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Abstract

Statistics, Computation, and Adaptation in High Dimensions

by

Ashwin Pananjady Martin

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Martin J. Wainwright, Co-chair

Professor Thomas A. Courtade, Co-chair

With a focus on designing flexible, tractable, and adaptive methodology for some canonical machine
learning tasks, we establish several results for the class of permutation-based models, index models,
and Markov reward processes. First, we study permutation-based models in the vector, matrix,
and tensor settings, which provide robust representations in “broken-sample” problems and of
human-generated data. We design tractable and adaptive methodological solutions for fitting
these models that, among other things, narrow statistical-computational gaps conjectured in the
literature. Second, we study a subclass of index models—widely used in dimensionality reduction
and exploratory data analysis—through a computational lens, focusing on avoiding the (statistical)
curse of dimensionality and on achieving automatic adaptation to the noise level in the problem. Our
perspective yields efficient algorithms for solving these non-convex fitting problems that come with
provable guarantees of sample efficiency and adaptation. Finally, we turn to studying some statistical
questions in reinforcement learning, focusing in particular on instance-dependent guarantees for
the policy evaluation problem. We show that while some algorithms attain the optimal, “local”
performance for this problem, other popular methods fall short and must be modified in order to
achieve the desired levels of adaptation.
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Chapter 1

Introduction and high-level background

Many rapidly developing fields of scientific inquiry use massive amounts of data to find patterns
in natural phenomena that are then further explored and leveraged in order to guide discovery,
decision making, and policy. We now have intuitive and easily accessible tools to collect, organize,
and visualize data, and consequently, a quantitative approach to data science has pervaded many
disciplines. The high dimensional nature of many of these datasets raises a host of important and
exciting questions that statisticians, engineers, and computer scientists are in a prime position to
address, such as:

• How does one model structure in natural phenomena?

• Once a model has been chosen, how much information, or data, is needed in order to perform
a certain estimation or inference task?

• Can this task be performed by a low-complexity algorithm that has the capacity to scale to
massive data sets?

• Can we use structure in the underlying problem to benchmark our algorithms, and design
algorithms that take advantage of additional structure if and when it exists?

This thesis is guided by such fundamental questions, and centered around the theoretical and
methodological aspects of drawing principled conclusions from large, noisy data sets. In order to
distill concrete research directions from the broad questions outlined above, we will set down three
criteria according to which procedures will be evaluated. The first is statistical: we will focus on
developing solutions to inference problems that come with sharp theoretical bounds on their sample
efficiency, and on providing information-theoretic lower bounds that guarantee the optimality of
procedures for the task at hand. The second is computational: we will demand that our procedures
are not just statistically optimal but also efficient, or tractable, in that they can be implemented
at scale on large datasets. Finally, we will adopt a more fine-grained view of the properties of a
procedure by assessing its ability to adapt to underlying structure when it exists. In particular, while
multiple procedures may be statistically and computationally efficient in a “worst-case” sense over
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a class of problem instances, the data scientist should prefer the one that enjoys improved efficiency
whenever the problem is “simpler” in a specific sense.

We showcase this perspective on three concrete and canonical models in machine learning.
The first is the class of permutation-based models, which, while having classical roots [82, 314],
has emerged as a robust modeling framework for some modern regression and ranking tasks [59,
275, 307]. The second is the class of index models, which is very popular in statistics [195],
econometrics [197] and statistical signal processing [253] as a vehicle of dimensionality reduction
and exploratory data analysis. Finally, we consider the class of Markov reward processes, classical
representations of stochastic phenomena arising in operations research, communications engineering,
robotics, and artificial intelligence [27, 28, 292]. We focus here on estimating the long-term value
function of the process, which has widespread utility particularly in applications of reinforcement
learning [77]. In an overall sense, our approaches to these problems are firmly grounded within the
framework of statistical learning theory, but we will move back and forth between optimization,
convex geometry, information theory, statistical signal processing, and control theory.

The rest of this chapter is organized as follows. In Section 1.1, we briefly introduce the general
mathematical framework that underlies our development. A reader who is interested more in the
applications that we study should feel free to skip to Section 1.2. Here, we guide the reader through
the specific models considered in this thesis, focusing in particular on how our perspective asks
(and answers) fundamental questions from both the statistical and computational points of view. We
also include, for the mathematically inclined reader, brief descriptions of what we see as being the
major technical takeaways from the three parts of the thesis. Except for the current chapter, all the
chapters of the thesis are essentially self-contained and presented (almost) independently, allowing
the reader to browse the contents of a particular chapter solely with the context provided by reading
the introduction. In Section 1.3, we include brief descriptions of closely related work that does not
appear in this thesis, and most of our notation is detailed in Section 1.4.

1.1 A brief glimpse into the mathematical framework
The paradigm of statistical decision theory has had a preponderant influence on both the mathematics
and practice of statistics, and deals with problems of the following type. Suppose that we observe
a sample Y from an underlying distribution P , and are interested in the value of some unknown1

“functional” φ(P ). Any estimator T (Y ) can then be evaluated by measuring its risk

E [`(T (Y ), φ(P ))] ,

where `(φ, φ∗) measures the loss incurred if the prediction φ is made when the underlying “true”
functional is φ∗. For instance, in this thesis alone, we will use the zero-one loss, squared loss, and
`∞ loss to evaluate our procedures, but many other alternatives exist in the literature. The flexibility
to choose the tuple (P, φ, `) endows the framework with significant expressive power (see, e.g. the

1Our notation in this preliminary section is intentionally non-standard; we will use more specialized notation in the
various chapters.
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books [167, 192] for particular examples). For the purposes of this thesis, it will be convenient to
specialize the framework to the sequence model [157], in which for each i = 1, . . . , N , we have the
scalar observation model

Yi = φ∗i + εi. (1.1)

Here, the sequence {εi}Ni=1 represents zero-mean “noise” in the model, and for now, we will assume
that the entries of this sequence are independent and use σ > 0 to (informally) denote the noise
level2. Thus, the vector φ∗ ∈ RN is the unknown mean of the observations, and we are typically
interested in using the sample Y ∈ RN to estimate a functional g(φ∗). Abusing notation slightly, let
T (Y ) denote such an estimator; then its risk at φ∗ now takes the form

RN,σ(T (Y ), g(φ∗)) : = E [`(T (Y ), g(φ∗))] , (1.2)

where the loss function ` is the same as before, and we have chosen to be explicit in our notation
about both the sample size N and noise level σ.

Statistical modeling and estimation: Consider the case where g is the identity function, in
which case the number of parameters of interest grows with the sample size N . In order to produce
estimators that have non-trivial power, it is of interest to use prior knowledge about the problem in
order to posit the existence of some set Ω ⊆ RN , so that φ∗ ∈ Ω. The tuple (Ω, σ) then specifies
our statistical model. Typically, fewer than N parameters are necessary to describe Ω. For example,
when Ω is equal to the range of a known, d-dimensional subspace, we only need d parameters to
describe it, and when Ω is the class of all bounded, “monotone” parameters with non-decreasing
entries, the effective number of parameters grows with (but is still less than) the sample size N .
In rough terms, the former case is called a parametric model, and the latter case a nonparametric
model since it typically places fewer assumptions on the quantity of interest; see Wasserman [329]
for a more detailed discussion.

While the riskRN,σ(T (Y ), g(φ∗)) provides information about the behavior of our estimator at a
particular φ∗, a “good” estimator T is one that has acceptable performance across the entire model
class of interest. The minimax principle, originally put forth by Wald [326], suggests that estimators
be compared according to their worst-case risk

sup
φ∗∈Ω
RN,σ(T (Y ), g(φ∗)). (1.3)

A minimax procedure is thus one that has the smallest possible worst-case risk, and while Bayesian
approaches are equally popular [25], we will generally use the minimax principle in this thesis.
Since we evaluate our estimators in the non-asymptotic regime where N is finite, we will be satisfied
with rate-optimality, i.e., with attaining the smallest possible worst-case risk up to a constant, or
even polylogarithmic, factor.

2The reader may find it convenient to think of the noise variables as Gaussian, with standard deviation σ.
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Information-theoretic limits: In order to evaluate the optimality of procedures, the first step
is to produce lower bounds on the worst-case risk (1.3) that depend solely on our observation
model (1.1), and to ask if there exists any procedure that is able to attain these lower bounds—
without any further restrictions. The development of these information-theoretic lower bounds
guides the framing of many of our questions about computation and adaptation. In particular, with
the exception of Chapter 7, all the other chapters of this thesis derive the information-theoretic
limits for their corresponding problems. Indeed, establishing these lower bounds is not solely a
pessimistic exercise; the process of constructing “difficult” problem instances exposes structural
properties of the problem at hand, and guides the development of many of our algorithms. We note
that the use of information theory in statistical estimation problems is classical, and goes back at
least to the 1950s [172, 199].

Demanding computational efficiency: The minimax principle places no restrictions on the
underlying procedure T . In particular, it allows the statistician access to infinite computational
resources, which is often unrealistic, particularly with the scale of modern, nonparametric problems.
How do the fundamental limits of the problem change under the additional restriction that T be
computable efficiently? As we will see in many portions of this thesis—particularly Chapters 3
through 6—it is possible that the most natural estimators for the problem are in fact challenging
to compute efficiently, and furthermore, that there is a significant gap between the information-
theoretic estimation limits and the performance of the best-known, tractable estimators. Can we
develop better, efficient estimators that take advantage of structure in the optimization problem?
Can we prove complexity-theoretic lower bounds? Our work in these chapters complements many
modern investigations of related phenomena; e.g. [26, 44, 207, 277].

Quantifying adaptation: While the worst-case risk (1.3) provides a convenient measure of an
estimator’s performance, there could be multiple procedures that achieve the same worst-case
risk. In such cases, which procedure should one prefer? A common-sense approach is given by
the following consideration: If the particular problem at hand—specified by the unknown tuple
(φ∗, σ) is “easy”—then the statistician ought to prefer the procedure that exhibits improved risk
properties. While in classical, parametric statistics, the asymptotic behavior of the maximum
likelihood estimator in sufficiently “benign” problems is fully characterized by the (inverse) Fisher
information at the unknown φ∗ (see, e.g., [192]), assessing adaptation in the nonparametric case
is often more subtle (see, e.g., [48, 122]). Accordingly, our exploration of adaptation in this
thesis is multi-pronged. In Chapter 4, we consider the adaptation factor [193, 194]—or index—
of a procedure, by evaluating the risk of an estimator on a sequence of simpler model classes
Ω1, . . . ,ΩM ⊆ Ω, and asking for the ratio

max
1≤i≤M

supφ∗∈Ωi
RN,σ(T (Y ), g(φ∗))

infT supφ∗∈Ωi
RN,σ(T (Y ), g(φ∗))

(1.4)

to be small. In other words, such an adaptation factor measures how much worse the estimator
T is at exploiting the additional structure guaranteed by the inclusion φ∗ ∈ Ωi than the minimax-
optimal estimator that knows of this inclusion in advance. An exploration of this factor exposes



CHAPTER 1. INTRODUCTION AND HIGH-LEVEL BACKGROUND 5

statistical-computational trade-offs of its own. In Chapter 6, we demand that our procedures adapt
to the noise level of the problem, i.e., in the case where σ ↓ 0 and the problem gets progressively
easier (and eventually, noise-free), we ask if the worst-case risk (1.3) gets progressively smaller as a
function of σ. Does this occur at the optimal rate? Finally, in Chapters 8 and 9, we consider the
local minimax framework [49, 135, 186] in order to evaluate instance-specific adaptation properties,
both asymptotically and non-asymptotically.

1.2 Model classes covered in this thesis
We now introduce, at a high level, the model classes that are touched upon in the three parts of
this thesis. Our focus here is partly on applications, and partly on introducing the mathematical
formulation of the problem within the general framework of Section 1.1. The first sections of the
specific chapters provide more detailed introductions to the particular problems.

1.2.1 Permutation-based models
We first consider a class of models in which parametric assumptions can be coupled with com-
binatorial ones in order to produce more flexible models. In particular, we consider the class of
permutation-based models, defined informally below.

Definition 1.2.1. (Informal) A permutation-based model is one in which the set Ω is specified in
part by a tuple of (unknown) permutations.

The incorporation of permutations into our model could be the consequence of our prior
knowledge about the problem at hand, or alternatively, could capture a lack of prior knowledge.
Indeed, in the specific examples to follow, we will see cases where the permutations model inherent
“error” in the observation process, and other cases in which they allow us to incorporate flexibility
within our modeling assumptions.

“Broken-sample” regression problems: Traditional statistical procedures make the tacit as-
sumption that the correspondence between the covariates and responses is fully known. But what
if this is not actually the case? The lack of correspondence could be implicit in the data (for
example, in archaeology or genomic data [149, 267]), or correspondence information may have
been intentionally removed (for example, in anonymized data sets [228]). This “broken-sample”
problem has classical roots, with applications to record linkage and correspondence estimation in
image processing [82, 213]. In Chapter 2, we take an information-theoretic viewpoint on the linear
regression problem without correspondence information, and sharply characterize the fundamental
limits of estimating the unknown correspondence. In particular, given a covariate (or design) matrix
A ∈ RN×d, we consider the sequence model (1.1) in which the set Ω can be written as

Ω = {φ ∈ RN : φ ∈ range(ΠA) for some permutation matrix Π}.
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We establish a phase transition in the fundamental properties of permutation recovery—using the
loss `(Π̂,Π) = 1

{
Π̂ 6= Π

}
in order to evaluate the permutation Π̂ as an estimator—depending on

an appropriate notion of signal-to-noise ratio in the problem. Our analysis establishes a statistical
baseline for this problem that has since been built upon to study many interesting computational
questions in related models (e.g. [1, 133, 147, 247, 285]). Work in this chapter is joint with M. J.
Wainwright and T. A. Courtade, and based on the paper [248].

Flexible models for human-generated data: The problem of ranking from pairwise comparison
data arises in voting and recommendation systems, where large data sets consisting of noisy and
often inconsistent human choices must be consistently aggregated into a ranking in order to inform
future recommendations [17, 20, 60]. The crowd labeling problem involves aggregating data labeled
by humans—often workers on a crowdsourcing platform such as Amazon Mechanical Turk—which
contain inconsistent information due to factors such as heterogeneous levels of worker expertise,
varying difficulty levels of the questions being asked, or spammers on these platforms [80, 241,
332]. As an illustrative example of pairwise comparisons, consider modeling the n× n matrix of
pairwise comparison probabilities between n items, illustrated in Figure 1.1(a); the strong stochastic
transitivity, or SST, model makes the following assumption: the items can be ordered from “best”
to worst such that for any triple (p, q, r) respecting this order, the probability that p beats r in a
comparison must exceed both the probability that p beats q and the probability that q beats r. Such an
assumption is known to be both flexible and representative in several applications [16, 103, 214], and
Chapter 3 also collects other applications (spanning psychometrics [314] and crowd-labeling [275])
in which a similar perspective yields a flexible permutation-based model.

Mathematically, our observation model can then be described using the sequence model (1.1) as
follows: The entries of the underlying mean φ∗ can be rearranged into an n× n matrix of pairwise
comparison probabilities, such that this matrix is bivariate isotonic with unknown permutations. In
particular, we have

Ω = {φ ∈ Rn×n : φ = ΠMΠ> for a permutation matrix Π and matrix M
having entries that increase along each row and along each column}.

Here Π represents the unknown ranking between items, and endows the model with significant
flexibility; indeed, the permutation-based SST assumption is significantly more robust to misspeci-
fication than its parametric counterparts [16, 103, 214]. In addition, and perhaps surprisingly, it
is known that the minimax rate of matrix estimation (under squared `2 loss) over the class of SST
matrices is essentially the same as that over its parametric counterparts [59, 274]. Thus, these
permutation-based models occupy a nice “sweet-spot” on the bias-variance tradeoff.

However, existing computationally efficient estimators suffer from sub-optimal rates. Conse-
quently, a “statistical-computational” gap was conjectured in a series of papers on this topic [55, 59,
274, 277]. The focus of Chapter 3 is on the computational question, and we produce an estimator
that uniformly outperforms existing, tractable procedures. It obtains minimax-optimal estimation
rates in a certain regime of the problem, and in other regimes, it narrows the statistical-computational
gap. Work in this chapter is joint with C. Mao and M. J. Wainwright, and based on the paper [211].
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Figure 1.1: Matrix models for human-generated data. (a) Pairwise comparisons, in which entry
i, j of the matrix represents the probability with which item i beats item j in a comparison.
(b) Psychometrics (and crowd-labeling), in which entry i, j represents the probability with which
student (or crowd-worker) i answers question j correctly, and (c) The strong stochastic transitivity,
or SST, assumption for pairwise comparisons, which gives rise to a permutation-based model.

Higher-order models for discrete choice data: The SST assumption from Chapter 3 has a
higher-order analogue for multiple-comparison data, where a user is presented with a set of d
options and must choose one of them3. The analogous parametric model in this case is the
multinomial logit, or Plackett-Luce model [204, 219, 252], which has found applications in a
multitude of disciplines [24, 54]. The parametric assumption in this class of models is also known
to be limiting [97], and is generalized by the simple scalability assumption from the economics
literature [177, 305]. This gives rise to a “tensor” version of the SST assumption; we refer the
reader to Section 4.1 for a more comprehensive introduction.

Once again, we study the estimation problem under (squared) `2 loss, starting by establishing
its information-theoretic limits. Surprisingly, whenever d ≥ 3, we show that there is no longer a
statistical-computational gap, and that a simple estimator attains the optimal worst-case risk. The
question of adaptation is more closely studied in this chapter, where we show that our estimator
enjoys improved performance from both the statistical and computational standpoints when there is
underlying parametric structure in the tensor. We use the adaptivity index (1.4) in order to evaluate
the statistical adaptation properties, showing that interesting statistical-computational gaps in this
index manifest under an average-case complexity assumption. Finally, in order to drive home the
utility of our estimator for this problem, we show that multiple minimax-optimal estimators in this
problem have necessarily sub-optimal adaptation behavior. Work in this chapter is joint with R.J.
Samworth, and based on the paper [245].

Technical takeaways: We conclude our discussion by highlighting, for the mathematically in-
clined reader, a few technical takeaways from this part of the thesis. From Chapter 2, we highlight
our application of the strong converse to the channel coding problem, which yields sharper results
than the often-used Fano’s method [302]. While the strong converse is classical in information
theory [278, 343], it does not seem to have gained as much popularity in the statistical estima-
tion literature. A second technical contribution, spanning Chapters 3 and 4, is our analysis of

3In the pairwise comparison model, we have d = 2.
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least squares estimators over non-convex sets. Indeed, we present five distinct proof techniques
for obtaining such results depending on the structure of the underlying set, and the associated
noise process. Finally, we highlight our proof of Theorem 3.4.2 from Chapter 3, which contains
many interesting approximation-theoretic properties of multivariate isotonic functions that are of
independent interest.

1.2.2 Index models
While the previous part of the thesis was concerned with endowing parametric models with the
virtues of their nonparametric counterparts, the index model provides a happy medium between
these approaches. On the one hand, it accommodates non-linearity in linear models, and is
thus robust to misspecification in these models. On the other hand, it allows the statistician to
impose parametric structure in high-dimensional nonparametric models and perform non-linear
dimensionality reduction. Let us introduce the index-model within our framework from Section 1.1.

Definition 1.2.2. (Informal) In an index model, we have access to set of d-dimensional covariate
vectors x1, . . . , xN , and the set Ω takes the form

Ω = {There exist vectors θ1, . . . , θk ∈ Rd : φi = g(〈θ1, xi〉, . . . , 〈θk, xi〉) for i = 1, . . . , N}.

Here, the function g : Rk → R is either known, or unknown but belongs to some function class G.

k = 4
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Figure 1.2: Piece-wise linear ap-
proximation to two variables in
the “Wage and Race” dataset from
the Sleuth3 package [304]. The
number of affine pieces k controls
the complexity of the model, and
trades off interpretability with flex-
ibility.

Index models are important dimensionality reduction and
exploratory data analysis tools; see the book [197] for a sample
of their wide-ranging applications. In this part of the thesis, we
study two specific instantiations of index models.

Fitting convex functions in high dimensions: How do hu-
mans value different quantities of various commodities? How
does one model the long term value of a certain inventory
position? What is a good model for a value function in rein-
forcement learning? Convex regression is a flexible framework
within which one can study many such questions that abound in
econometrics and operations research [15, 139, 198]. However,
being nonparametric, it suffers from the curse of dimension-
ality, in that the number of samples required to fit a convex
function to within a prescribed error tolerance scales expo-
nentially in the ambient dimension of the problem [46, 115,
131]. On the other hand, a natural index model, with the func-
tion g chosen to be the coordinate-wise maximum, provides
piece-wise linear approximations to convex functions, where
the number of linear components k must be chosen by the
statistician. In Chapter 5, we show that these “max-affine”
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models are natural and interpretable for many applications involving convex regression while ad-
mitting provably tractable estimation with a non-convex optimization procedure. An illustration in
dimension 1 is provided in Figure 1.2. These results also have implications for fitting convex sets to
support function measurements, which is a problem that arises in computational tomography [116,
125, 257], and for the phase retrieval problem [102, 117]. Work in this chapter is joint with A.
Ghosh, A. Guntuboyina, and K. Ramchandran, and based on the paper [119].

A noise-adaptive framework for single-index models: The single-index model is the specific
case of the index model where k = 1, and we study the semiparametric setting in which the function
g in unknown. This model has been classically studied [33, 45, 145, 195], but existing algorithms
are not adaptive to the noise level of the model. As alluded to before, this is a fundamental property
that one should desire from any method: in particular, we would like to be able to perform accurate
estimation with significantly fewer samples as the noise level goes to zero. In Chapter 6, we provide
a natural, iterative, and computationally tractable procedure that exhibits automatic adaptation to
the noise level of the problem. The methodology is flexible, and reduces the problem of parameter
estimation to estimating well-chosen “inverse”, nonparametric functions in low dimensions; for the
latter, the statistician can choose any nonparametric method. We present particular consequences
for the monotone single-index model, in which G is the class of all monotonic functions. Work in
this chapter is joint with D. P. Foster, and based on the paper [243].

Technical takeaways: We now highlight two technical themes from this part of the thesis. The
first is optimization-theoretic: Both chapters in this part of the thesis make use of alternating
projections as an algorithm to solve the associated non-convex fitting problem. This algorithm is
shown to have automatic noise-adaptation properties for single-index models, and also converges
very quickly in a local neighborhood of the optimal solution. In that sense, the two chapters in
this part of the thesis are also unified under an algorithmic lens. The second technical component
that we highlight is from Chapter 5: Our analysis of the alternating projection algorithm for the
max-affine regression problem requires a fine-grained understanding of Gaussian random vectors
under truncations to convex sets, and more importantly, involves random matrix theory for these
truncated Gaussian random vectors. We expect our techniques to be more broadly applicable to the
analysis of iterative algorithms in statistical settings.

1.2.3 Policy evaluation in reinforcement learning
With the proliferation of reinforcement learning (RL) algorithms in a variety of applications such as
robotics and competitive gaming, an important consideration is that of algorithm choice. There are
currently many procedures that are available to train these RL agents; given a task at hand, which
algorithm should one prefer based on the amount of data and computation available? Which of
these procedures come with formal theoretical guarantees? Can a model for structure in a dynamical
system be used to better delineate the pros and cons of various methods, and can adaptation to such
structure be used as a meaningful yardstick to compare these methods?
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We take steps towards answering these questions by considering the problem of policy evaluation
in finite dimensional (also known as tabular) Markov decision processes (MDPs), which is an
important sub-routine used within approximate dynamic programming. The problem setting is very
simple: for a “reward” vector r ∈ RD and a matrix P ∈ RD×D representing the transition matrix of
a Markov chain, we are interested in the solution θ∗ to the Bellman equation

θ∗ = r + γPθ∗, (1.5)

where θ∗ ∈ RD collects the long-term, discounted value of the D states in the MDP. In the
generative (or simulator-based) model for RL [166], our observations consist of independent and
noisy observations of the pair (P, r), and our goal is to estimate θ∗ from these observations. In that
respect, this problem bears resemblance to the classical problem of errors-in-variables regression
studied widely in statistics [22]. In contrast to classical work, however, we demand non-asymptotic
guarantees in the `∞-norm, and use the simple linear model (1.5) in order to ask and answer
some refined adaptation questions. In particular, we use the benchmark of instance-dependent
performance, which is the strictest form of adaptation considered in this thesis, in order to evaluate
various procedures. Chapter 7 introduces this problem in more detail, and provides background on
the setting that we consider. Chapter 8 considers the plug-in estimator for the problem, which goes
by the names of least-squares temporal difference learning [41], and the “model-based” estimator
in the RL literature [294]. We establish refined, instance-specific guarantees and evaluate their
optimality from a local minimax standpoint over subclasses of parameter space. Work in Chapter 8
is joint with M. J. Wainwright, and based on the paper [246]. In Chapter 9, we further refine our
lower bounds to produce an instance-specific local minimax characterization, both in the asymptotic
regime, where the sample size goes to infinity, and in the non-asymptotic, finite-sample regime.
Finally, we use this local understanding to evaluate the popular, “model-free” temporal difference
(TD) learning update [293] and its variants [255, 270]. Overall, our results demonstrate that while
the plug-in estimator always adapts to the instance-specific complexity given by the lower bound, the
TD update has to be modified with a variance-reduction device in order to attain instance-optimality.
Note that the perspective of non-asymptotic adaptation is crucial here; indeed, the TD update (for
a certain choice of step-size) with Polyak-Ruppert averaging is optimal in the worst-case over a
natural, bounded model class, and also asymptotically instance-optimal [255]. Work in Chapter 9 is
joint with K. Khamaru, F. Ruan, M. J. Wainwright, and M. I. Jordan, and is based on the paper [169].

Technical takeaways: We conclude by highlighting two techniques from this part of the thesis
that are likely to be more broadly useful. In Chapter 8, we introduce a leave-one-out decoupling
technique to establish non-asymptotic performance guarantees for the plug-in estimator. Variants of
such techniques have also been used in the literature [3, 63], and are likely to be useful in generating
non-asymptotic guarantees in `∞ norm. A second takeaway is in Chapter 9, in which we carry out
extensive numerical experiments showing that the finite-sample performance of variance-reduction
as applied to stochastic approximation improves upon that of Polyak-Ruppert averaging. We expect
this observation to have broader optimization-theoretic consequences.
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1.3 Related work not appearing in this thesis
In this subsection, we briefly mention some other papers on closely related topics that the author
contributed to during his PhD, along with references and background for the interested reader.

1. Permutation-based modeling

a. A treatment of the statistical and algorithmic issues at play when denoising the permutation-
based, multiple linear regression model, and algorithms for recovering the unknown
linear transformation both in the noiseless and noisy settings [247].

b. A curious dichotomy between “worst-case” and “average-case” assumptions on rankings
in the permutation-based matrix regression model, with an emphasis on SST matrices
and the subclass of “noisy sorting” matrices [244].

c. SST matrix estimation in a row-based metric that has applications to learning mixtures
of rankings [211]. Part of this paper appears in Chapter 3.

2. Index models

a. An analysis of the alternating minimization methodology under “small-ball” design
assumptions, and consequences for the phase retrieval problem [118].

b. A new algorithm for phase retrieval [243] based on the idea of a labeling oracle intro-
duced in Chapter 6.

3. Reinforcement learning

a. Sharp rates for zero-order optimization when applied as a “model-free” method for
learning optimal policies from data generated by a linear quadratic control system [210].

b. Learning from multi-criteria preferences in the context of human-in-the-loop reinforce-
ment learning [31].

1.4 Notation
As alluded to before, the notation used in Chapter 1 was mainly to set up the themes of this
dissertation at an abstract level; the chapters to follow will use more specific notation that is tailored
to the problems at hand. In this section, we collect some of our notational conventions; some
chapter-specific notation will be introduced as and when needed.

For a positive integer n, let [n] : = {1, 2, . . . , n}. For a finite set S, we use |S| to denote its
cardinality. For two scalars a and b, we use the convenient shorthand a ∨ b : = max{a, b} and
a∧b = min{a, b}. For two sequences {an}∞n=1 and {bn}∞n=1, we write an . bn if there is a universal
positive constant C such that an ≤ Cbn for all n ≥ 1. The relation an & bn is defined analogously.
We also use standard order-wise notation fn = O(gn) to indicate that fn . gn and fn = Õ(gn)
to indicate that fn . gn logc n, for a universal positive constant c. The notation fn = o(gn) is
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used when limn→∞
fn
gn

= 0, and fn = ω(gn) when gn = o(fn). We use c, C, c1, c2, . . . to denote
universal constants that may change from line to line. The notation vi denotes the i-th entry of a
vector v. We let v(i) denote the i-th order statistic of a vector v, i.e., the i-th largest entry of v. For a
pair of vectors (u, v) of equal dimensions, we use the notation u � v to indicate that the difference
vector v − u is entry-wise non-negative. The relation u � v is defined analogously. When used
for (PSD) matrices, the notation � will denote ordering with respect to the positive (semi-)definite
cone. We let ej denote the j-th standard basis vector; the dimension of this vector can usually be
inferred from context.

We use Ber(p) to denote the Bernoulli distribution with success probability p, the notation
Bin(n, p) to denote the binomial distribution with n trials and success probability p, the notation
Poi(λ) to denote the Poisson distribution with mean λ, andN (µ,Σ) to denote a Gaussian distribution
with mean µ and covariance matrix Σ � 0.

For a (semi-)normed space (F , ‖ · ‖) and ε > 0 let N(ε;F , ‖ · ‖) denote its ε-covering number,
i.e., the minimum cardinality of any set U ⊆ F such that infu∈U ‖x − u‖ ≤ ε for all x ∈ F . Let
1 {·} denote the indicator function; we sometimes abuse notation slightly and also use 1 to denote
the all-ones vector, whose dimension can typically be inferred from context. Let sgn(t) denote the
sign of a scalar t, with the convention that sgn(0) = 1. All logarithms are to the natural base unless
otherwise stated.

Specific notation for Part I: Permutations are denoted by small Greek letters (e.g. π) and
permutation matrices by capital Greek letters (e.g. Π). Let Sn denote the set of all permutations
π : [n] → [n], although we sometimes abuse notation to let it also denote the set of all n × n
permutation matrices. Let id denote the identity permutation, where the dimension can be inferred
from context. We use π(i) to denote the image of an element i under the permutation π. We
sometimes use the compact notation yπ (or yΠ) to denote the vector y with entries permuted
according to the permutation π (or Π).

Specific notation for Part II: In this part of the thesis, we work exclusively with the `2 norm, and
so throughout this part, we use the notation ‖v‖ to denote the `2 norm of a vector v. We also denote
the d-dimensional unit shell by Sd−1 = {v ∈ Rd : ‖v‖ = 1}, and Bd : =

{
v ∈ Rd : ‖v‖ ≤ 1

}
to

denote the d-dimensional unit ball.

Specific notation for Part III: This portion of the thesis deals largely with `∞ norm guarantees,
and so we require some notation for operations on vectors. We let |u| denote the entry-wise absolute
value of a vector u; squares and square-roots of vectors are, analogously, taken entrywise. Note that
for a positive scalar λ, the statements |u| � λ · 1 and ‖u‖∞ ≤ λ are equivalent.
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Chapter 2

Linear regression with a broken sample

In this chapter, we study a permutation-based model for regression problems involving vector-valued
data. This “broken-sample” setting is one where the unknown permutation serves to model a specific
type of uncertainty in correspondence between our samples.

2.1 Introduction
Recovery of a vector based on noisy linear measurements is the classical problem of linear regression,
and is arguably the most basic form of statistical estimator. A variant, the “errors-in-variables”
model [200], allows for errors in the measurement matrix; classical examples include additive or
multiplicative noise [203]. In this chapter, we study a form of errors-in-variables in which the
measurement matrix is perturbed by an unknown permutation of its rows.

More concretely, we study an observation model of the form

y = Π∗Ax∗ + w, (2.1)

where x∗ ∈ Rd is an unknown vector, A ∈ Rn×d is a measurement (or design) matrix, Π∗ is an
unknown n × n permutation matrix, and w ∈ Rn is observation noise. We refer to the setting
where w = 0 as the noiseless case. As with linear regression, there are two settings of interest,
corresponding to whether the design matrix is (i) deterministic (the fixed design case), or (ii) random
(the random design case). There are also two complementary problems of interest: recovery of the
unknown Π∗, and recovery of the unknown x∗. In this chapter, we focus on the former problem; the
latter problem is also known as unlabeled sensing [307].

The observation model (2.1) is frequently encountered in scenarios where there is uncertainty in
the order in which measurements are taken. The model has classical roots, going back to record
linkage problems [82] wherein it went by the name of “regression with a broken sample”. Other
illustrative example include sampling in the presence of jitter [13], timing and molecular channels
[268], and flow cytometry [1]. Another such scenario arises in multi-target tracking problems [256].
For example, in the robotics problem of simultaneous localization and mapping [298], the envi-
ronment in which measurements are made is unknown, and part of the problem is to estimate
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where in the last step, we have used the fact that 0 < h̄  n. This completes the proof of the
Lemma.

4.3 Proofs of computational aspects

4.3.1 Proof of Theorem 3

In order to prove the Theorem, we need to show an algorithm that performs the optimization
(6) e�ciently. To that end, note that for the case when d = 1, (6) can be rewritten as

b⇧ML = argmax
⇧
ka>⇧yk

2 (84)

= argmax
⇧

max{a>⇧y,�a
>
⇧y} (85)

= argmin
⇧

max{ka⇧ � yk22, ka⇧ + yk22}, (86)

where the last step follows since 2a>⇧y = kak2 + kyk2 � ka⇧ � yk22, and the first two terms do
not involve optimizing over ⇧.

Once the optimizer has been written as (86), it is easy to see that it can be found in
polynomial time. In particular, using the fact that for fixed vectors p and q, kp⇧ � qk is
minimized for ⇧ that sorts a according to the order of b, we see that the following algorithm
computes b⇧ML exactly.

Algorithm 1: Exact algorithm to find b⇧ML for the case when d = 1.

Input: design matrix (vector) a, observation vector y
1 ⇧1  permutation that sorts a according to y
2 ⇧2  permutation that sorts �a according to y

3 b⇧ML  argmax{|a>⇧1
y|, |a>⇧2

y|}

Output: b⇧ML

The procedure is clearly the correct thing to do in the noiseless case – since x⇤ is a scalar
value that scales the entries of a, the correct permutation can be identified by a simple sorting
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Figure 2.1: Example of pose and correspondence estimation. The camera introduces an unknown
linear transformation, or pose. The unknown permutation represents the correspondence between
points, which is shown in the picture via colored shapes, and needs to be estimated.

relative permutations between measurements. Archaeological measurements [267] also suffer from
an inherent lack of ordering, and another compelling example of such an observation model is in
data anonymization, in which the order, or “labels”, of measurements are intentionally deleted to
preserve privacy. The inverse problem of data de-anonymization [228] is to estimate these labels
from the observations.

Let us also mention two other applications. First, in large sensor networks, it is often the case
that the number of bits of information that each sensor records and transmits to the server is exceeded
by the number of bits it transmits in order to identify itself to the server [168]. In applications where
sensor measurements are linear, model (2.1) corresponds to the case where each sensor only sends
its measurement but not its identity. The server is then tasked with recovering sensor identities, or
equivalently, with determining the unknown permutation. A second application is to the pose and
correspondence estimation problem in image processing [213], illustrated in Figure 2.1. The capture
of a 3D object by a 2D image can be modeled by an unknown linear transformation called the
“pose”, and an unknown permutation representing the “correspondence” between points in the two
spaces. One of the central goals in image processing is to identify this correspondence information,
which in this case is equivalent to permutation estimation in the linear model.

It is worth noting that both the permutation recovery and vector recovery problems have an
operational interpretation in applications. Permutation recovery is equivalent to “correspondence
estimation” in vision tasks [213], and vector recovery is equivalent to “pose estimation”. In sensor
network examples, permutation recovery corresponds to sensor identification [168], while vector
recovery corresponds to signal estimation. Clearly, accurate permutation estimation allows for
recovery of the regression vector, while the reverse may not be true. From a theoretical standpoint,
such a distinction is similar to the difference between the problems of subset selection [322]
and sparse vector recovery [50] in high dimensional linear regression, where studying the model
selection and parameter estimation problems together helped advance our understanding of the
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statistical model in its entirety.

2.1.1 Related work
Prior to our own work on the subject, related work had largely focused on x∗ recovery. The
observation model (2.1) appears in the context of compressed sensing with an unknown sensor
permutation [94]. The authors consider the matrix-based observation model Y = Π∗AX∗ + W ,
where X∗ is a matrix whose columns are composed of multiple, unknown, sparse vectors. Their
contributions include a branch and bound algorithm to recover the underlying X∗, which they
show to perform well empirically for small instances under the setting in which the entries of the
matrix A are drawn i.i.d. from a Gaussian distribution. In the context of pose and correspondence
estimation, the paper [213] considers the noiseless observation model (2.1), and shows that if the
permutation matrix maps a sufficiently large number of positions to themselves, then x∗ can be
recovered reliably. In the context of molecular channels, the model (2.1) has been analyzed for
the case when x∗ is some random vector, A = I , and w represents non-negative noise that models
delays introduced between emitter and receptor. Rose et al. [268] provide lower bounds on the
capacity of such channels. In particular, their results yield closed-form lower bounds for some
special noise distributions, e.g., exponentially random noise.

Most closely related to our model is the paper by Unnikrishnan et al. [307], which considers
the question of when the equation (2.1) has a unique solution x∗, i.e., the identifiability of the
noiseless model. The authors show that if the entries of A are sampled i.i.d. from any continuous
distribution with n ≥ 2d, then equation (2.1) has a unique solution x∗ with probability 1. They also
provide a converse showing that if n < 2d, any matrix A whose entries are sampled i.i.d. from a
continuous distribution does not (with probability 1) have a unique solution x∗ to equation (2.1).
While the paper shows uniqueness, the question of designing an efficient algorithm to recover a
solution, unique or not, is left open. The paper also analyzes the stability of the noiseless solution,
and establishes that x∗ can be recovered exactly when the SNR goes to infinity.

Since the publication of the paper on which this chapter is based [248], a line of recent work has
considered variants of the observation model (2.1); we mention a few representative papers. Elhami
et al. [93] show that there is a careful choice of the measurement matrix A such that it is possible to
recover the vector x∗ in time O(dnd+1) in the noiseless case. Hsu, Shi, and Sun [147] show that the
vector x∗ can be recovered efficiently in the noiseless setting (2.1) when the design matrix A is i.i.d.
Gaussian. They also demonstrate that in the noisy setting, it is not possible to recover the vector
x∗ reliably unless the signal-to-noise ratio is sufficiently high. See Section 4 of their paper [147]
for a detailed comparison of their results with our own. Our own follow-up work [247] establishes
the minimax rate of prediction for the more general multivariate setting, and proposes an efficient
algorithm for that setting with guaranteed recovery provided some technical conditions are satisfied.
Haghighatshoar and Caire [133] consider a variant of the observation model (2.1) in which the
permutation matrix is replaced by a row selection matrix, and provide an alternating minimization
algorithm with theoretical guarantees.
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2.1.2 Contributions
Our primary contribution addresses permutation recovery in the noisy version of observation
model (2.1), with a random design matrix A. In particular, when the entries of A are drawn i.i.d.
from a standard Gaussian matrix, we show sharp conditions—in Theorems 2.3.1 and 2.3.2—on the
SNR under which exact permutation recovery is possible. We also derive necessary conditions for
approximate permutation recovery to within a prescribed Hamming distortion.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendix A.1. We let dH(π, π′) denote the Hamming
distance between two permutations. More formally, we have dH(π, π′) := #{i | π(i) 6= π′(i)}.
Additionally, we let dH(Π,Π′) denote the Hamming distance between two permutation matrices,
which is to be interpreted as the Hamming distance between the corresponding permutations. We
use the notation a>i to refer to the i-th row of A.

2.2 Background and problem setting
In this section, we set up notation, state the formal problem, and provide concrete examples of the
noiseless version of our observation model by considering some fixed design matrices.

2.2.1 Formal problem setting and permutation recovery
As mentioned in the introduction, we focus exclusively on the noisy observation model in the
random design setting. In other words, we obtain an n-vector of observations y from the model (2.1)
with n ≥ d to ensure identifiability, and with the following assumptions:

Signal model The vector x∗ ∈ Rd is fixed, but unknown. We note that this is different from
the adversarial signal model of Unnikrishnan et al. [307], and we provide clarifying examples in
Section 2.2.2.

Measurement matrix The measurement matrix A ∈ Rn×d is a random matrix of i.i.d. standard
Gaussian variables chosen without knowledge of x∗. Our assumption on i.i.d. standard Gaussian
designs easily extends to accommodate the more general case when rows of A are drawn i.i.d. from
the distributionN (0,Σ). In particular, writing A = W

√
Σ, where W in an n× d standard Gaussian

matrix and
√

Σ denotes the symmetric square root of the (non-singular) covariance matrix Σ, our
observation model takes the form

y = Π∗W
√

Σx∗ + w,

and the unknown vector is now
√

Σx∗ in the model (2.1).
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Noise variables The vector w ∼ N (0, σ2In) represents uncorrelated noise variables, each of
(possibly unknown) variance σ2. As will be made clear in the analysis, our assumption that the
noise is Gaussian also readily extends to accommodate i.i.d. σ-sub-Gaussian noise. Additionally,
the permutation noise represented by the unknown permutation matrix Π∗ is arbitrary.

The main recovery criterion addressed in this chapter is that of exact permutation recovery,
which is formally described below. Following that, we also discuss two other relevant recovery
criteria.

Exact permutation recovery The problem of exact permutation recovery is to recover Π∗, and
the risk of an estimator is evaluated on the 0-1 loss. More formally, given an estimator of Π∗ denoted
by Π̂ : (y, A)→ Sn, we evaluate its risk by

Pr{Π̂ 6= Π∗} = E
[
1{Π̂ 6= Π∗}

]
, (2.2)

where the probability in the LHS is taken over the randomness in y induced by both A and w.

Approximate permutation recovery It is reasonable to think that recovering Π∗ up to some
distortion is sufficient for many applications. Such a relaxation of exact permutation recovery
allows the estimator to output a Π̂ such that dH(Π̂,Π∗) ≤ D, for some distortion D to be specified.
The risk of such an estimator is again evaluated on the 0-1 loss of this error metric, given by
Pr{dH(Π̂,Π∗) ≥ D}, with the probability again taken over both A and w. While our results are
derived mainly in the context of exact permutation recovery, they can be suitably modified to also
yield results for approximate permutation recovery.

Recovery with side information In this variation, the unknown permutation matrix is not ar-
bitrary, but known to be in some Hamming ball around the identity matrix. In other words, the
estimator is provided with side information that dH(Π∗, I) ≤ h̄, for some h̄ < n. In many applica-
tions, this may constitute a prior that leads us to believe that the permutation matrix is not arbitrary.
In multi-target tracking, for example, we may be sure that at any given time, a certain number of
measurements correspond to the true sensors that made them (that are close to the target, perhaps).
Our results also address the exact permutation recovery problem with side information.

We now provide some examples in which the noiseless version of the observation model (2.1) is
identifiable.

2.2.2 Illustrative examples of the noiseless model
In this section, we present two examples to illustrate the problem of permutation recovery and
highlight the difference between our signal model and that of Unnikrishnan et al. [307].
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Example 1 Consider the noiseless case of the observation model (2.1). Let νi, ν ′i (i = 1, 2, . . . , d)
represent i.i.d. continuous random variables, and form the design matrix A by choosing

a>2i−1 := νie
>
i and a>2i = ν ′ie

>
i , i = 1, 2, . . . , d.

Note that n = 2d. Now consider our fixed but unknown signal model for x∗. Since the permutation
is arbitrary, our observations can be thought of as the unordered set {νix∗i , ν ′ix∗i | i ∈ [d]}. With
probability 1, the ratios ri := νi/ν

′
i are distinct for each i, and also that νix∗i 6= νjx

∗
j with probability

1, by assumption of a fixed x∗. Therefore, there is a one to one correspondence between the ratios
ri and x∗i . All ratios are computable in time O(n2), and x∗ can be exactly recovered. Using this
information, we can also exactly recover Π∗.

Example 2 A particular case of this example was already observed by Unnikrishnan et al. [307],
but we include it to illustrate the difference between our signal model and the adversarial signal
model. Form the fixed design matrix A by including 2i−1 copies of the vector ei among its rows.
We therefore1 have n =

∑d
i=1 2i−1 = 2d − 1.

Our observations therefore consist of 2i−1 repetitions of x∗i for each i ∈ [d]. The value of x∗i can
therefore be recovered by simply counting the number of times it is repeated, with our choice of
the number of repetitions also accounting for cases when x∗i = x∗j for some i 6= j. Notice that we
can now recover any vector x∗, even those chosen adversarially with knowledge of the A matrix.
Therefore, such a design matrix allows for an adversarial signal model, in the flavor of compressive
sensing [50].

Having provided examples of the noiseless observation model, we now return to the noisy
setting of Section 2.2.1, and state our main results.

2.3 Fundamental limits of permutation estimation
In this section, we state our main theorems and discuss their consequences. Proofs of the theorems
can be found in Section 2.4.

2.3.1 Statistical limits of exact permutation recovery
Our main theorems in this section provide necessary and sufficient conditions under which the
probability of error in exactly recovering the true permutation goes to zero.

In brief, provided that d is sufficiently small, we establish a threshold phenomenon that char-
acterizes how the signal-to-noise ratio snr :=

‖x∗‖22
σ2 must scale relative to n in order to ensure

identifiability. More specifically, defining the ratio

Γ (n, snr) :=
log (1 + snr)

log n
,

1Unnikrishnan et al. [307] proposed that ei be repeated i times, but it is easy to see that this does not ensure
recovery of an adversarially chosen x∗.
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Figure 2.2: Empirical frequency of the event {Π̂ML = Π∗} over 1000 independent trials with
d = 1, plotted against Γ (n, snr) for different values of n. The probability of successful permutation
recovery undergoes a phase transition as Γ (n, snr) varies from 3 to 5. This is consistent with the
prediction of Theorems 2.3.1 and 2.3.2.

we show that the maximum likelihood estimator recovers the true permutation with high probability
provided Γ(n, snr)� c, where c denotes an absolute constant. Conversely, if Γ(n, snr)� c, then
exact permutation recovery is impossible. For illustration, we have plotted the behavior of the
maximum likelihood estimator for the case when d = 1 in Figure 2.2. Evidently, there is a sharp
phase transition between error and exact recovery as the ratio Γ(n, snr) varies from 3 to 5.

Let us now turn to more precise statements of our results. We first define the maximum likelihood
estimator (MLE) as

(Π̂ML, x̂ML) = arg min
Π∈Sn
x∈Rd

‖y − ΠAx‖2
2. (2.3)

The following theorem provides an upper bound on the probability of error of Π̂ML, with (c1, c2)
denoting absolute constants.

Theorem 2.3.1. For any d < n and ε <
√
n, if

log

(
‖x∗‖2

2

σ2

)
≥
(
c1

n

n− d
+ ε

)
log n, (2.4)

then Pr{Π̂ML 6= Π∗} ≤ c2n
−2ε.

Theorem 2.3.1 provides conditions on the signal-to-noise ratio snr =
‖x∗‖22
σ2 that are sufficient for

permutation recovery in the non-asymptotic, noisy regime. In contrast, the results of Unnikrishnan
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et al. [307] are stated in the limit snr → ∞, without an explicit characterization of the scaling
behavior.

We also note that Theorem 2.3.1 holds for all values of d < n, whereas the results of Unnikrish-
nan et al. [307] require n ≥ 2d for identifiability of x∗ in the noiseless case. Although the recovery
of Π∗ and x∗ are not directly comparable, it is worth pointing out that the discrepancy also arises
due to the difference between our fixed and unknown signal model, and the adversarial signal model
assumed in the paper [307].

We now turn to the following converse result, which complements Theorem 2.3.1.

Theorem 2.3.2. For any δ ∈ (0, 2), if

2 + log

(
1 +
‖x∗‖2

2

σ2

)
≤ (2− δ) log n, (2.5)

then Pr{Π̂ 6= Π∗} ≥ 1− c3e
−c4nδ for any estimator Π̂.

Theorem 2.3.2 serves as a “strong converse” for our problem, since it guarantees that if condi-
tion (2.5) is satisfied, then the probability of error of any estimator goes to 1 as n goes to infinity.
Indeed, it is proved using the strong converse argument for the Gaussian channel [278], which
yields a converse result for any fixed design matrix A (see (2.15)). In fact, we are also able to show
the following “weak converse” for Gaussian designs in the presence of side information.

Proposition 2.3.1. If n ≥ 9 and

log

(
1 +
‖x∗‖2

2

σ2

)
≤ 8

9
log
(n

8

)
,

then Pr{Π̂ 6= Π∗} ≥ 1/2 for any estimator Π̂, even if it is known a-priori that dH(Π∗, I) ≤ 2.

As mentioned earlier, restriction of Π∗ constitutes some application-dependent prior; the
strongest such prior restricts it to a Hamming ball of radius 2 around the identity. Proposition 2.3.1
asserts that even this side information does not substantially change the statistical limits of permuta-
tion recovery. It is also worth noting that the converse results of Theorem 2.3.2 and Proposition 2.3.1
hold uniformly over d.

Taken together, Theorems 2.3.1 and 2.3.2 provide a crisp characterization of the problem when
d ≤ pn for some fixed p < 1. In particular, setting ε and δ in Theorems 2.3.1 and 2.3.2 to be
small constants and letting n grow, we recover the threshold behavior of identifiability in terms of
Γ(n, snr) that was discussed above and illustrated in Figure 2.2. In the next section, we find that a
similar phenomenon occurs even with approximate permutation recovery.

When d can be arbitrarily close to n, the characterization obtained using these bounds is no
longer sharp. In this regime, we conjecture that Theorem 2.3.1 provides the correct characterization
of the limits of the problem, and that Theorem 2.3.2 can be sharpened.
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2.3.2 Limits of approximate permutation recovery
The techniques we used to prove results for exact permutation recovery can be suitably modified
to obtain results for approximate permutation recovery to within a Hamming distortion D. In
particular, we show the following converse result for approximate recovery.

Theorem 2.3.3. For any 2 < D ≤ n− 1, if

log

(
1 +
‖x∗‖2

2

σ2

)
≤ n−D + 1

n
log

(
n−D + 1

2e

)
, (2.6)

then Pr{dH(Π̂,Π∗) ≥ D} ≥ 1/2 for any estimator Π̂.

Note that for any D ≤ pn with p ∈ (0, 1), Theorems 2.3.1 and 2.3.3 provide a set of sufficient
and necessary conditions for approximate permutation recovery that match up to constant factors.
In particular, the necessary condition resembles that for exact permutation recovery, and the same
SNR threshold behavior is seen even here. We remark that a corresponding converse with side
information can also be proved for approximate permutation recovery using techniques similar to
the proof of Proposition 2.3.1. It is also worth mentioning the following:

Remark 2.3.1. The converse results given by Theorem 2.3.2, Proposition 2.3.1, and Theorem 2.3.3
hold even when the estimator has exact knowledge of x∗.

2.4 Proofs of main results
In this section, we prove our main results. Technical details are deferred to the appendices.
Throughout the proofs, we assume that n is larger than some universal constant. The case where n
is smaller can be handled by changing the constants in our proofs appropriately. We also use the
notation c, c′ to denote absolute constants that can change from line to line. Technical lemmas used
in our proofs are deferred to the appendix.

We begin with the proof of Theorem 2.3.1. At a high level, it involves bounding the probability
that any fixed permutation is preferred to Π∗ by the estimator. The analysis requires precise control
on the lower tails of χ2-random variables, and tight bounds on the norms of random projections, for
which we use results derived in the context of dimensionality reduction by Dasgupta and Gupta
[78].

In order to simplify the exposition, we first consider the case when d = 1 in Section 2.4.1, and
later make the necessary modifications for the general case in Section 2.4.2. In order to understand
the technical subtleties, we recommend that the reader fully understand the d = 1 case along with
the technical lemmas before moving on to the proof of the general case.
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2.4.1 Proof of Theorem 2.3.1: d = 1 case
Recall the definition of the maximum likelihood estimator

(Π̂ML, x̂ML) = arg min
Π∈Sn

min
x∈Rd
‖y − ΠAx‖2

2.

For a fixed permutation matrix Π, assuming that A has full column rank2, the minimizing argument
x is simply (ΠA)†y, where X† = (X>X)−1X> represents the pseudoinverse of a matrix X . By
computing the minimum over x ∈ Rd in the above equation, we find that the maximum likelihood
estimate of the permutation is given by

Π̂ML = arg min
Π∈Sn

‖P⊥Π y‖2
2, (2.7)

where P⊥Π = I − ΠA(A>A)−1(ΠA)> denotes the projection onto the orthogonal complement of
the column space of ΠA.

For a fixed Π ∈ Sn, define the random variable

∆(Π,Π∗) := ‖P⊥Π y‖2
2 − ‖P⊥Π∗y‖2

2. (2.8)

For any permutation Π, the estimator (2.7) prefers the permutation Π to Π∗ if ∆(Π,Π∗) ≤ 0. The
overall error event occurs when ∆(Π,Π∗) ≤ 0 for some Π, meaning that

{Π̂ML 6= Π∗} =
⋃

Π∈Sn\Π∗
{∆(Π,Π∗) ≤ 0}. (2.9)

Equation (2.9) holds for any value of d. We shortly specialize to the d = 1 case. Our strategy
for proving Theorem 2.3.1 boils down to bounding the probability of each error event in the RHS of
equation (2.9) using the following key lemma, proved in Section A.1.1. Technically speaking, the
proof of this lemma contains the meat of the proof of Theorem 2.3.1, and the interested reader is
encouraged to understand these details before embarking on the proof of the general case. Recall
the definition of dH(Π,Π′), the Hamming distance between two permutation matrices.

Lemma 2.4.1. For d = 1 and any two permutation matrices Π and Π∗, and provided ‖x
∗‖22
σ2 > 1, we

have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−c dH(Π,Π∗) log

(
‖x∗‖2

2

σ2

))
.

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1 for d = 1. Fix ε > 0 and assume that the following consequence of condi-
tion (2.4) holds:

c log

(
‖x∗‖2

2

σ2

)
≥ (1 + ε) log n, (2.10)

2An n× d i.i.d. Gaussian random matrix has full column rank with probability 1 as long as d ≤ n
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where c is the same as in Lemma 2.4.1. Now, observe that

Pr{Π̂ML 6= Π∗} ≤
∑

Π∈Sn\Π∗
Pr{∆(Π,Π∗) ≤ 0}

(i)

≤
∑

Π∈Sn\Π∗
c′ exp

(
−c dH(Π,Π∗) log

(
‖x∗‖2

2

σ2

))

≤ c′
∑

2≤k≤n

nk exp

(
−c k log

(
‖x∗‖2

2

σ2

))
(ii)

≤ c′
∑

2≤k≤n

n−εk

≤ c′
1

nε(nε − 1)
,

where step (i) follows since #{Π : dH(Π,Π∗) = k} ≤ nk, and step (ii) follows from condi-
tion (2.10). Relabeling the constants in condition (2.10) proves the theorem.

In the next section, we prove Theorem 2.3.1 for the general case.

2.4.2 Proof of Theorem 2.3.1: Case d ∈ {2, 3, . . . , n− 1}
In order to be consistent, we follow the same proof structure as for the d = 1 case. Recall the
definition of ∆(Π,Π∗) from equation (2.8). We begin with an equivalent of the key lemma to bound
the probability of the event {∆(Π,Π∗) ≤ 0}. As in the d = 1 case, this constitutes the technical
core of the result.

Lemma 2.4.2. For any 1 < d < n, any two permutation matrices Π and Π∗ at Hamming distance
h, and provided

(
‖x∗‖22
σ2

)
n−

2n
n−d > 5

4
, we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′max

[
exp

(
−n log

n

2

)
, exp

(
ch

(
log

(
‖x∗‖2

2

σ2

)
− 2n

n− d
log n

))]
.

(2.11)

We prove Lemma 2.4.2 in Section A.1.2. Taking it as given, we are ready to prove Theorem
2.3.1 for the general case.

Proof of Theorem 2.3.1, general case. As before, we use the union bound to prove the theorem. We
begin by fixing some ε ∈ (0,

√
n) and assuming that the following consequence of condition (2.4)

holds:

c log

(
‖x∗‖2

2

σ2

)
≥
(

1 + ε+ c
2n

n− d

)
log n. (2.12)
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Now define b(k) :=
∑

Π:dH(Π,Π∗)=k Pr{∆(Π,Π∗) ≤ 0}. Applying Lemma 2.4.2 then yields

(n− k)!

n!
b(k) ≤ c′max

{
exp

(
−n log

n

2

)
, exp

(
−ck

(
log

(
‖x∗‖2

2

σ2

)
− 2n

n− d
log n

))}
.

(2.13)

We upper bound b(k) by splitting the analysis into two cases.

Case 1 If the first term attains the maximum in the RHS of inequality (2.13), then for all 2 ≤ k ≤
n, we have

b(k) ≤ c′n! exp(−n log n+ n log 2)

(i)

≤ c′e
√
n exp(−n log n+ n log 2 +−n+ n log n)

(ii)

≤ c′

n2ε+1
,

where inequality (i) follows from the well-known upper bound n! ≤ e
√
n
(
n
e

)n, and inequality (ii)
holds since ε ∈ (0,

√
n).

Case 2 Alternatively, if the maximum is attained by the second term in the RHS of inequal-
ity (2.13), then we have

b(k) ≤ nkc′ exp

(
−ck

(
log

(
‖x∗‖2

2

σ2

)
− 2n

n− d
log n

))
(iii)

≤ c′n−εk,

where step (iii) follows from condition (2.12).
Combining the two cases, we have

b(k) ≤ max{c′n−εh, cn−2ε−1} ≤
(
c′n−εh + cn−2ε−1

)
.

The last step is to use the union bound to obtain

Pr{Π̂ML 6= Π∗} ≤
∑

2≤k≤n

b(k) (2.14)

≤
∑

2≤k≤n

(
c′n−εh + cn−2ε−1

)
(iv)

≤ cn−2ε,

where step (iv) follows by a calculation similar to the one carried out for the d = 1 case. Relabeling
the constants in condition (2.12) completes the proof.
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2.4.3 Information theoretic lower bounds on Pr{Π̂ 6= Π∗}
We prove Theorem 2.3.2 in Section 2.4.3 via the strong converse for the Gaussian channel. We
prove the weak converse of Proposition 2.3.1 in Section 2.4.3 by employing Fano’s method. We
note that the latter is a standard technique for proving minimax bounds in statistical estimation; see
the historical overview in [323, Chapter 15].

Proof of Theorem 2.3.2

We begin by assuming that the design matrix A is fixed, and that the estimator has knowledge of
x∗ a-priori. Note that the latter cannot make the estimation task any easier. In proving this lower
bound, we can also assume that the entries of Ax∗ are distinct, since otherwise, perfect permutation
recovery is impossible.

Given this setup, we now cast the problem as one of coding over a Gaussian channel. Toward
this end, consider the codebook

C = {ΠAx∗ | Π ∈ Sn}.

We may view ΠAx∗ as the codeword corresponding to the permutation Π, where each permutation
is associated to one of n! equally likely messages. Note that each codeword has power ‖Ax∗‖2

2.
The codeword is then sent over a Gaussian channel with noise power equal to

∑n
i=1 σ

2 = nσ2.
The decoding problem is to ascertain from the noisy observations which message was sent, or in
other words, to identify the correct permutation.

We now use the non-asymptotic strong converse for the Gaussian channel [343]. In particular,
using Lemma A.2.4 (see Appendix A.2.3) with R = logn!

n
then yields that for any δ′ > 0, if

log n!

n
>

1 + δ′

2
log

(
1 +
‖Ax∗‖2

2

nσ2

)
,

then for any estimator Π̂, we have Pr{Π̂ 6= Π} ≥ 1− 2 · 2−nδ′ . For the choice δ′ = δ/(2− δ), we
have that if

(2− δ) log
(n
e

)
> log

(
1 +
‖Ax∗‖2

2

nσ2

)
, (2.15)

then Pr{Π̂ 6= Π} ≥ 1− 2 · 2−nδ/2. Note that the only randomness assumed so far was in the noise
w and the random choice of Π.

We now specialize the result for the case when A is Gaussian. Toward that end, define the event

E(δ) =

{
1 + δ ≥ ‖Ax

∗‖2
2

n‖x∗‖2
2

}
.
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Conditioned on the event E(δ), it can be verified that condition (2.5) implies condition (2.15).
We also have

Pr{E(δ)} = 1− Pr

{
‖Ax∗‖2

2

n‖x∗‖2
2

> 1 + δ

}
(i)

≥ 1− c′e−cnδ,

where step (i) follows by using the sub-exponential tail bound (see Lemma A.2.2 in Appendix A.2.2),
since ‖Ax

∗‖22
‖x∗‖22

∼ χ2
n.

Putting together the pieces, we have that provided condition (2.5) holds,

Pr{Π̂ 6= Π∗} ≥ Pr{Π̂ 6= Π∗|E(δ)}Pr{E(δ)}
= (1− 2 · 2−nδ/2)(1− c′e−cnδ)
≥ 1− c′e−cnδ.

We now move on to the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1

Proposition 2.3.1 corresponds to a weak converse in the scenario where the estimator is also provided
with the side information that Π∗ lies within a Hamming ball of radius 2 around the identity. We
carry out the proof for the more general case where dH(Π∗, I) ≤ h̄ for any h̄ ≥ 2, later specializing
to the case where h̄ = 2. We denote such a Hamming ball by BH(h̄) := {Π ∈ Sn | dH(Π, I) ≤ h̄}.

For the sake of the lower bound, assume that our observation model takes the form

y = Π∗Ax∗ + Π∗w. (2.16)

Since w ∈ Rn is i.i.d. standard normal, model (2.16) has a distribution equivalent to that of
model (2.1).

Notice that the ML estimation problem is essentially a multi-way hypothesis testing problem
among permutations in BH(h̄), and so Fano’s method is directly applicable. As before, we assume
that the estimator knows x∗, and consider a uniformly random choice of Π∗ ∈ BH(h̄).

Now note that the observation vector y is drawn from the mixture distribution

M(h̄) =
1

|BH(h̄)|
∑

Π∈Sn

PΠ, (2.17)

where PΠ denotes the Gaussian distribution N (ΠAx∗, σ2In). Lemma A.1.4 stated and proved in
Section A.1.3 provides a crucial statistic for our bounds.

detE
[
yy>

]
≤ (σ2 + ‖x∗‖2

2)n (1 + n)

(
h̄

n

)n−1

. (2.18)
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We now use Fano’s inequality to bound the probability of error of any tester random ensemble
of Π∗. In particular, for any estimator Π̂ that is a measurable function of the pair (y, A), we have

Pr{Π̂ 6= Π∗} ≥ 1− I(Π∗; y, A) + log 2

log |BH(h̄)|
. (2.19)

Applying the chain rule for mutual information yields

I(Π∗; y, A) = I(Π∗; y|A) + I(Π∗, A)

(i)
= I(Π∗; y|A)

= EA [I(Π∗; y|A = α)] , (2.20)

where step (i) follows since Π∗ is chosen independently of A. We now evaluate the mutual
information term I(Π∗; y|A = α), which we denote by Iα(Π∗; y). Letting Hα(y) := H(y|A = α)
denote the conditional entropy of y given a fixed realization of A, we have

Iα(Π∗; y) = Hα(y)−Hα(y|Π∗)
(ii)

≤ 1

2
log det cov yy> − n

2
log σ2,

where the covariance is evaluated with A = α, and in step (ii), we have used two key facts:
(a) Gaussians maximize entropy for a fixed covariance, which bounds the first term, and
(b) For a fixed realization of Π∗, the vector y is composed of n uncorrelated Gaussians. This leads
to an explicit evaluation of the second term.

Now taking expectations over A and noting that cov yy> � Ew
[
yy>

]
, we have from the

concavity of the log determinant function and Jensen’s inequality that

I(Π∗; y|A) = EA [Iα(Π∗; y)]

≤ 1

2
log detE

[
yy>

]
− n

2
log σ2, (2.21)

where the expectation in the last line is now taken over randomness in both A and w.
Applying Lemma A.1.4, we can then substitute inequality (2.18) into bound (2.21), which yields

EA [Iα(Π∗; y)] ≤ n

2
log

(
1 +
‖x∗‖2

2

σ2

)
+
n− 1

2
log

h̄

n
+

1

2
log (1 + n) .

Finally, substituting into the Fano bound (2.19) yields the bound

1− Pr{Π̂ 6= Π∗} ≤
n
2

log
(

1 +
‖x∗‖22
σ2

)
+ n−1

2
log h̄

n
+ 1

2
log (1 + n) + log 2

log |BH(h̄)|

(ii)

≤
n
2

log
(

1 +
‖x∗‖22
σ2

)
+ n−1

2
log h̄

n
+ 1

2
log (1 + n) + log 2

h̄ log(n/e)
,
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where in step (ii), we have used the fact that

|BH(h̄)| =
(
n

h̄

)
· h̄! ≥

(
n/h̄

)h̄( h̄
e

)h̄
.

In other words, whenever the SNR is upper bounded as

log

[
4

(
1 +
‖x∗‖2

2

σ2

)]
≤ h̄

n
log(n/e) +

n− 1

n
log(n/h̄)− log (1 + n)

n
, (2.22)

then Pr{Π̂ 6= Π∗} ≥ 1/2 for any estimator Π̂. Evaluating condition (2.22) for h̄ = 2 yields the
required result.

2.4.4 Proof of Theorem 2.3.3
We now prove Theorem 2.3.3 for approximate permutation recovery. For any estimator Π̂, we
denote by the indicator random variable E(Π̂, D) whether or not the Π̂ has acceptable distortion, i.e.,
E(Π̂, D) = I[dH(Π̂,Π∗) ≥ D], with E = 1 representing the error event. For Π∗ picked uniformly
at random in Sn, Lemma A.1.5 stated and proved in Section A.1.4 lower bounds the probability of
error as:

Pr{E(Π̂, D) = 1} ≥ 1− I(Π∗; y, A) + log 2

log n!− log n!
(n−D+1)!

.

The proof of the theorem follows by upper bounding the mutual information term. In particular,
letting Iα(Π∗; y) denote I(Π∗; y, A|A = α) and using inequality (2.20), we have

I(Π∗; y, A) ≤ EA [Iα(Π∗; y)]

≤ 1

2
log detE

[
yy>

]
− n

2
log σ2

(i)

≤ n

2
log

(
1 +
‖x∗‖2

2

σ2

)
,

where the expectation on the RHS is taken over both Π∗ and A. Also, step (i) follows from the
AM-GM inequality for PSD matrices detX ≤

(
1
n

traceX
)n, and by noting that the diagonal entries

of the matrix E
[
yy>

]
are all equal to ‖x∗‖2

2 + σ2.
Combining the pieces, we now have that Pr{Π̂ 6= Π∗} ≥ 1/2 if

n log

(
1 +
‖x∗‖2

2

σ2

)
≤ (n−D + 1) log

(
n−D + 1

2e

)
, (2.23)

which completes the proof.
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2.5 Summary and open questions
We analyzed the problem of exact permutation recovery in the linear regression model, and provided
necessary and sufficient conditions that are tight in most regimes of n and d. We also provided a
converse for the problem of approximate permutation recovery to within some Hamming distor-
tion. It is still an open problem to characterize the fundamental limits of exact and approximate
permutation recovery for all regimes of n, d and the allowable distortion D. In the context of exact
permutation recovery, we believe that the limit suggested by Theorem 2.3.1 is tight for all regimes
of n and d, but showing this will likely require a different technique. In particular, as pointed out
in Remark 2.3.1, all of our lower bounds assume that the estimator is provided with x∗ as side
information; it is an interesting question as to whether stronger lower bounds can be obtained
without this side information.

On the computational front, many open questions remain. The primary question concerns the
design of computationally efficient estimators that succeed in similar SNR regimes. We have already
shown that the maximum likelihood estimator, while being statistically optimal for moderate d,
is computationally hard to compute in the worst case. Showing a corresponding hardness result
for random A with noise is also an open problem. Finally, while this chapter mainly addresses the
problem of permutation recovery, the complementary problem of recovering x∗ is also interesting.

In the broader context of this thesis, this chapter serves as an in-depth investigation into some
statistical questions surrounding this permutation-based vector regression model. In the next chapter,
we study a permutation-based matrix model, and consider both statistical and computational aspects.
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Chapter 3

Fast and sample-efficient matrix completion

This chapter studies a permutation-based model for matrix-valued data, in which the latent permuta-
tions transparently model unknown orderings (or rankings) in the problem and facilitate the use of
nonparametric assumptions.

3.1 Introduction
Structured matrices with unknown permutations acting on their rows and columns arise in multiple
applications, including estimation from pairwise comparisons [40, 274] and crowd-labeling [80,
275]. Traditional parametric models (e.g., [40, 80, 204, 299]) assume that these matrices are
obtained from rank-one or rank-two matrices via a known link function. Aided by tools such as
maximum likelihood estimation and spectral methods, researchers have made significant progress
in studying both statistical and computational aspects of these parametric models [74, 134, 165,
202, 229, 259, 273, 350] and their low-rank generalizations [164, 230, 260].

On the other hand, evidence from empirical studies suggests that real-world data is not always
well-described by such parametric models [16, 220]. With the goal of increasing model flexibility, a
recent line of work has studied the class of permutation-based models [59, 274, 275]. Rather than
imposing parametric conditions on the matrix entries, these models impose only shape constraints
on the matrix, such as monotonicity, before unknown permutations act on the rows and columns of
the matrix. On one hand, this more flexible class reduces modeling bias compared to its parametric
counterparts while, perhaps surprisingly, producing models that can be estimated at rates that
differ only by logarithmic factors from the classical parametric models. On the other hand, these
advantages of permutation-based models are accompanied by significant computational challenges.
The unknown permutations make the parameter space highly non-convex, so that efficient maximum
likelihood estimation is unlikely. Moreover, spectral methods are often sub-optimal in approximating
shape-constrained sets of matrices [59, 274]. Consequently, results from many recent papers show a
non-trivial statistical-computational gap in estimation rates for models with latent permutations [55,
104, 247, 274, 275]; the previous chapter also presents one such example but in a different metric.
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Related work While the primary motivation of our work comes from nonparametric methods
for aggregating pairwise comparisons, we begin by discussing a few other lines of related work.
The current chapter lies at the intersection of shape-constrained estimation and latent permutation
learning. Shape-constrained estimation has long been a major topic in nonparametric statistics, and
of particular relevance to our work is the estimation of a bivariate isotonic matrix without latent
permutations [56]. There, it was shown that the minimax rate of estimating an n1 × n2 matrix from
noisy observations of all its entries is Θ̃((n1n2)−1/2). The upper bound is achieved by the least
squares estimator, which is efficiently computable due to the convexity of the parameter space.

Shape-constrained matrices with permuted rows or columns also arise in applications such as
seriation [104, 105], feature matching [69], and graphon estimation [53]. In particular, the monotone
subclass of the statistical seriation model [104] contains n×nmatrices that have increasing columns,
and an unknown row permutation. Flammarion et al. [104] established the minimax rate Θ̃(n−2/3)
for estimating matrices in this class and proposed a computationally efficient algorithm with rate
Õ(n−1/2). For the subclass of such matrices where in addition, the rows are also monotone, the
results of this chapter improve the two rates to Θ̃(n−1) and Õ(n−3/4) respectively.

Graphon estimation has seen its own extensive literature, and we only list those papers that
are most relevant to our setting. In essence, these problems involve nonparametric estimation of a
bivariate function f from noisy observations of f(ξi, ξj) with the design points {ξi}ni=1 drawn i.i.d.
from some distribution supported on the interval [0, 1]. In contrast to nonparametric estimation,
however, the design points in graphon estimation are unobserved, which gives rise to the underlying
latent permutation. Modeling the function f as monotone recovers the model studied in this chapter,
but other settings have been studied by various authors: notably those where the function f is
Lipschitz [53], block-wise constant [32] (also known as the stochastic block model), or with f
satisfying other smoothness assumptions [113]. There are many interesting statistical-computational
gaps also known to exist in many of these problems.

Another related model in the pairwise comparison literature is that of noisy sorting [42], which
involves a latent permutation but no shape-constraint. In this prototype of a permutation-based
ranking model, we have an unknown, n×nmatrix with constant upper and lower triangular portions
whose rows and columns are acted upon by an unknown permutation. The hardness of recovering
any such matrix in noise lies in estimating the unknown permutation. As it turns out, this class
of matrices can be estimated efficiently at minimax optimal rate Θ̃(n−1) by multiple procedures:
the original work by Braverman and Mossel [42] proposed an algorithm with time complexity
O(nc) for some unknown and large constant c, and recently, an Õ(n2)-time algorithm was proposed
by Mao et al. [212]. These algorithms, however, do not generalize beyond the noisy sorting class,
which constitutes a small subclass of an interesting class of matrices that we describe next.

The most relevant body of work to the current chapter is that on estimating matrices satisfying
the strong stochastic transitivity condition, or SST for short. This class of matrices contains all
n × n bivariate isotonic matrices with unknown permutations acting on their rows and columns,
with an additional skew-symmetry constraint. The first theoretical study of these matrices was
carried out by Chatterjee [59], who showed that a spectral algorithm achieved the rate Õ(n−1/4) in
the normalized, squared Frobenius norm. Shah et al. [274] then showed that the minimax rate of
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estimation is given by Θ̃(n−1), and also improved the analysis of the spectral estimator of Chatterjee
to obtain the computationally efficient rate Õ(n−1/2). In follow-up work [277], they also showed
a second CRL estimator based on the Borda count that achieved the same rate. In related work,
Chatterjee and Mukherjee [55] analyzed a variant of the CRL estimator, showing that for sub-classes
of SST matrices, it achieved rates that were faster than O(n−1/2). In a complementary direction, a
superset of the current authors [244] analyzed the estimation problem under an observation model
with structured missing data, and showed that for many observation patterns, a variant of the CRL
estimator was minimax optimal.

Shah et al. [277] also showed that conditioned on the planted clique conjecture, it is impossible
to improve upon a certain notion of adaptivity of the CRL estimator in polynomial time. Such results
have prompted various authors [104, 277] to conjecture that a similar statistical-computational gap
also exists when estimating SST matrices in the Frobenius norm.

Contributions In this chapter, we study the problem of estimating a bivariate isotonic matrix with
unknown permutations acting on its rows and columns, given noisy, (possibly) partial observations
of its entries; this matrix class strictly contains the SST model [59, 274] for ranking from pairwise
comparisons. We also study a sub-class of such matrices motivated by applications in crowd-
labeling, which consists of bivariate isotonic matrices with one unknown permutation acting on its
rows.

We begin by characterizing, in the Frobenius norm metric, the fundamental limits of estimation
of both classes of matrices; the former result significantly generalizes those obtained by Shah
et al. [274]. In particular, our results hold for arbitrary matrix dimensions and sample sizes,
and also extend results of Chatterjee, Guntuboyina and Sen [56] for estimating the sub-class
of bivariate isotonic matrices without unknown permutations. We then present computationally
efficient algorithms for estimating both classes of matrices; these algorithms are novel in the sense
that they are neither spectral in nature, nor simple variations of the Borda count estimator that was
previously employed. They are also tractable in practice and show significant improvements over
state-of-the-art estimators; Figure 3.1 presents such a comparison for our algorithm specialized to
SST matrices with (roughly) one observation per entry.

These algorithms are then analyzed in the the Frobenius error metric, and Theorem 3.4.2
constitutes our main contribution of this chapter. Two consequences of this result are noteworthy.
First, our algorithm for bivariate isotonic matrices with unknown permutations attains the rate
Õ(n−3/4) in the squared Frobenius error, provided we have a full observation of an n× n matrix.
Moreover, our algorithms for both classes of matrices are minimax-optimal when the number
of observations grows to be sufficiently large; notably, this stands in stark contrast to existing
computationally efficient algorithms, which are not minimax-optimal in any regime of the problem.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendix A.3. For a vector v ∈ Rn, define its variation as
var(v) = v(1)− v(n). We denote the i-th row of a matrix M by Mi, unless otherwise specified.
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Figure 3.1: Left: A bivariate isotonic matrix; the ground truth M∗ ∈ [0, 1]n×n is a row and column
permuted version of such a matrix. Right: A log-log plot of the rescaled squared Frobenius error
1
n2‖M̂ −M∗‖2

F versus the matrix dimension n. For each value of the dimension, the error is
averaged over 10 experiments each using n2 Bernoulli observations, and the estimator M̂ is either
the two-dimensional sorting estimator that we introduce in Section 3.4.2, or the CRL estimator from
past work [277].

3.2 Background and problem setup
In this section, we present the relevant technical background and notation on permutation-based
models, and introduce the observation model and error metrics of interest. We also elaborate on
how exactly these models arise in practice.

3.2.1 Matrix models
Our main focus is on designing efficient algorithms for estimating a bivariate isotonic matrix
with unknown permutations acting on its rows and columns. Formally, we define CBISO to be
the class of matrices in [0, 1]n1×n2 with non-decreasing rows and non-decreasing columns. For
readability and without loss of generality, we assume frequently (in particular, everywhere except
for Proposition 3.4.1 and Section 3.4.1) that n1 ≥ n2; our results can be straightforwardly extended
to the other case. Given a matrix M ∈ Rn1×n2 and permutations π ∈ Sn1 and σ ∈ Sn2 , we define
the matrix M(π, σ) ∈ Rn1×n2 by specifying its entries as

[M(π, σ)]i,j = Mπ(i),σ(j) for i ∈ [n1], j ∈ [n2].

Also define the class CBISO(π, σ) : = {M(π, σ) : M ∈ CBISO} as the set of matrices that are
bivariate isotonic when viewed along the row permutation π and column permutation σ, respectively.
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The classes of matrices that we are interested in estimating are given by

Cr,c
Perm : =

⋃
π∈Sn1
σ∈Sn2

CBISO(π, σ), and its subclass Cr
Perm : =

⋃
π∈Sn1

CBISO(π, id).

The former class contains bivariate isotonic matrices with both rows and columns permuted, and
the latter contains those with only rows permuted.

3.2.2 Observation model and error metric
In order to study estimation from noisy observations of a matrix M∗ in either of the classes Cr,c

Perm or
Cr

Perm, we suppose that N noisy entries are sampled independently and uniformly with replacement
from all entries of M∗. This sampling model is popular in the matrix completion literature, and
is a special case of the trace regression model [174, 231]. It has also been used in the context of
permutation-based models by Mao et al. [212] to study the noisy sorting class.

More precisely, let E(i,j) denote the n1 × n2 matrix with 1 in the (i, j)-th entry and 0 else-
where, and suppose that X` is a random matrix sampled independently and uniformly from the set
{E(i,j) : i ∈ [n1], j ∈ [n2]}. We observe N independent pairs {(X`, y`)}N`=1 from the model

y` = trace(X>` M
∗) + z`, (3.1)

where the observations are contaminated by independent, zero-mean, sub-exponential noise z` with
parameter ζ , that is,

E exp(sz`) ≤ exp(ζ2s2) for all s such that |s| ≤ 1/ζ. (3.2)

Note that if (3.2) holds for all s ∈ R, then z` is called sub-Gaussian, which is a stronger condition.
We assume for convenience that an upper bound on the parameter ζ is known to our estimators;
this assumption is mild since for many standard noise distributions, such an upper bound is either
immediate (in the case of any bounded distribution) or the standard deviation of the noise is a proxy,
up to a universal constant factor, for the parameter ζ (in the case of the Gaussian or Poisson noise
models) and can be estimated very accurately by a variety of methods1.

It is important to note at this juncture that although the observation model (3.1) is motivated by
the matrix completion literature, we make no assumptions of partial observability here. In particular,
our results hold for all tuples (N, n1, n2), with the sample size N allowed to grow larger than the
effective dimension n1n2.

Besides the standard Gaussian observation model, in which

z`
i.i.d.∼ N (0, 1), (3.3a)

1For instance, one could implement one of many consistent estimators for M∗ to obtain a matrix M̂ , and use the
quantity { 1

N

∑N
`=1[y` − trace(X>` M̂)]2}1/2 as an estimate of the standard deviation.
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another noise model of interest is one which arises in applications such as crowd-labeling and ranking
from pairwise comparisons. Here, for every x ∈ {E(i,j) : i ∈ [n1], j ∈ [n2]} and conditioned on
X` = x, our observations take the form

y` ∼ Ber
(

trace(x>M∗)
)
, (3.3b)

and consequently, the sub-exponential parameter ζ is bounded. For a discussion of other regimes of
noise in a related matrix model, see Gao [111].

For analytical convenience, we employ the standard trick of Poissonization, whereby we assume
throughout this chapter that N ′ = Poi(N) random observations are drawn according to the trace
regression model (3.1), with the Poisson random variable drawn independently of everything else.
Upper and lower bounds derived under this model carry over with loss of constant factors to the
model with exactly N observations; for a detailed discussion, see the full paper [211].

Now given N ′ = Poi(N) observations {(X`, y`)}N
′

`=1, let us define the matrix of observations
Y = Y

(
{(X`, y`)}N

′

`=1

)
, with entry (i, j) given by

Yi,j =
n1n2

N

N ′∑
`=1

y` 1{X` = E(i,j)}. (3.4)

In other words, we simply average the observations at each entry by the expected number of
observations, so that E[Y ] = M∗. Moreover, we may write the model in the linearized form
Y = M∗+W , where W is a matrix of additive noise having independent, zero-mean entries thanks
to Poissonization.2 To be more precise, we can decompose the noise at each entry as

Wi,j = Yi,j −M∗
i,j

=
n1n2

N

N ′∑
`=1

z` · 1{X` = E(i,j)}+M∗
i,j

n1n2

N

( N ′∑
`=1

1{X` = E(i,j)} − N

n1n2

)
.

By Poissonization, the quantities
∑N ′

`=1 1{X` = E(i,j)} for (i, j) ∈ [n1]× [n2] are i.i.d. Poi( N
n1n2

)
random variables, so the second term above is simply the deviation of a Poisson variable from its
mean. On the other hand, the first term is a normalized sum of independent sub-exponential noise.
Therefore, this linearized and decomposed form of noise provides an amenable starting point for
our analysis.

Let us now turn to the metric that we use to assess the error of our estimators. For a tuple of
“proper” estimates (M̂, π̂, σ̂), in that M̂(π̂, σ̂) ∈ CBISO(π̂, σ̂) (and σ̂ = id if we are estimating over
the class Cr

Perm), the normalized squared Frobenius error is given by the random variable

F
(
M∗, M̂(π̂, σ̂)

)
=

1

n1n2

∥∥M̂(π̂, σ̂)−M∗∥∥2

F
.

2See, e.g, Shah et al. [274] for a justification of such a decomposition in the fully observed setting.
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In the paper that contains a superset of the results presented in this chapter, we also consider
the max-row-norm approximation error of the permutation estimate π̂, which has applications to
learning mixtures of rankings from pairwise comparisons [288]. Studying the problem in this metric
also provides new results for testing problems on cones, while shedding light on why prior work on
this problem was unable to surpass what was perceived as a fundamental gap in estimation in the
Frobenius error.

3.2.3 Applications
The matrix models studied in this chapter arise in crowd-labeling and estimation from pairwise
comparisons, and can be viewed as generalizations of low-rank matrices of a particular type.

Let us first describe their relevance to the crowd-labeling problem [275]. Here, there is a set
of n2 questions of a binary nature; the true answers to these questions can be represented by a
vector x∗ ∈ {0, 1}n2 , and our goal is to estimate this vector by asking these questions to n1 workers
on a crowdsourcing platform. Since workers have varying levels of expertise, it is important to
calibrate them, i.e., to obtain a good estimate of which workers are reliable and which are not.
This is typically done by asking them a set of gold standard questions, which are expensive to
generate, and sample efficiency is an extremely important consideration. Indeed, gold standard
questions are carefully chosen to control for the level of difficulty and diversity [240]. Worker
calibration is seen as a key step towards improving the quality of samples collected in crowdsourcing
applications [241].

Mathematically, we may model worker abilities via the probabilities with which they answer
questions correctly, and collect these probabilities within a matrix M∗ ∈ [0, 1]n1×n2 . The entries
of this matrix are latent, and must be learned from observing workers’ answers to questions. In
the calibration problem, we know the answers to the questions; from these, we can estimate
worker abilities and question difficulties, or more generally, the entries of the matrix M∗. In many
applications, we also have additional knowledge about gold standard questions; for instance, in
addition to the true answers, we may also know the relative difficulties of the questions themselves.

Imposing sensible constraints on the matrix M∗ in these applications goes back to classical work
on the subject, with the majority of models of a parametric nature; for instance, the Dawid-Skene
model [80] is widely used in crowd-labeling applications, and its variants have been analyzed by
many authors (e.g., [74, 165, 202]). However, in a parallel line of work, generalizations of the
parametric Dawid-Skene model have been empirically evaluated on a variety of crowd-labeling
tasks [332], and shown to achieve performance superior to the Dawid-Skene model for many such
tasks. The permutation-based model of Shah et al. [275] is one such generalization, and was proven
to alleviate some important pitfalls of parametric models from both the statistical and algorithmic
standpoints. Operationally, such a model assumes that workers have a total ordering π of their
abilities, and that questions have a total ordering σ of their difficulties. The matrix M∗ is thus
bivariate isotonic when the rows are ordered in increasing order of worker ability, and columns are
ordered in decreasing order of question difficulty. However, since worker abilities and question
difficulties are unknown a priori, the matrix of probabilities obeys the inclusion M∗ ∈ Cr,c

Perm. In
the particular case where we also know the relative difficulties of the questions themselves, we may
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assume that the column permutation is known, so that our estimation problem is now over the class
Cr

Perm.
Let us now discuss the application to estimation from pairwise comparisons. An interesting

subclass of Cr,c
Perm are those matrices that are square (n1 = n2 = n), and also skew symmetric. More

precisely, let us define C′BISO analogously to the class CBISO, except with matrices having columns
that are non-increasing instead of non-decreasing. Also define the class

Cskew(n) : = {M ∈ [0, 1]n×n : M +M> = 11>}, (3.5a)

as well as the strong stochastic transitivity class

CSST(n) : =

( ⋃
π∈Sn

C′BISO(π, π)

)⋂
Cskew(n). (3.5b)

The class CSST(n) is useful as a model for estimation from pairwise comparisons [59, 274],
and was proposed as a strict generalization of parametric models for this problem [40, 229, 259].
In particular, given n items obeying some unknown underlying ranking π, entry (i, j) of a matrix
M∗ ∈ CSST(n) represent the probability Pr(i � j) with which item i beats item j in a comparison.
The shape constraint encodes the transitivity condition that for all triples (i, j, k) obeying π(i) <
π(j) < π(k), we must have

Pr(i � k) ≥ max{Pr(i � j),Pr(j � k)}.

For a more classical introduction to these models, see the papers [16, 103, 220] and the references
therein. Our task is to estimate the underlying ranking from results of passively chosen pairwise
comparisons3 between the n items, or more generally, to estimate the underlying probabilities M∗

that govern these comparisons4. All results in this chapter stated for the more general matrix model
Cr,c

Perm apply to the class CSST(n) with minimal modifications.
To conclude, we mention a final applications in which the flexibility afforded by nonparametric

models with latent permutations has been noticed and exploited. In psychometric item-response
theory, the Mokken double-monotonicity model is identical to . This model is known to be
significantly more robust to misspecification than the parametric Rasch model; see [314] for an
introduction and survey.

3.3 Fundamental limits of estimation
We begin by characterizing the fundamental limits of estimation under the trace regression obser-
vation model (3.1) with N ′ = Poi(N) observations. We define the least squares estimator over a

3Such a passive, simultaneous setting should be contrasted with the active case (e.g., [96]), where we may
sequentially choose pairs of items to compare depending on the results of previous comparisons.

4Accurate, proper estimates of M∗ in the Frobenius error metric translate to accurate estimates of the ranking π
(see Shah et al. [274]).
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closed set C of n1 × n2 matrices as the projection

M̂LS(C, Y ) ∈ arg min
M∈C
‖Y −M‖2

F .

The projection is a non-convex problem when the class C is given by either the class Cr,c
Perm or Cr

Perm,
and is unlikely to be computable exactly in polynomial time. However, studying this estimator
allows us to establish a baseline that characterizes the best achievable statistical rate. In the following
theorem, we characterizes the Frobenius risk of the least squares estimator, and also provide a
minimax lower bound. These results hold for any sample size N of the problem. Also recall the
shorthand Y = Y

(
{X`, y`}N

′

`=1

)
, and let ζ̄ : = ζ ∨ 1 denote the proxy for the noise that accounts for

missing data.

Theorem 3.3.1. (a) Suppose that n2 ≤ n1. There is an absolute constant c1 > 0 such that for any
matrix M∗ ∈ Cr,c

Perm, we have

F
(
M∗, M̂LS(Cr,c

Perm, Y )
)
≤ c1

{
ζ̄2n1

N
log n1 + ζ̄

n2

N
(log n1)2 (3.6)

+
(
ζ̄

1√
N

(log n1)2
)
∧
(
ζ̄2n2

N
log n1

)2/3

∧
(
ζ̄2n1n2

N
logN

)}
∧ 1

with probability at least 1− n−n1
1 .

(b) Suppose that n2 ≤ n1, and that N ′ ∼ Poi(N) independent samples are drawn under the
standard Gaussian observation model (3.3a) or the Bernoulli observation model (3.3b). Then there
exists an absolute constant c2 > 0 such that any estimator M̂ satisfies

sup
M∗∈Cr

Perm

E
[
F(M∗, M̂)

]
≥ c2

{[
n1

N
+

(
1√
N
∧
(n2

N

)2/3

∧ n1n2

N

)]
∧ 1

}
. (3.7)

When interpreted in the context of square matrices under partial observations, our result should
be viewed as paralleling that of Shah et al. [274]. In addition, however, the result also provides a
generalization in several directions. First, the upper bound holds under the general sub-exponential
noise model. Second, the lower bound holds for the class Cr

Perm, which is strictly smaller than the
class Cr,c

Perm. Third, and more importantly, we study the problem for arbitrary tuples (N, n1, n2), and
this allows us to uncover interesting phase transitions in the rates that were previously unobserved5;
these are discussed in more detail below.

Via the inclusion Cr
Perm ⊆ Cr,c

Perm, we observe that for both classes Cr
Perm and Cr,c

Perm, the upper
and lower bounds match up to logarithmic factors in all regimes of (N, n1, n2) under the standard
Gaussian or Bernoulli noise model. Such a poly-logarithmic gap between the upper and lower

5The regime N ≥ n1n2 is interesting for the problems of ranking and crowd-labeling that motivate our work, since
it is pertinent to compare items or ask workers to answer questions multiple times in order to reduce the noisiness of the
gathered data. From a theoretical standpoint, the large N regime isolates multiple non-asymptotic behaviors on the way
to asymptotic consistency as N →∞, and is related in spirit to recent work on studying the high signal-to-noise ratio
regime in ranking models [111], where phase transitions were also observed.
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bounds is related to corresponding gaps that exist in upper and lower bounds on the metric entropy
of bounded bivariate isotonic matrices [56]. Closing this gap is known to be an important problem
in the study of these shape-constrained objects (see, e.g. [114]).

Let us now interpret the theorem in more detail. First, note that the risk of any proper estimator
is bounded by 1 since the entries of M∗ are bounded in the interval [0, 1]. We thus focus on the
remaining terms of the bound. Up to a poly-logarithmic factor, the upper bound can be simplified to
ζ̄2 n1

N
+
(
ζ̄ 1√

N

)
∧
(
ζ̄2 n2

N

)2/3 ∧
(
ζ̄2 n1n2

N

)
. The first term ζ̄2 n1

N
is due to the unknown permutation on

the rows (which dominates the unknown column permutation since n1 ≥ n2). The remaining terms,
corresponding to the minimum of three rates, stem from estimating the underlying bivariate isotonic
matrix, so we make a short digression to state a corollary specialized to this setting. Recall that
CBISO was used to denote the class of n1×n2 bivariate isotonic matrices. Owing to the convexity of
the set CBISO, the least squares estimator M̂LS(CBISO, Y ) is computable efficiently [182]. Moreover,
we use the shorthand notation

ϑ(N, n1, n2, ζ) : = ζ̄
n2

N
(log n1)2+ (3.8)(

ζ̄
1√
N

(log n1)2
)
∧
(
ζ̄2n2

N
log n1

)2/3

∧
(
ζ̄2n1n2

N
logN

)
.

