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Abstract

Lensless Computational Imaging using Random Optics

by

Nicholas A Antipa

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Laura Waller, Chair

Efficiently capturing high-dimensional optical signals, such as temporal dynamics, depth,
perspective, or spectral content is a difficult imaging challenge. Because image sensors
are inherently two-dimensional, direct sampling of the many dimensions that completely
describe a scene presents a significant engineering challenge. Computational imaging is
a design approach in which imaging hardware and digital signal processing algorithms are
designed jointly to achieve performance not possible with partitioned design schemes. Within
this paradigm, the sensing hardware is viewed as an encoder, coding the information of
interest into measurements that can be captured with conventional sensors. Algorithms
are then used to decode the information. In this dissertation, I explore the connection
between optical imaging system design and compressed sensing, demonstrating that extra
dimensions of optical signals (time, depth, and perspective) can be encoded into a single 2D
measurement, then extracted using sparse recovery methods. The key to these capabilities
is exploiting the inherent multiplexing properties of diffusers, pseudorandom free-form phase
optics that scramble incident light. Contrary to their intended use, I show that certain
classes of diffuser encode high-dimensional information about the incident light field into
high-contrast, pseudorandom intensity patterns (caustics). Sparse recovery methods can
then decode these patterns, recovering 3D images from snapshot 2D measurements. This
transforms a diffuser into a computational imaging element for high-dimensional capture
at video rates. Efficient physical models are introduced that reduce the computational
burden for image recovery as compared to explicit matrix approaches (the computational cost
remains high, however). Lastly, analysis and theory is developed that enables optimization
of customized diffusers for miniaturized 3D fluorescence microscopy.
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Chapter 1

Replacing lenses with random phase

masks

Compressed sensing in optics

The vast majority of optical lens design has focused on one question: do the optics produce a
sharp, bright image in the right place? This allows efficient capture of 2D images using film
or 2D photodiode arrays. With the advent of digital sensors, these improvements to color
processing, denoising, motion blur, and more became possible using signal processing applied
to captured 2D images. While this has made a massive impact on all forms of imaging, the
results are still largely limited to capturing 2D images.

However, the underlying dimensionality of optical information is far greater than 2. In
general, we will consider the volumetric spectral radiance. We will denote this as v, with units
of J

s·sr·m3·nm
. This can be thought of as energy as a function of time, space, direction, area,

and wavelength: v(t, x, y, z, θ, φ, λ); this is also known as the plenoptic function[2]. Note,
this neglects polarization, assuming unpolarized light, and does not account for interference
effects. Hence, designing optical systems that can access these extra dimensions is an active
area of development in imaging; this is sometimes called high-content imaging. Because
sensors are typically only 1D or 2D, designing optics that approximate identity mappings
from higher dimensions onto a 2D grid comes at the cost of limited sampling, requiring
either high pixel-count sensors, which sacrifices resolution, or scanning optics which limits
temporal sampling speeds. The overarching goal of this dissertation is to develop optical
designs based on compressed sensing, which enables accessing high-dimensional image data
from a single 2D exposure captured using a conventional digital imaging sensor.

Overview of contributions

My work has focused on designing optical imaging encoding hardware such that sparse
recovery methods can faithfully recover high-dimensional optical signals. Specifically, the
focus is on encoding extra dimensions of images into a single 2D exposure capture with a
conventional photodiode array. I demonstrate this capability in proof of concept imaging
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Figure 1.1: DiffuserCam: a simple lensless camera using compressed sensing to image 3D data from a single
frame. Right, a sample 3D reconstruction of a small plant, computed from a single exposure.

systems that enable lensless 2D imaging using a random phase diffuser Chapter 2, snapshot
volumetric imaging without lenses (Chapter 4), and encoding a high-speed video into a
single rolling-shutter exposure (Chapter 3). The key insights developed in these proof-of-
concept systems is synthesized into an optical design framework in Chapter 6(c) video-rate 3D
imaging of fluorescence signals, such as neurons, in a device weighing under 3 grams. I utilized
ideas from compressed sensing to develop the theory and practice of using pseudorandom
phase masks for the capture of high dimensional optical signals. These compact hardware
prototypes are possible because their design incorporates algorithms in the image formation
pipeline, together with recent advances in free-form optics and rapid prototyping. Finally,
Chapter 7 will cover using random phase diffusers to capture light fields.

Chapter 2 will introduce and discuss the use of random diffusers to replace lenses in
conventional sensors. The result is a simple camera made up of a diffuser and a conventional
CMOS sensor, which we have dubbed the DiffuserCam. Chapter 4 demonstrates how this
camera architecture can be extended to 3D image capture. While imaging in 3D often re-
quires multi-shot scanning, which significantly limits temporal resolution, the DiffuserCam
uses compressed sensing to overcome this tradeoff by encoding volumetric images into single
2D acquisitions. This relies on two assumptions: first, the input must be sparsely repre-
sentable, and second, the measurement system must map each input point to a distributed,
noise-like basis function. This intuition motivates the use of diffusers, which we show can
successfully encode 3D information in a single 2D measurement. Because each point within
a volume maps to a unique, distributed, noise-like pattern of caustics on the sensor, sparse
recovery methods reconstruct over 20 million voxels from a single 1 million-pixel 2D mea-
surement (Fig. 1.1). Because the optics are so simple, a DIY guide for building DiffuserCam
prototypes using Raspberry Pi hardware and simple optics (developed jointly with Grace
Kuo, Camille Biscarat, and Shreyas Parthasarathy) is shown in Appendix 8.2.

Extending this work beyond the spatial dimensions, Chapter 3 demonstrates the innate
compressive video properties of DiffuserCam for capturing temporal information in a single
exposure (see Fig. 1.2). Because image sensor chips have a finite bandwidth with which to
read out pixels, recording video typically requires a trade-off between frame rate and pixel
count. This project demonstrates how this tradeoff can be broken using random multiplexing
optics and compressed sensing. Using a random microlens diffuser, light is spread across the
sensor, encoding information about the whole scene into each sensor row, which is read
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Single rolling shutter capture

argmin
v≥0

1

2
kAv − bk

2
2 + τ krxytvk1
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Figure 1.2: Coupling rolling shutter with DiffuserCam enables high speed video from a single exposure.

quickly using a rolling shutter CMOS sensor (note, a lens-based system cannot do this).
This enables recovery of 140 video frames at over 4,500 frames per second from a single
rolling shutter capture. Our lensless, proof-of-concept system uses easily-fabricated diffusers
paired with an off-the-shelf sensor.

To study neural circuitry in living animals, calcium imaging has emerged as a powerful
technique wherein fluorescent proteins are introduced into the neurons in living animals.
These proteins change fluorescent strength as neurons fire. To record these signals over a
large volume of brain tissue in a freely moving animal, compact (<3 grams) video-rate 3D
fluorescent imagers with single-cell (3-10 µm) resolution are needed. This project integrates
concepts from DiffuserCam into the open-source Miniscope platform by replacing the tube
lens with a multifocal, nonuniform lenslet diffuser at the aperture stop. Rather than relying
on randomness, I combined theory from compressed sensing and optics to optimize the lenslet
design, 3D printing the design using 2-photon polymerization (Nanoscribe). By optically
bonding the resulting diffuser—only tens-of-microns thick—to the back surface of an off-
the-shelf lens, we transformed the miniscope into a computational camera that records 3D
fluorescence at video-rates. Current prototypes are being tested on zebrafish, and I am
collaborating with UC Berkeley Professor Jose Carmena’s neuroscience lab to test our system
in freely moving rodents. We have demonstrated time-resolved 3D neural capture of a
900×700×350 µm volume of GCaMP-tagged neurons in fixed mouse brain with single-neuron
resolution (Fig. 1.3).

Background on Compressed Sensing

Compressed Sensing (CS) [26] is a modern sampling paradigm that moves beyond these
limits. The key result from CS is that a sparse signal, v, can be faithfully sampled using



CHAPTER 1. REPLACING LENSES WITH RANDOM PHASE MASKS 4

350 𝜇𝑚 350 𝜇𝑚

XY projection ZY projection

Figure 1.3: Left, the Miniscope3D prototype with 3D printed multifocal lenslet diffuser, weighing under 3
grams (US quarter for scale). Middle and right, projections of a 3D reconstruction of cleared mouse brain
showing individual neuron cell bodies, as well as dendrites.

fewer samples than are required to sample the sparse signal. This requires two ingredients:
a measurement system, A, that comprises multiplexed, linear projections of the signal, and
that v can be sparsely represented. As an optimization problem, recovering the sparsest
input given linear observations b = Av can be formulated as an optimization problem:

v̂ = argmin
v

‖Ψv‖0

s.t. Av = b,
(1.1)

where ‖v‖0 is the number of nonzeros in v, and Ψ is a function that maps v to a space in
which it is represented with a small number of nonzeros. This is a combinatorial problem,
so a key takeaway from the CS literature is that this problem can be relaxed to a convex
formulation:

v̂ = argmin
v≥0

1

2
‖Av− b‖2

2 + τ ‖Ψv‖1 (1.2)

where ‖v‖ =
∑

n |v[n]|, and τ > 0 is a tuning parameter. For details, see Candes’ and Wakin’s
tutorial on CS [26]. Note, I have included the added constraint v ≥ 0, which is not common to
all CS problems, but is true for all imaging inverse problems where energy (or intensity) is the
goal, as this can never be negative. Broadly, this type of inverse problem is commonly called
sparse recovery. The term ‖Av− b‖, referred to as the data fidelity, enforces consistency
between the estimated image and the measurements. Note, this is under the assumption of
zero-mean additive Gaussian noise of variance σ2 corrupting the measurements so that the
measurement model is Av = b + n where n[n] ∼ N (0, σ). The second term enforces the
sparsity prior. Hence, a higher value of τ will increase the weight of the sparsity prior. A well
studied choice for Ψ in imaging is [∇d1...∇dN ]⊺v, where ∇di computes the finite difference
of the v along the di axis. Penalizing the ℓ1 norm of this enforces a sparse gradient prior,
preserving edge detail in the signal. This is called total variation regularization [109], with
the total variation semi-norm being defined as ‖v‖T V :=

∥

∥[∇d1...∇dN ]⊺v
∥

∥

1. Other common
choices for Ψ include using wavelets, or Ψ = I for enforcing native sparsity.
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The CS sampling paradigm is part of an exciting frontier in imaging system design in
which the goal is to abstractly consider the role of the sensing hardware as an encoder,
rather than as a direct signal approximator. This concept already had impact in fields like
MRI [92] and computed tomography, accelerating scan speeds by reducing the number of
samples required. As an optical design framework, the question becomes: how do we design
optics that encode extra dimensions of optical images such that sparse recovery succeeds
in faithfully recovering the image? Hence the goal is to study the properties of A that
enable solving of Equation 1.2 to succeed, and translate these understandings into design
requirements that drive optimization of practical optics and sensors.

A good CS sensing matrix is underdetermined, possessing more columns than rows. For
sparse recovery to succeed, is should also have low matrix coherence, µ, defined as the maxi-
mum inner product between any two columns of the sensing matrix, A: µ = max{i,j} 〈Ai, Aj〉,
where 〈·, ·〉 denotes inner product[26]. A key consequence of this is that each column of A

must be distributed, having many nonzero entries. This property is known as multiplexing,
as it maps one input to many outputs. In the framework of optical systems design, this
suggests that one-to-many imaging systems are necessary for CS in optical imaging. This
is in clear opposition to the goal of ideal one-to-one mapping that is the purview of classic
lens design. In the matrix-vector framework, most of lens design corresponds to engineering
optics that approximate the identity system matrix, A ≈ I. Another key takeaway is that
the columns of A should be mutually orthogonal. For an underdetermined matrix, this is not
possible, but can be approximately true for matrices made up of a subset of columns from
A. A common practical way of achieving this is the use of random matrices1, in which each
entry is independently chosen from a random distribution. Common choices are Gaussian
and Bernoulli matrices[26]. Hence, the optical design goal is to develop multiplexing optics
that produce distributed, random (or pseudorandom) measurements.

Convolutional matrices and optical systems

Efficiently solving Equation 1.2 will be discussed in Chapter 4 (Sections 4.2 and 4.6). These
will all entail iterative solvers, which requires repeated application of A and its adjoint A∗.
For imaging problems, A is large, on the order of millions-by-millions when using megapixel
sensors. Hence, explicit matrices are computationally expensive to work with. To allevi-
ate this issue, good random matrices include those that not only multiplex, but also have
structure facilitating fast computation. A popular choice for this is random circulant (con-
volutional) matrices can be efficiently diagonalized using Fast Fourier Transforms. This is
a reasonable goal for optical systems which are often approximated as linear shift-invariant
systems [47], characterized by a single impulse response function, termed the point spread
function (PSF). Note that, while convolutional approaches are more efficient than explicit
matrices in many cases, the CS paradigm inherently incurs a significant computational bur-
den when compared to direct-sampling approaches. This remains a challenge for this field,
limiting the application spaces where such heavy-weight processing is appropriate.

1such a matrix should be called pseudorandom, as it passes tests for randomness but is a fixed, deter-
ministic mapping
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General image formation model

The goal is efficient sensing of high-dimensional signals using practical optics and image
sensors and signal processing. In essence then, the idea is to sense this high dimensional
signal by measuring integrated energy on a conventional 2D photodiode array (CMOS or
CCD), then using inverse problem approaches to recover the image. This method depends
crucially on an accurate mathematical model of the image formation process, termed the
forward model, which describes quantitatively the expected measurement given a known
scene and fixed sensing hardware. In general, for a spectral radiance v′(t, x′, y′, θ, φ, λ) at
the sensor, the total energy deposited at pixel [i, j] (called radiant exposure) is

b[i, j] =

ˆ ∞

0

dλSλ

¨ π

−π

dθ dφSθ,φ

¨ ∞

−∞

dx′ dy′Sx′,y′

ˆ ∞

−∞

dtStv(t, x′, y′, θ, φ, λ), (1.3)

where x′ and y′ are the lateral spatial coordinates at the sensor. Here, Svar(i, j) denotes
the response of pixel indexed by (integer) coordinates (i, j) a function of variable var.2 For
instance, Sλ is the spectral sensitivity of a pixel, and would include effects of wavelength-
varying quantum efficiency in the photodiodes, as well as any color filters on the sensor.
In practice, a number of assumptions will be made to simplify this. First is that we will
assume slowly varying spectra and broadband sensors, treating Sλ as flat over our scenes.
Additionally, pixel angular responses Sθ and Sφ will be assumed to be uniform, with any
deviations from uniform being absorbed into the calibration or recovered images. We will
assume an M × N array of pixels, indexed by row i ∈ [0,M ] and column j ∈ [0, N ]. Each

pixel has a square active area of size ∆, so Sx,y = rect
(

x′−j∆
∆

, y′−i∆
∆

)

. In other words, the

pixel integrates anything that falls within its area, and ignores anything else.3 Hence, by
considering only the irradiance at the sensor, ṽ(x′, y′, t) Equation 1.3 simplifies to :

b[i, j] =

ˆ ∆(i+1/2)

∆(i−1/2)

dy′

ˆ ∆(j+1/2)

∆(j−1/2)

dx′

ˆ ∞

−∞

dtStṽ(t, x′, y′) (1.4)

By assuming the pixel area, ∆, is small relative to the spatial frequencies in ṽ, integration
over the pixel area can be modeled as sampling, so

ˆ ∆(i+1/2)

∆(i−1/2)

dy′

ˆ ∆(j+1/2)

∆(j−1/2)

dx′f(x′, y′) ≈ f(i∆, j∆)

Hence it is convenient to consider discrete representations of all variables and operators

b[i, j] ≈
T −1
∑

k=0

St[k; i, j]v′[i, j, k],

2because of the inherent grid-based nature of commercial sensors, the i-j dependence is implicit in these
definitions. It will be introduced explicitly when needed.

3In practice, pixels have complex spatio-angular dependence, but this can largely be ignored for angles
below 30 degrees or so, which is the case in most work presented here. This can easily become an issue at
high angles, however.
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where a finite exposure time of length T∆t s is assumed, with sampling period ∆t.
4 Because

this is a linear process, it can be abstracted as a matrix-vector multiply:

b = Atv
′,

where, conceptually, v′ and b are column-vector representation of the irradiance at the sensor
and the captured exposure, respectively; At is the matrix that maps from the irradiance
at the sensor to the final exposure. This neglects effects of quantization and noise in the
digitization of b. Note that the temporal behavior of the sensor is a powerful tool for encoding
high speed dynamics, as discussed in Chapter 3, so the structure of At is an important design
variable. However, for all other chapters, St will be assumed to be constant over the exposure
time, so the measurement process is subject to conventional Nyquist sampling assumptions:
if the signal is band limited to fc = 1

2∆t
Hz, it can be faithfully captured, and anything

dynamics outside of fc will alias or blur the measurement. Under the temporal band-limited
assumption, the measured energy will be proportional to the mean irradiance over time
t = [0, T∆t], denoted v′[i, j; t] (units W/m2) at the sensor:

b[i, j; t] = T∆tv
′[i, j; t].

Note, when v′ directly approximates the quantities of interest, b can be directly used. How-
ever, this is a very restrictive sensing scheme, limiting practical systems to capturing 2D
images5. As outlined above, energy within an optical scene is a function of many more than
2 variable. Hence, my work that follows studies how to infer v as a function of 3 or more
variables from a single exposure, b, recorded with a conventional photodiode array. The
goal then is to consider the optics and sensor as an encoder, encoding the extra degrees of
freedom such that they are recoverable (via computation) from 2D discrete observations.

To this end, the process of transforming the high dimensional optical signal into the 2D
time-varying intensity at the sensor is crucial. As in the exposure model outlined above, I will
assume that a discrete representation of v(t, x, y, z, θ, φ, λ) suffices, with the understanding
that scenes that vary faster than the grid used for any particular dimension will be incor-
rectly represented. For the remainder of this dissertation, it will be implicit that when the
arguments are excluded following v, that variable has minimal impact on the measurements
and can safely be neglected. For example, v[x, y] implies a 2D spatial image, and is suitable
for imaging a still, 2D scene. Additionally, when square brackets are used, it is assumed that
the arguments are discrete integers in [0, N − 1] where N samples are assumed along that
dimension of v. In other words, the arguments are indices, not physical units. Continuous
variables will be denoted with round brackets, v(r), where r is the N-dimensional continuous
coordinate. When recovering discrete images on a unitless grid, they will be converted to
physical units as needed after computation.

4The notation f [y; x] denotes that function f is evaluated on variable y, but is parameterized by param-
eters x.

5Filters can be placed atop each pixel to provide independent measurement across other dimensions, but
when coupled with one-to-one imaging systems, this severely limits the final image resolution, and relies on
interpolation to fill in gaps. A conventional Bayer pattern is an example of this, but the same concept can
be used for polarization. See [113] for more.



CHAPTER 1. REPLACING LENSES WITH RANDOM PHASE MASKS 8

The final piece to the forward model puzzle is to compute how the quantities of interest,
v[n], maps to the time-varying irradiance at the sensor, v′[n]. Note, n may represent the
multiple dimensions necessary to index v. In general, n will contain multiple indexing
variables. I will assume everything is spatially and temporally incoherent, such that energy
only adds at the sensor plane6. This is suitable for a wide range of scenes such as natural
photography and fluorescence imaging. Hence, each point in v′ can is a linear combination
of points in v, with weights determined by the optical system. More explicitly:

b[i, j] =
∑

n

v[n]h[i, j;n]

Here, h[i, j;n] is the energy striking pixel [i, j] after light from scene point indexed by n
passes through the optical system and is exposed on the sensor. This linear map from
discretely represented image, v, to final measurement b, will be written in matrix-vector
form frequently:

b = Av. (1.5)

For the remainder of this work, I will assume that an image can be denoted as a vector, but
its underlying shape does not need to be 1D, as is conventional for vectors. Depending on
the underlying structure of the vector, it may be convenient to index with multiple indices,
but this can easily be converted to a single index if needed. For example, in 2D imaging, it is
natural to refer to v[x, y] due to the two underlying spatial dimensions inherent in the signal.
This structure matters when choosing signal priors, as locality exists in the 2D signal that is
not as obvious in a 1D representation. Note, however, that for any linear operator that finds
local structure in the 2D representation, and equivalent operator could be computed in the
1D representation that would be exactly equivalent. See Appendix 8.1 for more details. A
second point worth mentioning is the confusion over the word dimension. In the vector-space
sense, this refers to the underlying number of basis vectors necessary to describe a vector
space. However, it is common terminology in imaging to use the word dimension to describe
the number of basis vectors needed to span the image’s domain. In other words, dimension
refers to the number of arguments needed to index an image; for example, a 2-dimensional
image is a function of a 2-dimensional space, even if the vector representation of the image
is of far higher dimensionality in the vector sense. Lastly, when norm notation is used on
image vectors, for example the 2-norm ‖v‖2, this implies a vector norm, not a matrix norm
(even if the image is 2D).

Previous Work

Romberg [108] proposed the use of convolutional random matrices for CS in imaging, pointing
out that random phase is a good choice. Coded aperture phase has also been explored by
Willett and Roummel [54] in simulation. Random erasures at the sensor plane have also

6This means no destructive interference is possible between scene points. Interference effects can be
present in the impulse response, however, so wave optics is not totally neglected in this framework
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been proposed [89]. However, as Romberg points out, pointwise erasure is a poor choice
when the signal is sparsely represented using spatially compact basis functions, suggesting
that random phase is a better choice for imaging.

Lensless cameras, in which the camera comprises only a mask and a sensor, offer a conve-
nient package for exploring multiplexed optical imaging, as they inherently map scene points
to distributed patterns at the sensor plane. Additionally, Lensless cameras are attractive for
their potentially small form factor, with broad investigation in applications of 2D photog-
raphy. Unlike traditional cameras, in which a point in the scene maps to a point on the
sensor, lensless cameras map a point in the scene to many points on the sensor, requiring
computational reconstruction. While this can be a hindrance for 2D imaging, it offers an
opportunity when viewed through the encoder-decoder framework of CS.

Related works in 2D lensless imaging

The roots of lensless imaging come from imaging in domains where lenses are impossible to
build due to the lack of materials with strong refractive index, such as x-ray and 3He based
neutron detection[28]. This idea was ported to optical imaging with the goal of creating
thin, low cost imagers by replacing a lens with an encoding element placed directly in front
of the sensor. 2D lensless cameras have demonstrated passive incoherent imaging using
amplitude masks [13], diffractive masks [123, 46], random reflective surfaces [40, 124], and
modified microlens arrays [125]. Due to the unique form factors, wide field-of-view (FoV)
cameras have been proposed for thermal imaging[46], and the joint use of opposing image
sensors acting as the other’s coding element [97]. Whereas these approaches rely largely on
absorbing masks, which are light inefficient, lensless 2D imaging has also been demonstrated
using inline holography and scattering masks [53, 27, 119, 120]. These approaches require
illuminating the object with coherent lighting, precluding their use in natural scenes or for
imaging fluorescence. The mask-based lensless camera system described in Chapter 2 and
4, dubbed DiffuserCam, utilizes a random phase masks designed to create sufficient contrast
with incoherent scenes to enable light efficient lensless imaging for natural scenes.

Related works in single-shot 3D imaging

Single-shot 3D imaging, in which a 3D image is encoded into a single 2D measurement, has
been demonstrated in a variety of architectures. Light field cameras, also called integral
imagers, passively capture 4D space-angle information in a single-shot [98], which can be
used for 3D reconstructions. This concept can be built into a thin form factor with microlens
arrays [58] or Fresnel zone plates [63]. Lenslet array-based 3D capture schemes have also
been used in microscopy [76], where wave-optical [24, 83] or scattering [105, 83] effects can
be included. All of these systems, however, must trade resolution (or field-of-view) for single-
shot capture, limiting the number of useful voxels. DiffuserCam improves upon this tradeoff,
capturing large 3D volumes with high voxel counts in a single exposure.

Coherent 3D lensless imaging has been demonstrated as well [23, 75, 18, 38, 117], but
these methods require active (coherent) illumination, limiting applications. Further, many



CHAPTER 1. REPLACING LENSES WITH RANDOM PHASE MASKS 10

coherent methods do not generate unambiguous 3D reconstructions, but rather use digi-
tal refocusing to estimate depth. DiffuserCam, on the other hand, exhibits actual depth
sectioning (in the absence of occlusions) for "true 3D".

Since methods for imaging through scattering often use diffusers as a proxy for general
scattering media [68, 36, 118], our mathematical models will be similar. However, instead
of trying to mitigate the effects of unwanted scattering, here we use the diffuser as an opti-
cal element in our system design. We choose a thin, optically smooth diffuser that refracts
pseudorandomly, producing high contrast patterns under incoherent illumination. Such dif-
fusers have been used in light field imaging [8] and coherent holography [75, 67]. Coherent
multiple scattering has been demonstrated as an encoding mechanism for 2D compressed
sensing [87], but necessitates a transmission matrix approach that does not scale well past
a few thousand pixels. We achieve similar benefits without needing coherent illumination,
and we reconstruct 3D objects, rather than 2D. Finally, an important benefit of our system
over previous work is the simple calibration and efficient computation that allow for 3D
reconstruction at megavoxel scales with superior image quality.

Related works in compressive video

To capture high-speed dynamics with conventional sensors, one must overcome the band-
width limit of digital imaging chips. Compressive video works by spatio-temporally coding
the video data prior to capture. Rather than capture a video, then compress it to exploit
redundancies, compressive video does the compression step in hardware and captures only
relevant data. For example, Hitomi et al. proposed a compressive video acquisition scheme
that reconstructs a high-speed video from a single image (9− 18× temporal upsampling at
1000 fps) [141]. The approach relied on pixel-wise programmable exposure timing to mod-
ulate the recorded image temporally during the acquisition. Reconstruction was performed
through a dictionary of space-time signal patches that is learned offline. Experimentally, the
approach used a spatial light modulator (SLM) and global shutter sensor, but could theo-
retically be implemented on-chip in a CMOS architecture. On-chip random downsampling
has been implemented in circuitry using a Σ − ∆ approach, which reduces the burden on
optical design, but requires modification of sensor fabrication process–this is far more dif-
ficult to scale than optical redesigns [102]. Using strobed exposure with unique sequences,
Veeraraghavan et al. reconstructed a high-speed video of periodic events at 2000 fps from
a video captured by a camera operating at 25 fps [132]. Another technique, proposed by
Llull and Yuan et al., achieved high-speed video reconstruction (22 frames at 660 fps) from
a single-shot coded-aperture image that is obtained by translating binary amplitude masks
within the focal plane of a global shutter sensor [89, 143]. Koller et al. later improved the
mask design [69] and Liu et al. proposed a reconstruction that exploits the low-rank struc-
ture of the underlying scene [86]. The commonality between these setups is that each pixel
is temporally modulated during the exposure, and all require bulky and expensive hardware.
Our technique, in contrast, uses simple optics and spatial multiplexing rather than temporal.

Rolling shutter can induce undesirable artifacts when imaging dynamic scenes. Removal
of such artifacts is an active field of study. Liang et al. characterized and corrected the
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geometric distortions [77]. Saurer et al. considered extensions for stereo imaging and regis-
tration with rolling shutter cameras [112]. When camera motion exists, Su and Heidrich [110]
proposed an approach to reconstruct a sharp image by simultaneously removing the motion
blur and rolling shutter distortions.

Rather than undoing the effects of rolling shutter sensors, we seek to leverage them for
performance. Gu et al. have proposed controlling the readout timing and exposure length
for each row [50] such that the exposure time discrepancy in subsequent rows enables one
to flexibly sample the 3D space-time volume of the dynamic scene. In simulations, their
architecture-level proposal was beneficial for computational photography applications such
as high dynamic range (HDR) imaging and auto-exposure, but did not successfully resolve
video using sparse recovery methods. Oieke and Gamal proposed another architecture that
used spatial multiplexing at the chip-level, which allowed them to reach 1920 fps data rate
for 256×256 pixel count. Another method uses digital micro-mirror devices (DMDs) for
aperture coding and streak cameras with femtosecond speeds to reconstruct ultrafast videos
(10 trillion fps) from a single image [74, 60]. Liu et al. considered similar ideas and used
a galvanometer to perform streaking (i.e. temporal shearing of the scene) [85]. While
this concept is similar to ours in spirit, they do not consider spatial multiplexing and they
rely on complex, costly hardware. Finally, Sheinin et al. recently used rolling shutter and
spatial multiplexing to detect and de-mix the contributions from flickering light bulbs in a
scene, providing useful information about the power grid. The authors observed that spatial-
multiplexing via a diffuser enabled observation of spatio-temporal information, but they do
not considering high-speed imaging directly [115].

