s} s.t. (t, j′ + s · (i− 1), α) ∈ B

}
.

Let Ei := {T (t, j′) : (t, j′, α) ∈ Bi} be the set of locations in H contained in Bi. Let Bi be
the polynomial of degree less than |Ei| such that Bi(T (t, j′)) = α for every (t, j′, α) ∈ Bi.
The verifier outputs rate parameters (ρB1 , . . . , ρBr) and virtual oracles (ΠB1 , . . . ,ΠBr) where
each rate and virtual oracle is defined as follows:

ρBi :=
sT − |Ei|
|L|

and ΠBi(α) :=
πwi(α)−Bi(α)

ZEi(α)
.

We conclude the proof of Lemma 4.7.2 by showing its completeness, soundness, and
efficiency.
Completeness. Suppose that (x, Pw) ∈ RYes, and consider the honest prover strategy P
described above. We argue that every pair (ρ,Π) output by the verifier V belongs to the Reed–
Solomon relationRRS (see Definition 4.4.6). We separately consider each step in the reduction.
In Item 1, for every i ∈ [r], the virtual oracle Πwi = πwi indeed has rate ρwi = sT/|L|. In Item 2,
the virtual oracles (ΠA,ΠB,ΠC) indeed have rates (ρA, ρB, ρC) = (sT/|L|, sT/|L|, sT/|L|).
In Item 3, the constructed instance-witness pair (xLIN,wLIN) satisfies the lincheck relation, and
thus we rely on the completeness of the succinct lincheck protocol. In Item 4 and in Item 5, the
constructed polynomials in the numerator are divisible by the denominator if and only if the
rowcheck condition and boundary conditions hold respectively.
Soundness. Suppose that x ∈ LNo. Suppose first that the oracles sent by the prover in Item 1
and Item 2 belong to the prescribed code:

π̃w1 ∈ RS [L, ρ1] , . . . , π̃wr ∈ RS [L, ρr] , π̃A ∈ RS [L, ρA] , π̃B ∈ RS [L, ρB] , π̃C ∈ RS [L, ρC]

Indeed, if any of the above conditions does not hold, then the weak soundness condition is
immediately fulfilled by the violating oracle (see Lemma 4.4.7). Note that all the rates above
equal sT/|L|.

Let f̃ : [T] → Frs be the computation trace induced by the oracles sent by the prover,
that is, f̃(t) := w̃1(t)‖ . . . ‖w̃r(t) for every t ∈ [T], where each w̃i is the sub-trace encoded
in π̃wi . By Definition 4.7.1, we know that, with probability at least 1 − ε over the verifier’s
randomness a = (a1, . . . , ar) ∈ Fr`, either f̃ does not satisfy some time constraint or some
boundary constraint. We analyze each of these two cases.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 94

• A time constraint is violated, i.e., there exists t such that A(a)f̃(t, t+ 1) ◦B(a)f̃(t, t+ 1) 6=
C(a)f̃(t, t+ 1).

If the rowcheck condition is violated, then the interpolations π̂A, π̂B, π̂C of π̃A, π̃B, π̃C are such
that there exists α ∈ HROW for which π̂A(α)·π̂B(α)−π̂C(α) 6= 0, which means that π̂Aπ̂B−π̂C

is not divisible by ZHROW
, and thus it is not the case that ΠROW[π̃A, π̃B, π̃C] ∈ RS [L, ρROW].

Otherwise, it must be the case that the lincheck condition is violated, which means that with
probability at least 1− 3sT+1

F , one of the instances output by the lincheck verifier is not the
prescribed code.

• A boundary constraint is violated, i.e., there exists (t, j, α) ∈ B such that f̃(t)j 6= α.

Let i ∈ [r] and j′ ∈ {1, . . . , s} be such that j = j′+s ·(i−1), which means that (t, j′, α) ∈ Bi
(see Item 5); note that f̃(t)j = w̃i(t)j′ . Suppose that ΠBi [π̃wi] ∈ RS [L, ρBi] (otherwise we
are done). Then, by definition of ΠBi [π̃wi], the interpolation of ΠBi [π̃wi] times the polynomial
ZEi equals π̂wi −Bi, where π̂wi is the interpolation of π̃wi . Using the fact that ZEi vanishes
at T (t, j′), we conclude that f̃(t)j = w̃i(t)j′ = π̂wi(T (t, j′)) = Bi(T (t, j′)) = α, which is a
contradiction.

Efficiency. The oracle reduction in Protocol 4.7.7 adds a single round of interaction to the
r-round interactive automaton at hand, and thus the round complexity is r + 1. The length of
the reduction is determined by the r + 1 oracles that are sent in the interaction phase and the
3 oracles sent in the lincheck protocol; each oracle is of length |L|, and thus the total length is
(r + 4)|L|. In each round there is one probe to the virtual oracles, and hence the locality is r + 1.
The distance follows by invoking Lemma 4.4.7 with respect to the maximum rate of 4sT/|L|
for the lincheck reduction, yielding distance 1

2
(1 − 4sT/|L|). Finally, the prover and verifier

time complexity follows immediately from the time complexity of the lincheck and rowcheck
protocols.

4.8 Reducing machines to interactive automata
We define the R1CS machines relation, which is about checking algebraic computation

with external memory. We then show how to reduce it, via an oracle reduction of linear length
and locality 3, to testing proximity to the Reed-Solomon code (see Lemma 4.8.2 below). This
reduction builds on the results from Section 4.7.

Loosely speaking, the R1CS machines relation asserts that a machines’s execution trace
and memory trace satisfy a rank-1 constraint system, i.e., each pair of consecutive rows in one of
the traces satisfies an R1CS equation. Additionally, the relation ensures that the execution and
memory traces are consistent by checking that they are permutations of each other.9 The relation
also includes boundary constraints to ensure, e.g., that the machine starts its computation in a
valid initial state and halts in an accepting final state.

9The use of permutations to express machine computations dates back at least to the seminal work of Babai,
Fortnow, Levin, and Szegedy [16], and originates in the study of nearly-linear time reductions among different
computation models [100, 128].

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 95

In the following, we denote the computation time by T , the computation width by k, and
the number of constraints in an R1CS matrix by m. Given a trace f : [T] → Fk, we denote
by f(i, j) ∈ F2k the concatenation of f(i) and f(j). We formally define the R1CS machines
relationRR1M as follows.

Definition 4.8.1. The relation RR1M of bounded accepting computations on R1CS machines
consists of pairs (x,w) defined as follows. An instance x = (F, (A,B,C) , (A′, B′, C ′) ,B)
consists of a finite field F, matrices A,B,C ∈ Fm×2k defining time constraints, matrices
A′, B′, C ′ ∈ Fm×2k defining memory constraints, and a set of boundary constraints B ⊆
[T]× [k]×F. A witness w = (f, π) consists of an execution trace f : [T]→ Fk and permutation
π : [T]→ [T]. A pair (x,w) is inRR1M if the following holds.

• Time constraints: ∀ t ∈ [T − 1], Af(t, t+ 1) ◦Bf(t, t+ 1) = Cf(t, t+ 1) .

• Memory constraints: ∀ t ∈ [T−1], A′f(π(t), π(t+1))◦B′f(π(t), π(t+1)) = C ′f(π(t), π(t+
1)) .

• Boundary constraints: ∀ (t, j, α) ∈ B, f(t)j = α .

The main result of this section is an oracle reduction, with linear length and locality 3, from
R1CS machines to testing proximity to the Reed–Solomon code. The verifier uses poly(|x|) =
poly(m, k, log T) field operations, which is exponentially faster than the computation time T ,
since the dependence on the T is polylogarithmic instead of polynomial.

Lemma 4.8.2. Let F be a finite field, H a coset in F, and L ⊆ F with L ∩ H = ∅. Let
T : [N] × [n] → H be a trace embedding in F. There is an RS oracle reduction over domain
L (Protocol 4.8.6) for instances x of RR1M over F, with computation time T = N − 1, width
k ≤ n/2, andm ≤ n−2 constraints. The reduction has 3 rounds of interaction and the following
parameters:

length 6|L| soundness error (kT + 3Nn+ 1)/|F| prover time |L| · (log |L|+ |x|)
locality 3 distance 1

2
(1− 4Nn/|L|) verifier time poly(|x|)

.

As discussed in Section 4.2.4, the main technical tool is a matrix permutation check protocol,
which checks that two matrices are row permutations of one another. Our high-level strategy for
proving Lemma 4.8.2 is to use the foregoing interactive protocol to check consistency between
the execution and memory traces of an R1CS machine, and then check each of the traces via the
oracle reduction for interactive R1CS automata.
Organization. In Section 4.8.1 we describe the matrix permutation check protocol, and explain
how to represent it via an R1CS equation. In Section 4.8.2 we prove Lemma 4.8.2 by using the
foregoing sub-protocol and the oracle reduction for interactive R1CS automata in Section 4.7.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 96

4.8.1 Matrix permutation check protocol
We describe a protocol for checking that two matrices over a (sufficiently large) finite field

F are row permutations of one another. The protocol leverages interaction with a prover to avoid
more expensive tools that establish equivalence under permutations, such as sorting or routing
networks. Since we ultimately wish to express the protocol via an interactive R1CS automaton
(see Section 4.8.2), we present the protocol as a distribution over R1CS matrices. We note,
however, that this protocol can also be formalized in other ways.

For notational convenience, we view a T × k matrix over F as a function f : [T] → Fk.
Then f ′ : [T] → Fk is a permutation of f if there is a permutation π : [T] → [T] such that
f ′(t) = f(π(t)) for all t ∈ [T].
From permutation to identity testing. Checking that two matrices are row permutations of one
another can be expressed as a polynomial identity testing problem, as the permutation condition
is an equality problem between multi-sets over vectors. We can encode each vector v ∈ Fk as a
univariate polynomial qv(Y) :=

∑k
j=1 Y

jvj , and encode a multi-set of vectors S = {v(t)}t∈[T]

as a bivariate polynomial qS(X, Y) :=
∏T

t=1(X − qv(t)(Y)). Then, two multi-sets S and S ′ are
equal if and only if qS(X, Y) ≡ qS′(X, Y).

This suggests a probabilistic protocol to check the permutation condition. The verifier sends
to the prover two random elements α, β ∈ F. Then, the prover has to convince the verifier that
qS(α, β) = qS′(α, β). This suffices since if qS(X, Y) ≡ qS′(X, Y), then qS(α, β) = qS′(α, β)
with probability 1 over α, β; if instead qS(X, Y) 6≡ qS′(X, Y), then qS(α, β) 6= qS′(α, β) with
probability at least 1− kT/|F| over α, β.

Intuitively, evaluation at β plays the role of a hash function: if two vectors v, u ∈ Fk are
not equal then, with probability at least 1 − k/|F| over β, it holds that qv(β) 6= qu(β). This
“collapses” all vectors in S and S ′ to single field element such that, with high probability, distinct
vectors hash to distinct elements. Evaluation at α plays the role of another hash function, except
that this time it is with respect to the vectors of all hashes, namely (qv(β))v∈S and (qu(β))u∈S′ .
After these two hash function evaluations, only two elements need to be compared, namely
qS(α, β) and qS′(α, β).

Probabilistic checks for multi-set equality like the above ones are familiar techniques from
program checking [114, 47], and have been recently applied to check machine computations
(see, e.g., [155]).
From identity testing to a protocol. We need to design a protocol that enables a prover
to convince the verifier that a function f ′ : [T] → Fk is a permutation of another function
f : [T]→ Fk. The discussion so far tells us that it suffices for the verifier to learn the random
evaluation of bivariate polynomials related to f and f ′, but does not tell us what protocol to run.

Towards this end, consider the bivariate polynomials {χt(X, Y)}t∈[T] defined as follows:

χt(X, Y) :=
t∏

i=1

(
X −

k∑

j=1

Y jf(i)j

)
−

t∏

i=1

(
X −

k∑

j=1

Y jf ′(i)j

)
. (4.2)

Observe that χT ≡ 0 if and only if there exists a permutation π such that f ′(t) = f(π(t)) for all
t ∈ [T].

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 97

For any choice of α, β ∈ F, we consider an auxiliary trace g : [T + 1] → F3 that “incre-
mentally computes” χT (α, β) as follows. The first and second columns of g are defined so that
g(1)1 = g(1)2 = 1F and, for 1 < t ≤ [T + 1], g(t)1 and g(t)2 respectively contain the first and
second terms of χt−1(α, β):

g(t)1 :=
t−1∏

i=1

(
α−

k∑

j=1

βjf(i)j

)
= g(t− 1)1 ·

(
α−

k∑

j=1

βjf(t− 1)j

)
,

g(t)2 :=
t−1∏

i=1

(
α−

k∑

j=1

βjf ′(i)j

)
= g(t− 1)2 ·

(
α−

k∑

j=1

βjf ′(t− 1)j

)
.

Note that g(t)1 and g(t)2 can be derived from g(t − 1)1 and g(t − 1)2 respectively. The third
column of g is the difference of the first two columns: for every t ∈ [T + 1] we define
g(t)3 = g(t)1 − g(t)2 = χt−1(α, β). Observe that, if χT 6≡ 0 then g(T + 1)3 = χT (α, β) = 0
with probability at most kT/|F|.

We can summarize the above via a statement that involves local constraints among adjacent
variables.

Lemma 4.8.3. Given f, f ′ : [T]→ Fk, define the probability

µ(f, f ′) := Pr
α,β←F

∃ g : [T + 1]→ F3 such that
• g(1)1 = g(1)2 = 1 and g(T + 1)3 = 0

• ∀ t ∈ [T] , g(t+ 1)1 = g(t)1 · (α−
∑k

j=1 β
jf(t)j)

• ∀ t ∈ [T] , g(t+ 1)2 = g(t)2 · (α−
∑k

j=1 β
jf ′(t)j)

• ∀ t ∈ [T + 1] , g(t)3 = g(t)1 − g(t)2

.

Then the following conditions hold.

• Completeness: if f ′ is a permutation of f then µ(f, f ′) = 1.

• Soundness: if f ′ is not a permutation of f then µ(f, f ′) ≤ kT/|F|.

The protocol via an R1CS equation. We re-write Lemma 4.8.3 in the language of R1CS
equations, so that in Section 4.8.2 we can embed the matrix permutation check protocol in an
interactive R1CS automaton.

For functions a : [T] → Fk and b : [T ′] → Fk′ , we denote by a‖b : [max(T, T ′)] → Fk+k′

the function defined as (a‖b)(t) := a(t)‖b(t), where we pad a or b via all-zero rows if T 6= T ′.
We construct a distribution of R1CS matrices such that: if f ′ is a permutation of f , then there
exists an auxiliary trace g such that f‖f ′‖g satisfies the constraints of the R1CS matrices, and
otherwise, with high probability, there is no auxiliary trace g that makes f‖f ′‖g satisfy the
constraints of the R1CS matrices.

Lemma 4.8.4. Let T, k, n ∈ N with n ≥ 2k. Let 0 : [T] → Fn−2k always output zeros. There
exists a polynomial-time samplable distribution D over tuples of matrices (Ap, Bp, Cp) ∈

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 98

(F3×4n)3, where drawing a sample from D requires two random elements in F, such that for
every f, f ′ : [T]→ Fk the probability

µ(f, f ′) := Pr
(Ap,Bp,Cp)←D

∃ g : [T + 1]→ Fn with g(1)1 = g(1)2 = 1 and g(T + 1)3 = 0 s.t.

letting h := f‖f ′‖0‖g ,
∀ t ∈ [T] , Aph(t, t+ 1) ◦Bph(t, t+ 1) = Cph(t, t+ 1)

 ,

satisfies the following conditions.

• Completeness: if f ′ is a permutation of f , then µ(f, f ′) = 1.

• Soundness: if f ′ is not a permutation of f , then µ(f, f ′) ≤ kT/|F|.

Proof. We construct (Ap, Bp, Cp) so that, for h := f‖f ′‖0‖g with g(1)1 = g(1)2 = 1 and
g(T + 1)3 = 0,

{Aph(t, t+1)◦Bph(t, t+1) = Cph(t, t+1)}t∈[T] −→ {g(t)3 = g(t)1−g(t)2 = χt−1(α, β)}t∈[T] .

Viewing h(t, t+ 1) as a vector

u(1)‖v(1)‖0n−2k‖w(1)‖u(2)‖v(2)‖0n−2k‖w(2) ∈ F4n ,

for u(1), u(2), v(1), v(2) ∈ Fk andw(1), w(2) ∈ F2k, we choose the matrices to enforce the following
rank-1 constraints:

w
(1)
1 ·

(
α−

k∑

j=1

βju
(2)
j

)
= w

(2)
1 ,

w
(1)
2 ·

(
α−

k∑

j=1

βjv
(2)
j

)
= w

(2)
2 ,

w
(2)
1 − w

(2)
2 = w

(2)
3 .

Note that Ap, Bp, Cp are 3× 4n matrices over F, as claimed.

4.8.2 Proof of Lemma 4.8.2
We provide an oracle reduction from checking the R1CS machines relation to testing

proximity to the Reed-Solomon code. We rely on two ingredients: (a) the matrix permutation
check protocol (Lemma 4.8.4), and (b) the oracle reduction from the R1CS automata relation to
testing the Reed-Solomon code (Lemma 4.7.2).

Observe that checking membership in the relationRR1M amounts to checking that: (1) the
execution trace f satisfies the time constraints; (2) the memory trace f ′ satisfies the memory
constraints; (3) the memory trace f ′ is a permutation of the execution trace f ; and (4) the
execution trace f satisfies the boundary constraints. We “program” an automaton to check time
constraints and memory constraints, and additionally program the (interactive) automaton to

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 99

check the permutation condition via the matrix permutation check protocol in Section 4.8.1. This
latter is the only place wherein we use the interactivity of the automata.

We now elaborate on this plan, by first describing the reduction from machines to interactive
automata, and then describing the oracle reduction induced by it.
From machines to interactive automata. Let x = (F, (A,B,C) , (A′, B′, C ′) ,B) be an
instance for the relationRR1M (see Definition 4.8.1), in which the time constraints are matrices
A,B,C ∈ Fm×2k, the memory constraints are matrices A′, B′, C ′ ∈ Fm×2k, and the boundary
constraints are a set B ⊆ [T]× [k]× F.

Below we describe how to construct an instance x′ = (F,A,B,C,B′, ` = 2) for the
relationR2,ε

R1A with ε := Nn/|F| (see Definition 4.7.1). After that we describe how to transform
a witness for x into one for x′.

• Instance reduction. First we split each matrix M ∈ {A,B,C,A′, B′, C ′} into halves
M1,M2 ∈ Fm×k by putting the first k columns into M1 and other k into M2. Now let
Ap(α, β), Bp(α, β), Cp(α, β) ∈ F3×4n be the matrices obtained from the distribution D in
Lemma 4.8.4 with randomness α, β ∈ F.

We now define the function A : F2 → Fn×4n.

A(α, β) :=

A1 0m×k 0m×n−2k 0m×n A2 0m×k 0m×n−2k 0m×n

0m×k A′1 0m×n−2k 0m×n 0m×k A′2 0m×n−2k 0m×n

Ap(α, β)

0(n−2m−3)×4n

We similarly define the functions B,C : F2 → Fn×4n.10

Observe that we have constructed the functions above so that, given a trace h : [T + 1]→ F2n

parsed as the concatenation of traces f : [T]→ Fk, f ′ : [T]→ Fk, g : [T+1]→ Fn (discarding
columns as appropriate), if

∀ t ∈ [T] , A(α, β)h(t, t+ 1) ◦B(α, β)h(t, t+ 1) = C(α, β)h(t, t+ 1) ,

then we know that f satisfies time constraints, f ′ satisfies memory constraints, and h satisfies
the constraints in Lemma 4.8.4 induced by the randomness α, β.

We define the boundary constraints B′ ⊆ [T + 1]× [4n]× F to be the union of the boundary
constraints B in x and the boundary constraints from the matrix permutation check (in
Lemma 4.8.4). More precisely, (t, j, α) ∈ B′ if and only if (t, j, α) ∈ B or (t, j, α) ∈
{(1, n+ 1, 1), (1, n+ 2, 1), (T + 1, n+ 3, 0)}.
Note that transforming x into x′ can be performed in linear time.

10The functions A,B,C are actually supposed to be from Fr` to Fn×2rn where r is the number of rounds and `
is the number of field elements sent by the verifier in each round (see Definition 4.7.1). But here the verifier’s first
message is empty and its second message has two field elements. So, given that r = 2, we find it more convenient
to take A,B,C to be functions from F2 to Fn×4n.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 100

• Witness reduction. Suppose that x has a valid witness w = (f, π), namely, (x,w) ∈ RR1M.
Let f ′ : [T] → Fk be the memory trace obtained by permuting f according to π: for every
t ∈ [T], we define f ′(t) := f(π(t)). Let Pw′ be the prover strategy for the game defined by x′

that works as follows:

1. the prover sends (f‖f ′‖0) : [T] → F2n, the padded concatenation of the execution and
memory traces;

2. the prover receives two elements α, β ∈ F from the verifier;
3. the prover uses α, β to construct an auxiliary trace g : [T + 1]→ Fn such that µ(f, f ′) = 1

(as guaranteed by Lemma 4.8.4);
4. the prover sends g.

Observe that the foregoing is a (standard, polynomial-time) reduction fromRR1M toR2,ε
R1A =:

(RYes,LNo).

Claim 4.8.5. If (x,w) ∈ RR1M, then (x′, Pw′) ∈ RYes. If instead x 6∈ L(RR1M), then x′ ∈ LNo.

Proof. Suppose that (x,w) ∈ RR1M. Then (x′, Pw′) ∈ RYes because by construction the
R1CS automaton defined by x′ runs the permutation check on f, f ′ (which always passes), time
constraints check on f (which always passes), and memory constraints check on f ′ (which
always passes).

Suppose instead that x 6∈ L(RR1M). We argue that x′ ∈ LNo. Consider a candidate prover
strategy Pw′ . We need to argue that Pw′ wins the game defined by x′ with probability at most
ε = kT/|F|. Let (f‖f ′) : [T]→ F2k be the first message sent by Pw′ . If f does not satisfy the
time constraints in x or f ′ does not satisfy the memory constraints in x, then the prover loses
with probability 1, because the R1CS automaton x′ checks both of these conditions. So suppose
that f and f ′ satisfy the time and memory constraints respectively. This means that f ′ is not a
permutation of f (for otherwise x would have been in the language of RR1M), and so we can
use the soundness condition of Lemma 4.8.4. Indeed, we know that, with probability at least
1− kT/|F| over the verifier’s choice of α, β ∈ F, the second message g : [T + 1]→ F3 of the
prover does not satisfy the permutation check constraints, in which case the prover loses.

Protocol 4.8.6. Let F be a finite field, H a coset in F, and L ⊆ F with L ∩ H = ∅. Let
T : [N] × [n] → H be a trace embedding in F with N = T + 1 and n ≥ 2k. We need to
construct an oracle reduction (P, V) that works for instances x = (F, (A,B,C) , (A′, B′, C ′) ,B)
of computation time T and width k.

The oracle reduction is straightforward: we reduce the R1CS machine to an interactive
R1CS automaton and then invoke the oracle reduction (P ′, V ′) from Lemma 4.7.2. (Note that
the hypothesis in Lemma 4.8.2 is the same as in Lemma 4.7.2, so that we can indeed invoke the
latter.)

In more detail, the prover P and verifier V each transform the given instance x for the
relationRR1M into the instance x′ for the relationR2,ε

R1A = (RYes,LNo), following the instance
reduction described above. Also, the prover P transforms a witness w = (f, π) for x into a
witness Pw′ for x′, following the witness reduction described above. Then, letting the prover P
and V engage in an oracle reduction with P playing the role of P ′(x′, Pw′) and V playing the
role of V ′(x′). Finally, the verifier V outputs whatever V ′ outputs.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 101

Completeness. If (x,w) ∈ RR1M, then (x′, Pw′) ∈ RYes, and completeness of the oracle re-
duction (P ′, V ′) for automata implies completeness of the oracle reduction (P, V) for machines.
Soundness. If x 6∈ L(RR1M), then x ∈ LNo, and so we obtain the soundness guarantee of the
oracle reduction (P ′, V ′).
Efficiency. The prover P runs in time poly(|x|+ T) and the verifier V runs in time poly(|x|)
because the respective running times in the oracle reduction (P ′, V ′) are poly(|x′|+N) and the
verifier V runs in time poly(|x′|) and it holds that |x′| = O(|x|) and N = O(T). (Also, x′ can
be efficiently derived from x.)

The locality of (P, V) is 3 because the locality of (P ′, V ′) is r + 1 when the interactive
automaton has r rounds, which in the case of x′ is r = 2. The length of (P, V) is 6|L|.

4.9 Proofs of main results
In Section 4.9.1 we prove Theorem 3, and in Section 4.9.2 we prove Theorem 2.

4.9.1 Checking satisfiability of algebraic machines
In Section 4.8 we obtained an oracle reduction from the R1CS machine relation to testing

proximity to the Reed–Solomon code. We now combine this oracle reduction with a linear-size
IOP of proximity for the Reed–Solomon code of [25] to obtain our main result. We first recall
this latter result.

Lemma 4.9.1 ([25, Theorem 5.1]). Fix a rate parameter ρ ∈ (0, 1) and a proximity parameter
δ ∈ (0, (1− ρ)/2). Let F be a finite field, L0 a subgroup of F that itself has a subgroup of size
Θ(|L0|α) for some α ∈ (0, 1), and let L be a coset of L0. There exists a 2-round IOPP system for
RS [L, ρ] with linear proof length, qw = 1, qπ = 2, distance parameter δ, constant soundness
error, and constant query complexity. The prover uses O(|L| polylog |L|) field operations and
the verifier uses polylog(|L|) field operations. The verifier’s first message is empty.

The result in [25] is stated with soundness 1/2 and some constant query complexity; applying
query reduction to the protocol’s second round yields the same result but with 3 queries and
constant soundness.

Next we introduce our definition for large smooth fields, which captures the properties
that we use to construct suitable trace embeddings. When a field is (T (n), k(n), ρ(n))-smooth
according to the definition below, we can use the algorithm of Lemma 4.5.2 to construct a
trace embedding of size T (n)×O(k(n)) in time poly(log T (n), k(n)). For example, the family
{Fp2n}n∈N is (pn, O(n), O(1))-smooth; the same is true of fields with smooth multiplicative
subgroups in the sense of [41]. The additional, and somewhat technical, conditions in the
definition ensure the existence of a subgroup L0 of F of size Θ(k(n) ·T (n)) with a suitable coset
L, so that we can invoke Lemma 4.9.1 with rate parameter ρ(n).

Definition 4.9.2. A family of fields {F(n)}n∈N is (T (n), k(n), ρ(n))-smooth if there exists α ∈
(0, 1) and a family {H1(n), H2(n), L0(n)}n∈N, such that H1(n), H2(n), L0(n) are subgroups of
F(n), where for all n:

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 102

• |H1(n)| = T (n), k(n) ≤ |H2(n)| = O(k(n)), and |H1(n) ∩H2(n)| = 1;
• L0(n) has a subgroup of size Θ(|L0(n)|α);
• if H(n) is the smallest subgroup of F(n) containing H1(n) and H2(n) then L0(n) contains
H(n) with ρ(n) ≥ |H(n)|/|L0(n)| = Ω(ρ(n)).

Note that if {F(n)}n∈N is (T (n), k(n), ρ(n))-smooth then it is also (T (n), ck(n), c′ρ(n))-smooth
for any constants c ∈ (0, 1], c′ > 1.

The above condition suffices for the construction to be feasible, but for prover efficiency
we require much more structure. The following condition guarantees the existence of a fast
Fourier transform which runs in time O(n log n); it is a usual notion of smoothness for integers.
Again, ensembles of binary fields or fields with smooth multiplicative subgroups satisfy this
definition. Crucially for us, if our field family satisfies the following condition then the prover
time in Lemma 4.9.1 can be reduced to O(|L| log |L|).

Definition 4.9.3. A family of fields {F(n)}n∈N is (T (n), k(n), ρ(n))-very smooth if it is
(T (n), k(n), ρ(n))-smooth and there exists a constant c such that the prime factors of |L0(n)|
are all at most c for all n.

To give the formal statement of our main theorem, we first define a parameterized version
of the R1CS machine relation.

Definition 4.9.4. The relation RR1M[F(n), T (n), k(n)] consists of pairs (x,w) ∈ RR1M such
that F = F(n), T = T (n) and k ≤ k(n).

We derive our main result (informally stated in Theorem 3) by combining Lemma 4.8.2
and Lemma 4.9.1. We assume that F(n) is uniformly specified via a primitive element, and also
via the factorization of |F(n)| and |F(n)∗| so that we can efficiently construct any (additive or
multiplicative) subgroup of F(n).

Theorem 4.9.5. Let F = {F(n)}n∈N be a (T (n) + 1, 2k(n), ρ(n))-smooth field family with
T (n) ≥ n, k(n) = poly(n); let S(n) := k(n)T (n)/ρ(n). There exists a universal constant ε0
such that there exists a 5-round IOP forRR1M[F(n), T (n), k(n)] with a proof length of O(S(n))
field elements, 5 queries, and soundness error ε0. The verifier uses poly(n, log T (n)) field
operations.

Moreover, if F is very smooth then the prover uses O(S(n)(logS(n) +n)) field operations.

Proof. Let x be an instance of the R1CS machine relation RR1M[F(n), T (n), k(n)] (see Defi-
nition 4.8.1). Since F(n) comes from a smooth family, we can use Lemma 4.5.2 to efficiently
construct a trace embedding T : H(n) → H1(n) × H2(n) with |H1(n)| = T (n) + 1 and
2k(n) ≤ |H2(n)| = O(k(n)); these choices, from the theorem’s hypothesis, are compatible with
Lemma 4.8.2.

Moreover, let L0(n) be as guaranteed by the smoothness condition, and let L(n) be a
coset of L0(n) which is not L0(n) itself. Since H(n) ⊆ L0(n), we have L(n) ∩H(n) = ∅ (as
required by Lemma 4.8.2).

By Lemma 4.8.2, there exists a 3-round RS oracle reduction over domain L from RR1M.
By Lemma 4.9.1, and the smoothness condition, there exists a 2-round IOP of proximity forRRS

over L. Applying Corollary 4.4.9 to these components yields a 5-round IOP forRRS with the
stated parameters.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 103

4.9.2 Checking satisfiability of succinct arithmetic circuits
In this section we prove our result for the relation Succinct-ASAT, which consists of

succinctly-represented arithmetic circuits that are satisfiable. We begin by defining this relation.

Definition 4.9.6. Let m ∈ N, E : Fm → Fm be an arithmetic circuit, o ∈ Fm, and T ∈ N. We
define HE,o,T to be the set {a1, . . . , aT} ⊆ Fm, where a1 := o and, for all i ∈ {1, . . . , T − 1},
ai+1 := E(ai). In other words, E enumerates the set HE,o,T as o, E(o), E(E(o)), and so on.

Definition 4.9.7. The relation Succinct-ASAT consists of pairs
(
(F,m,E, o, T, I,D), w

)
, where

F is a finite field, m ∈ N, E : Fm → Fm is an arithmetic circuit for enumerating gates, o ∈ Fm is
the label of the output gate, T ∈ N is the number of gates, I is a subset of HE,o,T representing the
input gates, D : Fm → ({+,"} ×HE,o,T ×HE,o,T)∪ {F} is an arithmetic circuit that describes
an arithmetic circuit C, and the witness w : I → F is such that C(w) = 0.

We define a parameterized version of Succinct-ASAT.

Definition 4.9.8. The relation Succinct-ASAT[F(n), T (n), k(n)] consists of pairs (x,w) ∈
Succinct-ASAT such that F = F(n), T = T (n) and |E|+ |D| ≤ k(n).

Next we give the formal statement of Theorem 2.

Theorem 4.9.9. There exist universal constants ε0 ∈ (0, 1), c ∈ N such that for any
(T (n) + 1, ck(n), O(1))-very smooth field family with T (n) ≥ n, there is a 5-round IOP for
Succinct-ASAT[F(n), T (n), k(n)] with a proof length of O(S) field elements for S := T · k(n),
5 queries, and soundness error ε0. The prover uses O(S logS) field operations and the verifier
uses poly(|E|, |D|, k(n)).

Above, |E|, |D| are the number of gates in E,D respectively. Note that C has T gates
whose names are in Fm, and hence the number of field elements needed to represent C is
Θ(T ·m), because the representation includes for each gate in HE,o,T ⊆ Fm the names of the
gates to which that gate is connected. In particular, the proof length in Theorem 4.9.9 is linear in
the number of field elements to represent C when |E|, |D| = O(m).

The proof of Theorem 4.9.9 is a direct implication of the following lemma.

Lemma 4.9.10. There exists a universal constant c ∈ N such that there is a polynomial-time
reduction from Succinct-ASAT[F(n), T (n), k(n)] to RR1M[F(n), T (n), ck(n)]. The size of the
RR1M instance is linear in the size of the Succinct-ASAT instance.

Proof sketch. We begin by describing the witness reduction. Let
(
(F,m,E, o, T, I,D), w

)
∈

Succinct-ASAT. The witness w assigns a value to every wire of C.
• The first part of the witness for the algebraic machine is a function f : [3T]× [k]→ F, where
k = c(|E|+ |D|), as follows. For each gate g ∈ HE,o,T , ordered by E starting from o, we add
three rows corresponding to g, labelled l, r, o respectively. These rows include the gate label g
and the labels and values of the input wires.
• The second part of the witness f ′ lists, for each gate g ordered by E starting from o, all the

rows in which it appears in f : first the unique row labelled o corresponding to g, then all rows
labelled l where g is a left input, then all rows labelled r where g is a right input.

CHAPTER 4. LINEAR-SIZE IOPS FOR DELEGATING COMPUTATION 104

The label l, r, o determines uniquely, for each row, to which gate it belongs in f ′. Hence f ′ is a
permutation of f ; this permutation π is the last part of the witness. The whole witness consists
of O(T · (|E|+ |D|)) field elements.

Now we discuss the instance reduction. The time constraints check that f is ordered
correctly according to E, each gate g is correctly evaluated according to D, and that the left,
right and output entries for g are all present. The memory constraints check that f ′ is ordered
correctly according to E, and that the assignment of the g-wire in each row is consistent with the
value of the gate g. Clearly the size of this constraint system is linear in |E|+ |D|.

Finally, we have a boundary constraint that checks that the output of C is 0.

105

Chapter 5

FRACTAL: transparent, post-quantum
recursive composition

5.1 Introduction

Recursive composition. The time to validate a SNARG can be exponentially faster than the
time to run the non-deterministic computation that it attests to, a property known as succinct ver-
ification. This exponential speedup raises an interesting prospect: could one produce a SNARG
about a computation that involves validating prior SNARGs? Thanks to succinct verification,
the time to run this (non-deterministic) computation would be essentially independent of the
time of the prior computations. This recursive composition of SNARGs enables incrementally
verifiable computation [144] and proof-carrying data [68, 45]. A critical technicality here is
that, for recursive composition to work, the SNARG must be an argument of knowledge, i.e., a
SNARK. This is because the security of a SNARG holds only against efficient adversaries, and
the knowledge property ensures that prior SNARGs must have been efficiently produced, and
so we can rely in turn on their security. A formal treatment of this can be found in [45], which
discusses how the “strength” of a SNARG’s knowledge property relates to how many recursions
the SNARG supports.
Efficient recursion. Theory tells us that any succinct-verifier SNARK is recursively composable
[45]. In practice, however, recursive composition is exceedingly difficult to realize efficiently. The
reason is that, even if we have a SNARK that is concretely efficient when used “standalone”, it is
often prohibitively expensive to express the SNARK verifier’s computation through the language
supported by the SNARK. Indeed, while by now there are numerous SNARK constructions with
remarkable concrete efficiency, to date there is only a single efficient approach to recursion. The
approach, due to [33], uses pairing-based SNARKs with a special algebraic property discussed
below.1 This has enabled real-world applications such as Coda [121], a cryptocurrency that uses
recursive composition to achieve strong scalability properties.
Limitations. The above efficient approach to recursion suffers from significant limitations.