Corollary 3.3.1. (a) Suppose that n2 ≤ n1. Then there is a universal constant c1 > 0 such that for
any matrix M∗ ∈ CBISO, we have

F
(
M∗, M̂LS(CBISO, Y )

)
≤ c1ϑ(N, n1, n2, ζ) ∧ 1

with probability at least 1− n−3n1
1 .

(b) Suppose that n2 ≤ n1, and that N ′ ∼ Poi(N) independent samples are drawn under the
standard Gaussian observation model (3.3a) or the Bernoulli observation model (3.3b). Then there
exists an absolute constant c2 > 0 such that any estimator M̂ satisfies

sup
M∗∈CBISO

E
[
F(M∗, M̂)

]
≥ c2

{
1√
N
∧
(n2

N

)2/3

∧ n1n2

N
∧ 1

}
.

Corollary 3.3.1 should be viewed as paralleling the results of Chatterjee et al. [56] (see, also, Han
et al. [137]) under a slightly different noise model, while providing some notable extensions once
again. Firstly, we handle sub-exponential noise; secondly, the bounds hold for all tuples (N, n1, n2)
and are optimal up to a logarithmic factor provided the sample size N is sufficiently large. In more
detail, the nonparametric rate ζ̄ 1√

N
was also observed in Theorems 2.1 and 2.2 of the paper [56]

provided in the fully observed setting (N = n1n2), with the lower bound additionally requiring that
the matrix was not extremely skewed. In addition to this rate, we also isolate two other interesting
regimes when N ≥ n2

2 and 1/
√
N is no longer the minimizer of the three terms above. The first

of these regimes is the rate (ζ̄2 n2

N
)2/3, which is also nonparametric; notably, it corresponds to the

rate achieved by decoupling the structure across columns and treating the problem as n2 separate
isotonic regression problems [233, 347]. This suggests that if the matrix is extremely skewed or if
N grows very large, monotonicity along the smaller dimension is no longer as helpful; the canonical
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example of this is when n2 = 1, in which case we are left with the (univariate) isotonic regression
problem6. The final rate ζ̄2 n1n2

N
is parametric and comparatively trivial, as it can be achieved by an

estimator that simply averages observations at each entry. This suggests that when the number of
samples grows extremely large, we can ignore all structure in the problem and still be optimal at
least in a minimax sense.

Let us now return to a discussion of Theorem 3.3.1. To further clarify the rates and transitions
between them, we simplify the discussion by focusing on two regimes of matrix dimensions.

Example 1: n2 ≤ n1 ≤ n2
2 Here, by treating ζ as a constant, we may simplify the minimax rate

(up to logarithmic factors) as

inf
M̂

sup
M∗∈Cr,c

Perm

E
[
F(M∗, M̂)

]
�



1 for N ≤ n1

n1

N
for n1 ≤ N ≤ n2

1
1√
N

for n2
1 ≤ N ≤ n4

2

(n2

N
)2/3 for n4

2 ≤ N ≤ n3
1n2

n1n2

N
for N ≥ n3

1n2

(3.9)

which delineates five distinct regimes depending on the sample size N . The first regime is the trivial
rate. The second regime n1 ≤ N ≤ n2

1 is when the error due to the latent permutation dominates,
while the third regime n2

1 ≤ N ≤ n4
2 corresponds to when the hardness of the problem is dominated

by the structure inherent to bivariate isotonic matrices. For N larger than n4
2, the effect of bivariate

isotonicity disappears, at least in a minimax sense. Namely, in the fourth regime n4
2 ≤ N ≤ n3

1n2,
the rate (n2/N)2/3 is the same as if we treat the problem as n2 separate n1-dimensional isotonic
regression problems with an unknown permutation [104]. For even larger sample size N ≥ n3

1n2,
in the fifth regime, the minimax-optimal rate n1n2/N is trivially achieved by ignoring all structure
and outputting the matrix Y alone. ♣

Example 2: n2 ≤ n1 ≤ Cn2 In this near-square regime, we may once again simplify the bound
and obtain (up to logarithmic factors) that

inf
M̂

sup
M∗∈Cr,c

Perm

E
[
F(M∗, M̂)

]
�


1 for N ≤ n1

n1

N
for n1 ≤ N ≤ n2

1
1√
N

for n2
1 ≤ N ≤ n2

1n
2
2

n1n2

N
for N ≥ n2

1n
2
2

(3.10)

6Indeed, in a similar regime, Chatterjee et al. [56] show in their Theorem 2.3 that the upper bound is achieved
by an estimator that performs univariate regression along each row, followed by a projection onto the set of BISO
matrices. On the other hand, our results establish near-optimal minimax rates in a unified manner through metric
entropy estimates, so that the upper bounds are sharp in all regimes simultaneously, and hold for the least squares
estimator under sub-exponential noise.
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so that two of the cases from before now collapse into one. Ignoring the trivial constant rate, we
thus observe a transition from a parametric rate to a nonparametric rate, and back to the trivial
parametric rate. ♣

3.4 Efficient algorithms
Our algorithms belong to a broader family of algorithms that rely on two distinct steps: first, estimate
the unknown permutation(s) defining the problem; then project onto the class of matrices that are
bivariate isotonic when viewed along the estimated permutations. Formally, any such algorithm is
described by the meta-algorithm below.

Algorithm 1 (meta-algorithm)

• Step 1: Use any algorithm to obtain permutation estimates (π̂, σ̂), setting σ̂ = id if estimating
over class Cr

Perm.

• Step 2: Return the matrix estimate
M̂(π̂, σ̂) : = arg minM∈CBISO(π̂,σ̂) ‖Y −M‖2

F .

Owing to the convexity of the set CBISO(π̂, σ̂), the projection operation in Step 2 of the algorithm
can be computed in polynomial (sub-quadratic) time [182]. The following result, a variant of
Proposition 4.2 of Chatterjee and Mukherjee [55], allows us to characterize the error rate of any
such meta-algorithm as a function of the permutation estimates (π̂, σ̂).

Recall the definition of the set CBISO(π, σ) : = {M(π, σ) : M ∈ CBISO} as the set of matrices
that are bivariate isotonic when viewed along the row permutation π and column permutation σ,
respectively. In particular, we have the inclusionM∗ ∈ CBISO(π∗, σ∗) where π∗ and σ∗ are unknown
permutations in Sn1 and Sn2 , respectively. In the following proposition, we also do not make the
assumption n2 ≤ n1; recall our shorthand notation ϑ(N, n1, n2, ζ) defined in equation (3.8).

Proposition 3.4.1. There exists an absolute constant C > 0 such that for all M∗ ∈ CBISO(π∗, σ∗),
the estimator M̂(π̂, σ̂) obtained by running the meta-algorithm satisfies

F
(
M∗, M̂(π̂, σ̂)

)
≤ C

{
ϑ(N, n1 ∨ n2, n1 ∧ n2, ζ) (3.11)

+
1

n1n2

∥∥M∗(π∗, σ∗)−M∗(π̂, σ∗)
∥∥2

F
+

1

n1n2

∥∥M∗(π∗, σ∗)−M∗(π∗, σ̂)
∥∥2

F

}
with probability exceeding 1− n−n1

1 .

A few comments are in order. The term ϑ(N, n1 ∨ n2, n1 ∧ n2, ζ) on the upper line of the RHS
of the bound (3.11) corresponds to an estimation error, if the true permutations π and σ were known
a priori (see Corollary 3.3.1), and the latter terms on the lower line correspond to an approximation
error that we incur as a result of having to estimate these permutations from data. Comparing the
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bound (3.11) to the minimax lower bound (3.7), we see that up to a poly-logarithmic factor, the
estimation error terms of the bound (3.11) are unavoidable, and so we can restrict our attention
to obtaining good permutation estimates (π̂, σ̂). We now present two permutation estimation
procedures that can be plugged into Step 1 of the meta-algorithm.

3.4.1 Matrices with ordered columns
As a stepping stone to our main algorithm, which estimates over the class Cr,c

Perm, we first consider the
estimation problem when the permutation along one of the dimensions is known. This corresponds
to estimation over the subclass Cr

Perm, and following the meta-algorithm above, it suffices to provide
a permutation estimate π̂. The result of this section holds without the assumption n1 ≥ n2.

We need more notation to facilitate the description of the algorithm. We say that bl = {Bk}|bl|
k=1

is a partition of [n2], if [n2] =
⋃|bl|
k=1Bk and Bj ∩ Bk = ∅ for j 6= k. Moreover, we group the

columns of a matrix Y ∈ Rn1×n2 into |bl| blocks according to their indices in bl, and refer to bl as a
partition or blocking of the columns of Y . In the algorithm, partial row sums of Y are computed on
indices contained in each block.

Algorithm 2 (sorting partial sums)

• Step 1: Choose a partition blref of the set [n2] consisting of contiguous blocks, such that each
block B in blref has size

1

2
n2

√
n1

N
log(n1n2) ≤ |B| ≤ n2

√
n1

N
log(n1n2).

• Step 2: Given the observation matrix Y , compute the row sums

S(i) =
∑
j∈[n2]

Yi,j for each i ∈ [n1],

and the partial row sums within each block

SB(i) =
∑
j∈B

Yi,j for each i ∈ [n1] and B ∈ blref .

Create a directed graph G with vertex set [n1], where an edge u→ v is present if either

S(v)− S(u) > 16(ζ + 1)

(√
n1n2

2

N
log(n1n2) +

n1n2

N
log(n1n2)

)
, or

SB(v)− SB(u) > 16(ζ + 1)

(√
n1n2

N
|B| log(n1n2) +

n1n2

N
log(n1n2)

)
for some B ∈ blref .
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• Step 3: Return any topological sort π̂ref of the graph G; if none exists, return a uniformly
random permutation π̂ref .

We now turn to a detailed discussion of the running time of Algorithm 2. A topological sort
of a generic graph G(V,E) can be found via Kahn’s algorithm [159] in time O(|V |+ |E|). In our
context, the topological sort operation translates to a running time of O(n2

1). In Step 2, constructing
the graph G takes time O(n2

1n
1/2
2 ), since there are at most O(n

1/2
2 ) blocks. This leads to a total

complexity of the order O(n2
1n

1/2
2 ).

Let us now give an intuitive explanation for the algorithm. While algorithms in past work [55,
244, 277] sort the rows of the matrix according to the full Borda counts S(i) defined in Step 2, they
are limited by the high standard deviation in these estimates. Our key observation is that when the
columns are perfectly ordered, judiciously chosen partial row sums (which are less noisy than full
row sums) also contain information that can help estimate the underlying row permutation. The
thresholds on the score differences in Step 2 are chosen to be comparable to the standard deviations
of the respective estimates, with additional logarithmic factors that allow for high-probability
statements via application of Bernstein’s bounds.

Theorem 3.4.1. There exists an absolute constant c1 > 0 such that for any matrix M∗ ∈ Cr
Perm, we

have

F(M∗, M̂(π̂ref , id)) ≤ 1 ∧ c1

{
ζ̄2

(
n1 log n1

N

)3/4

+ ϑ(N, n1 ∨ n2, n1 ∧ n2, ζ)
}

(3.12)

with probability at least 1− 3(n1n2)−2.

In order to evaluate our Frobenius error guarantee, it is helpful to specialize to the regime
n2 ≤ n1 ≤ Cn2.

Example: n2 ≤ n1 ≤ Cn2 In this case, the Frobenius error guarantee simplifies to

1

(log n1)2
F(M∗, M̂(π̂ref , id)) .



1 for N ≤ n1(
n1

N

)3/4 for n1 ≤ N ≤ n3
1

1√
N

for n3
1 ≤ N ≤ n4

1

n1n2

N
for n4

1 ≤ N ≤ n5
1(

n1

N

)3/4 for N ≥ n5
1.

(3.13)

We may compare the bounds (3.10) and (3.13); note that when n3
1 ≤ N ≤ n5

1, our estimator achieves
the minimax lower bound given by 1√

N
∧ n1n2

N
(up to poly-logarithmic factors). As alluded to before,

when N ≥ n5
1, we may switch to trivially outputting the matrix Y , and so the sub-optimality in

the large N regime can be completely avoided. On the other hand, no such modification can be
made in the small sample regime n1 ≤ N ≤ n3

1, and the estimator falls short of being optimal in the
Frobenius error in this case. ♣
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Closing the aforementioned gap in the Frobenius error in the small sample regime is an inter-
esting open problem. Having established guarantees for our algorithm, we now turn to using the
intuition gained from these guarantees to provide estimators for matrices in the larger class Cr,c

Perm.

3.4.2 Two-dimensional sorting for class Cr,c
Perm

We reinstate the assumption n2 ≤ n1 in this section. The algorithm in the previous section cannot be
immediately extended to the class Cr,c

Perm, since it assumes that the matrix is perfectly sorted along
one of the dimensions. However, it suggests a plug-in procedure that can be described informally as
follows.

1. Sort the columns of the matrix Y according to its column sums.

2. Apply Algorithm 2 to the column-sorted matrix to obtain a row permutation estimate.

3. Repeat Steps 1 and 2 with Y transposed to obtain a column permutation estimate.

Although the columns of Y are only approximately sorted in the first step, the hope is that the finer
row-wise control given by Algorithm 2 is able to improve the row permutation estimate. The actual
algorithm, provided below, essentially implements this intuition, but with a careful data-dependent
blocking procedure that we describe next. Given a data matrix Y ∈ Rn1×n2 , the following blocking
subroutine returns a column partition BL(Y ).

Subroutine 1 (blocking)

• Step 1: Compute the column sums {C(j)}n2
j=1 of the matrix Y as

C(j) =

n1∑
i=1

Yi,j.

Let σ̂pre be a permutation along which the sequence {C(σ̂pre(j))}n2
j=1 is non-decreasing.

• Step 2: Set τ = 16(ζ + 1)
(√

n2
1n2

N
log(n1n2) + n1n2

N
log(n1n2)

)
and K = dn2/τe. Partition

the columns of Y into K blocks by defining

bl1 = {j ∈ [n2] : C(j) ∈ (−∞, τ)},
blk =

{
j ∈ [n2] : C(j) ∈

[
(k − 1)τ, kτ

)}
for 1 < k < K, and

blK = {j ∈ [n2] : C(j) ∈ [(K − 1)τ,∞)}.

Note that each block is contiguous when the columns are permuted by σ̂pre.
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• Step 3 (aggregation): Set β = n2

√
n1

N
log(n1n2). Call a block blk “large” if |blk| ≥ β and

“small” otherwise. Aggregate small blocks in bl while leaving the large blocks as they are, to
obtain the final partition BL.

More precisely, consider the matrix Y ′ = Y (id, σ̂pre) having non-decreasing column sums
and contiguous blocks. Call two small blocks “adjacent” if there is no other small block
between them. Take unions of adjacent small blocks to ensure that the size of each resulting
block is in the range [1

2
β, 2β]. If the union of all small blocks is smaller than 1

2
β, aggregate

them all.

Return the resulting partition BL(Y ) = BL.

Ignoring Step 3 for the moment, we see that the blocking bl is analogous to the blocking blref of
Algorithm 2, along which partial row sums may be computed. While the blocking blref was chosen
in a data-independent manner due to the columns being sorted exactly, the blocking bl is chosen
based on approximate estimation of the column permutation. However, some of these K blocks
may be too small, resulting in noisy partial sums; in order to mitigate this issue, Step 3 aggregates
small blocks into large enough ones. We are now in a position to describe the two-dimensional
sorting algorithm.

Algorithm 3 (two-dimensional sorting)

• Step 0: Split the observations into two independent sub-samples of equal size, and form the
corresponding matrices Y (1) and Y (2) according to equation (3.4).

• Step 1: Apply Subroutine 1 to the matrix Y (1) to obtain a partition BL = BL(Y (1)) of the
columns. Let K be the number of blocks in BL.

• Step 2: Using the second sample Y (2), compute the row sums

S(i) =
∑
j∈[n2]

Y
(2)
i,j for each i ∈ [n1],

and the partial row sums within each block

SBLk(i) =
∑
j∈BLk

Y
(2)
i,j for each i ∈ [n1], k ∈ [K].

Create a directed graph G with vertex set [n1], where an edge u→ v is present if either

S(v)− S(u) > 16(ζ + 1)

(√
n1n2

2

N
log(n1n2) +

n1n2

N
log(n1n2)

)
, or (3.14a)

SBLk(v)− SBLk(u) > 16(ζ + 1)

(√
n1n2

N
|BLk| log(n1n2) +

n1n2

N
log(n1n2)

)
(3.14b)

for some k ∈ [K].
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• Step 3: Compute a topological sort π̂tds of the graph G; if none exists, set π̂tds = id.

• Step 4: Repeat Steps 1–3 with (Y (i))> replacing Y (i) for i = 1, 2, the roles of n1 and n2

switched, and the roles of π and σ switched, to compute the permutation estimate σ̂tds.

• Step 5: Return the permutation estimates (π̂tds, σ̂tds).

The topological sorting step once again takes timeO(n2
1) and reading the matrix takes time n1n2.

Consequently, since n1 ≥ n2, the construction of the graph G in Step 2 dominates the computational
complexity, and takes time O(n2

1n2/β) = O(n2
1n

1/2
2 ). Computing judiciously chosen partial row

sums once again captures much more of the signal in the problem than entire row sums alone, and
we obtain the following guarantee.

Theorem 3.4.2. Suppose that n2 ≤ n1. Then there exists an absolute constant c1 > 0 such that for
any matrix M∗ ∈ Cr,c

Perm, we have

F(M∗, M̂(π̂tds, σ̂tds)) ≤ 1 ∧ c1

{
ζ̄2
(n1 log n1

N

)3/4

+ ϑ(N, n1, n2, ζ)
}

(3.15)

with probability exceeding 1− 10(n1n2)−3.

To interpret our rate in the Frobenius error, it is once again helpful to specialize to the case
n2 ≤ n1 ≤ Cn2.

Example: n2 ≤ n1 ≤ Cn2 In this case, the Frobenius error guarantee simplifies exactly as before
to

1

(log n1)2
F(M∗, M̂(π̂tds, σ̂tds)) .



1 for N ≤ n1(
n1

N

)3/4 for n1 ≤ N ≤ n3
1

1√
N

for n3
1 ≤ N ≤ n4

1

n1n2

N
for n4

1 ≤ N ≤ n5
1(

n1

N

)3/4 for N ≥ n5
1.

(3.16)

Once again, comparing the bounds (3.10) and (3.16), we see that when N ≥ n3
1, our estimator

(when combined with outputting the Y matrix when N ≥ n5
1) achieves the minimax lower bound

up to poly-logarithmic factors.
This optimality is particularly notable because existing estimators [55, 59, 244, 274, 277] for

the class Cr,c
Perm are only able to attain, in the regime n1 = n2, the rate

1

(log n1)2
F(M∗, M̂prior) .

{
1 for N ≤ n1(
n1

N

)1/2 for N ≥ n1,
(3.17)
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where we have used M̂prior to indicator any such estimator from prior work. Thus, the nonparametric
rates observed when N is large are completely washed out by the rate

(
n1

N

)1/2, and so this prevents
existing estimators from achieving minimax optimality in any regime of N .

Returning to our estimator, we see that in the regime n1 ≤ N ≤ n2
1, it falls short of being

minimax-optimal, but breaks the conjectured statistical-computational barrier alluded to in the
introduction. ♣

Note that Theorem 3.4.2 extends to estimation of matrices in the class CSST(n). In particular,
we have n1 = n2 = n, and either of the two estimates π̂tds or σ̂tds may be returned as an estimate of
the permutation π while preserving the same guarantees.

We conclude by noting that the sub-optimality of our estimator in the small-sample regime is
not due to a weakness in the analysis. In particular, our analysis in this regime is also optimal up to
poly-logarithmic factors; the rate (n1

N
)3/4 is indeed the rate attained by the two-dimensional sorting

algorithm for the noisy sorting subclass of Cr,c
Perm. In fact, a variant of this algorithm was used in a

recursive fashion to successively improve the rate for noisy sorting matrices [212]; the first step of
this algorithm generates an estimate with rate exactly (n1

N
)3/4.

3.5 Proofs of main results
In this appendix, we present all of our proofs. We begin by stating and proving technical lemmas
that are used repeatedly in the proofs. We then prove our main results in the order in which they
were stated.

Throughout the proofs, we assume without loss of generality that M∗ ∈ CBISO(id, id) = CBISO.
Because we are interested in rates of estimation up to universal constants, we assume that each
independent sub-sample contains N ′ = Poi(N) observations (instead of Poi(N)/2). We use the
shorthand Y = Y

(
{(X`, y`)}N

′

`=1

)
, throughout. Our proof makes use of a few preliminary lemmas

that are stated and proved in Appendix A.3.

3.5.1 Proof of Theorem 3.3.1
We split the proof into three distinct parts. We first prove the upper bound in part (a) of the theorem,
and then prove the lower bound in part (b) in two separate sections. The proof in each section
encompasses more than one regime of the theorem, and allows us to precisely pinpoint the source
of the minimax lower bound.

Proof of part (a)

As argued, the bound is trivially true when N ≤ n1 by the boundedness of the set Cr,c
Perm, so we

assume that N ≥ n1 ≥ n2. Under our observation model (3.4), if we define W = Y −M∗, then
Lemma A.3.1 implies that the assumption of Lemma A.3.2 is satisfied with α = c1(ζ + 1)

√
n1n2

N

and β = c1(ζ + 1)n1n2

N
for a universal constant c1 > 0. Therefore, Lemma A.3.2(a) yields that with
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probability at least 1− n−3n1
1 , we have

∥∥M̂LS(Cr,c
Perm, Y )−M∗∥∥2

F
. (ζ + 1)2n

2
1n2

N
log n1 + (ζ + 1)

n1n
2
2

N
(log n1)2

+
[
(ζ + 1)

n1n2√
N

(log n1)2
]
∧
[
(ζ + 1)2n

2
1n

2
2

N
logN

]
∧
[
(ζ + 1)4/3n1n

5/3
2

N2/3
(log n1)2/3

]
.

Normalizing the bound by 1/(n1n2) completes the proof.

Proof of part (b): permutation error

We start with the term n1

N
∧ 1 of the lower bound which stems from the unknown permutation on

the rows.
Its proof is an application of Fano’s lemma. The technique is standard, and we briefly review it

here. Suppose we wish to estimate a parameter θ over an indexed class of distributions P = {Pθ |
θ ∈ Θ} in the square of a (pseudo-)metric ρ. We refer to a subset of parameters {θ1, θ2, . . . , θK} as
a local (δ, ε)-packing set if

min
i,j∈[K], i6=j

ρ(θi, θj) ≥ δ and
1

K(K − 1)

∑
i,j∈[K], i6=j

D(Pθi‖Pθj) ≤ ε.

Note that this set is a δ-packing in the metric ρ with the average Kullback-Leibler (KL) divergence
bounded by ε. The following result is a straightforward consequence of Fano’s inequality (see [302,
Theorem 2.5]):

Lemma 3.5.1 (Local packing Fano lower bound). For any (δ, ε)-packing set of cardinality K, we
have

inf
θ̂

sup
θ∗∈Θ

E
[
ρ(θ̂, θ∗)2

]
≥ δ2

2

(
1− ε+ log 2

logK

)
. (3.18)

In addition, the Gilbert-Varshamov bound [121, 316] guarantees the existence of binary vectors
{v1, v2, . . . , vK} ⊆ {0, 1}n1 such that

K ≥ 2c1n1 and (3.19a)

‖vi − vj‖2
2 ≥ c2n1 for each i 6= j, (3.19b)

for some fixed tuple of constants (c1, c2). We use this guarantee to design a packing of matrices
in the class Cr

Perm. For each i ∈ [K], fix some δ ∈ [0, 1/4] to be precisely set later, and define the
matrix M i having identical columns, with entries given by

M i
j,k =

{
1/2, if vij = 0

1/2 + δ, otherwise.
(3.20)
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Clearly, each of these matrices {M i}Ki=1 is a member of the class Cr
Perm, and each distinct pair of

matrices (M i,M j) satisfies the inequality ‖M i −M j‖2
F ≥ c2n1n2δ

2.
Let PM denote the probability distribution of the observations in the model (3.1) with underlying

matrix M ∈ Cr
Perm. Our observations are independent across entries of the matrix, and so the KL

divergence tensorizes to yield

D(PM i‖PMj) =
∑
k∈[n1]
`∈[n2]

D(PM i
k,`
‖PMj

k,`
). (3.21)

Let us now examine one term of this sum. Note that we observe κk,` ∼ Poi( N
n1n2

) samples of each
entry (k, `).

Under the Bernoulli observation model (3.3b), conditioned on the event κk,` = κ, we have the
distributions

PM i
k,`

= Bin(κ,M i
k,`), and PMj

k,`
= Bin(κ,M j

k,`).

Consequently, the KL divergence conditioned on κk,` = κ is given by

D(PM i
k,`
‖PMj

k,`
) = κD(M i

k,`‖M
j
k,`),

where we have used D(p‖q) = p log(p
q
) + (1− p) log(1−p

1−q ) to denote the KL divergence between
the Bernoulli random variables Ber(p) and Ber(q).

Note that for p, q ∈ [1/2, 3/4], we have

D(p‖q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
(i)

≤ p

(
p− q
q

)
+ (1− p)

(
q − p
1− q

)
=

(p− q)2

q(1− q)
(ii)

≤ 16

3
(p− q)2.

Here, step (i) follows from the inequality log x ≤ x−1, and step (ii) from the assumption q ∈ [1
2
, 3

4
].

Taking the expectation over κ, we have

D(PM i
k,`
‖PMj

k,`
) ≤ 16

3

N

n1n2

(M i
k,` −M

j
k,`)

2 ≤ 16

3

N

n1n2

δ2, (3.22)

Summing over k ∈ [n1], ` ∈ [n2] yields D(PM i‖PMj) ≤ 16
3
Nδ2.

Under the standard Gaussian observation model (3.3a), a similar argument yields the bound
D(PM i‖PMj) ≤ 1

2
Nδ2, since we have D(N (p, 1)‖N (q, 1)) = (p− q)2/2.
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Substituting into Fano’s inequality (3.18), we have

inf
M̂

sup
M∗∈Cr

Perm

E
[
‖M̂ −M∗‖2

F

]
≥ c2n1n2δ

2

2

(
1−

16
3
Nδ2 + log 2

c3n1

)
.

Finally, ifN ≥ c4n1 for a sufficiently large constant c4 > 0, then we obtain the lower bound of order
n1/N by choosing δ2 = cn1

N
for some constant c > 0 and normalizing by 1/(n1n2). If N ≤ c4n1,

then we simply choose δ to be a sufficiently small constant and normalize to obtain the lower bound
of constant order.

Proof of part (b): estimation error

We now turn to the term 1√
N
∧
(
n2

N

)2/3 ∧ n1n2

N
of the lower bound which stems from estimation of

the underlying bivariate isotonic matrix even if the permutations are given. This lower bound is
partly known for the model of one observation per entry under Gaussian noise [56], and it suffices
to slightly extend their proof to fit our model. The proof is based on Assouad’s lemma.

Lemma 3.5.2 (Assouad’s Lemma). Consider a parameter space Θ. Let Pθ denote the distribution
of the model given that the true parameter is θ ∈ Θ. Let Eθ denote the corresponding expectation.
Suppose that for each τ ∈ {−1, 1}d, there is an associated θτ ∈ Θ. Then it holds that

inf
θ̃

sup
θ∗∈Θ

Eθ∗`2(θ̃, θ∗) ≥ d

8
min
τ 6=τ ′

`2(θτ , θτ
′
)

dH(τ, τ ′)
min

dH(τ,τ ′)=1
(1− ‖Pθτ − Pθτ ′‖TV ),

where ` denotes any distance function on Θ, dH denotes the Hamming distance, ‖ · ‖TV denotes the
total variation distance, and the infimum is taken over all estimators θ̃ measurable with respect to
the observation.

To apply the lemma, we construct a mapping from the hypercube to CBISO ⊂ Cr,c
Perm. Consider

integers k1 ∈ [n1] and k2 ∈ [n2], and let m1 = n1/k1 and m2 = n2/k2. Assume without loss of
generality that m1 and m2 are integers. For each τ ∈ {−1, 1}k1×k2 , define M τ ∈ CBISO in the
following way. For i ∈ [n1] and j ∈ [n2], first identify the unique u ∈ [k1], v ∈ [k2] for which
(u− 1)m1 < i ≤ um1 and (v − 1)m2 < j ≤ vm2, and then take

M τ
i,j = λ

(u+ v − 1

k1 + k2

+
τu,v

2(k1 + k2)

)
for λ ∈ (0, 1] to be chosen. It is not hard to verify that M τ ∈ CBISO.

We now proceed to show the lower bound using Assouad’s lemma, which in our setup states that

inf
M̃

sup
M∗∈CBISO

EM∗‖M̃ −M∗‖2
F ≥ (3.23)

k1k2

8
min
τ 6=τ ′
‖M τ −M τ ′‖2

F

dH(τ, τ ′)
min

dH(τ,τ ′)=1
(1− ‖PMτ − PMτ ′‖TV ).
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For any τ, τ ′ ∈ {−1, 1}k1×k2 , it holds that

‖M τ −M τ ′‖2
F =

∑
i,j

(M τ
i,j −M τ ′

i,j)
2

=
∑

u∈[k1],v∈[k2]

∑
(u−1)m1<i≤um1

∑
(v−1)m2<j≤vm2

(M τ
i,j −M τ ′

i,j)
2

=
∑

u∈[k1],v∈[k2]

m1m2

λ2(τu,v − τ ′u,v)2

4(k1 + k2)2

=
λ2m1m2

(k1 + k2)2
dH(τ, τ ′). (3.24)

As a result, we have

min
τ 6=τ ′
‖M τ −M τ ′‖2

F

dH(τ, τ ′)
=

λ2m1m2

(k1 + k2)2
. (3.25)

To bound ‖PMτ − PMτ ′‖TV , we use Pinsker’s inequality

‖PMτ − PMτ ′‖2
TV ≤

1

2
D(PMτ‖PMτ ′ ).

Under either the Bernoulli or the standard Gaussian observation model, we have seen that by
combining (3.21) and (3.22) (which hold even in this regime of N ), the KL divergence can be
bounded as

D(PMτ‖PMτ ′ ) ≤
∑

i∈[n1], j∈[n2]

16

3

N

n1n2

(M τ
i,j −M τ ′

i,j)
2

=
16

3

N

n1n2

‖M τ −M τ ′‖2
F

=
16

3

N

n1n2

λ2m1m2

(k1 + k2)2
=

16

3

λ2N

k1k2(k1 + k2)2
,

where the second-to-last equality follows from (3.24) for any τ and τ ′ such that dH(τ, τ ′) = 1.
Therefore, it holds that

min
dH(τ,τ ′)=1

(1− ‖PMτ − PMτ ′‖TV ) ≥
(

1−
√

8N

3k1k2

λ

k1 + k2

)
. (3.26)

Plugging (3.25) and (3.26) into Assouad’s lemma (3.23), we obtain

inf
M̃

sup
M∗∈CBISO

EM∗‖M̃ −M∗‖2
F ≥

λ2n1n2

8(k1 + k2)2

(
1−

√
8N

3k1k2

λ

k1 + k2

)
. (3.27)



CHAPTER 3. FAST AND SAMPLE-EFFICIENT MATRIX COMPLETION 53

Note that the bound (3.27) holds for all tuples (N, n1, n2). In order to obtain the various regimes, we
must set particular values of k1 and k2. If N ≤ 1, then setting k1 = k2 = 1 and λ to be a sufficiently
small constant clearly gives the trivial bound. If 1 ≤ N ≤ n4

2, then we take k1 = k2 = bN1/4c ≤ n2

and λ to be a sufficiently small positive constant so that

inf
M̃

sup
M∗∈CBISO

EM∗‖M̃ −M∗‖2
F ≥ c1

n1n2√
N
,

for a constant c1 > 0. If n4
2 ≤ N ≤ n3

1n2, we take k1 = b(N/n2)1/3c ≤ n1, k2 = n2 and λ to be a
sufficiently small positive constant so that

inf
M̃

sup
M∗∈CBISO

EM∗‖M̃ −M∗‖2
F ≥ c2

(n2

N

)2/3

,

for a constant c2 > 0. Finally, if N ≥ n3
1n2, we choose k1 = n1, k2 = n2 and λ =

√
3n1n2

32N
(n1 +n2)

to conclude that

inf
M̃

sup
M∗∈CBISO

EM∗‖M̃ −M∗‖2
F ≥

3(n1n2)2

256N
.

Normalizing the above bounds by 1/(n1n2) yields the theorem.

3.5.2 Proof of Corollary 3.3.1
The proof of this corollary follows from the steps used to establish Theorem 3.3.1. In particular, for
the upper bound, applying Lemma A.3.2(b) with the same parameter choices as above yields that
with probability at least 1− n−3n1

1 , we have

∥∥M̂LS(CBISO, Y )−M∗∥∥2

F
. (ζ + 1)

n1n
2
2

N
(log n1)2

+
[
(ζ + 1)

n1n2√
N

(log n1)2
]
∧
[
(ζ + 1)2n

2
1n

2
2

N
logN

]
∧
[
(ζ + 1)4/3n1n

5/3
2

N2/3
(log n1)2/3

]
.

Normalizing the bound by 1/(n1n2) proves the upper bound.
The lower bound established in Section 3.5.1 is valid for the class CBISO, so the proof is

complete.

3.5.3 Proof of Proposition 3.4.1

Recall the definition of M̂(π̂, σ̂) in the meta-algorithm, and additionally, define the projection of
any matrix M ∈ Rn1×n2 onto CBISO(π, σ) as

Pπ,σ(M) = arg min
M̃∈CBISO(π,σ)

‖M − M̃‖2
F .



CHAPTER 3. FAST AND SAMPLE-EFFICIENT MATRIX COMPLETION 54

Letting W = Y (2) −M∗, we have

‖M̂(π̂, σ̂)−M∗‖2
F

(i)

≤ 2‖Pπ̂,σ̂(M∗ +W )− Pπ̂,σ̂(M∗(π̂, σ̂) +W )‖2
F

+ 2‖Pπ̂,σ̂(M∗(π̂, σ̂) +W )−M∗‖2
F

(ii)

≤ 2‖M∗(π̂, σ̂)−M∗‖2
F + 2‖Pπ̂,σ̂(M∗(π̂, σ̂) +W )−M∗‖2

F

(iii)

≤ 4‖Pπ̂,σ̂(M∗(π̂, σ̂) +W )−M∗(π̂, σ̂)‖2
F + 6‖M∗(π̂, σ̂)−M∗‖2

F , (3.28)

where step (ii) follows from the non-expansiveness of a projection onto a convex set, and steps (i)
and (iii) from the triangle inequality.

The first term in equation (3.28) is the estimation error of a bivariate isotonic matrix with
known permutations. Therefore, applying Corollary 3.3.1 with a union bound over all permutations
π̂ ∈ Sn1 and σ̂ ∈ Sn2 yields the bound

‖Pπ̂,σ̂(M∗(π̂, σ̂) +W )−M∗(π̂, σ̂)‖2
F ≤ Cϑ(N, n1 ∨ n2, n1 ∧ n2, ζ)

on the estimation error with probability at least7 1− n−n1
1 .

The approximation error can be split into two components: one along the rows of the matrix,
and the other along the columns. More explicitly, we have

‖M∗ −M∗(π̂, σ̂)‖2
F ≤ 2‖M∗ −M∗(π̂, id)‖2

F + 2‖M∗(π̂, id)−M∗(π̂, σ̂)‖2
F

= 2‖M∗ −M∗(π̂, id)‖2
F + 2‖M∗ −M∗(id, σ̂)‖2

F .

This completes the proof of the proposition.

3.5.4 Proof of Theorem 3.4.1
In order to ease the notation, we adopt the shorthand

η : = 16(ζ + 1)
(√n1n2

2

N
log(n1n2) +

n1n2

N
log(n1n2)

)
,

and for each block B ∈ blref in Algorithm 2, we use the shorthand

ηB : = 16(ζ + 1)
(√ |B|n1n2

N
log(n1n2) +

n1n2

N
log(n1n2)

)
(3.29)

throughout the proof. Applying Lemma A.3.1 with S = {i} × [n2] and then with S = {i} ×B for
each i ∈ [n1] and B ∈ blref , we obtain

Pr

∣∣∣S(i)−
∑
`∈[n2]

M∗
i,`

∣∣∣ ≥ η

2

 ≤ 2(n1n2)−4, (3.30a)

7Choosing the constant C to be twice the constant in Corollary 3.3.1, we can boost the probability of the good event
in Corollary 3.3.1 to 1− n−2n1

1 , and applying a union bound over at most 2n1! permutations yields the claimed result.
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and

Pr

{∣∣∣SB(i)−
∑
`∈B

M∗
i,`

∣∣∣ ≥ ηB
2

}
≤ 2(n1n2)−4. (3.30b)

A union bound over all rows and blocks yields that Pr{E} ≥ 1− 2(n1n2)−3, where we define the
event

E : =

∣∣∣S(i)−
∑
`∈[n2]

M∗
i,`

∣∣∣ ≤ η

2
and

∣∣∣SB(i)−
∑
`∈B

M∗
i,`

∣∣∣ ≤ ηB
2

for all i ∈ [n1], B ∈ blref

 .

We now condition on event E . Applying the triangle inequality, if

S(v)− S(u) > η or SB(v)− SB(u) > ηB,

then we have ∑
`∈[n2]

M∗
v,` −

∑
`∈[n2]

M∗
u,` > 0 or

∑
`∈B

M∗
v,` −

∑
`∈B

M∗
u,` > 0.

It follows that u < v since M∗ has non-decreasing columns. Thus, by the choice of thresholds η
and ηB in the algorithm, we have guaranteed that every edge u → v in the graph G is consistent
with the underlying permutation id, so a topological sort exists on event E .

We need the following lemma, whose proof is deferred to Section A.4.

Lemma 3.5.3. Let B be a subset of [n2] and let ηB be defined by (3.29). Suppose that π̂ is a
topological sort of a graph G, where an edge u→ v is present whenever∑

`∈B

M∗
v,` −

∑
`∈B

M∗
u,` > 2ηB.

Then for all i ∈ [n1], we have

∑
j∈B

∣∣M∗
π̂(i),j −M∗

i,j

∣∣ ≤ 96(ζ + 1)

√
n1n2

N
|B| log(n1n2).

If we have ∑
`∈[n2]

M∗
v,` −

∑
`∈[n2]

M∗
u,` > 2η or

∑
`∈B

M∗
v,` −

∑
`∈B

M∗
u,` > 2ηB,

then the triangle inequality implies that

S(v)− S(u) > η or SB(v)− SB(u) > ηB.
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Hence, the edge u → v is present in the graph G. As we defined π̂ref as a topological sort of G,
Lemma 3.5.3 implies that∑
j∈[n2]

∣∣M∗
π̂ref(i),j

−M∗
i,j

∣∣ ≤ 96(ζ + 1)

√
n1n2

2

N
log(n1n2) for all i ∈ [n1], and (3.31a)

∑
j∈B

∣∣M∗
π̂ref(i),j

−M∗
i,j

∣∣ ≤ 96(ζ + 1)

√
n1n2

N
|B| log(n1n2) for all i ∈ [n1], B ∈ blref . (3.31b)

Critical to the rest of our analysis is the following lemma:

Lemma 3.5.4. For a vector v ∈ Rn, define its variation as var(v) = maxi vi −mini vi. Then we
have

‖v‖2
2 ≤ var(v)‖v‖1 + ‖v‖2

1/n.

See Section A.4 for the proof of this lemma.
For each i ∈ [n1], define ∆i to be the i-th row difference M∗

π̂ref(i)
−M∗

i , and for each block
B ∈ blref , denote the restriction of ∆i to B by ∆i

B. Lemma 3.5.4 applied with v = ∆i
B yields

‖∆i‖2
2 =

∑
B∈blref

‖∆i
B‖2

2

≤
∑
B∈blref

var(∆i
B)‖∆i

B‖1 +
∑
B∈blref

‖∆i
B‖2

1

|B|

≤
(

max
B∈blref

‖∆i
B‖1

)( ∑
B∈blref

var
(
∆i
B

))
+

maxB∈blref
‖∆i

B‖1

minB∈blref
|B|

∑
B∈blref

‖∆i
B‖1. (3.32)

We now analyze the quantities in inequality (3.32). By the definition of the blocking BL, we have

1

2
n2

√
n1

N
log(n1n2) ≤ |B| ≤ n2

√
n1

N
log(n1n2).

Additionally, the bounds (3.31a) and (3.31b) imply that∑
B∈blref

‖∆i
B‖1 = ‖∆i‖1 ≤ 96(ζ + 1)n2

√
n1

N
log(n1n2), and

‖∆i
B‖1 ≤ 96(ζ + 1)n2

(n1

N
log(n1n2)

)3/4

for all B ∈ blref .

Moreover, we have ∑
B∈blref

var
(
∆i
B

)
≤
∑
B∈blref

[
var(M∗

i,B) + var(M∗
π̂ref(i),B

)
]

≤ var(M∗
i ) + var(M∗

π̂ref(i)
) ≤ 2,
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because M∗ has monotone rows in [0, 1]n2 . Finally, plugging all the pieces into equation (3.32)
yields

‖∆i‖2
2 . (ζ ∨ 1)n2

(
n1 log n1

N

)3/4

.

Normalizing this bound by 1/n2, summing over the rows, and applying Proposition 3.4.1, we obtain
the bound (3.12) on the Frobenius error.

3.5.5 Proof of Theorem 3.4.2
The beginning of the proof proceeds in the same way as the proof of Theorem 3.4.1, so that we
provide only a sketch. We apply Lemma A.3.1 with S = {i} × [n2] and S = {i} × BLk for each
tuple i ∈ [n1], k ∈ [K], and use the fact that K ≤ n2/β ≤ n

1/2
2 , to obtain that with probability at

least 1 − 2(n1n2)−3, all the full row sums of Y (2) and all the partial row sums over the column
blocks concentrate well around their means. By virtue of the conditions (3.14a) and (3.14b), we
see that every edge u → v in the graph G is consistent with the underlying permutation so that
a topological sort exists with probability at least 1 − 2(n1n2)−3. Additionally, it follows from
Lemma 3.5.3 and the same argument leading to equations (3.31a) and (3.31b) that for all i ∈ [n1],
we have∣∣∣ ∑

j∈[n2]

(M∗
π̂tds(i),j

−M∗
i,j)
∣∣∣ ≤ 96(ζ + 1)

√
n1n2

2

N
log(n1n2), and (3.33a)

∣∣∣ ∑
j∈BLk

(M∗
π̂tds(i),j

−M∗
i,j)
∣∣∣ ≤ 96(ζ + 1)

√
n1n2

N
|BLk| log(n1n2) for all k ∈ [K], (3.33b)

with probability at least 1− 2(n1n2)−3.
On the other hand, we apply Lemma A.3.1 with S = [n1]× {j} to obtain concentration for the

column sums of Y (1):∣∣∣C(j)−
n1∑
i=1

M∗
i,j

∣∣∣ ≤ 8(ζ + 1)

(√
n2

1n2

N
log(n1n2) +

n1n2

N
log(n1n2)

)
(3.34)

for all j ∈ [n2] with probability at least 1 − 2(n1n2)−3. We carry out the remainder of the proof
conditioned on the event of probability at least 1 − 4(n1n2)−3 that inequalities (3.33a), (3.33b)
and (3.34) hold.

Having stated the necessary bounds, we now split the remainder of the proof into two parts for
convenience. In order to do so, we first split the set BL into two disjoint sets of blocks, depending
on whether a block comes from an originally large block (of size larger than β = n2

√
n1

N
log(n1n2)

as in Step 3 of Subroutine 1) or from an aggregation of small blocks. More formally, define the sets

BLL : = {B ∈ BL : B was not obtained via aggregation}, and

BLS : = BL \ BLL.
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For a set of blocks B, define the shorthand ∪B =
⋃
B∈B B for convenience. We begin by focusing

on the blocks BLL.

Error on columns indexed by ∪BLL

Recall that when the columns of the matrix are ordered according to σ̂pre, the blocks in BLL are
contiguous and thus have an intrinsic ordering. We index the blocks according to this ordering as
B1, B2, . . . , B` where ` = |BLL|. Now define the disjoint sets

BL(1) : = {Bk ∈ BLL : k = 0 (mod 2)}, and

BL(2) : = {Bk ∈ BLL : k = 1 (mod 2)}.

Let `t = |BL(t)| for each t = 1, 2.
Recall that each block Bk in BLL remains unchanged after aggregation, and that the threshold

we used to block the columns is
τ = 16(ζ + 1)

(√n2
1n2

N
log(n1n2) + 2n1n2

N
log(n1n2)

)
. Hence, applying the concentration bound

(3.34) together with the definition of blocks in Step 2 of Subroutine 1 yields∣∣∣ n1∑
i=1

M∗
i,j1
−

n1∑
i=1

M∗
i,j2

∣∣∣ ≤ 96(ζ + 1)

√
n2

1n2

N
log(n1n2) for all j1, j2 ∈ Bk, (3.36)

where we again used the argument leading to the bounds (3.31a) and (3.31b) to combine the two
terms. Moreover, since the threshold is twice the concentration bound, it holds that under the true
ordering id, every index in Bk precedes every index in Bk+2 for any k ∈ [K − 2]. By definition, we
have thus ensured that the blocks in BL(t) do not “mix” with each other.

The rest of the argument hinges on the following lemma, which is proved in Section A.4.

Lemma 3.5.5. For m ∈ Z+, let J1 t · · · t J` be a partition of [m] such that each Jk is contiguous
and Jk precedes Jk+1. Let ak = min Jk, bk = max Jk and mk = |Jk|. Let A be a matrix in
[0, 1]n×m with non-decreasing rows and non-decreasing columns. Suppose that

n∑
i=1

(Ai,bk − Ai,ak) ≤ χ for each k ∈ [`] and some χ ≥ 0.

Additionally, suppose that there are positive reals ρ, ρ1, ρ2, . . . , ρ`, and a permutation π such that
for any i ∈ [n], we have (i)

∑m
j=1 |Aπ(i),j − Ai,j| ≤ ρ, and (ii)

∑
j∈Jk |Aπ(i),j − Ai,j| ≤ ρk for each

k ∈ [`]. Then it holds that

n∑
i=1

m∑
j=1

(Aπ(i),j − Ai,j)2 ≤ 2χ
∑̀
k=1

ρk + nρmax
k∈[`]

ρk
mk

.
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We apply the lemma as follows. For t = 1, 2, let the matrix M (t) be the sub-matrix of M∗

restricted to the columns indexed by the indices in ∪BL(t). The matrix M (t) has non-decreasing
rows and columns by assumption. We have shown that the blocks in BL(t) do not mix with each
other, so they are contiguous and correctly ordered in M (t). Moreover, the inequality assumptions of
the lemma correspond to the bounds (3.36), (3.33a) and (3.33b) respectively, by setting J1, . . . , J`
to be the blocks in BL(t), and with the substitutions A = M (t), n = n1, m = | ∪ BL(t)|,

χ = 96(ζ + 1)

√
n2

1n2

N
log(n1n2),

ρ = 96(ζ + 1)

√
n1n2

2

N
log(n1n2), and

ρk = 96(ζ + 1)

√
n1n2

N
|Jk| log(n1n2).

Moreover, we have

χ
∑̀
k=1

ρk . (ζ2 ∨ 1)
n

3/2
1 n2

N
log(n1n2)

∑
B∈BL(t)

√
|B|

(i)

≤ (ζ2 ∨ 1)
n

3/2
1 n2

N
log(n1n2)

√ ∑
B∈BL(t)

|B|
√
`t

(ii)

≤ (ζ2 ∨ 1)√
β

n
3/2
1 n2

2

N
log(n1n2), (3.37)

where step (i) follows from the Cauchy–Schwarz inequality, and step (ii) from the fact that∑
B∈BL(t) |B| ≤ n2 and that by assumption of large blocks, we have minB∈BL(t) |B| ≥ β so

that `t ≤ n2/β.
We also have

nρmax
k∈[`]

ρk
mk

= (ζ2 ∨ 1)
n2

1n
3/2
2

N
log(n1n2) max

B∈BL(t)

√
|B|
|B|

≤ (ζ2 ∨ 1)√
β

n2
1n

3/2
2

N
log(n1n2), (3.38)

where we have again used the fact that minB∈BL(t) |B| ≥ β. Putting together the bounds (3.37)
and (3.38) and applying Lemma 3.5.5 yields∑

i∈[n1]

∑
j∈∪BL(t)

(M∗
π̂tds(i),j

−M∗
i,j)

2 .
(ζ2 ∨ 1)√

β
(n1n2)3/2 (n1 ∨ n2)1/2 log(n1n2)

N
. (3.39)

Substituting β = n2

√
n1

N
log(n1n2) and normalizing by n1n2 proves the result for the set of blocks

BL(t). Summing over t = 1, 2 then yields a bound of twice the size for columns of the matrix
indexed by ∪BLL.
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Error on columns indexed by ∪BLS

Next, we bound the approximation error of each row of the matrix with column indices restricted to
the union of all small blocks. Roughly speaking, all small (sub-)blocks are aggregated into those
that have size of order β; by definition of the blocking, this implies that the ambiguity in the column
permutation for the aggregated block only exists within the small sub-blocks, and in that sense, this
column permutation can be thought of as “essentially known”. Thus, the proof resembles that of
Theorem 3.4.1: it is sufficient (for the eventual bound we target) to bound the Frobenius error by
the maximum error on the rows. Note that we must also make modifications that account for the
fact that the column permutation is only approximately known. We split the proof into two cases.

Case 1 Let us first address the easy case where BLS contains a single block of size less than
β
2

= 1
2
n2

√
n1

N
log(n1n2). Here, we have

∑
i∈[n1]

∑
j∈∪BLS

(M∗
π̂tds(i),j

−M∗
i,j)

2
(i)

≤
∑
i∈[n1]

∑
j∈∪BLS

∣∣M∗
π̂tds(i),j

−M∗
i,j

∣∣
(ii)
=
∑
i∈[n1]

∣∣∣ ∑
j∈∪BLS

(M∗
π̂tds(i),j

−M∗
i,j)
∣∣∣

(iii)

≤
∑
i∈[n1]

96(ζ + 1)

√
n1n2

2N
β log(n1n2)

= 48
√

2(ζ + 1)
n

3/2
1 n2 (n1 ∨ n2)1/4

N3/4
log3/4(n1n2),

where step (i)follows from the Hölder’s inequality and the fact that M∗ ∈ [0, 1]n1×n2 , step (ii)from
the monotonicity of the columns of M∗, and step (iii)from equation (3.33b). We have thus proved
the theorem for this case.

Case 2 Let us now consider the case where BLS contains multiple blocks. For each i ∈ [n1], define
∆i to be the restriction of the i-th row difference M∗

π̂tds(i)
−M∗

i to the union of blocks ∪BLS. For
each block B ∈ BLS, denote the restriction of ∆i to B by ∆i

B. Lemma 3.5.4 applied with v = ∆i

yields

‖∆i‖2
2 =

∑
B∈BLS

‖∆i
B‖2

2

≤
∑
B∈BLS

var(∆i
B)‖∆i

B‖1 +
∑
B∈BLS

‖∆i
B‖2

1

|B|

≤
(

max
B∈BLS

‖∆i
B‖1

) ∑
B∈BLS

var
(
∆i
B

)+
maxB∈BLS ‖∆i

B‖1

minB∈BLS |B|
∑
B∈BLS

‖∆i
B‖1. (3.40)
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We now analyze the quantities in inequality (3.40). By the aggregation step of Subroutine 1, we
have 1

2
β ≤ |B| ≤ 2β, where β = n2

√
n1

N
log(n1n2). Additionally, the bounds (3.33a) and (3.33b)

imply that ∑
B∈BLS

‖∆i
B‖1 = ‖∆i‖1 ≤ 96(ζ + 1)

√
n1n2

2

N
log(n1n2) . (ζ + 1)β, and

‖∆i
B‖1 ≤ 96(ζ + 1)

√
n1n2

N
|B| log(n1n2)

≤ 96
√

2(ζ + 1)

√
n1n2

N
β log(n1n2) for all B ∈ BLS.

Moreover, to bound the quantity
∑

B∈BLS var (∆i
B), we proceed as in the proof for the large

blocks in BLL. Recall that if we permute the columns by σ̂pre according to the column sums, then
the blocks in BLS have an intrinsic ordering, even after adjacent small blocks are aggregated. Let
us index the blocks in BLS by B1, B2, . . . , Bm according to this ordering, where m = |BLS|. As
before, the odd-indexed (or even-indexed) blocks do not mix with each other under the true ordering
id, because the threshold used to define the blocks is larger than twice the column sum perturbation.
We thus have ∑

B∈BLS

var
(
∆i
B

)
=
∑
k∈[m]
k odd

var(∆i
Bk

) +
∑
k∈[m]
k even

var(∆i
Bk

)

≤
∑
k∈[m]
k odd

[
var(M∗

i,Bk
) + var(M∗

π̂tds(i),Bk
)
]

+
∑
k∈[m]
k even

[
var(M∗

i,Bk
) + var(M∗

π̂tds(i),Bk
)
]

(i)

≤ 2 var(M∗
i ) + 2 var(M∗

π̂tds(i)
)

(ii)

≤ 4,

where inequality (i)holds because the odd (or even) blocks do not mix, and inequality (ii)holds
because M∗ has monotone rows in [0, 1]n2 .

Finally, putting together all the pieces, we can substitute for β, sum over the indices i ∈ n1, and
normalize by n1n2 to obtain

1

n1n2

∑
i∈[n1]

‖∆i‖2
2 . (ζ2 ∨ 1)

(
n1 log(n1n2)

N

)3/4

, (3.41)

and so the error on columns indexed by the set ∪BLS is bounded as desired.

Combining the bounds (3.39) and (3.41), we conclude that

1

n1n2

‖M∗(π̂tds, id)−M∗‖2
F . (ζ2 ∨ 1)n

1/4
1 (n1 ∨ n2)1/2

(
log(n1n2)

N

)3/4
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with probability at least 1− 4(n1n2)−3. The same proof works with the roles of n1 and n2 switched
and all the matrices transposed, so we have

1

n1n2

‖M∗(id, σ̂tds)−M∗‖2
F . (ζ2 ∨ 1)n

1/4
2 (n1 ∨ n2)1/2

(
log(n1n2)

N

)3/4

with the same probability. Consequently,

1

n1n2

(
‖M∗(π̂tds, id)−M∗‖2

F + ‖M∗(id, σ̂tds)−M∗‖2
F

)
. (ζ2 ∨ 1)

(n1 log n1

N

)3/4

with probability at least 1 − 8(n1n2)−3, where we have used the relation n1 ≥ n2. Applying
Proposition 3.4.1 completes the proof.

3.6 Summary and open questions
We have studied the class of permutation-based models in two distinct metrics. A notable con-
sequence of our results is that our polynomial-time algorithms are able to achieve the minimax
lower bound in the Frobenius error up to a poly-logarithmic factor provided the sample size grows
to be large. Moreover, we have overcome a crucial bottleneck in previous analyses that underlay
a statistical-computational gap; see the full paper [211] for a more detailed discussion. Several
intriguing questions related to estimating such matrices remain:

What is the fastest Frobenius error rate achievable by computationally efficient estimators in the
partially observed setting when N is small?

As a partial answer to the first question, it can be shown that when the informal algorithm
described at the beginning of Section 3.4.2 is recursed in the natural way and applied to the noisy
sorting subclass of the SST model, it yields another minimax-optimal estimator for noisy sorting,
similar to the multistage algorithm of Mao et al. [212]. However, this same guarantee is preserved
for neither the larger class of matrices Cr,c

Perm, nor for its sub-class Cr
Perm. Improving the rate will

likely require techniques that are beyond the reach of those introduced in this chapter. Indeed, in
very recent work, Liu and Moitra [201] provide a more involved algorithm that uses “blocks” of
partially sorted forms of the matrix to produce a minimax optimal estimator over the class Cr

Perm

and another estimator that further narrows the statistical-computational gap in estimating matrices
in the class Cr,c

Perm.
It is also worth noting that model (3.1) allowed us to perform sample-splitting in Algorithm

3 to preserve independence across observations, so that Step 2 is carried out on a sample that is
independent of the blocking generated in Step 1. Thus, our proofs also hold for the observation
model where we have exactly 2 independent samples per entry of the matrix.

It is natural to wonder if just one independent sample per entry suffices, and whether sample
splitting is required at all. Reasoning heuristically, one way to handle the dependence between
the two steps is to prove a union bound over exponentially many possible realizations of the
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blocking; unfortunately, this fails since the desired concentration of partial row sums fails with
polynomially small probability. Thus, addressing the original sampling model [59, 274] (with
one sample per entry) presents an interesting technical challenge that may also involve its own
statistical-computational trade-offs [226].

In the broader context of this thesis, this chapter touches upon both the statistical and computa-
tional aspects of performing estimation in matrix-valued permutation-based models. While we did
not dwell on the question of adaptation in this chapter, it can be shown (using the techniques of
Chatterjee and Mukherjee [55]) that our two-dimensional sorting estimator is in fact optimally adap-
tive if the underlying matrix belongs a parametric family such as the BTL model. Other parametric
structure is also interesting to study: for instance, what happens in the case where the underlying
matrix is a permuted version of a block-wise constant matrix? This is a useful model for when
pairwise comparisons are performed between clusters of similar objects [277]. In the next chapter,
we address questions of this form for the even broader class of tensor-valued permutation-based
models.
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Chapter 4

Adaptive algorithms for tensor estimation

Consider the problem of estimating a d-dimensional, real-valued tensor θ∗ ∈ Rn1×···×nd , whose
entries are observed in noise. As in many problems in high-dimensional statistics, this tensor
estimation problem requires prohibitively many samples to solve without the imposition of further
structure, and consequently, many structural constraints have been placed in particular applications
of tensor estimation. For instance, low “rank” structure is common in chemistry applications [4],
blockwise constant structure is common in applications to clustering and classification of relational
data [352], sparsity is commonly used in data mining applications [171], and variants and combina-
tions of such assumptions have also appeared in other contexts [353]. In this chapter, we continue
our study of permutation-based models from Chapter 3 to study a flexible, nonparametric structural
assumption that generalizes parametric assumptions in applications of tensor models to discrete
choice data.

4.1 Introduction
Suppose we are interested in modeling ordinal data, which arises in applications ranging from
information retrieval [91] and assortment optimization [170] to crowdsourcing [60]; in a generic
such problem, we have n1 “items”, subsets of which are evaluated using a multiway comparison.
In particular, each datum takes the form of a tuple containing d of these items, and a single item
that is chosen from the tuple as the “winner” of this comparison. A mathematical model for
such data is a stochastic model of choice: For each tuple A and each item i ∈ A, suppose that i
wins the comparison with probability p(i, A). The winner of each comparison is then modeled
as a random variable; equivalently, the overall statistical model is described by a d-dimensional
mean tensor θ∗ ∈ Rn1×···×n1 , where θ∗(i1, . . . , id) = p(i1, (i1, . . . , id)), and our data consists of
noisy observations of entries of this tensor. Imposing sensible constraints on the tensor θ∗ in
these applications goes back to classical, axiomatic work on the subject due to Luce [204] and
Plackett [252]. A natural and flexible assumption is given by simple scalability [177, 219, 305]:
suppose that each of the n1 items can be associated with some scalar utility (item i with utility ui),
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and that the comparison probability is given by

θ∗(i1, . . . , id) = f(ui1 , . . . , uid), (4.1)

where f is a non-decreasing function of its first argument and a coordinate-wise non-increasing
function of the remaining arguments. Operationally, an item should not have a lower chance of
being chosen as a winner if—all else remaining equal—its utility were to be increased.

There are many models that satisfy the nonparametric simple scalability assumption; in partic-
ular, parametric assumptions in which a specific form of the function f is posited. The simplest
parameterization is given by f(u1, . . . , ud) = u1∑d

j=1 ud
, which dates back to Luce [204]. A logarith-

mic transformation of Luce’s parameterization leads to the multinomial logit (MNL) model, which
has seen tremendous popularity in applications ranging from transportation [24] to marketing [54].
See, e.g., McFadden [218] for a classical but comprehensive introduction to this class of models.
However the parametric assumptions of the MNL model have been called into question by a line of
work, showing that more flexibility in modeling can lead to improved results in many applications
(see, e.g., Farias et al. [97] and references therein). The simple scalability (SS) assumption in the
special case d = 2 is equivalent to the strong stochastic transitivity, or SST, assumption studied in
Chapter 3. In this special case, the MNL model is equivalent to the popular Bradley–Terry–Luce
model [40, 204].

Let us state an equivalent formulation of the SS assumption in terms of structure on the tensor θ∗.
Recall that for two vectors of equal dimension, we use x � y to denote that x−y ≤ 0 entrywise. By
ordering the items by their utilities, the monotonicity of the function f in the SS assumption (4.1)
ensures that there is a permutation π that arranges them from “worst” to “best”, such that

θ∗
(
π(i1), π−1(i2) . . . , π−1(id)

)
≤ θ∗

(
π(i′1), π−1(i′2), . . . , π−1(i′d)

)
for all (i1, . . . , id) � (i′1, . . . , i

′
d).

(4.2)

Crucially, since the utilities themselves are latent, the permutation π is unknown—indeed, it
represents the ranking that must be estimated from our data—and so θ∗ is a coordinate-wise isotonic
tensor with unknown permutations. In the multiway comparison problem, this tensor represents the
stochastic model underlying our data, and accurate knowledge of these probabilities is useful in
applications such as assortment optimization [170] and determine, for instance, pricing and revenue
management decisions. While multiway comparisons form our primary motivation for studying this
problem, the flexibility afforded by nonparametric models with latent permutations has also been
noticed and exploited in other applications; see Section 3.2.3. Besides these, there are also several
other examples of tensor estimation problems in which parametric structure is frequently assumed;
for example, in random hypergraph models [120]. Similarly to before, nonparametric structure has
the potential to generalize and lend flexibility to these parametric models.

It is worth noting that in many of the aforementioned applications, the underlying objects can
be clustered into near identical sets. For example, there is evidence that indifference sets of items
exist in crowdsourcing (see [277, Figure 1] for an illuminating example) and peer review [239]
applications involving comparison data; clustering is often used in the application of psychometric
evaluation methods [140], and many models for communities in hypergraphs posit the existence of
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such clusters of nodes [120]. For a precise mathematical definition of indifference sets and how
they induce further structure in the tensor θ∗, see Section 4.2. Whenever such additional structure
exists, it is conceivable that estimation can be performed in a more sample-efficient manner; we
will precisely quantify such a phenomenon shortly.

Using these applications as motivation, our goal in this chapter is to study the tensor estimation
problem under the nonparametric structural assumptions (4.2) of monotonicity constraints and
unknown permutations.

4.1.1 Related work
We focus our discussion on the sub-class of such problems involving monotonic shape-constraints
and (vector/matrix/tensor) estimation. When d = 1, the assumption (4.2) corresponds to the
“uncoupled” or “shuffled” univariate isotonic regression problem [51]. Here, an estimator based
on Wasserstein deconvolution is known to attain the minimax rate log log n/ log n in (normalized)
squared `2-error for estimation of the underlying (sorted) vector of length n [262]. A very recent
paper [11] has also considered this problem, with a focus on isolating the effect of the noise
distribution on the deconvolution procedure. A multivariate version of this problem (estimating
multiple isotonic functions under a common unknown permutation of coordinates) has been studied
under the moniker of “statistical seriation”, and has been shown to have applications to archaeology
and genome assembly [104, 206]. The case d = 2 was the focus of Chapter 3 of this thesis. To the
best of our knowledge, analogs of these results have not been explored in the multivariate setting
d ≥ 3, although a significant body of literature has studied parametric models for choice data in this
case (see, e.g., Negahban et al. [230] and references therein).

4.1.2 Overview of contributions
We begin by considering the minimax risk of estimating bounded tensors satisfying assumption (4.2),
and show in Theorem 4.3.1 that it is dominated by the risk of estimating the underlying ordered
coordinate-wise isotonic tensor. In other words, the latent permutations do not significantly influence
the statistical difficulty of the problem. We also study the fundamental limits of estimating tensors
having indifference set structure, and this allows us to assess the ability of an estimator to adapt to
such structure via its adaptivity index (to be defined precisely in equation (4.3)). We establish two
surprising phenomena in this context: First, we show in Proposition 4.3.1 that the fundamental limits
of estimating these objects preclude a parametric rate, in sharp contrast to the case without unknown
permutations. Second, we prove in Theorem 4.3.2 that the adaptivity index exhibits a statistical-
computational gap under the assumption of a widely-believed conjecture in average-case complexity.
In particular, we show that the adaptivity index of any polynomial-time computable estimator must
grow at least polynomially in n, assuming the hypergraph planted clique conjecture [43]. Our
results also have interesting consequences for the isotonic regression problem without unknown
permutations (see Corollaries 4.3.1 and 4.3.2).

Having established these fundamental limits, we then turn to our main methodological contribu-
tion. We propose and analyze—in Theorem 4.4.1—an estimator based on Mirsky’s partitioning
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algorithm [224] that estimates the underlying tensor (a) at the minimax rate for each d ≥ 3 whenever
this tensor has bounded entries, and (b) with the best possible adaptivity index for polynomial-time
procedures for all d ≥ 2. The first of these findings is particularly surprising because it shows that
the case d ≥ 3 of this problem is distinctly different from the bivariate case studied in Chapter 3, in
that the minimax risk is achievable with a computationally efficient algorithm. This in in spite of
the fact that there are more permutations to estimate as the dimension gets larger, which, at least in
principle, ought to make the problem more difficult both statistically and computationally.

In addition to its favorable risk properties, the Mirsky partition estimator also has several other
advantages: it is computable in time sub-quadratic in the size of the input, and its computational
complexity also adapts to underlying indifference set structure. In particular, when there are a
fixed number of indifference sets, the estimator has almost linear computational complexity with
high probability. When specialized to d = 2, this estimator exhibits significantly better adaptation
properties to indifference set structure than known estimators that were designed specifically for
this purpose; see the full paper [245] for statements and discussions of these results.

To complement our upper bounds on the Mirsky partition estimator, we also show, somewhat
surprisingly, that many other estimators proposed in the literature [55, 274, 277], and natural
variants thereof, suffer from an extremely large adaptivity index. In particular, they are unable to
attain the polynomial-time optimal adaptivity index (given by the fundamental limit established by
Theorem 4.3.2) for any d ≥ 4. This is in spite of the fact that some of these estimators are minimax
optimal for estimation over the class of bounded tensors (see Proposition 4.5.1 and Corollary 4.3.1)
for all d ≥ 3. Thus, we see that simultaneously achieving good worst-case risk properties while
remaining computationally efficient and adaptive to structure is a challenging requirement, providing
further evidence of the value of the Mirsky partitioning estimator.

4.2 Background and problem formulation
Let Sk denote the set of all permutations on the set [k] : = {1, . . . , k}. We interpret Rn1×···×nd as
the set of all real-valued, tensors of dimension n1× · · · × nd. For a set of positive integers ij ∈ [nj],
we use T (i1, . . . , id) to index entry i1, . . . , id of a tensor T ∈ Rn1×···×nd .

The set of all real-valued, coordinate-wise isotonic functions on the set [0, 1]d is denoted by

Fd : =
{
f : [0, 1]d → R : f(x1, x2, . . . , xd) ≤ f ∗(x′1, x

′
2, . . . , x

′
d) when xj ≤ x′j for j ∈ [d]

}
.

Let nj denote the number of observations along dimension j, with the total number of observations
given by n : =

∏d
j=1 nj . For n1, . . . , nd ∈ N, let Ld,n1,...,nd : =

∏d
j=1[nj] denote the d-dimensional

lattice. With this notation, we assume access to a tensor of observations Y ∈ Rn1×···×nd , where

Y (i1, . . . , id) = f ∗
(
π∗1(i1)

n1

,
π∗2(i2)

n2

, . . . ,
π∗d(id)

nd

)
+ ε(i1, . . . , id) for each ij ∈ [nj], j ∈ [d].

Here, the function f ∗ ∈ Fd is unknown, and for each j ∈ [d], we also have an unknown permutation
π∗j ∈ Snj . The tensor ε ∈ Rn1×···×nd represents noise in the observation process, and we assume
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that its entries are given by independent standard normal random variables1. Denote the noiseless
observations on the lattice by

θ∗(i1, . . . , id) : = f ∗
(
π∗1(i1)

n1

,
π∗2(i2)

n2

, . . . ,
π∗d(id)

nd

)
for each ij ∈ [nj], j ∈ [d];

this is precisely the nonparametric structure that was posited in equation (4.2).
It is also convenient to define the set of tensors that can be formed by permuting evaluations of

a coordinate-wise monotone function on the lattice by the permutations (π1, . . . , πd). Denote this
set by

M(Ld,n1,...,nd ; π1, . . . , πd) : =

{
θ ∈ Rn1×···×nd : ∃f ∈ Fd such that

θ(i1, . . . , id) : = f

(
π1(i1)

n1

, . . . ,
πd(id)

nd

)
for each ij ∈ [nj], j ∈ [d]

}
.

We use the shorthandM(Ld,n1,...,nd) to denote this set when the permutations are all the identity.
Also define the set

Mperm(Ld,n1,...,nd) : =
⋃

π1∈Sn1

· · ·
⋃

πd∈Snd

M(Ld,n1,...,nd ; π1, . . . , πd)

of tensors that can be formed by permuting evaluations of any coordinate-wise monotone function.
For a set of permutations {πj ∈ Snj}dj=1 and a tensor T ∈ Rn1×···×nd , we let T{π1, . . . , πd}

denote the tensor T viewed along permutation πj on dimension j. Specifically, we have

T{π1, . . . , πd}(i1, . . . , id) = T (π1(i1), . . . , πd(id)) for each ij ∈ [nj], j ∈ [d].

With this notation, note the inclusion θ∗{(π∗1)−1, . . . , (π∗d)
−1} ∈ M(Ld,n1,...,nd). However, since we

do not know the permutations π∗1, . . . , π
∗
d a-priori, we may only assume the inclusion θ∗ ∈Mperm(Ld,n1,...,nd),

and our goal is to denoise our observations and produce an estimate of θ∗. Call any such tensor
estimate θ̂ ∈ Rn1×···×nd . We study its empirical L2 risk, given by

Rn(θ̂, θ∗) : = E
[
`2
n(θ̂, θ∗)

]
, where `2

n(θ1, θ2) : =
1

n

d∑
j=1

nj∑
ij=1

(θ1(i1, . . . , id)− θ2(i1, . . . , id))
2 .

Note that the expectation is taken over both the noise ε and any randomness used to compute the
estimate θ̂. In the case where we have the inclusion θ̂ ∈ Mperm(Ld,n1,...,nd), we also produce a
function estimate f̂ ∈ Fd and permutation estimates π̂j ∈ Snj for j ∈ [d], with

θ̂(i1, . . . , id) : = f̂

(
π̂1(i1)

n1

,
π̂2(i2)

n2

, . . . ,
π̂d(id)

nd

)
for each ij ∈ [nj], j ∈ [d].

1We study the canonical Gaussian setting for convenience, but all of our our results extend straightforwardly to
sub-Gaussian noise distributions.
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Note that in general, the resulting estimates f̂ , π̂1, . . . , π̂d need not be unique, but this identifiability
issue will not concern us since we are only interested in the tensor θ̂ as an estimate of the tensor θ∗.

As alluded to in the introduction, it is common in multiway comparisons for there to be
indifference sets of items that all behave identically. These sets are easiest to describe in the space
of functions. For each j ∈ [d] and sj ∈ [nj], let Ij1 , . . . , I

j
sj

denote a disjoint set of sj intervals such
that [0, 1] = ∪sj`=1I

j
` . Suppose that for each `, the length of the interval Ij` exceeds 1/nj , so that we

are assured that the intersection of Ij` with the set 1
nj
{1, . . . , nj} is non-empty. With a slight abuse

of terminology, we also refer to this intersection as an interval, and let the tuple kj = (kj1, . . . , k
j
sj

)

denote the cardinalities of these intervals, with
∑sj

`=1 k
j
` = nj . Let Ksj denote the set of all such

tuples, and define kjmax : = max`∈[sj ] k
j
` . Collect {kj}dj=1 in a tuple k = (k1, . . . ,kd), and the d

values {sj}dj=1 in a tuple s = (s1, . . . , sd). Let Ks denote the set of all such tuples k, and note that
the possible values of s range over the lattice Ld,n1,...,nd . Finally, let k∗ : = minj∈[d] k

j
max.

If, for each j ∈ [d], dimension j of the domain is partitioned into the intervals Ij1 , . . . , I
j
sj

, then
the set [0, 1]d is partitioned into s : =

∏d
j=1 sj hyper-rectangles, where each hyper-rectangle takes

the form
∏d

j=1 I
j
`j

for some sequence of indices `j ∈ [sj], j ∈ [d]. We refer to the intersection of a
hyper-rectangle with the lattice Ld,n1,...,nj also as a hyper-rectangle, and note that k fully specifies
such a hyper-rectangular partition. Denote byMk,s(Ld,n1,...,nd) the set of all θ ∈ M(Ld,n1,...,nd)
that are piecewise constant on a hyper-rectangular partition specified by k—we have chosen to
be explicit about the tuple s in our notation for clarity. LetMk,s

perm(Ld,n1,...,nd) denote the set of all
coordinate-wise permuted versions of θ ∈Mk,s(Ld,n1,...,nd).

For the rest of this chapter, we operate in the uniform, or balanced case 2 ≤ n1 = · · · =
nd = n1/d, which is motivated by the comparison setting introduced in Section 4.1. We use the
shorthand Ld,n to represent the uniform lattice and Rd,n to represent balanced tensors. We continue
to use the notation nj in some contexts since this simplifies our exposition, and also continue to
accommmodate distinct permutations π∗1, . . . , π

∗
d and cardinalities of indifference sets s1, . . . , sd

along the different dimensions for flexibility.
Let Θ̂ denote the set of all estimators of θ∗, i.e. the set of all measurable functions (of the

observation tensor Y ) taking values in Rd,n. Denote the minimax risk over the class of tensors in
the setMk,s

perm(Ld,n) by

Md,n(k, s) : = inf
θ̂∈Θ̂

sup
θ∗∈Mk,s

perm(Ld,n)

Rn(θ̂, θ∗).

Note that Md,n(k, s) measures the smallest possible risk achievable with a-priori knowledge of
the inclusion θ∗ ∈ Mk,s

perm(Ld,n). On the other hand, we are interested in estimators that adapt to
hyper-rectangular structure without knowing of its existence in advance. One way to measure the
extent of adaptation of an estimator θ̂ is in terms of its adaptivity index to indifference set sizes k,
defined as

Ak,s(θ̂) : =
supθ∗∈Mk,s

perm(Ld,n) Rn(θ̂, θ∗)

Md,n(k, s)
.
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A large value of this index indicates that the estimator θ̂ is unable to adapt satisfactorily to the set
Mk,s

perm(Ld,n), since a much lower risk is achievable when the inclusion θ∗ ∈Mk,s
perm(Ld,n) is known

in advance. The global adaptivity index of θ̂ is then given by

A(θ̂) : = max
s∈Ld,n

max
k∈Ks

Ak,s(θ̂). (4.3)

We note that similar definitions of an adaptivity index or factor have appeared in the literature; our
definition most closely resembles the index defined by Shah et al. [277], but similar concepts go
back at least to Lepski and co-authors [193, 194].

While the above notions of an adaptivity index deal solely with the ratio of risks, one can
additionally demand that adaptation occurs with high probability. In particular, for some confidence
level δ ∈ (0, 1), denote the (1− δ)-quantile of the loss by

Rn(θ̂, θ∗; δ) : = inf
{
r ∈ (0,∞) : Pr{`2

n(θ̂, θ∗) > r} ≤ δ
}
,

and define the high-confidence analogs of the adaptivity indices

Ak,s(θ̂; δ) : =
supθ∗∈Mk,s

perm(Ld,n) Rn(θ̂, θ∗; δ)

Md,n(k, s)
and A(θ̂; δ) : = max

s∈Ld,n
max
k∈Ks

Ak,s(θ̂; δ). (4.4)

In the discussions to follow, we will typically be concerned with cases where δ = δn � 1/n,
that is, we demand that the event on which adaptation does not occur has probability that decays
polynomially in the sample size n.

Finally, for a tensor X ∈ Rd,n and closed set C ⊆ Rd,n, it is useful to define the projection of X
onto C by

θ̂LSE(C, X) ∈ argmin
θ∈C

`2
n(X, θ). (4.5)

In our exposition to follow, the set C will either be compact or a finite union of closed convex
sets, and so the projection is guaranteed to exist. When C is closed and convex, the projection is
additionally unique.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendices A.5 and A.6. Let B∞(t) and B2(t) denote
the `∞ and `2 closed balls of radius t in Rd,n, respectively, and denote by 1d,n ∈ Rd,n the all-ones
tensor. We use the symbols cd, Cd to denote constants that depend on d alone; their values will
typically change from line to line.

Let us now turn to statements and discussions of our main results. We begin by characterizing
the fundamental limits of estimation and adaptation, and then turn to developing an estimator that
achieves these limits. Finally, we analyze variants of existing estimators from this point of view.
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4.3 Limits of estimation and adaptation
In this subsection, our focus is on characterizing the fundamental limits of estimation over various
parameter spaces without imposing any computational constraints on our procedures. We begin by
characterizing the minimax risk over the class of bounded, coordinate-wise isotonic tensors with
unknown permutations.

Theorem 4.3.1. There is a universal positive constant C such that for each d ≥ 2, we have

cd · n−1/d ≤ inf
θ̂∈Θ̂

sup
θ∗∈Mperm(Ld,n)∩B∞(1)

Rn(θ̂, θ∗) ≤ C · n−1/d log2 n, (4.6)

where cd > 0 depends on d alone.

The lower bound on the minimax risk in equation (4.6) follows immediately from known results
on estimating bounded monotone functions on the lattice without unknown permutations [83, 137].
The upper bound is our main contribution to the theorem, and is achieved by the bounded least
squares estimator

θ̂BLSE : = θ̂LSE(Mperm

(
Ld,n) ∩ B∞(1), Y

)
. (4.7)

In fact, the risk of θ̂BLSE can be expressed as a sum of two terms:

Rn(θ̂BLSE, θ
∗) ≤ C

(
n−1/d log2 n+ n−(1−1/d) log n

)
. (4.8)

The first term corresponds to the error of estimating the unknown isotonic function, and the second
to the price paid for having unknown permutations. Such a characterization was known in the case
d = 2 [211, 274], and our result shows that a similar decomposition holds for all d. Note that for all
d ≥ 2, the first term of equation (4.8) dominates the bound, and this is what leads to Theorem 4.3.1.

Although the bounded LSE (4.7) achieves the worst case risk (4.6), we may use its analysis
as a vehicle to obtaining risk bounds for the vanilla least squares estimator without imposing any
boundedness constraints. This results in the following corollary.

Corollary 4.3.1. There is a universal positive constant C such that for each d ≥ 2:
(a) The least squares estimator over the setMperm(Ld,n) has worst case risk bounded as

sup
θ∗∈Mperm(Ld,n)∩B∞(1)

Rn

(
θ̂LSE(Mperm(Ld,n), Y ), θ∗

)
≤ Cn−1/d log5/2 n. (4.9a)

(b) The isotonic least squares estimator over the setM(Ld,n) has worst case risk bounded as

sup
θ∗∈M(Ld,n)∩B∞(1)

Rn

(
θ̂LSE(M(Ld,n), Y ), θ∗

)
≤ Cn−1/d log5/2 n. (4.9b)
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Part (a) of Corollary 4.3.1 deals with the LSE computed over the entire setMperm(Ld,n), and
appears to be new even when d = 2; to the best of our knowledge, prior work [211, 274] has only
considered the bounded LSE θ̂BLSE (4.7).

Part (b) of Corollary 4.3.1, on the other hand, provides a risk for the vanilla isotonic least squares
estimator when estimating functions in the setM(Ld,n) ∩ B∞(1). This estimator has a long history
in both the statistics and computer science communities [56, 92, 137, 182, 265, 291], and unlike the
other estimators considered so far, the isotonic LSE is the solution to a convex optimization problem
and can be computed in time polynomial in n. Bounds on the worst case risk of this estimator are
also known: results for d = 1 are classical (see, e.g., the papers [47, 233, 347]); when d = 2, risk
bounds were derived by Chatterjee et al. [56]; and the general case d ≥ 2 was considered by Han et
al. [137]. Corollary 4.3.1(b) improves the logarithmic factor in the latter two papers from log4 n to
log5/2 n, and is obtained via a different proof technique involving a truncation argument.

Two other comments are worth making. First, it should be noted that there are other estimators
for tensors in the setM(Ld,n) ∩ B∞(1) besides the isotonic LSE. The block-isotonic estimator
of Deng and Zhang [83], first proposed by Fokianos et al. [107], enjoys a risk bound of the order
Cd · n−1/d for all d ≥ 2, where Cd > 0 is a d-dependent constant. This eliminates the logarithmic
factor entirely, and matches the minimax lower bound up to a d-dependent constant. In addition,
the block-isotonic estimator also enjoys significantly better adaptation properties than the isotonic
LSE. Two issues, however, require further exploration. The best known algorithm to compute
the block-isotonic estimator takes time O(n3), while the isotonic LSE can be computed in time
Õ(n3/2) [182]. In addition, the behavior of the block-isotonic estimator under mis-specification is
not yet well understood; the usual oracle inequality that can be shown for the isotonic LSE has not
yet—to the best of our knowledge—been shown to hold for the block-isotonic estimator (see the
discussion in [83, Section 3.7]).

Second, we note that when the design is random in the setting without unknown permuta-
tions [136, Theorem 3.9] improves, at the expense of a d-dependent constant, the logarithmic factors
in the risk bounds of prior work [137]. His proof techniques are based on the concentration of em-
pirical processes on upper and lower sets of [0, 1]d, and do not apply to the lattice setting considered
here. On the other hand, our proof works on the event on which the LSE is suitably bounded, and is
not immediately applicable to the random design setting. Both of these techniques should be viewed
as particular ways of establishing the optimality of global empirical risk minimization procedures
even when the entropy integral for the corresponding function class diverges; this runs contrary to
previous heuristic beliefs about the suboptimality of these procedures (see, e.g., the papers [35],
[309, pp. 121–122], [261], and [136] for further discussion).

Let us now turn to establishing the fundamental limits of estimation over the classMk,s
perm(Ld,n).

The following proposition characterizes the minimax risk Md,n(k, s). Recall that we have s =
∏d

j=1 sj

and k∗ = minj∈[d] max`∈[sj ] k
j
` .

Proposition 4.3.1. There is a pair of universal positive constants (c, C) such that for each d ≥ 1,
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s ∈ Ld,n, and k ∈ Ks, the minimax risk Md,n(k, s) is sandwiched as

c

n
·
(
s+ (n1 − k∗)

)
≤ Md,n(k, s) ≤ C

n
·
(
s+ (n1 − k∗) log n

)
. (4.10)

A few comments are in order. As before, the risk can be decomposed into two terms: the first
term represents the parametric rate of estimating a tensor with s constant pieces, and the second
term is the price paid for unknown permutations. When the underlying set is bounded, such a
decomposition does not occur transparently even in the special case d = 2 [277]. Also note that
when s = O(1) and n1 − k∗ = ω(1), the second term of the bound (4.10) dominates and the
minimax risk is no longer of the parametric form s/n. This is in sharp contrast to isotonic regression
without unknown permutations, where there are estimators that achieve the parametric risk up to
poly-logarithmic factors [83]. Thus, the fundamental adaptation behavior that we expect changes
significantly in the presence of unknown permutations.

Second, note that when sj = n1 for all j ∈ [d], we haveMk,s
perm(Ld,n) =Mperm(Ld,n), in which

case the result above shows that consistent estimation is impossible over the set of all isotonic
tensors with unknown permutations. This does not contradict Theorem 4.3.1, since Proposition 4.3.1
computes the minimax risk over isotonic tensors without imposing boundedness constraints.

Finally, we note that Proposition 4.3.1 yields the following corollary in the setting where we do
not have unknown permutations. With a slight abuse of notation, we let

Ms(Ld,n) : =
⋃

s :
∏d
j=1 sj=s

⋃
k∈Ks

Mk,s(Ld,n)

denote the set of all coordinate-wise monotone tensors that are piecewise constant on a d-dimensional
partition having s pieces.

Corollary 4.3.2. There is a pair of universal positive constants (c, C) such that for each d ≥ 1, the
following statements hold.
(a) For each s ∈ Ld,n and k ∈ Ks, we have

c · s
n
≤ inf

θ̂∈Θ̂
sup

θ∗∈Mk,s(Ld,n)

Rn(θ̂, θ∗) ≤ C · s
n
. (4.11a)

(b) For each s ∈ [n], we have

c · s
n
≤ inf

θ̂∈Θ̂
sup

θ∗∈Ms(Ld,n)

Rn(θ̂, θ∗) ≤ C · s log n

n
. (4.11b)

Let us interpret this corollary in the context of known results. When d = 1 and there are no
permutations, Bellec and Tsybakov [23] established minimax lower bounds of order s/n and upper
bounds of the order s log n/n for estimating s-piece monotone functions, and the bound (4.11b)
recovers this result. The problem of estimating a univariate isotonic vector with s pieces was also
considered by Gao et al. [112], who showed a rate-optimal characterization of the minimax risk that
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exhibits an iterated logarithmic factor in the sample size whenever s ≥ 3. When d ≥ 2, however,
the results of Corollary 4.3.2 are new to the best of our knowledge. While it is possible that the
bound (4.11b) can be improved to an iterated logarithmic factor in the multidimensional setting, our
analysis is not refined enough to capture it. Understanding the exact scaling of the minimax risk in
the multidimensional setting is an interesting open problem.

The fundamental limits of estimation over the classMk,s
perm(Ld,n) will allow us to assess the

adaptivity index of particular estimators. Before we do that, however, we establish a baseline for
adaptation by proving a lower bound on the adaptivity index of polynomial time estimators.

4.3.1 Lower bounds on polynomial time adaptation
We now turn to our average-case reduction showing that any computationally efficient estimator
cannot have a small adaptivity index. Our primitive is the hypergraph planted clique conjecture
HPCD, which is a hypergraph extension of the planted clique conjecture. Let us introduce the
testing, or decision, version of this conjecture. Denote the set of D-uniform hypergraphs on N
vertices (hypergraphs in which each hyper-edge is incident on D vertices) by HD,N . Define, via
their generative models, the random hypergraphs

1. GD(N, p): Generate each hyperedge independently with probability p, and

2. GD(N, p;K): Choose K ≥ D vertices uniformly at random and form a clique, adding all
(
K
D

)
possible hyperedges between them. Add each remaining hyperedge independently with
probability p.

Given an instantiation of a random hypergraph X ∈ HD,N , the testing problem is to distinguish the
hypotheses H0 : X ∼ GD(N, p) and H1 : X ∼ GD(N, p;K). The error of any test ψ : HD,N 7→
{0, 1} is given by

E(ψ) : =
1

2
EH0 [ψ(X)] +

1

2
EH1 [(1− ψ(X))] . (4.12)

Conjecture 4.3.1 (HPCD conjecture). Suppose that p = 1/2. There is a universal positive constant
c such that for each K ≤ c

√
N , any test ψ that is computable in time polynomial in ND must satisfy

E(ψ) > 2/3.

Note that whenD = 2, Conjecture 4.3.1 is equivalent to the planted clique conjecture, which is a
widely believed conjecture in average-case complexity [18, 98, 152]. The HPC3 conjecture was used
by Zhang and Xia [346] to show statistical-computational gaps for third order tensor completion;
their evidence for the validity of this conjecture was based on the threshold at which the natural
spectral method for the problem fails. Brennan and Bresler [43] recently showed that the planted
clique conjecture with “secret leakage” can be reduced to HPCD. They also provided evidence
(see Section K of their paper) for the validity of the HPCD conjecture, showing that the decision
problem has close connections to the widely believed low-degree conjecture (for a discussion of this
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conjecture, see the papers [143, 179] and references therein). Luo and Zhang [205] also provide
similar evidence in support of the conjecture. Recall our definition of the high-probability adaptivity
index (4.4); the HPCD conjecture implies the following computational lower bound.

Theorem 4.3.2. Let δn : = (10n)−1 and suppose that Conjecture 4.3.1 holds. Then there is a
constant cd > 0 depending on d alone such that any estimator θ̂ that is computable in time
polynomial in n must satisfy

A(θ̂; δn) ≥ cd · n
1
2(1− 1

d) log−2 n. (4.13)

Assuming Conjecture 4.3.1, Theorem 4.3.2 thus posits that the (high-probability) adaptivity
index of any computationally efficient estimator must grow polynomially in n, thereby precluding the
existence of efficient estimators with adaptivity index bounded poly-logarithmically in n. Contrast
this with the case of isotonic regression without unknown permutations, where the block-isotonic
estimator has adaptivity index2 of the order O(logd n) [83]. This demonstrates yet another salient
difference in adaptation behavior with and without unknown permutations.

Finally, while Theorem 4.3.2 is fully novel for all d ≥ 3, we note that when d = 2, it resembles
the computational lower bound established by Shah et al. [277] (which assumes the planted clique
conjecture). Some connections between the two results are worth highlighting. While in our
definition, indifference sets along the different dimensions may have different sizes, Shah et
al. [277] restrict to the case where a single tuple of sizes parameterizes indifference sets along all
dimensions simultaneously. Thus, when the noise distribution is Bernoulli and d = 2, the result
of Shah et al. [277] implies ours, since our adaptivity index (4.3) is computed with the maximum
ranging over a strictly larger set of configurations. Furthermore, the lower bound of Shah et al. [277]
applies to the expected adaptivity index, and we note that a version of Theorem 4.3.2 also holds for
the expected adaptivity index when d = 2. The question of whether a similar bound on the expected
adaptivity index holds for d ≥ 3 poses an interesting open problem. Having said this, it should be
noted that Theorem 4.3.2 applies in the case of Gaussian noise, an extension that is accomplished
via the machinery of Gaussian rejection kernels introduced by Brennan et al. [44]. This device
shares many similarities with other reduction “gadgets” used in earlier arguments (e.g., [26, 207,
328]).

We have thus established both the fundamental limits of estimation without computational
considerations (4.6), and a lower bound on the adaptivity index of polynomial time estimators (4.13).
Next, we show that a simple, efficient estimator attains both lower bounds simultaneously for
all d ≥ 3.

4.4 Achieving the fundamental limits in polynomial time
We begin with notation that will be useful in defining our estimator. We say that a tuple bl =
(S1, . . . , SL) is a one-dimensional ordered partition of the set [n1] of size L if the sets S1, . . . , SL

2Deng and Zhang [83] consider the more general case where the hyper-rectangular partition need not be consistent
with the Cartesian product of one-dimensional partitions, but the adaptivity index claimed here can be obtained as a
straightforward corollary of their results.
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are pairwise disjoint, with [n1] =
⋃L
`=1 S`. Equivalently, any such tuple may be viewed as the

decomposition of a partial order on the set [n1] into disjoint antichains. Denote the set of all
one-dimensional ordered partitions of size L by PL, and let P =

⋃n1

L=1 PL.
Note that any one-dimensional ordered partition induces a map σbl : [n1]→ [n1], where σbl(i)

is the index ` of the set S` 3 i. Now given d ordered partitions bl1, . . . , bld ∈ P, define the set

M(Ld,n; bl1, . . . , bld) : =

{
θ ∈ Rd,n : ∃f ∈ Fd such that

θ(i1, . . . , id) : = f

(
σbl1(i1)

n1

, . . . ,
σbld(id)

nd

)
for each ij ∈ [nj], j ∈ [d]

}
.

In other words, the set3 M(Ld,n; bl1, . . . , bld) represents all tensors that are piecewise constant
on the hyper-rectangles

∏d
j=1 blj , while also being coordinate-wise isotonic on the partial orders

specified by bl1, . . . , bld. We refer to any such hyper-rectangular partition of the lattice Ld,n that can
be written in the form

∏d
j=1 bld as a d-dimensional ordered partition.

Our estimator computes various statistics of the observation tensor Y , and we require some
more terminology to define these precisely. For each j ∈ [d], define the vector τ̂j ∈ Rnj of “scores”,
whose k-th entry is given by

τ̂j(k) : =
d∑
j=1

nj∑
ij=1

Y (i1, . . . , id) · 1 {ij = k}. (4.14a)

The score vector τ̂j provides noisy information about the permutation π∗j . In order to see this clearly,
it is helpful to specialize to the noiseless case Y = θ∗, in which case we obtain the population scores

τ ∗j (k) : =
d∑
j=1

nj∑
ij=1

θ∗(i1, . . . , id) · 1 {ij = k}. (4.14b)

One can verify that the entries of the vector τ ∗j are increasing when viewed along permutation π∗j ,
i.e., that τ ∗j (π∗j (1)) ≤ · · · ≤ τ ∗j (π∗j (nj)).