Spatially-multiplexed image capture has been a key ingredient for compressive imag-
ing [35]. Using amplitude masks, Salman et al. realized such ideas on a lensless and compact
system [13]. Diffuser (i.e. phase mask)-based lensless cameras have been shown to be capable
of 2D imaging [72], and single-shot 3D imaging [11]. Here, we show that diffusers are useful
optical elements for compressive video systems, allowing each frame of video to be sampled
from a small subset of sensor pixels. Our system can be calibrated from a single image,
fabricated using simple lab equipment, and reconstructed using computationally-efficient
convolution-based algorithms.

Related works in compact 3D microscopy

Because of the combination of single-shot 3D and miniature form factor, CS-based imaging
systems are an attractive option for developing compact 3D microscopes. While many vol-
umetric microscopy methods capture 3D structure using scanning (e.g. two-photon, light
sheet), this which is difficult to miniaturize and trades temporal resolution against field-
of-view (FoV). Two-photon microscopes have been implemented in small form factors [145,
55], giving high resolution at a cost of motion artifacts [106], limited FoV, and expensive
hardware. Miniaturized light sheet microscopes achieve faster capture [37], but also de-
pend on scanning which causes motion artifacts and increases the complexity and size of the
hardware.
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Unlike scanning approaches, single-shot methods [142, 82, 11, 73, 1, 14, 76, 24] offer
faster capture speeds, with temporal resolution limited only by camera speed. These meth-
ods illuminate a fluorescent sample with excitation light, the optically encode the volumetric
emission into a single 2D measurement, computationally reconstructing the 3D informa-
tion. Single-shot 3D fluorescence capture has been demonstrated using a lensless archi-
tecture [1, 73], but lacked the integrated illumination that is required for in-vivo imag-
ing. In addition, such mask-only systems have no magnifying optics, and so are limited
to low effective numerical aperture (NA) resulting in poor lateral and axial resolutions.
Other recent work combines coding elements with multi-fiber endoscopes to achieve single-
shot non-fluorescence 3D, with relatively low resolution [116]. Recently, the miniature light
field microscope (MiniLFM) [121] demonstrated an integrated 3D fluorescence system with
computationally-efficient temporal video processing for neural activity tracking [99]. This
system adds a standard microlens array (regularly-spaced, unifocal) to the image plane of a
miniature compound microscope, giving it single-shot 3D capabilities at the cost of degraded
lateral resolution and a larger and heavier device. As discussed in Chapter 6, replacing the
tube lens with a pseudorandom phase mask more efficiently captures 3D information. The
key to this is utilizing CS theory to optimize the phase mask for improved performance over
what can be achieved with conventional microlenses.

Related works in single-shot light field capture

Single-shot capture of in-camera light fields using microlenses is an active area of research,
with a long history dating back to the early 1900s [81, 59, 103, 3, 96, 98, 91, 79, 139].
The technique is variously referred to as integral, plenoptic and light field imaging. The
main tradeoff is reduced image resolution in order to sample angular information. Microlens
approaches have also been applied in microscopy [76], where a wave-optics model can be
used to exploit diffraction effects for higher-resolution reconstruction at some distances [24].
This approach recognizes that microlens arrays become subject to wave-optics effects as their
sizes shrink. In this paper, we extend this line of thinking to a new framework in which the
phase-encoded surface need not be a pre-designed periodic array of lenslets, but can be any
phase (or amplitude) mask, even with irregular surface relief and diffractive properties.

Attenuation masks are another approach for encoding light fields in a single-shot [133].
Recent work has shown that these systems can be modeled using a matrix method that is
amenable to compressive sensing, possibly overcoming the resolution trade-offs inherent in
4D imaging with 2D sensors [94, 64]. These techniques require significantly more compu-
tational resources than microlens systems in order to infer the light field from the sensor
measurements, and the masks attenuate a significant amount of light. In this paper, we
use phase encoding rather than attenuation encoding, thereby avoiding light loss. However,
our system is similar to the mask-based methods in that it implements a multiplexed-type
measurement that is able to exploit a priori information (e.g. sparsity) for possible resolution
benefits.

Microlens arrays and attenuation masks have also been used without a main imaging lens
to create very flat cameras for 2D imaging [126, 14], since the lens function can be achieved



CHAPTER 1. REPLACING LENSES WITH RANDOM PHASE MASKS 13

in computation. Very small 2D cameras have also been created with diffractive optics and
computation [122] using a purely wave-optics model. Although it is not shown in this paper,
our approach of using diffusers could also be extended to flat imaging device designs, but
with volumetric reconstructions resulting from the light field data.

Other approaches to light field capture include angle sensitive pixels [136, 56], aperture
scanning with time multiplexing [78], macroscopic lens arrays [44], and camera arrays [140,
134]. Various attempts at obtaining higher image resolution have been proposed, for example
depth-aware splatting [41] and hybrid imaging by also using a high-resolution 2D camera [19].

Designed phase plates have been used in 2D imaging to extend depth of field [34, 29]
and improve signal for phase retrieval [6, 93]. Random planar refractive masks have been
used to reconstruct 2D images and estimate depth [40]. Recent efforts have attempted to
image objects through unknown random diffusers [68, 53, 7], which suggests possible future
applications for our work.

The work demonstrated in Chapter 7 considers the use of a diffuser to encode light fields
in a single snapshot. The goal of this work was to realize benefits of compressed sensing
in light field capture, alleviating the sampling limit common to state-of-the-art plenoptic
cameras. However, this was not successfully demonstrated for reasons discussed at the end
of the chapter.
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Chapter 2

Capturing 2D images with a diffuser

This is work done jointly with Grace Kuo, Camille Biscarrat, Ren Ng, and Laura Waller and
is based on [72].

2.1 Introduction

This chapter introduces the lensless imaging architecture and demonstrates the ability to
capture 2D photographs using a camera comprised only of a diffuser and a sensor. Mask-
based lensless imagers [14, 125, 122] are a new class of computational cameras that use an
optical mask rather than a traditional lens. Unlike a lens, a mask does not directly produce
an image on the sensor. Rather, the mask indirectly encodes object irradiance, which must
then be algorithmically recovered from the sensor data. Mask-based cameras have several
advantages, including thin form factor, low weight, potential for scaling to larger sensor
formats, and ability to capture depth information.

We propose a lensless camera comprised only of a diffuser (a pseudo-random phase mask)
placed a small distance away from an image sensor. The diffuser is a piece of clear polymer
with a smooth, slowly-varying surface, and it is the only optical element in our system (Fig-
ure 2.1a). When illuminated by a point source, the convex bumps on the diffuser concentrate
rays, creating a high contrast caustic pattern at the sensor (Figure 2.1b) [8]. The diffuser
shape need not be known a priori, as the system will be calibrated from a single image of a
point source.
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Figure 2.1: (a) Our lensless camera is simply a diffuser placed a fixed distance from a sensor. (b) Experi-
mentally measured caustic pattern. (c) Prototype systems (PCO left, Point Grey right).
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Figure 2.2: Shift invariance of the Diffuser PSF. Translating a point at a fixed depth leads to a translation
(in the opposite direction) of the PSF on the sensor. This behavior is validated

The advantages of our system compared to other lensless cameras are the use of off-the-
shelf parts, high light throughput compared to amplitude masks, simple calibration, digital
auto-focus, and an efficient computational model. As a step toward providing design tools
for general mask-based cameras, we present a framework for analyzing the resolution, field-
of-view, and depth-of-field of such systems. We built two experimental prototypes (Fig. 2.1c)
and show high-quality image reconstructions by using an optimization-based deconvolution
algorithm.

Convolutional Forward Model

Because the diffuser surface is slowly varying, a point source located in the far-field can be
treated paraxially. Recovering an image requires knowing the system matrix, A, which is
extremely large (on the order of millions-by-millions). Measuring or storing the full A would
be impractical, requiring millions of calibration images and operating on multi-Terabyte ma-
trices. Instead, we use the convolution model outlined below to drastically reduce complexity
of both calibration and computation.

We describe the object, v, as a set of point sources located at [x, y, z] on a non-Cartesian
2D grid at distance z from the camera. The relative radiant power collected by the aperture
from each source is v[x, y, z]. The caustic pattern at pixel [x′, y′] on the sensor due to a
unit-energy point source at [x, y, z] is the PSF, h[x′, y′;x, y, z]. Thus, b[x′, y′] is the sum
of all 2D sensor measurements for each non-zero point in v after propagating through the
diffuser and onto the sensor. This lets us explicitly write the matrix-vector multiplication
Av by summing over all scene points in the FoV:

b[x′, y′] =
∑

[x,y]

v[x, y, z]h[x′, y′;x, y, z]. (2.1)

This can be simplified by treating the diffuser as paraxial, which leads to a shift invariant
PSF. This is similar to the infinite memory effect [68, 36], and is a valid model because the
diffuser has a slowly varying, smooth, and relatively shallow surface. Consider the caustics
created by point sources at a fixed distance, z, from the diffuser. A lateral translation of
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the source by (∆x,∆y) leads to a lateral shift of the caustics on the sensor by (∆x′,∆y′) =
(m∆x,m∆y), where m is the paraxial magnification. We validate this behavior in both
simulations (see Fig. 4.2) and experiments (see Sec. 4.34.3). For notational convenience, we
define the on-axis caustic pattern at depth z as h[x′, y′] := h[x′, y′; 0, 0], and assume m = −1,
applying correct scaling after image recovery. Thus, the off-axis caustic pattern is given by
h[x′, y′;x, y] = h[x′ − x, y′ − y]. Plugging into (2.1), the sensor measurement due to a 2D
scene at depth z is:

b[x′, y′] =
∑

[x,y]

v[x, y, z]h[x′ − x, y′ − y]

= C





(

v [x, y]
(x,y)
∗ h [x, y]

)

[x′, y′]



 .

(2.2)

Here,
(x,y)
∗ represents 2D linear discrete convolution over (x, y), which returns arrays that

are larger than the originals. Hence, we crop to the original sensor size, denoted by the linear
operator C (see Supplementary Fig. S5 for more details). For an object discretized into Nz

depth slices, the number of columns of A is Nz times larger than the number of elements in
b (i.e. the number of sensor pixels), so our system is underdetermined.

This model as a number of benefits. First, it allows us to compute Av as a linear operator
in terms of only 1 image, rather than instantiating A explicitly. We evaluate the cropped
convolutions are evaluated using circular 3D convolution, implemented with 2D FFTs, which
scales well. Second, this model coupled with the distributed, pseudorandom PSF connects
well to thery of random matrices in compressed sensing [70]. The third benefit is ease of
calibration, requiring only one calibration image at the desired imaging depth. Note that
depth-dependence of this problem is explored in Chapter 4. This also motivates the addition
of the aperture on the diffuser, which ensures that a single image captures the entire PSF.

2.2 Methods

Calibration amounts to collecting a single image of the PSF, h[x′, y′], by illuminating with
an LED located 2 m from the sensor. The PSF exhibits slight variations with depth, but this
can be modeled under the paraxial approximation, making digital autofocusing after image
acquisition straightforward (see Section 2.2). In contrast, [14] is calibrated by projecting a
series of Hadamard patterns on the camera, and calibration must be repeated for objects
outside the depth-of-field.

Recovering the image amounts to solving Equation 1.2. Methods such as Fast Iterative
Shrinkage Thresholding Algorithm (FISTA)[15, 101], or Alternating Direction Method of
Multipliers (ADMM) [22, 21, 135] suffice, using Equation 2.2 as the forward model. While
this form of inverse problem is necessary for CS recovery problems, in this case the sparsity
prior serves only to regularize the problem, reducing the impact of noise on the reconstruc-
tions. Methods for solving this efficiently with total variation are discussed in Chapter 4.
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Resolution

If the PSFs of neighboring point sources are very similar, it is challenging to distinguish
between the sources. This causes poor reconstruction quality, lowering the SNR and resolu-
tion. To quantify this, consider two point sources located (∆x,∆y) apart with PSFs h1[x

′, y′]
and h2[x

′, y′]. Leveraging the shift invariance of the problem, we can define h1[x
′, y′] :=

h[x′, y′; 0, 0], the on-axis PSF, and h2[x
′, y′] := h[x′, y′; ∆x,∆y]. We define similarity be-

tween these two PSFs, denoted µ(∆ξ), as the inner product of the PSFs:

µ(∆x,∆y) = 〈h[x′, y′; 0, 0],h[x′, y′; ∆x,∆y]〉

= 〈h[x′, y′],h[x′ −∆x, y
′ −∆y]〉

(2.3)

The second line comes from the shift-invariance assumption, and is the 2D autocorrelation
of h. For normalized PSFs, µ(0, 0) = 1 by definition, and ideally, µ should decrease quickly

as
∥

∥

∥[∆x,∆y]
∥

∥

∥ increases. We quantify the autocorrelation sharpness by looking at its half-

width at 70% of maximum, which empirically matches our data (see Sec. 2.3 and Fig. 2.3b).
Because h is nonnegative, µ can only be zero when two PSFs occupy a completely disjoint
set of pixels.

Field-of-view

Theoretically, the angular field of view (FOV) of our camera is determined by the maximum
illumination angle that contributes to the sensor measurement. Since the diffuser bends
light, we take into account the diffuser’s maximum deflection angle, denoted β. Based on
the geometry shown in Fig. 2.3a, we calculate that the angular FOV α satisfies l + w =
d tan (α− β) where 2l is the sensor width, 2w is the width of the PSF support, and d is
the distance from the diffuser to sensor. Finally, real-world sensor pixels cannot detect light
from arbitrarily high angles, so we include their maximum angle of acceptance, αc, in our
final FOV equation:

α = β + min
[

αc, tan−1
(

l+w
d

)

]

(2.4)

Depth-of-field

Consider two on-axis point sources at different depths, z1 and z2. We define the depth-of-
field (DOF) to be the minimum detectable separation, ∆z = z1 − z2. Treating the diffuser
paraxially, the corresponding PSFs, h[x; z1] and h[x; z2], are related by a coordinate scaling
with parameter s: h[sx; z1] = h [x; z2]. Plugging this into the similarity definition in Eq. 2.3,
we can determine the depth sensitivity of the camera in terms of a single PSF measurement
and s using µ(s) = 〈h[sx],h [x]〉. Similar to Section 2.2, we determine the values of s for
which µ is sufficiently low. Then, we relate s geometrically to the corresponding DOF.
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Figure 2.3: Analysis and results of DiffuserCam. (a) Schematic showing geometric effects that contribute
to field-of-view. (b) Autocorrelation of diffuser PSF for the two prototypes, which sets optical resolution
limits.(c) Depth of field (solid) and hyperfocal distance (dotted) for the two prototypes. (d)-(e) Zoom-in on
the reconstruction of a single point source captured with each camera to illustrate resolution. The red circles
represent estimated spot size based on autocorrelation width at 70% of maximum. (f) Reconstructed image
from the Point Grey prototype (300 × 400 pixels). Raw data shown in inset. (g)-(h) Reconstructed image
from the PCO prototype (640 × 540 pixels). Raw data shown in inset.

2.3 Experimental Results

To demonstrate the ease with which our method can be adapted to any existing sensor and
how sensor parameters affect imaging characteristics, we built two prototype cameras. One
uses a PCO Edge 5.5 Color camera, and the other a Point Grey Flea3 with Sony IMX036
monochrome CMOS chip. We placed a 0.5◦ Luminit Light Shaping Diffuser at d = 8.8 mm
d = 6.4 mm, respectively (Figure 2.1c). The surface of the 0.5◦ diffuser has a maximum angle
of about 1.5◦, making the paraxial approximation valid. We measured the experimental PSF
of each prototype using an LED, and additionally measured the angular acceptance of each
sensor, αc, by translating the calibration LED. We found that using a cutoff of 20% of the
brightness at normal incidence predicts the FOV we observe experimentally.

Using the measured PSFs in conjunction with the analysis presented in Sections 2.2-2.2,
we compute the theoretical system parameters for each prototype. For the PCO camera,
the resolution, defined by the autocorrelation peak half-width, is 0.16◦, and the half FOV is
37◦. A line from each autocorrelation is shown in Fig. 2.3b. The DOF of the PCO camera
is shown in Fig. 2.3c (blue), with a hyperfocal distance of 2929 mm. For the Point Grey
prototype, the resolution is also 0.16◦, and the half FOV is 27.5◦. The DOF is plotted in
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Fig. 2.3e (red), with a hyperfocal distance of 571 mm. Note that the smaller sensor size
of the Point Grey camera results in significantly larger depth of field. However, since both
prototypes use the same diffuser, the angular resolution is the same, despite differences in
pixel size.

To validate resolution, we took images of a single point source with each prototype,
and reconstructions of each are shown in Figure 2.3d-e. The spot-size radius matches our
theoretical resolution for each camera. We also took images of several objects (Figure 2.3f-
h). All objects were kept within one DOF, and the observed FOV matches our theory.
Instructions for building a camera are in the Appendix, 8.2.

2.4 Compressed sensing

The end goal of using a multiplexing random phase mask is to realize benefits from com-
pressed sensing. To test this, we attempt to recover an image after discarding a fraction of
sensor pixels. This is equivalent to erasure random rows from A, as is common in MRI[92].
The mathematical model for this is b[i, j] = ΘC (v ∗ h), where Θ is a pointwise erasure
operator that zeros pixels we wish do discard. We find that an image can be recovered
succesfully from a small number of pixels, as shown in Figure 2.4(a), which shows recon-
structions with 100%, 10%, and 1.5%. Figure 2.4(b) compares the reconstruction using all
pixels to two methods of recovering from erausre. The middle erases 98.5% of the pixels
from the reconstruction on the left then uses bicubic interpolation to get back to the high
resolution grid. The image on the right show erasure of 98.5% of pixels from the raw data
prior to reconstruction. Arguably, the righthand image using CS is perhaps slightly more
detailed, but it is also noisier than the bicubic method. Hence, for static 2D imaging from
subsampled sensor measurements, we observe that the CS theory works: we can recover an
image from a subset of sensor pixels. However, for static scenes, the degradation in quality is
similar to what would be lost by simply using a lower resolution sensor and upsampling with
bicubic interpolation. However, in the next chapter, we will explore utilizing this concept
to enable high speed imaging by coupling a diffuser with a rolling shutter sensor, which can
be viewed as a pixel erasure problem. They key to overcoming the lost quality shown here
will be to consider jointly multiple time points, relying on temporal regularization to regain
detail in the recovered images.
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Chapter 3

Compressive High Speed Video in

Lensless Cameras

This is work done jointly with Patrick Oare, Emrah Bostan, Ren Ng, and Laura Waller and
is based on [12].

3.1 Introduction

All digital imaging sensors have a finite bit rate for exporting the digital measurement. This
limited bit rate restricts the space-time bandwidth of the system, forcing a trade-off between
temporal and spatial resolution. Traditionally, increasing the frame rate while maintaining
pixel count requires increasing the chip bandwidth, which is expensive. Compressive video
approaches seek to break this trade-off by spatio-temporally compressing the video data
prior to exporting the bits, effectively encoding more information into the limited bandwidth.
While most work in compressive video has focused on redesigning the readout architecture of
CMOS chips, we instead propose a compressive video scheme based on optical multiplexing
using a diffuser. We demonstrate the concept using a simple lensless camera with an off-
the-shelf rolling shutter sensor. Our system effectively encodes 140 frames into a single still
image.

Increasing the frame rate of a sensor with fixed bandwidth can be achieved by reading a
subset of pixels at each frame. However, when using one-to-one imaging optics (i.e. lenses)
that map each scene point to a point on the sensor, information is lost from parts of the
sensor that are not sampled. Figure 3.1(a) illustrates a sensor with a narrow band of pixels
actively recording, placed at the image plane of a lens, with a simple scene consisting of two
point sources. The cyan source falls outside of the active exposure band and is therefore
not measured. To solve this problem, we propose using spatial-multiplexing optics such
that even a small subset of sensor pixels (e.g. one row of a 2D array) contain information
from most scene points. Our approach consists of replacing the lens with a pseudorandom
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(b) Diffuser-based camera

Diffuser

(a) Lens-based camera

SensorLens

Figure 3.1: Diffuser-encoded pseudorandom multiplexing ensures that every row in the sensor measurement
contains information from nearly every scene point. (a) A lens-based camera maps each scene point to a
point on the sensor. If the sensor samples a subset of rows at a time (outlined in white), as with rolling
shutter, only one row of the scene is visible. For example, the cyan point is completely missed in this case.
(b) Multiplexing optics, such as a diffuser, spread information across the sensor, allowing the entire scene to
be sampled by the subset of rows illustrated here. This effect enables our lensless system to recover a video
at a frame rate set by the sensor line scan rate.

phase diffuser placed near the sensor, which maps each point to a distributed, high-contrast
pattern of caustics on the sensor. As shown in Fig. 3.1(b), the information from every scene
point falls on nearly all sensor pixels, and is therefore present in the band of rows being
read. Recovering a video from a sequence of row measurements then requires solving an
underdetermined inverse problem. Because the diffuser produces pseudorandom noise-like
measurements, we interpret this as a compressive sensing system, reconstructing the video
using sparsity-constrained nonlinear optimization.

To implement this idea, we leverage the ubiquity of rolling shutter CMOS sensors. During
capture of a single image, rolling shutter sensors expose each row of pixels over a unique
time window. This encodes temporal information into the 2D measurement. By randomly
multiplexing the scene onto such a sensor, we can recover a video of a dynamic scene wherein
each frame corresponds to a row of the rolling shutter capture.

Our experimental prototype recovers 140 frames of video at 4, 545 frames-per-second
(fps) from a single 2D rolling shutter capture. The system is built using a dual-shutter
sCMOS sensor (Fig. 3.2). We analyze the spatial and temporal resolution of the system and
show that, for sparse scenes, the spatial resolution significantly surpasses that of much more
expensive global shutter approaches at comparable frame rates.

3.2 Forward model and inverse problem

In this section, we outline a forward model for the optics and the rolling shutter exposure,
as well as the inverse problem approach. We will use this model to analyze the temporal
resolution of the system in Section 3.4.
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Single rolling shutter capture
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Figure 3.2: High-speed video from a single-shot rolling shutter image captured by a lensless computational
camera. Each row of the recorded image, b, is captured at a unique time and contains information about
nearly all scene points due to the inherent multiplexing of our lensless imager. The optics and exposure
process can be described by a linear forward model, A, which is used to solve for the time sequence of 2D
images (video), v, via non-negative least squares with a 3D gradient sparsity penalty, ‖∇xytv‖1, weighted
by τ . Each frame of the raw 33 fps recording is expanded to 140 frames giving an effective frame rate of
4,545 fps.

Rolling shutter model

In general, the exposure at each point on the sensor, L(x, y), can be modeled as a temporal
integral,

L(x, y) =

ˆ ∞

0

St(t|x, y) · ṽ(x, y, t)dt, (3.1)

where ṽ(x, y, t) represents the time-varying optical intensity on the sensor, and St(t|x, y) ∈
{0, 1} is a 3D indicator, the shutter function, that encodes the temporal exposure window at
each (x, y) position. While our approach could be generalized to different exposure patterns,
we focus on rolling shutter due to its ubiquity. Rolling shutter is a column-parallel approach
in which each row of pixels exposes for Te seconds, beginning at a delay, Tl, after the previous
row began (typically tens-of-microseconds). Because rolling shutter records row-by-row, we
drop the x-dependence of the shutter function, denoting it as St(t|y) for the remainder of
the paper. At any given instant, a small band of Nl = Te/Tl rows is actively recording
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photons. For a sensor with pixel size ∆, this is depicted in Fig. 3.3, with red indicating
where St(t|y) = 1. Our goal is to spatially multiplex scene information into the exposure
band at each time point, which enables each band to produce a frame of the final video,
achieving frame rates equal to 1/Tl fps.

= Exposure complete

= Currently exposing

Δ

𝑦

(row)

𝑥 (column)

𝑇%

𝑇&

𝑡𝑁%

Δ

𝑡)

𝑦

𝑥

𝑆(𝑡|𝑦) 𝑆(𝑡)|𝑦)

= Not yet exposed

𝑁%

Figure 3.3: (Left) Spatio-temporal illustration of the rolling shutter function St(t|y) for a sensor with pixel
size ∆ and exposure time Te. Red depicts active exposure, and gold is the readout time. (Right) A slice
through St at time tk. Each row begins exposing Tl seconds after the previous row begins, with red repre-
senting actively exposing rows, and blue representing completed rows. The number of rows simultaneously
exposed is Nl = Te/Tl, which in this example is 3. For simplicity, we choose Te such that Nl is an integer.

Lensless imaging model

In order to achieve the desired multiplexing, we use a simple lensless architecture (see
Fig. 3.4) that employs a diffuser – a pseudorandom phase optic – as a computational imaging
element [11, 8]. The system comprises a diffuser placed a distance d0 from the rolling shutter
sensor, with the scene at distance di from the diffuser. An aperture placed on the diffuser
ensures that the resulting Point Spread Function (PSF) is shift-invariant, and enables simple
calibration [11, 8]. For magnification m = di/d0, the sensor plane intensity can be modeled
by convolving the magnified scene intensity, v(x/m, y/m, t), with h(x, y), the on-axis PSF
[47]:

ṽ(x, y, t) = v

(

x

m
,
y

m
, t
)

(x,y)
∗ h(x, y), (3.2)

where
(x,y)
∗ denotes linear convolution over (x, y). The diffuser’s PSF fills nearly the entire

sensor with a pseudorandom caustic intensity pattern that is unique for each shift. This high
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degree of spatial multiplexing is key to how our system works, enabling any horizontal slice
of ṽ(x, y, t) to contain information about nearly all (x, y) positions in the scene.
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𝑑%
𝑑&

𝒃 = 𝐴𝒗

Rolling shutter raw data𝑆

Exposure at 𝑡"

𝑣

𝑆

Exposure at 𝑡#

𝑣-

sensordiffuser

Figure 3.4: Image formation for a time-varying scene with two point sources (one yellow, one blue) flashing
at unique y locations and times t0 and t1. (Left) Data measurement at times t0 and t1, with the time
varying optical intensity, ṽ(x, y, ti) rendered on the sensor, and dual shutter function St(ti|y) outlined in
white. (Middle) The instantaneous exposure St(ti|y) · ṽ(x, y, ti), is shown for each point source. (Right) The
captured rolling shutter image is their sum. Due to the spatially-multiplexed optics, nearly all scene points
project information into St(y, t). This provides enough information to recover a video from a single image
by solving an inverse problem.

Combining lensless and rolling shutter models

To solve for the video, we need a discrete forward model. We treat the measurement as a
vector of samples taken from the continuous exposure L(x, y): b[i, j] = L(j∆, i∆), where i
and j index the sensor rows and columns, respectively. This leads to a discretized (magnified)
scene, denoted v, on a 3D spatio-temporal grid with lateral spacing ∆. The temporal spacing
is Tl, as discussed in section 3.4. This leads to the linear discrete forward model:

b =
K−1
∑

k=0

St[i, k] ·

(

h[i, j]
[i,j]
∗ v[i, j, k]

)

(3.3)

= Av (3.4)
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Figure 3.5: Left: 16-bit RGB image of the diffuser’s caustic point spread function (PSF) for a white LED
point source a distance 830 mm from the diffuser. A contrast stretched crop (γ = 0.5) is shown inset to
show the structure of the caustics. Right: A slice from the normalized autocorrelation of the green channel
showing a sharp main peak and relatively low side lobes, making this pattern suitable for compressed sensing.

where
[i,j]
∗ represents discrete linear 2D convolution over the spatial dimensions, St[i, k] =

St(kTl|i∆) is the discrete shutter function, and K is the number of recovered frames. Note
that for global shutter, this would be a cropped convolution identical to [11, 72], but here
we absorb the crop into the definition of Stk[i]. This linear forward model, denoted A in
matrix form, is depicted in Fig. 3.4.

