
RingBOOM: An Implementation of a Novel High-
Performance Banked Microarchitecture

Benjamin Korpan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-177
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-177.html

August 21, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

RingBOOM: An Implementation of a Novel High-Performance Banked 
Microarchitecture 

 
by Ben Korpan 

 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report: 
 
 
 

Committee: 
 
 

 

Professor Krste Asanovic 
Research Advisor 

 
Signature: 

Date: 
 
 

* * * * * * * 
 
 
 

Professor Borivoje Nikolic 
Second Reader 

 
Signature: 

Date: 

Krste Asanovic
8/20/2020



RingBOOM: An Implementation of a Novel High-Performance
Banked Microarchitecture

Ben Korpan
bkorpan@berkeley.edu

University of California, Berkeley

ABSTRACT
Out-of-order superscalar microarchitectures are composed of struc-
tures which scale poorly with pipeline width in power, cycle time,
and area. Many techniques have been proposed to reduce the cost
of these structures, some of which have been applied to real mi-
croprocessors. A previously proposed banked microarchitecture
called "RingScalar" [1] enables large reductions in the complex-
ity of these structures by tailoring the architecture to common
patterns in instruction streams, but has never been implemented.
This work focuses on an implementation ("RingBOOM") of the
RingScalar microarchitecture in the open-source Berkeley Out-of-
Order Machine (BOOM). IPC degradation compared to the current
BOOM microarchitecture is measured: a relative IPC of 0.82 was
observed. Assessment of cycle time and area is then performed
with a commercial FinFET technology: RingBOOM core variants
achieved synthesized frequencies of up to 2.1 GHz and were about
25% smaller than the reference design.

1 INTRODUCTION
Out-of-order execution was first introduced in the floating-point
unit of the IBM System/360 Model 91 [2]. It later resurfaced in
microprocessors as a microarchitectural means to increase perfor-
mance, primarily by hiding memory latency. Early examples of
its application in microprocessors include the MIPS R10000 [3]
and Alpha 21264 [4]. Such microarchitectures require large, com-
plex structures to keep track of dependencies between instructions,
maintain the illusion of in-order execution by providing facilities
to undo incorrect execution, and manage the allocation of entries
in these structures. The poor scaling of many of these structures
motivates the investigation of alternative core organizations. Note
that this report focuses solely on physical register file (PRF) based
designs. For background, below are important components of an
’ideal’, fully-ported PRF execution core. Attention is drawn towards
their scaling in an 𝑁 -wide machine. The Load/Store unit is consid-
ered separate from the execution core, and will be considered in
later work.

2 OUT-OF-ORDER MICROARCHITECTURE
BACKGROUND

2.1 Re-Order Buffer
The re-order buffer (ROB) provides the illusion of in-order execution
by allowing incorrect execution to be undone. It is a circular buffer
that contains metadata for all inflight instructions in program-order.
When an exception is thrown, the ROB is able to "rollback" the state
of the machine from the tail to head, reaching the correct archi-
tectural state. The ROB is also responsible for microarchitectural
bookkeeping: when a physical register may no longer be accessed,

it is returned to the free list. The ROB size can be roughly expressed
as 𝐸 = 𝑆 × 𝑁 , where 𝐸 is the number of entries and 𝑆 is the max-
imum speculation depth in cycles. Designers of wider machines
will likely wish to maintain the same maximum speculation depth,
so 𝑆 can be viewed as a constant. Since the ROB can be trivially
implemented as a collection 𝑁 banks, it scales as 𝑂 (𝑁 ) and is not
a target for optimization by this work.