For each pair k, ` ∈ [nj], also define the pairwise statistics

∆̂sum
j (k, `) : = τ̂j(`)− τ̂j(k) and (4.15a)

∆̂max
j (k, `) : = max

q∈[d]\{j}
max
iq∈[n1]

{Y (i1, . . . , id) · 1 {ij = `} − Y (i1, . . . , id) · 1 {ij = k}} . (4.15b)

Given that the scores provide noisy information about the unknown permutation, the statistic
∆̂sum
j (k, `) provides noisy information about the event {π∗j (k) < π∗j (`)}, i.e., a large positive value

of ∆̂sum
j (k, `) provides evidence that π∗j (k) < π∗j (`) and a large negative value indicates otherwise.

3Note that we have abused notation in defining the setsM(Ld,n; bl1, . . . , bld) andM(Ld,n;π1, . . . , πd) similarly
to each other. The reader should be able to disambiguate the two from context, depending on whether the arguments are
ordered partitions or permutations.
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Now clearly, the scores are not the sole carriers of information about the unknown permutations; for
instance, the statistic ∆̂max

j (k, `) measures the maximum difference between individual entries and
a large, positive value of this statistic once again indicates that π∗j (k) < π∗j (`). The statistics (4.15)
thus allow us to distinguish pairs of indices, and our algorithm is based on precisely this observation.

We also need some graph theoretic terminology: Recall that an antichain of a graph is any set of
nodes that is incomparable in the partial order, i.e., for any pair of nodes in the antichain, there is no
directed path in the graph going from one node to the other. Having set up the necessary notation,
we are now ready to describe the algorithm formally.

Algorithm: Mirsky partition estimator

I. (Partition estimation): For each j ∈ [d], perform the following steps:

a. Create a directed graph G′j with vertex set [nj] and add the edge u→ v if either

∆̂sum
j (u, v) > 8

√
log n · n

1
2

(1−1/d) or ∆̂max
j (u, v) > 8

√
log n. (4.16a)

If G′j has cycles, then prune the graph and only keep the edges corresponding to the first
condition above, i.e.,

u→ v iff ∆̂sum
j (u, v) > 8

√
log n · n

1
2

(1−1/d). (4.16b)

Let Gj denote the pruned graph.

b. Compute a one-dimensional ordered partition b̂lj as the decomposition of the vertices of
Gj into disjoint antichains, via Mirsky’s algorithm [224].

II. (Piecewise constant isotonic regression): Project the observations on the set of isotonic
functions that are consistent with the blocking obtained in step I to obtain

θ̂MP = argmin
θ∈M(Ld,n;b̂l1,...,b̂ld)

`2
n(Y, θ).

Note that at the end of step Ia, the graph Gj is guaranteed to have no cycles, since the pruning step
is based exclusively on the score vector τ̂j . Owing to its acyclic structure, the graph Gj can always
be decomposed as the union of disjoint antichains.

Let us now describe the intuition behind the estimator as a whole. On each dimension j, we
produce a partial order on the set [nj]. We employ the statistics (4.15) in order to determine such a
partial order, with two indices placed in the same block if they cannot be distinguished based on
these statistics. This partitioning step serves a dual purpose: first, it discourages us from committing
to orderings over indices when our observations on these indices look similar, and second, it serves
to cluster indices that belong to the same indifference set, since the statistics (4.15) computed
on pairs of indices lying in the same indifference set are likely to have small magnitudes. Once
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we have determined the partial order via Mirsky’s algorithm, we project our observations onto
isotonic tensors that are piecewise constant on the d-dimensional partition specified by the individual
partial orders. The Mirsky partition estimator presented here derives inspiration from some existing
estimators in prior work. For instance, the idea of associating a partial order with the indices has
appeared before [211, 244], and variants of the pairwise statistics (4.15) have been used in prior
work for permutation estimation [104, 211]; see, for instance, Chapter 3. However, to the best of
our knowledge, no existing estimator computes a partition of the indices into antichains: a natural
idea that significantly simplifies both the algorithm—speeding it up considerably when there are a
small number of indifference sets (see the following paragraph for a discussion)—and its analysis.

We now turn to a discussion of the computational complexity of this estimator. Suppose that
we compute the score vectors τ̂j, j = 1, . . . , d first, which takes O(dn) operations. Now for each
j ∈ [d], step I of the estimator can be computed in time O(n2

j), since it takes O(n2
j) operations

to form the graph Gj , and Mirsky’s algorithm [224] for the computation of a “dual Dilworth”
decomposition into antichains runs in time O(n2

j). Thus, the total computational complexity of
step I is given by O(d · n2

1). Step II of the estimator involves an isotonic projection onto a partially
ordered set. As we establish in Lemma A.5.1 in the appendix, such a projection can be computed
by first averaging the entries of Y on the hyper-rectangular blocks formed by the d-dimensional
ordered partition

∏d
j=1 b̂lj , and then performing multivariate isotonic regression on the result. The

first operation takes linear time O(n), and the second operation is a weighted isotonic regression
problem that can be computed in time Õ(B3/2) if there are B blocks in the d-dimensional ordered
partition [182]. Now clearly, B ≤ n, so that step II of the Mirsky partition estimator has worst-case
complexity Õ(n3/2). Thus, the overall estimator (from start to finish) has worst-case complexity
Õ(n3/2). Furthermore, we show in Lemma 4.6.3 that if θ∗ ∈Mk,s

perm(Ld,n), then B ≤ s with high
probability, and on this event, step II only takes time O(n) + Õ(s3/2). When s is small, the overall
complexity of the Mirsky partition procedure is therefore dominated by that of computing the
scores, and given by O(dn) with high probability. Thus, the computational complexity also adapts
to underlying structure.

Having discussed its algorithmic properties, let us now turn to the risk bounds enjoyed by the
Mirsky partition estimator. Recall, once again, the notation k∗ = minj∈[d] k

j
max.

Theorem 4.4.1. There is a universal positive constant C such that for all d ≥ 2:
(a) We have the worst-case risk bound

sup
θ∗∈Mperm(Ld,n)∩B∞(1)

Rn(θ̂MP, θ
∗) ≤ C

{
n−1/d log5/2 n+ d2n−

1
2

(1−1/d) log n
}
. (4.17)

(b) Let δn : = (10n)−1. We have the adaptive bounds

sup
θ∗∈Mk,s

perm(Ld,n)

{
Rn(θ̂MP, θ

∗) ∨Rn(θ̂MP, θ
∗; δn)

}
≤ C

n

{
s+ d2(n1 − k∗) · n

1
2(1− 1

d)
}

log n.

(4.18a)
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Consequently, the estimator θ̂MP has adaptivity indices bounded as

A(θ̂MP) ∨ A(θ̂MP; δn) ≤ Cd2 · n
1
2(1− 1

d) log n. (4.18b)

When taken together, the two parts of Theorem 4.4.1 characterize both the risk and adaptation
behaviors of the Mirsky partition estimator θ̂MP. Let us discuss some particular consequences of
these results, starting with part (a) of the theorem. When d = 2, we see that the second term of
equation (4.17) dominates the bound, leading to a risk of order n−1/4. Comparing with the minimax
lower bound (4.6), we see that this is sub-optimal by a factor n1/4. There are other estimators that
attain strictly better rates [201, 211], but to the best of our knowledge, it is not yet known whether
the minimax lower bound (4.6) can be attained by an estimator that is computable in polynomial
time. On the other hand, for d ≥ 3, the first term of equation (4.17) dominates, and we achieve
the lower bound on the minimax risk (4.6) up to a poly-logarithmic factor. Thus, the case d ≥ 3
of this problem is distinctly different from the bivariate case: The minimax risk is achievable with
a computationally efficient algorithm in in spite of the fact that there are more permutations to
estimate in higher dimensions. This surprising behavior can be reconciled with prevailing intuition
by two high-level observations. First, as d grows, the isotonic function becomes much harder to
estimate, so we are able to tolerate more sub-optimality in estimating the permutations. Second,
in higher dimensional problems, a single permutation perturbs large blocks of the tensor, and this
allows us to obtain more information about it than when d = 2. Both of these observations are made
quantitative and precise in the proof.

As a side note, we believe that the logarithmic factor in the bound (4.17) can be improved; one
way to do so is to use other isotonic regression estimators (like the bounded LSE) in step II of our
algorithm. But since our notion of adaptation requires an estimator that performs well even when
the signal is unbounded, we have used the vanilla isotonic LSE in step II.

Turning our attention now to part (b) of the theorem, notice that we achieve the the lower
bound (4.13) on the adaptivity index of polynomial time procedures up to a poly-logarithmic factor.
Such a result was not known, to the best of our knowledge, for any d ≥ 3. Even when d = 2,
the Count-Randomize-Least-Squares (CRL) estimator of Shah et al. [277] was shown to have
adaptivity index bounded by Õ(n1/4) over a sub-class of bounded bivariate isotonic matrices with
unknown permutations that are also piecewise constant on two-dimensional ordered partitions
Mk,s

perm(L2,n) ∩ B∞(1). As we show in the full paper [245], the Mirsky partition estimator is also
adaptive in this case, and attains an adaptivity index that significantly improves upon that of the
CRL estimator in terms of the logarithmic factor. An even starker difference between the adaptation
properties of the CRL and Mirsky partition estimators is evident in higher dimensions. We show in
Proposition 4.5.2 to follow that for higher dimensional problems with d ≥ 4, the CRL estimator has
strictly sub-optimal adaptivity index. Thus, in an overall sense, the Mirsky partition estimator is
better equipped to adapt to indifference set structure than the CRL estimator.

Let us also briefly comment on the proof of part (b) of the theorem, which has several components
that are novel to the best of our knowledge. We begin by employing a decomposition of the error
of the estimator in terms of the sum of estimation and approximation errors; while there are
also compelling aspects to our bound on the estimation error, let us showcase some interesting



CHAPTER 4. ADAPTIVE ALGORITHMS FOR TENSOR ESTIMATION 80

components involved in bounding the approximation error. The first key component is a certain
structural result (collected as Lemma A.5.1 in Appendix A.5) that allows us to write step II of
the algorithm as a composition of two simpler steps. Besides having algorithmic consequences
(these were alluded to in our discussion of the running time of the Mirsky partition estimator),
Lemma A.5.1 allows us to write the approximation error as a sum of two terms corresponding to
the two simpler steps of this composition. In bounding these terms, we make repeated use of a
second key component: Mirsky’s algorithm groups the indices into clusters of disjoint antichains,
and so our bound on the approximation error incurred on any single block of the partition critically
leverages the condition (4.16a) used to accomplish this clustering. Our final key component, which
is absent from proofs in the literature to the best of our knowledge, is to handle the approximation
error on unbounded mean tensors θ∗, which is critical in establishing that the bound (4.18a) holds in
expectation—this is, in turn, necessary to provide a bound on the adaptivity index. This component
requires us to crucially leverage the pruning condition (4.16b) of the algorithm in conjunction with
careful conditioning arguments.

Resurfacing from the specialized discussion above and considering both parts of Theorem 4.4.1
together, we have produced a computationally efficient estimator that is both worst-case optimal
when d ≥ 3 and optimally adaptive among the class of computationally efficient estimators. Let us
now turn to other natural estimators for this problem, and assess their worst-case risk, computation,
and adaptation properties.

4.5 Other natural estimators do not adapt
Arguably, the most natural estimator for this problem is the global least squares estimator, given
by θ̂LSE(Mperm(Ld,n), Y ), which corresponds to the maximum likelihood estimator in our setting
with Gaussian errors. The worst-case risk behavior of the LSE over the setMperm(Ln,d) ∩ B∞(1)
was already discussed in Corollary 4.3.1(a): It attains the minimax lower bound (4.6) up to a
poly-logarithmic factor. However, computing such an estimator is NP-hard in the worst-case even
when d = 2, since the notoriously difficult max-clique instance can be straightforwardly reduced
to the corresponding quadratic assignment optimization problem (see, e.g., the book [251] for
reductions of this type).

Another class of procedures consists of two-step estimators that first estimate the unknown
permutations defining the model, and then the underlying isotonic function. Estimators of this
form abound in prior work [55, 201, 211, 244, 277]. We unify such estimators under Definition
4.5.1 to follow, but first, let us consider a particular instance of such an estimator in which the
permutation-estimation step is given by a multidimensional extension of the Borda or Copeland
count. A close relative of such an estimator has been analyzed when d = 2 [55].

Algorithm: Borda count estimator

I. (Permutation estimation): Recall the score vectors τ̂1, . . . , τ̂d from (4.14a). Let π̂BC
j be any
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permutation along which the entries of τ̂j are non-decreasing; i.e.,

τ̂j
(
π̂BC
j (k)

)
≤ τ̂j

(
π̂BC
j (`)

)
for all 1 ≤ k ≤ ` ≤ nj.

II. (Isotonic regression): Project the observations onto the class of isotonic tensors that are
consistent with the permutations obtained in step I to obtain

θ̂BC = argmin
θ∈M(Ld,n;π̂BC

1 ,...,π̂BC
d )

`2
n(Y, θ).

The rationale behind the estimator is simple: If we were given the true permutations (π∗1, . . . , π
∗
d),

then performing isotonic regression on the permuted observations Y {(π∗1)−1, . . . , (π∗d)
−1} would be

the most natural thing to do. Thus, a natural idea is to plug-in permutation estimates (π̂BC
1 , . . . , π̂BC

d )
of the true permutations. The computational complexity of this estimator is dominated by the
isotonic regression step, and is thus given by Õ(n3/2) [182]. The following proposition provides an
upper bound on the worst-case risk of this estimator over bounded tensors in the setMperm(Ld,n).

Proposition 4.5.1. There is a universal positive constant C such that for each d ≥ 2, we have

sup
θ∗∈Mperm(Ld,n)∩B∞(1)

Rn(θ̂BC, θ
∗) ≤ C ·

(
n−1/d log5/2 n+ d2n−

1
2

(1−1/d)
)
. (4.19)

A few comments are in order. First, note that a variant of this estimator has been analyzed
previously in the case d = 2, but with the bounded isotonic LSE in step II instead of the (unbounded)
isotonic LSE [55]. When d = 2, the second term of equation (4.19) dominates the bound and
Proposition 4.5.1 establishes the rate n−1/4, without the logarithmic factor present in the paper [55].
It should be noted that this improvement was already shown for a variant of the Borda count
estimator [244].

Second, note that when d ≥ 3, the first term of equation (4.19) dominates the bound, and
comparing this bound with the minimax lower bound (4.6), we see that the Borda count estimator is
minimax optimal up to a poly-logarithmic factor for all d ≥ 3. In this respect, it resembles both the
full least squares estimator θ̂LSE(Mperm(Ld,n), Y ) and the Mirsky partition estimator θ̂MP.

Unlike the Mirsky partition estimator, however, both the global LSE and the Borda count
estimator are unable to adapt optimally to indifference sets. This is a consequence of a more general
result that we state after the following definition.

Definition 4.5.1 (Permutation-projection based estimator). We say that an estimator θ̂ is permutation-
projection based if it can be written as either

θ̂ = argmin
θ∈M(Ld,n;π̂1,...,π̂d)

`2
n(Y, θ) or θ̂ = argmin

θ∈M(Ld,n;π̂1,...,π̂d)∩B∞(1)

`2
n(Y, θ)

for a tuple of permutations (π̂1, . . . , π̂d). These permutations could also be chosen in a data-
dependent fashion.
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Clearly, the bounded LSE (4.7), the global LSE, and the Borda count estimator are permutation-
projection based, as is the CRL estimator [277]. The Mirsky partition estimator, on the other
hand, is not. The following proposition proves a lower bound on the adaptivity index of any
permutation-projection based estimator, both in expectation and high probability.

Proposition 4.5.2. Let δn = (10n)−1. For each d ≥ 4, there is a pair of constants (cd, Cd) that
depend only on the dimension d such that for each n ≥ Cd and any permutation-projection based
estimator θ̂, we have

{A(θ̂) ∨ A(θ̂; δn)} ≥ cd · n1−2/d.

For each d ≥ 4, we have n1−2/d � n
1
2

(1−1/d), and so comparing Proposition 4.5.2 with
Theorem 4.3.2, we see that no permutation-projection based estimator can attain the smallest
adaptivity index possible for polynomial time algorithms. In fact, even the global LSE, which is not
computable in polynomial time to the best of our knowledge, falls short of the polynomial-time
benchmark of Theorem 4.3.2.

On the other hand, when d = 2, we note once again that the paper [277] leveraged the favorable
adaptation properties of the bivariate isotonic LSE [56] to show that their CRL estimator has the
optimal adaptivity index for polynomial time algorithms over the class Mk,s

perm(L2,n) ∩ B∞(1).
They also showed that the bounded LSE (4.7) does not adapt optimally in this case. In higher
dimensions, however, even the isotonic LSE—which must be employed within any permutation-
projection based estimator—has poor adaptation properties [137], and this leads to our lower bound
in Proposition 4.5.2.

The case d = 3 represents a transition between these two extremes, where the isotonic LSE
adapts sub-optimally, but a good enough adaptivity index is still achievable owing to the lower
bound of Theorem 4.3.2. Indeed, we show in the full paper [245] that a variant of the CRL estimator
also attains the polynomial-time optimal adaptivity index for this case. Consequently, a result as
strong as Proposition 4.5.2—valid for all permutation-projection based estimators—cannot hold
when d = 3.

4.6 Proofs of main results
We now turn to proofs of our main results, beginning with some quick notes to the reader. Through-
out, the values of universal constants c, C, c1, . . . may change from line to line. Also recall our
notation for inequalities holding up to a constant factor: For two sequences of non-negative reals
{fn}n≥1 and {gn}n≥1, we use fn . gn to indicate that there is a universal constant C such that
fn ≤ Cgn for all n ≥ 1. We also require a bit of additional notation. For a tensor T ∈ Rd,n, we
write ‖T‖2 =

√∑
x∈Ld,n T

2
x , so that `2

n(θ1, θ2) = ‖θ1 − θ2‖2
2. For a pair of binary vectors (v1, v2)

of equal dimension, we let dH(v1, v2) denote the Hamming distance between them. We use the
abbreviation “wlog” for “without loss of generality”. Finally, since we assume throughout that
n1 ≥ 2 and d ≥ 2, we will use the fact that n ≥ 4 repeatedly and without explicit mention.
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We repeatedly employ two elementary facts about `2 projections, which are stated below for
convenience. Recall our notation for the least squares estimator (4.5) as the `2 projection onto a
closed set C ⊆ Rd,n, and assume that the projection exists. For tensors T1 ∈ C and T2 ∈ Rd,n, we
have

‖θ̂LSE(C, T1 + T2)− T1‖2 ≤ 2‖T2‖2. (4.20a)

The proof of this statement is straightforward; by the triangle inequality, we have

‖θ̂LSE(C, T1 + T2)− T1‖2 ≤ ‖θ̂LSE(C, T1 + T2)− (T1 + T2)‖2 + ‖(T1 + T2)− T1‖2

≤ 2‖(T1 + T2)− T1‖2

= 2‖T2‖2,

where the second inequality follows since θ̂LSE(C, T1 + T2) is the closest point in C to T1 + T2. If
moreover, the set C is convex, then the projection is unique, and non-expansive:

‖θ̂LSE(C, T1 + T2)− T1‖2 ≤ ‖T2‖2. (4.20b)

With this setup in hand, we are now ready to proceed to the proofs of the main results.

4.6.1 Proof of Theorem 4.3.1
It suffices to prove the upper bound, since the minimax lower bound was already shown by [137]
for isotonic regression without unknown permutations. We also focus on the case d ≥ 3 since the
result is already available for d = 2 [211, 274]. Our proof proceeds in two parts. First, we show that
the bounded least squares estimator over isotonic tensors (without unknown permutations) enjoys
the claimed risk bound. We then use our proof of this result to prove the upper bound (4.8). The
proof of the first result is also useful in establishing part (b) of Corollary 4.3.1.

Bounded LSE over isotonic tensors: For each x1, . . . , xd−2 ∈ [n1], letM(Ax1,...,xd−2
) denote

the set of bivariate isotonic tensors formed by fixing the first d − 2 dimensions (variables) of a
d-variate tensor to x1, . . . , xd−2; we refer to this as the two-dimensional slice of the lattice Ld,n
centered at x1, . . . , xd−2. For convenience, let M(Ld,n | r) and M(Ax1,...,xd−2

| r) denote the
intersection of the respective sets with the `∞ ball of radius r. Letting A−B denote the Minkowski
difference between the sets A and B, define

Mdiff(Ax1,...,xd−2
| r) : =M(Ax1,...,xd−2

| r)−M(Ax1,...,xd−2
| r) and

Mfull(r) : =
∏

x1,...,xd−2

M(Ax1,...,xd−2
| r).

In words, the setMdiff(Ax1,...,xd−2
| r) denotes the set difference of two bounded, bivariate iso-

tonic slices centered at x1, . . . , xd−2, andMfull(r) denotes the Cartesian product of all such two-
dimensional slices. Note that by construction, we have ensured, for each r ≥ 0, the inclusions
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M(Ld,n | r) ⊆Mfull(r) and (4.21a)

M(Ld,n | r)−M(Ld,n | r) ⊆
∏

x1,...,xd−2

Mdiff(Ax1,...,xd−2
| r) =Mfull(r)−Mfull(r). (4.21b)

With this notation at hand, let us now proceed to bound the risk of the bounded LSE. By
definition, this estimator can be written as the projection of Y onto the setM(Ld,n | 1), as so we
have

θ̂BLSE = argmin
θ∈M(Ld,n|1)

‖Y − θ‖2
2. (4.22)

Letting ∆̂ : = θ̂BLSE − θ∗, the optimality of θ̂BLSE and feasibility of θ∗ in the objective (4.22) yield
the basic inequality ‖∆̂− ε‖2

2 ≤ ‖ε‖2
2, rearranging which we obtain

1

2
‖∆̂‖2

2 ≤ 〈ε, ∆̂〉 ≤ sup
θ∈M(Ld,n|1)

‖θ−θ∗‖2≤‖∆̂‖2

〈ε, θ − θ∗〉 ≤ sup
∆∈Mfull(1)−Mfull(1)

‖∆‖2≤‖∆̂‖2

〈ε,∆〉.

For convenience, define for each t ≥ 0 the random variable

ξ(t) = sup
∆∈Mfull(1)−Mfull(1)

‖∆‖2≤t

〈ε,∆〉.

Also note that the setMfull(1)−Mfull(1) is star-shaped and non-degenerate (see Definition A.6.1
in Appendix A.6.1). Now applying Lemma A.6.3 from the appendix—which is, in turn, based
on [323, Theorem 13.5]—we see that

E[‖∆̂‖2
2] ≤ C(t2n + 1).

where tn is the smallest (strictly) positive solution to the critical inequality

E[ξ(t)] ≤ t2

2
. (4.23)

Thus, it suffices to produce a bound on E[ξ(t)], and in order to do so, we use Dudley’s entropy
integral along with a bound on the `2 metric entropy of the set

(
Mfull(1)−Mfull(1)

)
∩ B2(t).

Owing to the inclusions (4.21), we see that in order to cover the setMfull(1)−Mfull(1) in `2-norm
at radius δ, it suffices to produce, for each x1, . . . , xd−2, a cover of the setM(Ax1,...,xd−2

| 1) in

`2-norm at radius δ′ = n
− d−2

2
1 · δ√

2
. This is because there are nd−2

1 unique slices of bivariate isotonic
tensors and a δ-covering of the setMdiff(Ax1,...,xd−2

| 1) can be accomplished using δ/
√

2 coverings
of the two copies ofM(Ax1,...,xd−2

| 1) that are involved in the Minkowski difference. Thus, we
have

N(δ;Mfull(1)−Mfull(1), ‖ · ‖2) ≤
∏

x1,...,xd−2

N(δ′;M(Ax1,...,xd−2
| 1), ‖ · ‖2)2. (4.24)
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Furthermore, by [114, Theorem 1.1] (see also [274, equation (29)]), we have

logN(τ ;M(Ax1,...,xd−2
| 1), ‖ · ‖2) .

n2
1

τ 2
log2

(n1

τ

)
for each τ > 0. (4.25)

Putting together the pieces, we obtain

logN(δ;Mfull(1)−Mfull(1), ‖ · ‖2) . nd−2
1 · logN(δ′;M(Ax1,...,xd−2

| 1), ‖ · ‖2)

(i)

. nd−2
1 · n

δ2
log2

(n
δ

)
,

where in step (i), we have substituted the value of δ′ and noted that nd1 = n. Now the truncated form
of Dudley’s entropy integral (see, e.g., [323, Theorem 5.22]) yields, for each t0 ∈ [0, t], the bound

E[ξ(t)] . t0 ·
√
n+

∫ t

t0

√
logN(δ;Mfull(1)−Mfull(1) ∩ B2(t), ‖ · ‖2)dδ

≤ t0 ·
√
n+

∫ t

t0

√
logN(δ;Mfull(1)−Mfull(1), ‖ · ‖2)dδ

Choose t0 = n−11/2, apply inequality (4.24), and note that log n
δ
. log n for all δ ≥ n−11/2 to

obtain

E[ξ(t)] . n−5 +

∫ t

n−11/2

√
nd−2

1

√
n · (log n) · δ−1dδ

. n1−1/d · (log n) · (log nt).

Some algebraic manipulation then yields that the solution tn to the critical inequality (4.23) must
satisfy t2n ≤ Cn1−1/d · log2 n. Putting together the pieces completes the proof of the claim

E
[
‖∆̂‖2

2

]
≤ Cn1−1/d · log2 n. (4.26)

Bounded least squares with unknown permutations: The proof for this case proceeds very
similarly to before; the only additional effort is to bound the empirical process over a union of a
large number of difference-of-monotone cones. Similarly to before, defineMperm(Ld,n | r) : =

Mperm(Ld,n) ∩ B∞(r) and the setsM(Ld,n; π1, . . . , πd | r) analogously. Let θ̂BLSE now denote the
bounded LSE with permutations (4.7). Proceeding similarly to before with ∆̂ = θ̂BLSE − θ∗ yields

1

2
‖∆̂‖2

2 ≤ sup
θ1∈Mperm(Ld,n|1)
θ2∈Mperm(Ld,n|1)

‖θ1−θ2‖2≤‖∆̂‖2

〈ε, θ1 − θ2〉 = max
π1,...,πd∈Sn1

max
π′1,...,π

′
d∈Sn1

sup
θ1∈M(Ld,n;π1,...,πd|1)
θ2∈M(Ld,n;π′1,...,π

′
d|1)

‖θ1−θ2‖2≤‖∆̂‖2

〈ε, θ1 − θ2〉

(4.27)
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For convenience, denote the supremum of the empirical process localized at radius t > 0 by

ξ(t) : = sup
∆∈Mperm(Ld,n|1)−Mperm(Ld,n|1)

‖∆‖2≤t

〈ε,∆〉.

Since the setMperm(Ld,n | 1) −Mperm(Ld,n | 1) is star-shaped and non-degenerate (see Defini-
tion A.6.1), applying Lemma A.6.3 as before yields the risk bound E[‖∆̂‖2

2] ≤ C(t2n + 1), where tn
is the smallest positive solution to the critical inequality (4.23). Using the form of the empirical
process in equation (4.27), notice that ξ(t) is the supremum of a Gaussian process over the union of
K = (n1!)2d sets, each of which contains the origin and is contained in an `2 ball of radius t. We
also have logK ≤ 2dn1 log n1 = 2n1 log n. Applying Lemma A.6.1 from the appendix, we thus
obtain

E[ξ(t)] ≤ max
π1,...,πd∈Sn1

max
π′1,...,π

′
d∈Sn1

E sup
θ1∈M(Ld,n;π1,...,πd|1)
θ2∈M(Ld,n;π′1,...,π

′
d|1)

‖θ1−θ2‖2≤t

〈ε, θ1 − θ2〉+ Ct
√
n1 log n, (4.28)

and so it suffices to bound the expectation of the supremum for a fixed pair of tuples (π1, . . . , πd)
and (π′1, . . . , π

′
d). For convenience, let

D(π1, . . . , πd; π
′
1, . . . , π

′
d) : =M(Ld,n; π1, . . . , πd | 1)−M(Ld,n; π′1, . . . , π

′
d | 1),

and note the sequence of covering number bounds

N(δ;D(π1, . . . , πd; π
′
1, . . . , π

′
d) ∩ B2(t), ‖ · ‖2) ≤ N(δ;D(π1, . . . , πd; π

′
1, . . . , π

′
d), ‖ · ‖2)

(ii)

≤
[
N(δ/

√
2;M(Ld,n | 1), ‖ · ‖2)

]2

,

where step (ii) follows since it suffices to coverM(Ld,n; π1, . . . , πd | 1) andM(Ld,n; π′1, . . . , π
′
d | 1)

at radius δ/
√

2, and each of these has covering number equal to that of M(Ld,n | 1). Now
proceeding exactly as in the previous calculation and performing the entropy integral, we have

E sup
θ1∈M(Ld,n;π1,...,πd|1)
θ2∈M(Ld,n;π′1,...,π

′
d|1)

‖θ1−θ2‖2≤t

〈ε, θ1 − θ2〉 . n1−1/d · (log n) · (log nt). (4.29)

Putting together the pieces (4.28) and (4.29) along with the critical inequality (4.23) and some
algebra completes the proof.

4.6.2 Proof of Corollary 4.3.1
This proof utilizes Theorem 4.3.1 in conjunction with a truncation argument. We provide a full
proof of part (a) of the corollary; the proof of part (b) is very similar and we sketch the differences.
Recall throughout that by assumption, we have θ∗ ∈ B∞(1).
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Recalling our notation (4.5) for least squares estimators, note that the global least squares
estimator θ̂LSE(Mperm(Ld,n), Y ) belongs to the set{

θ̂LSE(M(Ld,n; π1, . . . , πd), Y ) | π1, . . . , πd ∈ Sn1

}
.

Applying Lemma A.5.2 from the appendix, we see that the for each tuple of permutations
(π1, . . . , πd), the projection onto the setM(Ld,n; π1, . . . , πd) is `∞-contractive, so that

‖θ̂LSE(M(Ld,n; π1, . . . , πd), Y )‖∞ ≤ ‖Y ‖∞.

Consequently, we have ‖θ̂LSE(Mperm(Ld,n), Y )‖∞ ≤ ‖Y ‖∞ ≤ 1 + ‖ε‖∞. By a union bound,

Pr{‖ε‖∞ ≥ 4
√

log n} ≤ n−7.

Let ψn : = 4
√

log n + 1 for convenience. On the event E : = {‖ε‖∞ ≤ 4
√

log n}, we thus have
‖θ̂LSE(Mperm(Ld,n), Y )‖∞ ≤ ψn. Therefore, on this event, we have an equivalence between the
vanilla LSE and the bounded LSE:

θ̂LSE(Mperm(Ld,n), Y ) = θ̂LSE(Mperm(Ld,n) ∩ B∞(ψn), Y ). (4.30)

Now replicating the proof of Theorem 4.3.1 for the bounded LSE with `∞-radius4 r ∈ (0, n] yields
the risk bound

E
[
‖θ̂LSE(Mperm(Ld,n) ∩ B∞(r), Y )− θ∗‖2

2

]
≤ c(rn1−1/d log2 n+ n1/d log n). (4.31)

Finally, since the least squares estimator is a projection onto a union of convex sets, inequality (4.20a)
yields the bound

‖θ̂LSE(Mperm(Ld,n), Y )− θ∗‖2
2 ≤ 4‖ε‖2

2. (4.32)

Using the bounds (4.30), (4.31) with r = ψn, and (4.32) in conjunction with Lemma A.6.6 from
the appendix yields

Rn(θ̂LSE(Mperm(Ld,n), Y ), θ∗) ≤ c ·
{
ψn · n1−1/d log2 n+ n1/d log n+ n−7/2 ·

√
E[‖ε‖4

2]

}
(i)

≤ c ·
{
ψn · n1−1/d log2 n+ n1/d log n

}
,

where step (i) follows since

E[‖ε‖4
2] = n2 + 2n ≤ (n+ 1)2. (4.33)

4In more detail, note that by a rescaling argument, it suffices to replace τ in equation (4.25) with τ/r. Since r ≤ n,
note that log(rn) . log n.
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In order to prove part (b) of the corollary, all steps of the previous argument can be repro-
duced verbatim with the setM(Ld,n) replacingMperm(Ld,n). The risk bound for the estimator
θ̂LSE(M(Ld,n) ∩ B∞(r), Y ) can be obtained from the first part of the proof of Theorem 4.3.1 (see
equation (4.26)) and takes the form

E
[
‖θ̂LSE(M(Ld,n) ∩ B∞(r), Y )− θ∗‖2

2

]
≤ crn1−1/d log2 n for each 0 < r ≤ n. (4.34)

Replacing equation (4.31) with (4.34), setting r = ψn, and putting together the pieces as before
proves the claimed result.

4.6.3 Proof of Proposition 4.3.1
We prove the upper and lower bounds separately. Recall our notation Kq for the set of all tuples of
positive integers k = (k1, . . . , kq) with

∑q
`=1 k` = n1. In this proof, we make use of notation that

was defined in Section 4.4. Recall from this section our definition of a one-dimensional ordered
partition, the setM(Ld,n; bl1, . . . , bld), and that PL denotes the set of all one-dimensional ordered
partitions of size L. Also, let Pmax

k denote all one-dimensional partitions of [n1] in which the largest
block has size at least k.

Proof of upper bound

For each tuple k ∈ Kq, let β(k) ⊆ Pq denote the set of all one-dimensional ordered partitions that
are consistent with the set sizes k. Note the equivalence

Mk,s
perm(Ld,n) =

⋃
bl1∈β(k1)

· · ·
⋃

bld∈β(kd)

M(Ld,n; bl1, . . . , bld),

and also that |β(kj)| ≤ |Pmax
kjmax
| ≤ e3(n1−kjmax) logn1; here, the final inequality follows from

Lemma A.6.8(b) in the appendix. Recall that we have Y = θ∗ + ε for some tensor θ∗ ∈
M(Ld,n; bl∗1, . . . , bl

∗
d), where bl∗j ∈ β(kj) for each j ∈ [d]. The estimator that we analyze for

the upper bound is the least squares estimator θ̂LSE(Mk,s
perm(Ld,n), Y ), which we denote for conve-

nience by θ̂ for this proof. Since we are analyzing a least squares estimator, our strategy for this
proof will be to set up the appropriate empirical process and apply the variational inequality in
Lemma A.3.3 in order to bound the error.

Specifically, for each t ≥ 0, define the random variable

ξ(t) : = sup
θ∈Mk,s

perm(Ld,n)

‖θ−θ∗‖22≤t

〈ε, θ − θ∗〉 = max
bl1,...,bld
blj∈β(kj)

sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉,

which is the pointwise maximum of K =
∏d

j=1 |β(kj)| random variables. Note that we have

logK =
d∑
j=1

log |β(kj)| ≤
d∑
j=1

3(n1 − kjmax) log n1 ≤ 3(n1 − k∗) log n.
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Applying Lemma A.6.1(a) from the appendix, we have that for each u ≥ 0,

Pr

ξ(t) ≥ max
bl1,...,bld
blj∈β(kj)

E sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉+ Ct(
√

(n1 − k∗) log n+
√
u)

 ≤ e−u.

(4.35)

for some universal constant C > 0. Lemma 4.6.1, which is stated and proved at the end of this
subsection, controls the expected supremum of the empirical process for a fixed choice of the
partitions bl1, . . . , bld. Combining Lemma 4.6.1 with the high probability bound (4.35), we obtain,
for each u ≥ 0, the bound

Pr
{
ξ(t) ≥ Ct

(√
s+

√
(n1 − k∗) log n+

√
u
)}
≤ e−u. (4.36)

Now define the function fθ∗(t) : = ξ(t)− t2

2
; our goal—driven by Lemma A.3.3—is to compute a

value t∗ such that with high probability, fθ∗(t) < 0 for all t ≥ t∗.
For a sufficiently large constant C > 0, define the scalar

tu : = C(
√
s+

√
(n1 − k∗) log n+

√
u) for each u ≥ 0.

We claim that on an event E occurring with probability at least 1− Cn−10, the choice u∗ = C log n
ensures that

fθ∗(t) < 0 simultaneously for all t ≥ tu∗ . (4.37)

Taking this claim as given for the moment, the proof of the upper bound of the proposition follows
straightforwardly: Applying Lemma A.3.3 and substituting the value t∗ = tu∗ yields the bound

‖θ̂ − θ∗‖2
2 ≤ C (s+ (n1 − k∗) log n)

with probability greater than 1−Cn−10. In order to produce a bound that holds in expectation, note
that since θ̂ is obtained via a projection onto a union of convex sets, inequality (4.20a) yields the
pointwise bound ‖θ̂ − θ∗‖2

2 ≤ 4‖ε‖2
2. Applying Lemma A.6.6 and combining the pieces yields

E[‖θ̂ − θ∗‖2
2] ≤ C (s+ (n1 − k∗) log n) + C ′

√
E[‖ε‖4

2] ·
√
n−10

≤ C (s+ (n1 − k∗) log n) ,

where the final inequality is a consequence of the bound (4.33).
It remains to establish claim (4.37). First, inequality (4.36) ensures that ξ(t) < t2/8 for each

fixed t ≥ tu with probability at least 1− e−u, thereby guaranteeing that fθ∗(t) < 0 for each fixed
t ≥ tu. Moreover, the Cauchy–Schwarz inequality yields the pointwise bound ξ(t) ≤ t‖ε‖2, so that
applying the chi-square tail bound [185, Lemma 1] yields

Pr
{
ξ(t) ≤ t(

√
n+
√

2u′)
}
≥ 1− e−u′ for each u′ ≥ 0.
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Set u′ = u∗, and note that on this event, we have fθ∗(t) < 0 simultaneously for all t ≥
t#u∗ : = C(

√
n +
√

log n). It remains to handle the values of t between tu∗ and t#u∗ . We suppose
that t#u∗ ≥ tu∗ without loss of generality—there is nothing to prove otherwise—and employ a
discretization argument. Let T = {t1, . . . , tL} be a discretization of the interval [tu∗ , t

#
u∗ ] such that

tu∗ = t1 < · · · < tL = t#u∗ and 2ti ≥ ti+1. Note that T can be chosen so that

L = |T | ≤ log2

t#u∗

tu∗
+ 1 ≤ c log n.

Using the high probability bound ξ(t) < t2/8 for each individual t ≥ tu∗ and a union bound over T ,
we obtain that with probability at least 1− c log n · e−u∗ , we have

max
t∈T

{
ξ(t)− t2/8

}
< 0.

On this event, we use the fact that ξ(t) is (pointwise) non-decreasing and that ti ≥ ti+1/2 to
conclude that for each i ∈ [L− 1] and t ∈ [ti, ti+1], we have

fθ∗(t) = ξ(t)− t2/2 ≤ ξ(ti+1)− (ti)2/2 ≤ ξ(ti+1)− (ti+1)2/8 ≤ max
t∈T

{
ξ(t)− t2/8

}
< 0.

Putting together the pieces, we have shown that fθ∗(t) < 0 simultaneously for all t ≥ tu∗ with
probability at least 1 − e−u

∗ − c log n · e−u∗ ≥ 1 − Cn−10. The final inequality is ensured by
adjusting the constants appropriately.

Lemma 4.6.1. Let ε be the standard Gaussian tensor in Rd,n. Suppose that s = (s1, . . . , sd) satisfies∏d
j=1 sj = s, and that kj ∈ Ksj for each j ∈ [d]. Then for any tensor θ∗ ∈ Rd,n and any sequence

of ordered partitions bl1, . . . , bld with blj ∈ β(kj) for all j ∈ [d], we have

E sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉 ≤ t
√
s for each t ≥ 0.

Proof. First, let θ = θ̂LSE(M(Ld,n; bl1, . . . , bld), θ
∗) denote the projection of θ∗ onto the set

M(Ld,n; bl1, . . . , bld). Let B2(θ, t) denote the `2 ball of radius t centered at θ. Since the `2

projection onto a convex set is non-expansive (4.20b), each θ ∈ M(Ld,n; bl1, . . . , bld) satis-
fies ‖θ − θ‖2 ≤ ‖θ − θ∗‖2, and so we have the inclusion M(Ld,n; bl1, . . . , bld) ∩ B2(θ∗, t) ⊆
M(Ld,n; bl1, . . . , bld) ∩ B2(θ, t) for each t ≥ 0. Consequently, we obtain

sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉 = 〈ε, θ − θ∗〉+ sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ〉

≤ 〈ε, θ − θ∗〉+ sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ‖2≤t

〈ε, θ − θ〉.
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Since θ is non-random, the term 〈ε, θ − θ∗〉 has expectation zero. Thus, taking expectations and
applying Lemma A.6.2 from the appendix yields

E sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉 ≤ E sup
θ∈M(Ld,n;bl1,...,bld)

‖θ−θ‖2≤t

〈ε, θ − θ〉 ≤ t
√
s,

thereby completing the proof.

Proof of lower bound

Our proof proceeds in two parts: We separately establish the inequalities

Md,n(k, s) ≥ c1 ·
s

n
(4.38a)

Md,n(k, s) ≥ c2 ·
n1 − k∗

n
(4.38b)

for a pair of universal positive constants (c1, c2) and each s ∈ Ld,n and k ∈ Ks. Combining the
bounds (4.38) yields the claimed lower bound on the minimax risk.

Proof of claim (4.38a): We show this lower bound over just the set Mk,s(Ld,n), without the
unknown permutations. In order to simplify notation, we let φk : Rd,n → Rd,s1,...,sd be a map
that that collapses each hyper-rectangular block, defined by the tuple k, of the input into a scalar
that is equal to the average of the entries within that block. By construction, for an input tensor
θ ∈Mk,s(Ld,n), we have the inclusion φk(θ) ∈M(Ld,s1,...,sd). Let φ−1

k
: Rd,s1,...,sd → Rd,n denote

the inverse (“lifting”) map obtained by populating each block of the output with identical entries.
Furthermore, for each x ∈ Ld,s1,...,sd , let b(x) denote the cardinality of block x specified by the
tuple k.
Case s < 32: The proof for this case follows from considering the case s = 1. In particular, let k1

denote the tuple ((n1), . . . , (nd)) corresponding to a single indifference set along all dimensions,
with s(1) : = (1, . . . , 1) denoting the corresponding tuple of indifference set cardinalities along the d
dimensions. Note thatMk1,s(1)(Ld,n) consists of all constant tensors on the lattice. Clearly, we have
the inclusionMk1,s(1)(Ld,n) ⊆ Mk,s(Ld,n), and the estimation problem over the class of tensors
Mk1,s(1)(Ld,n) is equivalent to estimating a single scalar parameter from n i.i.d. observations with
standard Gaussian noise. The minimax lower bound of order 1/n is classical, and adjusting the
constant factor completes the proof for this case.
Case s ≥ 32: In this case, we construct a packing of the setM(Ld,s1,...,sd) and lift this packing into
the space of interest. First, let α0 ∈M(Ld,s1,...,sd) denote a base tensor having entries

α0(i1, . . . , id) =
d∑
j=1

(ij − 1) for each ij ∈ [sj], j ∈ d.
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The Gilbert–Varshamov bound [121, 316] guarantees the existence a set of binary tensors on the
lattice Ω ⊆ {0, 1}Ld,s1,...,sd such that the Hamming distance between each pair of distinct vectors
ω, ω′ ∈ Ω is lower bounded as dH(ω, ω′) ≥ s/4 and

|Ω| ≥ 2s∑s/4
i=0

(
s
i

) ≥ es/8.

In deriving the final inequality, we have used Hoeffding’s inequality on the lower tail of the
distribution Bin(s, 1/2) to deduce that

∑(s−α)/2
i=0

(
s
i

)
≤ 2s exp(−α2/2s) for each α ≥ 0; see,

also, [215, Lemma 4.7].
We now use the set Ω to construct a packing overM(Ld,s1,...,sd): For a scalar δ ∈ (0, 1] to be

chosen shortly, define

αω(x) : = α0(x) + ω(x) · δ√
b(x)

for each x ∈ Ld,s1,...,sd .

By construction, the inclusion αω ∈M(Ld,s1,...,sd) holds for each ω ∈ Ω. Finally, define the tensors
θω : = φ−1

k
(αω) for each ω ∈ Ω. Note that θω ∈Mk,s(Ld,n) for each ω ∈ Ω, and also that

‖θω − θω′‖2
2 = δ2 · dH(ω, ω′) for each distinct pair ω, ω′ ∈ Ω.

Putting together the pieces, we see that we have constructed a local packing {θω}ω∈Ω with
log(|Ω|) ≥ s/8 such that

s

4
δ2 ≤ ‖θω − θω′‖2

2 ≤ sδ2 for each distinct pair ω, ω′ ∈ Ω.

Employing Fano’s method (see, e.g., [323, Proposition 15.12 and equation (15.34)]) then yields, for
a universal positive constant c, the minimax risk lower bound

inf
θ̂∈Θ̂

sup
θ∗∈Mk,s(Ld,n)

Rn(θ̂, θ∗) ≥ c · δ2s

(
1− δ2s+ log 2

log(|Ω|)

)
≥ c · δ2s

(
3/4− 8δ2

)
,

where we have used the fact that s ≥ 32 in order to write log 2
s/8
≤ 1/4. Choosing δ = 1/4 completes

the proof.

Proof of claim (4.38b): The proof of this claim uses the unknown permutations defining the
model in order to construct a packing. A similar proof has appeared in the special case d = 2 [277].
Let us begin by defining some notation. For any tuple k ∈ ∪n1

i=1Ki, let

kj(k) = ((n1), . . . , (nj−1),k, (nj+1), . . . , (nd)) and
sj(k) = ( 1, . . . , 1 , |k| , 1, . . . , 1 ),

respectively. In words, these denote the size tuple and cardinality tuple corresponding to a single
indifference set along all dimensions except the j-th, along which we have |k| indifference sets with
cardinalities given by the tuple k.
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Turning now to the problem at hand, consider k ∈ Ks, and let j∗ ∈ argminj∈[d] k
j
max be any

index that satisfies kj∗max = k∗. Let k̃ = kj∗(k
j∗), and s̃ = sj∗(k

j∗). Finally, define the special tuple
s(2) ∈ Nd by specifying, for each j ∈ [d], its j-th entry as

[s(2)]j : =

{
2 if j = j∗

1 otherwise.

By definition, we have

Mk̃,̃s
perm(Ld,n) ⊆Mk,s

perm(Ld,n). (4.39)

We require Lemma 4.6.2, which is stated and proved at the end of this subsection, and split the
proof into two cases depending on a property of the size tuple k.
Case k∗ > n1/3: In this case, set k = (k∗, n1 − k∗) and note the inclusion

Mkj∗ (k),s(2)

perm (Ld,n) ⊆Mk̃,̃s
perm(Ld,n).

Applying Lemma 4.6.2 in conjunction with the further inclusion (4.39) then yields the bound

Md,n(k, s) ≥ c

n
min{k∗, n1 − k∗} ≥

c

2n
(n1 − k∗),

where in the final inequality, we have used the bound k∗ > n1/3.
Case k∗ ≤ n1/3: In this case, note that the largest indifference set defined by the size tuple kj

∗ is at
most n1/3. Consequently, these indifference sets can be combined to form two indifference sets of
sizes (k̃, n1 − k̃) for some n1/3 ≤ k̃ ≤ 2n1/3. Now letting k̃ : = (k̃, n1 − k̃), we have

Mkj∗ (k̃),s(2)

perm (Ld,n) ⊆Mk̃,̃s
perm(Ld,n),

and proceeding as before completes the proof for this case.

Lemma 4.6.2. Suppose k = (k1, k2), with k : = max`=1,2 k`, and let Kperm = Mkj(k),sj(k)
perm (Ld,n)

for convenience. Then, for each j ∈ [d], we have

inf
θ̂∈Θ̂

sup
θ∗∈Kperm

Rn(θ̂, θ∗) ≥ c · n1 − k
n

,

where c is a universal positive constant.

Proof. Define the set K : =Mkj(k),sj(k)(Ld,n) for convenience. Suppose wlog that k2 ≤ k1, so that
it suffices to prove the bound

inf
θ̂∈Θ̂

sup
θ∗∈Kperm

Rn(θ̂, θ∗) ≥ c · k2

n
.
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Also note that by symmetry, it suffices to prove the bound for j = 1.
Case k2 < 32: From the proof of claim (4.38a), recall the setMk1,s(1)(Ld,n), noting the inclusion
Mk1,s(1)(Ld,n) ⊆ Kperm. From the same proof, we thus have the bound inf θ̂∈Θ̂ supθ∗∈Kperm

Rn(θ̂, θ∗) ≥
c · 1

n
, which suffices since the constant factors can be adjusted appropriately.

Case k2 ≥ 32: As before, we use the Gilbert–Varshamov bound [121, 316] to claim that there must
exist a set of binary vectors Ω ⊆ {0, 1}k2 such that log(|Ω|) ≥ k2/8 and dH(ω, ω′) ≥ k2/4 for each
distinct ω, ω′ ∈ Ω. For a positive scalar δ to be specified shortly, construct a base tensor θ0 ∈ K by
specifying its entries as

θ0(i1, . . . , id) : =

{
δ if i1 ≤ k2

0 otherwise.

Now for each ω ∈ Ω, define the tensor θω ∈ Rd,n via

θω(i1, . . . , id) : =


δ · ωi1 if i1 ≤ k2

δ · (1− ωn1−i1+1) if n1 − k2 + 1 ≤ i1 ≤ n1

0 otherwise.

Since k2 ≤ k1, we have n1 − k2 ≥ k2. Thus, an equivalent way to construct the tensor θω is to
specify a permutation using the vector ω (which flips particular entries depending of the value of ω
on that entry), and then apply this permutation along the first dimension of θ0. Consequently, we
have θω ∈ Kperm for each ω ∈ Ω. Also, by construction, we have ‖θω − θω′‖2

2 = δ2dH(ω, ω′), so
that the packing over the Hamming cube ensures that

k2

4
· δ2 ≤ ‖θω − θω′‖2

2 ≤ k2δ
2 for all distinct pairs ω, ω′ ∈ Ω.

Thus, applying Fano’s method as in the proof of the claim (4.38a) yields, for a small enough
universal constant c > 0, the bound

inf
θ̂∈Θ̂

sup
θ∗∈Kperm

Rn(θ̂, θ∗) ≥ c · δ2k2

n

(
1− δ2k2 + log 2

k2/8

)
,

and choosing δ to be a small enough constant and noting that k2 ≥ 32 completes the proof.

4.6.4 Proof of Corollary 4.3.2
We establish the two parts of the corollary separately.

Proof of part (a)

The lower bound follows immediately from our proof of claim (4.38a). Let us prove the upper
bound. First, note that the setMk,s(Ld,n) −Mk,s(Ld,n) is star-shaped and non-degenerate (see
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Definition A.6.1). Thus, it suffices, as in the proof of Theorem 4.3.1, to bound the expectation of
the random variable

ξ(t) = sup
θ1,θ2∈Mk,s(Ld,n)
‖θ1−θ2‖2≤t

〈ε, θ1 − θ2〉.

Applying Lemma A.6.2 from the appendix yields

E[ξ(t)] ≤ t
√
s,

and substituting into the critical inequality (4.23) completes the proof.

Proof of part (b)

The lower bound follows directly from the corresponding lower bound in part (a) of the corollary.
In order to establish the upper bound, we use an argument that is very similar to the proof of the
corresponding upper bound in Proposition 4.3.1, and so we sketch the differences.

First, note that Ms(Ld,n) can be written as the union of convex sets. For convenience, let
φs : = {s ∈ Ld,n :

∏d
j=1 sj = s}. Proceeding as in the proof of Proposition 4.3.1, we see that it

suffices to control the expectation of the random variable

ξ(t) = max
s∈φs

max
k∈Ks

sup
θ∈Mk,s(Ld,n)
‖θ−θ∗‖2≤t

〈ε, θ − θ∗〉.

Now note that |Ks| can be bounded by counting, for each j ∈ [d], the number of sj-tuples of
positive integers whose sum is n1. A stars-and-bars argument thus yields |Ks| =

∏d
j=1

(
n1−1
sj−1

)
≤ ns1.

Simultaneously, we also have |φs| ≤ sd. Putting together the pieces, we see that ξ(t) is the maximum
of at most K : = ns1 · sd random variables. Note that logK = s log n1 + d log s . s log n, where
we have used the fact that d log s . ds log n1 = s log n.

Applying Lemma A.6.1(a) from the appendix in conjunction with Lemma 4.6.1 yields, for each
u ≥ 0, the tail bound

Pr
{
ξ(t) ≥ t

√
s+ Ct

(√
s log n+

√
u
)}
≤ e−u.

The rest of the proof is identical to the proof of Proposition 4.3.1, and putting together the pieces
yields the claim.

4.6.5 Proof of Theorem 4.3.2
Our proof of the theorem relies on a result of Brennan and Bresler [43] that reduces the hypergraph
planted clique problem instance to an instance of testing between a random and planted tensor
model in Gaussian noise. Let us introduce some notation to set up their result. Let µ0 ∈ Rd,n denote
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the all-zero tensor, and define the scalar ρ : = log 2√
6 logn+2 log 2

. For each S ⊆ [n1], define the tensor
µS ∈ Rd,n via

µS(i1, . . . , id) : =

{
ρ if i1, . . . id ∈ S
0 otherwise.

With this notation at hand, we are now ready to formulate a conjecture that follows from the
hypergraph planted clique conjecture; we define the appropriate hypotheses below. Let SK denote a
random subset chosen uniformly from all subsets of [n1] that have sizeK. Let ∅ denote the empty set.
Given a random variable Y ∈ Rd,n, we would like to distinguish the hypotheses H̃0 : Y ∼ N (µ0, I)

and H̃1 : Y ∼ N (µSK , I). The error of any test ψ : Rd,n → {0, 1} is defined as before (4.12), but
now with the hypotheses H̃0 and H̃1 representing the null and alternative, respectively.

Conjecture 4.6.1 (Gaussian planted tensor conjecture). Under the setup above, there is a pair of
universal positive constants (c, C) such that if n1 ≥ C and K ≤ c

√
n1, then any test ψ that is

computable in time polynomial in n must satisfy

E(ψ) > (10n)−1.

Conjecture 4.6.1 is a consequence of Conjecture 4.3.1; see the reduction in [43, Section
J], and the rejection kernel framework [44]. We are now ready to prove Theorem 4.3.2 from
Conjecture 4.6.1.

Let c denote the universal constant appearing in Conjecture 4.6.1, i.e., the conjecture holds
provided K ≤ c

√
n1, and let c0 = c/2. Our proof proceeds as follows. We first suppose that

there exists a polynomial time algorithm having small adaptivity index. We then use the output of
this algorithm, in conjunction with another polynomial-time decision rule, to distinguish the two
hypotheses defining Conjecture 4.6.1 when K = c0

√
n1, thereby contradicting the conjecture. Let

us now describe the details.
Begin by recalling the upper bound (4.10) on the minimax risk

Md,n(k, s) ≤ C0

(
s+ (n1 − k∗) log n

n

)
for a universal constant C0 > 0. Recall that δn = (10n)−1, and let θ̂ be a polynomial-time
computable estimator with high-probability adaptivity index A(θ̂; δn) ≤ cd−1

0

64C0
· n 1

2
(1−1/d)(log n)−2.

By definition of the high-probability adaptivity index, this implies that for all θ∗ ∈ Mperm(Ld,n),
we have

‖θ̂ − θ∗‖2
2 ≤

cd−1
0

64 log n
· n

1
2

(1−1/d) · {s(θ∗) + (n1 − k∗(θ∗))} (4.40)

with probability greater than 1 − (10n)−1. Here, we have used s(θ) to denote the number of
hyper-rectangular blocks partitioning θ ∈ Rd,n and k∗(θ) : = minj∈[d] k

j
max(θ). Here kjmax(θ) is the

largest indifference set of θ along dimension j.
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Given a value K = c0 ·
√
n1, let us now use this estimator θ̂ in order to distinguish the two

hypotheses appearing in Conjecture 4.6.1. Given a random tensor Y , recall that Conjecture 4.6.1
posits that any test that distinguishes the hypotheses H̃0 : Y ∼ N (µ0, I) and H̃1 : Y ∼ N (µSK , I)
and is computable in time polynomial in n must have error rate exceeding (10n)−1. We now
construct a decision rule from the estimator θ̂, via

ψ(Y ) : = 1

{∥∥∥θ̂ − µ0

∥∥∥2

2
≥ 1

4
ρ2 ·Kd

}
.

Clearly, this decision rule is computable from θ̂ in O(n) time. Let us analyze its error under the null
and alternative hypotheses.

Null case: In this case, the mean of Y is given by the all-zero tensor µ0, for which s(µ0) = 1 and
k∗(µ0) = n1. Equation (4.40) thus yields that with probability at least 1− (10n)−1, we have

‖θ̂ − µ0‖2
2 ≤

cd−1
0

64 log n
· n

1
2

(1−1/d) =
1

64 log n
·Kd−1 <

1

4
ρ2 ·Kd,

where the equality is a result of substituting our choice of K. Thus, on this event, we have∥∥∥θ̂ − µ0

∥∥∥2

2
< 1

4
ρ2 · Kd, and so ψ(Y ) = 0. Consequently, the test succeeds in the null case with

probability at least 1− δn, and so EH0 [ψ(Y )] ≤ δn.

Alternative case: In this case, we have µSK ∈Mperm for each random choice of subset SK with
s(µSK ) = 2d and k∗(µSK ) = n1 − k. Now suppose that n ≥ Cd for a large enough Cd, such that
2d ≤ K/3. Thus, the bound (4.40) now yields that with probability greater than 1− δn, we have

‖θ̂ − µSK‖2
2 ≤

cd−1
0

64 log n
· (2d +K) · n

1
2

(1−1/d) ≤ 1

4
ρ2 ·Kd.

Consequently, on this event and for n ≥ Cd, we have∥∥∥θ̂ − µ0

∥∥∥2

2
≥ 1

2
‖µSK − µ0‖2

2 − ‖θ̂ − µSK‖2
2

≥ 1

2
ρ2 ·Kd − 1

4
ρ2 ·Kd =

1

4
ρ2 ·Kd,

in which case ψ(Y ) = 1. Thus, the test succeeds in the alternative case with probability at least
1− δn, and so EH1 [ψ(Y )] ≤ δn.

Putting together the two cases yields the bound E(ψ) ≤ δn, which provides the required contradic-
tion to Conjecture 4.6.1.
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4.6.6 Proof of Theorem 4.4.1
We first establish a certain error decomposition that results from our algorithm, and then proceed
to proofs of the two parts of the theorem. Recall that the algorithm computes, from the score
vectors, a set of estimated ordered partitions b̂l1, . . . , b̂ld, and projects the observations onto the
setM(Ld,n; b̂l1, . . . , b̂ld). Denote by B(θ; bl1, . . . , bld) the tensor obtained by projecting θ ∈ Rn,d

onto the setM(Ld,n; bl1, . . . , bld); since the set is closed and convex, the projection is unique and
given by

B(θ; bl1, . . . , bld) = argmin
θ̃∈M(Ld,n;bl1,...,bld)

‖θ − θ̃‖2
2. (4.41)

Additionally, for notational convenience, let B̂ : = b̂l1, . . . , b̂ld, so that θ̂MP = B(θ∗ + ε; B̂).
Applying the triangle inequality yields

‖θ̂MP − θ∗‖2

≤ ‖θ̂MP −B(B(θ∗; B̂) + ε; B̂)‖2 + ‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2 + ‖B(θ∗; B̂)− θ∗‖2

= ‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗ + ε; B̂)‖2 + ‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2 + ‖B(θ∗; B̂)− θ∗‖2

(4.42)

≤ ‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2︸ ︷︷ ︸
estimation error

+ 2‖B(θ∗; B̂)− θ∗‖2︸ ︷︷ ︸
approximation error

, (4.43)

where inequality (4.43) follows from the non-expansiveness of an `2-projection onto a convex
set (4.20b), when applied to the first term in equation (4.42). We now state three lemmas that lead to
the desired bounds in the various cases. For an ordered partition bl, denote by card(bl) the number
of blocks in the partition, and let κ∗(bl) denote the size of the largest block in the partition. Our first
lemma captures some key structural properties of the estimated ordered partitions b̂l1, . . . , b̂ld.

Lemma 4.6.3. Suppose that θ∗ ∈ Mk,s
perm(Ld,n). Then with probability at least 1 − 2n−7, the

partition B̂ = b̂l1, . . . , b̂ld satisfies

card(b̂lj) ≤ sj and κ∗(b̂lj) ≥ kjmax simultaneously for all j ∈ [d]. (4.44)

Our next lemma bounds the estimation error term in two different ways.

Lemma 4.6.4. There is a universal positive constant C such that for all u ≥ 0, each of the following
statements holds with probability greater than 1− e−u:

(a) For any set of one-dimensional ordered partitions bl1, . . . , bld satisfying card(blj) ≤ s̃j for
all j ∈ [d], and any tensor θ ∈M(Ld,n; bl1, . . . , bld), we have

‖B(θ + ε; bl1, . . . , bld)− θ‖2
2 ≤ C (s̃+ u) ,
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where s̃ =
∏d

j=1 s̃j .
(b) For any set of one-dimensional ordered partitions bl1, . . . , bld and any tensor

θ ∈M(Ld,n; bl1, . . . , bld) ∩ B∞(1), we have

‖B(θ + ε; bl1, . . . , bld)− θ‖2
2 ≤ C(n1−1/d log5/2 n+ u).

Our final lemma handles the approximation error term.

Lemma 4.6.5. There is a universal positive constant C such that for each θ∗ ∈Mk,s
perm(Ld,n), we

have

Pr{‖B(θ∗; B̂)− θ∗‖2
2 ≥ Cd2(n1 − k∗) · n

1
2

(1−1/d) log n} ≤ 4n−7, and (4.45a)

E
[
‖B(θ∗; B̂)− θ∗‖2

2

]
≤ Cd2(n1 − k∗) · n

1
2

(1−1/d) log n. (4.45b)

We prove these lemmas in the subsections to follow. For now, let us use them to prove the two
parts of Theorem 4.4.1.

Proof of Theorem 4.4.1, part (a)

Consider any tensor θ0 ∈ B∞(1). First, note that applying Lemma A.5.2 in the appendix, we
obtain the inclusion B(θ0; bl1, . . . , bld) ∈ M(Ld,n; bl1, . . . , bld) ∩ B∞(1), since the operator B
is `∞-contractive. Also, note from Lemma A.6.8(a) in the appendix that the total number of
one-dimensional partitions satisfies |P| = (n1)n1 . Thus, we may apply Lemma 4.6.4(b) with the
substitution θ = B(θ0; bl1, . . . , bld) and u = n1 log n+ u′. In conjunction with a union bound over
at most |P|d possible choices of one-dimensional ordered partitions bl1, . . . , bld ∈ P, this yields
the bound

max
bl1,...,bld∈P

‖B(B(θ0; bl1, . . . , bld) + ε; bl1, . . . , bld)−B(θ0; bl1, . . . , bld)‖2
2

≤ C · (n1−1/d log5/2 n+ n1 log n+ u′)

with probability at least

1− |P|d exp (−n1 log n− u′) ≥ 1− (n1)n1·d · (n1)−n1·d · e−u′ = 1− e−u′ ,

where we have used the fact that log(n1)n1·d = n1 log n for each n1 ≥ 2. Integrating this tail bound
and noting that b̂l1, . . . , b̂ld ∈ P, we obtain

E
[
‖B(B(θ0; B̂) + ε; B̂)−B(θ0; B̂)‖2

2

]
≤ Cn1−1/d log5/2 n

for any θ0 ∈ B∞(1). Choosing θ0 = θ∗ and combining this with equation (4.43) and Lemma 4.6.5
completes the proof.
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Proof of Theorem 4.4.1, part (b)

We split the proof into two cases depending on the value of s.

Case 1: Let us first handle the case s = 1, in which case n1 − k∗ = 0. By Lemma 4.6.3, there
is an event occurring with probability greater than 1− 2n−7 such that on this event, our estimated
blocks satisfy card(b̂lj) = 1. On this event, the projection is a constant tensor, and each entry of the
error tensor B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂) is equal to ε : = n−1

∑
x∈Ld,n εx. But ‖ε · 1d,n‖2

2 ∼ χ2
1,

and so a tail bound for the standard Gaussian yields

Pr{‖ε · 1d,n‖2 ≥ t} ≤ e−t
2/2.

Putting together the pieces with a union bound yields ‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2
2 ≤ 8 log n

with probability at least 1− 2n−7 − n−4. In order to bound the error in expectation, first note that
since the projection onto a convex set is non-expansive (4.20b), we have the pointwise bound

‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2
2 ≤ ‖ε‖2

2.

Putting together the pieces and applying Lemma A.6.6 from the appendix then yields the bound

E
[
‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2

2

]
≤ 8 log n+

√
2n−7 + n−4 ·

√
E[‖ε‖4

2] ≤ Cs log n.

Combining with equation (4.43) and Lemma 4.6.5 completes the proof of the claim in expectation.
The proof for this case is thus complete.

Case 2: In this case, s ≥ 2, which ensures that n1 − k∗ ≥ 1. Recall the set Pmax
k∗ defined in the

proof of Proposition 4.3.1, and note that applying Lemma A.6.8(b) from the appendix yields the
bound |Pmax

k∗ | ≤ e3(n1−k∗) logn1 . With this calculation in hand, the proof proceeds very similarly to
that of Theorem 4.4.1(a).

We first apply Lemma 4.6.4(a) with the substitution u = C(n1 − k∗) log n and take a union
bound over at most |Pmax

k∗ |d possible choices of ordered partitions bl1, . . . , bld ∈ Pmax
k∗ satisfying

card(blj) ≤ sj for all j ∈ [d]. This yields, for each θ∗ ∈ Rd,n, the bound

max
bl1,...,bld∈Pmax

k∗ :

card(blj)≤sj , j∈[d]

‖B(B(θ∗; bl1, . . . , bld) + ε; bl1, . . . , bld)−B(θ∗; bl1, . . . , bld)‖2
2

≤ C · (s+ (n1 − k∗) log n)

with probability exceeding

1− |Pmax
k∗ |d · exp(−C(n1 − k∗) log n) ≥ 1− exp(−(C − 3) · (n1 − k∗) log n) ≥ 1− n−7.

Here, the last inequality can be ensured by choosing a large enough constant C, since n1 − k∗ ≥ 1.
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Furthermore, Lemma 4.6.3 guarantees that with probability at least 1 − 2n−7, we have the
inclusions b̂l1, . . . , b̂ld ∈ Pmax

k∗ and that card(b̂lj) ≤ sj for all j ∈ [d]. Consequently, by applying a
union bound, we obtain, for any θ∗ ∈ Rd,n, the high probability bound

Pr
{
‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2

2 ≥ C · (s+ (n1 − k∗) log n)
}
≤ 3n−7. (4.46)

Thus, we have succeeded in bounding the error with high probability. In order to bound the error in
expectation, note once again that the projection onto a convex set is non-expansive (4.20b), and so
we have the pointwise bound

‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2
2 ≤ ‖ε‖2

2.

Putting together the pieces and applying Lemma A.6.6 from the appendix then yields

E
[
‖B(B(θ∗; B̂) + ε; B̂)−B(θ∗; B̂)‖2

2

]
≤ C · {s+ (n1 − k∗) log n}+

√
3n−7 ·

√
E[‖ε‖4

2]

≤ C · {s+ (n1 − k∗) log n} .

Combining with equation (4.43) and Lemma 4.6.5 completes the proof in this case.
Combining the two cases completes the proof of the theorem.

It remains to prove the three technical lemmas. Before we do so, we state and prove a claim that
will be used in multiple proofs.

A preliminary result

Define two events

E1 : =
{
‖Y − θ∗‖∞ ≤ 4

√
log n

}
and (4.47a)

E2 : =

{
max
1≤j≤d

‖τ̂j − τ ∗j ‖∞ ≤ 4
√

log n · n
1
2

(1−1/d)

}
. (4.47b)

and note that by a union bound, we have Pr{E1 ∩ E2} ≥ 1− 2n−7. For the rest of this proof, we
work on the event E1 ∩ E2; recall the graphs G′j and Gj obtained over the course of running the
algorithm. We use the following fact guaranteed by step Ia of the algorithm.

Claim 4.6.1. On the event E1 ∩ E2, the following statements hold simultaneously for all j ∈ [d]:

(a) The graph G′j is a directed acyclic graph, and consequently Gj = G′j .
(b) For each ` ∈ [sj] and all pairs of indices u, v ∈ Ij` , the edges u→ v and v → u do not exist

in graph Gj .
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Proof. Recall our pairwise statistics ∆̂sum
j (u, v) and ∆̂max

j (u, v), and let ∆sum
j (u, v) and ∆max

j (u, v)
denote their population versions, that is, with θ∗ replacing Y in the definition (4.15). Note that by
applying the triangle inequality, we obtain

|∆̂sum
j (u, v)−∆sum

j (u, v)| ≤ |τ̂j(u)− τ ∗j (u)|+ |τ̂j(u)− τ ∗j (u)| and (4.48a)

|∆̂max
j (u, v)−∆max

j (u, v)| ≤ 2‖Y − θ∗‖∞. (4.48b)

We now prove each part of the claim separately.

Proof of part (a): Working on the event E1 ∩ E2 and using equations (4.47) and (4.48), we see
that if

∆̂sum
j (u, v) > 8

√
log n · n

1
2

(1−1/d) or ∆̂max
j (u, v) > 8

√
log n

then

∆sum
j (u, v) = τ ∗j (u)− τ ∗j (v) > 0 or ∆max

j (u, v) > 0.

In particular, the second relation implies that

θ∗(i1, . . . , ij−1, u, ij+1, . . . , id)−θ∗(i1, . . . , ij−1, v, ij+1, . . . , id) > 0 for some i` ∈ [n1], ` ∈ [d]\j.

In either case, we have π∗j (u) < π∗j (v) by the monotonicity property of θ∗. Thus, every edge u→ v
in the graph is consistent with the permutation π∗j , and so the graph G′j is acyclic.

Proof of part (b): Note that if u, v ∈ Ij` for some ` ∈ [sj], then

∆sum
j (u, v) = ∆max

j (u, v) = 0.

Therefore, on the event E1 ∩ E2 and owing to the inequalities (4.47) and (4.48), we have

|∆̂sum
j (u, v)| ≤ 8

√
log n · n

1
2

(1−1/d) and |∆̂max
j (u, v)| ≤ 8

√
log n.

Consequently, neither of the edges u→ v or v → u exists in the graph Gj .

We are now ready to establish the individual lemmas.

Proof of Lemma 4.6.3

Suppose wlog that π∗1 = · · · = π∗d = id, so that θ∗ ∈Mk,s(Ld,n). This implies that the true ordered
partition bl∗j consists of sj intervals (Ij1 , . . . , I

j
sj

) of sizes (kj1, . . . , k
j
sj

), respectively. The size of the
largest interval (call this Ijmax) is given by kjmax.

By part (a) of Claim 4.6.1, the graph G′j is a directed acyclic graph, and so card(b̂lj) is equal to
the size of the minimal partition of the graph into disjoint antichains. But Claim 4.6.1(b) ensures
that each of the sets Ij` , ` ∈ [sj] forms an antichain of graph G′j , and furthermore, these sets are
disjoint and form a partition of [nj]. Hence, card(b̂lj) ≤ sj .

In order to show that κ∗(b̂lj) ≥ kjmax, note that by Claim 4.6.1(b), the set Ijmax is an antichain of
G′j of size kjmax.
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Proof of Lemma 4.6.4

Recall that the estimator B(θ + ε; bl1, . . . , bld) is a projection onto a closed, convex set. Using this
fact, let us prove the two parts of the lemma separately.

Proof of part (a): Recall that Corollary 4.3.2(a) already provides a bound on the error of interest
in expectation. Combining this with Lemma A.6.4 from the appendix then yields the claimed high
probability bound.

Proof of part (b) Let us begin with a simple definition. Note that any one-dimensional ordered
partition bl specifies a partial ordering over the set [n1]. We say that a permutation π is faithful to
the ordered partition bl if it is consistent with this partial ordering, and denote by F(bl) the set of
all permutations that are faithful to bl. By definition, we have the inclusionM(Ld,n; bl1, . . . , bld) ⊆
M(Ld,n; π1, . . . , πd) for any tuple (π1, . . . , πd) satisfying πj ∈ F(blj) for all j ∈ [d].

We now turn to the proof of the lemma. Denote the error tensor by ∆̂ = B(θ+ε; bl1, . . . , bld)−θ;
our key claim is that

E[‖∆̂‖2
2] . n1−1/d log5/2 n. (4.49)

Indeed, with this claim in hand, the proof of the lemma follows by applying Lemma A.6.4 from the
appendix.

We dedicate the rest of the proof to establishing claim (4.49). Our strategy is almost identical to
the proof of Corollary 4.3.1; we first control the error of the bounded least squares estimator in this
setting and then obtain claim (4.49) via a truncation argument.

Denote the bounded LSE for this setting by

θ̂BLSE(r) = argmin
θ̃∈M(Ld,n;bl1,...,bld)∩B∞(r)

‖θ + ε− θ̃‖2
2,

and let ∆̂blse(r) : = θ̂BLSE(r)− θ. Rearranging the basic inequality yields the bound

1

2
‖∆̂blse(r)‖2

2 ≤ sup
θ̃∈M(Ld,n;bl1,...,bld)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε, θ̃ − θ〉 ≤ sup
θ̃∈M(Ld,n;π1,...,πd)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε, θ̃ − θ〉,

for permutations (π1, . . . , πd) satisfying πj ∈ F(blj) for all j ∈ [d]. Now since the inclusion
θ ∈ M(Ld,n; bl1, . . . , bld) ∩ B∞(1) holds, we also have θ ∈ M(Ld,n; π1, . . . , πd) ∩ B∞(1). For
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convenience, let θ = θ{π−1
1 , . . . , π−1

d }. Proceeding from the previous bound, we have

sup
θ̃∈M(Ld,n;π1,...,πd)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε, θ̃ − θ〉 = sup
θ̃∈M(Ld,n;π1,...,πd)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε{π1, . . . , πd}, (θ̃ − θ){π−1
1 , . . . , π−1

d }〉

= sup
θ̃∈M(Ld,n)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε{π1, . . . , πd}, θ̃ − θ〉

d
= sup

θ̃∈M(Ld,n)∩B∞(r)

‖θ̃−θ‖2≤‖∆̂blse(r)‖2

〈ε, θ̃ − θ〉,

where the equality in distribution follows from the exchangeability of the noise ε. Recall the
notation Mfull(r) from the proof of Theorem 4.3.1. Since θ ∈ M(Ld,n) ∩ B∞(1), we have
θ̃ − θ ∈Mfull(r)−Mfull(r). Let

ξ(t) = sup
θ̃∈M(Ld,n)∩B∞(r)

‖θ̃−θ‖2≤t

〈ε, θ̃ − θ〉,

and note from the proof of Theorem 4.3.1 that we have E[ξ(t)] . rn1−1/d log2 n for each r ∈ [0, n].
Since the setMfull(r)−Mfull(r) is star-shaped and non-degenerate, applying Lemma A.6.3 then
yields the bound

E[‖∆̂blse(r)‖2
2] . rn1−1/d log2 n for each r ∈ [0, n].

We now employ the truncation argument from the proof of Corollary 4.3.1 to bound E[‖∆̂‖2
2].

Lemma A.5.2 from the appendix guarantees the existence of an event E occurring with probability
greater than 1− n−7, on which ‖B(θ+ ε; bl1, . . . , bld)‖∞ ≤ ψn : = 4

√
log n+ 1. On this event, we

therefore have

B(θ + ε; bl1, . . . , bld) = θ̂BLSE(ψn) and ‖∆̂‖2
2 = ‖∆̂blse(ψn)‖2

2.

Finally, since B(θ + ε; bl1, . . . , bld) is obtained via an `2-projection onto a convex set, we may
apply inequality (4.20b) to obtain ‖∆̂‖2

2 ≤ ‖ε‖2
2 pointwise. Combining the pieces as in the proof of

Corollary 4.3.1, we obtain claim (4.49).

Proof of Lemma 4.6.5

Suppose wlog that π∗1 = · · · = π∗d = id, so that θ∗ ∈ Mk,s(Ld,n). Recall the set F(bl) containing
permutations that are faithful to the ordered partition bl.

Applying Lemma A.5.1 in the appendix, we see that the projection ontoM(Ld,n; b̂l1, . . . , b̂ld)

can be written as successive projections B( · ; b̂l1, . . . , b̂ld) = P( A( · ; b̂l1, . . . , b̂ld) ; π̂1, . . . , π̂d),
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where π̂1, . . . , π̂d is any set of permutations such that π̂j ∈ F(b̂lj). Thus, from successive applica-
tions of the triangle inequality, we obtain

‖B(θ∗; b̂l1, . . . , b̂ld)− θ∗‖2

≤ ‖B(θ∗; b̂l1, . . . , b̂ld)− P(θ∗; π̂1, . . . , π̂d)‖2 + ‖P(θ∗; π̂1, . . . , π̂d)− θ∗{π̂1, . . . , π̂d}‖2

+ ‖θ∗{π̂1, . . . , π̂d} − θ∗‖2

(i)

≤ ‖A(θ∗; b̂l1, . . . , b̂ld)− θ∗‖2 + 2‖θ∗{π̂1, . . . , π̂d} − θ∗‖2,

where in step (i), we have twice used the fact that the projection onto a convex set is non-
expansive (4.20b). We now bound these two terms separately, starting with the second term,
but first, for each j ∈ [d], define the random variables

Tj : = 2‖τ̂j − τ ∗j ‖∞ + 8
√

log n · n
1
2

(1−1/d) and U : = 2‖Y − θ∗‖∞ + 8
√

log n. (4.50)

Also recall the events E1 and E2 defined just above equation (4.47).

Bound on permutation error: Our proof proceeds by bounding this term in two different ways;
let us now sketch it. We will establish the claims

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2
2 ≤ 2d · (n1 − k∗) ·

{
U ·
∑d

j=1 Tj conditioned on event E1 ∩ E2,∑d
j=1 T

2
j pointwise.

(4.51)

Let us take equation (4.51) as given for the moment and establish a bound on the permutation error.
First, note that conditioned on E1 ∩ E2, we have Tj .

√
log n · n 1

2
(1−1/d) and U .

√
log n. Also

note that Pr{(E1 ∩ E2)c} ≤ 2n−7; this established the claimed high probability bound. On the other
hand, the (unconditional) expectation can be bounded as

E[T 2
j ] ≤ 4E

[
‖τ̂j − τ ∗j ‖2

∞
]

+ 128(log n) · n1−1/d . log n · n1−1/d,

where the second inequality follows since τ̂j ∼ N (τ ∗j , n
1−1/d · I) and so ‖τ̂j − τ ∗j ‖∞ is maximum

absolute deviation of n1 i.i.d. Gaussian random variables with mean zero and variance n1−1/d.
Putting together the pieces and applying Lemma A.6.6 from the appendix, we obtain

E [‖θ∗{π̂1, . . . , π̂d} − θ∗‖2
2]

d2(n1 − k∗)
.
(√

log n
)
·
(√

log n · n
1
2

(1−1/d)
)

+ (log n) · n1−1/d · n−7/2

. (log n) · ·n
1
2

(1−1/d),

which is of the same order as the bound claimed by Lemma 4.6.5. It remains to establish claim (4.51).
In order to do so, we employ an inductive argument by peeling the approximation error along

one dimension at a time. As a first step, we have

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2 = ‖θ∗{π̂1, . . . , π̂d} − θ∗{π∗1, π̂2, . . . , π̂d}‖2 + ‖θ∗{π∗1, π̂2, . . . , π̂d} − θ∗‖2

(ii)
= ‖θ∗{π̂1, id, . . . , id} − θ∗{π∗1, id, . . . , id}‖2 + ‖θ∗{π∗1, π̂2, . . . , π̂d} − θ∗‖2,

(4.52)



CHAPTER 4. ADAPTIVE ALGORITHMS FOR TENSOR ESTIMATION 106

where step (ii) follows by the unitary invariance of the `2-norm. If we write Pj for the squared error
peeled along the j-th dimension with P1 = ‖θ∗{π̂1, id, . . . , id} − θ∗{π∗1, id, . . . , id}‖2

2, then peeling
the error along the remaining dimensions using an inductive argument yields the bound

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2
2 ≤

(
d∑
j=1

√
Pj

)2

≤ 2d ·
d∑
j=1

Pj.

Thus, our strategy to establish claim (4.51) will be to establish the sufficient claim

Pj ≤ (n1 − k∗) ·

{
U · Tj conditioned on E1 ∩ E2

T 2
j pointwise.

(4.53)

We establish this claim for j = 1; the general proof is identical. Letting n : = nd−1
1 and recalling

our assumption π∗j = id for all j ∈ [d], we have

P1 = ‖θ∗{π̂1, id, . . . , id} − θ∗{id, id, . . . , id}‖2
2

=

n1∑
i1=1

∑
(i2,...,id)∈Ln,d−1

(θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id))2 .

We now split the proof into the two cases of equation (4.53).
Case 1: In this case, we condition on the event E1 ∩ E2. By Claim 4.6.1, we know that conditioned
on this event, we have G′j = Gj . Consequently, for any π̂1 ∈ F(b̂l1), we have π̂1(k) < π̂1(`) if

τ̂1(`)− τ̂1(k) > 8
√

log n · n
1
2

(1−1/d) or max
i2,...,id

Y (`, i2, . . . , id)− Y (k, i2, . . . , id) > 8
√

log n.

(4.54)

As a consequence of the second condition, for any fixed tuple (i2, . . . , id), we have π̂1(k) < π̂1(`)
whenever Y (`, i2, . . . , id)−Y (k, i2, . . . , id) > 8

√
log n. Applying Lemma A.6.5 from the appendix

with the substitution a = θ∗(·, i2, . . . , id), b = Y (·, i2, . . . , id), and τ = 8
√

log n yields the bound

|θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)| ≤ 2‖Y − θ∗‖∞ + 8
√

log n = U.

We may now apply Hölder’s inequality to obtain∑
(i2,...,id)∈Ln,d−1

(θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id))2

≤ U ·
∑

(i2,...,id)∈Ln,d−1

|θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)|

(iii)
= U ·

∣∣∣∣∣∣
∑

(i2,...,id)∈Ln,d−1

θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)

∣∣∣∣∣∣
= U · |τ ∗1 (π̂1(i1))− τ ∗1 (i1)|, (4.55)
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where step (iii) follows since the set of scalars{
θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)

}
(i2,...,id)∈Ln,d−1

all have the same sign by our monotonicity assumption θ∗ ∈M(Ld,n).
Let I denote the set containing all indices i1 for which |τ ∗1 (π̂1(i1))− τ ∗1 (i1)| is non-zero. Since

there is an indifference set of size k1
max along the first dimension, a non-zero value can only occur

if either i1 or π̂1(i1) belong to the n1 − k1
max indices that are not in the largest indifference set.

Consequently, we obtain |I| ≤ 2(n1 − k1
max) ≤ 2(n1 − k∗). Moreover, by our conditions (4.54),

we have π̂1(k) < π̂1(`) whenever τ̂1(`)− τ̂1(k) > 8
√

log n · n 1
2

(1−1/d). Therefore,

n1∑
i1=1

|τ ∗1 (π̂1(i1))− τ ∗1 (i1)| =
∑
i1∈I

|τ ∗1 (π̂1(i1))− τ ∗1 (i1)|

(iv)

≤ (n1 − k∗) ·
(

2‖τ̂1 − τ ∗1 ‖∞ + 8
√

log n · n
1
2

(1−1/d)
)

= (n1 − k∗) · T1, (4.56)

where step (iv) follows by applying Lemma A.6.5 once again, but now to the scores. This completes
the proof of the first case in equation (4.53).
Case 2: In this case, our goal is to prove a pointwise bound that holds unconditionally. In order
to do so, we appeal to the properties of our algorithm: by construction, the edges of the graph Gj

are always consistent with the conditions imposed by the pairwise statistics ∆̂sum
1 , so that for any

π̂1 ∈ F(b̂l1), we have π̂1(k) < π̂1(`) if τ̂`− τ̂k > 8
√

log n · n 1
2

(1−1/d). We now repeat the reasoning
from before to obtain the (crude) sequence of bounds∑

(i2,...,id)∈Ln,d−1

(θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id))2 (4.57)

≤

 ∑
(i2,...,id)∈Ln,d−1

|θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)|

2

=

∣∣∣∣∣∣
∑

(i2,...,id)∈Ln,d−1

θ∗(π̂1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)

∣∣∣∣∣∣
2

= |τ ∗1 (π̂1(i1))− τ ∗1 (i1)|2.

Proceeding exactly as before then yields the bound

n1∑
i1=1

|τ ∗1 (π̂1(i1))− τ ∗1 (i1)|2 ≤ (n1 − k∗) · T 2
1 , (4.58)

which establishes the second case of equation (4.53).
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Bound on averaging error: In order to prove a bound on the averaging error, we first set up
some notation and terminology to write the averaging error in a manner that is very similar to the
permutation error bounded above. Then the proof follows from the arguments above.

First, note that the averaging operator can be equivalently implemented by sequentially averaging
the entries along one dimension at a time. Let us make this precise with some ancillary definitions.
Let Âj(θ) denote the average of θ ∈ Rd,n along dimension j according to the partition specified by
b̂lj , i.e.,

Âj(θ)(i1, . . . , id) =
1

|b̂lj(ij)|

∑
`∈b̂lj(ij)

θ(i1, . . . , ij−1, `, ij+1, . . . , id) for each i1, . . . , id ∈ [n1].

As a straightforward consequence of the linearity of the averaging operation, we have

A(θ; b̂l1, . . . , b̂ld) = Â1 ◦ · · · ◦ Âd(θ) for each θ ∈ Rd,n.

Consequently, we may peel off the first dimension from the error of interest to write

‖A(θ∗; b̂l1, . . . , b̂ld)− θ∗‖2 ≤ ‖Â1 ◦ · · · ◦ Âd(θ∗)− Â2 ◦ · · · ◦ Âd(θ∗)‖2 + ‖Â2 ◦ · · · ◦ Âd(θ∗)− θ∗‖2

= ‖Â1(θ̂2:d)− θ̂2:d‖2 + ‖θ̂2:d − θ∗‖2, (4.59)

where we have let θ̂2:d : = A2 ◦ · · · ◦ Ad(θ∗). Note the similarity between equations (4.59)
and (4.52). Indeed, if we now write P ′j for the squared error peeled along the j-th dimension with
P ′1 = ‖Â1(θ̂2:d)− θ̂2:d‖2

2, then peeling the error along the remaining dimensions using an inductive
argument, we obtain (exactly as before)

‖A(θ∗; b̂l1, . . . , b̂ld)− θ∗‖2 ≤

(
d∑
j=1

√
P ′j

)2

≤ 2d ·
d∑
j=1

P ′j .

We now claim that with the random variables U and Tj defined exactly as before, we have the
(identical) bound

P ′j ≤ (n1 − k∗) ·

{
U · Tj conditioned on E1 ∩ E2

T 2
j pointwise,

(4.60)

from which the proof of Lemma 4.6.5 for the averaging term follows identically.
Let us now establish the bound (4.60) for j = 1, for which we require some ancillary definitions.

For an ordered partition bl = (S1, . . . , SL) and index i ∈ [n1], recall the notation σbl(i) as the
index ` of the set S` 3 i. Let bl(i) = Sσbl(i) denote the block containing index i. Let SV denote the
set of all permutations on a set V ⊆ [n1], and let J (bl) denote the set of all permutations π ∈ Sn1

such that π(i) ∈ bl(i) for all ` ∈ [n1]. Note that any permutation in the set J (bl) is given by
compositions of individual permutations in SV for V ∈ bl.
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With this notation, we have for each θ ∈ Rd,n, the bound

‖Â1(θ)− θ‖2
2 =

∑
i2,...,id

n∑
i1=1

 1

|b̂l1(i1)|

∑
`∈b̂l1(i1)

θ(`, i2, . . . , id)− θ(i1, . . . , id)

2

=
∑
i2,...,id

∑
V ∈b̂l1

∑
i1∈V

(
1

|V |
∑
`∈V

θ(`, i2, . . . , id)− θ(i1, . . . , id)

)2

(i)

≤
∑
i2,...,id

∑
V ∈b̂l1

max
π′∈SV

∑
i1∈V

(θ(π′(i1), i2, . . . , id)− θ(i1, . . . , id))2

= max
π∈J (b̂l1)

∑
i1,...,id

(θ(π(i1), i2, . . . , id)− θ(i1, i2, . . . , id))2. (4.61)

Here, step (i) follows from Lemma A.6.7 in the appendix.
It is also useful to note that θ̂2:d enjoys some additional structure. In particular, the estimate θ̂2:d

satisfies some properties that are straightforward to verify:

1. For any θ∗ ∈ Rd,n, the slices along the first dimension have the same sum as θ∗, i.e., for each
index ` ∈ [n1], we have

d∑
j=1

nj∑
ij=1

θ̂2:d(i1, . . . , id) · 1 {i1 = `} =
d∑
j=1

nj∑
ij=1

θ∗(i1, . . . , id) · 1 {i1 = `} = τ ∗1 (`),

(4.62a)

where the final equality holds by definition (4.14b).

2. If θ∗ ∈M(Ld,n), then its monotonicity property is preserved along the first dimension, i.e.,
for each pair of indices 1 ≤ k ≤ ` ≤ n1, we have

θ̂2:d(k, i2, . . . , id) ≤ θ̂2:d(`, i2, . . . , id) for all i2, . . . , id ∈ [n1]. (4.62b)

With these properties in hand, we are now ready to establish the proof of claim (4.60). First, use
equation (4.61) and let n : = nd−1

1 to obtain the pointwise bound

P ′1 ≤ max
π1∈J (b̂l1)

n1∑
i1=1

∑
(i2,...,id)∈Ln,d−1

(
θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)

)2

. (4.63)

We now establish the two cases of equation (4.60) separately.
Case 1: In this case, we condition on the event E1 ∩ E2, in which case the estimated blocks obey the
conditions (4.54); in particular, two indices k, ` are placed in the same block of b̂l1 iff

|τ̂1(k)− τ̂1(`)| ≤ 8
√

log n · n
1
2

(1−1/d) and max
i2,...,id

|Y (k, i2, . . . , id)− Y (`, i2, . . . , id)| ≤ 8
√

log n.

(4.64)
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Since the averaging operation is `∞ contractive, we have, for each π ∈ J (b̂l1), the sequence of
bounds

|θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)|
≤ |θ∗(π1(i1), i2, . . . , id)− θ∗(i1, i2, . . . , id)|
≤ |θ∗(π1(i1), i2, . . . , id)− Y (π1(i1), i2, . . . , id)|+ |Y (i1, i2, . . . , id)− θ∗(i1, i2, . . . , id)|

+ |Y (π1(i1), i2, . . . , id)− Y (i1, i2, . . . , id)|
(ii)

≤ 2‖Y − θ∗‖∞ + 8
√

log n = U,

where step (ii) follows from the second condition (4.64).
Thus, we have

P ′1
U
≤ max

π1∈J (b̂l1)

n1∑
i1=1

∑
(i2,...,id)∈Ln,d−1

∣∣∣θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)
∣∣∣

(iii)
= max

π1∈J (b̂l1)

n1∑
i1=1

∣∣∣∣∣∣
∑

(i2,...,id)∈Ln,d−1

θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)

∣∣∣∣∣∣
= max

π1∈J (b̂l1)

n1∑
i1=1

|τ ∗1 (π1(i1))− τ ∗1 (i1)|, (4.65)

where step (iii) follows by the monotonicity property (4.62b) and step (iv) from property (4.62a).
Now for each π1 ∈ J (b̂l1), we have

|τ ∗1 (π1(i1))− τ ∗1 (i1)| ≤ |τ ∗1 (π1(i1))− τ̂1(π(i1))|+ |τ̂1(i1)− τ ∗1 (i1)|+ |τ̂1(π1(i1))− τ̂1(i1)|
(v)

≤ 2‖τ̂1 − τ ∗1 ‖∞ + 8
√

log n · n
1
2

(1−1/d) = T1,

where step (v) is guaranteed by the first condition (4.64). Since there are at most 2(n1− k∗) indices
in the sum (4.65) that are non-zero, putting together the pieces yields the bound

P ′1 ≤ U · (n1 − k∗) · T1,

and this completes the proof of the first case of equation (4.60).
Case 2: In this case, our goal is to establish a pointwise bound unconditionally. Once again, by
construction, the estimated ordered partitions are always consistent with the pairwise statistics ∆̂sum

j ,
so that two indices k, ` are placed within the same block of b̂l1 iff

|τ̂1(k)− τ̂1(`)| ≤ 8
√

log n · n
1
2

(1−1/d). (4.66)



CHAPTER 4. ADAPTIVE ALGORITHMS FOR TENSOR ESTIMATION 111

Consequently, proceeding from equation (4.63) and using the same properties as before, we have

P ′1 ≤ max
π1∈J (b̂l1)

n1∑
i1=1

 ∑
(i2,...,id)∈Ln,d−1

|θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)|

2

= max
π1∈J (b̂l1)

n1∑
i1=1

∣∣∣∣∣∣
∑

(i2,...,id)∈Ln,d−1

θ̂2:d(π1(i1), i2, . . . , id)− θ̂2:d(i1, i2, . . . , id)

∣∣∣∣∣∣
2

= max
π1∈J (b̂l1)

n1∑
i1=1

|τ ∗1 (π1(i1))− τ ∗1 (i1)|2.