1Bowe, Grigg, and Hopwood [54] propose an alternative approach for recursion that does not require the SNARK
to have succinct verification. We refer the interested reader to [57], which develops theoretical foundations for this
approach in detail.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 106

• It is pre-quantum. Pairing-based SNARKs rely (at least) on the hardness of extracting discrete
logarithms, and so are insecure against quantum attacks. Hence the approach of [33] is also
insecure against quantum attacks. Devising an efficient post-quantum approach to recursion is
an open problem.
• It introduces toxic waste. All known pairing-based SNARKs that can be used in the approach

of [33] rely on a structured reference string (SRS). Sampling the SRS involves secret values
(the “toxic waste”) that must remain secret for security. Ensuring that this is the case in
practice is difficult: the SRS must be sampled by some trusted party or via a cryptographic
ceremony [31, 52, 53, 3]. Devising an efficient transparent (toxic-waste free) approach to
recursion is an open problem.
• It uses expensive algebra. The approach of [33] uses pairing-based SNARKs instantiated

via pairing-friendly cycles of elliptic curves. Only a single cycle construction is known,
MNT cycles; it consists of two prime-order elliptic curves, with embedding degrees 4 and 6
respectively. Curves in an MNT cycle must be much bigger than usual in order to compensate
for the loss of security caused by the small embedding degrees. Moreover the fields that arise
from MNT cycles are imposed on applications rather than being chosen depending on the
needs of applications, causing additional performance overheads. Attempts to find “better”
cycles, without these limitations, have resulted in some negative results [64]. Indeed, finding
any other cycles beyond MNT cycles is a challenging open problem.

5.1.1 Our results
We present a new methodology for recursive composition that simultaneously overcomes all

of the limitations discussed above. We experimentally validate our methodology, demonstrating
feasibility in practice.

The starting point of our work is the observation that recursive composition is simpler when
applied to a SNARG (of knowledge) that supports preprocessing, as we explain in Section 5.2.1.
This property of a SNARG means that in an offline phase one can produce a short summary for a
given circuit and then, in an online phase, one may use this short summary to verify SNARGs
that attest to the satisfiability of the circuit with different partial assignments to its inputs. The
online phase can be as fast as reading the SNARG (and the partial assignment), and in particular
sublinear in the circuit size even for arbitrary circuits. Throughout, by “preprocessing SNARG”
we mean a SNARG whose verifier runs in time polylogarithmic in the circuit size.2

Our methodology has three parts: (1) a transformation that maps any “holographic proof”
into a preprocessing SNARG in the random oracle model; (2) a holographic proof for (rank-1)
constraint systems, which leads to a corresponding preprocessing SNARG; (3) a transformation
that recurses any preprocessing SNARK (once the random oracle is heuristically instantiated via
a cryptographic hash function).

We now summarize our contributions for each of these parts.

2In contrast, non-preprocessing SNARGs can achieve fast verification only for structured circuits, because the
verification procedure must at a minimum read the description of the circuit whose satisfiability it checks. The
description of a circuit can be much smaller than the circuit itself only when the circuit has suitable structure, e.g.,
repeated sub-components in parallel or in series.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 107

(1) From holographic proofs to preprocessing SNARGs. A probabilistic proof is holographic
if the verifier does not receive the circuit description as an input but, rather, makes a small number
of queries to an encoding of the circuit [16]. Recent work [65] has established a connection
between holography and preprocessing (which we review in Section 5.1.2). The theorem below
adds to this connection, by showing that interactive oracle proofs (IOPs) [32, 127] that are
holographic can be compiled into preprocessing SNARGs that are secure in the quantum random
oracle model [48, 67].

Theorem 1 (informal). There is an efficient transformation that compiles any holographic IOP
for a relationR into a preprocessing SNARG forR that is unconditionally secure in the random
oracle model. If the IOP is a (honest-verifier) zero knowledge proof of knowledge then the
transformation produces a zero knowledge SNARG of knowledge (zkSNARK). This extends to
hold in the quantum random oracle model.

By applying Theorem 1 to known holographic proofs for non-deterministic computations
(such as the PCP in [16] or the IPCP in [90]), we obtain the first transparent preprocessing
SNARG and the first post-quantum preprocessing SNARG. Unfortunately, known holographic
proofs are too expensive for practical use, because encoding the circuit is costly (as explained in
Section 5.1.2.1). In this paper we address this problem by constructing an efficient holographic
proof, discussed below.

We note that holographic proofs involve relations R that consist of triples rather than
pairs because the statement being checked has two parts. One part is called the index, which
is encoded in an offline phase by the indexer and this encoding is provided as an oracle to the
verifier. The other part is called the instance, which is provided as an explicit input to the verifier.
For example, the index may be a circuit description and the instance a partial assignment to its
inputs. We refer to this notion as indexed relations (see Section 5.3.2).
(2) Efficient protocols for R1CS. We present a holographic IOP for rank-1 constraint satisfia-
bility (R1CS), a standard generalization of arithmetic circuits where the “circuit description” is
given by coefficient matrices. We describe the corresponding indexed relation.

Definition 2 (informal). The indexed relationRR1CS is the set of triples

(i,x,w) =
(
(F, n,m,A,B,C), v, w

)

where F is a finite field, A,B,C are n× n matrices over F, each containing at most m non-zero
entries, and z := (v, w) is a vector in Fn such that Az ◦ Bz = Cz. (Here “◦” denotes the
entry-wise product.)

Theorem 3 (informal). There exists a public-coin holographic IOP for the indexed relation
RR1CS that is a zero knowledge proof of knowledge with the following efficiency features. In
the offline phase, the encoding of an index is computable in O(m logm) field operations and
consists of O(m) field elements. In the online phase, the protocol has O(logm) rounds, with the
prover using O(m logm) field operations and the verifier using O(|v|+ logm) field operations.
Proof length is O(m) field elements and query complexity is O(logm).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 108

The above theorem improves, in the holographic setting, on prior IOPs for R1CS (see
Fig. 5.1): it offers an exponential improvement in verification time compared to the linear-time
verification in Chapter 3, and it offers succinct verification for all coefficient matrices compared
to only structured ones as in Chapter 4.

Armed with an efficient holographic IOP, we use our compiler to construct an efficient
preprocessing SNARG in the random oracle model. The following theorem is obtained by
applying Theorem 1 to Theorem 3.

Theorem 4 (informal). There exists a preprocessing zkSNARK for R1CS that is unconditionally
secure in the random oracle model (and the quantum random oracle model) with the following
efficiency features. In the offline phase, anyone can publicly preprocess an index in time
Oλ(m logm), obtaining a corresponding verification key of size Oλ(1). In the online phase, the
SNARG prover runs in time Oλ(m logm) and the SNARG verifier runs in time Oλ(|v|+ log2m);
argument size is Oλ(log2m).

We have implemented the protocol underlying Theorem 4, obtaining the first efficient
realization of a post-quantum transparent preprocessing zkSNARK.

For example, for a security level of 128 bits over a 181-bit prime field, arguments range
from 80 kB to 160 kB for instances of up to millions of constraints. These argument sizes are
two orders of magnitude bigger than pre-quantum non-transparent preprocessing zkSNARKs
(see Section 5.1.2.2), and are 2× bigger that the state of the art in post-quantum transparent non-
preprocessing zkSNARKs (see Chapter 3). Our proving and verification times are comparable
to prior work: proving takes several minutes, while verification takes several milliseconds
regardless of the constraint system. (See Section 5.13.1 for performance details.)

Besides its application to post-quantum transparent recursion, our preprocessing zkSNARK
provides attractive benefits over prior constructions, as we discuss in Section 5.1.2.2.

Note that, when the random oracle in the construction is heuristically instantiated via an
efficient cryptographic hash function (as in our implementation), the resulting preprocessing
zkSNARK is in the uniform reference string (URS) model, which means that the system pa-
rameters consist of a uniformly random string of fixed size.3 The term “transparent” refers to a
construction in the URS model.
(3) Post-quantum transparent recursion. We obtain the first efficient realization of post-
quantum transparent recursive composition for SNARKs. The cryptographic primitive that
formally captures this capability is known as proof carrying data (PCD) [68, 45], and so this is
what we construct.

Theorem 5 (informal). There is an efficient transformation that compiles any preprocessing
SNARK in the URS model into a preprocessing PCD scheme in the URS model. Moreover, if the
preprocessing SNARK is post-quantum secure then so is the preprocessing PCD scheme.

The above transformation, which preserves the “transparent” property and post-quantum
security, is where recursive composition occurs. For details, including the notion of PCD, see
Section 5.11.

3We stress that this step is a heuristic due to well-known limitations to the random oracle methodology [61, 89].
Investigating how to provably instantiate the random oracle for many natural constructions is an active research
frontier.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 109

Moreover, we provide an efficient implementation of the transformation in Theorem 5
applied to our implementation of the preprocessing zkSNARK from Theorem 4. The main
challenge is to express the SNARK verifier’s computation in as few constraints as possible, and in
particular to design a constraint system for the SNARK verifier that on relatively small instances
is smaller than the constraint system that it checks (thereby permitting arbitrary recursion depth).
Via a combination of computer-assisted design and recent advances in algebraic hash functions,
we achieve this threshold for all computations of at least 2 million constraints. Specifically, we
can express a SNARK verifier checking 2 million constraints using only 1.1 million constraints,
and this gap grows quickly with the computation size. This is the first demonstration of post-
quantum transparent recursive composition in practice. (See Section 5.13.2 for performance
details.)

R1CS indexer prover verifier round proof query
instances holographic? time time time complexity length complexity

Chapter 3 arbitrary NO N/A O(m+ n logn) O(|x|+m) O(logn) O(n) O(logn)

Chapter 4 † semi-succinct NO N/A O(m+ n logn) O(|x|+ logn) O(logn) O(n) O(logn)

this work arbitrary YES O(m logm) O(m logm) O(|x|+ logm) O(logm) O(m) O(logm)

Figure 5.1: Comparison of IOPs for R1CS: two prior non-holographic IOPs, and our
holographic IOP. Here n denotes the number of variables and m the number of non-zero
coefficients in the matrices.
†: The parameters stated for Chapter 4 reflect replacing the constant-query low-degree test in
the construction with a concretely-efficient logarithmic-query low-degree test such as [22],
to simplify comparison.

⋮

!,",# "

holographic IOP

security against
all adversaries

Theorem 1 preprocessing SNARK
in the (Q)ROM

preprocessing SNARK
with a URS

(!)

Theorem 4 preprocessing PCD
with a URS

security against
query-bounded adversaries

$ %

ℐ
P V

I(!)
ivkipk

ρρ

ρ

",# "

$ %

ivkipk

π
",# "

(urs,!)ℐ

security against
(quantum) poly-size adversaries

ivkipk

'

((urs,))

ℙ +
security against

(quantum) poly-size adversaries

','loc
('i,,i)i

π

π

in
st

an
tia

te
 ra

nd
om

 o
ra

cle

⋮

!,",# "

holographic IOP

security against
all adversaries

Theorem 1 preprocessing SNARK
in the (Q)ROM

preprocessing SNARK
with a URS

(!)

Theorem 4 preprocessing PCD
with a URS

security against
query-bounded adversaries

$ %

ℐ
P V

I(!)
ivkipk

ρρ

ρ

",# "

$ %

ivkipk

π
",# "

(urs,!)ℐ

security against
(quantum) poly-size adversaries

ivkipk

'

((urs,))

ℙ +
security against

(quantum) poly-size adversaries

','loc
('i,,i)i

π

π

Figure 5.2: Diagram of our methodology for recursive composition that is post-quantum and
transparent.

5.1.2 Comparison with prior work
We provide a comparison with prior work in the three areas to which we contribute:

holographic proofs (Section 5.1.2.1); preprocessing SNARGs (Section 5.1.2.2); and recursive
composition of SNARKs (Section 5.1.2.3). We omit a general discussion of the now ample
literature on SNARGs, and in particular do not discuss non-preprocessing SNARGs for structured
computations (e.g., [151], [23], and many others).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 110

5.1.2.1 Prior holographic proofs

The verifier in a proof system cannot run in time that is sublinear in its input, because it
must at a minimum read the input in order to know the statement being checked. Holographic
proofs [16] avoid this limitation by considering a setting where the verifier does not receive its
input explicitly but, instead, has query access to an encoding of it. The goal is then to verify the
statement in time sublinear in its size; note that such algorithms are necessarily probabilistic.4

In Fig. 5.3 we compare the efficiency of prior holographic proofs and our holographic
proof for the case of circuit satisfiability, where the input to the verifier is the description of an
arbitrary circuit. There are two main prior holographic proofs in the literature. One is the PCP
construction in [16], where it suffices for the verifier to query a few locations of a low-degree
extension of the circuit description. Another one is the “bare bones” protocol in [90], which
is a holographic IP for circuit evaluation that can be re-cast as a holographic IPCP for circuit
satisfaction; the verifier relies on the low-degree extensions of functions that describe each
layer of the circuit. The constructions in [16] and [90] are unfit for practical use as holographic
proofs in Theorem 1, because encoding the circuit incurs a polynomial blowup due to the use of
multivariate low-degree extensions (which yield encodings with inverse polynomial rate).

In the table we exclude the “algebraic holographic proof” of Marlin [65], because the
soundness guarantee of such a proof is incompatible with Theorem 1.
Comparison with this work. Our holographic proof is the first to achieve efficient asymptotics
not only for the prover and verifier, but also for the indexer, which is responsible for producing
the encoding of the circuit.

proof indexer prover verifier
type time time time

[16] PCP poly(N) poly(N) poly(|x|+ log(N))
[90] IPCP poly(N) poly(|w|) +O(N) O(|x|+D logW)

this work IOP O(N logN) O(N logN) O(|x|+ logN)

Figure 5.3: Comparison of holographic proofs for arithmetic circuit satisfiability. Here
x denotes the known inputs, w the unknown inputs, and N the total number of gates; if
the circuit is layered, D denotes circuit depth and W circuit width. Our Theorem 1 can be
used to compile any of these holographic proofs into a preprocessing SNARG. (For better
comparison with other works, [90] is stated as an IPCP for circuit satisfiability rather than as
an IP for circuit evaluation; in the latter case, the prover time would be O(N). The prover
times for [90] incorporate the techniques for linear-time sumcheck and others introduced in
[141, 151].)

4The goal of sublinear verification via holographic proofs is similar to, but distinct from, the goal of sublinear
verification via proximity proofs (as, e.g., studied in [81, 78, 37, 130, 99]). In this latter setting, the verifier has
oracle access to an input that is not promised to be encoded and, in particular, cannot in general decide if the input
is in the language without reading all of the input. To allow for sublinear verification without any promises on the
input, the decision problem is relaxed: the verifier is only asked to decide if the input is in the language or far from
any input in the language.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 111

5.1.2.2 Prior preprocessing SNARGs

Prior works construct preprocessing SNARGs in a model where a trusted party samples,
in a parameter setup phase, a structured reference string (SRS) that is proportional to circuit
size. We summarize the main features of these constructions, distinguishing between the case of
circuit-specific SRS and universal SRS.

• Circuit-specific SRS: a circuit is given as input to the setup algorithm, which samples a (long)
proving key and a (short) verification key that can be used to produce and validate arguments
for the circuit. Preprocessing SNARGs with circuit-specific SRS originate in [94, 112, 87, 46],
and have been studied in an influential line of work that has led to highly-efficient constructions
(e.g., [95]) and large-scale deployments (e.g., [80]). They are obtained by combining linear
interactive proofs and linear-only encodings. The argument sizes achievable in this setting are
very small: less than 200 bytes.

• Universal SRS: a size bound is given as input to the setup algorithm, which samples a (long)
proving key and a (short) verification key that can be used to produce and validate arguments
for circuits within this bound. A public procedure can then be used to specialize both keys
for arguments relative to the desired circuit. Preprocessing SNARGs with universal (and
updatable) SRS were introduced in [96], and led to efficient constructions in [116, 65, 85].
They are obtained by combining “algebraic” holographic proofs (see below) and polynomial
commitment schemes. The argument sizes currently achievable with universal SRS are bigger
than with circuit-specific SRS: less than 1000 bytes.

Comparison with this work. Theorem 1 provides a methodology to obtain preprocessing
SNARGs in the (quantum) random oracle model, which heuristically implies (by suitably
instantiating the random oracle) preprocessing SNARGs that are post-quantum and transparent.
Neither of these properties is achieved by prior preprocessing SNARGs. Theorem 1 also develops
the connection between holography and preprocessing discovered in [65], which considers the
case of holographic proofs where the completeness and soundness properties are restricted to
“algebraic provers” (which output polynomials of prescribed degrees). We consider the case of
general holographic proofs, where completeness and soundness are not restricted.

Moreover, our holographic proof (Theorem 3) leads to a preprocessing SNARG (Theorem 4)
that, as supported by our implementation, provides attractive benefits over prior preprocessing
SNARGs.

• Prior preprocessing SNARGs require cryptographic ceremonies to securely sample the long
SRS, which makes deployments difficult and expensive. This has restricted the use of pre-
processing SNARGs to proving relatively small computations, due to the prohibitive cost of
securely sampling SRSs for large computations. This is unfortunate because preprocessing
SNARGs could be useful for “scalability applications”, which leverage succinct verification to
efficiently check large computations (e.g., verifying the correctness of large batches of trades
executed at a non-custodial exchange [18, 140]).

The transparent property of our preprocessing SNARG means that the long SRS is replaced
with a fixed-size URS (uniform reference string). This simplifies deployments and enables
scalability applications.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 112

• Prior preprocessing SNARGs are limited to express computations over the prime fields
that arise as the scalar fields of pairing-friendly elliptic curves. Such fields are imposed
by parametrized curve families that offer little flexibility for optimizations or applications.
(Alternatively one can use the Cocks–Pinch method [84] to construct an elliptic curve with a
desired scalar field, but the resulting curve is inefficient.)

In contrast, our preprocessing SNARG is easily configurable across a range of security levels,
and supports most large prime fields and all large binary fields, which offers greater flexibility
in terms of performance optimizations and customization for applications.

Remark 5.1.1 (weaker forms of preprocessing). Prior work proved recursive composition only
for non-interactive arguments of knowledge with succinct verifiers [45]; this is the case for
our definition of preprocessing SNARGs. In this paper we show that recursive composition
is possible even when the verifier is merely sublinear in the circuit size (see Section 5.11),
though the cost of each recursion is much steeper than in the polylogarithmic case. This provides
additional motivation to the study of preprocessing with sublinear verifiers (e.g., [51, 135]).

5.1.2.3 Recursion for pairing-based SNARKs

The approach to recursive composition of [33] uses pairing-based (preprocessing) SNARKs
based on pairing-friendly cycles of elliptic curves. This approach applies to constructions with
circuit-specific SRS (e.g. [95]) and to those with universal SRS (e.g. [96, 116, 65, 85]).

Informally, pairing-based SNARKs support languages that involve the satisfiability of
constraint systems over a field that is different from the field used to compute the SNARK verifier
— this restriction arises from the mathematics of the underlying pairing-friendly elliptic curve
used to instantiate the pairing. This seemingly mundane fact has the regrettable consequence
that expressing the SNARK verifier’s computation in the language supported by the SNARK
(to realize recursive composition) is unreasonably expensive due to this “field mismatch”. To
circumvent this barrier, prior work leveraged two pairing-based SNARKs where the field to
compute one SNARK verifier equals the field of the language supported by the other SNARK,
and vice versa. This condition enables each SNARK to efficiently verify the other SNARK’s
proofs.

These special SNARKs rely on pairing-friendly cycles of elliptic curves, which are pairs
of pairing-friendly elliptic curves where the base field of one curve equals the scalar field of
the other curve and vice versa. The only known construction is MNT cycles, which consist of
two prime-order elliptic curves with embedding degrees 4 and 6 respectively. An MNT cycle
must be much bigger than usual in order to compensate for the low security caused by the small
embedding degrees. For example, for a security level of 128 bits, curves in an MNT cycle
must be defined over a prime field with roughly 800 bits; this is over three times the 256 bits
that suffice for curves with larger embedding degrees. These performance overheads can be
significant in practice, e.g., Coda [121] is a project that has deployed MNT cycles in a product,
and has organized a community challenge to speed up the proof generation for pairing-based
SNARKs [71]. A natural approach to mitigate this problem would be to find “high-security”
cycles (i.e., with higher embedding degrees) but to date little is known about pairing-friendly
cycles beyond a few negative results [64].

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 113

Comparison with this work. The approach to recursion that we present in this paper is not
tied to constructions of pairing-friendly cycles of elliptic curves. In particular, our approach
scales gracefully across different security levels, and also offers more flexibility when choosing
the desired field for an application. In addition, our approach is post-quantum and, moreover,
uses a transparent (i.e., public-coin) setup.

On the other hand, our approach has two disadvantages. First, argument size is about 100
times bigger than the argument size achievable by cycle-based recursion. Second, the number
of constraints needed to express the verifier’s computation is about 40 times bigger than those
needed in the case of cycle-based recursion (e.g., the verifier of [95] can be expressed in about
40,000 constraints). The vast majority of these constraints come from the many hash function
invocations required to verify the argument.

Both of the above limitations are somewhat orthogonal to our approach and arguably
temporary: the large proof size and many hash invocations come from the many queries required
from current constructions of low-degree tests [22, 35]. As the state of the art in low-degree
testing progresses (e.g., to high-soundness constructions over large alphabets), both argument
size and verifier size will also improve.

5.2 Techniques
We discuss the main ideas behind our results. In Section 5.2.1 we explain how preprocess-

ing simplifies recursive composition. In Section 5.2.2 we describe our compiler from holographic
IOPs to preprocessing SNARGs (Theorem 1). In Section 5.2.3 we describe our efficient holo-
graphic IOP (Theorem 3), and then in Section 5.2.4 we discuss the corresponding preprocessing
SNARG (Theorem 4). In Section 5.2.5 we describe how to obtain post-quantum and transparent
PCD (Theorem 5). In Section 5.2.6 we discuss our verifier circuit.

Recall that indexed relations consist of triples (i,x,w) where i is the index, x is the
instance, and w is the witness (see Section 5.3.2). We use these relations because the statements
being checked have two parts, the index i (e.g., a circuit description) given in an offline phase
and the instance x (e.g., a partial input assignment) given in an online phase.

5.2.1 The role of preprocessing SNARKs in recursive composition
We explain why preprocessing simplifies recursive composition of SNARKs. For con-

creteness we consider the problem of incrementally proving the iterated application of a circuit
F : {0, 1}n → {0, 1}n to an initial input z0 ∈ {0, 1}n. We are thus interested in proving state-
ments of the form “given zT there exists z0 such that zT = F T (z0)”, but wish to avoid having
the SNARK prover check the correctness of all T invocations at once. Instead, we break the
desired statement into T smaller statements {“zi = F (zi−1)”}Ti=1 and then inductively prove
them. Informally, for i = 1, . . . , T , we produce a SNARK proof πi for this statement:

“Given a counter i and claimed output zi, there exists a prior output zi−1 such that
zi = F (zi−1) and, if i > 1, there exists a SNARK proof πi−1 that attests to the
correctness of zi−1.”

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 114

Formalizing this idea requires care, and in particular depends on how the SNARK achieves
succinct verification (a prerequisite for recursive composition). There are two methods to achieve
succinct verification.

(1) Non-preprocessing SNARKs for structured computations. The SNARK supports non-
deterministic computations expressed as programs, i.e., it can be used to prove/verify
statements of the form “given a program M , primary input x, and time bound t, there exists
an auxiliary input w such that M accepts (x,w) in t steps”. (More generally, the SNARK
could support any computation model for which the description of a computation can be
significantly smaller than the size of the described computation.)

(2) Preprocessing SNARKs for arbitrary computations. The SNARK supports circuit satisfiabil-
ity, i.e., it can be used to prove/verify statements of the form “given a circuit C and primary
input x, there exists an auxiliary input w such that C(x,w) = 0”. Preprocessing enables the
circuit C to be summarized into a short verification key ivkC that can be used for succinct
verification regardless of the structure of C. (More generally, the SNARK could support any
computation model as long as preprocessing is possible.)

We compare the costs of recursive composition in these two cases, showing why the preprocessing
case is cheaper. Throughout we consider SNARKs in the uniform reference string model, i.e.,
parameter setup consists of sampling a fully random string urs of size poly(λ) that suffices for
proving/verifying any statement.
(1) Recursion without preprocessing. Let (P ,V) be a non-preprocessing SNARK for non-
deterministic program computations. In this case we follow [45]: recursion is realized via a
program R, which depends on urs and F , that checks one invocation of the circuit F and the
validity of a prior SNARK proof relative to the reference string urs. The program R is defined as
follows:

Primary input: a tuple x = (M, i, zi) consisting of the description of a program
M , counter i, and claimed output zi. (We later set M := R to achieve
recursion, as explained shortly.)

Auxiliary input: a tuplew = (zi−1, πi−1) consisting of a previous output zi−1 and
corresponding SNARK proof πi−1 that attests to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs,M,xi−1, t, πi−1) = 1
where xi−1 := (M, i− 1, zi−1) and t is a suitably chosen time bound.

The program R can be used to incrementally prove the iterated application of the circuit F .
Given a tuple (i− 1, zi−1, πi−1) consisting of the current counter, output, and proof, one can use
the SNARK prover to obtain the next tuple (i, zi, πi) by setting zi := F (zi−1) and computing the
proof πi := P(urs, R,xi, t,wi) for the instance xi := (R, i, zi) and witness wi := (zi−1, πi−1)
(and a certain time bound t). Note that we have set M := R, so that (the description of) R is part
of the primary input to R. A tuple (i, zi, πi) can then be verified by running the SNARK verifier,
as V(urs, R,xi, t, πi) for xi := (R, i, zi).5

5The astute reader may notice that we could have applied the Recursion Theorem to the program R to obtain a
new program R∗ that has access to its own code, and thereby simplify primary inputs from triples x = (M, i, zi) to
pairs x = (i, zi). This, however, adds unnecessary complexity. Indeed, here we can rely on the SNARK verifier to

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 115

We refer the reader to [45] for details on how to prove the above construction secure. The
aspect that we are interested to raise here is that the program R is tasked to simulate itself,
essentially working as a universal machine. This means that every elementary operation of R,
and in particular of F , needs to be simulated by R in its execution. This essentially means
that the computation time of R, which dictates the cost of each proof composition, is at least a
constant c > 1 times the size of |F |. This multiplicative overhead on the size of the circuit F ,
while asymptotically irrelevant, is a significant overhead in concrete efficiency.
(2) Recursion with preprocessing. We describe how to leverage preprocessing in order to
avoid universal simulation, and in particular to avoid any multiplicative performance overheads
in recursive composition. Intuitively, preprocessing provides a “cryptographic simplification”
to the requisite recursion, by enabling us to replace the description of the computation with a
succinct cryptographic commitment to it.

Let (I,P ,V) be a preprocessing SNARK for circuits. Recursion is realized via a circuit R
that depends on urs and F , and checks one invocation of F and a prior proof. The circuit R is
defined as follows:

Primary input: a tuple x = (ivk, i, zi) consisting of an index verification key
ivk, counter i, and claimed output zi. (We later set ivk := ivkR to achieve
recursion.)

Auxiliary input: a tuplew = (zi−1, πi−1) consisting of a previous output zi−1 and
corresponding SNARK proof πi−1 that attests to its correctness.

Code: R(x,w) accepts if zi = F (zi−1) and, if i > 1, V(urs, ivk,xi−1, πi−1) = 1
where xi−1 := (ivk, i− 1, zi−1).

The circuit R can be used for recursive composition as follows. In the offline phase, we
run the indexer I on the circuit R, obtaining a long index proving key ipkR and a short index
verification key ivkR that can be used to produce and validate SNARKs with respect to the circuit
R. Subsequently, in the online phase, one can use the proverP to go from a tuple (i−1, zi−1, πi−1)
to a new tuple (i, zi, πi) by letting zi := F (zi−1) and πi := P(urs, ipkR,xi,wi) for the instance
xi := (ivkR, i, zi) and witness wi := (zi−1, πi−1). Note that we have set ivk := ivkR, so that the
verification key ivkR is part of the primary input to the circuit R. A tuple (i, zi, πi) can then be
verified by running the SNARK verifier, as V(urs, ivkR,xi, πi) for xi := (ivkR, i, zi).

Crucially, the circuit R does not perform any universal simulation involving the circuit F ,
and in particular does not incur multiplicative overheads. Indeed, |R| = |F |+ |V| = |F |+o(|F |).
This was enabled by preprocessing, which let us provide the index verification key ivkR as input
to the circuit R.

In fact, preprocessing is already part of the efficient approach to recursive composition in
[33]. There the preprocessing SNARK uses a structured, rather than uniform, reference string
but the benefits of preprocessing are analogous (even when the reference string depends on the
circuit or a bound on it).
In summary: preprocessing SNARKs play an important role in efficient recursive composition.
Our first milestone is post-quantum and transparent preprocessing SNARKs, which we then use
to achieve post-quantum and transparent recursive composition.

provide R with its own code as part of the primary input, obviating this extra step. (For reference, the Recursion
Theorem states that for every program A(x, y) there is a program B(y) that computes A(〈B〉, y), where the angle
brackets emphasize that the first argument is the description of the program B.)

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 116

5.2.2 From holographic proofs to preprocessing with random oracles
We describe the main ideas behind Theorem 1, which provides a transformation that

compiles any holographic IOP for an indexed relation R into a corresponding preprocessing
SNARG forR. See Section 5.10 for details.
Warmup: holographic PCPs. We first consider the case of PCPs, a special case of IOPs. Recall
that the Micali transformation [118] compiles a (non-holographic) PCP into a (non-preprocessing)
SNARG. We modify this transformation to compile a holographic PCP into a preprocessing
SNARG, by using the fact that the SNARG verifier output by the Micali transformation invokes
the PCP verifier as a black box.

In more detail, the main feature of a holographic PCP is that the PCP verifier does not
receive the index as an explicit input but, rather, makes a small number of queries to an encoding
of the index given as an oracle. If we apply the Micali transformation to the holographic PCP, we
obtain a SNARG verifier that must answer queries by the PCP verifier to the encoded index. If
we simply provided the index as an input to the SNARG verifier, then we cannot achieve succinct
verification and so would not obtain a preprocessing SNARG. Instead, we let the SNARG indexer
compute the encoded index, compute a Merkle tree over it, and output the corresponding root as
an index verification key for the SNARG verifier. We can then have the SNARG prover extend
the SNARG proof with answers to queries to the encoded index, certified by authentication paths
relative to the index verification key. In this way the SNARG verifier can use the answers in the
SNARG proof to answer the queries to the encoded index by the underlying PCP verifier.

This straightforward modification to the Micali transformation works: one can prove that if
the soundness error of the holographic PCP is ε then the soundness error of the preprocessing
SNARG is tε+O(t2 · 2−λ) against t-query adversaries in the random oracle model. (A similar
expression holds for quantum adversaries.)
General case: holographic IOPs. While efficient constructions of holographic PCPs are
not known, in this paper we show how to construct an efficient holographic IOP (see Sec-
tion 5.2.3). Hence we are actually interested in compiling holographic IOPs. In this case our
starting point is the BCS transformation [32], which compiles a (non-holographic) IOP into
a (non-prepreprocessing) SNARG. We adopt a similar strategy as above: we modify the BCS
transformation to compile a holographic IOP into a preprocessing SNARG, using the fact that
the SNARG verifier output by the BCS transformation invokes the IOP verifier as a black box.
Indeed, the main feature of a holographic IOP is the fact that the IOP verifier makes a small
number of queries to an encoding of the index given as an oracle. Therefore the SNARG indexer
can output the Merkle root of the encoded index as an index verification key, which subsequently
the SNARG verifier can use to authenticate answers about the encoded index claimed by the
SNARG prover.

An important technical difference here is the fact that the soundness error of the resulting
preprocessing SNARG is not related to the soundness error of the holographic IOP but, instead,
to its state-restoration (SR) soundness error, a stronger notion of soundness introduced in [32].
Namely, we prove that if the SR soundness error of the holographic PCP is εsr(t) then the
soundness error of the preprocessing SNARG is εsr(t) + O(t2 · 2−λ). This phenomenon is
inherited from the (unmodified) BCS transformation.
Proof of knowledge. All known constructions of PCD from SNARGs require that the SNARG

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 117

is an argument of knowledge (i.e., it is a SNARK). We show that if the holographic IOP is a
(state-restoration) proof of knowledge (PoK), our transformation yields a preprocessing SNARK.
In the simple non-adaptive setting this can be shown straightforwardly from known properties
of the BCS transformation. However, in order to provide the strongest possible evidence
for the existence of SNARKs satisfying the requirements for our IVC/PCD construction (see
Section 5.2.5), we prove a stronger adaptive knowledge soundness property, which is not known
to hold for the standard BCS transformation. We show that a standard modification of the BCS
transformation achieves this stronger notion for a wide class of holographic IOPs.
Post-quantum security. A primary contribution of this work is to construct post-quantum
preprocessing SNARKs (and to show that these yield post-quantum PCD). Using techniques
developed in [152, 67], we show that our transformation yields a preprocessing SNARG in the
QROM. Here the relevant soundness notion of the holographic IOP is the round-by-round (RBR)
soundness error, defined in [60].

Moreover, if the holographic IOP is round-by-round knowledge sound, as defined in [67],
our transformation yields a preprocessing SNARK in the QROM; this establishes, for the
first time, the existence of adaptively-secure SNARKs in the QROM. We prove security by
exhibiting a universal quantum extractor. As in the classical case, we prove a strong adaptive
knowledge soundness property that is a close analogue for the property required in our IVC/PCD
construction.

5.2.3 An efficient holographic proof for constraint systems
We describe the main ideas behind Theorem 3, which provides an efficient construction of

a holographic IOP for rank-1 constraint satisfiability (R1CS). See Definition 2 for the indexed
relation representing this problem.
Our starting point: Marlin. Our construction borrows ideas from the algebraic holographic
proof (AHP) underlying Marlin, a pairing-based zkSNARK due to [65]. An AHP is similar
to a holographic IOP, except that the indexer and the prover (both honest and malicious) send
low-degree univariate polynomials rather than evaluations of functions. The verifier may evaluate
these polynomials at any point in the field.

To understand how AHPs and holographic IOPs differ, it is instructive to consider how
one might construct a holographic IOP from an AHP. A natural approach is to construct the
indexer and prover for the hIOP as follows: run the indexer/prover of the AHP, and whenever the
indexer/prover outputs a polynomial, evaluate it and send this evaluation as the oracle. There
are several issues with this approach. First, hIOPs require a stronger soundness guarantee:
soundness must hold against malicious provers that send arbitrary oracles. Second, evaluating
the polynomial requires selecting a set L ⊆ F over which to evaluate it. In general, since
the verifier in the AHP may query any point in F, we would need to take L := F, which is
prohibitively expensive for the indexer and prover if F is much larger than the instance size (as
it often is, for both soundness and application reasons). Third, assuming that one manages to
decouple L and F, the soundness error of one invocation of the AHP will (at best) decrease with
1/|L| instead of 1/|F|, which requires somehow reducing the soundness error of the AHP to,
say, 1/2λ, and simply re-running in parallel the AHP for λ− log |L| would be expensive in all

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 118

relevant parameters.
The first issue could be resolved by composing the resulting protocol with a low-degree

test. This introduces technicalities because we cannot hope to check that the oracle is exactly
low-degree (as required in an AHP) — we can only check that the oracle is close to low-degree.
The best way to resolve the second issue depends on the AHP itself, and would likely involve
out-of-domain sampling [35]. Finally, resolving the third issue may not be possible in general
(in fact, we do not see how resolve it for the AHP in Marlin).

These above issues show that, despite some similarities, there are markedly different design
considerations on hIOPs versus AHPs. For this reason, while we will follow some of the ideas
outlined above, we do not take the Marlin AHP as a black box. Instead, we will draw on the
ideas underlying the Marlin AHP in order to build a suitable hIOP for this paper. Along the way,
we also show how to reduce the round complexity of the Marlin AHP from 3 to 2, an ideas that
we use to significantly improve the efficiency of our construction.
Aurora. The structure of our holographic IOP, like the Marlin AHP, follows the one of Aurora
(Chapter 3), which we now briefly recall. Given an R1CS instance (A,B,C), the prover sends to
the verifier fz, the RS-encoding of a vector z, and three oracles fA, fB, fC which are purportedly
the RS-encodings of the three vectors Az,Bz, Cz respectively. The prover and verifier then
engage in subprotocols to prove that (i) fA, fB, fC are indeed encodings of Az,Bz, Cz, and (ii)
fA · fB − fC is an encoding of the zero vector.

Together these checks ensure that (A,B,C) is a satisfiable instance of R1CS. Testing (ii)
is a straightforward application of known probabilistic checking techniques, and can be achieved
with a logarithmic-time verifier. The primary challenge in the Aurora protocol (and protocols
based on it) is testing (i).