2.2 Issue Queues
The issue unit or scheduler is composed of one or multiple issue
queues: here we will consider a unified issue queue which holds all
inflight, unexecuted instructions. The queue holds these dispatched
instructions in issue slots, attempting to issue them on an oldest-
first basis as soon as their operands are available. This selection
logic may be implemented as a cascade of single priority selectors,
or a monolithic first-𝑁 selector using a one-hot counter tree. As
operands are often unavailable at dispatch, the issue slots must
watch the register file writeback ports for the appearance of their
instruction’s operands. The appearance of such an operand is called
a ’wakeup’, because it notifies dependent instructions in the issue
queues, allowing them to proceed to execution. In addition to the
writeback ports, the issue slots may also perform wakeups against
bypassable scheduled instructions, allowing their instructions to
execute sooner than if they were to wait for the writeback of their
operands. In BOOM, this is referred to as a ’fast’ wakeup, while
the type that occurs at writeback is a ’slow’ wakeup. The depen-
dency between issue selection and fast wakeups is referred to as
the select-wakeup loop, and constitutes an important microarchi-
tectural loop [5]. As in the ROB, the total number of issue queue
entries will typically scale with 𝑁 . As each entry must compare
its operands to 2𝑁 wakeup ports (𝑁 fast + 𝑁 slow), the total num-
ber of wakeup comparators grows as 𝑂 (𝑁 2). This may become a
significant area and/or power contribution in a wide machine.

2.3 Physical Register File
The physical register file (PRF) is a very large component of an
out-of-order execution core. At any point in time the PRF contains
the committed architectural register state, as well as a larger set
of inflight results. An 𝑁 -wide machine requires its PRF have at
least 2𝑁 read ports and 𝑁 write ports. As with the above two
structures, a rule of thumb indicates that the number of physical
registers should be concomitant with the pipeline width, allowing
an appropriate number of inflight results. Note that the area of a
register file structure tends to scale as 𝑂 (𝑘2) for 𝑘-ports [6]. Thus,
the PRF may scale as poorly as 𝑂 (𝑁 3).



2.4 Bypass Network
The bypass network shortens instruction execution latency by skip-
ping a sequential register file write and read. It accomplishes this by
connecting each execution unit output each input through operand
selection multiplexers. It thus scales as 𝑂 (𝑁 2).

2.5 Load/Store Queues
Load and store queues maintain the in-order behavior of loads
and stores in an out-of-order machine. Traditional load/store queue
designs scale very poorlywith pipelinewidth due to their read/write
port requirements and use of address CAMs to detect dependencies
between inflight memory operations. This work focuses solely on
the execution core, with the load/store unit currently out-of-scope.
Future work (section 7) may address scalable load/store queues.

3 PRIORWORK
Many techniques have been proposed to combat the inherent com-
plexity of superscalar out-of-order microarchitectures. The goal
is to enable wider machines without compromising cycle time or
causing an explosion in area and power consumption. These tech-
niques generally introduce additional structural hazards beyond
those posed by structure capacities in the above ideal machine.

3.1 Clustering
Clustering is a technique wherein a large execution core is sub-
divided into multiple smaller, fewer-ported segments. A common
form of clustering which was employed in the Alpha 21264 [4]
hinges on replication of the PRF between clusters. In a 𝑁 -wide, 𝑘-
cluster machine this allows a factor of 𝑘 reduction in read ports on
each cluster PRF, but still requires 𝑁 write ports per cluster to main-
tain a consistent replication. Another form of clustering utilized by
microarchitectures such as Multicluster [7] avoids replication by di-
viding the architectural and physical register files between clusters.
Unlike the banked register files described in the next section, this
technique requires complex logic to map instructions to clusters
and provide inter-cluster communication.

3.2 Banked Register Files
Banked register files [6] allow a reduction in register file read ports
in a centralized microarchitecture, without reliance on replication.
In this scheme the set of physical registers is statically partitioned
into banks; the port-count per bank can vary independently of the
total number of ports required, posing a tradeoff between area and
collision rate. A simple but effective scheme for handling collisions
is described in [8]: groups of issued instructions which incur read
or write bank conflicts are killed, along with the subsequent issue
groupwhichmay have receivedwakeups from the killed group. This
is an alternative to complex stall logic, and does not significantly
effect the delay of the select-wakeup loop. However, it does add an
additional pipeline stage between issue and register read, increasing
the branch misprediction penalty and incurring a high bank conflict
penalty (up to 2𝑁 instructions).

Two optimizations are presented for this scheme: bypass-skip
and read-sharing. Bypass-skip prevents the request of a register
read when an operand is known to be bypassable. In the simplest
implementation, this occurs if the operand was just woken by a

single-cycle latency instruction issued in the previous cycle. Read-
sharing prevents bank conflicts in the case that multiple requesters
access the same register: the read port which produces the operand
drives both requesters.