Identically to before, for each π1 ∈ J (b̂l1), we have

|τ ∗1 (π1(i1))− τ ∗1 (i1)| ≤ |τ ∗1 (π1(i1))− τ̂1(π(i1))|+ |τ̂1(i1)− τ ∗1 (i1)|+ |τ̂1(π1(i1))− τ̂1(i1)|
≤ 2‖τ̂1 − τ ∗1 ‖∞ + 8

√
log n · n

1
2

(1−1/d) = T1,

where the second inequality is guaranteed by condition (4.66). Since there are at most 2(n1 − k∗)
indices in the sum (4.65) that are non-zero, putting together the pieces yields the bound

P ′1 ≤ (n1 − k∗) · T 2
1 ,

and this completes the proof of the second case of equation (4.60).

4.6.7 Proof of Proposition 4.5.1
At the heart of the proposition lies the following lemma, which bounds the `2 error as a sum of
approximation and estimation errors.

Lemma 4.6.6. There is a universal positive constant C such that for all θ∗ ∈Mperm(Ld,n)∩B∞(1),
we have

Rn(θ̂BC, θ
∗) ≤ C

(
n−1/d log5/2 n+

d

n

d∑
j=1

E
[
‖τ̂j − τ ∗j ‖1

])
.

Taking this lemma as given for the moment, the proof of the proposition is straightforward. The
random variable τ̂j(k)− τ ∗j (k) is the sum of n1−1/d independent standard Gaussians, so that

E[|τ̂j(k)− τ ∗j (k)|] =

√
2

π
· n

1
2

(1−1/d) for each k ∈ [n1], j ∈ [d].

Summing over both k ∈ [n1] and j ∈ [d] and normalizing, we have

d

n

d∑
j=1

E
[
‖τ̂j − τ ∗j ‖1

]
≤ Cd2n

1
2

(1/d−1).

It remains to prove Lemma 4.6.6.
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Proof of Lemma 4.6.6

In order to lighten notation in this section, we use the convenient shorthand θ̂ ≡ θ̂BC and π̂j ≡ π̂BC
j

for each j ∈ [d]. Assume without loss of generality that π∗1 = · · · = π∗d = id, so that θ∗ ∈M(Ld,n).
Let θ̃ denote the projection of the tensor θ∗{π̂1, . . . , π̂d} onto the setM(Ld,n; π̂1, . . . , π̂d). With this
setup, we have

‖θ̂ − θ∗‖2 ≤ ‖θ̂ − θ̃‖2 + ‖θ̃ − θ∗{π̂1, . . . , π̂d}‖2 + ‖θ∗{π̂1, . . . , π̂d} − θ∗‖2

(i)

≤ ‖θ∗ + ε− (θ∗{π̂1, . . . , π̂d}+ ε)‖2 + ‖θ̃ − θ∗{π̂1, . . . , π̂d}‖2 + ‖θ∗{π̂1, . . . , π̂d} − θ∗‖2

= ‖θ̃ − θ∗{π̂1, . . . , π̂d}‖2︸ ︷︷ ︸
estimation error

+ 2 · ‖θ∗{π̂1, . . . , π̂d} − θ∗‖2︸ ︷︷ ︸
approximation error

. (4.67)

Here, step (i) follows since an `2-projection onto a convex set is always non-expansive (4.20b). We
now bound the estimation and approximation error terms separately.

Bounding the estimation error: The key difficulty here is that the estimated permutations
π̂1, . . . , π̂d depend on the noise tensor ε. Similarly to before, we handle this dependence by establish-
ing a uniform result that holds simultaneously over all choices of permutations. In particular, letting
θ̂π1,...,πd denote the `2 projection of the tensor θ∗{π1, . . . , πd}+ ε onto the setM(Ld,n; π̂1, . . . , π̂d),
we claim that for each θ∗ ∈M(Ln,d) ∩ B∞(1), we have

E
[

max
1≤j≤d

max
πj∈Snj

‖θ̂π1,...,πd − θ∗{π1, . . . , πd}‖2
2

]
≤ Cn1−1/d log5/2 n. (4.68)

Since θ̃ = θ̂π̂1,...,π̂d , equation (4.68) provides a bound on the estimation error that is of the claimed
order.

Let us now prove claim (4.68). For each fixed tuple of permutations (π1, . . . , πd), combining
Corollary 4.3.1(b) with Lemma A.6.4 yields the tail bound

Pr
{
‖θ̂π1,...,πd − θ∗{π1, . . . , πd}‖2

2 ≥ C · n1−1/d log5/2 n+ 2u
}
≤ exp {−u} for each u ≥ 0.

Taking a union bound over all
∏d

j=1 nj! ≤ exp(dn1 log n1) = exp(n1 log n) permutations and
setting u = Cn1 log n+ u′ for a sufficiently large constant C, we obtain

Pr

{
max
1≤j≤d

max
πj∈Snj

‖θ̂π1,...,πd − θ∗{π1, . . . , πd}‖2
2 ≥ C(n1−1/d log5/2 n+ n1 log n) + u′

}
≤ e−cu.

(4.69)

Finally, note that for each d ≥ 2, we have n1 ≤ n1−1/d and integrate the tail bound (4.69) to
complete the proof of claim (4.68).
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Bounding the approximation error: Our bound on the approximation error proceeds very simi-
larly to before, so we sketch the key differences. First, we have the decomposition

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2 ≤ ‖θ∗{π̂1, id, . . . , id} − θ∗{π∗1, id, . . . , id}‖2 + ‖θ∗{π∗1, π̂2, . . . , π̂d} − θ∗‖2.

But since θ∗ ∈ B∞(1), now each scalar θ∗(π̂1(i1), i2, . . . , id)− θ∗(π∗1(i1), i2, . . . , id) is bounded in
the range [−2, 2]. Letting n : = nd−1

1 , and proceeding exactly as in equations (4.52)–(4.55), we have∑
(i2,...,id)∈Ln,d−1

(θ∗(π̂1(i1), i2, . . . , id)− θ∗(π∗1(i1), i2, . . . , id))
2 ≤ 2|τ ∗1 (π̂1(i1))− τ ∗1 (i1)|.

Combining this inequality with the outer sum, we have

n1∑
i1=1

|τ ∗1 (π̂1(i1))− τ ∗1 (i1)| ≤
n1∑
i1=1

|τ̂1(π̂1(i1))− τ ∗1 (i1)|+ |τ̂1(π̂1(i1))− τ ∗1 (π̂1(i1))|

(ii)

≤
n1∑
i1=1

|τ̂1(i1)− τ ∗1 (i1)|+ |τ̂1(π̂1(i1))− τ ∗1 (π̂1(i1))|

= 2‖τ̂1 − τ ∗1 ‖1

where step (ii) follows from the rearrangement inequality for the `1 norm [320], since τ̂1 and τ ∗1 are
sorted in increasing order along the permutations π̂1 and π∗1 = id, respectively. Putting together the
pieces, we have shown that

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2 ≤
√

4‖τ̂1 − τ ∗1 ‖1 + ‖θ∗{π∗1, π̂2, . . . , π̂d} − θ∗‖2.

Proceeding inductively, we have

‖θ∗{π̂1, . . . , π̂d} − θ∗‖2
2 ≤

(
d∑
j=1

√
4‖τ̂j − τ ∗j ‖1

)2

≤ 4d
d∑
j=1

‖τ̂j − τ ∗j ‖1,

and this provides a bound on the approximation error that is of the claimed order.

4.6.8 Proof of Proposition 4.5.2
We handle the case where the projection in Definition 4.5.1 is onto unbounded tensors; the bounded
case follows identically. For each tuple of permutations π1, . . . , πd, define the estimator

θ̂π1,...,πd = argmin
θ∈M(Ld,n;π1,...,πd)

‖Y − θ‖2.

By definition, any permutation-projection based estimator must equal θ̂π1,...,πd for some choice of per-
mutations π1, . . . , πd ∈ Sn1 . Our strategy will thus be to lower bound the risk minπ1,...,πd ‖θ̂π1,...,πd−
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θ∗‖2
2 for a particular choice of θ∗. To that end, let us analyze the risk of the individual estimators

around the point θ∗ = 0. Define the positive scalar t0 via

t0 : = argmax
t≥0

{
E sup
θ∈M(Ld,n;π1,...,πd)∩B2(t)

〈ε, θ〉 − t2/2

}

= argmax
t≥0

{
E sup
θ∈M(Ld,n)∩B2(t)

〈ε, θ〉 − t2/2

}
= E sup

θ∈M(Ld,n)∩B2(1)

〈ε, θ〉,

where the final equality follows by a rescaling argument.
Applying [58, Theorem 1.1] yields that for each tuple π1, . . . , πd, we have

Pr
{∣∣∣‖θ̂π1,...,πd − θ∗‖2 − t0

∣∣∣ ≥ u
√
t0

}
≤ 3 exp

(
− u4

32(1 + u/
√
t0)2

)
for each u ≥ 0. (4.70)

Furthermore, applying [137, Proposition 5] yields the lower bound

t0 ≥ cd · n1/2−1/d for each d ≥ 3. (4.71)

Substituting the value u =
√
t0/2 into the bound (4.70) and using the lower bound (4.71) on t0

yields, for each fixed tuple of permutations π1, . . . , πd, the high probability bound

Pr

{
‖θ̂π1,...,πd − θ∗‖2 ≤ cd · n1/2−1/d

}
≤ 3 exp

{
−c′d · n1−2/d

}
,

where the pair (cd, c
′
d) are different constants that depends on d alone. Applying a union bound over

all choices of permutations now yields

Pr

{
min
π1,...,πd

‖θ̂π1,...,πd − θ∗‖2
2 ≤ cd · n1−2/d

}
≤ 3 exp

{
−c′d · n1−2/d + dn1 log n1

}
.

Now for each d ≥ 4, there is a large enough constant Cd > 0 depending on d alone such that if
n ≥ Cd, then c′d · n1−2/d ≥ 2dn1 log n1. Consequently, if n ≥ Cd, then

Pr

{
min
π1,...,πd

‖θ̂π1,...,πd − θ∗‖2
2 ≥ cd · n1−2/d

}
≥ 1/2 and E

[
min
π1,...,πd

‖θ̂π1,...,πd − θ∗‖2
2

]
≥ cd · n1−2/d

for a sufficiently small constant cd > 0 depending only on d. Thus, any permutation-projection
based estimator θ̂ must satisfy

Pr
{
‖θ̂ − θ∗‖2

2 ≥ cd · n1−2/d
}
≥ 1/2 and E

[
‖θ̂ − θ∗‖2

2

]
≥ cd · n1−2/d.

On the other hand, we have θ∗ ∈Mk0,s0
perm (Ld,n) with s0 = (1, . . . , 1) and k0 = ((n1), . . . , (n1)).

Thus, s(θ∗) = 1 and k∗(θ∗) = n1, and Proposition 4.3.1 yields the upper bound Md,n(k0, s0) . 1/n.
Combining the pieces and noting that δn = (10n)−1 ≤ 1/2, the adaptivity index of any permutation-
projection based estimator θ̂ must satisfy

A(θ̂; δn) ≥ Ak0,s0(θ̂; δn) ≥ cd · n1−2/d and A(θ̂) ≥ Ak0,s0(θ̂) ≥ cd · n1−2/d. (4.72)
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4.7 Summary and open questions
We considered the problem of estimating a multivariate isotonic regression function on the lattice
from noisy observations that were also permuted along each coordinate, and established several
results surrounding statistics, computation, and adaptation for this class of models. First, we showed
that unlike in the bivariate case considered in Chapter 3, computationally efficient estimators are
able to achieve the minimax lower bound for estimation of bounded tensors in this class. Second,
when the tensor is also structured, in that it is piecewise constant on a d-dimensional partition with a
small number of blocks, we showed that the fundamental limits of adaptation are still nonparametric.
Third, by appealing to the hypergraph planted clique conjecture, we also showed that the adaptivity
index of polynomial time estimators is significantly poorer than that of their inefficient counterparts.
The second and third phenomena are both significantly different from the case without unknown
permutations. Fourth, we introduced a novel procedure that was simultaneously optimal both in
worst-case risk and adaptation, while also being computable in sub-quadratic time. Our results
for this algorithm are particularly surprising given that a large class of natural estimators does not
exhibit fast adaptation in the multivariate case. Finally, we also established some risk bounds and
structural properties (see Appendix A.5) for natural isotonic regression estimators without unknown
permutations.

Our work raises many interesting questions from both the modeling and theoretical standpoints.
From a modeling perspective, the isotonic regression model with unknown permutations should
be viewed as just a particular nonparametric model for tensor data. There are many ways one
may extend these models. For instance, taking a linear combination of k > 1 tensors in the set
Mperm(Ld,n) directly generalizes the class of nonnegative tensors of (canonical polyadic) rank k.
Studying such models would parallel a similar investigation that was conducted in the case d = 2 for
matrix estimation [276]. It would also be interesting to incorporate latent permutations within other
multidimensional nonparametric function estimation tasks that are not shape constrained; as noted
in Chapter 3, a similar study has been carried out in the case d = 2 for graphon estimation [113].

Methodological and theoretical questions also abound. First, note that in typical applications,
the tensor dimension n1 will be very large, and we will only observe a subset of entries chosen at
random. Indeed, when d = 2, Chapter 3 shows that the fundamental limits of the problem exhibit
an intricate dependence on the probability of observing each entry and the dimensions of the tensor.
What are the analogs of these results when d ≥ 3? The second question concerns adaptation. Our
focus on indifference sets to define structure in the tensor was motivated by the application to
multiway comparisons, but other structures are also interesting to study. For instance, what does a
characterization of adaptation look like when there is simply a partition into hyper-rectangles—not
necessarily Cartesian products of one-dimensional partitions—on which the tensor is piecewise
constant? Such structure has been extensively studied in the isotonic regression literature [56, 83,
137]. What about cases where θ∗ is a nonnegative tensor of rank 1? It would be worth studying
spectral methods for tensor estimation for this problem, especially in the latter case.

Having studied the statistics, computation, and adaptation of permutation-based models, we
now turn to the class of index models in the next part of the thesis. Our questions will once again be
inspired by this broad perspective.
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Chapter 5

Tractable algorithms for max-affine
regression

As we alluded to in Chapter 1, this portion of the thesis will deal with index models. This particular
chapter is focused on dimensionality reduction for problems of the convex regression type. These
problems and further applications are introduced below.

5.1 Introduction
Max-affine regression refers to the regression model

Y = max
1≤j≤k

(
〈X, θ∗j 〉+ b∗j

)
+ ε (5.1)

where Y is a univariate response, X is a d-dimensional vector of covariates and ε models zero-
mean noise that is independent of X . We assume that k ≥ 1 is a known integer and study
the problem of estimating the unknown parameters θ∗1, . . . , θ

∗
k ∈ Rd and b∗1, . . . , b

∗
k ∈ R from

independent observations (x1, y1), . . . , (xn, yn) drawn according to the model (5.1). Furthermore,
we assume for concreteness1 in this chapter that the covariate distribution is standard Gaussian, with
xi

i.i.d.∼ N (0, Id).
Let us provide some motivation for studying the model (5.1). When k = 1, equation (5.1)

corresponds to the classical linear regression model. When k = 2, the intercepts b∗2 = b∗1 = 0, and
θ∗2 = −θ∗1 = θ∗, the model (5.1) reduces to

Y = |〈X, θ∗〉|+ ε. (5.2)

The problem of recovering θ∗ from observations drawn according to the above model is known
as (real) phase retrieval—variants of which arise in a diverse array of science and engineering

1Our companion paper [118] weakens distributional assumptions on the covariates, but this requires significantly
more technical effort.
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applications [101, 106, 141]—and has associated with it an extensive statistical and algorithmic
literature.

To motivate the model (5.1) for general k, note that the function x 7→ max1≤j≤k(〈x, θ∗j 〉+ b∗j)
is always a convex function and, thus, estimation under the model (5.1) can be used to fit convex
functions to the observed data. Indeed, the model (5.1) serves as a parametric approximation to the
nonparametric convex regression model

Y = φ∗(X) + ε, (5.3)

where φ∗ : Rd → R is an unknown convex function. It is well-known that convex regression suffers
from the curse of dimensionality unless d is small, which is basically a consequence of the fact that
the metric entropy of natural totally bounded sub-classes of convex functions grows exponentially
in d (see, e.g., [46, 115, 131]). To overcome this curse of dimensionality, one would need to work
with more structured sub-classes of convex functions. Since convex functions can be approximated
to arbitrary accuracy by maxima of affine functions, it is reasonable to regularize the problem by
considering only those convex functions that can be written as a maximum of a fixed number of
affine functions. Constraining the number of affine pieces in the function therefore presents a simple
method to enforce structure, and such function classes have been introduced and studied in the
convex regression literature (see e.g., [138]). This assumption directly leads to our model (5.1),
and it has been argued by [15, 139, 208] that the parametric model (5.1) is a tractable alternative to
the full nonparametric convex regression model (5.3) in common applications of convex regression
to data arising in economics, finance and operations research where d is often moderate to large.

Another motivation for the model (5.1) comes from the problem of estimating convex sets
from support function measurements. The support function of a compact convex set K ⊆ Rd is
defined by hK(x) : = supu∈K〈x, u〉 for d-dimensional unit vectors x. The problem of estimating an
unknown compact, convex set K∗ from noisy measurements of hK∗(·) arises in certain engineering
applications such as robotic tactile sensing and projection magnetic resonance imaging (see, e.g.,
[116, 125, 257]). Specifically, the model considered here is

Y = hK∗(X) + ε,

and the goal is to estimate the set K∗ ⊆ Rd. As in convex regression, this problem suffers from a
curse of dimensionality unless d is small, as is evident from known minimax lower bounds [129].
To alleviate this curse, it is natural to restrict K∗ to the class of all polytopes with at most k extreme
points for a fixed k; such a restriction has been studied as a special case of enforcing structure
in these problems by Soh and Chandrasekharan [287]. Under this restriction, one is led to the
model (5.1) with b∗1 = · · · = b∗k = 0, since if K∗ is the polytope given by the convex hull of
θ∗1, . . . , θ

∗
k ∈ Rd, then its support function is equal to x 7→ max1≤j≤k〈x, θ∗j 〉.

Equipped with these motivating examples, our goal is to study a computationally efficient
estimation methodology for the unknown parameters of the model (5.1) from i.i.d observations
(xi, yi)

n
i=1. Before presenting our contributions, let us first rewrite the observation model (5.1) by

using more convenient notation, and use it to describe existing estimation procedures for this model.
Denote the unknown parameters by β∗j : = (θ∗j , b

∗
j) ∈ Rd+1 for j = 1, . . . , k and the observations by
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(ξi, yi) for i = 1, . . . , n, where ξi : = (xi, 1) ∈ Rd+1. In this notation, the observation model takes
the form

yi = max
1≤j≤k

〈ξi, β∗j 〉+ εi, for i = 1, 2, . . . , n. (5.4)

Throughout the paper, we assume that in addition to the covariates being i.i.d. standard Gaussian, the
noise variables ε1, . . . , εn are independent random variables drawn from a (univariate) distribution
that is zero-mean and sub-Gaussian, with unknown sub-Gaussian parameter σ.

Let us now describe existing estimation procedures for max-affine regression. The most obvious
approach is the global least squares estimator, defined as any minimizer of the least squares criterion

(β̂
(ls)
1 , . . . , β̂

(ls)
k ) ∈ argmin

β1,...,βk∈Rd+1

n∑
i=1

(
yi − max

1≤j≤k
〈ξi, βj〉

)2

. (5.5)

It is easy to see (see the full paper [119]) that a global minimizer of the least squares criterion above
always exists but it will not—at least in general—be unique, since any relabeling of the indices of
a minimizer will also be a minimizer. While the least squares estimator has appealing statistical
properties (see, e.g. [129, 287, 310]), the optimization problem (5.5) is non-convex and, in general,
NP-hard [100]. It is interesting to compare (5.5) to the optimization problem used to compute the
least squares estimator in the more general convex regression model (5.3), given by

φ̂(ls) ∈ argmin
φ

n∑
i=1

(yi − φ(xi))
2 , (5.6)

where the minimization is over all convex functions φ. In sharp contrast to the problem (5.5), the
optimization problem (5.6) is convex [198, 272] and can be solved efficiently for fairly large values
of the pair (d, n) [216]. Unfortunately however, the utility of φ̂(ls) in estimating the parameters of the
max-affine model is debatable, as it is unclear how one may obtain estimates of the true parameters
β∗1 , . . . , β

∗
k from φ̂(ls), which typically will not be a maximum of only k affine functions2. It is also

worth mentioning that while the convex LSE is known to adapt to piece-wise linear structure when
d = 1 [132], it was recently shown by Kur et al. [180] that parametric adaptation cannot occur for
any d ≥ 5. This provides further justification for studying the more explicit max-affine model (5.1)
in even moderate-dimensional problems.

Three heuristic techniques for solving the non-convex optimization problem (5.5) were empiri-
cally evaluated by Balázs [15, Chapters 6 and 7], who compared running times and performance of
these techniques on a wide variety of real and synthetic datasets for convex regression. The first tech-
nique is the alternating minimization algorithm of Magnani and Boyd [208], the second technique
is the convex adaptive partitioning (or CAP) algorithm of Hannah and Dunson [139], and the third
is the adaptive max-affine partitioning algorithm proposed by Balázs himself [15]. The simplest and
most intuitive of these three methods is the first alternating minimization (AM) algorithm, which is
an iterative algorithm for estimating the parameters β∗1 , . . . , β

∗
k and forms the focus of our study.

2Notably, the convex LSE φ̂(ls) is also the maximum of (at most n) affine functions.



CHAPTER 5. TRACTABLE ALGORITHMS FOR MAX-AFFINE REGRESSION 120

In the t-th iteration of the algorithm, the current estimates β(t)
1 , . . . , β

(t)
k are used to partition the

observation indices 1, . . . , n into k sets S(t)
1 , . . . , S

(t)
k such that j ∈ argmaxu∈[k]〈ξi, β

(t)
u 〉 for every

i ∈ S(t)
j . For each 1 ≤ j ≤ k, the next estimate β(t+1)

j is then obtained by performing a least squares
fit (or equivalently, linear regression) to the data (ξi, yi), i ∈ S

(t)
j . More intuition and a formal

description of the algorithm are provided in Section 5.2. Balázs found that when this algorithm was
run on a variety of datasets with multiple random initializations, it compared favorably with the
state of the art in terms of its final predictive performance—see, for example, Figures 7.4 and 7.5 in
the thesis [15], which show encouraging results when the algorithm is used to fit convex functions
to datasets of average wages and aircraft profile drag data, respectively. In the context of fitting
convex sets to support function measurements, Soh and Chandrasekaran [287] recently proposed
and empirically evaluated a similar algorithm in the case of isotropic covariates. However, to the
best of our knowledge, no theoretical results exist to support the performance of such a technique.

In this chapter, we present a theoretical analysis of the AM algorithm for recovering the pa-
rameters of the max-affine regression model when the covariate distribution is Gaussian3. This
assumption forms a natural starting point for the study of many iterative algorithms in related prob-
lems [14, 236, 327, 349], and is also quite standard in theoretical investigations of multidimensional
regression problems. Note that the AM algorithm described above can be seen as a generalization of
classical AM algorithms for (real) phase retrieval [102, 117], which have recently been theoretically
analyzed in a series of papers [236, 327, 349] for Gaussian designs. The AM—and the closely
related expectation maximization4, or EM—methodology is widely used for parameter estimation
in missing data problems [22, 142] and mixture models [336], including those with covariates such
as mixtures-of-experts [158] and mixtures-of-regressions [52] models. Theoretical guarantees for
such algorithms have been established in multiple statistical contexts [14, 68, 300, 333]; in the
case when the likelihood is not unimodal, these are typically of the local convergence type. In
particular, algorithms of the EM type return, for many such latent variable models, minimax-optimal
parameter estimates when initialized in a neighborhood of the optimal solution (e.g., [52, 350, 351]);
conversely, these algorithms can get stuck at spurious fixed points when initialized at random [155].
In some specific applications of EM to mixtures of two Gaussians [79, 335] and mixtures of two
regressions [181], however, it has been shown that randomly initializing the EM algorithm suffices in
order to obtain consistent parameter estimates. Here, we establish guarantees on the AM algorithm
for max-affine regression that are of the former type: we prove local geometric convergence of the
AM iterates when initialized in a neighborhood of the optimal solution. We analyze the practical
variant of the algorithm in which the steps are performed without sample-splitting. As in the case of
mixture models [52, 148], we use spectral methods to obtain such an initialization. In order to keep
the narrative of this thesis coherent, our guarantees for this initialization step have been omitted,
and can be found in the archival version of the paper [119].

3In our companion paper [118], we weaken this assumption on the covariate distribution.
4Indeed, for many problems, the EM algorithm reduces to AM in the noiseless limit, and AM should thus be viewed

as a variant of EM that uses hard-thresholding to determine values of the latent variables.
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Contributions Let us now describe our results in more detail. To simplify the exposition, we state
simplified corollaries of our results; precise statements are presented shortly. We prove in Theorem
5.3.1 that for each ε > 0, the parameter estimates β(t)

1 , . . . , β
(t)
k returned by the AM algorithm at

iteration t satisfy, with high probability, the inequality

k∑
j=1

‖β(t)
j − β∗j ‖2 ≤ ε+ C(β∗1 , . . . , β

∗
k)
σ2kd

n
log(kd) log

( n
kd

)
(5.7)

for every t ≥ log4/3

(∑k
j=1 ‖β

(0)
j −β

∗
j ‖2

ε

)
, provided that the sample size n is sufficiently large and that

the initial estimates satisfy the condition

min
c>0

max
1≤j≤k

‖cβ(0)
j − β∗j ‖2 ≤ 1

k
c(β∗1 , . . . , β

∗
k). (5.8)

HereC(β∗1 , . . . , β
∗
k) and c(β∗1 , . . . , β

∗
k) are constants depending only on the true parameters β∗1 , . . . , β

∗
k ,

and their explicit values are given in Theorem 5.3.1. The constant c in equation (5.8) endows the
initialization with a scale-invariance property: indeed, scaling all parameters β(0)

1 , . . . , β
(0)
k by the

same positive constant c produces the same initial partition of subsets S(0)
1 , . . . , S

(0)
k , from which

the algorithm proceeds identically.
Treating k as a fixed constant, inequality (5.7) implies, under the initialization condition (5.8),

that the parameter estimates returned by AM converge geometrically to within a small ball of the
true parameters, and that this error term is nearly the parametric risk σ2d

n
up to a logarithmic factor.

The initialization condition (5.8) requires the distance between the initial estimates and the true
parameters to be at most a specific (k-dependent) constant. It has been empirically observed that
there exist bad initializations under which the AM algorithm behaves poorly (see, e.g., [15, 208])
and assumption (5.8) is one way to rule these out.

A natural question based on our Theorem 5.3.1 is whether it is possible to produce preliminary
estimates β(0)

1 , . . . , β
(0)
k satisfying the initialization condition (5.8). Indeed, one such method

is to repeatedly initialize parameters (uniformly) at random within the unit ball Bd+1; Balázs
empirically observed in a close relative of such a scheme (see Figure 6.6 in his thesis [15]) that
increasing the number of random initializations is often sufficient to get the AM algorithm to
succeed. However, reasoning heuristically, the number of repetitions required to ensure that one
such random initialization generates parameters that satisfy condition (5.8) increases exponentially
in the ambient dimension d, and so it is reasonable to ask if, in large dimensions, there is some
natural form of dimensionality reduction that allows us to perform this step in a lower-dimensional
space.

When5 k < d, we show that a natural spectral method (described formally in Algorithm 2) is
able to reduce the dimensionality of our problem from d to k. In particular, this method returns
an orthonormal basis of vectors Û1, . . . , Ûk such that the k-dimensional linear subspace spanned

5If k ≥ d, then this dimensionality reduction step can be done away with and one can implement the random search
routine directly.
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by these vectors accurately estimates the subspace spanned by the vectors θ∗1, . . . , θ
∗
k. We form the

matrix Û : = [Û1 : · · · : Ûk] by collecting these vectors as its columns, and in order to account

for the intercepts, further append such a matrix to form the matrix V̂ : =

[
Û 0
0 1

]
∈ R(d+1)×(k+1).

We then choose M random initializations in (k + 1) dimensions—the `-th such initialization is
given by a set of vectors ν`1, . . . , ν

`
k ∈ Rk+1 each chosen uniformly at random from the (k + 1)-

dimensional unit ball—so that the collection of k vectors {V̂ ν`j}kj=1 serves as our `-th guess of the
true parameters. In order to decide which of these random points to choose, we evaluate (on an
independent set of samples) the goodness-of-fit statistic minc≥0

∑
i(yi − cmax1≤j≤k 〈ξi, V̂ ν`j〉)2

for each 1 ≤ ` ≤M , where the minimization over the constant c accounts for the scale-invariance
property alluded to above. Letting `∗ denote the index with the smallest loss, we then return the
initialization β(0)

j = V̂ ν`
∗
j for j = 1, . . . , k.

Our algorithm can thus be viewed as a variant of the repeated random initialization evaluated by
Balázs [15], but incurs significantly smaller computational cost, since we only run the full-blown
iterative AM algorithm once. Note that our algorithm treats the number of initializations M as a
tuning parameter to be chosen by the statistician, similar to Balázs [15], but we show a concrete
upper bound on M that is sufficient to guarantee convergence. In particular, we show that in order
to produce an initialization satisfying condition (5.8) with high probability, it suffices to choose M
as a function only of the number of affine pieces k and other geometric parameters of the problem6.

From a technical standpoint, our results for the AM algorithm are significantly more challenging
to establish than related results in the literature [14, 279, 327, 334]. First, it is technically very
challenging to compute the population operator [14]—corresponding to running the AM update in
the infinite sample limit—in this setting, since the max function introduces intricate geometry in
the problem that is difficult to reason about in closed form. Second, we are interested in analyzing
the AM update without sample-splitting, and so cannot assume that the iterates are independent of
the covariates; the latter assumption has been used fruitfully in the literature to simplify analyses
of such algorithms [236, 334, 349]. Third, and unlike algorithms for phase retrieval [279, 327],
our algorithm performs least squares using sub-matrices of the covariate matrix that are chosen
depending on our random iterates. Accordingly, a key technical difficulty of the proof, which may
be of independent interest, is to control the spectrum of these random matrices, rows of which are
drawn from (randomly) truncated variants of the Gaussian distribution.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and
the corresponding technical proof section in Appendix B.1. For a pair of vectors (u, v), we let
u⊗v : = uv> denote their outer product. Let λi(Γ) denote the i-th largest eigenvalue of a symmetric
matrix Γ.

6While we omit our theoretical results for the initialization step in this thesis, these can be found in the paper [119].
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5.2 Background and problem formulation
In this section, we formally introduce the geometric parameters underlying the max-affine regression
model, as well as the methodology we use to perform parameter estimation.

5.2.1 Model and Geometric Parameters
We work throughout with the observation model defined in equation (5.4); recall that our covariates
are drawn i.i.d. from a standard Gaussian distribution, and that our noise is σ-sub-Gaussian. We let
X ∈ Rn×d denote the covariate matrix with row i given by the vector xi, and collect the responses
in a vector y ∈ Rn.

Recall that ξi = (xi, 1) ∈ Rd+1 for each i ∈ [n]; the matrix of appended covariates Ξ ∈
Rn×(d+1) is defined by appending a vector of ones to the right of the matrix X . Our primary goal
is to use the data (X, y)—or equivalently, the pair (Ξ, y)—to estimate the underlying parameters
{β∗j }kj=1.

An important consideration in achieving such a goal is the “effective” sample size with which
we observe the parameter β∗j . Toward that end, for X ∼ N (0, Id), let

πj(β
∗
1 , . . . , β

∗
k) : = Pr

{
〈X, θ∗j 〉+ b∗j = max

j′∈[k]

(
〈X, θ∗j′〉+ b∗j′

)}
(5.9)

denote the probability with which the j-th parameter β∗j = (θ∗j b∗j) attains the maximum. Note that
the event on which more than one of the parameters attains the maximum has measure zero, except
in the case where β∗i = β∗j for some i 6= j. We explicitly disallow this case and assume that the
parameters β∗1 , . . . , β

∗
k are distinct. Let

πmin(β∗1 , . . . , β
∗
k) : = min

j∈[k]
πj(β

∗
1 , . . . , β

∗
k), (5.10)

and assume that we have πmin(β∗1 , . . . , β
∗
k) > 0; in other words, we ignore vacuous cases in

which some parameter is never observed. Roughly speaking, the sample size of the parameter
that is observed most rarely is given by minj∈[k] πjn ∼ n · πmin(β∗1 , . . . , β

∗
k), and so the error in

estimating this parameter should naturally depend on πmin(β∗1 , . . . , β
∗
k). By definition, we always

have πmin(β∗1 , . . . , β
∗
k) ≤ 1/k.

Since we are interested in performing parameter estimation under the max-affine regression
model, a few geometric quantities also appear in our bounds, and serve as natural notions of “signal
strength” and “condition number” of the estimation problem. The signal strength is given by the
minimum separation

∆(β∗1 , . . . , β
∗
k) = min

j,j′:j 6=j′

∥∥θ∗j − θ∗j′∥∥2
;

we also assume that ∆ is strictly positive, since otherwise, a particular parameter is never observed.
To denote a natural form of conditioning, define the quantities

κj(β
∗
1 , . . . , β

∗
k) =

maxj′ 6=j
∥∥θ∗j − θ∗j′∥∥2

minj′ 6=j
∥∥θ∗j − θ∗j′∥∥2 , with κ(β∗1 , . . . , β

∗
k) = max

j∈[k]
κj(β

∗
1 , . . . , β

∗
k).
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Finally, let Bmax(β
∗
1 , . . . , β

∗
k) : = maxj∈[k] ‖β∗j ‖ denote the maximum norm of any unknown param-

eter. We often use the shorthand

πmin = πmin(β∗1 , . . . , β
∗
k), ∆ = ∆(β∗1 , . . . , β

∗
k),

κ = κ(β∗1 , . . . , β
∗
k), and Bmax = Bmax(β

∗
1 , . . . , β

∗
k)

when the true parameters β∗1 , . . . , β
∗
k are clear from context.

5.2.2 Methodology
As discussed in the introduction, the most natural estimation procedure from i.i.d. samples (ξi, yi)

n
i=1

of the model (5.4) is the least squares estimator (5.5). The appendix of our full paper [119]
establishes that this estimator always exists. Note, however, that it will not be unique in general
since any relabeling of a minimizer is also a minimizer.

In spite of the fact that the least squares estimator always exists, the problem (5.5) is non-convex
and NP-hard in general. The AM algorithm presents a tractable approach towards solving it in the
statistical setting that we consider.

Alternating Minimization

We now formally describe the AM algorithm proposed by Magnani and Boyd [208]. For each
β1, . . . , βk, define the sets

Sj(β1, . . . , βk) :=

{
i ∈ [n] : j = min argmax

1≤u≤k
(〈ξi, βu〉)

}
(5.11)

for j = 1, . . . , k. In words, the set Sj(β1, . . . , βk) contains the indices of samples on which
parameter βj attains the maximum; in the case of a tie, samples having multiple parameters attaining
the maximum are assigned to the set with the smallest corresponding index (i.e., ties are broken
in the lexicographic order7). Thus, the sets {Sj(β1, . . . , βk)}kj=1 define a partition of [n]. The AM

algorithm employs an iterative scheme where one first constructs the partition Sj
(
β

(t)
1 , . . . , β

(t)
k

)
based on the current iterates β(t)

1 , . . . , β
(t)
k and then calculates the next parameter estimate β(t+1)

j

by a least squares fit to the dataset {(ξi, yi), i ∈ Sj(β(t)
1 , . . . , β

(t)
k )}. The algorithm (also described

below as Algorithm 1) is, clearly, quite intuitive and presents a natural approach to solving (5.5).
As a sanity check, we show in the full paper [119] that the global least squares estimator (5.5) is

a fixed-point of this iterative scheme under a mild technical assumption.
We also note that the AM algorithm was proposed by Soh [286] in the context of estimating

structured convex sets from support function measurements. It should be viewed as a generalization
of a classical algorithm for (real) phase retrieval due to Fienup [102], which has been more recently

7In principle, it is sufficient to define the sets Sj(β1, . . . , βk), j ∈ [k] as any partition of [n] having the property
that 〈ξi, βj〉 = maxu∈[k]〈ξi, βu〉 for every j ∈ [k] and i ∈ Sj(β1, . . . , βk); here “any” means that ties can be broken
according to an arbitrary rule, and we have chosen this rule to be the lexicographic order in equation (5.11).
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Algorithm 1: Alternating minimization for estimating maximum of k affine functions

Input: Data {ξi, yi}ni=1; initial parameter estimates β(0)
1 , . . . , β

(0)
k ; number of iterations T .

Output: Final estimator of parameters β̂1, . . . , β̂k.
22 Initialize t← 0.
3 repeat
55 Compute maximizing index sets

S
(t)
j = Sj(β

(t)
1 , . . . , β

(t)
k ), (5.12a)

for each j ∈ [k], according to equation (5.11).
77 Update

β
(t+1)
j ∈ argmin

β∈Rd+1

∑
i∈S

(t)
j

(yi − 〈ξi, β〉)2 , (5.12b)

for each j ∈ [k].
8 until t = T ;

1010 Return β̂j = β
(T )
j for each j ∈ [k].

analyzed in a series of papers [236, 327] for Gaussian designs. While some analyses of AM
algorithms assume sample-splitting across iterations (e.g. [236, 334, 349]), we consider the more
practical variant of AM run without sample-splitting, since the update (5.12a)-(5.12b) is run on the
full data (Ξ, y) in every iteration.

Initialization

The alternating minimization algorithm described above requires an initialization. While the
algorithm was proposed to be run from a random initialization with restarts [208, 287], we propose
to initialize the algorithm from parameter estimates that are sufficiently close to the optimal
parameters. This is similar to multiple procedures to solve non-convex optimization problems in
statistical settings (e.g., [14]), that are based on iterative algorithms that exhibit local convergence
to the unknown parameters. Such algorithms are typically initialized by using a moment method,
which (under various covariate assumptions) returns useful parameter estimates.

Our approach to the initialization problem is similar, in that we combine a moment method with
random search in a lower-dimensional space. For convenience of analysis, we split the n samples
into two equal parts—assume that n is even without loss of generality—and perform each of the
above steps on different samples so as to maintain independence between the two steps. The formal
algorithm is presented in two parts as Algorithms 2 and 3.

In related problems [52, 271, 334, 350], a combination of a second order and third order method
(involving tensor decomposition) is employed to obtain parameter estimates in one shot. Take



CHAPTER 5. TRACTABLE ALGORITHMS FOR MAX-AFFINE REGRESSION 126

Algorithm 2: PCA for k-dimensional subspace initialization
Input: Data {ξi, yi}ni=1.
Output: Matrix Û ∈ Rd×k having orthonormal columns that (approximately) span the k

dimensional subspace spanned by the vectors θ∗1, . . . , θ
∗
k.

22 Compute the quantities

M̂1 =
2

n

n/2∑
i=1

yixi and M̂2 =
2

n

n/2∑
i=1

yi
(
xix
>
i − Id

)
, (5.13)

and let M̂ = M̂1 ⊗ M̂1 + M̂2; here, Id denotes the d× d identity matrix and ⊗ denotes the
outer product.

44 Perform the eigendecomposition M̂ = P̂ Λ̂P̂>, and use the first k columns of P̂
(corresponding to the k largest eigenvalues) to form the matrix Û ∈ Rd×k. Return Û .

the problem of learning generalized linear models [271] as an example; here, the analysis of the
moment method relies on the link function being (at least) three times differentiable so that the
population moment quantities can be explicitly computed. After showing that these expectations are
closed form functions of the unknown parameters, matrix/tensor perturbation tools are then applied
to show that the empirical moments concentrate about their population counterparts. However, in
our setting, the max function is not differentiable, and so it is not clear that higher order moments
return reasonable estimates even in expectation since Stein’s lemma (on which many of these results
rely) is not applicable8 in this setting. Nevertheless, we show that the second order moment returns
a k-dimensional subspace that is close to the true span of the parameters {θ∗j}kj=1; the degree of
closeness depends only on the geometric properties of these parameters.

Let us also briefly discuss Algorithm 3, which corresponds to performing random search
in (k + 1) · k dimensional space to obtain the final initialization. In addition to the random
initialization employed in step 1 of this algorithm, we also use the mean squared error on a holdout
set (corresponding to samples n/2+1 through n) to select the final parameter estimates. In particular,
we evaluate the error in a scale-invariant fashion; the computation of the optimal constant c in step 2
of the algorithm can be performed in closed form for each fixed index `, since for a pair of vectors
(u, v) having equal dimension, we have

argmin
c≥0

‖u− cv‖2 = max

{
〈u, v〉
‖v‖2

, 0

}
.

A key parameter that governs the performance of our search procedure is the number of initializations
M ; we show in the sequel that it suffices to take M to be a quantity that depends only on the number
of affine pieces k, and on other geometric parameters in the problem.

8A natural workaround is to use Stein’s lemma on the infinitely differentiable “softmax” surrogate function, but this
approach also does not work for various technical reasons.



CHAPTER 5. TRACTABLE ALGORITHMS FOR MAX-AFFINE REGRESSION 127

Algorithm 3: Low-dimensional random search

Input: Data {ξi, yi}ni=1, subspace estimate Û ∈ Rd×k having orthonormal columns that
(approximately) span the k dimensional subspace spanned by the vectors θ∗1, . . . , θ

∗
k,

and number of random initializations M ∈ N.
Output: Initial estimator of parameters β(0)

1 , . . . , β
(0)
k .

22 Choose M · k random points ν`j i.i.d. for ` ∈M and j ∈ [k], each uniformly from the
(k + 1)-dimensional unit ball Bk+1. Let

V̂ =

[
Û 0
0 1

]
be a matrix in R(d+1)×(k+1) having orthonormal columns.

44 Compute the index

`∗ ∈ argmin
`∈[M ]

2

n

min
c≥0

n∑
i=n/2+1

(
yi − cmax

j∈[k]
〈ξi, V̂ ν`j〉

)2

 .

66 Return the (d+ 1)-dimensional parameters

β
(0)
j = V̂ ν`

∗

j for each j ∈ [k].

Our overall algorithm should be viewed as a slight variation of the AM algorithm with random
restarts. It inherits similar empirical performance (see the full paper [119]), while significantly
reducing the computational cost, since operations are now performed in ambient dimension k+1, and
the iterative AM algorithm is run only once overall. It also produces provable parameter estimates,
and as we show in the sequel, the number of random initializations M can be set independently of
the pair (n, d). Having stated the necessary background and described our methodology, we now
proceed to statements and discussions of our main results. We focus on the AM algorithm in this
thesis; results for the initialization step are also quite involved, and can be found in the paper [119].

5.3 Local geometric convergence of alternating minimization
We now establish local convergence results for the AM algorithm. Recall the definition of the
parameters (πmin,∆, κ) introduced in Section 5.2, and the assumption that the covariates {xi}ni=1

are drawn i.i.d. from the standard Gaussian distributionN (0, Id). Throughout the paper, we assume
that the true parameters β∗1 , . . . , β

∗
k are fixed.
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Theorem 5.3.1. There exists a tuple of universal constants (c1, c2) such that if the sample size
satisfies the bound

n ≥ c1 max {d, 10 log n}max

{
kκ

π3
min

,
log2(1/πmin)

π3
min

, log(n/d), σ2 k3

∆π9
min

log(k/π3
min) log(n/d)

}
,

then for all initializations β(0)
1 , . . . , β

(0)
k satisfying the bound

min
c>0

max
1≤j 6=j′≤k

∥∥∥c(β(0)
j − β

(0)
j′

)
−
(
β∗j − β∗j′

)∥∥∥
‖θ∗j − θ∗j′‖

≤ c2
π3

min

kκ
log−3/2

(
kκ

π3
min

)
, (5.14a)

the estimation error at all iterations t ≥ 1 is simultaneously bounded as

k∑
j=1

‖β(t)
j − β∗j ‖2 ≤

(
3

4

)t( k∑
j=1

‖c∗β(0)
j − β∗j ‖2

)
+ c1σ

2 kd

π3
minn

log(kd) log(n/kd) (5.14b)

with probability exceeding 1 − c2

(
k exp

(
−c1n

π4
min

log2(1/πmin)

)
+ k2

n7

)
. Here, the positive scalar c∗

minimizes the LHS of inequality (5.14a).

Let us interpret the various facets of Theorem 5.3.1. As mentioned before, it is a local con-
vergence result, which requires the initialization β

(0)
1 , . . . , β

(0)
k to satisfy condition (5.14a). In

the well-balanced case (with πmin ∼ 1/k) and treating k as a fixed constant, the initialization
condition (5.14a) posits that the parameters are a constant “distance” from the true parameters. No-
tably, closeness is measured in a relative sense, and between pairwise differences of the parameter
estimates as opposed to the parameters themselves; the intuition for this is that the initializa-
tion β(0)

1 , . . . , β
(0)
k induces the initial partition of samples S1(β

(0)
1 , . . . , β

(0)
k ), . . . , S1(β

(0)
1 , . . . , β

(0)
k ),

whose closeness to the true partition depends only on the relative pairwise differences between
parameters, and is also invariant to a global scaling of the parameters. It is also worth noting that
local geometric convergence of the AM algorithm is guaranteed uniformly from all initializations
satisfying condition (5.14a). In particular, the initialization parameters are not additionally required
to be independent of the covariates or noise, and this allows us to use the same n samples for
initialization of the parameters.

Let us now turn our attention to the bound (5.14b), which consists of two terms. In the limit
t→∞, the final parameters provide an estimate of the true parameters that is accurate to within the
second term of the bound (5.14b). Up to a constant, this is the statistical error term

δn,σ(d, k, πmin) = σ2 kd

π3
minn

log(kd) log(n/kd) (5.15)

that converges to 0 as n → ∞, thereby providing a consistent estimate in the large sample limit.
Notice that the dependence of δn,σ(d, k, πmin) on the tuple (σ, d, n) is minimax-optimal up to the
logarithmic factor log(n/d), since a matching lower bound can be proved for the linear regression
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Figure 5.1: Convergence of the AM with Gaussian covariates— in panel (a), we plot the noiseless
sample complexity of AM; we fix ‖β∗i ‖ = 1 for all i ∈ [k], σ = 0 and πmin = 1/k. We say β∗i is
recovered if

∥∥∥β(t)
i − β∗i

∥∥∥ ≤ 0.01. For a fixed dimension d, we run a linear search on the number
of samples n, such that the empirical probability of success over 100 trials is more than 0.95, and
output the least such n. In panel (b), we plot the optimization error (in blue)

∑k
j=1 ‖β

(t)
j − β

(T )
j ‖2

and the deviation from the true parameters (in red)
∑k

j=1

∥∥∥β(t)
j − β∗j

∥∥∥2

/σ2 over iterations t for
different σ (0.15, 0.25, 0.4, 0.5), with k = 5, d = 100, T = 50 and n = 5d, and averaged over 50
trials. Panel (c) shows that the estimation error at T = 50 scales at the parametric rate d/n, where
we have chosen a fixed k = 5 and σ = 0.25. Panel (d) shows the variation of this error as a function
of πmin where we fix k = 3, d = 2, n = 103, σ = 0.4.

problem when k = 1. In the paper [119], we also show a parametric lower bound on the minimax
estimation error for general k, of the order σ2kd/n. Panel (c) of Figure 5.1 verifies in a simulation
that the statistical error depends linearly on d/n. The dependence of the statistical error on the pair
(k, πmin) is more involved, and we do not yet know if these are optimal. As discussed before, a linear
dependence of πmin is immediate from a sample-size argument; the cubic dependence arises because
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the sub-matrices of Ξ chosen over the course of the algorithm are not always well-conditioned, and
their condition number scales (at most) as π2

min. The full version also contains a low-dimensional
example (with d = 2 and k = 3) in which the least squares estimator incurs a parameter estimation
error of the order 1

π3
minn

even when provided with the true partition of covariates {Sj(β∗1 , . . . , β∗k)}3
j=1.

While this does not constitute an information theoretic lower bound, it provides strong evidence to
suggest that our dependence on πmin is optimal at least when viewed in isolation. We verify this
intuition via simulation: in panel (d) of Figure 5.1, we observe that on this example, the error of the
final AM iterate varies linearly with the quantity 1/π3

min.
The first term of the bound (5.14b) is an optimization error that is best interpreted in the noiseless

case σ = 0, wherein the parameters β(t)
1 , . . . , β

(t)
k converge at a geometric rate to the true parameters

β∗1 , . . . , β
∗
k , as verified in panel (a) of Figure 5.1. In particular, in the noiseless case, we obtain

exact recovery of the parameters provided n ≥ C kd
π3
min

log(n/d). Thus, the “sample complexity”
of parameter recovery is linear in the dimension d, which is optimal (panel (a) verifies this fact).
In the well-balanced case, the dependence on k is quartic, but lower bounds based on parameter
counting suggest that the true dependence ought to be linear. Again, we are not aware of whether
the dependence on πmin in the noiseless case is optimal; our simulations shown in panel (a) suggests
that the sample complexity depends inversely on πmin, and so closing this gap is an interesting open
problem. When σ > 0, we have an overall sample size requirement

n ≥ cmax

{
kdκ

π3
min

,
d log2(1/πmin)

π3
min

, d log(n/d), σ2 k3d

∆π9
min

log(k/π3
min) log(n/d)

}
: = nAM(c).

(5.16)

As a final remark, note that Theorem 5.3.1 holds under Gaussian covariates and when the true
parameters β∗1 , . . . , β

∗
k are fixed independently of the covariates. In the companion paper([..]), it

is shown that both of these features of the result can be relaxed, i.e., AM converges geometrically
even under a milder covariate assumption, and this convergence occurs for all true parameters that
are geometrically similar.

5.3.1 Proof ideas and technical challenges
Let us first sketch, at a high level, the ideas required to establish guarantees on the AM algorithm.
We need to control the iterates of the AM algorithm without sample-splitting across iterations, and
so the iterates themselves are random and depend on the sequence of random variables (ξi, εi)

n
i=1. A

popular and recent approach to handling this issue in related iterative algorithms (e.g., [14]) goes
through two steps: first, the population update, corresponding to running (5.12a)-(5.12b) in the case
n→∞, is analyzed, after which the random iterates in the finite-sample case are shown to be close
to their (non-random) population counterparts by using concentration bounds for the associated
empirical process. The main challenge in our setting is that the population update is quite non-trivial
to write down since it involves a delicate understanding of the geometry of the covariate distribution
induced by the maxima of affine functions. We thus resort to handling the random iterates directly,
thereby sidestepping the calculation of the population operator entirely.
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Broadly speaking, we analyze the update (5.12a)-(5.12b) by relating the error of the parameters
generated by this update to the error of the parameters from which the update is run. This involves
three distinct technical steps. The first step (handled by Lemma 5.4.1) is to control the behavior of
the noise in the problem. In order to do so, we apply standard concentration bounds for quadratic
forms of sub-Gaussian random variables, in conjunction with bounds on the growth functions of
multi-class classifiers [75]. Crucially, this affords a uniform bound on the noise irrespective of which
iterate the alternating minimization update is run from. The second step corresponds (roughly)
to controlling the prediction error in the noiseless problem, for which we show a quantitative
result (in Lemma 5.4.2) that strictly generalize a result of Waldspurger [327]. Finally, in order to
translate a prediction error guarantee into a guarantee on the estimation error, we invert specifically
chosen sub-matrices of the covariate matrix Ξ over the course of the algorithm, and our bounds
naturally depend on how these sub-matrices are conditioned. A key technical difficulty of the
proof is therefore to control the spectrum of these random matrices, rows of which are drawn from
(randomly) truncated variants of the Gaussian distribution. The expectation of such a random matrix
can be characterized by appealing to tail bounds on the non-central χ2 distribution, and the Gaussian
covariate assumption additionally allows us to show that an analogous result holds for the random
matrix with high probability (see Lemma 5.4.3). Here, our initialization condition is crucial: the
aforementioned singular value control suffices for the sub-matrices formed by the true parameters,
and we translate these bounds to the sub-matrices generated by random parameters by appealing to
the fact that the initialization is sufficiently close to the truth.

5.4 Proof of main theorem
Let us begin by introducing some shorthand notation, and providing a formal statement of the
probability bound guaranteed by the theorem. For a scalarw∗, vectors u∗ ∈ Rd and v∗ = (u∗, w∗) ∈
Rd+1, and a positive scalar r, let Bv∗(r) =

{
v ∈ Rd+1 : ‖v−v

∗‖
‖u∗‖ ≤ r

}
, and let

I
(
r;
{
β∗j
}k
j=1

)
=
{
β1, . . . βk ∈ Rd+1 : ∃c > 0 : c(βi − βj) ∈ Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k

}
.

Also, use the shorthand

ϑt

(
r;
{
β∗j
}k
j=1

)
: = sup

β
(0)
1 ,...,β

(0)
k ∈I(r)

k∑
j=1

‖β(t)
j − β∗j ‖2 −

(
3

4

)t( k∑
j=1

‖c∗β(0)
j − β∗j ‖2

)
, and

δNn,σ(d, k, πmin) : = σ2 kd

π3
minn

log(kd) log(n/kd)

to denote the error tracked over iterations (with c∗ denoting the smallest c > 0 such that c(βi−βj) ∈
Bβ∗i −β∗j (r) for all 1 ≤ i 6= j ≤ k), and a proxy for the final statistical rate, respectively.
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Theorem 5.3.1 states that there are universal constants c1 and c2 such that if the sample size
obeys the condition n ≥ nAM(c1), then we have

Pr

{
max
t≥1

ϑt

(
c2
π3

min

kκ
;
{
β∗j
}k
j=1

)
≥ c1δ

N
n,σ(d, k, πmin)

}
≤ c2

(
k exp

(
−c1n

π4
min

log2(1/πmin)

)
+
k2

n7

)
.

(5.17)

Let us now proceed to a proof of the theorem, assuming without loss of generality that the
scalar c∗ above is equal to 1. It is convenient to state and prove another result that guarantees a
one-step contraction, from which Theorem 5.3.1 follows as a corollary. In order to state this result,
we assume that one step of the alternating minimization update (5.12a)-(5.12b) is run starting from
the parameters {βj}kj=1 to produce the next iterate

{
β+
j

}k
j=1

. In the statement of the proposition, we
use the shorthand

v∗i,j = β∗i − β∗j ,
vi,j = βi − βj, and
v+
i,j = β+

i − β+
j .

Also recall the definitions of the geometric quantities (∆, κ). The following proposition guarantees
the one step contraction bound.

Proposition 5.4.1. There exist universal constants c1 and c2 such that
(a) If the sample size satisfies the bound n ≥ c1 max {d, 10 log n}max

{
k

π3
min
, log2(1/πmin)

π3
min

, log(n/d)
}

,

then for all parameters {βj}kj=1 satisfying

max
1≤j 6=j′≤k

∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

log3/2

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ c2

π3
min

kκ
, (5.18a)

we have, simultaneously for all pairs 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ max

{
dκ

π3
minn

,
1

4k

}( k∑
j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)
+ c1

σ2

∆

kd

π3
minn

log(n/d)

(5.18b)

with probability exceeding 1− c1

(
k exp

(
−c2n

π4
min

log2(1/πmin)

)
+ k2

n7

)
.

(b) If the sample size satisfies the bound
n ≥ c1 max

{
max {d, 10 log n}max

{
k

π3
min
, log2(1/πmin)

π3
min

, log(n/d)
}
, kd
π3
min

}
, then for all parameters

{βj}kj=1 satisfying

max
1≤j 6=j′≤k

∥∥vj,j′ − v∗j,j′∥∥
‖θ∗j − θ∗j′‖

log3/2

(
‖θ∗j − θ∗j′‖∥∥vj,j′ − v∗j,j′∥∥

)
≤ c2

π3
min

k
, (5.19a)
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we have the overall estimation error bound

k∑
i=1

‖β+
j − β∗j ‖2 ≤ 3

4
·

(
k∑
i=1

‖βj − β∗j ‖2

)
+ c1σ

2 kd

π3
minn

log(k) log(n/dk) (5.19b)

with probability exceeding 1− c1

(
k exp

(
−c2n

π4
min

log2(1/πmin)

)
+ k2

n7

)
.

Let us briefly comment on why Proposition 5.4.1 implies Theorem 5.3.1 as a corollary. Clearly,
equations (5.19a) and (5.19b) in conjunction show that the estimation error decays geometrically
after running one step of the algorithm. The only remaining detail to be verified is that the next
iterates

{
β+
j

}k
j=1

also satisfy condition (5.18a) provided the sample size is large enough; in that case,
the one step estimation bound (5.19b) can be applied recursively to obtain the final bound (5.14b).

For the constant c2 in the proposition, let rb be the largest value in the interval [0, e−3/2] such
that rb log3/2(1/rb) ≤ c2

π3
min

k
. Similarly, let ra be the largest value in the interval [0, e3/2] such that

ra log3/2(1/ra) ≤ c2
π3
min

kκ
.

Assume that the current parameters satisfy the bound (5.18a). Choosing n ≥ 4κd/π3
min and

applying inequality (5.18b), we have, for each pair 1 ≤ j 6= ` ≤ k, the bound∥∥v+
j,` − v∗j,`

∥∥2

‖θ∗j − θ∗`‖2
≤ 1

4k

(
k∑

j′=1

∥∥vj,j′ − v∗j,j′∥∥2

‖θ∗j − θ∗j′‖2
+

∥∥v`,j′ − v∗`,j′∥∥2

‖θ∗` − θ∗j′‖2

)
+ c1

1

‖θ∗j − θ∗`‖2
σ2 kd

π3
minn

log(n/d)

≤ 1

2
r2
a + c1

σ2

∆

kd

π3
minn

log(n/d).

Further, if n ≥ Cσ2 k3κ2d
π9
min∆r20

log(kκ/π3
min) log(n/d) for a sufficiently large constant C, we have∥∥v+

j,` − v∗j,`
∥∥2

‖θ∗j − θ∗`‖2
≤ r2

a.

Thus, the parameters
{
β+
j

}k
j=1

satisfy inequality (5.18a) for the sample size choice required by
Theorem 5.3.1. Finally, noting, for a pair of small enough scalars (a, b), the implication

a ≤ b

2
log−3/2(1/b) =⇒ a log3/2(1/a) ≤ b,

and adjusting the constants appropriately to simplify the probability statement completes the proof
of the theorem.

5.4.1 Proof of Proposition 5.4.1
We use the shorthand notation Sj : = Sj(β1, . . . , βk), and let PSj denote the projection matrix onto
the range of the matrix ΞSj . Recall our notation for the difference vectors.
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Let y∗ denote the vector with entry i given by max`∈[k] 〈ξi, β∗` 〉. We have

‖ΞSj(β
+
j − β∗j )‖2 = ‖PSjySj − ΞSjβ

∗
j ‖2

= ‖PSjy∗Sj + PSjεSj − ΞSjβ
∗
j ‖2

≤ 2‖PSj(y∗Sj − ΞSjβ
∗
j )‖2 + 2‖PSjεSj‖2

≤ 2‖y∗Sj − ΞSjβ
∗
j ‖2 + 2‖PSjεSj‖2, (5.20)

where we have used the fact that the projection operator is non-expansive on a convex set.
Let

{〈ξi, β`〉 = max} : =

{
〈ξi, β`〉 = max

u∈[k]
〈ξi, βu〉

}
, for each i ∈ [n], ` ∈ [k]

denote a convenient shorthand for these events. The first term on the RHS of inequality (5.20) can
be written as∑

i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
n∑
i=1

∑
j′:j′ 6=j

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
〈ξi, β∗j′ − β∗j 〉2,

where the inequality accounts for ties. Each indicator random variable is bounded, in turn, as

1
{
〈ξi, βj〉 = max and 〈ξi, β∗j′〉 = max

}
≤ 1

{
〈ξi, βj〉 ≥ 〈ξi, βj′〉 and 〈ξi, β∗j′〉 ≥ 〈ξi, β∗j 〉

}
= 1

{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
.

Switching the order of summation yields the bound

∑
i∈Sj

(y∗i − 〈ξi, β∗j 〉)2 ≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2.

Recalling our notation for the minimum eigenvalue of a symmetric matrix, the LHS of inequal-
ity (5.20) can be bounded as

‖ΞSj(β
+
j − β∗j )‖2 ≥ λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2.

Putting together the pieces yields, for each j ∈ [k], the pointwise bound

1

2
λmin

(
Ξ>SjΞSj

)
· ‖β+

j − β∗j ‖2 ≤
∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2 + ‖PSjεSj‖2.

(5.21)

Up to this point, note that all steps of the proof were deterministic. In order to complete the proof, it
suffices to show high probability bounds on the various quantities appearing in the bound (5.21).
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Since the set Sj is in itself random and could depend on the pair (Ξ, ε), bounding individual terms
is especially challenging. Our approach is to show bounds that hold uniformly over all parameters
{βj}kj=1 that are close to the true parameters.

Recall the notation

Bv∗(r) =

{
v ∈ Rd+1 :

‖v − v∗‖
‖u∗‖

≤ r

}
introduced before, and the definitions of the pair of scalars (ra, rb).

To be agnostic to the scale invariance of the problem, we set c∗ = 1 and define the set of
parameters

I(r) =
{
β1, . . . , βk : vi,j ∈ Bv∗i,j(r) for all 1 ≤ i 6= j ≤ k

}
,

and use the shorthand Ia : = I(ra) and Ib : = I(rb), to denote the set of parameters satisfying
conditions (5.18a) and (5.19a), respectively,

Recall that we denote by

Sj(β1, . . . , βk) :=

{
1 ≤ i ≤ n : 〈ξi, βj〉 = max

1≤u≤k
(〈ξi, βu〉)

}
,

the indices of the rows for which βj attains the maximum, and we additionally keep this sets disjoint
by breaking ties lexicographically. To lighten notation, we use the shorthand

Ξj(β1, . . . , βk) : = ΞSj(β1,...,βk).

Having defined this notation, we are now ready to return to the proof of Proposition 5.4.1. We
make the following claims to handle the three terms in the bound (5.21). First, we claim that the
noise terms are uniformly bounded as

Pr

{
sup

β1,...,βk∈Rd+1

k∑
j=1

‖PΞj(β1,...,βk)εSj(β1,...,βk)‖2 ≥ 2σ2k(d+ 1) log(kd) log(n/kd)

}
≤
(
n

kd

)−1

, and

(5.22a.I)

Pr

{
sup

β1,...,βk∈Rd+1

‖PΞj(β1,...,βk)εSj(β1,...,βk)‖2 ≥ 2σ2k(d+ 1) log(n/d)

}
≤
(
n

d

)−1

for each j ∈ [k].

(5.22a.II)

Second, we show that the indicator quantities are simultaneously bounded for all j, j′ pairs. In
particular, we claim that there exists a tuple of universal constants (C, c1, c2, c

′) such that for each
positive scalar r ≤ 1/24, we have

Pr
{
∃1 ≤ j 6= j′ ≤ k, vj,j′ ∈ Bv∗

j,j′
(r) :

∑
j′:j′ 6=j

n∑
i=1

1
{
〈ξi, vj,j′〉 · 〈ξi, v∗j,j′〉 ≤ 0

}
〈ξi, v∗j,j′〉2

≥ C max{d, nr log3/2(1/r)}
∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2
}
≤ c1

(
k

2

){
ne−c2n + e−c

′max{d,10 logn}
}
.

(5.22b)
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Finally, we show a bound on the LHS of the bound (5.21) by handling the singular values of
(random) sub-matrices of Ξ with a uniform bound. In particular, we claim that there are universal
constants (C, c, c′) such that if n ≥ Cdmax

{
k

π3
min
, log2(1/πmin)

π3
min

, log(n/d)
}

, then for each j ∈ [k],
we have

Pr

{
inf

β1,...,βk∈Ib
λmin

(
Ξj(β1, . . . , βk)

> · Ξj(β1, . . . , βk)
)
≤ Cπ3

minn

}
≤ c exp

(
−cn π4

min

log2(1/πmin)

)
+ c′ exp(−c′n · πmin). (5.22c)

Notice that claim (5.22a.I) implicitly defines a high probability event E (a.I), claim (5.22a.II)
defines high probability events E (a.II)

j , claim (5.22b) defines a high probability event E (b)(r), and
claim (5.22c) defines high probability events E (c)

j . Define the intersection of these events as

E(r) : = E (a.I)
⋂⋂

j∈[k]

E (a.II)
j

⋂ E (b)(r)
⋂⋂

j∈[k]

E (c)
j

 ,

and note that the claims in conjunction with the union bound guarantee that if the condition on the
sample size n ≥ c1dmax

{
k

π3
min
, log2(1/πmin)

π3
min

, log(n/d)
}

holds, then for all r ≤ rb, we have

Pr {E(r)} ≥ 1− c1

(
k exp

(
−c2n

π4
min

log2(1/πmin)

)
+
k2

n7

)
,

where we have adjusted constants appropriately in stating the bound. We are now ready to prove the
two parts of the proposition.

Proof of part (a): Work on the event E(ra). Normalizing inequality (5.21) by n and using
claims (5.22a.II). (5.22b), and (5.22c) with r = ra then yields, simultaneously for all j ∈ [k], the
bound

‖β+
j − β∗j ‖2 ≤ C max

{
d

π3
minn

,
ra
π3

min

log3/2(1/ra)

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 + C ′σ2 kd

π3
minn

log(n/d)

(i)

≤ max

{
Cd

π3
minn

,
1

4kκ

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 + C ′σ2 kd

π3
minn

log(n/d),

where in step (i), we have used the definition of the quantity ra. Using this bound for the indices
j, ` in conjunction with the definition of the quantity κ proves inequality (5.18b).



CHAPTER 5. TRACTABLE ALGORITHMS FOR MAX-AFFINE REGRESSION 137

Proof of part (b): We now work on the event E(rb) and proceed again from the bound

‖β+
j − β∗j ‖2 ≤ C max

{
d

π3
minn

,
rb
π3

min

log3/2(1/rb)

} ∑
j′:j′ 6=j

‖vj,j′ − v∗j,j′‖2 +
C

π3
minn
‖PSjεSj‖2.

Summing over j ∈ [k] and using the Cauchy–Schwarz inequality, we obtain

k∑
j=1

‖β+
j − β∗j ‖2 ≤ C max

{
kd

π3
minn

,
krb
π3

min

log3/2(1/rb)

}( k∑
j=1

‖βj − β∗j ‖2

)
+

C

π3
minn

∑
j∈[k]

‖PSjεSj‖2

(ii)

≤ 3

4

(
k∑
j=1

‖βj − β∗j ‖2

)
+ C ′σ2 kd

π3
minn

log(k) log(n/kd),

where in step (ii), we have used the definition of the quantity rb, the bound n ≥ Ckd/π3
min, and

claim (5.22a.I). This completes the proof.
We now prove each of the claims in turn. This constitutes the technical meat of our proof, and
involves multiple technical lemmas whose proofs are postponed to the end of the section.

Proof of claims (5.22a.I) and (5.22a.II): We begin by stating a general lemma about concentration
properties of the noise.

Lemma 5.4.1. Consider a random variable z ∈ Rn with i.i.d. σ-sub-Gaussian entries, and a fixed
matrix Ξ ∈ Rn×(d+1). Then, we have

sup
β1,...,βk∈Rd+1

k∑
j=1

‖PΞj(β1,...,βk)z‖2 ≤ 2σ2k(d+ 1) log(kd) log(n/kd) (5.32a)

with probability greater than 1−
(
n
kd

)−1 and

sup
β1,...,βk∈Rd+1

max
j∈[k]

‖PΞj(β1,...,βk)zSj(β1,...,βk)‖2 ≤ 2σ2k(d+ 1) log(n/d) (5.32b)

with probability greater than 1−
(
n
d

)−1.

The proof of the claims follows directly from Lemma 5.4.1, since the noise vector ε is indepen-
dent of the matrix Ξ, and Ib ⊆

(
Rd+1

)⊗k.

Proof of claim (5.22b): We now state a lemma that directly handles indicator functions as they
appear in the claim.
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Lemma 5.4.2. Let u∗ ∈ Rd and w∗ ∈ R, and consider a fixed parameter v∗ = (u∗, w∗) ∈ Rd+1.
Then there are universal constants (c1, c2, c3, c4) such that for all positive scalars r ≤ 1/24, we
have

sup
v∈Bv∗ (r)

(
1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2
)
/‖v − v∗‖2 ≤ c1 ·max

{
d

n
, r log3/2

(
1

r

)}
with probability exceeding 1− c1e

−c2 max{d,10 logn} − c3ne
−c4n. Here, we adopt the convention that

0/0 = 0.

Applying Lemma 5.4.2 with v = vj,j′ and v∗ = v∗j,j′ for all pairs (j, j′) and using a union bound
directly yields the claim.

Proof of claim (5.22c): For this claim, we state three technical lemmas pertaining to the singular
values of random matrices whose rows are formed by truncated Gaussian random vectors. We
let vol(K) denote the volume of a set K ⊆ Rd with respect to d-dimensional standard Gaussian
measure, i.e., with vol(K) = Pr{Z ∈ K} for Z ∼ N (0, Id).

Lemma 5.4.3. Suppose n vectors {xi}ni=1 are drawn i.i.d. from N (0, Id), and K ⊆ Rd is a
fixed convex set. Then there exists a tuple of universal constants (c1, c2) such that if vol3(K)n ≥
c1d log2 (1/ vol(K)), then

λmin

( ∑
i:xi∈K

ξiξ
>
i

)
≥ c2 vol3(K) · n

with probability greater than 1− c1 exp
(
−c2n

vol4(K)

log2(1/ vol(K))

)
− c1 exp(−c2n · vol(K)).

For a pair of scalars (w,w′) and d-dimensional vectors (u, u′), define the wedge formed by the
d+ 1-dimensional vectors v = (u, w) and v′ = (u′, w′) as the region

W (v, v′) = {x ∈ Rd : (〈x, u〉+ w) · (〈x, u′〉+ w′) ≤ 0},

and letWδ = {W = W (v, v′) : vol(W ) ≤ δ} denote the set of all wedges with Gaussian volume
less than δ. The next lemma bounds the maximum singular value of a sub-matrix formed by any
such wedge.

Lemma 5.4.4. There is a tuple of universal constants (c1, c2) such that if n ≥ c1d log(n/d), then

sup
W∈Wδ

λmax

( ∑
i:xi∈W

ξiξ
>
i

)
≤ c1 (δn+ d+ nδ log(1/δ))

with probability greater than 1− 2 exp(−c2δn)−
(

n
c2δn

)−1.
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We are now ready to proceed to a proof of claim (5.22c). For convenience, introduce the
shorthand notation

S∗j : = Sj (β∗1 , . . . , β
∗
k)

to denote the set of indices corresponding to observations generated by the true parameter β∗j .
Letting A∆B : = (A \B)

⋃
(B \ A) denote the symmetric difference between two sets A and B,

we have

λmin

(
Ξ>SjΞSj

)
≥ λmin

(
Ξ>S∗j ΞS∗j

)
− λmax

(
Ξ>S∗j∆Sj

ΞS∗j∆Sj

)
.

Recall that by definition, we have

S∗j∆Sj = {i : 〈ξi, β∗j 〉} = max and 〈ξi, βj〉 6= max}
⋃
{i : 〈ξi, β∗j 〉 6= max and 〈ξi, βj〉 = max}

⊆
⋃

j′∈[k]\j

{i : 〈ξi, v∗j,j′〉 · 〈ξi, vj,j′〉 < 0}

=
⋃

j′∈[k]\j

{i : xi ∈ W
(
v∗j,j′ , vj,j′

)
}. (5.33)

Putting together the pieces, we have

λmin

(
Ξ>SjΞSj

)
≥ λmin

(
Ξ>S∗j ΞS∗j

)
−
∑
j′ 6=j

λmax

 ∑
i:xi∈W

(
v∗
j,j′ ,vj,j′

) ξiξ>i
 . (5.34)

Conditioned on the event guaranteed by Lemma 5.4.4 with δ = vol
(
W
(
v∗j,j′ , vj,j′

))
and for a

universal constant C1, we have the bound

sup
vj,j′∈Bv∗

j,j′
(r0)

λmax

 ∑
i:xi∈W

(
v∗
j,j′ ,vj,j′

) ξiξ>i


≤ sup
vj,j′∈Bv∗

j,j′
(r0)

C1(n vol(W
(
v∗j,j′ , vj,j′

)
) log(1/ vol(W

(
v∗j,j′ , vj,j′

)
)) + d)

(i)

≤ sup
vj,j′∈Bv∗

j,j′
(r0)

C1

(
n

∥∥vj,j′ − v∗j,j′∥∥∥∥u∗j,j′∥∥ log3/2

∥∥u∗j,j′∥∥∥∥vj,j′ − v∗j,j′∥∥ + d

)
(ii)

≤ nr0 log3/2(1/r0) + d

(iii)

≤ nC
π3

min

k
,

where in step (i), we have used Lemma B.1.1, and in step (ii), we have used the definition of the set
B. Step (iii) uses the assumption n ≥ c1kd/π

3
min.
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Moreover, Lemma 5.4.3 guarantees the bound λmin

(
Ξ>S∗j ΞS∗j

)
≥ c2n · π3

min, so that putting
together the pieces, we have

inf
β1,...,βk∈Ib

λmin

(
Ξ>SjΞSj

)
≥ c2nπ

3
min − Cnk

π3
min

k

≥ Cπ3
minn, (5.35)

with probability greater than 1− c exp
(
−cn π4

min

log2(1/πmin)

)
− c′ exp(−c′n · πmin). These assertions

hold provided n ≥ Cdmax
{

k
π3
min
, log2(1/πmin)

π3
min

, log(n/d)
}

, and this completes the proof.
Having proved the claims, we turn to proofs of our technical lemmas.

Proof of Lemma 5.4.1

In this proof, we assume that σ = 1; our bounds can finally be scaled by σ2.
It is natural to prove the bound (5.32b) first followed by bound (5.32a). First, consider a fixed

set of parameters {β1, . . . , βk}. Then, we have∥∥PΞj(β1,...,βk)zSj
∥∥2

=
∥∥UU>zSj∥∥2

,

whereU ∈ R|Ξj |×(d+1) denotes a matrix with orthonormal columns that span the range of Ξj(β1, . . . , βk).
Applying the Hanson-Wright inequality for independent sub-Gaussians (see [269, Theorem

2.1]) and noting that |||UU>|||fro ≤
√
d+ 1 we obtain

Pr
{∥∥UU>zSj∥∥2 ≥ (d+ 1) + t

}
≤ e−ct,

for each t ≥ 0. In particular, this implies that the random variable
∥∥UU>zSj∥∥2 is sub-exponential.

This tail bound holds for a fixed partition of the rows of Ξ; we now take a union bound over all
possible partitions. Toward that end, define the sets

Sj =
{
Sj(β1, . . . , βk) : β1, . . . , βk ∈ Rd+1

}
, for each j ∈ [k].

From Lemma B.1.3, we have the bound |Sj| ≤ 2ckd log(en/d). Thus, applying the union bound,
we obtain

Pr

{
sup

β1,...,βk∈Rd+1

∥∥PΞj(β1,...,βk)zSj
∥∥2 ≥ (d+ 1) + t

}
≤ |Sj|e−ct,

and substituting t = ck(d+ 1) log(n/d) and performing some algebra establishes bound (5.32b).
In order to establish bound (5.32a), we once again consider the term

∑k
j=1

∥∥PΞj(β1,...,βk)zSj
∥∥2

for a fixed set of parameters {β1, . . . , βk}. Note that this is the sum of k independent sub-exponential
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random variables and can be thought of as a quadratic form of the entire vector z. So once again
from the Hanson-Wright inequality, we have

Pr

{
sup

β1,...,βk∈Rd+1

k∑
j=1

∥∥PΞj(β1,...,βk)zSj
∥∥2 ≥ k(d+ 1) + t

}
≤ e−ct/k

for all t ≥ 0.
Also define the set of all possible partitions of the n points via the max-affine function; we have

the set

S =
{
S1(β1, . . . , βk), . . . , Sk(β1, . . . , βk) : β1, . . . , βk ∈ Rd+1

}
.

Lemma B.1.4 yields the bound |S| ≤ 2ckd log(kd) log(n/kd), and combining a union bound with the
high probability bound above establishes bound (5.32a) after some algebraic manipulation.

Proof of Lemma 5.4.2

Let γv = v − v∗; we have

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤ 1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, γv〉2

≤ 1
{
〈ξi, γv〉2 ≥ 〈ξi, v∗〉2

}
〈ξi, γv〉2.

Define the (random) set Kv = {i : 〈ξi, γv〉2 > 〈ξi, v∗〉2}; we have the bound

1

n

n∑
i=1

1 {〈ξi, v〉 · 〈ξi, v∗〉 ≤ 0}〈ξi, v∗〉2 ≤
1

n
‖ΞKvγv‖2.

We now show that the quantity ‖ΞKvγv‖2 is bounded uniformly for all v ∈ Bv∗(r) for small enough
r. Recall that u∗ is the “linear” portion of v∗, and let m = max{d, 10 log n, n · (16r ·

√
log(1/r)}

(note that m depends implicitly on r). We claim that for all r ∈ (0, 1/24], we have

Pr

{
sup

v∈Bv∗ (r)

|Kv| > m

}
≤ 4e−cmax{d,10 logn} + cne−c

′n, and

(5.36a)

Pr


⋃

T⊆[n]:
|T |≤m

sup
ω∈Rd+1

ω 6=0

‖ΞTω‖2

‖ω‖2
≥ (d+ 16m log(n/m))

 ≤ e−cmax{d,10 logn}. (5.36b)

Taking these claims as given, the proof of the lemma is immediate, since n
m
≤ 1

16r log(1/r)
, so that

log(n/m) ≤ C log(1/r).



CHAPTER 5. TRACTABLE ALGORITHMS FOR MAX-AFFINE REGRESSION 142

Proof of claim (5.36a): By definition of the set Kv, we have

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤
∑
T⊆[n]:
|T |>m

Pr
{
∃v ∈ Bv∗(r) : ‖ΞTγv‖2 ≥ ‖ΞTv

∗‖2
}

=
∑
T⊆[n]:
|T |>m

Pr

{
∃v ∈ Bv∗(r) :

‖γv‖2

‖u∗‖2

‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

Pr

{
∃v ∈ Bv∗(r) : r2‖ΞTγv‖2

‖γv‖2
≥ ‖ΞTv

∗‖2

‖u∗‖2

}

≤
∑
T⊆[n]:
|T |>m

(
Pr

{
∃v ∈ Bv∗(r) :

‖ΞTγv‖2

‖γv‖2
≥ (
√
d+

√
|T |+ tT )2

}

+ Pr

{
‖ΞTv

∗‖2

‖u∗‖2
≤ r2(

√
d+

√
|T |+ tT )2

})
,

where the final step follows by the union bound and holds for all positive scalars {tT}T⊆[n]. For
some fixed subset T of size `, we have the tail bounds

Pr

 sup
ω∈Rd+1

ω 6=0

‖ΞTω‖2

‖ω‖2
(
√
d+
√
`+ t)2

 (i)

≤ 2e−t
2/2, for all t ≥ 0, and (5.37a)

Pr

{
‖ΞTv

∗‖2

‖u∗‖2
≤ δ`

}
(ii)

≤ (eδ)`/2 for all δ ≥ 0, (5.37b)

where step (i) follows from the sub-Gaussianity of the covariate matrix (see Lemma B.1.5), and
step (ii) from a tail bound for the non-central χ2 distribution (see Lemma B.1.6).

Substituting these bounds yields

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤
n∑

`=m+1

(
n

`

)2e−t
2
`/2 +

(
er2 · (

√
d+
√
`+ t`)

2

`

)`/2


≤
n∑

`=m+1

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 .

Recall that t` was a free (non-negative) variable to be chosen. We now split the proof into two cases
and choose this parameter differently for the two cases.
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Case 1, m ≤ ` < n/e: Substituting the choice t` = 4
√
` log(n/`), we obtain

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 ≤ (n

`

)−c`
+

(
n

`

)
·

(
2r ·
√
d+ 5

√
` log(n/`)√
`

)`

(i)

≤
(n
`

)−c`
+

(
n

`

)
·
(

2r · (1 + 5
√

log(n/`))
)`

(ii)

≤
(n
`

)−c`
+

(
n

`

)
·
(

12r ·
√

log(n/`)
)`

≤
(n
`

)−c`
+
(

12
(en
`

)
r ·
√

log(n/`)
)`
,

where step (i) follows from the bound m ≥ d, and step (ii) from the bound ` ≤ n/e.
Now note that the second term is only problematic for small `. For all ` ≥ m = n · (16r ·√

log(1/r)), we have (
12
(en
`

)
r ·
√

log(n/`)
)`
≤ (3/4)` .

The first term, on the other hand, satisfies the bound
(
n
`

)−c` ≤ (3/4)` for sufficiently large n.

Case 2, ` ≥ n/e: In this case, setting t` = 2
√
n for each ` yields the bound

(
n

`

)2e−t
2
`/2 +

(
2r ·
√
d+
√
`+ t`√
`

)`
 ≤ 2

(
n

n/2

)
e−2n + (12r)`

≤ ce−c
′n,

where we have used the fact that d ≤ n/2 and r ≤ 1/24.

Putting together the pieces from both cases, we have shown that for all r ∈ (0, 1/24], we have

Pr{ sup
v∈Bv∗ (r)

|Kv| > m} ≤ cne−c
′n +

n/e∑
`=m+1

(3/4)`

≤ cne−c
′n + 4(3/4)max{d,10 logn},

thus completing the proof of the claim.
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Proof of claim (5.36b): The proof of this claim follows immediately from the steps used to
establish the previous claim. In particular, writing

Pr


⋃

T⊆[n]:
|T |≤m

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥ d+ 16m log(n/m)


≤ Pr


⋃

T⊆[n]:
|T |≤m

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥
(√

d+
√
m+

√
4m log(n/m)

)2


≤

m∑
`=1

Pr


⋃

T⊆[n]:
|T |=`

⋃
ω:‖ω‖=1

‖ΞTω‖2 ≥
(√

d+
√
m+

√
4m log(n/m)

)2


(iv)

≤ 2
m∑
`=1

(
n

`

)
exp{−2m log(n/m)}

≤ 2
( n
m

)−cm
≤ 2e−cmax{d,10 logn},

where step (iv) follows from the tail bound (5.37a).

Proof of Lemma 5.4.3

The lemma follows from some structural results on the truncated Gaussian distribution. Using
the shorthand vol : = vol(K) and letting ψ denote the d-dimensional Gaussian density, consider a
random vector τ drawn from the distribution having density h(y) = 1

vol
ψ(y)1 {y ∈ K}, and denote

its mean and second moment matrix by µτ and Στ , respectively. Also denote the recentered random
variable by τ̃ = τ − µτ . We claim that

‖µτ‖2 ≤ C log (1/ vol) , (5.38a)

C vol2 ·I �Στ � (1 + C log(1/ vol)) I, and (5.38b)
τ̃ is c-sub-Gaussian for a universal constant c. (5.38c)

Taking these claims as given for the moment, let us prove the lemma.
The claims (5.38a) and (5.38c) taken together imply that the random variable τ is sub-Gaussian

with ψ2 parameter ζ2 ≤ 2c2 + 2C log (1/ vol). Now consider m i.i.d. draws of τ given by {τi}mi=1;
standard results (see, e.g., Vershynin [319, Remark 5.40], or Wainwright [323, Theorem 6.2]) yield
the bound

Pr

{
||| 1
m

m∑
i=1

τiτ
>
i − Στ |||op ≥ ζ2

(
d

m
+

√
d

m
+ δ

)}
≤ 2 exp

(
−cnmin{δ, δ2}

)
.
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Using this bound along with claim (5.38b) and Weyl’s inequality yields

λmin

(
1

m

m∑
i=1

τiτ
>
i

)
≥ C vol2−ζ2

(
d

m
+

√
d

m
+ δ

)
(5.39)

with probability greater than 1− 2 exp (−cnmin{δ, δ2}).
Furthermore, when n samples are drawn from a standard Gaussian distribution, the number m

of them that fall in the set K satisfies m ≥ 1
2
n · vol with high probability. In particular, this follows

from a straightforward binomial tail bound, which yields

Pr

{
m ≤ n · vol

2

}
≤ exp(−cn · vol). (5.40)

Recall our choice n ≥ Cd log2(1/ vol)

vol3
, which in conjunction with the bound (5.40) ensures that

C vol2 ≥ 1
8
σ2
√

d
m

with high probability. Setting δ = C vol2 /σ2 in inequality (5.39), we have

λmin

(
1

m

m∑
i=1

τiτ
>
i

)
≥ C

2
vol2

with probability greater than 1− 2 exp
(
−cn vol4 /σ4

)
. Putting together the pieces thus proves the

lemma. It remains to show the various claims.

Proof of claim (5.38a) Let τA denote a random variable formed as a result of truncating the
Gaussian distribution to a (general) set A with volume vol. Letting µA denote its mean, the dual
norm definition of the `2 norm yields

‖µA‖ = sup
v∈Sd−1

〈v, µA〉

≤ sup
v∈Sd−1

E|〈v, τA〉|.

Let us now evaluate an upper bound on the quantity E|〈v, τA〉|. In the calculation, for any d-
dimensional vector y, we use the shorthand yv : = v>y and y\v : = U>\vy for a matrix U\v ∈ Rd×(d−1)

having orthonormal columns that span the subspace orthogonal to v. Letting Av ⊆ R denote the
projection of A onto the direction v, define the set A\v(w) ⊆ Rd−1 via

A\v(w) = {y\v ∈ Rd−1 : y ∈ A and yv = w}.
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Letting ψd denote the d-dimensional standard Gaussian pdf, we have

E|〈v, τA〉| =
1

vol

∫
y∈A
|y>v|ψd(y)dy

=
1

vol

∫
y∈A
|yv|ψ(yv)ψd−1(y\v)dy

=
1

vol

∫
yv∈Av

|yv|ψ(yv)

(∫
y\v∈A\v(yv)

ψd−1(y\v ∈ A\v(yv))dy\v

)
︸ ︷︷ ︸

f(yv)

dyv

(i)

≤ 1

vol

∫
yv∈Av

|yv|ψ(yv)dyv, (5.41)

where step (i) follows since f(yv) ≤ 1 point-wise. On the other hand, we have

vol =

∫
yv∈Av

ψ(yv)

(∫
y\v∈A\v(yv)

ψd−1dy\v

)
dyv ≤

∫
yv∈Av

ψ(yv)dyv. (5.42)

Combining inequalities (5.41) and (5.42) and letting w = yv, an upper bound on ‖µτ‖ can be
obtained by solving the one-dimensional problem given by

‖µτ‖ ≤ sup
S⊆R

1

vol

∫
w∈S
|w|ψ(w)dw

s.t.
∫
w∈S

ψ(w)dw ≥ vol .

It can be verified that the optimal solution to the problem above is given by choosing the truncation
set S = (∞,−β)∪ [β,∞) for some threshold β > 0. With this choice, the constraint can be written
as

vol ≤
∫
|w|≥β

ψ(w)dw ≤ 2

√
2

π

1

β
e−β

2/2,

where we have used a standard Gaussian tail bound. Simplifying yields the bound

β ≤ 2
√

log(C/ vol).

Furthermore, we have

1

vol

∫
|w|≥β

|w|ψ(w)dw =
C

vol
e−β

2/2

(ii)

.
β3

β2 − 1

≤ c
√

log(1/ vol),
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where step (ii) follows from the bound Pr{Z ≥ z} ≥ ψ(z)
(

1
z
− 1

z3

)
valid for a standard Gaussian

variate Z. Putting together the pieces, we have

‖µτ‖2 ≤ c log(1/ vol).

Proof of claim (5.38b) Let us first show the upper bound. Writing cov(τ) for the covariance
matrix, we have

|||Στ |||op ≤ ||| cov(τ)|||op + ‖µτ‖2

(iii)

≤ |||I|||op + C log(1/ vol),

where step (iii) follows from the fact that cov(τ) � cov(Z), since truncating a Gaussian to a convex
set reduces its variance along all directions [163, 317].

We now proceed to the lower bound. Let PK denote the Gaussian distribution truncated to the
set K. Recall that we denoted the probability that a Gaussian random variable falls in the set K by
vol(K); use the shorthand vol = vol(K). Define the polynomial

pu(x) = 〈x− EX∼PK [X], u〉2;

note that we are interested in a lower bound on infu∈Sd−1 EX∼PK [pu(X)].
For δ > 0, define the set

Sδ : = {x ∈ Rd : pu(x) ≤ δ} ⊆ Rd.

Letting Z denote a d-dimensional standard Gaussian random vector and using the shorthand
α : = EX∼PK [X], we have

Pr{Z ∈ Sδ} = Pr
{
〈Z − α, u〉2 ≤ δ

}
(5.43)

= Pr
{
〈α, u〉 −

√
δ ≤ 〈Z, u〉 ≤ 〈α, u〉+

√
δ
}

(5.44)

=

∫ 〈α, u〉+√δ
〈α, u〉−

√
δ

ψ(x)dx ≤
√

2

π
δ, (5.45)

where in the final step, we have used the fact that ψ(x) ≤ 1/
√

2π for all x ∈ R.
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Consequently, we have

EX∼PK [pu(X)] =
1

vol
EZ [pu(Z)1 {Z ∈ K}]

≥ 1

vol
EZ [pu(Z)1 {Z ∈ K ∩ Scδ}]

(iv)

≥ 1

vol
EZ [δ1 {Z ∈ K ∩ Scδ}]

=
δ

vol
Pr{Z ∈ K ∩ Scδ}

(v)

≥ δ
vol−

√
2
π
δ

vol
.

Here, step (iv) follows from the definition of the set Sδ, which ensures that pu(x) ≥ δ for all x ∈ Scδ .
Step (v) follows as a consequence of equation (5.45), since

Pr{Z ∈ K ∩ Scδ} = Pr{Z ∈ K} − Pr{Z ∈ Sδ} ≥ vol−
√

2

π
δ.

Finally, choosing δ = c vol2 for a suitably small constant c, we have EX∼PK [pu(X)] ≥ C vol2 for a
fixed u ∈ Sd−1. Since u was chosen arbitrarily, this proves the claim.

Proof of claim (5.38c) Since the random variable ξ is obtained by truncating a Gaussian random
variable to a convex set, it is 1-strongly log-concave. Thus, standard results [190, Theorem 2.15]
show that the random variable ξ̃ is c-sub-Gaussian.

Proof of Lemma 5.4.4

For a pair of d+ 1-dimensional vectors (v, v′), denote by

nW (v,v′) = #{i : xi ∈ W (v, v′)} (5.46)

the random variable that counts the number of points that fall within the wedge W (v, v′); recall our
notation Wδ for the set of all wedges with Gaussian volume less than δ. Since each wedge is formed
by the intersection of two hyperplanes, applying Lemmas B.1.2 and B.1.3 in conjunction yields that
there are universal constants (c, c′, C) such that

sup
W∈Wδ

nW ≤ cδn (5.47)

with probability exceeding 1− exp(−c′nδ2), provided n ≥ C
δ2
d log(n/d). In words, the maximum

number of points that fall in any wedge of volume δ is linear in δn with high probability.
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It thus suffices to bound, simultaneously, the maximum singular value of every sub-matrix of Ξ
having (at most) cδn rows. For a fixed subset S of size cδn, standard bounds for Gaussian random
matrices (see, e.g., [319])) yield the bound

λmax

(∑
i∈S

ξiξ
T
i

)
≤ c1(δn+ d+ t)

with probability exceeding 1− 2 exp(−C1t).
Furthermore, there are at most cδn ·

(
n
cδn

)
subsets of size at most cδn; taking a union bound over

all such subsets yields the bound

Pr

{
max

S:|S|≤cδn
λmax

(∑
i∈S

ξiξ
>
i

)
≥ c1(δn+ d+ t)

}
≤ 2cδn ·

(
n

cδn

)
exp(−C1t).