In the Aurora protocol this is achieved via a reduction to univariate sumcheck, a univariate
analogue of the sumcheck protocol in [115]. Univariate sumcheck also has a logarithmic verifier,
but the reduction itself runs in time linear in the number of nonzero entries in the matrices
A,B,C. A key technical contribution of the Marlin AHP is showing how to shift most of the cost
of the reduction to the indexer in order to reduce the online cost of verification to logarithmic, as
we now explain.
Challenges. We explain why the lincheck protocol of Section 3.5 is not holographic. Recall
that the lincheck protocol, on input a matrix M ∈ Fk×k and RS-encodings of vectors ~x, ~y ∈ Fk,
checks whether ~x = M~y. It makes use of the following two facts: (i) for a vector of linearly-
independent polynomials ~u ∈ F[X]k and any vectors ~x, ~y ∈ Fk, if ~x 6= ~y then the polynomials
〈~u, ~x〉 and 〈~u, ~y〉 are distinct, and so differ with high probability at a random α ∈ F, and (ii) for
any matrix M ∈ Fk×k, 〈~u,M~y〉 = 〈~uM, ~y〉. The lincheck verifier sends a random α ∈ F to the
prover, and the prover then convinces the verifier that 〈~uM, ~y〉(α) − 〈~u, ~x〉(α) = 0 using the
univariate sumcheck protocol.

This requires the verifier to evaluate the low-degree extensions of ~uα and ~uαM at a point
β ∈ F, where ~uα ∈ Fk is obtained by evaluating each entry of ~u at α. This is equivalent to
evaluating the bivariate polynomials u(X, Y), uM(X, Y) ∈ F[X, Y], obtained respectively by
extending ~u, ~uM over Y , at a random point in (α, β) ∈ F2. By choosing ~u appropriately, we can
ensure that u(X, Y) can be evaluated in logarithmic time (Section 4.6.1). But, without help from
an indexer, evaluating uM(α, β) requires time Ω(‖M‖).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 119

A natural suggestion in the holographic setting is to have the indexer evaluate uM over
some domain S ⊆ F× F, and make this evaluation part of the encoded index. This does achieve
the goal of logarithmic verification time. Unfortunately, the degree of uM in each variable is
about k, and so even writing down the coefficients of uM requires time Ω(k2), which for sparse
M is quadratic in ‖M‖.

In the Marlin lincheck the indexer instead computes a certain linear-size (polynomial)
encoding of M , which the verifier then uses in a multi-round protocol with the prover to evaluate
uM at its chosen point. Our holographic lincheck improves upon this protocol, reducing the
number of rounds by one; we describe it next.
Our holographic lincheck. Recall from above that the lincheck verifier needs to check that
〈~u, ~x〉 and 〈~uM, ~y〉 are equal as polynomials in X . To do this, it will choose a random α ∈
F and send it to the prover, then engage in the univariate sumcheck protocol to show that∑

h u(α, h)x̂(h)− uM(α, h)ŷ(h) = 0, where x̂, ŷ are low-degree extensions of x and y.
To verify the above sum, the verifier must compute u(α, β) and uM(α, β) for some β ∈ F.

The former can be computed by the verifier in logarithmic time as discussed; for the latter, we
ask the prover to help. Specifically, we show that uM ≡ M̂∗, the unique bivariate low-degree
extension of a matrix M∗ which can be computed in quasilinear time from M (and in particular
has ‖M∗‖ = ‖M‖). Hence to show that uM(α, β) = γ the prover and verifier can engage in a
holographic matrix arithmetization protocol for M∗ to show that M̂∗(α, β) = γ. Marlin makes
use of a similar matrix arithmetization protocol, but for M itself, with a subprotocol to compute
uM from M̂ , which is a cost that we completely eliminate. Another improvement is that for our
matrix arithmetization protocol we can efficiently reduce soundness error even when using a
low-degree test, due to its non-recursive use of the sumcheck protocol.
Matrix arithmetization. Our matrix arithmetization protocol is a holographic IOP for comput-
ing the low-degree extension of a matrix M ∈ FH×H (provided in the index). It is useful here to
view M in its sparse representation as a map 〈M〉 : K → H ×H × F for some K ⊆ F, where if
〈M〉(k) = (a, b, γ) for some k ∈ K then Ma,b = γ, and Ma,b = 0 otherwise.

The indexer computes ˆrow, ĉol, v̂al which are the unique low-degree extensions of the func-
tions K → F induced by restricting 〈M〉 to its first, second, and third coordinates respectively,
and outputs their evaluations over L. It is not hard to verify that

M̂(α, β) =
∑

k∈K

LH, ˆrow(k)(α)LH,ĉol(k)(β)v̂al(k) ,

for any α, β ∈ F, where LH,a is the polynomial of minimal degree which is 1 on a and 0 on
H \ {a}. In order to check this equation using the sumcheck protocol we must modify the right-
hand side: the summand must be a polynomial which can be efficiently evaluated. To this end, we
make use of the “unnormalized Lagrange” polynomial uH(X, Y) := (vH(X)−vH(Y))/(X−Y)
from [30]. This polynomial has the property that for every a, b ∈ H , uH(a, b) is 0 if a 6= b and
nonzero if a = b; and it is easy to evaluate at every point in F. By having the indexer renormalize
v̂al appropriately, we obtain

M̂(X, Y) ≡
∑

k∈K

uH(ˆrow(k), α)uH(ĉol(k), β)v̂al(k) .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 120

We have made progress, but now the summand has quadratic degree: Ω(|H||K|) because we
compose the polynomials uH and ˆrow, ĉol. Next we show how to avoid this composition.

Observe that since the image of K under ˆrow, ĉol is contained in H , vH(ˆrow(k)) =
vH(ĉol(k)) = 0. Hence the rational function

vH(α)

(α− ˆrow〈M〉(X))
· vH(β)

(β − ĉol〈M〉(X))
· v̂al〈M〉(X)

agrees with the summand on K; it is a rational extension of the summands. Moreover, the
degrees of the numerator and denominator of the function are both O(|K|). Now it remains to
design a protocol to check the sum of a univariate rational function.
Rational sumcheck. Suppose that we want to check that

∑
k∈K N(k)/D(k) = γ, where N,D

are low-degree polynomials. First, we have the prover send the (evaluation of the) unique
polynomial f of degree |K| − 1 which agrees with N/D on K; that is, the unique low-degree
extension of N/D viewed as a function from K to F. We can use the standard univariate
sumcheck protocol (Section 3.4) to test that

∑
k∈K f(k) = γ.

It then remains to check that f does indeed agree with N/D on K. This is achieved using
standard techniques: if N(k)/D(k) = f(k) for all k ∈ K, then N(k) = D(k) · f(k) for all
k ∈ K (at least if D does not vanish on K). Then N −D · f is a polynomial vanishing on K,
and so is divisible by vK . This can be checked using low-degree testing; for more details, see
Section 5.5. Moreover, the degree of this equation is max(deg(N), deg(D) + |K|); in the matrix
arithmetization protocol, this is O(|K|).
Proof of knowledge and zero knowledge. Our full protocol for R1CS is a proof of knowledge,
because when the verifier accepts with high enough probability it is possible to decode fz into a
satisfying assignment. We further achieve zero knowledge via techniques from Chapter 3. (Note
that zero knowledge is not relevant for the matrix arithmetization protocol because the constraint
matrices A,B,C are public.)

5.2.4 Post-quantum and transparent preprocessing
If we apply the compiler described in Section 5.2.2 (as captured in Theorem 1) to the

efficient holographic proof for R1CS described in Section 5.2.3 (as captured in Theorem 3)
then we obtain an efficient preprocessing zkSNARK for R1CS that is unconditionally secure
in the (quantum) random oracle model (as captured in Theorem 4). We refer to the resulting
construction as FRACTAL.
Implementation. We have implemented FRACTAL by extending the libiop library to support
generic compilation of holographic proofs into preprocessing SNARGs, and then writing in code
our holographic proof for R1CS. Our implementation supports a range of security levels and
fields. (The only requirement on the field is that it contains certain smooth subgroups.) See
Section 5.12.1 for more details on the implementation.

Clearly, the security of our implementation relies on the random oracle methodology applied
to preprocessing SNARGs produced by our compiler, namely, we assume that if we replace
every call to the random oracle with a call to a cryptographic hash function then the resulting

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 121

construction, which formally is in the URS model, inherits the relevant security properties that
we proved in the (quantum) random oracle model.
Evaluation. We have evaluated FRACTAL, and its measured performance is consistent with
asymptotic predictions. In particular, the polylogarithmic argument size and verification time
quickly become smaller than native witness size and native execution time as the size of the
checked computation increases.

We additionally compare the costs of FRACTAL to prior preprocessing SNARGs, finding
that (a) our prover and verifier times are comparable to prior constructions; (b) argument sizes
are larger than prior constructions (that have an SRS). The larger argument sizes of FRACTAL

are nonetheless comparable with other post-quantum transparent non-preprocessing SNARGs.
See Section 5.13.1 for more details on evaluation.

5.2.5 Post-quantum and transparent recursive composition
We summarize the ideas behind our contributions to recursive composition of SNARKs.

Proof-carrying data. Recursive composition is captured by a cryptographic primitive called
proof-carrying data (PCD) [68, 45], which will be our goal. Consider a network of nodes, where
each node receives messages from other nodes, performs some local computation, and sends
the result on. PCD is a primitive that allows us to check the correctness of such distributed
computations by recursively producing proofs of correctness for each message. Here “correctness”
is locally specified by a compliance predicate Φ, which takes as input the messages received by
a node and the message sent by that node (and possibly some auxiliary local data). A distributed
computation is then considered Φ-compliant if, for each node, the predicate Φ accepts the node’s
messages (and auxiliary local data).

PCD captures proving the iterated application of a circuit as in Section 5.2.1, in which case
the distributed computation evolves along a path. PCD also captures more complex topologies,
which is useful for supporting distributed computations on long paths (via “depth-reduction”
techniques [144, 45]) and for expressing dynamic distributed computations (such as MapReduce
computations [69]).
From random oracle model to the URS model. While we have so far discussed constructions
that are unconditionally secure in the (quantum) random oracle model, for recursion we now
leave this model (by heuristically instantiating the random oracle with a cryptographic hash
function) and start from preprocessing SNARKs in the URS model. The reason for this is far
from mundane (and not motivated by implementation), as we now explain. The verifiers from
Theorem 1 make calls to the random oracle, and therefore proving that the verifier has accepted
would require using a SNARK that can prove the correctness of computations in a relativized
world where the oracle is a random function. There is substantial evidence from complexity
theory that such SNARKs do not exist (e.g., probabilistic proofs do not relativize with respect
to a random oracle [63, 83, 66]). By instantiating the random oracle, all oracle calls can be
“unrolled” into computations that do not involve oracle gates, and thus we can prove the the
correctness of the resulting computation.6 We stress that random oracles cannot be securely

6The necessity to instantiate the random oracle before recursion also arises in the first construction of incremen-
tally verifiable computation [144]. One way to circumvent this difficulty is to consider oracles that are equipped

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 122

instantiated in the general case [61], and so we will assume that there is a secure instantiation of
the random oracle for the preprocessing SNARKs produced via Theorem 1 (which, in particular,
preserves proof of knowledge).
From SNARK to PCD. We prove that any preprocessing SNARK in the URS model can
be transformed into a preprocessing PCD scheme in the URS model (Theorem 5.11.5).7 The
construction, described in Section 5.11, realizes recursive composition by following the template
given in Section 5.2.1, except that the compliance predicate Φ may expect multiple input
messages. This construction simplifies that of [45] for preprocessing SNARKs in the SRS model:
we do not need to rely on collision-resistant hash functions to shrink the verification key ivk
because we require it to be succinct, as captured in Lemma 5.11.8.8

Security against quantum adversaries. A key feature of our result (Theorem 5.11.5) is that
we prove that if the SNARK is secure (i.e., is a proof of knowledge) against quantum adversaries
then so is the resulting PCD scheme (i.e., it is also a proof of knowledge). Therefore, if we
assume that FRACTAL achieves proof of knowledge against quantum adversaries when the
random oracle is suitably instantiated, then by applying our result to FRACTAL we obtain a
post-quantum preprocessing PCD scheme in the URS model.

For this result we require a suitable definition of adaptive proof of knowledge in the
quantum setting. Our definition was chosen to achieve the following two goals: it must be strong
enough to imply security for our PCD construction, and it must have a (Q)ROM analogue that is
fulfilled by FRACTAL.

We highlight below two important issues that arose in finding this definition.
The proof of [45] uses the fact that, in the classical case, we may assume that the adversary

is deterministic by selecting its randomness. This is not the case for quantum adversaries, as
a quantum circuit can create its own randomness (e.g. by measuring a qubit in superposition).
This means that we must be careful in defining the proof-of-knowledge property we require of
the underlying SNARK. In particular, we must ensure that when we recursively extract proofs,
these proofs are consistent with previously extracted proofs. For deterministic adversaries, this is
implied by the proof of knowledge definition in [45]; for quantum adversaries, it is not.

A further complication arises when defining proof of knowledge in the QROM. In the clas-
sical (non-programmable) ROM, we can view the extractor and verifier as machines interacting
with the same “real” oracle; in particular, the extractor simply passes the adversary’s queries
to the real oracle and notes the answers. Hence we can ask for an extraction guarantee of the
type: “whenever the verifier accepts, the extractor succeeds” (this is the definition in [45]). In
the QROM, no-cloning precludes this view: the extractor cannot act as an intermediary between
the adversary and an external random oracle but must instead simulate the oracle itself.

Given these issues, we arrive at the following knowledge soundness definition. We observe

with a public verification procedure [68], however this requires embedding a secret in the oracle, which does not
lend itself to straightforward software realizations and so we do not consider this approach in this paper.

7Analogously to a SNARK, here preprocessing denotes the fact that the PCD scheme enables succinct verifi-
cation regardless of the computation expressed by the compliance predicate Φ (as opposed to only for structured
computations).

8In contrast, the verification key ivk in [45] is allowed to grow linearly with the public input to the circuit that it
summarizes, and so recursion required replacing ivk with a short hash of it, and moving ivk to the witness of the
recursion circuit.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 123

that the function of the strong extraction guarantee in [45] is to ensure closeness in distribution
between the outputs of the prover and the extractor. (This is similar to the witness-extended
emulation property introduced by [111].) To emulate this in the QROM, we simply impose
the closeness-in-distribution requirement explicitly. In particular, we require that if the prover
outputs some auxiliary information, the joint distribution of that auxiliary information and the
adaptively-chosen instance is maintained in the output of the extractor. We show that this is both
achievable in the QROM and sufficient for PCD in the standard model.

5.2.6 The verifier as a constraint system
In order to recursively compose FRACTAL (the preprocessing zkSNARK discussed in

Section 5.2.4), we need to express FRACTAL’s verifier as a constraint system. The size of this
constraint system is crucial because this determines the threshold at which recursive composition
becomes possible. Towards this goal, we design and implement a constraint system that applies to
a general class of verifiers, as outlined below. FRACTAL’s verifier is obtained as an instantiation
within this class. See Section 5.12.2 for details.
Hash computations introduced by the compiler. Our compiler (Theorem 1) transforms
any holographic IOP into a corresponding preprocessing SNARG, while preserving relevant
zero knowledge or proof of knowledge properties. The preprocessing SNARG verifier makes
a black-box use of the holographic IOP verifier, which means that we can design a single
(parametrized) constraint system representing the transformation that works for any holographic
IOP. All additional computations introduced by the compiler involve cryptographic hash functions
(which heuristically instantiate the random oracle). In particular, there are two types of hash
computations: (1) a hash chain computation used to derive the randomness for each round of
the holographic IOP verifier, based on the Merkle roots provided by the preprocessing SNARG
prover; and (2) verification of Merkle tree authentication paths in order to ensure the validity of
the query answers provided by the preprocessing SNARG prover. We design generic constraint
systems for both of these tasks. Since we are designing constraint systems it is more efficient to
consider multiple hash functions specialized to work in different roles: a hash function to absorb
inputs or squeeze outputs in the hash chain; a hash function to hash leaves of the Merkle tree; a
many-to-one hash function for the internal nodes of the Merkle tree; and others.
Choice of hash function. While our implementation is generic with respect to the aforemen-
tioned hash functions (replacing any one of them with another is straightforward), the choice
of hash function is nonetheless critical for concrete efficiency as we now explain. Expressing
standard cryptographic hash functions, such as from the SHA or Blake family, as a constraint
system requires more than 20,000 constraints. While this is acceptable for certain applications,
these costs are prohibitive for hash-intensive computations, as is the case for the verifiers output
by our compiler. Fortunately, the last few years have seen exciting progress in the design of
algebraic hash functions [12, 4, 93, 7, 5], which by design can be expressed via a small number
of arithmetic constraints over large finite fields. While this is an active research front, and in
particular no standards have been agreed upon, many of the proposed functions are significantly
cheaper than prior ones, and their security analyses are promising. In this work we decide to use
one of these as our choice of hash function (Poseidon [93]). We do not claim that this is the “best”

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 124

choice among the currently proposed ones. (In fact, we know how to achieve better results via a
combination of different choices.) We merely make one choice that we believe to be reasonable,
and in particular suffices to demonstrate the feasibility of our methodology in practice.
Holographic IOP computations. The constraint system that represents the holographic IOP
verifier will, naturally, depend on the specific protocol that is provided as input to the compiler.

That said, all known efficient IOPs, holographic or otherwise, are obtained as the combi-
nation of two ingredients: (1) a low-degree test for the Reed–Solomon (RS) code; and (2) an
RS-encoded IOP, which is a protocol where the verifier outputs a set of algebraic claims, known
as rational constraints, about the prover’s messages. Examples of IOPs that fall in this category
include our holographic IOP for R1CS, as well as protocols for R1CS in [9] and Chapters 3
and 4, and for AIR in [23].

We thus provide two constraint systems that target these two components. First, we provide
a constraint system that realizes the FRI low-degree test [22], which is used in many efficient
IOPs, including in our holographic IOP for R1CS. Second, we provide infrastructure to write
constraint systems that express a desired RS-encoded IOP. This essentially entails specifying
how many random elements the verifier should send in each round of the protocol, and then
specifying constraints that express the rational constraints output by the verifier at the end of the
RS-encoded IOP.

We then use the foregoing infrastructure to express the verifier of our holographic IOP for
R1CS as a constraint system. We note that the very same generic infrastructure would make it
straightforward to express the verifiers of other protocols with the same structure, such as those
from Chapters 3 and 4 and [9, 23].

Remark 5.2.1 (succinct languages). Our work in writing constraints for the verifier is restricted
to non-uniform computation models such as R1CS (i.e., we are not concerned about the global
structure of the constraint system). We do not claim to have an efficient way to express the same
verifier via succinct languages such as AIR [23] or Succinct-R1CS (Definition 4.1.1). Doing so
remains an open problem that, if addressed, may lead to additional opportunities in recursive
composition (through non-preprocessing SNARKs).

5.3 Preliminaries
We state time costs in terms of basic operations over a given field F, and size costs in terms

of field elements in F. We use the “big-oh” notation OF to remind the reader that F-operations
and F-elements have unit cost.

5.3.1 Sparse representations of matrices
Our protocols leverage sparse representations of matrices for efficiency, following the

definition below. The definition is primarily for convenience in the sense that any reasonable
sparse representation of a matrix can be transformed, in linear time, into one that follows the
definition that we use.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 125

Definition 5.3.1. Let H,K ⊆ F. A sparse representation of a matrix is a function 〈M〉 : K →
H × H × F that is injective when its output is restricted to H × H . The matrix M ∈ FH×H
is obtained from 〈M〉 by setting, for a, b ∈ H , Ma,b := γ if there exists k ∈ K such that
〈M〉(k) = (a, b, γ) and Ma,b := 0 otherwise.

Note that a matrix M ∈ FH×H has many possible sparse representations. In particular, we
may choose any large enough K and any injection from K to H ×H that “covers” the nonzero
entries of M .

5.3.2 Indexed relations
An indexed relation R is a set of triples (i,x,w) where i is the index, x the instance,

and w the witness; the corresponding indexed language L(R) is the set of pairs (i,x) for
which there exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of
satisfiable boolean circuits consists of triples where i is the description of a boolean circuit, x is
an assignment some of the input wires, and w is an assignment to the remaining input wires that
makes the circuit output 0.

In this paper we build protocols for the indexed relation that represents rank-1 constraint
satisfiability (R1CS), a generalization of arithmetic circuits where the “circuit description” is
given by coefficient matrices. This is the same as Definition 3.6.1, but here we explicitly split the
problem description into index and instance, and specify a sparse representation.

Definition 5.3.2 (R1CS indexed relation). The indexed relationRR1CS is the set of all triples

(i,x,w) =
(
(F, H,K, 〈A〉, 〈B〉, 〈C〉), (I, v), w

)

where F is a finite field, H,K are subsets of F, 〈A〉, 〈B〉, 〈C〉 : K → H × H × F are sparse
representations of H × H matrices over F, I is a subset of H , v ∈ FI , w ∈ FH\I , and
z := (v, w) ∈ FH is a vector such that Az ◦Bz = Cz. (Here “◦” denotes the entry-wise product
between two vectors.)

Remark 5.3.3. The above definition can be generalized to the case where the matrices are
non-square, namely, the matrices are in FH1×H2 for distinct domains H1, H2 ⊆ F. All results
stated in this chapter extend to this non-square case. Our focus on the square case is only for
simplicity of exposition.

5.3.3 Algebra
The notational conventions in this chapter regarding the Reed–Solomon code are slightly

different to the previous.
Reed–Solomon code. Given a subset L of a field F and degree bound d < |L|, we denote by
RS [L, d] ⊆ FL all evaluations over L of univariate polynomials of degree at most d:

RS [L, d] :=
{
f : L→ F s.t. ∃ f̂ ∈ F[X] with deg(f̂) ≤ d and f̂(L) = f

}
.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 126

Whenever a polynomial f̂ as above exists, then f̂ is unique. The rate of RS [L, d] is ρ :=
(d + 1)/|L| ∈ (0, 1), and its distance is 1 − ρ. The message encoded by f ∈ RS [L, d] is the
restriction of f̂ to a distinguished subset H ⊆ F of size d+ 1. (Note that H need not be a subset
of L.) Observe that for every polynomial f̂ ∈ F[X] with degree less than |L| it holds that the
word fL := f̂ |L is in RS

[
L, deg(f̂)

]
(we will drop the subscript when the choice of domain

L is clear from context). This means that there is a bijection between words in RS [L, d] and
polynomials in F[X] of degree at most d.
Domains with subgroup structure. For a finite field F, by “subgroup of F” we mean either a
subgroup of the additive group of F or a subgroup of F∗. By “coset of F” we mean a coset of a
subgroup of F (additive or multiplicative). Throughout the paper we assume that the domain L
for the Reed–Solomon code has “smooth” subgroup structure, meaning that it factors as a direct
product of small (i.e., constant-size) subgroups. Under this assumption we can encode a message
using the Reed–Solomon code in time OF(|L| log |L|). This assumption is also required by the
low-degree test that we use [22, 35].
Vanishing polynomials. For a finite field F and subset S ⊆ F, we denote by vS the unique
non-zero monic polynomial of degree at most |S| that is zero on S; vS is called the vanishing
polynomial of S. If S is a coset in F then the coefficients of vS can be found in time OF(log2 |S|),
and subsequently vS can be evaluated at any point in time OF(log |S|).9 In the holographic
setting we can have the indexer find vS for any S of interest, so that the verifier can evaluate vS
in time OF(log |S|). In this paper we assume that this is the case, so that for any coset S in F we
can evaluate its vanishing polynomial at any point in time OF(log |S|).
Derivative of vanishing polynomials. We rely on various properties of the bivariate polynomial
uS related to the formal derivative of vS , first exploited to obtain efficient probabilistic proofs in
[30]. For a finite field F and subset S ⊆ F, we define

uS(X, Y) :=
vS(X)− vS(Y)

X − Y
,

which is a polynomial of individual degree |S| − 1 because X − Y divides X i − Y i for any
positive integer i. Note that uS(X,X) is the formal derivative of the vanishing polynomial
vS(X).10

The bivariate polynomial uS(X, Y) satisfies two useful algebraic properties. First, it
is strongly related to the Lagrange polynomials La,S for a ∈ S. Specifically, uS(X, a) ≡
uS(a,X) ≡ La,S(X) · uS(a, a) for all a ∈ S. In particular, this implies that the polynomials
(uS(X, a))a∈S are linearly independent. Second, the (unique) low-degree extension (in Y) of the
vector (uS(X, a))a∈S ∈ F[X]S is precisely uS(X, Y).

9If S is a multiplicative subgroup of F then vS(X) = X |S| − 1. More generally, if S is a ξ-coset of a
multiplicative subgroup S0 (namely, S = ξS0) then vS(X) = ξ|S|vS0

(X/ξ) = X |S| − ξ|S|. In either case, vS can
be found and then evaluated at any point in time OF(log |S|). If instead S is an additive subgroup then there is an
algorithm to find the coefficients of vS in time OF(log2 |S|). Being a linearized polynomial, vS has only O(log |S|)
nonzero coefficients, and in particular can be evaluated at any point in time OF(log |S|). An analogous statement
holds if S is a coset of an additive subgroup.

10This follows from the general fact that, for g(X,Y) := (f(X) − f(Y))/(X − Y), g(X,X) is the formal
derivative of f(X). To see this, observe that (Xn − Y n)/(X − Y) =

∑n−1
i=0 X

iY n−i−1. Setting Y := X yields
nXn−1, the derivative of Xn.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 127

If S is a coset in F, an expression for uS(X, Y) can be found in time OF(log2 |S|), and
subsequently one can use this expression to evaluate uS(X, Y) at any point (α, β) ∈ F2 in time
OF(log |S|).11

Univariate sumcheck for cosets. For S ⊆ F, ĝ ∈ F[X], σ ∈ F, define the polynomial:

ΣS(ĝ, σ) :=

{
Xĝ(X) + σ/|S| if S is a multiplicative coset of F
ĝ(X) + σX |S|−1/

∑
α∈S α

|S|−1 if S is an additive coset of F
.

Note that ΣS(· , ·) may be viewed as an arithmetic circuit. We restate the univariate sumcheck
lemma (Theorem 3.4.2) in a generic way using the above definition.

Lemma 5.3.4 (Univariate sumcheck). Let S be a coset of F, and let f̂ ∈ F[X] be such that
deg(f̂) < |S|. Then

∑
α∈S f̂(α) = σ if and only if there exists ĝ with deg(ĝ) < |S| − 1 such

that f̂ ≡ ΣS(ĝ, σ).

5.4 Definition of holographic IOPs
A holographic IOP for an indexed relation R is specified by a tuple HOL = (I,P,V),

where I is the indexer, P the prover, and V the verifier. The indexer is a deterministic polynomial-
time algorithm, while the prover and verifier are probabilistic polynomial-time interactive
algorithms. In an offline phase, given an index i, the indexer I computes an encoding of i,
denoted I(i). Subsequently, in an online phase, the prover P receives as input a triple (i,x,w),
while the verifier V receives as input x and is granted oracle access to the encoded index I(i).
The online phase consists of multiple rounds, and in each round the verifier V sends a message
ρi and the prover P replies with a proof string Πi, which the verifier can query at any location.
At the end of the interaction, the verifier V accepts or rejects.

We say that HOL has perfect completeness and soundness error ε if the following holds.

• Completeness. For every index-instance-witness triple (i,x,w) ∈ R, the probability that
P(i,x,w) convinces VI(i)(x) to accept in the interactive oracle protocol is 1.

• Soundness. For every index-instance pair (i,x) /∈ L(R) and prover P̃, the probability that P̃
convinces VI(i)(x) to accept in the interactive oracle protocol is at most ε.

The round complexity k is the number of back-and-forth message exchanges between the
verifier and the prover. The proof length L is the sum of the length of the encoded index plus
the lengths of all proof strings sent by the prover. The query complexity q is the total number of
queries made by the verifier; this includes queries to the encoded index and to the oracles sent by
the prover.

The holographic IOPs that we construct achieve the stronger property of knowledge sound-
ness and optionally also zero knowledge. We define both of these properties below.

11If S is a multiplicative coset in F then uS(X,Y) = (X |S| − Y |S|)/(X − Y) and uS(X,X) = |S|X |S|−1, so
both can be evaluated in time OF(log |S|). If S is an additive coset in F then uS(X,Y) is obtained directly from
the linearized polynomial vS , and uS(X,X) is the constant polynomial that equals the coefficient of the linear term
in the linearized polynomial vS .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 128

Knowledge soundness. HOL has knowledge error κ if there exists a probabilistic polynomial-
time extractor E such that for every instance i, witness x, and unbounded prover P̃:

Pr
[
(i,x,w) 6∈ R

∣∣∣ w← EP̃(i,x)
]
≥ Pr

[
〈P̃,VI(i)(x)〉 = 1

]
− κ ,

where EP̃ means that we give the extractor black-box access to P̃. We provide this definition
purely for illustrative purposes. In this paper we only use the stronger knowledge notions
described in Section 5.4.2.
Zero knowledge. HOL has (perfect) zero knowledge with query bound b if there exists a prob-
abilistic polynomial-time simulator S such that for every (i,x,w) ∈ R and b-query algorithm
Ṽ the random variables View(P(i,x,w), Ṽ) and SṼ(i,x), defined below, are identical. (An
algorithm is b-query if it makes less than b queries in total to any oracles it has access to.)

• View(P(i,x,w), Ṽ) is the view of Ṽ, i.e., is the random variable (r, a1, . . . , aq) where r is
Ṽ’s randomness and a1, . . . , aq are the responses to Ṽ’s queries determined by the oracles
sent by P.

• SṼ(i,x) is the output of S(i,x) when given straightline access to Ṽ (S may interact with
Ṽ, without rewinding, by exchanging messages with Ṽ and answering its oracle queries),
prepended with Ṽ’s randomness r. Note that r could be of super-polynomial size, so S cannot
sample r on Ṽ’s behalf and then output it; instead, we restrict S to not see r, and prepend r to
S’s output.

HOL is honest-verifier zero knowledge if the above holds with Ṽ := VI(i)(x).
Public coins. HOL is public-coin if each verifier message to the prover is a random string. This
means that the verifier’s randomness is its messages ρ1, . . . , ρk ∈ {0, 1}∗ and possibly additional
randomness ρk+1 ∈ {0, 1}∗ used after the interaction. All verifier queries can be postponed,
without loss of generality, to a query phase that occurs after the interactive phase with the prover.

5.4.1 Reed–Solomon encoded holographic IOPs
Recall that in an RS-encoded IOP, the prover and verifier engage in a public-coin IOP

interaction and, after the interaction, the verifier outputs a set of algebraic claims about the
prover’s messages. The completeness condition requires that in the “yes” case, when the verifier
interacts with the honest prover, the output claims are true with probability 1. The soundness
condition requires that in the “no” case, when the verifier interacts with a malicious prover, at
least one of the output claims will be false with high probability no matter what the prover’s
messages are. The holographic setting introduces the sole difference that the verifier’s algebraic
claims may include statements about the codewords output by the indexer.

In more detail, by “algebraic claim” we specifically mean a rational constraint, defined
next; this definition is identical to Definition 2.3.5 except that we use degree instead of rate.

Definition 5.4.1. A rational constraint is a tuple C = (N,D, d) where N : F1+` → F and
D : F→ F are arithmetic circuits, and d ∈ N is a degree bound. The arithmetic circuits (N,D)

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 129

and a list of words f1, . . . , f` : L→ F jointly define the word (N,D)[f1, . . . , f`] : L→ F given
by

∀ a ∈ L , (N,D)[f1, . . . , f`](a) :=
N(a, f1(a), . . . , f`(a))

D(a)
.

A rational constraint C = (N,D, d) is satisfied with respect to f1, . . . , f` if (N,D)[f1, . . . , f`] ∈
RS [L, d].12

When describing rational constraints, we will often use the shorthand notation “deg(f̂) ≤
d”, where f : L→ F is defined as a rational equation over some oracles. This should be taken
to mean the rational constraint C = (N,D, d) that is naturally induced by the expression that
defines f .

A special type of rational constraint is a boundary constraint, defined next.

Definition 5.4.2. A boundary constraint is a rational constraint that expresses a condition such
as “f̂(α) = β” for some word f : L→ F and elements α, β ∈ F. Such a condition is represented
via the rational constraint C = (N,D, deg(f̂)−1) whereN(X, Y) := Y −β andD(X) :=X−α,
which can be summarized as “deg(ĝ) ≤ deg(f̂)− 1” where g(a) := (f(a)− β)/(a− α). We
denote this constraint simply by “f̂(α) = β”.

In the following we use RS [L, (d1, . . . , dk)] ⊆ (Fk)L to denote the interleaved Reed–
Solomon code over L with degree bounds (d1, . . . , dk), i.e., the set of k × |L| matrices where
the i-th row is a codeword of RS [L, di] (which itself is all evaluations over L of univariate
polynomials of degree at most di).

A Reed–Solomon encoded holographic IOP (RS-hIOP) for an indexed relationR is a tuple

(I, P, V, {~dI, ~dP,1, . . . , ~dP,k})

where I is a deterministic algorithm, P and V are probabilistic interactive algorithms, and
~dI ∈ N`0 , ~dP,i ∈ N`i are vectors of degree bounds, that satisfies the following properties.

Degree bounds: On input any i, the indexer I outputs a codeword of RS
[
L, ~dI

]
. Moreover,

on input any (i,x,w) ∈ R and for every round i, the i-th message of P (i,x,w) is a
codeword of RS

[
L, ~dP,i

]
.

Completeness: For every (i,x,w) ∈ R, all rational constraints output by VI(i)(x) after inter-
acting with P (i,x,w) are satisfied with respect to I(i) and P (i,x,w)’s messages with
probability 1.

Soundness: For every (i,x) /∈ L(R) and unbounded malicious prover P̃ whose i-th message
is a codeword of RS

[
L, ~dP,i

]
, all rational constraints output by VI(i)(x) after interacting

with P̃ are satisfied with respect to I(i) and the prover’s messages with probability at most
ε.

12For a ∈ L, if D(a) = 0 then we define (N,D)[f1, . . . , f`](a) := ⊥. Note that if this holds for some a ∈ L
then, for any words f1, . . . , f` and degree bound d, the rational constraint (N,D, d) is not satisfied by f1, . . . , f`.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 130

Often we will write that V “accepts”, which means that all of the rational constraints it outputs
are satisfied, or that it “rejects”, which means that at least one rational constraint is not satisfied.

We conclude by discussing useful complexity measures for RS-encoded IOPs.

• The query evaluation time tq is the natural complexity measure for V, and equals the sum
of the query evaluation times of the rational constraints output by V. The query evalu-
ation time of a single rational constraint C = (N,D, d) is the time required to compute
(N,D)[f1, . . . , f`](a) ∈ F given a ∈ L and oracle access to f1, . . . , f` (and possibly additional
information provided by the indexer). That is, it is the time needed to (construct and) evaluate
the arithmetic circuits (N,D) at a single point.

• The maximum degree is a pair (dc, de) ∈ N× N defined as follows.

dc is the “constraint degree”, defined as the maximum specified degree of any oracle sent by
the prover and any constraint output by the verifier, i.e., dc := max ~dP,1 ∪ · · · ∪ ~dP,k ∪ {d :
V outputs (N,D, d)}.
de is the “effective degree”, which is a quantity arising from the compilation from an RS-
encoded IOP to a standard IOP via low-degree testing that is defined as follows:

de := max {dc} ∪
{

deg(N ; ~dI, ~dP,1, . . . , ~dP,k), d+ deg(D) : V outputs (N,D, d)
}

where deg(P ; ~d) for an arithmetic circuit P : F1+m → F and degree bounds d ∈ Fm denotes
the degree of the composed polynomial P (X,Q1(X), . . . , Qm(X)) when deg(Qi) = di. Note
that de ≥ dc.

5.4.2 Stronger notions of soundness
Aside from the standard notion of soundness above, there are two further soundness notions

that arise when constructing non-interactive arguments from IOPs. These are round-by-round
soundness [60, 67] and state-restoration soundness [32], adapted to holographic IOPs. We
discuss these below.
Round-by-round soundness. We begin by defining the notion of a (partial) transcript of an
IOP, which means all proof strings and verifier messages up to a point where the prover is about
to move.

Definition 5.4.3. A transcript tr of a holographic IOP (I,P,V) is a tuple (Π1,m1, . . . ,Πi,mi)
for some i ∈ [k], where each Πj is a prover (oracle) message and each mj is a verifier message.
We denote the empty transcript by ∅. A transcript is full if i = k, where k is the round complexity
of (I,P,V).