Video Recovery

To recover a video from a single rolling shutter measurement, we must solve an underde-
termined linear inverse problem. For a dual-shutter camera such as ours, each symmetric
pair of rows in the measurement corresponds to a frame in the reconstruction, so we recover
approximately K = M/2 frames from a single M ×N capture. The diffuser produces pseu-
dorandom noise-like measurements, so our system fits within the framework of compressed
sensing (as demonstrated in [11]). Hence we can solve the underdetermined problem for
sparsely-represented scenes using ℓ1 minimization. If, as in Chapter 2, we attempt to re-
cover each frame independently using a simple pixel erasure model, we get complete failure
in reconstruction. Figure 3.6 shows the failure of reconstructing an image from two bands,
comprising 5% of the total sensor pixels. This performs far worse than using morehtna 3×
fewer pixels with random erasure. To resolve this, we solve jointly for the entire video, which
enables us to impose additional temporal priors. Specifically, we use a weighted 3D total
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variation (3DTV) prior on the scene, so the reconstructed video, v∗, can be written as the
solution to:

v∗ = arg min
v≥0

1

2
‖Av− b‖2

2 + τ
∥

∥

∥∇xytv
∥

∥

∥

1
, (3.5)

where ∇xyt =
[

∇x ∇y α∇t

]

⊺

is the matrix of forward finite differences in the x, y, and
t directions. We include an additional tuning parameter, α, that weights the temporal
gradient sparsity penalty relative to the spatial dimensions (typically set between 5 and 30).
We use FISTA [15] with the weighted anisotropic 3DTV proximal operator, implemented
using parallel proximal methods according to [66]. For computational efficiency, we never
instantiate the matrix A explicitly, but instead compute the matrix-vector products A(·) and
AH(·) using a combination of zero-padding, FFT-based convolutions, and cropping. Each
color channel of the video is processed separately, using the corresponding color from the
calibrated PSF. This inherently compensates for much of the chromatic aberration in the
system.
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Figure 3.6: Comparing erasure patterns. With structured erasure such as is present in a rolling shutter
camera, a simple frame-by-frame pixel erasure model fails compared to randomly erasing pixels.
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3.3 Experiments

System Design

We built our prototype around a PCO Edge 5.5 sCMOS sensor, set to slow-scan rolling
shutter mode. The dual shutter reads simultaneously from the top and bottom of the sensor.

Our homemade diffuser consists of randomly spaced lenslets. Because the lenslets con-
centrate light into sharp points, random lenslets have been shown to perform well in low-light
situations [71], as is typical with high-speed imaging. Additionally, the uniformly random
lateral placement of the lenslets ensures that each scene point produces a unique pattern on
the sensor, and contributes a similar amount of light to each exposure band. This is not true
near the edge of the sensor, as discussed in Section 3.4.

We fabricate our random lenslet diffusers using the molding process outlined in Sec-
tion 3.4. Each lenslet comprising the diffuser has a focal length of 12.7 mm, yielding an
approximately 30◦ by 40◦ (width-by-height) half field-of-view (FoV), which is reasonable for
photographic scenes [72]. The system is calibrated using a single image of a white point
source placed in the scene. Figure 3.5 shows a 16-bit color image of the PSF along with its
2D autocorrelation.

Experimental results

To test our system, we captured a variety of dynamic scenes. The raw data is downsampled
by either 4× or 8× to match the expected temporal bandwidth (see Section 3.4). Videos are
reconstructed at 640×540×140 voxel grid for 4× downsampling, or 320×270×140 for 8×.
In both cases the video spans 30.8 milliseconds. Two example reconstructions are shown in
Fig. 3.7. The first is a tennis ball dropping into a hand. The second is a green foam dart
ricocheting off of an apple placed on a text book. In both cases, motion is clearly visible with
good temporal detail present (see Supplementary Videos [9]). Due to system geometry, the
outer sensor rows are relatively insensitive to the center of the object, degrading the quality
of the first 30-40 frames. This is not a fundamental limit of our approach, but is rather a
consequence of our implementation (see Sec. 3.4 for more discussion).

3.4 Analysis and Discussion

In this section, we analyze the temporal behavior of the system, showing that the temporal
frequencies are band-limited by the exposure time. This motivates the design choices of our
prototype, including the diffuser, exposure time, and use of binning (downsampling).

Temporal resolution

Next, we analyze the temporal frequency content of the measurements to validate temporal
resolution. Intuitively, short exposure times are required to achieve high temporal resolution.
We will show that, because our system is only compressive in space, its temporal resolution is
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Figure 3.7: Experimental videos reconstructed from single-shot images (with 660 µs exposure). The top
example shows a tennis ball falling into a hand, reconstructed with with 8x downsampling, and cropped to
the center 135 × 160 pixels (see Supplementary Video 1 [9]). The bottom example shows a green foam dart
ricocheting off an apple with 4× downsampling, cropped to 270 × 320 (see Supplementary Video 2 [9]). In
both, the raw captured data is shown on the left, with a few frames from the reconstructed video shown at
right. The final result contains 140 frames.

Nyquist limited, with an inherent band-limit set by the exposure time Te, and the sampling
rate determined by the line time, Tl. To show this, we begin by writing an expression for
St(t|y). As depicted in Fig. 3.3, St(t|y) is a 1D temporal rectangular window of width Te

seconds, offset by Tl seconds per row:

St(t|y) = rect





t− Te

2
− ⌊y/∆⌋Tl

Te



 , (3.6)

where ⌊y/∆⌋ represents the row index. Substituting this into the continuous model for rolling
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shutter acquisition, Eq. 3.1:

L(x, y) =

∞
ˆ

−∞

rect

[

t− tc(y)

Te

]

ṽ(x, y, t)dt, (3.7)

where we define tc(y) := Te

2
+ ⌊y/∆⌋Tl for compactness. Upon inspection, we see that this

is a 1D convolution in the time dimension between the time-varying intensity at the sensor,
ṽ(x, y, t), and a rectangular window of width Te. The result of the convolution is evaluated
along the slice of 3D space-time defined by (x, y, t) = (x, y, tc(y)):

L(x, y) =



ṽ
t
∗ rect
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t
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)





∣

∣

∣

∣

∣

(x,y,tc(y))
. (3.8)

This captures both the temporal band-limiting inherent in the exposure process as well as
the mapping from time to row. Next we substitute Eq. 3.2, the expression for the spatially-
multiplexed video, into Eq. 3.8:
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(x,y,tc(y))
, (3.9)

where vg = v(x/m, y/m, t) and the convolutions have been reordered, associating the tem-
poral low-pass filter with the input signal. This shows that, while we are multiplexing in
space, the temporal information in the system is band-limited by the pixel exposure time.

Finally, we introduce sampling. As shown in Section 3.2, the measured image is generated
by sampling L(x, y) on a grid of spacing ∆. Applying this sampling to the arguments of
Eq. 3.9, we get tc(y = i∆) = Tl⌊i∆/∆⌋ + Te/2 = Tli + Te/2. In other words, due to the
implicit mapping of time to space, the rolling shutter effectively samples at a rate of 1/Tl

Hz. Hence we expect to avoid temporal aliasing when Te > 2Tl, even if the scene contains
faster dynamics. This is also why, as discussed in Section 3.2, we discretize the video on a
temporal grid of spacing Tl.

For our sensor, the minimum exposure time is 500 µs, with a maximum line time of
27.5µs. This would result in significant temporal oversampling, which is computationally
wasteful. Thus, in practice, we use a combination of lateral downsampling of the raw data and
temporal binning of the reconstruction to maintain inter-frame times of 220µs (4,545 fps),
which better matches the minimum exposure time. Hence we expect to observe dynamics
up to 2 kHz at best. Note that our reconstruction is highly nonlinear, relying heavily on
nonnegativity and 3DTV denoising. As a result, this analysis represents only an upper bound
to the frequencies we can hope to recover. In practice, measurement noise, calibration error,
and regularization reduce performance (see Fig. 3.8).



CHAPTER 3. COMPRESSIVE HIGH SPEED VIDEO IN LENSLESS CAMERAS 31

Rolling shutter raw data

29 mm

1.8 ms

T = 2640 μs
(378.78 Hz)
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(505.05 Hz)
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(757.57 Hz)

T = 660 μs
(1515.15 Hz)
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Figure 3.8: Resolution analysis using a sample consisting of a linear array of 4 LEDs, pulsed synchronously.
We vary the pulse frequency of all four simultaneously. (Left) The raw data (660 µs exposure time) contains
4 copies of the caustic PSF pattern, each shifted in the horizontal direction according to each LED’s spatial
position, and the temporal patterns modulate the caustics in the y-direction. (Middle) x− t projections of
the reconstructed video. As expected, the performance degrades for the LEDs with shorter pulse periods, up
to the theoretical limit of 660 µs predicted by Eq. 3.8. (Right) Temporal power spectra of the projections,
clearly showing peaks in the time-direction moving as the LED frequency varies.

Resolution validation

As experimental validation of spatial and temporal resolution, we use a linear array of 4
LEDs flashing in unison with variable frequency square waves. We space the LEDs at the
minimum separation resolvable by our system, which we establish empirically by varying
the spacing until the LEDs are barely resolved in the reconstructions (6 mm separation at
a distance 830 mm from the diffuser, or 0.4◦ angular resolution). We use an exposure time
of Te = 660µs, so Nl = 3 rows are exposing in each band. This should result in maximum
frequency of 1, 515 Hz.

This dynamic scene can be expressed as v(x, y, t) = u(x, y) ·f(t), where u(x, y) represents
the 2D distribution of LEDs, and f(t) is the modulating waveform. For such an object, the
intensity inside the camera body will be ṽ(x, y, t) = f(t) ·

(

h(x, y) ∗ u(x/m, y/m)
)

. Plugging
this into Eq. 3.8, we see that the continuous exposure at the sensor will be

L(x, y) =
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∣

∣
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t=tc(y)

, (3.10)

where ug = u(x/m, y/m). Therefore we expect the measurement to look like the 2D scene
convolved with the PSF and modulated in the y-direction by the low-pass filtered waveform.
Figure 3.8 shows raw data from our experimental system. Because the 2D scene is 4 point
sources in a line, this appears as 4 laterally shifted copies of the PSF, periodically modulated
in the y-direction, as expected.

While our analysis provides a bound, experimental errors and nonlinear reconstruction
can further deteriorate performance. To test how close we get to the limit, we recorded
measurements with LED pulse rates varied from 2, 640µs (378.78 Hz) to 660µs (1,515.15
Hz), the highest frequency predicted by the theory. The results are shown in Fig. 3.8. On
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the left is a raw measurement with temporal period T = 1, 980 µs (505 Hz). A strong
envelope is clearly visible, modulating the measurement with a period of T/Tl = 9 pixels
in the y-direction. In the reconstructions, we can clearly resolve all 4 LEDs spatially in all
cases. At lower frequencies, the pulses are well resolved in time, with the harmonic structure
of the square waves visible in the power spectra. As the period decreases, the temporal
contrast reduces, with 660 µs period being totally unresolved.

For comparison, to record the same dynamic scene with LEDs pulsing at T = 1980µs
using global shutter would require 30 frames at greater than 1, 010 fps. Within our system’s
sample budget of 270 × 320 = 86, 400 samples, each frame from the corresponding global
shutter system would only contain 49 × 58 pixels. This is a 6× degradation in lateral
resolution compared to what our compressive scheme achieves experimentally. Hence, at
least for sparse scenes, the compressive approach surpasses a direct sampling scheme.

Diffuser fabrication

Based on simulations, we found that a diffuser consisting of randomly-spaced lenslets per-
formed better than off-the-shelf diffusers [71]. To fabricate, we repeatedly indent a copper
block with a ball bearing of radius 7 mm. The indentations are made at random spacing
(by hand) over an area larger than the 14.04 × 16.64 mm size of the PCO Edge 5.5 sensor.
The result is a mold that is piecewise spherical with curvature matching the ball bearing.
We use this block as a mold for UV-cured epoxy (Norland 61), with microscope slide on the
top surface to ensure flatness. We then cure the epoxy and separate it from the mold. The
epoxy has refractive index 1.56, yielding a diffuser with random lenslets of approximate focal
length f = 12.5mm. We mask the diffuser with a 13 ×15.5 mm rectangular aperture, then
mount the diffuser approximately 12.4 mm from the sensor. This results in magnification of
−.015× for objects placed 830 mm away.

Artifacts due to time-varying FoV

Given the structured sampling pattern of a rolling shutter sensor, we can reason about the
system FoV geometrically. The set of scene points visible to each sensor pixel is determined
by projecting rays from the pixel through the aperture. From this simple picture, we see
that each pixel has a unique FoV. Because the rolling shutter pattern reads a band of rows
simultaneously, this effectively means the FoV is varying with time: early in the exposure,
the outer sensor rows are active, and cannot see the center of the FoV, while the inner rows
(later frames) can. Because the sensor is blind to the on-axis points early in the exposure,
these frames are determined via the regularizer. This explains the wiping artifact present in
our videos in the early frames. If we were to use a single-shutter sensor, the effect would be
more pronounced, as the FoV would sweep across the scene. This issue could be alleviated
by distributing the active pixels more evenly across the sensor plane or by removing the
aperture. In the current system, we simply discard the early frames of the video. In future
builds, we could remove or enlarge the aperture, though this will preclude single-image
calibration, and will lead to our shift-invariant lensless model breaking down at high angles.
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Such artifacts are correctable [71], but lead to much slower processing times, and so we leave
this for future work.

Limitations and future work

For our prototype, there are two main limiting factors: the quality of the optics, and the
CMOS sensor dynamics. Because the sensor’s minimum exposure time limits the maximum
usable frame rate, sensors with shorter exposure will perform better. Additionally, to match
the line time to the exposure time, we would like to freely adjust the sensor’s line timing;
however, our sensor does not allow this. This leads us to use spatial downsampling as a
workaround to effectively increase the line time to better match the band-limit.

The second limiting factor is the quality of the diffuser. While our homemade diffusers
are sufficient for proof-of-concept work, the resulting optics is fairly low quality, and the
process is not well controlled. We can achieve the target focal length, but the focal spots
(see Fig. 3.5) are extremely aberrated. This works well with the downsampling approach,
as the caustics are not sharp enough to warrant using the full resolution sensor. However,
to push our approach to the limit, we would need optics that can produce multiplexed PSFs
with very sharp features. Coupled with a sensor capable of short exposures (on the order
of the line time), our proposed architecture could achieve extremely high spatio-temporal
resolution. For example, our current sensor can operate with line times as fast as 9.17 µs,
or over 100,000 fps.

Another limiting factor is the reduced measurement signal-to-noise caused by the multi-
plexing. Pushing this system to 100,000 fps would require exposure times shorter than 10
µs. Because the light from each point is distributed across the sensor with only a few pixels
being recorded in each frame, this would require extremely bright scenes. Additionally, the
combination of multiplexing and regularized reconstruction generally reduces the dynamic
range of the recovered image, further limiting the method to high contrast scenes.

As with most compressed sensing systems, it is difficult to validate the performance in
general, since it is object dependent. We know from prior work [11] that the performance
degrades with scene complexity, and we observe this effect. While it does work for dense
scenes, we require higher regularization, effectively limiting the usefulness for scenes that do
not fit a gradient sparsity prior well. Introducing more sophisticated priors could mitigate
this issue.

Our reconstructions are computationally expensive relative to a direct sampling approach.
Achieving extremely short exposures and the fastest line time possible would require not
downsampling the measurement, leading to a computationally expensive 3D inverse problem
at gigavoxel scale.

While we chose a dual-shutter camera for the experimental validation in this work, explor-
ing the use of different programmable exposures could be extremely fruitful. Demonstrating
the system with the more commonplace single shutter CMOS architecture would make it
widely accessible, as the only other required equipment is a diffuser. Our current sensor also
has a delay far longer than the line time between each sequential frame, preventing us from
stringing together sequential frames into longer videos without a gap (see Supplementary
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Video 4 [9]). A sensor that streamed continuously could alleviate this. It could also be
useful to couple multiplexing optics with randomized sensor read patterns [138], as this will
certainly lead to better video recovery.

Conclusion

In conclusion, we have demonstrated that a spatially-multiplexing lensless camera can turn
rolling shutter from a detriment into an advantage. We built a proof-of-concept system
that resolves 1, 500 Hz dynamics at a frame rate of 4, 545 frames per second. We derived
a theoretical temporal resolution bound based on our forward model, and confirmed our
theoretical predictions with experiment. Our system relies on compressed sensing to solve
an extremely underdetermined problem. We successfully observed samples with space-time
bandwidth product far exceeding what could be observed with a direct sampling approach.
Finally, we demonstrated our approach on a variety of fast-moving scenes, reliably recovering
high speed videos from single rolling shutter images.
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Chapter 4

Lensless 3D imaging

This is work done jointly with Grace Kuo, Reinhard Heckel, Emrah Bostan, Ben Mildenhall,
Ren Ng, and Laura Waller and is based on [11]

4.1 Introduction

Because optical sensors are 2D, imaging 3D objects requires projection to 2D in such a way
that the 3D information can be recovered. Scanning and multi-shot methods can achieve
high spatial resolution 3D imaging, but sacrifice capture speed [33, 57]. In contrast, single-
shot 3D methods are fast but may have low resolution or small field-of-view (FoV) [24, 105].
Often, bulky hardware and complicated setups are required. Here, we introduce a compact
and inexpensive single-shot lensless optical system that is capable of 3D imaging. We show
how it can reconstruct a large number of voxels by leveraging compressed sensing.

Our lensless imager, DiffuserCam, encodes the 3D intensity of volumetric objects in a

Experimental setup

diffuser 

sensor

Calibration

Algorithm 3D Reconstruction

v̂ = argmin
v≥0

1
2‖b−Hv‖22

+τ‖Ψv‖1

Figure 4.1: DiffuserCam setup and reconstruction pipeline. Our lensless system consists of a diffuser placed
in front of a sensor (bumps on the diffuser are exaggerated for illustration). The system encodes a 3D scene
into a 2D image on the sensor. A one-time calibration consists of scanning a point source axially while
capturing images. Images are reconstructed computationally by solving a nonlinear inverse problem with a
sparsity prior. The result is a 3D image reconstructed from a single 2D measurement.
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single 2D image. The diffuser, a thin phase mask, is placed a few millimeters in front of an
image sensor. Each point source in 3D space creates a unique pseudorandom caustic pattern
that covers a large portion of the sensor. Because of this, compressed sensing algorithms
can be used to reconstruct more voxels than pixels captured, provided that the 3D sample is
sparse in some domain. We solve the inverse problem via a sparsity-constrained optimization
procedure, using a physical model and simple calibration scheme to make the computation
scalable. This allows us to reconstruct several orders of magnitude more voxels than related
previous work [35, 87].

We demonstrate a prototype DiffuserCam system built entirely from commodity hard-
ware. It is efficient to calibrate, does not require precise alignment, and is light efficient (as
compared to amplitude masks). We reconstruct 3D objects on a grid of 100 million voxels
(non-uniformly spaced) from a single 1.3 megapixel image. Our reconstructions show true
depth sectioning, allowing us to generate 3D renderings of the sample.

Our system, like many computational cameras, uses a nonlinear reconstruction algorithm,
resulting in object-dependent performance. To quantify, we experimentally measure the
resolution of our prototype with different objects. We show that the standard two-point
resolution criterion is misleading and should be considered a best-case scenario. To better
explain the variable resolving power of our system, we propose a new local condition number
analysis that is consistent with our experiments.

DiffuserCam uses concepts from lensless camera technology and imaging through com-
plex media, integrated together via computational imaging design principles. Our proposed
architecture and algorithm could enable high resolution, light efficient lensless 3D imaging
of large and dynamic 3D samples in an extremely compact package. Such cameras will open
up new applications in remote diagnostics, mobile photography and in vivo microscopy.

System Overview

DiffuserCam is part of the class of mask-based passive lensless imagers in which a phase
or amplitude mask is placed a small distance in front of a sensor, with no main lens. Our
mask (the diffuser) is a thin transparent phase object with smoothly varying thickness (see
Fig. 4.1). When a temporally incoherent point source is placed in the scene, we observe a
high-frequency pseudorandom caustic pattern at the sensor. The caustic patterns, termed
Point Spread Functions (PSFs), vary with the 3D position of the source, thereby encoding
3D information.

To illustrate how the caustics capture 3D information, Fig. 4.2 shows simulations of the
PSFs for a point source at different locations in object space. A lateral shift of the point
source causes a lateral translation of the PSF [39, 39]. An axial shift of the point source causes
(approximately) a scaling of the PSF. Hence, each 3D position in the volume generates a
unique caustic pattern. The structure and spatial frequencies present in the PSFs determine
our reconstruction resolution. By using a phase mask (which concentrates light better than
an amplitude mask) and designing the system to retain high spatial frequencies over a large
range of depths, DiffuserCam attains good lateral resolution across the volumetric field-of-
view.
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By assuming that all points in the scene are incoherent with each other, the measurement
can be modeled as a linear combination of PSFs from different 3D positions. We represent
this as matrix-vector multiplication:

b = Hv, (4.1)

where b is a vector containing the 2D sensor measurement and v is a vector representing the
intensity of the object at every point in the 3D FoV, sampled on a user-chosen grid. H is the
forward model matrix whose columns consist of each of the caustic patterns created by the
corresponding 3D points on the object grid. The number of entries in b and the number of
rows of H are equal to the number of pixels on the image sensor, but the number of columns
in H is set by the choice of reconstruction grid (discussed in Sec. 4.3). Note that this model
does not account for partial occlusion of sources.

In order to reconstruct the 3D object, v, from the measured 2D image, b, we must
solve (4.1) for v. However, if we solve on a 3D reconstruction grid that corresponds to
the full optical resolution of our system (measured in Sec. 4.34.3), v will contain more
voxels than there are sensor pixels. In this case, H has more columns than rows, so the
problem is underdetermined and we cannot uniquely recover v simply by inverting (4.1).
To remedy this, we rely on sparsity-based principles [26]. We exploit the fact that many
3D objects are sparse in some domain, meaning that the majority of coefficients are zero
after a linear transformation. We enforce this sparsity as a prior and solve the ℓ1 regularized
nonnegativity-constrained inverse problem:

v̂ = argmin
v≥0

1
2
‖b−Hv‖2

2 + τ‖Ψv‖1. (4.2)

Here, Ψ maps v into a domain in which it is sparse (Ψv is mostly zeros), and τ is a tuning
parameter that adjusts the degree of sparsity. For objects that are sparse in voxels, such as
fluorescent particles in a volume, Ψ is the identity matrix. In our results we show reconstruc-
tion of objects that are not sparse in voxels but are sparse in the gradient domain. Hence, we
choose Ψ to be the finite difference operator and ‖Ψv‖1 to be the 3D Total Variation (TV)
semi-norm [109]. In general, any linear sparsity transformation may be used (e.g. wavelets),
but we utilize only identity and gradient representations in this work.

Equation (4.2) is the basis pursuit problem in compressed sensing [26]. For this optimiza-
tion procedure to succeed, H must have distributed, uncorrelated columns. Since our diffuser
creates high spatial frequency caustics that spread across many pixels in a pseudorandom
fashion, any shift or magnification of the caustics leads to a new pattern that is uncorrelated
with the original one (quantified in Supplementary Fig. S4). As discussed in Sec. 4.24.2 and
4.24.2, these properties allow us to reconstruct 3D images via compressed sensing.
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b Depth dependence of the PSF

a Lateral dependence of the PSF

Figure 4.2: The caustic pattern shifts with lateral shifts of a point source in the scene and scales with axial
shifts. (a) Ray-traced renderings of caustics as a point source moves laterally. For large shifts, part of the
pattern is clipped by the sensor. (b) The caustics magnify as the source is brought closer.

4.2 Methods

System Architecture

The hardware setup for our prototype DiffuserCam (Fig. 4.3a) consists of an off-the-shelf
diffuser (Luminit 0.5◦) placed at a fixed distance in front a sensor (PCO.edge 5.5 Color
camera, 6.5µm pixels). The diffuser has a flat input surface and an output surface that is
described statistically as Gaussian lowpass-filtered white noise with an average spatial feature
size of 140µm and average slope magnitude of 0.7◦ (see Supplementary Fig. S1). The convex
bumps on the diffuser surface can be thought of as randomly-spaced microlenses that have
statistically-varying focal lengths and f-numbers. The average focal length determines the
distance at which the caustics have highest contrast (the caustic plane), which is where
we place the sensor [8]. This distance, measured experimentally, is 8 mm for our diffuser.
However, the high average f-number of the bumps (8mm/140µm=57) means that the caustics
maintain high contrast over a large range of propagation distances. Therefore, the diffuser
need not be placed precisely at the caustic plane (in our prototype, d=8.9mm). We also
affix a 5.5×7.5mm aperture on the textured side of the diffuser to limit the support of the
caustics.

Similar to a traditional camera, the sensor’s pixel pitch should Nyquist sample the mini-
mum features of the PSF. Since the f-number of the smallest bumps on the diffuser determine
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Figure 4.3: Experimentally determined field-of-view (FoV) and resolution. (a) System architecture with
design parameters. (b) Angular pixel response of our sensor. We define the angular cutoff (αc) as the angle
at which the response falls to 20%. (c) Reconstructed images of two points (captured separately) at varying
separations laterally and axially, near the z = 20 mm depth plane. Points are considered resolved if they are
separated by a dip of at least 20%. (d) To-scale non-uniform voxel grid for 3D reconstruction. The chosen
voxel grid is based on the system geometry and Nyquist-sampled two-point resolution over the entire FoV.
For visualization purposes, each box represents 20×20 voxels, as shown in red.

the minimum feature size of the caustics, it will also set the lateral optical resolution. In
our case, the smallest features generated by the caustic patterns are roughly twice the pixel
pitch of our sensor, so we perform 2×2 binning on the data, yielding 1.3 megapixel images,
before applying our reconstruction algorithm.

Convolutional Forward Model

Recovering a 3D image requires H, the measurement matrix, which is extremely large. Mea-
suring or storing the full H is infeasible, requiring millions of calibration images and multi-
Terabyte-scale matrices. Instead, we rely on a depth-dependent convolution model outlined
below to drastically reduce calibration and computational complexity.

The scene of interest is denoted v, and is a set of point sources located at (x, y, z) on a
non-Cartesian 3D grid. The relative radiant energy collected by the aperture from a source
at [x, y, z] is v[x, y, z], and the PSF from that voxel at pixel [x′, y′] is denoted h[x′, y′;x, y, z].
We model the measurement, b(x′, y′) , as the sum of sensor contributions from every voxel
within the 3D FoV:

b(x′, y′) =
∑

(x,y,z)

v(x, y, z)h(x′, y′;x, y, z). (4.3)
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This is equivalent to the matrix-vector multiplication Hv where each column of H is
the PSF from the corresponding voxel. As before, a shift-invariance assumption greatly
simplifies the evaluation of (4.3), which is illustrated in Fig. 4.2(a), and validated experi-
mentally in Sec. 4.34.3. Defining the on-axis caustic pattern at depth z as h(x′, y′; z) :=
h(x′, y′; 0, 0, z) and assuming magnification of m = −1, the off-axis caustic pattern is given
by h(x′, y′;x, y, z) = h(x′ − x, y′ − my; z). Plugging into (4.3), the sensor measurement is
then given by:

b(x′, y′) =
∑

z

∑

(x,y)

v(x, y, z)h(x′ +mx, y′ +my; z)

= C
∑

z



v

(

−x′

m
,
−y′

m
, z

)

∗ h
(

x′, y′; z
)



 .

(4.4)

This is the same cropped convolutional model used in Chapters 2 and 3, except now the
contribution from every depth within the object contributes to the measurement. For an
object discretized intoNz depth slices, the number of columns of H isNz times larger than the
number of elements in b (i.e. the number of sensor pixels), so our system is underdetermined.

The cropped convolution model provides three benefits. First, it allows us to compute
Hv as a linear operator in terms of Nz images, rather than instantiating H explicitly (which
would require petabytes of memory to store). In practice, we evaluate the sum of 2D cropped
convolutions using a single circular 3D convolution, implemented with 3D FFTs, which scale
well to large arrays (see Supplementary Material, Sec. 2C). Second, it provides a theoretical
justification of our system’s capability for compressed sensing; derivations in [70] show that
translated copies of a random pattern provide close-to-optimal performance.

The third benefit of our convolution model is that it enables simple calibration. Rather
than measuring the system response for every voxel (hundreds of millions of images), we
only need to capture a single calibration image of the caustic pattern from an on-axis point
source. Though the scaling effect described in Sec. 4.14.1 suggests that we could use only one
image for calibrating the entire 3D space (by scaling it to predict PSFs at different depths),
we obtain better results when we calibrate the PSF at each depth. A typical calibration thus
consists of capturing images as a point source is moved axially. This takes minutes, but need
only be performed once. The added aperture at the diffuser ensures that a point source at
the minimum z distance generates caustics that just fill the sensor, so that the entire PSF
is captured in each image (see Supplementary Fig. S2).