Making the choice t = 2cδn log(1/cδ) and putting together the pieces proves the lemma.

5.5 Summary and open questions
We conclude this portion of the paper with short discussions of related models and future directions.

5.5.1 Related models
Models closely related to (5.1) also appear in second price auctions, where an item having d features
is bid on and sold to the highest bidder at the second highest bid [221, 227]. Assuming that each of
k user groups bids on an item and that each bid is a linear function of the features, one can use a
variant of the model (5.1) with the max function replaced by the second order statistic to estimate
the individual bids of the user groups based on historical data. Another related problem is that of
multi-class classification [75], in which one of k labels is assigned to each sample based on the
argmax function, i.e., for a class of functions F , we have the model Y = argmax1≤j≤k fj(X) for
j distinct functions f1, . . . , fk ∈ F . When F is the class of linear functions based on d features,
this can be viewed as the “classification” variant of our regression problem.

While the connection of the max-affine model to multi-index models was discussed extensively
in Chapter 1, the model (5.1) can also be seen as a special case of mixture-of-experts models [151].
In the mixture-of-experts model, the covariate space is partitioned into k regions via certain gating
functions, and the observation model is given by k distinct regression functions: one on each region.
The model (5.1) is clearly a member of this class, since the max(·) function implicitly defines a
partition of Rd depending on which of the k linear functions of X attains the maximum, and on
each of these partitions, the regression function is linear in X .

5.5.2 Future directions
In this chapter, we analyzed a natural alternating minimization algorithm for estimating the max-
imum of unknown affine functions, and established that it enjoys local linear convergence to a
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ball around the optimal parameters. We also proposed an initialization based on PCA followed
by random search in a lower-dimensional space. An interesting open question is if there are other
efficient methods besides random search that work just as well post dimensionality reduction.
Another interesting question has to do with the necessity of dimensionality reduction: in simulations
(see the full paper [119]), we have observed that if the AM algorithm is repeatedly initialized in
(d+ 1)-dimensional space without dimensionality reduction, then the number of repetitions required
to obtain an initialization from which it succeeds (with high probability) is similar to the number of
repetitions required after dimensionality reduction. This suggests that our (sufficient) initialization
condition (5.14a) may be too stringent, and that the necessary conditions on the initialization to
ensure convergence of the AM algorithm are actually much weaker. We leave such a characterization
for future work, but note that some such conditions must exist: the AM algorithm when run from a
single random initialization, for instance, fails with constant probability when k ≥ 3. Understanding
the behavior of the randomly initialized AM algorithm is also an open problem in the context of
phase retrieval [327, 348].

In the broader context of max-affine estimation, it is also interesting to analyze other non-convex
procedures (e.g. gradient descent) to obtain conditions under which they obtain accurate parameter
estimates. The CAP estimator of Hannah and Dunson [139] and the adaptive max-affine partitioning
algorithm of Balázs [15] are also interesting procedures for estimation under these models, and it
would be interesting to analyze their performance when the number of affine pieces k is fixed and
known. For applications in which the dimension d is very large, it is also interesting to study the
model with additional restrictions of sparsity on the unknown parameters.

In the context of this dissertation, this chapter demonstrates a computationally efficient method
that enjoys statistical estimation guarantees while solving a non-convex optimization problem. Our
investigation is also motivated in part by the fact the convex LSE (5.6) does not adapt to piecewise
affine structure for any d ≥ 5 [180], and in that sense, the methodology introduced and analyzed in
this chapter should be viewed as performing tractable statistical estimation over simpler sub-models
when the natural procedure for the overall model—convex regression MLE in this case—does not
come with any adaptation guarantees. In the next chapter, we will show that a close relative of the
alternating minimization heuristic analyzed here has favorable properties even in semiparametric
index models; in particular, that it adapts to the noise level in a subclass of single-index models.
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Chapter 6

Adapting to noise level in semiparametric
estimation

In classical nonparametric regression, we are interested in modeling the relationship between a
d-dimensional covariate x and a scalar response y through a function f : Rd 7→ R that satisfies
some regularity conditions. However, as alluded to briefly in the previous chapter, standard
nonparametric function classes in high dimensions are extremely expressive and require prohibitively
many samples—exponential in the dimension—to learn (see e.g., Tsybakov [302]). A popular
dimensionality reduction technique is to assume that the function f is given by the composition of a
lower-dimensional function h : Rk 7→ R with a linear model. Formally, we have

f(x) = h(〈θ1, x〉, 〈θ2, x〉, . . . , 〈θk, x〉),

where the d-dimensional regression coefficients θ1, . . . , θk span a k-dimensional subspace for some
k � d. Such models are called multi-index models, since the functional relationship can be captured
by a few indices that represent particular directions of the covariate space. Indeed, we saw an
instance of such a model in the previous chapter where the nonlinear function h was known, and
given by the max function. In this chapter, our focus will be on the semiparametric setting in which
the nonlinearity is only known to belong to a class of functions.

6.1 Introduction
In this chapter, we focus on the special case of the multi-index model where k = 1, which results in
the single-index model

y = g∗(〈θ∗, x〉) + ε, (6.1)

or SIM for short. Here g∗ is a univariate, nonparametric link function, θ∗ ∈ Rd is the salient linear
predictor, and ε is a random variable independent of everything else that captures the noise in the
modeling process. The model (6.1) between the covariate and response should be seen as one of the
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most basic forms of non-linear dimensionality reduction, and as a step towards the broader goal
of representation learning or feature engineering. In order to facilitate a concrete theoretical study,
we also assume in this chapter that the covariates x are drawn from a normal distribution, and that
the noise ε is sub-Gaussian with parameter σ; these are standard assumptions in many parts of the
literature [45, 89, 195].

As stated, the single-index model (6.1) is classical, and there is an extensive body of literature
spanning the statistics, econometrics, and geometric functional analysis communities that is dedi-
cated to studying many aspects of this model. We provide an extensive survey of this literature in
Section 6.1.2 to follow. For now, let us focus on the recent paper by Plan and Versyhnin [253], which
studies the problem under further geometric constraints on the parameter θ∗ and represents, to an ex-
tent, the state-of-the-art progress on this problem. Upon analyzing a moment-based method—whose
roots go back to the classical work of Brillinger [45]—for recovering the “signal” θ∗, they point out
that it is not necessary to explicitly model the non-linear link function g∗. To quote portions of their
text:

“This leads to the intriguing conclusion that in the high noise regime, an unknown non-linearity in
the observations does not significantly reduce one’s ability to determine the signal... even when the

non-linearity is not explicitly modeled.”

This surprising claim is somewhat counter-intuitive: after all, obtaining a “good” model for the
function g∗ should help in the estimation task, and this intuition has largely guided the extensive
sub-field of generalized linear modeling [217], in which we assume the function g∗ is known exactly.
More generally, there ought to exist a trade-off between the approximation and estimation errors for
this class of problems: on the one hand, we incur a certain approximation error (or bias) by treating
the unknown function as linear, and our estimation error (or variance) behaves as though the true
model is linear. The results of Plan and Vershynin—and of many other preceding papers in this
general area—are intriguing because they show that for a large enough noise level, and provided
that the function g∗ is not “orthogonal” to the class of linear functions, a biased estimator for the
parameter achieves error that is optimal up to constant factor, since the bias is of a smaller order
than the variance.

On the other hand, one could instead ask what happens in the low noise, or high signal regime1,
when the errors made due to modeling the non-linear function as linear are no longer of the same
order as the noise. Indeed, such a question is motivated by applications in which we often have
significant side-information that allows us posit some function class G to which g∗ belongs. By
building better models for the non-linearity, it would stand to reason that the bias can be reduced
and finally eliminated when G ⊇ g∗. The major motivation for this chapter is to understand this
phenomenon in quantitative terms. We study this issue in the context of parameter recovery, i.e.,
recovering θ∗ from n i.i.d. samples drawn from the model. From a statistical perspective, we
would like to derive precise bounds on the recovery error as a function of both the dimension d

1A natural measure of signal-to-noise ratio in the problem is given by ‖θ∗‖/σ. We set ‖θ∗‖ = 1 for identifiability
in the single-index model, and so the low noise regime in which σ → 0 corresponds to high signal-to-noise ratio. Thus,
we use the terms ‘low noise’ and ‘high signal’ interchangeably in this chapter.
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Figure 6.1: Left: The unknown, monotone function g∗(z) = sgn(z) · log (1 + |z|) used in the
simulation. We collected i.i.d. samples from the single-index model defined by this function,
corrupted by Gaussian noise of variance σ2. Right: Simulations of the error of parameter estimation
plotted against the noise level σ for (a) in red, the standard Average Derivative Estimator (ADE) [45,
254] and (b) in blue, our refined estimator from Algorithm 4 that employs the least squares estimator
over monotone functions as the non-parametric estimate of the ‘inverse’ function. In this experiment,
we set p = 20 and n = 5000, and the errors are averaged over 50 independent runs of the respective
algorithms. The generalized Lasso estimator of Plan and Vershynin [253] also has very similar
performance to the ADE method and so its error is not plotted here.

and the sample size n. In addition, we would like to be able to accomplish the estimation task in
a computationally efficient manner, and by using fine-grained properties about the function class
G. For a comparison of our approach and motivation with those of related work, see Section 6.1.2.
Overall, our approach formalizes a complementary notion to that articulated by Plan and Vershynin
above. In particular, we show that when g∗ ∈ G, then leveraging certain structural properties of the
class G through a natural, iterative algorithm can lead to uniformly faster rates of estimation for all
noise levels. In particular, significant gains are obtainable in the high signal regime by methodology
that automatically adapts to the noise level of the problem.

To foreshadow our results, let us illustrate in a simulation the quantitative benefit of using
our iterative framework for a sample link function. Figure 6.1 plots the performance of our
procedure along with a classical semiparametric estimate as a function of the noise parameter σ. In
particular, while standard algorithms see a large error floor even as σ → 0, our estimator achieves
asymptotically better error in the high signal (or low noise) regime, while remaining competitive
with the classical approach even for larger values of σ. It is also worth noting that even so, the error
achieved by our estimator plateaus for small values of σ, leading to a non-zero error floor of the
problem. This motivates our study of the special case σ = 0, which we show serves as a proxy for
all values of σ that are “sufficiently small”.

In the literature on statistical learning theory, the low-noise regime has received considerable
attention for empirical risk minimization applied to regression problems (e.g., [189, 222]). In
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particular, Mendelson [222], noted that classical analyses of ERM are often very conservative in the
low noise (or what is referred to in learning theory as the nearly-realizable) setting. He proposed a
new “small-ball” method of analysis to derive rates for the problem that are usually much faster
when the model is nearly-realizable. Our motivation should be viewed as analogous but as applied to
semiparametric regression2. The low-noise regime has also been extensively studied in the literature
on statistical signal processing, but as applied to specific models such as phase retrieval (in which g∗

is the absolute value or square function) and its relatives. For the related (noisy) matrix completion
problem, the recent paper [62] provides an analysis of a popular convex relaxation method in the
low-noise regime via a delicate analysis of a non-convex optimization algorithm.

We now discuss our contributions in a little bit more detail in Section 6.1.1, before providing a
survey of related work and applications in Section 6.1.2.

6.1.1 Contributions and Organization
Our approach to performing estimation under the single-index model is based on leveraging fine-
grained structure in the function g∗, and we formalize the notion of structure that we require by
assuming access to a certain “labeling” oracle that provides information about the “inverse” model
y 7→ E[〈x, θ∗〉|y]. Loosely speaking, the labeling oracle helps us narrow our investigation to regions
of the domain of the function g∗ on which this conditional expectation is easy to reason about.
This provides, in broad terms, a program for estimation under the semiparametric model (6.1) via
a reduction to nonparametric regression over the inverse function class. While we omit it here
for brevity, this intuition is illustrated in the full paper [243] via a warm-up exercise on the phase
retrieval problem, where we implement a labeling oracle and reduce the problem to linear regression.
This leads to a simple algorithm for phase retrieval that achieves optimal parameter estimation rates.

We present in Section 6.2 the precise labeling oracle that we require for general single-index
models, and provide a flexible procedure for parameter estimation. This procedure assumes access
to the labeling oracle and solves a non-convex problem via an iterative algorithm. It requires, as
input, any nonparametric function estimation oracle over the inverse function class. Under standard
assumptions on the observation model, our general result (Theorem 6.2.1) provides guarantees on
the error attained by such an iterative algorithm for general SIMs as a function of the error rate of
the nonparametric estimator provided as input to the procedure. We then leverage the vast literature
on empirical risk minimization (ERM) for nonparametric function estimation in order to establish
Theorem 6.4.1, which shows upper bounds on parameter estimation in terms of natural measures of
complexity of the class of inverse functions.

In order to illustrate a concrete application of our framework, we consider a sub-class of
monotone SIMs for which a labeling oracle can be implemented efficiently, and with no additional
computational effort. This leads to a procedure with end-to-end guarantees for this class, which
we present as Corollary 6.3.1. This result provides a sharper parameter estimate than classical
procedures, and the gains are particularly significant when σ → 0.

2Indeed, Mendelson’s general techniques are also applicable to this problem via the reduction that we establish; see
the full paper [243] for a discussion.
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6.1.2 Related work
Single-index models have seen a concrete theoretical treatment across multiple, related commu-
nities. The classical viewpoint emerges from the statistics community, in which these have been
studied under the broader umbrella of semiparametric estimation; the latter is broadly applied in
microeconomics, finance, and the social sciences. Index models, in particular, have been used as
a general-purpose, non-linear dimensionality reduction tool. We refer the the interested reader to
the books by Bickel et al. [33] and Li and Racine [197] for a broad overview of classical methods
for semiparametric estimation, their applications, and associated guarantees. In the context of the
single-index model, a well known estimator for the index vector is the semiparametric maximum
likelihood estimator (SMLE) [145], which solves the full-blown M-estimation problem, finding the
function, index pair that maximizes the likelihood of the observed samples. The SMLE is known to
have excellent statistical properties in the asymptotic regime where the ambient dimension is fixed
and the number of samples goes to infinity—in particular, a parameter estimate obtained as a result
of running these procedures is often “

√
n-consistent”—and succeeds with minimal assumptions

on the covariate distribution [176, 266]. In addition to the SMLE, other influential approaches
include gradient-based estimators [73, 146], moment-based estimators [45, 195], and slicing es-
timators [196], which have driven a lot of progress in the deployment of semiparametric models
in practice. There has also been recent interest in studying some of these procedures under weak
covariate assumptions [8]. Indeed, our general approach can be viewed as a more refined version of
slicing; this is discussed in detail in Remark 6.2.2. We also note the recent work of Dudeja and Hsu,
which falls under this broad umbrella and analyzes the single-index model with Gaussian covariates
by expressing the unknown function in the Hermite polynomial basis. Their estimators may be
viewed as higher-order moment methods, and they propose efficient, gradient-based algorithms to
compute them.

There has also been a lot of recent interest in applying the double (or de-biased) machine learning
approach to semiparametric models,especially in the high-dimensional regime [66, 67]. These
papers are motivated by the fact that semiparametric estimation is a natural lens through which to
view estimation problems with nuisance components, when the statistician is only interested in some
target component; examples of such problems span the diverse fields of treatment effect estimation,
policy learning, and domain adaptation. The classical notion of Neyman orthogonality [238] has re-
emerged as a natural and flexible condition under which to study these problems. We do not survey
this literature in detail, but refer the reader to the recent paper by Foster and Syrgkanis [108], which
provides a general treatment of problems in this space. Focusing on proving excess risk bounds for
problems with a nuisance component, these results show that a natural one-step meta-algorithm that
splits samples between estimating the nuisance component and the target component (or parameter)
is able to achieve oracle excess risk bounds in some settings. In particular, they show that if a
Neyman orthogonality condition is satisfied and the class of nuisance components is not too large
when compared to the target class, then oracle risk bounds3 are achievable. The generality of these
results is striking: they apply to a general class of problems, general loss functions, and general

3That is, the excess risk of estimating the target is of the same order as the risk attainable if the nuisance component
were known exactly
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data distributions, thereby providing a broad framework for the study of such models. Notably,
the results are also reduction-based, in that they allow the statistician to use any procedure for
estimation of the target and nuisance components, and derive bounds that depend on the rates at
which these components can be estimated. In this last respect, our treatment is similar; however, our
focus should be viewed as being complementary to this general theory. Some salient differences are
worth highlighting: First, and foremost, we are interested primarily in understanding the rates of
estimation as a function of the noise level in the problem, which was not the focus of these recent
results. In particular, any one-step meta-algorithm will no longer be optimal (even in the special
case of SIMs) over all noise levels. Second, we are interested in the rates of parameter estimation
as in the semiparametric literature, and this requires us to impose stronger covariate assumptions.
Finally, by specializing our model class to single-index models, we are able to simultaneously
address issues of computational efficiency, statistical optimality, and adaptivity to the noise level.

A second perspective on single-index models emerges from the statistical signal processing
literature4—or more broadly, the literature on geometric functional analysis and linear inverse
problems—in which we are interested in imposing additional structure on the underlying param-
eter θ∗. While the application of geometric functional analysis to linear inverse problems is a
relatively recent endeavor, the literature in this general space is already quite formidable; examples
of results here can be found in the papers [110, 237, 253, 254, 296, 297, 339, 340, 342]. The focus in
this area is on recovering the underlying “signal” θ∗ at a rate that depends optimally on the properties
of the set to which the signal belongs. This literature often places stronger assumptions on the
measurements or covariates—often Gaussian, although some extensions to sub-Gaussian settings
are available (e.g. [223]). Many of the algorithms in this space are based on convex relaxations, but
in the case where there is no structure on θ∗, they reduce to more classical moment-based estimators.
As mentioned in Section 6.1, a representative result in this space is that of Plan and Vershynin,
which shows that provided the unknown link function has a non-zero “projection” onto the class
of linear functions, a constrained variant of the standard (linear) least squares estimator recovers
the true parameter at the optimal rate for large noise levels; in particular, this error rate depends
precisely on the geometric properties of the set to which θ∗ belongs. Extensions of this result are
also available for cases when g∗ is an even function [297], and are based on constrained versions of
the Principal Hessian Directions (PHD) algorithm [195]. Besides convex relaxation approaches,
there are also non-convex approaches to problems in this space; for example, Yang et al. [341]
study a two-step non-convex optimization procedure for SIMs, and show that this algorithm is
able to obtain a parameter estimate at the optimal s log d

n
rate for s-sparse vectors θ∗ under moment

conditions on the link function.
Given that we specialize some of our results in the sequel to the class of monotone SIMs, let us

now discuss some prior work in this space. The design of efficient algorithms for monotone single-
index models was the focus of much work in the machine learning community [161, 162], where
these models were introduced in order to account for mis-specification in generalized linear models
with known link functions. The algorithms here—Isotron [162] and variants [161]—are inspired by

4Our division of related work under these two broad headings is somewhat arbitrary; the motivations of some of the
papers listed in the geometric functional analysis literature were statistical, and vice versa.
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the Perceptron algorithm and run variants of the stochastic gradient method. They obtain bounds
on the excess risk incurred by the algorithm, showing bounds that are typically nonparametric.
These models have also seen a more recent appearance in the literature on shape-constrained
estimation, in which index-models and their relatives have emerged as natural means to alleviate
the curse of dimensionality [12, 61, 178]. Broadly speaking, these papers analyze the consistency
of the global SMLE for their respective problems, and propose heuristic algorithms—without
provable guarantees—that solve this non-convex problem by alternating projection procedures. It
should be noted that in the absence of smoothness assumptions, there are a multitude of technical
obstacles that must be overcome in order to show that the SMLE is even consistent. The monotone
single-index model, in particular, has been analyzed in recent papers by Balabdaoui et al. [12] and
Groeneboom and Hendrickx [126]. In addition to providing fine-grained guarantees for the SMLE
(e.g., the limiting distribution of the regression estimate at a point [127], or the prediction error of
the “bundled” function g∗(〈θ∗, ·〉)), these papers also provide guarantees for the ADE approach and
their guarantees hold under minimal assumptions on the underlying link function.

Having discussed the lay of the land, let us now put our contributions in context. In spite
of the vast literature on single-index models, some important and fundamental questions remain
unaddressed. In particular, our focus is on simultaneously tackling the following issues:

• Leveraging structure in the class of link functions: Moment and slicing based estimators,
which form the foundation for the investigation of SIMs in the literature on linear inverse
problems, completely ignore any fine-grained structure in the true function g∗. As alluded
to earlier, they simply require g∗ to obey certain moment conditions, and do not attempt to
model it in any way. This leads to a “bias” in these estimators that becomes significant in the
high signal regime, and indicates that better models for g∗ can be leveraged to reduce this
bias.

• Adapting to the noise level: As alluded to in the introduction, none of the computationally
efficient estimators of θ∗ obtain a provably optimal error bound as a function of the noise
variance σ2. In particular, the performance of estimators in the low noise setting is near-
identical to their performance in the constant-noise setting. Take, for example, the recent
results of Babichev and Bach [8] and Dudeja and Hsu [89], which show a bound of the form

‖θ̂ − θ∗‖2 . (σ2 + c)
d

n
(6.2)

for their respective estimators, provided the function g∗ satisfies certain conditions. The .
notation in these bounds hides logarithmic factors in the pair (d, n), and the constant c in this
bound is some problem dependent constant that is strictly positive for any non-linear g∗. The
analysis of Yang et al. [341] posits additional structure on the underlying parameter θ∗ and
improves the rate of the estimate (i.e., the dimension d in the bound (6.2) is replaced by a
geometric quantity, but the (σ2 + c) term persists). Clearly, these bounds exhibit the same
behavior for both large and small σ, and this is a limitation of these approaches that we would
like to address. Adaptivity to noise variance is only achievable when we are able to drive the
bias of the problem to zero at a faster rate by positing a good model for the function g∗.
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• Computational efficiency: The SMLE, for instance, solves a non-convex problem to optimal-
ity and is NP-hard to compute for many nonparametric function classes. Variants of the SMLE
are able to avoid some statistical issues with the SMLE, but they are still computationally
intractable.

• Dependence on the dimension: Since a large portion of the semiparametric literature is
classical, the dependence on the covariate dimension d is seldom made explicit. In many
cases, this dependence is much worse than the linear dependence on d that we expect for
parametric models.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendix B.2. We largely use capital letters X, Y , etc.
to denote random variables/vectors, and small letters to denote their realizations, usually with
the sample index xi, yi, etc. We reserve the notation Z for the standard Gaussian distribution,
where the dimension can be inferred from context. Boldface capital letters X,W, etc. are used
to denote matrices; we let X i denote the i-th column of X . We let X† denote the Moore-Penrose
pseudoinverse of a (tall) matrix X . For any positive integer p, we let Ip denote the p× p identity
matrix. We deliberately eschew measure-theoretic considerations. Throughout, we write conditional
expectations assuming that they exist. For a pair of continuous random variables (U, V ) and a scalar
u, we use the shorthand E[V |U = u] to denote the standard conditional expectation E[V |u].

6.2 Methodology and main result for general single index
models

We now turn to the single-index model, which is the main focus of the paper. Throughout, we
suppose that n samples drawn i.i.d. from the observation model

yi = g∗(〈xi, θ∗〉) + εi, (6.3)

once again assuming that xi ⊥⊥ εi, and that xi
i.i.d.∼ N (0, Id). We also assume that the noise εi is

drawn from a σ-sub-Gaussian distribution and that the unknown parameter θ∗ ∈ Sd−1 has unit norm.
Assumptions on both the covariates and noise can be relaxed for subsets of our results, and we
allude to this in Section 6.5. The univariate function is assumed to satisfy the inclusion g∗ ∈ G for
some nonparametric function class G. Our procedure for parameter estimation in SIMs requires two
natural oracles, which we introduce first.

6.2.1 Oracles: Labeling and Inverse Regression
As alluded to in the introduction, the first oracle that we require is a labeling oracle.
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Labeling Oracle: Such an oracle outputs:

• A closed interval I ⊆ R, and a set of labeled samples S = {i : 〈xi, θ∗〉 ∈ I}. Let W denote
the truncation of the random variable 〈X, θ∗〉 on this interval, having density

fW (w) =

{
1∫

x∈I φ(x)dx
φ(w) if w ∈ I

0 otherwise,

where φ denotes the standard Gaussian density. Denote by PY the induced distribution on the
response Y = g∗(W ) + ε, and let Y denote its sample space.

• A closed, convex5 setH corresponding to the function class

H ⊇
{
y 7→ E[W |y]

∣∣∣ y = g(W ) + ε, g ∈ G
}
.

In words, this contains functions mapping R→ I that contains all conditional expectations
under the “inverse” model. We use the shorthand h∗ to denote the conditional expectation—
which we refer to hereafter as the “inverse function”—formed when our observations are
generated according to the link function g∗.

Note that in principle, outputting a set S via such a labeling oracle requires knowledge of the
true parameter θ∗, which we are trying to estimate! However, in the sequel, we show an example
of a class of single-index models for which this is also true. For now, assume that such a labeling
oracle exists and let N = |S| be the effective sample size that we work with. Note that N is, in
principle, a random variable, but it will be helpful to think of it as a fixed integer for the rest of this
section.

The “spirit” of the labeling oracle is to provide a region on which the “inverse” function is easy
to reason about. With the labeling oracle in hand, note that the random variable W may be viewed
as being generated according to the model

W = h∗(Y ) + ξ, (6.4)

where ξ is uncorrelated with h∗(Y ) by definition, and may be viewed as zero-mean noise. In the
sequel, we use the convenient notation ξ(y) = [W |Y = y]−E[W |Y = y] to indicate that ξ depends
on the realization y. The sample space of W is I, and when the noise ε is supported on the entire
real line, the sample space of Y is Y = R. We emphasize that in spite of how the labeling oracle
above has been defined, we do not assume that we have access to realizations of the pair of random
variables (W, ξ); one should view the observation model (6.4) simply as an analysis device.

The second oracle that we require is a nonparametric regression oracle over the function classH.
5If the setH is not convex, then it suffices to work with its convex hull. More generally, we only require the set to

be star-shaped around h∗, and if not, we can work with the star hull centered at h∗.
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Inverse regression oracle: Our overall algorithm uses, as a black-box, an estimation procedure
A over the function classH. Given k i.i.d. samples drawn from a generic nonparametric regression
model over the classH, the procedureA : (R×R)k 7→ H uses these samples to compute a function
ĥ ∈ H that optimizes some measure of fit to these samples. We place no restrictions (besides
measurability) on such a procedure; our main result depends on the properties of the procedure
through its “rate” function, introduced in Assumption 6.2.3.

With these two oracles in hand, we are now ready to present our procedure for parameter
estimation in general SIMs. We denote the covariate distribution post-truncation (i.e., the distribution
on the samples S) by PIX .

6.2.2 Reducing SIMs to regression: a meta-algorithm and its analysis
Our procedure is based on a natural alternating minimization principle applied iteratively for T
steps. We begin by partitioning the N samples into 2T equal parts6. Denote such a partition
by D1, . . . ,D2T ; each of these sets has size N/(2T ) by construction. Our algorithm runs for T
iterations; at each iteration, we use two of these data sets. Let us briefly describe iteration t of the
algorithm, which uses the data sets D2t+1 and D2t+2.

On the first data set, we run the nonparametric procedureA on the set of pairs (yi, 〈xi, θ̂t〉)i∈D2t+1 ,

and form a function estimate ĥt+1 ∈ H such that ĥt+1 = A
((

yi, 〈xi, θ̂t〉
)
i∈D2t+1

)
. In particular,

we treat our current linear prediction 〈xi, θ̂t〉 as a noisy observation of the true function evaluated
at the point yi. This is our minimization in the space of functionsH, through which we obtain an
estimate of h∗. In order to intuitively reason about whether this step is sensible, consider the special
case θ̂t = θ∗. Here, the nonparametric procedure A obtains samples from the model h∗(yi) + ξi
for each i ∈ D2t+1; these are simply noisy observations of the true function, and A is designed
precisely to denoise these samples. On the other hand, if θ̂t is close to θ∗, then we obtain samples
from a similar model, but with some additional noise—our analysis will make this precise—that
vanishes provided θ̂t converges to θ∗.

With the function estimate ĥt+1 in hand, we now turn to the second data set and run a linear
regression. In particular, we regress

{
ĥt+1(yi)

}
i∈D2t+2

on the covariates {xi}i∈D2t+2 and obtain

the linear parameter estimate θ̃t+1. Finally, we output the normalized parameter estimate θ̂t+1 =
θ̃t+1/‖θ̃t+1‖ at the end of this iteration. Note that once again, one can reason about how sensible
our linear regression step is by specializing to the case ĥt+1 = h∗; here, h∗(yi) is effectively a noisy
sample of 〈xi, θ∗〉, and so we expect the linear regression to return an estimate that is close to θ∗.
When ĥt+1 6= h∗, this, once again, introduces additional noise in our observation process which
vanishes when our function estimate ĥt+1 converges to the true function h∗.

With this intuition—made concrete in the proof—we are then able to relate the error of parameter
estimation at the next time step with the error at the current time step, and iterating this bound

6We assume that N is a multiple of 2T for simplicity.
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allows us to improve upon the error of the initializer θ̂0. A formal description of the entire procedure
is provided as Algorithm 4.

Algorithm 4: The LTI-SIM meta-algorithm with sample-splitting for the two regressions
Input: Data of N samples {xi, yi}i∈S returned by the labeling oracle; nonparametric

regression procedure A; initial parameter θ̂0; number of iterations T .
Output: Final parameter estimate θ̂T .

22 Initialize t← 0. Split the data into 2T equal portions indexed by D1, . . . ,D2T .
3 repeat
55 Form the function estimate ĥt+1 ∈ H by computing

ĥt+1 = A
((

yi, 〈xi, θ̂t〉
)
i∈D2t+1

)
. (6.5)

77 Letting Xt+1 denote the N
2T
× d matrix with rows {xi}i∈D2t+2 and stacking up the

responses
{
ĥt+1(yi)

}
i∈D2t+2

in a vector v, compute

θ̃t+1 = X†t+1v.

99 Compute the normalized parameter θ̂t+1 = θ̃t+1

‖θ̃t+1‖
.

10 until t = T ;
1212 Return θ̂T .

Note that we use two separate samples for the sub-steps of the algorithm in order to ensure that
ĥt+1 is independent of the samples used to perform the linear regression. In the full paper [243], we
introduce and analyze a variant of the algorithm without sample-splitting in the special case σ = 0.

Remark 6.2.1 (LTI-SIM as alternating minimization). Note that for X ∼ PIX , the observations
obey the relation

〈θ∗, X〉 = h∗(Y ) + ξ.

where ξ may be viewed as “noise” in the inverse problem. Thus, for a data set D ⊆ S, it is
reasonable to construct the loss function

LD(θ, h) : =
1

|D|
∑
i∈D

(〈θ, xi〉 − h(yi))
2,

and minimize it over the pair (θ, h) in order to obtain some measure of fit to the samples in the
data set. However, this minimization is rendered non-convex by the constraint that the returned θ̂
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must be unit norm. Thus, step 2 of the LTI-SIM procedure may be viewed7 as minimizing this loss
function over the function classH, and steps 3 and 4 in conjunction as performing a minimization
in parameter space.

Remark 6.2.2 (Comparison with slicing estimators). Slicing estimators [8, 196] are based on
the observation that for spherically symmetric distributions, the conditional moments8 E[X⊗k|Y ]
capture properties of the true parameter θ∗. For instance, when k = 1, classical calculations show
that under mild assumptions on g∗, the vector E[X|Y ] aligns with the vector θ∗ for almost every
realization of Y . Thus, we may construct estimates of this conditional expectation from samples by
slicing over y values, and this leads to a

√
n-consistent estimate for the parameter and is similar

in many respects to the ADE procedure [45]. However, even when σ = 0, the randomness in the
covariate X introduces noise in the empirical expectation, and so the error cannot decay at a rate
faster than

√
n even in this noiseless case.

Algorithm 4 is also based on reasoning about a first-order conditional expectation, but relies
on a model, provided by the labeling oracle, of further structure in the function y 7→ E[W |Y = y].
Intuitively, modeling this higher-order structure in conjunction with the first-order conditional
expectation allows us to considerably refine the slicing estimate in an iterative fashion. The original
slicing estimator can thus be used to provide a natural initialization θ̂0 for our procedure.

While our methodology is well-defined for any single index model in which we have access to a
labeling oracle, our theoretical analysis of the algorithm requires the following assumptions.

Assumption 6.2.1. The Gaussian volume of the set I is greater than κ, i.e., Pr{Z ∈ I} ≥ κ for
Z ∈ N (0, 1).

Such an assumption is natural, and guarantees that we have a large enough “effective sample
size”, with N growing directly proportional to the true sample size n. For our next assumption, we
require the following definition of a sub-Gaussian norm, which is a standard notion [313, 319].

Definition 6.2.1 (Sub-Gaussian norm). The L2-Orlicz norm of a scalar random variable U is given
by

‖U‖ψ2 = inf{t > 0 | E[exp(U2/t2)] ≤ 2}.

We also refer to this as the sub-Gaussian norm, and a random variable with sub-Gaussian norm
bounded by σ is said to be σ-sub-Gaussian.

Assumption 6.2.2. The noise of the inverse problem has sub-Gaussian norm ρσ uniformly for all
y ∈ R. Specifically, ρσ is a positive scalar such that

‖ξ(y)‖ψ2 ≤ ρσ for all y ∈ Y .
7This is particularly true if the procedure A performs least squares, as in Theorem 6.4.1 to follow.
8The notation v⊗k represents the tensor product of order k.
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Remark 6.2.3. Assumption 6.2.2 can be weakened in multiple ways. Firstly, the requirement that
the noise be uniformly sub-Gaussian y-everywhere can be replaced with a requirement that it only
holds over all y that can be realized with high probability. More generally, the sub-Gaussian
assumption is not really required for our main result and can be weakened to allow for heavy-tailed
noise—see the full paper [243] for such an extension to noise with bounded second moment.

Finally, it can be verified that if the function g∗ is invertible on the interval I and σ = 0, then
Assumption 6.2.2 is trivially satisfied with ρ0 = 0, since without noise, we have E[W |Y = y] =
g−1(y), and so ξ(y) = 0 almost surely. The next assumption requires that our inverse regression
procedure output a useful function estimate.

Assumption 6.2.3. Suppose we have k samples {yi, wi}ki=1 drawn i.i.d. from the observation model

wi = h∗(yi) + ξi + zi, (6.6)

where the pair (yi, ξi) is drawn from a joint distribution PY,ξ such that E[ξ|Y = y] = 0 for each
scalar y, the RV zi is additional zero-mean, ρ-sub-Gaussian noise that is independent of the pair
(yi, ξi), and h∗ ∈ H is an unknown function to be estimated. Suppose {yi}ki=1 are k fresh samples,
each drawn i.i.d. from the distribution PY . Then the procedure A

(
(yi, wi)

k
i=1

)
returns a function

ĥ satisfying
1

k

k∑
i=1

(ĥ(yi)− h∗(yi))2 ≤ RAk (h∗,PY,ξ; ρ2, δ)

with probability greater than 1− δ.

Through Assumption 6.2.3, we quantify the “quality” of the nonparametric procedureA through
its population rate functionRAk . Indeed, computing these rate functions for specific nonparametric
regression procedures is one of the principal goals of statistical learning theory [21, 302]. Note that
unlike standard definitions of such a rate function, we allow the rateRAk to depend explicitly both
on the underlying function h∗, and on the joint distribution of the noise and design points PY,ξ. In
the sequel, we visit settings in which the latter dependence can be removed if Assumption 6.2.2
also holds.

With these assumptions in place, we are now ready to state our main theorem. In the statement
of the theorem, we track the error at time t by ∆t = sin2 ∠

(
θ̂t, θ

∗
)

; note that since each estimate

θ̂t has unit norm, there are absolute constants (c, C) such that

cmin{‖θ̂t − θ∗‖2, ‖θ̂t + θ∗‖2} ≤ ∆t ≤ C min{‖θ̂t − θ∗‖2, ‖θ̂t + θ∗‖2},

whence ∆t captures the squared `2 error of parameter estimation up to a sign9. We also use the
shorthand N : = N/2T and νt = cos∠

(
θ̂t, θ

∗
)

=
√

1−∆t for convenience, and denote by P∗Y,ξ
9While the sign ambiguity is inherent to even link functions g∗, it can otherwise be eliminated by assuming that θ̂0

forms an acute angle with θ∗.
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the joint distribution of the random variables (Y, ξ) in the model (6.4). The shorthand c · P∗Y,ξ
denotes the joint distribution of the scaled random variables (cY, cξ) in the model (6.4). Finally,
recall the definition of the function h∗ from the model (6.4).

Theorem 6.2.1. Suppose that Assumptions 6.2.1, 6.2.2, and 6.2.3 hold, and that the iterates
θ̂0, . . . , θ̂T are generated by Algorithm 4. Then there is a pair of absolute constants (c1, c2) such
that for each t = 0, . . . , T − 1, if

∆t ≤
99

100
, RAN

(
νth
∗; νtP∗Y,ξ,∆t, δ/3

)
+ ρ2

σ ≤ c1κ
2 and N ≥ c2 max

{
d, κ−2 log2(1/κ) log

(c2

δ

)}
,

(6.7a)

then we have

∆t+1 ≤ c2

{
RAN(νth

∗; νtP∗Y,ξ,∆t, δ/3) + ρ2
σ

}
·
(
d+ log(4/δ)

N

)
(6.7b)

with probability exceeding 1−δ. Moreover, on this event, if ∠(θ̂t, θ
∗) ≤ π/2, then ∠(θ̂t+1, θ

∗) ≤ π/2.

The conditions (6.7a) present in the theorem warrant some discussion. The theorem requires
that the iterate at time t satisfy ∆t ≤ 99/100; the value of this constant is not important, and can be
replaced with any other absolute constant10 less than 1. The second condition

RAN
(
νth
∗; νtP∗Y,ξ,∆t, δ/3

)
+ ρ2

σ ≤ c1

implies (qualitatively) that we are in the low noise regime with ρσ bounded above by an absolute
constant. This is the regime in which we expect any gains to occur over classical semiparametric
estimators, and in that sense, the condition should not be viewed as restrictive. Finally, the sample
size condition N ≥ c2 · d is also natural, and a consequence of the fact that we would like the linear
regression step in the algorithm to return a unique solution. The accompanying technical condition
N ≥ c2κ

−2 log2(1/κ) log c2
δ

ensures that the matrix Xt+1 is well-conditioned.
Moving on to the theorem’s conclusion, first note that it applies to any nonparametric estimation

procedure that we use, and significant gains are obtained whenever the error rateRAN
(
νth
∗; νtP∗Y,ξ,∆t, δ/3

)
is small. In particular, ifRAN

(
νth
∗; νtP∗Y,ξ,∆t, δ/3

)
= o(1), then running just one step of the proce-

dure already obtains a better guarantee than that of classical estimators (cf. equation (6.2), with
n ≡ N ). To obtain a final guarantee—which will typically be even sharper—the inequality needs to
be applied iteratively; we do so in deriving Corollary 6.3.1 to follow. Finally, since the theorem
applies to only one step of the iterative procedure, it is worth noting that the error ∆t of previous
step acts as the noise variance encountered by the nonparametric estimation procedure. This is what
allows us to bootstrap the result and obtain a final rate. In Section 6.4.3, we derive a corollary of
our main theorem when the procedure A is chosen to be the empirical risk minimizer. Let us now
illustrate this guarantee on a specific subclass of monotone SIMs.

10It is also likely that this condition can be weakened to allow ∆t ≤ 1−O(d−1/2) (which would accommodate,
say, a vector θ̂t chosen uniformly at random from the unit sphere), but we do not concern ourselves with this extension
since classical estimators can be used to guarantee that ∆t is smaller than any pre-specified universal constant.



CHAPTER 6. ADAPTING TO NOISE LEVEL IN SEMIPARAMETRIC ESTIMATION 165

6.3 Consequences for monotone single index models
In this section, we apply the general result given by Theorem 6.4.1 to the case where the link function
g∗ is monotone. In this section, suppose that we have n i.i.d. samples drawn from the SIM (6.3)
where the noise distribution is Gaussian of variance σ2. We also make a further assumption on the
link function g∗; we require some additional notation in order to state it. Let cn,δ =

√
2 log(8n/δ),

and recall that the set of sub-differentials of a function g at the point x are given by

∂g(x) = {y ∈ R : g(z) ≥ g(x) + y · (z − x) for all z ∈ R}.

For a pair of reals a < b, we say that a ≤ ∂g(x) ≤ b if each element y in the set of sub-differentials
obeys the inclusion y ∈ [a, b]. With these definitions in place, we make the following assumption
on the link function g∗.

Assumption 6.3.1. The function g∗ is continuous with 0 < m ≤ ∂g∗(z) ≤ M < ∞ for
all z ∈ [−cn,δ, cn,δ].

Link functions employed in generalized linear models largely satisfy11 Assumption 6.3.1, and
more generally, the class of SIMs satisfying Assumption 6.3.1 has been extensively studied as a
generalization of GLMs [161, 162]. Note that in contrast to general SIMs, the invertibility of the
true function makes this class comparatively easier to handle. Let us now specify the two oracles
that we require.

Labeling oracle: For this class of SIMs, the labeling oracle is trivial to implement. Simply output:

• The interval I = [−cn,δ, cn,δ],

• All n samples of the SIM, and

• The function class
H =

{
h : R 7→ I

∣∣ h non-decreasing
}
,

which is a convex set by definition. In Lemma 6.4.2 in the proof section, we show that this
class contains, with high probability, all the appropriate conditional expectations that we hope
to model.

Nonparametric inverse regression procedure: We letA correspond to the ERM procedure over
the function class H defined above. In this special case, the algorithm can be implemented in
near-linear time via the pool adjacent violators algorithm [19, 128].

11In some cases, it may be necessary to choose the tuple (m,M) to be functions of n and δ (e.g., for the logistic
link function), but these will typically be functions that decrease/increase sub-polynomially in n.
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With the labeling oracle and inverse regression procedure specified, it remains to verify the
various technical assumptions required to apply Theorem 6.4.1. Let κ0 = M

m
denote a natural notion

of conditioning in the problem. In Lemma 6.4.3, we show that Assumption 6.2.2 holds with

ρσ ≤ ρmono : = C

(
σ2cn,δ

√
κ2

0 − 1 +
σ

m
{log(3κ0) ∨ cn,δ}

)
. (6.8)

When σ is small, i.e., in our regime of interest, we have ρmono � σ · cn,δ, where the � notation hides
problem-dependent factors. Another special case is when M = m and g∗(z) = mz a.e.; here, we
have ρmono = C σ

m
cn,δ, and σ

m
is the right proxy for noise-to-signal ratio in linear models.

Bounds on the complexity terms are provided in Lemma 6.4.4, and Assumption 6.4.1 holds
trivially with b = cn,δ. We are thus led to the following corollary of Theorem 6.4.1, in which we use
the shorthand n = n/2T for convenience.

Corollary 6.3.1. Suppose that Assumption 6.3.1 holds, and that the labeling oracle and regression
procedure are given by the discussion above. Then there is a tuple of absolute constants (c1, c2, c3, c4)
such that for each t = 0, 1, . . . , T − 1, if

n ≥ c2d, ∆t ≤ 99
100
, and ρmono ≤ c1,

then

∆t+1 ≤ c2

{(
log n

n

)2/3

+

(
∆t + ρ2

mono

n

)2/3

+ ρ2
mono

}
d

n
log
(c2

δ

)
· log

(c2n

δ

)
(6.9a)

with probability exceeding 1− δ.
Consequently, if in addition we have n ≥ c2d log2 n, then when c3 log(log n) ≤ T ≤ c4 log(log n),
we obtain

∆T ≤ c2d log n ·

{(
log n · log(log n)

n

)5/3

+ ρ2
mono

log n · log(log n)

n

}
(6.9b)

with probability exceeding 1− c2n
−9.

Once again, a few comments are in order. First, note that by our discussion above, the
bound (6.9b) recovers the correct behavior in a linear model up to a poly-logarithmic factor.
Second, note the following consequence of the bound (6.9b) in order to facilitate a more transparent
discussion. Assuming the initial angle made by θ0 with θ∗ is acute, we have

‖θ̂T − θ∗‖2 .

{
σ2 d

n
if σ ≥ n−1/3

d
n5/3 otherwise,

, (6.10)

where the . notation above ignores both problem-dependent constants that depend on the pair
(m,M), as well as logarithmic factors in n. Comparing the bounds (6.2) and (6.10), we see
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immediately that the estimation bias is significantly reduced, and this comparison helps explain the
behavior seen in Figure 6.1.

While Corollary 6.3.1 clearly provides a guarantee that is significantly better than classical
estimators when σ is small, it is worth noting that it is derived as a consequence of Theorem 6.4.1,
which may not be the sharpest possible result obtainable when, for instance, σ = 0. In the full
paper [243], we take a slightly different route towards understanding the zero-noise setting, by
designing a slightly different procedure that is motivated by analysis considerations; we omit these
details here.

6.4 Proofs of main results
In this section, we provide proofs of our main results. We begin by proving Theorem 6.4.1, and
then derive the various corollaries stated in the main text. A few notes to the reader. Throughout our
proofs, we assume that n is greater than some universal constant; the complementary case can be
handled by appropriately modifying the constants in the proofs. Often, we work with the random
variables defining a model—which we denote by capital letters—before instantiating the model
on samples—which we denote using small letters. Finally, we use c, c1, c

′, . . . to denote universal
constants whose values may change from line to line.

6.4.1 Proof of Theorem 6.2.1
Each covariate is given by d i.i.d. random variables X = (X1, X2, . . . , Xd). Assume wlog by the
rotational invariance of the Gaussian distribution that θ∗ = e1, so that 〈X, θ∗〉 = X1. Recall the
random variable W given by the truncation of X1 to the interval I . Recall the function h∗, given by

h∗(y) = E[W |Y = y] for each y ∈ R.

Also recall the (unobservable) model (6.4) given by

W = h∗(y) + ξ(y),

for each fixed value of y, where ξ(y) = [W |Y = y] − E[W |Y = y] denotes noise that obeys
E[ξ(y)] = 0 for each y by definition, and is ρσ-sub-Gaussian for each y ∈ R by Assumption 6.2.2.
Finally, recall that we denoted the covariate distribution post-truncation by PIX . Note that in each
sample, we also observe d− 1 other covariates X2, . . . , Xd each drawn from a standard Gaussian
that is independent of everything else. Let αt = ∠(θ̂t, θ

∗) and note that for X ∼ PIX , we have

〈X, θt〉 = cos(αt)W + sin(αt)X,

where X ∼ N (0, 1) is some linear combination of the random variables X2, . . . , Xd (and therefore
independent of W ). Recall the shorthand νt = cos(αt) and ∆t = sin2(αt). Suppose for the rest
of this proof that αt is acute, so that sin(αt) =

√
∆t; the complementary case is similar, provided

we work with the angle αt = ∠(θ̂t,−θ∗) instead. With this setup at hand, we are now ready to
prove the theorem. We organize the proof by providing error guarantees for the two sub-steps of
Algorithm 4, and then putting together the pieces.
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Error due to nonparametric regression: The procedure A is given N = N/2T samples drawn
from the observation model

〈xi, θ̂t〉 = νt · h∗(yi) + νt · ξi +
√

∆txi for i ∈ D2t+1.

By the star-shaped nature ofH, we have νt · h∗ ∈ H, so that this is now a nonparametric regression
model where we observe N i.i.d. evaluations of the true function νth∗ corrupted by noise. In
particular, comparing with the model (6.6), we have ρ2 = ∆t. By Assumption 6.2.3, the procedure
A uses these samples to then return a function ĥt+1 ∈ H that satisfies, for each δ ∈ (0, 1), the
inequality

1

N

∑
i∈D2t+2

(ĥt+1(yi)− νth∗(yi))2 ≤ RAN(νth
∗; νtP∗Y,ξ,∆t, δ)

with probability exceeding 1− δ.

Error due to linear regression: We now show that performing the linear regression step leads
to an error contraction by a multiplicative factor roughly p/N . For this, we require the following
lemma. For a vector v, we let vi denote its i-th entry, and let v\i = v − vi · ei denote the vector with
its i-th entry zeroed out.

Lemma 6.4.1. Suppose we are given a matrix X = (X1, . . . , Xd) ∈ Rn×d, where the columns
X2, . . . , Xd i.i.d.∼ N (0, In). Also suppose we are given the n-dimensional vector y = τX1 + z
for some scalar τ , and some vector z ∈ Rn that is fixed independently of the random vectors
X2, . . . , Xd. Then there is an absolute constant c such that if n ≥ cmax

{
d, log

(
c
δ

)}
, then the

estimate β = X†y obeys the inequalities

‖β\1‖2 ≤ 16 ·
(
d+ log(4/δ)

n2

)
· ‖z‖2, and (6.11a)

β2
1 ≥

τ 2

2
− 3
‖z‖2

‖X1‖2
, (6.11b)

with probability exceeding 1− 3δ
4

. Moreover, on this event, if τ >
√

3
2
· ‖z‖‖X1‖ , then β1 > 0.

We prove this lemma at the end of the section. Let us now use it to provide an error guarantee
on our problem. For a fresh draw of the pair (X, Y ) with marginals X ∼ PIX and Y ∼ PY , we have

νtW = νt〈X, θ∗〉 = νth
∗(Y ) + νtξ = ĥt+1(Y ) + νtξ + (νth

∗(Y )− ĥt+1(Y )),

so that rearranging yields

ĥt+1(Y ) = νt〈X, θ∗〉 − νtξ − (νth
∗(Y )− ĥt+1(Y )). (6.12)
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Notably, all random variables in the RHS are functions only of the tuple (W, ε) and hence indepen-
dent of the random variables X2, . . . , Xd.

The linear regression step is performed on the samples i ∈ D2t+2. It is therefore helpful to
instantiate the model (6.12) on these samples, and write

ĥt+1(yi) = νt〈xi, θ∗〉 − νtξi − (νth
∗(yi)− ĥt+1(yi))︸ ︷︷ ︸
−ξ′i

for i ∈ D2t+2;

crucially, due to sample-splitting across the two sub-steps of the algorithm, we have ensured that the
function estimate ĥt+1 can be regarded as fixed, since it is independent of the samples i ∈ D2t+2.
Step 3 of the algorithm models the value ĥt+1(yi) as a linear response to the covariates xi. In
particular, stack the covariates {xi}i∈D2t+2 in a matrix and the responses {ĥt+1(yi)}i∈D2t+2 in a
vector, and let ξ′ ∈ RN denote a “noise” vector. Recall the condition N ≥ cmax{d, log(c/δ)}
assumed in Theorem 6.2.1, and recall that our regression estimate obtained as a result of step 3 of
Algorithm 4 was denoted by θ̃t+1. Applying Lemma 6.4.1 yields, with probability exceeding 1− 3δ

4
,

the implications

‖θ̃t+1‖2 sin2(αt+1) ≤ 16 · ‖ξ′‖2 ·
(
d+ log(4/δ)

N
2

)
and (6.13a)

‖θ̃t+1‖2 cos2(αt+1) ≥ ν2
t

2
− 3 · ‖ξ′‖2∑

i∈D2t+2
〈xi, θ∗〉2

, (6.13b)

where we have used the fact that the scalar τ in the lemma is equal to νt.

Putting together the pieces: We are finally ready to put together the pieces. Applying the
Cauchy–Schwarz inequality yields

‖ξ′‖2 ≤ 2 ·

 ∑
i∈D2t+2

ν2
t ξ

2
i +

∑
i∈D2t+2

(νth
∗(yi)− ĥt+1(yi))

2

 .

By Assumption 6.2.2, each random variable ξi is ρσ-sub-Gaussian, so that

Pr

 1

N

∑
i∈D2t+2

ξ2
i ≥ ρ2

σ

(
1 +

√
log(6/δ)

N

) ≤ δ/3 (6.14)

for each N ≥ log(6/δ). On the other hand, Assumption 6.2.3 guarantees that we have

Pr

 1

N

∑
i∈D2t+2

(νth
∗(yi)− ĥt+1(yi))

2 ≥ RAN(νth
∗; νtP∗Y,ξ,∆t, δ/3)

 ≤ δ
3
.
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Putting together the pieces, we have

‖ξ′‖2

N
≤ C

(
ν2
t ρ

2
σ +RAN(νth

∗; νtP∗Y,ξ,∆t, δ/3)
)

(6.15a)

with probability greater than 1− 2δ
3

. Additionally, Lemma B.2.2 from the appendix guarantees that
provided N ≥ c1

log2(1/κ)
κ2

log(4/δ), we have∑
i∈D2t+2

〈xi, θ∗〉2 =
∑

i∈D2t+2

w2
i ≥

1

2
κ2N (6.15b)

with probability exceeding 1−δ/4. Now note that we have ∆t ≤ 99/100 by assumption, which guar-
antees the relation νt ≥ 1/10. Thus, on the intersection of the two events defined in inequality (6.15),
inequality (6.13) yields

tan2(αt+1) ≤ C
(
ρ2
σ +RAN(νth

∗; νtP∗Y,ξ,∆t, δ/3)
)
·
(
d+ log(4/δ)

N

)
,

where we have also used that the condition ρ2
σ + RAN(νth

∗; νtP∗Y,ξ,∆t, δ/3) ≤ c1 holds for a
small enough constant c1, to ensure that the RHS of inequality (6.13b) is bounded below by a
universal positive constant. Finally, noting the elementary inequality sin2 α ≤ tan2 α concludes the
proof.

6.4.2 Proof of Lemma 6.4.1
Our proof of this lemma proceeds from first principles; we note that similar proofs are used to
bound the variance inflation factor (VIF) in linear models (see, e.g., the book [235]). Use the more
convenient notation x = X1 and W = (X2, . . . , Xd), so that the matrix is given by X =

[
x W

]
,

and X>X =

[
‖x‖2 x>W
W>x W>W

]
. Note that for a general (invertible) symmetric matrix, the partial

LDU decomposition can be written as[
a b>

b C

]
=

[
1 0

−C−1b I

] [
(a− b>C−1b)−1 0

0 C−1

] [
1 −b>C−1

0 I

]
,

where I denotes the identity matrix of appropriate dimension. Applying this to the matrix X>X
and using the shorthand PW = W(W>W)−1W> for the projection matrix onto the range of the
matrix W, we may write the pseudoinverse of X as

X† =[
1 0

−(W>W)−1W>x I

] [
(‖x‖2 − x>PWx)−1 0

0 (W>W)−1

] [
1 −x>W(W>W)−1

0 I

] [
x>

W>

]
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Now for an arbitrary vector v ∈ Rn, let 〈x, v〉 : = xv; then we have[
1 −x>W(W>W)−1

0 I

] [
x>

W>

]
v =

[
xv − x>PWv

W>v

]
,

so that putting together the pieces yields

X†v =

[
1 0

−(W>W)−1W>x I

] [
(‖x‖2 − x>PWx)−1 0

0 (W>W)−1

] [
xv − x>PWv

W>v

]
=

[
1 0

−(W>W)−1W>x I

] [
(‖x‖2 − x>PWx)−1 · (xv − x>PWv)

W†v

]
.

Now using the shorthand P⊥W = I−PW for the projection matrix onto the orthogonal complement
of W, we have

X†v =

[
1 0

−(W>W)−1W>x I

] [
(x>P⊥Wx)−1 · (x>P⊥Wv)

W†v

]
=

[
τv

−W†x · τv + W†v

]
,

where we have let τv : = (x>P⊥Wx)−1 · (x>P⊥Wv) for convenience.
Note that the above derivation holds for each v ∈ Rn. We are interested in a vector that can be

written as v = τx+ z. In this case, we have

X†v = X†(τx) +X†z

= τe1 +X†z

=

[
τz + τ

−W†x · τz + W†z

]
.

Up to this point, all of our steps were deterministic; we now use the fact that W is a standard
Gaussian random matrix. In particular, letting w1 denote the first row of the matrix W and for any
vector u fixed independently of W, we have

‖W†u‖2 d
= ‖(W>W)−1W>e1‖2‖u‖2

= ‖(W>W)−1w1‖2‖u‖2

≤ |||(W>W)−1|||2op‖w1‖2‖u‖2

(i)

≤

 1(√
n−
√
d−

√
log(4/δ)

)2


2

(d+ log(4/δ))‖u‖2,

where step (i) holds with probability exceeding 1− δ/4 by tail bounds for χ2 random variables, and
the minimum singular value of a Gaussian random matrix [319].
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We now use the assumption n ≥ cmax{d, log(4/δ)} for a large enough constant c to obtain the
inequality

‖W†u‖2 ≤ 2

(
1

n

)2

· ‖u‖
2

n

(
d+ log

(
4

δ

))
,

which holds for each fixed vector u with probability exceeding 1 − δ/4. Moreover, we have
the equivalence u>P⊥Wu = ‖P⊥Wu‖2. Putting together the pieces and using the Cauchy–Schwarz
inequality, the following sequence of bounds holds with probability exceeding 1− δ:

‖β\1‖2

4
≤
(
d+ log(4/δ)

n2

)
· (τ 2

z ‖x‖2 + ‖z‖2)

=

(
d+ log(4/δ)

n2

)
·
(

(x>P⊥Wz)2

‖P⊥Wx‖4
· ‖x‖2 + ‖z‖2

)
(ii)

≤
(
d+ log(4/δ)

n2

)
·
(
‖z‖2

‖P⊥Wx‖2
· ‖x‖2 + ‖z‖2

)
,

where step (ii) uses the Cauchy–Schwarz inequality and symmetry of the matrix P⊥W to obtain
|x>P⊥Wz| ≤ ‖P⊥Wx‖‖z‖.

Now note that we since x ⊥⊥ W, we have ‖P
⊥
Wx‖2
‖x‖2

d
= ‖P⊥We1‖2, which is the squared norm

of a unit-norm n-dimensional vector projected onto a random (n− d+ 1)-dimensional subspace.
By well-known results (see, e.g, Dasgupta and Gupta [78]), this quantity is bounded above by
n−d+1+log(4/δ)

n
with probability exceeding 1− δ/4. Putting together the pieces once again with our

assumption n ≥ cmax{d, log(4/δ)}, we have

‖β\1‖2

4
≤
(
d+ log(4/δ)

n2

)
·
{

3 · ‖z‖2 + ‖z‖2
}
,

with probability exceeding 1− 3δ
4

.
To lower bound the signal term, we once again use the Cauchy–Schwarz inequality to obtain

β2
1 ≥

τ 2

2
− τ 2

z

≥ τ 2

2
− 3 · ‖z‖

2

‖x‖2
.

This concludes the proof.

Remark 6.4.1. Lemma 6.4.1 illustrates the role of the approximation error in the problem, and
can be used to reason about variants of classical semiparametric estimators. In particular, if
E[g∗(Z)Z] = µ 6= 0, then we may write g∗(X1) = µX1 + Zπ,σ, where Zπ,σ is uncorrelated
with X1 due to the orthogonality properties of Hermite polynomials [124]. Treating E|Zπ,σ| as
the approximation error (which is a constant for any non-linear g∗), we see that Lemma 6.4.1
guarantees that regressing our observations g(X1) + ε on X1, . . . , Xn yields an estimate with error
d
n
(σ2 + E|Zπ,σ|) (cf. equation (6.2)). The goal of first performing nonparametric regression to

obtain a function estimate ĥ is to significantly reduce the approximation error of the problem.
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6.4.3 Implications for empirical risk minimization procedures
It is useful to particularize Theorem 6.2.1 to the case where A corresponds to the empirical risk
minimization (ERM) algorithm over the function classH. Since we are interested in performing
ERM on i.i.d. samples drawn from the model (6.6), let us introduce it in this context. Given k
i.i.d. samples {yi, wi}ki=1 drawn from this model, the ERM algorithm estimating the unknown
nonparametric function h∗ ∈ H returns the function

ĥERM ∈ argmin
h∈H

1

k

k∑
i=1

(wi − h(yi))
2,

where we have chosen the squared loss given our assumption that the noise ε is sub-Gaussian. Note
that this estimator exists since the function class H is closed and convex. The estimate is also
random, due to both the randomness in the “design points” y1, . . . , yk and in the noise. Let us now
discuss how one might bound the error rate of this algorithm with high probability.

A classical result in the study of the ERM algorithm [21, 173] is that the rate function is
governed by the local population Rademacher complexity of the function class being estimated
over. Let us first define a more general version of this quantity, valid for an arbitrary function class
F mapping R 7→ R with k i.i.d. samples from our model (6.6). Let yk1 = (y1, . . . , yk) denote the
tuple of k i.i.d. design points drawn from the distribution PY , and let η = (η1, . . . , ηk) denote k
i.i.d. Rademacher random variables drawn independently of everything else. Then the population
Rademacher complexity of the function class is given by

Rk(F) : = Eη,yk1

[
sup
f∈F

∣∣∣∣∣1k
k∑
i=1

ηif(yi)

∣∣∣∣∣
]
. (6.16a)

The Rademacher complexity defined in equation (6.16a) depends only on the function class F
and design points y1, . . . , yk, but not on the specific noise in the problem. In order to reason
about how the noise affects the estimation procedure in our specific context, it is useful to also
introduce another measure of complexity of the function class. Consider model (6.6), and denote
by ξi : = ρ−1(ξi + zi) the rescaled noise in the i-th sample of our observations. Use the shorthand
ρ : =

√
ρ2
σ + ρ2, and let ξ : = (ξ1, . . . , ξk). Then the noise complexity of the function class12 F is

defined as

Gk(F ; yk1) : = Eξ

[
sup
f∈F

∣∣∣∣∣1k
k∑
i=1

ξi · f(yi)

∣∣∣∣∣
]
. (6.16b)

Note that in contrast to our definition of the population Rademacher complexity (6.16a), we no
longer take an expectation over the random samples y1, . . . , yk in equation (6.16b), and so the noise
complexity should be viewed as a random variable when the samples y1, . . . , yk are random.

12This is typically known as the Gaussian complexity when the noise is Gaussian, but we prefer the more general
nomenclature at this stage of our development.
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It is also useful to define the norms

‖f‖2
2 : = EY∼PY [f 2(Y )] and ‖f‖2

k : =
k∑
i=1

f 2(yi); (6.17)

once again, the second norm should be viewed as random when the samples y1, . . . , yk are random.
For either norm ‖ · ‖, let B(‖ · ‖; t) denote the norm-ball of radius t centered at zero. Also define
the shifted function class

Hh0 = {h− h0 | h ∈ H},

where we have the equivalenceH ≡ H0.
With these definitions in place, analyses of the ERM algorithm rely on finding fixed points of

certain local complexity measures, which we now define for our specific function classHh∗ . For
each positive integer k and pair of positive constants (γ1, γ2), define the quantities

τk(h
∗; γ1) : = inf

{
τ > 0 : Rk(Hh∗ ∩ B(‖ · ‖2; τ)) ≤ τ 2

γ

}
, and (6.18a)

µk(h
∗, yk1 ; γ2) : = inf

{
µ > 0 : Gk(Hh∗ ∩ B(‖ · ‖k;µ); yk1) ≤ µ2

γ2

}
. (6.18b)

Note that the functional µk depends on the noise ξ, while the functional τk does not. Let us provide
some motivation for these complexity measures. A natural way to measure the error of the ERM is
via its fixed-design loss

‖ĥERM − h∗‖2
k : =

1

k

k∑
i=1

(ĥERM(yi)− h∗(yi))2, (6.19a)

where y1, . . . , yk are precisely the k i.i.d. samples generated from the model (6.6) using which the
ERM procedure is computed; consequently, the estimate ĥERM is not independent of the randomness
in these samples. The noise complexity (6.16b) and associated critical inequality (6.18b) are useful
in bounding this quantity. However, we are interested in controlling the error measured by the
random variable

1

k

k∑
i=1

(ĥERM(yi)− h∗(yi))2, (6.19b)

with fresh samples {yi}ki=1 drawn from the distribution PY . A natural question is whether the
error measures defined in equation (6.19) are close to each other. The functional τk defined in
equation (6.18a) provides such a measure of closeness for an appropriate value of the scalar γ1. In
particular, a uniform law of large numbers holds in this problem, as a consequence of which both
error metrics are in fact close to the expected error ‖ĥERM − h∗‖2

2.
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With this lengthy setup complete, we are finally ready to state our assumption on the function
classH. For simplicity, we assume that the function class is uniformly bounded.13

Assumption 6.4.1 (Bounded function class). There is a positive constant b such that for all h ∈ H,
we have ‖h‖∞ ≤ b.

The following proposition states a bound on the rate of the ERM algorithm in terms of the
complexity functions defined above, with the shorthandH∗ ≡ Hh∗ . Recall that the observations are
corrupted by sub-Gaussian noise with parameter ρ.

Proposition 6.4.1 (Theorems 14.1 and 13.5 of Wainwright [323]). (a) Suppose that Assump-
tion 6.4.1 holds, and that we observe k samples from the model (6.6). Then there are absolute
constants (c1, c2) such that for each scalar u ≥ τk(h

∗; b), we have

|‖f‖2
2 − ‖f‖2

k| ≤
1

2
‖f‖2

2 +
1

2
u2

uniformly for all functions f ∈ H∗, with probability exceeding 1− c2 exp
(
−c1k

u2

b2

)
.

(b) Suppose that Assumption 6.2.2 holds. Then there are absolute constants (c1, c2) such that
for each u ≥ µk(h

∗, yk1 ; 2ρ), the fixed-design loss (6.19a) of the ERM algorithm run on k samples
from the model (6.6) satisfies

Pr
{
‖ĥERM − h∗‖2

k ≥ 16uµk(h
∗, yk1 ; 2ρ)

}
≤ c2 exp

(
−c1ku ·

µk(h
∗, yk1 ; 2ρ)

ρ2

)
.

Applying this proposition leads to the following consequence of our main result Theorem 6.2.1
when the procedure A corresponds to the ERM algorithm. The proof follows straightforwardly by
combining Theorem 6.2.1 and Proposition 6.4.1, but we provide it in Section 6.4.4 for completeness.
We nevertheless state the result as a theorem for stylistic reasons. Recall the shorthand N : =
N/(2T ) and ρσ,t : =

√
∆2
t + ν2

t ρ
2
σ, and let

Tt : =
(
τ 2
N

(νth
∗; b) ∨ b2

N

)
+
(
µ2
N

(νth
∗, {yi}i∈D2t+1 ; 2ρσ,t) ∨

ρ2σ,t
N

)
denote (what we will establish to be) an upper bound on the rate function used in Theorem 6.2.1.

Theorem 6.4.1. Let the above notation prevail. Suppose that Assumptions 6.2.1, 6.2.2 and 6.4.1
hold. Also suppose that the iterates θ̂0, . . . , θ̂T are generated by running Algorithm 4 with procedure

13This assumption can be relaxed to require that for some p ≥ q ≥ 2 and all h ∈ H with ‖h‖2 ≤ 1 we have

E[hd(Y )] ≤ bp−qE[hq(Y )],

when Y ∼ PY . We do not pursue this extension here, and direct the reader to Wainwright [323] and Mendelson [222]
for details.
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A corresponding to the ERM algorithm. There are absolute positive constants (c1, c2) such that for
each t = 0, . . . , T − 1, the following holds true: If

∆t ≤ 99/100, Tt · log
(
c2
δ

)
+ ρ2

σ ≤ c1κ
2, and N ≥ c2 max

{
p, κ−2 log2(1/κ) log

(c2

δ

)}
,

then

∆t+1 ≤ c2

(
Tt · log

(
c2
δ

)
+ ρ2

σ

)
·
(
p+ log(4/δ)

N

)
(6.20)

with probability exceeding 1− δ.

It is worth making a few remarks on the theorem. Note that once again, we have stated the
result only for one step of our iterative algorithm; in order to produce a guarantee on the ‘final’
iterate we will have to recurse this bound, and subsequently, bound (i) the number of iterations T
required to reach a fixed point of the recursive relation (6.20), and (ii) the error of the fixed point of
the recursion. To provide a qualitative answer to point (i), first note that for most nonparametric
function classes, the RHS of equation (6.20) is always strictly positive for each finite N , so that
we can never hope to show an exact recovery guarantee for the algorithm. In other words, zero is
not a fixed point of the error recursion. Typical arguments used in analyses of many nonparametric
regression problems show that

τ 2
N
∼
(
C1

N

)λ1 and µ2
N
∼
(
C2

N

)λ2
, (6.21)

where λ1 and λ2 are two fixed constants in the unit interval that depend on the regression problem,
and the constants (C1, C2) depend on the remaining quantities that parameterize each of these
complexity functions. In this case, it suffices to apply the error recursion for T0 = O(log log(N))
iterations in order to arrive within a constant multiplicative factor of the fixed point14, where the
constants absorbed by this asymptotic notation depend on the other parameters of the problem, and
the scalars (λ1, λ2). For a specific illustration of this phenomenon, see Corollary 6.3.1 to follow.

The abstract bound (6.21) also provides a qualitative answer to point (ii) above: taking N →∞,
we see immediately that the fixed point has error bounded by a quantity (o(1) + ρ2

σ) d
N

. Comparing
such an error bound with equation (6.2), we verify what was already alluded to after the statement
of Theorem 6.2.1: when ρσ � σ, using a consistent ERM estimator improves the rate of parameter
estimation uniformly for all noise levels.

It is also helpful to state a consequence of the bound (6.20) when ρσ = 0; this is achieved for
noiseless SIMs if the function g∗ is invertible on the interval I. Let m∗

N,δ
denote the value of m

satisfying the fixed point relation

m = c2µ
2
N

(
h∗, yk1 ; 2

√
m
) d
N

log
(
c2
δ

)
.

14Since zero is not a fixed point, the number of iterations required to ensure convergence to within a multiplicative
factor of the fixed point is finite; this is in contrast to problems for which we would like to guarantee exact recovery [236],
and crucially, bounds the number of resampling steps required by the algorithm.
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Then assuming that the error recursion converges to its fixed point, we have the bound

∆T ≤ C

(
d

N
· τ 2
N

(b) +m∗
N,δ

)
(6.22)

for the ‘final’ iterate of our algorithm. Once again, it is worth noting that the final error in
the noiseless case is strictly better than the d/N rate if the complexity term τN decays with N ;
Corollary 6.3.1 provides an example of such a phenomenon.

Remark 6.4.2 (Sharpness in the noiseless regime). The bound (6.22) is unlikely to be the sharpest
bound one can prove in general SIMs for the noiseless case. There are other analyses of the ERM
tailored to capture the correct “version space” of the noiseless nonparametric regression problem,
and these will be sharper than the bounds presented above. For a more in-depth discussion, see the
full paper [243].

6.4.4 Proof of Theorem 6.4.1
First, we use Proposition 6.4.1 to provide a bound on the rate functionRERM

k (νth
∗; ρσ,t, δ/3). Using

the notation of Assumption 6.2.3, let ĥ denote the function estimate obtained as a result of running
the ERM on k samples from the model (6.6). For a sufficiently large constant c2, set

u = c2 ·
√

log
(
c2
δ

)
·
(
τk(νth

∗; b) ∨ b√
k

)
(6.23)

in Proposition 6.4.1(a), and consider the function f : = ĥ− νth∗ ∈ Hνth∗ . This yields the bound

‖ĥ− νth∗‖2
2 ≤ 2‖ĥ− νth∗‖2

k + c2 ·
(
τ 2
k (νth

∗; b) ∨ b
2

k

)
log
(
c2
δ

)
with probability exceeding 1− δ/9. Moreover, applying the same result to the set of fresh samples
y1, . . . , yk (note that our definition of the norm, etc. would have to change, but the same result
applies), we have

1

k

k∑
i=1

(
ĥ(yi)− νth∗(yi)

)2

≤ 3

2
‖ĥ− νth∗‖2

2 +
1

2
u2;

choosing u according to equation (6.23) and putting together the pieces implies the bound

1

k

k∑
i=1

(
ĥ(yi)− νth∗(yi)

)2

≤ 3‖ĥ− νth∗‖2
k + c2 ·

(
τ 2
k (νth

∗; b) ∨ b
2

k

)
log
(
c2
δ

)
with probability exceeding 1− 2δ

9
.

Finally, we bound ‖ĥ− νth∗‖2
k using Proposition 6.4.1(b). Setting

u = c2 · log
(
c2
δ

)
·
(
µk(νth

∗, yk1 ; 2ρσ,t) ∨
ρ2σ,t

k·µk(νth∗,yk1 ;2ρσ,t)

)
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and simplifying, we obtain

‖ĥ− νth∗‖2
k ≤ c2

(
µ2
k(νth

∗, yk1 ; 2ρσ,t) ∨
ρ2σ,t
k

)
log
(
c2
δ

)
with probability exceeding 1− δ

9
. Putting together the pieces, we have shown the bound

RERM

k (νth
∗; ρσ,t, δ/3) ≤ c2

{(
τ 2
k (νth

∗; b) ∨ b2

k

)
+
(
µ2
k(νth

∗, yk1 ; 2ρσ,t) ∨
ρ2σ,t
k

)}
log
(
c2
δ

)
.

Substituting this expression into Theorem 6.2.1 by setting k = N completes the proof, since at
iteration t of the iterative algorithm, we have yk1 = {yi}i∈D2t+1 .

6.4.5 Proof of Corollary 6.3.1
The proof of this result makes crucial use of Theorem 6.4.1, and the reader is advised to scan
the previous sections for its statement and proof. Given Theorem 6.4.1, it suffices—in addition
to establishing Assumptions 6.2.1, 6.2.2, and 6.4.1—to bound the complexity functions τk and
µk. All of these steps are presented in the following lemmas. Recall the value ρmono defined in
equation (6.8), and our shorthand cn,δ =

√
2 log(2n/δ).

Lemma 6.4.2. For a non-decreasing function g : R→ R, consider the observation model

Y = g(X) + σZ, (6.24)

with Z ∼ N (0, 1) and X drawn from some Lebesgue measurable distribution. Then the function
h(y) = E[X|Y = y] exists a.e., and is non-decreasing.

Lemma 6.4.3. Suppose that in the monotone single-index model (6.24), the link function g satisfies
Assumption 6.3.1, and the covariate distribution is given by a Gaussian truncated to the interval
[−cn,δ, cn,δ]. Then, Assumption 6.2.2 holds with ρσ ≤ ρmono.

The next two lemmas are stated assuming that the function classH is given by

H(b) =
{
h : R 7→ [−b, b]

∣∣ h non-decreasing
}

(6.25)

for some positive real number b. Recall our notation for the shifted function class around h∗, given
byHh∗ = {h− h∗ | h ∈ H}. In the following lemmas, we also assume that h∗ ∈ H.

Lemma 6.4.4. For each function h∗ ∈ H, integer k, sequence of samples yk1 , and scalar γ, we have

τ 2
k (h∗; b) ≤ c2b

2

(
log k

k

)2/3

, and (6.26a)

µ2
k(h
∗, yk1 ; γ) ≤ c2

(
γ2b log k

k

)2/3

. (6.26b)

for a sufficiently large constant c2.
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Remark 6.4.3. Note that we have not been particularly careful about the exact logarithmic factor
in the bounds (6.26), since there are other logarithmic terms present in the final bound of Corol-
lary 6.3.1. However, we do note that it is likely that these bounds can be sharpened to remove the
logarithmic factor appearing on the RHS.

We prove these lemmas at the end of the section. Taking them as given for the moment, let us
establish Corollary 6.3.1. Begin by defining the event

E = {|〈xi, θ∗〉| ≤ cn,δ for all i ∈ [n]},

and noting that Pr{E} ≥ 1− δ
4

by standard Gaussian tail bounds. We work on this event for the rest
of the proof, so that Lemma 6.4.2 guarantees the inclusion H(cn,δ) ⊇ {y 7→ E[〈X, θ∗〉|Y = y]}.
Now, recall our shorthand ρσ,t =

√
∆t + νtρ2

σ, and suppose that the pair (∆t, δ) satisfies the
inequalities

∆t ≤
99

100
and

{(
τ 2
n(νth

∗; b) ∨ b2

n

)
+
(
µ2
n(νth

∗, {yi}i∈D2t+1 ; 2ρσ,t) ∨
ρ2σ,t
n

)}
log
(
c2
δ

)
+ ρ2

mono ≤ c1.

(6.27)

The second condition is satisfied for large enough n, and by the assumption that ρmono is bounded
above by a small enough constant. The tuple (µn, τn, b) is chosen according to Lemma 6.4.4. Then,
applying Theorem 6.4.1 and substituting the bounds guaranteed by Lemmas 6.4.3 and 6.4.4 yields
the guarantee

∆t+1 ≤ c2

{
c2
n,δ

(
log n

n

)2/3

+

(
cn,δ

(
∆t + ρ2

mono

) log n

n

)2/3

+ ρ2
mono

}
d

n
log
(c2

δ

)
= c2

{(
log n

n

)2/3

+

(
∆t + ρ2

mono

n

)2/3

+ ρ2
mono

}
d

n
log
(c2

δ

)
· c2

n,δ

with probability at least 1−δ, where the reader should recall that the values of the absolute constants
may change from line to line. This establishes the bound (6.9a).

It remains to translate this guarantee into a bound on the final iterate (6.9b). Toward that end,
set δ = n−10, and note that c2

n,δ ∼ log n to obtain the simplified one-step guarantee

∆t+1 ≤ c2

{(
log n

n

)2/3

+

(
∆t + ρ2

mono

n

)2/3

+ ρ2
mono

}
d

n
log2 n,

which holds for each iteration t on the corresponding event Et. On Et and under the assumption
n ≥ Cσ2(κ2

0 − 1)d log2 n, it can be verified that ∆t+1 satisfies condition (6.27) for a large enough
constant C. Consequently, the argument can be applied iteratively; for an integer value T0 to be
determined shortly, condition on the event ∩T0i=0Ei. By the union bound, this event occurs with
probability exceeding 1−T0n

−10. Abusing notation slightly, let ρmono now denote the same quantity
but with this value of δ substituted.
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Now choose an integer value T satisfying C log log n ≤ T ≤ T0 for a large enough absolute
constant C and any T0 ≤ n. Let us apply Lemma B.2.1 in the appendix with the substitutions

C1 = c2
d

n
log2 n

{(
log n

n

)2/3

+ ρ2
mono

}
,

C2 = c2
d

n
log2 n, and

C3 = ρ2
mono,

and note that γ = 2/3 and ∆0 ≤ 1 by definition. Then by choosing C large enough, we can ensure
that T is large enough to satisfy the condition required by Lemma B.2.1. Consequently, we have

∆T ≤ c ·

{
d

n
log2 n

{(
log n

n

)2/3

+ ρ2
mono

}
+
d

n
log2 n ·

(
ρ2

mono

n

)2/3

+
p3

n5 log6 n

}

(i)

≤ c ·


d log2 n

n

(
log n

n

)2/3

︸ ︷︷ ︸
T1

+
d log2 n

n
ρ2

mono︸ ︷︷ ︸
T2

+
d log2 n

n
·
(
ρ2

mono

n

)2/3

︸ ︷︷ ︸
T3

 (6.28)

where in step (i), we have used the condition n & d to obtain the bound

p3

n5 log6 n .
d log2 n

n

(
log n

n

)2/3

.

Finally, some algebra reveals that if T2 ≤ T3, then T3 ≤ T1, and so we may drop the term T3

from the bound by changing the absolute constant, and this concludes the proof. We note that the
poly-logarithmic factors in the final bound have not been optimized.
It remains to prove the various lemmas.

Proof of Lemma 6.4.2

We use fX and fY to denote the marginal densities of the pair (X, Y ). The notation fX,Y is used to
denote their joint density, and let fX|Y denote the conditional density X|Y . We use φ(·) to denote
the standard Gaussian PDF, and X to denote the support of X . We have

h(y) : = E[X|Y = y] =

∫
X
x
fX,Y (x, y)

fY (y)
dx

=

∫
X xfX(x)φ(y − g(x))dx

fY (y)
.
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Now note that we have d
dy
fX,Y (x, y) = −

(
y−g(x)
σ2

)
fX,Y (x, y) for each y; this follows by differenti-

ating the Gaussian PDF. Further, note that fY (y) =
∫
X fX,Y (x̃, y)dx̃, so we have

σ2h′(y) =
1

(fY (y))2
·
(
−
∫
X

∫
X
x(y − g(x)) · fX,Y (x̃, y)fX,Y (x, y)dxdx̃

+

∫
X

∫
X
x(y − g(x̃)) · fX,Y (x̃, y)fX,Y (x, y)dxdx̃

)
=

1

(fY (y))2
·
∫
X

∫
X
x(g(x)− g(x̃))fX,Y (x̃, y)fX,Y (x, y)dxdx̃. (6.29)

Since the same statement holds with the roles of x and x̃ interchanged, we also have

σ2h′(y) =
1

(fY (y))2
·
∫
X

∫
X
x̃(g(x̃)− g(x))fX,Y (x̃, y)fX,Y (x, y)dxdx̃. (6.30)

Summing equations (6.29) and (6.30) yields

2σ2h′(y) =
1

(fY (y))2
·
∫
X

∫
X

(x− x̃)(g(x)− g(x̃))fX,Y (x̃, y)fX,Y (x, y)dxdx̃ ≥ 0,

where the inequality follows from the monotonicity of g, which ensures that (x− x̃)(g(x)− g(x̃))
is non-negative.

Proof of Lemma 6.4.3

Recall that our (forward) observation model on the set of labeled samples is given by

Y = g∗(W ) + σZ,

whereW is a standard Gaussian truncated to the interval [−cn,δ, cn,δ], the link function g∗ : R→ R is
monotone, and Z is a standard normal independent of everything else. In addition, Assumption 6.3.1
also implies that the bounds

m|a− b| ≤ |g∗(a)− g∗(b)| ≤M |a− b| (6.31)

hold for each pair of scalars (a, b).
We now split the rest of the proof into two cases.

Case g∗(−cn,δ) ≤ y ≤ g∗(cn,δ): In this case, note that the function g−1 is uniquely defined. Let
us use the shorthand

τ ≡
√

1 + σ2/M2 ≤ τ ≡
√

1 + σ2/m2,
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and note that both of these quantities are equal to 1 when σ = 0. It also convenient to define

σ =

√
σ2

m2 + σ2
, σ =

√
σ2

M2 + σ2
,

µ(y) =
g−1(y)

1 + σ2/m2
, and µ(y) =

g−1(y)

1 + σ2/M2
.

Once again, it is useful to keep in mind that we have σ ≈ σ/m and µ(y) ≈ µ(y) ≈ g−1(y) in the
small σ regime. Finally, let φτ denote the density of a zero-mean Gaussian with standard deviation
τ , and let φ ≡ φ1. Let Φ denote the CDF of the standard Gaussian.

We require the following lemma about the joint density of the pair (W,Y ).

Lemma 6.4.5. For each g∗(−cn,δ) ≤ y ≤ g∗(cn,δ), we have

fW,Y (w, y) ≤ τ σ

σ
φτ
(
g−1(y)

)
φσ (w − µ(y))κ−11 {w ∈ [−cn,δ, cn,δ]} and (6.32a)

fY (y) ≥ τ σ

3σ
φτ
(
g−1(y)

)
κ−1. (6.32b)

The proof of Lemma 6.4.5 is postponed to the end of the subsection. Taking it as given for the
moment, let us complete the proof of Lemma 6.4.3. Let us use the shorthand Wy ≡ [W |Y = y].
Lemma 6.4.5 yields the tail bound

Pr(|Wy − µ| ≥ tσ) ≤ 3τ σ

τ σ
· φτ (g−1(y))

φτ (g−1(y))
Φ(−t) ∧ 1

≤ 3τ σ

τ σ
· φτ (g−1(y))

φτ (g−1(y))
exp(−t2/2) ∧ 1

=
3σ

σ
exp

(
−(g−1(y))

2

2
·
(
τ−2 − τ−2

))
exp(−t2/2) ∧ 1

(i)

≤ 3M

m
exp

(
(g−1(y))

2

2
·
(
τ−2 − τ−2

))
exp(−t2/2) ∧ 1,

where in step (i), we have used the relation
√

σ2+M2

σ2+m2 ≤ M
m

. Further substituting the values of the
pair (τ , τ), we have

Pr(|Wy − µ| > tσ) ≤ 3M

m
exp

(
(g−1(y))

2

2
· σ · σ ·Mm(M2 −m2)

)
exp(−t2/2) ∧ 1

(ii)

≤ 3M

m
exp

(
(g−1(y))

2

2
· σ2(M2 −m2)

)
exp(−t2/2) ∧ 1,
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where in step (ii), we have used the fact that when ρmono ≤ c1, we have σ ≤ Cm. We now make
note of the following series of inequalities, which holds for each tuple of positive scalars (K, t)
satisfying K ≥ 1:

eKe−t
2/2 ∧ 1 ≤ exp

{
K − t2/2 ∧ 0

}
= exp

{
K(1− t2

2K
∧ 0
}

(i)

≤ exp
{

(1− t2

2K
) ∧ 0

}
≤ exp

{
1− t2

2K

}
.

where step (i) uses the fact that K ≥ 1. Also define the positive scalar

Γ(y) : =

√
(g−1(y))2

2
· σ2(M2 −m2) + log

(
3M
m

)
for convenience, and note that we have

sup
y∈[g∗(−cn,δ),g∗(cn,δ)]

Γ(y) ≤ Γ : =

√
c2
n,δ

2
· σ2(M2 −m2) + log

(
3M
m

)
.

Putting together the pieces, we have

Pr

(
|Wy − µ|

σ
≥ t

)
≤ exp

(
1− t2

2Γ2(y)

)
,

and applying Lemma 5.5 of Vershynin [319] yields the inequality

‖ξ(y)‖ψ2

(ii)

≤ C‖Wy − µ‖ψ2 ≤ CσΓ(y) ≤ C
( σ
m
∧ 1
)
· Γ,

where step (ii) follows from the fact that centering does not change the sub-Gaussian constant by
more than a constant factor (see, e.g., Lemma 2.6.8 of Vershynin [318]). Finally, using once again
the fact that σ ≤ Cm and applying the elementary inequality

√
a+ b ≤

√
a+
√
b, which holds for

any pair of positive reals (a, b) establishes the result for this case.

Case 2: When y /∈ [g∗(−cn,δ), g∗(cn,δ)], we proceed by showing that the desired sub-Gaussian
constant is still less than C(σΓ ∨ σcn,δ) for an absolute constant C. Let ȳ : = g∗(cn,δ), and first
consider the case y ≥ ȳ. Define the (non-negative) random variable W ′ : = cn,δ −Wy, and use the
notation W ≡ Wy for simplicity. First, note that it suffices to show a bound on the smallest positive
γ such that

E[eγ(W ′)2|Y = y] ≤ 2,
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since centering at the mean only affects the sub-Gaussian constant by a constant factor [318].
Then the ratio between the conditional densities when Y = y and Y = ȳ is given by

fW |Y (w|y)

fW |Y (w|y)
= Cy,y

fW,Y (w, y)

fW,Y (w, y)

= Cy,y
φσ(y − g∗(w))

φσ(y − g∗(w))

= Cy,y exp
(
−((y − g∗(w))2 − (y − g∗(w))2)/2σ2)

)
,

where Cy,y is a positive parameter that depends on the pair (y, y), but is independent of the scalar w.
This yields the further chain of bounds

fW |Y (w|y)

fW |Y (w|y)
= Cy,y exp

(
−((y − y)(

y + y

2
− g∗(w))/σ2)

)
= Cy,y exp

(
−((y − y)/σ2)

) y+y
2
−g∗(w)

= C ′y,y exp
(
(y − y)/σ2

)g∗(w)
,

for a different positive constant C ′y,y that is independent of w. Since y ≥ y, the likelihood ratio is
non-decreasing in w. Equivalently, the likelihood ratio decreases as the quantity cn,δ − w increases.
Consequently, the random variables (cn,δ −W )2 and fW |Y (W |y)

fW |Y (W |y)
are negatively correlated, and for

each γ > 0, we have

E
[
e(W ′)2/γ2|Y = y

]
= E

[
eγ
−2(cn,δ−W )2 fW |Y (W |y)

fW |Y (W |y)
|Y = y

]
≤ E

[
eγ
−2(cn,δ−W )2|Y = y

]
· E
[
fW |Y (W |y)

fW |Y (W |y)
|Y = y

]
= E

[
eγ
−2(cn,δ−W )2|Y = y

]
= E

[
exp

(
γ−2(cn,δ − µ(y))2 + (µ(y)−W )2

)
|Y = y)

]
= exp

(
γ−2(cn,δ − µ(y))2

)
E
[
exp

(
γ−2(µ(y)−W )2

)
|Y = y)

]
.

Finally, note that we have (cn,δ − µ(y))2 = c2
n,δ

σ2

m2+σ2 = c2
n,δσ

2. On the other hand, by case 1 of
the proof, the expectation term in the last display is bounded by a constant provided γ2 ≥ σ2Γ2.
By adjusting the constant factors, we can ensure that E

[
eγ
−2(W ′)2 |Y = y

]
≤ 2 provided γ ≥

Cσ2(Γ2 ∨ c2
n,δ), and this completes the proof for the case y ≥ y. An identical argument holds when

y ≤ −y, and combining the two cases yields the lemma.

Proof of Lemma 6.4.5: Recall the notation κ = Pr{Z ∈ I}, so that the density of the random
variable W is given by

fW (w) = κ−1φ(w)1 {w ∈ I};
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we use the shorthand κ(w) : = κ−11 {w ∈ I} for convenience.
Let us begin by deriving the joint density. We have

fW,Y (w, y) = fY |W (y|w)fW (w)

= φσ(y − g(x)) φ(w)κ(w)

(i)

≤ φσ(m(g−1(y)− w)) φ(w)κ(w)

=
1

2πσ
exp

(
−(g−1(y)− w)2

2σ2/m2
− w2

2

)
κ(w),

where step (i) follows from equation (6.31). Completing the squares and performing some more
algebra leads to the relation

fW,Y (w, y) ≤ 1

2πσ
exp

(
− g−1(y)2

2(1 + σ2/m2)

)
exp

−(1 + σ2/m2)
(
w − g−1(y)

1+σ2/m2

)2

2σ2/m2

κ(w)

=
1

2πσ
exp

(
−g
−1(y)2

2τ 2

)
exp

(
−(w − µ(y))2

2σ2

)
κ(w)

=
τ σ

σ
φτ
(
g−1(y)

)
φσ (w − µ(y))κ(w),

and this proves inequality (6.32a).
We now turn to establishing bound (6.32b). We have

fY (y) =

∫
I
fW,Y (w, y)dw

=

∫
φσ(y − g(x)) φ(w)κ(w)dw

(ii)

≥
∫
φσ(M(g−1(y)− w)) φ(w)κ(w)dw,

where step (ii) once again follows from equation (6.31). Completing the square similarly to above
and performing some more algebra yields

fY (y) ≥
∫

1

2πσ
exp

(
− (g−1(y))2

2(1 + σ2/M2)

)
exp

−(1 + σ2/M2)
(
w − g−1(y)

1+σ2/M2

)2

2σ2/M2

κ(w)dw

=
τ σ

σ
φτ
(
g−1(y)

) ∫
φσ
(
w − µ(y)

)
κ(w)dw.
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The following sequence of relations then completes the proof.

κ

∫
φσ(w − µ(y))κ(w)dw =

∫ cn,δ

−cn,δ

φσ(w − µ(y))dw

≥
∫ cn,δ

µ(y)

φσ(w − µ(y))dw

=

∫ µ(y)+cn,δ

0

φσ(w)dw

≥
∫ 2

0

φ(z)dz > 1/3,

where we have used the inequalities 0 ≤ µ(y) ≤ cn,δ, cn,δ ≥ 2, and σ ≤ 1.

Proof of Lemma 6.4.4

The proof of both claims in this lemma are based on the following result that bounds the expected
supremum of the associated empirical process. In it, we let ν = (ν1, . . . , νk) denote a sequence of
i.i.d. 1-sub-Gaussian random variables that is independent of everything else.

Lemma 6.4.6. For each function h ∈ H, sequence of samples y1, . . . , yk, and scalar ϑ, we have

Eν

 sup
h∈H

‖h−h∗‖k≤ϑ

∣∣∣∣∣1k
k∑
i=1

νi · (h− h∗)(yi)

∣∣∣∣∣
 ≤ c2

√
bϑ (log(b/ϑ) ∨ 1)

k
.

A variant of this claim can be found, for instance, in van de Geer [308], but we provide the
proof at the end of this section for completeness. Taking the lemma as given for the moment, let us
establish the two bounds. For convenience, we use the shorthandH∗ ≡ Hh∗ .