A protocol HOL = (I,P,V) has round-by-round soundness error εrbr if there exists a
function State from the set of transcripts to {accept, reject} such that for every transcript tr:
• if (i,x) /∈ L(R) and tr = ∅, then State(i,x, tr) = reject;
• if State(i,x, tr) = reject, then rbr(tr) ≤ εrbr where

rbr(tr) := max
Π

Pr
m

[State(i,x, tr‖Π‖m) = accept] ;

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 131

• if State(i,x, tr) = reject and tr is a full transcript, then VI(i)(x; tr) rejects.
The notion of round-by-round soundness for RS-encoded holographic IOPs is as above, except
that the maximum in the definition of rbr is taken over Πi ∈ RS

[
L, ~dP,i

]
, for tr a transcript

of i − 1 rounds, and the third condition above need only hold for full transcripts tr where
Πi ∈ RS

[
L, ~dP,i

]
for all i. In particular, it suffices to define State(i,x, tr) only for tr where the

prover messages are of the prescribed degrees; otherwise, the state can be taken to be accept.
Finally we recall the definition of round-by-round knowledge soundness from [67].

Definition 5.4.4. A holographic IOP (I,P,V) for a relation R has round-by-round knowl-
edge error κrbr if there exists a function State and a polynomial-time extractor E such that
for every index i, instance x, transcript tr such that State(i,x, tr) = reject, and every oracle
message Π, if Prm[State(i,x, tr‖Π‖m) = accept] > κrbr then (i,x,E(i,x, tr‖Π)) ∈ R.

For RS-encoded holographic IOPs we relax the above so that E need only succeed for tr where
the prover messages are of the prescribed degrees.
State-restoration soundness. State-restoration soundness captures the ability of the prover
to cheat when it is able to rewind the verifier a bounded number of times. State-restoration
soundness essentially exactly captures the soundness of non-interactive arguments derived from
IOPs via the BCS transformation [32]. In Section 5.10 we prove that this continues to be true
when we modify the BCS transform to construct preprocessing non-interactive arguments from
holographic IOPs. However here we do not define state-restoration soundness because in our
proof of the compiler we will rely on the BCS transformation as a black box. We note only that
if a protocol has round-by-round soundness error εrbr then it has state-restoration soundness error
εsr(t) ≤ t · εrbr, where t is the bound on the number of rewinds. This fact is relevant because
in Section 5.8 we prove that our efficient holographic IOP for R1CS has small round-by-round
soundness error.

Knowledge soundness is somewhat delicate and so we discuss it in more detail. In this work
we will use the following (fairly strong) definition for state-restoration knowledge soundness.

Definition 5.4.5. An IOP (P,V) for a relation R has state restoration knowledge error κsr

if there exists a polynomial-time extractor E such that for all i,x and every state-restoration
prover P̃,

Pr

[
trsr is accepting ∧

(i,x,w) /∈ R

∣∣∣∣
trsr ← 〈P̃,V〉sr

w← E(i,x, trsr)

]
≤ κsr .

Note that the power of the extractor is limited compared to the definition given in [32]; in
particular, we do not allow the extractor even black-box access to the prover itself, only to a
(state-restoration) transcript.

If (P,V) has round-by-round knowledge error κrbr then it has state-restoration knowledge
error κsr(t) ≤ t · κrbr. This can be seen as follows: recall that a state-restoration transcript trsr
consists of a collection of partial (standard) transcripts generated via the state restoration game.
The state restoration extractor E applies the RBR extractor to every partial transcript in trsr,
and outputs the first valid witness it obtains. Since trsr is accepting and the empty transcript is
rejecting, at least one such partial transcript changes state from reject to accept. Round-by-round
knowledge error implies that if the RBR extractor fails for this transcript, this happens with
probability at most κrbr; the result follows by a union bound.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 132

5.5 Sumcheck for rational functions
We describe how to extend the univariate sumcheck protocol of Section 3.4 from univariate

polynomials to univariate rational functions. We thus obtain a protocol for checking the value of
the sum of a rational function N̂(X)/D̂(X) ∈ F(X) over a subgroup K of F.

Definition 5.5.1. Let R be the set of all pairs (x,w) =
(
(F, L,K, dN , dD, σ), (N,D)

)
such

that N ∈ RS [L, dN], D ∈ RS [L, dD], and D̂(a) 6= 0 for all a ∈ K. The promise relation
RRSUM = (RYES

RSUM,RNO
RSUM) is defined as follows: RYES

RSUM is the subset of pairs in R such that∑
a∈K N̂(a)/D̂(a) = σ, andRNO

RSUM := R \RYES
RSUM.

Let σ ∈ F be the claimed value for the sum. We know from Lemma 5.3.4 that a polynomial
f̂(X) of degree at most |K| − 1 sums to σ over K if and only if there exists a polynomial ĝ(X)
with degree at most |K| − 2 such that ΣK(ĝ, σ)(X) equals f̂(X). While we do not know how to
obtain an equivalence like this one for the case of rational functions, there is a natural approach
to build on the case of polynomials.

The prover computes the polynomial f̂(X) of minimal degree that agrees with the rational
function N̂(X)/D̂(X) on K, and then sends (the evaluation of) the corresponding polynomial ĝ
guaranteed by Lemma 5.3.4 (i.e., such that ΣK(ĝ, σ)(X) ≡ f̂(X)). The verifier can check that
ΣK(ĝ, σ)(X) sums to σ via the rational constraint “deg(ĝ) ≤ |K| − 2”. Then the verifier is left
to check that ΣK(ĝ, σ)(X) agrees with N̂(X)/D̂(X) on K, which is equivalent to checking that
ΣK(ĝ, σ)(X)D̂(X)− N̂(X) vanishes on K (as D̂(a) 6= 0 for all a ∈ K), which can be done via
a standard use of a second rational constraint.

Construction 5.5.2 (rational sumcheck). Let (x,w) =
(
(F, L,K, dN , dD, σ), (N,D)

)
be a pair

inR. In the rational sumcheck protocol, the honest prover P receives as input (x,w), and sends
a codeword g ∈ RS [L, |K| − 2] that is obtained as follows: compute the unique polynomial f̂
of degree at most |K| − 1 that agrees with N̂(X)/D̂(X) on K; compute the unique polynomial
ĝ(X) of degree at most |K|−2 such that ΣK(ĝ, σ)(X) ≡ f̂(X); evaluate ĝ(X) over L to obtain
g. The honest verifier V receives as input x, and outputs the following two rational constraints:

“deg(ĝ) ≤ |K| − 2” and “deg(ê) ≤ de”, where e : L→ F is a function and de ∈ N is a degree
bound that are defined as follows:

∀ a ∈ L , e(a) :=
ΣK(g, σ)(a) ·D(a)−N(a)

vK(a)
and de := max(dN , |K| − 1 + dD)− |K| .

(5.1)

Formally, the above is an RS-encoded PCP of proximity for RRSUM (see Section 2.3.3.1).
For simplicity, in the lemma below we directly establish the properties that we need without this
abstraction.

Lemma 5.5.3. Let (x,w) =
(
(F, L,K, dN , dD, σ), (N,D)

)
∈ R be such that L ∩K = ∅, K is

a subgroup of F, and max(dN , |K| − 1 + dD) < |L|. The protocol (P,V) in Construction 5.5.2
satisfies the following.
1. Completeness: if (x,w) ∈ RYES

RSUM then V(x) outputs rational constraints that are satisfied
by (N,D, g), where g is the oracle sent by the honest prover P(x,w).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 133

2. Soundness: if (x,w) ∈ RNO
RSUM then for every malicious prover P̃ at least one of the rational

constraints output by V(x) is not satisfied by (N,D, g), where g is the oracle sent by the
malicious prover P̃.

The protocol has constraint degree max(dN − |K|, dD − 1, |K| − 2) and effective degree
max(dN , |K| − 1 + dD). The query evaluation time of the verifier is OF(log |K|).

Proof. We first argue completeness and then soundness.
Completeness. Suppose that

∑
a∈K N̂(a)/D̂(a) = σ. The honest prover P sends the polyno-

mial ĝ(X) with degree at most |K| − 2 such that ΣK(ĝ, σ)(X) agrees with N̂(X)/D̂(X) on K;
the existence of ĝ(X) is guaranteed by Lemma 5.3.4. Since D̂(a) 6= 0 for all a ∈ K, we also have
that ΣK(ĝ, σ)(a)·D̂(a) = N̂(a) for all a ∈ K. Thus the polynomial ΣK(ĝ, σ)(X)·D̂(X)−N̂(X)
is divisible by the vanishing polynomial vK(X). We conclude that the two rational constraints
“deg(ĝ) ≤ |K| − 2” and “deg(ê) ≤ de” are satisfied.
Soundness. Suppose that

∑
a∈K N̂(a)/D̂(a) 6= σ. Let g be the oracle sent by P̃ and suppose

that the rational constraint “deg(ĝ) ≤ |K|−2” is satisfied (or else we are done). By Lemma 5.3.4
we know that

∑
a∈K ΣK(ĝ, σ)(a) = σ. Hence there must exist a∗ ∈ K such that ΣK(ĝ, σ)(a∗) ·

D̂(a∗) 6= N̂(a∗), so a∗ is not a root of the polynomial ΣK(ĝ, σ)(X) · D̂(X) − N̂(X). By
definition of e, the polynomials ΣK(ĝ, σ)(X) · D̂(X) − N̂(X) and ê(X) · vK(X) agree on L.
Since de + |K| = max(dN , |K| − 1 + dD) < |L|, if the rational constraint “deg(ê) ≤ de” is also
satisfied, then we can conclude that these two polynomials are identical, which is a contradiction
because a∗ is a root of ê(X) · vK(X).
Efficiency. The verifier outputs a rational constraint on g, which is the oracle sent by the prover,
and a rational constraint on e, which is the virtual oracle defined in Eq. (5.1). So the query
evaluation time is dominated by the number of field operations to evaluate e at a single point,
which is O(log |K|) (due to the need to evaluate the vanishing polynomial vK at that point). The
stated constraint and effective degrees can be obtained by keeping track of the degrees of the
relevant real and virtual oracles in the protocol (as in the table) and then using the definitions in
Section 5.4.1.

oracle type constraint degree numerator degree denominator degree

g real |K| − 2 – –
e virtual de max(dN , |K| − 1 + dD) |K|

Remark 5.5.4 (zero knowledge). In Section 5.6, the above construction will be used as a
subprotocol to evaluate the arithmetization of a public matrix. For this reason, we do not
require any zero knowledge properties of the above construction (and indeed, the construction as
described is not zero knowledge). Nonetheless, it is relatively straightforward to obtain a zero
knowledge variant of this construction by using bounded independence and zero knowledge
sumcheck as in Section 3.4.1.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 134

5.6 Holographic lincheck
We describe a holographic variant of the lincheck protocol (Section 3.5). The lincheck

problem involves checking linear relations between encodings: given H ⊆ F, Reed–Solomon
codewords f, g ∈ RS [L, d], and matrix M ∈ FH×H , check that f̂ |H = M · ĝ|H . Below we
consider matrices M that are given in a sparse representation (see Definition 5.3.1), as the
protocol that we describe leverages this sparsity for efficiency.

Definition 5.6.1. LetR be the set of all pairs (i,x,w) =
(
(F, L,H,K, d, 〈M〉), 1log |K|, (f1, f2)

)

such that F is a finite field, L,H,K are subsets of F, 〈M〉 : K → H×H×F is a sparse represen-
tation of a matrix M ∈ FH×H , d ∈ N is a degree bound, and f1, f2 ∈ RS [L, d] are codewords.
The indexed promise relation RLIN = (RYES

LIN ,RNO
LIN) is such that RYES

LIN is the subset of R with
f̂1|H = M · f̂2|H , andRNO

LIN :=R \RYES
LIN .

The goal of this section is to prove the following lemma.

Lemma 5.6.2. Let (i,x,w) =
(
(F, L,H,K, d, 〈M〉), 1log |K|, (f1, f2)

)
∈ R be such that H,K

are subgroups of F, |L| > 3|K| − 3, and L ∩ (H ∪ K) = ∅. The protocol (I,P,V) in
Construction 5.6.8 satisfies the following.
1. Completeness: if (i,x,w) ∈ RYES

LIN then V(x) outputs rational constraints that are satisfied
by (f1, f2) and the oracles sent by the honest prover P(i,x).

2. Soundness: if (i,x,w) ∈ RNO
LIN then for every malicious prover P̃ all of the rational con-

straints output by V(x) are satisfied by (f1, f2) and the oracles sent by P̃ with probability at
most 2(|H| − 1)/(|F| − |H|).

In particular, the construction has two rounds and RBR soundness error (|H| − 1)/(|F| − |H|).
Moreover, the construction can be made zero knowledge; the RBR soundness error is then
|H|/(|F| − |H|).

The prover and indexer run in time OF(|L| log |L|), and the verifier’s query evaluation time
is OF(log |K|). The constraint degree is max(d− 1, |H| − 2, 2|K| − 3) and the effective degree
is max(|H| − 1 + d, 3|K| − 3).

Formally, Construction 5.6.8 is an RS-encoded IOP of proximity forRLIN. However, for
simplicity, we directly establish the properties we need without this abstraction. The notion of
zero knowledge is as usual for proximity notions: we require that if a malicious verifier Ṽ makes
t queries across all of the oracles available to it, the simulator can reproduce its view by making
t queries to each of the witness oracles.

The remainder of this section proceeds as follows. In Section 5.6.1, we describe a sub-
protocol for checking an evaluation of the low-degree (bivariate) extension of a matrix. In
Section 5.6.2, we describe how to use this subprotocol to build a holographic lincheck protocol,
proving Lemma 5.6.2. Throughout this section we rely on the notion of a sparse representation
of a matrix (see Section 5.3.1) and on facts about vanishing polynomials and their derivatives
(see Section 5.3.3).

5.6.1 Holographic proof for sparse matrix arithmetization
The bivariate low-degree extension of a given matrix M ∈ FH×H is the unique polynomial

M̂ ∈ F[X, Y] of minimal degree such that M̂(a, b) = Ma,b for all a, b ∈ H . We wish to check

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 135

statements of the form “M̂(α, β) = γ” for α, β chosen (almost) arbitrarily in F.

Definition 5.6.3. The indexed relationRMAT is the set of triples

(i,x,w) =
(
(F, H,K, 〈M〉), (α, β, γ),⊥

)

where F is a finite field, H and K are subsets of F, 〈M〉 : K → H × H × F is a sparse
representation of a matrix M ∈ FH×H , α, β, γ ∈ F are field elements, and M̂(α, β) = γ. (This
relation has no witnesses.)

The indexed relationRMAT is tractable: one can check if M̂(α, β) = γ in time OF(‖M‖)
by directly computing the value of the low-degree extension M̂(X, Y) at (α, β). Without
holography, it is not possible to verify this equation in time oF(‖M‖) since in general M̂(α, β)
depends on every entry of M .

We show how to significantly reduce this cost via a protocol that holographically stores
information about M in the encoded index in order to achieve an online verification time of
O(log‖M‖). Our protocol relies on expressing the bivariate low-degree extension M̂(X, Y) in
terms of univariate low-degree extensions that describe the non-zero entries of M . We explain
this algebraic identity, and then how our protocol uses it.

Given a sparse representation 〈M〉 : K → H × H × F, define ˆrow〈M〉, ĉol〈M〉 : K →
H, v̂al〈M〉 ∈ F[X] to be the unique polynomials of minimal degree such that for each k ∈ K,
letting (a, b, α) := 〈M〉(k),

ˆrow〈M〉(k) := a , ĉol〈M〉(k) := b , v̂al〈M〉(k) :=
α

uH(a, a) · uH(b, b)
.

The following claim expresses M̂ in terms of ˆrow〈M〉, ĉol〈M〉, v̂al〈M〉.

Claim 5.6.4. For any sparse representation 〈M〉 : K → H ×H × F of a matrix M ∈ FH×H ,

M̂(X, Y) ≡
∑

k∈K

vH(X)

(X − ˆrow〈M〉(k))
· vH(Y)

(Y − ĉol〈M〉(k))
· v̂al〈M〉(k) .

Proof. Denote the right-hand side of the equation by P (X, Y). Since ˆrow〈M〉(k), ĉol〈M〉(k) ∈ H
for all k ∈ K, P (X, Y) is a polynomial of degree at most |H| − 1 in both X and Y . We now
argue that P (a, b) = Ma,b for arbitrary a, b ∈ H (which implies that P agrees with M̂ on H×H
and hence that P ≡ M̂). Suppose first that there is no k ∈ K, γ ∈ F such that 〈M〉(k) = (a, b, γ).
By definition of M , Ma,b = 0; moreover for any k ∈ K either vH(X)/(X − ˆrow〈M〉(k)) has a
root at a or vH(Y)/(Y − ĉol〈M〉(k)) has a root at b, and so P (a, b) = 0 as well. Now suppose
that there exists k ∈ K, γ ∈ F such that 〈M〉(k) = (a, b, γ); note that k is unique because 〈M〉
is injective. Hence P (a, b) = uH(a, a) · uH(b, b) · v̂al〈M〉(k) = Ma,b.

Construction 5.6.5. The indexer I receives as input an index i = (F, H,K, 〈M〉) along with an
evaluation domain L ⊆ F, computes the low-degree extensions ˆrow〈M〉, ĉol〈M〉, v̂al〈M〉, and then
outputs their evaluations row〈M〉, col〈M〉, val〈M〉 ∈ RS [L, |K| − 1]. The indexer I also outputs
descriptions of F, H,K.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 136

Subsequently, given an instance x = (α, β, γ), the honest prover P receives as input (i,x)
and the honest verifier V receives as input x and oracle access to I(i). The prover P and verifier
V engage in the rational sumcheck protocol (see Section 5.5) to show that

∑

k∈K

vH(α)

(α− ˆrow〈M〉(k))
· vH(β)

(β − ĉol〈M〉(k))
· v̂al〈M〉(k) = γ .

In particular, the verifier V outputs the rational constraints “deg(ĝ) ≤ |K| − 2” for g sent by
P, and “deg(ê) ≤ 2|K| − 3” for e : L→ F defined as

∀ a ∈ L , e(a) :=
ΣK(g, γ)(a) · (α− row〈M〉(a))(β − col〈M〉(a))− vH(α)vH(β)val〈M〉(a)

vK(a)
.

(5.2)

Lemma 5.6.6. For any field F and evaluation domain L ⊆ F, Construction 5.6.5 is an RS-
encoded holographic PCP over domain L for the indexed relationRMAT with perfect complete-
ness and perfect soundness, for indices i = (F, H,K, 〈M〉) and instances x = (α, β, γ) with
H,K subgroups of F, |L| > 3|K|−3, L∩K = ∅, and α, β ∈ F\H . In particular, the following
properties hold.
1. Completeness: if (i,x,⊥) ∈ RMAT then VI(i)(x) outputs rational constraints that are

satisfied by the oracles sent by the honest prover P(i,x).
2. Soundness: if (i,x,⊥) 6∈ RMAT then for every malicious prover P̃ at least one of the rational

constraints output by VI(i)(x) is not satisfied by the oracles sent by P̃.
The constraint degree is 2|K| − 3, and the effective degree is 3|K| − 3. The indexer and prover
run in time OF(|L| log |L|), and the query evaluation time of the verifier is OF(log |K|).

Proof. Completeness and soundness follow immediately from Claim 5.6.4, the completeness
and soundness of the rational sumcheck protocol, and the observation that the denominator of the
rational summand for M̂(α, β) is nonzero for all k ∈ K when α, β ∈ F\H . The query evaluation
time is dominated by the cost of evaluating vH and vK at a point, which isOF(log |H|+log |K|) =
OF(log |K|). The constraint degree and effective degree are obtained from setting dN := |K| − 1
and dD := 2|K| − 2 in the rational sumcheck protocol (see Lemma 5.5.3).

5.6.2 The protocol
Recall from Section 5.3.3 that ~r :=

(
uH(a, Y))a∈H ∈ F[Y]H is a vector of linearly indepen-

dent polynomials in Y . The primary computational task in the lincheck protocol is to evaluate the
low-degree extension uM(X, Y) of ~rM ∈ F[Y]H at a uniformly chosen point in F× F. For this,
we use the protocol for sparse matrix arithmetization discussed above, along with an observation
showing that it suffices to compute the arithmetization of a matrix M∗ related to M .

Claim 5.6.7. For any matrix M ∈ FH×H , let M∗ ∈ FH×H be the matrix given by M∗
a,b :=

Mb,a · uH(b, b) for all a, b ∈ H; note that ‖M∗‖ = ‖M‖. Then

uM(X, Y) ≡ M̂∗(X, Y) .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 137

Proof. By the definition of low-degree extension,

uM(X, Y) ≡
∑

a∈H

(~rM)a · La,H(X) ≡
∑

a∈H

La,H(X)
∑

b∈H

Mb,a · uH(b, Y) .

Recall that uH(b, Y) ≡ uH(b, b)Lb,H(Y). Hence

uM(X, Y) ≡
∑

a∈H

∑

b∈H

La,H(X)Lb,H(Y)Mb,auH(b, b) ≡ M̂∗(X, Y) .

Construction 5.6.8 (holographic lincheck). The indexer I receives as input an index i =
(F, L,H,K, d, 〈M〉), computes a sparse representation 〈M∗〉 of the matrixM∗ (as in Claim 5.6.7),
and then runs the indexer of the sparse matrix arithmetization protocol (Construction 5.6.5) on
the index (F, H,K, 〈M∗〉); note that the output of the latter includes descriptions of F, H,K.

Subsequently, given an instance x = 1log |K| and witness w = (f1, f2), the honest prover P
receives as input (i,x), the honest verifier V receives as input x and oracle access to I(i), and
they engage in the following protocol.
1. V sends α ∈ F \H uniformly at random.
2. P sends the evaluation t ∈ RS [L, |H| − 1] of the polynomial t̂(X) := uM(X,α).
3. P,V engage in the sumcheck protocol to show that

∑
b∈H uH(b, α)f̂1(b)− t̂(b)f̂2(b) = 0.

That is, P sends g1 ∈ RS [L, |H| − 2] and V outputs the rational constraints “deg(ĝ1) ≤
|H| − 2” and “deg(ĥ) ≤ d− 1” where

∀ b ∈ L , h(b) :=
uH(b, α)f1(b)− t(b)f2(b)− ΣH(g1, 0)(b)

vH(b)
.

4. V sends β ∈ F \H uniformly at random.
5. P sends the field element γ := uM(β, α) = t̂(β), and V outputs the boundary constraint

“t̂(β) = γ”.
6. P,V engage in the matrix arithmetization protocol (Construction 5.6.5) to show that
M̂∗(β, α) = γ.
That is, P sends g2 ∈ RS [L, |K| − 2] and V outputs the rational constraints “deg(ĝ2) ≤
|K| − 2” and “deg(ê) ≤ 2|K| − 3”, where e : L→ F is as in Eq. (5.2) with g2 in place of g
and M∗ in place of M .

Proof of Lemma 5.6.2. For α ∈ F, let ~rα :=
(
uH(b, α)

)
b∈H ∈ FH . One can verify that ~rαM =(

uM(b, α)
)
b∈H .

Completeness. Suppose that f̂1|H = M · ĝ|H . Then for every α ∈ F \H it holds that
∑

b∈H

uH(b, α)f̂1(b) = 〈~rα, f̂1|H〉 = 〈~rαM, f̂2|H〉 =
∑

b∈H

uM(b, α)f̂2(b) =
∑

b∈H

t̂(b)f̂2(b)

and so the sumcheck protocol in Step 3 succeeds. Next, Claim 5.6.7 tells us that uM(X, Y) ≡
M̂∗(X, Y) and so for every β ∈ F \ H it holds that uM(β, α) = M̂∗(β, α). This means that
M̂∗(β, α) = t̂(β) = γ, and so the matrix arithmetization subverifier accepts, and the boundary
constraint “t̂(β) = γ” is satisfied.
Round-by-round soundness. We define the State function as follows.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 138

State(M, f1, f2, (α, t, g1, β, (γ, g2))):
1. If α 6= ⊥ is such that 〈~rα, f̂1|H〉 = 〈~rα,M · f̂2|H〉, output accept.
2. If t̂(X) 6≡ uM(X,α) and β 6= ⊥ is such that t̂(β) = uM(β, α), output

accept.
3. Otherwise, output reject.

Clearly State(∅) = reject. Suppose that f̂1|H 6= M · f̂2|H . Then Prα∈F\H [〈~rα, f̂1|H〉 =

〈~rα,M · f̂2|H〉] ≤ (|H| − 1)/(|F| − |H|), and so the probability of moving to accept in the first
round is at most (|H| − 1)/(|F| − |H|). Similarly, if t̂(X) 6≡ uM(X,α), then Prβ∈F\H [t̂(β) =
uM(β, α)] ≤ (|H| − 1)/(|F| − |H|), and so the probability of moving to accept in the second
round is at most (|H| − 1)/(|F| − |H|).

Now suppose that State(M, f1, f2, (α, t, g1, β, (γ, g2))) = reject; we show that with prob-
ability 1 there is some constraint which is not satisfied. By definition of State, 〈~rα, f̂1|H〉 6=
〈~rα,M · f̂2|H〉. If t̂(X) ≡ uM(X,α) then the sumcheck constraint is not satisfied with probability
1, by the soundness of the sumcheck protocol. Otherwise t̂(X) 6≡ uM(X,α); then by definition
of State, it holds that t̂(β) 6= uM(β, α).

Hence with probability 1, either the sumcheck constraint is not satisfied, the boundary
constraint “t̂(β) = γ” is not satisfied, or γ = t̂(β) 6= uM(β, α) = M̂∗(β, α), and so the matrix
arithmetization subverifier outputs a rational constraint that is not satisfied.
Zero knowledge. Note that since M is part of the index rather than the witness, it is not
relevant for zero knowledge; in particular, the simulator has access to M . Hence to ensure zero
knowledge we need only modify Step 3 to use the zero knowledge sumcheck protocol. This
adds an additional oracle (the random mask) but not an additional round, since we can run the
protocols in parallel. The soundness error increases by at most 1/|F| (and since the ZK sumcheck
protocol is one round, so does the RBR soundness error). The sumcheck simulator satisfies the
property that the view of a malicious verifier making t queries across all oracles can be simulated
by making t queries to the summand. Since the summand is defined pointwise with respect to
(f1, f2), this results in at most t queries to each of f1, f2.
Efficiency. The indexer runs the indexer of the holographic protocol for sparse matrix arithme-
tization on (a modification of) the given matrix, and so runs in time OF(|L| log |L|). The first
message of the prover is for the sumcheck protocol and the second message of the prover is
for the sparse matrix arithmetization protocol, and so the prover runs in time OF(|L| log |L|).
The query evaluation time of the verifier is dominated by the cost to evaluate the vanishing
polynomials vH and vK at a point, and so is OF(log |H|+ log |K|) = OF(log |K|).

The constraint degree is max(d−1, |H|−2, 2|K|−3) and the effective degree is max(|H|−
1 + d, 3|K| − 3), as can be seen by keeping track of the degrees of all relevant real and virtual
oracles in the protocol (as in the table) and then using the definitions in Section 5.4.1.

oracle type constraint degree numerator degree denominator degree

g1 real |H| − 2 – –
h virtual d− 1 |H| − 1 + d |H|
g2 real |K| − 2 – –
e virtual 2|K| − 3 3|K| − 3 |K|

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 139

5.7 RS-encoded holographic IOP for R1CS
We describe an RS-encoded holographic IOP for R1CS. The main subroutine that we use

is the RS-encoded holographic protocol for lincheck that we obtained in Section 5.6.

Theorem 5.7.1. Fix some L ⊆ F and b ∈ N. Construction 5.7.2 below is a RS-encoded holo-
graphic IOP of knowledge forRR1CS (Definition 5.3.2) over domainL for indices (F, H,K, 〈A〉, 〈B〉, 〈C〉)
such that H,K are subgroups of F, |L| > 3|K| − 3, and L ∩ (H ∪K) = ∅. The protocol has 5
messages (prover moves first), is zero knowledge against verifiers making less than b queries,
and has round-by-round knowledge error |H|/(|F| − |H|). The index length is OF(|L|), and
the proof length is OF(|L|). The prover and indexer run in time OF(|L| log |L|) and the verifier
runs in time OF(|v|+ log |K|). The constraint degree is max(|H|+ b− 2, 2|K| − 3), and the
effective degree is max(2|H|+ b− 2, 3|K| − 3).

Construction 5.7.2. We describe an RS-encoded holographic IOP (I,P,V) for R1CS. (See
Fig. 5.4 for a diagram of this protocol after applying optimizations described in Remark 5.7.3
below.) In the description below we denote by (ILIN,PLIN,VLIN) the zero knowledge holographic
protocol for lincheck (Construction 5.6.8).

The indexer I receives as input an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉), computes the
encoded index IM ← ILIN(iMLIN) where iMLIN := (F, L,H,K, |H| + b − 1, 〈M〉) for each M ∈
{A,B,C} for each M ∈ {A,B,C}, and then outputs the tuple (IA, IB, IC). (Implicitly this
includes descriptions of F, H,K; recall also that in an RS-encoded protocol all parties have
access to a description of the evaluation domain L.)

Subsequently, the prover P receives as input the index i, an instance x = (I, v), and a
witness w = w; the verifier V receives as input the instance x only. Let z := (v, w) ∈ FH be
the full variable assignment.
1. Compute LDE of the input. Before the interaction, the prover P constructs f̂v(X), the

unique polynomial of degree less than |I| such that, for all b ∈ I , f̂v(b) = vb. Define
fv := f̂v|L. Note that the verifier V, which knows v, can evaluate f̂v(X) at any point in F in
time OF(|v|).

2. Witness and auxiliary oracles. The prover P sends to the verifier V the oracles

fw ∈ RS [L, |H| − |I|+ b− 1] and fAz, fBz, fCz ∈ RS [L, |H|+ b− 1]

defined as follows.

• fw := f̄w|L where f̄w is a random polynomial of degree less than |H| − |I|+ b such that

∀ a ∈ H \ I , f̄w(a) =
wa − f̂v(a)

vI(a)
.

• fAz := f̄Az|L where f̄Az is a random polynomial of degree less than |H| + b such that,
for all a ∈ H , f̄Az(a) =

∑
b∈H Aa,b · zb = (Az)a. The other codewords, fBz and fCz, are

defined similarly.

The codewords fv and fw implicitly define the “virtual oracle” fz ∈ RS [L, |H|+ b− 1]
where fz(a) := fw(a)vI(a) + fv(a) for a ∈ L. Note that f̂z(a) = za for all a ∈ H , so f̂z is a
low-degree extension of z.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 140

3. Rowcheck. To test that f̂Az|H ◦ f̂Bz|H = f̂Cz|H , the verifier V outputs the rational constraint
“deg(ŝ) ≤ |H|+ 2b− 2” where s : L→ F is defined as

∀ a ∈ L , s(a) :=
fAz(a) · fBz(a)− fCz(a)

vH(a)
.

4. Linchecks. To test that f̂Mz|H = M · f̂z|H for each M ∈ {A,B,C}, the prover P and
verifier V run the following in parallel. Recall that the verifier V has oracle access to the
encoded index is (IA, IB, IC).
(a)

(
PLIN(iALIN, 1

log |K|, (fAz, fz)),V
fAz ,fz ,IA
LIN (1log |K|)

)
.

(b)
(
PLIN(iBLIN, 1

log |K|, (fBz, fz)),V
fBz ,fz ,IB
LIN (1log |K|)

)
.

(c)
(
PLIN(iCLIN, 1

log |K|, (fCz, fz)),V
fCz ,fz ,IC
LIN (1log |K|)

)
.

Proof. Fix an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉) and instance x = (I, v).
Completeness. Suppose that (i,x, w) ∈ RR1CS, and let z := (v, w). Note that, by construction,
f̂z is a low-degree extension of z. SinceAz◦Bz = Cz, we know that f̂Az|H ◦ f̂Bz|H = f̂Cz|H and
f̂Mz|H = M · f̂z|H for each M ∈ {A,B,C}. Hence, for all a ∈ H it holds that fAz(a) ·fBz(a)−
fCz(a) = 0, and so ŝ(X) is a polynomial of degree at most 2(|H|+b−1)−|H| = |H|+2b−2,
so the rational constraint in Step 3 is satisfied. Moreover, the holographic lincheck protocol in
Step 4a yields rational constraints which are satisfied; by a similar argument, Steps 4b and 4c
yield satisfied rational constraints.
Round-by-round soundness. We define the following State function (i = (F, H,K, 〈A〉, 〈B〉, 〈C〉)):

State(i, (I, v), (fw, fAz, fBz, fCz, trLIN)):
1. If (i, (I, v), f̂w|H\I) ∈ RR1CS, output accept.
2. Split trLIN into (partial) transcripts trALIN, tr

B
LIN, tr

C
LIN for the three lincheck sub-

protocols on A,B,C respectively. If there exists M ∈ {A,B,C} such that
f̂Mz|H 6= M · f̂z|H but the state function for the lincheck protocol accepts
(M, fMz, fz, trLIN), output accept.

3. Otherwise, output reject.

Suppose that (i, (I, v)) /∈ L(RR1CS). Item 1 never holds. By the round-by-round soundness
of the lincheck protocol, the probability that State moves to accept at any round is at most
|H|/(|F|−|H|). It remains to show that when State(i, (I, v), (fw, fAz, fBz, fCz, trLIN)) = reject,
the verifier rejects with probability 1.

Let fz be the virtual oracle induced by fw as sent by P̃. Then either f̂Az|H ◦ f̂Bz|H 6= f̂Cz|H ,
or there exists M ∈ {A,B,C} such that f̂Mz|H 6= M · f̂z|H . In the former case, the rational
constraint output in Step 3 is not satisfied (with probability 1), so suppose that the latter holds.
Then by the definition of State, the state function for the lincheck protocol rejects for some such
M . Hence some rational constraint output by the verifier in Steps 4a, 4b and 4c is not satisfied.
Proof of knowledge. The extractor E(i,x, tr) operates as follows: read fw from tr and
output f̂w|H\I . Let S := {fw : (i,x, f̂w|H\I) ∈ RR1CS}. From the round-by-round soundness
analysis, it holds that conditioned on fw /∈ S, the state moves to accept with probability at most
ε := |H|/(|F| − |H|). Hence if the state moves to accept with probability greater than ε, it must
be that fw ∈ S, and so E succeeds.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 141

Zero knowledge. The simulator S simulates the oracles fw, fAz, fBz, fCz by answering Ṽ’s
queries with uniformly random elements of F. It runs the simulator for the zero knowledge
holographic lincheck protocol as appropriate, answering the subsimulators’ queries to the oracles
with uniformly random field elements. Since Ṽ makes t < b queries across all oracles, the
guarantees of the subsimulators ensure that we only need to simulate at most t evaluations of
each of fw, fAz, fBz, fCz in L (with L ∩H = ∅), which by bounded independence properties
of random polynomials will be uniformly random elements of F. For a detailed simulator
construction for a similar protocol, see Section 3.7.1.
Efficiency. The running time of the indexer follows from the running time of the lincheck
indexer; in particular, its computation cost is dominated by the cost of a constant number of
FFTs over L. The running time of the prover is similarly dominated. The constraint cost of the
verifier consists of evaluating the low degree extension of v at a single point in F, and running
the lincheck and rowcheck subverifiers whose cost is dominated by evaluating vH and vK ; using
preprocessing this can be achieved for H,K subgroups of F in time OF(log |K|).

Remark 5.7.3 (batching linchecks). We would like to batch the three lincheck protocols from
Steps 4a to 4c into a single one, similarly to what is done in the non-holographic protocol for
R1CS. Informally, we want the verifier to send random elements ηA, ηB, ηC and then run a
holographic lincheck for the matrix ηAA+ ηBB + ηCC. However doing this requires some care
because the verifier only has access to the encoded indices (IA, IB, IC) for the matrices A,B,C,
as opposed to an encoded index for the matrix ηAA+ ηBB + ηCC, and our holographic lincheck
protocol is not linear in the encoded indices.

We now explain how to overcome this issue by “opening up” the lincheck protocol into its
components, described in Construction 5.6.8 in Section 5.6. The resulting protocol is summarized
in Fig. 5.4.

The first message of the verifier consists of random elements ηA, ηB, ηC for the random
linear combination, along with the random challenge α prescribed by Step 1 of the holographic
lincheck protocol.

The subsequent two steps are straightforward to adapt due to linearity:

• In Step 2, the prover must send the evaluation of the polynomial t̂(X) := uηAA+ηBB+ηCC(X,α),
which by linearity equals to

∑
M∈{A,B,C} ηMuM(X,α). The prover thus sends t := t̂ |L∈

RS [L, |H| − 1].
• In Step 3, the prover and verifier must run the zero knowledge sumcheck protocol (relative

to a random mask r sent earlier) to show that
∑

b∈H uH(b, α)f̂$(b) − t̂(b)f̂z(b) = 0 where
f̂$(X) is the low-degree extension of the vector (

∑
M∈{A,B,C} ηMM)z. By linearity, f̂$(X) =∑

M∈{A,B,C} ηM f̂M(X), which means that the verifier can do this since the prover has sent
fz, fA, fB, fC .