Inverse Algorithm

Our inverse problem is extremely large in scale, with millions of inputs and outputs. Even
with the convolution model described above, using projected gradient techniques is extremely
slow due to the time required to compute the proximal operator of 3D TV [16]. To alleviate
this, we use the Alternating Direction Method of Multipliers (ADMM) [22] and derive a
variable splitting that leverages the specific structure of our problem.

Our algorithm uses the fact that Ψ can be written as a circular convolution for both the
3D TV and native sparsity cases. Additionally, we factor the forward model in (4.4) into
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a diagonal component, D, and a 3D convolution matrix, M, such that H = DM (details
in Supplementary Material). Thus, both the forward operator and the regularizer can be
computed in 3D Fouier space. This enables us to use variable-splitting [5, 95, 4] to formulate
the constrained counterpart of (4.2):

v̂ = argmin
w≥0,u,v

1
2
‖b−Dv‖2

2 + τ‖u‖1

s.t. v = Mv, u = Ψv, w = v,
(4.5)

where v, u, and w are auxiliary variables. We solve (4.5) by following the augmented La-
grangian arguments [100]. Using ADMM, this results in the following scheme at iteration
k:

uk+1 ← T τ
µ2

(

Ψvk + ηk
/

µ2

)

vk+1 ← (D⊺D + µ1I)−1
(

ξk + µ1Mvk + D⊺b
)

wk+1 ← max
(

ρk
/

µ3 + vk, 0
)

vk+1 ← (µ1M
⊺M + µ2Ψ

⊺Ψ + µ3I)−1 rk

ξk+1 ← ξk + µ1(Mvk+1 − vk+1)

ηk+1 ← ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ← ρk + µ3(v
k+1 − wk+1),

where
rk = (µ3w

k+1 − ρk) + Ψ⊺

(

µ2u
k+1 − ηk

)

+ M⊺

(

µ1v
k+1 − ξk

)

.

Note that Tν is a vectorial soft-thresholding operator with a threshold value of ν [137]. ξ,
η and ρ are the Lagrange multipliers associated with v, u, and w, respectively. The scalars
µ1, µ2 and µ3 are penalty parameters which we compute automatically using the tuning
strategy in [22]. A MATLAB implementation of our algorithm is available at [10].

Although our algorithm involves two large-scale matrix inversions, both can be computed
efficiently and in closed form. Since D is diagonal, (D⊺D + µ1I) is itself diagonal, requiring
complexity O(n) to invert using point-wise multiplication. Additionally, all three matrices
in (µ1M

⊺M + µ2Ψ
⊺Ψ + µ3I) are diagonalized by the 3D discrete Fourier transform (DFT)

matrix, so inversion of the entire term can be done using point-wise division in 3D frequency
space. Therefore, its inversion has good computational complexity, O(n3 log n), since it is
dominated by two 3D FFTs being applied to n3 total voxels. We parallelize our algorithm
on the CPU using C++ and Halide [107], a high performance programming language for
image processing (see Supplementary Fig. S6 for runtime performance).

A typical reconstruction requires at least 200 iterations. Solving for 2048×2048×128=537
million voxels takes 26 minutes (8 seconds per iteration) on a 144-core workstation and
requires 85 Gigabytes of RAM. A smaller reconstruction (512×512×128=33.5 million voxels)
takes 3 minutes (1 second per iteration) on a 4-core laptop with 16 Gigabytes of RAM.
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Figure 4.4: Our computational camera has object-dependent performance, such that the resolution depends
on the number of points. (a) To illustrate, we show here a situation with two points successfully resolved at
the two-point resolution limit (∆x, ∆z) = (45µm, 336µm) at a depth of approximately 20 mm. (c) However,
when the object consists of more points (16 points in a 4×4 grid in the x − z plane) at the same spacing,
the reconstruction fails. (b,d) Increasing the separation to (∆x, ∆z) = (75µm, 448µm) gives successful
reconstructions. (e,f) A close-up of the raw data shows noticeable splitting of the caustic lines for the 16
point case, making the points distinguishable. Heuristically, the 16 point resolution cutoff is a good indicator
of resolution for real-world objects.

4.3 System Analysis

Unlike traditional cameras, the performance of computational cameras depends on properties
of the scene being imaged (e.g. the number of sources). As a consequence, standard two-point
resolution metrics may be misleading, as they do not predict resolving power for complex
objects. To address this, we propose a new local condition number metric that better predicts
performance. We analyze resolution, FoV and the validity of the convolution model, then
combine these analyses to determine the appropriate sampling grid for our experiments.

Field-of-View

At every depth in the volume, the angular half-FoV is determined by the most extreme lateral
position that contributes to the measurement. There are two possible limiting factors. The
first is the geometric angular cutoff, α, set by the aperture size, w, the sensor size, l, and
the distance from the diffuser to the sensor, d (see Fig. 4.3a). Since the diffuser bends light,
we also take into account the diffuser’s maximum deflection angle, β. This gives a geometric
angular half-FoV at every depth of l + w = 2d tan(α − β). The second limiting factor is
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the angular response of the sensor pixels. Real-world sensor pixels may not accept light at
the high angles of incidence that our lensless camera accepts, so the sensor angular response
(shown in Fig. 4.3b) may limit the FoV. Defining the angular cutoff of the sensor, αc, as the
angle at which the camera response falls to 20% of its on-axis value, we can write the overall
FoV equation as:

FoV = β + min[αc, tan−1( l+w
2d

)]. (4.6)

Since we image in 3D, we must also consider the axial FoV. In practice, the axial FoV
is limited by the range of calibrated depths. However, the system geometry creates bounds
on possible calibration locations. Point sources arbitrarily close to the sensor would pro-
duce caustic patterns that exceed the sensor size. To avoid this complication, we impose
a minimum object distance at which an on-axis point source creates caustics that fill the
sensor. Point sources arbitrarily far from the sensor theoretically can be captured, but axial
resolution degrades with depth. The hyperfocal plane represents the axial distance beyond
which no depth discrimination is available, establishing an upper bound. Objects beyond
the hyperfocal focal plane can still be reconstructed to create 2D images for photographic
applications [72], without any hardware modifications.

In our prototype, the axial FoV ranges from the minimum calibration distance (7.3 mm)
to the hyperfocal plane (2.3 m). The angular FoV is limited by the pixel angular acceptance
(αc = 41.5◦ in x, αc = 30◦ in y). Combined with our diffuser’s maximum deflection angle
(β = 0.5◦) this yields an angular FoV of ±42◦ in x and ±30.5◦ in y. We validate the lateral
FoV experimentally by capturing a scene at optical infinity and measuring the angular extent
of the result (see Supplementary Fig. S3).

Resolution

Investigating optical resolution is critical for both quantifying system performance and choos-
ing our reconstruction grid. Although the raw data is collected on a fixed sensor grid, we
can choose the non-uniform 3D reconstruction grid arbitrarily. This choice of reconstruction
grid is important. When the grid is chosen with voxels that are too large, resolution is lost,
and when they are too small, extra computation is performed without resolution gain. In
this section we explain how to choose the grid of voxels for our reconstructions, with the aim
of Nyquist sampling the two-point optical resolution limit.

Two-point resolution

A common metric for resolution analysis in traditional cameras is two-point distinguishablity.
We measure our system’s two-point resolution by imaging scenes containing two point sources
at different separation distances, built by summing together images of a single point source
(1µm pinhole, wavelength 532nm) at two different locations. We reconstruct the scene using
our algorithm, with τ = 0 to remove the influence of the regularizer. To ensure best-case
resolution, we use the full 5 MP sensor data (no binning). The point sources are considered
distinguishable if the reconstruction has a dip of at least 20% between the sources, as in
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the Rayleigh criterion. Figure 4.3c shows reconstructions with point sources separated both
laterally and axially.

Our system has highly non-isotropic resolution (Fig. 4.3d), but we can use our model to
predict the two-point distinguishability over the entire volume from localized experiments.
Due to the shift invariance assumption, the lateral resolution is constant within a single
depth plane and the paraxial magnification causes the lateral resolution to vary linearly
with depth. For axial resolution, the main difference between two point sources is the size of
their PSF supports. We find pairs of depths such that the difference in their support widths
is constant:

c = 1
z1

− 1
z2

. (4.7)

Here, z1 and z2 are neighboring depths and c is a constant determined experimentally.
Based on this model, we set the voxel spacing in our grid to Nyquist sample the 3D

two-point resolution. Figure 4.3d shows a to-scale map of the resulting voxel grid. Axial
resolution degrades with distance until it reaches the hyperfocal plane (∼2.3 m from the
camera), beyond which no depth information is recoverable. Due to the non-telecentric
nature of the system, the voxel sizes are a function of depth, with the densest sampling
occurring close to the camera. Objects within 5 cm of the camera can be reconstructed with
somewhat isotropic resolution; this is where we place objects in practice.

Multi-point resolution

In a traditional camera, resolution is a function of the system and is independent of the
scene. In contrast, computational cameras that use nonlinear reconstruction algorithms
may incur degradation of the effective resolution as the scene complexity increases. To
demonstrate this in our system, we consider a more complex scene consisting of 16 point
sources. Figure 4.4 shows experiments using 16 point sources arranged in a 4×4 grid in
the (x, z) plane at two different spacings. The first spacing is set to match the measured
two-point resolution limit (∆x=45µm, ∆z=336µm). Despite being able to separate two
points at this spacing, we cannot resolve all 16 sources. However, if we increase the source
separation to (∆x=75µm, ∆z=448µm), all 16 points are distinguishable (Fig. 4.4d). In this
example, the usable lateral resolution of the system degrades by approximately 1.7× due to
the increased scene complexity. As we show in Section 4.34.3, the resolution loss does not
become arbitrarily worse as the scene complexity increases.

This experiment demonstrates that existing resolution metrics cannot be blindly used
to determine performance of computational cameras like ours. How can we then analyze
resolution if it depends on object properties? In the next section, we introduce a general
theoretical framework for assessing resolution in computational cameras like ours.

Local condition number theory

Our goal is to provide new theory that describes how the effective reconstruction resolution of
computational cameras changes with object complexity. To do so, we introduce a numerical
analysis of how well our forward model can be inverted.
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First, note that recovering the image v from the measurement b = Hv entails simul-
taneous estimation of the locations of all nonzeros within our image reconstruction, v, as
well as the values at each nonzero location. To simplify the problem, suppose an oracle tells
us the exact locations of every source within the 3D scene. This corresponds to knowing a
priori the support of v, so we then need only determine the values of the nonzero elements
in v. This can be done by solving a least squares problem using a sub-matrix consisting of
only the columns of H that correspond to the indices of the nonzero voxels. If this problem
fails, then the more difficult problem of simultaneously determining the nonzero locations
and their values will certainly fail.

In practice, the measurement is corrupted by noise. The maximal effect this noise can
have on the least-squares estimate of the nonzero values is determined by the condition num-
ber of the sub-matrix described above. We therefore say that the reconstruction problem is
ill-posed if any sub-matrices of H are very ill-conditioned. In practice, ill-conditioned matri-
ces result in increased noise sensitivity and longer reconstruction times, as more iterations
are needed to converge to a solution.

In general, finding the worst-case sub-matrix is a hard problem. However, because our
system measurements vary smoothly for inputs within a small neighborhood, the worst-case
scenario is when multiple sources are in a contiguous block (i.e. nearby measurements are
most similar, either by shift or scaling). Therefore, we compute the condition number of
sub-matrices of H corresponding to a group of point sources with separation varying by
integer numbers of voxels. We repeat this calculation for different numbers of sources. The
results are shown in Fig. 4.5. As expected, the conditioning is worse when sources are closer
together. In this case, increased noise sensitivity means that even small amounts of noise
could prevent us from resolving the sources. This trend matches what we saw experimentally
in Figs. 4.3 and 4.4.

Figure 4.5 also shows that the local condition number increases with the number of
sources in the scene, as expected. This means that resolution will degrade as more and more
sources are added. We see in Fig. 4.5, however, that as the number of sources is increased, the
conditioning approaches a limiting case. Hence, the resolution does not become arbitrarily
worse with increased number of sources. Therefore we can estimate the system resolution for
complex objects from distiguishability measurements with a limited number of point sources.
This is experimentally validated in Sec. 4.4, where we find that the experimental 16-point
resolution is a good predictor of the resolution for a USAF target.

Unlike the traditional two-point resolution metric, our new local condition number the-
ory explains the resolution loss we observe experimentally. Since many optical systems are
locally shift invariant, we believe that it is sufficiently general to be applicable to other com-
putational cameras that use nonlinear algorithms, which likely exhibit similar performance
loss.

Validity of the Convolution Model

In Sec. 4.24.2, we modeled the caustic pattern as shift invariant at every depth, leading to
simple calibration and efficient computation. Since our convolution model is an approxima-
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Figure 4.5: Our local condition number theory shows how resolution varies with object complexity. (a)
Virtual point sources are simulated on a fixed grid and moved by integer numbers of voxels to change the
separation distance. (b) Local condition numbers are plotted for sub-matrices corresponding to grids of
neighboring point sources with varying separation (at depth 20 mm from the sensor). As the number of
sources increases, the condition number approaches a limit, indicating that resolution for complex objects
can be approximated by a limited number (but more than two) sources.

tion, we should quantify its validity. Figure 4.6a-c shows registered close-ups of experimen-
tally measured PSFs from plane waves incident at 0◦, 15◦ and 30◦. The convolution model
assumes that these are all exactly the same, though, in reality, they have subtle differences.
To quantify the similarity across the FoV, we plot the inner product between each off-axis
PSF and the on-axis PSF (see Fig. 4.6d). The inner product is greater than 75% across
the entire FoV and particularly good within ±15◦ of the optical axis, indicating that the
convolution model holds relatively well.

To investigate how the spatial variance of the PSF impacts system performance, we use
the peak width of the cross-correlation between the on-axis and off-axis PSFs to approximate
the spot size off-axis. Figure 4.6e (solid) shows that we retain the on-axis resolution up to
±15◦. Beyond that, the resolution gradually degrades. To avoid model mismatch, one could
replace the convolution model with exhaustive calibration over all positions in the FoV.
This procedure would yield higher resolution at the edges of the FoV, as shown by the
dashed line in Fig. 4.6e. The gap between these lines is what we sacrifice in resolution by
using the convolution model. However, in return, we gain simplified calibration and efficient
computation, which makes the large-scale problem feasible.
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Figure 4.6: Experimental validation of the convolution model. (a)-(c) Close-ups of registered experimental
PSFs for sources at 0◦, 15◦ and 30◦. The PSF at 15◦ is visually similar to that on-axis, while the PSF at 30◦

has subtle differences. (d) Inner product between the on-axis PSF and registered off-axis PSFs as a function
of source position. (e) Resulting spot size (normalized by on-axis spot). The convolution model holds well
up to ±15◦, beyond which resolution degrades (solid). Exhaustive calibration would improve the resolution
(dashed), at the expense of complexity in computation and calibration.

4.4 Experimental Results

Images of two objects are presented in Fig. 4.7. Both were illuminated using broadband
white light and reconstructed with a 3D TV regularizer. We choose a reconstruction grid
that approximately Nyquist samples the two-point resolution (by 2×2 binning the sensor
pixels to yield a 1.3 megapixel measurement). Calibration images are taken at 128 different
z-planes, ranging from z=10.86mm to z=36.26mm (from the diffuser), with spacing set
according to conditions outlined in Sec. 4.34.3. The 3D images are reconstructed on a
2048×2048×128 grid, but the angular FoV restricts the usable portion of this grid to the
center 100 million voxels. Note that the resolvable feature size on this reconstruction grid
can still vary based on object complexity.
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Figure 4.7: Experimental 3D reconstructions. (a) Tilted resolution target, which was reconstructed on a
4.2 MP lateral grid with 128 z-planes and cropped to 640×640×50 voxels. The large panel shows the max
projection over z. Note that the spatial scale is not isotropic. Inset is a magnification of group 2 with an
intensity cutline, showing that we resolve element 5 at a distance of 24 mm, which corresponds to a feature
size of 79 µm (approximately twice the lateral voxel size of 35µm at this depth). The degraded resolution
matches our 16-point distinguishability (75 µm at 20 mm depth). Lower panels show depth slices from
the recovered volume. (b) Reconstruction of a small plant, cropped to 480×320×128 voxels, rendered from
multiple angles.

The first object is a negative USAF 1951 fluorescence test target, tilted 45◦ about the y-
axis (Fig. 4.7a). Slices of the reconstructed volume at different z planes are shown in order to
highlight the system’s depth sectioning capabilities. As described in Sec. 4.34.3, the spatial
scale changes with depth. Analyzing the resolution in the vertical direction (Fig. 4.7a inset),
we can easily resolve group 2 element 4 and barely resolve group 2 element 5 at z=24mm.
This corresponds to resolving features 79µm apart on the resolution target. This resolution
is significantly worse than the two-point resolution at this depth (50µm), but similar to
the 16-point resolution (75µm). Hence, we reinforce our claim that two-point resolution is
a misleading metric for computational cameras, but multi-point distinguishability can be
extended to more complex objects.

Finally, we demonstrate the ability of DiffuserCam to image natural objects by recon-
structing a small plant (Fig. 4.7b). Multiple perspectives of the 3D reconstruction are ren-
dered to demonstrate the ability to capture the 3D structure of the leaves.

4.5 Conclusion

We demonstrated a simple optical system, with only a diffuser in front of a sensor, that is
capable of single-shot 3D imaging. The diffuser encodes the 3D location of point sources
in caustic patterns, which allow us to apply compressed sensing to reconstruct more voxels
than we have measurements. By using a convolution model that assumes that the caustic
pattern is shift invariant at every depth, we developed an efficient ADMM algorithm for
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image recovery and simple calibration scheme. We characterized the FoV and two-point
resolution of our system, and showed how resolution varies with object complexity. This
motivated the introduction of a new condition number analysis, which we used to analyze
how inverse problem conditioning changes with object complexity.

4.6 Supplemental comments

4.7 System Properties

Diffuser Properties

To quantify the properties of our diffuser, we used an LED array microscope to capture a
quantitative Differential Phase Contrast (DPC) [130] image of the diffuser phase. After using
the index of refraction of the diffuser material (polycarbonate, n = 1.58) to convert phase
into surface shape, we show in Fig. 4.8 the measured relative height profile of a small patch
on our 0.5◦ diffuser. The surface slope of the diffuser is Gaussian distributed with average
magnitude of 0.7◦. The deflection angle at the diffuser surface has a HWHM angle of 0.25◦,
which matches the manufacturer specifications. The maximum deflection angle is β = 0.5◦,
as shown in the histograms in Fig. 4.8.
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Figure 4.8: Left: The thickness profile of a small patch of our diffuser, as measured by quantitative Differential
Phase Contrast (DPC) microscopy. Below is a cut-line plot along the dashed line. Right: Histograms of
the diffuser slope (top) and the deflection angle of a ray normally incident on the diffuser (bottom). The
maximum deflection angle is about 0.5◦.To illustrate the overall size and spread of the caustic PSF patterns in our system, we
show in Fig. 4.9 the full PSF patterns captured for the closest and farthest axial distances
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Figure 4.9: Un-cropped, false color sensor measurements of PSFs for the closest and farthest planes used in
our reconstructions. These were measured by placing a point source on-axis at the front and back of the
volume. The closest PSF has a caustic pattern that fills the sensor. Both PSFs have been contrast stretched
from 0 to 30% of the max value for visibility.

used. Note that the closest axial distance is the one at which the caustic pattern just fills
the sensor, and therefore depends on the aperture size. The caustics contain high-frequency
information in all orientation directions, as evidenced by the sharp lines randomly spread
in all directions. This facilitates good resolution at all depths and a highly structured PSF
for deconvolution. Our calibration point source is a 30µm pinhole illuminated by a planar
RGB LED array (λ = 630 nm, 515 nm, and 460 nm, ∆λ = 20 nm, 35 nm, and 25 nm,
respectively) placed behind a 80◦ diffuser. As shown in [8], the caustics from narrowband and
broadband sources are indistinguishable, and we do not find problems with using narrowband
calibration.

Field-of-View Validation

In the main text in Sec. 3A, we derive the field-of-view (FoV) of our system to be

FoV = β + min[αc, tan−1( l+w
2d

)], (4.8)

where the FoV can be limited by either the geometry of the system (l, w, d) or by the angular
acceptance of the pixels (αc). Here l is the sensor size, w is the aperture size, and d is the
distance between the diffuser and the sensor. In our system, d = 8.9 mm. In the x-direction,
lx = 16.6 and wx = 7.5 mm; the y-direction values are ly = 14 mm and wy = 5.5 mm.

The angular response of the sensor, shown in Figure 3 of the main text, was measured
by placing a white LED at optical infinity and rotating the sensor both vertically and hor-
izontally. The average intensity measured at each angle was normalized by the on-axis
measurement. We define the angular cutoff, αc, as the angle at which the response falls to
20% of its on-axis value. For our camera, the x and y cutoffs are αcx = 41.5◦ and αcy = 30◦,



CHAPTER 4. LENSLESS 3D IMAGING 51

respectively. Finally, from our diffuser measurements in Fig. 4.8, we find that the maximum
deflection angle of the diffuser, β, is 0.5◦.

Plugging these values into the FoV equation yields a FoV of 42◦ in x and 30.5◦ in y, where
the limiting factor is the angular acceptance. Figure 4.10 shows the recovery of a large, evenly
illuminated scene at optical infinity. The angular extent visible in the reconstruction matches
our predicted FoV.

Figure 4.10: Validation of FoV calculations: based on the measured angular pixel response, αc, and maximum
diffuser deflection angle, β, we calculate our theoretical FoV to be 42◦ in x and 30.5◦ in y. This matches our
recovered FoV in a scene at optical infinity. The inset shows the raw data.

PSF similarity

We quantify the similarity of the PSF versus shift and scale across the volume to validate
our claim that the resulting underdetermined matrix has good properties for sparse recovery
techniques. Figure 4.11 shows the autocorrelation of the PSFs acquired at the minimum
and maximum object distances, as well as the cross-correlation between the two. Notice
that the PSF autocorrelation maintains a sharp central peak and relatively low sidelobes
for all depths within our calibration volume. This means that a shifted version of the PSF
is roughly 50% similar to the un-shifted version. Importantly, the cross-correlation has no
values greater than 50%, meaning that the scaled caustics are dissimilar to any shift of the
unscaled caustics. To quantify this further, we plot the inner product between the central
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Figure 4.11: Correlation of various caustics patterns. (a) The caustics at a given depth are unique over
shifting, and caustics from two different depths are not similar to each other, even under translation. The
solid black curve is a slice of the autocorrelation of a PSF for a point source near the front of the volume,
and the dotted black line is the autocorrelation for a far away point source’s PSF. The solid blue line is
the cross-correlation between the two. (b) The inner product of the PSF from the middle of the volume
(corresponding to the orange dotted line) with all other PSFs at varying depths. In both (a) and (b), shifting
or scaling the caustics leads to an inner product of approximately 0.5 compared to a peak value of 1.

image in the calibration stack, corresponding to the orange dotted line in Fig. 4.11b, with
all other images in the stack. We again observe a relatively sharp peak and side lobes on
the order of 50% in the axial direction. This validates our claim that the caustics produced
by any point in the volume are unique.

4.8 Algorithm Details

Cropping in Forward Model

In Eq. (4) of the main text, we show that our forward model is a sum of convolutions followed
by a crop operation. We would like to emphasize that the crop operation is due directly to
the physical cropping caused by the finite sensor size. Consider an off-axis point source, as
shown in Fig. 4.12a. In the experimental measurement from the source (Fig. 4.12b), half of
the on-axis PSF is cut off by the finite size of the sensor. If we do not take this into account
in our forward model, our estimate of the measurement would look like Fig. 4.12c, which is
not physical due to the circular boundary conditions. Including the crop operation in our
forward model fixes the problem, creating estimates of the measurement that look like the
experimental data (Fig. 4.12d).
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Figure 4.12: The crop operation in the forward model accounts for the finite sensor size. (a) Off-axis
point source, size exaggerated for visibility. (b) Experimental measurement from the source. (c) Simulated
measurement without crop operation. Since the convolution has circular boundary conditions, the PSF
wraps around to the opposite side of the sensor. (d) Simulated measurement with crop operation matches
the experimental measurement.

Derivation of ADMM Inverse Algorithm Formulation

As stated in the main paper in Section 1B, the problem we seek to solve is:

v̂ = argmin
v≥0

1
2
‖b−Hv‖2

2 + τ‖Ψv‖1. (4.9)

We transform this into the equivalent problem:

v̂ = argmin
w,u,v

1
2
‖b−Dv‖2

2 + τ‖u‖1 + ✶+(w)

s.t. v = Mv

u = Ψv

w = v,

(4.10)
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where ✶+(·) is the nonnegativity barrier function, which returns 0 when the argument is
nonnegative, and ∞ when the argument is negative.

In order to compute the ADMM updates efficiently, we will see that it is useful for
both M and Ψ to represent 3D convolutions. Clearly, when Ψ is the identity matrix, this
holds. Additionally, when Ψ is the 3D finite difference operator, it can be expressed as a
concatenation of 3D convolutions with the finite difference kernel, oriented in each of the 3
directions. In order to express M as a 3D convolution, we must choose the diagonal operator,

D, such that Eq. (4) can be written as D

(

m
(x,y,z)
∗ v

)

, where m is a 3D kernel, and
(x,y,z)
∗

represents convolution over the variables, x, y, and z. To accomplish this, we use the fact
that a sum of 2D convolutions between an object, v(x, y, z), and a stack of 2D kernels,
h(x, y; z), can be expressed as the first 2D (x, y)-slice in the 3D convolution between the
object and a z-flipped version of the kernel stack:

∑

z

h(x, y; z)
(x,y)
∗ v(x, y, z) =

[

h(x, y;−z)
(x,y,z)
∗ v(x, y, z)

]
∣

∣

∣

∣

∣

z=0

. (4.11)

For proof, we can take the right hand side of (4.11) and apply the definition of discrete
3D convolution directly:

[

h(x, y;−z)
(x,y,z)
∗ v(x, y, z)

]
∣

∣

∣

∣

∣

z=0

=
Nz−1
∑

z′=0

Ny−1
∑

y′=0

Nx−1
∑

x′=0

v(x′, y′, z′)h(x− x′, y − y′; z′ − z)|z=0

=
Nz−1
∑

z′=0

v(x, y, z′)
(x,y)
∗ h(x, y; z′).

Using this identity, we can write the forward operator in Eq. (4) as:

C
∑

z



v

(

−x′

m
,
−y′

m
, z

)

(x,y)
∗ h

(

x′, y′; z
)





=C



v

(

−x′

m
,
−y′

m
, z

)

(x′,y′,z)
∗ h

(

x′, y′;−z
)

∣

∣

∣

∣

∣

z=0





=D



v

(

−x′

m
,
−y′

m
; z

)

(x′,y′,z)
∗ h

(

x′, y′;−z
)



 ,

where D is a diagonal operator that simultaneously performs the 2D crop, C, as well as
selecting the z = 0 slice. Effectively, D comprises taking the center crop of the first layer
of the 3D array resulting from the circular 3D convolution of h(x′, y′;−z) with v. Note
that our definition of z is as a parameter indexing each slice in the 3D array h, not the
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physical distance to each slice. We assume circular boundary conditions for h, such that
h(·, ·;−z) = h(·, ·;Nz − z) is a z-stack that is flipped in the z-direction.

Using (4.11), we present an efficient method for solving (4.10). We begin by transforming
(4.10) into an unconstrained augmented Lagrangian form, and consider the saddle-point
problem:

max
ξ,η,ρ

[

min
u,v,w,v

1
2
‖b−Dv‖2

2 + µ1

2

∥

∥

∥Mv− v + ξ
µ1

∥

∥

∥

2

2

+ τ‖u‖1 + µ2

2

∥

∥

∥Ψv− u+ η
µ2

∥

∥

∥

2

2

+ ✶+ (w) + µ3

2

∥

∥

∥v− w + ρ
µ3

∥

∥

∥

2

2

]

.