3.3 RingScalar
RingScalar [1] is a proposed microarchitecture which builds on the
banked register files. It avoids writeback bank collisions through
its physical register allocation policy. Additionally, it allows the
number of dispatch, issue and wakeup ports in the issue queues
to be greatly reduced. This reduces the queue area and latency of
the select-wakeup loop. Finally, it decreases the size of the bypass
network, with each pipeline slot receiving and driving only a single
bypass path.

An 𝑁 -wide RingScalar-style machine is divided into 𝑁 execution
columns. Its name is derived from the unidirectional ring which
wraps around the columns. The wakeup ports and bypass network
form a ring: scheduled instructions wakeup dependents in the sub-
sequent column which, if issued immediately, may receive the data
from the bypass path. All of the discussed structures scale as 𝑂 (𝑁 )
in this scheme. However, it requires several additional crossbars
which scale as𝑂 (𝑁 2). These may pose a problem when attempting
to scale to extremely wide pipeline widths.

RingScalar forms the basis of the implemented microarchitecture.
The details are further described as-implemented in section 4.

4 MICROARCHITECTURE
This section will discuss "RingBOOM": an implementation of the
RingScalar microarchitecture. The implementation was performed
in Chisel hardware construction language [9], involving several
thousand lines worth of additions and modifications on a fork of
the Berkeley Out-of-Order Machine (BOOM) [10]. BOOM is an
open-source out-of-order implementation of the RISC-V ISA [11].

4.1 Rename
One tradeoff incurred by the RingScalar microarchitecture is the
increased complexity of the rename and dispatch stages. This is
due to the physical register allocation policy: an instruction with a
busy operand must be mapped to a column following that which
produces the operand. Thus, the allocation of physical registers
is delayed until after the reading of the map table, busy table and
column selection logic. A 2-stage "column-steering" rename pipeline
is pictured in figure 2. To achieve the most aggressive frequency in
section 5.2, a third stage needed to be added.

4.1.1 Column Selection. Column selection is performed by a mod-
ule called the column arbiter, pictured in figure 1. The request
mechanism is implemented by the boxes labelled ’?’ in the figure,
and is summarized by table 1, where ’xxx’ denotes a ’don’t care’
signal value. Zero-waiting instructions (instructions which are not
waiting on either operand) are assigned to a random column, while
one-waiting instructions are assigned the column following the
producer of the busy operand. Two-waiting instructions must be
placed in a column following one of the producers of their source
operands. For simplicity, this is done by prioritizing the left operand,
prs1: this is important for quick translation of store addresses to pre-
vent memory ordering failures. Also note the intra-cycle bypassing



RingBOOM: An Implementation of a Novel High-Performance Banked Microarchitecture

Figure 1: The Column Arbiter

Figure 2: 2-stage Column-Steering Rename Pipeline

which is performed between column selections, ensuring each in-
struction sees the columns requested by older instructions. Finally,
note the ’+1’ incrementation operations: these are implemented as
rotations of one-hot vectors.

4.1.2 Load-Dependent Operands. To implement the load-hit by-
passing scheme described in section 4.5, physical registers which

are produced by loads are kept track of in a new "load table" in paral-
lel with the busy table. Instructions that are solely load-dependent
receive their wakeup signals and bypass data directly from the
load/store unit, and can therefore be flexibly assigned to any col-
umn.

Table 1: Column Request Logic

prs1 busy? prs2 busy? request

no no 𝑟𝑎𝑛𝑑𝑜𝑚

no yes 𝑐𝑜𝑙2 + 1
yes xxx 𝑐𝑜𝑙1 + 1

4.2 Dispatch
An additional pipeline stage was added following rename, giving
instructions an entire cycle to dispatch into out-of-order structures.
The pipeline register was implemented as a two-entry compacting
queue: this prevents dispatch logic from directly backpressuring
the rename pipeline, improving QoR.

During dispatch, a crossbar provides the 𝑁 integer issues queues
with instructions from rename. The number of instructions each
queue can receive per cycle is parameterized: a value of 2 was found
to achieve a combination of good IPC and QoR.