Then there are two steps that remain unchanged: the verifier sends the random challenge β
prescribed by Step 4 of the holographic lincheck protocol, and the prover answers with the
evaluation γ := t̂(β) prescribed in Step 5 of the holographic lincheck protocol.

The final step of the holographic lincheck protocol, Step 6, involves a rational sumcheck
checking that γ is the value of the low-degree extension of

∑
M∈{A,B,C} ηMM at (β, α). This is

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 142

the step that lacks linear structure and we need to modify it. Specifically we need to turn the
expression

∑

M∈{A,B,C}

ηM
vH(α)

(α− ˆrow〈M∗〉(X))
· vH(β)

(β − ĉol〈M∗〉(X))
· v̂al〈M∗〉(X)

into a rational function in X . This is achieved by “multiplying up” denominators, to obtain the
rational function N̂(X)/D̂(X) where

N̂(X) := vH(α)vH(β)
∑

M∈{A,B,C}

ηM v̂al〈M∗〉(X)
∏

N∈{A,B,C}\{M}

(α− ˆrow〈N∗〉(X))(β − ĉol〈N∗〉(X))

(5.3)

D̂(X) :=
∏

M∈{A,B,C}

(α− ˆrow〈M∗〉(X))(β − ĉol〈M∗〉(X)) . (5.4)

Crucially, the verifier can easily evaluate N̂ and D̂ at any point on L by having oracle access to
the encoded indices (IA, IB, IC).

5.8 Holographic IOP for R1CS
We construct an efficient holographic IOP for rank-1 constraint satisfiability (R1CS). Our

preprocessing zkSNARK is obtained by applying our compiler to this protocol (reparametrized
to reduce soundness error).

Theorem 5.8.1. There exists a public-coin holographic IOP HOL = (I,P,V) for the indexed
relationRR1CS (Definition 5.3.2) that is a zero knowledge proof of knowledge with the following
efficiency features.

• Indexing. The indexer I, given an index i = (F, H,K, 〈A〉, 〈B〉, 〈C〉), where H,K are
subgroups of F, runs in time OF(|K| log |K|) to compute an encoded index I(i) of size
OF(|K|). Note that |I(i)| = O(|i|).

• Proving and verification. To achieve zero knowledge against b queries, the prover P and
verifier V interact over O(log(|K| + b)) rounds with a round-by-round soundness (and
knowledge) error of O((|K|+ b)/|F|+ εFRI(F, ρ, δ)) where ρ, δ = Θ(1). The prover P runs
in time OF((|K|+ b) log(|K|+ b)), and the total length of the proof oracles that it outputs is
OF(|K|+ b). The verifier V runs in time OF(|v|+ log(|K|+ b)), and makes O(log(|K|+ b))
queries to the encoded index and proof oracles.

Above, εFRI(F, ρ, δ) denotes the round-by-round soundness error of the FRI low-degree
test [22] over the field F for proximity parameter δ and rate parameter ρ.

The rest of this section is organized as follows: (1) we introduce a generic theorem
(Theorem 5.8.2) that allows us to “compile” an RS-encoded holographic IOP into a holographic
IOP via a low-degree test; then (2) we show how to apply this theorem with the FRI low-degree

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 143

P((F, H,K, 〈A〉, 〈B〉, 〈C〉), (v, I), w) V{row〈M∗〉,col〈M∗〉,val〈M∗〉}M∈{A,B,C}(F, H,K, (v, I))

sample fw ∈ RS [L, |w|+ b− 1]
sample fAz, fBz, fCz ∈ RS [L, |H|+ b− 1]
sample r ∈ RS [L, 2|H|+ b− 2] s.t.

∑
a∈H r̂(a) = 0

fw, fAz, fBz, fCz, r

fz := fw · vI + fv

s :=
fAzfBz − fCz

vH
“deg(ŝ) ≤ |H|+ 2b− 2”

Holographic Lincheck
ηA, ηB, ηC ← F

α← F \H
ηA, ηB, ηC , α

compute t̂(X) :=
∑

M∈{A,B,C} ηMuM(X,α)

t := t̂ |L∈ RS [L, |H| − 1]

t

Polynomial Sumcheck for
∑

b∈H f̂(b) = 0

where f(b) = r(b)− t(b)fz(b) +
∑

M∈{A,B,C} ηM uH(b, α)fM(b)

compute g1 ∈ RS [L, |H| − 2]
where ĝ1 is unique s.t. ∃ ĥ
ΣH(ĝ1, 0) + ĥvH = f̂

g1

h := f−ΣH(g1,0)
vH

“deg(ĥ) ≤ |H|+ b− 2”

β ← F \Hβ
γ := t̂(β)

γ “t̂(β) = γ”

Rational Sumcheck for
∑

k∈K
N̂(k)

D̂(k)
= γ

where N(k)
D(k)

=
∑

M∈{A,B,C} ηM
vH(α)

(α− ˆrow〈M∗〉(k))
· vH(β)

(β−ĉol〈M∗〉(k))
· v̂al〈M∗〉(k)

compute g2 ∈ RS [L, |K| − 2]
where ĝ2 is unique s.t. ∃ ê
ΣK(ĝ2, γ)D̂ − N̂ = êvK

g2

e := ΣK(g2,γ)D−N
vK

“deg(ê) ≤ max

{
deg(N̂)− |K|
deg(D̂)− 1

}
”

where
deg(N̂) = 5|K| − 5

deg(D̂) = 6|K| − 6

Figure 5.4: Diagram of our RS-encoded holographic IOP for R1CS (Construction 5.7.2), after
applying the optimizations described in Remark 5.7.3 (which batch the three holographic
linchecks into one holographic protocol).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 144

test [22] to prove Theorem 5.8.1. Theorem 5.8.2 is adapted from Theorem 3.7.1 to handle
holography and round-by-round soundness, and to more carefully account for the running time
of the verifier. Before stating the theorem, we briefly describe the construction.

The compiled holographic IOP consists of two conceptual stages: first, the prover and
verifier engage in the RS-encoded holographic IOP; then, the prover proves to the verifier that
the oracles it sent were of degree d using the low-degree test. For efficiency, rather than proving
the degree of f1, . . . , fk separately, we introduce an additional round of interaction where the
verifier chooses a vector ~z ∈ Fk and the prover shows that the oracle

∑
i zifi has degree d. (If

the oracles sent have differing prescribed degrees, then we “shift” them so they all have the same
degree.) Finally, for zero knowledge, the prover sends a random f0 of degree d (before seeing ~z)
and shows instead that f0 +

∑
i zifi is of degree d. We now state and prove the theorem.

Theorem 5.8.2 (adapted from Theorem 3.7.1). Suppose that we are given:
• an RS-encoded holographic IOP HOLR = (IR, PR, VR, {~dI, ~dP,1, . . . , ~dP,k}) over L, with

maximum degree (dc, de), for an indexed relationR;
• a low-degree test (PLDT,VLDT) for the Reed–Solomon code RS [L, dc].
Fix any proximity parameter δLDT such that

δLDT < min

(
1− 2ρc

2
,
1− ρc

3
, 1− ρe

)
where ρc :=

dc + 1

|L|
and ρe :=

de + 1

|L|
.

Then we can combine the above two ingredients to obtain a holographic IOP (I,P,V) for R
with the following parameters. (Parameters with superscript “R” and “LDT” are parameters for
(IR, PR, VR) and (PLDT,VLDT) respectively.)

(i) kR + kLDT rounds,
(ii) query complexity qLDT

π + qLDT
w
· (kR + 1),

(iii) proof length LR + LLDT,
(iv) soundness error εR + εLDT + |L|/|F|, and
(v) round-by-round soundness error max(εRrbr, ε

LDT
rbr , |L|/|F|).

The new indexer I equals IR; the new prover P runs in time time(PLDT) + time(PR); and the
new verifier V runs in time time(VLDT) + qLDT

π · tRq .
If (IR, PR, VR) is zero-knowledge then (I,P,V) is also zero-knowledge (with the same

query bound).
If (IR, PR, VR) has round-by-round knowledge error κRrbr then (I,P,V) has round-by-

round knowledge error max(κRrbr, ε
LDT
rbr , |L|/|F|).

Proof. The proof is essentially identical to Theorem 3.7.1; note, however, that we do not need to
low-degree test the encoded index since it is honestly generated.

To show round-by-round soundness, we define a state function State using the state
functions StateR and StateLDT of the holographic IOP and low-degree test, respectively. Since
the protocols are sequentially composed, we can split the transcript into three parts: trR, the first
kR rounds; ~z, the verifier message in round kR + 1 (to make a full round we precede this with a
“dummy” prover message); and trLDT, the last kLDT rounds. The state function is described by the
following algorithm:

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 145

State(i,x, trR, ~z, trLDT):
1. Let (Π1,m1, . . . ,Πj,mj) := trR (for some j ≤ kR). If Πi is δLDT-close

to RS
[
L, ~dP,i

]
for all i ∈ [j], output StateR(Π′1,m1, . . . ,Π

′
j,mj) where

Π′i ∈ RS
[
L, ~dP,i

]
is the closest codeword to Πi.

2. If ~z is empty then output reject; if ~zTΠ is δLDT-close to RS [L, dc] then
output accept, where Π is the “stacked” proof matrix (see Protocol 3.7.2).

3. Otherwise, output StateLDT(i,x, trLDT).

Clearly State(i,x, ∅) = StateR(i,x, ∅) = reject. For any partial transcript tr, if tr
ends during the first stage of the protocol then rbr(tr) ≤ εRrbr. If tr ends with round kR and
State(i,x, tr) = reject then the probability that ~zTΠ is δLDT-close to RS [L, dc] is bounded by
|L|/|F|; hence rbr(tr) ≤ |L|/|F|. Finally, if tr ends after round kR+ 1, if State(i,x, tr) = reject
then ~zTΠ is δLDT-far from RS [L, dc], and so by the RBR soundness guarantee of the low-degree
test rbr(i,x, tr) ≤ εLDT

rbr .
The same state function witnesses round-by-round knowledge soundness. Suppose that

for some transcript tr with State(i,x, tr) = reject, rbr(tr) > max(κRrbr, ε
LDT
rbr , |L|/|F|). Since

rbr(tr) > max(εLDT
rbr , |L|/|F|), it must be that Πi is δLDT-close to RS

[
L, ~dP,i

]
for all i; hence

State(i,x, trRc) = State(i,x, tr) = accept. We apply the knowledge extractor of the RS-hIOP
to P̃c, which runs P̃ and corrects its output words. The knowledge soundness guarantee for the
RS-hIOP ensures that this extractor succeeds.

Proof of Theorem 5.8.1. The two main ingredients in the proof are the RS-hIOP of Theo-
rem 5.7.1 and the FRI low-degree test [22]. These are combined using Theorem 5.8.2 to
build the described IOP. The indexer in our construction will choose L to be a coset of a smooth
subgroup of F with, say, 8|K| ≤ |L| ≤ 16|K|, and (H ∪K) ∩ L = ∅.

5.9 Definition of preprocessing non-interactive arguments in
the ROM

We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle
with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ sampled uniformly at random from
U(λ).

A tuple of algorithms ARG = (I,P ,V) is a preprocessing non-interactive argument in the
random oracle model (ROM) for an indexed relationR if the following properties hold.

• Completeness. For every adversary A,

Pr

(i,x,w) 6∈ R
∨

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣

ρ← U(λ)
(i,x,w)← Aρ

(ipk, ivk)← Iρ(i)
π ← Pρ(ipk,x,w)

 = 1 .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 146

• Soundness. For every t-query adversary P̃ ,

Pr

(i,x) 6∈ L(R)
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣

ρ← U(λ)

(i,x, π)← P̃ρ
(ipk, ivk)← Iρ(i)

 ≤ ε(t, λ) .

The above formulation of completeness allows (i,x,w) to depend on the random oracle ρ, and
the above formulation of soundness allows (i,x) to depend on the random oracle ρ.

All constructions in this paper achieve the stronger property of knowledge soundness, and
optionally also the property of (statistical) zero knowledge. We define both of these properties
below.
Knowledge soundness. We say that ARG = (I,P ,V) has (adaptive) knowledge error κ if
there exists an efficient extractor E such that for every t-query adversary P̃ and predicate p,

Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

(ij,xj,wj) ∈ R

∣∣∣∣∣∣
(~i, ~x, ~w, aux)← E P̃(1t, 1λ)

≥ Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

Vρ(ivkj,xj, πj) = 1

∣∣∣∣∣∣

ρ← U(λ)

(~i, ~x, ~π, aux)← P̃ρ
∀ j , (ipkj, ivkj)← Iρ(ij)

− κ(t, λ, `) . (5.5)

This implies that the distributions of (~i, ~x, aux) in the following experiments are κ-close:
• (~i, ~x, ~π, aux)← P̃ρ, restricted to the space where for all j, πj is a valid proof for (ij,xj); and
• (~i, ~x, ~w, aux)← E P̃(1t, 1λ), restricted to the space where for all j, (ij,xj,wj) ∈ R.
Zero knowledge. We say that ARG = (I,P ,V) has (adaptive statistical) zero knowledge
if there exists a probabilistic polynomial-time simulator S such that for every t-query honest
adversary A the distributions below are statistically close (as a function of λ):

(ρ, i,x, π)

∣∣∣∣∣∣∣∣

ρ← U(λ)
(i,x,w)← Aρ

(ipk, ivk)← Iρ(i)
π ← Pρ(ipk,x,w)

and

(ρ[µ], i,x, π)

∣∣∣∣∣∣

ρ← U(λ)
(i,x,w)← Aρ

(µ, π)← Sρ(i,x)

 .

Above, ρ[µ] is the function that, on input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise.
This definition uses explicitly-programmable random oracles [20]. (Non-interactive zero knowl-
edge with non-programmable random oracles is impossible for non-trivial languages [125, 32].)
Here, by an honest adversary we mean an adversary whose output satisfies (i,x,w) ∈ R with
probability 1.
Post-quantum security. The above definitions consider security against classical adversaries
that make a bounded number of queries to the oracle (and are otherwise computationally
unbounded). We also consider security against quantum adversaries, whose queries to the oracle
can be in superposition. This setting is known as the quantum random oracle model (QROM) [48],
and is the established model to study post-quantum security for constructions that use random
oracles. The soundness definition and knowledge soundness definition for post-quantum security

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 147

are identical to the ones above, except that P̃ρ is now taken to mean that P̃ has superposition
query access to ρ; the zero knowledge definition remains unchanged because indistinguishability
holds against unbounded adversaries that see the whole oracle.

We do not know if, in the quantum setting, knowledge soundness with auxiliary output is
polynomially related to knowledge soundness without auxiliary output.

5.10 From holographic IOPs to preprocessing arguments
We describe how to transform any public-coin holographic IOP (Section 5.4) into a corre-

sponding preprocessing non-interactive argument in the ROM (Section 5.9). We additionally
explain how the same transformation achieves post-quantum security in the QROM. A main goal
is achieving adaptive knowledge soundness.

Theorem 5.10.1. There exists a polynomial-time transformation T such that if HOL = (I,P,V)
is a public-coin holographic IOP for an indexed relationR then ARG = (I,P ,V) := T(HOL)
is a preprocessing non-interactive argument in the ROM forR. The transformation T satisfies
the following properties:

• EFFICIENCY: If HOL has oracle length L and query complexity q then ARG has argument size
O(λ · q · log L); moreover, the time complexities of the argument indexer, prover, and verifier
are as follows

time(I) = time(I) +O(λL) ,

time(P) = time(P) +O(λL) ,

time(V) = time(V) +O(λ · q · log L) .

• ZK PRESERVATION: if HOL is honest-verifier zero knowledge then ARG is adaptive statistical
zero knowledge.

• ADAPTIVE KNOWLEDGE FROM SR: If HOL has state-restoration knowledge error κsr(t) then
ARG has adaptive knowledge error κ(t, λ, `) = t · (κsr(t) +O(t2 · 2−λ)).13

• ADAPTIVE KNOWLEDGE FROM RBR: If HOL has round-by-round knowledge error κrbr then
ARG has adaptive knowledge error κ(t, λ, `) = t ·κrbr +O(t2 · 2−λ) in the ROM and adaptive
knowledge error κ(t, λ, `) = O(t2 · κrbr + t3 · 2−λ) in the QROM.

5.10.1 Construction
The transformation T has two parts. First, we apply the BCS transformation [32] to the

holographic IOP to obtain a “holographic” non-interactive argument, namely, a non-interactive
argument where the (deterministic) argument verifier is fast when given oracle access to the

13This is not tight; a more sophisticated analysis using state-restoration soundness directly would eliminate a
factor of t. We leave this to future work, since in our application we apply the transformation to a protocol that
satisfies round-by-round soundness.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 148

encoded index. Next, we transform this into a preprocessing non-interactive argument by having
the argument indexer output a Merkle commitment to the encoded index, and having the argument
prover additionally output Merkle openings to the positions of the encoded index queried by the
IOP verifier.

We now describe the transformation T in more detail: in Construction 5.10.2 we recall the
transformation TBCS of [32], adapting its presentation to holographic IOPs (but the construction
is identical otherwise); then in Construction 5.10.3 we describe the transformation T, using TBCS

as a subroutine.

Construction 5.10.2 (TBCS). The transformation TBCS takes as input a holographic IOP HOL =
(I,P,V) and outputs the (standard) non-interactive argument ARGBCS = (PBCS,VBCS) defined
below.

• PρBCS(i,x,w):

1. Set σ0 := ivk‖x, where (ivk, ipk) ← I(i) and I is the argument indexer in Construc-
tion 5.10.3.

2. For i = 1, . . . , k:
(a) Compute randomness ρi := ρ(σi−1) for the i-th round.
(b) Provide ρi to the IOP prover P(i,x,w) to obtain a proof oracle Πi.
(c) Use ρ to compute a Merkle tree on Πi, and in particular to obtain a Merkle root ωi.
(d) Set σi := ρ(σi−1‖ωi).

3. Compute randomness ρk+1 := ρ(σk) for the query phase.
4. Run the IOP verifier VI(i)(x; ρ1, . . . , ρk, ρk+1), answering queries via the proof ora-

cles (Π1, . . . ,Πk), so to deduce the set of queries Q that are asked on randomness
(ρ1, . . . , ρk, ρk+1).

5. Output the proof string π that contains all the Merkle roots (ω1, · · · , ωk) and, for each
query in Q, an answer supported by an authentication path (against the appropriate root).

• VρBCS(i,x, π) ≡ Vρ,I(i)
BCS (x, π):

1. Set σ0 := 0λ and use the i-th root ωi in π to set σi := ρ(σi−1‖ωi) for i = 1, . . . , k.
2. Compute each randomness: ρ1 := ρ(σ0), . . . , ρk := ρ(σk−1), ρk+1 := ρ(σk).
3. Run the IOP verifier VI(i)(x; ρ1, . . . , ρk, ρk+1). Whenever V queries a proof oracle Πi,

validate the authentication path for this query in π, and answer the query with the corre-
sponding value in π. (If π contains no entry for a query, reject.) Accept if and only if V
accepts.

We write VBCS as an algorithm with oracle access to I(i) to emphasize that TBCS is black-box
with respect to V: the queries VBCS makes to I(i) are exactly the queries V makes to I(i) (on
appropriate randomness).

Construction 5.10.3 (T). The transformation T takes as input a public-coin holographic IOP
HOL = (I,P,V) and outputs the preprocessing non-interactive argument ARG = (I,P ,V)
defined below. We let (PBCS,VBCS) be the BCS prover and verifier output by TBCS(I,P,V), and
view VBCS as having oracle access to I(i).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 149

• Indexer. On input i, Iρ computes the encoded index I(i), computes a Merkle commitment ω to
I(i) using the sub-oracle ρ0, and outputs the key pair (ipk, ivk) := ((i, I(i)), (ω, ρ0(i)).
• Prover. On input (ipk,x,w),Pρ parses the proving key ipk as (i, I(i)), computes z := ρ0(ρ0(i)‖x),

computes the output of the BCS prover πBCS := PρzBCS(i,x,w), simulates the BCS verifier
Vρz ,I(i)

BCS (x, πBCS) letting api be the authentication path for its i-th query to I(i), and outputs the
proof string π := (πBCS, (ap1, . . . , apk)).
• Verifier. On input (ivk,x, π), Vρ parses the proof string π as (πBCS, (ap1, . . . , apk)) and ivk as

(ω, a), computes z := ρ0(a‖x), and runs the BCS verifier Vρz ,•BCS (x, πBCS) and answers its i-th
query to the second oracle (denoted via the symbol “•”) using the provided authentication
paths. If for any i, api is not a valid authentication path with respect to ρ0, the Merkle root ω,
and the position requested in the i-th query, then V rejects. Otherwise, V accepts if VBCS does.

Above we use certain domain separations for the random oracle. We define ρb(m) := ρ(b‖m) for
b ∈ {0, 1} and ρz(m) := ρ1(z‖m). The sub-oracle ρ0 is used to commit to the index i, while the
sub-oracle ρ1 is used by BCS prover and BCS verifier (further specialized with session identifier
z).

5.10.2 Completeness, efficiency, and non-adaptive zero knowledge

Completeness. This is straightforward from the protocol description.
Efficiency. The proof string π output by the argument prover P has two components: the
proof string πBCS output by the BCS prover PBCS, and authentication paths (ap1, . . . , apk) that
answer queries by the IOP verifier V to the encoded index. Each of these components has size
O(λ · q · log L). We now discuss time complexities. The overhead of the argument indexer I
with respect to the IOP indexer I is O(λ · L), due to the cost of committing to the encoded index
output by I. The overhead of the argument prover P with respect to the IOP prover P is O(λ · L),
due to the cost of committing to each oracle output by P (and the cost to answer queries by the
IOP verifier V to the oracles or the encoded index). The overhead of the argument verifier V
with respect to the IOP verifier V is O(λ · q · log L), due to the cost to validate the authentication
path associated to each query made by V (to a proof oracle or the encoded index).
Non-adaptive zero knowledge. The fact that the transformation T preserves zero knowledge
follows from the fact that the BCS transformation TBCS preserves zero knowledge (if leaves in
the Merkle tree are suitably salted), because the simulator is given the index i as input. See [32]
for details on why if HOL is honest-verifier zero knowledge (when viewed as a non-holographic
proof system) then (PBCS,VBCS) is statistical zero knowledge, in the non-adaptive case (where the
index and instance are fixed in advance). Note that in the non-adaptive case there is no difference
between classical and post-quantum statistical zero knowledge for a non-interactive protocol.

5.10.3 Non-adaptive soundness and knowledge
We first consider non-adaptive soundness and knowledge soundness in both the classical

and post-quantum settings as a warm up to the adaptive case.
Classical soundness. Consider an index-instance pair (i,x) that is not in L(R) and a t-query
malicious prover P̃ . Let E be the event that, over a random oracle ρ ← U(λ) and letting

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 150

(ipk, ivk)← Iρ0(i), for the proof string π̃ = (π̃BCS, (ap1, . . . , apk)) output by P̃ρ there exists an
authentication path api for some query location j ∈ |I(i)| that is valid with respect to ivk, ρ but
the opened value is not equal to I(i)j . If E occurs then we can find a collision in ρ via O(|I(i)|)
additional queries. Therefore

Pr
ρ

[Vρ(ivk,x, π̃) = 1]

≤Pr
ρ

[Vρ(ivk,x, π̃) = 1 | ¬E] + Pr
ρ

[E]

≤ Pr
z,ρ1

[Vρz ,I(i)
BCS (x, π̃BCS) = 1] + (t+O(L))2/2λ . (5.6)

The (non-adaptive) soundness guarantee of TBCS ensures that for any z, Prρ1 [Vρz ,I(i)
BCS (x, π̃BCS) =

1] ≤ εsr(t) +O(t2 · 2−λ), which yields the stated bound (since the query bound t can be assumed
to be at least L).
Post-quantum soundness. The post-quantum soundness argument follows the same outline as
the classical argument, except that: (i) we now use the result of [67] to bound the probability
that the BCS verifier accepts in the QROM, and (ii) we use the quantum query lower bound for
collisions [2] to bound the probability of the event E (which implies that a collision was found).
This yields the stated bound.
Classical knowledge soundness. We will prove the following non-adaptive knowledge sound-
ness property. For all i,x, and t-query adversaries P̃ ,

µ := Pr

(i,x,w) 6∈ R
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣

ρ← U(λ)

(π;Q)← P̃ρ
w← E(i,x, π,Q)
(ipk, ivk)← Iρ(i)

 ≤ κT (t, λ) .

where (π;Q)← P̃ρ denotes that π is the output of P̃ρ and Q : {0, 1}∗ ⇀ {0, 1}λ is a database
of its oracle queries and answers. Note that if P̃ has some auxiliary output (as in the full adaptive
knowledge soundness definition) then the distribution of this output is clearly preserved when
we extract.

Inspection of the proof of knowledge soundness in [32] shows that if HOL is state-
restoration knowledge sound in the sense of Definition 5.4.5 then the extractor EBCS for ARGBCS

fulfills the guarantee

Pr

(i,x,w) 6∈ R
∧

Vρ,I(i)(x, π) = 1

∣∣∣∣∣∣

ρ← U(λ)

(π;Q)← P̃ρ
w← EBCS(i,x, π,Q)

 ≤ κsr(t) +O(t2 · 2−λ) (5.7)

for all i,x and t-query P̃; in particular, the extractor EBCS need only see the queries and answers
of the prover, and does not otherwise interact with it. This leads naturally to the extractor E for
ARG described below:

• E(i,x, π,Q):

1. Let z := Q(0‖Q(0‖i)‖x) be the “session identifier” for the index i and instance x.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 151

2. Let Q′ := {(q0, a) : (1‖z‖q0, a) ∈ Q} be the query-answer pairs for session identifier z.
3. Run the BCS extractor w← EBCS(i,x, πBCS, Q

′).
4. Output w.

Fix arbitrary i,x, P̃ . Observe that running E on P̃ is equivalent to running EBCS on the algorithm:

• P̃ρ0 :

1. Simulate P̃ , answering its queries with uniform randomness, until it queries (0‖i); respond
with random a ∈ {0, 1}λ (else abort).

2. Continue simulating P̃ until it queries (0‖a‖x); respond with random z ∈ {0, 1}λ (else
abort).

3. Continue simulating P̃ until it halts and outputs (πBCS, ~ap), answering its queries (1‖z‖q)
with ρ(q) and other queries with uniform randomness.

4. Output πBCS.

From Eq. (5.6) and standard random oracle arguments it is then straightforward to show that

µ ≤ Pr

(i,x,w) 6∈ R
∧

Vρ,I(i)
BCS (x, πBCS) = 1

∣∣∣∣∣∣

ρ← U(λ)

(πBCS;Q)← P̃ρ0
w← EBCS(i,x, πBCS, Q)

+O(t2 · 2−λ) ,

which, combined with Eq. (5.7), completes the proof of classical non-adaptive knowledge
soundness.
Post-quantum knowledge soundness. We omit a proof of non-adaptive post-quantum knowl-
edge soundness. Instead, we sketch the main idea and how it differs from the classical case.
Knowledge soundness for the BCS transformation in the QROM is argued in [67] by analyzing
the “instability” of a certain set of partial functions related to the queries the verifier makes to the
oracle. Showing non-adaptive knowledge soundness for Construction 5.10.3 amounts to showing
that this quantity does not change significantly when we prefix each query with the session
identifier. Note that in the classical proof above we were able to construct a new adversary P̃0 by
simulating P̃ and monitoring its queries to the oracle; this is not possible in the quantum setting
due to no-cloning.

5.10.4 Classical adaptive knowledge from state restoration knowledge
We provide a “direct” proof of classical adaptive knowledge soundness from state-restoration

knowledge of the hIOP. In some cases this provides a tighter bound in the classical setting than the
bound from round-by-round soundness in Section 5.10.5; it also uses more standard techniques.

We will prove an adaptive transcript extraction property that, in the classical setting,
directly implies the knowledge soundness property given in Section 5.9. The property states that
there exists an efficient extractor E such that for every t-query adversary P̃:

Pr

(i,x,w) 6∈ R
∧

Vρ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣

ρ← U(λ)

(i,x, π;Q)← P̃ρ
w← E(i,x, π,Q)
(ipk, ivk)← Iρ(i)

 ≤ κT (t, λ) .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 152

In particular, if E satisfies the above, then we can achieve knowledge error κ(t, λ, `) = κT (t, λ)
in the sense of Eq. (5.5), simply by running E(ij,xj, πj, Q) for all j.

We use a series of hybrids to prove the adaptive transcript extraction property. We assume,
without loss of generality, that P̃ repeats no oracle query. For convenience we write ρb(·) for
ρ(b‖·) for b ∈ {0, 1}.

H0: Real adaptive transcript extraction experiment.

1. ρ← U(λ).
2. (i,x, π;Q)← P̃ρ.
3. w← E(i,x, π,Q).
4. (ipk, ivk)← Iρ(i).
5. If (i,x,w) 6∈ R and Vρ(ivk,x, π) = 1, output 1.

H1: Choose a random query i to ρ0 to be the commitment to the index and instance.

1. ρ← U(λ).
2. Choose i ∈ {1, . . . , t} uniformly at random. Run P̃ρ until just before its i-th query to
ρ0, and parse this query as a′‖x′. Let Q1 be the set of all queries made so far.

3. Continue running P̃ρ until it halts and outputs (i,x, π). Let Q2 be the queries made in
this phase.

4. w← E(i,x′, π,Q1 ∪Q2).
5. (ipk, ivk)← Iρ(i), and then parse ivk as a pair (ω, a). Recall from Construction 5.10.3

that ω is a Merkle tree commitment of I(i) and a = ρ0(i).
6. If (i,x′,w) 6∈ R, a′ = a, and Vρ(ivk,x′, π) = 1, output 1.

H2: Extract index from Q1.

1. ρ← U(λ).
2. Choose i ∈ {1, . . . , t} uniformly at random. Run P̃ρ until just before its i-th query to
ρ0, and parse this query as a′‖x′. Let Q1 be the set of all queries made so far.

3. If there exists ((0‖q), a′) ∈ Q1, then set i′ := q; otherwise, abort.
4. Continue running P̃ρ until it halts and outputs (i,x, π). Let Q2 be the queries made in

this phase.
5. w← E(i′,x′, π,Q1 ∪Q2).
6. (ipk′, ivk′)← Iρ(i′).
7. If (i′,x′,w) 6∈ R, and Vρ(ivk′,x′, π) = 1, output 1.

H3: Unpack E and V .

1. ρ← U(λ).
2. Choose i ∈ {1, . . . , t} uniformly at random. Run P̃ρ until just before its i-th query to
ρ0, and parse this query as a′‖x′. Let Q1 be the set of all queries made so far.

3. If there exists ((0‖q), a′) ∈ Q1, then set i′ := q; otherwise, abort.
4. Continue running P̃ρ until it halts and outputs (i,x, π). Let Q2 be the queries made in

this phase. Parse π as (πBCS, ~ap).
5. w← EBCS(i′,x′, πBCS, Q

′
1 ∪Q′2), where Q′i := {(q0, b) : (1‖z‖q0, a) ∈ Qi}

and z := Q(0‖a′‖x′).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 153

6. If (i′,x′,w) 6∈ R, and VI(i′),ρz
BCS (x′, πBCS) = 1, output 1.

H4: Answer P̃’s queries with uniform randomness, except for those after the i-th with the prefix
a′‖x′.
1. Choose i ∈ {1, . . . , t} uniformly at random. Run P̃ until just before its i-th query with

prefix 0, answering all of its queries with uniform randomness. Parse the i-th query as
ivk‖x. Let Q1 be the set of all (simulated) queries made so far.

2. If there exists ((0‖q), a′) ∈ Q1, then set i′ := q; otherwise, abort.
3. ρ′ ← U(λ).
4. Respond to the i-th query with random z ∈ {0, 1}λ. Continue running P̃ until it halts

and outputs (i,x, π), answering its queries of the form (1‖z‖q0) with ρ′(q0) and all
other queries uniformly at random. Let Q′2 be the set of queries made to ρ′.

5. w← EBCS(i,x, πBCS, Q
′
2).

6. If (i′,x′,w) 6∈ R and VI(i′),ρ′

BCS (x′, πBCS) = 1, output 1.

For i = 0, . . . , 4, let pi := Pr[Hi outputs 1]. Note that p0 is the probability we wish to
bound, and p4 ≤ κsr(t) + O(t2 · 2−λ) by the knowledge guarantee of the BCS transformation
(Eq. (5.7)), since i′ and x′ are chosen independently of the oracle ρ′. We prove the following
claims.

Claim 5.10.4. p0 ≤ t · p1 + 2−λ.

Proof. Let E1 be the event that P̃ρ outputs (i,x) such that 0‖a‖x is never queried for a = ρ0(i).
Then the probability that V accepts given E1 is at most 2−λ. If E1 does not hold then with
probability at least 1/t, x = x

′ and a = a′.

Claim 5.10.5. p1 ≤ p2 + (t+ 2)2 · 2−λ.

Proof. If there does not exist ((0‖q), a) ∈ Q1 then the probability that a′ = ρ0(i) = a is at most
(t + 1) · 2−λ. Otherwise, since ρ0(i) = a = a′ = ρ0(i′), the probability that i 6= i

′ is at most
(t+ 1)2 · 2−λ, since this would constitute a collision.

Claim 5.10.6. p2 ≤ p3 + (t+O(log L))2 · 2−λ.

Proof. This follows directly from the soundness argument, and the definition of E .

Claim 5.10.7. p3 ≤ p4 + t · 2−λ.

Proof. Let z := ρ0(ivk‖x). Since P̃ queries ρ0 at ivk‖x for the first time at query i, its queries
before the i-th are independent of z. Hence the probability that any of those queries has prefix
1‖z is at most t · 2−λ. If none of these queries have prefix 1‖z, then Q′1 = ∅, and VBCS’s queries
are disjoint from Q′1. Neither EBCS nor VBCS query ρ0, and so making the specified modifications
to the oracles does not change their behavior.

We thus obtain that p0 ≤ t · κsr(t) + O(t3 · 2−λ), from which the stated expression
follows.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 154

5.10.5 Adaptive knowledge from round-by-round knowledge
In this section we obtain a bound on adaptive knowledge soundness from round-by-round

soundness. We rely heavily on concepts and notation introduced in [67, Sections 3–5], and we
strongly recommend that the interested reader become familiar with these before proceeding
with this section.

We begin with some additional preliminaries on modeling the random oracle. In this
analysis, we will model the random oracle as a random function with fixed input length 3λ+ 1
and output length λ. For larger inputs to ρ, which for us will have prefix 0, we recursively define
ρ(0‖s0‖s1) := ρ(0‖ρ(0‖s0)‖s1) for s0 ∈ {0, 1}3λ and s1 ∈ {0, 1}2kλ, k ≥ 1 (we will implicitly
pad inputs up to an odd multiple of λ). For a database D : {0, 1}2λ+1 ⇀ {0, 1}λ we use almost
the same convention, except when D(b‖s0) is undefined:

D(0‖s0‖s1) :=

{
⊥ if D(0‖s0) = ⊥;
D(0‖D(0‖s0)‖s1) otherwise.

For databaseD : {0, 1}3λ+1 ⇀ {0, 1}λ, let Sb(D) := {s0 ∈ {0, 1}λ : ∃s1 ∈ {0, 1}2λ , (b‖s0‖s1) ∈
supp(D)}. We make use of the following simple lemma.

Lemma 5.10.8. Let D : {0, 1}3λ+1 ⇀ {0, 1}λ be a database. Let k ≥ 3 be an odd integer, and
let s ∈ {0, 1}kλ, x ∈ {0, 1}3λ+1 \ supp(D), y, a ∈ {0, 1}λ be such that D(0‖s) 6= (D + [x 7→
y])(0‖s) = a. Then y ∈ {a} ∪ S0(D).

Proof. We proceed by induction on k. Let D′ := D + [x 7→ y]. Note first that if D(0‖s) 6=
D′(0‖s), it must be that D(0‖s) = ⊥. For the base case, if k = 3, then x = 0‖s and so
y = a. Now suppose that for all odd k′ < k, the lemma holds for all s′ ∈ {0, 1}kλ. Let
s0‖s1 := s, where s0 ∈ {0, 1}3λ, s1 ∈ {0, 1}(k−3)λ. If D(0‖s0) = ⊥, then x = 0‖s0, and
so D′(0‖s) = D′(0‖y‖s1) 6= ⊥. If k − 3 = 2, then y ∈ S0(D) immediately; otherwise,
D′(0‖y‖s1) = D′(0‖D′(0‖y‖s′1)‖s2) for some s′1 ∈ {0, 1}2λ, and so D′(0‖y‖s′1) 6= ⊥, whence
y ∈ S0(D). Otherwise, let b := D(0‖s0); we have that D(0‖b‖s1) = ⊥, but D′(0‖b‖s1) = a.
Since b‖s1 ∈ {0, 1}(k−2)λ, by induction y ∈ {a} ∪ S0(D).