Proof of claim (6.26a): We must establish a bound on the (localized) population Rademacher
complexity of the function classH, which contains functions that are uniformly bounded by b. It is
helpful to work instead with the empirical Rademacher complexity, which, for an abstract function
class F takes the form

R̂k(F) : = Eη

[
sup
f∈F

∣∣∣∣∣1k
k∑
i=1

ηif(yi)

∣∣∣∣∣
]
. (6.33)

Note that we no longer take an expectation over the design points, and so this complexity measure
should be viewed as a random variable when the samples y1, . . . , yk are random. Recall the norm
‖ · ‖k defined in equation (6.17), and let τ̂k(h∗; γ) denote the smallest positive solution to the
(empirical) critical equality

τ 2

γ
= R̂k(H∗ ∩ B(‖ · ‖k; τ)) (6.34)
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for some positive scalar γ. Since the function class H∗ is 2b-bounded and star-shaped around
0, a slight modification of Proposition 14.25 of Wainwright (see also the discussion surrounding
equations (14.6)-(14.8)) guarantees that there is an absolute constant c such that

τ 2
k (h∗; b) ≤ c · τ̂ 2

k (h∗; b)

with probability exceeding 1 − exp {−c1kτ
2
k (h∗; b)/b2}. Consequently, it suffices to bound the

(random) quantity τ̂k; we dedicate the rest of this proof to such a bound. Applying Lemma 6.4.6,
we are looking for the smallest strictly positive solution to the inequality

τ 2

b
≤ c2

(
bτ log(b/τ)

k

)1/2

,

and solving with equality yields the bound.

Proof of claim (6.26b): By definition of the functional µk and Lemma 6.4.6, we are looking for
the smallest strictly positive solution to the inequality

µ2

γ
≤ c2

(
bµ log(b/µ)

k

)1/2

,

and solving with equality yields the claimed bound.

Proof of Lemma 6.4.6: Since we are interested in bounding the sub-Gaussian complexity over
the class of bounded monotone functions, we appeal to arguments based on metric entropy bounds
and chaining [313]. Let us provide some background for this method, starting with the definition of
the covering number of a set in a metric space.

Definition 6.4.1 (Covering number). An ε-cover of a set T with respect to a metric ρ is a set{
θ1, θ2, . . . , θN

}
⊂ T such that for each θ ∈ T, there exists some i ∈ [N ] such that ρ(θ, θi) ≤ ε.

The ε-covering number N(ε;T, ρ) is the cardinality of the smallest ε-cover.

The logarithm of the covering number is referred to as the metric entropy of a set. It is well
known that the sub-Gaussian complexities of sets can be bounded via their metric entropies, and we
employ this approach below. View the samples y1, . . . , yk as fixed in our particular problem, and
use the shorthand Bn(µ;H∗)) : = {h ∈ H | ‖h − h∗‖k ≤ µ}. Then we have the upper bound in
terms of Dudley’s entropy integral (see Theorem 5.22 of Wainwright [323]):

Eν

 sup
h∈H

‖h−h∗‖k≤ϑ

∣∣∣∣∣1k
k∑
i=1

νi · (h− h∗)(yi)

∣∣∣∣∣
 ≤ 16√

k

∫ ϑ

0

√
logN(t;Bn(ϑ;H∗), ‖ · ‖k)dt.
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It is a classical fact that we have the bound

logN(t;Bn(µ;H∗), ‖ · ‖k) ≤
cb

t
max{log(b/t), 1}

for some absolute constant c (see, e.g., Example 2.1(i) of van de Geer [308]), where b is the uniform
bound on functions inH. Substituting this bound and simplifying yields the claim.

6.5 Summary and open questions
Our work provides a general-purpose method by which the bias in performing parameter estima-
tion under the class of single-index models can be significantly reduced; crucially, this involves
leveraging properties of the function class to which the nonparametric link function belongs. Our
approach should be viewed as reduction based: given an appropriate labeling oracle, we are able to
reduce the problem to performing nonparametric regression over a suitably defined inverse function
class. Our analysis is black-box and also reduction-based, in that it allows any nonparametric
function estimator, and derives a final rate of parameter estimation depending on the rate of the
nonparametric estimator. We particularized this framework to the case where the nonparametric
function estimator was given by least-squares, or empirical risk minimization.

To illustrate this general framework, we derived end-to-end parameter estimation guarantees for
a sub-class of monotone single-index models, improving upon the rates of classical semiparametric
estimators. Owing to the reduction in bias, this improvement is particularly stark as the noise level
σ → 0. In particular, when the model is noiseless, we showed a sharpened rate for the problem
using a slightly different analysis method adapted to a natural variant of the procedure. In addition,
we showed an information-theoretic identifiability limit for the problem of parameter estimation in
monotone SIMs.

The generality of our framework raises many interesting questions. For instance, are there other
classes of SIMs for which a labeling oracle is implementable in a computationally efficient manner?
Another important assumption that was made in our paper was that of Gaussian covariates. Strictly
speaking, this assumption can be weakened slightly provided the noise in the “nuisance” directions
(corresponding to directions of covariate space that are orthogonal to 〈X, θ∗〉) are well-behaved
under conditioning. A rigorous extension to this class of covariates is an interesting open problem,
and is likely to significantly broaden the scope of our results. Finally, there is the question—regarded
as widely important in the statistical signal processing literature—of how these approaches should
be modified when the true parameter θ∗ ∈ K for some (typically convex) set K ⊆ Rd. Is it sufficient
to perform the linear regression step in our algorithms under this additional restriction? What are
the rates achieved by such a procedure in the high signal regime?

In the broader context of this dissertation, let us emphasize the main takeaway of this chapter:
that the alternating minimization methodology is both computationally tractable and adapts to the
noise level in single-index models, resulting in significantly faster estimation rates in the low-noise
(or high-signal) regime.
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Chapter 7

The policy evaluation problem

Reinforcement learning (RL) is a class of methods for the optimal control of dynamical systems [27–
29, 292] that has begun to make inroads in a wide range of applied problem domains. This empirical
research has revealed the limitations of our theoretical understanding of this class of methods—
popular RL algorithms exhibit a variety of behavior across domains and problem instances, and
existing theoretical bounds, which are generally based on worst-case assumptions, fail to capture
this variety. An important theoretical goal is to develop instance-specific analyses that help to reveal
what aspects of a given problem make it “easy” or “hard”. In the context of this thesis, such a
goal corresponds to the strongest form of adaptation guarantee, and allows distinctions to be drawn
between ostensibly similar algorithms in terms of their performance profiles. In this portion of the
thesis, we ask such precise questions for the policy evaluation problem. This chapter provides an
introduction to this problem and equips the reader with the necessary background for Chapters 8
and 9 to follow.

7.1 Introduction
A variety of applications spanning science and engineering use Markov reward processes as models
for real-world phenomena, including queuing systems, transportation networks, robotic exploration,
game playing, and epidemiology. In some of these settings, the underlying parameters that govern
the process are known to the modeler, but in others, these must be estimated from observed data.
A salient example of the latter setting, which forms the main motivation for our work, is the
policy evaluation problem encountered in Markov decision processes (MDPs) and reinforcement
learning [27, 28, 292]. Here an agent operates in an environment whose dynamics are unknown:
at each step, it observes the current state of the environment, and takes an action that changes
its state according to some stochastic transition function determined by the environment. The
goal is to evaluate the utility of some policy—that is, a mapping from states to actions, where
utility is measured using rewards that the agent receives from the environment. These rewards are
usually assumed to be additive over time, and since the policy determines the action to be taken
at each state, the reward obtained at any time is simply a function of the current state of the agent.
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Thus, this setting induces a Markov reward process (MRP) on the state space, in which both the
underlying transitions and rewards are unknown to the agent. The agent only observes samples of
state transitions and rewards.

Given these samples, the goal of the agent is to estimate the value function of the MRP. As
noted above, in the context of Markov decision processes (MDPs), this problem is known as policy
evaluation. The value function evaluated at a given state measures the expected long-term reward
accumulated by starting at that state and running the underlying Markov chain. In applications, this
value function encodes crucial information about the MRP. For example, there are MRPs in which
the value function corresponds to the probability of a power grid failing [109] or the value of a
board configuration in a game of Go [282]. Moreover, policy evaluation is an important component
of many policy optimization algorithms for reinforcement learning, which use it as a sub-routine
while searching for good policies to deploy in the environment.

The focus of the next two chapters is on understanding the policy evaluation problem in finite-
state (or tabular) MRPs in an instance-dependent manner, focusing on the the generative setting
in which the agent has access to a simulator that generates samples from the underlying MRP. In
particular, we would like guarantees on the sample complexity of policy evaluation—defined as
the number of samples required to obtain a value function estimate of some pre-specified error
tolerance—as a function of the agent’s environment, i.e., the transition and reward functions induced
by the policy being evaluated. Local guarantees of this form provide more guidance for algorithm
design in finite sample settings than their worst-case counterparts. Indeed, as sketched in the
introductory chapter, this viewpoint underpins the important sub-field of local minimax complexity
studied widely in the statistics and optimization literatures (e.g., [48, 354]), as well as in more recent
work on online reinforcement learning algorithms [345].

1
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Figure 7.1: A simple 3-state Markov reward process.

The benefits of our instance-dependent guarantees are even evident in a model as simple as
the 3-state MRP illustrated in Figure 7.1. Suppose that we observe noiseless rewards of this MRP
and wish to compute its infinite-horizon value function with discount factor γ ∈ (0, 1). Bounds
based on the contractivity of the Bellman operator [160, 166, 324] imply that the `∞-error of the
plug-in estimate scales proportionally to 1/(1− γ)2. The worst-case bounds of Azar et al. [7] imply
a rate 1/(1− γ)3/2. But the optimal local result captured in Chapter 8 shows that the error is only
proportional to 1/(1− γ). For a discount factor γ = 0.99, this improves the previous bounds by
factors of 100 and 10, respectively, and consequently, the respective sample complexities by factors
of 104 and 102. Instance-dependent results therefore allow us to differentiate problems that are
“solvable” with finite samples from those that are not.
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Before proceeding to our assessment of various algorithms, let us set down some important
background for Chapters 8 and 9.

7.2 Background and problem formulation
In this section, we introduce the basic notation required to specify a Markov reward process, and
formally define the problem of estimating value functions in the generative setting.

7.2.1 Markov reward processes and value functions
We study Markov reward processes defined on a finite setX of states, indexed asX = {1, 2, . . . , D}.
The state evolution over time is determined by a set of transition functions {P ( · | x), x ∈ X

}
,

with the transition from state x to the next state being randomly chosen according to the distribution
P ( · | x). For notational convenience, we let P ∈ [0, 1]D×D denote a row stochastic (Markov)
transition matrix, where row j of this matrix—which we denote by pj—collects the transition
function of the j-th state. Also associated with an MRP is a population reward function r : X 7→ R:
transitioning from state x results in the reward r(x). For convenience, we engage in a minor abuse of
notation by letting r also denote a vector of length D, with rj corresponding to the reward obtained
at the j-th state.

In this part of the thesis, we consider the infinite-horizon, discounted reward as our notion for
the long-term value of a state in the MRP. In particular, for a scalar discount factor γ ∈ (0, 1), the
long-term value of state x in the MRP is given by

θ∗(x) : = E

[
∞∑
k=0

γkr(xk)
∣∣∣ x0 = x

]
, where xk ∼ P ( · | xk−1) for all k ≥ 1.

In words, this measures the expected discounted reward obtained by starting at the state x, where
the expectation is taken with respect to the random transitions over states. Once again, we use θ∗ to
also denote a vector of length D, where θ∗j corresponds to the value of the j-th state.

A note to the reader: in the sequel, we often reference a state simply by its index, and often refer
to the state space X ≡ [D]. Accordingly, we also use P ( · | j) to denote the transition function
corresponding to state j ∈ [D].

7.2.2 Observation model
Given access to the true transition and reward functions, it is straightforward, at least in principle,
to compute the value function. By definition, it is the unique solution of the Bellman fixed point
relation

θ∗ = r + γPθ∗. (7.1)

In the learning setting, the pair (P, r) is unknown, and we instead assume access to a black box
that generates samples from the transition and reward functions. In this part of the thesis, we



CHAPTER 7. THE POLICY EVALUATION PROBLEM 193

operate under a setting known as the synchronous or generative setting; it is a stylized observation
model that has been used extensively in the study of Markov decision processes (see Kearns and
Singh [166] for an introduction). Let us introduce it in the context of MRPs: for a given sample
index k = 1, 2, . . . , N and for each state j ∈ [D], we observe a random next state Xk,j ∈ [D] drawn
according to the transition function P ( · | j), and a random reward Rk,j drawn from a conditional
distribution Dr( · | j). Throughout, we assume that the rewards are generated independently across
states, with E[Rk,j] = rj . Letting ρ(r) denote a non-negative vector indexed by the states j ∈ [D],
we assume the conditional distributions {Dr( · | j), j ∈ [D]} are ρ(r)-sub-Gaussian, meaning that
for each j ∈ [D], we have

ER∼Dr( · |j)
[
eλ(R−rj)

]
≤ e

λ2ρ2j (r)

2 for all λ ∈ R. (7.2)

With N such i.i.d. samples in hand, our goal is to estimate the value function θ∗ in the `∞-error
metric.

Such a goal is particularly relevant to the policy evaluation problem described in the introduction,
since `∞-estimates of the value function can be used in conjunction with a policy improvement sub-
routine to eventually arrive at an optimal policy (see, e.g., Section 1.2.2. of the recent monograph [2]).
We note in passing that bounds proved under the generative model may be translated into the more
challenging online setting via the notion of Markov cover times (see, e.g., the papers [6, 95] for
conversions of this type for Markov decision processes).

7.2.3 The plug-in estimator
A natural approach to this problem is use the observations to construct estimates (P̂, r̂) of the pair
(P, r), and then substitute or “plug in” these estimates into the Bellman equation, thereby obtaining
the value function of the MRP having transition matrix P̂ and reward vector r̂.

In order to define the plug-in estimator, let us introduce some helpful notation. For each time
index k, we use the associated set of state samples {Xk,j, j ∈ [D]} to form a random binary matrix
Zk ∈ {0, 1}D×D, in which row j has a single non-zero entry, determined by the sample Xk,j . Thus,
the location of the non-zero entry in row j is drawn from the probability distribution defined by pj ,
the j-th row of P. Recall that our observations also include the stochastic reward vectors {Rk}Nk=1

sampled from the reward distribution Dr. Based on these observations, we define the sample means

P̂ =
1

N

N∑
k=1

Zk and r̂ =
1

N

N∑
k=1

Rk, (7.3)

which can be seen as unbiased estimates of the transition matrix P and the reward vector r,
respectively.

The estimates (P̂, r̂) define a new MRP, and its value function is given by the fixed point relation

θ̂plug = r̂ + γP̂θ̂plug. (7.4)
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Solving this fixed point equation, we obtain the closed form expression θ̂plug = (I − γP̂)−1r̂ for
the plug-in estimator. Note that the terminology “plug-in” arises the fact that θ̂plug is obtained by
substituting the estimates (P̂, r̂) into the original Bellman equation (7.1). We also note that in this
special case—that is, the tabular setting without function approximation—the plug-in estimate is
equivalent to the LSTD solution [39, 41].

In Chapter 8, we also introduce a close relative of the plug-in estimator that makes it significantly
more “robust”.

7.2.4 Operator view of stochastic approximation
Given these samples, define the k-th (noisy) linear operator T̂k : RD 7→ RD whose evaluation at the
point θ is given by

T̂k(θ) = Rk + γZkθ. (7.5)

The construction of these operators is inspired by the fact that we are interested in computing the
fixed point of the population operator,

T : θ 7→ r + γPθ, (7.6)

and a classical and natural way to do so is via a form of stochastic approximation known as temporal
difference learning.

Classical temporal difference (TD) learning algorithms are parameterized by a sequence of
stepsizes, {αk}k≥1, with αk ∈ (0, 1]. Starting with an initial vector θ1 ∈ RD, the TD updates take
the form

θk+1 = (1− αk)θk + αkT̂k(θk) for k = 1, 2, . . .. (7.7)

In the sequel, we discuss three popular stepsize choices:

Constant stepsize: αk = α, where 0 < α ≤ αmax. (7.8a)

Polynomial stepsize: αk =
1

kω
for some ω ∈ (0, 1). (7.8b)

Recentered-linear stepsize: αk =
1

1 + (1− γ)k
. (7.8c)

In addition to the TD sequence (7.7), it is also natural to perform Polyak-Ruppert averaging,
which produces a parallel sequence of averaged iterates

θ̃k =
1

k

k∑
j=1

θj for k = 1, 2, . . .. (7.9)

Such averaging schemes were introduced in the context of general stochastic approximation by
Polyak [255] and Ruppert [270]. A large body of theoretical literature demonstrates that such an
averaging scheme improves the rates of convergence of stochastic approximation when run with
overly “aggressive” stepsizes.
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7.2.5 Local complexity measures
In order to make our local guarantees precise, we require precise definitions of the “complexity” of
an instance. First, define the span semi-norm of a value function θ as

‖θ‖span : = max
x∈X

θ(x)−min
x∈X

θ(x).

Equivalently, the span semi-norm is equal to the variation of the vector θ ∈ RD; see Puterman [258]
for more details.

For each vector θ ∈ RD, define the vector of empirical variances

σ̂2(θ) : = Ê
∣∣∣(Z− P̂)θ

∣∣∣2 ,
where Ê denotes expectation over the empirical distribution (i.e., the random matrix Z is drawn
uniformly at random from the set {Zk}Nk=1). Note that given θ, this quantity is computable purely
from the observed samples. Also define population variance vector

σ2(θ) : = E |(Z−P)θ|2 ,

where in this case Z is drawn according to the population model P.
Define the covariance matrix of the vector (Z−P)θ as

ΣP(θ) : = covZ∼P ((Z−P)θ) . (7.10)

We often use Σ(θ) as a shorthand for ΣP(θ) when the underlying transition matrix P is clear from
the context. With these definitions in hand, define the complexity measures

ν(P, θ) : = max
`∈[D]

(
e>` (I− γP)−1Σ(θ)(I− γP)−>e`

)1/2
, and (7.11a)

ρ(P, r) : = σr
∥∥(I− γP)−1

∥∥
2,∞ ≡ σr max

‖u‖2=1
‖(I− γP)−1u‖∞. (7.11b)

Note that ν(P, θ) corresponds to the maximal variance of the random vector (I− γP)−1(Z−P)θ.
We also use the convenient shorthand

b(θ) : =
‖θ‖span

1− γ
(7.11c)

in order to define our final measure of complexity.

7.3 A “toy” Markov reward process
In the next two chapters, we study the local behavior of various algorithms. It will be helpful to
specialize these results to a toy MRP in which the instance-specific complexities can be changed in
a transparent and straightforward fashion.
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p

1� p

1

r = ⌫ r = ⌫ · ⌧

P0(p, ⌫, ⌧)
Figure 7.2: Illustration of the 2-state MRP used in the simulation. The triple of scalars (p, ν, τ),
along with the discount factor γ, are parameters of the construction. The chain remains in state 1
with with probability p and transitions to state 2 with probability 1− p; on the other hand, state 2 is
absorbing. The rewards in states 1 and 2 are deterministic, specified by ν and ντ , respectively.

This MRP consists of D = 2 states, where state 1 stays fixed with probability p, transitions to
state 2 with probability 1− p, and state 2 is absorbing. The rewards in states 1 and 2 are given by ν
and ντ , respectively. Here the triple (p, ν, τ), along with the discount factor γ, are parameters of the
construction. See Figure 7.2 for an illustration.

In some cases, it will be convenient to parameterize this MRP in a scalarized manner, in which
case we vary the triple (p, ν, τ) in the following way. First, we fix a scalar λ in the unit interval
[0, 1], and then we set

p = 4γ−1
3γ

, ν = 1, and τ = 1− (1− γ)λ. (7.12)

Note that this sub-family of MRPs is fully parameterized by the pair (γ, λ). In particular, the local
complexity quantities introduced in Section 7.2.5 can be explicitly calculated as functions of these
two parameters. It can be shown via simple calculations that the underlying MRP satisfies

ν(P, θ∗) ∼
(

1

1− γ

)1.5−λ

, ρ(P, r) = 0 and b(θ∗) ∼
(

1

1− γ

)2−λ

, (7.13a)

and furthermore, that

‖σ(θ∗)‖∞ ∼
(

1

1− γ

)0.5−λ

, ‖(I− γP)−1σ(θ∗)‖∞ ∼
(

1

1− γ

)1.5−λ

, and ‖θ∗‖span ∼
(

1

1− γ

)1−λ

,

(7.13b)

provided N & 1/(1 − γ) and γ ≥ 1
2
. These calculations are presented in Appendix C.1, but the

bounds (7.13) will be useful both in our lower bound constructions and simulations to follow.
Having formally set up the necessary background, we now turn to formal guarantees on these

procedures and their variants in Chapters 8 and 9.
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Chapter 8

Instance-dependent adaptation of plug-in
estimator

As a natural first step towards providing local guarantees for the policy evaluation problem, we
analyze the plug-in estimator for the problem, which estimates the underlying transition and reward
functions from the samples, and outputs the value function of the MRP in which these estimates
correspond to the ground truth parameters. We also analyze a robust variant of this approach, and
provide minimax lower bounds that hold over subsets of the parameter space.

Related work: Markov reward processes have a rich history originating in the theory of Markov
chains and renewal processes; we refer the reader to the classical books [99] and [90] for introduc-
tions to the subject. The policy evaluation problem has seen considerable interest in the stochastic
control and reinforcement learning communities, and various algorithms have been analyzed in
both asymptotic [36, 295] and non-asymptotic [183, 289] settings. Chapter 3 of the monograph by
Szepesvari [294] provides a brief introduction to these methods, and the recent survey by Dann et
al. [77] focuses on methods based on temporal differences [293].

In the language of temporal difference (TD) algorithms, the plug-in approach that we analyze
corresponds to the least squares temporal difference (LSTD) solution [41] in the tabular setting,
without function approximation. While TD algorithms for policy evaluation have been analyzed by
many previous papers, their focus is typically either on (i) how function approximation affects the
algorithm [301], (ii) asymptotic convergence guarantees [36, 295] or (iii) establishing convergence
rates in metrics of the `2-type [183, 289, 295]. Since `2-type metrics can be associated with an inner
product, many specialized analyses can be ported over from the literature on stochastic optimization
(e.g., [9, 232]).1 On the other hand, our focus is on providing non-asymptotic guarantees in
the `∞-error metric, since these are particularly compatible with policy iteration methods. In
particular, policy iteration can be shown to converge at a geometric rate when combined with policy
evaluation methods that are accurate in `∞-norm (e.g., see the books [2, 29]). Also, given that we

1Here we have only referenced some representative papers; see the references in Szepesvari [294] for a broader
overview.
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Problem Algorithm Paper Model Sample-size Guarantee Technique

State-action
value

estimation
in MDPs

Plug-in
[166], [160] Synchronous Non-asymptotic Global, `∞ Hoeffding

[7] Synchronous Non-asymptotic Global, `∞ Bernstein

Stochastic
approximation:
Q-learning &

variants

[37] Synchronous Asymptotic
Global,

conv. in dist. ODE method

[84] Synchronous Asymptotic
Local,

conv. in dist.
Asymptotic
normality

[324],
[65] Synchronous Non-asymptotic Local, `∞

Bernstein,
Moreau envelope

[6],
[280],
[325]

Synchronous Non-asymptotic Global, `∞
Bernstein,

variance reduction

Optimal
value

estimation
in MDPs

Plug-in
[7] Synchronous Non-asymptotic Global, `∞ Bernstein

[3] Synchronous Non-asymptotic Global, `∞
Bernstein +
decoupling

Stochastic
approximation [281] Synchonous Non-asymptotic Global, `∞

Bernstein +
variance reduction

Policy
evaluation
in MRPs

Plug-in This chapter Synchronous Non-asymptotic Local, `∞
Bernstein +

leave-one-out

Stochastic
approximation:

TD-learning

[295], [255],
[150], [37],

[84]

Synchronous,
trajectories Asymptotic

Local, `2 and
conv. in dist.

Averaging,
ODE method

[183], [30],
[289]

Synchronous,
trajectories Non-asymptotic Global, `2

Averaging,
martingales

TD-learning
with function
approximation

[301],
[306] Trajectories Asymptotic

Global oracle
inequality

Local,
conv. in dist.

Asymptotic
normality

[30],
[86],
[72]

Synchronous,
trajectories Non-asymptotic

Global and
local, `2

Population to
sample

Median of
means This chapter Synchronous Non-asymptotic Local, `∞ Robustness

Table 8.1: A subset of results in the tabular and infinite-horizon discounted setting, both for policy
evaluation in MRPs and policy optimization in MDPs. For a broader overview of results, see
Gosavi [123] for the setting of infinite-horizon average reward, and Dann and Brunskill [76] for the
episodic setting. The “technique” vertical of the table is only meant to showcase a representative
subset of those employed. Our contributions are highlighted in red.
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are interested in fine-grained, instance-dependent guarantees, we first study the problem without
function approximation.

As briefly alluded to before, there has also been some recent focus on obtaining instance-
dependent guarantees in online reinforcement learning settings [209, 283]. These analyses have
led to more practically applicable algorithms that provide, for instance, horizon-independent regret
bounds for certain episodic MDPs [154, 345], thereby improving upon worst-case bounds. Recent
work has also established some instance-dependent bounds for the problem of state-action value
function estimation in Markov decision processes, for both ordinaryQ-learning [324] and a variance-
reduced improvement [325]. However, we currently lack the localized lower bounds that would
allow us to understand the fundamental limits of the problem in a more local sense, except in some
special cases for asymptotic settings; for instance, see Ueno et al. [306] and Devraj and Meyn [84]
for bounds of this type for LSTD and stochastic approximation, respectively. We hope that our
analysis of the simpler policy evaluation problem will be useful in broadening the scope of such
guarantees.

Portions of our analysis exploit a decoupling that is induced by a leave-one-out technique. We
note that leave-one-out techniques are frequently used in probabilistic analysis (e.g., [81]). In the
context of Markov processes, arguments that are related to but distinct from those appearing in this
chapter have been used in analyzing estimates of the stationary distribution of a Markov chain [63],
and for analyzing optimal policies in reinforcement learning [3].

For the reader’s convenience, we have collected many of the relevant results both in policy
optimization and evaluation in Table 8.1, along with the settings and sample-size regimes in which
they apply, the nature of the guarantee, and the salient techniques used.

Contributions: We study the problem of estimating the infinite-horizon, discounted value function
of a tabular MRP in `∞-norm, assuming access to state transitions and reward samples under the
generative model. Our first main result, Theorem 8.1.1, analyzes the plug-in estimator, showing
two types of guarantees: on one hand, we derive high-probability upper bounds on the error that
can be computed based on the observed data, and on the other, we show upper bounds that depend
on the underlying (unknown) population transition matrix and reward function. The latter result is
achieved via a decoupling argument that we expect to be more broadly applicable to problems of
this type.

Corollary 8.2.1 then specializes the population-based result in Theorem 8.1.1 to natural sub-
classes of MRPs. Theorem 8.2.1 provides minimax lower bounds for these sub-classes, showing—in
conjunction with Corollary 8.2.1—that the plug-in approach is minimax optimal over the class of
MRPs with uniformly bounded reward functions. However, these results suggest that the plug-in
approach is not minimax-optimal over the class of MRPs having value functions with bounded
variance under the transition model. Consequently, we analyze an approach based on the median-of-
means device and show that this modified estimator is minimax optimal over the class of MRPs
having value functions with bounded variance.
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Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendix C.2. We let ‖M‖1,∞ denote the maximum
`1-norm of the rows of a matrix M, and refer to it as the (1,∞)-operator norm of a matrix.

8.1 Guarantees for the plug-in approach
Recall the local complexity measures defined in Section 7.2.5 of Chapter 7. With this notation, we
are ready to state two results for the plug-in estimator.

Theorem 8.1.1. There is a pair of universal constants (c1, c2) such that if N ≥ c1
γ2

(1−γ)2
log(8D/δ),

then each of the following statements holds with probability at least 1− δ.

(a) We have

‖θ̂plug − θ∗‖∞ ≤ c2

{√
log(8D/δ)

N

(
γ‖(I− γP̂)−1σ̂(θ̂plug)‖∞ +

‖ρ(r)‖∞
1− γ

)
+

log(8D/δ)

N
· γb(θ̂plug)

}
.

(8.1a)

(b) We have

‖θ̂plug − θ∗‖∞ ≤ c2

{√
log(8D/δ)

N

(
γ
∥∥(I− γP)−1σ(θ∗)

∥∥
∞ +

‖ρ(r)‖∞
1− γ

)
+

log(8D/δ)

N
· γb(θ∗)

}
.

(8.1b)

It is worth making a few comments on this theorem, which provides two instance-dependent
upper bounds on the error of the plug-in approach. Assuming for simplicity of discussion2 that
the maximum noise reward parameter ‖ρ(r)‖∞ is known, then part (a) of the theorem provides a
bound that can be evaluated based on the observed data; bounds of this form are especially useful in
downstream analyses. For instance, a central consideration in policy iteration methods is to obtain
“good enough” value function estimates θ̂ for fixed policies, in that we have ‖θ̂ − θ∗‖∞ ≤ ε for
some prescribed tolerance ε. Theorem 8.1.1(a) provides a method by which such a bound may be
verified for the plug-in approach: compute the statistic on the RHS of bound (8.1a); if this is less
than ε, then the bound ‖θ̂plug − θ∗‖∞ ≤ ε holds with probability exceeding 1− δ.

On the other hand, Theorem 8.1.1(b) provides a guarantee that depends on the unknown problem
instance. From the perspective of the analysis, this is the more difficult bound to establish, since
it requires a leave-one-out technique to decouple dependencies between the estimate θ̂plug and the
matrix P̂. We expect our technique—presented in full in Section 8.4.2—and its variants to be more

2We note that when ρ(r) is not known but the reward distribution is (say) Gaussian, it is straightforward to provide
an entry-wise upper bound for it by computing the empirical standard deviation of rewards from samples, and using this
to define a high-probability and data-dependent bound on the sub-Gaussian parameter.
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broadly useful in analyzing other problems in reinforcement learning besides the policy evaluation
problem considered here.

Third, note that our lower bound on the sample size—which evaluates to N ≥ c1
(1−γ)2

log(8D/δ)
for any strictly positive discount factor—is unavoidable in general. In particular, for any fixed
reward-noise parameter ‖ρ(r)‖∞ > 0, this condition is required in order to obtain a consistent
estimate of the value function.3 On the other hand, in the special case of deterministic rewards
(‖ρ(r)‖∞ = 0), we suspect that this condition can be weakened, but leave this for future work.

Finally, it is worth noting that there are two terms in the bounds of Theorem 8.1.1: the first term
corresponds to a notion of standard deviations of the estimated/true value function and reward, and
the second depends on the span semi-norm of the value function. Are both of these terms necessary?
What is the optimal rate at which any value function can be estimated?

8.2 Assessing optimality
The questions asked above motivate the analysis to be presented in this section, which has two parts.

8.2.1 Lower bounds on the local minimax risk
In order to study the question of optimality in this chapter, we adopt the notion of local minimax
risk, in which the performance of an estimator is measured in a worst-case sense locally over natural
subsets of the parameter space. In the next chapter, we revisit this question and provide even more
refined lower bounds that show that the plug-in estimator is in fact optimal when viewed from the
local asymptotic minimax framework (see Section 9.1).

Our upper bounds in the previous section depend on the problem instance via the standard devia-
tion function σ(θ∗), the reward standard deviation ρ(r), and the span semi-norm of θ∗. Accordingly,
we define the following subsets4 of Markov reward processes (MRPs):

Mvar(ϑ, %) : =
{

set of all MRPs s.t. ‖σ(θ∗)‖∞ ≤ ϑ and ‖ρ(r)‖∞ ≤ %
}
, (8.2a)

Mvfun(ζ, %) : =
{

set of all MRPs s.t. ‖θ∗‖span ≤ ζ and ‖ρ(r)‖∞ ≤ %
}
, and (8.2b)

Mrew(rmax, %) : =
{

set of all MRPs s.t. ‖r‖∞ ≤ rmax and ‖ρ(r)‖∞ ≤ %
}
. (8.2c)

Letting M be any one of these sets, we use the shorthand θ ∈ M to mean that θ is the value
function of some MRP in the setM. Each choice of the setM defines the local minimax risk given

3For instance, even with known transition dynamics, estimating the value function of a single state to within additive
error ε requires Ω

(
1

(1−γ)2ε2

)
samples of the noisy reward.

4The following mnemonic device may help the reader appreciate and remember notation: the symbol ϑ, or
“vartheta”, stands for a measure of the variability in the value function θ; the symbol %, or “varrho”, represents the
variability in reward samples, and rmax represents the maximum absolute reward mean.
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by

inf
θ̂

sup
θ∗∈M

E
[
‖θ̂ − θ∗‖∞

]
,

where the infimum ranges over all measurable functions θ̂ of N observations from the generative
model. With this set-up, we can now state some lower bounds in terms of such local minimax risks:

Theorem 8.2.1. There is a pair of absolute constants (c1, c2) such that for all γ ∈ [1
2
, 1) and sample

sizes N ≥ c1
1−γ log(D/2), the following statements hold.

(a) For each triple of positive scalars (ϑ, ζ, %) satisfying5 ϑ ≤ ζ
√

1− γ, we have

inf
θ̂

sup
θ∗∈Mvar(ϑ,%)∩Mvfun(ζ,%)

E
[
‖θ̂ − θ∗‖∞

]
≥ c2

1− γ

√
log(D/2)

N
(ϑ+ %) . (8.3a)

(b) For each pair of positive scalars (rmax, %) satisfying rmax ≥ %
√

logD
N

, we have

inf
θ̂

sup
θ∗∈Mrew(rmax,%)

E
[
‖θ̂ − θ∗‖∞

]
≥ c2

1− γ

√
log(D/2)

N

(
rmax

(1− γ)1/2
+ %

)
. (8.3b)

Equipped with these lower bounds, we can now assess the local minimax optimality of the
plug-in estimator. In order to facilitate this comparison, let us state a corollary of Theorem 8.1.1
that provides bounds on the worst-case error of the plug-in estimator over particular subsets of the
parameter space. In order to further simplify the comparison, we restrict our attention to the range
γ ∈ [1

2
, 1) covered by the lower bounds.

Corollary 8.2.1. There are absolute constants (c3, c4) such that for all γ ∈ [1
2
, 1) and sample sizes6

N ≥ c3
(1−γ)2

log(8D/δ), the following statements hold.

(a) Consider a triple of positive scalars (ϑ, ζ, %) such that7 ϑ ≤ ζ. Then for any value function
θ∗ ∈Mvar(ϑ, %) ∩Mvfun(ζ, %), we have

‖θ̂plug − θ∗‖∞ ≤
c4

1− γ

{√
log(8D/δ)

N
(ϑ+ %) +

log(8D/δ)

N
· ζ

}
(8.4a)

with probability at least 1− δ.
5We conjecture that this lower bound can be proved under the weaker condition ϑ ≤ ζ, thereby matching the

condition present in Corollary 8.2.1(a).
6As shown in the proof, part (a) of the corollary holds without this assumption on the sample size, but we state it

here to facilitate a direct derivation of Corollary 8.2.1 from Theorem 8.1.1.
7It is worth noting that the condition ϑ ≤ ζ in part (a) of the corollary does not entail any loss of generality, since

we always have ‖σ(θ∗)‖∞ ≤ ‖θ∗‖span. Indeed, for MRPs in which ‖σ(θ∗)‖∞ � ‖θ∗‖span, the second term on the
RHS of inequality (8.4a) will dominate the bound unless the sample size N is large.
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(b) Consider an arbitrary pair of positive scalars (rmax, %). Then for any value function
θ∗ ∈Mrew(rmax, %), we have

‖θ̂plug − θ∗‖∞ ≤
c4

1− γ

√
log(8D/δ)

N

(
rmax

(1− γ)1/2
+ %

)
(8.4b)

with probability at least 1− δ.

By comparing Corollary 8.2.1(b) with Theorem 8.2.1(b), we see that the plug-in estimator is
minimax optimal (up to constant factors) over the classMrew(rmax, %). This conclusion parallels
that of Azar et al. [7] for the related problem of optimal state-value function estimation in MDPs.
(In our notation, their work applies to the special case of % = 0, but their analysis can easily be
extended to this more general setting.)

A comparison of part (a) of the two results is more interesting. Here we see that the first term in
the upper bound (8.4a) matches the lower bound (8.3a) up to a constant factor. The second term
of inequality (8.4a), however, does not have an analogous component in the lower bound, and this
leads us to the interesting question of whether the analysis of the plug-in estimator can be sharpened
so as to remove the dependence of the error on the span semi-norm ‖θ∗‖span. Proposition C.2.1,
presented in Appendix C.2, shows that this is impossible in general, and that there are MRPs in
which the `∞ error can be lower bounded by a term that is proportional to the span semi-norm.

This raises another natural question: Is there a different estimator whose error can be bounded
independently of the span semi-norm ‖θ∗‖span, and which is able achieve the lower bound (8.3a)?
In the next section, we introduce such an estimator via a median-of-means device.

8.2.2 Closing the gap via the median-of-means method
In many situations, the span semi-norm of a value function θ∗ may be much larger its variance σ(θ∗)
under the transition model. Such a discrepancy arises when there are states with extremely large
positive (or negative) rewards that are visited with very low probability. In such cases, the second
terms in the bounds (8.1) dominate the first. It is thus of interest to derive bounds that are purely
“variance-dependent” and independent of the span norm. In order to do so, we analyze a slight
variant of the plug-in approach. In particular, we analyze the median-of-means estimator, which is
a standard robust alternative to the sample mean in other scenarios [188, 234]. In the context of
reinforcement learning, Pazis et al. [250] made use of it for online policy optimization in MDPs.

In our setting, we only employ median-of-means to obtain a better estimate of term depending
on the transition matrix; we still use the estimate r̂ defined in equation (7.3) as our estimate of
the reward function.8 Given the data set {Zk}Nk=1 and some vector θ ∈ RD, the median-of-means
estimate M̂(θ) of the population expectation Pθ is given by the following nonlinear operation:

8In principle, one could run a median-of-means estimate on the combination of reward and transition, but this is
not necessary in our setting due to the sub-Gaussian assumption on the reward noise (7.2). Slight modifications of our
techniques also yield bounds for the combined median-of-means estimate assuming only that the standard deviation of
the reward noise is bounded entry-wise by the vector ρ(r).
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• First, split the data set into K equal parts denoted {D1, . . . ,DK}, where each subset Di has
size m = bN/Kc.

• Second, compute the empirical mean µ̂i(θ) : = 1
m

∑
k∈Di Zkθ for each i ∈ [K].

• Finally, return the quantity M̂(θ) : = med(µ̂1(θ), . . . , µ̂K(θ)), where the median—defined
for convenience as the bK/2c-th order statistic—is taken entry-wise.

The random operator M̂ defines the median-of-means empirical Bellman operator, given by

T̂ MoM
N (θ) : = r̂ + γM̂(θ). (8.5)

As shown in Lemma 8.4.6 (see Section 8.4), this operator is γ-contractive in the `∞-norm. Conse-
quently, it has a unique fixed point, which we term the median-of-means value function estimate,
denoted by θ̂MoM.

In practice, the estimate θ̂MoM can be found by starting at an arbitrary initialization and repeatedly
applying the γ-contractive operator T̂ MoM

N until convergence.9 The following theorem provides a
population-based guarantee on the error of this estimator.

Theorem 8.2.2. Suppose that the median-of-means operator M̂ is constructed with the parameter
choice K = 8 log(4D/δ). Then there is a universal constant c such that we have

‖θ̂MoM − θ∗‖∞ ≤
c

1− γ

√
log(8D/δ)

N

(
γ‖σ(θ∗)‖∞ + ‖ρ(r)‖∞

)
(8.6)

with probability exceeding 1− δ.

We have thus achieved our goal of obtaining a purely variance-dependent bound. Indeed, for
each pair of positive scalars (ϑ, %), any value function θ∗ ∈Mvar(ϑ, %), and reward distribution
satisfying ‖ρ(r)‖∞ ≤ %, we have

‖θ̂MoM − θ∗‖∞ ≤
c

1− γ

√
log(8D/δ)

N
(ϑ+ %) ,

with probability exceeding 1− δ. Integrating this tail bound yields an analogous upper bound on
the expected error, which matches the lower bound (8.3a) on the expected error up to a constant
factor. As a corollary, we conclude that the minimax risk over the classMvar(ϑ, %) scales as

inf
θ̂

sup
θ∗∈Mvar(ϑ,%)

E
[
‖θ̂ − θ∗‖∞

]
� 1

1− γ

√
log(D)

N
(ϑ+ %) , (8.7)

and is achieved (up to constant factors) by the estimator θ̂MoM.
9Since the operator is γ-contractive, it suffices to run this iterative algorithm for logγ ε to obtain an ε-approximate

fixed point in an additive sense.
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However, our results fall short of showing that the estimator θ̂MoM is minimax optimal over the
classMrew(rmax, %) of MRPs with bounded rewards. Indeed, for any value function θ∗ in the class
Mrew(rmax, %), Theorem 8.2.2 yields the corollary

‖θ̂MoM − θ∗‖∞ ≤
c

1− γ

√
log(8D/δ)

N

(
γ
rmax

1− γ
+ %

)
with probability exceeding 1 − δ. Comparing inequality (8.3b) with this bound, we see that our

upper bound on the median-of-means estimator is sub-optimal by a factor (1− γ)−
1
2 in the discount

complexity. From a technical standpoint, this is due to the fact that our upper bound in Theorem 8.2.2
involves the functional 1

1−γ‖σ(θ∗)‖∞ and not the sharper functional ‖(I−γP)−1σ(θ∗)‖∞ present in
Theorem 8.1.1(b). We believe that this gap is not intrinsic to the MoM method, and conjecture that
an upper bound depending on the latter functional can be proved for the estimator θ̂MoM; this would
guarantee that the median-of-means estimator is also minimax optimal over the classMrew(rmax, %).

8.3 Numerical experiments
In this section, we explore the sharpness of our theoretical predictions, for both the plug-in and
the median-of-means (MoM) estimator. Our bounds predict a range of behaviors depending on the
scaling of the maximum standard deviation ‖σ(θ∗)‖∞, and the span semi-norm (for the plug-in
estimator). Let us verify these scalings via some simple experiments.

8.3.1 Behavior on the “hard” example used for the lower bound
First, we use a simple variant of our lower bound construction illustrated in Figure 7.2 of Chapter 7,
where we additionally choose the scalar parameterization (7.12). Recall the bound (7.13b) on the
local complexity measures of this class of MRPs.

Consequently, by the bound (8.6) from Theorem 8.2.2, for a fixed sample size N , the MoM

estimator should have `∞-norm scaling as
(

1
1−γ

)1.5−λ
. The same prediction also holds for the

plug-in estimator, assuming that N % 1
(1−γ)

.
In order to test this prediction, we fixed the parameter λ ∈ [0, 1], and generated a range of MRPs

with different values of the discount factor γ. For each such MRP, we drew N = 104 samples from
the generative observation model and computed both the plug-in and median-of-means estimators,
where the latter estimator was run with the choice K = 20. While the plug-in estimator has a simple
closed-form expression, the MoM estimator was obtained by running the median-of-means Bellman
operator T̂ MoM

N iteratively until it converged to its fixed point; we declared that convergence had
occurred when the `∞-norm of the difference between successive iterates fell below 10−8.

In Figure 8.1, we plot the `∞-error, of both the plug-in approach as well as the median-of-means
estimator, as a function of γ. The plot shows the behavior for three distinct values λ = {0, 0.5, 1}.
Each point on each curve is obtained by averaging 1000 Monte Carlo trials of the experiment. Note
that on this log-log plot, we see a linear relationship between the log `∞-error and log discount
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Figure 8.1: Log-log plot of the `∞-error versus the discount complexity parameter 1/(1− γ) for
both the plug-in estimator (in + markers) and median-of-means estimator (in • markers) computed
on the toy MRP from Figure 7.2 with the scalar parameterization (7.12). Errors are averaged over
T = 1000 trials with N = 104 samples each. We have also plotted the least-squares fits through
these points, and the slopes of these lines are provided in the legend. In particular, the legend
contains the tuple of slopes (β̂plug, β̂MoM, β

∗) for each value of λ. Logarithms are to the natural base.

complexity, with the slopes depending on the value of λ. More precisely, from our calculations
above, our theory predicts that the log `∞-error should be related to the log complexity log

(
1

1−γ

)
in

a linear fashion with slope

β∗ = 1.5− λ.

Consequently, for both the plug-in and MoM estimators, we performed a linear regression to
estimate these slopes, denoted by β̂plug and β̂MoM respectively. The plot legend reports the triple
(β̂plug, β̂MoM, β

∗), and for each we see good agreement between the theoretical prediction β∗ and its
empirical counterparts.

8.3.2 When does the MoM estimator perform better than plug-in?
Our theoretical results predict that the MoM estimator should outperform the plug-in approach
when the span semi-norm of the value function ‖θ∗‖span is much larger than its maximum standard
deviation ‖σ(θ∗)‖∞. Indeed, Proposition C.2.1 in Appendix C.2 demonstrates that there are MRPs
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on which the `∞-error of the plug-in estimator grows with the span semi-norm of the optimal value
function. Let us now simulate the behavior of both the plug-in and MoM approach on this MRP,
constructed by taking D/3 copies of the 3-state MRP in Figure 8.2(a).
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Figure 8.2: (a) Illustration of the MRP R1(q, µ). In the simulation as well as in the lower bound
construction of Proposition C.2.1, we concatenate D/3 such MRPs to produce an MRP on D states.

For the simulation, we choose D = 3
⌊(

1
1−γ

)λ ⌋
and set q = 10

ND
and µ = 1. (b) Log-log plot of

the `∞-error versus the discount complexity parameter 1/(1 − γ) for both the plug-in estimator
(in + markers) and median-of-means estimator (in • markers) averaged over T = 1000 trials with
N = 104 samples each. We have also plotted the least-squares fits through these points, and the
slopes of these lines are provided in the legend. In particular, the legend contains the tuple of slopes
(β̂plug, β̂MoM) for each value of λ. Logarithms are to the natural base.

Our simulation is carried out on N = 104 samples from this D-state MRP, with noiseless
observations of the reward. In order to parameterize the MRP via the discount factor alone, we fix
the pair (q,D) in the following way. First, we fix a scalar λ in the unit interval [0, 1], and then set

D = 3
⌊( 1

1− γ

)λ ⌋
and q =

10

ND
.

Note that this sub-family of MRPs is fully parameterized by the pair (γ, λ). The construction also
ensures that

‖θ∗‖∞
N

� ‖σ(θ∗)‖∞√
N

, (8.8)
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for this chosen parameterization, and furthermore, that the ratio of the LHS and RHS of inequal-
ity (8.8) increases as the dimension D increases (see the proof of Proposition C.2.1).

As shown in Proposition C.2.1 in Appendix C.2, the `∞ error of the plug-in estimator for this
family of MRPs can be lower bounded by ‖θ∗‖∞/N . It is also straightforward to show that the
error of the MoM estimator is upper bounded by the quantity ‖σ(θ∗)‖∞√

N
. Now increasing the value

of λ increases the dimension D, and so the MoM estimator should behave better and better for
larger values of λ. In particular, this behavior can be captured in the log-log plot of the error against
1/(1− γ), which is presented in Figure 8.2(b).

The plot shows the behavior for three distinct values λ = {0.5, 0.75, 1}. Each point on each
curve is obtained by averaging 1000 Monte Carlo trials of the experiment. As expected, the MoM
estimator consistently outperforms the plug-in estimator for each value of λ. Moreover, on this
log-log plot, we see a linear relationship between the log `∞-error and log discount complexity, with
the slopes depending on the value of λ. For both the plug-in and MoM estimators, we performed a
linear regression to estimate these slopes, denoted by β̂plug and β̂MoM respectively. The plot legend
reports the pair (β̂plug, β̂MoM), and we see that the gap between the slopes increases as λ increases.

8.4 Proofs of main results
We now turn to the proofs of our main results. Throughout our proofs, the reader should recall
that the values of absolute constants may change from line-to-line. We also use the following facts
repeatedly. First, for a row stochastic matrix M with non-negative entries and any scalar γ ∈ [0, 1),
we have the infinite series

(I− γM)−1 =
∞∑
t=0

(γM)t, (8.9a)

which implies that the entries of (I− γM)−1 are all non-negative. Second, for any such matrix, we
also have the bound ‖(I− γM)−1‖1,∞ ≤ 1

1−γ . Finally, for any matrix A with positive entries and a
vector v of compatible dimension, we have the elementwise inequality

|Av| � A|v|. (8.9b)

8.4.1 Proof of Theorem 8.1.1, part (a)

Throughout this proof, we adopt the convenient shorthand θ̂ ≡ θ̂plug for notational convenience. By
the Bellman equations (7.1) and (7.4) for θ∗ and θ̂, respectively, we have

θ̂ − θ∗ = γ
{
P̂θ̂ −Pθ∗

}
+ (r̂ − r) = γP̂(θ̂ − θ∗) + γ(P̂−P)θ∗ + (r̂ − r).

Introducing the shorthand ∆̂ : = θ̂ − θ∗ and re-arranging implies the relation

∆̂ = γ(I− γP̂)−1(P̂−P)θ∗ + (I− γP̂)−1(r̂ − r), (8.10)



CHAPTER 8. INSTANCE-DEPENDENT ADAPTATION OF PLUG-IN ESTIMATOR 209

and consequently, the elementwise inequality

|∆̂| � γ(I− γP̂)−1|(P̂−P)θ∗|+ (I− γP̂)−1|(r̂ − r)|, (8.11)

where we have used the relation (8.9b) with the matrix A = (I− γP̂)−1. Given the sub-Gaussian
condition on the stochastic rewards, we can apply Hoeffding’s inequality combined with the union

bound to obtain the elementwise inequality |r̂−r| � c
√

log(8D/δ)
N

·ρ(r), which holds with probability

at least 1− δ
4
. Since the matrix (I− γP̂)−1 has non-negative entries and (1,∞)-norm at most 1

1−γ ,
we have

(I− γP̂)−1|r̂ − r| � c

1− γ
‖ρ(r)‖∞

√
log(8D/δ)

N
1. (8.12a)

with the same probability. On the other hand, by Bernstein’s inequality, we have

|(P̂−P)θ∗| � c

{√
log(8D/δ)

N
· σ(θ∗) + ‖θ∗‖span

log(8D/δ)

N
· 1

}

with probability at least 1− δ
4
, and hence

(I− γP̂)−1|(P̂−P)θ∗| � c

{√
log(8D/δ)

N
· ‖(I− γP̂)−1σ(θ∗)‖∞ +

‖θ∗‖span

1− γ
log(8D/δ)

N

}
· 1.

(8.12b)

Substituting the bounds (8.12a) and (8.12b) into the elementwise inequality (8.11), we find that

|∆̂| � c

{√
log(8D/δ)

N
·
(
γ‖(I− γP̂)−1σ(θ∗)‖∞ +

‖ρ(r)‖∞
1− γ

)
+
γ‖θ∗‖span

1− γ
log(8D/δ)

N

}
· 1

(8.13)

with probability at least 1− δ
2
.

Our next step is to relate the pair of population quantities (σ(θ∗), ‖θ∗‖span) to their empirical
analogues (σ̂(θ̂), ‖θ̂‖span). The following lemma provides such a bound.

Lemma 8.4.1 (Population to empirical variance). We have the element-wise inequality

σ(θ∗) � 2σ̂(θ̂) + 2|∆̂|+ c′‖θ∗‖span

√
log(8D/δ)

N
· 1 (8.14)

with probability at least 1− δ/2.
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Taking this lemma as given for the moment, let us complete the proof.

Since the matrix (I − γP̂)−1 has non-negative entries, we can multiply both sides of the
elementwise inequality (8.14) by it; doing so and taking the `∞-norm yields

‖(I− γP̂)−1σ(θ∗)‖∞ ≤ 2‖(I− γP̂)−1σ̂(θ̂)‖∞ +
2‖∆̂‖∞
1− γ

+
c′‖θ∗‖span

1− γ

√
log(8D/δ)

N
.

Substituting back into the elementwise inequality (8.13) and taking `∞-norms of both sides, we find
that

‖∆̂‖∞ ≤ c

{√
log(8D/δ)

N

(
γ‖(I− γP̂)−1σ̂(θ̂)‖∞ +

‖ρ(r)‖∞
1− γ

)
+
γ‖θ∗‖span

1− γ
log(8D/δ)

N

}

+
2cγ

1− γ

√
log(8D/δ)

N
‖∆̂‖∞.

Since the span semi-norm satisfies the triangle inequality, we have

‖θ∗‖span ≤ ‖θ̂‖span + ‖∆̂‖span ≤ ‖θ̂‖span + 2‖∆̂‖∞.

Substituting this bound and re-arranging yields

κ‖θ̂ − θ∗‖∞ ≤ c

{√
log(8D/δ)

N

(
γ‖(I− γP̂)−1σ̂(θ̂)‖∞ +

‖ρ(r)‖∞
1− γ

)
+
γ‖θ̂‖span

1− γ
log(8D/δ)

N

}
.

where we have introduced the shorthand κ : = 1 − 2cγ
1−γ

(√
log(8D/δ)

N
+ log(8D/δ)

N

)
. Finally, by

choosing the pre-factor c1 in the lower bound N ≥ c1γ
2 log(8D/δ)

(1−γ)2
large enough, we can ensure that

κ ≥ 1
2
, thereby completing the proof of Theorem 8.1.1(a).

Proof of Lemma 8.4.1

We now turn to the proof of the auxiliary result in Lemma 8.4.1. We begin by noting that the
statement is trivially true when N ≤ log(8D/δ), since we have

σ(θ∗) � ‖θ∗‖span1.

Thus, by adjusting the constant factors in the statement of the lemma, it suffices to prove the lemma
under the assumption N ≥ c log(8D/δ) for a sufficiently large absolute constant c. Accordingly,
we make this assumption for the rest of the proof.

We use the following convenient notation for expectations. Let E denote the vector expectation
operator, with the convention that E[v] = Pv. Similarly, let Ê denote the vector empirical expecta-
tion operator, given by Ê[v] = P̂v. These operators are applied elementwise by definition, and we
let Ei and Êi denote the i-th entry of each operator, respectively.
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With this notation, we have

σ2(θ∗) = E |θ∗ − E[θ∗]|2

= (E− Ê)
∣∣∣θ∗ − E[θ∗]

∣∣∣2 + Ê |θ∗ − E[θ∗]|2

� (E− Ê)
∣∣∣θ∗ − E[θ∗]

∣∣∣2 + 2
∣∣∣Ê[θ∗]− E[θ∗]

∣∣∣2 + 2Ê
∣∣∣θ∗ − Ê[θ∗]

∣∣∣2
= (E− Ê)

∣∣∣θ∗ − E[θ∗]
∣∣∣2︸ ︷︷ ︸

T1

+ 2
∣∣∣Ê[θ∗]− E[θ∗]

∣∣∣2︸ ︷︷ ︸
T2

+2σ̂2(θ∗). (8.15)

We claim that the terms T1 and T2 are bounded as follows:

T1 �
σ2(θ∗)

4
+ c‖θ∗‖2

span

log(8D/δ)

N
· 1, and (8.16a)

T2 � c

{
log(8D/δ)

N
· σ2(θ∗) +

(
‖θ∗‖span

log(8D/δ)

N

)2

· 1

}
, (8.16b)

where each bound holds with probability at least 1 − δ
4
. Taking these bounds as given for the

moment, as long as N ≥ c′ log(8D/δ) for a sufficiently large constant c′, we can ensure that

T1 + T2 �
σ2(θ∗)

2
+ c‖θ∗‖2

span

log(8D/δ)

N
· 1,

Substituting back into our earlier bound (8.15), we find that

σ2(θ∗)

2
� 2σ̂2(θ∗) + c′‖θ∗‖2

span

log(8D/δ)

N
· 1.

Rearranging and taking square roots entry-wise, we find that

σ(θ∗) �
√

4σ̂2(θ∗) + 2c′‖θ∗‖2
span

log(8D/δ)

N
· 1 � 2σ̂(θ∗) + c′‖θ∗‖span

√
log(8D/δ)

N
· 1.

Finally noting that we have the entry-wise inequality σ̂(θ∗) � σ̂(θ̂) + |θ̂ − θ∗| establishes the claim
of Lemma 8.4.1.
It remains to prove the bounds (8.16a) and (8.16b).

Proof of bound (8.16a): For each index i ∈ [D], define the random variable Yi : =
(
θ∗J−Ei[θ∗]

)2,
where J is an index chosen at random from the distribution pi. By definition, each random variable
Yi is non-negative, and so with E now denoting the regular expectation of a scalar random variable,
we have lower tail bound (Proposition 2.14, [323])

P [E[Yi]− Yi ≥ s] ≤ exp

(
− ns2

2E[Y 2
i ]

)
for all s > 0.
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Moreover, we have Yi ≤ ‖θ∗‖2
span almost surely, from which we obtain

E[Y 2
i ] ≤ ‖θ∗‖2

spanEi
[
(θ∗ − E[θ∗])2

]
= ‖θ∗‖2

spanσ
2
i (θ
∗).

Putting together the pieces yields the elementwise inequality

T1 � c‖θ∗‖span

√
log(8D/δ)

N
· σ(θ∗)

(i)

� σ2(θ∗)

8
+ c′‖θ∗‖2

span

log(8D/δ)

N
,

with probability at least 1− δ/3, where in step (i), we have used the inequality 2ab ≤ νa2 + ν−1b2,
which holds for any triple of positive scalars (a, b, ν).

Proof of the bound (8.16b): From Bernstein’s inequality, we have the element-wise bound∣∣∣Ê[θ∗]− E[θ∗]
∣∣∣ � c

{√
log(8D/δ)

N
· σ(θ∗) + ‖θ∗‖span

log(8D/δ)

N
· 1

}
with probability at least 1− δ/4, and hence

T2 � c

{
log(8D/δ)

N
· σ2(θ∗) +

(
‖θ∗‖span

log(8D/δ)

N

)2

· 1

}
,

as claimed.

8.4.2 Proof of Theorem 8.1.1, part (b)

Once again, we employ the shorthand θ̂ ≡ θ̂plug for notational convenience, and also the short-
hand ∆̂ = θ̂ − θ∗. Note that it suffices to show the inequality

Pr
{
‖θ̂ − θ∗‖∞ ≥ cγ

∥∥∥(I− γP)−1|(P̂−P)θ∗|
∥∥∥
∞

+ c(1− γ)−1‖r̂ − r‖∞
}
≤ δ

2
, (8.17)

from which the theorem follows by application of a Bernstein bound to the first term and Hoeffding
bound to the second, in a similar fashion to the inequalities (8.12). We therefore dedicate the rest of
the proof to establishing inequality (8.17).

Proving the bound (8.17)

We have

∆̂ = θ̂ − θ∗ = γP̂θ̂ − γPθ∗ + (r̂ − r) = γ(P̂−P)θ̂ + γP∆̂ + (r̂ − r),

which implies that

∆̂− (I− γP)−1(r̂ − r) = γ(I− γP)−1(P̂−P)θ̂

= γ(I− γP)−1(P̂−P)∆̂ + γ(I− γP)−1(P̂−P)θ∗. (8.18)
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Since all entries of (I− γP)−1 are non-negative, we have the element-wise inequalities

|∆̂| � γ(I− γP)−1|(P̂−P)∆̂|+ γ(I− γP)−1|(P̂−P)θ∗|+ (I− γP)−1|r̂ − r|

� γ(I− γP)−1|(P̂−P)∆̂|+ γ(I− γP)−1|(P̂−P)θ∗|+ 1

1− γ
‖r̂ − r‖∞ · 1. (8.19)

The second and third terms are already in terms of the desired population-level functionals in
equation (8.17). It remains to bound the first term.

Note that the key difficulty here is the fact that the two matrices P̂−P and ∆̂ are not independent.
As a first attempt to address this dependence, one is tempted to use the fact that provided N is large
enough, each row of P̂−P has small `1-norm; for instance, see Weissman et al. [330] for sharp
bounds of this type. In particular, this would allow us to work with the entry-wise bounds

|(P̂−P)∆̂| � ‖P̂−P‖1,∞‖∆̂‖∞ · 1 - C

√
D

N
‖∆̂‖∞ · 1,

where the final relation hides logarithmic factors in the pair (D, δ). Proceeding in this fashion,

we would then bound each entry in the first term of equation (8.19) by γ(1 − γ)−1
√

D
N
‖∆̂‖∞;

then choosing N large enough such that γ(1− γ)−1
√

D
N
≤ 1/2 suffices to establish bound (8.17).

However, this requires a sample size N & γ2

(1−γ)2
D, while we wish to obtain the bound (8.17) with

the sample size N & γ2

(1−γ)2
. This requires a more delicate analysis.

Our analysis instead proceeds entry-by-entry, and uses a leave-one-out sequence to carefully
decouple the dependence between P̂ − P and ∆̂. Let us introduce some notation to make this
precise. For each i ∈ [D], recall that we used p̂i and pi to denote row i of the matrices P̂ and P,
respectively. Let P̂(i) denote the i-th leave-one-out transition matrix, which is identical to P̂ except
with row i replaced by the population vector pi. Let θ̂(i) : = (I− γP̂(i))−1r be the value function
estimate based on P̂(i) and the true reward vector r, and denote the associated difference vector by
∆̂(i) : = θ̂(i) − θ∗.

Now note that we have[
(P̂−P)∆̂

]
i

= 〈p̂i − pi, ∆̂〉 = 〈p̂i − pi, ∆̂(i)〉+ 〈p̂i − pi, θ̂ − θ̂(i)〉.

This decomposition is helpful because, now, the vectors p̂i − pi and ∆̂(i) are independent by
construction, so that standard tail bounds can be used on the first term. For the second term, we use
the fact that θ̂ ≈ θ̂(i), since the latter is obtained by replacing just one row of the estimated transition
matrix. Formally, this closeness will be argued by using the matrix inversion formula. We collect
these two results in the following lemma.
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Lemma 8.4.2. Suppose that the sample size is lower bounded as N ≥ c′γ2 log(8D/δ)
(1−γ)2

. Then with
probability at least 1− δ

2D
and for each i ∈ [D], we have

γ|〈p̂i − pi, ∆̂(i)〉| ≤ c

{
γ‖∆̂‖∞

√
log(8D/δ)

N
+ γ |〈p̂i − pi, θ∗〉|+ ‖r − r̂‖∞

}
and

(8.20a)

γ|〈p̂i − pi, θ̂(i) − θ̂〉| ≤ c

{
γ‖∆̂‖∞

√
log(8D/δ)

N
+ γ |〈p̂i − pi, θ∗〉|+ ‖r − r̂‖∞

}
. (8.20b)

With this lemma in hand, let us complete the proof. Combining the bounds of Lemma 8.4.2
with a union bound over all D entries yields the elementwise inequality

γ
∣∣∣(P̂−P)∆̂

∣∣∣ � cγ
∣∣∣(P̂−P)θ∗

∣∣∣+ c

{
γ‖∆̂‖∞

√
log(8D/δ)

N
+ ‖r̂ − r‖∞

}
1

with probability at least 1− δ/2. Since the entries of (I− γP)−1 are non-negative, we can multiply
both sides of this inequality by it, thereby obtaining

γ(I− γP)−1
∣∣∣(P̂−P)∆̂

∣∣∣
� cγ(I− γP)−1

∣∣∣(P̂−P)θ∗
∣∣∣+

c

1− γ

{
γ‖∆̂‖∞

√
log(8D/δ)

N
+ ‖r̂ − r‖∞

}
1.

Returning to the upper bound (8.19), we have shown that

‖∆̂‖∞ ≤ cγ
‖∆̂‖∞
1− γ

√
log(8D/δ)

N
+ c′γ

∥∥∥(I− γP)−1|(P̂−P)θ∗|
∥∥∥
∞

+
c

1− γ
‖r − r̂‖∞.

Under the assumed lower bound on the sample size N ≥ c′γ2 log(8D/δ)
(1−γ)2

, this inequality implies that

‖∆̂‖∞ ≤ c′γ
∥∥∥(I− γP)−1|(P̂−P)θ∗|

∥∥∥
∞

+
c

1− γ
‖r − r̂‖∞,

as claimed (8.17).
We now proceed to a proof of Lemma 8.4.2, which uses the following structural lemma relating

the quantities ∆̂(i) and ∆̂.

Lemma 8.4.3. Suppose that the sample size is lower bounded as N ≥ c′γ2 log(8D/δ)
(1−γ)2

. Then with
probability at least 1− δ

4D
and for each i ∈ [D], we have

‖∆̂(i)‖∞ ≤ c‖∆̂‖∞ +
c

1− γ

{
γ |〈p̂i − pi, θ∗〉|+ ‖r̂ − r‖∞

}
. (8.21)

This lemma is proved in Section 8.4.2 to follow.
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Proof of Lemma 8.4.2

We prove the two bounds in turn.

Proof of inequality (8.20a): Note that p̂i − pi and ∆̂(i) are independent by construction, so that
the Hoeffding inequality yields

|〈p̂i − pi, ∆̂(i)〉| ≤ c‖∆̂(i)‖∞

√
log(8D/δ)

N
(8.22)

with probability at least 1− δ/(4D).
Using this in conjunction with inequality (8.21) from Lemma 8.4.3 yields the bound

γ|〈p̂i − pi, ∆̂(i)〉| ≤ cγ‖∆̂‖∞

√
log(8D/δ)

N
+

cγ

1− γ

√
log(8D/δ)

N

{
γ |〈p̂i − pi, θ∗〉|+ ‖r̂ − r‖∞

}
(i)

≤ cγ‖∆̂‖∞

√
log(8D/δ)

N
+ cγ |〈p̂i − pi, θ∗〉|+ c‖r̂ − r‖∞,

where in step (i), we have used the lower bound on the sample size N ≥ c′ γ2

(1−γ)2
log(8D/δ).

Proof of inequality (8.20b): The proof of this claim is more involved. Using the relation (8.18)
(with suitable modifications of terms), we have

θ̂(i) − θ̂ = γ(I− γP̂)−1(P̂(i) − P̂)θ̂(i) + (I− γP̂)−1(r − r̂)

= −γ(I− γP̂)−1ei

(
〈p̂i − pi, θ̂(i)〉

)
+ (I− γP̂)−1(r − r̂). (8.23)

Moreover, the Woodbury matrix identity [144] yields

M : =
(
I− γP̂

)−1

−
(
I− γP̂(i)

)−1

= −γ (I− γP̂(i))−1ei(p̂i − pi)T (I− γP̂(i))−1

1− γ(p̂i − pi)T (I− γP̂(i))−1ei
.

Consequently,

〈p̂i − pi, θ̂(i) − θ̂〉

= −γ(p̂i − pi)>(I− γP̂)−1ei

(
〈p̂i − pi, θ̂(i)〉

)
+ (p̂i − pi)>(I− γP̂)−1(r − r̂)

= −γ(p̂i − pi)>(I− γP̂(i))−1ei

(
〈p̂i − pi, θ̂(i)〉

)
+ (p̂i − pi)>(I− γP̂(i))−1(r − r̂)

− γ(p̂i − pi)>Mei

(
〈p̂i − pi, θ̂(i)〉

)
+ (p̂i − pi)>M(r − r̂)

=
(
〈p̂i − pi, θ̂(i)〉

)
· 2Z2

i − Zi
1− Zi

+ Ti ·
1− 2Zi
1− Zi

, (8.24)
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where we have defined, for convenience, the random variables

Zi : = γ(p̂i − pi)>(I− γP̂(i))−1ei and Ti : = (p̂i − pi)>(I− γP̂(i))−1(r − r̂).

Since p̂i − pi is independent of the vector (I − γP̂(i))−1(r − r̂), applying the Hoeffding bound
yields the inequality

|Ti| ≤
c

1− γ
‖r − r̂‖∞

√
log(8D/δ)

N

with probability exceeding 1− δ/(4D).
On the other hand, exploiting independence between the vectors p̂i − pi and (I − γP̂(i))−1ei

and applying the Hoeffding bound, we also have

|Zi| ≤
cγ

1− γ

√
log(8D/δ)

N

with probability least 1− δ/(4D). Taking N ≥ c′ γ2

(1−γ)2
log(8D/δ) for a sufficiently large constant

c′ ensures that γ|Ti| ≤ ‖r − r̂‖∞ and |Zi| ≤ 1/4, so that with probability exceeding 1− δ/(2D),
inequality (8.24) yields

γ|〈p̂i − pi, θ̂(i) − θ̂〉| ≤ c
{
γ|〈p̂i − pi, θ̂(i)〉|+ ‖r − r̂‖∞

}
≤ c

{
γ|〈p̂i − pi, ∆̂(i)〉|+ γ|〈p̂i − pi, θ∗〉|+ ‖r − r̂‖∞

}
.

Finally, applying part (a) of Lemma 8.4.2 completes the proof.

Proof of Lemma 8.4.3

Recall our leave-one-out matrix P̂(i), and the explicit bound (8.22). We have∣∣∣〈p̂i − pi, θ̂(i)〉
∣∣∣ ≤ ∣∣∣〈p̂i − pi, ∆̂(i)〉

∣∣∣+ |〈p̂i − pi, θ∗〉| ≤ c‖∆̂(i)‖∞

√
log(8D/δ)

N
+ |〈p̂i − pi, θ∗〉|

(8.25)

with probability at least 1− δ/(4D). Substituting inequality (8.25) into the bound (8.23), we find
that

‖θ̂(i) − θ̂‖∞ ≤
c

1− γ

{
γ‖∆̂(i)‖∞ ·

√
log(8D/δ)

N
+ γ |〈p̂i − pi, θ∗〉|+ ‖r − r̂‖∞

}
. (8.26)

Finally, the triangle inequality yields

‖∆̂(i)‖∞ ≤ ‖∆̂‖∞ + ‖θ̂(i) − θ̂‖∞

≤ ‖∆̂‖∞ +
c

1− γ

{
γ‖∆̂(i)‖∞ ·

√
log(8D/δ)

N
+ γ |〈p̂i − pi, θ∗〉|+ ‖r − r̂‖∞

}
.
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For N ≥ c′γ2 log(8D/δ)
(1−γ)2

with c′ sufficiently large, we have

‖∆̂(i)‖∞ ≤ c‖∆̂‖∞ +
c

1− γ

{
γ |〈p̂i − pi, θ∗〉|+ ‖r̂ − r‖∞

}
with probability at least 1− δ

4D
, which completes the proof of Lemma 8.4.3.

Since Corollary 8.2.1 follows from Theorem 8.1.1, we prove it first before moving to a proof of
Theorem 8.2.1 in Section 8.4.4.

8.4.3 Proof of Corollary 8.2.1
In order to prove part (a), consider inequality (8.10) and further use the fact that we have the
`∞-bound ‖(I− γP̂)−1‖1,∞ ≤ 1

1−γ to obtain the element-wise bound

|θ̂ − θ∗| � γ

1− γ
‖(P̂−P)θ∗‖∞1 +

‖r̂ − r‖∞
1− γ

· 1.

Applying Bernstein’s bound to the first term and Hoeffding’s bound to the second completes the
proof.

In order to prove part (b) of the corollary, we apply Lemma 7 of Azar et al. [7]—in particular,
equation (17) of that paper. Tailored to this setting, their result leads to the point-wise bound

‖(I− γP)−1σ(θ∗)‖∞ ≤ c
rmax

(1− γ)3/2
.

We also have the bound

‖θ∗‖span ≤ 2‖θ∗‖∞ = 2‖(I− γP)−1r‖∞ ≤
2rmax

1− γ
,

so that combining the pieces and applying Theorem 8.1.1(b), we obtain

‖θ̂ − θ∗‖∞ ≤
c

(1− γ)

{√
log(8D/δ)

N

(
γ

rmax

(1− γ)1/2
+ ‖ρ(r)‖∞

)
+ γ · log(8D/δ)

N

rmax

1− γ

}
.

Finally, when N ≥ c1
log(8D/δ)

1−γ for a sufficiently large constant c1, we have

log(8D/δ)

N

rmax

1− γ
≤ c

√
log(8D/δ)

N

rmax

(1− γ)1/2
,

thereby establishing the claim.
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8.4.4 Proof of Theorem 8.2.1
For all of our lower bounds, we assume that the reward distribution takes the Gaussian form

Dr( · | j) = N (rj, %
2) (8.27)

for each state j. Note that this reward distribution satisfies ‖ρ(r)‖∞ = % by construction.
Let us begin with a short overview of our proof, which proceeds in two steps. First, we suppose

that the transition matrix P is known exactly, and the hardness of the estimation problem is due to
noisy observations of the reward function. In particular, lettingMI(rmax, %) denote the class of all
MRPs with the specific reward observation model (8.27), and for which the transition matrix is the
identity matrix I and the rewards are uniformly bounded as ‖r‖∞ ≤ rmax, we show that

inf
θ̂

sup
θ∗∈MI(rmax,%)

E‖θ̂ − θ∗‖∞ ≥ c

{
%

1− γ
·
√

log(D)

N
∧ rmax

1− γ

}
. (8.28)

Note that for each pair of positive scalars (ϑ, rmax) we have the inclusions

MI(rmax, %) ⊆Mvar(ϑ, %) and MI(rmax, %) ⊆Mrew(rmax, %),

and so that the lower bound (8.28) carries over to the classesMvar(ϑ, %) andMrew(rmax, %).
Next, we suppose that the population reward function r is known exactly (% = 0), and the

hardness of the estimation problem is only due to uncertainty in the transitions. Under this setting,
we prove the lower bounds

inf
θ̂

sup
θ∗∈Mvar(ϑ,0)

E‖θ̂ − θ∗‖∞ ≥ c
ϑ

1− γ
·
√

log(D/2)

N
, and (8.29a)

inf
θ̂

sup
θ∗∈Mrew(rmax,0)

E‖θ̂ − θ∗‖∞ ≥ c
rmax

(1− γ)3/2
·
√

log(D/2)

N
. (8.29b)

SinceMvar(ϑ, 0) ⊂ Mvar(ϑ, %) for any % > 0, these lower bounds also carry over to the more
general setting. The minimax lower bounds of Theorem 8.2.1 are obtained by taking the maximum
of the bounds (8.28) and (8.29). Let us now establish the two previously claimed bounds.

Proof of claim (8.28)

For some positive scalar λ to be chosen shortly, consider D distinct reward vectors {r(1), . . . , r(D)},
where the vector r(i) ∈ RD has entries

r
(i)
j : =

{
λ if i = j

0 otherwise,
for all j ∈ [D].

Denote by R(i) the MRP with reward function r(i); and transition matrix I. Thus, the i-th value
function is given by the vector (θ∗)(i) : = 1

1−γ r
(i).
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By construction, we have ‖(θ∗)(i) − (θ∗)(j)‖∞ = λ/(1 − γ) for each pair of distinct indices
(i, j). Furthermore, the KL divergence between Gaussians of variance %2 centered at r(i) and r(j) is
given by

KL
(
N (r(i), %2I) ‖ N (r(j), %2I)

)
=
‖r(i) − r(j)‖2

2

%2
=

2λ2

%2
.

Thus, applying the local packing version of Fano’s method (S15.3.3, [323]), we have

inf
θ̂

sup
θ∗∈{M(i)}i∈[D]

E‖θ̂ − θ∗‖∞ ≥ c
λ

1− γ

(
1−

2λ
2

%2
N + log 2

logD

)
.

Setting λ = %
√

logD
6N
∧ rmax yields the claimed lower bound.

Proof of claim (8.29)

This lower bound is based on a modification of constructions used by Lattimore and Hutter [184]
and Azar et al. [7]. Our proof, however, is tailored to the generative observation model.

Our proof is structured as follows. First, we construct a family of “hard” MRPs and prove a
minimax lower bound as a function of parameters used to define this family. Constructing this
family of hard instances requires us to first define a basic building block: a two-state MRP that
was illustrated in Figure 7.2. After obtaining this general lower bound, we then set the scalars that
parameterize the hard class MRP appropriately to obtain the two claimed bounds.

We now describe the two-state MRP in more detail. For a pair of parameters (p, τ), each in the
unit interval [0, 1], and a positive scalar ν, consider the two-state Markov reward processR0(p, ν, τ),
with transition matrix and reward vector given by

P0 =

[
p 1− p
0 1

]
and r0 =

[
ν
ν · τ

]
,

respectively. See Figure 7.2 in Chapter 7 for an illustration of this MRP.
A straightforward calculation yields that it has value function and corresponding standard

deviation vector given by

θ∗(p, ν, τ) = ν

[
1−γ+γτ(1−p)
(1−γp)(1−γ)

τ
1−γ

]
and σ(θ∗) = ν

[
(1−τ)
√
p(1−p)

1−γp
0

]
, (8.30)

respectively, where we have used the shorthand θ∗ ≡ θ∗(p, ν, τ). We also have ‖θ∗‖span = ν(1−τ)
1−γp ;

the two scalars (ν, τ) allow us to control the quantities ‖σ(θ∗)‖∞ and ‖θ∗‖span. Index the states of
this MRP by the set {0, 1}, and consider now a sample drawn from this MRP under the generative
model. We see a pair of states drawn according to the respective rows of the transition matrix
P0; the first state is drawn according to the Bernoulli distribution Ber(p), and the second state is
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deterministic and equal to 1. For convenience, we use P(p) = (Ber(p), 1) to denote the distribution
of this pair of states.

Our hard class of instances is based in part on the difficulty of distinguishing two such
MRPs that are close in a specific sense. Let us make this intuition precise. For two scalar
values 0 ≤ p2 ≤ p1 ≤ 1, some algebra yields the relation

‖θ∗(p1, ν, τ)− θ∗(p2, ν, τ)‖∞ = ν · (p1 − p2)(1− τ)

(1− γp1)(1− γp2)
. (8.31)

In the sequel, we work with the choices

p1 =
4γ − 1

3γ
and p2 = p1 −

1

8

√
p1(1− p1)

N
log(D/2),

which, under the assumed lower bound on the sample size N , are both scalars in the range
[

1
2
, 1
)

for all discount factors γ ∈
[

1
2
, 1
)
. Moreover, it is worth noting the relations

1− p1 =
1− γ

3γ
, c1

1− γ
3γ

≤ 1− p2 ≤ c2
1− γ

3γ

1− γp1 =
4

3
(1− γ), and c1(1− γ) ≤ 1− γp2 ≤ c2(1− γ), (8.32)

where the inequalities on the right hold provided N ≥ cγ
1−γ log(D/2) for a sufficiently large

constant c. Here the pair of constants (c1, c2) are universal, depend only on c, and may change from
line to line.

We also require the following lemma, proved in Section 8.4.4 to follow, which provides a useful
bound on the KL divergence between P(p1) and P(p2).

Lemma 8.4.4. For each pair p, q ∈ [1/2, 1), we have

KL (P(p)‖P(q)) ≤ (p− q)2

(p ∨ q)(1− (p ∨ q))
.

We are now in a position to describe the hard family of MRPs over which we prove a gen-
eral lower bound. Suppose that D is even for convenience, and consider a set of D/2 “master”
MRPs M̄ : = {R1, . . . ,RD/2} each on D states10 constructed as follows. Decompose each master
MRP into D/2 sub-MRPs of two states each; index the k-th sub-MRP in the j-th master MRP
byRj,k. For each pair j, k ∈ [D/2], set

Rj,k =

{
R0(p1, ν, τ) if j 6= k

R0(p2, ν, τ) otherwise.

10Note that this step is only required in order to “tensorize” the construction in order to obtain the optimal dependence
on the dimension. If, instead of the `∞ error, one was interested in estimating the value function at a fixed state of the
MRP, then this tensorization is no longer needed.
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Let θ∗j denote the value function corresponding to MRPRj , and let PNj denote the distribution of
state transitions observed from the MRP Rj under the generative model. Also note that for each
i ∈ [D/2], we have

‖σ(θ∗i )‖∞ = ν
(1− τ)

√
p1(1− p1)

(1− γp1)
. (8.33)

Lower bounding the minimax risk over this class: We again use the local packing form of
Fano’s method (S15.3.3, [323]) to establish a lower bound. Choose some index J uniformly at
random from the set [D/2], and suppose that we draw N i.i.d. samples Y N : = (Y1, . . . , YN) from
the MRPRJ under the generative model. Here each Yi ∈ XD represents a random set of D states,
and the goal of the estimator is to identify the random index J and, consequently, to estimate the
value function θ∗J . Let us now lower bound the expected error incurred in this (D/2)-ary hypothesis
testing problem. Fano’s inequality yields the bound

inf
θ̂

sup
θ∗∈M̄

E‖θ̂ − θ∗‖∞ ≥
1

2
min
j 6=k
‖θ∗j − θ∗k‖∞

(
1− I(J ;Y N) + log 2

log(D/2)

)
, (8.34)

where I(J ;Y N) denotes the mutual information between J and Y N .
Let us now bound the two terms that appear in inequality (8.34). By equation (8.31), we have

‖θ∗j − θ∗k‖∞ = ν · (p1 − p2)(1− τ)

(1− γp1)(1− γp2)
for all 1 ≤ j 6= k ≤ D/2.

Furthermore, since the samples Y1, . . . , YN are i.i.d., the chain rule of mutual information yields
1

N
I(J ;Y N) = I(J ;Y1) ≤ max

j 6=k
KL(Pj‖Pk)

(i)
= KL(P(p1)‖P(p2)) + KL(P(p2)‖P(p1))

(ii)

≤ 2
(p1 − p2)2

p1(1− p1)
,

where step (i) is a consequence of the construction, which ensures that the distributions Pj and
Pk coincide on all but the j-th and k-th sub-MRPs. On the other hand, step (ii) follows from
Lemma 8.4.4, and the fact that p2 ≤ p1.

Putting together the pieces, we now have

inf
θ̂

sup
θ∗∈M̄

E‖θ̂ − θ∗‖∞ ≥
ν

2
· (p1 − p2)(1− τ)

(1− γp1)(1− γp2)

1−
2N (p1−p2)2

p1(1−p1)
+ log 2

log(D/2)

 .

Recall the choice p1 − p2 = 1
8

√
p1(1−p1)

N
log(D/2). For D ≥ 8, this ensures, for a small enough

positive constant c, the bound

inf
θ̂

sup
θ∗∈M̄

E‖θ̂ − θ∗‖∞ ≥ cν
(1− τ)

√
p1(1− p1)

(1− γp1)
·
√

log(D/2)

N

1

1− γp2

. (8.35)
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With the relation (8.35) at hand, we now turn to proving the two sub-claims in equation (8.29).

Proof of claim (8.29a): Recall equation (8.33); for i ∈ [D/2], we have

‖σ(θ∗i )‖∞ = ν
(1− τ)

√
p1(1− p1)

(1− γp1)
and ‖θ∗i ‖span = ν

(1− τ)

(1− γp1)
.

Now for every pair of scalars (ϑ, ζ) satisfying ϑ = ζ
√

1− γ, set τ = 1/2 and ν = 2ζ(1−γp1). With
this choice of parameters, we have the inclusionMvar(ϑ, 0) ∩Mvfun(ζ, 0) ⊆ M̄, and evaluating
the bound (8.35) yields

inf
θ̂

sup
θ∗∈Mvar(ϑ,0)∩Mvfun(ζ,0)

E‖θ̂ − θ∗‖∞ ≥ cϑ

√
log(D/2)

N

1

1− γp2

(ii)
= cϑ

√
log(D/2)

N

1

1− γ
,

where in step (ii), we have used inequality (8.32). The same lower bound clearly also extends to the
setMvar(ϑ, 0) ∩Mvfun(ζ, 0) for ζ ≥ ϑ(1− γ)−1/2; this establishes part (a) of the theorem.

Proof of claim (8.29b): Given a value rmax, set τ = 0 and ν = rmax and note that the rewards of
all the MRPs in the set M̄ satisfy ‖r‖∞ ≤ ν. Hence, we haveMrew(rmax, 0) ⊆ M̄ for this choice
of parameters. Using inequality (8.35) and recalling the bounds (8.32) once again, we have

inf
θ̂

sup
θ∗∈Mrew(rmax,0)

E‖θ̂ − θ∗‖∞ ≥ crmax

√
p1(1− p1)

(1− γp1)
·
√

log(D/2)

N

1

1− γp2

≥ c
rmax

(1− γ)3/2

√
log(D/2)

N
.

Proof of Lemma 8.4.4

By construction, the second state of the Markov chain is absorbing, so it suffices to consider the KL
divergence between the first components of the distributions P(p) and P(q). These are Bernoulli
random variables Ber(p) and Ber(q), and the following calculation bounds their KL divergence:

KL (Ber(p)‖Ber(q)) = p log
p

q
+ (1− p) log

1− p
1− q

(ii)

≤ p · p− q
q

+ (1− p) · q − p
1− q

=
(p− q)2

q(1− q)
,

where step (ii) uses the inequality log(1 + x) ≤ x, which is valid for all x > −1. A similar
inequality holds with the roles of p and q reversed, and the denominator of the expression is lower
for the larger value p ∨ q. This completes the proof.
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8.4.5 Proof of Theorem 8.2.2
Note that the median-of-means operator is applied elementwise; denote the i-th such operator
by M̂i. Let M̂−P denote the elementwise difference of operator M̂ and the linear operator P; its
i-th component is given by the operator M̂i(·)− 〈pi, ·〉.

We require two technical lemmas in the proof. The power of the median-of-means device is
clarified by the first lemma, which is an adaptation of classical results (see, e.g., [153, 234]).

Lemma 8.4.5. Suppose that K = 8 log(4D/δ) and m = bN/Kc. Then there is a universal
constant c such that for each index i ∈ [D] and each fixed vector θ ∈ RD, we have

Pr

{
|(M̂i − pi)(θ)| ≥ c σi(θ)

√
log(8D/δ)

N

}
≤ δ

4D
.

Comparing this lemma to the Bernstein bound (cf. equation (8.12b)), we see that we no
longer pay in the span semi-norm ‖θ∗‖span, and this is what enables us to establish the solely
variance-dependent bound (8.6).

We also require the following lemma that guarantees that the median-of-means Bellman operator
is contractive.

Lemma 8.4.6. The median-of-means operator is 1-Lipschitz in the `∞-norm, and satisfies

|M̂(θ1)− M̂(θ2)| ≤ ‖θ1 − θ2‖∞ for all vectors θ1, θ2 ∈ RD.

Consequently, the empirical operator T̂ MoM
N is γ-contractive in `∞-norm and satisfies

|T̂ MoM
N (θ1)− T̂ MoM

N (θ2)| ≤ γ‖θ1 − θ2‖∞ for all pairs of value functions (θ1, θ2).

See Section 8.4.5 for the proof of Lemma 8.4.6.

We are now in a position to establish the theorem, where we now use the shorthand θ̂ ≡ θ̂MoM for
convenience. Note that the vectors θ∗ and θ̂ satisfy the fixed point relations

θ∗ = r + γPθ∗, and θ̂ = r̂ + γM̂(θ̂),

respectively. Taking differences, the error vector ∆̂ = θ̂ − θ∗ satisfies the relation

θ̂ − θ∗ = γ(M̂(∆̂ + θ∗)−Pθ∗) + r̂ − r
= γ(M̂(∆̂ + θ∗)− M̂(θ∗)) + γ(M̂ −P)(θ∗) + (r̂ − r).

Taking `∞-norms on both sides and using the triangle inequality, we have

‖∆̂‖∞ ≤ γ‖M̂(θ∗ + ∆̂)− M̂(θ∗)‖∞ + γ|(M̂ −P)(θ∗)|+ ‖r̂ − r‖∞
(i)

≤ γ‖∆̂‖∞ + γ|(M̂ −P)(θ∗)|+ ‖r̂ − r‖∞,

where step (i) is a result of Lemma 8.4.6. Finally, applying Lemma 8.4.5 in conjunction with the
Hoeffding inequality and a union bound over all D indices completes the proof.
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Proof of Lemma 8.4.6

The second claim follows directly from the first by noting that

|T̂ MoM
N (θ1)− T̂ MoM

N (θ2)| = γ|M̂(θ1)− M̂(θ2)|.

In order to prove the first claim, recall that for each θ ∈ RD, we have M̂(θ) = med(µ̂1(θ), . . . , µ̂K(θ)),
where the median—defined as the bK/2c-th order statistic—is taken entry-wise. By definition, for
each i ∈ [K], we have

‖µ̂i(θ1)− µ̂i(θ2)‖∞ =

∥∥∥∥∥
(

1

m

∑
k∈Di

Zk

)
(θ1 − θ2)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

m

∑
k∈Di

Zk

∥∥∥∥∥
1,∞

‖θ1 − θ2‖∞

(i)
= ‖θ1 − θ2‖∞,

where step (i) is a result of the fact that 1
m

∑
k∈Di Zk is a row stochastic matrix with non-negative

entries. Finally, we have the entry-wise bound

|M̂(θ1)− M̂(θ2)| = |med(µ̂1(θ1), . . . , µ̂K(θ1))−med(µ̂1(θ2), . . . , µ̂K(θ2))|
(ii)

� ‖θ1 − θ2‖∞ · 1,

where step (ii) follows from our definition of the median as the bK/2c-th order statistic, and
Lemma 8.4.7 to follow. This completes the proof of Lemma 8.4.6.

Lemma 8.4.7. For each pair of vectors (u, v) of dimension D and each index i ∈ [D], we have

|u(i) − v(i)| ≤ ‖u− v‖∞.

Proof. Assume without loss of generality that the entries of u are sorted in increasing order (so that
u1 ≤ u2 ≤ . . . ≤ uD), and let w denote a vector containing the entries of v sorted in increasing
order. We then have

|u(i) − v(i)| = |ui − wi| ≤ ‖u− w‖∞
(i)

≤ ‖u− v‖∞,

where step (i) follows from the rearrangement inequality applied to the `∞-norm [320].

8.5 Summary and open questions
Our work investigates the local minimax complexity of value function estimation in Markov reward
processes. Our upper bounds are instance-dependent, and we also provide minimax lower bounds
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that hold over natural subsets of the parameter space. The plug-in approach is shown to be optimal
over the class of MRPs with bounded rewards, and a variant based on the median-of-means device
achieves optimality over the class of MRPs having value functions with bounded variance.

Our results also leave a few interesting questions unresolved. Is Corollary 8.2.1(a) sharp, say
up to a logarithmic factor in the dimension? Is the median-of-means approach minimax-optimal
over the class of MRPs having bounded rewards? We conjecture that both of these questions
can be answered in the affirmative. Are our results also sharp under alternative local minimax
parameterizations (say in terms of the functional ‖(I−γP)−1σ(θ∗)‖∞)? Is there a more fine-grained
lower bound analysis that shows the (sub)-optimality of these approaches, and are there better
adaptive procedures for this problem? There is also the related question of whether a minimax lower
bound can be proved over a local neighborhood of every point θ∗. These questions are answered in
the affirmative in Chapter 9 to follow.

In a complementary direction, another interesting question is to ask how function approximation
affects these bounds. Our techniques should be useful in answering some of these questions, and
also more broadly in proving analogous guarantees in the more challenging policy optimization
setting.

There is the question of removing our assumption on the generative model: How does the plug-in
estimator behave when it is computed on a sampled trajectory of the system? A classical solution is
the blocking method of simulating the generative model from such samples [344]: given a sampled
trajectory, chop it into pieces of length (roughly) equal to the mixing time of the Markov chain,
and to treat the respective first sample from each of these pieces as (approximately) independent.
But clearly, this approach is somewhat wasteful, and there have been recent refinements in related
problems when the mixing time can become arbitrarily large [284]. It would be interesting to
explore these approaches and derive instance-dependent guarantees in the L2

µ-norm, where µ is the
stationary distribution of the Markov chain.

It would also be interesting to analyze other policy evaluation algorithms with this local perspec-
tive. In Chapter 9 to follow, we provide non-asymptotic guarantees on the `∞-error for the popular
family of temporal-difference learning algorithms that are based on stochastic approximation.
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Chapter 9

Is stochastic approximation
instance-optimal?

In this chapter, we study a class of stochastic approximation algorithms for policy evaluation, with
a focus on developing instance-dependent bounds. Our results complement those of Chapter 8, in
which we analyzed the plug-in estimator and its robust variant.

Related work
We begin with a broad overview of related work on stochastic approximation for policy evaluation,
which goes by the same of temporal difference (TD) learning. For a broader discussion of related
work on learning in Markov reward processes, see Chapter 8.