Figure 3: Scheduler with Issue Arbiters and Chained Wakeups

4.3 Issue
Two schemes were discussed in [1] to greatly reduce the number of
required wakeup ports in the issue queues. Selected for implementa-
tion was the scheme which splits two-waiting instructions into two
`ops at dispatch: the second `op is a ’dummy’ which catches the
wakeup of the second busy operand. This style of issue queue and
issue slot are pictured in figures 3 and 4 respectively. Four wakeup
ports are needed per slot: fast wakeups for bypassable operations,
a speculative load port, a slow port and a port which receives the
chained wakeups. Advantages of this scheme are that it both pre-
serves the regularity of the issue queue structure and allows it to
scale as 𝑂 (𝑁 ).

Arbiters were implemented to prevent collisions in utilizing ex-
ecution resource. These arbiters initially sat in the wakeup-select
loop, simply revoking a grant and fast-wakeup signal in the case
of a collision. As the arbiters became more complex with multiple
load/store pipelines and more flexible read-port allocation, arbi-
tration needed to be performed in new arbitration pipeline stage
following issue selection.

Figure 4: Issue Slot with Chained Wakeup Port



RingBOOM: An Implementation of a Novel High-Performance Banked Microarchitecture

Figure 5: RingBOOM Execution Unit, Register File and Writeback Organization

4.4 Register File Read
Register file read port reduction should contribute the largest area
advantage offered by this mircoarchitecture. As with the banked
register files described in section 3.2, bank conflicts must be de-
tected and handled. This was previously being done in the issue
stage to simplify implementation and minimize IPC loss. The latest
version of the microarchitecture adds a dedicated pipeline stage for
arbitration. An instruction which loses in arbitration is killed back
into its issue slot, and any operands it woke up in the next column
are reverted back to an unready state. The number of register file
read ports per bank is parameterized: values of 2 and 3 were found
to work well with a 4-wide pipeline. The read ports are flexibly
allocated to requesting operands, and are only requested when an
operand is needed and not able to be bypassed. A configuration
with two read ports per column is pictured in figure 5.

4.5 Bypass
Each operand register can select from its register file port or a
handful of bypass paths, as pictured in figure 6. This includes a
single-cycle ALU bypass path from the previous column, a path
from the previous column’s fast writeback crossbar output, and
load-hit bypass path(s). Notice that combinational ALU outputs
each drive only one single-cycle ALU bypass path: this constitutes
a speedup of an important microarchitectural loop. Additionally,
note that the number of bypass paths for each operand register

Figure 6: Bypass Selection for Execution Operand Registers

to choose from is constant with pipeline width, unless additional
load-hit bypass paths are added. Currently, only one or two load-hit
bypass paths are being used.

4.6 Execution Units
The operand registers fan out to their respective column ALUs,
as well as a shared unit input crossbar. BOOM contains a set of
heterogeneous execution units, which are mostly homogeneous
in their scheduling, register read and writeback port provisions.



RingScalar requires a more restricted execution unit organization.
Each column contains an identical ALU, with more expensive or
infrequently used units being shared between columns. Arbitration
over shared units is performed after issue in parallel with the above
mentioned read port arbitration and below mentioned writeback
collision logic. Execution unit organization is pictured in figure 5.

4.7 Writeback
The presence of shared execution units necessitated a more so-
phisticated writeback mechanism. This mechanism has to arbitrate
between shared units and column ALUs over writeback ports while
retaining the bypassability of load-hits from a shared memory unit.
The following scheme has been devised, which uses two writeback
crossbars. Fully pipelined units with predictable latencies use the
fast writeback crossbar. Collisions between fast-writeback instruc-
tions are prevented in the issue stage, so no stall logic is required
on this crossbar. As these units all have predictable latencies, the
output of this crossbar can be bypassed. On the other hand, units
which are unpipelined (division) or exhibit unpredictable laten-
cies (loads) use the slow writeback crossbar. The slow writeback
crossbar accesses a separate set of write ports on each register file
bank: the banks thus have two write ports, as pictured in figure 5.
Load-hits are directly bypassed as described in section 4.5.