For a database D, z ∈ {0, 1}λ, we write D1‖z for the database {(x, y) : (1‖z‖x, y) ∈ D}.

Lemma 5.10.9. Let {Pi,x}i,x be a set of database properties indexed by i,x. Let P be the
property consisting of databases D for which there exist i,x, a, b such that D(0‖i) = a,
D(0‖a‖x) = b and D1‖b ∈ Pi,x. Then I(P|P̄col, t) ≤ max(maxi,x I(Pi,x|P̄col, t), t/2

λ).

Proof. We first bound flip(P̄ ∩ P̄col → P ∩ P̄col). Let D ∈ P̄ ∩ P̄col, fix some x ∈ {0, 1}3λ+1 \
supp(D). We consider two cases.

• The first bit of x is 0. We show that if y is such that D′ = D + [x 7→ y] ∈ P ∩ P̄col, then
y ∈ S0(D) ∪ S1(D), and so Pry[D + [x 7→ y] ∈ P ∩ P̄col] ≤ |S0(D) ∪ S1(D)|/2λ ≤ t/2λ.

By definition there exist i,x, a, b such that D′(0‖i) = a, D′(0‖a‖x) = b and D′1‖b ∈ Pi,x.
Since D ∈ P̄ ∩ P̄col and the first bit of x is 0, one of the first two conditions does not hold for
D; we consider these in turn.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 155

– D(0‖a‖x) 6= b; then y ∈ S0(D) ∪ {b} by Lemma 5.10.8. Then since D′1‖b ∈ Pi,x,
b ∈ S1(D), and so y ∈ S0(D) ∪ S1(D).

– D(0‖a‖x) = b but D(0‖i) 6= a; then y ∈ S0(D) ∪ {a} by Lemma 5.10.8. Then since
D(0‖a‖x) 6= ⊥, y ∈ S0(D).

• The first bit of x is 1. Then D1‖b /∈ Pi,x; let x = 1‖b‖x′ for some x′ ∈ {0, 1}λ. Note that since
D ∈ P̄col, there exists a unique choice of i,x such that D(0‖D(0‖i)‖x) = b. Hence in this
case, Pry[D+ [x 7→ y] ∈ P ∩ P̄col] = Pry[D1‖b + [x′ 7→ y] ∈ Pi,x ∩ P̄col] ≤ I(Pi,x|P̄col, t) ≤
maxi,x I(Pi,x|P̄col, t).

We now bound flip(P ∩ P̄col → P̄ ∩ P̄col). Let D ∈ P ∩ P̄col. Note that if the first
bit of x is 0, there is no y such that D + [x 7→ y] ∈ P̄ ∩ P̄col. If the first bit of x is 1,
Pry[D + [x 7→ y] ∈ P̄ ∩ P̄col] ≤ maxi,x I(Pi,x|P̄col, t) by a similar argument to the above. This
completes the proof.

To simplify the subsequent analysis we define a modified verifier algorithm V0(i,x, π)

which parses π as (πBCS, ~ap), computes z := ρ0(ρ0(i)‖x) and accepts if Vρ1(z‖·),I(i)
BCS (x, πBCS)

accepts. Fix some predicate p. We denote by µ the probability

Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

Vρ0 (ij,xj, πj) = 1

∣∣∣∣∣∣
ρ← U(λ)

(~i, ~x, ~π, aux)← P̃ρ

 .

By a similar argument to the non-adaptive soundness case,

µ ≥ Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

Vρ(ivkj,xj, πj) = 1

∣∣∣∣∣∣

ρ← U(λ)

(~i, ~x, ~π, aux)← P̃ρ
∀ j , (ipkj, ivkj)← Iρ(ij)

−O(t3 · 2−λ) ,

and so it suffices to show the proof of knowledge property for the verifier V0.
Let PV(~i,~x,~π) be the set of databases Q such that the verifier accepts: i.e., Q such that for

all j ∈ [`], VQ0 (ij,xj, πj) = 1. Let PE(~i,~x,~π) be the set of databases Q such that the extractor
succeeds: i.e., Q such that for all j ∈ [`], wj := E(ij,xj, πj, Q) is such that (ij,xj,wj) ∈ R.
Finally, let PV\E be the set of databases Q where the verifier accepts but the extractor fails for
some choice of (i,x, π): i.e., Q such that there exists (i,x, π) for which VQ0 (i,x, π) = 1 but
w := E(i,x, π,Q) is such that (i,x,w) /∈ R.

We lower bound the success probability of the extractor in the quantum setting in terms of

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 156

these properties as follows. The classical proof is analogous and so we will not give it explicitly.

Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

(ij,xj,wj) ∈ R

∣∣∣∣∣∣
(~i, ~x, ~π, aux;Q)← Sim∗(P̃)

∀ j ∈ [`] ,wj ← E(ij,xj, πj;Q)

≥ Pr

[
p(~i, ~x, aux) = 1

∧Q ∈ PE(~i,~x,~π) ∩ PV(~i,~x,~π)

∣∣∣∣ (~i, ~x, ~π, aux;Q)← Sim∗(P̃)

]

≥ Pr

[
p(~i, ~x, aux) = 1
∧Q ∈ PV(~i,~x,~π)

∣∣∣∣ (~i, ~x, ~π, aux;Q)← Sim∗(P̃)

]

− Pr
[
Q ∈ PV\E

∣∣∣ (~i, ~x, ~π, aux;Q)← Sim∗(P̃)
]

By [152, Lemma 5] (which connects the success probability of Sim∗ with a real execution), and
since the verifier makes O(q log L) queries to the oracle, the first term on the last line is at least
µ−O(q log L · 2−λ).

By construction of V and E , PV\E is exactly of the form described in Lemma 5.10.9 for
the set {Pi,x}i,x where Pi,x is the set of databases such that there exists a proof π for which
VDBCS(i,x, π) accepts but EBCS(i,x, π,D) fails to produce a valid witness. By [67, Proposition
8.14], I(Pi,x|P̄col, t) ≤ κrbr + O(t · 2−λ). Hence by Lemma 5.10.9, I(PV,E |P̄col, t) ≤ κrbr +
O(t · 2−λ). Then by [67, Lemma 5.13] (their “lifting lemma”),

Pr
[
Q ∈ PV\E

∣∣∣ (i,x, π;Q)← Sim∗(P̃)
]
≤ 6t2 · κrbr +O(t3 · 2−λ) .

We thus obtain

Pr

p(~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

(ij,xj,wj) ∈ R

∣∣∣∣∣∣

(~i, ~x, ~π, aux;Q)← Sim∗(P̃)
∀ j ∈ [`] ,

wj ← E(ij,xj, πj;Q)

 ≥ µ−6t2·κrbr−O((t3+q log L)·2−λ) ,

which completes the proof.

5.10.6 Adaptive zero knowledge
To achieve adaptive zero knowledge we need a minor but standard modification to Con-

struction 5.10.3. In our modified construction, the prover chooses a random seed α ∈ {0, 1}λ
that it prefixes to all queries to ρz; it then provides α in the proof. It is relatively straightforward
to show that this preserves (adaptive) soundness and knowledge soundness, both in the classical
and quantum settings.

In the classical setting, it is easy to show that this modification achieves adaptive zero
knowledge. The simulator is identical to the non-adaptive simulator, except that it prefixes its
simulated queries (and hence the locations in µ) with a random α. The probability that A ever
queries a location with prefix α is at most t/2−λ, and so the output of A is almost independent
from oracle locations with prefix α. Zero knowledge then follows by the non-adaptive (statistical)
zero knowledge guarantee.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 157

In the quantum setting, the argument is more delicate; we only sketch it here. We rely
on the strong one-way-to-hiding lemma of [8]. Using this lemma, one can show that for any
fixed oracles f, g, the output distribution of any t-query adversary Af is O(t2/2−λ)-close to
Afg , where fg is a random function drawn by choosing α ∈ {0, 1}λ uniformly at random and
setting fg(α‖q) = g(q), and fg(q′) = f(q′) otherwise. This again shows that the output of A is
almost independent of any programmed oracle location, and so zero knowledge follows by the
non-adaptive (statistical) zero knowledge guarantee.

5.11 Recursive composition in the URS model
We describe how to transform any preprocessing SNARK in the URS model into a prepro-

cessing PCD scheme in the URS model. The transformation preserves post-quantum security.
This section is organized as follows. In Section 5.11.1 we define preprocessing SNARKs

in the URS model. In Section 5.11.2 we define preprocessing PCD schemes in the URS
model. In Section 5.11.3 we state the properties of the transformation from SNARK to PCD.
In sec:recursion-efficiency we describe the construction and prove its efficiency properties. In
Section 5.11.5 we prove the security properties.

In this section by “polynomial-size” we mean a (non-uniform) family of polynomial-size
circuits.

5.11.1 Preprocessing non-interactive arguments (of knowledge) in the URS
model

Informally, the definition of a preprocessing SNARK in the URS model is similar to the
definition of a preprocessing SNARK in the random oracle model (see Section 5.9) except that
the random oracle is replaced by a poly(λ)-size uniform random string urs. The formal definition
follows.

A tuple of algorithms ARG = (I,P ,V) is a preprocessing non-interactive argument (of
knowledge) in the uniform random string (URS) model for an indexed relationR if the following
properties hold.
Completeness. For every adversary A,

Pr

(i,x,w) 6∈ R
∨

V(urs, ivk,x, π) = 1

∣∣∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(i,x,w)← A(urs)
(ipk, ivk)← I(urs, i)
π ← P(urs, ipk,x,w)

 = 1 .

The above formulation of completeness allows (i,x,w) to depend on the reference string urs.
Knowledge soundness. We say that ARG = (I,P ,V) has (adaptive) knowledge error κ if
for every polynomial-size adversary P̃ there exists a polynomial-size extractor EP̃ such that for

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 158

every predicate p,

Pr

p(urs,~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

(ij,xj,wj) ∈ R

∣∣∣∣∣∣
urs← {0, 1}poly(λ)

(~i, ~x, ~w, aux)← EP̃(urs)

≥ Pr

p(urs,~i, ~x, aux) = 1
∧∀ j ∈ [`] ,

V(ivkj,xj, πj) = 1

∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(~i, ~x, ~π, aux)← P̃(urs)
∀ j , (ipkj, ivkj)← I(urs, ij)

− κ(λ, `) . (5.8)

Zero knowledge. We say that ARG = (I,P ,V) has (statistical) zero knowledge if there exists
a probabilistic polynomial-time simulator S such that for every polynomial-size honest adversary
A,

(urs, i,x, π)

∣∣∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(i,x,w)← A(urs)
(ipk, ivk)← I(urs, i)
π ← P(urs, ipk,x,w)

and

(urs, i,x, π)

∣∣∣∣∣∣

(urs, τ)← S(1λ)
(i,x,w)← A(urs)

π ← S(i,x, τ)

 ,

where here an adversary is honest if its output satisfies (i,x,w) ∈ R with probability 1.

Remark 5.11.1 (post-quantum security). The above definitions consider security against clas-
sical polynomial-size adversaries. We also consider security against quantum polynomial-size
adversaries. The definitions for this case are identical, except that P̃ is a (non-uniform) family of
polynomial-size quantum circuits (as is the zero knowledge adversary A).

5.11.2 Preprocessing PCD in the URS model
We have informally introduced PCD in Section 5.2.5. Formally, a triple of algorithms

PCD = (I,P,V) is a proof-carrying data scheme (PCD scheme) in the uniform random string
(URS) model for a class of compliance predicates F if the properties below hold.

Definition 5.11.2. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is
labeled by a local data z(u)

loc and each edge e ∈ E(T) is labeled by a message z(e) 6= ⊥. The
output of a transcript T, denoted o(T), is z(e) where e = (u, v) is the lexicographically-first
edge such that v is a sink.

Definition 5.11.3. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges
e = (u, v) ∈ E(T):
• (base case) if u has no incoming edges, Φ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts;

• (recursive case) if u has incoming edges e1, . . . , em, Φ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) accepts.
We say that T is Φ-compliant if all of its vertices are Φ-compliant.

Completeness. For every adversary A,

Pr

(
Φ ∈ F ∧

(
∀i, zi = ⊥ ∨ ∀i, V(ivk, zi, πi) = 1

)
∧

Φ(z, zloc, z1, . . . , zm) accepts
)

⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(Φ, z, zloc, [zi, πi]
m
i=1)← A(urs)

(ipk, ivk)← I(urs,Φ)
π ← P(ipk, z, zloc, [zi, πi]

m
i=1)

= 1 .

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 159

Observe that this completeness condition is fairly strong: it requires that P produce a valid
PCD proof for any valid z, zloc, [zi, πi]mi=1, even if they were not honestly (or even efficiently)
generated.
Knowledge soundness. We say that PCD = (I,P,V) has knowledge soundness κ(λ) if there
exists some polynomial e such that for every polynomial-size adversary P̃, there exists an
extractor EP̃ of size at most e(|P̃|) such that for every predicate p,

Pr

[
Φ ∈ F ∧ p(urs,Φ, o(T)) = 1
∧T is Φ-compliant

∣∣∣∣
urs← {0, 1}poly(λ)

(Φ,T)← EP̃(urs)

]

≥ Pr

 Φ ∈ F ∧ p(urs,Φ, o) = 1

∧V(ivk, o, π) = 1

∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(Φ,T)← P̃
(ipk, ivk)← I(urs,Φ)

− κ(λ) .

Zero knowledge. We say that PCD = (I,P,V) has (statistical) zero knowledge if there exists a
probabilistic polynomial-time simulator S such that for all honest adversaries A the distributions
below are statistically close:

(urs,Φ, z, π)

∣∣∣∣∣∣∣∣

urs← {0, 1}poly(λ)

(Φ, z, zloc, [zi, πi]
m
i=1)← A(urs)

(ipk, ivk)← I(urs,Φ)
π ← P(ipk,Φ, z, zloc, [zi, πi]

m
i=1)

and

(urs,Φ, z, π)

∣∣∣∣∣∣

(urs, τ)← S
(Φ, z, zloc, [zi, πi]

m
i=1)← A(urs)
π ← S(Φ, z, τ)

 .

Here, an adversary is honest if its output satisfies the implicant of the completeness condition
with probability 1, namely: Φ ∈ F, Φ(z, zloc, z1, . . . , zm) = 1, and either for all i, zi = ⊥, or for
all i, V(ivk, zi, πi) = 1.
Efficiency. The indexer I, prover P and verifier V run in polynomial time. A proof π has size
poly(λ, |Φ|); in particular, it is not permitted to grow with each application of P. In general
the indexer can be incorporated into the prover and verifier; we consider it separately since this
allows the verifier to potentially run in time sublinear in |Φ|.

5.11.3 Theorem statement
The key parameter that determines the efficiency of the preprocessing PCD scheme is the

size of the preprocessing SNARK verifier as a circuit (or constraint system), as captured by the
following definition.

Definition 5.11.4. Let ARG = (I,P ,V) be a preprocessing non-interactive argument in the URS
model. We denote by V(λ,N,k) the circuit (or constraint system) corresponding to the computation
of the SNARK verifier V , for security parameter λ, when checking indices of size at most N
and instances of size at most k. Hence, for every urs ∈ {0, 1}poly(λ) and index-instance pair

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 160

(i,x) with |i| ≤ N and |x| ≤ k, index key pair (ipk, ivk) ∈ I(urs, i), and candidate proof π, we
have V(λ,N,k)(urs, ivk,x, π) = V(urs, ivk,x, π). We denote by v(λ,N, k) the size of the circuit
V(λ,N,k), and by |ivk(λ,N)| the size of the index verification key ivk.

The depth of a compliance predicate Φ: F(m+2)` → F, denoted d(Φ), is the maximum
depth of any Φ-compliant transcript T. We prove the following theorem, which constructs a PCD
system for constant-depth compliance predicates from any sufficiently efficient preprocessing
SNARK.

Theorem 5.11.5. There exists a polynomial-time transformation T such that if ARG = (I,P ,V)
is an adaptive preprocessing SNARK for RR1CS in the URS model then PCD = (I,P,V) :=
T(ARG) is a preprocessing PCD scheme in the URS model for constant-depth compliance
predicates, provided

∃ ε ∈ (0, 1) and a polynomial α s.t. v(λ,N, |ivk(λ,N)|+ `) = O(N1−ε · α(λ, `)) .

Moreover, if the size of the predicate Φ: F(m+2)` → F is f = ω((m · α(λ, `))1/ε) then the PCD
indexer, PCD prover, and PCD verifier run in time that equal those of the SNARK indexer, SNARK
prover, and SNARK verifier on R1CS indices i of size f + o(f) (and R1CS instances x of size
O(λ) + `).

If ARG is adaptive zero knowledge, then PCD is adaptive zero knowledge.
If ARG is secure against quantum adversaries, then PCD is secure against quantum

adversaries.

Remark 5.11.6. Our preprocessing zkSNARK for R1CS, FRACTAL, achieves the following
verifier size:

v(λ,N, |ivk(λ,N)|+ `) = O(λ`+ λ2 log2(N)) ,

assuming a choice of cryptographic hash function that can be expressed via a constraint system
of size O(λ). This means that we may take any ε ∈ (0, 1) and α(λ, `) := λ(λ+ `). In particular,
if the size of a compliance predicate Φ grows as (mλ(λ + `))1+δ for any δ > 0, then the time
bounds in Theorem 5.11.5 hold for us.

5.11.4 Construction and its efficiency
We describe how to construct the preprocessing PCD scheme, and then prove the efficiency

properties stated in Theorem 5.11.5. We defer proving the security properties to Section 5.11.5.

Construction 5.11.7 (from SNARK to PCD). Let ARG = (I,P ,V) be a preprocessing SNARK
for R1CS. We describe how to construct a preprocessing PCD scheme PCD = (I,P,V).

Given a compliance predicate Φ: F(m+2)` → F, the circuit that realizes the recursion is as
follows.

R
(λ,N,k)
V,Φ,urs

(
(ivk, zout), (zloc, (z

(i)
in , π

(i)
in)i∈[m])

)
:

1. Check that the compliance predicate Φ(zout, zloc, z
(1)
in , . . . , z

(m)
in) accepts.

2. If there exists i such that (z
(i)
in , π

(i)
in) 6= ⊥:

check that, for every i ∈ [m], the SNARK verifier V(λ,N,k)(urs, ivk, (ivk, z
(i)
in), π

(i)
in)

accepts.
3. If the above checks hold, output 0; otherwise, output 1.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 161

Next we describe the indexer I, prover P, and verifier V of the PCD scheme.

• I(urs,Φ):
1. Compute N := N(λ, |Φ|,m, `), where N is as defined in Lemma 5.11.8 below.
2. Construct the circuit R := R

(λ,N,|ivk(λ,N)|+`)
V,Φ,urs .

3. Compute the index key pair (ipk, ivk)← I(urs, R).
• P(urs, ipk, zout, zloc, ~zin, ~πin): output the proof πout ← P

(
urs, ipk, (ivk, zout), (zloc, ~zin, ~πin)

)
.

• V(urs, ivk, zout, πout): accept if V(urs, ivk, (ivk, zout), πout) accepts.

Proof of Theorem 5.11.5 (efficiency). Denote by f the size of Φ as an R1CS instance. In Con-
struction 5.11.7, the explicit input consists of the index verification key ivk, whose size depends
on N and λ, and a message z whose size is ` (independent of N). The security parameter λ is
also independent of N . The circuit on which we wish to invoke V is of size

S(λ, f,m, `,N) = S0(f,m, `)+m·v(λ,N, |ivk(λ,N)|+`) for some S0(f,m, `) = f+O(m`) .

We want to find a function N such that S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) and N is
not too large.

Lemma 5.11.8. Suppose that for every security parameter λ ∈ N and message size ` ∈ N the
ratio of verifier circuit size to index size v(λ,N, |ivk(λ,N)|+ `)/N is monotone decreasing in
N . Then there exists a size function N(λ, f,m, `) such that

∀λ, f,m, ` ∈ N S(λ, f,m, `,N(λ, f,m, `)) ≤ N(λ, f,m, `) .

Moreover if for some ε > 0 and some increasing function α it holds that, for allN, λ, ` sufficiently
large,

v(λ,N, |ivk(λ,N)|+ `) ≤ N1−εα(λ, `)

then, for all λ, ` sufficiently large,

N(λ, f,m, `) ≤ O(f) + (2m · α(λ, `))1/ε .

Proof. Let N0 := N0(λ,m, `) be the smallest integer such that v(λ,N, |ivk(λ,N)| + `)/N <
1/(2m); this exists because of the monotone decreasing condition. Let N(λ, f,m, `) :=
max(N0(λ,m, `), 2S0(f,m, `)). Then for N := N(λ, f,m, `) it holds that

S(λ, f,m, `,N) = S0(f,m, `) +mN · v(λ,N, |ivk(λ,N)|+ `)/N < N/2 +N/2 = N .

Clearly S0(f,m, `) = O(f). Now suppose that v(λ,N, |ivk(N)| + `) ≤ (N1−εα(λ, `)) for all
sufficiently large N, λ, `. Let N ′(λ,m, `) := (2m · α(λ, `))1/ε. Then for all m and sufficiently
large λ, `, for N ′ := N ′(λ,m, `),

v(λ,N ′, |ivk(λ,N ′)|+ `)/N ′ < α(λ, `) · (2m · α(λ, `))−1 = 1/(2m) .

Hence N0 ≤ N ′ = (2m · α(λ, `))1/ε.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 162

The size of the circuit R(λ,N,k)
V,Φ,urs for N := N(λ, f,m, `) and k := |ivk(λ,N)|+ ` is at most

S(λ, f,m, `,N) = f +O(m`) +m · v(λ,N, |ivk(λ,N)|+ `)

= f +O(N1−εmα(λ, `))

= f +O(f 1−εm · α(λ, `) + (m · α(λ, `))1/ε) .

In particular if f = ω((m · α(λ, `))1/ε) then this is f + o(f), and so the stated efficiency bounds
hold.

5.11.5 Security reduction
We establish the security properties in Theorem 5.11.5. We discuss knowledge sound-

ness in Section 5.11.5.1, post-quantum security in Section 5.11.5.2, and zero knowledge in
Section 5.11.5.3.

5.11.5.1 Knowledge soundness

In the following, since the extracted transcript T will be a tree, we find it convenient to
associate the label (z(u,v), π(u,v)) of the unique outgoing edge of a node u with the node u itself,
so we refer to this as (z(u), π(u)). It is straightforward to transform such a transcript into one that
satisfies Definition 5.11.2.

Given a malicious prover P̃, we will define an extractor EP̃ that satisfies knowledge sound-
ness. In the process we construct a sequence of extractors E1, . . . ,Ed for d := d(Φ) (the depth
of Φ); Ej outputs a tree of depth j + 1. Let E0(urs) run (Φ, o, π)← P̃(urs) and output (Φ,T0),
where T0 is a single node labeled with (o, π). Let lT(j) denote the vertices of T at depth j;
lT(0) := ∅ and lT(1) is the singleton containing the root.

Now we define the extractor Ej inductively for each j ∈ {1, . . . , d}. Suppose we have
already constructed Ej−1. We construct a SNARK prover P̃j as follows:

P̃j(urs):
1. Run (Φ,Tj−1) ← Ej−1(urs); for each vertex v ∈ lTj−1

(j), denote its label by
(z(v), π(v)).

2. Run the indexer (ipk, ivk)← I(urs, R
(λ,N,k)
V,Φ,urs).

3. Output

(~i, ~x, ~π, aux) :=
(
~R, (ivk, z(v))v∈lTj−1

(j), (π
(v))v∈lTj−1

(j), (Φ,Tj−1)
)

where ~R is the vector (R
(λ,N,k)
V,Φ,urs , . . . , R

(λ,N,k)
V,Φ,urs) of the appropriate length.

Next let EP̃j be the extractor that corresponds to P̃j , via the knowledge soundness of the non-
interactive argument ARG. Finally the extractor Ej is defined as follows:

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 163

Ej(urs):
1. Run the extractor (~i, ~x, ~π, aux, ~w)← EP̃j(urs), and parse the auxiliary output aux

as (Φ,T′).
2. If T′ is not a transcript of depth j, abort.
3. Output (Φ,Tj) where Tj is the transcript constructed from T′ by doing the following

for each vertex v ∈ lT′(j):
• obtain the local data z(v)

loc and input messages
(
z

(i)
in , π

(i)
in

)
i∈[m]

from w
(v);

• append z(v)
loc to the label of v, and if there exists any z(i)

in with z(i)
in 6= ⊥, attach m

children to v where the i-th child is labeled with (z
(i)
in , π

(i)
in).

The extractor EP̃ runs (Φ,Td)← Ed(urs) and outputs (Φ, o, π,Td), where (o, π) labels the
root node.

We now show that EP̃ has polynomial size and that it outputs a transcript that is Φ-compliant.
Size of the extractor. P̃j is a circuit of size |Ej−1| + |I| + O(2j), so EP̃j is a circuit of size
e(|Ej−1|+ |I|+O(2j)) Then |Ej| ≤ e(|Ej−1|+ |I|+ c · 2j) for some c ∈ N.

A solution to this recurrence (for e(n) ≥ n) is |Ej| ≤ e(j)(|P̃| + j · |I| + 2c · 2j), where
e(j) is the function e iterated j times. Hence in particular if d(Φ) is a constant, EP̃ is a circuit of
polynomial size.
Correctness of the extractor. Fix a predicate p. We show by induction that, for all j ∈
{0, . . . , d}, the transcript Tj output by Ej is Φ-compliant up to depth j, that
V(λ,N,k)(urs, ivk, (ivk, z(v)), π(v)) accepts for all v ∈ T, and that p(Φ, o) = 1 and Φ ∈ F with
probability µ− 2j · κ(λ,mj).

For j = 0 the statement is implied by V accepting, and p(Φ, o) and Φ ∈ F holding, with
probability µ.

Now suppose that (Φ,Tj−1)← Ej−1 is such that Tj−1 is Φ-compliant up to depth j−1, that
V(λ,N,k)(urs, ivk, (ivk, z(v)), π(v)) accepts for all v ∈ Tj−1, and that p(Φ, o(T)) = 1 and Φ ∈ F,
with probability µ− 2(j − 1) · κ(λ,mj−1). Let (~i, (ivkv, z

(v))v, (π
(v))v, (Φ,T

′), ~w)← EP̃j .
Let p′(urs,~i, (ivkv, z(v))v, (Φ,T

′)) = 1 if:
• p(Φ, o(T′)) = 1 and Φ ∈ F,
• i(v) = R

(λ,N,k)
V,Φ,urs for all v,

• T′ is Φ-compliant up to depth j − 1, and
• for v ∈ lT′(j), v is labeled with (z(v), π(v)) and ivkv = ivk where (ipk, ivk)← I(urs, R

(λ,N,k)
V,Φ,urs).

By knowledge soundness, with probability µ−2j ·κ(λ,mj), p′(urs,~i, (ivkv, zv)v, (Φ,T′)) =

1 and for every vertex v ∈ lT′(j), (R
(λ,N,k)
V,Φ,urs , (ivkv, z

(v)),w(v)) ∈ RR1CS. Here we use the predi-
cate and auxiliary output in the knowledge soundness definition of ARG to ensure consistency
between the values z(v) and T′, and to ensure that T′ is Φ-compliant.

Now since (R
(λ,N,k)
V,Φ,urs , (ivkv, z

(v)),w(v)) ∈ RR1CS, we obtain from w
(v) either

• local data z(v)
loc and input messages

(
z

(i)
in , π

(i)
in

)
i∈[m]

such that Φ(z(v), z
(v)
loc , z

(1)
in , . . . , z

(m)
in) accepts

and for all i ∈ [m] the SNARK verifier V(λ,N,k)(urs, ivk, (ivk, z
(i)
in), π

(i)
in) accepts; or

• local data z(v)
loc such that Φ(z(v), z

(v)
loc ,⊥, . . . ,⊥) accepts.

In both cases we append z(v)
loc to the label of v. In the former case we label the children of v with

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 164

(z
(i)
in , π

(i)
in), and so v is Φ-compliant, and all of its descendants w have that the verifier accepts; i.e.

V(λ,N,k)(urs, ivk, (ivk, z(w)), π(w)) = 1. In the latter case, v has no children and so is Φ-compliant
by the base case condition. Hence Tj ← Ej is Φ-compliant up to depth j.

Since d(Φ) ≤ d it must be the case that all vertices v at depth d are in the base case. Hence
by induction, (Φ,T)← E = Ed has Φ-compliant T, p(Φ, o(T)) = 1 and Φ ∈ F with probability
at least µ− 2d · κ(λ,md).

5.11.5.2 Post-quantum security

In the quantum setting, P̃ is taken to be a polynomial-size quantum circuit; hence also
P̃j, EP̃j ,Ej are quantum circuits for all j, as is the final extractor E. Our definition of knowledge
soundness is such that this proof then generalizes immediately to show security against quantum
adversaries. In particular, the only difficulty arising from quantum adversaries is that they can
generate their own randomness, whereas in the classical case we can force an adversary to
behave deterministically by fixing its randomness. This is accounted for by the distributional
requirement placed on the extractor of the argument system ARG.

5.11.5.3 Zero knowledge

The PCD simulator S operates as follows: define S(1λ) := S(1λ); then

S(Φ, z, τ):
1. Compute (ipk, ivk)← I(urs, R

(λ,N,k)
V,Φ,urs) (we assume that τ includes urs).

2. Output π ← S(R
(λ,N,k)
V,Φ,urs , (ivk, z), τ).

Zero knowledge then follows immediately from the (adaptive) zero knowledge guar-
antee of ARG, applied to the honest adversary A′ which runs the honest PCD adversary
(Φ, z, zloc, [zi, πi]

m
i=1)← A(urs) and outputs (R

(λ,N,k)
V,Φ,urs , (ivk, z), (zloc, [zi, πi]

m
i=1)) where (ipk, ivk)←

I(urs, R
(λ,N,k)
V,Φ,urs). The same argument holds in the quantum setting; in that case, A′ is an honest

quantum adversary.

5.12 Implementation of recursive composition
In Section 5.12.1 we describe our implementation work to realize our preprocessing

zkSNARK (FRACTAL), and in Section 5.12.2 we describe our implementation work to realize
recursive composition.

5.12.1 The preprocessing zkSNARK
Our starting point is libiop [132], a library that provides (a) an implementation of the

BCS transformation, which compiles any public-coin IOP into a corresponding SNARG by using
(instantiated) random oracles; and (b) the non-holographic IOPs for R1CS underlying Aurora
(Chapter 3) and Ligero [9].

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 165

Our work to implement FRACTAL consists of (1) extending the BCS transformation to
compile any public-coin holographic IOP into a corresponding preprocessing SNARG (follow-
ing Section 5.10); and (2) implementing our efficient holographic IOP for R1CS (following
Section 5.8). We discuss each in turn.
(1) From holography to preprocessing. Our transformation from Section 5.10 is a black-box
extension of the BCS transformation (see Construction 5.10.3), which made it possible to extend
the current implementation of the BCS transformation while re-using much of the existing
infrastructure. We modified the generic IOP infrastructure in libiop to additionally support
expressing holographic IOPs, by providing an indexer algorithm (in addition to the prover and
verifier algorithms). We modified the transformation to determine if the input IOP is holographic
and, if so, to additionally produce an indexer for the argument system, which uses a Merkle tree
on the encoded index to produce an index proving key and index verification key. In this case,
the prover and verifier for the argument use these keys to produce/authenticate answers about
the encoded index, following our construction. Overall, our implementation simultaneously
supports the old transformation (from IOP to SNARG) and our new one (from holographic IOP
to preprocessing SNARG).
(2) Holographic IOP for R1CS. Our holographic IOP is built from two components (see
Theorem 5.8.2): an RS-encoded holographic IOP and a low-degree test. For the latter, we reuse
the generic low-degree testing infrastructure in libiop: the randomized reduction from testing
multiple words to testing single words, and the FRI low-degree test [22]. Our implementation
work is about the former component.

Specifically we implement the RS-encoded holographic IOP summarized in Fig. 5.4 (or,
more precisely, an optimized and parametrized refinement of it), along with its indexer algorithm
(not part of the figure). We reuse the reduction from R1CS to lincheck from the Aurora protocol
in libiop (as our protocol shares the same reduction). The new key component that we
implement is a holographic multi-lincheck, which simultaneously supports checking multiple
linear relations that were holographically encoded. We believed that this building block of the
protocol is of independent interest for the design of holographic proofs.

In addition to enabling sublinear verification, the holographic setting also presents new
opportunities for improvements in the concrete efficiency of certain subroutines of the verifier,
because we can use the indexer to provide useful precomputed information to the verifier.
We leverage such opportunities to precompute various algebraic objects (such as vanishing
polynomials), achieving noticeable efficiency improvements.

5.12.2 Designing the verifier’s constraint system
In order to recursively compose FRACTAL, we need to design a constraint system that

expresses its verifier. We describe a general method for designing constraint systems for the
verifiers of SNARGs obtained by combining an RS-encoded IOP and the FRI low-degree test (as
in Theorem 5.8.2) and then transforming the resulting IOP into a SNARG using Theorem 5.10.1
(henceforth referred to as the “BCS transformation”).

The verifier in such SNARGs splits naturally into an “algebraic” part arising from the under-
lying IOP (hereafter the “IOP verifier”) and a “hash-based” part arising from the BCS transforma-

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 166

tion (described in Construction 5.10.2, hereafter the “BCS verifier”). We treat them separately:
the BCS verifier is discussed in Section 5.12.2.1 and the IOP verifier in Section 5.12.2.2.

5.12.2.1 The BCS verifier

The BCS verifier can be further broken down into two subcomponents. The first is a
hashchain that ensures that the IOP verifier’s randomness for each round is correctly derived
from the Merkle roots (Steps 1 and 2 of the BCS verifier in Construction 5.10.2). The second is
the verification of the Merkle tree authentication paths to ensure the validity of the query answers
(Step 3 of the BCS verifier in Construction 5.10.2).
The hashchain. The hashchain computation of the BCS verifier is as follows: initialize
σ0 := ivk‖x; then, for each round i ∈ {1, . . . , k}, derive the randomness ρi := ρ(σi−1) and use
the i-th root ωi in the argument π to compute σi := ρ(σi−1‖ωi); finally, derive the post-interaction
randomness ρk+1 := ρ(σk). We require a constraint system S that, given assignments to the
variables (ivk,x, ω1, ρ1, . . . , ωk, ρk), is satisfiable if and only if these assignments are consistent
with this hashchain computation.

We realize S via a sponge construction [44], where first ivk and x are absorbed into the
state and then, for each round i ∈ {1, . . . , k}, the randomness ρi is squeezed from the state and
the i-th root ωi is absorbed into the state; the post-interaction randomness ρk+1 is then squeezed
from the state. See Fig. 5.5 for a diagram of this. The size of the constraint system S is

Sin(|ivk|+ |x|) +

(
k∑

i=1

Sin(|ωi|) + Sout(|ρi|)

)
+ Sout(|ρk+1|)

where Sin(n) denotes the number of constraints to absorb n field elements and Sout(n) denotes
the number of constraints to squeeze n field elements. Naturally, these numbers depend on the
particular choice of state transformation that is used to instantiate the sponge (see our evaluation
in Section 5.13.2).

The above discussion omits some details. First, in some rounds the prover sends auxiliary
information beyond the Merkle root (e.g., the third message of the prover in Fig. 5.4 includes
a field element that allegedly equals an evaluation of the polynomial t̂), and this auxiliary
information must be absorbed together with the Merkle root. Second, Fig. 5.5 suggests that the
rate of the sponge is large enough to absorb/squeeze any round’s root/randomness with a single
application of the state transformation, but this need not be the case, especially if sizes vary
across rounds (e.g., we expect |ivk|+ |x| to be larger than |ωi|). Indeed, in our implementation
we pick the rate of the sponge in such a way as to minimize the overall number of constraints for
the hashchain, which means that some information may be absorbed/squeezed across multiple
applications of the state transformation.
Authentication paths. For every query made by the IOP verifier to the encoded index or to
a proof oracle, the BCS prover provides an authentication path for that query relative to the
appropriate Merkle root. Recall that the index verification key ivk contains the root ω0 of the
Merkle tree on the encoded index I(i); and the argument π contains the roots ω1, . . . , ωk of
the k Merkle trees that correspond to the k rounds of interaction. For every i ∈ {0, 1, . . . , k},
we denote by Qi the queries to the leaves of the i-th Merkle tree, by Ai the claimed query

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 167

!
⊕

ivk,# rt1 $k

%

%
!