Asymptotic theory: The TD update was originally proposed by Sutton [293], and is typically used
in conjunction with an appropriate parameterization of value functions; see [77] for a comprehensive
survey. Classical results on the algorithm are typically asymptotic, and include both convergence
guarantees [37] and examples of divergence [10]; see the seminal work [301] for conditions that
guarantee asymptotic convergence.

It is worth noting that the TD algorithm is a form of linear stochastic approximation, and can be
fruitfully combined with the iterate-averaging procedure put forth independently by Polyak [255]
and Ruppert [270]. In this context, the work of Polyak and Juditsky [255] deserves special mention,
since it shows that under fairly mild conditions, the TD algorithm converges when combined with
Polyak-Ruppert iterate averaging. To be clear, in the specific context of the policy evaluation
problem, the results in the Polyak-Juditsky paper [255] allow noise only in the observations of
rewards (i.e., the transition function is assumed to be known). However, the underlying techniques
can be extended to derive results in the setting in which we only observe samples of transitions; for
instance, see the work of Tadic [295] for results of this type.

Non-asymptotic theory: Recent years have witnessed significant interest in understanding TD-
type algorithms from the non-asymptotic standpoint. Bhandari et al. [30] focus on proving `2-
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guarantees for the TD algorithm when combined with Polyak-Ruppert iterate averaging. They
consider both the generative model as well as the Markovian noise model, and provide non-
asymptotic guarantees on the expected error. Their results also extend to analyses of the popular
TD(λ) variant of the algorithm, as well as to Q-learning in specific MDP instances. Also noteworthy
is the analysis of Lakshminarayanan and Szepesvari [183], carried out in parallel with Bhandari et
al. [30]; it provides similar guarantees on the TD(0) algorithm with constant stepsize and averaging.
Note that both of these analyses focus on `2-guarantees (equipped with an associated inner product),
and thus can directly leverage proof techniques for stochastic optimization [9, 232].

Other related results1 include those of Dalal et al. [72], Doan et al. [86], Korda and La [175],
and also more contemporary papers [321, 337]. The latter three of these papers introduce a
variance-reduced form of temporal difference learning, a variant of which we analyze in this paper.

Instance-dependent results: The focus on instance-dependent guarantees for TD algorithms is
recent, and results are available both in the `2-norm setting [30, 72, 183, 337] and the `∞-norm
settings [246] (see Chapter 8). In general, however, the guarantees provided by work to date are not
sharp. For instance, the bounds in [72] scale exponentially in relevant parameters of the problem,
whereas the papers [30, 183, 337] do not capture the correct “variance” of the problem instance at
hand. In the previous chapter, we derived `∞ bounds on policy evaluation for the plug-in estimator.
These results were shown to be locally minimax optimal in certain regions of the parameter space.
There has also been some recent focus on obtaining instance-dependent guarantees in online
reinforcement learning settings [209]. This has resulted in more practically useful algorithms that
provide, for instance, horizon-independent regret bounds for certain episodic MDPs [154, 345].
Recent work has also established some instance-dependent bounds, albeit not sharp over the whole
parameter space, for the problem of state-action value function estimation in Markov decision
processes, for both ordinary Q-learning [324] and a variance-reduced improvement [325].

Contributions
In this paper, we study stochastic approximation algorithms for evaluating the value function of a
Markov reward process in the discounted setting. Our goal is to provide a sharp characterization of
performance in the `∞-norm, for procedures that are given access to state transitions and reward
samples under the generative model. In practice, temporal difference learning is typically applied
with an additional layer of (linear) function approximation. In the current paper, so as to bring the
instance dependence into sharp focus, we study the algorithms without this function approximation
step. In this context, we tell a story with three parts, as detailed below:

Local minimax lower bounds: Global minimax analysis provides bounds that hold uniformly
over large classes of models. In this paper, we seek to gain a more refined understanding of how the
difficulty of policy evaluation varies as a function of the instance. In order to do so, we undertake

1There were some errors in the results of Korda and La [175] that were pointed out by both Lakshminarayanan and
Szepesvari [183] and Xu et al. [337].
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an analysis of the local minimax risk associated with a problem. We first prove an asymptotic
statement (Proposition 9.1.1) that characterizes the local minimax risk up to a logarithmic factor; it
reveals the relevance of two functionals of the instance that we define. In proving this result, we
make use of the classical asymptotic minimax theorem [135, 186, 187]. We then refine this analysis
by deriving a non-asymptotic local minimax bound, as stated in Theorem 9.1.1, which is derived
using the non-asymptotic local minimax framework of Cai and Low [48], an approach that builds
upon the seminal concept of hardest local alternatives that can be traced back to Stein [290].

Non-asymptotic suboptimality of iterate averaging: Our local minimax lower bounds raise
a natural question: Do standard procedures for policy evaluation achieve these instance-specific
bounds? In Section 9.2, we address this question for the TD(0) algorithm with iterate averaging.
Via a careful simulation study, we show that for many popular stepsize choices, the algorithm fails
to achieve the correct instance-dependent rate in the non-asymptotic setting, even when the sample
size is quite large. This is true for both the constant stepsize, as well as polynomial stepsizes of
various orders. Notably, the algorithm with polynomial stepsizes of certain orders achieves the local
risk in the asymptotic setting (see Theorem 1).

Non-asymptotic optimality of variance reduction: In order to remedy this issue with iterate
averaging, we propose and analyze a variant of TD learning with variance reduction, showing
both through theoretical (see Theorem 2) and numerical results (see Figure 9.2) that this algorithm
achieves the correct instance-dependent rate provided the sample size is larger than an explicit
threshold. Thus, this algorithm is provably better than TD(0) with iterate averaging.

Chapter-specific notation: Recall the notational convention introduced in Section 1.4. We
complement this notation with a few other definitions that are used solely in this chapter and the
corresponding technical proof section in Appendix C.3. Recall from Chapter 8 that we let ‖M‖1,∞
denote the maximum `1-norm of the rows of a matrix M, and refer to it as the (1,∞)-operator norm
of a matrix. More generally, for scalars q, p ≥ 1, we define |||M|||p,q

def
= sup‖x‖p≤1 ‖Mx‖q. We let

M† denote the Moore-Penrose pseudoinverse of a matrix M.
We turn to the statements of our main results and discussion of their consequences. All of our

statements involve certain measures of the local complexity of a given problem, which we introduce
first. We then turn to the statement of lower bounds on the `∞-norm error in policy evaluation. In
Section 9.1, we prove two lower bounds. Our first result, stated as Proposition 9.1.1, is asymptotic
in nature (holding as the sample size N → +∞). Our second lower bound, stated as Theorem 9.1.1,
provides a result that holds for a range of finite sample sizes. Given these lower bounds, it is then
natural to wonder about known algorithms that achieve them. Concretely, does the TD(0) algorithm
combined with Polyak-Ruppert averaging achieve these instance-dependent bounds? In Section 9.2,
we undertake a careful empirical study of this question, and show that in the non-asymptotic setting,
this algorithm fails to match the instance-dependent bounds. This finding sets up the analysis in
Section 9.3, where we introduce a variance-reduced version of TD(0), and prove that it does achieve
the instance-dependent lower bounds from Theorem 9.1.1 up to a logarithmic factor in dimension.
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9.1 Local minimax lower bound
Throughout this section, we use the letter P to denote an individual problem instance, P = (P, r),
and use θ(P) := θ∗ = (I − γP)−1r to denote the target of interest. The aim of this section is
to establish instance-specific lower bounds for estimating θ(P) under the generative observation
model. In order to do so, we adopt a local minimax approach.

The remainder of this the section is organized as follows. In Section 9.1, we prove an asymptotic
local minimax lower bound, valid as the sample sizeN tends to infinity. It gives an explicit Gaussian
limit for the rescaled error that can be achieved by any procedure. The asymptotic covariance
in this limit law depends on the problem instance, and is very closely related to the functionals
ν(P, θ∗) and ρ(P, r) that we have defined. Moreover, we show that this limit can be achieved—in
the asymptotic limit—by the TD algorithm combined with Polyak-Ruppert averaging. While
this provides a useful sanity check, in practice we implement estimators using a finite number
of samples N , so it is important to obtain non-asymptotic lower bounds for a full understanding.
With this motivation, Section 9.1 provides a new, non-asymptotic instance-specific lower bound
for the policy evaluation problem. We show that the quantities ν(P, θ∗) and ρ(P, r) also cover
the instance-specific complexity in the finite-sample setting. In proving this non-asymptotic lower
bound, we build upon techniques in the statistical literature based on constructing hardest one-
dimensional alternatives [34, 49, 87, 88, 290]. As we shall see in later sections, while the TD
algorithm with averaging is instance-specific optimal in the asymptotic setting, it fails to achieve
our non-asymptotic lower bound.

Asymptotic local minimax lower bound

Our first approach towards an instance-specific lower bound is an asymptotic one, based on
classical local asymptotic minimax theory. For regular and parametric families, the Hájek–Le
Cam local asymptotic minimax theorem [135, 186, 187] shows that the Fisher information—an
instance-specific functional—characterizes a fundamental asymptotic limit. Our model class is both
parametric and regular, and so this classical theory applies to yield an asymptotic local minimax
bound. Some additional work is needed to relate this statement to the more transparent complexity
measures ν(P, θ∗) and ρ(P, r) that we have defined.

In order to state our result, we require some additional notation. Fix an instance P = (P, r).
For any ε > 0, we define an ε-neighborhood of problem instances by

N(P ; ε) = {P ′ = (P′, r′) : ‖P−P′‖F + ‖r − r′‖2 ≤ ε} .

Adopting the `∞-norm as the loss function, the local asymptotic minimax risk is given by

M∞(P) ≡M∞(P ; ‖·‖∞) = lim
c→∞

lim
N→∞

inf
θ̂N

sup
Q∈N(P;c/

√
N)

EQ
[√

N
∥∥∥θ̂N − θ(Q)

∥∥∥
∞

]
. (9.1)

Here the infimum is taken over all estimators θ̂N that are measurable functions of N i.i.d. observa-
tions drawn according to the generative observation model.
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Our first main result characterizes the local asymptotic risk M∞(P) exactly, and shows that it
is attained by stochastic approximation with averaging. Recall the Polyak-Ruppert (PR) sequence
{θ̃k}k≥1 defined in Eq. (7.9), and let {θ̃ ωk }k≥1 denote this sequence when the underlying SA
algorithm is the TD update with the polynomial stepsize sequence (7.8b) with exponent ω.

Proposition 9.1.1. Let Z ∈ RD be a multivariate Gaussian with zero mean and covariance matrix

(I− γP)−1(γ2ΣP(θ(P)) + σ2
rI)(I− γP)−>. (9.2a)

Then the local asymptotic minimax risk at problem instance P is given by

M∞(P) = E[‖Z‖∞]. (9.2b)

Furthermore, for each problem instance P and scalar ω ∈ (1/2, 1), this limit is achieved by the TD
algorithm with an ω-polynomial stepsize and PR-averaging:

lim
N→∞

√
N · E

[
‖θ̃ ωN − θ(P)‖∞

]
= E[‖Z‖∞]. (9.2c)

With the convention that θ∗ ≡ θ(P), a short calculation bounding the maximum absolute value
of sub-Gaussian random variables (see, e.g., Ex. 2.11 in Wainwright [323]) yields the sandwich
relation

γν(P, θ∗) + ρ(P, r) ≤ E[‖Z‖∞] ≤
√

2 logD · (γν(P, θ∗) + ρ(P, r)) ,

so that Proposition 9.1.1 shows that, up to a logarithmic factor in dimension D, the local asymptotic
minimax risk is entirely characterized by the functional γν(P, θ∗) + ρ(P, r).

It should be noted that lower bounds similar to Eq. (9.2b) have been shown for specific classes of
stochastic approximation algorithms [303]. However, to the best of our knowledge, a local minimax
lower bound—one applying to any procedure that is a measurable function of the observations—is
not available in the existing literature.

Furthermore, Eq. (9.2c) shows that stochastic approximation with polynomial stepsizes and
averaging attains the exact local asymptotic risk. Our proof of this result essentially mirrors that of
Polyak and Juditsky [255], and amounts to verifying their assumptions under the policy evaluation
setting. Given this result, it is natural to ask if averaging is optimal also in the non-asymptotic
setting; answering this question is the focus of the next two sections of the paper.

Non-asymptotic local minimax lower bound

Proposition 9.1.1 provides an instance-specific lower bound on θ(P) that holds asymptotically. In
order to obtain a non-asymptotic guarantee, we borrow ideas from the non-asymptotic framework
introduced by Cai and Low [49] for nonparametric shape-constrained inference. Adapting their
definition of local minimax risk to our problem setting, given the loss functionL(θ−θ∗) = ‖θ−θ∗‖∞,
the (normalized) local non-asymptotic minimax risk for θ(·) at instance P = (P, r) is given by

MN(P) = sup
P ′

inf
θ̂N

max
Q∈{P,P ′}

√
N · EQ

[
‖θ̂N − θ(Q)‖∞

]
. (9.3)
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Here the infimum is taken over all estimators θ̂N that are measurable functions of N i.i.d. obser-
vations drawn according to the generative observation model, and the normalization by

√
N is

for convenience. The definition (9.3) is motivated by the notion of the hardest one-dimensional
alternative [312, Ch. 25]. Indeed, given an instance P , the local non-asymptotic risk MN(P) first
looks for the hardest alternative P ′ against P (which should be local around P), then measures the
worst-case risk over P and its (local) hardest alternative P ′.

With this definition in hand, we lower bound the local non-asymptotic minimax risk using the
complexity measures ν(P, θ∗) and ρ(P, r) defined in Eq. (7.11):

Theorem 9.1.1. There exists a universal constant c > 0 such that for any instance P = (P, r), the
local non-asymptotic minimax risk is lower bounded as

MN(P) ≥ c
(
γν(P, θ∗) + ρ(P, r)

)
. (9.4)

This bound is valid for all sample sizes N that satisfy

N ≥ N0 : = max

{
γ2

(1− γ)2
,
b2(θ∗)

ν2(P, θ∗)

}
. (9.5)

A few comments are in order. First, it is natural to wonder about the necessity of condition (9.5)
on the sample size N in our lower bound. Chapter 8 upper bounds on the `∞-error of the plugin
estimator, and these results also require a bound of this type. In fact, when the rewards are observed
with noise (i.e., for any σr > 0), the condition N & γ2

(1−γ)2
is natural, since it is necessary in order

to obtain an estimate of the value function with O(1) error. On the other hand, in the special case of
deterministic rewards (σr = 0), it is interesting to ask how the fundamental limits of the problem
behave in the absence of this condition.

Second, note that the non-asymptotic lower bound (9.4) is closely connected to the asymptotic
local minimax bound from Proposition 9.1.1. In particular, for any sample size N satisfying the
lower bound (9.5), our non-asymptotic lower bound (9.4) coincides with the asymptotic lower
bound (9.2b) up to a constant factor. Thus, it cannot be substantially sharpened. The finite-sample
nature of the lower bound (9.4) is a powerful tool for assessing optimality of procedures: it provides
a performance benchmark that holds over a large range of finite sample sizes N . Indeed, in the next
section, we study the performance of the TD learning algorithm with Polyak-Ruppert averaging.
While this procedure achieves the local minimax lower bound asymptotically, as guaranteed by
Eq. (9.2c) in Proposition 9.1.1, it falls short of doing so in natural finite-sample scenarios.

9.2 Suboptimality of averaging
Polyak and Juditsky [255] provide a general set of conditions under which a given stochastic-
approximation (SA) algorithm, when combined with Polyak-Ruppert averaging, is guaranteed to
have asymptotically optimal behavior. For the current problem, the bound (9.2c) in Proposition 9.1.1,
which is proved using the Polyak-Juditsky framework, shows that SA with polynomial stepsizes
and averaging have this favorable asymptotic property.



CHAPTER 9. IS STOCHASTIC APPROXIMATION INSTANCE-OPTIMAL? 232

However, asymptotic theory of this type gives no guarantees in the finite-sample setting. In
particular, suppose that we are given a sample size N that scales as (1− γ)−2, as specified in our
lower bounds. Does the averaged TD(0) algorithm exhibit optimal behavior in this non-asymptotic
setting? In this section, we answer this question in the negative. More precisely, we use the
parameterized family of Markov reward processes described in Figure 7.2 of Chapter 7, and provide
careful simulations that reveal the suboptimality of TD without averaging.

A simulation study

In order to compare the behavior of averaged TD with the lower bound, we performed a series
of experiments of the following type. For a fixed parameter λ in the range [0, 1.5], we generated
a range of MRPs with different values of the discount factor γ. For each value of the discount
parameter γ, we consider the problem of estimating θ∗ using a sample size N set to be one of two
possible values: namely, N ∈

{
d 8

(1−γ)2
e, d 8

(1−γ)3
e
}

.
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Figure 9.1: Log-log plots of the `∞-error versus the discount complexity parameter 1/(1− γ) for
various algorithms. Each point represents an average over 1000 trials, with each trial simulations
are for the 2-state MRP depicted in Figure 7.2 with the parameter choices p = 4γ−1

3γ
, ν = 1 and

τ = 1− (1− γ)λ. We have also plotted the least-squares fits through these points, and the slopes
of these lines are provided in the legend. In particular, the legend contains the stepsize choice for
averaged SA (denoted as αk), the slope β̂ of the least-squares line, and the ideal value β∗ of the
slope computed in equation 9.6. We also include the lower bound predicted by Theorem 9.1.1 for
these examples as a dotted line for comparison purposes. Logarithms are to the natural base.

In Figure 9.1, we plot the `∞-error of the averaged SA, for constant stepsize (7.8a), polynomial-
decay stepsize (7.8b) and recentered linear stepsize (7.8c), as a function of γ. The plots show
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the behavior for λ ∈ {0.5, 1.5}. Each point on each curve is obtained by averaging 1000 Monte
Carlo trials of the experiment. Using our lower bound calculations above in conjunction with the
bound (7.13a), the log `∞-error is related to the complexity log

(
1

1−γ

)
in a linear fashion; we use β∗

to denote the slope of this idealized line. Simple algebra yields

β∗ =
1

2
− λ for N =

1

(1− γ)2
, and β∗ = −λ for N =

1

(1− γ)3
. (9.6)

In other words, for an algorithm which achieves the lower bound predicted by our theory, we expect
a linear relationship between the log `∞-error and log discount complexity log

(
1

1−γ

)
, with the

slope β∗.
Accordingly, for the averaged SA estimators with the stepsize choices in (7.8a)-(7.8c), we

performed a linear regression to estimate the slopes between the log `∞-error and the log discount-
complexity log

(
1

1−γ

)
. The plot legend reports the stepsize choices αk and the slope β̂ of the fitted

regression line. We also include the lower bound in the plots, as a dotted line along with its slope, for
a visual comparison. We see that the slopes corresponding to the averaged SA algorithm are higher
compared to the ideal slopes of the dotted lines. Stated differently, this means that the averaged SA
algorithm does not achieve the lower bound with either the constant step or the polynomial-decay
step. Overall, the simulations provided in this section demonstrate that the averaged SA algorithm,
although guaranteed to be asymptotically optimal by Eq. (9.2c) in Proposition 9.1.1, does not yield
the ideal non-asymptotic behavior.

9.3 Variance-reduced policy evaluation
In this section, we propose and analyze a variance-reduced version of the TD learning algorithm.
As in standard variance-reduction schemes, such as SVRG [156], our algorithm proceeds in epochs.
In each epoch, we run a standard stochastic approximation scheme, but we recenter our updates in
order to reduce their variance. The recentering uses an empirical approximation to the population
Bellman operator T .

We describe the behavior of the algorithm over epochs by a sequence of operators, {Vm}m≥1,
which we define as follows. At epoch m, the method uses a vector θm in order to recenter the
update, where the vector θm should be understood as the best current approximation to the unknown
vector θ∗. In the ideal scenario, such a recentering would involve the quantity T (θm), where T
denotes the population operator previously defined in Eq. (7.6). Since we lack direct access to the
population operator T , however, we use the Monte Carlo approximation

T̃Nm(θm) : =
1

Nm

∑
i∈Dm

T̂i(θm), (9.7)

where the empirical operator T̂i is defined in Eq. (7.5). Here the set Dm is a collection of Nm i.i.d.
samples, independent of all other randomness.
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Given the pair (θm, T̃Nm(θm)) and a stepsize α ∈ (0, 1), we define the operator V` on Rd as
follows:

θ 7→ Vk
(
θ;α, θm, T̃Nm

)
:= (1− α)θ + α

{
T̂k(θ)− T̂k(θm) + T̃Nm(θm)

}
. (9.8)

As defined in Eq. (7.5), the quantity T̂` is a stochastic operator, where the randomness is independent
of the set of samples Dm used to define T̃Nm . Consequently, the stochastic operator T̂` is independent
of the recentering vector T̃Nm(θm). Moreover, by construction, for each θ ∈ RD, we have

E
[
T̂k(θ)− T̂k(θm) + T̃Nm(θm)

]
= T (θ).

Thus, we see that Vk can be seen as an unbiased stochastic approximation of the population-level
Bellman operator. As will be clarified in the analysis, the key effect of the recentering steps is to
reduce its associated variance.

A single epoch

Based on the variance-reduced policy evaluation update defined in Eq. (9.8), we are now ready to
define a single epoch of the overall algorithm. We index epochs using the integers m = 1, 2, . . . ,M ,
where M corresponds to the total number of epochs to be run. Epoch m requires as inputs the
following quantities:

• a vector θ, which is chosen to be the output of the previous epoch,

• a positive integer K denoting the number of steps within the given epoch,

• a positive integer Nm denoting the number of samples used to calculate the Monte Carlo
update (9.7),

• a sequence of stepsizes {αk}Kk≥1 with αk ∈ (0, 1), and

• a set of fresh samples {T̂i}i∈Em , with |Em| = Nm + K. The first Nm samples are used to
define the dataset Dm that underlies the Monte Carlo update (9.7), whereas the remaining K
samples are used in the K steps within each epoch.

We summarize the operations within a single epoch in Algorithm 5.
The choice of the stepsize sequence {αk}k≥1 is crucial, and it also determines the epoch length

K. Roughly speaking, it is sufficient to choose a large enough epoch length to ensure that the error
is reduced by a constant factor in each epoch. In Section 9.3 to follow, we study three popular
stepsize choices—the constant stepsize (7.8a), the polynomial stepsize (7.8b) and the recentered
linear stepsize (7.8c)—and provide lower bounds on the requisite epoch length in each case.
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Algorithm 5: RunEpoch (θ;K,Nm, {αk}Kk=1 , {T̂i}i∈Em)

1: Given (a) Epoch length K , (b) Recentering vector θ , (c) Recentering sample size Nm,
(d) Stepsize sequence {αk}Kk≥1, (e) Samples {T̂i}i∈Em

2: Compute the recentering quantity T̃Nm(θ) : = 1
Nm

∑
i∈Dm

T̂i(θ)

3: Initialize θ1 = θ
4: for k = 1, 2, . . . , K do
5: Compute the variance-reduced update:

θk+1 = Vk
(
θk;αk, θ, T̃Nm

)
6: end for

Overall algorithm

We are now ready to specify our variance-reduced policy-evaluation (VRPE) algorithm. The overall
algorithm has five inputs: (a) an integer M , denoting the number of epochs to be run, (b) an integer
K, denoting the length of each epoch, (c) a sequence of sample sizes {Nm}Mm=1 denoting the number
of samples used for recentering, (d) Sample batches {{T̂i}i∈Em}Mm=1 to be used in m epochs, and (e)
a sequence of stepsize {αk}k≥1 to be used in each epoch. Given these five inputs, we summarize
the overall procedure in Algorithm 6:

Algorithm 6: Variance-reduced policy evaluation (VRPE)
1: Given (a) Number of epochs M , (b) Epoch length K , (c) Recentering sample sizes
{Nm}Mm=1, (d) Sample batches {T̂i}i∈Em , for m = 1, . . . ,M , (e) Stepsize {αk}Kk=1

2: Initialize at θ1

3: for m = 1, 2, . . . ,M do
4: θm+1 = RunEpoch

(
θm;K,Nm, {α}Kk=1, {T̂i}i∈Em

)
5: end for
6: Return θM+1 as the final estimate

In the next section, we provide a detailed description on how to choose these input parameters
for three popular stepsize choices (7.8a)–(7.8c). Finally, we reiterate that at epoch m, the algorithm
uses Nm + K new samples, and the samples used in the epochs are independent of each other.
Accordingly, the total number of samples used in M epochs is given by KM +

∑M
m=1Nm.
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Instance-dependent guarantees

Given a desired failure probability, δ ∈ (0, 1), and a total sample size N , we specify the following
choices of parameters in Algorithm 6:

Number of epochs : M : = log2

(
N(1− γ)2

8 log((8D/δ) · logN)

)
(9.9a)

Recentering sample sizes : Nm : = 2m
42 · 92 · log(8MD/δ)

(1− γ)2
for m = 1, . . . ,M

(9.9b)

Sample batches: Partition the N samples to obtain {T̂i}i∈Em for m = 1, . . .M (9.9c)

Epoch length: K =
N

2M
(9.9d)

In the following theorem statement, we use (c1, c2, c3, c4) to denote universal constants.

Theorem 9.3.1. (a) Suppose that the input parameters of Algorithm 6 are chosen according to
Eq. (9.9). Furthermore, suppose that the sample size N satisfies one of the following three stepsize-
dependent lower bounds:

(a) N
M
≥ c1

log(8ND/δ)
(1−γ)3

for recentered linear stepsize αk = 1
1+(1−γ)k

,

(b) N
M
≥ c2 log(8ND/δ) ·

(
1

1−γ

)( 1
1−ω∨

2
ω )

for polynomial stepsize αk = 1
kω

with 0 < ω < 1,

(c) N
M
≥ c3

log( 1
1−α(1−γ))

for constant stepsize αk = α ≤ 1
52·322

· (1−γ)2

log(8ND/δ)
.

Then for any initialization θ1, the output θM+1 satisfies

‖θM+1 − θ∗‖∞ ≤ c4 ·
∥∥θ1 − θ∗

∥∥
∞ ·

log2((8D/δ) · logN)

N2(1− γ)4

+ c4 ·

{√
log(8DM/δ)

N
·
(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

N
· b(θ∗)

}
,

(9.10)

with probability exceeding 1− δ.

See Section 9.4.3 for the proof of this theorem.

A few comments on the upper bound provided in Theorem 9.3.1 are in order. In order to facilitate a
transparent discussion in this section, we use the notation & in order to denote a relation that holds
up to logarithmic factors in the tuple (N,D, (1− γ)−1).
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Initialization dependence: The first term on the right-hand side of the upper bound (9.10) de-
pends on the initialization θ1. It should be noted that when viewed as a function of the sample size
N , this initialization-dependent term decays at a faster rate compared to the other two terms. This
indicates that the performance of Algorithm 6 does not depend on the initialization θ1 in a significant
way. A careful look at the proof (cf. Section 9.4.3) reveals that the coefficient of ‖θ1 − θ∗‖∞ in
the bound (9.10) can be made significantly smaller. In particular, for any p ≥ 1 the first term in the
right-hand side of bound (9.10) can be replaced by

c4 ·
‖θ1 − θ∗‖∞

Np
· logp((8D/δ) · logN)

(1− γ)2p
,

by increasing the recentering sample size (9.9b) by a constant factor and changing the values of the
absolute constants (c1, c2, c3, c4), with these values depending only on the value of p. We have stated
and proved a version for p = 2. Assuming the number of samples N satisfies N ≥ (1− γ)−(2+∆)

for some ∆ > 0, the first term on the right-hand side of bound (9.10) can always be made smaller
than the other two terms. In the sequel we show that each of the lower bound conditions (a)-(c) in
the statement of Theorem 9.3.1 requires a lower bound condition N & (1− γ)−3.

Comparing the upper and lower bounds: The second and the third terms in (9.10) show the
instance-dependent nature of the upper bound, and they are the dominating terms. Furthermore,
assuming that the minimum sample size requirements from Theorems 9.1.1 and 9.3.1 are met, we
find that the upper bound (9.10) matches the lower bound (9.4) up to logarithmic terms.

It is worthwhile to explicitly compute the minimum sample size requirements in Theorems 9.1.1
and 9.3.1. Ignoring the logarithmic terms and constant factors for the moment, unwrapping the
lower bound conditions (a)-(c) in Theorem 9.3.1, we see that for both the constant stepsize and
the recentered linear stepsize the sample size needs to satisfy N & (1− γ)−3. For the polynomial
stepsize αk = 1

kω
, the sample size has to be at least (1− γ)−( 1

1−ω∨
2
ω ). Minimizing the last bound for

different values of ω ∈ (0, 1), we see that the minimum value is attained at ω = 2/3, and in that case
the bound (9.10) is valid when N & (1− γ)−3. Overall, for all the three stepsize choices discussed
in Theorem 9.3.1 we require N & (1 − γ)−3 in order to certify the upper bound. Returning to
Theorem 9.1.1, from assumption (9.5) we see that in the best case scenario, Theorem 9.1.1 is valid
as soon as N & (1− γ)−2. Putting together the pieces we find that the sample size requirement for
Theorem 9.3.1 is more stringent than that of Theorem 9.1.1. Currently we do not know whether
the minimum sample size requirements in Theorems 9.1.1 and 9.3.1 are necessary; answering this
question is an interesting future research direction.

Simulation study: It is interesting to demonstrate the sharpness of our bounds via a simulation
study, using the same scheme as our previous study of TD(0) with averaging. In Figure 9.2, we
report the results of this study; see the figure caption for further details. At a high level, we see that
the VRPE algorithm, with either the recentered linear stepsize (panel (a)) or the polynomial stepsize
t−2/3, produces errors that decay with the exponents predicted by our instance-dependent theory for
λ ∈ {0.5, 1.0, 2.0}. See the figure caption for further details.
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Figure 9.2: Log-log plots of the `∞-error versus the discount complexity parameter 1/(1− γ) for
the VRPE algorithm. Each point is computed from an average over 1000 trials. Each trial entails
drawing N = d 8

(1−γ)3
e samples from the 2-state MRP in Figure 7.2 with the parameter choices

p = 4γ−1
3γ

, ν = 1 and τ = 1 − (1 − γ)λ. Each line on each plot represents a different value of λ,
as labeled in the legend. We have also plotted the least-squares fits through these points, and the
slopes of these lines are also provided in the legend. We also report the pair (β̂, β∗), where the
coefficient β̂ denotes the slope of the least-squares fit and β∗ denotes the slope predicted from the
lower bound calculation (9.6). (a) Performance of VRPE for the recentered linear stepsize (7.8c).
(b) Performance of VRPRE with polynomially decaying stepsizes (7.8b) with ω = 2/3.

9.4 Proofs of main results
We now turn to the proofs of our main results.

9.4.1 Proof of Proposition 9.1.1
Recall the definition of the matrix ΣP(θ) from Eq. (7.10), and define the covariance matrix

VP = (I− γP)−1(γ2ΣP(θ) + σ2
rI)(I− γP)−T . (9.11)

Recall that we use Z to denote a multivariate Gaussian random vector Z ∼ N (0, VP), and that
the sequence {θ̃ ωk }k≥1 is generated by averaging the iterates of stochastic approximation with
polynomial stepsizes (7.8b) with exponent ω. With this notation, the two claims of the theorem are:

M∞(P) = E[‖Z‖∞], and (9.12a)

lim
N→∞

E
[√

N · ‖θ̃ ωN − θ∗‖∞
]

= E[‖Z‖∞]. (9.12b)
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We now prove each of these claims separately.

Proof of Eq. (9.12a)

For the reader’s convenience, let us state a version of the Hájek–Le Cam local asymptotic minimax
theorem:

Theorem 9.4.1. Let {Pϑ′}ϑ′∈Θ be a family of parametric models, quadratically mean differentiable
with Fisher information matrices Jϑ′ . Fix some parameter ϑ ∈ Θ, and consider a function
ψ : Θ → RD that is differentiable at ϑ. Then for any quasi-convex loss L : RD → R, we have:

lim
c→∞

lim
N→∞

inf
ϑ̂N

sup
ϑ′

‖ϑ′−ϑ‖2≤c/
√
N

Eϑ′
[
L
(√

N · (ϑ̂N − ϑ′)
)]

= E[L(Z)], (9.13)

where the infimum is taken over all estimators ϑ̂N that are measurable functions of N i.i.d.
data points drawn from Pϑ, and the expectation is taken over a multivariate Gaussian Z ∼
N (0,∇ψ(ϑ)TJ†ϑ∇ψ(ϑ)).

Returning to the problem at hand, let ϑ = (P, r) denote the unknown parameters of the model
and let ψ(ϑ) = θ(P) = (I− γP)−1r denote the target vector. A direct application of Theorem 9.4.1
shows that

M∞(P) = E[‖Z‖∞] where Z = N (0,∇ψ(ϑ)TJ†ϑ∇ψ(ϑ)), (9.14)

where Jϑ is the Fisher information at ϑ. The following result provides a more explicit form of the
covariance of Z:

Lemma 9.4.1. We have the identity

∇ψ(ϑ)TJ†ϑ∇ψ(ϑ) = (I− γP)−1(γ2ΣP(θ) + σ2
rI)(I− γP)−T . (9.15)

Although the proof of this claim is relatively straightforward, it involves some lengthy and somewhat
tedious calculations; we refer the reader to Appendix C.3.1 for the proof.

Given the result from Lemma 9.4.1, the claim (9.12a) follows by substituting the relation (9.15)
into (9.14).

Proof of Eq. (9.12b)

The proof of this claim follows from the results of Polyak and Juditsky [255, Theorem 1], once
their assumptions are verified for TD(0) with polynomial stepsizes. Recall that the TD iterates
in Eq. (7.7) are given by the sequence {θk}k≥1, and that θ̃ ωk denotes the k-th iterate generated by
averaging.
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For each k ≥ 1, note the following equivalence between the notation of our paper and that of
Polyak and Juditsky [255], or PJ for short:

xk ≡ θk, γk ≡ αk, A ≡ I− γP, and ξk = (Rk − r) + (Zk −P)θk.

Let us now verify the various assumptions in the PJ paper. Assumption 2.1 in the PJ paper holds by
definition, since the matrix I− γP is Hurwitz. Assumption 2.2 in the PJ paper is also satisfied by
the polynomial stepsize sequence for any exponent ω ∈ (0, 1).

It remains to verify the assumptions that must be satisfied by the noise sequence {ξk}k≥1. In
order to do so, write the k-th such iterate as

ξk = (Rk − r) + (Zk −P)θ∗ + (Zk −P)(θk − θ∗).

Since Zk is independent of the sequence {θi}ki=1, it follows that the condition

lim
N→∞

E
[
‖θN − θ∗‖2

2

]
(9.16)

suffices to guarantee that Assumptions 2.3–2.5 in the PJ paper are satisfied. We now claim that for
each ω ∈ (1/2, 1], condition (9.16) is satisfied by the TD iterates. Taking this claim as given for the
moment, note that applying Theorem 1 of Polyak and Juditsky [255] establishes claim (9.12b), for
any exponent ω ∈ (1/2, 1).

It remains to establish condition (9.16). For any ω ∈ (1/2, 1], the sequence of stepsizes {αk}k≥1

satisfies the conditions
∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞.

Consequently, classical results due to Robbins and Munro [263, Theorem 2] guarantee `2-convergence
of θN to θ∗.

9.4.2 Proof of Theorem 9.1.1
Throughout the proof, we use the notation P = (P, r) and P ′ = (P′, r′) to denote, respectively, the
problem instance at hand and its alternative. Moreover, we use θ∗ ≡ θ(P) and θ(P ′) to denote the
associated target parameters for each of the two problems P and P ′. We use ∆P = P − P′ and
∆r = r − r′ to denote the differences of the parameters. For probability distributions, we use P
and P ′ to denote the marginal distribution of a single observation under P and P ′, and use PN and
(P ′)N to denote the distribution of N i.i.d observations drawn from P or P ′, respectively.

Proof structure

We introduce two special classes of alternatives of interest, denoted as S1 and S2 respectively:

S1 = {P ′ = (P′, r′) | r′ = r} , and S2 = {P ′ = (P′, r′) | P′ = P} .
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In words, the class S1 consists of alternatives P ′ that have the same reward vector r as P , but
a different transition matrix P′. Similarly, the class S2 consists of alternatives P ′ with the same
transition matrix P, but a different reward vector. By restricting the alternative P ′ within class S1

and S2, we can define restricted versions of the local minimax risk, namely

MN(P ;S1) ≡ sup
P ′∈S1

inf
θ̂N

max
P∈{P,P ′}

EP
[√

N ·
∥∥θ̂N − θ(P)

∥∥
∞

]
, and (9.17a)

MN(P ;S2) ≡ sup
P ′∈S2

inf
θ̂N

max
P∈{P,P ′}

EP
[√

N ·
∥∥θ̂N − θ(P)

∥∥
∞

]
. (9.17b)

The main part of the proof involves showing that there is a universal constant c > 0 such that the
lower bounds

MN(P ;S1) ≥ c · γν(P, θ∗), and (9.18a)
MN(P ;S2) ≥ c · ρ(P, r) (9.18b)

both hold (assuming that the sample size N is sufficiently large to satisfy the condition (9.5)). Since
we have MN(P) ≥ max {MN(P ;S1),MN(P ;S2)}, these lower bounds in conjunction imply the
claim Theorem 9.1.1. The next section shows how to prove these two bounds.

Proof of the lower bounds (9.18a) and (9.18b):

Our first step is to lower bound the local minimax risk for each problem class in terms of a modulus
of continuity between the Hellinger distance and the `∞-norm.

Lemma 9.4.2. For each S ∈ {S1,S2}, we have the lower bound MN(P ;S) ≥ 1
8
·MN(P ;S),

where we define

MN(P ;S)
def
= sup
P ′∈S

{√
N ·

∥∥θ(P)− θ(P ′)
∥∥
∞ | dhel(P, P

′) ≤ 1

2
√
N

}
. (9.19)

The proof of Lemma 9.4.2 follows a relatively standard argument, one which reduces estimation to
testing; see Appendix C.3.2 for details.

This lemma allows us to focus our remaining attention on lower bounding the quantity MN(P ;S).
In order to do so, we need both a lower bound on the `∞-norm

∥∥θ(P)− θ(P ′)
∥∥
∞ and an upper

bound on the Hellinger distance dhel(P, P
′). These two types of bounds are provided in the following

two lemmas. We begin with lower bounds on the `∞-norm:

Lemma 9.4.3. (a) For any P and for all P ′ ∈ S1, we have

‖θ(P)− θ(P ′)‖∞ ≥
(

1− γ

1− γ
‖∆P‖∞

)
+
·
∥∥γ(I− γP)−1∆Pθ

∗∥∥
∞ . (9.20a)

(b) For any P and for all P ′ ∈ S2, we have

‖θ(P)− θ(P ′)‖∞ ≥
∥∥(I− γP)−1∆r

∥∥
∞ . (9.20b)
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See Appendix C.3.2 for the proof of this claim.

Next, we require upper bounds on the Hellinger distance:

Lemma 9.4.4. (a) For each P and for all P ′ ∈ S1, we have

dhel(P, P
′)2 ≤ 1

2

∑
i,j

((∆P)i,j)
2

Pi,j

. (9.21a)

(b) For each P and for all P ′ ∈ S2, we have

dhel(P, P
′)2 ≤ 1

2σ2
r

‖r1 − r2‖2
2 . (9.21b)

See Appendix C.3.2 for the proof of this upper bound.

Using Lemmas 9.4.3 and 9.4.4, we can derive two different lower bounds. First, we have the
lower bound MN(P ;S1) ≥M′

N(P ;S1), where

M′
N(P ;S1) ≡ sup

P ′∈S1

{
√
N ·

(
1− γ ‖∆P‖∞

1− γ

)
+

·
∥∥γ(I− γP)−1∆Pθ

∗∥∥
∞ |

∑
i,j

((∆P)i,j)
2

Pi,j
≤ 1

2N

}
.

(9.22a)

Second, we have the lower bound MN(P ;S2) ≥M′
N(P ;S2), where

M′
N(P ;S2) ≡ sup

P ′∈S2

{√
N · ‖ (I− γP)−1 ∆r‖∞

1

σ2
r

‖r1 − r2‖2 ≤
1

2N

}
. (9.22b)

In order to complete the proofs of the two lower bounds (9.18a) and (9.18b), it suffices to show
that

M′
N(P ;S2) ≥ 1√

2
· ρ(P, r), and (9.23a)

M′
N(P ;S1) ≥ 1

2
√

2
· γν(P, θ∗). (9.23b)

Proof of the bound (9.23a): This lower bound is easy to show—it follows from the definition:

M′
N(P ;S2) =

σr√
2

∥∥(I− γP)−1∆r

∥∥
∞ =

1√
2
ρ(P, r).
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Proof of the bound (9.23b): The proof of this claim is much more delicate. Our strategy is to
construct a special “hard” alternative P ∈ S1, that leads to a good lower bound on M′

N(P ;S1).
Lemma 9.4.5 below is the main technical result that we require:

Lemma 9.4.5. There exists some probability transition matrix P̄ with the following properties:

(a) It satisfies the constraint
∑

i,j

((P̄−P)i,j)
2

Pi,j
≤ 1

2N
.

(b) It satisfies the inequalities∥∥P̄−P
∥∥
∞ ≤

1√
2N

, and
∥∥γ(I− γP)−1(P̄−P)θ∗

∥∥
∞ ≥

γ√
2N
· ν(P, θ∗).

See Appendix C.3.2 for the proof of this claim.

Given the matrix P̄ guaranteed by this lemma, we consider the “hard” problemP : = (P̄, r) ∈ S1.
From the definition of M′

N(P ;S1) in Eq. (9.22a), we have that

M′
N(P ;S1) ≥

√
N ·

(
1− γ

1− γ
∥∥P− P̄

∥∥
∞

)
+

·
∥∥γ(I− γP̄)−1(P− P̄)θ∗

∥∥
∞

≥
√
N ·

(
1− γ

1− γ
· 1√

2N

)
+

· γ√
2N
· ν(P, θ∗) ≥ 1

2
√

2
· γν(P, θ∗),

where the last inequality follows by the assumed lower bound N ≥ 4γ2

(1−γ)2
. This completes the

proof of the lower bound (9.23b).

9.4.3 Proof of Theorem 9.3.1
This section is devoted to the proof of Theorem 9.3.1, which provides the achievability results for
variance-reduced policy evaluation.

Proof of part (a):

We begin with a lemma that characterizes the progress of Algorithm 6 over epochs:

Lemma 9.4.6. Under the assumptions of Theorem 9.3.1 (a), there is an absolute constant c such
that for each epoch m = 1, . . . ,M , we have:∥∥θm+1 − θ∗

∥∥
∞ ≤

‖θm − θ∗‖∞
4

+ c


√

log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

Nm

· b(θ∗)

 ,

(9.24)

with probability exceeding 1− δ
M

.
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Taking this lemma as given for the moment, let us complete the proof. We use the shorthand

τm : =

√
log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
and ηm : =

log(8DM/δ)

Nm

· b(θ∗) (9.25)

to ease notation, and note that τm√
2
≤ τm+1 and ηm

2
≤ ηm+1, for each m ≥ 1. Using this notation and

unwrapping the recursion relation from Lemma 9.4.6, we have

∥∥θ̄M+1 − θ∗
∥∥
∞ ≤

∥∥θM − θ∗∥∥∞
4

+ c(τM + ηM)

(i)

≤
∥∥θM−1 − θ∗

∥∥
∞

42
+
c

2
(τM + ηM) + c(τM + ηM)

(ii)

≤
∥∥θ1 − θ∗

∥∥
∞

4M
+ 2c(τM + ηM).

Here, step (i) follows by applying the one-step application of the recursion (9.24), and by using
the upper bounds τm√

2
≤ τm+1 and ηm

2
≤ ηm+1. Step (ii) follows by repeated application of the

recursion (9.24). The last inequality holds with probability at least 1− δ by a union bound over the
M epochs.

It remains to express the quantities 4M , τM and ηM—all of which are controlled by the recen-
tering sample size NM—in terms of the total number of available samples N . Towards this end,
observe that the total number of samples used for recentering at M epochs is given by

M∑
m=1

Nm � 2M · log(8MD/δ)

(1− γ)2
.

Substituting the value of M = log2

(
N(1−γ)2

8 log((8D/δ)·logN)

)
we have

c1N ≤ NM �
M∑
m=1

Nm ≤
N

2
,

where c1 is a universal constant. Consequently, the total number of samples used by Algorithm 6 is
given by

MK +
M∑
m=1

Nm ≤
N

2
+
N

2
= N,

where in the last equation we have used the fact thatMK = N
2

. Finally, usingM = log2

(
N(1−γ)2

8 log((8D/δ)·logN)

)
we have the following relation for some universal constant c:

4M = c · N2(1− γ)4

log2((8D/δ) · logN)
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Putting together the pieces, we conclude that

‖θM+1 − θ∗‖∞ ≤ c2

∥∥θ1 − θ∗
∥∥
∞ ·

log2((8D/δ) · logN)

N2(1− γ)4

+ c2

{√
log(8DM/δ)

N

(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

N
· b(θ∗)

}
,

for a suitable universal constant c2. The last bound is valid with probability exceeding 1− δ via the
union bound. In order to complete the proof, it remains to prove Lemma 9.4.6, which we do in the
following subsection.

Proof of Lemma 9.4.6

We now turn to the proof of the key lemma within the argument. We begin with a high-level
overview in order to provide intuition. In the m-th epoch that updates the estimate from θm to
θm+1, the vector θ ≡ θm is used to recenter the updates. Our analysis of the m-th epoch is based on
a sequence of recentered operators {Jm

k }k≥1 and their population analogs Jm(θ). The action of
these operators on a point θ is given by the relations

Jm
k (θ) := T̂k(θ)− T̂k(θm) + T̃N(θm), and Jm(θ) := T (θ)− T (θm) + T̃N(θm). (9.26a)

By definition, the updates within epoch m can be written as

θk+1 = (1− αk) θk + αkJm
k (θk) . (9.26b)

Note that the operator Jm is γ-contractive in ‖ · ‖∞-norm, and as a result it has a unique fixed point,
which we denote by θ̂m. Since Jm(θ) = E [Jm

k (θ)] by construction, when studying epoch m, it is
natural to analyze the convergence of the sequence {θk}k≥1 to θ̂m.

Suppose that we have taken K steps within epoch m. Applying the triangle inequality yields
the bound

‖θm+1 − θ∗‖∞ = ‖θK+1 − θ∗‖∞ ≤
∥∥∥θK+1 − θ̂m

∥∥∥
∞

+
∥∥∥θ̂m − θ∗∥∥∥

∞
. (9.26c)

With this decomposition, our proof of Lemma 9.4.6 is based on two auxiliary lemmas that provide
high-probability upper bounds on the two terms on the right-hand side of inequality (9.26c).

Lemma 9.4.7. Let (c1, c2, c3) be positive numerical constants, and suppose that the epoch length
K satisfies one the following three stepsize-dependent lower bounds:

(a) K ≥ c1
log(8KMD/δ)

(1−γ)3
for recentered linear stepsize αk = 1

1+(1−γ)k
,

(b) K ≥ c2 log(8KMD/δ) ·
(

1
1−γ

)( 1
1−ω∨

2
ω )

for polynomial stepsize αk = 1
kω

with 0 < ω < 1,
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(c) K ≥ c3
log( 1

1−α(1−γ))
for constant stepsize αk = α ≤ (1−γ)2

log(8KMD/δ)
· 1

52·322
.

Then after K update steps with epoch m, the iterate θK+1 satisfies the bound

‖θK+1 − θ̂m‖∞ ≤
1

8
‖θm − θ∗‖∞ +

1

8
‖θ̂m − θ∗‖∞ with probability at least 1− δ

2M
. (9.27)

See Appendix C.3.3 for the proof of this claim.

Our next auxiliary result provides a high-probability bound on the difference ‖θ̂m − θ∗‖∞.

Lemma 9.4.8. There is an absolute constant c4 such that for any recentering sample size satisfying
Nm ≥ 42 · 92 · log(MD/δ)

(1−γ)2
, we have

‖θ̂m − θ∗‖∞ ≤ 1
9
‖θm − θ∗‖∞ + c4


√

log(8DM/δ)

Nm

(
γ · ν(P, θ∗) + ρ(P, r)

)
+

log(8DM/δ)

Nm

· b(θ∗)

 ,

with probability exceeding 1− δ
2M

.

See Appendix C.3.3 for the proof of this claim.

With Lemmas 9.4.7 and 9.4.8 in hand, the remainder of the proof is straightforward. Recall from
Eq. (9.25) the shorthand notation τm and ηm. Using our earlier bound (9.26c), we have that at the
end of epoch m (which is also the starting point of epoch m+ 1),∥∥θm+1 − θ∗

∥∥
∞ ≤ ‖θK+1 − θ̂m‖∞ + ‖θ̂m − θ∗‖∞

(i)

≤
{
‖θm − θ∗‖∞

8
+

1

8

∥∥∥θ̂m − θ∗∥∥∥
∞

}
+
∥∥∥θ̂m − θ∗∥∥∥

∞

=
‖θm − θ∗‖∞

8
+

9

8
·
∥∥∥θ̂m − θ∗∥∥∥

∞
(ii)

≤ ‖θm − θ
∗‖∞

8
+

1

8

{
‖θm − θ∗‖∞ + c4(τm + ηm)

}
≤ ‖θm − θ

∗‖∞
4

+ c4(τm + ηm),

where inequality (i) follows from Lemma 9.4.7(a), and inequality (ii) from Lemma 9.4.8. Finally,
the sequence of inequalities above holds with probability at least 1− δ

M
via a union bound. This

completes the proof of Lemma 9.4.6.

Proof of Theorem 9.3.1, parts (b) and (c)

The proofs of Theorem 9.3.1 parts (b) and (c) require versions of Lemma 9.4.6 for the polynomial
stepsize (7.8b) and constant stepsize (7.8a), respectively. These two versions of Lemma 9.4.6 can be
obtained by simply replacing Lemma 9.4.7, part (a), by Lemma 9.4.7, parts (b) and (c), respectively,
in the proof of Lemma 9.4.6.
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9.5 Summary and open questions
In this chapter, we have discussed the problem of policy evaluation in discounted Markov decision
processes via stochastic approximation. Our contribution is three-fold. First, we provided a non-
asymptotic instance-dependent local-minimax bound on the `∞-error for the policy evaluation
problem under the generative model. Next, via careful simulations, we showed that the standard
TD-learning algorithm—even when combined with Polyak-Rupert iterate averaging—does not yield
ideal non-asymptotic behavior as captured by our lower bound. In order to remedy this difficulty, we
introduced and analyzed a variance-reduced version of the standard TD-learning algorithm which
achieves our non-asymptotic instance-dependent lower bound up to logarithmic factors. Both the
upper and lower bounds discussed in this paper hold when the sample size is bigger than an explicit
threshold; relaxing this minimum sample size requirement is an interesting future research direction.
Finally, we point out that although we have focused on the tabular policy evaluation problem, the
variance-reduced algorithm discussed in this paper can be applied in more generality, and it would
be interesting to explore applications of this algorithm to non-tabular settings.

In the broader context of this dissertation, this chapter (and this part of the thesis more generally)
focused on the adaptation question in policy evaluation. This perspective both asks and answers
interesting questions and has helped guide our algorithmic developments. We expect that demanding
instance-specific adaptation from other algorithms in reinforcement learning can lead to interesting
statistical and algorithmic insights that a focus solely on worst-case optimality cannot.
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Appendix A

Technical material for part I

A.1 Technical lemmas used in Chapter 2
In this section, we provide statements and proofs of the technical lemmas used in the proofs of our
main theorems.

A.1.1 Supporting proofs for Theorem 2.3.1: d = 1 case
We provide a proof of Lemma 2.4.1 in this section; see Section 2.4.1 for the proof of Theorem 2.3.1
(case d = 1) given Lemma 2.4.1. We begin by restating the lemma for convenience.

Lemma 2.4.1. For d = 1 and any two permutation matrices Π and Π∗, and provided ‖x
∗‖22
σ2 > 1, we

have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−c dH(Π,Π∗) log

(
‖x∗‖2

2

σ2

))
.

Proof of Lemma 2.4.1

Before the proof, we establish notation. For each δ > 0, define the events

F1(δ) =
{
|‖P⊥Π∗y‖2

2 − ‖P⊥Πw‖2
2| ≥ δ

}
, and (A.1a)

F2(δ) =
{
‖P⊥Π y‖2

2 − ‖P⊥Πw‖2
2 ≤ 2δ

}
. (A.1b)

Evidently,

{∆(Π,Π∗) ≤ 0} ⊆ F1(δ) ∪ F2(δ). (A.2)

Indeed, if neither F1(δ) nor F2(δ) occurs

∆(Π,Π∗) =
(
‖P⊥Π y‖2

2 − ‖P⊥Πw‖2
2

)
−
(
‖P⊥Π∗y‖2

2 − ‖P⊥Πw‖2
2

)
> 2δ − δ = δ.
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Thus, to prove Lemma 2.4.1, we shall bound the probability of the two events F1(δ) and F2(δ)
individually, and then invoke the union bound. Note that inequality (A.2) holds for all values of
δ > 0; it is convenient to choose δ∗ := 1

3
‖P⊥Π Π∗Ax∗‖2

2. With this choice, the following lemma
bounds the probabilities of the individual events over randomness in w conditioned on a given A.
Its proof is postponed to the end of the section.

Lemma A.1.1. For any δ > 0 and with δ∗ = 1
3
‖P⊥Π Π∗Ax∗‖2

2, we have

Prw{F1(δ)} ≤ c′ exp

(
−c δ

σ2

)
, and (A.3a)

Prw{F2(δ∗)} ≤ c′ exp

(
−c δ

∗

σ2

)
. (A.3b)

The next lemma, proved in Section A.1.1, is needed in order to incorporate the randomness in A
into the required tail bound. It is convenient to introduce the shorthand TΠ := ‖P⊥Π Π∗Ax∗‖2

2.

Lemma A.1.2. For d = 1 and any two permutation matrices Π and Π∗ at Hamming distance h, we
have

PrA{TΠ ≤ t‖x∗‖2
2} ≤ 6 exp

(
− h

10

[
log

h

t
+
t

h
− 1

])
(A.4)

for all t ∈ [0, h].

We now have all the ingredients to prove Lemma 2.4.1.

Proof of Lemma 2.4.1. Applying Lemma A.1.1 and using the union bound yields

Prw{∆(Π,Π∗) ≤ 0} ≤ Prw{F1(δ∗)}+ Prw{F2(δ∗)}

≤ c′ exp

(
−cTΠ

σ2

)
. (A.5)

Combining bound (A.5) with Lemma A.1.2 yields

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ct‖x

∗‖2
2

σ2

)
PrA{TΠ ≥ t‖x∗‖2

2}+ PrA{TΠ ≤ t‖x∗‖2
2}

≤ c′ exp

(
−ct‖x

∗‖2
2

σ2

)
+ 6 exp

(
− h

10

[
log

h

t
+
t

h
− 1

])
, (A.6)

where the last inequality holds provided that t ∈ [0, h], and the probability in the LHS is now taken
over randomness in both w and A.

Using the shorthand snr :=
‖x∗‖22
σ2 , setting t = h log snr

snr
, and noting that t ∈ [0, h] since snr > 1,

we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp (−ch log snr) + 6 exp

(
− h

10

[
log

(
snr

log snr

)
+

log snr

snr
− 1

])
.



APPENDIX A. TECHNICAL MATERIAL FOR PART I 251

It is easily verified that for all snr > 1, we have

log

(
snr

log snr

)
+

log snr

snr
− 1 >

log snr

4
. (A.7)

Hence, after substituting for snr, we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ch log

(
‖x∗‖2

2

σ2

))
. (A.8)

Proof of Lemma A.1.1

We prove each claim of the lemma separately.

Proof of claim (A.3a) To start, note that by definition of the linear model, we have ‖P⊥Π∗y‖2
2 =

‖P⊥Π∗w‖2
2. Letting Z` denote a χ2 random variable with ` degrees of freedom, we claim that

‖P⊥Π∗w‖2
2 − ‖P⊥Πw‖2

2 = Zk − Z̃k,

where k := min(d, dH(Π,Π∗)).
For the rest of the proof, we adopt the shorthand Π \ Π′ := range(ΠA) \ range(Π′A), and

Π ∩ Π′ := range(ΠA) ∩ range(Π′A). Now, by the Pythagorean theorem, we have

‖P⊥Π∗w‖2
2 − ‖P⊥Πw‖2

2 = ‖PΠw‖2
2 − ‖PΠ∗w‖2

2.

Splitting it up further, we can then write

‖PΠw‖2
2 = ‖PΠ∩Π∗w‖2

2 + ‖(PΠ − PΠ∩Π∗)w‖2
2,

where we have used the fact that PΠ∩Π∗PΠ = PΠ∩Π∗ = PΠ∩Π∗PΠ∗ .
Similarly for the second term, we have ‖PΠ∗w‖2

2 = ‖PΠ∩Π∗w‖2
2 + ‖(PΠ∗ − PΠ∩Π∗)w‖2

2, and
hence,

‖PΠw‖2
2 − ‖PΠ∗w‖2

2 = ‖(PΠ − PΠ∩Π∗)w‖2
2 − ‖(PΠ∗ − PΠ∩Π∗)w‖2

2.

Now each of the two projection matrices above has rank1 dim(Π \ Π∗) = k, which completes the
proof of the claim. To prove the lemma, note that for any δ > 0, we can write

Pr{F1(δ)} ≤ Pr{|Zk − k| ≥ δ/2}+ Pr{|Z̃k − k| ≥ δ/2}.

Using the sub-exponential tail-bound on χ2 random variables (see Lemma A.2.2 in Appendix A.2.2)
completes the proof.

1With probability 1
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Proof of claim (A.3b) We begin by writing

Prw{F2(δ)} = Prw

‖P⊥Π Π∗Ax∗‖2
2 + 2〈P⊥Π Π∗Ax∗, P⊥Πw〉︸ ︷︷ ︸

R(A,w)

≤ 2δ

 .

We see that conditioned on A, the random variable R(A,w) is distributed as N (TΠ, 4σ
2TΠ), where

we have used the shorthand TΠ := ‖P⊥Π Π∗Ax∗‖2
2.

So applying standard Gaussian tail bounds (see, for example, Boucheron et al. [38]), we have

Prw{F2(δ)} ≤ exp

(
−(TΠ − 2δ)2

8σ2TΠ

)
.

Setting δ = δ∗ := 1
3
TΠ completes the proof.

Proof of Lemma A.1.2

In the case d = 1, the matrix A is composed of a single vector a ∈ Rn. Recalling the random
variable TΠ = ‖P⊥Π Π∗Ax∗‖2

2, we have

TΠ = (x∗)2

(
‖a‖2

2 −
1

‖a‖2
2

〈aΠ, a〉2
)

(i)

≥ (x∗)2
(
‖a‖2

2 − |〈a, aΠ〉|
)

=
(x∗)2

2
min

(
‖a− aΠ‖2

2, ‖a+ aΠ‖2
2

)
,

where step (i) follows from the Cauchy Schwarz inequality. Applying a union bound then yields

Pr{TΠ ≤ t(x∗)2} ≤ Pr{‖a− aΠ‖2
2 ≤ 2t}+ Pr{‖a+ aΠ‖2

2 ≤ 2t}.

Let Z` and Z̃` denote (not necessarily independent) χ2 random variables with ` degrees of
freedom. We split the analysis into two cases.

Case h ≥ 3 Lemma A.2.1 from Appendix A.2.1 guarantees that

‖a− aΠ‖2
2

2
d
= Zh1 + Zh2 + Zh3 , and (A.9a)

‖a+ aΠ‖2
2

2
d
= Z̃h1 + Z̃h2 + Z̃h3 + Z̃n−h, (A.9b)

where d
= denotes equality in distribution and h1, h2, h3 ≥ h

5
with h1 + h2 + h3 = h. An application

of the union bound then yields

Pr{‖a− aΠ‖2
2 ≤ 2t} ≤

3∑
i=1

Pr

{
Zhi ≤ t

hi
h

}
.
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Similarly, provided that h ≥ 3, we have

Pr{‖a+ aΠ‖2
2 ≤ 2t} ≤ Pr{Z̃h1 + Z̃h2 + Z̃h3 + Z̃n−h ≤ t}

(ii)

≤ Pr{Z̃h1 + Z̃h2 + Z̃h3 ≤ t}
(iii)

≤
3∑
i=1

Pr

{
Z̃hi ≤ t

hi
h

}
,

where inequality (ii) follows from the non-negativity of Zn−h, and the monotonicity of the CDF;
and inequality (iii) from the union bound. Finally, bounds on the lower tails of χ2 random variables
(see Lemma B.1.6 in Appendix B.1.4) yield

Pr

{
Zhi ≤ t

hi
h

}
= Pr

{
Z̃hi ≤ t

hi
h

}
(iv)

≤
(
t

h
exp

(
1− t

h

))hi/2
(v)

≤
(
t

h
exp

(
1− t

h

))h/10

.

Here, inequality (iv) is valid provided thi
h
≤ hi, or equivalently, if t ≤ h, whereas inequality (v)

follows since hi ≥ h/5 and the function xe1−x ∈ [0, 1] for all x ∈ [0, 1]. Combining the pieces
proves Lemma A.1.2 for h ≥ 3.

Case h = 2 In this case, we have

‖a− aΠ‖2
2

2
d
= 2Z1, and

‖a+ aΠ‖2
2

2
d
= 2Z̃1 + Z̃n−2.

Proceeding as before by applying the union bound and Lemma B.1.6, we have that for t ≤ 2, the
random variable TΠ obeys the tail bound

Pr{TΠ ≤ t(x∗)2} ≤ 2

(
t

2
exp

(
1− t

2

))1/2

≤ 6

(
t

h
exp

(
1− t

h

))h/10

, for h = 2.

A.1.2 Supporting proofs for Theorem 2.3.1: d > 1 case
We now provide a proof of Lemma 2.4.2. See Section 2.4.2 for the proof of Theorem 2.3.1 (case
d > 1) given Lemma 2.4.2. We begin by restating the lemma for convenience.
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Lemma 2.4.2. For any 1 < d < n, any two permutation matrices Π and Π∗ at Hamming distance
h, and provided

(
‖x∗‖22
σ2

)
n−

2n
n−d > 5

4
, we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′max

[
exp

(
−n log

n

2

)
, exp

(
ch

(
log

(
‖x∗‖2

2

σ2

)
− 2n

n− d
log n

))]
.

(2.11)

Proof of Lemma 2.4.2

The first part of the proof is exactly the same as that of Lemma 2.4.1. In particular, Lemma A.1.1
applies without modification to yield a bound identical to the inequality (A.5), given by

Prw{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−cTΠ

σ2

)
, (A.10)

where TΠ = ‖P⊥Π Π∗Ax∗‖2
2, as before.

The major difference from the d = 1 case is in the random variable TΠ. Accordingly, we state
the following parallel lemma to Lemma A.1.2.

Lemma A.1.3. For 1 < d < n, any two permutation matrices Π and Π∗ at Hamming distance h,
and t ≤ hn−

2n
n−d , we have

PrA{TΠ ≤ t‖x∗‖2
2} ≤ 2 max {T1, T2} , (A.11)

where

T1 = exp
(
−n log

n

2

)
, and

T2 = 6 exp

(
− h

10

[
log

(
h

tn
2n
n−d

)
+
tn

2n
n−d

h
− 1

])
.

The proof of Lemma A.1.3 appears in Section A.1.2. We are now ready to prove Lemma 2.4.2.

Proof of Lemma 2.4.2. We prove Lemma 2.4.2 from Lemma A.1.3 and equation (A.10) by an
argument similar to the one before. In particular, in a similar vein to the steps leading up to
equation (A.6), we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ct‖x

∗‖2
2

σ2

)
+ PrA{TΠ ≤ t‖x∗‖2

2}. (A.12)

We now use the shorthand snr :=
‖x∗‖22
σ2 and let t∗ = h

log

(
snr·n−

2n
n−d

)
snr

. Noting that snr · n−
2n
n−d > 5/4

yields t∗ ≤ hn−
2n
n−d , we set t = t∗ in inequality (A.12) to obtain

Pr{∆(Π,Π∗) ≤ 0}

≤ c′ exp
(
−ch log sn−

2n
n−d

)
+ PrA{TΠ ≤ t∗‖x∗‖2

2}. (A.13)
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Since PrA{TΠ ≤ t∗‖x∗‖2
2} can be bounded by a maximum of two terms (A.11), we now split the

analysis into two cases depending on which term attains the maximum.

Case 1 First, suppose that the second term attains the maximum in inequality (A.11), i.e.,

PrA{TΠ ≤ t∗‖x∗‖2
2} ≤ 12 exp

(
− h

10

[
log
(

h

t∗n
2n
n−d

)
+ t∗n

2n
n−d

h
− 1

])
. Substituting for t∗, we

have

PrA{TΠ ≤ t∗‖x∗‖2
2}

≤ 12 exp

− h

10
log

 snr · n−
2n
n−d

log
(
snr · n−

2n
n−d

)
 · exp

− h

10

 log
(
snr · n−

2n
n−d

)
snr · n−

2n
n−d

− 1

 .

We have snr · n−
2n
n−d > 5

4
, a condition which leads to the following pair of easily verifiable

inequalities:

log

 snr · n−
2n
n−d

log
(
snr · n−

2n
n−d

)
+

log
(
snr · n−

2n
n−d

)
snr · n−

2n
n−d

− 1 ≥ log snr · n−
2n
n−d

4
, and (A.14a)

log

 snr · n−
2n
n−d

log
(
snr · n−

2n
n−d

)
+

log
(
snr · n−

2n
n−d

)
snr · n−

2n
n−d

− 1 ≤ 5 log
(
snr · n−

2n
n−d

)
. (A.14b)

Using inequality (A.14a), we have

PrA{TΠ ≤ t∗‖x∗‖2
2} ≤ 12 exp

(
−ch log

(
snr · n−

2n
n−d

))
. (A.15)

Inequality (A.14b) will be useful in the second case to follow. Now using inequalities (A.15)
and (A.13) together yields

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp
(
−ch log

(
snr · n−

2n
n−d

))
. (A.16)

It remains to handle the second case.

Case 2 Suppose now that PrA{TΠ ≤ t∗‖x∗‖2
2} ≤ 2 exp

(
−n log n

2

)
, i.e., that the first term in RHS

of inequality (A.11) attains the maximum when t = t∗. In this case, we have

exp
(
−n log

n

2

)
≥ 6 exp

(
− h

10

[
log

(
h

t∗n
2n
n−d

)
+
t∗n

2n
n−d

h
− 1

])
(i)

≥ c′ exp
(
−ch log

(
snr · n−

2n
n−d

))
,
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where step (i) follows from the right inequality (A.14b). Now substituting into inequality (A.13),
we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp
(
−ch log

(
snr · n−

2n
n−d

))
+ 2 exp

(
−n log

n

2

)
≤ c′ exp

(
−n log

n

2

)
. (A.17)

Combining equations (A.16) and (A.17) completes the proof of Lemma 2.4.2.

Proof of Lemma A.1.3

We begin by reducing the problem to the case x∗ = e1‖x∗‖2, where e1 represents the first standard ba-
sis vector in Rd. In particular, ifWx∗ = e1‖x∗‖2 for a d×d unitary matrixW and writingA = ÃW ,
we have by rotation invariance of the Gaussian distribution that the the entries of Ã are distributed
as i.i.d. standard Gaussians. It can be verified that TΠ = ‖I − ΠÃ(Ã>Ã)−1(ΠÃ)>Π∗Ãe1‖2

2‖x∗‖2
2.

Since Ã d
= A, the reduction is complete.

In order to keep the notation uncluttered, we denote the first column of A by a. We also denote
the span of the first column of ΠA by S1 and that of the last d− 1 columns of ΠA by S−1. Denote
their respective orthogonal complements by S⊥1 and S⊥−1. We then have

TΠ = ‖x∗‖2
2‖P⊥Π a‖2

2

= ‖x∗‖2
2‖PS⊥−1∩S⊥1 a‖

2
2

= ‖x∗‖2
2‖PS⊥−1∩S⊥1 PS⊥1 a‖

2
2.

We now condition on a. Consequently, the subspace S⊥1 is a fixed (n− 1)-dimensional subspace.
Additionally, S⊥−1∩S⊥1 is the intersection of a uniformly random (n−(d−1))-dimensional subspace
with a fixed (n−1)-dimensional subspace, and is therefore a uniformly random (n−d)-dimensional

subspace within S⊥1 . Writing u =
P
S⊥1

a

‖P
S⊥1

a‖2 , we have

TΠ
d
= ‖x∗‖2

2‖PS⊥−1∩S⊥1 u‖
2
2‖PS⊥1 a‖

2
2.

Now since u ∈ S⊥1 , note that ‖PS⊥−1∩S⊥1 u‖
2
2 is the squared length of a projection of an (n − 1)-

dimensional unit vector onto a uniformly chosen (n− d)-dimensional subspace. In other words,
denoting a uniformly random projection from m dimensions to k dimensions by Pm

k and noting
that u is a unit vector, we have

‖PS⊥−1∩S⊥1 u‖
2
2
d
= ‖P n−1

n−d v1‖2
2

(i)
= 1− ‖P n−1

d−1 v1‖2
2,

where v1 represents a fixed standard basis vector in n − 1 dimensions. The quantities P n−1
n−d and

P n−1
d−1 are projections onto orthogonal subspaces, and step (i) is a consequence of the Pythagorean

theorem.
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Now removing the conditioning on a, we see that the term for d > 1 can be lower bounded by
the corresponding TΠ for d = 1, but scaled by a random factor – the norm of a random projection.
Using T 1

Π := ‖P⊥S1
a‖2

2‖x∗‖2
2 to denote TΠ when d = 1, we have

TΠ = (1−Xd−1)T 1
Π, (A.18)

where we have introduced the shorthand Xd−1 = ‖P n−1
d−1 v1‖2

2.
We first handle the random projection term in equation (A.18) using Lemma A.2.3 in Ap-

pendix A.2.2. In particular, substituting β = (1− z)n−1
d−1

in inequality (A.26) yields

Pr{1−Xd−1 ≤ z} ≤
(
n− 1

d− 1

)(d−1)/2(
z(n− 1)

n− d

)(n−d)/2

(i)

≤

√(
n− 1

d− 1

)√(
n− 1

n− d

)
z
n−d
2

=

(
n− 1

d− 1

)
z
n−d
2

(ii)

≤ 2n−1z
n−d
2 ,

where in steps (i) and (ii), we have used the standard inequality 2n ≥
(
n
r

)
≥
(
n
r

)r. Now setting
z = n

−2n
n−d , which ensures that (1− z)n−1

d−1
> 1 for all d < n and large enough n, we have

Pr{1−Xd−1 ≤ n
−2n
n−d} ≤ exp

(
−n log

n

2

)
. (A.19)

Applying the union bound then yields

Pr{TΠ ≤ t‖x∗‖2
2}

≤ Pr{1−Xd−1 ≤ n
−2n
n−d}+ Pr{T 1

Π ≤ tn
2n
n−d‖x∗‖2

2}. (A.20)

We have already computed an upper bound on Pr{T 1
Π ≤ tn

2n
n−d‖x∗‖2

2} in Lemma A.1.2. Applying
it yields that provided t ≤ hn−

2n
n−d , we have

Pr{T 1
Π ≤ tn

2n
n−d‖x∗‖2

2} ≤ 6

(
tn

2n
n−d

h
exp

(
1− tn

2n
n−d

h

))h/10

. (A.21)

Combining equations (A.21) and (A.19) with the union bound (A.20) and performing some
algebraic manipulation then completes the proof of Lemma A.1.3.
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A.1.3 Supporting proofs for Proposition 2.3.1
The following technical lemma was used in the proof of Proposition 2.3.1. Recall that the observation
vector y is drawn from the mixture distribution

M(h̄) =
1

|BH(h̄)|
∑

Π∈Sn

PΠ,

where PΠ denotes the Gaussian distribution N (ΠAx∗, σ2In).

Lemma A.1.4. For y drawn according to the mixture distribution M(h̄), we have

detE
[
yy>

]
≤ (σ2 + ‖x∗‖2

2)n (1 + n)

(
h̄

n

)n−1

.

Proof of Lemma A.1.4. We first explicitly calculate the matrix Y := E
[
yy>

]
. Note that the diagonal

entries take the form

Yii = (x∗)>E
[
aπia

>
πi

]
x∗ + E

[
w2
πi

]
= ‖x∗‖2

2 + σ2.

The off-diagonal entries can be evaluated as

Yij = (x∗)>E
[
aπia

>
πj

]
x∗ + E

[
wπiwπj

]
(i)
=

(
n− h̄
n

+
h̄

n2

)(
‖x∗‖2

2 + σ2
)
, for i 6= j,

where step (i) follows since

πi = πj with probability
n− h̄
n

+
h̄

n2
. (A.22)

Equation (A.22) is a consequence of the fact that a uniform permutation over BH(h̄) can be generated
by first picking h̄ positions (the permutation set) out of [n] uniformly at random, and then uniformly
permuting those h̄ positions. The probability that πi = πj is equal to the probability that πi = i, an
event that occurs if:
(a) position i is not chosen in the permutation set, which happens with probability n−h̄

n
, or if

(b) position i is in the permutation set but the permutation maps i to itself, which happens with
probability h̄

n
1
n

.
Hence, the determinant of Y is given by detY = (‖x∗‖2

2 + σ2)n detY , where we have defined
Y := 1

‖x∗‖22+σ2Y . Note that Y is a highly structured matrix, and so its determinant can be computed

exactly. In particular, letting the scalar β = 1 denote the identical diagonal entries of Y and the
scalar γ denote its identical off-diagonal entries, it is easy to verify that the all ones vector 1 is an
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eigenvector of Y , with corresponding eigenvalue β + (n− 1)γ. Additionally, for any vector v that
obeys 1>v = 0, we have

Y v = (β − γ)v + γ(v>1)1 = (β − γ)v,

and so the remaining n− 1 eigenvalues are identically β − γ.
Substituting for β and γ, the eigenvalues of Y are given by

λ1(Y ) = 1 +
(n− h̄)(n− 1)

n
+
h̄(n− 1)

n2
, and

λ2(Y ) = λ3(Y ) = · · · = λn(Y ) =
h̄

n
− h̄

n2
.

Hence, we have

detY =

(
1 +

(n− h̄)(n− 1)

n
+
h̄(n− 1)

n2

)(
h̄

n
− h̄

n2

)n−1

≤
(

1 + n− h̄+
h̄

n

)(
h̄

n

)n−1

≤ (1 + n)

(
h̄

n

)n−1

,

where in the last step, we have used the fact that 0 < h̄ ≤ n. This completes the proof.

A.1.4 Supporting proofs for Theorem 2.3.3
The following technical lemma was used in the proof of Theorem 2.3.3, and we recall the setting for
convenience. For any estimator Π̂, we denote by the indicator random variable E(Π̂, D) whether or
not the Π̂ has acceptable distortion, i.e., E(Π̂, D) = I[dH(Π̂,Π∗) ≥ D], with E = 1 representing
the error event. Assume Π∗ is picked uniformly at random in Sn.

Lemma A.1.5. The probability of error is lower bounded as

Pr{E(Π̂, D) = 1} ≥ 1− I(Π∗; y, A) + log 2

log n!− log n!
(n−D+1)!

. (A.23)

Proof of Lemma A.1.5. We use the shorthand E := E(Π̂, D) in this proof to simplify notation.
Proceeding by the usual proof of Fano’s inequality, we begin by expanding H(E,Π∗|y, A = a, Π̂)
in two ways:

H(E,Π∗|y, A, Π̂) = H(Π∗|y, A, Π̂) +H(E|Π∗, y, A, Π̂) (A.24a)

= H(E|y, A, Π̂) +H(Π∗|E, y,A, Π̂). (A.24b)
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Since Π∗ → (y, A) → Π̂ forms a Markov chain, we have H(Π∗|y, A, Π̂) = H(Π∗|y, A). Non-
negativity of entropy yields H(E|Π∗, y, A, Π̂) ≥ 0. Since conditioning cannot increase entropy, we
have H(E|y, A, Π̂) ≤ H(E) ≤ log 2, and H(Π∗|E, y,A, Π̂) ≤ H(Π∗|E, Π̂). Combining all of this
with the pair of equations (A.24) yields

H(Π∗|y, A) ≤ H(Π∗|E, Π̂) + log 2

= Pr{E = 1}H(Π∗|E = 1, Π̂)

+ (1− Pr{E = 1})H(Π∗|E = 0, Π̂) + log 2. (A.25)

We now use the fact that uniform distributions maximize entropy to bound the two terms as
H(Π∗|E = 1, Π̂) ≤ H(Π∗) = log n!, and H(Π∗|E = 0, Π̂) ≤ log n!

(n−D+1)!
, where the last

inequality follows since E = 0 reveals that Π∗ is within a Hamming ball of radius D − 1 around Π̂,
and the cardinality of that Hamming ball is n!

(n−D+1)!
.

Substituting back into inequality (A.25) yields

Pr{E = 1}
(

log n!− log
n!

(n−D + 1)!

)
+H(Π∗)

≥ H(Π∗|y, A)− log 2− log
n!

(n−D + 1)!
+ log n!,

where we have added the term H(Π∗) = log n! to both sides. Simplifying then yields inequal-
ity (A.23).

A.2 Auxiliary results for Chapter 2
In this section, we prove a preliminary lemma about permutations that is useful in many of our
proofs. We also derive tight bounds on the lower tails of χ2-random variables and state an existing
result on tail bounds for random projections.

A.2.1 Independent sets of permutations
In this section, we prove a combinatorial lemma about permutations. Given a Gaussian random
vector Z ∈ Rn, we use this lemma to characterize the distribution of Z ± ΠZ as a function of
the permutation Π. In order to state the lemma, we need to set up some additional notation. For
a permutation π on k objects, let Gπ denote the corresponding undirected incidence graph, i.e.,
V (Gπ) = [k], and (i, j) ∈ E(Gπ) iff j = π(i) or i = π(j).

Lemma A.2.1. Let π be a permutation on k ≥ 3 objects such that dH(π, I) = k. Then the vertices
of Gπ can be partitioned into three sets V1, V2, V3 such that each is an independent set, and
|V1|, |V2|, |V3| ≥ bk3c ≥

k
5
.
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Proof. Note that for any permutation π, the corresponding graph Gπ is composed of cycles, and
the vertices in each cycle together form an independent set. Consider one such cycle. We can go
through the vertices in the order induced by the cycle, and alternate placing them in each of the 3
partitions. Clearly, this produces independent sets, and furthermore, having 3 partitions ensures that
the last vertex in the cycle has some partition with which it does not share edges. If the cycle length
C ≡ 0 (mod 3), then each partition gets C/3 vertices, otherwise the smallest partition has bC/3c
vertices. The partitions generated from the different cycles can then be combined (with relabeling, if
required) to ensure that the largest partition has cardinality at most 1 more than that of the smallest
partition.

A.2.2 Tail bounds on random projections
We state the following lemma for general sub-exponential random variables (see, e.g., Boucheron et
al. [38]). We use it in the context of χ2 random variables.

Lemma A.2.2. Let X be a sub-exponential random variable. Then for all t > 0, we have

Pr{|X − E[X]| ≥ t} ≤ c′e−ct.

Lastly, we require tail bounds on the norms of random projections, a problem that has been stud-
ied extensively in the literature on dimensionality reduction. The following lemma, a consequence
of the Chernoff bound, is taken from Dasgupta and Gupta [78, Lemma 2.2b].

Lemma A.2.3 ([78]). Let x be a fixed n-dimensional vector, and let P n
d be a projection matrix from

n-dimensional space to a uniformly randomly chosen d-dimensional subspace, where d ≤ n. Then
we have for every β > 1 that

Pr{‖P n
d x‖2

2 ≥
βd

n
‖x‖2

2} ≤ βd/2
(

1 +
(1− β)d

n− d

)(n−d)/2

. (A.26)

A.2.3 Strong converse for Gaussian channel capacity
The following result due to Shannon [278] provides a strong converse for the Gaussian channel.
The non-asymptotic version as stated here was also derived by Yoshihara [343].

Lemma A.2.4 ([343]). Consider a vector Gaussian channel on n coordinates with message power
P and noise power σ2, whose capacity is given by R = log

(
1 + P

σ2

)
. For any codebook C with

|C| = 2nR, if for some ε > 0 we have

R > (1 + ε)R,

then the probability of error pe ≥ 1− 2 · 2−nε for n large enough.
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A.3 Preliminary lemmas for Chapter 3
Before proceeding to the proofs of our main results, we provide two lemmas that underlie many of
our arguments. The proofs of these lemmas can be found in Sections A.3 and A.3, respectively. Let
us denote the `∞ norm of A by ‖A‖∞ = maxi∈[n1], j∈[n2] |Ai,j|.

The first lemma establishes concentration of a linear form of observations Yi,j around its mean.

Lemma A.3.1. For any fixed matrix A ∈ Rn1×n2 and scalar u ≥ 0, and under our observation
model (3.1), we have

|〈Y −M∗, A〉| ≤ 2(ζ + 1)
(√

e− 1 ‖A‖F
√
n1n2

N
u+ ‖A‖∞

n1n2

N
u
)

with probability at least 1− 4e−u.
Consequently, for any nonempty subset S ⊂ [n1]× [n2], it holds that∣∣∣∣ ∑

(i,j)∈S

(Yi,j −M∗
i,j)

∣∣∣∣ ≤ 8(ζ + 1)

(√
|S|n1n2

N
log(n1n2) +

n1n2

N
log(n1n2)

)

with probability at least 1− 4(n1n2)−4.

The next lemma generalizes Theorem 5 of Shah et al. [274] to any model in which the noise
satisfies a “mixed tail” assumption. More precisely, a random matrix W ∈ Rn1×n2 is said to have
an (α, β)-mixed tail if there exist (possibly (n1, n2)-dependent) positive scalars α and β ≤ n2

1 such
that for any fixed matrix A ∈ Rn1×n2 and u ≥ 0, we have

Pr
{∣∣〈W,A〉∣∣ ≥ (α‖A‖F√u+ β‖A‖∞u

)}
≤ 2e−u. (A.27)

It is worth mentioning that similar (but less general) lemmas characterizing the estimation error for
a bivariate isotonic matrix were also proved in prior work [55, 56].

Lemma A.3.2. Let n2 ≤ n1, and consider the observation model Y = M∗ +W . Suppose that the
noise matrix W satisfies the (α, β)-mixed tail condition (A.27).
(a) There is an absolute constant c such that for all M∗ ∈ Cr,c

Perm, the least squares estimator
M̂LS(Cr,c

Perm, Y ) satisfies

∥∥M̂LS(Cr,c
Perm, Y )−M∗∥∥2

F
≤ c

{
α2n1 log n1 + βn2(log n1)2 + βn1 log n1

+
[
α
√
n1n2(log n1)2

]
∧
[
α2n1n2 log(n1/α + e)

]
∧
[
α4/3n

1/3
1 n2(log n1)2/3

]}

with probability at least 1− n−3n1
1 .
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(b) There is an absolute constant c such that for all M∗ ∈ CBISO, the least squares estimator
M̂LS(CBISO, Y ) satisfies

∥∥M̂LS(CBISO, Y )−M∗∥∥2

F
≤ c

{
βn2(log n1)2

+
[
α
√
n1n2(log n1)2

]
∧
[
α2n1n2 log(n1/α + e)

]
∧
[
α4/3n

1/3
1 n2(log n1)2/3

]}

with probability at least 1− n−3n1
1 .

Proof of Lemma A.3.1

Recall that the observation matrix Y is defined by

Yi,j =
n1n2

N

N ′∑
`=1

y` 1{X` = E(i,j)}.

Let {Ii,j}i∈[n1], j∈[n2] be the partition of [N ′] defined so that ` ∈ Ii,j if and only if X` = E(i,j). In
other words, the observation y` is a noisy version of entry M∗

i,j for each ` ∈ Ii,j . Then, we have

Yi,j =
n1n2

N

∑
`∈Ii,j

y`.

By Poissonization N ′ ∼ Poi(N), we know that the random variables |Ii,j| are i.i.d. Poi( N
n1n2

), and
that the quantities Yi,j are independent for (i, j) ∈ [n1]× [n2]. Moreover, we may write

Yi,j −M∗
i,j =

n1n2

N

∑
`∈Ii,j

(y` −M∗
i,j) +M∗

i,j

n1n2

N

(
|Ii,j| −

N

n1n2

)
.

As a result, it holds that
〈Y −M∗, A〉 = Z1 + Z2,

where we define

Z1 =
∑
i∈[n1]
j∈[n2]

Ai,j
n1n2

N

∑
`∈Ii,j

(y` −M∗
i,j) and

Z2 =
∑
i∈[n1]
j∈[n2]

Ai,jM
∗
i,j

n1n2

N

(
|Ii,j| −

N

n1n2

)
.

We now control Z1 and Z2 separately.
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First, for s ∈ R, we compute

E exp(sZ1) = EIi,j
[
Ey`

[
exp

(
s
∑
i,j

Ai,j
n1n2

N

∑
`∈Ii,j

(y` −M∗
i,j)

) ∣∣∣ Ii,j]]

= EIi,j
[∏

i,j

∏
`∈Ii,j

Ey`

[
exp

(
s
n1n2

N
Ai,j(y` −M∗

i,j)

) ∣∣∣ Ii,j]]

≤ EIi,j
[∏

i,j

∏
`∈Ii,j

exp

((
ζs
n1n2

N
Ai,j

)2
)]

if |s| ≤ N

n1n2‖A‖∞ζ
, (A.28)

where inequality(A.28) holds since the quantity y` −M∗
i,j is sub-exponential with parameter ζ. It

then follows that for |s| ≤ N
n1n2‖A‖∞ζ , we have

E exp(sZ1) ≤ E
[∏

i,j

exp

((
ζs
n1n2

N
Ai,j

)2

|Ii,j|
)]

=
∏
i,j

E
[

exp

((
ζs
n1n2

N
Ai,j

)2

|Ii,j|
)]

(i)
=
∏
i,j

exp

{
N

n1n2

[
exp

((
ζs
n1n2

N
Ai,j

)2
)
− 1

]}
,

where step (i) follows by explicit computation since |Ii,j| are i.i.d. Poi( N
n1n2

) random variables. We
may now apply the inequality ex − 1 ≤ (e− 1)x valid for x ∈ [0, 1], with the substitution

x =
(
ζs
n1n2

N
Ai,j

)2

;

note that this lies in the range [0, 1] for all |s| ≤ N
n1n2‖A‖∞ζ . Thus, for s in this range, we have

E exp(sZ1) ≤
∏
i,j

exp
{

(e− 1)
n1n2

N

(
ζsAi,j

)2
}

= exp
{

(e− 1)
n1n2

N
ζ2s2‖A‖2

F

}
.

Using the Chernoff bound, we obtain for |s| ≤ N
n1n2‖A‖∞ζ and all t ≥ 0 the tail bound

Pr{Z1 ≥ t} ≤ e−st E exp(sZ1) ≤ exp
{

(e− 1)
n1n2

N
ζ2s2‖A‖2

F − st
}
.

The optimal choice s = Nt
2(e−1)n1n2ζ2‖A‖2F

∧ N
n1n2‖A‖∞ζ yields the bound

Pr{Z1 ≥ t} ≤ exp

(
− N

n1n2

( t2

4(e− 1)ζ2‖A‖2
F

∧ t

2ζ‖A‖∞

))
. (A.29)
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The lower tail bound is obtained analogously.
Let us now turn to the noise term Z2. For s ∈ R, we have

E exp(sZ2) = E
[

exp

(
s
∑
i,j

Ai,jM
∗
i,j

n1n2

N

(
|Ii,j| −

N

n1n2

))]
=
∏
i,j

E
[

exp

(
sAi,jM

∗
i,j

n1n2

N

(
|Ii,j| −

N

n1n2

))]
=
∏
i,j

exp

{
N

n1n2

[
exp

(
sAi,jM

∗
i,j

n1n2

N

)
− sAi,jM∗

i,j

n1n2

N
− 1

]}
,

where the last step uses the explicit MGF of |Ii,j|. We may now apply the inequality ex − x− 1 ≤
(e− 2)x2 valid for x ∈ [0, 1], with the substitution

x = sAi,jM
∗
i,j

n1n2

N
;

note that this quantity is in the range [0, 1] provided |s| ≤ N
n1n2‖A‖∞ .

Thus, for all s in this range, we have

E exp(sZ2) ≤
∏
i,j

exp
{

(e− 2)
n1n2

N

(
sAi,jM

∗
i,j

)2
}

≤ exp
{

(e− 2)
n1n2

N
s2‖A‖2

F

}
.

A similar Chernoff bound argument then yields, for each t ≥ 0, the bound

Pr{Z2 ≥ t} ≤ exp

(
− N

n1n2

( t2

4(e− 2)‖A‖2
F

∧ t

2‖A‖∞

))
, (A.30)

and the lower tail bound holds analogously.
Combining the tail bounds (A.29) on Z1 and (A.30) on Z2, we obtain

∣∣〈Y −M∗, A〉
∣∣ ≤ |Z1|+ |Z2| ≤ 2(ζ + 1)

(√
e− 1‖A‖F

√
n1n2

N
u+ ‖A‖∞

n1n2

N
u
)

with probability at least 1− 4e−u, for each u ≥ 0.
The second consequence of the lemma follows immediately from the first assertion by taking A

to be the indicator of the subset S, and some algebraic manipulation.

Proof of Lemma A.3.2

We first state several lemmas that will be used in the proof. The following variational formula due
to Chatterjee [58] is convenient for controlling the performance of a least squares estimator over
any closed (not necessarily convex) set.
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Lemma A.3.3 (Chatterjee’s variational formula). Let C be a closed subset of Rn1×n2 . Suppose that
Y = M∗ +W where M∗ ∈ C and W ∈ Rn1×n2 . Let M̂LS(C, Y ) denote the least squares estimator,
that is, the projection of Y onto C. Define a function fM∗ : R+ → R by

fM∗(t) = sup
M∈C

‖M−M∗‖2≤t

〈W,M −M∗〉 − t2

2
.

If there exists t∗ > 0 such that fM∗(t) < 0 for all t ≥ t∗, then we have ‖M̂LS(C, Y )−M∗‖2 ≤ t∗.

This deterministic form is proved in [104, Lemma 6.1]. Here we simply state the result in matrix
form for convenient application.

The following chaining tail bound due to Dirksen [85, Theorem 3.5] is tailored for bounding
the supremum of an empirical process with a mixed tail. We state a version specialized to our
setup. For each positive scalar c, let c‖ · ‖ denote the norm ‖ · ‖ scaled by c. Let γp(C, ‖ · ‖) and
diam(C, ‖ · ‖) denote Talagrand’s γp functional (see, e.g., [85]) and the diameter of the set C in the
distance induced by the norm ‖ · ‖, respectively.

Lemma A.3.4 (Generic chaining tail bounds). Let W be a random matrix in Rn1×n2 satisfying the
(α, β)-mixed tail condition (A.27). Let C be a subset of Rn1×n2 and let M∗ ∈ C. Then there exists a
universal positive constant c such that for any u ≥ 1, we have

Pr
{

sup
M∈C

∣∣〈W,M −M∗〉
∣∣ ≥ c

(
γ2(C, α‖ · ‖F ) + γ1(C, β‖ · ‖∞)

+
√
u diam(C, α‖ · ‖F ) + u diam(C, β‖ · ‖∞)

)}
≤ e−u.

The final lemma bounds the metric entropy of the set Cr,c
Perm in the `2 or `∞ norm. The `2 entropy

bound is known [56, 274]. For ε > 0 and a set C equipped with a norm ‖ · ‖, let N(ε; C, ‖ · ‖) denote
the ε-metric entropy of C in the norm ‖ · ‖.

Lemma A.3.5. There is an absolute positive constant c such that for any ε ≤ √n1n2, we have

logN(ε;Cr,c
Perm, ‖ · ‖F ) ≤ 2n1 log n1+ (A.31a)[

c
n1n2

ε2

(
log

√
n1n2

ε

)2]
∧
(
c n1n2 log

√
n1n2

ε

)
∧
(
c

√
n1n2

ε
n2 log n1

)
;

logN(ε;CBISO, ‖ · ‖F ) ≤ (A.31b)[
c
n1n2

ε2

(
log

√
n1n2

ε

)2]
∧
(
c n1n2 log

√
n1n2

ε

)
∧
(
c

√
n1n2

ε
n2 log n1

)
,

and the metric entropies are zero if ε >
√
n1n2. We also have, for each ε ≤ 1, the bounds

logN(ε;Cr,c
Perm, ‖ · ‖∞) ≤

[n2

ε
log(en1)

]
∧
(
n1n2 log

e

ε

)
+ 2n1 log n1; (A.32a)

logN(ε;CBISO, ‖ · ‖∞) ≤
[n2

ε
log(en1)

]
∧
(
n1n2 log

e

ε

)
, (A.32b)

and the metric entropies are zero if ε > 1.
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The proof of this lemma is provided at the end of the section.
Taking these lemmas as given, we are ready to prove Lemma A.3.2. We only provide the proof

for the class Cr,c
Perm; the proof for the class CBISO is analogous. Let BM∗(t) denote the ball of radius

t in the Frobenius norm centered at M∗. To apply Lemma A.3.3, we define

g(t) = sup
M∈Cr,c

Perm∩BM∗ (t)

〈W,M −M∗〉 and f(t) = g(t)− t2

2
.