5 RESULTS
5.1 Per-cycle Performance
IPC was compared with the latest mainline BOOM core, Sonic-
BOOM [12], in CoreMark [13] and SPEC CPU 2017 [14]. The same
branch predictor was used, while execution structure sizes and
memory pipelines were configured as similarly as possible. Both
the evaluated version of RingBOOM and SonicBOOM feature a
4-wide rename/dispatch pipeline. RingBOOM was configured with
3 read ports per register file bank. Degradation in IPC was expected,
as a fully-ported microarchitecture was being compared to a banked
microarchitecture with novel optimizations. The goal was to mini-
mize this degradation while improving physical characteristics.

All simulations were performed with FireSim [15] using AWS
F1.2x FPGA instances. The clockspeeds of the FPGA simulated
RingBOOM variants ranged from 50 MHz to 100 MHz, largely
contingent on memory system configuration. These fast simulator
clockspeeds permit the use of long-running benchmarks such as
SPEC, whose constituents each take over 1 trillion cycles to run.

RingBOOMachieved a CoreMark performance of 5.1CoreMark/MHz,
82% of SonicBOOM’s 6.2 CoreMark/MHz. This is precisely in-line
with the harmonic mean of the SonicBOOM-normalized SPEC re-
sults shown in figure 7. In general, benchmarks with higher avail-
able ILP (such as 625.x264) tended to transfer worse to RingBOOM,
likely due to a higher frequency of shared resource conflicts.

Table 2: IPC Summary Relative to SonicBOOM

Benchmark Normalized Score

CoreMark 0.82
SPEC2017 HARMEAN 0.82

5.2 Synthesis Results
Several variants of RingBOOM’s integer execution core were syn-
thesized on a slow, low-voltage corner of a commerical FinFET
process. A maximum frequency of 2.1 GHz was achieved after im-
plementing many experimental QoR tweaks. This is compared to
an initial frequency of 1.1 GHz for RingBOOM and 0.86 GHz for the
default 4-wide version of SonicBOOM’s integer core. Additionally,
an area reduction of around 25% was observed.

Table 3: Execution Core Structure Configuration

Structure Size

ROB Entries 128
PRF Registers 128
INT Issue Window Size 32
Branch Recovery Slots 16
Dispatch Width 4
ALU Pipelines 4
MEM Pipelines 2

Table 4: Summary of Synthesis Results

Metric SonicBOOM RingBOOM

Frequency (GHz) 0.86 2.1
Total Area (𝑚𝑚2) 0.27 0.21

Table 5: Synthesized Frequencies of BOOM Core Variants

Variant Frequency (GHz)

SonicBOOM 0.86
Initial RingBOOM 1.1
+Arbitration Stage 1.4
+Dispatch Stage 1.9
+Allocation Stage 2.1

6 DISCUSSION
6.1 IPC Tweaks
Many microarchitectural tweaks were needed for RingBOOM to
achieve the IPC reported in section 5.1. These tweaks are described
below.

6.1.1 Load-hit Bypassing. In early implementation, bypassing from
load-hits was performed with ring-topology bypassing ports, just
as with ALU bypassing. However, it was observed that multiple
instructions are often waiting on a single load: if load-hit wake-
ups and bypasses were fanned out to every column, the waiting
instructions could be allocated into different columns and executed
simultaneously after being woken up. Load dependency tracking is
described in section 4.1 while bypassing is described in section 4.5.



RingBOOM: An Implementation of a Novel High-Performance Banked Microarchitecture

Figure 7: SPEC 2017 IPC Relative to SonicBOOM

6.1.2 Memory Ordering Failures. The division of a unified sched-
uler into columns tends to increase the prevalence of memory
ordering failures. This is because ready loads and stores are not
always executed in age order: nearby reads/writes of the same
address which are woken up on the same cycle may accidentally
proceed out-of-order. Using a rotating-priority to arbitrate access
to the shared load/store unit was found to reduce the frequency
ordering failures.

6.1.3 Fast Exception Recovery. To reduce the impact of memory or-
dering failures and simplify some of the below QoR improvements,
the cycle-by-cycle "rollback" exception recovery mechanism was
replaced with a commit snapshot. This allows the commit state of
rename structures to be "flashed back" in a single cycle, similar to
how fetch mispredictions are handled. This is especially helpful
as the speculative depth of the core is increased: deep speculation
implies more instructions to be rolled back in the case of a memory
ordering failure.