⊕
! !

rtk $k+1

!
⊕

$1

!

Figure 5.5: We use a sponge construction to realize the hashchain in the BCS verifier.

answers, and by Wi the corresponding auxiliary information to validate them. Both Ai and Wi

are provided in the argument π for all i (including i = 0). Overall, we require a constraint system
S that, given assignments to the variables (ωi, Qi, Ai,Wi)

k
i=0, is satisfiable if and only if, for

every i ∈ {0, 1, . . . , k}, the auxiliary information Wi validates the claimed answers in Ai with
respect to the queries in Qi.

Below we describe the basic approach to designing the constraint system. Afterward we
describe how to significantly reduce the number of constraints via several optimizations.

The basic approach is to individually validate an authentication path for each query via a
separate constraint system. Namely, let ω be a root, j =

∑d
k=1 jk2

k−1 a query location (in binary
representation), a a claimed answer, s a salt used for hiding, and (uk)

d
k=1 an authentication path.

We require a constraint system that, given assignments to the variables (ω, j, a, s, (uk)
d
k=1), is

satisfiable if and only if the check in the following computation passes: (1) let vd be the hash of
the salted answer a‖s; (2) for each k = d, . . . , 1: if the k-th bit of j is 0 then let vk−1 be the hash
of vk‖uk, and if instead it is 1 then let vk−1 be the hash of uk‖vk; (3) check that v0 = ω. See
Fig. 5.6 for a diagram of this constraint system.

If we denote by S2→1 the number of constraints to hash two hashes into a single hash,
by Scswap the number of constraints for a “controlled swap” on two hashes, and by Sleaf(n)
the number of constraints to hash the answer and salt into a single hash, then the number of
constraints for the above computation is

Sleaf(|a|+ |s|) + d · (Scswap + S2→1) .

If we replicate the above strategy for each round i ∈ {0, 1, . . . , k} and each query in the
query set Qi, then the total number of constraints to validate all the query answers is:

k∑

i=0

|Qi| ·
(
Sleaf(αi + σi) + di · (Scswap + S2→1)

)
, (5.9)

where αi ∈ N denotes the number of field elements to answer a query in round i, σi ∈ N the
number of field elements in a salt in round i, and di ∈ N the depth of the Merkle tree in round i.
(Note that σ0 is always 0 because no hiding is needed for the round that involves the encoded
index; σi may also be 0 for i > 0 in some protocols because zero knowledge may not rely on any
query bound to oracles in the i-th round.)

We can do significantly better than Eq. (5.9) if we leverage the structure of query sets, as
we now describe.

First, there are known optimizations that increase “leaf size” to reduce argument size [23]
that we use to also reduce the number of constraints in our setting. We explain these below.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 168

!d

le
af

 h
as

h

2-
to

-1
 h

as
h

CS
W

AP

"

#

$d

%d

$d-1

!1

2-
to

-1
 h

as
h

CS
W

AP

$1

%1

rt

Figure 5.6: Diagram of a constraint system for validating an authentication path.

• Hash by column. In protocols derived from RS-encoded IOPs using Theorem 5.8.2, each
round’s oracles are over the same domain and the IOP verifier queries the same locations across
those oracles. This includes the “0-th round oracles”, i.e., the oracles in the encoded index
I(i). Hence, for i = 0, 1, . . . , k, the BCS prover can hash the i-th round oracles column-wise:
if `i ∈ N is the number of oracles in the i-th round then each leaf in the i-th Merkle tree
contains a vector in F`i (the “column”) representing one symbol from each of the `i oracles.
Thus a single authentication path suffices to authenticate all the answers from a query to the
entire leaf. This not only reduces argument size (fewer authentication paths are included
in the argument) but also reduces the number of constraints (fewer authentication paths are
validated).
• Hash by subset. The low-degree test that we use (see Section 5.12.2.2) yields queries that

consider each domain as partitioned into subsets of equal size and each query requests the
values of all locations in a subset, i.e., for each round i there is a parameter mi ∈ N for which
queries to oracles in the i-th round are always grouped in disjoint subsets of size mi. Hence
the BCS prover can hash all of these locations as part of the same leaf, which now is expanded
from a vector in F`i to a matrix in Fmi×`i . This reduces the number of authentication paths,
and also reduces the depth of the i-th Merkle tree by log2mi levels.

Second, there are optimizations that pertain only to the goal of reducing the number of
constraints, as we now exemplify. Since each oracle is queried at several locations, many
authentication paths will overlap in the top layers of the Merkle trees. For argument size, this
leads to the optimization of path pruning where the argument will contain the minimal collection
of hashes that suffices to authenticate a set of queries. This optimization (which we continue to
use for argument size) does not significantly reduce the number of constraints because validating
the set of queries still involves re-computing the omitted hashes. Even worse, since query
locations are random, we cannot hard-code in the constraint system which hash computations
are repeated. We mitigate this problem via the following hybrid approach.

• Tree cap. By the pigeonhole principle, any set of authentication paths must overlap towards
the top of the tree. To take advantage of this, we modify the Merkle tree in each round i by
connecting the vertices at layer ti (to be chosen later) directly to the root (and discarding the
layers in between), so that the root has degree 2ti . We then compute the Merkle tree root
using a “tree cap” hash function taking in 2ti hashes. Letting Scap(n) denote the number of
constraints for such a hash of n hashes, the total number of constraints across all rounds for
the first layer alone is

∑k
i=0 Scap(2

ti).
• Other layers. For the other layers, we treat the authentication paths as disjoint, and allocate

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 169

a separate constraint system to validate the segment of each such path. This amounts to
invoking the basic strategy described above, whose cost is summarized in Eq. (5.9), with the
modification that the authentication path is reduced from length di to length di − ti. Note that,
in light of the above discussions on answer size, we know that the answer in round i is of size
αi := mi · `i.

The above hybrid approach yields a total number of constraints equal to

k∑

i=0

Scap(2
ti) + |Qi| ·

(
Sleaf(mi · `i + σi) + (di − ti) · (Scswap + S2→1)

)
.

The constants ti are chosen to minimize the above expression. In Section 5.13.2 we discuss the
concrete improvements of the hybrid approach over the simplistic approach.

Remark 5.12.1 (arity of the Merkle tree). There are algebraic hash functions for which using
Merkle trees with large arity significantly reduces the number of constraints required to check
many authentication paths [4, 93]. This comes at the cost of a larger argument size, and our
implementation currently does not provide the option of such tradeoffs.

Representing query locations. We have so far assumed that the inputs and outputs of hash
functions are field elements, as opposed to bits. This is because we instantiate all hash functions
via algebraic constructions that require fewer constraints to express (see Section 5.13.2) and also
because certain aspects of the verifier are simpler (e.g., the verifier’s randomness in the protocol
is essentially uniformly random in F). That said, for the query part, the verifier does not draw
query locations from the whole field F but, instead, from an evaluation domain contained in F,
and we need to obtain a bit-representation of these locations to check Merkle tree authentication
paths. Recall also that queries are grouped into subset, and so the location will refer to the subset
in the evaluation domain rather than to a single element in the evaluation domain.

We thus perform a bit decomposition of the field elements output by the hash function,
split the resulting string into substrings of appropriate size, and regard each substring as a bit-
representation of the queried subset. In more detail, for each round i ∈ {0, 1, . . . , k}, let Li ⊆ F
be the evaluation domain of round i and recall that queries in round i are on subsets of size mi.
This means that we can obtain blog2 |F|c/(log2 |Li| − log2mi) subsets in Li for each element
in F output by the hash function. Therefore, if we need to sample q subsets in Li, the number
of field elements that we need to allocate in ρk+1 is dq · log2 |Li|−log2 mi

blog2 |F|c
e. Obtaining from these

field elements the corresponding bit representations requires about q · (log2 |Li| − log2mi + 2)
constraints.

We stress that queries across rounds need not be independent. Indeed, for the IOP verifiers
that we consider (see Section 5.12.2.2), it will hold that each round receives the same number of
queries (informally, there exists q such that q = |Q0| = |Q1| = · · · = |Qk|) and all the queries
are correlated in that the q subsets for each round can all be derived from q samples of a certain
length.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 170

5.12.2.2 The IOP verifier

We describe the design of a constraint system that can express the verifier of any (holo-
graphic) IOP derived from an RS-encoded (holographic) IOP and a low-degree test, according to
the construction underlying Theorem 5.8.2. Informally, the RS-encoded (holographic) IOP is
an interactive reduction that leads to a set of algebraic claims about the prover’s oracles (and
possibly also about the encoded index); and the low-degree test is an interactive protocol that is
used to ensure that these algebraic claims hold.
Outline. Let (I,P,V) be a holographic IOP for an indexed relation R constructed via The-
orem 5.8.2. Note that R need not be the R1CS indexed relation. Below we recall the two
ingredients of the construction.

• A kR-round RS-encoded holographic IOP (IR, PR, VR, {~dI, ~dP,1, . . . , ~dP,kR}) over a domain
L, with maximum degree (dc, de), for the indexed relation R. In each of kR rounds, the
RS-hIOP verifier VR sends randomness and the RS-hIOP prover PR sends an oracle; after the
interaction, the RS-hIOP verifier VR outputs a set of rational constraints (the algebraic claims,
see Definition 5.4.1). We view the RS-hIOP verifier VR as a function that maps an instance x
and randomness ρR to a set of rational constrains C.

• A kLDT-round low-degree test (PLDT,VLDT) for the Reed–Solomon code RS [L, dc]. In each
of kLDT rounds, the LDT verifier VLDT sends randomness and the LDT prover PLDT sends an
oracle; after the interaction, the LDT verifier VLDT makes qLDT queries, and then accepts or
rejects. We can view the LDT verifier VLDT as two algorithms: a query algorithm VLDT.Q
such that (Q0, Q1, . . . , QkLDT) := VLDT.Q(ρLDT) are the queries to the tested oracle and
the kLDT prover oracles on randomness ρLDT; and a decision algorithm VLDT.D such that
VLDT.D(A0, A1, . . . , AkLDT ,ρLDT) is the decision of the verifier given answers to the queries
and the same randomness.

We need to design a constraint system to express the computation of the holographic IOP verifier
V, and so we are faced with three sub-tasks: (1) design a constraint system for the RS-hIOP
verifier VR; (2) design a constraint system for the LDT verifier VLDT; (3) combine these two into
a constraint system for V.

We review features of the construction in Theorem 5.8.2 relevant for designing the constraint
system.

• Randomness. The verifier V has kR + kLDT rounds of interaction where the first kR rounds
are for VR and the remaining kLDT rounds are for VLDT. This means that we can split the
randomness ρ of V into randomness ρR for VR and randomness ρLDT for VLDT.

• Domains. The oracles in the encoded index and in the first kR rounds are all over the domain
L, while oracles in the other kLDT rounds are over domains determined by the LDT.

• Queries. The queries to the oracles in the encoded index and in the first kR rounds are all the
same, i.e., they are specified by the query set Q0 ⊆ L for the tested oracle determined by the
LDT verifier.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 171

• Tested oracle. The low-degree test is invoked on a “virtual oracle” f : L → F defined as a
random linear combination of rational constraints output by the RS-hIOP verifier. Namely, if
((Nk, Dk, dk))

r
k=1 are the rational constraints output by VR(x;ρR), α1, . . . , αk are the random

coefficients, and f1, . . . , f` : L→ F are the oracles sent by the RS-hIOP prover across the kR

rounds, then f is defined as follows:

∀ a , f(a) :=
∑

k=1

αk ·
Nk(a, f1(a), . . . , f`(a))

Dk(a)
.

The low-degree test will read f at the query setQ0, which means that all oracles f1, . . . , f` will
also be read at Q0, and their answers must be combined according to the rational constraints
and random coefficients.

(1) RS-hIOP. First we note that the structure of the interactive phase of the RS-hIOP for R
determines what the hashchain described in Section 5.12.2.1 needs to squeeze and absorb for the
first kR rounds. In the case of our RS-hIOP for R1CS this round information can be directly read
off from Fig. 5.4.

We now turn to discussing the constraint system associated to VR, which is tasked to
evaluate the rational constraints output by VR at a set of locations Q ⊆ L (the queries for the
oracle tested by the LDT).

Suppose that the number of oracles sent by the RS-hIOP prover across the kR rounds is `,
and suppose that the number of rational constraints output by the RS-hIOP verifier is r. We seek
a constraint system that, given as input an instance x, randomness ρR, query set Q, answers
from all oracles (βa,j)a∈Q,j∈[`] and claimed evaluations (γa,k)a∈Q,k∈[r], is satisfiable if and only if,
letting ((Nk, Dk, dk))

r
k=1 be the rational constraints output by VR(x;ρR), it holds that

∀ a ∈ Q , ∀ k ∈ [r] , γa,k =
Nk(a, βa,1, . . . , βa,`)

Dk(a)
.

In all known RS-encoded protocols, including the RS-hIOP for R1CS in Fig. 5.4, the
rational constraints output by the RS-hIOP verifier depend on the instance x and randomness
ρR in an algebraic way, in the sense that we can view x and ρR as auxiliary variables of the
arithmetic circuits (Nk)

r
k=1. This means that the cost to check all the equations above is

|Q| ·

(
r∑

k=1

|Nk|+ |Dk|+ 1

)
,

where |Nk| and |Dk| denote the sizes of the arithmetic circuits for Nk and Dk. (The additive 1
accounts for checking the equality given variables that contain the outputs of the two arithmetic
circuits.) Note that these complexity measures are related to, but different from, the query
evaluation time defined in Section 5.4.1: query evaluation time is a uniform complexity measure,
whereas circuit size is non-uniform.

In our implementation we additionally reuse sub-computations across constraint systems
and across evaluation points to reduce the size of the constraint system. For example, ifDk = Dk′

for distinct k, k′ then we know that we only need to compute Dk(a) once; similarly if Nk and

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 172

Nk′ share sub-computations. One can verify that there are several such opportunities for the
RS-hIOP for R1CS in Fig. 5.4.
(2) Low-degree test. The low-degree test that we use in this paper is FRI [22], which is a
logarithmic-round logarithmic-query protocol. Below we describe a constraint system that
represents the FRI verifier.

Let L be the domain of the oracle to be tested (i.e., the domain of the RS-hIOP). The size
of L induces a list of “localization parameters” (η1, . . . , ηkLDT) which in turn induces a list of
domains (L1, . . . , LkLDT) with progressively smaller sizes, |Li| = |Li−1|/2ηi = |L|/2η1+···+ηi

with L0 := L. Each domain Li is obtained from Li−1 as the image of a 2ηi-to-1 map hi that maps
cosets of size 2ηi in Li−1 to single points in Li. Any coset U0 of size 2η1 in the domain L0 = L
determines kLDT − 1 cosets (U1, . . . , UkLDT−1) of respective sizes (2η2 , . . . , 2kLDT

) contained in
(L1, . . . , LkLDT−1) as follows: for each i ∈ {1, . . . , kLDT − 1}, Ui is the unique coset of size 2ηi+1

that contains the point hi(Ui−1).
We separately address the interactive phase and the query phase.

• Interactive phase. For i ∈ {1, . . . , kLDT}, in round i the FRI verifier sends a random field
element αi and the FRI prover replies with an oracle fi : Li → F if i < kLDT, or with a
(non-oracle) message containing the coefficients of a polynomial f̂kLDT(X) if i = kLDT. If the
degree to be tested is d then the degree of f̂kLDT(X) is dkLDT := d/2η1+···+η

kLDT . Queries to
domain Li−1 are grouped in cosets of size 2ηi . Hence larger localization parameters lead to
fewer rounds, at the expense of querying larger cosets. (Choosing these parameters well is
crucial to minimizing constraint complexity, as we discuss in Section 5.13.2.)

Since the FRI verifier is public-coin, its interactive phase does not yield any special constraints.
However the specifics of the interaction affect the hashchain described in Section 5.12.2.1,
which is responsible to squeeze verifier randomness and absorb prover messages. We deduce
that, for each round i ∈ {1, . . . , kLDT − 1}: the hashchain is required to squeeze a single field
element and then to absorb a single Merkle root, and the depth of the corresponding Merkle
tree is log2 |L| − (η1 + · · ·+ ηi+1). In the last round (i = kLDT), the hashchain is required to
squeeze a single field element and then to absorb dkLDT + 1 field elements.

• Query phase. The FRI verifier repeats the following q times, for a number q that controls
soundness error.

– Queries. The FRI verifier samples a random coset U0 of size 2η1 in the domain L0 = L,
and reads the values of the oracle to be tested at U0. The coset U0 determines, for each
i ∈ {1, . . . , kLDT − 1}, a coset Ui of size 2ηi+1 in the domain Li, and the FRI verifier reads
the values of the oracle fi in round i at Ui. Finally, the FRI verifier also reads all the
dkLDT + 1 coefficients of the polynomial sent in round kLDT.

– Decision. For each i ∈ {0, 1, . . . , kLDT − 1}, let pi(X) be the polynomial of degree less
than 2ηi+1 that equals the interpolation of the values read for the i-th coset Ui. Let f̂kLDT(X)
be the polynomial of degree dkLDT sent by the prover in the last round (round i = kLDT).
The FRI verifier performs the following kLDT consistency checks: for each i ∈ {1, . . . , kLDT−
1}, check that pi−1(αi) = fi(hi(Ui−1)); also check that pkLDT−1(αkLDT) = f̂kLDT(αkLDT).

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 173

The implication of the first item above to the constraint system is that the hashchain described
in Section 5.12.2.1 needs to squeeze enough field elements to determine q samples of starting
cosets in the domain L0 = L (with each sample indexed in binary as already discussed).
Moreover, the constraint system needs to check, for each starting coset U0, that the remaining
kLDT − 1 cosets Ui are correctly chosen. For this, since hi has degree 2ηi , we need at most 2ηi

constraints. Hence, the total constraint cost for checking q lists of cosets is q ·
∑kLDT

i=1 2ηi . (In
fact, we can avoid this cost altogether: by choosing an appropriate bit representation, we can
obtain the bit decomposition of the index of coset Ui by truncating the bit decomposition of
the index of coset Ui−1, in which case no constraints are needed.)

The implication of the second item above to the constraint system is that the FRI verifier,
for each of q runs, needs to evaluate the interpolation of kLDT cosets at a single point and
also evaluate the polynomial contained in the last message at a single point. This number of
constraints for this is

q ·

Seval

(
d

2η1+···+η
kLDT

)
+

kLDT∑

i=1

Slde(2
ηi)

 ,

where Seval(n) = n is the number of constraints to evaluate a polynomial of degree n (say,
via a constraint system that follows Horner’s method), and Slde(n) = 2n + O(log n) is the
number of constraints to evaluate at a single point the interpolation of a function defined over
a size-n coset. We justify this latter cost below, because the design of the constraint system
for interpolation requires some care.

Coset interpolation. We require a constraint system that, given the identifier of a coset S in
a domain L, a function f : S → F, an evaluation point γ ∈ F, and a claimed evaluation v ∈ F,
is satisfiable if and only if v =

∑
a∈S f(a)La,S(γ), where {La,S(X)}a∈S are the Lagrange

polynomials for S.
We describe a constraint system of size 2|S| + O(log(|S|)). Given the Lagrange coeffi-

cients, we can compute the inner product of the function and the Lagrange coefficients with |S|
constraints. This leaves |S|+O(log(|S|)) constraints to compute the Lagrange coefficients, as
we discuss below.

A simplistic approach would be to deduce the coefficients of each Lagrange polynomial
{La,S(X)}a∈S , hardcode these coefficients in the constraint system, and then let the constraint
system compute {La,S(γ)}a∈S for the given evaluation point γ ∈ F. However, the choice of
coset S is not known at “compile time” (when constructing the constraint system) because the
identifier of S in the domain L is an input to the constraint system. We now explain how to
efficiently compute all the evaluations without “generically” deriving the coefficients of each
Lagrange polynomial (which would be much more expensive).

Observe that, at compile time, we know some information about S: the base coset (i.e.,
subgroup) S∗ from which the coset S is derived as a shift (S∗ need not be in L). Namely, in
the additive case S = S∗ + ξ for some ξ ∈ F, and in the multiplicative case S = ξS∗ for some
ξ ∈ F. Thus the identifier of S in L can be viewed as encoding the shift ξ that determines S from
S∗. This is useful because: (a) the vanishing polynomial of a coset S is closely related to the

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 174

vanishing polynomial of its base coset S∗; and (b) each Lagrange polynomial can be expressed
via the vanishing polynomial vS(X) and its derivative v′S(X). Specifically, for every a ∈ S,
La,S(X) = 1

v′S(a)
· vS(X)
X−a . This enables us to hardcode in the constraint system information about

the base coset S∗, and task the constraint system with a cheap computation that depends on the
shift ξ.

We describe this approach for the additive and multiplicative cases separately.

• Additive case. The derivative v′S(X) is a constant cS∗ ∈ F that only depends on the base coset
S∗. Hence all the values {v′S(a)}a∈S (and their inverses) are known at compile time, as they
all equal cS∗ . The polynomial vS(X) equals vS∗(X − ξ), which has O(log(|S|)) non-zero
monomials. Hence, if we hardcode the polynomial vS∗ in the constraint system, we can
compute vS(γ) = vS∗(γ − ξ) ∈ F, and also vS(γ)/cS∗ = vS∗(γ − ξ)/cS∗ ∈ F (common to all
Lagrange coefficients) with O(log(|S|)) constraints.

Next, note that each element a ∈ S can be written as a = a∗ + ξ for a corresponding element
a∗ ∈ S∗. This means that {X − a}a∈S = {X − a∗ − ξ}a∗∈S∗ , where the elements a∗ are
hardcoded in the constraint system and ξ is an input to the constraint system. In particular,
given vS∗(γ− ξ)/cS∗ ∈ F we can compute {La,S(γ)}a∈S = {vS∗ (γ−ξ)

cS∗
· 1
γ−a∗−ξ}a∗∈S∗ with |S|

additional constraints.

• Multiplicative case. The polynomial vS(X) is the polynomial X |S| − ξ|S|, and its derivative
v′S(X) is the polynomial |S|X |S|−1; recall that |S| = |S∗| and so this quantity is known at
compile time. Moreover, each element a ∈ S can be written as a = ξa∗ for a corresponding
element a∗ ∈ S∗. Therefore we can re-write each Lagrange polynomial as:

La,S(X) =
1

v′S(a)
· vS(X)

X − a

=
1

|S|(ξa∗)|S|−1
· X

|S| − ξ|S|

X − ξa∗

=
1

|S|(ξa∗)|S|
· X |S| − ξ|S|

X(ξa∗)−1 − 1

=
1

|S|ξ|S|
· X |S| − ξ|S|

X(ξa∗)−1 − 1
.

The above expression leads to the following strategy. The constraint system first uses the
shift ξ and evaluation point γ to compute, via O(log(|S|)) constraints, the value γ|S|−ξ|S|

|S|ξ|S| ;
and also one constraint to compute γξ−1. Then, the constraint system computes the values
{La,S(γ)}a∈S = {γ|S|−ξ|S||S|ξ|S| ·

1
γ(ξa∗)−1−1

}a∗∈S∗ with |S| additional constraints.

5.13 Evaluation
In Section 5.13.1 we evaluate our implementation of the preprocessing zkSNARK, and in

Section 5.13.2 we evaluate our implementation of recursive composition.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 175

All reported measurements were run in single-threaded mode on a machine with an Intel
Xeon 6136 CPU at 3.0 GHz with 252 GB of RAM (no more than 32 GB of RAM were used in
any experiment).

5.13.1 Performance of the preprocessing zkSNARK
We report on the performance of FRACTAL, the preprocessing zkSNARK for R1CS that

we have implemented by extending libiop as described in Section 5.12.1. We configure our
implementation to achieve 128 bits of security, for constraints expressed over a prime field of
181 bits. This field choice is illustrative, as the only requirement on the field is that it should
contain suitable subgroups for us to use.

In Fig. 5.7 we report the costs for several efficiency measures, and for each measure also
indicate how much of the cost is due to the probabilistic proof and how much is due to the
cryptographic compiler. The costs depend on the number of constraintsm in the R1CS instance,14

and so we report how the costs change as we vary m over the range {210, 211, . . . , 220}. Below,
by native execution time we mean the time that it takes to check that an assignment satisfies the
constraint system, and by native witness size we mean the number of bytes required to represent
an assignment to the constraint system.

• Indexer time. In the upper left, we plot the running time of the indexer, as absolute cost (top
graph) and as relative cost when compared to native execution time (bottom graph). Indexer
times range from fractions of a second to several minutes, and the plot confirms the quasilinear
complexity of the indexer. Indexer time is dominated by the cost of running the underlying
HIOP indexer.

• Prover time. In the upper right, we plot the running time of the prover, as absolute cost (top
graph) and as relative cost when compared to native execution time (bottom graph). Prover
times range from fractions of a second to several minutes, and the plot confirms the quasilinear
complexity of the prover. Prover time is dominated by the cost of running the underlying
HIOP prover.

• Argument size. In the lower left, we plot argument size, as absolute cost (top graph) and as
relative cost when compared to native witness size (bottom graph). Argument sizes range
from 80 kB to 160 kB with compression (argument size is smaller than native witness size)
occurring for m ≥ 4, 000, and the plot confirms the polylogarithmic complexity of the
argument. Argument size is dominated by the cryptographic digests to authenticate query
answers.
14More precisely, the costs in general depend on (a) m, the number of constraints (i.e., number of rows in each

matrix); (b) n, the number of variables (i.e., number of columns in each matrix); (c) m, the number of non-zero
entries in a matrix; and (d) k, the number of public inputs. The number of constraints m and the number of variables
n are typically approximately equal, and indeed in this paper we have assumed for simplicity that m = n (the
matrices in Definition 5.3.2 are square); so we only keep track of m. The number of non-zero entries m is typically
within a small factor of m, and in our experiments m/m is approximately 1. Finally, the number of public inputs k
is at most n, and in typical applications it is much smaller than n, so we do not focus on it.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 176

• Verifier time. In the lower right, we plot the running time of the verifier, as absolute cost (top
graph) and as relative cost when compared to native execution time (bottom graph). Verifier
times are several milliseconds and become faster than native execution for m ≥ 65, 000, and
the plot confirms the polylogarithmic complexity of the verifier. Verifier time is dominated by
the cost of running the underlying HIOP verifier.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 177

Indexer Time Prover Time

10-2

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

in
de

xe
r t

im
e

(s
)

number of constraints

Total
IOP

BCS

10-2

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Total
IOP

BCS

103

104

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f i

nd
ex

er
 ti

m
e

ov
er

 n
at

ive
 e

xe
cu

tio
n

number of constraints

time(indexer)/time(native)

103

104

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f p

ro
ve

r t
im

e
ov

er
 n

at
ive

 e
xe

cu
tio

n

number of constraints

time(prover)/time(native)

Argument Size Verifier Time

104

105

106

107

108

210 211 212 213 214 215 216 217 218 219 220

ar
gu

m
en

t s
ize

 (b
yt

es
)

number of constraints

Total
IOP

BCS
Native

10-4

10-3

10-2

10-1

100

210 211 212 213 214 215 216 217 218 219 220

ve
rif

er
 ti

m
e

(s
)

number of constraints

Total
IOP

BCS
Native

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f a

rg
um

en
t s

ize
 to

 w
itn

es
s

siz
e

number of constraints

size(argument)/size(witness)

10-2

10-1

100

101

102

210 211 212 213 214 215 216 217 218 219 220

ra
tio

 o
f v

er
ife

r t
im

e
ov

er
 n

at
ive

 e
xe

cu
tio

n

number of constraints

time(verifer)/time(native)

Figure 5.7: Performance of FRACTAL.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 178

Finally, in Fig. 5.8, we compare FRACTAL with the state of the art in several types of
zkSNARKs for R1CS:

(1) Aurora, a non-preprocessing zkSNARK in the (quantum) random oracle model (Chapter 3);
(2) Groth16, a preprocessing zkSNARK with circuit-specific SRS [95];
(3) Marlin, a preprocessing zkSNARK with universal SRS [65].

The first protocol is configured the same as our protocol (128 bits of security over a prime field
of 181 bits), and the implementation that we use is from libiop [132]. The second and third
protocols require a choice of pairing-friendly elliptic curve, which we take to be bls12-381;
the implementation of the second protocol is from libzexe [133] and the implementation of
the third protocol is from marlin [134].

While informative, the comparison should be considered qualitative, because the protocols
expose R1CS defined over different prime fields, which means that the same statement may
require a different number of constraints when expressed over one field versus another.

Indexer Time Prover Time

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

in
de

xe
r t

im
e

(s
)

number of constraints

Fractal
Marlin

Groth16

10-1

100

101

102

103

210 211 212 213 214 215 216 217 218 219 220

pr
ov

er
 ti

m
e

(s
)

number of constraints

Fractal
Aurora
Marlin

Groth16

Argument Size Verifier Time

104

105

106

210 211 212 213 214 215 216 217 218 219 220

ar
gu

m
en

t s
ize

 (b
yt

es
)

number of constraints

Fractal
Aurora

10-3

10-2

10-1

100

101

210 211 212 213 214 215 216 217 218 219 220

ve
rif

er
 ti

m
e

(s
)

number of constraints

Fractal
Aurora
Marlin

Groth16

Figure 5.8: Comparison across several zkSNARKs for R1CS. The argument size for [95] is
192 B and for [65, Marlin] is 880 B; they are not plotted in the argument size graph because
they are much smaller than the argument sizes for the other protocols (which differ in that
they are post-quantum and transparent). Note that the setup algorithm for [95] is plotted in
the indexer graph because it also serves as an indexer.

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 179

5.13.2 Performance of recursive composition
We report on the performance of recursive composition based on FRACTAL. Recall from

Section 5.11 that the quantity governing the efficiency of recursion is the complexity of the
verifier when expressed as an R1CS constraint system. For R1CS, the we measure complexity by
the number of constraints and the total nonzero coefficients (which are sometimes in contention);
we refer to these quantities together as the verifier size.

If we were to directly translate the “native” verifier that we evaluate in the previous section
into a constraint system, it would be much too large to prove. The primary culprit for this is
the choice of hash function. In the previous section we chose a hash function with fast native
execution; unfortunately, it is large when represented as an R1CS constraint system. For recursive
composition, we will choose a hash function that has a much smaller R1CS representation. Since
this hash function is much slower to execute natively, this results in an increase in the proving
time per constraint; however, this increase is modest compared to the significant saving arising
from the smaller constraint system.

In the remainder of this section we discuss our choice of hash function and how we set
its parameters; we then discuss an optimization that significantly improves the native execution
time of the hash function without increasing the constraint system size.
Choice of hash function. We instantiate the various hash functions required in Section 5.12.2.1
via different parameterizations of Poseidon [93]. This is a sponge hash function [44], which
means that it maintains a state that is split into two parts: the rate part of the state, which is
used to absorb inputs and squeeze outputs; and the capacity part of the state, the size of which
determines the security of the sponge.

We will set the Poseidon parameters for each hash function in order to jointly minimize the
number of constraints and the number of nonzero coefficients. We assume our field is such that
blog(|F|)c ≥ 2λ, which allows us to set the capacity to be one field element, and the hash output
size as one field element. It remains to choose the rate, and the Poseidon parameter α, which
controls the degree of the S-Box permutations.

We set α = 17 for all of our hash functions. This is higher than typical instantiations
of Poseidon. This choice reduces the number of rounds of the hash function, which greatly
reduces the number of non-zero R1CS coefficients in exchange for a modest increase in the
number of R1CS constraints. We find empirically that the number of non-zero R1CS coefficients
per element of rate is minimized for α = 17 when the rate is 10. Correspondingly, we set the
rate of each hash function to be the minimum of 10 and the number of elements that must be
absorbed/squeezed in a single execution of the hash function.
Prover execution time. The recursive prover’s running time is affected by the native execution
time of the hash function. The direct implementation of Poseidon as our hash function is too
slow, causing a 100× slowdown to the recursive prover. This is due to every round requiring
the multiplication of a vector by a random MDS matrix. To address this, we instead rely on
MDS matrices with ‘light-weight circuits’ [76, 79], i.e., MDS matrices with small entries (when
viewed as integer matrices), for which matrix-vector products can be computed without field
multiplications. This leads to a 10× performance improvement in hash execution time, which
reduces the slowdown versus the ‘standalone’ prover to 10×.
Verifier size. Recall from Definition 5.11.4 that V(λ,N,k) denotes an R1CS instance expressing

CHAPTER 5. FRACTAL: POST-QUANTUM RECURSIVE COMPOSITION 180

the computation of the SNARK verifier V , for security parameter λ, when checking R1CS
instances with at most N constraints and an explicit input of size at most k. Our goal is to
minimize the size of V(λ,N,k). For our evaluation we fix the security parameter λ := 128 and the
instance size k := 100, and measure how |V(λ,N,k)| varies with N .

Given our choice of hash function parameters, the number of non-zero R1CS coefficients is
always within a factor of two of the number of R1CS constraints. Hence for simplicity, below we
report only the number of R1CS constraints. This suffices for finding the “recursion threshold”,
the smallest value N∗ for which V(λ,N∗,k) has fewer than N∗ constraints (and hence the smallest
N∗ that admits recursion).

In Section 5.12.2 we described our design of a generic verifier circuit, which left several
parameters unspecified (e.g., the number of commitments sent by the prover in a particular
round, the number of field elements sent by the verifier in a particular round, the specific rational
constraints, and so on). In our implementation we specialize this design to the verifier for
FRACTAL to obtain a constraint system that expresses its correct execution. In Fig. 5.9 we
plot the measured size of V(λ,N,k) against the number of constraints N it is checking. The
graph shows that the recursion threshold is at most 2 million: for all N greater than 2 million,
|V(λ,N,k)| ≤ N . Since we are able to prove constraint systems of this size, this demonstrates
feasibility of recursion in our implementation. We are optimistic that further optimizations will
further reduce the size of the verifier, and hence also the recursion threshold.

219 220 221 222 223

N

1M

2M

3M

4M

5M

∣ ∣ ∣V
(λ

,N
,K
)∣ ∣ ∣

N
RS IOP
LDT

Hashchain
Merkle Tree

N 220 221 222 223

RS-IOP 2,948 3,036 3,124 3,212
LDT 58,586 42,658 36,190 37,598
Hashchain 65,184 46,878 37,566 37,566
Merkle Tree 962,544 1,068,122 1,137,818 1,210,418
- leaf hash 235,840 235,642 284,746 309,298
- 2-to-1 hash 663,830 760,624 781,216 829,264
- cap hash 62,874 71,856 71,856 71,856

Total 1,132,666 1,210,292 1,264,299 1,338,406

Figure 5.9: On the left we plot, in a linear-log scale, the number of constraints to express
the FRACTAL verifier as a function of the number of constraints it is checking (N), using
areas of different colors to denote contributions from different constraint types. In the same
graph we also plot the number of checked constraints (the function N 7→ N), which shows
how the number of constraints for the verifier (which is polylogλ,k(N)) grows much slower
than N , giving a cross-over point. On the right, we provide several data points for different
values of N .

181

Bibliography

[1] The Zcash Ceremony, 2016. https://z.cash/blog/
the-design-of-the-ceremony.html.

[2] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM, 51(4):595–605, 2004.

[3] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, Janno Siim, and Michal Zajac. UC-
Secure CRS generation for SNARKs. In Proceedings of the 11th International Conference
on Cryptology in Africa, AFRICACRYPT ’19, pages 99–117, 2019.

[4] Martin R Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard
Lüftenegger, Christian Rechberger, and Markus Schofnegger. Algebraic cryptanalysis of
STARK-friendly designs: Application to MARVELlous and MiMC. IACR Cryptology
ePrint Archive, Report 2019/419, 2019.

[5] Martin R Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rechberger,
Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel structures for MPC, and
more. IACR Cryptology ePrint Archive, Report 2019/397, 2019.

[6] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction
of almost k-wise independent random variables. Random Structures and Algorithms,
3(3):289–304, 1992.

[7] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepie-
niec. Design of symmetric-key primitives for advanced cryptographic protocols. IACR
Cryptology ePrint Archive, Report 2019/426, 2019.

[8] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs
using semi-classical oracles. In Proceedings of the 39th Annual International Cryptology
Conference, CRYPTO ’19, pages 269–295, 2019.