To solve the above equation using ADMM, we first derive the optimality conditions for
each primal variable, assuming the others are fixed:

uk+1 ← argmin
u

τ‖u‖1 + µ2

2

∥

∥

∥

∥

Ψvk − u+ ηk

µ2

∥

∥

∥

∥

2

2

vk+1 ← argmin
v

1
2

∥

∥

∥bk −Dv
∥

∥

∥

2

2
+ µ1

2

∥

∥

∥

∥

Mvk − v + ξk

µ1

∥

∥

∥

∥

2

2

wk+1 ← argmin
w

✶+ (w) + µ3

2

∥

∥

∥

∥

vk − w + ρk

µ3

∥

∥

∥

∥

2

2

vk+1 ← argmin
v

µ1

2

∥

∥

∥

∥

Mv− vk+1 + ξk

µ1

∥

∥

∥

∥

2

2

+ µ2

2

∥

∥

∥

∥

Ψv− uk+1 + ηk

µ2

∥

∥

∥

∥

2

2

+ µ3

2

∥

∥

∥

∥

v− wk+1 + ρk

µ3

∥

∥

∥

∥

2

2
.

And update each dual variable as

ξk+1 ←ξk + µ1(Mvk+1 − vk+1)

ηk+1 ←ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ←ρk + µ3(v
k+1 − wk+1).

The final result is the algorithm outlined in Sec. 2C of the main text.

Implementation details

Evaluation of the cropped discrete convolution at a single depth,

C

[

h(x′, y′; z)
(x′,y′)
∗ v(−x′/m,−y′/m, z)

]

(x′, y′),
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b ADMM, 3DTV, 2048x2048x128 (26 mins)a FISTA, ℓ1, 2048x2048x64 (4 hours)

Figure 4.13: ℓ1 vs 3DTV regularization with different algorithm implementations. (a) Max z-projection of
FISTA reconstruction using ℓ1 (soft thresholding on the volume after each iteration). This took 4 hours
to run on a Titan X GPU using MATLAB. The soft thresholding has erased some key features. (b) Max
z-projection of reconstruction using ADMM with a 3DTV prior. Clearly the result is better, largely due to
a better sample-prior match. This reconstruction also required 10x less time to obtain.

is done by zero padding h(x′, y′; z) to twice its original size in each dimension, then using
FFT-based convolution. This ensures that any aliasing artifacts introduced by the circular
boundary conditions of the FFT will fall outside the sensor area, causing such artifacts to be
removed by the cropping, C(·). Note that this requires our variable, v, to be approximately
twice as many samples in each dimension as our sensor measurement. Interestingly, it is pos-
sible for useful information to lie anywhere within this extended FoV. In our prototype, the
angular falloff of the sensor means that measurements in the extended region are attenuated
too much to be useful. However, a future system using different geometry could leverage this
effect to gain even more useful samples in the final reconstruction. In operator notation, the
convolution can be evaluated as

crop (F )−1
{

[

FPh(x, y; z)
]

·
[

Fv(x, y, z)
]

}

(4.12)

where F is the 2D FFT, · is point-wise multiplication, and P is the zero-padding operator.

ℓ1 vs 3D Total Variation

To improve the quality of reconstruction, we use the 3D Total Variation (TV) penalty pa-
rameter. This is inefficient to compute as part of a projected gradient technique, because
the proximal operator for the TV norm must be computed iteratively. On volumes of the
size used here, this requires minutes per outer-loop iteration. Of the priors considered in
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this work, only native sparsity and nonnegativity are feasible when using projected gradient
methods. To demonstarate the benefit of using ADMM, we show in Fig. 4.13 the result
from ℓ1 regularized FISTA after running for 4 hours on a GPU using MATLAB compared
to our algorithm with 3DTV regularization for 20 minutes. Not only does our algorithm
run much faster, but it produces an image with more detail. In particular, note that the ℓ1

regularization has erased the numbers and eroded the bars, whereas 3DTV runs an order
or magnitude faster and uses a more sophisticated prior, resulting in categorically better
performance.
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Chapter 5

Designing diffusers

Phase Mask Design

In this section, we present theory for designing and optimizing a phase mask for the task
of snapshot 3D imaging. The goal is a mask that achieves a target resolution uniformly
across a specified 3D volume. This theory will hold for any mask that is shift-invariant over
a reasonably sized patch of the object. The example used here assumes that the phase mask
will be placed in the aperture stop of the objective with the sensor at a fixed distance, with the
goal of miniaturized 3D integrated fluorescence microscopy; this architecture reduces the size
and weight of the device, makes the system close to shift-invariant and enables multiplexing,
which is necessary for compressed sensing. Note this model is similar to what could be used
in a lensless camera design, so this approach is not restricted to the miniaturized integrated
architecture. We aim for all PSFs produced by the mask to have high spatial-frequency
content and be mutually incoherent (i.e. all as dissimilar as possible). Toward this goal, we
propose a multifocal array of nonuniformly-spaced microlenses as our phase mask.

The first step is to determine the free parameters that describe the phase mask. We choose
to use a phase mask made of microlenses because it provides good light throughput, while
balancing the trade-offs between SNR and compressive sensing capabilities. Specifically, we
represent the microlens phase mask by parameterizing the ith microlens by its lateral vertex
location, (ρi

xc, ρ
i
yc) := ρi

c
and radius of curvature, Ri. The spherical sag of the microlens is:

si = di +Ri

√

√

√

√1−

(

ρ− ρi
c

Ri

)2

, (5.1)

where di is an offset constant added to each microlens to control its clear aperture. We
parameterize aspheric terms in the microlenses by using Zernike polynomials. The jth Zernike
coefficient for microlens i is denoted αij, so the total aspheric component at that microlens
is
∑

j αijZj(ρ − ρi
c) with Zj being the jth Zernike polynomial. As long as the microlenses

are all convex (Ri > 0), a phase mask with full fill-factor can be constructed by taking the
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point-wise maximum thickness (see Fig. 5.1). The phase mask surface is thus:

T (ρx, ρy;θ) = max
i



si +
∑

j

αijZj(ρ− ρi
c)



 , (5.2)

where θ denotes the collection of parameters that define the phase mask: vertex locations
{ρi

c}, radii {Ri}, offsets {di}, and Zernike coefficients {αij}. The resulting surface is guaran-
teed to be continuous and will have a well-defined local focal length given by fi = n−1

Ri
within

the region belonging to the ith microlens, provided the power Zernike j = 4 is excluded. In
practice, we optimize the Zernike coefficients for tilt (j = 1, 2) and astigmatism (j = 3, 5).

With the microlens array defined, the on-axis PSF at a given sample depth z can be mod-
eled by Fresnel propagation of the pupil wavefront from a point source at depth z, denoted
W (ρx, ρy; z), multiplied by the phase of the designed mask, φ(ρx, ρy;θ) = 2π(n−1)

λ
T (ρx, ρy;θ):

h(u, v; z,θ) =

∣

∣

∣

∣

∣

Ft

{

P (ρx, ρy) exp
[

iφ(ρx, ρy;θ)
]

W (ρx, ρy; z)
}

∣

∣

∣

∣

∣

2

, (5.3)

where P (ρx, ρy) is the GRIN pupil amplitude, n is the microlens substrate index of refraction,
and Ft denotes Fresnel propagation to the sensor a distance t away. Importantly, the on-axis
PSFs are differentiable with respect to the microlens parameters, θ, enabling us to optimize
the design using gradient methods, as discussed in the next section.

Figure 5.1: Phase mask parameterized by point-wise maximum of convex spheres. Each sphere is outlined
by a dashed line, and the final optic is shaded blue (not to scale).

Our previous work employed off-the-shelf diffusers with a pseudorandom Gaussian surface
profile [11]. These generate a caustic PSF that has poor SNR due to the spreading of the
light by the concave bumps of the diffuser surface. In contrast, microlenses concentrate the
light into a small number of sharp spots, giving better performance in low-light applications
like fluorescence microscopy (see supplement 8.6). By parameterizing our design as a set
of microlenses, we can also derive simple design rules from first-principles (sections Lateral
Resolution & Multifocal Design), then use those to formulate an optimization problem that
locally optimizes the placement and aberrations of each microlens.

We space our microlenses nonuniformly to ensure that the PSFs from all field points
are dissimilar. Regularly-spaced arrays will produce highly similar PSFs when shifted by
one microlens period, causing certain spatial frequencies to be poorly measured. Previous
work avoided this ambiguity by introducing a field stop [88, 114, 51] that prevents the PSFs
from overlapping, but this restricts the FoV significantly. Our design yields a larger FoV
by using nonuniform spacing and computationally disambiguating the overlapping PSFs. In
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Fig. 5.2 we compare PSFs and reconstructions from regularly-spaced and nonuniform phase
mask designs. Looking at Fig. 5.2(c), the PSF of the regular array causes unwanted peaks
at low frequencies in its radially-averaged inverse power spectral density (IPSD), a metric
related to deconvolution performance [30] (lower is better). This manifests as artifacts in
the simulated reconstruction, which are significantly reduced in reconstructions from both
of the nonuniform designs.

Using multiple microlens focal lengths extends the depth range across which we obtain
good resolution, as described in the section on Multifocal Design. Multifocal designs have
sharp focal spots across a wider desired depth range than can be achieved with unifocal
designs, trading SNR in-focus for better performance off-focus. Figure 5.2(c,d) compares the
PSFs and reconstruction quality of our approach versus unifocal designs in-focus and 200
µm away from the native focus of the unifocal arrays. The blurry features in the out-of-focus
PSFs for both unifocal designs cause poor performance, as shown in the reconstructions and
high inverse power spectra. To capture the performance across depth, Fig.5.2(b) shows the
integrated IPSD (up to the cutoff frequency) of each design versus depth. As expected, our
multifocal design is slightly worse than a unifocal design in focus, but achieves far better
(lower) values across the full depth range.

In the compact system architecture we propose, it is clear that our nonuniform multifocal
microlenses are a good choice of phase mask. This motivates the next sections which provide
guidance on optimizing the nonuniform spacing, as well as the focal lengths and aberrations
of the microlenses for achieving a target resolution and depth range. For our prototype, we
aim for 3.5 µm lateral resolution, and show that this can be achieved over a depth range up
to 360 µm, which agrees with our experimental characterization.

Lateral Resolution

Lateral resolution will be primarily determined by the diffraction-limited aperture size of the
microlenses, which also determines the number of microlenses that fit across the objective’s
full aperture, and thus, the depth range we can target. We design for lateral resolution that
does not require the full pupil, so that we can fit multiple microlenses in the aperture for
better depth coding. The example in Fig. 5.2 targets 3.5 µm resolution (cutoff frequency of
0.35 cycles/µm) using 36 microlenses with average NA=0.09. Because each design has the
same number of microlenses, each has a similar resolution limit.

To quantify, we perform a diffraction analysis to find the clear aperture a single microlens
needs to support a δx lateral resolution at the sample. Note that this assumes we will recover
resolution no better than the band-limit of the measurement, neglecting any resolution gained
from the non-linear solver. We start by calculating the magnification for our system:

M ≈
−t

fG

, (5.4)

where fG is the GRIN focal length and t is the mask-to-sensor distance (derivation in 8.6).
Note that M is approximately independent of the microlens focal length. For our system,



CHAPTER 5. DESIGNING DIFFUSERS 61

0.5 mm0.5 mm

PSF

n
o

n
u

n
if

o
rm

m
u

lt
if

o
c
a
l 
(o

u
rs

)
n

o
n

u
n

if
o

rm
u

n
if

o
c
a
l

re
g

u
la

r
u

n
if

o
c
a
l

n
o

n
u

n
if

o
rm

m
u

lt
if

o
c
a
l 
(o

u
rs

)
n

o
n

u
n

if
o

rm
u

n
if

o
c
a
l

re
g

u
la

r
u

n
if

o
c
a
l

n
o

n
u

n
if

o
rm

m
u

lt
if

o
c
a
l 
(o

u
rs

)
n

o
n

u
n

if
o

rm
u

n
if

o
c
a
l

re
g

u
la

r
u

n
if

o
c
a
l

Radially-averaged IPSD

106

102

104

spatial frequency 
(cycles/µm)

0 0.35

(a) Surface height

(b) Integrated IPSD

(c) In focus (0 µm defocus) (d) Out of focus (-200 µm defocus)

6

0 
H

e
ig

h
t 

(µ
m

)

22.65 dB22.73 dB

20.15 dB19.70 dB

1 

0 

in
te

n
s
it

y
 (

a
.u

.)

1 

0 

in
te

n
s
it

y
 ß

(a
.u

.)

100 

0 

c
o

u
n

ts
 (

a
.u

.)

100 

0 

c
o

u
n

ts
 (

a
.u

.)

20.72 dB100 µm 100 µm 

Reconstruction PSF Reconstruction

16.97dB

14.44 dB

17.07 dB

14.90 dB

0.5 mm
20.17 dB

106

102

104

spatial frequency 
(cycles/µm)

0 0.35

Radially-averaged IPSD

1010

-200 0 (in focus) 160

1011

Defocus (µm)

0.5 mm

Nonuniform Unifocal

Nonuniform Multifocal

Regular Unifocal

Nonuniform Unifocal

Nonuniform Multifocal

Regular Unifocal

Nonuniform Unifocal

Nonuniform Multifocal

Regular Unifocal

Figure 5.2: Simulations to motivate our phase mask design, comparing our proposed nonuniform multifocal
design with regular unifocal and nonuniform unifocal designs. (a) Surface height profiles. (b) Sum of each
design’s PSF inverse power spectral density (IPSD) versus object depth (up to the designed cutoff frequency,
lower is better). (c) PSFs and simulated reconstructions in-focus (at the unifocal arrays’ native focus), with
the reconstruction peak signal-to-noise ratio (PSNR) listed. The measurement is corrupted with 100 e−1

(peak) Poisson noise. In focus, the nonuniform unifocal design has slightly better PSNR and resolution than
our design, and regular unifocal performs worse. The radially-averaged IPSD (lower is better) matches this
trend. (d) Imaging 200µm off-focus, both unifocal designs produce blurry PSFs which result in significantly
worse PSNR and resolution in the reconstruction, as compared to our design. This is also seen in the much
higher inverse power spectra curves for unifocal designs.

fG = 1.67 mm and t = 8.7 mm, so M ≈ −5.2. Using Eq. 8.9 and the Rayleigh criterion, the
microlens clear aperture, ∆M , needed for a target object resolution δx at wavelength λ is:

∆ML =
1.22λt

|M |δx
≈

1.22λfG

δx
. (5.5)

This expression is also independent of the microlens focal length because we have assumed
the microlens is focused. Equation 8.10 allows us to select the appropriate average microlens
spacing for a desired resolution. Our system is designed for 3.5 µm lateral resolution (though
experimentally we achieve 2.76 µm, due to the non-linear solver), which gives an average
microlens diameter of 300 µm. Given that the GRIN clear aperture has diameter 1.8 mm,
this results in 36 microlenses that can fit in the phase mask. Note that since the GRIN
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is aberration limited, the 2D Miniscope does not achieve the diffraction-limited resolution
predicted by its full aperture size. Hence, our experimentally-measured resolution is not
much worse than the 2D Miniscope (lateral resolution of 2 µm), despite dividing the GRIN
pupil into 36 regions to add depth sensing capabilities.

Multifocal Design for Extended Depth Range

Focal length diversity in the microlens array results in an extended depth range, a key ad-
vantage of our architecture over conventional LFM. To maintain a uniform lateral resolution
across all depths in the volume of interest, the PSF should have sharp, high-frequency focal
spots for each axial position. This requires at least one microlens to be in focus for each
object axial plane, with planes spaced by the microlens depth-of-field (DoF). The DoF of a
single microlens, dML, is inversely proportional to the microlens clear aperture, ∆ML, giving
dML = ±20 µm in our system (see supplement 8.6).

Our design aims to have a minimum of 4 microlenses in focus within each DoF. Given that
our lateral resolution criterion allows 36 microlenses, this means we should have 9 different
focal lengths and a depth range of 360 µm, nearly 10× what a single focal length achieves.
Note that there is a trade-off between the imaging depth range and lateral resolution. We can
increase the depth range by including more microlenses in the mask; however, that decreases
their clear aperture (Eq. 8.10) and thus the lateral resolution. Conversely, for imaging thin
samples where only a narrow range of focal lengths is required, better lateral resolution is
possible.

To determine the focal length distribution, we find the focal length needed to focus at the
beginning of the depth range (fmin = 7mm) and at the end of the depth range (fmax = 25
mm). Then, we dioptrically space the focal lengths across the target range because this leads
to microlenses that come into focus at linearly-spaced depth planes in the sample space.

Phase mask Optimization Using Matrix Coherence

The previous sections outlined first-order design principles, considering only a single mi-
crolens. In the next section, we will optimize the ensemble of microlenses (their positions
and added aberrations) with metrics based on compressed sensing theory. Given the first-
principles guidance in the above sections, we set the number of microlenses, their character-
istic aperture size and their focal length distribution; next, we aim to optimize the microlens
positions and aberrations to maximize performance. In order to make the optimization com-
putationally feasible, we ignore the field-varying changes in the PSF and assume that the
system is shift invariant for the purposes of design.

To optimize the microlens parameters, θ, in terms of the on-axis PSFs at each depth,
we set up a loss function to be optimized that consists of two terms. The first term, a
cross-coherence loss, promotes good axial resolution by ensuring that the PSFs at different
depths are as dissimilar as possible. Cross-coherence between any two depths is defined as
‖h(u, v; zn) ⋆ h(u, v; zm)‖∞ := max

[

h(u, v; zn) ⋆ h(u, v; zm)
]

, where ⋆ represents 2D correla-
tion and max · is the element-wise maximum. Intuitively, we want the cross-coherence to
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be small, since it represents the worst-case ambiguity that would arise by placing two point
sources adversarially at depths spaced according to the separation of their PSF’s cross-
correlation peaks. By computing this quantity for all pairs of z-depths, we can produce a
differentiable figure-of-merit that optimizes the matrix coherence [26] between depths. In
practice, rather than optimizing the cross-coherence, we smoothly approximate the max [31]

using ‖x‖∞ ≈ σ ln
∑

exp
(

x2/σ
)

. Here, σ > 0 is a tuning parameter that trades accuracy
of the approximation against smoothness. For our purposes, this has the advantage of pe-
nalizing all large cross correlation values, not just the single largest. We will denote this
‖ · ‖∞.

The total cross-coherence loss is then:

q(θ) =
∑

n

∑

m>n

‖h(u, v;θ, zn) ⋆ h(u, v;θ, zm)‖∞. (5.6)

The second term in the optimization ensures that lateral resolution is maintained. To do
so, we optimize the autocorrelation of the PSF at each depth using the frequency domain
least-squares method. The analysis in the Lateral Resolution section above only applies to a
single microlens; building a phase mask of multiple lenses generally degrades resolution by
introducing dips in the spectrum that reduce contrast at certain spatial frequencies. Hence,
we treat the single-lens case as an upper limit that defines the bandlimit of the multi-lens
PSF. To reduce spectral ripple, we penalize the ℓ2 distance between the MTFs of the PSF
and a diffraction-limited single microlens, |H|. We include a weighting term, denoted D, that
ignores spatial frequencies beyond the bandlimit, as well as low spatial frequencies which are
less critical and difficult to optimize due to out-of-focus microlenses. The autocorrelation
design term is then

p(θ) =
∑

n

∥

∥

∥

∥

D
[

F
{

h(u, v;θ, zn) ⋆ h(u, v;θ, zn)
}

− |H|2
]

∥

∥

∥

∥

2

2
, (5.7)

where F {·} is the 2D discrete Fourier transform.
The total loss is the weighted sum of the two terms:

f(θ) = p(θ) + τ0q(θ), (5.8)

where τ0 is a tuning parameter to control their relative importance. To initialize, we ran-
domly generate 5,000 heuristically-designed candidate phase masks, each with 36 microlenses
spaced according to Poisson disc sampling across the GRIN aperture stop. The focal lengths
are distributed dioptrically between the minimum and maximum values computed in the
Multifocal Design section. The best candidate from these 5,000 is then optimized using
gradient descent applied to f(θ). This is implemented in Tensorflow Eager to enable GPU-
accelerated automatic differentiation.

The results of our optimized design are shown in Fig. 5.3, where we compare our opti-
mized mask to the random multifocal design that scored worst during initialization, and a
regular unifocal array. The optimized design has the best axial cross-coherence (Fig. 5.3(b)),
with the random array having worse off-diagonal terms. Hence, in the 3D reconstructions
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(Fig. 5.3(c)) the optimized design performs slightly better than the random design. The
regular microlenses produce large off-diagonal peaks in the cross-coherence which manifests
as poor 3D reconstruction performance off-focus.
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Figure 5.3: Comparison of our optimized phase mask with random multifocal and regular microlens arrays:
(a) ground truth test object consisting of differently-spaced point sources (x-spacings of 3.5 µm and 7 µm,
z-spacings of 19.4 µm and 38 µm). (b) comparison of different phase mask designs. The first column shows
surface heights for varoius masks, the second column shows the cross coherence matrix for each over the target
volume, and the rightmost column shows x-z slice of the reconstruction using that design. The Gaussian
diffuser performs the worst, and has a poor cross-coherence matrix. The regular unifocal microlenses is only
slightly better, but has poor performance in and out of focus. The random unifocal design improves the in
focus performance, but due to defocus in the microlenses, it only works over a short depth range. Using a
multifocal design improves the out of focus performance, Finally, the optimized design qualitatively is similar
to the random multifocal, but has lower error as seen in the high PSNR score.
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Chapter 6

Optimized masks for miniaturized

single-shot 3D fluorescence

microscopy

This is work done jointly with Kyrollos Yanny, William Liberti, Sam Dehaeck, Kristina
Monakhova, Fanglin Linda Liu, Konlin Shen, Ren Ng, and Laura Waller. It is based on
[142].

Abstract

Miniature fluorescence microscopes are a standard tool in systems biology. However, wide-
field miniature microscopes only capture 2D information, and modifications that enable 3D
capabilities increase size and weight, and have poor resolution outside a narrow depth range.
Here, we achieve 3D capability by replacing the tube lens of a conventional 2D Miniscope with
an optimized multifocal phase mask at the objective’s aperture stop. Placing the phase mask
at the aperture stop significantly reduces the size of the device and varying the focal lengths
enables uniform resolution across a wide depth range. The phase mask encodes 3D fluores-
cence intensity into a single 2D measurement and the 3D volume is recovered by solving a
sparsity-constrained inverse problem. We provide methods for designing and fabricating the
phase mask and an efficient forward model that accounts for the field-varying aberrations in
miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams,
achieving 2.76 µm lateral and 15 µm axial resolution across most of the 900 × 700 × 390
µm3 volume at 40 volumes per second. The performance is validated experimentally on res-
olution targets, dynamic biological samples, and mouse brain tissue. Compared to existing
miniature single-shot volume-capture implementations, our system is smaller, lighter, and
achieves more than 2× better lateral and axial resolution throughout a 10× larger usable
depth range. Our microscope design provides single-shot 3D imaging for applications where
a compact platform matters, such as volumetric neural imaging in freely-moving animals
and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.
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Introduction

Miniature widefield fluorescence microscopes enable important applications in systems bi-
ology - for example, optical recording of neural activity in freely-moving animals [45, 80,
61, 49], and long-term in situ imaging within incubators and lab-on-a-chip devices. These
miniature microscopes, commonly called ‘Miniscopes’, are developed by a vibrant open-
source community [131] and made of 3D printed parts and off-the-shelf components. While
the Miniscope is designed for 2D fluorescence imaging only, many applications can benefit
from imaging 3D structure.

Here, we present a new single-shot 3D miniature fluorescence microscope, termed Minis-
cope3D, that is not only smaller and lighter weight than miniaturized plenoptic microscopes
like the MiniLFM, but also achieves better resolution over a larger volume. It is designed
as a simple hardware modification to the widely-used UCLA Miniscope [131], replacing the
tube lens with an optimized phase mask (see Chapter 5) placed directly at the aperture stop
(Fourier plane) of the objective lens (Fig. 6.1). The phase mask consists of a set of multi-
focal nonuniformly-spaced microlenses, optimized such that each point within a 3D sample
generates a unique high-frequency pattern on the sensor, encoding volumetric information
in a single 2D measurement. The 3D volume is recovered by solving a sparsity-constrained
compressed sensing inverse problem, enabling us to recover 24.5 million voxels from a 0.3
megapixel measurement. Our algorithm assumes the sample to be sparse in some domain,
which is valid for a general class of fluorescent samples. We demonstrate the capabilities of
our microscope by imaging fluorescent resolution targets, freely swimming biological samples,
scattering mouse brain tissue, and optically cleared mouse brain tissue. We also validate the
accuracy of our reconstructions against two-photon microscopy and discuss the limitations
of our method.

To achieve high-quality imaging in a small, low-weight device, a number of technical
innovations were developed. Placing the phase mask in Fourier space (instead of image
space) significantly improves compactness, and also reduces computational burden [88, 114,
51]. Varying the focal lengths of the microlenses enhances the uniformity of resolution
across depth, as compared to implementations like MiniLFM. Because we use an optimized
forward model and calibration scheme to account for the field-varying aberrations inherent
to miniature objectives, we are able to add 3D capabilities to the 2D Miniscope, at a cost of
only a small loss of lateral resolution, and lower signal-to-noise ratio (SNR). Our algorithm
unites optical theory with compressed sensing in a general way that can allow others to
design and fabricate optimized phase masks for their applications. The main contributions
of this work are:

• A new miniature 3D microscope architecture that improves upon MiniLFM, achieving
significantly better resolution across a 10× larger depth range, while reducing overall
device size.

• A prototype, based on easily available parts, 3D printing, and open-source designs,
that weighs 2.5 grams and achieves 2.76 µm lateral and 15 µm axial resolution across
most of the 900× 700× 390 µm3 volume at 40 volumes per second.
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• Design principles for optimizing phase masks for 3D imaging and a high-quality fabri-
cation method using two-photon polymerization in a Nanoscribe 3D printer.

• An efficient calibration scheme and reconstruction algorithm that accounts for the
field-varying aberrations inherent in miniaturized objective lenses.

Figure 6.1: Miniscope3D system overview. As compared to previous Miniscope and MiniLFM designs, our
Miniscope3D is lighter weight and more compact. We remove the Miniscope’s tube lens and place a 55
µm thick optimized phase mask at the aperture stop (Fourier plane) of the GRIN objective lens. A sparse
set (64 per depth) of calibration point spread functions (PSFs) is captured by scanning a 2.5 µm green
fluorescent bead throughout the volume. We use this dataset to pre-compute an efficient forward model that
accurately captures field-varying aberrations. The forward model is then used to iteratively solve an inverse
problem to reconstruct 3D volumes from single-shot 2D measurements. The 3D reconstruction here is of a
freely-swimming fluorescently-tagged tardigrade.

Materials and Methods

System Theory

Miniscope3D encodes volumetric information via a thin phase mask placed at the aperture
stop of the gradient index (GRIN) objective lens (see Fig. 6.1). The goal of our design is to
optimize the microscope optics for compressed sensing, enabling capture of a large number
of voxels from a small number of sensor pixels. To achieve this, the phase mask comprises
an engineered pattern of multifocal microlenses, designed such that each fluorescent point
source in the scene produces a unique high-frequency pattern of focal spots at the sensor
plane, thus encoding its 3D position. The structure and spatial frequencies present in this
pattern, termed the point spread function (PSF), determine our reconstruction resolution at
that position; theory for these limits is presented in the Lateral Resolution section below.

Figure 6.2 shows how our PSF changes with the lateral and axial position of a point source
in the object space. As the point source moves laterally, the PSF translates (Fig. 6.2(b)).
In an idealized microscope with the phase mask in Fourier space, the system would be
shift-invariant [88, 114]; however, because of the inherent aberrations in the GRIN lens, the
pattern also slightly changes structure as it shifts. As the point source moves axially, the
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overall PSF changes size and different spots come into focus (Fig. 6.2(a)), because we use
a diversity of microlens focal lengths in our phase mask. As discussed in the section on
Multifocal Design, this ensures that the PSFs at a wide range of depths all contain sharp
focal spots, unlike unifocal microlenses. To maximize the performance of our system, we
optimize the spacing and focal lengths of the microlenses, as described in the Phase Mask
Optimization section.

Our distributed, unique PSFs satisfy the multiplexing requirement of compressed sensing.
Hence, we utilize sparsity-constrained inverse methods to recover the voxelized sparse 3D
fluorescence emission, v, from a single 2D sensor measurement, b. To do this, we model
b as a linear function of v, denoting the measurement process as b = Av. Here, A is the
measurement matrix, a linear operator that captures how each voxel maps to the sensor.
Provided the sample is sparse in some domain, we reconstruct the volume by solving the
sparsity-constrained inverse problem:

v̂ = arg min
v≥0
‖Av− b‖2

2 + τ‖Ψv‖1, (6.1)

with Ψ being a sparsifying transform (e.g. 3D gradient, corresponding to TV regularization)
and τ being a tuning parameter.