The key is to bound this supremum g(t). By the assumption on the noise matrix W , Lemma A.3.4
immediately implies that with probability 1− e−u, we have

g(t) . γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) + γ1(Cr,c

Perm ∩ BM∗(t), β‖ · ‖∞) (A.33)

+
√
u diam(Cr,c

Perm ∩ BM∗(t), α‖ · ‖F ) + u diam(Cr,c
Perm ∩ BM∗(t), β‖ · ‖∞).

The diameters are, in turn, bounded as

diam(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) ≤ α

(
t ∧
√
n1n2

)
and

diam(Cr,c
Perm ∩ BM∗(t), β‖ · ‖∞) ≤ β(t ∧ 1)

since each entry of M ∈ Cr,c
Perm is in [0, 1].

It remains to bound the γ1 and γ2 functionals of the set Cr,c
Perm ∩ BM∗(t). These functionals can

be bounded by entropy integral bound (see equation (2.3) of [85])

γp(Cr,c
Perm ∩ BM∗(t), ‖ · ‖) ≤ cp

∫ ∞
0

[
logN

(
ε,Cr,c

Perm ∩ BM∗(t), ‖ · ‖
)]1/p

dε,

valid for a constant cp > 0 and any norm ‖ · ‖. We use this bound for p = 1 and p = 2, and the
metric entropy bounds established in Lemma A.3.5.

Let us begin by establishing a bound on the γ2 functional by writing

γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) ≤ c2

∫ α(t∧√n1n2)

0

[
logN

(
ε,Cr,c

Perm ∩ BM∗(t), α‖ · ‖F
)]1/2

dε.

We now make two observations about the metric entropy on the RHS. First, note that scaling the
Frobenius norm by a factor α amounts to replacing ε by ε/α in (A.31a). Second, notice that the
metric entropy is expressed as a minimum of three terms; we provide a bound for each of the terms
separately, and then obtain the final bound as a minimum of the three cases.

For the first term, notice that the minimum is never attained when ε ≤ αn−5
1 , so that we have

γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) .

∫ α(t∧√n1n2)

αn−5
1

{
α2n1n2

ε2

(
log

α
√
n1n2

ε

)2

+ 2n1 log n1

}1/2

dε

.
∫ α

√
n1n2

αn−5
1

α
√
n1n2

ε
log

α
√
n1n2

ε
dε+ αt

√
n1 log n1

. α
√
n1n2(log n1)2 + αt

√
n1 log n1.
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Now consider the second term of the bound (A.31a); we have

γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) .

∫ α(t∧√n1n2)

0

{(
n1n2 log

α
√
n1n2

ε

)
+ 2n1 log n1

}1/2

dε

. αt
√
n1n2 log(n1/t+ e) + αt

√
n1 log n1.

Finally, the third term of bound (A.31a) can be used to obtain

γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) .

∫ αt

0

{(α√n1n2

ε
n2 log n1

)
+ 2n1 log n1

}1/2

dε

. αt1/2n
1/4
1 n

3/4
2

√
log n1 + αt

√
n1 log n1.

With the three bounds combined, we have

γ2(Cr,c
Perm ∩ BM∗(t), α‖ · ‖F ) . αt

√
n1 log n1+[

α
√
n1n2(log n1)2

]
∧
[
αt
√
n1n2 log(n1/t+ e)

]
∧
(
αt1/2n

1/4
1 n

3/4
2

√
log n1

)
.

Let us now turn to bounding the γ1 functional in `∞ norm. Scaling the ‖ · ‖∞ norm by a factor
β amounts to replacing ε by ε/β in the metric entropy bound (A.32a), so we have

γ1(Cr,c
Perm ∩ BM∗(t), β‖ · ‖∞) ≤ c1

∫ β(t∧1)

0

logN
(
ε,Cr,c

Perm ∩ BM∗(t), β‖ · ‖∞
)
dε

≤ c1

∫ β

0

{[βn2

ε
log(en1)

]
∧
(
n1n2 log

eβ

ε

)
+ 2n1 log n1

}
dε

.
∫ βn−5

1

0

n1n2 log
β

ε
dε+

∫ β

βn−5
1

βn2

ε
log n1dε+ βn1 log n1

. βn2(log n1)2 + βn1 log n1.

Putting together the pieces with the bound (A.33), we obtain

g(t) .
[
α
√
n1n2(log n1)2

]
∧
[
αt
√
n1n2 log(n1/t+ e)

]
∧
(
αt1/2n

1/4
1 n

3/4
2

√
log n1

)
+ αt

√
n1 log n1 + βn2(log n1)2 + βn1 log n1 + αt

√
u+ βu.

As a result, there is a universal positive constant c such that choosing

t ≥ t∗ = c3

{[√
α(n1n2)1/4 log n1

]
∧
[
α
√
n1n2 log(n1/α + e)

]
∧
[
α2/3n

1/6
1 n

1/2
2 (log n1)1/3

]
(A.34)

+ α
√
n1 log n1 +

√
βn2 log n1 +

√
βn1 log n1 + α

√
u+

√
βu

}
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yields the bound g(t) < t2/8. This holds for each individual t ≥ t∗ with probability 1− e−u. We
now prove that f(t) < 0 simultaneously for all t ≥ t∗ with high probability. Note that typically, the
star-shaped property of the set suffices to provide such a bound, but we include the full proof for
completeness.

To this end, we first note that by assumption,

Pr{|Wi,j| ≥ α
√
u+ βu} ≤ 2e−u.

A union bound then implies that

Pr
{
‖W‖F ≥ (α

√
u+ βu)

√
n1n2

}
≤ 2n1n2e

−u.

Therefore, we have with probability at least 1− 2n1n2e
−u that

g(t) ≤ t‖W‖F ≤ t(α
√
u+ βu)

√
n1n2

simultaneously for all t ≥ 0. On this event, it holds that f(t) < 0 for all t ≥ t# = 3(α
√
u +

βu)
√
n1n2.

For t ∈ [t∗, t#], we employ a discretization argument (clearly, we can assume t# ≥ t∗ without
loss of generality). Let T = {t1, . . . , tk} be a discretization of the interval [t∗, t#] such that
t∗ = t1 < · · · < tk = t# and 2t1 ≥ t2. Note that T can be chosen so that

|T | = k ≤ log2

t#

t∗
+ 1 ≤ log2

(
(3 + 3

√
βu)
√
n1n2

)
+ 1 ≤ 7 log(n1u),

where we used the assumption that β ≤ n2
1. Using the high probability bound g(t) < t2/8

for each individual t ≥ t∗ and a union bound over T , we obtain that with probability at least
1− 7 log(n1u)e−u,

max
t∈T

g(t)− t2/8 < 0.

On this event, we use the fact that g(t) is non-decreasing and that ti ≥ ti+1/2 to conclude that for
each t ∈ [ti, ti+1] where i ∈ [k − 1], we have

f(t) = g(t)− t2/2 ≤ g(ti+1)− t2i /2 ≤ g(ti+1)− t2i+1/8 ≤ max
t∈T

g(t)− t2/8 < 0.

In summary, we obtain that f(t) < 0 for all t ≥ t∗ simultaneously with probability at least
1 − 2n1n2e

−u − 7 log(n1u)e−u. Choosing u = 4n1 log n1, recalling the definition of t∗ in (A.34)
and applying Lemma A.3.3, we conclude that with probability at least 1− n−3n1

1 ,∥∥M̂LS(Cr,c
Perm, Y )−M∗∥∥2

F
≤ (t∗)2 .[

α
√
n1n2(log n1)2

]
∧
[
α2n1n2 log(n1/α + e)

]
∧
[
α4/3n

1/3
1 n2(log n1)2/3

]
+ α2n1 log n1 + βn2(log n1)2 + βn1 log n1.

The entire argument can be repeated for the class CBISO, in which case terms of the order
n1 log n1 disappear as there is no latent permutation. Since the argument is analogous, we omit the
details. This completes the proof of the lemma.
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Proof of Lemma A.3.5 Note that
√
n1n2 and 1 are the diameters of Cr,c

Perm in `2 and `∞ norms
respectively, so we can assume ε ≤ √n1n2 or 1 in the two cases.

For the `2 metric entropy, Lemma 3.4 of [56] yields

logN(ε;CBISO, ‖ · ‖F ) ≤ c1
n1n2

ε2

(
log

√
n1n2

ε

)2

,

which is the first term of (A.31a). In addition, since CBISO is contained in the ball in Rn1×n2 of
radius

√
n1n2 centered at zero, we have the simple bound

logN(ε;CBISO, ‖ · ‖F ) ≤ c2n1n2 log

√
n1n2

ε
,

which is the second term of (A.31a).
Moreover, any matrix in CBISO has Frobenius norm bounded by

√
n1n2 and has non-decreasing

columns so Cr,c
Perm is a subset of the class of matrices considered in Lemma 6.7 of the paper [104] with

A = 0 and t =
√
n1n2 (see also equation (6.9) of the paper for the notation). The aforementioned

lemma yields the bound

logN(ε;Cr,c
Perm, ‖ · ‖F ) ≤ c3

√
n1n2

ε
n2 log n1.

Taking the minimum of the three bounds above yields the `2 metric entropy bound (A.31b) on the
class of bivariate isotonic matrices. Since Cr,c

Perm is a union of n1!n2! permuted versions of CBISO,
combining this bound with an additive term 2n1 log n1 provides the bound for the class Cr,c

Perm.
For the `∞ metric entropy, we again start with CBISO. Let us define a discretization Iε =

{0, ε, 2ε, . . . , b1/εcε} and a set of matrices

Q =
{
M ∈ CBISO : Mi,j ∈ Iε

}
,

which is a discretized version of CBISO. We claim thatQ is an ε-net of CBISO in the `∞ norm. Indeed,
for any M ∈ CBISO, we can define a matrix M ′ by setting

M ′
i,j = argmin

a∈Iε
|a−Mi,j|

with the convention that if Mi,j = (k + 0.5)ε for an integer 0 ≤ k < b1/εc, then we set M ′
i,j =

(k + 1)ε. It is not hard to see that M ′ ∈ Q and moreover ‖M ′ −M‖∞ ≤ ε. Therefore the claim is
established.

It remains to bound the cardinality of Q. Since each column of Q is non-decreasing and takes
values in Iε having cardinality b1/εc+ 1, it is well known (by a “stars and bars” argument) that the
number of possible choices for each column of a matrix in Q can be bounded as(

n1 + b1/εc
b1/εc

)
≤
(
e
n1 + b1/εc
b1/εc

)b1/εc
∧
(
e
n1 + b1/εc

n1

)n1

,
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where we used the bound
(
n
k

)
≤ ( en

k
)k for any 0 ≤ k ≤ n. Since a matrix in Q has n2 columns, we

obtain

log |Q| ≤ n2 log

(
n1 + b1/εc
b1/εc

)
≤
[n2

ε
log(en1)

]
∧
(
n1n2 log

e

ε

)
.

This bounds logN(ε;CBISO, ‖ · ‖∞) and the same argument as before yields the bound for
Cr,c

Perm.

A.4 Technical lemmas used in Chapter 3
We now proceed to the technical lemmas used to prove Theorems 3.4.1 and 3.4.2.

Proof of Lemma 3.5.3

We split the proof of Lemma 3.5.3 into two cases.

Case 1 First, suppose that |B| ≥ n1n2

N
log(n1n2). In view of the condition∑

`∈B

M∗
v,` −

∑
`∈B

M∗
u,` > 2ηB

and the definition of a topological sort, Lemma A.6.5 (which is stated and proved shortly) with
ai =

∑
`∈BM

∗
i,`, b = a, π = π̂ and τ = 2ηB yields

∣∣∣∑
`∈B

(M∗
π̂(i),` −M∗

i,`)
∣∣∣ ≤ 2ηB ≤ 96(ζ + 1)

√
n1n2

N
|B| log(n1n2),

for all i ∈ [n1].

Case 2 Otherwise, we have |B| ≤ n1n2

N
log(n1n2). It then follows that∣∣∣∑

`∈B

(M∗
π̂(i),` −M∗

i,`)
∣∣∣ ≤ 2|B| ≤ 2

√
n1n2

N
|B| log(n1n2),

where we have used the fact that M ∈ [0, 1]n1×n2 .
Since the columns of M∗ are all non-decreasing, we have∑

j∈B

∣∣M∗
π̂(i),j −M∗

i,j

∣∣ =
∣∣∣∑
j∈B

(M∗
π̂(i),j −M∗

i,j)
∣∣∣,

so the proof is complete.
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Proof of Lemma 3.5.4

Let a = mini∈[n] vi and b = maxi∈[n] vi = a+ var(v). Since the quantities in the inequality remain
the same if we replace v by −v, we assume without loss of generality that b ≥ 0. If a ≤ 0, then
‖v‖∞ ≤ b− a = var(v). If a > 0, then a ≤ ‖v‖1/n and ‖v‖∞ = b ≤ ‖v‖1/n+ var(v). Hence, in
any case we have ‖v‖2

2 ≤ ‖v‖∞‖v‖1 ≤ [‖v‖1/n+ var(v)]‖v‖1.

Proof of Lemma 3.5.5

Since A has increasing rows, for any i, i2 ∈ [n] with i ≤ i2 and any j, j2 ∈ Jk, we have

Ai2,j − Ai,j = (Ai2,j − Ai2,ak) + (Ai2,ak − Ai,bk) + (Ai,bk − Ai,j)
≤ (Ai2,bk − Ai2,ak) + (Ai2,j2 − Ai,j2) + (Ai,bk − Ai,ak).

Choosing j2 = arg minr∈Jk(Ai2,r − Ai,r), we obtain

Ai2,j − Ai,j ≤ (Ai2,bk − Ai2,ak) + (Ai,bk − Ai,ak) +
1

mk

∑
r∈Jk

(Ai2,r − Ai,r).

Together with the assumption on π, this implies that

|Aπ(i),j − Ai,j| ≤ Aπ(i),bk − Aπ(i),ak︸ ︷︷ ︸
xi,k

+Ai,bk − Ai,ak︸ ︷︷ ︸
yi,k

+
1

mk

∑
r∈Jk

|Aπ(i),r − Ai,r|︸ ︷︷ ︸
zi,k

.

Hence, it follows that

n∑
i=1

m∑
j=1

(Ai,j − Aπ(i),j)
2 =

n∑
i=1

∑̀
k=1

∑
j∈Jk

(Ai,j − Aπ(i),j)
2

≤
n∑
i=1

∑̀
k=1

∑
j∈Jk

|Ai,j − Aπ(i),j|(xi,k + yi,k + zi,k/mk)

=
n∑
i=1

∑̀
k=1

zi,k(xi,k + yi,k + zi,k/mk).

According to the assumptions, we have

1.
∑`

k=1 xi,k ≤ 1 and
∑n

i=1 xi,k ≤ χ for any i ∈ [n], k ∈ [`];

2.
∑`

k=1 yi,k ≤ 1 and
∑n

i=1 yi,k ≤ χ for any i ∈ [n], k ∈ [`];

3. zi,k ≤ ρk and
∑`

k=1 zi,k ≤ ρ for any i ∈ [n], k ∈ [`].

Consequently, the following bounds hold:
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1.
∑n

i=1

∑`
k=1 zi,kxi,k ≤

∑n
i=1

∑`
k=1 ρkxi,k ≤ χ

∑`
k=1 ρk;

2.
∑n

i=1

∑`
k=1 zi,kyi,k ≤

∑n
i=1

∑`
k=1 ρkyi,k ≤ χ

∑`
k=1 ρk;

3.
∑n

i=1

∑`
k=1 z

2
i,k/mk ≤

∑n
i=1

∑`
k=1 zi,k ·maxk∈[`](ρk/mk) ≤ nρmaxk∈[`](ρk/mk).

Combining these inequalities yields the claim.

A.5 Technical results on the isotonic projection used in
Chapter 4

In this section, we collect some technical results on the isotonic projection onto piecewise constant
hyper-rectangular partitions. This is the operator given by B( · ; bl1, . . . , bld), which was defined
in equation (4.41). Let us begin by defining some other helpful notation. Let C(Ld,n; bl1, . . . , bld)
denote the set of all tensors in Rd,n that are piecewise constant on the d-dimensional blocks
specified by the Cartesian products of one-dimensional partitions bl1, . . . , bld. Define the operators
P : Rd,n → Rd,n and A : Rd,n → Rd,n as projection operators onto the setsM(Ld,n; π1, . . . , πd)
and C(Ld,n; bl1, . . . , bld), respectively, i.e., for each θ ∈ Rd,n, we have

P(θ; π1, . . . , πd) ∈ argmin
θ′∈M(Ld,n;π1,...,πd)

‖θ − θ′‖2
2, and

A(θ; bl1, . . . , bld) ∈ argmin
θ′∈C(Ld,n;bl1,...,bld)

‖θ − θ′‖2
2.

Recall our notion of a permutation that is faithful to a one-dimensional ordered partition from the
proof of Lemma 4.6.4(b). Finally, let θS denote the average of the entries of θ ∈ Rd,n on the set
S ⊆ Ld,n.

Our first technical lemma demonstrates that the operator B can be written as a composition of
the operators P and A, i.e., in order to project onto the class of isotonic tensors that are piecewise
constant on hyper-rectangular blocks given by a d-dimensional ordered partition, it suffices to first
average all entries within each block, and then project the result onto the class of isotonic tensors
whose partial orderings are consistent with the corresponding one-dimensional ordered partitions.

Lemma A.5.1 (Composition). For each j ∈ [d], let πj ∈ Sn1 be any permutation that is faithful to
the ordered partition blj . Then, for each θ ∈ Rd,n, we have

B(θ; bl1, . . . , bld) = P( A(θ; bl1, . . . , bld) ;π1, . . . , πd).

Proof. To fix notation, suppose that blj is a partition of [nj] into sj blocks, and that
∏d

j=1 sj = s.
Note that the ordered partitions bl1, . . . , bld induce a hyper-rectangular partition of the lattice Ld,n
into s pieces. Index each of these hyper-rectangles by the corresponding member of the smaller
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lattice Ld,s1,...,sd , and for each x ∈ Ld,s1...,sd , let Bx ⊆ Ld,n denote the indices of hyper-rectangle x.
With this notation, the projection operator for any θ ∈ Rd,n takes the form

B(θ; bl1, . . . , bld) ∈ argmin
µ∈M(Ld,s1,...,sd )

∑
x∈Ld,s1,...,sd

∑
w∈Bx

(θw − µx)2 .

The inner sum in the objective can be written as∑
w∈Bx

(θw − µx)2 =
∑
w∈Bx

(
θw − θBx

)2
+
∑
w∈Bx

(
θBx − µx

)2
+ 2

(
θBx − µx

) ∑
w∈Bx

(
θw − θBx

)
=
∑
w∈Bx

(
θw − θBx

)2
+ |Bx| ·

(
θBx − µx

)2
, (A.35)

where equation (A.35) follows since
∑

w∈Bx

(
θw − θBx

)
= 0. Putting together the pieces and

noting that the first term of inequality (A.35) does not depend on µ, we have

B(θ; bl1, . . . , bld) ∈ argmin
µ∈M(Ld,s1,...,sd )

∑
x∈Ld,s1,...,sd

|Bx| ·
(
θBx − µx

)2
.

The proof is completed by noting that A(θ; bl1, . . . , bld) is equal to θBx on each block Bx, and
so the optimization problem above can be viewed as the projection of A(θ; bl1, . . . , bld) onto any
setM(Ld,n; π1, . . . , πd) such that the permutations π1, . . . , πd are faithful to the ordered partitions
bl1, . . . , bld, respectively.

Lemma A.5.2 (`∞-contraction). For each θ, θ′ ∈ Rd,n, ordered partitions bl1, . . . , bld, and permu-
tations π1, . . . , πd, we have

‖A(θ; bl1, . . . , bld)−A(θ′; bl1, . . . , bld)‖∞ ≤ ‖θ − θ′‖∞ and (A.36a)
‖P(θ; π1, . . . , πd)− P(θ′; π1, . . . , πd)‖∞ ≤ ‖θ − θ′‖∞. (A.36b)

Consequently,

‖B(θ; bl1, . . . , bld)−B(θ′; bl1, . . . , bld)‖∞ ≤ ‖θ − θ′‖∞. (A.36c)

Proof. Owing to Lemma A.5.1, equation (A.36c) follows directly from equations (A.36a) and (A.36b).
Equation (A.36a) is also immediate, since the operator A simply averages entries within each parti-
tion, and the averaging operation is trivially `∞-contractive.

The proof of equation (A.36b) is slightly more involved. First, since the `∞ norm is invariant to
the labeling of the entries of the tensor, it suffices to establish the result when πj = id for all j ∈ [d].
We use the notation P(·) : = P( · ; id, . . . , id), for convenience. For each x ∈ Ld,n, let L(x) and
U(x) denote the collections of lower and upper sets containing x, respectively. Recall the min-max
characterization of the isotonic projection [264, Chapter 1]: For each tensor a ∈ Rd,n and x ∈ Ld,n,
we have

P(a)(x) = min
L∈L(x)

max
U∈U(x)

aL∩U .
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Consequently, for each pair of tensors a, b ∈ Rd,n, we obtain the sequence of bounds

|P(a)(x)− P(b)(x)| =
∣∣∣∣ min
L∈L(x)

max
U∈U(x)

aL∩U − min
L∈L(x)

max
U∈U(x)

bL∩U

∣∣∣∣
≤ max

L∈L(x)

∣∣∣∣ max
U∈U(x)

aL∩U − max
U∈U(x)

bL∩U

∣∣∣∣
≤ max

L∈L(x)
max
U∈U(x)

|aL∩U − bL∩U |

≤ ‖a− b‖∞.

Since this holds for all x ∈ Ld,n, we have proved the claimed result.

As an immediate corollary of equation (A.36b), we obtain the following result that may be of
independent interest.

Corollary A.5.1. The isotonic projection is `∞ contractive, i.e., for any θ, θ′ ∈ Rd,n, we have

‖P(θ; id, . . . , id)− P(θ′; id, . . . , id)‖∞ ≤ ‖θ − θ′‖∞.

To the best of our knowledge, similar results are only known when d = 1 [338].

A.6 Auxiliary results for Chapter 4
In this section, we collect several results that are used in multiple proofs.

A.6.1 Basic lemmas for least squares estimators
Our first lemma allows us to bound the expected supremum of a Gaussian process over a union of
sets in terms of the individual expected suprema. Similar results have appeared in the literature [57,
130]. We state a version that can be readily deduced from [130, Lemma D.1].

Lemma A.6.1. Let K ≥ 1, and let ε denote a standard Gaussian tensor in Rd,n. Suppose that for
some positive scalar t, we have Θ1, . . . ,ΘK ⊆ B2(t). There is a universal positive constant C such
that
(a) The supremum of the empirical process satisfies

Pr

{
max
k∈[K]

sup
θ∈Θk

〈ε, θ〉 ≥ max
k∈[K]

E
[

sup
θ∈Θk

〈ε, θ〉
]

+ Ct(
√

logK +
√
u)

}
≤ e−u for each u ≥ 0.

(b) If, in addition, the all-zero tensor is contained in each individual set {Θk}Kk=1, then

E
[

max
k∈[K]

sup
θ∈Θk

〈ε, θ〉
]
≤ max

k∈[K]
E
[

sup
θ∈Θk

〈ε, θ〉
]

+ Ct
√

logK.
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Our second lemma bounds the supremum of a Gaussian process over a set that is piecewise
constant over known blocks. Recall that for θ ∈ Rd,n and S ⊆ Ld,n, we let θS denote the sub-tensor
formed by restricting θ to indices in S. In the statement of the lemma, we also use the notation of

stochastic dominance: for a pair of scalar random variables (X1, X2), the relation X1

d

≤ X2 means
that Pr{X1 ≥ t} ≤ Pr{X2 ≥ t} for each t ∈ R.

Lemma A.6.2. Let B1, . . . , Bs denote a (known) partition of the lattice Ld,n. Let Θ ⊆ Rd,n denote
a collection of tensors such that for each θ ∈ Θ and ` ∈ [s], the sub-tensor θB` is constant. Let
ε ∈ Rd,n represent a standard Gaussian tensor. Then, for each t ≥ 0, we have

sup
θ∈Θ∩B2(t)

〈ε, θ〉
d

≤ t · Ys,

where Y 2
s ∼ χ2

s. Consequently, we have

E sup
θ∈Θ∩B2(t)

〈ε, θ〉 ≤ t
√
s.

Proof. We focus on proving the first claim, since the second claim follows immediately from it by
Jensen’s inequality. For each S ⊆ Ld,n, we write θS : = 1

|S|
∑

x∈S θx. For each θ ∈ Θ, we have the
decomposition

〈ε, θ〉 =
∑
`∈[s]

∑
x∈B`

εx · θx =
∑
`∈[s]

√
|B`| · θB` ·

∑
x∈B` εx√
|B`|

.

Now define the s-dimensional vectors ε̃ and v(θ) via

ε̃` : =

∑
x∈B` εx√
|B`|

and [v(θ)]` : =
√
|B`| · θB` , for each ` ∈ [s].

By construction, the vector ε̃ consists of standard Gaussian entries, and we also have ‖v(θ)‖2 = ‖θ‖2

for each θ ∈ Θ. Combining the pieces with Cauchy–Schwarz inequality yields

sup
θ∈Θ∩B2(t)

〈ε, θ〉 ≤ sup
v∈Rs
‖v‖2≤t

〈ε̃, v〉 ≤ t · ‖ε̃‖2,

as desired.

Our third lemma follows almost directly from [323, Theorem 13.5], after a little bit of algebraic
manipulation. In order to state the lemma, we require a few preliminaries.

Definition A.6.1. A set C is star-shaped if for all θ ∈ C and α ∈ [0, 1], the inclusion αθ ∈ C holds.
We say that C is additionally non-degenerate if it does not consist solely of the zero element.
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Let ε denote a standard Gaussian in Rd,n, and suppose that the set Θ ⊆ Rd,n is star-shaped and
non-degenerate. Let ∆̂ ∈ Rd,n denote a (random) tensor satisfying the pointwise inequality

‖∆̂‖2
2 ≤ sup

∆∈Θ
‖∆‖2≤‖∆̂‖2

〈ε,∆〉,

and for each t ≥ 0, define the random variable

ξ(t) = sup
∆∈Θ
‖∆‖2≤t

〈ε,∆〉.

Let tn denote the smallest positive solution to the critical inequality

E[ξ(t)] ≤ t2

2
.

Such a solution always exists provided Θ is star-shaped and non-degenerate; this can be shown via
a standard rescaling argument (see [323, Lemma 13.6]).

We are now ready to state a high probability bound on the error ‖∆̂‖2
2.

Lemma A.6.3. Under the setup above, there is a pair of universal positive constants (c, C) such
that

Pr
{
‖∆̂‖2

2 ≥ Ct2n + u
}
≤ exp {−cu} for all u ≥ 0.

Consequently,

E[‖∆̂‖2
2] ≤ C(t2n + 1).

Proof. Applying [323, Theorem 13.5] and rescaling appropriately yields the bound

Pr
{
‖∆̂‖2

2 ≥ 16tn · δ
}
≤ exp

{
−δtn

2

}
for all δ ≥ tn.

Now note that tn > 0, and that for any u ≥ 0, we may set δ = tn + u
16tn

. This yields the bound

Pr
{
‖∆̂‖2

2 ≥ 16t2n + u
}
≤ exp

{
−t

2
n

2

}
· exp

{
− u

32

}
≤ exp

{
− u

32

}
.

The bound on the expectation follows straightforwardly by integrating the tail bound.

Our fourth lemma is an immediate corollary of [311, Theorem 2.1], and shows that the error of
a least squares estimator—recall our notation from equation (4.5)—over a convex set concentrates
around its expected value.
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Lemma A.6.4. Let ε denote a standard Gaussian tensor in Rd,n, and let K ⊆ Rd,n denote a closed
convex set. For a fixed tensor θ∗ ∈ K, let θ̂ = θ̂LSE(K, θ∗ + ε). Then for each u ≥ 0:
(a) The `2 norm of the error satisfies the two-sided tail bound

Pr
{∣∣‖θ̂ − θ∗‖2 − E[‖θ̂ − θ∗‖2]

∣∣ ≥ √2u
}
≤ e−u.

(b) The squared `2 norm of the error satisfies the one-sided tail bound

Pr
{
‖θ̂ − θ∗‖2

2 ≥ 2E[‖θ̂ − θ∗‖2
2] + 4u

}
≤ e−u.

Proof. Part (a) of the lemma follows directly by rescaling the terms in [311, Theorem 2.1]. Part (b)
of the lemma follows from part (a) by noting that if ‖θ̂ − θ∗‖2 − E[‖θ̂ − θ∗‖2]| ≤

√
2u, then

‖θ̂ − θ∗‖2
2 ≤ 2

(
E[‖θ̂ − θ∗‖2]

)2

+ 2 · 2u ≤ 2E[‖θ̂ − θ∗‖2
2] + 4u.

A.6.2 Some other useful lemmas
We first state a useful (deterministic) lemma regarding permutations, which generalizes [211,
Lemma A.10].

Lemma A.6.5. Let {ai}ni=1 be a non-decreasing sequence of real numbers, let {bi}ni=1 be a sequence
of real numbers, and let τ be a positive scalar. If π is a permutation in Sn such that π(i) < π(j)
whenever bj − bi > τ , then |aπ(i) − ai| ≤ τ + 2‖b− a‖∞ for all i ∈ [n]. Here, we have defined the
vectors a = (a1, . . . , an) and b = (b1, . . . , bn).

Proof. The proof is by contradiction. Letting ∆ = b− a, assume that aj − aπ(j) > τ + 2‖∆‖∞ for
some index j ∈ [n]. Since π is a bijection, there must exist—by the pigeonhole principle—an index
i ≤ π(j) such that π(i) ≥ π(j). Hence, we have

bj − bi = aj − ai + ∆j −∆i ≥ aj − aπ(j) + ∆j −∆i > τ + 2‖∆‖∞ − 2‖∆‖∞,

which contradicts the assumption that π(i) < π(j) whenever bj − bi > τ .
On the other hand, suppose that aπ(j)−aj > τ+2‖∆‖∞ for some j ∈ [n]. Since π is a bijection,

there must exist an index i ≥ π(j) such that π(i) ≤ π(j). In this case, we have

bi − bj = ai − aj + ∆i −∆j ≥ aπ(j) − aj + ∆i −∆j > τ,

which also leads to a contradiction.

Our next technical lemma is a basic result about random variables.
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Lemma A.6.6. Let (X, Y, Z) denote a triple of real-valued random variables defined on a common
probability space, with X2 ≤ Z2 almost surely. Let E be a measurable event such that on the event
E , we have X2 ≤ Y 2. Then,

E[X2] ≤ E[Y 2] +
√

E[Z4] ·
√

Pr{Ec}.

Proof. Since X2 ≤ Y 2 on E , we have X2 ≤ Y 21 {E}+X21 {Ec}. Consequently,

E[X2] ≤ E[Y 21 {E}] + E[X21 {Ec}]
≤ E[Y 2] + E[Z21 {Ec}]
≤ E[Y 2] +

√
E[Z4] ·

√
E[1 {Ec}],

where the final inequality is an application of Cauchy–Schwarz inequality.

Our third lemma is an elementary type of rearrangement inequality. For a permutation π ∈ Sn

and vector v ∈ Rn, we use the notation v{π} to denote the vector formed by permuting the entries
of v according to π, so that v{π} = (vπ(1), . . . , vπ(n)). Let 1n denote the n-dimensional all-ones
vector.

Lemma A.6.7. Let v ∈ Rn with v =
(

1
n

∑n
i=1 vi

)
· 1n. Then, we have

‖v − v‖2
2 ≤ max

π∈Sn
‖v − v{π}‖2

2.

Proof. First note that v = 1
|Sn|

∑
π∈Sn v{π}, so that we have

‖v − v‖2
2 =

∥∥∥∥∥v − 1

|Sn|
∑
π∈Sn

v{π}

∥∥∥∥∥
2

2

(i)

≤ 1

|Sn|
∑
π∈Sn

‖v − v{π}‖2
2 ≤ max

π∈Sn
‖v − v{π}‖2

2,

where step (i) follows from Jensen’s inequality.

Finally, we state an elementary lemma that bounds the number of distinct one-dimensional
ordered partitions satisfying certain conditions. Recall that PL denotes the set of all one-dimensional
ordered partitions of the set [n1] consisting of exactly L blocks. Also recall that Pmax

k denotes all
one-dimensional ordered partitions of [n1] in which the largest block has size at least k.

Lemma A.6.8. For each n1 ≥ 2, the following statements hold:
(a) For any L ∈ [n1], we have∣∣∣∣∣

L⋃
`=1

P`

∣∣∣∣∣ = Ln1 , and so |P| =

∣∣∣∣∣
n1⋃
`=1

P`

∣∣∣∣∣ = (n1)n1 .

(b) For any k∗ ∈ [n1], we have

|Pmax
k∗ | ≤ (n1)3(n1−k∗).
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Proof. The second claim of part (a) follows from the first. In order to prove the first claim, note that
each i ∈ [n1] can be placed into any one of the L blocks, and each different choice yields a different
element of the set ∪L`=1P`.

We now proceed to prove part (b). First, note that the claim is immediately true whenever
k∗ ≥ n1 − 1, since

|Pmax
n1
| = 1 and |Pmax

n1−1| = 2n1.

Consequently, we focus our proof on the case k∗ ≤ n1− 2, in which case n1− k∗+ 1 ≤ 3
2
(n1− k∗).

Suppose we are interested in bounding the number of one-dimensional ordered partitions in which
the largest block has size at least k and the number of blocks is at most s1. Then there are

(
n1

k

)
distinct ways of choosing the first k elements of the largest block and s1 ways of choosing the
position of the largest block. After having done this, the remaining n1 − k elements of [n1] can
be placed in any of the s1 blocks. Finally, note that s1 ≤ n1 − k + 1, so that the number of such
one-dimensional ordered partitions is bounded above by(

n1

k∗

)
· s1 · sn1−k

1 ≤
(
n1

k∗

)
· (n1 − k + 1)n1−k+1.

Choosing k = k∗ yields the bound

|Pmax
k∗ | ≤

(
n1

k∗

)
· (n1 − k∗ + 1)n1−k∗+1

=
n1!

(k∗)!
· (n1 − k∗ + 1) · (n1 − k∗ + 1)n1−k∗+1

(n1 − k∗ + 1)!

≤ n1!

(k∗)!
·
√
n1 − k∗ + 1 · en1−k∗+1 · (2π)−1/2

≤ (n1)n1−k∗ ·
√
n1 − k∗ + 1 · en1−k∗+1 · (2π)−1/2

where the second inequality uses the bound n! ≥
(
n
e

)n√
2πn given by Stirling’s approximation.

Now note that for each n1 ≥ 2, we have e/
√

2π ≤ √n1. Combining this with the bound n1 − k∗ +
1 ≤ n1 and putting together the pieces, we have

|Pmax
k∗ | ≤ (n1)n1−k∗+1 · en1−k∗ ≤ (n1)3(n1−k∗),

where the final inequality is a consequence of the bounds n1−k∗+ 1 ≤ 3
2
(n1−k∗) and e ≤ (n1)3/2

for each n1 ≥ 2.
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Appendix B

Technical material for part II

B.1 Technical lemmas used in Chapter 5
In this section, we collect statements and proofs of some technical lemmas used in the proofs of our
results concerning the AM algorithm.

B.1.1 Bounds on the “volumes” of wedges in Rd

For a pair of scalars (w,w′) and d-dimensional vectors (u, u′), recall that we define the wedge
formed by the d+ 1-dimensional vectors v = (u, w) and v′ = (u′, w′) as the region

W (v, v′) = {x ∈ Rd : (〈x, u〉+ w) · (〈x, u′〉+ w′) ≤ 0}.

Note that the wedge is a purely geometric object.
For any set C ⊆ Rd, let

vol(C) = Pr
X∼N (0,Id)

{X ∈ C}

denote the volume of the set under the measure corresponding to the covariate distribution.
We now bound the volume of a wedge for the Gaussian distribution.

Lemma B.1.1. Suppose that for a pair of scalars (w,w′), d-dimensional vectors (u, u′), and
v = (u, w) and v′ = (u′, w′), we have ‖v−v

′‖
‖u‖ < 1/2. Then, there is a positive constant C such that

vol(W (v, v′)) ≤ C
‖v − v′‖
‖u‖

log1/2

(
2‖u‖
‖v − v′‖

)
.

Proof of Lemma B.1.1

Using the notation ξ = (x, 1) ∈ Rd+1 to denote the appended covariate, we have

vol(W (v, v′)) = Pr {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} ,
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where the probability is computed with respect to Gaussian measure.
In order to prove a bound on this probability, we begin by bounding the associated indicator

random variable as

1 {〈ξ, v〉 · 〈ξ, v′〉 ≤ 0} = 1
{
〈ξ, v′ − v〉2 ≥ 〈ξ, v〉2

}
≤ 1

{
〈ξ, v′ − v〉2 ≥ t

}
+ 1

{
〈ξ, v〉2 ≤ t

}
, (B.1)

where inequality (B.1) holds for all t ≥ 0. In order to bound the expectation of the second term, we
write

Pr
{
〈ξ, v〉2 ≤ t

}
= Pr

{
‖u‖2 χ2

nc ≤ t
}

(i)

≤
(

et

‖u‖2

)1/2

where χ2
nc is a non-central chi-square random variable centered at w

‖u‖ , and step (i) follows from
standard χ2 tail bounds (see Lemma B.1.6).

It remains to control the expectation of the first term on the RHS of inequality (B.1). We have

Pr
{
〈ξ, v′ − v〉2 ≥ t

}
≤ Pr

{
2〈x, u′ − u〉2 + 2(w′ − w)2 ≥ t

}
≤ Pr

{
‖u− u′‖2

χ2 ≥ t

2
− ‖v − v′‖2

}
.

Now, invoking a standard sub-exponential tail bound on the upper tail of a χ2 random variable
yields

Pr
{
〈ξ, v′ − v〉2 ≥ t

}
≤ c1 exp

(
− c2

‖u− u′‖2

{
t

2
− ‖v − v′‖2

})
≤ c1 exp

(
− c2

‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
.

Putting all the pieces together, we obtain

vol(W (v, v′)) ≤ c1 exp

(
− c2

‖v − v′‖2

{
t

2
− ‖v − v′‖2

})
+

(
et

‖u‖2

)1/2

.

Substituting t = 2c ‖v − v′‖2 log(2‖u‖/‖v − v′‖), which is a valid choice provided ‖v−v
′‖

‖u‖ < 1/2,
yields the desired result.

B.1.2 Growth Functions and Uniform Empirical Concentration
We now briefly introduce growth functions and uniform laws derived from them, and refer the
interested reader to Mohri et al. [225] for a more in-depth exposition on these topics.
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We define growth functions in the general multi-class setting [75]. Let X denote a set, and let F
denote a family of functions mapping X 7→ {0, 1, . . . , k− 1}. The growth function ΠF : N→ R of
F is defined via

ΠF(n) := max
x1,...,xn∈X

|{{f(x1), f(x2), . . . , f(xn)} : f ∈ F}| .

In words, it is the cardinality of all possible labelings of n points in the set X by functions in the
family F .

A widely studied special case arises in the case k = 2, with the class of binary functions. In
this case, a natural function class F is formed by defining C to be a family of subsets of X , and
identifying each set C ∈ C with its indicator function fC : = 1C : X → {0, 1}. In this case, define
FC = {fC : C ∈ C}. A bound on the growth function for such binary function provides following
guarantee for the uniform convergence for the empirical measures of sets belonging to C.

Lemma B.1.2 (Theorem 2 in [315]). Let C be a family of subsets of a set X . Let µ be a probability
measure on X , and let µ̂m := 1

m

∑m
i=1 δXi be the empirical measure obtained from m independent

copies of a random variable X with distribution µ. For every u such that m ≥ 2/u2, we have

Pr

{
sup
C∈C
|µ̂m(C)− µ(C)| ≥ u

}
≤ 4ΠFC(2m) exp(−mu2/16). (B.2)

We conclude this section by collecting some results on the growth functions of various function
classes. For our development, it will be specialize to the case X = Rd.

Define the class of binary functions FH as the set of all functions of the form

fθ,b(x) : =
sgn(〈x, θ〉+ b) + 1

2
;

specifically, let FH : =
{
fθ,b : θ ∈ Rd, b ∈ R

}
. In particular, these are all functions that can be

formed by a d-dimensional hyperplane.
Using the shorthand Bk

1 = {B1, . . . , Bk}, define the binary function

gθk1 ,bk1 (x) : =
k∏
i=1

fθi,bi(x),

and the binary function class corresponding to the intersection of k hyperplanes

GHk : =
{
gθk1 ,bk1 : θ1, . . . , θk ∈ Rd , b1, . . . , bk ∈ R

}
.

Finally, we are interested in the argmax function over hyperplanes. Here, define the function

mθk1 ,b
k
1
(x) : = argmax

j∈[k]

(〈θj, x〉+ bj)− 1,
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mapping Rd 7→ {0, . . . , k − 1}. The function class that collects all such functions is given by

Mk : =
{
mθk1 ,b

k
1

: θ1, . . . , θk ∈ Rd , b1, . . . , bk ∈ R
}
.

The following results bound the growth functions of each of these function classes. We first
consider the function classes FH and GHk , for which bounds on the VC dimension directly yield
bounds on the growth function.

Lemma B.1.3 (Sauer-Shelah (e.g. Section 3 of Mohri et al. [225])). We have

ΠFH(n) ≤
(

en

d+ 1

)d+1

, and (B.3)

ΠGHk (n) ≤
(

en

d+ 1

)k(d+1)

. (B.4)

The following bound on the growth function of the classMk is also known.

Lemma B.1.4 (Theorem 3.1 of Daniely et al. [75]). For an absolute constant C, we have

ΠMk
(n) ≤

(
en

Ck(d+ 1) log(kd)

)Ck(d+1) log(kd)

.

B.1.3 Singular value bound
We now state and prove a technical lemma that bound the maximum singular value of a matrix
whose rows are drawn from a sub-Gaussian distribution.

Lemma B.1.5. Suppose that the covariates are drawn i.i.d. from a η-sub-Gaussian distribution.
Then for a fixed subset S ∈ [n] of size ` and each t ≥ 0, we have

Pr
{
λmax

(
Ξ>SΞS

)
≥ `+ η̃2(

√
`d+ d+ `t)

}
≤ 2e−`min{t,t2},

where η̃ = max {η, 1}.

Proof of Lemma B.1.5

Let {zi}`i=1 denote i.i.d. Rademacher variables, and collect these in an `-dimensional vector z. Let
D = diag(z) denote a diagonal matrix, and note that by unitary invariance of the singular values,
the singular values of the matrix Ξ̃S = DΞS are the same as those of ΞS .

By construction, the matrix Ξ̃S has i.i.d. rows, and the i-th row is given by zi(xi, 1). For a d+ 1

dimensional vector λ̃ = (λ, w) with λ ∈ Rd and w ∈ R, we have

E
[
exp(〈λ̃, zi(xi, 1)〉)

]
=
ew

2
· E [exp(〈λ, xi〉)] +

e−w

2
· E [exp(−〈λ, xi〉)]

= exp(‖λ‖2η2/2) · 1

2

(
ew + e−w

)
≤ exp(‖λ‖2η2/2) · exp(w2/2) ≤ exp(‖λ̃‖2η̃2/2).
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where we have used the fact that xi is zero-mean and η sub-Gaussian.
Since the rows of Ξ̃S are i.i.d., zero-mean, and η̃-sub-Gaussian, applying [323, Theorem 6.2]

immediately yields the lemma.

B.1.4 Anti-concentration of χ2 random variable
The following lemma shows the anti-concentration of the central and non-central χ2 random
variable.

Lemma B.1.6. Let Z` and Z ′` denote central and non-central χ2 random variables with ` degrees
of freedom, respectively. Then for all p ∈ [0, `], we have

Pr{Z ′` ≤ p} ≤ Pr{Z` ≤ p} ≤
(p
`

exp
(

1− p

`

))`/2
= exp

(
− `

2

[
log

`

p
+
p

`
− 1

])
(B.5)

Proof of Lemma B.1.6

The fact that Z ′`
st.

≤ Z` follows from standard results that guarantee that central χ2 random variables
stochastically dominate their non-central counterparts.

The tail bound is a simple consequence of the Chernoff bound. In particular, we have for all
λ > 0 that

Pr{Z` ≤ p} = Pr{exp(−λZ`) ≥ exp(−λp)}
≤ exp(λp)E [exp(−λZ`)]

= exp(λp)(1 + 2λ)−
`
2 . (B.6)

where in the last step, we have used E [exp(−λZ`)] = (1 + 2λ)−
`
2 , which is valid for all λ > −1/2.

Minimizing the last expression over λ > 0 then yields the choice λ∗ = 1
2

(
`
p
− 1
)

, which is greater
than 0 for all 0 ≤ p ≤ `. Substituting this choice back into equation (B.6) proves the lemma.

B.2 Technical lemmas used in Chapter 6
We now collect some technical lemmas that were used in the proofs of our main results.

B.2.1 A recursion formula
We present a general recursion formula that is used to bound the error in multiple proofs.

Lemma B.2.1. Consider any sequence of positive reals {ai}i≥0 satisfying the sequence of inequali-
ties

at+1 ≤ C1 + C2

(
at + C3

n

)γ
for each integer t ≥ 0,
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where the tuple (C1, C2, C3) represent some arbitrary positive scalars, n represents a positive

integer, and we have the inclusion γ ∈ (0, 1). Define the shorthand ρ : =
(

1
2C2

)(1−γ)−1

a0. Then

there is an absolute constant c such that for all T ≥ logγ−1 max{log nγ(1−γ)−1∨1, log ρ}, we have

aT ≤ c

{
C1 + C2

(
C3

n

)γ
+ (2C2)(1−γ)−1 · n−γ(1−γ)−1

}
.

Proof. First, note the fact that two positive scalars a and b and γ ∈ (0, 1], we have (a+b)γ ≤ aγ+bγ .
Thus, a consequence of the recursive inequality above is the relation

at+1 ≤ C1 + C2

(
C3

n

)γ
+ C2

(at
n

)γ
≤ 2 max

{
C1 + C2

(
C3

n

)γ
, C2

(at
n

)γ}
.

Since the first term above is a constant, it suffices to provide upper bounds on the recursion

bt+1 ≤ 2C2

(
bt
n

)γ
with the initial condition b0 = a0.

We now claim that for all t ≥ 1, the following upper bound holds:

bt ≤ (2C2)(1−γ)−1(1−γt) · n−γ(1−γ)−1·(1−γt) · bγ
t

0 (B.7)

= (2C2)(1−γ)−1 · n−γ(1−γ)−1 ·
(
nγ(1−γ)−1

)γt
·

((
1

2C2

)(1−γ)−1

b0

)γt

, (B.8)

where equality (B.8) follows by computation.
Taking this claim as given for the moment, note that if t ≥ logγ−1 log x for a scalar x ≥ 1, then

we have γt ≤ (log x)−1. Also note that for each x ∈ R, we have x(log x)−1
= e by definition. We

now split the proof into two cases, using the shorthand ρ : =
(

1
2C2

)(1−γ)−1

b0.

Case 1; ρ ≤ 1: In this case, it suffices to take t ≥ t0 : = logγ−1 log nγ(1−γ)−1∨1, in which case we
have

bt ≤ e(2C2)(1−γ)−1 · n−γ(1−γ)−1

.

Case 2; ρ > 1: Now take t ≥ t0 ∨ logγ−1 log ρ where t0 was defined in case 1 above. Then, we
again have

bt ≤ e2(2C2)(1−γ)−1 · n−γ(1−γ)−1

.
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Combining the two cases with the setup above completes the proof of the lemma.
It remains to establish claim (B.7), for which we use an inductive argument. The base case

follows from the one-step definition of the recursion. Assuming the induction hypothesis—that the
claim is true for some positive integer t—evaluating the recursion yields

bt+1 ≤ (2C2)

(
bt
n

)γ
≤ (2C2) · (2C2)γ·(1−γ)−1(1−γt) ×

(
1

n

)γ
· (1/n)γ·γ(1−γ)−1·(1−γt) × bγ

t+1

0

= (2C2)(1−γ)−1(1−γt+1) · (1/n)γ(1−γ)−1(1−γt+1) · bγ
t+1

0 ,

thereby establishing the induction.

B.2.2 Properties of truncated Gaussians
Let Φ(·) denote the d-dimensional standard Gaussian PDF. For a < b, let m2(a, b) denote the
second moment of a univariate standard Gaussian truncated to lie in the interval [a, b], and let
γ = min{1,m2(a, b)}. Finally, let κ denote the Gaussian volume of the interval [a, b].

Lemma B.2.2. Let w1, w2, . . . , wn denote i.i.d. draws from a Gaussian truncated to the interval
[a, b]. There is a pair of absolute constants (c1, c2) such that if κ2n ≥ c1 log2(1/κ), then

Pr

{
1

n

n∑
i=1

w2
i ≤

1

2
κ2

}
≤ c1 exp

(
−c2

nκ3

log2(1/κ)

)
.

Proof. The proof follows immediately from Lemma 4 of Ghosh et al. [119]. In particular, a slight
modification of their lemma, specialized (in their notation) to d = 1 and with nκ samples, yields the
following claim. There is a pair of universal constants (c1, c2) such that if κ2n ≥ c1 log2(1/κ), then

Pr

{
1

n

n∑
i=1

w2
i ≤

1

2
κ2

}
≤ exp

(
− nκ3

log2(1/κ)

)
.

Adjusting the constant factors completes the proof.

Lemma B.2.3. Consider a matrix X consisting of n ≥ p i.i.d. rows drawn from the distribution

g(x) =
1 {x1 ∈ [`, r]}
Pr{x1 ∈ [`, r]}

· Φ(x)

for each x ∈ Rp. Then for all t ≥ 0, we have

Pr

{
σmin(X>X/n) ≤ γ − c

√
p/n− t√

n

}
≤ e−t

2/2.
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c
⌧

B(cv; ⌧)

0

Figure B.1: Center of the circle denotes the point cv; circle denotes valid set of u. Clearly, the u
that makes the largest angle with v is given by the tangent to the circle (in blue).

Proof. Let Y ∼ g denote the truncated random variable. We claim that

E[Y Y >] � γI, and that Y is sub-Gaussian with parameter at most 2.

Given this claim, the proof of the theorem follows immediately by applying Remark 5.40 of [319].
Proving the claim is also straightforward. Indeed, for any v ∈ Rp, we have

E〈Y, v〉2 = v2
1E[Y 2

1 ] +
∑
i6=1

v2
i

= v2
1m2(a, b) +

∑
i6=1

v2
i .

Minimizing the above expression over unit norm v yields

inf
v:‖v‖=1

E〈Y, v〉2 = min{1,m2(a, b)} = γ.

In order to show that the random vector Y is sub-Gaussian, it suffices to show that 〈Y, v〉 is 2-sub-
Gaussian for each unit vector v. Since the truncation operation only influences the one-dimensional
RV Y1, it suffices to show that Y1 is 2-sub-Gaussian. Once again, we invoke a standard truncation
lemma by symmetrization (e.g. Ledoux [190]), which yields the result.

B.2.3 Angles and norms
The following lemma collects an elementary fact about angles between vectors and distances
between their scaled counterparts.

Lemma B.2.4. Given a unit norm vector v and a pair of positive scalars (c, τ) obeying the relation
τ ≤ c, suppose that a vector u satisfies

‖u− cv‖2 ≤ τ 2. (B.9)
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Then, we have

sin∠(u, v) ≤ τ

c
.

Proof. We provide a simple proof by picture in Figure B.1. In particular, denoting the ball of radius
r centered at x by B(x; r), condition (B.9) is equivalent to the inclusion u ∈ B(cv; τ). Clearly, the
vector u that maximizes the angle between u and v is given by the tangent to this ball from the
origin. In this particular case, we have

sin∠(u, v) =
τ

c
,

and this establishes the proof.
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Appendix C

Technical material for part III

C.1 Calculations for the “hard” sub-class in Section 7.3
Recall from equation (8.30) our previous calculation of the value function and standard deviation,
from which we have

‖σ(θ∗)‖∞ = ν(1− τ)

√
p(1− p)
1− γp

, ‖(I− γP)−1σ(θ∗)‖∞ = ν(1− τ)

√
p(1− p)

(1− γp)2
,

and ‖θ∗‖span = ν(1− τ) 1
1−γp . Substituting in our choices ν = 1, p = 4γ−1

3γ
, and τ = 1− (1− γ)α

and simplifying by employing inequality (8.32), we have

‖σ(θ∗)‖∞ ∼
(

1

1− γ

)0.5−α

, ‖(I− γP)−1σ(θ∗)‖∞ ∼
(

1

1− γ

)1.5−α

, and ‖θ∗‖span ∼
(

1

1− γ

)1−α

,

for each discount factor γ ≥ 1
2
. Here, the ∼ notation indicates that the LHS can be sandwiched

between two terms that are proportional to the RHS such that the factors of proportionality are
strictly positive and γ-independent.

For the plug-in estimator, its performance will be determined by the maximum of the two terms

‖(I− γP)−1σ(θ∗)‖∞√
N

∼ 1√
N

(
1

1− γ

)1.5−α

and
‖θ∗‖span

(1− γ)N
∼ 1

N

(
1

1− γ

)2−α

.

In the regime N % 1
1−γ , the first term will be dominant.

C.2 Dependence of plug-in error on span semi-norm
In this section, we state and prove a proposition that provides a family of MRPs in which the
`∞-error of the plug-in estimator can be completely characterized by the span semi-norm of the
optimal value function.
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Proposition C.2.1. Suppose that the rewards are observed noiselessly, with ρ(r) = 0. There is a
pair of universal positive constants (c1, c2) such that for any triple of positive scalars (ζ,N,D),
there is a D-state MRP for which

‖θ∗‖∞ = ζ and
‖σ(θ∗)‖∞

N
≤ 3√

D
· ζ
N
, (C.1)

and for which the error of the plug-in estimator satisfies

c1γ
ζ

N

(a)

≤ E
[
‖θ̂plug − θ∗‖∞

] (b)

≤ c2γ
ζ log(1 +D/3)

N

{
(log log(1 +D/3))−1 ∧ 1

}
. (C.2)

A few comments are in order. First, note that equation (C.1) guarantees that we have

1√
N
· ‖(I− γP)−1σ(θ∗)‖∞ .

1√
D

1

(1− γ)N
‖θ∗‖span

for large values of the dimension D, so that the first term in the guarantee (8.1b) is dominated by
the second. In particular, suppose that D � 1

(1−γ)2
; then we have

1√
N
· ‖(I− γP)−1σ(θ∗)‖∞ �

1

N
‖θ∗‖span.

In other words, if our analysis was loose in that the error of the plug-in estimator depended only on
the functional 1√

N
· ‖(I− γP)−1σ(θ∗)‖∞, then it would be impossible to prove a lower bound that

involves the quantity ‖θ
∗‖span
N

. On the other hand, equation (C.2) shows that this such a lower bound
can indeed be proved: the plug-in error is characterized precisely by the quantity γ ‖θ

∗‖span
N

up to a
logarithmic factor in the dimension D.

Second, note that while equation (C.2) shows that the plug-in error must have some span
semi-norm dependence, it falls short of showing the stronger lower bound

c1
ζ

(1− γ)N
≤ E

[
‖θ̂plug − θ∗‖∞

]
, (C.3)

which would show, for instance, that Corollary 8.2.1(a) is sharp up to a logarithmic factor. We
conjecture that there is an MRP for which the bound (C.3) holds.

Finally, it is worth commenting on the logarithmic factor that appears in the upper bound
of equation (C.2). Note that for sufficiently large D, the logarithmic factor is proportional to
logD/ log logD. This is consequence of applying Bennett’s inequality instead of Bernstein’s
inequality, and we conjecture that the same factor ought to replace the factor logD factor multiplying
the span semi-norm in the upper bound (8.1b).
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C.2.1 Proof of Proposition C.2.1
In order to prove Proposition C.2.1, it suffices to construct an MRP satisfying condition (C.1) and
compute its plug-in estimator in closed form. With this goal in mind, suppose that for simplicity
that D is divisible by three, and consider D/3 copies of the 3-state MRP from Figure 8.2(a). By
construction, we have ‖σ(θ∗)‖∞ = µ

√
q(1− q), and ‖θ∗‖span = µ

(1−γ)
. Setting q = 10

ND
, we see

that condition (C.1) is immediately satisfied with ζ = µ
(1−γ)

.
It remains to verify the claim (C.2). Note that the plug-in estimator for this MRP can be

computed in closed form. In particular, it is straightforward to verify that for each state i having
reward µ/2, we have

N(1− γ)

γµ

(
θ̂plug(i)− θ∗i

)
d
= Bin(N, q)−Nq, (C.4)

where we have used the notation θ̂plug(i) to denote the i-th entry of the vector θ̂plug. Furthermore,
these D/3 random variables are independent. Thus, the (scaled) `∞-error of the plug-in estimator is
equal to the maximum absolute deviation in a collection of independent binomial random variables.

Proof of inequality (C.2), part (a): The following technical lemma provides a lower bound on
the deviation of binomials, and its proof is postponed to the end of this section.

Lemma C.2.1. LetX1, . . . , Xk denote independent random variables with distribution Bin
(
n, 1

3kn

)
.

Let Yj = Xj − E[Xj] for each 1 ≤ j ≤ k. Then, we have

E
[

max
1≤j≤k

|Yj|
]
≥ 4

9
.

Applying Lemma C.2.1 with k = D/3 in conjunction with the characterization (C.4), and
substituting our choices of the pair (µ, q) yields

E
[
‖θ̂plug − θ∗‖∞

]
≥ 4

9
· ζγ
N
.

Proof of inequality (C.2), part (b): Corollary 3.1(ii) and Lemma 3.3 of Wellner [331] yield, to
the best of our knowledge, the sharpest available upper bound on the maximum absolute deviation
of Bin(n, q) random variables in the regime nq(1− q)� 1:

E
[

max
1≤j≤k

|Yj|
]
≤
√

12 · log(1 + k)

log log(1 + k)
if log(1 + k) ≥ 5. (C.5)

Combining this bound with the Bernstein bound when k is small, and substituting the various
quantities completes the proof.
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Proof of Lemma C.2.1: Employing the shorthand q = 1
3kn

, we have

E
[

max
1≤j≤k

|Yj|
]
≥ (1− nq) · Pr

{
max
1≤j≤k

Xj ≥ 1

}
= (1− nq) · (1− (1− q)nk)

≥ 2

3
·

1− 3

√(
1− 1

3nk

)3nk


≥ 2

3
·
(
1− e−1/3

)
≥ 4

9
.

C.3 Technical lemmas used in Chapter 9
Let us now collect technical lemmas used in Chapter 9 along with their proofs.

C.3.1 Proofs of auxiliary lemmas for Proposition 9.1.1
In this subsection, we provide proofs of the auxiliary lemmas that underlie the proof of Proposi-
tion 9.1.1.

Proof of Lemma 9.4.1

The proof is basically a lengthy computation. For clarity, let us decompose the procedure into three
steps. In the first step, we compute an explicit form for the inverse information matrix J†ϑ. In the
second step, we evaluate the gradient ∇ψ(ϑ). In the third and final step, we use the result in the
previous two steps to prove the claim (9.15) of the lemma.

Step 1: In the first step, we evaluate J†ϑ. Recall that our data (Z, R) is generated as follows. We
generate the matrix Z and the vector R independently. Each row of Z is generated independently.
Its j-th row, denoted by zj , is sampled from a multinomial distribution with parameter pj , where pj
denotes the j-th row of P. The vector R is sampled from N (r, σ2

rI). Because of this independence
structure, the Fisher information Jϑ is a block diagonal matrix of the form

Jϑ =


Jp1 0 0 . . . 0 0
0 Jp2 0 . . . 0 0
0 0 . . . 0 0
0 0 0 . . . JpD 0
0 0 0 . . . 0 Jr

 .
Here each sub-block matrix Jpj is the Fisher information corresponding to the model where a
single data Zj is sampled from the multinomial distribution with parameter pj , and Jr is the Fisher
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information corresponding to the model in which a single data point R is sampled from N (r, σ2
rI).

Thus, the inverse Fisher information J†ϑ is also a block diagonal matrix of the form

J†ϑ =


J†p1 0 0 . . . 0 0
0 J†p2 0 . . . 0 0
0 0 . . . 0 0
0 0 0 . . . J†pD 0
0 0 0 . . . 0 J†r

 . (C.6)

It is easy to compute J†pj and J†r :

J†pj = diag(pj)− pjpTj = cov(Zj − pj) for j ∈ [D], and (C.7a)

J†r = J−1
r = σ2

rI. (C.7b)

For a vector q ∈ RD, we use diag(q) ∈ RD×D to denote the diagonal matrix with diagonal entries
qj .

Step 2: In the second step, we evaluate∇ψ(ϑ). Recall that ψ(ϑ) = (I− γP)−1r. It is straightfor-
ward to see that

∇rψ(ϑ) = (I− γP)−1. (C.8)

Below we evaluate ∇pjψ(θ) for j ∈ [D], where pj is the j-th row of the matrix P. We show that

∇pjψ(ϑ) = γ(I− γP)−1ejθ
T . (C.9)

Here we recall θ = ψ(ϑ) = (I− γP)−1r.
To prove Eq. (C.9), we start with the following elementary fact: for the matrix inverse mapping

A→ A−1, we have ∂A−1

∂Ajk
= −A−1eje

T
kA
−1 for all j, k ∈ [D]. Combining this fact with chain rule,

we find that

∂ψ(ϑ)

∂Pjk

= γ(I− γP)−1eje
T
k (I− γP)−1r = γ(I− γP)−1ejθ

T ek,

valid for all j, k ∈ [D]. This immediately implies Eq. (C.9) since pj is the vector with coordinates
Pjk.

Step 3: In the third step, we evaluate ∇ψ(ϑ)TJ†ϑ∇ψ(ϑ). From Eq. (C.6), we observe that the
inverse Fisher information J†ϑ has a block structure. Consequently, we can write

∇ψ(ϑ)TJ†ϑ∇ψ(ϑ) =
∑
j∈[D]

∇pjψ(ϑ)TJ†pj∇pjψ(ϑ) +∇Rψ(ϑ)TJ†R∇Rψ(ϑ). (C.10)
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Combining Eqs. (C.7b) and (C.8) yields

∇Rψ(ϑ)TJ†R∇Rψ(ϑ) = σ2
r(I− γP)−1(I− γP)−T . (C.11)

Combining Eqs. (C.7a) and (C.9) yields

∇pjψ(ϑ)TJ†pj∇pjψ(ϑ) = γ2(I− γP)−1ejθ
T cov(Zj − pj)θeTj (I− γP)−T

= γ2(I− γP)−1ej cov((Zj − pj)T θ)eTj (I− γP)−T ,

valid for each j ∈ [D]. Summing over j ∈ [D] then leads to∑
j∈[D]

∇pjψ(ϑ)TJ†pj∇pjψ(ϑ) = γ2(I− γP)−1
( ∑
j∈[D]

ej cov((Zj − pj)T θ)eTj
)

(I− γP)−T

= γ2(I− γP)−1ΣP(θ)(I− γP)−T , (C.12)

where the last line uses the definition of ΣP(θ) in Eq. (7.10). Finally, substituting Eq. (C.11) and
Eq. (C.12) into Eq. (C.10) yields the claim (9.15), which completes the proof of Lemma 9.4.1.

C.3.2 Proofs of auxiliary lemmas for Theorem 9.1.1
In this appendix, we detailed proofs of the auxiliary lemmas that underlie the proof of the non-
asymptotic local minimax lower bound stated in Theorem 9.1.1.

Proof of Lemma 9.4.2

The proof uses the standard device of reducing estimation to testing (see, e.g., [34, 302, 323]). The
first step is to lower bound the minimax risk over P and P ′ by its averaged risk:

inf
θ̂N

max
P∈{P,P ′}

EP
[∥∥θ − θ(P)

∥∥
∞

]
≥ 1

2

(
EPN

[∥∥θ̂N − θ∥∥∞]+ EP ′N
[∥∥θ̂N − θ′∥∥∞]) . (C.13)

By Markov’s inequality, for any δ ≥ 0, we have

EPN
[∥∥θ̂N − θ∥∥∞]+ EP ′N

[∥∥θ̂N − θ′∥∥∞] ≥ δ
[
PN

(∥∥θ̂N − θ∥∥∞ ≥ δ
)

+ P ′
N
(∥∥θ̂N − θ′∥∥∞ ≥ δ

)]
.

If we define δ01
def
= 1

2
‖θ − θ′‖∞, then we have the implication

‖θ − θ‖∞ < δ01 =⇒ ‖θ − θ′‖∞ > δ01, (C.14)

from which it follows that

EPn
[∥∥θ̂n − θ∥∥∞]+ EP ′n

[∥∥θ̂n − θ′∥∥∞] ≥ δ01

[
1− P n(

∥∥θ̂n − θ∥∥∞ < δ01) + P ′
n
(
∥∥θ̂n − θ′∥∥∞ ≥ δ01)

]
≥ δ01

[
1− P n(

∥∥θ̂N − θ′∥∥∞ ≥ δ01) + P ′
n
(
∥∥θ̂N − θ′∥∥∞ ≥ δ01)

]
≥ δ01

[
1−

∥∥P n − P ′n
∥∥

TV

]
≥ δ01

[
1−
√

2dhel(P
n, P ′

n
)2
]
.
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The tensorization property of Hellinger distance (cf. Section 15.1 in [323]) guarantees that

dhel(P
N , P ′

N
)2 = 1−

(
1− dhel(P, P

′)2
)N ≤ N dhel(P, P

′)
2
.

Thus, we have proved that

inf
θ̂N

max
Q∈{P,P ′}

EQ
[∥∥θ − θ(Q)

∥∥
∞

]
≥ 1

4

∥∥θ(P)− θ(P ′)
∥∥
∞ ·
(

1−
√

2N · dhel(P, P
′)

2
)

+
.

Taking the supremum over all the possible alternatives P ′ ∈ S yields

MN(P ;S) ≥ sup
P ′∈S

1

4
·
√
N
∥∥θ(P)− θ(P ′)

∥∥
∞ ·
(

1−
√

2N · dhel(P, P
′)

2
)

+
. (C.15)

A calculation shows that this bound implies the claim in Lemma 9.4.2.

Proof of Lemma 9.4.3

Recall the shorthand ∆P = P − P′ and ∆r = r − r′, and let θ∗ ≡ θ(P). We prove that
‖θ(P)− θ(P ′)‖∞ is lower bounded by∥∥γ(I− γP)−1∆Pθ

∗ + (I− γP)−1∆r

∥∥
∞−
(
γ ‖∆P‖∞
(1− γ)

∥∥γ(I− γP)−1∆Pθ
∗∥∥
∞ +

γ ‖∆P‖∞ ‖∆r‖∞
(1− γ)2

)
.

(C.16)

Since θ(P) = (I− γP)−1r and θ(P ′) = (I− γP′)−1r′ by definition, if we introduce the shorthand
MP = (I− γP)−1 − (I− γP′)−1, some elementary calculation gives the identity

θ(P)− θ(P ′) = MPr + (I− γP)−1∆r +MP∆r. (C.17)

Now we find a new expression for MP = (I− γP)−1 − (I− γP′)−1 that is easy to control. Recall
the elementary identity A−1

1 = A−1
0 + A−1

1 (A0 − A1)A−1
0 for any matrices A0, A1. Thus,

MP = (I− γP)−1 − (I− γP′)−1

= γ(I− γP′)−1(P−P′)(I− γP)−1

= γ(I− γP)−1(P−P′)(I− γP)−1 + γ2(I− γP′)−1(P−P′)(I− γP)−1(P−P′)(I− γP)−1

= γ(I− γP)−1∆P(I− γP)−1 + γ2(I− γP′)−1∆P(I− γP)−1∆P(I− γP)−1.

Substituting this identity into Eq. (C.17), we obtain

θ(P)− θ(P ′) = γ(I− γP)−1∆Pθ
∗ + (I− γP)−1∆r +R01, (C.18)

where the remainder termR01 takes the form

R01 = γ2(I− γP′)−1∆P(I− γP)−1∆Pθ
∗ +MP∆r.

Since (1−γ)(I−γP′)−1 is a probability transition matrix, it follows that ‖(1− γ)(I− γP′)−1‖∞ ≤
1. Thus, the remainder termR01 satisfies the bound

‖R01‖∞ ≤
γ

(1− γ)
‖∆P‖∞

∥∥γ(I− γP)−1∆Pθ
∗∥∥
∞ +

γ

(1− γ)2
‖∆P‖∞ ‖∆r‖∞ .

The claimed lower bound (C.16) now follows from Eq. (C.18) and the triangle inequality. It is clear
that Eq. (C.16) implies the claim in the lemma statement once we restrict P ′ ∈ S1 and P ′ ∈ S2.
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Proof of Lemma 9.4.4

Throughout the proof, we use (Z, R) (respectively (Z′, R′)) to denote a sample drawn from the
distribution P (respectively from the distribution P ′). We use PZ, PR (respectively P ′Z, P

′
R) to

denote the marginal distribution of Z, R (respectively Z′, R′). By the independence of Z and R
(and similarly for (Z′, R′), the joint distributions have the product form

P = PZ ⊗ PR, and P ′ = P ′Z ⊗ P ′R. (C.19)

Proof of part (a): Let P ′ = (P′, R′) ∈ S1 (so r′ = r). Because of the independence between Z
and R (see Eq. (C.19)) and r = r′, we have that

dhel(P, P
′)2 = dhel(PZ, PZ′)

2.

Note that the rows of Z and Z′ are independent. Thus, if we let Zi,Z′i denote the i-th rows of Z and
Z′, we have

dhel(PZ, PZ′)
2 = 1−

∏
i

(
1− dhel(PZi , PZ′i

)2
)
≤
∑
i

dhel(PZi , PZ′i
)2.

Now, note that Zi and Z′i have multinomial distribution with parameters Pi and P′i, where P0,i, P1,i

are the i-th row of P0 and P1. Thus, we have

dhel(PZi , PZ′i
)2 ≤ 1

2
Dχ2

(
PZ′i
‖PZi

)
=

1

2

∑
j

(
Pi,j −P′i,j

)2

Pi,j

.

Putting together the pieces yields the desired upper bound (9.21a).

Proof of part (b): Let P ′ = (P′, R′) ∈ S2 (so P′ = P). Given the independence between Z
and R (see Eq. (C.19)) and P = P′, we have the relation dhel(P, P

′)2 = dhel(PR, PR′)
2. Note that

R ∼ N (r, I) and R′ ∼ N (r′, I). Thus, we have

dhel(PR, PR′)
2 ≤ Dkl (PR‖PR′) =

1

2σ2
r

‖r − r′‖2
2 ,

as claimed.

Proof of Lemma 9.4.5

We now specify how to construct the probability matrix P̄ that satisfies the desired properties stated
in Lemma 9.4.5. We introduce the shorthand notation θ̄ = Pθ∗, and U = (I− γP)−1. Let ¯̀∈ [D]
be an index such that

¯̀∈ argmax
`∈[D]

(
e>` (I− γP)−1Σ(θ)(I− γP)−>e`

)1/2
= argmax

`∈[D]

(∑
i

U2
`,iσ

2
i (θ
∗)
)1/2
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We construct the matrix P̄ entrywise as follows:

P̄i,j = Pi,j +
1

ν
√

2N
·Pi,jU¯̀,i(θ

∗
j − θ̄i)

for ν ≡ ν(P, θ∗) =
(∑

iU
2
¯̀,i
σ2(θi)

)1/2

. Now we show that P̄ satisfy the following properties:

(P1) The matrix P̄ is a probability transition matrix.

(P2) It satisfies the constraint
∑

i,j

((P−P̄)i,j)
2

Pi,j
≤ 1

2N
.

(P3) It satisfies the inequalities∥∥P− P̄
∥∥
∞ ≤

1√
2N

, and
∥∥γ(I− γP)−1(P− P̄)θ∗

∥∥
∞ ≥

γ√
2N
· ν(P, θ∗). (C.20)

We prove each of these properties in turn.

Proof of (P1): For each row i ∈ [D], we have∑
j

P̄i,j =
∑
j

Pi,j +
1

ν
√

2N
U¯̀,i

∑
j

Pi,j(θ
∗
j − θ̄i) =

∑
j

Pi,j = 1, (C.21)

thus showing that P̄1 = 1 as desired. Moreover, since (1 − γ)U = (1 − γ)(I − γP)−1 is a
probability transition matrix, we have the bound |U¯̀,i| ≤ 1

1−γ . By the triangle inequality, we have

2‖θ∗‖span ≥ |θ∗j − θ̄i|.

Thus, our assumption on the sample size N implies that ν
√
N ≥ 2

1−γ‖θ
∗‖span ≥ |Ul̄,i(θ

∗
j − θ̄j)|,

which further implies that

P̄i,j = Pi,j

(
1 +

1

ν
√

2N
·U¯̀,i(θ

∗
j − θ̄i)

)
≥ 0.

In conjunction with the property P̄1 = 1, we conclude that P̄ is a probability transition matrix, as
claimed.

Proof of (P2): We begin by observing that (∆P)i,j = 1
ν
√

2N
·Pi,jU¯̀,i(θ

∗
j − θ̄i). Now it is simple

to check that∑
i,j

((∆P)i,j)
2

Pi,j

=
1

2Nν2

∑
i,j

Pi,jU
2
¯̀,i(θ

∗
j − θ̄i)2 (i)

=
1

2Nν2

∑
i

U2
¯̀,iσ

2
i (θ
∗) =

1

2N
, (C.22)

where in step (i), we use σ2
i (θ
∗) =

∑
j Pi,j(θ

∗
j − θ̄i)2 for each i, as the i-th row of our observation Z

is a multinomial distribution with mean specified by the i-th row of P. This proves that P̄ satisfies
the constraint, as desired.
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Proof of (P3): In order to verify the first inequality, we note that for any row i,

∑
j

|(∆P)i,j|
(i)

≤
(∑

j

(∆P)2
i,j

Pi,j

)1/2

≤
(∑

i,j

(∆P)2
i,j

Pi,j

)1/2
(ii)
=

1√
2N

,

where step (i) follows from the Cauchy-Schwartz inequality, and step (ii) follows by the previously
established Property 2. Taking the maximum over row i yields

‖∆P‖∞ = max
i

{∑
j

|(∆P)i,j|
}
≤ 1√

2N
,

thus establishing the first claimed inequality in Eq. (C.20).
In order to establish the second inequality in Eq. (C.20), our starting point is the lower bound∥∥γ(I− γP)−1∆Pθ

∗∥∥
∞ ≥

∣∣eT¯̀γ(I− γP)−1∆Pθ
∗∣∣ = γ ·

∣∣∣∑
i,j

U¯̀,i(∆P)i,jθ
∗
j

∣∣∣.
It is straightforward to check that∑

i,j

U¯̀,i(∆P)i,jθ
∗
j

(i)
=
∑
i,j

U¯̀,i(∆P)i,j(θ
∗
j − θ̄i) =

1

ν
√

2N

∑
i,j

Pi,jU
2
¯̀,i(θ

∗
j − θ̄i)2 (ii)

=
ν√
2N

.

Here step (i) follows from the fact that
∑

j(∆P)i,j = 0 for all i (as ∆P1 = P̄1−P1 = 0); whereas
step (ii) follows from our previous calculation (see Eq. (C.22)) showing that∑

i,j

Pi,jU
2
¯̀,i(θ

∗
j − θ̄i)2 = ν2.

Thus, we have verified the second inequality in Eq. (C.20).

C.3.3 Proofs of auxiliary lemmas for Theorem 9.3.1
This appendix is devoted to the proofs of auxiliary lemmas involved in the proof of Theorem 9.3.1.

Proof of Lemma 9.4.7:

In this section, we prove all three parts of Lemma 9.4.7, which provides high-probability upper
bounds on the suboptimality gap at the end of each epoch. Parts (a), (b) and (c), respectively,
of Lemma 9.4.7 provides guarantees for the recentered linear stepsize, polynomially-decaying
stepsizes and constant stepsize. In order to de-clutter the notation, we omit the dependence on
the epoch m in the operators and epoch initialization θm. In order to distinguish between the total
sample size N and the recentering sample size at epoch m, we retain the notation Nm for the
recentering sample size.
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Proof of part (a): We begin by rewriting the update Eq, (9.26b) in a form suitable for application
of general results from [324]. Subtracting off the fixed point θ̂ of the operator J , we find that

θk+1 − θ̂ = (1− αk)
(
θk − θ̂

)
+ αk

{
Jk(θk)− θ̂

}
.

Note that the operator θ 7→ Ĵk(θ) is γ-contractive in the `∞-norm and monotonic with respect to the
orthant ordering; consequently, Corollary 1 from [324] can be applied. In applying this corollary,
the effective noise term is given by

Wk : = Jk(θ̂)− J (θ̂) =
{
T̂k(θ̂)− T̂k(θ)

}
−
{
T (θ̂)− T (θ)

}
.

With this setup, by adapting Corollary 1 from [324] we have∥∥∥θK+1 − θ̂
∥∥∥
∞
≤ 2

1 + (1− γ)K

{
‖θ − θ̂‖∞ +

K∑
k=1

‖V`‖∞

}
+ ‖VK+1‖∞ , (C.23a)

where the auxiliary stochastic process {Vk}k≥1 evolves according to the recursion

Vk+1 =
(
1− αk

)
Vk + αkWk. (C.23b)

We claim that the `∞-norm of this process can be bounded with high probability as follows:

Lemma C.3.1. Consider any sequence of stepsizes {αk}k≥1 in (0, 1) such that

(1− αk+1)αk ≤ αk+1. (C.24)

Then for any tolerance level δ > 0, we have

P
[
‖V`+1‖∞ ≥ 4‖θ̂ − θ‖∞

√
α`
√

log(8KMD/δ)
]
≤ δ

2KM
. (C.25)

See Appendix C.3.3 for a proof of this claim. For future reference, note that all three stepsize
choices (7.8a)–(7.8c) satisfy the condition (C.24).

Substituting the bound (C.25) into the relation (C.23a) yields∥∥∥θK+1 − θ̂
∥∥∥
∞
≤ c

{
‖θ − θ̂‖∞

1 + (1− γ)K
+

‖θ − θ̂‖∞
(1− γ)3/2

√
K

}√
log(8KMD/δ)

≤ c‖θ − θ̂‖∞

{√
log(8KMD/δ)

1 + (1− γ)K
+

√
log(8KMD/δ)

(1− γ)3/2
√
K

}
,

with probability at least 1− δ
2M

. Combining the last bound with the fact that KM = N
2

we find that
for all K ≥ c1

log(8ND/δ)
(1−γ)3

, we have

‖θK+1 − θ̂‖∞ ≤ 1
8
‖θ − θ̂‖∞ ≤ 1

8
‖θ − θ∗‖∞ + 1

8
‖θ̂ − θ∗‖∞,

which completes the proof of part (a).
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Proof of part (b): The proof of part (b) is similar to that of part (a). In particular, adapting
Corollary 2 from the paper [324] for polynomial steps, we have

‖θk+1 − θ̂‖∞ ≤ e−
1−γ
1−ω (k1−ω−1)‖θ − θ̂‖∞ + e−

1−γ
1−ω k

1−ω
k∑
`=1

e
1−γ
1−ω `

1−ω

`ω
‖V`‖∞ + ‖Vk+1‖∞. (C.26)

Recall that polynomial stepsize (7.8b) satisfies the conditions of Lemma C.3.1. Consequently,
applying the bound from Lemma C.3.1 we find that

‖θk+1 − θ̂‖∞ ≤ ‖θ − θ̂‖∞

{
e−

1−γ
1−ω (k1−ω−1) + 4

√
log(8KMD/δ)

(
e−

1−γ
1−ω k

1−ω
k∑
`=1

e
1−γ
1−ω `

1−ω

`3ω/2
+

1

kω/2

)}
.

(C.27)

It remains to bound the coefficient of ‖θ − θ̂‖∞ in the last equation, and we do so by using the
following lemma from [324]:

Lemma C.3.2 (Bounds on exponential-weighted sums). There is a universal constant c such that

for all ω ∈ (0, 1) and for all k ≥
(

3ω
2(1−γ)

) 1
1−ω

, we have

e−
1−γ
1−ω k

1−ω
k∑
`=1

e
1−γ
1−ω `

1−ω

`3ω/2
≤ c

{
e−

1−γ
1−ω (k1−ω)

(1− γ)
1

1−ω
+

1

(1− γ)

1

kω/2

}
.

Substituting the last bound in Eq. (C.26) yields∥∥∥θk+1 − θ̂
∥∥∥
∞

≤ c‖θ − θ̂‖∞

{
e−

1−γ
1−ω (k1−ω−1) + 4

√
log(8KMD/δ)

(
e−

1−γ
1−ω (k1−ω−1)

(1− γ)
1

1−ω
+

1

(1− γ)

1

kω/2
+

1

kω/2

)}

≤ c‖θ − θ̂‖∞ ·
√

log(8KMD/δ)

{
5 · e

− 1−γ
1−ω (k1−ω−1)

(1− γ)
1

1−ω
+

2

(1− γ)kω/2

}
.

Finally, doing some algebra and using the fact that KM = N
2

we find that there is an absolute

constant c such that for all K lower bounded as K ≥ c log(4ND/δ) ·
(

1
1−γ

) 1
1−ω∨

2
ω

, we have

‖θK+1 − θ̂‖∞ ≤
‖θ − θ̂‖∞

8
≤ 1

8
‖θ − θ∗‖∞ +

1

8
‖θ̂ − θ∗‖∞.

The completes the proof of part (b).
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Proof of part (c): Invoking Theorem 1 from [324], we have ‖θK − θ̂‖∞ ≤ aK + bK + ‖VK‖∞.
For a constant stepsize αk = α, the pair (aK , bK) is given by

bK =
∥∥∥θ − θ̂∥∥∥

∞
· (1− α(1− γ))K−1 ,

aK = γα ‖Vk‖∞ + γα ‖V`‖∞
K−1∑
k=1

{
(1− (1− γ)α)K−k

}
(i)

≤ ‖θ − θ̂‖∞ ·

(
2γα

3
2

√
log(8KMD/δ) +

2γα
1
2

1− γ
√

log(8KMD/δ)

)
,

where inequality (i) follows by substituting αk = α, and using the bound on ‖V`‖∞ from
Lemma C.3.1.

It remains to choose the pair (α,K) such that ‖θK+1 − θ̂‖∞ ≤ 1
8
‖θ − θ̂‖∞. Doing some simple

algebra and using the fact that KM = N
2

we find that it is sufficient to choose the pair (α,K)
satisfying the conditions

0 < α ≤ (1− γ)2

log (4ND/δ)
· 1

52 · 322
, and K ≥ 1 +

2 log 16

log
(

1
1−α(1−γ)

) .
With this choice, we have

‖θK+1 − θ̂‖∞ ≤
‖θ − θ̂‖∞

8
≤ 1

8

∥∥θ − θ∗∥∥∞ +
1

8

∥∥∥θ̂ − θ∗∥∥∥
∞
,

which completes the proof of part (c).

Proof of Lemma 9.4.8

Recall our shorthand notation for the local complexities (7.11). The following lemma characterizes
the behavior of various random variables as a function of these complexities. In stating the lemma,
we let P̂n be a sample transition matrix constructed as the average of n i.i.d. samples, and let r̂n
denote the reward vector constructed as the average of n i.i.d. samples.

Lemma C.3.3. Each of the following statements holds with probability exceeding 1− δ
M

:

‖(I− γP)−1(P̂n −P)θ∗‖∞ ≤ 2ν(P, θ∗) ·
√

log(4DM/δ)

n
+ 4 · b(θ∗) · log(4DM/δ)

n
, and

‖(I− γP)−1(r̂n − r)‖∞ ≤ 2ρ(P, r) ·
√

log(4DM/δ)

n
.

Proof. Entry ` of the vector (I − γP)−1(P̂n − P)θ∗ is zero mean with variance given by the `th

diagonal entry of the matrix (I− γP)−1Σ(θ∗)(I− γP)−T , and is bounded by b(θ∗) almost surely.
Consequently, applying the Bernstein bound in conjunction with the union bound completes the
proof of the first claim. In order to establish the second claim, note that the vector (I−γP)−1(r̂n−r)
has sub-Gaussian entries, and apply the Hoeffding bound in conjunction with the union bound.
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In light of Lemma C.3.3, note that it suffices to establish the inequality

Pr

{
‖θ̂m − θ∗‖∞ ≥

∥∥θ − θ∗∥∥∞
9

+ ‖(I− γP)−1(P̂Nm −P)θ∗‖∞ + ‖(I− γP)−1(r̂Nm − r)‖∞

}
≤ δ

2M
, (C.28)

where we have let P̂Nm and r̂Nm denote the empirical mean of the observed transitions and rewards
in epoch m, respectively. The proof of Lemma 9.4.8 follows from Eq. (C.28) by a union bound.

Establishing the bound (C.28): Since the epoch number m should be clear from context, let us
adopt the shorthand θ̂ ≡ θ̂m, along with the shorthand r̂ ≡ r̂Nm and P̂ ≡ P̂Nm . Note that θ̂ is the
fixed point of the following operator:

J (θ) : = T (θ)− T (θ) + T̃Nm(θ) = r̂ + γ
(
P̂−P

)
θ︸ ︷︷ ︸

r̃

+γPθ,

where we have used the fact that T̃Nm(θ) = r̂ + γP̂θ.
Thus, we have θ̂ = (I− γP)−1r̃, so that θ̂ − θ∗ = (I− γP)−1 (r̃ − r). Also note that we have

r̃ − r = r̂ + γ
(
P̂−P

)
θ − r = r̂ − r + γ

(
P̂−P

)
θ∗ + γ

(
P̂−P

) (
θ − θ∗

)
,

so that putting together the pieces and using the triangle inequality yields the bound

‖θ̂ − θ∗‖∞
≤ ‖(I− γP)−1(r̂ − r)‖∞ + γ‖(I− γP)−1

(
P̂−P

)
θ∗‖∞ + γ‖(I− γP)−1

(
P̂−P

) (
θ − θ∗

)
‖∞

≤ ‖(I− γP)−1(r̂ − r)‖∞ + γ‖(I− γP)−1
(
P̂−P

)
θ∗‖∞ +

γ

1− γ
‖
(
P̂−P

) (
θ − θ∗

)
‖∞.

Note that the random vector
(
P̂−P

) (
θ − θ∗

)
is the empirical average ofNm i.i.d. random vectors,

each of which is bounded entrywise by 2‖θ− θ∗‖∞. Consequently, by a combination of Hoeffding’s
inequality and the union bound, we find that∥∥∥(P̂−P

) (
θ − θ∗

)∥∥∥
∞
≤ 4‖θ − θ∗‖∞

√
log(8DM/δ)

Nm

,

with probability at least 1 − δ
4M

. Thus, provided Nm ≥ 42 · 92 · γ2

(1−γ)2
log(8DM/δ) for a large

enough constant c1, we have

γ

1− γ

∥∥∥(P̂−P
) (
θ − θ∗

)∥∥∥
∞
≤ ‖θ − θ

∗‖∞
9

.

This completes the proof.
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Proof of Lemma C.3.1

Recall that by definition, the stochastic process {Vk}k≥1 evolves according to the linear recursion
Vk = (1− αk)Vk−1 + αkWk−1, where the effective noise sequence {Wk}k≥0 satisfies the uniform
bound

‖Wk‖∞ ≤
∥∥∥T̂k(θ̂)− T̂k(θ)∥∥∥

∞
+ ‖T (θ̂)− T (θ)‖∞ ≤ 2‖θ̂ − θ‖∞︸ ︷︷ ︸

:=b

for all k ≥ 0.

Moreover, we have E[Wk] = 0 by construction so that each entry of the random vector Wk is a zero-
mean sub-Gaussian random variable with sub-Gaussian parameter at most 2‖θ̂−θ‖∞. Consequently,
by known properties of sub-Gaussian random variables (cf. Chapter 2 in [323]), we have

logE
[
esWk(x)

]
≤ s2b2

8
for all scalars s ∈ R, and states x. (C.29)

We complete the proof by using an inductive argument to upper bound the moment generating
function of the random variable V`; given this inequality, we can then apply the Chernoff bound to
obtain the stated tail bounds. Beginning with the bound on the moment generating function, we
claim that

logE
[
esVk(x)

]
≤ s2αkb

2

8
for all scalars s ∈ R and states x. (C.30)

We prove this claim via induction on k.

Base case: For k = 1, we have

logE
[
esV1(x)

]
= logE

[
esα1W0(x)

]
≤ s2α2

1b
2

8
,

where the first equality follows from the definition of V1, and the second inequality follows by
applying the bound (C.29).

Inductive step: We now assume that the bound (C.30) holds for some iteration k ≥ 1 and prove
that it holds for iteration k + 1. Recalling the definition of Vk, and the independence of the random
variables Vk and Wk, we have

E
[
esVk+1(x)

]
= logE

[
es(1−αk)Vk(x)

]
+ logE

[
esαkWk(x)

]
≤ s2(1−αk)2αk−1b

2

8
+

s2α2
kb

2

8

(i)

≤ s2(1−αk)αkb
2

8
+

s2α2
kb

2

8

= s2αkb
2

8
,

where inequality (i) follows from the assumed condition (C.24) on the stepsizes.
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Simple algebra yields that all the stepsize choices (7.8a)–(7.8c) satisfy the condition (C.24).
Finally, combining the bound (C.30) with the Chernoff bounding technique along with a union
bound over iterations k = 1, . . . K yields

P
[
‖V`‖∞ ≥ 2b

√
α`−1

√
log(8KMD/δ)

]
≤ δ

8KM
,

as claimed.
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[122] E. Giné and R. Nickl. Mathematical foundations of infinite-dimensional statistical models.
Vol. 40. Cambridge University Press, 2016.

[123] A. Gosavi. “Reinforcement learning: A tutorial survey and recent advances”. In: INFORMS
Journal on Computing 21.2 (2009), pp. 178–192.

[124] H. Grad. “Note on N-dimensional hermite polynomials”. In: Communications on Pure and
Applied Mathematics 2.4 (1949), pp. 325–330.

[125] J. Gregor and F. R. Rannou. “Three-dimensional support function estimation and application
for projection magnetic resonance imaging”. In: International journal of imaging systems
and technology 12.1 (2002), pp. 43–50.

[126] P. Groeneboom and K. Hendrickx. “Estimation in monotone single-index models”. In:
Statistica Neerlandica 73.1 (2019), pp. 78–99.

[127] P. Groeneboom, G. Jongbloed, and J. A. Wellner. “Estimation of a convex function: char-
acterizations and asymptotic theory”. In: The Annals of Statistics 29.6 (2001), pp. 1653–
1698.

[128] S. J. Grotzinger and C. Witzgall. “Projections onto order simplexes”. In: Appl. Math. Optim.
12.3 (1984), pp. 247–270.

[129] A. Guntuboyina. “Optimal rates of convergence for convex set estimation from support
functions”. In: The Annals of Statistics 40.1 (2012), pp. 385–411.

[130] A. Guntuboyina, D. Lieu, S. Chatterjee, and B. Sen. “Adaptive risk bounds in univariate total
variation denoising and trend filtering”. In: The Annals of Statistics 48.1 (2020), pp. 205–
229.

[131] A. Guntuboyina and B. Sen. “Covering numbers for convex functions”. In: IEEE Transac-
tions on Information Theory 59.4 (2013), pp. 1957–1965.

[132] A. Guntuboyina and B. Sen. “Global risk bounds and adaptation in univariate convex
regression”. In: Probability Theory and Related Fields 163.1-2 (2015), pp. 379–411.

[133] S. Haghighatshoar and G. Caire. “Signal recovery from unlabeled samples”. In: arXiv
preprint arXiv:1701.08701 (2017).

[134] B. Hajek, S. Oh, and J. Xu. “Minimax-optimal inference from partial rankings”. In: Advances
in Neural Information Processing Systems. 2014, pp. 1475–1483.
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