[9] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Proceedings of
the 24th ACM Conference on Computer and Communications Security, CCS ’17, pages
2087–2104, 2017.

https://z.cash/blog/the-design-of-the-ceremony.html
https://z.cash/blog/the-design-of-the-ceremony.html

BIBLIOGRAPHY 182

[10] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998. Preliminary version in FOCS ’92.

[11] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[12] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-friendly family of crypto-
graphic primitives. IACR Cryptology ePrint Archive, Report 2018/1098, 2018.

[13] Jean-Philippe Aumasson, Willi Meier, Raphael Phan, and Luca Henzen. The Hash
Function BLAKE. Springer-Verlag Berlin Heidelberg, 2014.

[14] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Win-
nerlein. BLAKE2: simpler, smaller, fast as MD5, 2013. https://blake2.net/
blake2.pdf.

[15] László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, STOC ’85, pages 421–429, 1985.

[16] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, STOC ’91, pages 21–32, 1991.

[17] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991. Preliminary
version appeared in FOCS ’90.

[18] Barry Whitehat. Rollup, 2018. https://github.com/barryWhiteHat/roll_
up.

[19] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim
Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits.
In Proceedings of the 38th Annual International Cryptology Conference, CRYPTO ’18,
pages 669–699, 2018.

[20] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, CCS ’93, pages 62–73, 1993.

[21] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and
Madars Virza. Computational integrity with a public random string from quasi-linear pcps.
In Proceedings of the 36th Annual International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT ’17, pages 551–579, 2017.

https://blake2.net/blake2.pdf
https://blake2.net/blake2.pdf
https://github.com/barryWhiteHat/roll_up
https://github.com/barryWhiteHat/roll_up

BIBLIOGRAPHY 183

[22] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed–Solomon
interactive oracle proofs of proximity. In Proceedings of the 45th International Colloquium
on Automata, Languages and Programming, ICALP ’18, pages 14:1–14:17, 2018.

[23] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Proceedings of the 39th Annual International Cryptology
Conference, CRYPTO ’19, pages 733–764, 2019.

[24] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev,
and Nicholas Spooner. Zero knowledge protocols from succinct constraint detection. In
Proceedings of the 15th Theory of Cryptography Conference, TCC ’17, pages 172–206,
2017.

[25] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In Proceed-
ings of the 44th International Colloquium on Automata, Languages and Programming,
ICALP ’17, pages 40:1–40:15, 2017.

[26] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-
size zero knowledge from linear-algebraic PCPs. In Proceedings of the 13th Theory of
Cryptography Conference, TCC ’16-A, pages 33–64, 2016.

[27] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions
from RAMs to delegatable succinct constraint satisfaction problems. In Proceedings of the
4th Innovations in Theoretical Computer Science Conference, ITCS ’13, pages 401–414,
2013.

[28] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete effi-
ciency of probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium
on the Theory of Computing, STOC ’13, pages 585–594, 2013.

[29] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Proceedings of the 33rd Annual International Cryptology Conference, CRYPTO ’13,
pages 90–108, 2013.

[30] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. Linear-size constant-query IOPs for delegating computation. In
Proceedings of the 17th Theory of Cryptography Conference, TCC ’19, 2019.

[31] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars Virza.
Secure sampling of public parameters for succinct zero knowledge proofs. In Proceedings
of the 36th IEEE Symposium on Security and Privacy, S&P ’15, pages 287–304, 2015.

[32] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Proceedings of the 14th Theory of Cryptography Conference, TCC ’16-B, pages 31–60,
2016.

BIBLIOGRAPHY 184

[33] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Proceedings of the 34th Annual International
Cryptology Conference, CRYPTO ’14, pages 276–294, 2014. Extended version at http:
//eprint.iacr.org/2014/595.

[34] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von Neumann architecture. In Proceedings of the 23rd
USENIX Security Symposium, Security ’14, pages 781–796, 2014. Extended version at
http://eprint.iacr.org/2013/879.

[35] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
Sampling outside the box improves soundness, 2019. ECCC TR19-044.

[36] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE
Conference on Computational Complexity, CCC ’05, pages 120–134, 2005.

[37] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

[38] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant rate PCPs for Circuit-SAT with sublinear query complexity. In Proceedings of
the 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’13, pages
320–329, 2013.

[39] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-case to average case
reductions for the distance to a code. In Proceedings of the 33rd ACM Conference on
Computer and Communications Security, CCS ’18, pages 24:1–24:23, 2018.

[40] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006.

[41] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[42] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, STOC ’03, pages 612–621, 2003.

[43] Daniel J. Bernstein and Tung Chou. Faster binary-field multiplication and faster binary-
field MACs. In Proceedings of the 21st International Conference on Selected Areas in
Cryptography, SAC ’14, pages 92–111, 2014.

[44] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferen-
tiability of the sponge construction. In Proceedings of the 27th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT ’08,
pages 181–197, 2008.

http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2014/595
http://eprint.iacr.org/2013/879

BIBLIOGRAPHY 185

[45] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKs and proof-carrying data. In Proceedings of the 45th ACM
Symposium on the Theory of Computing, STOC ’13, pages 111–120, 2013.

[46] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Suc-
cinct non-interactive arguments via linear interactive proofs. In Proceedings of the 10th
Theory of Cryptography Conference, TCC ’13, pages 315–333, 2013.

[47] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal
of the ACM, 42(1):269–291, 1995. Preliminary version in STOC ’89.

[48] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Proceedings of the 17th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT ’11, pages 41–69, 2011.

[49] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their
application to more efficient obfuscation. In Proceedings of the 36th Annual International
Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT ’17,
pages 247–277, 2017.

[50] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In
Proceedings of the 35th Annual International Conference on Theory and Application of
Cryptographic Techniques, EUROCRYPT ’16, pages 327–357, 2016.

[51] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit satisfiability.
In Proceedings of the 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, ASIACRYPT ’17, pages 336–365, 2017.

[52] Sean Bowe, Ariel Gabizon, and Matthew Green. A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK. Cryptology ePrint Archive, Report
2017/602, 2017.

[53] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-
SNARK parameters in the random beacon model. Cryptology ePrint Archive, Report
2017/1050, 2017.

[54] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019.

[55] Sean Bowe, Kobi Gurkan, Eran Tromer, Benedikt B?nz, Konstantinos Chalkias, Daniel
Genkin, Jack Grigg, Daira Hopwood, Jason Law, Andrew Poelstra, abhi shelat, Muthu
Venkitasubramaniam, Madars Virza, Riad S. Wahby, and Pieter Wuille. Implementation
track proceeding. Technical report, ZKProof Standards, 2018. https://zkproof.
org/documents.html.

https://zkproof.org/documents.html
https://zkproof.org/documents.html

BIBLIOGRAPHY 186

[56] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy, S&P ’18, pages 315–334,
2018.

[57] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data from accumulation schemes. Cryptology ePrint Archive, Report 2020/499,
2020.

[58] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK com-
pilers. In Proceedings of the 39th Annual International Conference on Theory and
Application of Cryptographic Techniques, EUROCRYPT ’20, pages 677–706, 2020.

[59] Nigel P. Byott and Robin J. Chapman. Power sums over finite subspaces of a field. Finite
Fields and Their Applications, 5(3):254–265, July 1999.

[60] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and Ron D.
Rothblum. Fiat–Shamir from simpler assumptions. Cryptology ePrint Archive, Report
2018/1004, 2018.

[61] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
Journal of the ACM, 51(4):557–594, 2004.

[62] David G. Cantor. On arithmetical algorithms over finite fields. Journal of Combinatorial
Theory, Series A, 50(2):285–300, 1989.

[63] Richard Chang, Suresh Chari, Desh Ranjan, and Pankaj Rohatgi. Relativization: a
revisionistic retrospective. Bulletin of the European Association for Theoretical Computer
Science, 47:144–153, 1992.

[64] Alessandro Chiesa, Lynn Chua, and Matthew Weidner. On cycles of pairing-friendly
elliptic curves. SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.
https://arxiv.org/abs/1803.02067.

[65] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In
Proceedings of the 39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT ’20, pages 738–768, 2020.

[66] Alessandro Chiesa and Siqi Liu. On the impossibility of probabilistic proofs in rela-
tivized worlds. In Proceedings of the 11th Innovations in Theoretical Computer Science
Conference, ITCS ’20, pages 57:1–57:30, 2020.

[67] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the
quantum random oracle model. In Proceedings of the 17th Theory of Cryptography
Conference, TCC ’19, pages 1–29, 2019. Available as Cryptology ePrint Archive, Report
2019/834.

https://arxiv.org/abs/1803.02067

BIBLIOGRAPHY 187

[68] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from
signature cards. In Proceedings of the 1st Symposium on Innovations in Computer Science,
ICS ’10, pages 310–331, 2010.

[69] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge.
In Proceedings of the 34th Annual International Conference on Theory and Application
of Cryptographic Techniques, EUROCRYPT ’15, pages 371–403, 2015.

[70] Alessandro Chiesa and Zeyuan Allen Zhu. Shorter arithmetization of nondeterministic
computations. Theoretical Computer Science, 600:107–131, 2015.

[71] Coda. The SNARK Challenge, 2019. https://coinlist.co/build/coda.

[72] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

[73] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In Proceedings of the 4th Symposium on
Innovations in Theoretical Computer Science, ITCS ’12, pages 90–112, 2012.

[74] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable compu-
tation. In Proceedings of the 36th IEEE Symposium on Security and Privacy, S&P ’15,
pages 250–273, 2015.

[75] Ronald Cramer and Ivan Damgård. Zero-knowledge proofs for finite field arithmetic;
or: Can zero-knowledge be for free? In Proceedings of the 18th Annual International
Cryptology Conference, CRYPTO ’98, pages 424–441, 1998.

[76] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryp-
tion Standard. Information Security and Cryptography. 2002.

[77] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[78] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the
PCP theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’04, pages 155–164, 2004.

[79] Sébastien Duval and Leurent Gaëtan. MDS matrices with lightweight circuits. Cryptology
ePrint Archive, Report 2018/260, 2018.

[80] Electric Coin Company. Zcash Cryptocurrency, 2014. https://z.cash/.

[81] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Information and Computation, 189(2):135–159, 2004.

[82] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interac-
tive proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268–292,
1996. Preliminary version in FOCS ’91.

https://coinlist.co/build/coda
https://z.cash/

BIBLIOGRAPHY 188

[83] Lance Fortnow. The role of relativization in complexity theory. Bulletin of the European
Association for Theoretical Computer Science, 52:229–244, 1994.

[84] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic
curves. Journal of Cryptology, 23(2):224–280, 2010.

[85] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953, 2019.

[86] Shuhong Gao and Todd Mateer. Additive fast fourier transforms over finite fields. IEEE
Transactions on Information Theory, 56(12):6265–6272, 2010.

[87] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-
grams and succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International
Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT ’13,
pages 626–645, 2013.

[88] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. Journal of the ACM, 53:558–655, July 2006. Preliminary version in STOC ’02.

[89] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir paradigm.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’03, pages 102–113, 2003.

[90] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, 2015.

[91] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary
version appeared in STOC ’85.

[92] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking,
zero-knowledge PCPs, and unconditional cryptography. In Proceedings of the 30th Annual
Conference on Advances in Cryptology, CRYPTO’10, pages 173–190, 2010.

[93] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus
Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. IACR
Cryptology ePrint Archive, Report 2019/458, 2019.

[94] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceed-
ings of the 16th International Conference on the Theory and Application of Cryptology
and Information Security, ASIACRYPT ’10, pages 321–340, 2010.

[95] Jens Groth. On the size of pairing-based non-interactive arguments. In Proceedings of
the 35th Annual International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT ’16, pages 305–326, 2016.

BIBLIOGRAPHY 189

[96] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable
and universal common reference strings with applications to zk-SNARKs. In Proceedings
of the 38th Annual International Cryptology Conference, CRYPTO ’18, pages 698–728,
2018.

[97] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Proceedings of the 37th Annual International
Cryptology Conference, CRYPTO ’17, pages 581–612, 2017.

[98] Shay Gueron. Intel carry-less multiplication instruction and its usage for computing
the GCM mode, 2011. https://software.intel.com/en-us/articles/
intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.

[99] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings
of the 6th Innovations in Theoretical Computer Science Conference, ITCS ’15, pages
133–142, 2015.

[100] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium
on Logical Foundations of Computer Science, pages 108–118, 1989.

[101] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.
Preliminary version appeared in STOC ’03.

[102] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computa-
tional Complexity, 9(3–4):157–201, Dec 2000. Preliminary version in STACS ’01.

[103] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complexity, CCC ’07, pages 278–291, 2007.

[104] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On zero-knowledge
PCPs: Limitations, simplifications, and applications, 2015. Available at http://www.
cs.virginia.edu/˜mohammad/files/papers/ZKPCPs-Full.pdf.

[105] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In Proceedings of the 11th Theory of Cryptography Conference, TCC ’14,
pages 121–145, 2014.

[106] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, ICALP ’08, pages 536–547,
2008.

[107] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732,
1992.

https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
https://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

BIBLIOGRAPHY 190

[108] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, second
edition edition, 1997.

[109] Sian-Jheng Lin, Tareq Y. Al-Naffouri, and Yunghsiang S. Han. FFT algorithm for binary
extension finite fields and its application to Reed–Solomon codes. IEEE Transactions on
Information Theory, 62(10):5343–5358, 2016.

[110] Sian-Jheng Lin, Wei-Ho Chung, and Yunghsiang S. Han. Novel polynomial basis and its
application to Reed–Solomon erasure codes. In Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science, FOCS ’14, pages 316–325, 2014.

[111] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology, 16(3):143–184, 2003.

[112] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Proceedings of the 9th Theory of Cryptography Conference on
Theory of Cryptography, TCC ’12, pages 169–189, 2012.

[113] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. In Proceedings of the 19th International Conference on
the Theory and Application of Cryptology and Information Security, ASIACRYPT ’13,
pages 41–60, 2013.

[114] Richard J. Lipton. New directions in testing. In Proceedings of a DIMACS Workshop in
Distributed Computing And Cryptography, pages 191–202, 1989.

[115] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[116] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKs from linear-size universal and updateable structured reference strings.
In Proceedings of the 26th ACM Conference on Computer and Communications Security,
CCS ’19, pages 2111–2128, 2019.

[117] Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC ’12, 2012.

[118] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Preliminary version appeared in FOCS ’94.

[119] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of
Mathematics and Artificial Intelligence, 56:313–338, 2009.

[120] Peter L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

[121] O(1) Labs. Coda Cryptocurrency, 2017. https://codaprotocol.com/.

https://codaprotocol.com/

BIBLIOGRAPHY 191

[122] eBACS: ECRYPT Benchmarking of Cryptographic Systems. Measurements of hash
functions, indexed by machine, 2017.

[123] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of
graphs. Information and Control, 71(3):181–185, 1986.

[124] Brian Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In Proceedings of the 34th IEEE Symposium on Security and
Privacy, Oakland ’13, pages 238–252, 2013.

[125] Rafael Pass. On deniability in the common reference string and random oracle model.
In Proceedings of the 23rd Annual International Cryptology Conference, CRYPTO ’03,
pages 316–337, 2003.

[126] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94,
pages 194–203, 1994.

[127] Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th ACM Symposium on the Theory of
Computing, STOC ’16, pages 49–62, 2016.

[128] J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability. Theo-
retical Computer Science, 82(1):141–149, May 1991.

[129] Noga Ron-Zewi and Ron D. Rothblum. Local proofs approaching the witness length,
2019.

[130] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Proceedings of the 45th ACM Symposium on
the Theory of Computing, STOC ’13, pages 793–802, 2013.

[131] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs, 2014.

[132] SCIPR Lab. libiop: C++ library for IOP-based zkSNARKs, 2019.

[133] SCIPR Lab. A Rust library for decentralized private computation, 2019.

[134] SCIPR Lab. A rust library for the marlin preprocessing zksnark, 2019.

[135] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
Cryptology ePrint Archive, Report 2019/550, 2019.

[136] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael
Walfish. Resolving the conflict between generality and plausibility in verified computation.
In Proceedings of the 8th EuoroSys Conference, EuroSys ’13, pages 71–84, 2013.

[137] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

BIBLIOGRAPHY 192

[138] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–
388, 2010.

[139] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. Preliminary version ap-
peared in STOC ’95.

[140] StarkWare & 0x. StarkDEX, 2019. https://www.starkdex.io/.

[141] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Proceedings of
the 33rd Annual International Cryptology Conference, CRYPTO ’13, pages 71–89, 2013.

[142] Justin Thaler. A note on the GKR protocol. http://people.cs.georgetown.
edu/jthaler/GKRNote.pdf, 2015.

[143] Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Verifiable
computation with massively parallel interactive proofs. CoRR, abs/1202.1350, 2012.

[144] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Proceedings of the 5th Theory of Cryptography Conference,
TCC ’08, pages 1–18, 2008.

[145] Riad S. Wahby, Max Howald, Siddharth J. Garg, Abhi Shelat, and Michael Walfish.
Verifiable ASICs. In Proceedings of the 37th IEEE Symposium on Security and Privacy,
S&P ’16, pages 759–778, 2016.

[146] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, Abhi Shelat, Justin Thaler, Michael Walfish,
and Thomas Wies. Full accounting for verifiable outsourcing. In Proceedings of the 24th
ACM Conference on Computer and Communications Security, CCS ’17, pages 2071–2086,
2017.

[147] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish.
Efficient RAM and control flow in verifiable outsourced computation. In Proceedings of
the 22nd Annual Network and Distributed System Security Symposium, NDSS ’15, 2015.

[148] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-
efficient zkSNARKs without trusted setup. In Proceedings of the 39th IEEE Symposium
on Security and Privacy, S&P ’18, pages 926–943, 2018.

[149] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting
them. Communications of the ACM, 58(2):74–84, January 2015.

[150] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd In-
ternational Colloquium on Automata, Languages and Programming, ICALP ’05, pages
140–152, 2005.

https://www.starkdex.io/
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf
http://people.cs.georgetown.edu/jthaler/GKRNote.pdf

BIBLIOGRAPHY 193

[151] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In
Proceedings of the 39th Annual International Cryptology Conference, CRYPTO ’19,
pages 733–764, 2019.

[152] Mark Zhandry. How to record quantum queries, and applications to quantum indiffer-
entiability. In Proceedings of the 39th Annual International Cryptology Conference,
CRYPTO ’19, pages 239–268, 2019.

[153] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vSQL: Verifying arbitrary SQL queries over dynamic outsourced databases.
In Proceedings of the 38th IEEE Symposium on Security and Privacy, S&P ’17, pages
863–880, 2017.

[154] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. A zero-knowledge version of vsql. Cryptology ePrint Archive, Report
2017/1146, 2017.

[155] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vRAM: Faster verifiable RAM with program-independent preprocessing.
In Proceedings of the 39th IEEE Symposium on Security and Privacy, S&P ’18, pages
908–925, 2018.

[156] ZKP Standards. Zero knowledge proof standardization, 2017. https://zkproof.
org/.

https://zkproof.org/
https://zkproof.org/

194

Appendix A

Appendix

A.1 Proof of Lemma 3.4.4
Definition A.1.1. For a field F of characteristic p, the generalized derivative of a function f
in a direction a ∈ F is ∆a(f) :=

∑
b∈Fp f(X + ba). For a1, . . . , ak ∈ F, we inductively define

∆a1,...,ak(f) := ∆a1 (∆a2,...,ak(f)).

Note that if F has characteristic 2 then this coincides with the directional derivative. If H is
a subspace of F with basis a1, . . . , an then for any a0 ∈ F,

∆a1,...,ak(f)(a0) =
∑

a∈H0

f(a0 + a) . (A.1)

For a natural number c =
∑k

i=0 cip
i, 0 ≤ ci < p, let wt(c) =

∑k
i=0 ci.

1 For a polynomial
P (X) =

∑
j≥0 αjX

j define wt(P) := max{wt(j) : αj 6= 0}.

Claim A.1.2. For any polynomial P ∈ F[X] and any a ∈ F,

wt(∆a(P)) ≤ max(wt(P)− (p− 1), 0) .

Moreover, if wt(P) < p− 1, then ∆a(P) is identically zero.

Proof. By linearity of ∆a, it suffices to prove the claim for a single monomial; that is, P (X) =
Xc for some integer c ≥ 0. Let c =

∑k
i=0 cip

i be the p-ary expansion of c for some integer k.
For a natural number d =

∑k
i=0 dip

i we write d ≤p c if di ≤ ci for all i.

∆a(X
c) =

∑

b∈Fp

(X + ba)c =
∑

b∈Fp

c∑

d=0

(
c

d

)
Xdbc−dac−d

=
c∑

d=0

(
c

d

)
Xdac−d

(∑

b∈Fp

bc−d
)

=
c∑

d=0

(
c

d

)
Xdac−d

(∑

b∈Fp

b
∑k
i=0(ci−di)pi

)

=
c∑

d=0

(
c

d

)
Xdac−d

(∑

b∈Fp

b
∑k
i=0(ci−di)

)
=
∑

d≤pc

(
c

d

)
Xdac−d ·

(∑

b∈Fp

bwt(c)−wt(d)
)
,

1This quantity is called the ‘q-ary digit sum’ in [59].

APPENDIX A. APPENDIX 195

where in the penultimate equality we used that bpi = b for b ∈ Fp, and in the last equality we
used that

(
c
d

)
≡ 0 (mod p) unless d ≤p c. Recall that for 0 ≤ m < p− 1,

∑
b∈Fp b

m = 0. Hence
the terms in the above sum where wt(c)− wt(d) < p− 1 all vanish. Any remaining terms thus
have weight at most wt(c)− (p− 1). In particular, if wt(c) < p− 1 then all terms vanish.

Lemma A.1.3. Let F be a field of characteristic p, and let P ∈ F[X] have degree less than
pk − 1. Then for any a1, . . . , ak ∈ F, ∆a1,...,ak(P) is identically zero.

Proof. We have wt(P) < (p − 1)k. By Claim A.1.2, wt(∆a2,...,ak(P)) < p − 1, and so
∆a1,...,ak(P) is identically zero.

Proof of Lemma 3.4.4. For some a0, a1, . . . , ak ∈ F, H = a0 + H0 where H0 is the linear
subspace with basis a1, . . . , ak. By Eq. (A.1) and Lemma A.1.3 we conclude

∑
a∈H g(a) =

∆a1,...,ak(g)(a0) = 0.

A.2 Proof of Lemma 3.4.5
This proof is due to Craig Gentry; I merely record it below. For convenience, we restate the

lemma.

Lemma A.2.1. If H is an affine subspace of F, then
∑

a∈H a
|H|−1 equals the linear term of ZH .

Proof. Let ek(x1, . . . , xn) be the k-th elementary symmetric polynomial in n variables. Note
that since ek is symmetric it is well-defined to write ek(S) for a set S.

Recall that ZH(X) =
∏

a∈H(X − a). Since 0 ∈ H , the linear term of ZH is equal to∏
a∈H\{0} a = e|H|−1(H \ {0}). By Newton’s identities, it holds that

(|H| − 1)e|H|−1(H \ {0}) =

|H|−1∑

i=1

(−1)i−1e|H|−i−1(H \ {0}) ·
∑

a∈H

ai .

By Lemma 3.4.4, it holds that for all i < |H| − 1,
∑

a∈H a
i = 0. Hence

e|H|−1(H \ {0}) = (−1)|H|−1
∑

a∈H

a|H|−1 ,

where we used that |H| − 1 ≡ −1 (mod char(F)). The lemma follows by noting that in all
fields F of positive characteristic, (−1)t−1 = 1 when char(F) divides t.

A.3 Additional comparisons
We provide additional comparisons across Ligero, Stark, and Aurora: in Appendix A.3.1

we compare the low-degree tests that they rely on, and in Appendix A.3.2 we compare their
underlying IOP protocols.

APPENDIX A. APPENDIX 196

A.3.1 Comparison of the LDTs in Ligero, Stark, and Aurora
A key ingredient in Ligero [9], Stark [23], and Aurora (this work) are low-degree tests

(LDTs). Formally, each of these systems relies on an IOPP for the Reed–Solomon relation
(see Section 2.3.1.1). The LDT is then generically “lifted” to an LDT for the interleaved Reed–
Solomon code (see Section 2.1.1), by taking a random linear combination as in Section 3.7.
Below (and in Fig. A.1) we discuss aspects of the LDTs underlying these systems that are
important in the comparison in Appendix A.3.2.
Direct LDT. Ligero uses a direct LDT: the verifier is given oracle access to a function f : L→ F,
receives from the prover a0, . . . , aρ|L|−1 ∈ F (allegedly, coefficients of the polynomial f̂ obtained
by interpolating f), and checks that f and

∑ρ|L|−1
i=0 aiX

i agree at a random point of |L|. If f is
δ-far from RS [L, ρ] then the verifier accepts with probability at most 1− δ. This probability can
be reduced to (1− δ)t via t independent checks. Overall, the verifier queries f at t points, and
reads ρ|L| field elements sent by the prover. One should think of t as much less than ρ|L|, which
facilitates lifting to an LDT for the interleaved Reed–Solomon code.
FRI LDT. Stark and Aurora use FRI [22], a LDT in which the verifier is given oracle access
to a function f : L → F and, in each of a sequence of rounds, sends a random field element
to the prover, who replies with an oracle; at the end of the interaction, the verifier makes a
certain number of queries to f and the oracles, and then either accepts or rejects. (The domain
L here is an additive or multiplicative coset in F whose order is a power of 2.) In more detail,
given a localization parameter η ∈ N, the number of rounds is log ρ|L|

η
, and in the i-th round the

prover sends an oracle over a domain of size |L|/2iη; thus, the total number of elements sent
across all oracles is less than

∑∞
i=1 |L|/2iη = |L|/(2η + 1). After the interaction, the verifier

queries f at a point, and every other oracle at 2η− 1 points; given the corresponding answers, the
verifier performs O(2η log ρ|L|) arithmetic operations, and then accepts or rejects. If f is δ-far
from RS [L, ρ] then the verifier, with probability at most εFRI

i (F, L) over its random messages
to the prover, will accept with probability greater than εFRI

q (L, ρ, δ). In [22] it is proved that
εFRI
i (F, L) = 3|L|/|F| and εFRI

q (L, ρ, δ) = 1−min{δ, (1− 3ρ− 2η|L|−1/2)/4}. In [39] this was
improved to εFRI

i (F, L) = 2 log |L|/ε3|F| and εFRI
q (L, ρ, δ) = 1−min{δ, Jε(Jε(1−ρ))}+ε log |L|

for any ε > 0, where Jε(x) := 1−
√

1− x(1− ε). In [22] it is conjectured that the best possible
values are εFRI

i (F, L) = 2η log2(|L|)/εη2|F| and εFRI
q (L, ρ, δ) = 1− δ(1− ε) for any ε > 0.

A.3.2 Comparison of the IOPs in Ligero, Stark, and Aurora
Each of Ligero [9], Stark [23], and Aurora (this work) is an IOP (satisfying zero knowledge

and proof of knowledge) that is compiled into a zkSNARK via a transformation of Ben-Sasson
et al. [32]. Comparing these zkSNARKs (essentially) reduces to comparing the underlying IOPs,
which we do below.
Construction blueprint. The IOPs in the aforementioned systems can all be viewed as
combining an encoded IOP (as defined in Section 2.3.3) and a low-degree test (as defined in
Section 2.3.1.1), via the transformation described in Section 3.7. Informally, this transformation
invokes the low-degree test on a suitable random linear combination of the oracles sent by the
encoded IOP prover (more generally, of “virtual” oracles implied by these), thereby ensuring

APPENDIX A. APPENDIX 197

number of queries
LDT to f to aux oracles soundness error
direct t ρ|L| (1− δ)t

FRI t t · (2η − 1) · log ρ|L|
η

εFRI
i (F, L) + εFRI

q (L, ρ, δ)t

Figure A.1: Parameters of the direct low-degree test and FRI low-degree test when invoked
on a function f : L → F that is δ-far from RS [L, ρ] ⊆ FL. Note that δ always lies in
[0, 1− ρ].

IOP relation number of queries

Stark APR
qFRI

(
|R|+ 1, 4(|H|+ b), ρ

)

+ qFRI

(
|N |+ 1, D(|H|+ b), ρ

)

Ligero R1CS qDIR

(
4(h+ 1), 2m/h, ρ

)

Aurora R1CS qFRI

(
5, 2m+ 2b, ρ

)

Figure A.2: Aspects of the IOPs underlying Stark, Ligero, and Aurora.

that the codeword obtained by stacking these oracles is close to the interleaved Reed–Solomon
code (more generally, a codeword obtained by applying a transformation to these oracles is close
to the interleaved Reed–Solomon code); one can then reduce to soundness of the encoded IOP.

For a given soundness error, the query complexity of an IOP constructed via the blueprint
above is determined by the query complexity of the underlying low-degree test, while (typically)
the prover and verifier complexities are dominated by the encoded IOP’s prover and verifier
complexities.
The three IOPs. In light of the foregoing blueprint, we describe the differences across the
three IOPs by discussing the differences across the respective encoded IOPs and low-degree
tests (see Fig. A.2). Recall that b denotes the query bound for zero knowledge (as defined
in Section 2.3.2); the bound is later set to equal the number of queries of the honest verifier.
Moreover, for notational simplicity, below we use q

(
k, d, ρ

)
to denote the query complexity of a

low-degree test invoked on a function f ∗ : L→ F derived entry-wise from k oracles fi : L→ F
sent by the encoded IOP prover, with each oracle (allegedly) having degree less than d = ρ|L|;
using a low-degree test in this way follows the general paradigm described in Section 2.1.1.

• The IOP in Aurora. The IOP in Aurora is obtained by combining an encoded IOP for R1CS
(described in Section 3.6) and the FRI low-degree test. Given an R1CS instance with m
constraints, the IOP invokes the low-degree test on 5 oracles having maximal degree 2m+ 2b,
resulting in qFRI

(
5, 2m+ 2b, ρ

)
queries.

• The IOP in Ligero. The IOP in Ligero (adapted for R1CS) is obtained by combining an
encoded IOP for R1CS and a direct low-degree test (see Appendix A.3.1). Given an R1CS
instance with m constraints and for a parameter h ≈

√
m, the IOP invokes the low-degree test

on 4(h+ 1) oracles of maximal degree 2m/h, resulting in qDIR

(
4(h+ 1), 2m/h, ρ

)
queries.

• The IOP in Stark. The IOP in Stark natively supports Algebraic Placement and Routing
(APR), which is the following problem: given a finite field F, subset H ⊆ F, algebraic

APPENDIX A. APPENDIX 198

registers R, neighbors N , and set of polynomial constraints C, are there functions w =
(wi : H → F)i∈R such that for every element α ∈ H and every constraint c ∈ C it holds that
c
(
α, (wi(f(α)))(i,f)∈N

)
= 0? (See [23] for details.)

The IOP in Stark is obtained by combining an encoded IOP for APR and the FRI low-degree
test. The latter is used twice: once on |R|+ 1 oracles of maximal degree 4(|H|+ b); once on
|N |+ 1 oracles of maximal degree D(|H|+ b). This results in qFRI

(
|R|+ 1, 4(|H|+ b), ρ

)
+

qFRI

(
|N |+ 1, D(|H|+ b), ρ

)
queries.

	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Contributions of this thesis
	1.1.1 Rank-1 constraint satisfiability
	1.1.2 Security properties

	1.2 Comparisons with prior work
	1.2.1 Transparent vs. trusted setup
	1.2.2 Implementations of transparent SNARGs

	2 Technical preliminaries
	2.1 Notation
	2.1.1 Codes

	2.2 Polynomials
	2.2.1 Representations of polynomials
	2.2.2 The fast Fourier transform
	2.2.3 Special polynomials

	2.3 Proof systems
	2.3.1 Interactive oracle proofs
	2.3.2 Zero knowledge
	2.3.3 Reed–Solomon encoded IOP
	2.3.4 Univariate rowcheck

	3 Aurora: an efficient IOP for R1CS
	3.1 Contributions of this chapter
	3.2 Techniques
	3.2.1 Our interactive oracle proof for R1CS
	3.2.2 A sumcheck protocol for univariate polynomials
	3.2.3 Efficient zero knowledge from algebraic techniques
	3.2.4 Perspective on our techniques

	3.3 Roadmap
	3.4 Univariate sumcheck
	3.4.1 Zero knowledge
	3.4.2 Amortization

	3.5 Univariate lincheck
	3.6 An RS-encoded IOP for rank-one constraint satisfaction
	3.6.1 Zero knowledge
	3.6.2 Amortization

	3.7 From RS-encoded provers to arbitrary provers
	3.7.1 Zero knowledge

	3.8 Aurora: an IOP for R1CS
	3.9 libiop: a library for IOP-based SNARGs
	3.9.1 Library for IOP protocols
	3.9.2 BCS transformation
	3.9.3 Portfolio of IOP protocols and sub-components

	3.10 Evaluation
	3.10.1 Performance of Aurora
	3.10.2 Comparison of Ligero, Stark, and Aurora

	4 Linear-size IOPs for delegating computation
	4.1 Introduction
	4.1.1 Our results
	4.1.2 Limitations of prior work
	4.1.3 Open questions

	4.2 Technical overview
	4.2.1 Our starting point
	4.2.2 Checking succinctly-represented linear relations
	4.2.3 Checking bounded-space computations in polylogarithmic time
	4.2.4 Checking succinct satisfiability in polylogarithmic time
	4.2.5 Oracle reductions

	4.3 Roadmap
	4.4 Oracle reductions
	4.4.1 Definitions
	4.4.2 Reed–Solomon oracle reductions

	4.5 Trace embeddings
	4.5.1 Bivariate embeddings
	4.5.2 Successor orderings

	4.6 A succinct lincheck protocol
	4.6.1 Properties of the Lagrange basis
	4.6.2 Efficient linear independence via the tensor product
	4.6.3 Proof of lem:univariate-lincheck
	4.6.4 Extension to block-matrix lincheck

	4.7 Probabilistic checking of interactive automata
	4.7.1 Staircase matrices
	4.7.2 Proof of lem:autorelationiop

	4.8 Reducing machines to interactive automata
	4.8.1 Matrix permutation check protocol
	4.8.2 Proof of lemma:oracle-reduction-for-machines

	4.9 Proofs of main results
	4.9.1 Checking satisfiability of algebraic machines
	4.9.2 Checking satisfiability of succinct arithmetic circuits

	5 Fractal: post-quantum recursive composition
	5.1 Introduction
	5.1.1 Our results
	5.1.2 Comparison with prior work

	5.2 Techniques
	5.2.1 The role of preprocessing SNARKs in recursive composition
	5.2.2 From holographic proofs to preprocessing with random oracles
	5.2.3 An efficient holographic proof for constraint systems
	5.2.4 Post-quantum and transparent preprocessing
	5.2.5 Post-quantum and transparent recursive composition
	5.2.6 The verifier as a constraint system

	5.3 Preliminaries
	5.3.1 Sparse representations of matrices
	5.3.2 Indexed relations
	5.3.3 Algebra

	5.4 Definition of holographic IOPs
	5.4.1 Reed–Solomon encoded holographic IOPs
	5.4.2 Stronger notions of soundness

	5.5 Sumcheck for rational functions
	5.6 Holographic lincheck
	5.6.1 Holographic proof for sparse matrix arithmetization
	5.6.2 The protocol

	5.7 RS-encoded holographic IOP for R1CS
	5.8 Holographic IOP for R1CS
	5.9 Definition of preprocessing non-interactive arguments in the ROM
	5.10 From holographic IOPs to preprocessing arguments
	5.10.1 Construction
	5.10.2 Completeness, efficiency, and non-adaptive zero knowledge
	5.10.3 Non-adaptive soundness and knowledge
	5.10.4 Classical adaptive knowledge from state restoration knowledge
	5.10.5 Adaptive knowledge from round-by-round knowledge
	5.10.6 Adaptive zero knowledge

	5.11 Recursive composition in the URS model
	5.11.1 Preprocessing non-interactive arguments (of knowledge) in the URS model
	5.11.2 Preprocessing PCD in the URS model
	5.11.3 Theorem statement
	5.11.4 Construction and its efficiency
	5.11.5 Security reduction

	5.12 Implementation of recursive composition
	5.12.1 The preprocessing zkSNARK
	5.12.2 Designing the verifier's constraint system

	5.13 Evaluation
	5.13.1 Performance of the preprocessing zkSNARK
	5.13.2 Performance of recursive composition

	A Appendix
	A.1 Proof of lemma:sumcheck-fact
	A.2 Proof of lem:efficient-evaluation-of-sum
	A.3 Additional comparisons
	A.3.1 Comparison of the LDTs in Ligero, Stark, and Aurora
	A.3.2 Comparison of the IOPs in Ligero, Stark, and Aurora