Equation 6.1 can be solved using a variety of iterative methods; we use Fast Iterative
Shrinkage Thresholding (FISTA) [15]. This requires repeatedly applying A and its adjoint.
To make this computationally feasible for high megavoxel systems like ours, we need an
efficient representation for A. A shift-invariant forward model is extremely computationally
efficient because A becomes a convolution matrix [11, 12, 68]. It also requires only a single
PSF calibration image, from which the PSFs at all other positions can be inferred. Unfor-
tunately, miniature integrated systems like ours are not shift invariant, due to the off-axis
aberrations inherent to compact objectives. To account for this, in the following sections we
develop a field-varying forward model and a practical calibration scheme that account for
aberrations with minimal added computational cost.

Field-varying Forward Model

Because aberrations in the GRIN lens of the Miniscope render the shift-invariant model
invalid, we need to both measure and model how the PSF changes across the FoV. Explicitly
measuring the PSF at each position within the volume is infeasible, both in terms of amount
of calibration data and computational burden of reconstruction. It is also unnecessary since
the PSF structure changes slowly across the FoV. Instead, our calibration scheme samples
the PSF sparsely across the field and uses a weighted convolution model to estimate the PSF
at other positions [42]. We capture 64 PSF measurements at each depth, then use them to
predict the full set of over 300,000 PSFs. Our forward model thus only requires computing
a limited number of convolutions (typically 10-20) and achieves 2.2× better resolution and
better quality than the shift-invariant model (see Fig. 6.2(c)).

Our field-varying forward model approximates A using a weighted sum of shift-invariant
(convolution) kernels. We treat the volumetric intensity as a 3D grid of voxels, denoted
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v[x, y, z]. A voxel at location [x, y, z] produces a PSF on the sensor, h[u, v;x, y, z], where
[u, v] indexes sensor rows and columns. For ease of notation we will assume the system has
magnification M = 1 and apply appropriate scaling to the solution after 3D image recovery.
We also assume v has finite axial and lateral support. By treating the voxels as mutually
incoherent, the measurement will be a linear combination of PSFs:

b[u, v] =
∑

z

∑

x,y

v[x, y; z]h[u, v;x, y, z]

= Av,
(6.2)

where the bounds of the sums implicitly contain the sample. To capture field-varying be-
havior, we seek to model the PSF from each voxel as a weighted sum of K shift-invariant
kernels [42]. The kernels, gr[u, v; z], and weights, wr[x, y, z], which will be described below,
should be chosen to represent all PSFs accurately with the smallest possible K. Mathemat-
ically, the forward model can be written as:

h[u, v;x, y, z] = Λ[u, v]
K
∑

r=1

wr[x, y, z]gr[u− x, v − y; z], (6.3)

where Λ[u, v] is an indicator function that selects only the values that fall within the sensor
pixel grid. In other words, the PSF from position [x, y, z] is modeled by shifting the kernels,
{gr[u, v; z]} r = 1 . . . K, associated with depth z, to be centered at the PSF location on the
sensor, [u, v] = [x, y]. Then, each kernel is assigned a field-dependent weight, wr[x, y, z],
and the weighted kernels are summed over r. Note that this motivates the placement of the
phase mask in the aperture stop. By ensuring that all field points fully illuminate the mask,
the system will be close to shift-invariant, which will keep the necessary number of kernels
low.

To find the kernels and weights that best represent all of the PSFs, first consider each
PSF in a coordinate space relative to the chief ray. We do this by centering each measured
PSF on-axis:

h[u+ x, v + y;x, y, z] =
K
∑

r=1

wr[x, y, z]gr[u, v], (6.4)

where [x, y] is the chief ray spatial coordinate at the sensor. We assume that the calibration
procedure will capture N PSFs across the field, {h[u, v;xi, yi, z]} i = 1 . . . N , for each depth
z. We estimate the chief ray coordinate [x, y] of off-axis PSFs by cross-correlating each
with the on-axis PSF. The off-axis measurements are then shifted on-axis, vectorized, and
combined into a registered PSF matrix, denoted H. For smoothly varying systems, H will
be low rank and can be well approximated by solving

Ĝ, Ŵ = argmin
G,W

‖GW −H‖2
2 , (6.5)

where G ∈ R
Mp×K and W ∈ R

K×N for a sensor with Mp pixels. The optimal rank-K solution
can be found by computing the the K largest values of the singular value decomposition
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(SVD) of H. The r-th column of the left singular vector matrix, Ĝ, contains the kernel
gr[x, y; z] in vectorized form. Similarly, combining the singular values with the right singular
vector matrix produces Ŵ , of which the r-th row contains the optimal weights wr[xi, yi, z]
for voxel [xi, yi, z]. Empirically, we find that the weights vary smoothly across the field, so
we use natural neighbor interpolation to estimate the weights between sampled points. After
testing the number of sample points per depth (N) empirically, we find 64 to be sufficient
for our system.

The computational-efficiency of this model can be analyzed by substituting Eq. 6.3 into
Eq. 6.2, yielding:

b[u, v] =
∑

z

∑

x,y

v[x, y, z]Λ[u, v]
K
∑

r=1

wr[x, y, z]gr[u− x, v − y; z]

= Λ[u, v]
∑

z

K
∑

r=1

{

(

v[x, y, z]wr[x, y, z]
) [x,y]
∗ gr[x, y; z]

}

[u, v] ,

(6.6)

where
[x,y]
∗ denotes discrete linear convolution over the lateral variables. In practice, each con-

volution can be implemented using a combination of padding and FFT-convolution, while
Λ[u, v] represents a crop [11]. Note that the summation over z assumes no voxel is partially
occluded. Because this model comprises K point-wise multiplications and K 2D convolu-
tions per depth, it is approximately K−times slower than a shift-invariant model. Hence
minimizing K via choice of weights and kernels, or by reducing aberrations in the hardware,
improves computational efficiency.

Calibration

Experimentally, our calibration procedure captures PSF images of a 2.5 µm green fluorescent
bead at 64 equally-spaced points across the FoV, for each depth. Empirically, we find that
the singular values decay quickly and a model with rank between K = 10 and K = 20 is
sufficient for our system. Note that we can trade-off the speed and accuracy of our model
by varying K, but the decomposition need only be performed once. This method allows
characterization of an extremely large matrix by only capturing a relatively small number
of images. For example, our typical calibration requires 80 depths. Densely sampling every
PSF using a 0.3 megapixel sensor would require 24 million calibration images (300,000 per
depth) and terabytes of storage. In contrast, our method enables calibrating this entire
volume using only 80 depths × 64 images/depth = 5, 120 images, which takes 2 hours to
capture using automated stages and requires a few gigabytes to store.

Reconstruction Algorithm

In solving Eq. 6.1 we use sparsifying transform Ψ = [∇x∇y∇z]⊺, which corresponds to 3D
anisotropic TV regularization, promoting sparse 3D gradients in the reconstruction. The
regularization parameter, τ , controls the balance between the data fidelity and the sparse
3D gradients prior. In practice, we hand-tune τ on a range of test data, then leave it fixed
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for subsequent captures (see supplement Fig. 8.9). We solve Eq. 6.1 using FISTA [15], with
the fast, subiteration-free parallel proximal method [65]. Computationally, our method has
similarities to light-field deconvolution [24], but because our PSF is not periodic and our
focal lengths are not all the same, we are able to remove the need for aperture matching
and achieve higher resolution across a larger volume. In order to solve Eq. 6.1, we compute
the linear forward and adjoint matrix-vector multiplies using FFT-convolution. A typical
reconstruction takes 1-3k iterations, and runs in 8-24 minutes on a GPU RTX 2080-Ti using
MATLAB.

Phase Mask Fabrication

Since our phase mask designs can be tailored to specific applications with different resolution
requirements and volumes-of-interest, the ability to rapidly generate phase mask prototypes
is very useful. Recently, the Nanoscribe two-photon polymerization 3D printer has been
shown to print free-form microscale optics on-demand [128]. However, in its current imple-
mentation, Nanoscribe uses planar galvanometric scanning to polymerize the resist, resulting
in a limited FoV (diameter of approximately 350 µm with the 25× Nanoscribe objective). If
larger objects need to be printed, several blocks need to be stitched together by moving the
substrate with a mechanical stage. Stitching artifacts from this process can seriously impact
the produced object [32], usually by causing rectangular or hexagonal blocking artifacts. As
can be seen in Fig. 6.3(a), rectangular seams going trough the center of the microlenses can
be very detrimental to our design.

One solution to this is an adaptive stitching algorithm that has been demonstrated for
slender objects and a non-overlapping microlens array [32]. Here, we propose a new height-
based segmentation algorithm capable of placing the stitching seams in the overlapping
region between the overlapping microlenses (Fig. 6.3(a)). This is based on the local height
functions for each microlens, described in the Phase Mask Parameterization section. Each of
these functions has a region where they result in the largest values and this region is precisely
the printing block that will be printed from that microlens center location (see supplement
8.6). Once the adaptive stitching mask is obtained, the writing instructions per block can
be generated using TipSlicer [111]. Figure 6.3(b) compares the designed and experimental
PSFs at three depth planes, showing a good match with some degradation at the end of the
volume.

Device Assembly

Our prototype Miniscope3D system consists of a custom phase mask, a CMOS sensor (Ximea
MU9PM-MH), fluorescent filter set (Chroma ET525/50m, T495lpxr, ET470/40x), GRIN lens
(Edmund Optics 64-520), and half-ball lens (Edmund 47-269), with a 3D-printed optome-
chanical housing. The 55 µm thick phase mask is glued to the back surface of the GRIN
lens using optical epoxy. Note that our experimental PSF calibration accounts for slight
misalignment in the phase mask. The final device is 17 mm tall and weighs 2.5 grams.
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Results

We characterize the performance of our computational microscope with samples of increasing
complexity, capturing dynamic 3D recordings at frame rates of up to 40 volumes per second.

Resolution Characterization: Lateral resolution is measured at different depths by
imaging a fluorescent resolution target every 10 µm axially and determining the smallest
resolved group by eye. Figure 6.4(a) demonstrates 2.76 µm uniform lateral resolution over
270 µm in depth. The resolution degrades to 3.9 µm over the next 120 µm in depth, for
a total usable depth range of 390 µm. This relatively uniform resolution through a wide
depth range is due to our multifocal design. Axial resolution is determined by imaging a
thin layer of 4.8 µm fluorescent beads at different depths and using Rayleigh criterion (at
least a 20% dip between the peaks of the two reconstructed points) to determine resolution.
Raw data from multiple depths are added to synthesize a measurement of two layers of beads
with varying separations (see supplement 8.6). We achieve 15 µm axial resolution across the
entire 390 µm depth range, which matches the axial full-width-half-maximum (FWHM) in
the reconstructions of the 3D fluorescent beads sample in Fig. 6.4(b).

Two-Photon Verification: To validate the accuracy of our results, we compare against
two-photon microscopy, which is considered ground truth. Figure 6.4(b) shows results for a
160 µm thick sample of 4.8 µm green fluorescent beads. Miniscope3D accurately recovers all
the beads in the volume, after visually adjusting for tip/tilt misalignment in post-processing.

Mouse Brain Tissue: Next, we show feasibility for neuro-biological samples by imaging
post-fixed mouse brain slices where GFP is expressed in a sparse population of neurons
throughout the sample. Figure 6.5(a) shows reconstructions from two 100 µm thick scattering
samples from different parts of the hippocampus, and Fig. 6.5(b) shows results from a 300
µm thick optically cleared section. In the 300 µm slice, dendrites can be seen running across
the reconstruction axially (~1 µm features), and individual cell bodies appear at distinct
depths (see Video 1).

Dynamic Biological Samples: Finally, we image dynamic samples of freely-swimming
SYBR-green stained tardigrades at a maximum of 40 frames per second. Figure 6.5(c) shows
maximum intensity projections of the reconstructed videos at different time points from two
different recordings. The reconstructions show that Miniscope3D can track freely-moving
biological samples at high spatial and temporal resolution (see Videos 2, 3, 4, 5, & 6).

Discussion

Our device is designed with compressed 3D imaging and miniaturization in mind. For some
2D imaging applications where the loss of SNR (see supplement Fig. 8.10) and lateral
resolution (2.76 µm vs 2 µm) are acceptable, our device may have advantages over 2D
Miniscope, due to its smaller size (17 mm vs. 23.5 mm tall) and weight (2.5 grams vs. 3
grams), or the ability to digitally refocus via 3D reconstruction. However, we expect that
most applications of Miniscope3D will be for true 3D microscopy, so we mainly compare our

https://figshare.com/s/815ec7490afd891f72d4
https://figshare.com/s/815ec7490afd891f72d4
https://figshare.com/s/5e0c7e4045a3062a8074
https://figshare.com/s/5b8cf3160a0d6dba8bfa
https://figshare.com/s/4ce71b4c3540b3445851
https://figshare.com/s/122fcb03dba2bdef39e4
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specifications to MiniLFM, which is considered the gold-standard for single-shot miniature
3D fluorescence imaging.

Miniscope3D offers multiple improvements over MiniLFM. First, using multifocal mi-
crolenses (as opposed to unifocal in LFM) allows us to achieve better lateral resolution
(2.76− 3.9 µm) across a larger depth range (390 µm3). In contrast, MiniLFM [121] demon-
strated best-case lateral resolution of 6 µm at a particular depth and, while their resolution
at other depths was not reported, we predict that their unifocal microlens design will result
in lateral resolution that degrades significantly beyond 40 µm depth, based on previous anal-
ysis [24] and that in the Multifocal Design section below. We estimate that our Miniscope3D
provides approximately 10× increase in the usable measurement volume over MiniLFM,
with 2.2× better peak lateral resolution. Taken together, our Miniscope3D reconstructs ap-
proximately 50× more usable voxels than MiniLFM, significantly improving the utility of
the device. This improved performance comes in a hardware package that is smaller than
MiniLFM (17 mm tall vs. 26 mm tall) and lighter weight (2.5 grams vs. 4.7 grams), because
we replace the heavy doublet tube lens and the microlens array assembly with a thin phase
mask. This will be particularly valuable in head-mounted experiments with freely-moving
animals.

Both our method and MiniLFM make sparsity assumptions on the sample in order to
solve the inverse problem to recover a 3D volume from a 2D image. We require the sample to
be sparse in some domain, meaning that there is some representation of the sample that has
many zeros in its coefficients [26, 11]. Fluorescence imaging is a good candidate for such pri-
ors, since most biological samples are sparsely labelled. Because we optimize the microscope
optics explicitly for single-shot 3D imaging, typical sparsity priors such as native sparsity,
sparse 3D gradients (Total Variation (TV), as used in this paper), or sparse wavelets work
well in our system. The MiniLFM is designed specifically for neural activity tracking and
so makes further structural and temporal sparsity assumptions, which improves their axial
resolution from 30 µm (single-shot performance) to 15µm (temporal video processing per-
formance). In contrast, our Miniscope3D achieves 15 µm single-shot axial resolution, across
a large depth range, and could presumably improve upon that by incorporating temporal
application-specific priors. In this paper, however, we aim to record highly dynamic samples
(see supplementary videos) and so only impose sample sparsity. We demonstrate the gen-
erality of our approach experimentally with samples that exhibit different levels of sparsity
(Fig. 6.4,6.5), achieving resolution sufficient for single-neuron imaging. As sparsity decreases,
image quality and resolution degrade smoothly (see supplement Fig. 8.11), roughly following
previous theoretical analyses [26, 25, 11].

Scattering is a limitation for all single-photon microscopes, including ours. For appli-
cations such as neural imaging and studying the 3D motion of freely-swimming samples
like C. elegans or tardigrades, the small amount of scattering should not hinder resolution.
However, as the imaging depth within the scattering medium increases, we expect the resolu-
tion to degrade in a way similar to other single-photon microscopes. We show experimental
reconstructions with and without scattering for the 100 µm thick scattering mouse brain tis-
sue, and the 300 µm thick cleared brain tissue. Both reconstructions achieve single-neuron
resolution.
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Another limitation of our model is that it assumes no partial occlusions. This is a common
limitation of 3D recovery methods in fluorescence microscopy (e.g. double helix [104], light
field deconvolution microscopy [24], 3D localization microscopy) and generally works well in
non-absorbing fluorescent samples. Modeling occlusions would be valuable in many practical
situations, but remains a challenging problem.

Accessibility was a key consideration in our Miniscope3D design. By building on the
popular open-source Miniscope platform, our method can be easily adopted into existing
experimental pipelines. Any of the 450 labs currently using the 2D Miniscope can upgrade
to our 3D prototype with minimal effort. Also, our method for 3D printing custom phase
masks can enable others to fabricate their own mask designs tailored to particular applica-
tions. Because experimental results are in good agreement with our theoretical design and
analysis, we are confident that our design theory can provide a useful framework for future
customization of single-shot 3D systems.
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(b) Lateral Dependance of the PSF
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Figure 6.2: Each 3D voxel maps to a different PSF: (a) As a point source translates axially, the PSF scales
and different spots come into focus. (b) As a point source translates laterally, the PSF shifts and incurs
field-varying aberrations which destroy shift invariance. (c) When a shift-invariant approximation is made,
reconstructions of a fluorescent resolution target (at z = 250 µm) display worse resolution (6.2 µm resolution)
and more artifacts than when our field-varying model is used (2.76 µm resolution).
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Figure 6.3: Phase mask fabrication with Nanoscribe: (a) Rectangular stitching leads to seams (black lines)
going trough the many microlenses, while adaptive stitching puts the seams at the boundaries of the mi-
crolenses to mitigate artifacts. (b) Comparison between designed and experimental PSFs at a few sample
depths, showing good agreement, with slight degradation at the edge of the volume.
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Figure 6.4: Experimental characterization: (a) Reconstructions of a fluorescent USAF target at different
axial positions to determine depth-dependent lateral resolution. We recover 2.76 µm resolution across most
of the 390 µm range of depths, with a worst case of 3.9 µm (dashed orange lines mark inset locations and
yellow boxes on insets indicate smallest resolved groups). Note that the resolution target has discrete levels
of resolution that result in jumps in the data and resolution refers to the gap between bars, not the line-pair
width. (b) Reconstruction of a 160 µm thick sample of 4.8 µm fluorescent beads, as compared to a two-
photon 3D scanning image (maximum intensity projections in yx and zx are shown). Our system detects
the same features, with a slightly larger lateral spot size.
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Figure 6.5: Experimental 3D reconstructions of (a) GFP-tagged neurons in two different samples of 100 µm
thick fixed mouse brain tissue, and (b) 300 µm thick optically cleared mouse brain slice. We clearly resolve
dendrites running across the volume axially (see Video 1). All mouse brain volume reconstructions are
790× 617× 210 µm3. (c) Maximum intensity projections from several frames of the reconstructed 3D videos
of two different samples of freely moving tardigrades captured at a maximum of 40 frames per second (see
Video 2 & 3).

https://figshare.com/s/815ec7490afd891f72d4
https://figshare.com/s/2a7da4c0fc43c3d60460
https://figshare.com/s/5e0c7e4045a3062a8074
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Chapter 7

Focal plane diffuser encoding of light

fields

This is work done jointly with Sylvia Necula, Ren Ng, and Laura Waller and is published as
[8].

7.1 Introduction

Recording and processing of 4D light fields offers new capabilities over traditional 2D imag-
ing. These include the ability to compute a different focus and depth of field after the fact,
change the viewpoint slightly, compute depth and computationally correct for optical aber-
rations in the camera’s lens. Various approaches have been studied to project the 4D light
field onto a 2D sensor such that the light field can be inferred from a single-shot. The two
most common approaches are based on microlens arrays and attenuation masks placed at a
small distance from the image sensor. Microlens arrays use regular grid of lenslets to refrac-
tively encode the light field onto the sensor. Attenuation masks encode the light field into
shadow patterns on the sensor, providing enhanced resolution, but at the cost of absorbing
a portion of the light [133] [94] [64].

In this paper we generalize both of these approaches to use a transparent phase plate (e.g.
a diffuser). Compared with microlens arrays, we allow arbitrary height maps. Compared
with attenuation masks, we allow a similar coding effect, but with higher light throughput.
Such diffusers provide an inexpensive and flexible means for single-shot light field recording
using an off-the-shelf diffuser. A challenge in utilizing such diffusers is that they are generally
diffractive, producing speckles that exhibit significant wave-optical effects due to interference.
We show here a theoretical analysis of when it is appropriate to use wave-optics versus ray
optics models for interpreting light fields encoded by a phase plate. Leveraging this, our
camera is designed such that the image synthesis and reconstruction are correctly described
by a ray optics model, independent of the object or illumination coherence. We further
present a wave-optics calibration routine, based on the Transport of Intensity Equation
(TIE) [127], that recovers the phase surface height map from images captured through focus.
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Figure 7.1: Pipeline for recording and reconstructing light fields with phase plates (a diffuser). The object
light passes through an imaging lens and the phase plate, then propagates to the sensor, where caustics
encode spatial and angular information. A linear inverse problem is solved to reconstruct the light field,
which contains 3D information, enabling digital refocus, among other benefits.

We use ray tracing to build a linear model for the system, based on the phase measurements,
which we then invert to recover the 4D light field. Lastly, we demonstrate the efficacy of
these methods by showing experimental results.

7.2 Theory

Consider the 4D light field, L(x, y, θ, φ), inside a camera body after passing through a primary
imaging lens having numerical aperture less than 1. Each ray is described by two lateral
coordinates, (x, y), and two angular coordinates (θ, φ), corresponding to x and y, respectively.
The light at the imaging plane then passes through a non-absorbing phase plate (e.g. a
diffuser), and propagates a distance z0 to the 2D sensor plane, where it is recorded as an
intensity image. The system architecture is illustrated in Figure 7.1.

As an example application of this approach, we use an inexpensive off-the-shelf Light
Shaping Diffuser [90]. These diffusers are thin pieces of polymer with refractive index n ≈ 1.5
that are planar on the input side and have an output surface that can be modeled as a smooth
random Gaussian surface, described by a height field, D(x, y):

D(x, y) = s
[

R(x, y) ∗K(σ)
]

, (7.1)

where s is a unitless scaling factor, K(σ) is a zero-mean Gaussian smoothing kernel having
full-width half-maximum (FWHM) value of σ and R(x, y) a set of random height values
chosen from the normal distribution at each discrete sample location (x, y). It is assumed
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that σ is greater than the wavelength of light, λ, thereby avoiding sub-wavelength scattering
effects. We show in Section 7.2 that diffusers create high-contrast intensity patterns (caus-
tics) at certain distances. These patterns are unique to particular regions on the diffuser
surface, thus they encode multiplexed spatial and angular information in an invertible way.

Wave Optics Model

The phase plate can be thought of as a thin transparency which imparts a spatially-varying
phase delay, φD(x, y), onto any wave passing through it. Consider a coherent incident wave
having amplitude A(x, y) and phase φi(x, y). The wavefront exiting the phase plate (at z = 0)
will be the product of the incident wave’s complex-field and the complex transmittance of
the phase plate [47],

E(x, y, z = 0) = A(x, y)ei[φi(x,y)+φD(x,y)]. (7.2)

Assuming the phase plate has homogeneous index of refraction, n, the phase delay is
directly proportional to the height map of the phase plate

φD(x, y) =
2π∆n

λ
D(x, y), (7.3)

where ∆n is the refractive index difference between the phase plate and surrounding medium.
For plane wave illumination, A(x, y) and φi(x, y) are constant, so Equation (7.2) simplifies
to

E(x, y, z = 0) = exp
[

iφD(x, y)
]

. (7.4)

The resulting complex-field at the sensor, E(x0, y0, z0), is predicted using Fresnel diffraction
theory [47]. Finally, the intensity at the sensor is proportional to absolute value squared of
the complex-field, I(ξ, η; z0) ∝

∣

∣E(ξ, η; z0)
∣

∣

2.
In this wave-optical model, the gradient of the incident beam’s phase describes the local

angle of propagation, according to the Poynting vector description of energy flow. For
partially coherent (or incoherent) light, however, the optical field cannot be described by
a single complex field; rather, it is the incoherent superposition of many [20]. The Wigner
function provides a wave-optical analog to the light field [144]. Still, it is significantly more
complicated than a ray optics model, which is preferred where accurate.

Ray Optics Model

Ray tracing approaches are generally thought to be only valid for incoherent imaging, whereas
diffractive effects require wave optics. However, the diffractive nature of the phase masks
used here does not always imply that a full wave-optical model is necessary. We will show here
that for sufficiently small diffuser-to-sensor distances, ray optics is a suitable approximation,
irrespective of whether the object is coherent or incoherent.

To model ray transport through a dielectric interface described by (7.1), a full 3D ray
tracing approach is suitable. We assume that the diffuser is flat enough that we can neglect
self-shadowing, total internal reflection and multiple refractions. However, for weak diffusers
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(on the order of 1◦) and apertures below F/2.8, the maximum angle of incidence at the phase
surface will be on the order of 11◦, which is small enough to adopt the paraxial (small angle)
approximation to Snell’s law. While the paraxial model is not necessary for our methods to
work, it provides valuable insight into the behavior of phase diffusers.

For simplicity, we describe our model with a 2D paraxial light field, L(x, θ), traveling
along the optical axis of the system (+z direction)1. In the paraxial regime, refraction at
each interface becomes a linear form of Snell’s law, ni = n′i′, where i is the incident angle and
i′ is the output angle, both measured relative to the interface normal; n and n′ are the input
and output refractive index, respectively. The diffuser surface gradient, Dx(x) = −1/n̂, with
n̂ being the surface normal. As shown in Figure 7.2, we can write i in terms of θ and the
surface gradient: i = θ+Dx(x). Similarly, the exit angle is given by i′ = θ′+Dx(x). Plugging
this into Snell’s Law, the output ray angle is

θ′ =
n

n′
θ +

(

n

n′
− 1

)

Dx(x). (7.5)

Since refraction changes the ray angle but not its position, the output position does not
change (x′ = x). Substituting (7.5) into the paraxial ray propagation equation, x0 = x+θ′z0,
results in the ray position, x0, being

x0 = x+ z0

[

n

n′
θ +

(

n

n′
− 1

)

Dx(x)

]

, (7.6)

where z0 is the diffuser-sensor separation distance.
The final irradiance on the sensor is the sum of the radiance along all rays that fall within

each pixel from any angle. This is equivalent to projecting the resulting light field (at the
sensor) along the angle dimension before sampling.

Caustics

To illustrate how Equation (7.6) behaves, we explore the refraction and propagation of a
plane wave through a diffuser described by Equation (7.1) with index n, in air (n′ = 1). In
(x, θ) space, a plane wave is represented by equal radiance at all positions and a single angle,
as shown in Figure 7.3a. After applying Equation (7.5), each ray in L is displaced in angle
by (n − 1)Dx(x). Notice that immediately after the diffuser, the irradiance is unchanged
(projecting through angle will not change irradiance). However, propagation of the warped
light field shears this curve (by shifting each point in x by an amount z0nθ

′ in accordance
with Equation (7.6)). Because the shear is proportional to θ, the angular ripples created by
the diffuser result in structure in the final projected irradiance (Figure 7.3b). Another way
to visualize this is via the peaks that arise from the bunching of rays under regions where
the local diffuser curvature causes it to act like a positive lens (see Figure 7.3c).

The intensity peaks induced by the combination of refraction and propagation, known
as caustics, create an intensity pattern at the sensor that is directly related to the local

1Extending to 4D non-paraxial optics is straightforward with the ray tracing approaches used here, based
on the surface normals in R

3
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diffuser

sensor 
plane

Figure 7.2: Ray geometry for a single ray hitting a diffuser surface and refracting before reaching the sensor
plane.

structure of the mask surface. Intuitively, these peaks will be located under the strongly
convex regions of the diffuser. Because Equation (7.5) is linear in θ, changing the incident
illumination angle leads to a linear shift of the caustic pattern. Thus, the intensity pattern
formed by light striking any part of the diffuser is uniquely determined by the incident angle
and the local diffuser structure. This is also true for amplitude-coded masks and is the
fundamental building block for the invertible linear model in Section 7.2.

For a 4D treatment of the light field, we can treat (x, θ) and (y, φ) independently and
apply Equation (7.6) to each direction separately. This leads to 2D caustic patterns demon-
strated in Figure 7.3d, which was simulated using our ray tracing model (described in Section
7.2).

Coherence

Diffusers generally produce diffractive speckle patterns that depend greatly on the coherence
properties of the illumination [48]. Therefore, to design our system to be valid across a broad
range of objects and illumination, we must consider the effects of diffraction and coherence.