6.1.4 Flexible Banking. To keep the arbiter fast, PRF banking ini-
tially involved a fixed two read ports per bank: the first of these
ports could be allocated to requesting rs1 operands, while the sec-
ond could be allocated to requesting rs2 operands. This inflexible
allocation meant that two conflicting rs1 requests would result in
one instruction being cancelled, even if no rs2 operands requested
that bank. This was replaced with a more flexible mechanism which
is parameterized to allow configurations with more than two read
ports per bank. The read-sharing optimization described in [6] was
also implemented, but increasing the number of read ports per bank
to 3 was found to subsume much of the benefit.

6.1.5 High-Priority Issue Requests. A problem was observed in
the execution of short loops: at least two subsequent instructions
depend on loop index bumps or array pointer bumps. These de-
pendencies are mapped to the same column in order to receive a
wakeup from the index bump. Only one age-ordered ready instruc-
tion can be issued per cycle out of a column, preventing the next

Figure 8: 3-stage Column-Steering Rename Pipeline

loop iteration from being executed on the following cycle. This was
addressed with a high-priority request port for index bumps.

6.2 QoR Improvements
At the outset, the initial RingBOOM variant achieved a synthe-
sized clockspeed of roughly 1.1 GHz. Following significant effort
to resolve critical paths, a maximum clockspeed of 2.1 GHz was
registered. The changes underlying this difference are summarized
below.

6.2.1 Allocation Stage. To hit the highest mentioned clockspeed
in section 5.2 a pipeline stage for physical register allocation was
added, pictured in figure 8.

6.2.2 Dispatch Stage. A dispatch pipeline stage (DIS) was added,
described in section 4.2.



6.2.3 Arbitration Stage. An arbitration pipeline stage (ARB) was
added to prevent resource collisions without slowing down the
wakeup-select loop, described in section 4.3.

6.2.4 Fetch Mispredict Logic. As instruction fetch mispredictions
may be detected by any ALU (branches) or the JMP unit (jumps),
the oldest mispredict of many needs to be selected to flush the
pipeline and redirect instruction fetch to the correct address. This
was previously done in a way which scaled poorly to wide pipelines:
it has been replaced with efficient, low-depth one-hot logic.

6.2.5 Issue Grant Fan-out. Issue slot compaction logic previously
depended on whether or not a potential issue slot resident had
been selected for issue that cycle. This required an issue grant
signal to fan out to a multiplexer select for every bit within an
issue slot, slowing the wakeup-select loop. This dependence was
not necessary and has been removed.

6.2.6 Delayed Rename Structure Writes. Writes into the map table
and busy table were delayed by a cycle. These delayed writes are
bypassed to reading instructions.

6.2.7 2-Stage JMP Unit. The JMP unit checks that jump-register
instructions (such as subroutine returns) jumped to the right ad-
dress. It was previously found to show up as a critical path, as the
fetched bundle address needs to be correctly offset and corrected
for RVC compression before comparison with the correct jump
address. Thus, a second stage was added and retiming was used to
automatically repipline the unit.

6.2.8 Divider Readiness. The integer divider is an iterative unit,
which can be busy for up to 64 cycles. Previously, a readiness bit
was fanned out from the divider to each issue slot, preventing
DIV instructions from requesting issue when the divider was busy:
this fan-out unnecessarily slowed the wakeup-select loop. The
mechanism was changed to cancel DIV instructions during the
ARB stage when the divider is busy.

6.3 Scalability
Preliminary evaluation of a 10-wide RingBOOM core suggested
that RingBOOM’s IPC may scale well beyond a 4-wide pipeline.
This will be limited by memory ordering failures and contention
over the load/store unit (see section 7). Additionally, it is possible
that the various column crossbars will prevent graceful scaling to
a very wide pipeline. In this case, it may be sensible to implement
the form of clustering used in the Alpha 21264 [4] atop the banked
organization or to employ scalable routers in lieu of a crossbars as
in Ultrascalar [16].