Diffraction depends on the wavelength and distance propagated, as compared to the size
scale of the object. These effects are captured by the Fresnel number, F , which provides a
guideline for describing the amount of diffraction (larger F means less diffraction effects) [47]:

F =
a2

zλ
, (7.7)

where z is the propagation distance and a is the size of the object under consideration (for
diffusers, we use a = σ). Generally, diffraction becomes important when F < 1, for example
outside of the small defocus regime [52]. Our ray optics model should thus be accurate as
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Figure 7.3: Simulation of diffuser caustics from plane wave illumination. (a) Space-angle plots for the
input plane wave, post-diffuser, and sensor plane. (b) The resulting irradiance at the sensor, generated by
integrating over θ. (c) Axial cross-section of rays passing through the diffuser to form caustic patterns at
the sensor plane. (d) 2D caustics predicted by 4D ray tracing.

long as the diffuser-to-sensor propagation distance corresponds to a Fresnel number larger
than F = 1.

Figure 7.4 compares the intensity evolution of a diffuser illuminated by a coherent plane
wave, using both wave and ray optics models. Our wave-optics model applies Fresnel prop-
agation to the electric field in Equation (7.4) with λ = 532nm, then computes irradiance at
propagation distance z as Ic(x, y, z) =

∣

∣E(x, y; z)
∣

∣

2. Our ray optics model uses the methods
discussed in Section 7.2 to compute the output positions of each ray, then calculates irradi-
ance, Ir, by binning the rays onto the same grid used in the wave model. Figure 7.4 shows
an x-z slice of the irradiance pattern generated by each method. Since wave optics captures
interference and diffraction effects, discrepancies are considered errors due to the ray optics
approximation.

Clearly, high-contrast caustic patterns arise before F = 1, though the rms error between
the wave and ray models is small, indicating that the ray optics model is valid. For larger
propagation distances (F < 1), the error is dominated by the interference fringes surrounding



CHAPTER 7. FOCAL PLANE DIFFUSER ENCODING OF LIGHT FIELDS 85

Figure 7.4: Simulated axial (x-z) slices of a plane wave after passing through a diffuser, under both our wave
optics and ray optics models. The red line corresponds to a Fresnel number of F = 1 (at z = 648µm for
our system), which demarcates approximately the propagation distance at which the ray and wave models
diverge. For smaller propagation distances, the models agree.

each caustic peak. This suggests that a good choice of propagation distance2 is slightly
less than F = 1, providing strong caustic patterns (thus good signal to noise), while also
making the system independent of illumination coherence properties3. This greatly simplifies
computation by allowing us to ignore lighting conditions and coherence, while still preserving
the phase-coding behavior of the diffuser.

Linear Model

Because we designed the system to operate in a regime where interference is negligible,
we effectively treat the object as temporally and spatially incoherent. That is, all light
striking a single detector pixel adds linearly in intensity. This enables the optical system to
be represented via a linear mapping from the 4D light field (radiance) before the diffuser,
L(x, y, θ, φ), to the 2D sensor irradiance, I(x0, y0).

To derive the linear forward mapping as a matrix, A, we consider sampled versions of
both L(x, y, θ, φ) and I(x0, y0). We discretize L(x, y, θ, φ) into 4D boxes, each with spatial
extent ∆x by ∆y and angular extent ∆θ by ∆φ. Figure 7.5 shows a 2D example with N
spatial samples and P angular samples at each position.

To construct A, consider that the first column is mapped by multiplying with a column
vector of zeros and a 1 in the first element. Physically, this corresponds to a bundle of light
rays striking the diffuser across an area ∆x centered at xn from angles spanning ∆θ centered
at θp, then propagating to the sensor. Therefore, column j = Pn+p of A is the sensor image
due to uniform illumination at x between xn −

∆x
2

and xn + ∆x
2

, and θ between θp −
∆θ
2

and

θp + ∆θ
2

. Each entry of A, ai,j, is the fraction of light that strikes pixel i from the light field
point indexed by j. This is equivalent to the fractional area of each sensor pixel in (x, θ)
space that falls within box j, as shown in Figure 7.5(a).

2This refers to the propagation distance from the diffuser to the sensor and is independent of amount of
depth present in the original scene.

3Note that this metric does not account for phase height, which may lead to larger discrepancies for
strong phase objects.
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Figure 7.5: (a) Finite-sized boxes (in grey) of the light field correspond to ray bundles hitting the diffuser.
The structure of each sensor pixel in (x, θ) takes on the shape of the sheared diffuser gradient. Here, each
band of color corresponds to all the (x, θ) pairs that strike a single sensor pixel. A bundle will span multiple
pixels in (x, θ) space. (b) Each ray bundle creates a unique caustic pattern on the sensor, which shifts
according to the input angle. The set of sensor pixels illuminated matches those within each bundle’s box in
(a). (c) The corresponding matrix structure for a light field consisting of N spatial samples with P angular
samples at each x. I ∈ R

k and L is a 1D vector L ∈ R
NP .

Only the 2D phase plate shape and refractive index are needed for computing the entire A

matrix. Extending to 4D implies a convenient method for generating A: for the jth column,
we generate many rays randomly distributed across light field bundle j, then compute their
output positions using (7.6). Finally, we bin rays into sensor pixels, then column-stack the
resulting image as column j of A. Extending this method to multiple colors is done by
repeating the above procedure at different wavelengths, accounting for the diffuser material
dispersion curve.

Inverse Problem

The ultimate goal of the linear forward model is to recover the 4D light field from a single
sensor measurement by solving the inverse problem. Here, we explore the properties of
A that enable stable inversion and how these numerical requirements map to the physical
system. Equation (7.6) states that output ray position is linearly related to the input angle
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and the diffuser gradient. Bundles sharing common (x, y) coordinates will exhibit the same
caustic structure for all incident angles; the only difference will be a lateral shift at the
sensor due to their relative input angle differences. This shifting behavior is visualized in
Figure 7.5b.

In the matrix, this shift behavior imparts a block circulant structure where columns
belonging to a common (x, y) are shifted copies of each other. The critical implication of
this is that it is possible for two different light field regions to strike the exact same set
of output pixels, while remaining distinguishable. Hence, the diffuser-encoded light field
recording process can be thought of as a multiplexing approach, since each pixel measures
a linear combination of points in light field space. This is equivalent to two columns of A

having nonzero elements in identical rows. If these rows have proportional values at each
nonzero pixel, the rows are linearly dependent and the problem is ill-posed.

In order to prevent this issue, the phase mask must have sufficient structure within each
bundle so that it creates distinct values in each row. This is the key to why a diffuser works:
its random surface has extremely low probability of repeating a pattern. However, this also
implies that we are not free to make the light field sampling arbitrarily dense in the lateral
direction. In other words, we must choose ∆x and ∆y to be sufficiently large compared
to σ so that distinct caustics are present within each bundle at the sensor. In practice,
setting ∆x and ∆y to be at least σ leads to reasonable inversion behavior. Additionally,
the angular sampling is limited by the sensor pixel pitch, since the change in angle between
two consecutive bundles must cause a shift at the sensor that is large enough to be sampled
correctly.

Once a well-conditioned A matrix has been constructed, we recover the 4D light field,
Lrec, from a 2D sensor image by solving the following least squares inverse problem:

Lrec = arg min
L
‖AL− I‖2

2 + τψ(L), (7.8)

where ψ(L) is a regularization function and τ is a scalar regularization parameter. As a
baseline, we solve the ℓ2 regularized problem using ψ(L) = ‖L‖2

2. In the experimental
section, we also explore the use of two nonlinear regularizers for exploiting sparsity: 3D
Total Variation (3DTV) regularization from Tian et al. [129] and ℓ1 regularization in the 2D
wavelet domain, similar to Veeraraghavan et al. [133]:

αrec = arg min
α
‖AW−1α− I‖2

2 + τ‖α‖1, (7.9)

where α is a vector of the wavelet coefficients for each sub-aperture image, and W−1 is the
inverse 2D wavelet transform operator. It follows that Lrec = W−1αrec.

7.3 Implementation

To implement our approach in practice, two key pieces are needed. One is the imaging system
itself, which is described in Figure 7.1. The other is a diffuser height map; we must either
use a known surface shape, or measure it. We propose here a phase-from-focus method
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for measuring the diffuser surface shape in situ. The height field for ray tracing can be
computed from the phase map using Equation 7.3. From this one-time calibration, we can
then computationally reconstruct light fields according to Section 7.2.

Experimental Setup

In our experiments, we use a 1 degree Light Shaping Diffuser (Luminit, LLC). Because
the diffuser-to-sensor propagation distance needed is short (approximately 650µm) and our
physical sensor’s packaging does not allow the diffuser to be placed so close, we add a 4f
relay system with 1.33× magnification to image the diffuser onto the sensor. This introduces
unwanted aberrations in the diffuser wavefront; however, our TIE measurement incorporates
these into the result, thereby mitigating their effects on our final images. To record images,
we use an imaging lens with f=125mm stopped down to f/16. The total field of view is
approximately 25 mm laterally. Our PCO Edge 5.5 sCMOS monochrome camera has 5
Megapixels with pixel pitch 6.5 µm. The image of the diffuser is placed 648µm, corresponding
approximately to F = 1, in front of the sensor.

Phase imaging for diffuser calibration

Since phase is linearly related to surface profile and can be measured with sub-wavelength
accuracy, phase retrieval methods are a practical means for calibrating the diffuser surface in
situ. In particular, our method uses only a few images taken at different focus positions [62],
which is easy to implement in our existing system by translating the camera between images.
The TIE describes how intensity evolves axially with respect to phase [127]

∂I(x, y)

∂z
= −

1

k
∇⊥•[I(x, y)∇⊥φ(x, y)], (7.10)

where ∇⊥ is the gradient operator in the lateral (x, y) dimensions only and k = 2π/λ is
the wave vector magnitude. Using this equation, a few images taken with small defocus can
be used to solve for phase. The algorithm we use is a GP-TIE solver [62] which is offered
open-source on Laura Waller’s Computational Imaging Lab website.4

Experimentally, we calibrate the system using a coherent collimated plane wave from
a 532 nm laser diode. The camera is mounted on a micrometer axial translation stage,
which we use to take a focus stack of 100 images with z step size of 25.4 µm. In fact, only 5
through-focus images are necessary for a good phase result which correctly predicts the other
intensity images; however, we use the full stack to ensure robustness. A few raw images are
shown in Figure 7.6, along with the recovered phase map. Notice that the diffuser becomes
invisible at focus, where it is a pure phase delay that does not change intensity. The phase
profile recovers an average angle of 1.4 deg after magnification, and σ = 18µm, with rms
surface height of 1.15µm. We observe good agreement between the measured caustics within
the Fresnel range and the caustics predicted using our matrix.

4http://www.laurawaller.com/opensource/
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Figure 7.6: A stack of irradiance images collected at different focus positions in our experimental setup are
used to recover the phase map of the diffuser surface, which directly relates to height.

Simulations

In order to account for the fact that light field radiance values may change over the span of
a single bundle in the inversion matrix, we use a high spatial resolution forward matrix to
simulate the sensor data and a lower resolution one for inversion. Our synthetic input light
field, L(x, y, θ, φ), is rendered using POV-Ray with 5 × 5 angular samples and 512 × 512
spatial samples using scene files shared from [133]. We then use the ray tracing approach
described in Section 7.2 in conjunction with the experimentally measured diffuser data from
Section 7.3 to create a forward matrix, Af , that projects L(x, y, θ, φ) onto a 1024 × 1024
pixel sensor. We simulate the sensor data as the matrix-vector product AfL, then add 5%
Gaussian noise. To invert the problem, we trace a second lower resolution matrix, A, that
projects back to 128×128 spatial samples and 5×5 angular samples in light field space. We
then use A to solve for L.

Inverse Problem

The inverse problem is solved by the gradient descent solver LSMR [43] for the ℓ2 problem and
Two Step Iterative Shrinkage/Thresholding (TwIST) for 3DTV and ℓ1 [17] to solve equations
(7.8) and (7.9). We choose the angular resolution such that each successive caustic pattern
shifts by at least 1 pixel compared to the neighboring bundles. The spatial sampling is
determined heuristically, but we find it must be at least σ to obtain good results.
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(a) Simulated sensor data

(c) space-angle plot of original light field

(e) No digital refocus (f) Front focus (g) Medium focus      

      PSNR 25 dB

(b) Close up of simulated caustics

(d) space-angle plot of recovered field

PSNR 18.5 dB

(h) Ground truth at 

      medium focus

Figure 7.7: (a) Simulated sensor data with a zoom-in to show caustics shown in (b). We achieve good
qualitative agreement between our simulated caustics and those shown in figure 7.8(b). (c) An (x, θ) plot
from the original light field along the black line in (e)-(h), with 5% Gaussian noise added. (d) Image at
same (x, θ) from our recovered light field. We are able to recover full parallax and occlusion effects. (e)-
(g) Reconstructed synthetic-focus images generated from recovered light field. (e) No digital refocus, (f)
refocused at the front plane, and (g) refocused on the blue bunny in the mid-focus. (h) Ground image of
original light field refocused to same plane as (g).

7.4 Results

Simulation Results

The rendered light field is represented in RGB form, so we solve each color independently
using the 2D wavelets with ℓ1 regularizer. Figure 7.7 shows the simulated sensor data as
well as the caustic patterns and the original and reconstructed (x, θ) plots along one line
in the image. Figure 7.7 (e) shows the irradiance detected at the diffuser, computed by
summing the recovered light field over θ and φ. We use the shift-and-add technique [98] to
digitally refocus the reconstructed light field to several planes and compare with the original
refocused light field. We achieve good agreement between the original light field and our
reconstruction, with PSNR of 25 dB in the synthetic focus images, and 18.5 dB in the (x, θ)
images.
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Figure 7.8: Experimental light field reconstruction from two playing cards using wavelet denoising. (a) Raw
data, (b) close-up of diffuser caustics. (c) An x-θ plot along the red line in (d)-(f). Notice that the parallax
due to the depth differences manifests as strong angular variations, and we also observe occlusion effects in
the center. (d) Shows the reconstructed light field projected to z = 0 (no refocusing). (e) and (f) are the
digitally refocused images at +40 mm and −40 mm, respectively.

Experimental Images

With the calibration complete, individual diffuser-blurred images are recorded through the
imaging path of the system. We restrict the primary lens aperture to f/16 solely for the
purpose of controlling aberrations in the 4f system. We solve the inverse problem using
TwIST with the 3DTV regularizer or with an ℓ1 regularizer on in the 2D wavelet coefficients of
each sub-aperture image. We are able to reconstruct a light field with 11×11 angular samples
in each direction and 170 × 170 lateral samples from a 2048 × 2048 sensor measurement,
and demonstrate a large refocus distance. Figure 7.8 shows experimental results for a pair
of playing cards placed +40 mm and −40 mm from the native focal plane, using 3DTV
regularization. In the (x, θ) plot, strong angular variation is visible, including occlusion
effects. Figure 7.9 shows another experimental set of images from a ruler tilted at an angle
to the optical axis, using wavelet regularization.

We find that the ℓ2 regularizer performs poorly on real-world data, destroying angular
structure before it brings noise under control. 3DTV is extremely good at suppressing noise,
but imparts a distinctive piecewise-constant look to the sub-aperture images that is only
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(b) No refocus (c) Front refocus(a) Raw image

Figure 7.9: Experimental light field reconstruction of a ruler that is tilted relative to optical axis by approx-
imately 30 degrees. (a) Raw data, (b) no refocus, and (c) focused to −20 mm.

Figure 7.10: The effects of different regularizers on experimental reconstructions. (Top row) The recon-
structed light fields refocused at the front plane. (Bottom row) (x, θ) plots along the red line. (a) ℓ2

regularization suffers from noise artifacts, and increasing τ destroys angular information before adequately
reducing noise. (b) ℓ1 regularized 2D Wavelets is able to reduce noise significantly without destroying angular
information. (c) 3DTV qualitatively performs the best in this case, due to the piecewise constant nature of
this object.

suitable for piecewise-constant scenes. For natural objects, we find the most robust approach
to be ℓ1 regularized 2D wavelets. Figure 7.10 shows an example of all three regularizers
applied to the playing card image from Figure 7.8.

7.5 Limitations

While the thin phase plate approach provides high light throughput, we find that significant
noise is present in the sub-aperture images, which we attribute to ray error due to aberra-
tions in the 4f relay lenses. Although the TIE phase measurement helps overcome this by
measuring the aberrated diffuser phase for monochromatic on-axis illumination, it does not
compensate for off-axis or chromatic aberrations induced by the relay optics. This severely
limits the F-numbers and wavelengths we are able to use, but is not a fundamental limitation
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of our approach. To overcome this, we plan to place the diffuser directly in front of the sen-
sor in the future. This will dramatically improve consistency of our phase measurement for
different illumination angles, and will enable us to model polychromatic illumination using
the diffuser’s material dispersion curve. This will also have the added benefit of making the
system more compact.

Because we solve for the radiance within an entire ray bundle of A, we are unable to
resolve variations in the light field that happen across spatial scales smaller than each bundle.
We observe, empirically, that this leads to artifacts in the recovered sub-aperture images at
very strong edges.

Lastly, our approach requires significant computational time as compared to microlens
systems. Creating an entire matrix requires roughly 20 billion rays and takes 20-60 minutes
to create the calibration matrix. However, once it is computed, solving the inverse problem
takes 1-2 minutes.

7.6 Future Work

Because the angular sampling is determined by the diffuser-sensor distance, we believe it
may be possible to adjust the focus distance to compensate for changes in the main lens F-
number. The matrices for various focus distances could be precomputed, enabling F-number
flexibility in a way that lenslets cannot accomplish.

In our prototype system, the spatial and angular sampling has been determined heuristi-
cally. The impact of the discretization in the matrix representation is still an open problem
the warrants future work.

We also believe it would be possible to build a camera that operates lens-free, provided the
diffuser characteristics are appropriately chosen. Finally, the benefits of compressed sensing
are not born out in this system, largely due to the compactness of the spatial footprint of
each ray bundle on the diffuser. It would be interesting to explore compressive sampling
approaches in snapshot light field capture [133, 84], though it is difficult to compete with
direct sampling approaches using regular microlenses (after all, a condition number of 1 is
pretty good!).
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Chapter 8

Appendix

8.1 A not-so-brief comment on vector notation

Throughout this work I will define v as a vector. That is, it follows the rules of a vector
space: for w, u, and u in vector space V over field F , the following definitions hold:

• element-wise addition + : V × V → V . In English, + takes vectors u and v and
produces w, where each element of w is the sum of corresponding elements in u and
v. Note w must remain in V

• Scalar multiplication · : F × V → V . In English, for scalar a ∈ F and vector v ∈ V ,
a ·v = av, where each entry in v is multiplied by a. Again, the result, av must remain
in V .

This can be confusing because multiple arguments will be used to index v, while convention-
ally, vectors are specified by a single index (e.g. a column vector). Note, however, that these
definitions for + and · do not require the vectors to have a particular shape. For instance,
the notation v[x, y] is used in 2D imaging to denote that two spatial variables are needed
to describe the physical quantity of interest. It is worth pointing out a few technicalities
to avoid confusion within this convention. First, for an M × N grid, v would constitute a
vector of dimensionality MN , not 2. However, commonly, such an image would be referred
to as 2-dimensional (or 2D), despite having dimensionality MN in the sense of vector spaces.
For this dissertation, the term dimension will be reserved to speaking about the number of
degrees of freedom needed to accurately describe either the continuous image v or the dis-
crete image v. Second, while it is convenient to index v[x, y] with two arguments, this can
equivalently be accomplished with a single index that is a function of x and y: v[x, y] = v[n]
where n = Mx+ y. Note that all other axioms of vector spaces hold as well cite.

Finally, we will assume that the optical system performs a linear transformation of v,
mapping from the object space to sensor space. This can be represented as linear map
A : V → W , where V is the vector space of possible objects, and W is the vector space of
sensor exposures. When working with discrete inputs and outputs, as will be the convention
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from here on, A can be thought of as a matrix, A. However, the convention of matrices being
specified by two indices (row and column) becomes again confusing when recording multi-
dimensional inputs. To deal with this, we use the same trick as above, realizing that both
the input and output spaces can be indexed with multiple variables for convenience, but can
always be equivalently represented using a single index in each space. Hence, denoting linear
maps between two multi-dimensional spaces using the matrix-vector product, b = Av, does
not require us to be considering fundamentally 1D signals. As a final note, the matrix A

will frequently be computed by composing linear operators that operate along independent
dimensions of the input. For example, a 2D Discrete Fourier Transform (DFT) that applies
the 2D DFT to v[x, y] along the x- and y-directions can equivalently be written as a matrix
F. In practice, it is more efficient to operate on multi-dimensional arrays, so this matrix
notation will be reserved for algebra and compact notation, with multi-dimensional linear
operators being preferred during implementation. In summary, do not be confused by the
convention that vectors have one index and matrices have two. It is perfectly fine to index
the row and column spaces of a discrete linear system with more than one index each.

8.2 Build-your-own diffusercam

This section written by Camille Biscarrat and Shreyas Parthasarathy under the supervision
of Nick Antipa, Grace Kuo, Laura Waller.

8.3 Introduction

This guide is meant as a tutorial for the lensless image reconstruction algorithms used in Dif-
fuserCam. It provides a brief overview of the optics involved and how it was used to develop
the most current version. See our other document (“How to build a (Pi) DiffuserCam") for
information on how to actually build and calibrate DiffuserCam.

Why Diffusers?

For most 2D imaging applications, lens-based systems have been optimized in design and
fabrication to be the best option. However, lensless imaging systems have not been investi-
gated nearly as much. DiffuserCam is a lensless system that replaces the lens element with
a diffuser (a thin, transparent, lightly scattering material). See Figure 8.1 below.

Possible advantages include:

• Lensless systems are lightweight. Most of the weight and size of imaging systems comes
from the physical constraints of lens design. Substituting lenses for a thin, flat material
can allow for smaller, lighter imaging systems.

• Diffusers require less precise fabrication. We demonstrated that DiffuserCams (of vary-
ing quality) can be created by household scatterers such as Scotch tape. Since the
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Figure 8.1: Cartoon schematic of DiffuserCam

structure of a diffuser is naturally random, you can create a DiffuserCam yourself
without access to precise fabrication tools.

• Possibility of 3D imaging/microscopy. We’ve also shown that lensless cameras can
capture 3D images and are robust to missing or dead pixels (see this paper), both of
which are promising in the field of microscopy.

DiffuserCam

Every diffuser has a “focal plane". Instead of mapping a faraway point source to a point
in this plane (as lenses do), the diffuser maps a point source to a “caustic pattern" (see
Fig. 8.2a) over the entire plane. So, replacing the lens in a camera with a diffuser of the
same focal length creates a system that maps points in the scene to many points on the
sensor (see Fig. 8.2b)

(a) Caustic image of a single point
source

(b) Sensor reading of a hand (c) Reconstructed image of a hand

Figure 8.2: The 3 important steps in DiffuserCam’s operation.

The key to DiffuserCam’s operation is that, while light information is spread out over
the sensor, none of that information is lost. You can see in Fig. 8.2b that the sensor reading

https://www.osapublishing.org/DirectPDFAccess/D2EA409D-D42B-6C19-404EADBAD69DED27_380297/optica-5-1-1.pdf?da=1&id=380297&seq=0&mobile=no
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won’t look like the object. However, we can recover the object image using a reconstruction
algorithm that requires a single calibration measurement of the caustic produced by a point
source. This measurement, called a point spread function (PSF), completely characterizes
the scattering behavior of the diffuser (under certain assumptions).

Imaging Systems

To derive the algorithm and understand where these assumptions come from, it’s helpful to
think of the imaging system as a function that maps objects in the real world to images on
the sensor. More precisely, it is a function f that maps a 2D array v of light intensity values
(the scene) to a 2D array of pixel values b on the sensor. Recovering the scene v from a
sensor reading b is equivalent to inverting this function (though sometimes the function isn’t
invertible):

f(v) = b =⇒ v = f−1(b)

First, we need to describe f mathematically. In computational imaging, characterizing
f (usually through a theoretical model of the optics involved) is known as constructing a
“forward model," and inverting it efficiently is known as the corresponding “inverse problem."
This tutorial covers DiffuserCam algorithms in roughly that order. Note that f is not always
invertible, but that is usually because many v’s can map to the same b. So, we often introduce
priors, or assumptions that constrain the possible v’s in order to construct an estimate for
the scene.

8.4 Problem Specification

Forward Model

Roughly speaking, f is the composition of everything that happens to light as it travels
from the object scene to the sensor. Each ray from a point in the scene propagates a certain
distance to the diffuser and is locally refracted by the diffuser surface, then propagated again
to the sensor plane. Whether or not the ray hits the sensor depends on how it was bent –
we will start by ignoring this issue and addressing the finite sensor size after constructing
the rest of the model.

We make the following approximations:

• Shift invariance: A lateral shift of the point source causes a lateral translation of the
sensor reading.

• Linearity: Scaling the intensity of a point source corresponds to scaling the intensity
of the sensor reading by the same amount. Also, the pattern due to two point sources
is the sum of their individual contributions. These two assumptions amount to having
incoherent light sources and a sensor that responds to light intensity linearly. Both of
these conditions are often satisfied.
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Figure 8.3: As the point source shifts to the right, the image on the sensor shifts to the left

(a) Point source on axis (b) Point source off axis (c) Superposition of both point
sources

Figure 8.4: Each point source creates a pattern on the sensor. When two point sources are present,
the sensor reads the superposition of the patterns created by each individual point source.

In short, the diffuser system is assumed to be linear shift-invariant (LSI). We assume that
v can be represented as the sum of many point sources of varying intensity and position.
By the LSI property of the system, the output f(v) corresponding to the input v can be
represented as a 2D convolution with a single PSF h:

f(v) = h ∗ v

Since f is linear, it is conceptually helpful to think of it as a matrix. However, matrices
operate on vectors, not 2D images like v and b. We can get around this by vectorizing the
images – creating a vector that contains the same information as the image by stacking all
of the columns on top of each other. Thus our mathematical model can consistently treat
these images as 1-dimensional vectors. For example, an m× n sensor reading would now be
an mn-length vector. This trick allows us to represent our convolution as a 2D matrix H

where h ∗ v ⇐⇒ Hv. For all the following derivations, we will reserve lowercase letters
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for images, and bolded lowercase letters for the corresponding vectorized images. Function
notation (with parentheses or braces denoting arguments) will be used to denote linear
operators, and bolded uppercase letters will be used to denote the matrix representations of
these operators.

Now that we’ve constructed a model for how the light propagates to the sensor plane,
we need to account for the sensor’s finite size. While all of the light rays hit the sensor
plane, not all of them hit the physical sensor. So while the output of the diffuser system is
a convolution, only part of that convolution is recorded on the sensor. In other words, the
2D sensor reading is a cropped convolution: f(v) = crop(h ∗ v). The equivalent vectorized
formulation is

crop(h ∗ v) ⇐⇒ CHv

f(v) ⇐⇒ Av

where C is a matrix representation of cropping. We use A as shorthand for CH. This
equation serves as our forward model.

Inverse Problem

A first approach to solving for v, which ignores the crop, would be to try Wiener deconvo-
lution. This method is a common way to reverse convolution, but it relies on diagonalizing
the measurement matrix, and cannot model the cropping behavior at all (see our ADMM
Jupyter notebook for explanation of diagonalization). While Wiener deconvolution would
work if A were convolutional, i.e. A = H, adding in the crop makes A too complex to invert
analytically.

Instead, we must find an efficient numerical way to “invert" f . In general, f isn’t invertible
at all: multiple v’s can be mapped to the same b. We can see A isn’t invertible for two
reasons:

• Information is lost in the crop operation, so C is not an invertible matrix.

• Convolving with a fixed function, e.g. h, is not always invertible, so H is not necessarily
invertible.

The typical approach to solving Av = b for non-invertible A is to formulate it as an op-
timization problem, which has the same form regardless of whether A is convolutional or
not:

v∗ = argmin
v

1

2
‖Av− b‖2

2

When v = v∗, Av∗ = b and the objective function Av− b is minimized.
It is worth noting that A is extremely large, and scales with the area of the sensor. Our

sensor has ∼ 106 pixels, so A would have on the order of 106 × 106 = 1012 entries. While
A is useful mathematically, it’s computationally useless to ever load/store it in memory.
Whichever algorithm we choose to solve the minimization problem has to avoid ever loading

https://waller-lab.github.io/DiffuserCam/tutorial/ADMM.html
https://waller-lab.github.io/DiffuserCam/tutorial/ADMM.html
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A in memory. Our general approach to addressing this issue will be to make sure the
algorithm can be implemented in terms of the linear operators that make up f : crop and
convolution. Both of these operations have fast implementations on 2D images that don’t
require loading their corresponding matrices.

8.5 Solving for v

Gradient Descent

Gradient descent is an iterative algorithm that finds the minimum of a convex function
by following the slope “downhill" until it reaches a minimum. To solve the minimization
problem

minimize g(x),

we find the gradient of g wrt x, ∇
x
g, and use the property that the gradient always points

in the direction of steepest ascent. In order to minimize g, we go the other direction:

x0 = initial guess

xk+1 ← xk − αk∇g(xk),

where α is a step size that determines how far in the descent direction we go at each iteration.
Applied to our problem:

g(v) =
1

2
‖Av− b‖2

2

∇
v
g(v) = AH(Av− b),

where AH is the adjoint of A. Again, we want to write A as a composition of linear operators
that are easy to implement, so we never have to deal with A itself. For a product of arbitrary
linear matrices FG, the adjoint is (FG)H = GHFH . In our case:

Av = CHv

AHv = HHCHv

We’ve reduced the problem of finding the adjoint of A to finding the adjoints of H and C.
Finding the adjoint of H: The adjoint of H, a convolution, can be found by writing the

operation using Fourier transforms. The convolution theorem states:

Hv ⇐⇒ h ∗ v = F−1(F(h) · F(v)),

where the · denotes pointwise multiplication, and F denotes the 2D Fourier transform opera-
tor. This theorem is also known as “convolution of two signals in real space is multiplication
in Fourier space." Next, we vectorize the previous statement by recognizing that 2D Fourier
transforms are linear operators, so we have the equivalence F(v) ⇐⇒ Fv. To fully write
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H as a product of matrices, we must also convert the pointwise multiplication to a matrix
multiplication:

F(h) · F(v) ⇐⇒ diag(Fh) Fv.

Also, FH = F−1 by “unitarity" of the Fourier transform. Finally, the adjoint of a diagonal
matrix is formed by taking the complex conjugate of its entries.

In summary,

HHv =
(

F−1 diag(Fh) F
)H

v

=
(

FH diag(Fh)H (F−1)H
)

v

= FH diag(Fh)∗ F(v),

where ∗ denotes complex conjugation.
Finding the adjoint of C: Finally, we note that the adjoint of cropping, CH , is zero-

padding (see section 2.4 the appendix)
Plugging in to the formula for AH , we find







A = CF−1 diag(Fh) F

AH = F−1 diag(Fh)∗ FCH
⇐⇒







f(v) = crop
[

F−1
{

F(h) · F(v)
}

]

fH(x) = F−1
{

F(h)∗ · F(pad [x])
}

,

where we have written A in its matrix formulation (left) and the corresponding way it
is implemented in code (right). Note that we converted efficient operations like pointwise
multiplication to matrices purely for the derivation. See the GD Jupyter notebook for the
actual implementation of these operators.

GD Implementation

The iterative reconstruction of v looks like:

v0 = anything

vk+1 ← vk − αkAH(Avk − b)

Repeat forever

F(h) can be precomputed (because h is measured beforehand), and the action of diag(Fh)H

can be implemented as pointwise multiplication with the conjugate F(h)∗. Since all the
other operations involve only Fourier transforms, every operation in the gradient calculation
can be efficiently calculated. For implementation details, see the GD Jupyter notebook.

In our problem, we need to keep in mind the physical interpretation of v. Since it
represents an image, it must be non-negative. We can add this constraint into the algorithm
by “projecting" v onto the space of non-negative images. In short, we zero all negative pixel
values in the current image estimate at every iteration.

One thing to keep in mind is the step size, αk. We want it to be large at first – “coarse"
jumps to get closer to the minimum quickly. As we get closer, large steps will cause the

https://waller-lab.github.io/DiffuserCam/tutorial/appendix.pdf
https://waller-lab.github.io/DiffuserCam/tutorial/GD.html
https://waller-lab.github.io/DiffuserCam/tutorial/GD.html
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estimate to “bounce around" the minimum, overshooting it each time. Ideally we would
want to decrease the step size with each iteration at a rate that would ensure continual
progress. While varying step size might yield a faster convergence, it requires hand tuning
and can be time consuming. A constant but sufficiently small step size is guaranteed to
converge, with no parameter tuning necessary. In our case, it is possible to calculate the

largest constant step size that guarantees convergence in terms of A: 0 < α <
2

‖AHA‖2

,

where ‖AHA‖2 is the maximum singular value of AHA (see this page for why). The GD
Jupyter notebook shows how we actually approximate this singular value (using H instead).

Lastly, all convergence guarantees are for an infinite number of iterations: “repeat for-
ever". In practice, after a certain number of iterations (which varies by application) the
updates are too small to change the estimate significantly. In our case, after incorporating
the speedup techniques below, most of the progress is seen in the first 150-200 iterations.
Sharper, more detailed images may require a few hundred more.

We also need to supply an initial “guess" of our image. It doesn’t actually matter what
we use for this. Currently, we are using a uniform image of half intensity, but you could
initialize with all 0’s or a random image.

Incorporating all of these details, we have:

v0 = I/2

for k = 0 to num_iters:

v′
k+1 ← vk −

1.8

‖AHA‖
AH(Avk − b)

vk+1 ← proj
v≥0

(v′
k+1)

Gradient Descent Speedup

Gradient descent as written above works, but in practice, people always add a “momentum
term" that incorporates the old descent direction into the calculation of the new descent
direction. This guards against changing the descent direction too much and too often,
which can be counterproductive. We implement momentum by introducing µ, a factor that
determines how much the new descent direction is determined by the old descent direction.
Typically µ = 0.9 is a good place to start. Another common practice is to use “Nesterov"
momentum, which involves an intermediate update p. We call this method, along with the
projection step, “accelerated projected gradient descent".

v0 = I/2, µ = 0.9, p0 = 0

for k = 0 to num_iters:

pk+1 ← µpk − αkgrad(vk)

v′
k+1 ← vk − µpk + (1 + µ)pk+1

vk+1 ← proj
v≥0

(v′
k+1)

See this page for more details on parameter updates using momentum terms.

https://calculus.subwiki.org/wiki/Gradient_descent_with_constant_learning_rate_for_a_quadratic_function_of_multiple_variables
https://waller-lab.github.io/DiffuserCam/tutorial/GD.html
https://waller-lab.github.io/DiffuserCam/tutorial/GD.html
http://cs231n.github.io/neural-networks-3/#sgd
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FISTA

Another way to speed up gradient descent is the Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA). This also computes the accelerated projected gradient descent, but is more
flexible about what the projection step (or more generally the “proximal" step pL) does. For
example, one can show that doing accelerated descent with ℓ1-regularization only requires
exchanging the projection step with a soft-thresholding step. Enforcing sparsity in other
domains (for instance, on the gradient of the image rather than the image itself) can be
achieved via soft-thresholding transformations of the image. This algorithm is very useful
for solving linear inverse problems in image processing.

Each iteration is as follows (see this paper for a derivation and explanation of each term):

v0 = I/2, t1 = 1, x0 = v0

for k = 0 to num_iters:

xk ← pL(vk)

tk+1 ←
1 +

√

1 + 4t2k

2

vk+1 ← xk +
tk − 1

tk+1

(xk − xk−1)

ADMM

Although gradient descent is a reliable algorithm that is guaranteed to converge, it is still
slow. If we want to process larger sets of data (e.g. 3D imaging), have a live feed of
DiffuserCam, or just want to process images more quickly, we need to tailor the algorithm
more closely to the optical system involved. While this introduces more tuning parameters
(“knobs" to turn), speed of reconstruction can be drastically improved. Here we present
(without proof) the result of using alternating direction method of multipiers (ADMM) to
reconstruct the image.

We will only briefly motivate the use of ADMM and then provide the derivation of the
update steps specific to our problem. For background on ADMM, please refer to sections
2 and 3 of: Prof. Boyd’s ADMM tutorial. To understand this document, background
knowledge from Chapters 5 (Duality) and 9 (Unconstrained minimization) from his textbook
on optimization may be necessary.

Recall the original minimization problem:

v̂ = argmin
v≥0

1

2
‖b−Av‖2

2, (8.1)

where 2D images are interpreted as vectors. We seek to split the single minimization over

https://people.rennes.inria.fr/Cedric.Herzet/Cedric.Herzet/Sparse_Seminar/Entrees/2012/11/12_A_Fast_Iterative_Shrinkage-Thresholding_Algorithmfor_Linear_Inverse_Problems_(A._Beck,_M._Teboulle)_files/Breck_2009.pdf
http://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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the vector v into separable minimizations – for example:

v̂ = argmin
w≥0,x

1

2
‖b−Cv‖2

2

s.t. x = Hv, w = v,

(8.2)

where we have decomposed the action of DiffuserCam C = CH into the convolution H

followed by a crop C. The primary reason is to make the expression more amenable to the
ADMM algorithm, which adds a set of “update steps“ for each additional constraint. If we
don’t find a nice decomposition, some of these updates will be inefficent to calculate.

In addition, because of these parallel update steps, we can add constraints (prior infor-
mation) easily. A common useful prior we add is to encourage the gradient of the image
to be sparse – most natural images can be approximated by piecwise constant intensities.
Typically, gradient sparsity is enforced through “total variation" regularization, where we
include the ℓ1-norm of the gradient in our objective function:

v̂ = argmin
w≥0,u,x

1

2
‖b−Cx‖2

2 + τ‖u‖1

s.t. x = Hv, u = Ψv, w = v,

(8.3)

where Ψ is a derivative (difference) operator.
The next step is to form the augmented Lagrangian (see section 2.3 in the ADMM refer-

ence), which can be directly read off from the constraints and objective function:

L({u, x, w,v}, {ξ, η, ρ}) =
1

2
‖b−Cx‖2

2 + τ‖u‖1

+
µ1

2
‖Hv− x‖2

2 + ξ⊺(Hv− x)

+
µ2

2
‖Ψv− u‖2

2 + η⊺(Ψv− u)

+
µ3

2
‖v− w‖2

2 + ρ⊺(v− w)

+ ✶+(w),

(8.4)

where the ✶+(w) term arises from the implicit constraint w ≥ 0:

✶+(w) =







∞ w < 0

0 w ≥ 0

The Lagrangian dual approach to minimizing the objective function is to solve the fol-
lowing optimization problem:

maximize
ξ,η,ρ

min
u,x,w,v

L({u, x, w,v}, {ξ, η, ρ}) (8.5)

The min above indicates that, ideally, we would want to jointly minimize over all the
primal variables (u, x, w,v) first, before performing the outer maximization over the dual

https://en.wikipedia.org/wiki/Total_variation_denoising
http://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf#page=13
http://stanford.edu/~boyd/papers/pdf/admm_distr_stats.pdf#page=13
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variables (ξ, η, ρ). The ADMM algorithm is a specific way of iteratively finding this optimal
point. In reality, we only have estimates of each of the variables, so the algorithm updates
our estimates for the minimum primal variables during every iteration that solves for the
maximum dual variables.

Based on this paradigm, we can write down all the intermediate updates that take place
in one “global" update step:

Primal Updates:































uk+1 ← argminu L({u, xk, wk,vk}, {ξk, ηk, ρk})

xk+1 ← argminx L({uk+1, x, wk,vk}, {ξk, ηk, ρk})

wk+1 ← argminw L({uk+1, xk+1, w,vk}, {ξk, ηk, ρk})

vk+1 ← argmin
v
L({uk+1, xk+1, wk+1,v}, {ξk, ηk, ρk})

Dual Updates:



















ξk+1 ← ξk + µ1(Hvk − xk+1)

ηk+1 ← ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ← ρk + µ2(vk+1 − wk+1)

Notice that each dual update step tries to solve the maximization problem via gradient
ascent. In each global iteration, we make one step in the ascent direction.

Next, for each primal variable, the individual optimization problem only depends on the
terms in the Lagrangian corresponding to that variable. For example, in the u-update, we
only need to include the terms τ‖u‖1,

µ2

2
‖u−Ψv‖2

2, and η⊺(u−Ψv); all the other terms are
constant with respect to u. So, we have:































uk+1 ← argminu τ‖u‖1 + +µ2

2
‖Ψvk − u‖

2
2 + η⊺k(Ψvk − u)

xk+1 ← argminx
1
2
‖b−Cx‖2

2 + µ1

2
‖Hvk − x‖

2
2 + ξ⊺k(Hvk − x)

wk+1 ← argminw
µ3

2
‖vk − w‖

2
2 + ρ⊺k(vk − w) + ✶+(w)

vk+1 ← argmin
v

µ1

2
‖Hv− xk+1‖

2
2 + µ2

2
‖Ψv− uk+1‖

2
2 + µ3

2
‖vk+1 − wk+1‖

2
2



















ξk+1 ← ξk + µ1(Hvk − xk+1)

ηk+1 ← ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ← ρk + µ2(vk+1 − wk+1)

The primal minimization updates can be solved using standard convex optimization tech-
niques, which are worked out in the DiffuserCam Derivations Supplement. The results are:

uk+1 ← T τ
µ2

(

Ψvk + ηk/µ2

)

xk+1 ← (C⊺C + µ1I)−1 (ξk + µ1Mvk + C⊺b)

wk+1 ← max(ρk/µ3 + vk, 0)

vk+1 ← (µ1M
⊺M + µ2Ψ

⊺Ψ + µ3I)−1rk,

ξk+1 ← ξk + µ1(Hvk+1 − xk+1)

ηk+1 ← ηk + µ2(Ψvk+1 − uk+1)

ρk+1 ← ρk + µ2(vk+1 − wk+1)
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where
rk = (µ3wk+1 − ρk) + Ψ⊺(µ2uk+1 − ηk) + M⊺(µ1xk+1 − ξk)

8.6 Miniscope3D supplemental details

Microlenses vs Gaussian Diffuser

For our phase mask, we choose a microlens array instead of the Gaussian diffuser used in our
previous work11. This is because the microlenses can achieve point spread functions (PSFs)
with higher SNR and frequency content than the diffuser (see Fig. 8.5), due to their better
concentration of light in focus. Microlenses focus light into small focus spots, with dark areas
between them, as opposed to the diffuser, which has some light spread between the caustics,
generating unwanted low frequencies in the PSFs. Sharper focus spots in the microlens PSF
mean that the SNR of the measurements is better and the inverse problem better posed.
While using fewer focal spots would improve 2D measurement SNR and resolution, using
a small number of microlenses does not provide enough multiplexing to gain 3D capability
over a large depth range.

Diffuser Microlenses

P
S

F
P

o
w

e
r 

s
p

e
c

tr
u

m

500 1000 1500 2000

500

1000

1500

2000

0

0.

0.

0.

0.

10.1

0

1

0
1 mm

f y f y

f
x

f
x

Figure 8.5: Comparison of experimental PSFs resulting from a Gaussian diffuser and our microlens phase
mask. The microlenses generate PSFs with more high-frequency content, as seen in the power spectrum.
The microlenses also have better light concentration; to achieve the same brightness as the microlenses PSF,
the diffuser requires 4× the exposure time.
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Axial Resolution

We determined the axial resolution by imaging a thin layer of 4.8 µm fluorescent beads.
Because it is difficult to controllably place two beads at specific axial separation distances,
raw data from a single bead at different depths are digitally added in order to synthesize
a measurement of two layers of beads with varying separations. Figure 8.6 shows that we
achieve a uniform 15µm axial resolution across our depth range of 360 µm. This closely
matches with the axial full-width-half-maximum (FWHM) we observe in the 3D fluorescent
beads sample in the main-paper Results section.

Reconstruction XZ Projections
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Figure 8.6: Reconstructions results demonstrating 15µm axial resolution across our depth range. On left
are x-z projections of the 3D reconstruction for the case of two layers of 3 beads each, separated by 15 µm
axially. At right we show cross-cuts of the projections demonstrating clear resolving of the beads. The rows
show results for placing the pairs of beads at different axial distances from the native focus plane.

Lateral Resolution

Examining a single microlens, the Rayleigh criterion defines the minimum resolvable sepa-
ration of two diffraction-limited spots on the sensor, δx′, in terms of the wavelength, λ, the
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microlens clear aperture, ∆ML, and the distance from the mask to the sensor, t:

δx′ =
1.22λt

∆ML

= Mδx. (8.6)

Here we have used the fact that two points in object space separated by δx will appear as a
separation of Mδx on the sensor. Thus, we need to calculate the magnification of our system.

We use ray transfer matrices (with a paraxial approximation) to evaluate the magnifica-
tion of the system. The system ABCD matrix is:

[

A B
C D

]

=

[

1 t
0 1

] [

1 0
−1/fµ 1

] [

AG BG

CG DG

] [

1 Q
0 1

]

(8.7)

and the system magnification, which is used in the lateral resolution derivation, is:

M = B =

(

1−
t

fµ

)

AG + tCG. (8.8)

where AG, BG, CG, & DG are elements for the GRIN’s ray transfer matrix (AG = 0.0725,
BG = 1.6931, CG = −0.599, and DG = 0.124) and t is the distance from the phase mask to
the sensor. Given that fµ, the microlens focal length, ranges from 7 mm to 25 mm, combined
with the small value for AG, this results in the first term, (1− t/fµ)AG, being negligible and
the magnification can be approximated simply as tCG. This shows that for our system, the
magnification is given by:

M ≈ tCG. (8.9)

Substituting Eq. 8.9 into Eq. 8.6 and solving for ∆ML, we get an expression for the
microlens clear aperture needed for a target object resolution:

∆ML =
1.22λt

Mδx
≈

1.22λ

CGδx
(8.10)

Depth of Focus

We aim to determine the microlens depth-of-focus (DoF), defined as the distance that a
point source in-focus can move axially before the blur spot on the camera sensor is bigger
than a target circle of confusion radius, γc. To do so, we examine a single microlens’ image
in the GRIN entrance pupil for an object at distance z from the first principal plane of the
GRIN. As the object moves axially by a distance dML, we can use similar triangles to derive
(see Fig. 8.8 for variable definitions):

y

dML

=
∆EP

dML + z + L
≈

∆EP

L
, (8.11)

where ∆EP is the radius of the microlens’ clear aperture in the entrance pupil (i.e. object
side) of the GRIN and L is the distance from the first principal plane to the entrance pupil.
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Figure 8.7: Lateral resolution derivation. Examining a single microlens placed immediately after the main
objective.

Given that L = 13 mm is much larger than z, dML, which are on the order of 0.2 mm, we
drop both z and dML. By substituting y = γc/M into Eq. 8.11, we can solve for the microlens
DoF as a function of our system parameters:

dML =
γcL

∆EPM
. (8.12)

Since the entrance pupil of the GRIN is very far from the object (it is approximately tele-
centric in object space), the object axial position is negligible in determining the microlens
DoF. Designing for γc = 12 µm, a circle-of-confusion smaller than the diffraction-limited
spot size, |M |δx, and using ∆EP = 4 mm (calculated using Zemax for a microlens with a
clear aperture of 300 µm), we determine the DoF to be ±20 µm.

Choice of Reconstruction Grid

To successfully reconstruct v, we should define the reconstruction grid with sufficient sam-
pling to realize the best resolution possible, but without oversampling, which increases com-
putation and memory requirements. The theory above defines a band-limit for the measure-
ments, so our goal is to use a sensor with a matching effective pixel size. In our architecture,
increasing the sensor pixel size directly corresponds to increased lateral reconstruction voxel
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Figure 8.8: Depth-of-focus (DoF) derivation setup, with distance variables defined.

size and lower final resolution. Because of complicated interactions between nonlinear recon-
structions and grid size, we determine our choice of lateral sampling empirically by binning
the raw data from the resolution tests in the main paper Results section by 2×, 4×, and 8×
and evaluating the final resolution. We find that the resolution begins to degrade between
4× and 8× binning, so we operate at 4× binning. This results in our sensor’s effective
object-space pixel size being 1.7 µm, which is sufficiently below the 2.76 µm minimum fea-
ture size that we observe experimentally. Note that the ability to use on-chip binning allows
our approach to read data faster than a conventional LFM, which cannot use conventional
on-chip binning without resolution loss. This allows us to achieve a 40 volume-per-second
measurement rate using a low-cost USB 2.0 camera.

The choice of axial sampling informs our sampling interval during calibration (main-paper
Calibration subsection). We measure every 5 µm, and perform axial binning (summing of
consecutive PSFs) at 1×, 2×, and 4×. We find 1× yields the best results. The resulting
5 µm axial sampling is reasonable given the empirically observed 15 µm axial resolution.
Hence our choice of grid balances fast frame rates and efficient reconstruction with image
quality and resolution.

Choice of Regularization Parameter

One important parameter in our optimization problem is the regularization parameter τ . The
regularization parameter sets the trade-off between the data fidelity term and our sparsity
prior. In practice, this parameter sets the balance between preserving image details and
noise reduction. Very small values of τ will preserve sharp details in our object; however,
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the reconstructions can be noisy. Very large values will suppress noise, but also suppress the
object’s details with it.

To test the reconstruction quality as a function of the regularization parameter, we ran
our 3D reconstruction algorithm on the experimental resolution target data at z = 270 µm
with values of τ ranging from 10−14 to 10−1. Figure 8.9(a) shows that the reconstructions
and the data fidelity term are stable for a wide range of τ values. As expected, for very large
values of τ , the Total Variation (TV) prior over-regularizes the image, resulting in smoothed
out details.

Since the experimental data lacks ground truth to compare against, we simulate a raw
measurement by running our 3D shift-varying forward model on a two-photon microscopy
zebra fish 3D dataset with our measured PSFs and adding realistic additive white Gaussian
noise. The measurement is then processed with values of τ ranging from 10−14 to 10−1.
Figure 8.9(b) shows a trend similar to experimental results - the mean-squared error is
stable for a large range of τ values, with over-smoothed reconstructions as τ gets very large.
We note that all the data shown in the main paper was processed using the same value of τ ,
which further show that once a good value for τ is found, it can be used to process different
classes of objects. While it may be possible to fine-tune τ for each measurement to achieve
better performance, it is, however, more practical for users to use the default value. If the
user is to fine-tune τ , we recommend using the largest value of τ that still preserves the
object’s fine details.

2D Miniscope PSNR Comparison

Our Miniscope3D design is aimed at 3D imaging, but because it is smaller and lighter weight
than 2D Miniscope, it might be useful in applications that only require 2D imaging. Because
of the inherent aberrations in the GRIN lens, the 2D Miniscope does not achieve its full-
aperture diffraction-limited resolution and our Miniscope3D resolution is only marginally
worse than the 2D. However, we do suffer from reduced SNR as compared to the 2D Minis-
cope, because our PSFs spread the light over a larger area than a focused 2D Miniscope.
To quantify this loss of SNR, we simulate measurements using on-axis PSFs from both our
device and the 2D Miniscope (single lens with 2 µm blur). The simulation is performed at 3
light levels (100, 1000, and 10,000 photocounts) using a shift-invariant model with Poisson
and read noise added. We use our reconstruction algorithm with an optimized τ value and
display the results in Fig. 8.10. For a fair comparison, we show both the 2D Miniscope
raw image and one reconstructed from an image deconvolution process. Our Miniscope3D
system has better PNSR than the unprocessed 2D Miniscope data, but the deconvolved 2D
Miniscope result performs the best, as expected. This is because our algorithm is denoising
and deblurring. For a scene that does not fit our denoising priors, the processed results
would perform worse. Also, note that the loss of PSNR in our system for 2D imaging is a
neceessary sacrifice for gaining single-shot 3D imaging capability.
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Figure 8.9: Reconstruction quality as a function of regularization parameter, τ . (a) Maximum intensity
projections of an experimental volume reconstructed with different τ settings, along with a plot of the data
fidelity term as a function of τ on a semi-log scale. (b) Maximum intensity projections of a simulated volume
reconstructed with different τ settings, along with a plot of mean-squared error as a function of τ on a
semi-log scale. The results demonstrate the stability of reconstructions for a large range of τ values.

Sparsity Comparison

Our approach assumes the object to have a sparse representation in some domain. In this
paper, we use a general TV sparsity prior to promote gradient sparsity. This is a commonly-
used prior for fluorescent imaging for a number of reasons: (1) fluorescent samples are
generally sparsely labeled. (2) Even if a 2D slice of the sample is not spatially sparse, it will
be sparse when considered with respect to our full 3D volume. (3) If native sparsity does not
hold, images are generally sparse in gradient or wavelet domain. (4) Time-priors can further
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Figure 8.10: PSNR comparison of Miniscope3D and 2D Miniscope. (Left) Simulated reconstructions from our
system at different light levels. (Middle) 2D Miniscope (simulated) raw measurement. (Right) 2D Miniscope
deconvolved reconstructions. The multiplexing properties of our system that enable 3D capabilities result
in a loss of PSNR.

render a volume sparse by only considering temporally-varying information (i.e. neural
firings). While it is an NP hard problem to generate a phase transition curve for our system
as it requires running a large number of reconstructions of many different classes of objects at
each sparsity level, we give an example of how our system performs at different sparsity levels
by thresholding a 3D volume to generate different sparsity levels and reporting mean-squared
error (MSE) and PSNR. The simulated volume is of a 3D zebrafish dataset. The simulations
are done using our 3D shift-varying model and the experimental PSFs from our system.
Figure 8.11 shows MSE and PSNR for the reconstructed volume at different sparsity levels
(33%, original volume, to 0.2%, thresholded volume). As expected, our system performs
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better for sparser volumes. For denser volumes, our system recovers a lower-resolution
version of the object and does not fail catastrophically.

Reconstruction Quality Vs Volume Sparsity
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Figure 8.11: Simulations of reconstruction quality at different sparsity levels. Maximum intensity projections
(y-x, z-x) show the quality of our reconstructions as compared to the ground truth at different sparsity levels.
As the volume gets more dense, our reconstruction resolution degrades.

Guide to Different Designs Using Our Theory

Our theory is general and enables other users to design their own optimized 3D microscope
targeting different resolutions or volumes-of-interest. To do so, users should implement the
following design process:
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• For a target lateral resolution, determine the microlens’ average clear aperture needed
to support that resolution (main paper Sec. Lateral Resolution). This also determines
the number of microlenses in the phase mask.

• For a target depth range, distribute the focal lengths dioptrically across the depth
range.

• Using our optimization criterion, optimize the microlenses positions and aberrations
to further enhance the 3D performance.

• Fabricate the phase mask using our adaptive stitching algorithm with a Nanoscribe 3D
printer.

Adaptive Stitching

The Nanoscribe 3D printer can only print across a field-of-view (FoV) of 350 µm, and so
the 1.8 mm sized phase mask must be printed in multiple stitched blocks, with the mask
translating between them. Due to the optical requirements on the microlenses, care needs
to be taken when dividing the microlens array into blocks for printing with Nanoscribe. Our
adaptive stitching approach aims to print each lens with minimal stitching artifacts. As the
clear aperture for each lens is of the same order of magnitude as the maximum printing block
size of Nanoscribe, each stitching block will correspond approximately to a single microlens.
The center location of each microlens is known, so the problem reduces to dividing the
plane in a number of regions, with each region attributed to one of the microlens centres.
Preferably, the stitching lines should then fall in the overlapping region of two (or more)
microlenses. We assume that such a division will result in the best possible optical quality.

This problem definition is quite similar to the basic Voronoi segmentation, where we are
given a set of points in a plane and the task is to attribute each location in the plane to one
of the given points. That problem is solved as follows. For each location in the plane, the
distance to all centres is calculated. Attribution to one centre is then decided by it being
the closest one (minimum search). As a result, a dividing line is defined by the fact that the
distance to two or more centres is equal. The question now is, how can this be adapted to
take into account finite shapes?

Rephrasing, we need to define a smooth function in the plane for each microlens followed
by attributing locations to microlenses based on a (minimum) search over these different
functions. To this end, we will use the height function for each microlens individually and
then do a maximum search for the attribution. As a result, segmentation lines would fall
exactly at those locations where the height of two or more microlenses are equal (see Fig.6
of main-paper). This is precisely what we want to achieve.

The resulting height-based segmentation is shown in Fig. 8.12. Here, different slices are
shown (50 to 53 µm height). Colored regions need to be printed by Nanoscribe as a single
FoV. The different colors correspond to different stitching blocks.
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Figure 8.12: Different slices are shown, with different colors corresponding to different stitching blocks.
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