7 FUTURE WORK
The remainder of the BOOM core needs to be "brought up to speed"
with the frequency improvements attained by the RingBOOM core.
This will pose significant challenges: before doing this, it may
make sense to determine an optimal logical depth in modern tech-
nologies, similar to the analysis performed in [17]: this could be
used as a target for any further logical depth optimizations. Subse-
quently, work should focus on further scaling the pipeline width
and the implementation of a scalable load/store unit. These two
goals are intertwined: a scalable load/store unit will allow execution

of more load/store instructions per cycle. Load and store instruc-
tion throughput will limit performance of the wide execution cores
enabled by the banked ring organization.

8 CONCLUSION
Many scalable approaches to out-of-order superscalar microar-
chitectures have been proposed and attempted over the past two
decades. Many of these schemes rely on subdivision of a large core
into small, nearly independent cores. Other schemes rely on highly
complex control logic. Banked microarchitectures and RingScalar
stand out as an efficient means to build a centralized execution core.
They approximate the behavior of an ideal, fully-ported core by
optimizing for common patterns found in instruction streams. This
work has focused on the implementation of this microarchitecture
as a fork of the open-source BOOM core. The IPC and physical
results suggest that this microarchitectural style deserves further
investigation and refinement.

REFERENCES
[1] Jessica Tseng and Krste Asanovic. Ringscalar: A complexity-effective out-of-

order superscalar microarchitecture. Technical Report MIT-CSAIL-TR-2006-066,
Massachusetts Institute of Technology, September 2006.

[2] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.
IBM Journal of Research and Development, 11(1):25–33, Jan 1967.

[3] K. C. Yeager. The mips r10000 superscalar microprocessor. IEEE Micro, 16(2):28–
41, April 1996.

[4] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, March
1999.

[5] E. Borch, S. Manne, J. Emer, and E. Tune. Loose loops sink chips. In 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA),
page 0299, Los Alamitos, CA, USA, feb 2002. IEEE Computer Society.

[6] J. H. Tseng and K. Asanovic. Banked multiported register files for high-frequency
superscalar microprocessors. In 30th Annual International Symposium on Com-
puter Architecture, 2003. Proceedings., pages 62–71, June 2003.

[7] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster architec-
ture: reducing cycle time through partitioning. In Proceedings of 30th Annual
International Symposium on Microarchitecture, pages 149–159, Dec 1997.

[8] J. H. Tseng and K. Asanovic. A speculative control scheme for an energy-efficient
banked register file. IEEE Transactions on Computers, 54(6):741–751, June 2005.

[9] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing
hardware in a scala embedded language. In DAC Design Automation Conference
2012, pages 1212–1221. IEEE, 2012.

[10] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste
Asanović. Boom v2: an open-source out-of-order risc-v core. Technical Report
UCB/EECS-2017-157, EECS Department, University of California, Berkeley, Sep
2017.

[11] AndrewWaterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The risc-
v instruction set manual, volume i: User-level isa, version 2.1. Technical Report
UCB/EECS-2016-118, EECS Department, University of California, Berkeley, May
2016.

[12] Jerry Zhao, Abraham Gonzales, Ben Korpan, and Krste Asanović. Sonicboom:
The 3rd generation berkeley out-of-order machine. Technical report, EECS
Department, University of California, Berkeley, May 2020.

[13] Embedded Microprocessor Benchmark Consortium. Coremark: An eembc bench-
mark, 2018.

[14] Standard Performance Evaluation Corporation (SPEC). Spec cpu 2017, 2017.
[15] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. Firesim: Fpga-accelerated cycle-exact scale-out system simulation in the
public cloud. In Proceedings of the 45th Annual International Symposium on
Computer Architecture, pages 29–42. IEEE Press, 2018.

[16] D. S. Henry, B. C. Kuszmaul, and V. Viswanath. The ultrascalar processor-
an asymptotically scalable superscalar microarchitecture. In Proceedings 20th
Anniversary Conference on Advanced Research in VLSI, pages 256–273, 1999.

[17] Victor Zyuban, David Brooks, Viji Srinivasan, Michael Gschwind, Pradip Bose,
Philip Strenski, and Philip Emma. Integrated analysis of power and performance
for pipelined microprocessors. Computers, IEEE Transactions on, 53:1004 – 1016,
09 2004.




